
Edited by

Natural Language
Processing
Emerging Neural Approaches
and Applications

Massimo Esposito, Giovanni Luca Masala,
Aniello Minutolo and Marco Pota

Printed Edition of the Special Issue Published in Applied Sciences

www.mdpi.com/journal/applsci

Natural Language Processing:
Emerging Neural Approaches and
Applications

Natural Language Processing:
Emerging Neural Approaches and
Applications

Editors

Massimo Esposito
Giovanni Luca Masala
Aniello Minutolo
Marco Pota

MDPI • Basel • Beijing •Wuhan • Barcelona • Belgrade •Manchester • Tokyo • Cluj • Tianjin

Editors

Massimo Esposito

Institute for High Performance

Computing and Networking

National Research Council

of Italy

Naples

Italy

Giovanni Luca Masala

School of Computing

University of Kent

Canterbury

United Kingdom

Aniello Minutolo

Institute for High Performance

Computing and Networking

National Research Council

of Italy

Naples

Italy

Marco Pota

Institute for High Performance

Computing and Networking

National Research Council

of Italy

Naples

Italy

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Applied Sciences (ISSN 2076-3417) (available at: www.mdpi.com/journal/applsci/special issues/

NLP).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-2271-5 (Hbk)

ISBN 978-3-0365-2272-2 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

www.mdpi.com/journal/applsci/special_issues/NLP
www.mdpi.com/journal/applsci/special_issues/NLP

Contents

About the Editors . ix

Massimo Esposito, Giovanni Luca Masala, Aniello Minutolo and Marco Pota
Special Issue on “Natural Language Processing: Emerging Neural Approaches and
Applications”
Reprinted from: Appl. Sci. 2021, 11, 6717, doi:10.3390/app11156717 1

Viera Maslej-Krešňáková, Martin Sarnovský, Peter Butka and Kristı́na Machová
Comparison of Deep Learning Models and Various Text Pre-Processing Techniques for the Toxic
Comments Classification
Reprinted from: Appl. Sci. 2020, 10, 8631, doi:10.3390/app10238631 7

Chirawan Ronran, Seungwoo Lee and Hong Jun Jang
Delayed Combination of Feature Embedding in Bidirectional LSTM CRF for NER
Reprinted from: Appl. Sci. 2020, 10, 7557, doi:10.3390/app10217557 35

Xinyu Chen, Liang Ke, Zhipeng Lu, Hanjian Su and Haizhou Wang
A Novel Hybrid Model for Cantonese Rumor Detection on Twitter
Reprinted from: Appl. Sci. 2020, 10, 7093, doi:10.3390/app10207093 57

Gabriela R. Roldan-Molina, Jose R. Mendez, Iryna Yevseyeva and Vitor Basto-Fernandes
Ontology Fixing by Using Software Engineering Technology
Reprinted from: Appl. Sci. 2020, 10, 6328, doi:10.3390/app10186328 69

Nour Jnoub, Fadi Al Machot and Wolfgang Klas
A Domain-Independent Classification Model for Sentiment Analysis Using Neural Models
Reprinted from: Appl. Sci. 2020, 10, 6221, doi:10.3390/app10186221 85

Andraž Pelicon, Marko Pranjić, Dragana Miljković, Blaž Škrlj and Senja Pollak
Zero-Shot Learning for Cross-Lingual News Sentiment Classification
Reprinted from: Appl. Sci. 2020, 10, 5993, doi:10.3390/app10175993 99

Xiaojun Kang, Bing Li, Hong Yao, Qingzhong Liang, Shengwen Li and Junfang Gong et al.
Incorporating Synonym for Lexical Sememe Prediction: An Attention-Based Model
Reprinted from: Appl. Sci. 2020, 10, 5996, doi:10.3390/app10175996 121

Shengwen Li, Renyao Chen, Bo Wan, Junfang Gong, Lin Yang and Hong Yao
DAWE: A Double Attention-Based Word Embedding Model with Sememe Structure
Information
Reprinted from: Appl. Sci. 2020, 10, 5804, doi:10.3390/app10175804 135

Injy Sarhan and Marco Spruit
Can We Survive without Labelled Data in NLP? Transfer Learning for Open Information
Extraction
Reprinted from: Appl. Sci. 2020, 10, 5758, doi:10.3390/app10175758 155

Adrián Javaloy and Ginés Garcı́a-Mateos
Preliminary Results on Different Text Processing Tasks Using Encoder-Decoder Networks and
the Causal Feature Extractor
Reprinted from: Appl. Sci. 2020, 10, 5772, doi:10.3390/app10175772 171

v

Marco Pota, Massimo Esposito, Giuseppe De Pietro and Hamido Fujita
Best Practices of Convolutional Neural Networks for Question Classification
Reprinted from: Appl. Sci. 2020, 10, 4710, doi:10.3390/app10144710 181

Adrián Javaloy and Ginés Garcı́a-Mateos
Text Normalization Using Encoder–Decoder Networks Based on the Causal Feature Extractor
Reprinted from: Appl. Sci. 2020, 10, 4551, doi:10.3390/app10134551 209

Sandra Rizkallah, Amir F. Atiya and Samir Shaheen
A Polarity Capturing Sphere for Word to Vector Representation
Reprinted from: Appl. Sci. 2020, 10, 4386, doi:10.3390/app10124386 233

Ivan Boban, Alen Doko and Sven Gotovac
Improving Sentence Retrieval Using Sequence Similarity
Reprinted from: Appl. Sci. 2020, 10, 4316, doi:10.3390/app10124316 255

Sheng Xu, Xingfa Shen, Fumiyo Fukumoto, Jiyi Li, Yoshimi Suzuki and Hiromitsu Nishizaki
Paraphrase Identification with Lexical, Syntactic and Sentential Encodings
Reprinted from: Appl. Sci. 2020, 10, 4144, doi:10.3390/app10124144 267

Asmaa M. Aubaid and Alok Mishra
A Rule-Based Approach to Embedding Techniques for Text Document Classification
Reprinted from: Appl. Sci. 2020, 10, 4009, doi:10.3390/app10114009 285

Seongsik Park and Harksoo Kim
Dual Pointer Network for Fast Extraction of Multiple Relations in a Sentence
Reprinted from: Appl. Sci. 2020, 10, 3851, doi:10.3390/app10113851 307

Kang-moon Park, Donghoon Shin and Yongsuk Yoo
Evolutionary Neural Architecture Search (NAS) Using Chromosome Non-Disjunction for
Korean Grammaticality Tasks
Reprinted from: Appl. Sci. 2020, 10, 3457, doi:10.3390/app10103457 319

Md. Mostafizer Rahman, Yutaka Watanobe and Keita Nakamura
Source Code Assessment and Classification Based on Estimated Error Probability Using
Attentive LSTM Language Model and Its Application in Programming Education
Reprinted from: Appl. Sci. 2020, 10, 2973, doi:10.3390/app10082973 329

Shuyu Lei, Xiaojie Wang and Caixia Yuan
Cooperative Multi-Agent Reinforcement Learning with Conversation Knowledge for Dialogue
Management
Reprinted from: Appl. Sci. 2020, 10, 2740, doi:10.3390/app10082740 351

Changqin Quan, Zhiwei Luo and Song Wang
A Hybrid Deep Learning Model for Protein–Protein Interactions Extraction from Biomedical
Literature
Reprinted from: Appl. Sci. 2020, 10, 2690, doi:10.3390/app10082690 367

Ubaid Ur Rehman, Dong Jin Chang, Younhea Jung, Usman Akhtar, Muhammad Asif Razzaq
and Sungyoung Lee
Medical Instructed Real-Time Assistant for Patient with Glaucoma and Diabetic Conditions
Reprinted from: Appl. Sci. 2020, 10, 2216, doi:10.3390/app10072216 381

Heewoong Park and Jonghun Park
Assessment of Word-Level Neural Language Models for Sentence Completion
Reprinted from: Appl. Sci. 2020, 10, 1340, doi:10.3390/app10041340 403

vi

Youngjin Jang and Harksoo Kim
Reliable Classification of FAQs with Spelling Errors Using an Encoder-Decoder Neural Network
in Korean
Reprinted from: Appl. Sci. 2019, 9, 4758, doi:10.3390/app9224758 421

Qicai Wang, Peiyu Liu, Zhenfang Zhu, Hongxia Yin, Qiuyue Zhang and Lindong Zhang
A Text Abstraction Summary Model Based on BERT Word Embedding and Reinforcement
Learning
Reprinted from: Appl. Sci. 2019, 9, 4701, doi:10.3390/app9214701 431

Jintae Kim, Shinhyeok Oh, Oh-Woog Kwon and Harksoo Kim
Multi-Turn Chatbot Based on Query-Context Attentions and Dual Wasserstein Generative
Adversarial Networks
Reprinted from: Appl. Sci. 2019, 9, 3908, doi:10.3390/app9183908 451

Haihong E, Siqi Xiao and Meina Song
A Text-Generated Method to Joint Extraction of Entities and Relations
Reprinted from: Appl. Sci. 2019, 9, 3795, doi:10.3390/app9183795 459

Jianliang Yang, Yuenan Liu, Minghui Qian, Chenghua Guan and Xiangfei Yuan
Information Extraction from Electronic Medical Records Using Multitask Recurrent Neural
Network with Contextual Word Embedding
Reprinted from: Appl. Sci. 2019, 9, 3658, doi:10.3390/app9183658 473

Qin Li, Shaobo Li, Sen Zhang, Jie Hu and Jianjun Hu
A Review of Text Corpus-Based Tourism Big Data Mining
Reprinted from: Appl. Sci. 2019, 9, 3300, doi:10.3390/app9163300 489

Xiaohu Du, Jie Yu, Zibo Yi, Shasha Li, Jun Ma and Yusong Tan et al.
A Hybrid Adversarial Attack for Different Application Scenarios
Reprinted from: Appl. Sci. 2020, 10, 3559, doi:10.3390/app10103559 517

vii

About the Editors

Massimo Esposito

Massimo Esposito is senior researcher at the Institute for High Performance Computing and

Networking of the National Research Council of Italy. He received a M.Sc. in Computer Science

Engineering (Cum Laude) in 2004, a 1st level Master degree in 2007, and a Ph.D. degree in Information

Technology Engineering in 2011. Since 2012, he has been a contract professor of Informatics at the

University of Naples Federico II. His current research interests are focused on Artificial Intelligence

algorithms and techniques, mixing deep learning and knowledge-based technologies, for building

intelligent systems able to converse, understand natural language and answer to questions, with

emphasis on the distributional neural representation of text, and on specific natural language tasks

such as part of speech tagging, sentence classification and open information extraction. He has been

involved in different national and European projects, has been on the program committee of many

international conferences, and is member of the editorial board of some international journals. He

authored over 100 peer-reviewed papers on international journals and conference proceedings.

Giovanni Luca Masala

Dr. Giovanni Masala is Senior Lecturer in Computer Science at the University of Kent and Leader

of the Robotics Lab. Dr. Masala has a Ph.D. in Applied Physics (AI in medical applications) and a

Laurea (MSc+BSc) in Electronic Engineering (AI) both at the University of Cagliari, Italy.

Dr. Masala has published widely on ranked journals in AI topics. Dr. Masala is a member of

several program committees in international conferences, and he is a Guest Editor in AI topics in a

number of journals. In the field of natural language understanding, he was part of a small group of

international researchers, who developed a very large-scale neural network of cognitive and language

processing, called ANNABELL. The publication in PLoS One in 2015 (1) received high impact both

scientifically and in the media. The main interests are brain-inspired architecture for natural language,

robotics, human-robot interaction, machine learning on medical applications, and medical imaging.

Aniello Minutolo

Aniello Minutolo received the M.Sc. degree in computer science engineering from the University

of Naples Federico II and the Ph.D. degree in information technology engineering from the University

of Naples Parthenope. Since 2018, he has been a Contract Professor of informatics with the Faculty of

Engineering, University of Naples Federico II. He is currently a Researcher with the Institute for High

Performance Computing and Networking, National Research Council (ICARCNR), Italy. His current

research interests include artificial intelligence, decision support systems, dialog systems, knowledge

management, and modeling and reasoning. He has been involved in different national and European

projects and on the program committee of some international conferences and workshops. Moreover,

he is also a member of the editorial board of some international journals.

ix

Marco Pota

Marco Pota is researcher at the Institute for High Performance Computing and Networking of

the National Research Council of Italy. He received M.Sc. in Chemical Engineering in 2004, and a

Ph.D. degree in Multiscale Modelling, Computational Simulation and Characterization for Materials

and Life Sciences in 2010. Since 2018, he has been a contract professor of Informatics at the University

of Naples Federico II. His current research interests are focused on Artificial Intelligence algorithms

and techniques, based on deep learning and knowledge-based technologies, for building predictive

models and solving specific natural language processing tasks. He has been involved in different

national projects, in the organization of many international conferences, and is guest editor of some

international journals. He has authored many peer-reviewed papers on international journals and

conference proceedings.

x

applied
sciences

Editorial

Special Issue on “Natural Language Processing: Emerging
Neural Approaches and Applications”

Massimo Esposito 1,* , Giovanni Luca Masala 2 , Aniello Minutolo 1 and Marco Pota 1

Citation: Esposito, M.; Masala, G.L.;

Minutolo, A.; Pota, M. Special Issue

on “Natural Language Processing:

Emerging Neural Approaches and

Applications”. Appl. Sci. 2021, 11,

6717. https://doi.org/10.3390/

app11156717

Received: 25 June 2021

Accepted: 27 June 2021

Published: 22 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute for High Performance Computing and Networking—National Research Council of
Italy (ICAR-CNR), 80131 Naples, Italy; aniello.minutolo@icar.cnr.it (A.M.); marco.pota@icar.cnr.it (M.P.)

2 Department of Computing and Mathematics, Manchester Metropolitan University (MMU),
Manchester M15 6BH, UK; g.masala@mmu.ac.uk

* Correspondence: massimo.esposito@icar.cnr.it

Nowadays, systems based on artificial intelligence are being developed, leading to
impressive achievements in a variety of complex cognitive tasks, matching or even beating
humans [1–4]. Natural language processing (NLP) is a field where the use of deep learning
(DL) models in the last five years has allowed AI to advance toward human levels in
translation and reading comprehension, as well as other real-world NLP applications,
such as question answering and conversational systems, information retrieval, sentiment
analysis, and recommender systems.

However, due to the difficulties associated with natural language understanding and
generation, which are human capabilities among the least understood by computer systems
from a cognitive perspective, and despite the remarkable success of DL in different NLP
tasks, this is still a field of research of increasing interest [5–7]. In order to improve DL
methods, current models have been scaled up, but their complexity has grown toward
directions assumed by empirical engineering solutions [8–11]. Moreover, they are not
applicable to languages without extensive datasets [12], and the lack of explainability
inhibits further improvements [13].

This Special Issue highlights the most recent research being carried out in the NLP
field to discuss these open issues, with a particular focus on both emerging approaches
for language learning, understanding, production, and grounding interactively or au-
tonomously from data in cognitive and neural systems, as well as on their potential or real
applications in different domains.

There are 30 contributions selected for this Special Issue representing progress and po-
tential applications in the NLP area from original contributions of researchers with a broad
expertise in various fields: NLP, cognitive science and psychology, artificial intelligence
and neural networks, computational modeling and neuroscience covering the whole range
of theoretical and practical aspects, technologies, and systems.

This collection includes one review paper, which focuses on text corpus-based tourism
big data mining [14]. Li et al. summarized and discussed different text representation
strategies, text-based NLP techniques for topic extraction, text classification, sentiment
analysis, and text clustering in the context of tourism text mining, as well as their applica-
tions in tourist profiling, destination image analysis, and market demand, among others.
Their work also provides guidelines for constructing new tourism big data applications
and outlines promising research areas in this field for the coming years.

One letter is also included in this issue, employing evolutionary a neural architecture
search for Korean grammaticality tasks [15].

Regarding the other 28 research papers, the following NLP areas are specifically
addressed:

Natural language understanding, generation, and grounding: In [16], Ontology-
Fixer is presented, a web-based tool that supports a methodology to build, assess, and

1

Appl. Sci. 2021, 11, 6717

improve the quality of Ontology Web Language (OWL) ontologies. Another paper [17]
addresses the problem of paraphrase identification and presents an approach for leveraging
contextual features with a neural-based learning model based on lexical, syntactic, and
sentential encodings, incorporating relational graph convolutional networks (R-GCNs) to
make use of different features from local contexts (e.g., word encoding, position encoding,
and full dependency structures). In addition, in [18], the authors revisited the recurrent
neural network (RNN) language model, achieving highly competitive results with the
appropriate network structure and hyperparameters.

Universal language models: In [19], Javaloy and the co-author used a method recently
proposed, called the causal feature extractor (CFE), for encoder-decoder models on different
text processing tasks. The same authors applied this method to text normalization in [20],
which is a ubiquitous problem that appears as the first step of many text-to-speech (TTS)
systems.

Conversational systems or interfaces and question answering: The authors in [21]
proposed the best practices for question classification in different languages using convolu-
tional neural networks (CNNs), finding the optimal settings depending on the language
and validating their transferability. The authors in [22] addressed the time-consuming de-
velopment of manual user simulator policy and introduced a multi-agent dialogue model,
where an end-to-end dialogue manager and a user simulator are optimized simultaneously
for dialogue management by cooperative multi-agent reinforcement learning. Moreover,
in [23], the authors proposed a Medical Instructed Real-time Assistant (MIRA) that listens
to the user’s chief complaint and predicts a specific disease, thus referring the user to
a nearby appropriate medical specialist. Furthermore, in [24], the authors presented a
multi-turn chatbot model in which the preceding utterances are exploited in response
generation by using different weights.

Sentiment analysis, emotion detection, and opinion mining: The study in [25] in-
vestigated a comparison of various DL models used to identify the toxic comments in
Internet discussions. Moreover, in [26], the authors proposed a novel hybrid model XGA
(namely an XLNet-based bidirectional gated recurrent unit (BiGRU) network with an at-
tention mechanism) for Cantonese rumor detection on Twitter, taking advantage of both
semantic and sentiment features for detection. Furthermore, the authors of [27] proposed
an intensive study regarding a domain-independent classification model for sentiment
analysis using neural models, showing high performance when using different evaluation
metrics compared with the state-of-the-art results. Another study in [28] tested different
approaches for handling long documents and proposed a novel technique for sentiment
enrichment of the Bidirectional Encoder Representations from Transformers (BERT) model
as an intermediate training step. In [29], Rizkallah et al. proposed an embedding approach
that is designed to capture the polarity issue for sentiment analysis.

Document analysis, information extraction, and text mining: In [30], Ronran et al.
evaluated the combination of different types of embedding features in a bidirectional
long short-term memory (Bi-LSTM) conditional random field (CRF) model for named
entity recognition (NER). The authors in [31] investigated the transferability of the features
from an open information extraction (OIE) domain to another and applied the approach
for relation extraction (RE). The authors in [32] proposed a rule-based approach for text
document classification. The study in [33] proposed an RE model based on a dual pointer
network with a multi-head attention mechanism to address the association of multiple
entities in a sentence according to various relations. The work in [34] investigated an
RE method to solve the possible overlapping among multiple relational triples contained
in a sentence. Another topic was introduced by the authors of [35], who introduced a
novel hybrid model of extractive-abstractive text summarization to combine BERT word
embedding with reinforcement learning. Two contributions to this special issue are focused
on medical information extraction. The authors in [36] compared different architectures of
DL models, including CNNs, LSTM, and hybrid models. Furthermore, they proposed a
hybrid architecture for protein–protein interaction extraction from the biomedical literature.

2

Appl. Sci. 2021, 11, 6717

The authors in [37] developed a multitask attention-based Bi-LSTM–CRF model with
pre-trained embeddings from language models (ELMo) in order to achieve improved
performance in clinical NER.

Search and information retrieval: In [38], Boban et al. adapted language modeling-
based methods for sentence retrieval to test the partial matching of terms through combin-
ing sentence retrieval with sequence similarity. This method allows for matching words
that are similar but not identical. The authors of [39] proposed a reliable sentence classifica-
tion model based on an encoder-decoder neural network to resolve lexical disagreement
problems between queries and frequently asked questions (FAQs).

Trustworthy and explainable artificial intelligence: Two contributions [40,41] con-
sidered “sememe”, the smallest semantic unit for describing real-world concepts, which
improve the interpretability of NLP systems. In particular, the study in [40] proposed
a novel model to improve the performance of sememe prediction by introducing syn-
onyms. On the other hand, the work in [41] implicitly synthesized the structural features
of sememes into word embedding models through an attention mechanism. The work
proposes a novel double attention word-based embedding (DAWE) model that encodes
the characteristics of sememes into words with a “double attention” strategy.

Applications in science, engineering, medicine, healthcare, finance, business, law,
education, transportation, retailing, telecommunication, and multimedia: The authors
in [42] proposed a hybrid adversarial attack method to generate examples with the aim
to explore the vulnerabilities and security aspects of deep learning systems in different
application scenarios. An application in programming education was considered in [43]. In
this study, the source code assessment and its classification were developed by a sequential
language model that used an attention mechanism through an LSTM neural network and
based on the estimated error probability.

In summary, this Special Issue contains a series of excellent research works on NLP,
covering a wide range of topics. The collection of 30 contributions is highly recommended,
and it will benefit readers in various aspects.

Acknowledgments: We would like to thank all the authors, the dedicated referees, the editor team
of applied sciences for their valuable contributions, making this special issue a success.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ferrucci, D.; Brown, E.; Chu-Carroll, J.; Fan, J.; Gondek, D.; Kalyanpur, A.A.; Lally, A.; Murdock, J.W.; Nyberg, E.; Prager, J.; et al.

Building Watson: An Overview of the DeepQA Project. AI Mag. 2010, 31, 59–79. [CrossRef]
2. Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

3. Newborn, M. Kasparov Versus Deep Blue; Springer: Berlin, Germany, 1997.
4. Baughman, A.; Chuang, W.; Dixon, K.; Benz, Z.; Basilico, J. DeepQA Jeopardy! Gamification: A Machine-Learning Perspective.

Comput. Intell. AI Games IEEE Trans. 2014, 6, 55–66. [CrossRef]
5. Yadav, A.; Vishwakarma, D.K. Sentiment analysis using deep learning architectures: A review. Artif. Intell. Rev. 2019, 53,

4335–4385. [CrossRef]
6. Yuan, S.; Zhang, Y.; Tang, J.; Hall, W.; Cabotà, J.B. Expert finding in community question answering: A review. Artif. Intell. Rev.

2020, 53, 843–874. [CrossRef]
7. Wang, Y.; Wang, M.; Fujita, H. Word Sense Disambiguation: A comprehensive knowledge exploitation framework. Knowl. Based

Syst. 2020, 190, 105030. [CrossRef]
8. Laha, A.; Raykar, V. An Empirical Evaluation of various Deep Learning Architectures for Bi-Sequence Classification Tasks. In

Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka,
Japan, 11–16 December 2016; pp. 2762–2773.

9. Nguyen, V.H.; Cheng, J.S.; Yu, Y.; Thai, V.T. An architecture of deep learning network based on ensemble empirical mode
decomposition in precise identification of bearing vibration signal. J. Mech. Sci. Technol. 2019, 33, 41–50. [CrossRef]

10. Guo, Q.; Chen, S. An Empirical Study towards Characterizing Deep Learning Development and Deployment across Different
Frameworks and Platforms. arXiv 2019, arXiv:1909.06727v1. Available online: https://arxiv.org/pdf/1909.06727.pdf (accessed
on 20 July 2021).

3

Appl. Sci. 2021, 11, 6717

11. Pota, M.; Marulli, F.; Esposito, M.; De Pietro, G.; Fujita, H. Multilingual POS tagging by a composite deep architecture based on
character-level features and on-the-fly enriched Word Embeddings. Knowl. Based Syst. 2019, 164, 309–323. [CrossRef]

12. Cherry, C.A. EMNLP Workshop on Deep Learning for Low-Resource NLP. 20 June 2019, China, Association for Computational
Linguistics. Available online: https://sites.google.com/view/deeplo19 (accessed on 20 July 2021).

13. Zohuri, B.; Moghaddam, M. Deep Learning Limitations and Flaws. Mod. Approaches Mater. Sci. Short Commun. 2020, 2, 241–250.
14. Li, Q.; Li, S.; Zhang, S.; Hu, J.; Hu, J. A Review of Text Corpus-Based Tourism Big Data Mining. Appl. Sci. 2019, 9, 3300. [CrossRef]
15. Park, K.-M.; Shin, D.; Yoo, Y. Evolutionary Neural Architecture Search (NAS) Using Chromosome Non-Disjunction for Korean

Grammaticality Tasks. Appl. Sci. 2020, 10, 3457. [CrossRef]
16. Roldan-Molina, G.R.; Mendez, J.R.; Yevseyeva, I.; Basto-Fernandes, V. Ontology Fixing by Using Software Engineering Technology.

Appl. Sci. 2020, 10, 6328. [CrossRef]
17. Xu, S.; Shen, X.; Fukumoto, F.; Li, J.; Suzuki, Y.; Nishizaki, H. Paraphrase Identification with Lexical, Syntactic and Sentential

Encodings. Appl. Sci. 2020, 10, 4144. [CrossRef]
18. Park, H.; Park, J. Assessment of Word-Level Neural Language Models for Sentence Completion. Appl. Sci. 2020, 10, 1340.

[CrossRef]
19. Javaloy, A.; García-Mateos, G. Preliminary Results on Different Text Processing Tasks Using Encoder-Decoder Networks and the

Causal Feature Extractor. Appl. Sci. 2020, 10, 5772. [CrossRef]
20. Javaloy, A.; García-Mateos, G. Text Normalization Using Encoder–Decoder Networks Based on the Causal Feature Extractor.

Appl. Sci. 2020, 10, 4551. [CrossRef]
21. Pota, M.; Esposito, M.; De Pietro, G.; Fujita, H. Best Practices of Convolutional Neural Networks for Question Classification. Appl.

Sci. 2020, 10, 4710. [CrossRef]
22. Lei, S.; Wang, X.; Yuan, C. Cooperative Multi-Agent Reinforcement Learning with Conversation Knowledge for Dialogue

Management. Appl. Sci. 2020, 10, 2740. [CrossRef]
23. Rehman, U.U.; Chang, D.J.; Jung, Y.; Akhtar, U.; Razzaq, M.A.; Lee, S. Medical Instructed Real-Time Assistant for Patient with

Glaucoma and Diabetic Conditions. Appl. Sci. 2020, 10, 2216. [CrossRef]
24. Kim, J.; Oh, S.; Kwon, O.-W.; Kim, H. Multi-Turn Chatbot Based on Query-Context Attentions and Dual Wasserstein Generative

Adversarial Networks. Appl. Sci. 2019, 9, 3908. [CrossRef]
25. Maslej-Krešňáková, V.; Sarnovský, M.; Butka, P.; Machová, K. Comparison of Deep Learning Models and Various Text Pre-

Processing Techniques for the Toxic Comments Classification. Appl. Sci. 2020, 10, 8631. [CrossRef]
26. Chen, X.; Ke, L.; Lu, Z.; Su, H.; Wang, H. A Novel Hybrid Model for Cantonese Rumor Detection on Twitter. Appl. Sci. 2020,

10, 7093. [CrossRef]
27. Jnoub, N.; Al Machot, F.; Klas, W. A Domain-Independent Classification Model for Sentiment Analysis Using Neural Models.

Appl. Sci. 2020, 10, 6221. [CrossRef]
28. Pelicon, A.; Pranjić, M.; Miljković, D.; Škrlj, B.; Pollak, S. Zero-Shot Learning for Cross-Lingual News Sentiment Classification.

Appl. Sci. 2020, 10, 5993. [CrossRef]
29. Rizkallah, S.; Atiya, A.F.; Shaheen, S. A Polarity Capturing Sphere for Word to Vector Representation. Appl. Sci. 2020, 10, 4386.

[CrossRef]
30. Ronran, C.; Lee, S.; Jang, H.J. Delayed Combination of Feature Embedding in Bidirectional LSTM CRF for NER. Appl. Sci. 2020,

10, 7557. [CrossRef]
31. Sarhan, I.; Spruit, M. Can We Survive without Labelled Data in NLP? Transfer Learning for Open Information Extraction. Appl.

Sci. 2020, 10, 5758. [CrossRef]
32. Aubaid, A.M.; Mishra, A. A Rule-Based Approach to Embedding Techniques for Text Document Classification. Appl. Sci. 2020,

10, 4009. [CrossRef]
33. Park, S.; Kim, H. Dual Pointer Network for Fast Extraction of Multiple Relations in a Sentence. Appl. Sci. 2020, 10, 3851. [CrossRef]
34. Xiao, S.; Song, M. A Text-Generated Method to Joint Extraction of Entities and Relations. Appl. Sci. 2019, 9, 3795. [CrossRef]
35. Wang, Q.; Liu, P.; Zhu, Z.; Yin, H.; Zhang, Q.; Zhang, L. A Text Abstraction Summary Model Based on BERT Word Embedding

and Reinforcement Learning. Appl. Sci. 2019, 9, 4701. [CrossRef]
36. Quan, C.; Luo, Z.; Wang, S. A Hybrid Deep Learning Model for Protein–Protein Interactions Extraction from Biomedical Literature.

Appl. Sci. 2020, 10, 2690. [CrossRef]
37. Yang, J.; Liu, Y.; Qian, M.; Guan, C.; Yuan, X. Information Extraction from Electronic Medical Records Using Multitask Recurrent

Neural Network with Contextual Word Embedding. Appl. Sci. 2019, 9, 3658. [CrossRef]
38. Boban, I.; Doko, A.; Gotovac, S. Improving Sentence Retrieval Using Sequence Similarity. Appl. Sci. 2020, 10, 4316. [CrossRef]
39. Jang, Y.; Kim, H. Reliable Classification of FAQs with Spelling Errors Using an Encoder-Decoder Neural Network in Korean.

Appl. Sci. 2019, 9, 4758. [CrossRef]
40. Kang, X.; Li, B.; Yao, H.; Liang, Q.; Li, S.; Gong, J.; Li, X. Incorporating Synonym for Lexical Sememe Prediction: An Attention-

Based Model. Appl. Sci. 2020, 10, 5996. [CrossRef]
41. Li, S.; Chen, R.; Wan, B.; Gong, J.; Yang, L.; Yao, H. DAWE: A Double Attention-Based Word Embedding Model with Sememe

Structure Information. Appl. Sci. 2020, 10, 5804. [CrossRef]

4

Appl. Sci. 2021, 11, 6717

42. Du, X.; Yu, J.; Yi, Z.; Li, S.; Ma, J.; Tan, Y.; Wu, Q. A Hybrid Adversarial Attack for Different Application Scenarios. Appl. Sci. 2020,
10, 3559. [CrossRef]

43. Rahman, M.M.; Watanobe, Y.; Nakamura, K. Source Code Assessment and Classification Based on Estimated Error Probability
Using Attentive LSTM Language Model and Its Application in Programming Education. Appl. Sci. 2020, 10, 2973. [CrossRef]

5

applied
sciences

Article

Comparison of Deep Learning Models and Various
Text Pre-Processing Techniques for the Toxic
Comments Classification

Viera Maslej-Krešňáková, Martin Sarnovský * , Peter Butka and Kristína Machová

Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics,
Technical University of Košice, 040 01 Kosice, Slovakia; viera.maslej.kresnakova@tuke.sk (V.M.-K.);
peter.butka@tuke.sk (P.B.); kristina.machova@tuke.sk (K.M.)
* Correspondence: martin.sarnovsky@tuke.sk

Received: 16 October 2020; Accepted: 27 November 2020; Published: 2 December 2020

Abstract: The emergence of anti-social behaviour in online environments presents a serious issue in
today’s society. Automatic detection and identification of such behaviour are becoming increasingly
important. Modern machine learning and natural language processing methods can provide effective
tools to detect different types of anti-social behaviour from the pieces of text. In this work, we present
a comparison of various deep learning models used to identify the toxic comments in the Internet
discussions. Our main goal was to explore the effect of the data preparation on the model performance.
As we worked with the assumption that the use of traditional pre-processing methods may lead to
the loss of characteristic traits, specific for toxic content, we compared several popular deep learning
and transformer language models. We aimed to analyze the influence of different pre-processing
techniques and text representations including standard TF-IDF, pre-trained word embeddings and
also explored currently popular transformer models. Experiments were performed on the dataset
from the Kaggle Toxic Comment Classification competition, and the best performing model was
compared with the similar approaches using standard metrics used in data analysis.

Keywords: natural language processing; toxic comments; classification; deep learning; neural
networks

1. Introduction

Nowadays, the World Wide Web is an environment where the users can create and share the
information with almost minimal restrictions. The majority of the users use the web responsibly and
effectively. However, there is a group of users, which act with the type of behaviour, that could be
described as anti-social. Numerous definitions of the anti-social behaviour currently exist [1], but there
are two major types of such behaviour present:

• Misinformation spreading—this type of actions usually include creation and sharing of misleading
content in various forms, e.g., hoaxes, fake or biased news, fake reviews, etc.

• User reactions—this type of behaviour usually occurs in user conversations and has many different
forms, e.g., discussion manipulation, cyber-bullying, hate speech, trolling, spamming and other.

Both forms of anti-social behaviour present a serious issue, as their consequences can be significant,
also in the real-world. Internet users often communicate with each other in real-time; the discussions
usually involve a considerable number of users. Such massive communication supported by modern
technologies which enable partial anonymity also leads to the new threats in form non-proper user
reactions. Anti-social user reactions in online discussions are often related to the use of abusive

7

Appl. Sci. 2020, 10, 8631

language. There are numerous different definitions of such behaviour and it could be difficult to
find the exact definition of such phenomenon and is even a more significant challenge to do so in
the online environment [2]. However, toxic comments in an online discussion, in general, can be
defined as a response in an aggressive way, which forces the offended participants to abandon it (e.g.,
personal attacks, verbal bullying) [3]. As the vast majority of those data are in the form of text, various
techniques of natural language processing (NLP) can be utilized to their processing.

With a growing number of textual data generated in online environments, there is a strong
need to detect and eliminate the various forms of anti-social behaviour effectively. Currently,
manual techniques are still frequently used in the detection of such behaviour in online communities
(discussion forums, social networks, etc.). Using human moderators responsible for finding and
revealing the anti-social behaviour in online environments can be very time consuming and also biased
by moderators themselves. In general, there is a strong need to design and implement the new methods
able to detect the anti-social behaviour from the content automatically using the NLP, machine learning
and artificial intelligence techniques. The overall goal of these approaches is to utilize the results
of such methods for both, prevention and elimination of negative impacts of anti-social behaviour
in online communities, for example by enabling the fully-automated detection and prediction of
different types of anti-social behaviour from the user-created content. However, ML and NLP methods
can still suffer from learning from the data which are often human-labelled. Measurement and
mitigation of unintended bias is a non-trivial problem, which has been also studied in the area of
toxicity detection [4,5].

The work presented in this paper focuses on exploring the use of currently popular deep learning
architectures to predict the toxicity in the comments. While several studies were dealing with the
problem of using deep learning to predict the toxicity of the comments, they are inconsistent in terms
of pre-processing, model application and evaluation. Toxic comments are often written in specific
language and style from both perspectives, content and form. Texts are relatively short, written using
non-standard language, often using offensive language with a lot of grammatical and spelling errors
and punctuation marks. Some of them represent just the common typos, but many of them are written
purposely by their authors, to avoid the automatic on-line filtering of the abusive language [6]. In other
sentiment analysis tasks, the effect of the pre-processing is well studied and proven, that the right
selection of pre-processing may lead to performance improvement [7–9]. In this particular domain,
we can assume, that it would require minimal pre-processing techniques to ensure that the information
contained in the comment text and form would be preserved. On the other hand, there are word
embeddings, as a way of text representations, which are currently frequently being used when training
deep learning models. Those embeddings are usually pre-trained using various sets of text corpora.
Some of the pre-trained embeddings are built using mostly clean, regular words and are more suitable
for processing of standard texts while other ones fit better to short on-line communication. In the
toxic comments classification task, it would also be interesting to train the word embeddings from
scratch using the dataset related to the task. Therefore, in this research, we aimed to compare multiple
currently popular deep learning methods and transformer language models and study the effects of
different text representations and basic pre-processing techniques applied in the data preparation.

The paper is organized as follows: Section 2. provides an overview of the abusive language and
toxic comments field and application of different machine learning methods to their detection. Section 3
describes the deep learning methods used for text classification. The following section presents the
data used in the experiments and their preparation; Section 5 then describes the performance metrics
used in the experiments, followed by the section describing implemented models and their settings.
The next section is dedicated to the experimental evaluation and describes achieved results.

2. Toxic Comments Classification

Sentiment analysis in general considered a research area which combines NLP and text mining
to automatically detect and identify the opinions contained in the text and determine the writer’s

8

Appl. Sci. 2020, 10, 8631

opinion or attitude with regards to a particular topic [10]. Although multiple approaches have been
applied in this field, most of them are based on the application of machine learning methods. A specific
sub-section of sentiment analysis is a detection of abusive language in the conversational content.
Use of aggressive or offensive language in online discussions may occur in various forms. Various
studies address different aspects of the abusive language in the online discussions, often differentiated
by the types of aggression expressed. Therefore, when considering the abusive language detection
from the texts, various related tasks are explored, including detection of cyber-bullying, hate or hate
speech, online harassment, flaming, toxic comments, extremism, etc. Those tasks are often not clearly
distinguishable, often are overlapping, and despite the differences between the concepts, often similar
methods are utilized to tackle those problems [11]. However, there are studies trying to establish the
common typology of the different abusive language detection tasks [12].

Toxic comments detection can be considered as a specific sub-task of approaches mentioned
above, which aims to detect and identify the toxicity in the conversational text. It is usually solved as a
text classification task, where the input features are extracted from the piece of text. As multiple types
of toxicity could be contained in the text (e.g., insults, obscene language, hate, etc.), therefore toxic
comments detection is usually considered as a multi-class classification task where the target class
describe the particular type of the toxicity contained in the text. In this case, the problem of unbalanced
data is a common issue, as the frequency of occurrence of the different toxicity types may vary.

Recently, the essential source of the data used to build the toxicity detection models come from
social networks. Data are usually extracted from the discussions, comments or social network posts
and typically represent the user reactions to a particular topic [13]. During recent years, several
datasets became publicly available, containing labelled data from different social platforms and areas,
e.g., Twitter dataset [14] contains 25,000 manually annotated tweets containing hate speech. Youtube
dataset [15] consists of 3221 manually labelled comments from YouTube discussions [16] or very
popular Wikipedia talk page corpus also used in this work. However, different datasets are often
labelled non-consistently, which could be the effect of the different problem understanding and will
require a more integrated approach when collecting the data in the future [17].

To detect the toxicity in the conversational data, both traditional machine learning methods,
as well as advanced deep learning techniques, have been utilized. Traditional machine learning
approaches include the use of various classifiers, e.g., Decision Trees [18], Logistic Regression [19],
Support Vector Machine models [15] or Ensemble Models [20]. Traditional machine learning models
are frequently used and popular in the detection of other types of anti-social behaviour, such as fake
reviews detection. For example, work Naive Bayes and Random Forests have been used in the detection
of the fake reviews obtained from Amazon [21] using data describing the seller, website, product,
reviewer and review content. Authors in [22] answered interesting questions, if the performance of
the classification methods for fake reviews filtering are affected when they are used in real-world
scenarios that require online learning. Regarding the toxicity detection, authors in [23] monitored and
analyzed the most recently published comments to detect whether an aggressive action emerges in
a discussion thread. The authors experimented with various forms of representations of input texts
in combination with Radial Basis Function, Support Vector Machines and Hidden Markov Model
classifiers. The work [24] is focused on fake reviews detection and the influence of a length of the
text data on a measure of the effectiveness of the learned models. The results of experiments showed
that the models learned from the whole body of texts are more effective than models learned only
from the headlines. Similarly, in [25] authors have examined the influence of a length of the text
data on the effectiveness of machine learning models trained for recognition of authors of toxic posts.
The paper describes an approach to suspicious authors identification based on the training a specialized
dictionary of the toxic author and also the training of Naive Bayes and Support Vector Machine models.

However, recently, deep learning techniques proved to be successful in the detection of various
types of anti-social behaviour on the web. For example, deep neural networks were used to detect
the cyber-bullying within the user posts on the Twitter [26]. Multiple topologies of Convolutional

9

Appl. Sci. 2020, 10, 8631

Neural Networks (CNN) were evaluated to find the most suitable model when handling this task [27].
Besides tweets, other data sources can be utilized to train the cyber-bullying detectors. Authors in [28]
used transfer learning within different datasets of conversational data (e.g., Wikipedia, Twitter) and
then compared the performance of deep learning models. Multiple deep networks were successfully
used also in hate speech detection [29], including deep learning ensemble models [30]. Multi-label
toxic comments classification was also addressed by different deep learning models [31]. In [32],
authors used CNN for multi-label classification of the comments and experimented with different
word embeddings, in [33], authors compared the performance of CNN to Long Short-Term Memory
(LSTM) network, and authors in [34] presented the capsule network approach. When monitoring social
networks, an interesting aspect would be tracking the temporal aspects of toxicity in the comments.
In [35] authors present the CNN model able to detect the toxic tweets. Authors also utilize the hashtags
from the tweets related to toxic tweets and also are able to monitor the toxicity propagation over time.
Several previous works approached toxicity detection as the binary classification problem. However,
deep learning models are also used in more complex, ensemble approaches. In [36] an ensemble model
consisting of CNN, BiLSTM and GRU is presented, which determines whether the text is toxic or not
in the first step and then classifies the toxic comments into a more specific category representing the
particular type of the toxicity.

3. Deep Learning Methods for Text Processing

Neural networks are considered to be one of the best-performing machine learning algorithms.
They have brought great success in the field of artificial intelligence, such as in the field of computer
vision, where their task is image processing and pattern recognition, and, for example, in sound
processing and speech recognition. In this section, we took a closer look at how neural networks can
be used to work with the textual data.

3.1. Feedforward Neural Network

Deep forward neural networks known as the feedforward neural networks (FFNN) or multilayer
perceptrons are basic models of deep learning. Feedforward networks became popular in 1986 when
Rumelhart, Hinton, and Williams introduced a method of training forward neural networks using the
error back-propagation [37]. The goal of feedforward neural networks is to approximate the function
f ∗. For example, the function y = f ∗(x) maps the input x to the value y. FFNN defines the mapping
y = f (x; θ) and finds the value of the parameters θ, which leads to the best approximation of the
function. The flow of information in FFNN is forward; in practice, this means that the computational
model represents an acyclic graph.

The basic model of a neuron is called perceptron. The perceptron receives input signals x̄ =

(x1, x2, . . . , xn+1) via synaptic weights, which form the vector w̄ = (w1, w2, . . . , wn+1). The perceptron
output is given as the scalar product of the input vectors transformed using the activation function
f , to which the bias is added. Bias b is a constant that does not depend on the input parameters and
serves to influence the activation function [38,39].

output = f (w̄ · x̄) = f
(n+1

∑
i=1

wixi

)
+ b. (1)

For the best classifiers in our work are used following hyper-parameters and settings:

• Activation function on input and hidden layers: ReLU:

In proposed solution we used ReLU (Rectified Linear Unit) [40] activation function. ReLU belongs
to one of the most frequently used activation functions applied in deep networks. It is defined as:

f (x) = max(0, x) (2)

10

Appl. Sci. 2020, 10, 8631

which means, that it transforms negative inputs to 0 and leaves positive inputs
without transformation.

• Loss function: binary cross entropy

Error function is used to estimate the error of the model during the training. Using the error
backpropagation [41], the neuron weights in particular layer are updated in such manner, that the
error rate decreases in following evaluation. We used Binary Cross-Entropy (BCE), which can be
defined as:

BCE = − (y log (ŷ) (1− y) log (1− ŷ)) , (3)

where y represents the ground truth and ŷ represents predicted value.
• Optimization: Adam

To minimize the error rate of the model in the prediction, optimization function is used. We used
Adam (Adaptive Moment Estimation) [42]. Adam is an optimization function, which computes
the learning estimation for each parameter. In addition to storing an exponentially decaying
average of past squared gradients v(t) like RMSprop [43], Adam also keeps an exponentially
decaying average of past gradients m(t), similar to momentum [44]. Both moving averages are
initialized to 0, which leads to the moments’ estimation biased towards zero. Such situation
occurs mostly during the initial phases when decay parameters (β1, β2) have values close to 1.
Such biased can be removed using modified estimations m̂t a v̂t:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

, (4)

The parameters are updated according to the formula:

θt+1 = θt
α√

v̂t + ε
· m̂t. (5)

Default setting for the parameter β1 is 0.9 and β2 = 0.999, learning rate α = 0.001 and 10−8

for the ε parameter. Adam is considered as a suitable optimization method in practical tasks.
When comparing Adam to other methods, its advantage is faster convergence and training
speed is also higher. It also removes certain issues of other optimization techniques, such as
slow convergence, or high variance of the parameters, which could lead to variations in the
error function.

• Regularization: dropout

The main idea of the dropout is the random removal of specific neurons (along with their
connections) from the neural network during the model training [45]. Ignoring, or ”dropping-out”
of specific neurons can prevent their over-adaptation, which could lead to over-fitting. In each
iteration, a new sub-network is created, which contains different neurons than during the previous
iteration. The output of such a process is a set of sub-networks, which have a higher chance
to capture the random phenomena in the data compared to the single robust network. While
using this technique, it is necessary to set the parameter defining the probability of selection of a
number of neurons, which will be dropped out from the network.

• Output activation function: sigmoid

Sigmoid function is a bounded, differentiable real function. It is defined for all real values and
has a non-negative derivative in each point [39]. It is mostly used because of its non-linearity and
simplicity of the computation. The function is defined as:

f (x) =
1

1 + e−x (6)

11

Appl. Sci. 2020, 10, 8631

The output of the sigmoid activation function is in the range between 0 and 1, which makes it

suitable for use in the classification tasks.

3.2. Convolutional Neural Network

Convolutional neural networks (CNN) represent a specific type of forward neural networks,
which contain a layer of neurons for the convolution operation. The inspiration for the architecture of
this network was the function of the ocular nerve. Neurons respond to the input of the surrounding
neurons’ activations according to a specified size of the convolutional kernel, also called filter.
Convolution consists of shifting the convolution kernel over the whole set of values. In this case,
the convolution operation represents the multiplication of the convolution kernel and input values
(see Figure 1) [38].

Figure 1. One-dimensional convolutional process. Input data is located on the (left), the filter in the
middle, and the convolution output on the (right).

Pooling layers in convolutional networks are designed to reduce the number of outputs, to reduce
the computational complexity, and to prevent the network over-fitting. The sampling layers are usually
applied just behind the convolution layers, as the duplicate data are created when the convolution
kernels are shifting through the individual inputs. Excess data is removed using the pooling layers.

In our work, we use the Global pooling layer, in which we distinguish between the Global average
pooling layer and the Global max pooling layer. These layers work according to the same principle as
the traditional average pooling (max pooling) layer. The difference is, that the average (maximum) is
not calculated only for a given area, but for the entire input.

3.3. Long Short-Term Memory

Long Short-Term Memory (LSTM) [46] is a type of a recurrent neural network. LSTM has
a more complex structure, which makes it suitable to deal with the vanishing gradient problem.
Using the LSTM in any sequential task will ensure that long-term information and context is maintained
(see Figure 2).

Figure 2. The first figure shows the standard recurrent neural network and the vanishing gradient
problem, which results in the loss of context. In contrast, the second figure shows the preservation of
information and context in LSTM [47].

Comparing to other types of neural networks, the LSTM network does not consist of
interconnected neurons, but of memory blocks that are connected in layers. The block contains

12

Appl. Sci. 2020, 10, 8631

gateways that manage the state and output of the block and the flow of information. Gateways can
learn which data in a sequence is important and needs to be preserved. There are four memory block
elements performing the following functions (see Figure 3):

• Input gate—it is used to control the entry of information into the memory block.
• Cell state—it is used to store long-term information.
• Forget gate—it is used is to decide what information will be discarded and what information will

be kept.
• Output gate—based on the input and the memory unit it is used is to decide what operation to

perform on the output.

Figure 3. LSTM network memory block. The block has a recurrent connection with the weights set to
1.0. The three gateways collect input from the rest of the network and check the status of the memory
block via three multiplicate units (marked in blue). The letters g and h depict the application of a
nonlinear function [48].

Bidirectional Long Short-Term Memory network (BiLSTM) represents a specific type of LSTM
network. BiLSTMs consists of two individual hidden layers. The first layer is used to process the input
sequence forward, and on the other hand, the second hidden layer is used to process the sequence
backwards. The hidden layers merge in the output layer, thanks to that the output layer can access to
each point’s past and the future context in the sequence. LSTM and their bidirectional variants proved
to be very suitable. They can learn how and when they can forget certain information and also they
can learn not to use some gateways in their architecture. Faster learning rate and better performance
are the advantages of a BiLSTM network [49].

3.4. Gated Recurrent Unit

Cho et al. [50] also tried to solve the vanishing gradient problem described in Section 3.3 in the
publication, where they presented the recurrent neural network called Gated Recurrent Unit (GRU).
GRU can be considered as a variation of the LSTM network because both are designed in a similar
fashion. GRU solves the vanishing gradient problem using an update and reset gates. The update gate
helps the model to determine, how much of the previous information (from the previous time steps)
needs to be used in the future, and the reset gate determines, how much of that information will be
discarded. We also used a bidirectional variant of the GRU network (BiGRU) in our experiments.

13

Appl. Sci. 2020, 10, 8631

3.5. Transformer Models

Transformer models are currently very popular methods used to solve various NLP tasks such as
question answering, language understanding or summarization, but has been successfully used in text
classification tasks [51]. BERT (Bidirectional Encoder Representations from Transformers) is a language
transformation model introduced by Google [52]. BERT is is “deeply bidirectional”, which means,
it learns the deep representation of texts by considering both, left and right contexts. It is a method used
for training of general-purpose language models on very large corpuses and then using that model for
the NLP tasks. So there are two steps involved in using BERT: pre-training and fine-tuning. During the
pre-training phase, the BERT model is trained on unlabelled data. Then, the model is initialized with
the pre-trained parameters and fine-tuned for specific NLP task. Fine-tuning of the BERT model is
much less expensive on the computational resources. BERT uses the same architecture in different
tasks. BERT is built using the Transformers [53]. The model comes in two variants, BERT-base and
BERT-large. BERT-base consists of 12 Transformer blocks, hidden size of 768 and 12 self-attention
heads, BERT-large consists of 24 Transformer blocks, hidden size of 1024 and 16 self-attention heads.
There are several BERT variations currently introduced, such as DistilBERT which aims to reduce
the size of the BERT model, while retaining the performance [54], RoBERTa, which optimizes BERT
hyper-parameters to improve the performance [55] or XLNet learns the bidirectional contexts over all
permutations of the factorization order [56].

4. Data Understanding and Preparation

4.1. Dataset Description

In the experiments, we used the Toxic Comment Classification Challenge (Available online:
www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) competition dataset, as it presents
an interesting challenge, widely used in training of the toxicity detection models. It consists
of Wikipedia comments, which contain the comment (id) and textual content of the comment
(comment_text feature). Each comment is marked with a specific type of toxicity. Each type of
the toxicity is represented by a particular label: toxic, severe_toxic, obscene, threat, insult and identity_hate.
The comments can be labelled with multiple types of toxicity. Figure 4 depicts a sample of the training
data. As we can see from the figure, toxic comments are often written using an explicit language,
written in all caps, using numerous punctuation marks.

Figure 4. Sample of training data Toxic Comment Challenge.

14

Appl. Sci. 2020, 10, 8631

Dataset is divided into the training and testing set. Training data consists of 159,751 samples.
The models were evaluated on the independent testing set consisting of totally 153,164 records.
However, to prevent the effect of the hand-labelling of the dataset, the testing set contained comments
to be not included in scoring (labelled by −1). After removal of these record, testing set used for
evaluation consisted of 63,978 records. Table 1 shows the number of samples in the training and test
set for each class. Please note that most of the toxic comments are labelled with more than one type of
toxicity. Non-toxic comments have not assigned a specific label, but are not assigned with any of the
toxic labels (“clear” comments in the Table 1).

Table 1. Type of toxicity occurrences in training and testing dataset.

Toxicity Training Set Testing Set

toxic 15,294 6090
severe toxic 1595 367

obscene 8449 3691
threat 478 211
insult 7877 3427

identity hate 1405 712
“clear” 143,346 5773

The average comment consisted of 394 characters. Figure 5 depicts the number of comments
depending on the length of the comment within each class. In our experiments, we worked with an
average comment length of 200 characters.

Figure 5. The first graph depicts the length of the comments in respective categories. The second one
depicts the number of the comments belonging with multiple categories.

Comments in the data may belong to multiple classes (e.g., toxic comments may contain various
types of toxicity). On the contrary, the initial data exploration showed, that certain comments labelled
as an obscene, threat, insult, or identity hate, may not be considered as toxic (see Table 2). We decided
to keep such comments in the dataset, even though they are not considered as toxic, they could be
considered as anti-social from a different perspective.

15

Appl. Sci. 2020, 10, 8631

Table 2. A comparison of the occurrence and frequency of individual categories with the toxic category.

Category Frequency

severe toxic AND toxic 1595
obscene AND toxic 7926
threat AND toxic 449
insult AND toxic 7344

identity hate AND toxic 1302

severe toxic but NOT toxic 0
obscene but NOT toxic 523
threat but NOT toxic 29
insult but NOT toxic 533

identity hate but NOT toxic 103

Figure 6 shows the correlation between the target variables. The highest levels of correlation can
be observed between the obscene, toxic its and insult classes.

Figure 6. Correlation of features and targets.

4.2. Data Pre-Processing

The initial step after the data understanding is the preparation of the data to the form suitable
for the classifier training. When working with the textual documents, data pre-processing usually
involves a series of tasks of text cleaning, formatting and creation of its representation used in the
model training. Notably, in this case, the texts contain slang expressions, emoticons, incomplete
words, typos, etc.; which are usually addressed in the pre-processing. However, in case of abusive
language/toxic comments detection from the social media (as well as other similar tasks), it should be
noticed, that abusive/toxic content is often associated with non-standard textual content (e.g., slang,
upper case letters, emoticons, etc.). Authors in [6] point out, that in a domain such as antisocial
behaviour detection on the Internet, it is essential and useful to keep the data in their original form as
much as possible. Application of standard pre-processing methods such as lowercasing, stopwords
removal or stemming could lead to the loss of the individuality and specific features of both, the content
of the message that the author wants to submit and also for the author himself. By using the standard
pre-processing methods, in this case, we may lose important traits, crucial in the process of extracting
features. In our experiments, one of our primary motivation was to explore this hypothesis.

16

Appl. Sci. 2020, 10, 8631

We decided to compare the models performance also from the aspect of standard pre-processing
techniques used in the process and compared on the data pre-processed in a standard manner and on
the data with no traditional pre-processing at all.

During the experiments, where we used the data pre-processing, we studied the effect of the
standard techniques commonly used in the textual data preparation:

• Tokenization—splitting of strings into a tokens, representing the lexical units (e.g., words);
• Lowercasing—conversion of the entire text to lowercase (words with different cases map to the

same lowercase form);
• Punctuation removal—removal of all punctuation marks within the sentence;
• Stop words removal (stop words—words with minimum information value, e.g., conjunctions,

prepositions, confusions, etc.).

4.3. Features Representation

We also used the different text representation methods. We used the standard vector space
representation using TF-IDF (Term Frequency-Inverse Document Frequency) weighting [57], special
tokenizers of popular transformers models (BERT, DistilBERT and XLNet tokenizer) and the
representation of the text documents using the following word embeddings:

• word2vec— provides direct access to vector representations of words. It is a combination of two
techniques, two neural networks—Continuous bag of words (CBOW) and Skip-gram model [58].

• GloVe—is one of the newest methods for calculating the vector representation of words. However,
this approach does not use the whole corpus. It is learned only based on global statistics on the
occurrence of words in a current context. The method captures various linguistic patterns and
can successfully solve problems based on the principle of analogy [59].

• fastText—is a library created by Facebook’s research team to learn and calculate the word
representation and sentence classification. Its principle is to assign a vector representation
to n-grams of characters that contain individual words [60].

We used GloVe embeddings pre-trained on Common Crawl (300 dimensions) and Twitter
(200 dimensions), for the fastText we used pre-trained word vectors for 157 languages, trained on
Common Crawl and Wikipedia (also in dimension 300).

Compared to word embeddings, BERT model includes an attention mechanism which is able to
learn contextual relations between words in text. BERT consists of an encoder which processes the
text input and decoder used to perform the prediction. Since BERT’s goal is to generate a language
model, only the encoder mechanism is necessary. BERT, which uses the Transformer encoder is able to
learn the context of a word based on its entire surrounding (both left and right context of the words).
When comparing to other directional models, that read the text input sequentially, transformer models
read it as an entire sequence at once (from that point of view, it can be considered as non-directional).
We used following tokenizers from Transformers (https://huggingface.co/transformers/:

• BERT tokenizer —bert-base and bert-large cased/uncased tokenizer—based on word piece;
• DistilBERT Tokenizer—distilbert-base-cased tokenizer—is identical to BertTokenizer and runs

end-to-end tokenization: punctuation splitting and wordpiece;
• XLNet tokenizer—xlnet-base-cased tokenizer—based on sentence piece.

5. Performance Metrics

To evaluate the models, we decided to use the standard metrics used in classification, e.g., accuracy,
precision, recall and F1 score. Such metrics are easy and straightforward to obtain for a binary
classification problems and can be computed as:

• Accuracy = TP + TN/TP + FP + FN + FP

17

Appl. Sci. 2020, 10, 8631

• Precision = TP/TP + FP
• Recall = TP/TP + FN
• F1 score = 2 ∗ (Precision ∗ Recall) / Precision + Recall,

where:

• TP—True Positive examples are predicted to be positive and are positive;
• TN—True Negative examples are predicted to be negative and are negative;
• FP—False Positive examples are predicted to be positive but are negative;
• FN—False Negative examples are predicted to be negative but are positive.

To apply such metrics in the multi-label classification, those metrics could be computed for each
class (one-vs-rest approach). Usually, we need to compute the confusion matrix (see Figure 7) for each
class ci ∈ C = {1, ..., K}. For each class ci, the i-th class is considered as positive, while the rest of
other classes as a negative class. Then, to summarize the performance of the classifier on all classes,
metrics can be micro or macro averaged [61]. The use of micro or macro averaging is dependent on
the particular use case. In the following formulas, we will use TPi, FPi, and FNi as the true positive,
false positive, and false-negative rates associated with the class i.

Micro-averaging at first computes the confusion matrix for all classes and then calculates the
overall metrics. Micro-averaging may be preferred in case of class imbalance present in the data.
Micro-averaged precision and recall metrics are computed as:

• Precisionmicro =
∑
|C|
i=1 TPi

∑
|C|
i=1 TPi+FPi

• Recallmicro =
∑
|C|
i=1 TPi

∑
|C|
i=1 TPi+FNi

• F1 scoremicro = 2 ∗ Precisionmicro∗Recallmicro
Precisionmicro+Recallmicro

On the other hand, macro-averaging is based on the computation of precision and recall for each
class and then averaging the overall metrics:

• Precisionmacro =
∑
|C|
i=1 Precisioni
|C|

• Recallmacro =
∑
|C|
i=1 Recalli
|C|

• F1 scoremacro = 2 ∗ Precisionmacro∗Recallmacro
Precisionmacro+Recallmacro

To compare the models, we also used the Area Under Curve (AUC) score to evaluate the models.
AUC score computes the area under the Receiver Operating Characteristic (ROC) curve. Although the
AUC score is not an ideal metric to compare the models trained on highly-imbalanced data, we used it
to compare the models with other models from the relevant literature. The reason behind this is the
fact, that the most studies use the AUC score, as it was specified as a criterion in the Toxic Comments
Classification Challenge competition.

A
ct

ua
l

Predicted
1 0

1 True Positive False Negative

0 False Positive True Negative

Figure 7. Confusion matrix.

18

Appl. Sci. 2020, 10, 8631

6. Models and Settings

6.1. Deep Learning Models

To choose the most suitable model, we performed an initial set of experiments to evaluate the
different neural network architectures. We have considered multiple architectures, from simple
feedforward to composed models and implemented selected deep neural network architectures-FFNN,
CNN, GRU, LSTM, and a combination of bidirectional GRU/LSTM and convolutional layer in order
to choose the best performing model for the following experiments with pre-processing techniques.

We used the following deep learning models:

• FFNN with three fully connected layers with 32, 64, 128 neurons, and a 20% dropout regularization
• CNN with one-dimensional convolutional layer with 64 filters, kernel size 3, max-pooling layer

with window size 2, a flatten layer and fully-connected layer of 128 neurons, 20% dropout
regularization

• GRU, in which we replaced the convolution block with a GRU layer with 128 units
• LSTM, in which we replaced the convolution block with a LSTM layer with 128 units.

Besides the mentioned neural network architectures, we implemented two composed architectures:

• The first architecture includes an embedding layer, a following bidirectional LSTM layer with
128 units, a 1D convolution layer with kernel size 3, and global max and average pooling layers.
These pooling layers are concatenated, following with the fully connected layer with 64 neurons.
In the bidirectional layer, we used recurrent dropout 10%, and other 20% in a separate layer.

• The second composed architecture, we replaced the LSTM layer with a GRU layer with the same
parameters. Figure 8 shows the architecture of the LSTM layer.

Figure 8. Architecture of the composed BiLSTM + CNN model for multi-label classification.

19

Appl. Sci. 2020, 10, 8631

6.2. Transformer Models

We compared the composed architecture with some recent popular language models. We used
a dedicated tokenizer belonging to each of the models. To obtain the desired classification result,
we connected each transformer model’s output to a feedforward neural network—a fully connected
layer with 128 neurons and regularisation layer dropout (15%). The last fully-connected layer
represents the output layer of the neural network and consists of six output class (toxicity type
in the input text). The architecture of this setup is depicted in the Table 3.

Table 3. Architecture of the pre-trained transformer models.

Layer Parameters

Input 1 input_shape = (,128)
Input 2 input_shape = (,128)

Transformer model training = False
Dense 128 neurons, activation ReLU

Dropout 15%
Dense 6 neurons, activation Sigmoid

• BERT : we used BERT tokenizer, and following pre-trained models:

– BERT model (Cased/Uncased): we used a pre-trained BERT model for sequence classification,
which contains a sequence classification/regression head on top (a linear layer on top
of the pooled output). In this model, the transformer is pre-trained, and the sequence
classification head is only initialized and has to be trained. We used only BERT-base
pre-trained model, with BERT-large, we experienced the stability issues with its training.
Output of the classification head was used and fed into the FF network for classification.

– Bare BERT (Cased/Uncased): in this case, we used pre-trained BERT model transformer,
which is outputting raw hidden-states without any specific head on top. We used BERT-base
and BERT-large versions of the model, both cased and uncased versions. We used pooled
output of the model for the classification.

• DistilBERT: we used distilbert-base tokenizer, and we created DistilBERT model (Cased/Uncased)
based on the architecture shown in Table 3. We used model with a sequence
classification/regression head on top (a linear layer on top of the pooled output).

• XLNet: we used xlnet-base-cased tokenizer, and we created XLNet model based on the
architecture shown in Table 3. We used model with a sequence classification/regression head on
top (a linear layer on top of the pooled output). XLNet model doesn’t provide a pre-trained and
uncased version.

7. Experiments

During the experiments, we aimed to compare the effect of different pre-processing techniques
on the classification of the toxic comments. In comparison, we used the composed architecture
model with different pre-processing methods applied to the data. We aimed to compare the models’
performance using:

• TFIDF representation with standard pre-processing;
• TFIDF representation without standard pre-processing;
• Pre-trained embeddings with standard pre-processing (GloVe, fastText);
• Pre-trained embeddings without standard pre-processing (GloVe, fastText);
• Custom-trained embeddings with standard pre-processing (word2vec);
• Custom-trained embeddings without standard pre-processing (word2vec);
• Pre-trained BERT language representations;

20

Appl. Sci. 2020, 10, 8631

• Fine-tuning BERT language representations;
• Pre-trained DistilBERT language representations;
• Pre-trained XLNet language representations.

Figure 9 depicts the workflow of the experiments. It is important to note that due to
extreme computational intensiveness of the models training, not every possible combination of the
pre-processing and model was explored. Instead, we followed a methodology of the initial evaluation
of the models using default settings to choose the best-performing model. Then, we followed with the
optimization of hyper-parameters of the best-performing model using grid-search and cross-validation.
And finally, we evaluated the fine-tuned model using different combinations of pre-processing and
text representations techniques. A more detailed description of the particular steps will be described
in the following subsections.

Figure 9. Overall schema of the experiments setup.

7.1. Selection of Best Deep Learning Model

Initial experiments were aimed to select the most suitable method to explore the pre-processing
impact. To do so, we compared the described NN architectures on commonly used embeddings
(GloVe). When comparing the particular architectures, we obtained the accuracy performance of each
model, cross-validated on the training set and evaluated on the testing set; the results are shown in
Table 4.

To compute the metrics (accuracy and loss), we transformed the class probabilities (output of the
neural networks) into the crisp class predictions using a simple rule, which assigned the sample to
a class if a probability of a given category was higher than 0.5. During this phase, we worked with
this simplistic approach, in further evaluations of the best performing model, we also adopted a more
advanced technique to identify the optimal threshold for each class.

Table 4. Initial evaluation of the models.

FFNN CNN GRU LSTM BiLSTM + CNN BiGRU + CNN

Accuracy 0.878 0.886 0.872 0.873 0.890 0.884
F1 score—micro avg 0.63 0.64 0.66 0.65 0.67 0.67
F1 score—macro avg 0.34 0.42 0.56 0.55 0.53 0.47

21

Appl. Sci. 2020, 10, 8631

The training phase of the deep learning models on the used dataset is very demanding on
computational resources. The training process is very time-consuming, even on recent GPUs.
We decided to optimize the hyper-parameters of the best model on 10% stratified sample of the dataset.
We performed the fine-tuning of the hyper-parameters using a grid search with cross-validation.
We tuned the best-performing model (biLSTM-CNN), which we used with the obtained parameters as
the starting architecture for further experiments. Considered parameters used for the grid search are
shown in Table 5.

Table 5. Hyper-parameters used in grid search for the BiLSTM + CNN model.

Hyper-Parameters Values

Activation ‘relu’, ‘than’
Batch Size [16, 32, 64]
Optimizer [‘SGD’, ‘RMSProp’, ‘Adam’

Dropout rate [0.1, 0.2]

We achieved the best results using the regularisation dropout 0.2, activation function ReLU, Adam
optimizer and batch size 32. The complete results of this experiment are stored on a GitHub (https:
//github.com/VieraMaslej/toxic_comments_classification/blob/main/result_gridsearch.txt).

To gain a better understanding of the learning process and more importantly, to estimate the
learning variance, we performed 10-fold cross-validation of the best performing model on the training
data. Table 6 summarizes the results of the particular folds during the cross-validation of the
BiLSTM + CNN model. This step was important to estimate the learning variance. As we can
observe that the overall variance of the learning is acceptable, we will not use the cross-validation
during further experiments with pre-processing. This enabled us to reduce the total time needed to
train and test all evaluated combinations of the pre-processing and text representation methods.

Table 6. Cross-validation of the BiLSTM + CNN model.

Model 1 2 3 4 5 6 7 8 9 10 avg

Loss 0.047 0.045 0.045 0.045 0.047 0.047 0.045 0.046 0.045 0.043 0.046
Accuracy 0.991 0.994 0.994 0.971 0.991 0.991 0.994 0.994 0.994 0.994 0.991

All models were implemented in Python language using Tensorflow [62] and Keras [63] libraries.
The source codes are available on GitHub (https://github.com/VieraMaslej/toxic_comments_
classification). The experiments were conducted on a PC equipped with a 4-core Intel Xeon processor
clocked at 4 GHz and NVIDIA Tesla K40c GPU with 12 GB memory.

7.2. Analysis of Text Representation and Pre-Processing Influence on Deep Learning Models

From the initial set of experiments, we selected a composed BiLSTM network architecture in
combination with a convolution layer to be the most suitable to explore the effects of different
pre-processing. During the following experiments, we focused on using different text representation
and pre-processing settings. We computed commonly used metrics in classification, including accuracy,
AUC score, precision, recall and F1. Interesting is an F1 score as it expresses the harmonic mean of
precision and recall and describes the overall performance of the model better. We compared the
performance of the model with a standard pre-processed text corpus and without pre-processing
(only using simple tokenization). We also decided to compare different text representations, which we
described in Section 4.

In the first step, we explored how the model performs when using the TF-IDF data representation.
Table 7 summarizes the results of the experiments. Basic document vector representation using
TF-IDF did not prove to be very suitable for this task. The performance of the model using this
representation suffered from poor recall. Although accuracy and AUC values gain reasonable values,

22

Appl. Sci. 2020, 10, 8631

those metrics are not very useful in imbalanced classes. To better understand the classifier performance,
precision and recall provide better insight. In this case, it is clear that the minor classes failed to
learn completely. On the other hand, we can observe that the standard pre-processing improves
the classification (contrary to the expectations). In TF-IDF, the pre-processing may improve the
created vector representation, as it is created from the corpus itself (not from pre-trained vectors,
such embeddings).

Table 8 depicts the BiLSTM + CNN model performance using the word2vec embeddings.
In both cases (with and without pre-processing), word2vec representations were trained from the
dataset. word2vec representation brings massive improvement in comparison to TF-IDF, rapidly
improving the performance metrics (both, micro and macro averaged). The results also demonstrate
the influence of the pre-processing techniques applied in text preparation. The model gained
slightly better performance on the not processed text, improving recall values (most importantly,
macro-averaged recall).

Table 7. Performance of the composed BiLSTM + CNN model with TF-IDF text documents representation.

Accuracy AUC Score Precision Recall F1 Score

TF-IDF 0.8971 0.8437 micro avg.: 0.60 0.05 0.09
macro avg.: 0.33 0.02 0.03

TF-IDF + PP 0.9038 0.8533 micro avg.: 0.70 0.23 0.35
macro avg.: 0.35 0.13 0.19

Table 8. Performance of the composed BiLSTM + CNN model with gensim word2vec embeddings.

Accuracy AUC Score Precision Recall F1 Score

word2vec 0.8835 0.9791 micro avg.: 0.62 0.74 0.67
macro avg.: 0.58 0.53 0.51

word2vec + PP 0.8787 0.9769 micro avg.: 0.61 0.71 0.65
macro avg.: 0.59 0.45 0.46

Table 9 summarizes the model performance using pre-trained word embeddings, both with
standard text pre-processing and a model with no pre-processing. We used two different GloVe
pre-trained embeddings, Common Crawl (840 B tokens, 2.2 M vocab) and Twitter (2 B tweets,
27 B tokens). The model performer very similar using different GloVe and fastText embeddings.
Although the averaged F1 metrics are very similar, we can observe some differences, how the models
perform on precision and recall metrics. Skipping of the pre-processing in case of the CC GloVe
embeddings causes recall drop and improvement of the precision, while in case of the Twitter GloVe
embeddings it is otherwise. The difference may be caused by either size of the tokes, or how the
embeddings were trained. It is possible that the Twitter embeddings are built using the data closer
to the domain (as tweets may be similar to the comments). We used F1 metric to select the best
performing model, Twitter GloVe embeddings without pre-processing was the best method from that
point of view.

23

Appl. Sci. 2020, 10, 8631

Table 9. Performance of the composed BiLSTM + CNN model with pre-trained GloVe and
fastText embeddings.

Accuracy AUC Score Precision Recall F1 Score

Common Crawl GloVe 0.8904 0.9796 micro avg.: 0.63 0.72 0.67
macro avg.: 0.60 0.52 0.53

Common Crawl GloVe + PP 0.8621 0.9766 micro avg.: 0.54 0.79 0.64
macro avg.: 0.47 0.55 0.46

Twitter GloVe 0.8787 0.9798 micro avg.: 0.59 0.77 0.67
macro avg.: 0.57 0.59 0.56

Twitter GloVe + PP 0.8903 0.9771 micro avg.: 0.65 0.67 0.66
macro avg.: 0.63 0.51 0.54

fastText 0.8839 0.9787 micro avg.: 0.61 0.73 0.66
macro avg.: 0.58 0.52 0.51

fastText + PP 0.8947 0.9749 micro avg.: 0.63 0.70 0.67
macro avg.: 0.49 0.44 0.43

7.3. Selection of Best Transformer Model

Table 10 compares the performance of BERT model, bare BERT and its DistilBERT and XLNet
variants. We compared the performance of these models with BiLSTM + CNN architecture. Regarding
the pre-processing, it was a little bit different in this case. As the transformer models are available
pre-trained on the text corpora in two different versions-cased and uncased (except the XLNet model,
that doesn’t come with the uncased version). Furthermore, we used the BERT tokenizer, in which
we used lowercasing of the input text (in cased versions) or did not use it (in uncased versions).
As described in Section 6.2, we trained two BERT-base for sequence classification models, two bare
BERT-base models, two bare BERT-large models, two DistilBERT models and a single XLNet model.
We used default hyper-parameters as depicted in Table 11.

Table 10. Performance of the transformer models.

Accuracy AUC Score Precision Recall F1 Score

BERT-base (cased) 0.8884 0.9624 micro avg.: 0.66 0.64 0.65
macro avg.: 0.34 0.34 0.34

BERT-base (uncased) 0.8798 0.9700 micro avg.: 0.61 0.71 0.65
macro avg.: 0.31 0.38 0.34

bare BERT-base (cased) 0.8998 0.9802 micro avg.: 0.69 0.68 0.69
macro avg.: 0.63 0.51 0.51

bare BERT-base (uncased) 0.8841 0.9839 micro avg.: 0.60 0.78 0.68
macro avg.: 0.60 0.58 0.57

bare BERT-large (cased) 0.8795 0.9801 micro avg.: 0.62 0.73 0.67
macro avg.: 0.53 0.51 0.51

bare BERT-large (uncased) 0.8921 0.9806 micro avg.: 0.67 0.68 0.67
macro avg.: 0.60 0.41 0.42

DistilBERT (cased) 0.8866 0.9649 micro avg.: 0.63 0.68 0.66
macro avg.: 0.34 0.37 0.34

DistilBERT (uncased) 0.8649 0.9781 micro avg.: 0.59 0.73 0.65
macro avg.: 0.48 0.39 0.34

XLNet (cased) 0.9630 0.9530 micro avg.: 0.60 0.70 0.65
macro avg.: 0.30 0.37 0.33

24

Appl. Sci. 2020, 10, 8631

Table 10 summarizes the model’s performances using the cased and uncased version. We also
tried to use a BERT-large version of the BERT sequence classification models, but it is probable that
those models were over-fitting in the first epoch and the results were worse than in BERT-base version.

Based on the previous experiment, the BERT-base uncased model provided the best results among
the transformer models. Following the initial experiments, we proceed with the fine-tuning of the
model. We optimized the values of the hyper-parameters summarized in Table 12. Optimization of the
hyper-parameters did not lead to a significantly improved performance, however, for the combination
of the accuracy and AUC metrics, the best combination of hyper-parameters turned out to be the
settings: learning rate = 0.00002, batch size = 16, dropout = 0.15. The results of the fine-tuned model
are shown in Table 13. This model also achieved the best micro-averaged F1 metrics.

Table 11. Hyper-parameters used for transformer models from Table 10.

Hyper-Parameters Values

Batch size 32
Learning rate 0.00003
Dropout rate 0.15

Table 12. Explored combination of the bare BERT-base hyper-parameters during the fine-tuning.

Hyper-Parameters Values

Dropout rate [0.1, 0.15]
Learning rate [0.00002, 0.00003]

Batch Size [16, 32]

Table 13. Bare BERT-base uncased model performance after the fine-tuning.

Accuracy AUC Score Precision Recall F1 Score

bare BERT-BASE uncased 0.8971 0.9842 micro avg.: 0.67 0.72 0.69
macro avg.: 0.69 0.51 0.55

7.4. Evaluation

From the experiment results with deep learning models, we can consider the GloVe pre-trained
embeddings without standard pre-processing as the most suitable representation. The results proved
that omitting the traditional pre-processing techniques improve the classification results. This is
especially important in the case of macro-averaged metrics, which are more informative in classification
tasks with highly imbalanced data. Another important aspect (besides the improvement of the
performance metrics) is the demand on resources and computational intensiveness-the pre-processing
techniques represent a step in the overall data analysis process and skipping them can reduce the
time of the total data preparation phase. On the other hand, pre-processing usually leads to the
reduction of the training data dimensionality. When we leave out such a step, we could expect the
more resource-demanding training of the models. Another crucial aspect is the deployment of the
models in real-world scenarios, where the training time of the model is not essential. In such a case,
the ability to process the data and prediction time is essential. Without pre-processing, it is sufficient
to create word tokens from the text and apply a trained model to obtain the prediction.

Tables 14–16 depict the BiLSTM + CNN model (with GloVe Twitter and word2vec embeddings)
and bare BERT-base uncased model performance on particular classes. In this task, the class imbalance
is present and heavily influences the classification. Minor classes (e.g., severe_toxic or threat) presented
a real challenge to learn from the training data. Much better picture about the real quality of the
classification into the particular classes is given by the Matthews Correlation Coefficient (MCC) [64].
When considering this metric, both models perform in a similar fashion. Both models struggle with
minor classes, with a model trained using GloVe Twitter embeddings performing better on a severe_toxic

25

Appl. Sci. 2020, 10, 8631

class, while bare BERT handling better the threat category. For some models (e.g., for BERT), the lack of
training samples from minor classes may present a problem, as some of the BERT modifications were
not able to learn some of the minor classes at all. Composed architecture with embeddings was able to
learn minor classes; however, in both cases, with at least one metric severely lacking. There may be
more reasons why most of the models fail to perform well, even in minor classes. For example analysis
of the misclassifications revealed possible problems in the labelling of the data, where numerous
comments labelled as toxic did not fall into the proper definition of the toxic comments [11]. Besides the
questionable labelling, which may have influenced the evaluation of the trained patterns, several
NLP-related phenomena may influence the classification, e.g., toxic comments written without any
explicit language or written in ordinary style, comments containing sarcasm, irony or metaphors which
require the deeper understanding of the content.

To further improve the best performing models, we fine-tuned the thresholds used to convert
class probabilities to crisp values. The unbalanced number of samples in individual classes can have an
impact on the resulting metrics when transforming the probabilities for each class in a similar manner.
Therefore, to improve the model, we used optimization to find the best threshold for each class we
trained a separate classifier, to find the optimal set of thresholds for the probabilities, specific for each
class. We used the optimization implemented in scipy library, selected F1 as an optimization criterion.
After then, we computed the overall metrics and metrics for particular classes. Tables 17 and 18 show
how the performance metrics improved after fine-tuning of the probability thresholds.

Table 14. Results of the individual toxicity classes of biLSTM + CNN model with custom-trained
word2vec embeddings without standard pre-processing.

Class Precision Recall F1 Score MCC Support

toxic 0.58 0.85 0.69 0.66 6090
severe_toxic 0.35 0.50 0.41 0.42 367
obscene 0.66 0.75 0.71 0.69 3691
threat 0.48 0.07 0.12 0.18 211
insult 0.67 0.68 0.68 0.66 3427
identity_hate 0.73 0.33 0.46 0.49 712

Table 15. Results of the individual toxicity classes of biLSTM + CNN model with pre-trained GloVe
Twitter embeddings without standard pre-processing.

Class Precision Recall F1 Score MCC Support

toxic 0.56 0.88 0.68 0.66 6090
severe_toxic 0.37 0.46 0.41 0.41 367
obscene 0.61 0.79 0.69 0.67 3691
threat 0.47 0.26 0.34 0.35 211
insult 0.65 0.71 0.68 0.66 3427
identity_hate 0.76 0.42 0.54 0.56 712

Regarding the interpretability of the trained models, we further explored, how the classifiers
performed when predicting the actual class labels. We focused on examination of particular comments,
especially those, which were classified correctly in multiple categories and on the other hand,
the comments that were misclassified. Many comments were categorized correctly, based on the
grammar and language used, e.g., the comment “u are a gigantic faggot” was correctly predicted as
toxic, obscene, insult, and identity hate. On the other hand, we observed an inconsistency in comments
labelling, which is a frequent issue in many hand-labelled datasets. For example, the comment “Bull...
Your mom kicking your ass for not studying is influence of Custom. but then again, without all that
comic mischief (such as a dead guy and a crying ilha), life would be pretty fukin boring ...” was
predicted by the models as toxic and obscene, because of using an explicit language. However, in the
testing data, the comment was assigned just with the toxic label. In similar fashion, a comment “oh,

26

Appl. Sci. 2020, 10, 8631

shutup, you douchey Wikipedia rent-a-cop” is clearly an insult and was correctly predicted as toxic
and insult, but in the testing data was assigned only with the first label.

Table 16. Results of the individual toxicity classes of bare BERT uncased model after fine-tuning.

Class Precision Recall F1 Score MCC Support

toxic 0.58 0.87 0.70 0.67 6090
severe_toxic 0.40 0.23 0.29 0.30 367
obscene 0.60 0.80 0.69 0.67 3691
threat 0.63 0.37 0.47 0.48 211
insult 0.66 0.73 0.69 0.67 3427
identity_hate 0.73 0.51 0.60 0.61 712

Table 17. Results of the individual toxicity classes of optimized biLSTM + CNN model with pre-trained
GloVe Twitter embeddings without standard pre-processing.

Class Precision Recall F1 Score MCC Support

toxic 0.59 0.85 0.70 0.67 6090
severe_toxic 0.33 0.66 0.44 0.46 367
obscene 0.61 0.78 0.69 0.67 3691
threat 0.47 0.26 0.34 0.35 211
insult 0.69 0.68 0.68 0.66 3427
identity_hate 0.76 0.43 0.55 0.56 712

Table 18. Results of the individual toxicity classes of optimized and fine-tuned bare BERT
uncased model.

Class Precision Recall F1 Score MCC Support

toxic 0.64 0.81 0.71 0.69 6090
severe_toxic 0.30 0.64 0.41 0.43 367
obscene 0.67 0.75 0.71 0.69 3691
threat 0.60 0.39 0.47 0.48 211
insult 0.64 0.75 0.69 0.67 3427
identity_hate 0.60 0.71 0.65 0.64 712

7.5. Comparison with Other Models from State-of-the-Art

To compare the models’ performance with other similar approaches presented in the literature,
we have to consider several aspects. There are numerous studies, in which authors transformed
the Kaggle toxic comments competition dataset labels to the binary values (representing toxic and
non-toxic values) and solved the binary classification task of toxicity detection [35,65]. On the other
hand, when solving the task as a multi-label classification, comparison of these approaches could
still be inconsistent, as the evaluation of the models in the literature is not coherent, as multiple
studies using different data for evaluation, e.g., a subset of training data (split to 80/20 train/test
ratio), or separate labelled testing data, which became available later. Therefore, to compare with the
different models, different evaluation of the models had to be implemented. To compare with the
results presented in [11,36], we needed to compute the averaged precision and recall values for each
class (as a separate classification problems, contrary to multi-label evaluation in previous experiments),
and then compute the F1 metric. Overall performance of our approach is compared with several
similar approaches using the accuracy, precision, recall, F1 score. Table 19 summarizes the evaluation
metrics of the models.

27

Appl. Sci. 2020, 10, 8631

Table 19. Comparison of the performance metrics of the proposed approaches with similar models.

Model Precision Recall F1

BiGRU (GloVe) [11] 0.73 0.85 0.772
BiGRU + Attention (GloVe) [11] 0.73 0.87 0.779
BiGRU + Attention (fastText) [11] 0.74 0.87 0.783
Ensemble model [11] 0.74 0.88 0.791

BiLSTM + CNN + GloVe(Twitter) + No PP 0.78 0.79 0.789
BiLSTM + CNN + GloVe(CC) + No PP 0.75 0.84 0.796
bare BERT-BASE uncased 0.78 0.83 0.801

To analyze how well the models perform on a particular class, we compared the results with
other similar approaches described in [66]. Table 20 summarizes and compares our best-performing
model with the best performing related models. This time, to be able to compare with the models
from the study, we used the accuracy score computed for the specific categories. Please note that the
table contains the results presented in one-vs-all approach (e.g., each class compared to the rest of the
others), computed from individual confusion matrices for each specific category.

Table 20. Comparison of the accuracy of the BiLSTM + CNN and bare BERT with other similar models
(using Intel300, fastText300, GloVe300, word2vec300 embeddings) from paper [66].

BiLSTM + CNN bare BERT Intel300 [66] fastText300 [66] GloVe300 [66] word2vec300 [66]

toxic 0.9238 0.9382 0.95 0.95 0.93 0.93
severe_toxic 0.9943 0.9894 0.96 0.95 0.96 0.96
obscene 0.9609 0.9644 0.95 0.96 0.96 0.95
threat 0.9970 0.9971 0.96 0.96 0.97 0.96
insult 0.9674 0.9641 0.96 0.96 0.96 0.96
identity_hate 0.9919 0.9914 0.97 0.96 0.96 0.96

averaged 0.9725 0.9741 0.96 0.96 0.96 0.95

8. Conclusions

In work presented in this paper, we aimed to compare and evaluate different current
state-of-the-art models for multi-label toxic comments classification. We experimentally evaluated the
performance of deep learning models, including composed architectures with different methods of text
representation and pre-processing. On top of that, currently, popular transformer language models,
such as BERT and its modifications were compared as well. We aimed to explore the assumption
that in tasks such as detection of anti-social behaviour in the online environments, the application of
traditional pre-processing techniques could lead to loss of particular specific information characteristic
for such behaviour. We aimed to explore the influence of different pre-processing and representation
methods on the deep learning and transformer models also in multi-label task aimed to detect the
specific type of anti-social behaviour (in this case, toxic comments). We experimentally evaluated
composed architecture of BiLSTM + CNN network with different text representations, pre-trained
embeddings and compared it with BERT and its variants.

Further evaluation of the various data preparation techniques confirmed the assumption, that
in this type of task, using standard pre-processing may lead to influence the classifier performance.
When comparing the network performance using different word embeddings, the results showed,
that the application of traditional text preparation techniques does not bring any significant benefit
in terms of evaluation metrics. When comparing the standard classification performance metrics,
we face the problem of the class imbalance. The models often struggle to perform well in the minority
classes. If the collection of more samples from such classes is not straightforward, more advanced
approaches or using data augmentation techniques may be required. One of the possible strategies
could be represented by the hierarchical ensemble model. In such an approach, different classifiers

28

Appl. Sci. 2020, 10, 8631

could be combined to either address the specific classes, or even to perform the classification on a
different level of target attribute generalization. The particular model then could be used to distinguish
between the toxic and non-toxic comments and particular toxicity type prediction could be handled
by separate models. The class imbalance could be addressed by various techniques, e.g., weighting
schemes in the ensemble.

It is also important to note that the presented comparison was carried out on a single dataset.
Another limitation of the study is the use of pre-trained word embeddings and pre-trained transformer
language models (except word2vec embeddings). Usually, pre-trained embeddings are build using
corpora consisting of standard, clean forms of the words. Such representations do not cover the entire
vocabulary used in the abusive comments, which results in the loss of information. In future work,
we would like to focus on embedding custom-training for this particular domain. A very similar
situation is with transfer learning models. In most of the NLP tasks, those models outperform the
deep learning models. Pre-trained models may represent not an ideal solution in this case, and their
further re-training may lead to superior results. Another factor is the computational intensiveness of
the deep and transformer models training which practically prevents the ultimate comparison of all
models, with all pre-processing settings, hyper-parameter fine-tuning using cross-validation technique.
In our experiments, we decided to evaluate the models’ performance using standard, commonly used
settings, then fine-tune the hyper-parameters of the best-performing architecture using grid search
on sampled data. Similarly, we assumed the learning variance during the initial experiment using
10-fold cross-validation and did not perform the cross-validation of an entire set of pre-processing
experiments, which would result in extreme time and resource-consuming setup.

Author Contributions: Conceptualization, M.S. and V.M.-K.; methodology, M.S.; software, V.M.-K.; validation,
V.M.-K.; formal analysis, P.B.; investigation, V.M.-K. and K.M.; resources, M.S.; writing—original draft preparation,
V.M.-K. and M.S.; writing—review and editing, V.M.-K., M.S. and P.B.; supervision, P.B.; All authors have read
and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Slovak Research and Development Agency under the contracts
No. APVV-16-0213 and No. APVV-17-0267.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BERT Bidirectional Encoder Representations from Transformers
CNN Convolutional Neural Network
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
FFNN FeedForward Neural Network
NLP Natural Language Processing
CBOW Continuous Bag of Words
BCE Binary Cross Entropy
ReLU Rectified Linear Unit
AUC Area Under Curve
ROC Receiver Operating Characteristic

References

1. Cheng, J.; Danescu-Niculescu-Mizil, C.; Leskovec, J. Antisocial behavior in online discussion communities.
In Proceedings of the 9th International Conference on Web and Social Media, University of Oxford, Oxford,
UK, 26–29 May 2015,.

2. Elizabeth, B. Making People Behave: Anti-Social Behaviour, Politics and Policy, 2nd ed.; Willan Publishing:
Cullompton, UK, 2013, doi:10.4324/9781843927112.

29

Appl. Sci. 2020, 10, 8631

3. Risch, J.; Krestel, R. Toxic Comment Detection in Online Discussions. In Deep Learning-Based
Approaches for Sentiment Analysis; Algorithms for Intelligent Systems; Springer: Singapore, 2020,
doi:10.1007/978-981-15-1216-2_4.

4. Dixon, L.; Li, J.; Sorensen, J.; Thain, N.; Vasserman, L. Measuring and Mitigating Unintended Bias in Text
Classification. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, New Orleans,
USA, 2–3 February 2018, doi:10.1145/3278721.3278729.

5. Morzhov, S. Avoiding Unintended Bias in Toxicity Classification with Neural Networks. In
Proceedings of the Conference of Open Innovation Association, Yaroslavl, Russia, 20–24 April 2020,
doi:10.23919/FRUCT48808.2020.9087368.

6. Mohammad, F. Is preprocessing of text really worth your time for online comment classification? arXiv 2018,
arXiv:1806.02908.

7. Singh, T.; Kumari, M. Role of Text Pre-processing in Twitter Sentiment Analysis. Procedia Comput. Sci. 2016,
89, 549–554, doi:10.1016/j.procs.2016.06.095.

8. Shelar, A.; Huang, C.Y. Sentiment analysis of twitter data. In Proceedings of the 2018 International Conference
on Computational Science and Computational Intelligence, Las Vegas, NV, USA, 13–15 December 2018,
doi:10.1109/CSCI46756.2018.00252.

9. Wang, S.; Manning, C.D. Baselines and bigrams: Simple, good sentiment and topic classification.
In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Jeju Island,
Korea, 8–14 July 2012.

10. Feldman, R. Techniques and applications for sentiment analysis. Commun. ACM 2013, 56, 82–89,
doi:10.1145/2436256.2436274.

11. van Aken, B.; Risch, J.; Krestel, R.; Löser, A. Challenges for Toxic Comment Classification: An In-Depth Error
Analysis; In Proceedings of the 2nd Workshop on Abusive Language Online (ALW2), Brussels, Belgium,
31 October 2018, doi:10.18653/v1/w18-5105.

12. Waseem, Z.; Davidson, T.; Warmsley, D.; Weber, I. Understanding Abuse: A Typology of Abusive Language
Detection Subtasks. 2017, doi:10.18653/v1/w17-3012.

13. Sarnovský, M.; Butka, P.; Bednár, P.; Babič, F.; Paralič, J. Analytical platform based on Jbowl library providing
text-mining services in distributed environment. In Proceedings of the Information and Communication
Technology, Daejeon, Korea, 4–7 October 2015, doi:10.1007/978-3-319-24315-3_32.

14. Davidson, T.; Warmsley, D.; Macy, M.; Weber, I. Automated hate speech detection and the problem of
offensive language. In Proceedings of the 11th International Conference on Web and Social Media, Montréal,
QC, Canada, 15–18 May 2017.

15. Salminen, J.; Almerekhi, H.; Milenković, M.; Jung, S.G.; An, J.; Kwak, H.; Jansen, B.J. Anatomy of online
hate: Developing a taxonomy and machine learning models for identifying and classifying hate in online
news media. In Proceedings of the 12th International AAAI Conference on Web and Social Media, Stanford,
CA, USA, 25–28 June 2018.

16. Almerekhi, H.; Jansen, B.J.; Kwak, H.; Salminen, J. Detecting toxicity triggers in online discussions.
In Proceedings of the 30th ACM Conference on Hypertext and Social Media, Hof, Germany, 17–20 September
2019, doi:10.1145/3342220.3344933.

17. Fortuna, P.; Soler, J.; Wanner, L. Toxic, Hateful, Offensive or Abusive? What Are We Really Classifying?
An Empirical Analysis of Hate Speech Datasets. In Proceedings of the 12th Language Resources and Evaluation
Conference; European Language Resources Association: Marseille, France, 11–16 May 2020; pp. 6786–6794.

18. Shtovba, S.; Shtovba, O.; Petrychko, M. Detection of social network toxic comments with usage of syntactic
dependencies in the sentences. In Proceedings of the Second International Workshop on Computer Modeling
and Intelligent Systems, Zaporizhzhia, Ukraine, 15–19 April 2019.

19. Saif, M.A.; Medvedev, A.N.; Medvedev, M.A.; Atanasova, T. Classification of online toxic comments
using the logistic regression and neural networks models. AIP Conference Proc. 2018, 2048, 060011.
doi:10.1063/1.5082126.

20. Haralabopoulos, G.; Anagnostopoulos, I.; McAuley, D. Ensemble deep learning for multilabel binary
classification of user-generated content. Algorithms 2020, 13, 83, doi:10.3390/A13040083.

21. Chowdhary, N.; Pandit, A.A. Fake Review Detection using Classification. Int. J. Comput. Appl. 2018,
180, 16–21.

30

Appl. Sci. 2020, 10, 8631

22. Cardoso, E.F.; Silva, R.M.; Almeida, T.A. Towards automatic filtering of fake reviews. Neurocomputing 2018,
309, 106–116, doi:10.1016/j.neucom.2018.04.074.

23. Ventirozos, F.K.; Varlamis, I.; Tsatsaronis, G. Detecting aggressive behavior in discussion threads using text
mining. In Proceedings Computational Linguistics and Intelligent Text Processing; Springer: Cham, Switzerland,
2018, doi:10.1007/978-3-319-77116-8_31.

24. Machová, K.; Mach, M.; Demková, G. Modelling of the Fake Posting Recognition in On-Line Media Using
Machine Learning. SOFSEM 2020: Theory and Practice of Computer Science; Chatzigeorgiou, A., Dondi, R.,
Herodotou, H., Kapoutsis, C., Manolopoulos, Y., Papadopoulos, G.A., Sikora, F., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; pp. 667–675.

25. Machova, K.; Staronova, P. Selecting the Most Probable Author of Asocial Posting in Online Media; In Proceedings
of 17th International Conference on Emerging eLearning Technologies and Applications (ICETA), Starý
Smokovec, Slovakia, 21–22 November 2019; pp. 480–485, doi:10.1109/ICETA48886.2019.9040096.

26. Anindyati, L.; Purwarianti, A.; Nursanti, A. Optimizing Deep Learning for Detection Cyberbullying
Text in Indonesian Language. In Proceedings of the 2019 International Conference on Advanced
Informatics: Concepts, Theory, and Applications, Yogyakarta, Indonesia, 20–22 September 2019,
doi:10.1109/ICAICTA.2019.8904108.

27. Al-Ajlan, M.A.; Ykhlef, M. Deep Learning Algorithm for Cyberbullying Detection. Int. J. Adv. Comput.
Sci. Appl. 2018, 9, doi:10.14569/IJACSA.2018.090927.

28. Agrawal, S.; Awekar, A. Deep learning for detecting cyberbullying across multiple social media platforms.
In Advances in Information Retrieval; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018,
doi:10.1007/978-3-319-76941-7_11.

29. Ranasinghe, T.; Zampieri, M.; Hettiarachchi, H. BRUMS at HASOC 2019: Deep Learning Models for
Multilingual Hate Speech and Offensive Language Identificati on. In FIRE (Working Notes); CEUR-WS:
Kolkata, India, 12–15 December 2019.

30. Zimmerman, S.; Fox, C.; Kruschwitz, U. Improving hate speech detection with deep learning ensembles.
In Proceedings of the LREC 2018—11th International Conference on Language Resources and Evaluation,
Miyazaki, Japan, 7–12 May 2019.

31. Krešňáková, V.M.; Sarnovský, M.; Butka, P. Deep learning methods for Fake News detection. In Proceedings
of the 2019 IEEE 19th International Symposium on Computational Intelligence and Informatics and 7th IEEE
International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and
Robotics (CINTI-MACRo), Szeged, Hungary, 14–16 November 2019; pp. 000143–000148.

32. Mestry, S.; Singh, H.; Chauhan, R.; Bisht, V.; Tiwari, K. Automation in Social Networking Comments with
the Help of Robust fastText and CNN. In Proceedings of the 1st International Conference on Innovations in
Information and Communication Technology, India, 25–26 April 2019, doi:10.1109/ICIICT1.2019.8741503.

33. Anand, M.; Eswari, R. Classification of abusive comments in social media using deep learning.
In Proceedings of the 3rd International Conference on Computing Methodologies and Communication, New
Jersey, NJ, USA, 27–29 March 2019, doi:10.1109/ICCMC.2019.8819734.

34. Srivastava, S.; Khurana, P.; Tewari, V. Identifying Aggression and Toxicity in Comments using Capsule
Network. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018),
Santa Fe, NM, USA, 25 August 2018.

35. Georgakopoulos, S.V.; Vrahatis, A.G.; Tasoulis, S.K.; Plagianakos, V.P. Convolutional neural networks for
toxic comment classification. In Proceedings of the ACM International Conference Proceeding Series, Patras,
Greece, 9–12 July 2018, doi:10.1145/3200947.3208069.

36. Ibrahim, M.; Torki, M.; El-Makky, N. Imbalanced Toxic Comments Classification Using Data Augmentation
and Deep Learning. In Proceedings of the 17th IEEE International Conference on Machine Learning and
Applications, Orlando, FL, USA, 17–20 December 2018, doi:10.1109/ICMLA.2018.00141.

37. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature
1986, 323, 533–536, doi:10.1038/323533a0.

38. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA,2016.
39. Leshno, M.; Lin, V.Y.; Pinkus, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial

activation function can approximate any function. Neural Netw. 1993, 6, 861–867.
40. Nair, V.; Hinton, G.E. Rectified linear units improve Restricted Boltzmann machines. In Proceedings of the

ICML 2010 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.

31

Appl. Sci. 2020, 10, 8631

41. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Neurocomputing: Foundations of Research; Chapter Learning
Representations by Back-Propagating Errors; MIT Press: Cambridge, MA, USA, 1988; pp. 696–699.

42. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International
Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

43. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.

44. Polyak, B. Some methods of speeding up the convergence of iteration methods. Ussr Comput. Math.
Math. Phys. 1964, 4, 1–17, doi:10.1016/0041-5553(64)90137-5.

45. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

46. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780,
doi:10.1162/neco.1997.9.8.1735.

47. Graves, A. Supervised sequence labelling. In Supervised Sequence Labelling with Recurrent Neural Networks;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 5–13.

48. Tavcar, R.; Dedic, J.; Bokal, D.; Zemva, A. Transforming the LSTM Training Algorithm for Efficient
FPGA-Based Adaptive Control of Nonlinear Dynamic Systems; Journal of Microelectronics, Electronic
Components and Materials 2013, 43, pp. 131–138.

49. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45,
2673–2681, doi:10.1109/78.650093.

50. Cho, K.; Merrienboer, B.; Gülçehre Ç.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Doha, Qatar, 25–29 October 2014.

51. Sun, C.; Qiu, X.; Xu, Y.; Huang, X. How to Fine-Tune BERT for Text Classification? In Proceedings of the
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Cham, Switzerland, 13 October 2019, doi:10.1007/978-3-030-32381-3_16.

52. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the NAACL HLT 2019—2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MI,
USA, June 2019.

53. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention
is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008.

54. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper
and lighter. arXiv 2020, arXiv:1910.01108.

55. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V.
RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

56. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q.V. XLNet: Generalized Autoregressive
Pretraining for Language Understanding. arXiv 2020, arXiv:1906.08237.

57. Sammut, C.; Webb, G.I.; (Eds.) TF–IDF. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA,
2010; pp. 986–987, doi:10.1007/978-0-387-30164-8_832.

58. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.
arXiv 2013, arXiv:1301.3781.

59. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29
October 2014; pp. 1532–1543.

60. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching Word Vectors with Subword Information. arXiv
2016, arXiv:1607.04606.

61. Asch, V.V. Macro-and Micro-Averaged Evaluation Measures; CLiPS: Antwerpen, Belgium, 2013.
62. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.;

Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA,
2–4 November 2016; pp. 265–283.

63. Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing Ltd.: Birmingham, UK, 2017.

32

Appl. Sci. 2020, 10, 8631

64. Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.
Biochim. Biophys. Acta 1975, 405, 442–451, doi:10.1016/0005-2795(75)90109-9.

65. Rastogi, C.; Mofid, N.; Hsiao, F.I. Can We Achieve More with Less? Exploring Data Augmentation for Toxic
Comment Classification. arXiv 2020, arXiv:2007.00875.

66. Saia, R.; Corriga, A.; Mulas, R.; Reforgiato Recupero, D.; Carta, S. A Supervised Multi-Class Multi-Label
Word Embeddings Approach for Toxic Comment Classification. In Proceedings of the 11th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K
2019), Vienna, Austria, 17–19 September 2019, doi:10.5220/0008110901050112.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

33

applied
sciences

Article

Delayed Combination of Feature Embedding in
Bidirectional LSTM CRF for NER

Chirawan Ronran 1,2, Seungwoo Lee 1,2,* and Hong Jun Jang 2

1 Department of Big Data Science, University of Science and Technology (UST), Daejeon 34113, Korea;
chirawan@kisti.re.kr

2 Korea Institute of Science and Technology Information (KISTI), Daejeon 34113, Korea;
hongjunjang@kisti.re.kr

* Correspondence: swlee@kisti.re.kr; Tel.: +82-42-869-1784

Received: 30 July 2020; Accepted: 21 October 2020; Published: 27 October 2020

Abstract: Named Entity Recognition (NER) plays a vital role in natural language processing (NLP).
Currently, deep neural network models have achieved significant success in NER. Recent advances in
NER systems have introduced various feature selections to identify appropriate representations and
handle Out-Of-the-Vocabulary (OOV) words. After selecting the features, they are all concatenated
at the embedding layer before being fed into a model to label the input sequences. However,
when concatenating the features, information collisions may occur and this would cause the limitation
or degradation of the performance. To overcome the information collisions, some works tried to
directly connect some features to latter layers, which we call the delayed combination and show its
effectiveness by comparing it to the early combination. As feature encodings for input, we selected
the character-level Convolutional Neural Network (CNN) or Long Short-Term Memory (LSTM) word
encoding, the pre-trained word embedding, and the contextual word embedding and additionally
designed CNN-based sentence encoding using a dictionary. These feature encodings are combined at
early or delayed position of the bidirectional LSTM Conditional Random Field (CRF) model according
to each feature’s characteristics. We evaluated the performance of this model on the CoNLL 2003 and
OntoNotes 5.0 datasets using the F1 score and compared the delayed combination model with our own
implementation of the early combination as well as the previous works. This comparison convinces
us that our delayed combination is more effective than the early one and also highly competitive.

Keywords: delayed combination; CNN dictionary; named entity recognition; deep learning NER;
bidirectional LSTM CRF; CoNLL; OntoNotes

1. Introduction

Named entity recognition (NER) has received much attention in a wide range of natural language
processing (NLP) tasks, such as question and answering, information extraction, and machine
translation. NER techniques can be classified into four main streams: (1) a rule-based approach
based on hand-crafted rules, (2) an unsupervised learning approach that relies on an algorithm without
label data, (3) a feature-based supervised learning approach focused on a supervised learning algorithm
with feature engineering, and (4) deep learning approaches that automatically detect the result from
raw inputs [1].

Recently, along with the development of a deep learning (DL) model, a neural network model
has been successfully used for NER tasks. In general, the DL-based NER has used various input
representations (e.g., word embedding, character-level, word-level) to learn how to encode a word
and its context in input sequence and predict a word’s entity label. Most researchers have commonly

35

Appl. Sci. 2020, 10, 7557

employed bidirectional Long Short-Term Memory (LSTM) Conditional Random Field (CRF) as a basic
DL architecture to encode contextual information and find the best label sequence:

• Lample et al. [2], used hierarchical bidirectional LSTM CRF set up with pre-trained word
embedding and character-level LSTM-based word encoding.

• Ma and Hovy [3], also employed the bidirectional LSTM CRF but combined the character-level
CNN-based word encoding with pre-trained word embedding to get the final result.

• Rei et al. [4] also used the bidirectional LSTM CRF but applied attention-based weighted sum,
instead of concatenation, when combining character-level LSTM-based word encoding with the
pre-trained word embedding.

• Chiu and Nichols [5] used the bidirectional LSTM and addition with Log-Sotfmax to get the output
and employed word-level pattern-based word encoding and gazetteer-based word encoding in
addition to the pre-trained word embedding and character-level Convolutional Neural Network
(CNN)-based word encoding.

These works employed various input representations and combined all the representations at the
embedding layer of their models (we call it early combination) and passed it through the main model
block, bidirectional LSTM.

In contrast, Huang et al. [6] delayed the combining position of some features’ encoding until
the output of the bidirectional LSTM is ready. They passed only the pre-trained word embedding
through the bidirectional LSTM and this output was combined with additional word encodings based
on word spelling, contexts of word, Part-Of-Speech (POS) and chunk, and gazetteer. This delayed
combination technique was used to avoid a potential feature collision, which may occur during
passing the bidirectional LSTM block. However, they did not provide any comparison between
delayed combination and early combination.

In this paper, we adapt the delayed combination approach and analyze its effectiveness by comparing
it to the existing, commonly used, early combination approach, inspired by Huang et al., 2016. We adapt
character-level CNN or LSTM-based word encoding and recent contextualized word embedding and
designed CNN-based sentence encoding using a named entity dictionary as supplementary feature
encodings, in addition to the common pre-trained word embedding. We pass the pre-trained word
embedding and the contextualized word embedding through the separate bidirectional LSTM blocks,
respectively, and then we combine the outputs with the CNN or LSTM-based word encoding and the
CNN-based sentence encoding. This combined encoding is finally fed into the CRF to find the best named
entity label sequence.

We compare the delayed combination model with the early combination model by evaluating our
own implementation of the two approaches and also compare our result to the previous works having
similar model architecture and features to show the effectiveness of the delayed combination model.
The main differences between the two models are as follows:

1. The early combination model concatenates representations at the embedding layer and then
passes them through the bidirectional LSTM CRF. During passing through the bidirectional LSTM
blocks, some useful but less-dominant encoded information may be mixed and collide with others
and, as a result, fail to be propagated to the output layer.

2. The delayed combination model is designed to preserve some feature representations until the last
layer by bypassing the bidirectional LSTM blocks, considering the characteristics of each feature
(more details are given in Section 3). The comparison result shows that the delayed combination
is able to boost the performance of the model.

The rest of the paper is organized as follows. Related works are described in Section 2. We present
the proposed model architecture in Section 3. The experimental setup is shown in Section 4. The results
are presented and discussed in Section 5. Finally, we conclude in Section 6.

36

Appl. Sci. 2020, 10, 7557

2. Related Work

Recently, deep learning has become a dominant model to achieve the state-of-the-art results
in NER task. The crucial advantage is its ability to undertake representation learning. Most deep
learning-based NER approaches have designed and utilized various features to encode input sequence,
such as (1) pre-trained word embedding, (2) contextual word embedding, (3) character-level CNN or
LSTM-based word encoding, (4) word-level pattern-based encoding, and (5) dictionary-based word
encoding. These representations were combined and passed through the bidirectional LSTM CRF
network to learn further contextual information. In this section, we explore various representations
used for encoding the input sequence and how to combine and feed them into the network.

2.1. Distributed Representations for Input

The concept of distributed representations refers to the representation of a word or a sentence
by mapping it to a numerical vector. The vector is used to capture the semantic and grammatical
properties of words. We review the following four types of distributed representations that have been
popularly used in the previous works.

2.1.1. Pre-Trained Word Embedding

Pre-trained word embedding is the main element for most NLP tasks, including NER. Typically,
embedding is trained over a large corpus, such as Wikipedia, Common Crawl, or the Reuters RCV-1
corpus. In this section, we describe different algorithms for computing word representations.

1. Word2vec: Word2vec can be implemented in two methods: a continuous bag of words (CBOW)
and a Skip-gram method [7–12]. Both are log-linear models that are very useful for discovering
the degree of word similarity [13]. In particular, CBOW provides slightly better accuracy for
frequent words, whereas Skip-gram represents rare words well.

2. GloVe: GloVe was developed at Stanford [14]. This process begins by going through the text in
a corpus, after which it counts the occurrences of word couples that are close to each other in a
given window size. The information is stored in a matrix called an occurrence matrix. This matrix
is used to build word embedding by minimizing the cosine distance between words to ensure a
high co-occurrence probability [15].

3. FastText: FastText [16] was made available by Facebook. This model suggests an NLP
improvement over the Skip-gram model, which learns by n-gram embedding. The rationale
behind this approach relies on the morphology and information encoding in a subword.
This information can be used to generate an unseen and rare word [17].

2.1.2. Contextual Embedding

One limitation of the pre-trained word embeddings is that a word is represented by a unique single
embedding regardless of its context. However, it is very common that a word could have a different
meaning in a different context. For example, each ‘bank’ has a different meaning in ‘bank account’ and
‘river bank’. To avoid fixed embedding for each word, several studies have proposed contextual word
representation techniques such as ELMO and BERT. ELMO [18] is a character-based model, while
BERT takes input as subwords and learns embeddings from the subwords. BERT has inspired many
recent NLP research and language models, for instance XLNet [19], RoBERTa [20], and DistilBERT [21].

2.1.3. Word-Level and Character-Level Representations

The pre-trained word embeddings and contextual embeddings learn the representations from the
context of a word in a sentence, but does not consider and learn the character composition of a word,
which are very important especially in the NER task because we often can infer the named entity (NE)
type of a word from its character composition. To make up for this weak point, two different word

37

Appl. Sci. 2020, 10, 7557

representation techniques have been developed: one is word-level pattern-based word encoding and
the other is character-level CNN or LSTM-based word encoding.

The former (word-level representation) classifies each word based on the following sub-criteria
and learns the encoding during training the deep learning network:

1. A case can be initialized in upper-case, all upper-case, all lower-case, and in a mixed case.
2. Punctuation
3. Digits including all digits, words with digits, cardinal and ordinal numbers
4. Characters, for instance, Greek letters
5. Morphology, e.g., prefixes and suffixes
6. Parts of speech – proper names, verbs, nouns
7. A function such as an n-gram, word, or feature pattern

This technique makes it possible to learn word representation based on patterns of a word and
encode words with different literals but same patterns with the same representation [2,3,5,6,22–24].
For example, Collobert et al. [22] used the capitalization information of a word, which was removed
before training the word embedding. The method uses a lookup table to add a capitalization feature
with the following options: AllCaps, UpperInitial, Lowercase, MixedCaps, Noinfo [5,22]. Huang et al.,
2015 also used the spelling information as a word-level feature, which includes: start with a capital
letter, all capital letter, all lower-case, mixed case, punctuation, prefixes and suffixes, has apostrophe
end (’s), has initial capital letters, letter, non-letter and word pattern.

The latter (character-level representation) is obtained by passing each character encodings within
a word through Recurrent Neural Network (RNN) or CNN blocks. CNN-based one is good at
extracting dominant character information in a word [3] while (RNN) (Gated Recurrent Unit (GRU) or
LSTM)-based one is good at capturing prefixes and suffixes in a word [2,24,25]. These character-level
representations also have an advantage in handling the Out-Of-the-Vocabulary (OOV) problem because
it is possible to learn almost all character embedding from even small or moderate corpus. In other
words, these representations are good at inferring unseen words and sharing information about
morpheme-level regularities. To improve the model performance, the pre-trained word embedding
have been actively combined with character-level CNN-based word encoding [3] or character-level
LSTM-based word encoding [2,24,25].

2.1.4. Dictionary Representation

The dictionary-based method is used to extract a set of features of a token by matching it with
entries in a dictionary. Two kinds of matching methods are commonly used. One is a full matching,
and the other is a partial matching [26,27].

1. Full matching: a dataset uses an n-gram to match an entire dictionary entry. If there are multiple
matches found in the dictionary, the longest one is preferred [28]. Using this match, the correct
word type is assigned as long as the n-gram overlaps the ground truth [1]. However, a longer
match requires more bits to classify a word type and the coverage is very low in general [29].

2. Partial matching: a dataset utilizes an n-gram to match part of a dictionary entry. The coverage could
be improved further through the application of an existing lexicon. On the other hand, some research
forgoes this partial matching dictionary because it can produce many false matches [5,28].

Both methods have their own disadvantage and it is not trivial to collect dictionary entries
having high coverage. To deal with this limitation, we design CNN-based sentence encoding using
a dictionary, which could achieve high coverage by reducing the negative effect by false matches.
(More details will be explained in Section 3.1).

2.2. Model Architecture for NER Task

The most common model architecture used for NER task in previous works is the bidirectional
LSTM CRF [2–4,6,23,30–35]. Except for the works of Huang et al., 2015 and Jie and Lu, 2019, all these

38

Appl. Sci. 2020, 10, 7557

previous works combined various feature encodings like pre-trained word embedding, contextual
word embedding, word or character-level representations and dictionary-based representation at the
embedding layer to feed them into the bidirectional LSTM CRF network. These early combination
models combined many feature encodings by just concatenating into one long embedding vector except
Rei et al., 2016 suggested a weighted sum based on attention mechanism instead of concatenation.

In contrast, Huang et al., 2015, and Jie and Lu, 2019, bypassed some feature encodings and
combined them with the output of the bidirectional LSTM blocks. We call these models delayed
combination in contrast with the early combination models. Huang et al., 2015, passed the pre-trained
word embedding through the bidirectional LSTM blocks and then concatenated the output with
additional word encodings based on word spelling, n-gram context of word, POS and chunk,
and gazetteer. Jie and Lu, 2019 first combined pre-trained word embedding with dependency encoding
at the embedding layer and then passed it through dependency-guided bidirectional LSTM blocks.
They secondly combined the output of the blocks with ELMO embedding just before the CRF layer.

When the features are combined, the feature collision may occur (Mikolov et al. [36]) and this
could cause that some important information may disappear after combination. This may limit the
performance improvement to be obtained from various feature encodings. Huang et al., 2015 also
suggested that this delayed combination could accelerate the training process with similar performance.

However, Huang et al., 2015 and Jie and Lu, 2019 did not provide and analyze any comparison
between their delayed combination approach and the common early combination approach to show
how effective the delayed combination is.

In this paper, we compare the delayed combination model with the early combination model by
evaluating our own implementation of the two approaches and also compare our result to the previous
works having similar model architecture and features to show the effectiveness of the delayed model.

3. Delayed Combination of Encoded Features

Our objective is to build a new architecture based on a deep learning technique which uses the
delayed combination model to improve the accuracy for two benchmark datasets, i.e., CoNLL 2003
and OntoNotes 5.0.

The main idea of our work is the bidirectional language model (BLM), to which is given as an input,
a sequence of tokens (t1, t2, ..., tn) that is passed through forward and backward a language model
(LM) [37]. The forward pass of the LM computes the sequence probability according to Equation (1).
The backward pass is similar to the forward pass, expect it runs over the reverse sequence to predict
the previous token according to the Equation (2).

P(t1, t2, ..., tN) =
N

∏
k=1

P(tk|t1, t2, ..., tk−1) (1)

P(t1, t2, ..., tN) =
N

∏
k=1

P(tk|tk+1, tk+2, ..., tN). (2)

The forward and backward sequence has two separate, hidden states to capture both past and
future information. Each result of forward and backward is concatenated to obtain the result vector
before being passed to the CRF layer. For the CRF computation, we denote X as the matrix of the score
output from the bidirectional LSTM to predict the tag sequence Y = y1, y2, ..., yn with the probability of
the ground truth for a tag of each word shown determined by Equation (3) [31]:

P(y|X, λ) =
1

Z(X)
exp

N

∑
i=1

∑
j

λj fi(X, i, yi−1, yi). (3)

Here, λ is the feature function weight, which is learned by the corresponding algorithm, and Z(X)
is the normalization factor according to Z(X) = ∑y∈Y ∑N

i=1 ∑j λj fi(X, i, yi−1, yi).

39

Appl. Sci. 2020, 10, 7557

The bidirectional LSTM CRF technique was used for our experiment on the NER task. We first
select the most promising features for the NER task from the previous works and also design a novel
CNN-based sentence encoding using a dictionary. Then we suggest the delayed combination of the
promising features by considering the characteristics of each feature.

3.1. Feature Encodings

1. Pre-trained word embedding: We compared GloVe 840B embedding, trained from Common
Crawl using GloVe3 [14], with FastText [16] cc.en.300 embedding, trained on Wikipedia and Common
Crawl. Chiu et al. [5] described GloVe improves significantly over available embedding in CoNLL
2003 than Word2vec.

However, GloVe poses to be a limitation with languages having unseen words which may occur
a lot in different corpora. On the other hand, FastText was build on the limitation of GloVe and
can handle OOV by extending subword information. This information allows the model to create
vectors for unseen words. So, we evaluated the performance of GloVe and FastText and then selected
FastText as word embedding which significantly increases the performance of our model (More detail
in Appendix A).

2. Embeddings from Language Model (ELMO): ELMO, developed by Allen NLP, is one
of the pre-trained contextual embedding models, which is available on the TensorFlow Hub
(https://tfhub.dev/google/elmo/3). We tokenized each sentence into words for inputting to the
embedding layer of ELMO. The ELMO embedding is obtained by weighted sum and scaling of output
encodings of the three layers of ELMO [18].

There are other contextual embedding models developed recently, but we selected ELMO by
considering the limitation of available hardware and the performance. We also tested BERT-Base but it
was not better than ELMO in our preliminary experiments.

The contextual word embedding like ELMO is better than other pre-trained word embeddings in
the NER task but the pre-trained embeddings are not still replaceable because they could give further
improvement when combined with contextual embeddings. So, we used both of them in our NER
model with delayed combination.

3. Character-level CNN or LSTM-based word encoding: Several studies incorporate character
representations with pre-trained word embedding for handling the OOV problem [38]. Therefore,
we also select these representations due to the same reason as well as the importance of character
information in NER task. There are two standard architectures for learning word encoding based on
character embedding: CNN and LSTMs.

Ma and Hovy [3] fed the character embeddings into the CNN with 30 filters of size three followed by
global max pooling to get the encoding of the corresponding word. Lample et al. [2] passed the character
embeddings through forward and backward LSTMs and concatenated each outputs to get the encoding
of the corresponding word, as shown in Figure 1.

Figure 1. Character-level CNN or LSTM-based word encoding.

40

Appl. Sci. 2020, 10, 7557

We adapted hyper-parameter values such as the number of filters, filter size, max word length and
word encoding dimension from the previous works and the detailed values are given in Section 4.2.

4. CNN-based Dictionary Representation: We first build up two versions of the NE dictionary for
partial matching: one distinguishes the begin and inside words in a named entity and the other does not
distinguish them. The process of dictionary creation consists of four sequential steps, as follows: (1) we
gather named entities of eleven types—Person, Location, Norp, Facility, Organization, Product, Event,
Work of art, Law, Language and a geopolitical entity (GPE)—from Wikipedia, Kaggle, and Geonames.
Then, (2) we additionally generate all upper-cased names and initial upper cased names from the
collected names. As a result, we could reduce mismatches when we apply a cased match. Subsequently,
(3) we duplicate the dictionary and tokenize these entries, as follows.

• Dictionary without a Begin-Inside Tag: We tokenize each word in the vocabularies and classify
each word into an entity type based on the datasets (CoNLL 2003, OntoNotes 5.0).

• Dictionary with a Begin-Inside Tag: we tokenize each names in the list and classify each word
based on the word position as well as the entity types. The first word in an entity has ‘Begin-tag’
along with the entity type and the other words in the entity have ‘Inside-tag’ along with the
entity type.

Now, we obtain two kinds of dictionaries with tokenized words. Finally, (4) we merge entity
types along with Begin-Inside tags for each word and construct a matrix of word to possible entity
types using binary notation. That is, we set to 1 when a word occurred at least once as that type in the
list of names and set to 0 otherwise, as shown in Figure 2.

Figure 2. The process of dictionary building: (1) gather named entities from various sources,
(2) generate capitalization variants of each names, (3) tokenize and classify with types and word
positions, and (4) construct a dictionary using binary notation. The numbers 0 and 1 denote the status
of found (1) and not found (0) in each category.

41

Appl. Sci. 2020, 10, 7557

This dictionary is used for encoding each sentence by the CNN with 30 filters of size three and
followed by global max pooing. Our dictionary employs partial match strategy, which may cause many
false matches and give negative effect on the performance. To soften this problem, we applied CNN-based
sentence encoding, as shown in Figure 3, and combined this with the output of the bidirectional LSTM
blocks, instead of early combining with other feature encodings at the embedding layer.

Figure 3. CNN-based sentence encoding using dictionary

This representation also has the advantage in dealing with ungrammatical or non-contextual
short sentences, which often occur in the dataset due to incorrect sentence segmentation but could not
be correctly predicted using only context.

3.2. Delayed Combination

We selected or designed four kinds of feature encodings, which are promising for NER
task: pre-trained word embedding, contextual embedding, character-level CNN/LSTM-based word
encoding and CNN-based sentence encoding using a dictionary. These feature encodings are combined
at suitable positions of the bidirectional LSTM CRF network according to the characteristics of each
feature encoding.

The pre-trained word embedding and contextual embedding were learned from the context of
each word. That is, their major role is to maintain and propagate the contextual information of each
word to the latter layers. So we decided to pass both of them through each separate bidirectional
LSTM blocks to further learn or fine-tune the contextual information from the training data as shown
in Figure 4.

Figure 4. The pre-trained word embedding and contextual embedding passed through its own
bidirectional LSTM blocks.

On the contrary, character-level CNN/LSTM-based word encoding is better to bypass the
bidirectional LSTM blocks because this word encoding learns only the character compositions within a
word, not contextual information of a word. Passing this encoding through the bidirectional LSTM
blocks may cause loss of character composition information in that encoding. Early combination of this
encoding with other pre-trained feature encodings at the embedding layer may disturb correct learning

42

Appl. Sci. 2020, 10, 7557

of that encoding because in general dominant features (i.e., pre-trained ones) are first propagated to
the latter layers.

Our dictionary representation is also not passed through the bidirectional LSTM blocks.
The representation is obtained by employing a partial match strategy and passing through word
CNN. This partial match may cause many false matches and give a negative effect on the performance.
To soften this problem, we employed CNN-based sentence encoding. As a result, we combine
(i.e., concatenate) the above feature encodings at the fully-connected layer directly after the bidirectional
LSTM blocks. The combined encoding further passes fully-connected layer and CRF layer to find the
best chainable label sequences. A graphical illustration of our delayed combination model is given
in Figure 5.

Figure 5. The delayed combination of feature encodings.

The early combination may cause some useful information to mix or collide with other encodings
and, as a result, disappear before the output layer. The graphical difference between the early
combination and the delayed combination is depicted in Figure 6.

Figure 6. The comparison between delayed and early combinations

Both the delayed combination and early combination models are used for comparison in
experiments, as explained in the next section.

4. Experimental Setup

4.1. Datasets

The experiment begins by exploring the NER datasets. The CoNLL 2003 dataset (English language) [39],
was taken from Reuters news corpus between August 1996 and 1997. This dataset consists of four types of
named entities (i.e., person, location, organization, and miscellaneous). The number of occurrences of each
type of named entity is shown in Table 1. The dataset consisted of three parts: a training set, a development
set, and a test set. To be specific, the training and development datasets were collected from the news at the
end of August of 1996, while the test dataset was obtained from the news in December of 1996.

43

Appl. Sci. 2020, 10, 7557

OntoNotes 5.0 is made up of 300 K Arabic, 900 K Chinese, and 1745 K English text data instances
and covers six types of documents such as newswire, websites, broadcasting news, broadcasting
conversation, magazine and telephone conversation [40]. It consists of eleven types of named entity
and seven types of values and we use the English data and follow the train–validate–test split by [40].
We excluded the telephone conversation section when evaluating our model because it has quite noisy
annotations. The detailed statistics of this dataset are given in Table 2.

Table 1. Statistics of named entities in CoNLL 2003 found in the training, development, and test sets.
The highest proportion in CoNLL 2003 is location, followed by person, organization, and miscellaneous
in that order.

Named Entity Train Set Valid Set Test Set

Location 8297 2094 1925
Organization 10,025 2092 2496
Person 11,128 3149 2773
Malicious 4593 1268 918

Table 2. Statistics of named entities in OntoNotes 5.0 found in the training, development, and test
sets. In OntoNotes 5.0, the highest proportion is organization, followed by person and Geopolitical
Entity (GPE).

Named Entity Train Set Valid Set Test Set

Person 37,393 5354 3646
Norp 9956 13.45 1152
Facility 3089 363 392
Organization 56,954 8964 4705
Product 1812 471 160
Event 3096 504 250
Work of art 4513 639 516
Law 1657 239 162
Language 372 36 22
Location 4143 596 417
GPE 27,354 4555 3263

Money 15,130 2287 1103
Percentage 8989 1504 992
Ordinal 2151 333 204
Cardinal 13,813 2141 1318
Quantity 3123 522 415
Date 40,077 6527 3793
Time 3505 731 451

We selected these two datasets for benchmarking our model because they have been most actively
used for evaluating and comparing NER models until now even though they are a little old. Especially,
CoNLL 2003 is a little small and so takes less time to train a model. So, it is suitable for testing and
tuning model feasibility at the early stage.

On the contrary, OntoNotes 5.0 is quite large (about five times the size of CoNLL 2003 in the
number of sentences in the training set) and has manymore types of named entities. So, it is suitable
for testing model extensibility at the latter stage.

4.2. Hyperparameter Setup

As preliminary experiments, we explored the optimal values of several major hyper-parameters
such as dropout, optimizer with learning rate, and the number of bidirectional LSTM layers and also
tested several versions of the popular pre-trained word embeddings including GloVe and FastText
(More detailed information is given in the Appendix A). The other hyper-parameter values were

44

Appl. Sci. 2020, 10, 7557

borrowed from the earlier works [2–5,33]. Table 3 shows the hyper-parameter values used in our
experiments. The hyper-parameter values are nearly identical between CoNLL 2003 and OntoNotes
5.0, except for the maximum word length and character embedding dimension, which were borrowed
from the earlier studies [2,5], respectively.

Table 3. The hyper-parameter values used in our experiments.

Layer Hyper-Parameter CoNLL 2003 OntoNotes 5.0

Character-level CNN Filter size 3 3
Number of filters 30 30
Max word length 25 30
Character embedding dimension 100 30

Character-level LSTM Max word length 60 97
Character embedding dimension 100 30
Hidden units 128 128

CNN with dictionary Filter size 3 3
Number of filters 30 30
Max sentence length 100 100
Character embedding dimension (With BI tags) 8 22
Character embedding dimension (Without BI tags) 4 11

BiLSTM with ELMo ELMO embedding (Dim) 1024 -
Number of bidirectional LSTM layers 2 2
Hidden units 128 -

BiLSTM with FastText Word embedding (Dim) 300 300
Number of bidirectional LSTM layers 3 3
Hidden units 128 128

Dropout 0.5 0.5
Optimizer Nadam Nadam
Learning rate 0.002 0.001
Mini-batch size 200 200
Epochs 200 120

4.3. Model Setup

When training our models, we used two different numbers of iterations without early stopping:
(1) 200 epochs for all model variants except the model with ELMo and (2) 120 epochs for the model
with ELMo. This is because the performance of the model with ELMo was rarely improved but the
model took quite a long time in training at each epoch when further increasing the number of epochs.

We evaluated our model after every epoch with the F1 score on the validation set and selected the
best validation F1 scored model within the number of epochs, which was used for evaluating the test
set. Due to the randomness, we did the same experiments five times and averaged them. The following
equation calculates the F1 score:

F1 score =
2× Precision× Recall
(Precision + Recall)

(4)

Here, precision refers to the ratio of correct named entities found in the NER system, and recall is
the ratio of named entities that are retrieved by the NER system. Our goal is to show the effectiveness
of the delayed combination and the CNN-based sentence encoding using the dictionary. To achieve
this goal, we organized three groups of experiments as follows:

1. The experiments for comparison between the delayed and the early combinations of FastText (FT)
and character-level CNN or LSTM word encoding (we refer to these as Delayed-BiLSTM-CRF
(FT + CNN or LSTM) and Early-BiLSTM-CRF (FT+ CNN or LSTM), respectively). The results are
given in Section 5.1.

2. The experiments with the model equipped with our dictionary representation (we refer to this
model as Delayed-BiLSTM-CRF (FT + CNN or LSTM + Dic)). The results are given in Section 5.2.

45

Appl. Sci. 2020, 10, 7557

3. The experiments with the model additionally equipped with ELMo encoding (we refer to this
model as Delayed-BiLSTM-CRF (FT + CNN or LSTM + Dic + ELMo)). The results are given in
Section 5.3.

5. Results and Discussion

5.1. Comparison between the Delayed and Early Combination Models

In this experiment, we first compared the delayed combination to the early combination by
evaluating our own implementations of both combinations on CoNLL 2003 and OntoNotes 5.0.
We used FastText for the pre-trained word embedding and character-level CNN-based word encoding.
In the early combination, both were concatenated at the embedding layer, and then fed into the
bidirectional LSTM blocks. On the contrary, in the delayed combination, only the FastText encoding
was passed through the bidirectional LSTM blocks and then the output was concatenated with the
character-level CNN-based word encoding. The results are shown in Table 4.

Table 4. Comparison between the delayed and early combination models.

Model F1 Score in CoNLL 2003 F1 Score in OntoNotes 5.0

Early-BiLSTM-CRF (FT + CNN) 88.60 84.47
Delayed-BiLSTM-CRF (FT + CNN) 90.56 (+1.96) 87.87 (+3.40)

We can see that the delayed combination (Delayed-BiLSTM-CRF (FT + CNN)) gives consistently
and significantly higher scores than the early combination (Early-BiLSTM-CRF (FT + CNN)) on both
datasets. This could convince us that the delayed combination could effectively propagate the useful
character composition information to the output layer by bypassing the bidirectional LSTM blocks.
The bidirectional LSTM blocks are very good at learning contextual information but the character
composition information may diminish or disappear when it passes through the bidirectional LSTM
blocks. Furthermore, at the early stage of the training, the pre-trained word embedding has more
dominant values than the character-level word encoding, which is randomly initialized. This means
that the early combination of feature encodings having different characteristics could hinder the model
from learning the less dominant feature encodings especially at the early stage of the training.

Reimer et al. [41] described the difference between character-level CNN-based and LSTM-based
word encoding approaches. According to this work, the CNN approach takes only the trigram value
into account but cannot distinguish the positions of trigrams, i.e., whether it is at the beginning, inside,
or at the end of a word. In contrast, the LSTM approach takes all characters of a word into account and
can distinguish between characters at the beginning and end of a word.

Referring to this work [41], we compared the two kinds of character-based word encoding
approaches in our delayed combination model. The result is given in Figure 7. On the CoNLL 2003
dataset, the LSTM approach was distinctly better (about +0.23%) than the CNN approach. However,
on the OntoNotes 5.0 dataset, the CNN approach was very slightly better (about +0.03%) than the
LSTM approach. This means that we cannot say which one is definitely better than the other. This result
coincides with the results from the previous works [30]. We also checked the computation time in the
training of each approach. The LSTM approach took about 1.75 times longer training time than the
CNN approach. This means that the CNN approach has advantage in the view of the training speed.
From these results, we decided to fix the approach for character-level word encoding to LSTM on the
CoNLL 2003 dataset and CNN on the OntoNotes 5.0 dataset, respectively.

To show the feasibility of our own model, we show in Table 5 the comparison between the
results of our models and the results of the previous works having similar model architecture and
combining features at the embedding layer. Our delayed model with LSTM-based word encoding,
Delayed-BiLSTM-CRF (LSTM), could achieve a better F1 score than the results from Rei et al., 2016,
Ghaddar and Langlais, 2018 and Le and Burtsev, 2019, but worse F1 score than the original results

46

Appl. Sci. 2020, 10, 7557

from Lample et al., 2016, Ma and Hovy, 2016 and Chiu and Nichols, 2016 on the CoNLL 2003 dataset.
However, when comparing to the re-implementation results by DeLFT [42] of the latter three works,
our results were not worse. On the OntoNotes 5.0 dataset, our model was also better than the
results from Ghaddar and Langlais, 2018 and Chiu and Nichols, 2016. We did not tune the most
hyper-parameter values and just borrowed from the previous works. We think our model is open to be
further improved by thoroughly tuning the hyper-parameter values [41].

Figure 7. The comparison between the character-level CNN-based and LSTM-based word encodings in
our delayed combination model. The result shows that the LSTM approach is better on the CoNLL2003
while the CNN approach is very slightly better on the OntoNotes5.0.

Table 5. Comparison between our work and previous early combination model with the pre-trained
word embedding and the character-level word encoding.

Work Model (Character-Level) F1 CoNLL 2003 F1 DeLFT’s F1 OntoNotes 5.0

Lample et al. [2] BiLSTM-CRF(CNN) 90.94 90.75 -
Ma and Hovy [3] BiLSTM-CRF (LSTM) 91.21 90.73 -
Chiu and Nichols [5] BiLSTM (CNN) 90.91 !* 89.23 86.28 !*
Rei et al. [4] BiLSTM (LSTM) 84.09 - -
Liu et al. [30] BiLSTM (LSTM) 91.71 - -
Ghaddar and Langlais [33] BiLSTM (CNN) 90.52 - 86.57
Le and Burtsev [34] BiLSTM (CNN) 90.60 - -

Ours BiLSTM-CRF (LSTM) 90.79 - 87.84 *
BiLSTM-CRF (CNN) 90.56 - 87.87 *

! Chiu and Nichols, 2016 incorporated incorporated the development set as a part of training data.
Consequently, the result cannot be directly compared with our model. * indicates that the model used
additional preprocessing on the dataset before training and testing.

5.2. The Model Equipped with Our Dictionary Representation

Before evaluating our model with dictionary representation, we first checked the coverage of the
collected list of named entities on the two target datasets to assess whether collected names are enough
or not for the datasets. The coverages by each named entity (NE) type of CoNLL 2003 and OntoNotes
5.0 are given in Tables 6 and 7, respectively.

Table 6. The coverage of the dictionary on the CoNLL2003 dataset.

CoNLL 2003 Begin-Tag Inside-Tag

Person 84.19% 94.91%
Organization 86.64% 76.56%
Location 76.45% 89.78%
Miscellaneous 6.57% 2.40%

The percentage in the tables indicates that those ratios of named entity tokens of each type were
found in the collected dictionary. On the CoNLL 2003, the dictionary covers well the first three types of
names but only a small ratio of miscellaneous typed entities is covered. On the OntoNotes 5.0 dataset,
only four types of names such as Person, Facility, Organization and GPE are well covered (i.e., over 50%).

47

Appl. Sci. 2020, 10, 7557

Table 7. The coverage of the dictionary on the OntoNotes5.0 dataset.

OntoNotes 5.0 Begin-Tag Inside-Tag

Person 61.59% 78.85%
Norp 15.35% 19.64%
Facility 69.87% 76.72%
Organization 76.32% 86.32%
Product 23.14% 48.39%
Event 42.77% 47.17%
Work of art 52.36% 71.92%
Law 28.00% 54.72%
Location 75.57% 48.59%
GPE 70.09% 77.20%
Language 46.65% 0.00 %

As explained in Section 3.1, we built up two kinds of dictionaries: one distinguishes begin and
inside tokens in a named entity while the other does not. After combining this dictionary feature
with our model at the delayed position, we evaluated our model to show the effectiveness of the
dictionary feature.

Table 8 shows the comparison of our models with and without the CNN-based dictionary
representation and also compares the two kinds of dictionaries with or without Begin-Inside (BI)
tags. On the CoNLL 2003, both of the two dictionary representations (with and without BI tags)
could improve significantly the F1 score by +0.34% and +0.45%, respectively. On the OntoNotes
5.0, the dictionary without BI tags could improve the F1 score by +0.20% although the dictionary
representation with BI tags rather lowered the F1 score by −0.30%.

Table 8. The comparison of our models with and without dictionary representation.

Dictionary
Model Dataset Without Dic With BI Tags Without BI Tags

Delayed-BiLSTM-CRF (FT + LSTM + DIC) CoNLL 2003 90.79 91.13 91.24
Delayed-BiLSTM-CRF (FT + CNN + DIC) OntoNote 5.0 87.87 87.57 88.07

From this result, we could say that the CNN-based dictionary representation could improve the
F1 score. Further analysis lets us find that our dictionary effectively classified the type of a word
especially when the context of the word is not sufficient. For example, the named entities in one-word
sentences (e.g., ‘England’), which are often found on CoNLL 2003 dataset, cannot be correctly predicted
only using the Recurrent Neural Network (RNN)-typed network because they have no contextual
information [43]. However, our CNN-based dictionary representation could predict them correctly.

Commonly on the two datasets, we can notice that the dictionary without BI tags shows a better
F1 score. We think this result might be caused by the following two reasons: tag mismatches and many
ambiguous words. First, the ‘tag mismatches’ are very often found in between the dictionary with BI
tags and the CoNLL 2003 dataset, especially for Person. We may think that a given name of a person
is generally classified with a begin tag, whereas a family name is typically assigned with an inside
tag. However, in the dataset of real text, it is very common to refer to a person by only his/her family
name without giving a given name. So, family names are assigned both begin and inside tags in the
dataset. The most collected names were in the full form of names and the dictionary made from them
often caused such tag mismatches and, as a result, degraded the performance.

Secondly, the ‘ambiguous words’ are very often found in the dictionary with BI tags for OntoNotes
5.0. For example, ‘Hong’ is a word found in various named entities, such as FACILITY: ‘Hong Kong
International Airport’, GPE: ‘Hong Kong’, EVENT: ‘Hong Kong Jewish Film Festival’, WORK_OF_ART:
‘Hong Kong Garden’, PERSON: ‘Hong Chang’, ‘Chin Hong Goh’, LOCATION: ‘Disney Hong Kong’.
When building the dictionary with BI tags up, ‘Hong’ is classified with B-FACILITY, B-GPE, B-EVENT,

48

Appl. Sci. 2020, 10, 7557

B-WORK_OF_ART, B-PERSON, I-PERSON, and I-LOCATION tags. This information is used to create a
dictionary representation of the word ‘Hong’. Like this, many ambiguous words are incorrectly encoded
into dictionary representations, among which some adjacent dictionary representations may form unseen
patterns that never occurred in the training set but that could be found in the test set. As a result,
those representations may pose a problem in that they drastically reduce the performance. This result is
similar to that in the earlier work [44].

We also compared our model to the previous similar dictionary-enabled works to show the
feasibility of our model. The comparison is given in Table 9. On the CoNLL 2003, our model could
achieve a better F1 score than that of Huang et al., 2015 and Wu et al., 2018 but was worse than that of
Chiu and Nichols, 2016 and Ghaddar and Langlais, 2018. However, Chiu and Nichols, 2016 trained
their model by merging the validation data with the training data and this could lead to improve the F1
score. Ghaddar and Langlais, 2018 used the lexical similarity (LS) embedding which was pre-trained
from fined-grained named entity list and Wikipedia text. The LS embedding was well-organized than
the existing dictionaries and could lead to improve the F1 score by +1.21%.

In contrast, the OntoNotes 5.0 dataset, our model could achieve better F1 score than those of Chiu
and Nichols, 2016 and Ghaddar and Langlais, 2018 even though Chiu and Nichols, 2016 used both
training and validation data for training their model and Ghaddar and Langlais, 2018 applied the
LS embedding.

Table 9. The comparison of our model with the previous similar dictionary-enabled works.

Work Pre-Trained
Embedding

Character
Level

Word
Level Hybrid Model F1 CoNLL 2003 F1 OntoNotes 5.0

Huang et al. [6] SENNA - Spelling,
n-gram

Gazetteers - 90.10 -

Chiu and Nichols [5] SENNA CNN CAP Lexicons Softmax 91.62 !∗ 86.36 !∗

Wu et al. [32] GloVe 6B-300D CNN POS Gazetteers Neural CRF 91.06 -
Wu et al. [32] Glove 6B-300D CNN POS,

SpaCy
(CAP)

Gazetteers Neural CRF 91.89 -

Ghaddar and
Langlais

[33] SSKIP and LS
representation

LSTM CAP Lexical
Similarity Vector

BiLSTM CRF 91.73 87.95

Ours FastText LSTM - CNN dictionary BiLSTM CRF 91.24 -
FastText CNN - CNN dictionary BiLSTM CRF - 88.07 *

! Chiu and Nichols, 2016 incorporated the development set as a part of training data. Consequently, the result
cannot be directly compared with our model. * indicates that the model used additional preprocessing on the
dataset before training and testing.

5.3. The Model Additionally Equipped with the ELMO Encoding

Our model is finally combined with the separate bidirectional LSTM network of the ELMo
embedding at the delayed position (The OntoNotes5.0 dataset couldn’t be used for training our model
with ELMo encoding because high-end GPUs like V100 were not available within a limited duration.).
On the CoNLL 2003 dataset, we checked the effect of the ELMo encoding on all variants of our model
according to all possible combinations with the two kinds of character-level word encodings and the
two kinds of dictionary representations.

Figure 8. The performance of our model when combined with the ELMo network at the delayed position.

49

Appl. Sci. 2020, 10, 7557

The result is shown in Figure 8. Our model could achieve the highest F1 score, 92.49%,
when we combined our model with LSTM-based word encoding, dictionary representation without
BI tags, and the bidirectional LSTM-based ELMo encoding. The bidirectional LSTM-based ELMo
encoding could consistently improve the F1 score of all four variants of our model by the range of
[+1.12%, +1.29%].

We also compared our model equipped with the ELMo encoding to the previous works having
contextual embedding as features of their models. This is given in Table 10. Our model could achieve
a better F1 score than all the previous works used ELMo as one of their features, such as Peter et al.,
2018, Han et al., 2019, Xia et al., 2018, and Jie and Lu, 2018. This result could convince us that our
delayed combination model is effective in NER task. Our model still shows a little higher F1 score than
the model used BERT-Base (Devlin et al., 2019) but other previous works used BERT-Large or further
tuned LM embedding still outperform our model. We think that our model can be further improved
by combining with BERT-Large or fine-tuned LM embeddings instead of ELMo.

Table 10. The comparison of our model with the previous works having contextual embeddings
(ELMO and BERT) as their features.

Work Pre-Trained
Embedding

Character
Level

Word
Level Hybrid Model F1 CoNLL 2003 F1 OntoNotes 5.0

Peter et al. [18] ELMO - - - BiLSTM CRF 92.22 -
Han et al [45] ELMO (DELTA) - - - - 92.20 -
Xia et al. [46] Word Emb,

ELMO
- POS - MGNER 92.28 -

Jie and Lu [35] GloVe 6B-100D,
ELMO

- - Dependency DGLSTM
CRF

92.40 88.52

Devlin et al. [47] BERT-BASE - - - - 92.40 -
Devlin et al. [47] BERT-LARGE - - - - 92.80 -
Luo et al. [48] BERT - - - Hierarchical 93.37 90.30
Li et al. [49] BERT - - - MRC+DSC 93.33 92.07
Baevski et al. [50] Cloze-style LM

embedding
CNN - - CNN Large

and fine-tune
93.50 -

Ours FastText, ELMO LSTM - CNN

dictionary BiLSTM CRF 92.49 -

6. Conclusions and Future Works

For the success of various deep-learning methods in NER task, most researchers have
tested various feature-encoding techniques such as pre-trained word embedding, contextual
embedding, character-level CNN or LSTM-based word encoding, word pattern-based encoding and
dictionary-based encoding, and incorporated them into the deep learning networks. When more than
one feature encoding is used, most previous works combined them at the embedding layer and then
passed through the deep neural network to find the best label sequences in the output layer. However,
when such an early combination of various feature encodings passes through the deep neural networks
like RNN, much useful information could be mixed or shrunk by other more-dominant information
and this could consequently limit the improvement in performance.

To avoid such limitations, we introduced the delayed combination model of various promising
feature encodings. This model selected FastText as the pre-trained word embedding, ELMo as the
contextual embedding and character-level CNN or LSTM word encoding, and designed CNN-based
sentence encoding using a dictionary, for feature encoding. We also selected the most common
bidirectional LSTM network for learning contextual information from the train set. Among those
feature encodings, FastText and ELMo embeddings were passed through its own separate bidirectional
LSTM blocks while the remaining feature encodings were bypassed and combined with the outputs of
the bidirectional LSTM blocks.

Through several experiments, we showed that our delayed combination model outperforms the
early combination one and also showed the feasibility of our model by comparing our results with the
corresponding previous works.

50

Appl. Sci. 2020, 10, 7557

As future work, we intend to extend this model by (1) building up a dictionary better-organized
and learned from the external resources, (2) incorporating BERT-Large or other fine-tuned LM
embeddings into our model, and applying to other non-English languages as well as other fine-grained
NER task.

Author Contributions: Conceptualization, S.L. and C.R.; methodology, C.R.; software, C.R.; validation, S.L., H.J.J.
and C.R. ; formal analysis, C.R.; investigation, H.J.J.; resources, H.J.J and C.R.; data curation, C.R.; writing—original
draft preparation, C.R; writing—review and editing, S.L. and H.J.J; visualization, C.R.; supervision, S.L.; project
administration, S.L.; funding acquisition, S.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by Government-wide R&D Fund project for infectious disease research
(GFID), Korea, under grant number HG18C0093.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Hyperparameters Tuning

Reimer et al. [41] noted that there is a high impact of hyper-parameters (dropout, optimizer,
word embedding, and a number of stacked layers) on the accuracy of the bidirectional LSTM CRF.
We used the two-stacked bidirectional LSTM CRF model to find optimal hyper-parameters of dropout,
optimizer, and word embedding. Hyper-parameter tuning is discussed in the four subsections below.

1. Dropout

Dropout is a technique that can be used to reduce over-fitting and to improve the model’s
performance [51–53]. Brownlee [54] suggested that “normally, a small dropout value of 0.2–0.5
of neurons gives a good starting point.” For our dropout experiment, dropouts were applied to
three positions: (1) inside the bidirectional LSTM layer within a recurrence loop, (2) after the last
output values of the bidirectional LSTM layer, and (3) before the outputs are passed through the
CRF layer.

The Figure A1 shows the experiment with different dropout sets. We repeat the experiment five times
with different random seeds seeds and averaged them. The dropout value 0.5 of neurons provides
our best result. The resulting rate is similar to that in the earlier work by Srivastava et al., 2014 [51],
suggesting that the 0.5 dropout is be close to the optimal value for a wide range of neural networks
and multiple tasks.

Figure A1. F1 score on NER with difference dropouts. The dropout value of 0.5 achieves the best score
in this task (CoNLL 2003).

2. Optimizer with learning Rate

The optimizer determines the impact of the gradients on the parameter that we study the
optimizers [55] (SGD, Adam, Nadam, RMSProp, and Adagrad) with variant learning rates that are
derived from default values provided by Keras (https://keras.io/api/optimizers). In particular,
we utilize the set of 0.009, 0.01, 0.02, 0.03, 0.04 for SGD and Adagrad and the set of 0.0009, 0.001, 0.002,
0.003, 0.004 for Adam, Nadam, RMSprop and Adamax. Table A1 shows the optimizers’ performance
with various learning rates on the CoNLL 2003 and OntoNotes 5.0 datasets. The dropout was fixed
at 0.5.

51

Appl. Sci. 2020, 10, 7557

For CoNLL 2003, the average performances of Nadam and Adagrad are first and second highest
and achieve rates 89.321% and 89.316%, respectively. In another observation, Adamax(lr = 0.001)
shows the best rate at 89.50%. However, it is only 0.01 different from Nadam(lr = 0.002). Earlier
work [41] claims that Nadam converges most rapidly. It requires only a small training epoch to
achieve better performance. Therefore, we used Nadam with a learning rate of 0.002 and a 0.5
dropout value for the next experiment on the CoNLL 2003 dataset.

Table A1. Five times F1 scores of the optimizer, in this case SGD, Adam, Nadam, RMSprop, Adagrad,
and Adamax.

Learning Rate Multiplied by Alpha (α)
Dataset Mini-Batch Optimizer (α) 0.09 0.1 0.2 0.3 0.4 Average SD *

Conll 2003 200 SGD (α =0.1) 89.40 89.18 89.34 89.12 89.12 89.232 0.13
Adam (α =0.01) 89.17 89.23 89.45 89.17 88.94 89.190 0.18
Nadam (α =0.01) 89.17 89.39 89.49 89.34 89.22 89.321 0.13
RMSprop (α =0.01) 89.09 89.11 89.30 89.30 89.06 89.172 0.12
Adagrad (α =0.1) 89.14 89.48 89.40 89.23 89.34 89.316 0.13
Adamax (α =0.01) 89.24 89.50 89.27 89.34 89.21 89.313 0.12

OntoNotes 5.0 200 Nadam (α =0.01) 86.78 87.08 86.83 86.28 86.03 86.599 0.43
* Standard deviation (SD or Std Dev) is a measure of variation between values in a set of data.

An earlier experimental result [41] related to our CoNLL 2003 experiment recommends Nadam
as an optimal hyper-parameter. For OntoNotes 5.0, we study the effect of Nadam with various
learning rates. From the result in Table A1 the 0.001 learning rate provided our best F1 score.
Accordingly, we chose Nadam(lr = 0.001) as an optimal hyper-parameter for the next experiment
on the OntoNotes 5.0 dataset.

3. Pre-trained Word Embedding

We compared the GloVe 840B embedding and FastText–cc.en.300.vec and cc.en.300.bin. For FastText,
the experiment used two options: (1) cc.en.300.vec (without subwords), (2) cc.en.300.bin (with subwords).

In this experiment, each pre-trained embedding was used to convert any word from the target
dataset for representation and to pass it through the two-stacked bidirectional LSTM CRF model
for predicting the named entity tags. Table A2 shows the experimental results of CoNLL 2003 and
OntoNotes 5.0.

Table A2. Five times F1 scores of the pre-trained word embedding with two-stacked bidirectional
LSTM. From the result, we achieve the best F1 score when using FastText with subwords.

Five Times Validation
Dataset Mini-Batch Embedding 1 2 3 4 5 Average SD

Conll 2003 200 GloVe 89.96 89.90 89.94 90.26 90.24 90.06 0.18
FastText Vec 89.44 89.70 89.79 89.44 89.93 89.66 0.22
FastText Bin 90.05 90.30 90.20 89.97 90.17 90.14 0.13

OntoNotes 5.0 200 GloVe 87.12 87.44 87.42 87.42 87.61 87.40 0.18
FastText Vec 87.49 87.49 87.44 87.52 87.40 87.47 0.05
FastText Bin 87.68 87.43 87.74 87.58 87.58 87.60 0.12

The results from the CoNLL 2003 dataset show that the average F1 score of FastText (90.14%)
with subwords higher than that of the GloVe (90.06%) experiment. For OntoNotes 5.0 experiment,
the result is similar to that of CoNLL 2003. The F1 score (at 87.60%) is increased when using
FastText with subwords.

Owing to the similar result on the two datasets, we assume that the model performance is
improved when (1) the vocabulary in word embedding matches the word in the dataset, and (2)
the subword (n-gram) of FastText is used to generate embeddings for rare words.

52

Appl. Sci. 2020, 10, 7557

4. Number of bidirectional LSTM layers

Currently, the stacked LSTMs are used as a standard technique for challenging sequence
predictions [56]. Some previous works [57–59] present the multiple stacked bidirectional LSTMs
in a neural network. They show that the classification performance can be improved when using
this technique. Furthermore, there is some related theoretical support: a deep hierarchical model
is more effective at representing than a shallow model [30,60]. Due to the stacked processes,
when the first bidirectional LSTM layer provides an output vector, this output vector provides
more complex patterns for the next layer, enabling us to capture information on a different scale.

Cai et al. [57] suggests the appropriate amount of multi-layer bidirectional LSTM help to
understand the relationship between words and words at a deep level. However, when the
representation flows through stacked layers, the risk arises that the representation information
will be lost [61], and it may also reduce the model performance. Hence, we examined two
or three-stacked bidirectional LSTM to find the number of layers most suitable for our model.
The comparative of F1 score results are shown in Figure A2 the model shows higher performance
when using the three-stacked bidirectional LSTM. Consequently, we assume that three stacks are
able to capture more information for our model.

In contrast, two-stacked bidirectional LSTMs are applied in earlier experiments [2,23,35]. However,
these experiments used different batch sizes, optimizers and lower dimensional word embedding
compared to our model. Accordingly, we assume that the number of bidirectional layers depends
on the hyper-parameters, especially the input size, batch size, optimization and hidden unit [62]
of each model.

Figure A2. Comparison between two and three stacked bidirectional LSTM CRFs. The results show
that three stacked bidirectional LSTM CRFs perform well on both CoNLL 2003 and OntoNotes 5.0.

References

1. Li, J.; Sun, A.; Han, J.; Li, C. A Survey on Deep Learning for Named Entity Recognition. arXiv 2018, arXiv:1812.09449.
2. Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural architectures for named entity

recognition. arXiv 2016, arXiv:1603.01360.
3. Ma, X.; Hovy, E. End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv 2016, arXiv:1603.01354.
4. Rei, M.; Crichton, G.K.; Pyysalo, S. Attending to characters in neural sequence labeling models. arXiv 2016,

arXiv:1611.04361.
5. Chiu, J.P.; Nichols, E. Named entity recognition with bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist.

2016, 4, 357–370. [CrossRef]
6. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. arXiv 2015, arXiv:1508.01991.
7. Khattak, F.K.; Jeblee, S.; Pou-Prom, C.; Abdalla, M.; Meaney, C.; Rudzicz, F. A survey of word embeddings

for clinical text. J. Biomed. Inform. X 2019, 4, 100057. [CrossRef]
8. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.

arXiv 2013, arXiv:1301.3781.
9. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. arXiv 2014, arXiv:1405.4053.
10. Levy, O.; Goldberg, Y. Linguistic regularities in sparse and explicit word representations. In Proceedings

of the Eighteenth Conference on Computational Natural Language Learning, Baltimore, MD, USA,
26–27 June 2014; pp. 171–180.

53

Appl. Sci. 2020, 10, 7557

11. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases
and their compositionality. arXiv 2013, arXiv:1310.4546.

12. Mikolov, T.; Yih, W.t.; Zweig, G. Linguistic regularities in continuous space word representations.
In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Atlanta, Georgia, 9–14 June 2013; pp. 746–751.

13. Sugawara, H.; Takamura, H.; Sasano, R.; Okumura, M. Context representation with word embeddings
for wsd. In Proceedings of the Conference of the Pacific Association for Computational Linguistics, Bali,
Indonesia, 19–21 May 2015; pp. 108–119.

14. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar,
25–29 October 2014, pp. 1532–1543.

15. Du, M.; Vidal, J.; Al-Ibadi, Z. Using Pre-trained Embeddings to Detect the Intent of an Email. In Proceedings
of the ACIT 2019: Proceedings of the 7th ACIS International Conference on Applied Computing and
Information Technology, Honolulu, HI, USA, 29–31 May 2020; doi:10.1145/3325291.3325357. [CrossRef]

16. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information.
Trans. Assoc. Comput. Linguist. 2017, 5, 135–146. [CrossRef]

17. Almeida, F.; Xexéo, G. Word embeddings: A survey. arXiv 2019, arXiv:1901.09069.
18. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized

word representations. arXiv 2018, arXiv:1802.05365.
19. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining

for language understanding. arXiv 2019, arXiv:1906.08237.
20. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V.

Roberta: A robustly optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
21. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper

and lighter. arXiv 2019, arXiv:1910.01108.
22. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing

(almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537.
23. Zhai, Z.; Nguyen, D.Q.; Verspoor, K. Comparing CNN and LSTM character-level embeddings in

BiLSTM-CRF models for chemical and disease named entity recognition. arXiv 2018, arXiv:1808.08450.
24. Yang, Z.; Salakhutdinov, R.; Cohen, W. Multi-task cross-lingual sequence tagging from scratch. arXiv 2016,

arXiv:1603.06270.
25. Liu, L.; Shang, J.; Ren, X.; Xu, F.F.; Gui, H.; Peng, J.; Han, J. Empower sequence labeling with task-aware

neural language model. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, LA, USA, 2–7 February 2018.

26. Eftimov, T.; Koroušić Seljak, B.; Korošec, P. A rule-based named-entity recognition method for knowledge
extraction of evidence-based dietary recommendations. PLoS ONE 2017, 12, e0179488. [CrossRef]

27. Jonnagaddala, J.; Jue, T.R.; Chang, N.W.; Dai, H.J. Improving the dictionary lookup approach for disease
normalization using enhanced dictionary and query expansion. Database 2016, 2016, baw112. [CrossRef]
[PubMed]

28. Song, C.H.; Lawrie, D.; Finin, T.; Mayfield, J. Gazetteer generation for neural named entity recognition.
In Proceedings of the Thirty-Third International Flairs Conference, North Miami Beach, FL, USA, 17–20 May 2020.

29. Tsuruoka, Y.; Tsujii, J. Improving the performance of dictionary-based approaches in protein name
recognition. J. Biomed. Inform. 2004, 37, 461–470. [CrossRef] [PubMed]

30. Liu, Z.; Yang, M.; Wang, X.; Chen, Q.; Tang, B.; Wang, Z.; Xu, H. Entity recognition from clinical texts via
recurrent neural network. BMC Med. Inform. Decis. Mak. 2017, 17, 67. [CrossRef] [PubMed]

31. Gridach, M. Character-level neural network for biomedical named entity recognition. J. Biomed. Inform.
2017, 70, 85–91. [CrossRef] [PubMed]

32. Wu, M.; Liu, F.; Cohn, T. Evaluating the utility of hand-crafted features in sequence labelling. arXiv 2018,
arXiv:1808.09075.

33. Ghaddar, A.; Langlais, P. Robust lexical features for improved neural network named-entity recognition.
arXiv 2018, arXiv:1806.03489.

34. Le, T.; Burtsev, M. A deep neural network model for the task of Named Entity Recognition. Int. J. Mach.
Learn. Comput. 2019, 9, 8–13.

54

Appl. Sci. 2020, 10, 7557

35. Jie, Z.; Lu, W. Dependency-guided LSTM-CRF for named entity recognition. arXiv 2019, arXiv:1909.10148.
36. Mikolov, T.; Deoras, A.; Povey, D.; Burget, L.; Černockỳ, J. Strategies for training large scale neural

network language models. In Proceedings of the 2011 IEEE Workshop on Automatic Speech Recognition &
Understanding, Waikoloa, HI, USA, 11–15 December 2011; pp. 196–201.

37. Ilić, S.; Marrese-Taylor, E.; Balazs, J.A.; Matsuo, Y. Deep contextualized word representations for detecting
sarcasm and irony. arXiv 2018, arXiv:1809.09795.

38. Dong, G.; Liu, H. Feature Engineering for Machine Learning and Data Analytics; CRC Press: New York, NY,
USA, 2018.

39. Sang, E.F.; De Meulder, F. Introduction to the CoNLL-2003 shared task: Language-independent named entity
recognition. arXiv 2003, arXiv:cs/0306050.

40. Pradhan, S.; Moschitti, A.; Xue, N.; Ng, H.T.; Björkelund, A.; Uryupina, O.; Zhang, Y.; Zhong, Z.
Towards Robust Linguistic Analysis using OntoNotes. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, Sofia, Bulgaria, 8–9 August 2013; Association for Computational
Linguistics: Sofia, Bulgaria, 2013; pp. 143–152.

41. Reimers, N.; Gurevych, I. Optimal hyperparameters for deep lstm-networks for sequence labeling tasks.
arXiv 2017, arXiv:1707.06799.

42. DeLFT. 2018–2020. Available online: https://github.com/kermitt2/delft (accessed on 30 July 2020).
43. Frank, S.L. Strong systematicity in sentence processing by an echo state network. In Proceedings of the

International Conference on Artificial Neural Networks; Berlin/Heidelberg, Germany, 10–14 September
2006; pp. 505–514.

44. Ponomareva, N.; Thelwall, M. Biographies or blenders: Which resource is best for cross-domain sentiment
analysis? In Proceedings of the International Conference on Intelligent Text Processing and Computational
Linguistics, New Delhi, India, 11–17 March 2012; pp. 488–499.

45. Han, K.; Chen, J.; Zhang, H.; Xu, H.; Peng, Y.; Wang, Y.; Ding, N.; Deng, H.; Gao, Y.; Guo, T.; et al. DELTA:
A DEep learning based Language Technology plAtform. arXiv 2019, arXiv:1908.01853.

46. Xia, C.; Zhang, C.; Yang, T.; Li, Y.; Du, N.; Wu, X.; Fan, W.; Ma, F.; Yu, P. Multi-grained named entity
recognition. arXiv 2019, arXiv:1906.08449.

47. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv 2018, arXiv:1810.04805.

48. Luo, Y.; Xiao, F.; Zhao, H. Hierarchical Contextualized Representation for Named Entity Recognition. arXiv
2019, arXiv:1911.02257.

49. Li, X.; Sun, X.; Meng, Y.; Liang, J.; Wu, F.; Li, J. Dice Loss for Data-imbalanced NLP Tasks. arXiv 2019,
arXiv:1911.02855.

50. Baevski, A.; Edunov, S.; Liu, Y.; Zettlemoyer, L.; Auli, M. Cloze-driven pretraining of self-attention networks.
arXiv 2019, arXiv:1903.07785.

51. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

52. Gal, Y.; Ghahramani, Z. A theoretically grounded application of dropout in recurrent neural networks. arXiv
2016, arXiv:1512.05287.

53. Brownlee, J. Machine Learning Mastery with Python: Understand Your Data, Create Accurate Models and
Work Projects End-To-End. 2016. Available online: https://machinelearningmastery.com/machine-learning-
with-python (accessed on 30 July 2020).

54. Brownlee, J. Deep Learning for Natural Language Processing: Develop Deep Learning Models for Your
Natural Language in Python. 2017. Available online: https://machinelearningmastery.com/deep-learning-
for-nlp (accessed on 30 July 2020).

55. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
56. Brownlee, J. Long Short-Term Memory Networks with Python: Develop Sequence Prediction Models with

Deep Learning. 2017. Available online: https://https://machinelearningmastery.com/lstms-with-python
(accessed on 30 July 2020).

57. Cai, L.; Zhou, S.; Yan, X.; Yuan, R. A stacked BiLSTM neural network based on coattention mechanism for
question answering. Comput. Intell. Neurosci. 2019, 2019, 9543490. [CrossRef] [PubMed]

58. Wang, C.; Yang, H.; Meinel, C. Image captioning with deep bidirectional LSTMs and multi-task learning.
ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2018, 14, 1–20. [CrossRef]

55

Appl. Sci. 2020, 10, 7557

59. Liu, T.; Yu, S.; Xu, B.; Yin, H. Recurrent networks with attention and convolutional networks for sentence
representation and classification. Appl. Intell. 2018, 48, 3797–3806. [CrossRef]

60. Bengio, Y. Learning Deep Architectures for AI; Now Publishers Inc.: Boston, MA, USA, 2009.
61. Godin, F.; Dambre, J.; De Neve, W. Improving language modeling using densely connected recurrent neural

networks. arXiv 2017, arXiv:1707.06130.
62. Ding, Z.; Xia, R.; Yu, J.; Li, X.; Yang, J. Densely connected bidirectional lstm with applications to sentence

classification. arXiv 2017, arXiv:1802.00889.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

56

applied
sciences

Article

A Novel Hybrid Model for Cantonese Rumor
Detection on Twitter

Xinyu Chen † , Liang Ke †, Zhipeng Lu †, Hanjian Su † and Haizhou Wang *

College of Cybersecurity, Sichuan University, Chengdu 610064, China; 2017141531040@stu.scu.edu.cn (X.C.);
2017141531066@stu.scu.edu.cn (L.K.); 2017141491001@stu.scu.edu.cn (Z.L.);
2017141531010@stu.scu.edu.cn (H.S.)
* Correspondence: whzh.nc@scu.edu.cn
† These authors contributed equally to this work.

Received: 31 July 2020; Accepted: 26 August 2020; Published: 12 October 2020

Abstract: The development of information technology and mobile Internet has spawned the
prosperity of online social networks. As the world’s largest microblogging platform, Twitter is popular
among people all over the world. However, as the number of users on Twitter increases, rumors have
become a serious problem. Therefore, rumor detection is necessary since it can prevent unverified
information from causing public panic and disrupting social order. Cantonese is a widely used
language in China. However, to the best of our knowledge, little research has been done on Cantonese
rumor detection. In this paper, we propose a novel hybrid model XGA (namely XLNet-based
Bidirectional Gated Recurrent Unit (BiGRU) network with Attention mechanism) for Cantonese
rumor detection on Twitter. Specifically, we take advantage of both semantic and sentiment
features for detection. First of all, XLNet is employed to produce text-based and sentiment-based
embeddings at the character level. Then we perform joint learning of character and word embeddings
to obtain the words’ external contexts and internal structures. In addition, we leverage BiGRU
and the attention mechanism to obtain important semantic features and use the Cantonese rumor
dataset we constructed to train our proposed model. The experimental results show that the XGA
model outperforms the other popular models in Cantonese rumor detection. The research in this
paper provides methods and ideas for future work in Cantonese rumor detection on other social
networking platforms.

Keywords: online social networks; rumor detection; Cantonese; XGA model

1. Introduction

With the rapid development of the Internet, social media have provided a convenient online
platform for users to obtain information, express opinions, and communicate with each other. As one
of the most popular social networks and microblogging platforms, Twitter has attracted more and
more people to publish and share their opinions. As more and more people participate in discussions
about hot topics and exchange their opinions on social networks, many rumors appear on Twitter.
A rumor refers to a story or statement in general circulation without confirmation or certainty as to
facts. Due to the large number of users and easy access to social networks, rumors can spread widely
and quickly on Twitter, causing public panic and disrupting social order, even endangering national
security [1]. Therefore, it is necessary to detect rumors and stop them from spreading widely on
Twitter. There are some fact-checking websites, such as Snopes [2] and PolitiFact [3], that provide
information and reports for rumor analysis and checking. However, these websites rely heavily on
manual labor to track and debunk rumors, and the verified rumors are often limited to specific topics.

57

Appl. Sci. 2020, 10, 7093

In this case, automatic rumor detection methods should be proposed for saving human effort and
debunking rumors more efficiently.

There has been a lot of work related to rumor detection on Twitter concerning English and
Chinese [4–7], but Cantonese rumors are seldomly studied. Cantonese is a branch of Chinese and
it is mostly used in Guangdong Province and Hong Kong in China. Although Cantonese is widely
used in speaking, it is in increasing use for informal communication like in forums or blogs. However,
due to the complexity of Cantonese semantics and the lack of benchmark datasets, Cantonese rumor
detection is a challenging task.

To address the problem of Cantonese rumor detection, we have proposed a novel hybrid model
XGA and conducted experiments to evaluate its performance. The main contributions of this paper are
summarized as follows:

• To cope with the complexity of Cantonese semantics and extract the deep features of Cantonese,
we take both semantic and sentiment features into account for rumor detection. An XLNet model
is used to produce text-based and sentiment-based embeddings. We perform joint learning of
character and word embeddings to better fit in with the structre of Cantonese.

• A novel hybrid model XGA is proposed to improve the performance of Cantonese rumor detection,
which takes advantage of XLNet, BiGRU and the attention mechanism. The Cantonese rumor
dataset we constructed before is used to train our proposed model. The evaluation results
show that XGA significantly outperforms other widely used rumor detection approaches in the
Cantonese rumor detection.

The rest of this paper is organized as follows. Section 2 introduces related work on rumor
detection. Section 3 elaborates the proposed model. Section 4 describes the experimental setup and
gives out evaluation results. Section 5 concludes the research in this paper and discusses future work.

2. Related Work

Currently, most rumor detection methods are supervised. The literature related to rumor detection
has been reviewed by several comprehensive surveys [8–10]. In our work, we briefly review some
significant works based on deep learning methods.

Deep learning has been the most revolutionary development in artificial intelligence, which is
widely used in the field of rumor detection. The two most popular deep learning models are Recurrent
Neural Network (RNN) and Convolutional Neural Network (CNN).

For identifying rumors, Ma et al. [4] utilized RNN to learn continuous representations of microblog
events, which captured the variation of contextual information of relevant posts over time. Then,
in [11], the authors improved this approach by combining the attention mechanism with RNN to focus
on textual features with different attentions. Recently, Ma et al. [12] employed the adversarial learning
method to improve the performance of the rumor classifier, where the discriminator was used as a
classifier and the corresponding generator improved the discriminator by generating conflicting noises.
In addition, a multi-task learning approach was proposed by Kochkina et al. [13] to solve the problem
of rumor classification. To be specific, they implemented a multi-task learning framework with an
LSTM layer shared among all tasks, as well as a number of task-specific layers. In [14], Sumeet et al.
designed a Tree LSTM model for rumor and stance detection that converted the propagation tree into a
binarized constituency tree structure. The model applied convolution units in Tree LSTMs, which were
better at learning patterns in features and employed the multi-task learning to propagate the useful
stance signal up in the tree at the root node. But RNN was not qualified for the early detection of
misinformation and had a bias towards the latest input elements.

So in [15], Yu et al. proposed a method based on CNN to learn key features scattered among
an input sequence and shape high-level interactions among significant features. What’s more,
Qian et al. [16] introduced a Two-Level CNN with User Response Generator (TCNN-URG) where
TCNN captured underlying semantic information at word and sentence levels, and URG generated

58

Appl. Sci. 2020, 10, 7093

user responses to new articles with the assistance of historical user responses. Furthermore, a mixture
of RNNs and CNNs was exploited in recent works. Liu et al. [6] incorporated both RNN and CNN to
get the user features based on time series. In addition, a model of Credible Early Detection (CED) was
presented by Song et al. [17] to detect rumors on social media based on repost information. CNN was
leveraged to obtain feature vectors of original microblogs and repost sequence. Then, the repost
sequence was sent into RNN. What’s more, in [18], the authors proposed a multi-modal network
comprising CNN and Long Short-Term Memory (LSTM) with the attention mechanism. It jointly
learned representations of textual contents and social contexts in rumors. However, these methods
were inefficient to learn the features of the propagation structure, and they ignored the global structural
features of rumor dispersion.

So, to focus on the differences between the characteristics in propagation of real and false
information, Ma et al. [7] proposed models based on top-down and bottom-up tree-structured
Recursive Neural Networks (RvNN), which deeply integrated the structural and textual features
of tweets for detecting rumors at early stages from propagation trees or networks. Based on this,
they designed discriminative attention mechanisms for the RvNN-based models to selectively attend on
the subset of evidential posts during the bottom-up/top-down recursive composition [19]. Moreover,
in [20], the authors built a model based on Bi-Directional Graph Convolutional Network (Bi-GCN)
to explore characteristics by operating on both top-down and bottom-up propagation of rumors.
But these methods only detected rumors based on the meaning of text and ignored the sentiment of it.
In [21], authors designed a hybrid framework to analyze the data from social media based on sentiment
analysis. Inspired by this, we proposed a hybrid model that took both semantic and sentiment features
into account for Cantonese rumor detection.

3. The Proposed Model

In this work, we propose a novel deep neural network-based model XGA to detect Cantonese
rumors on Twitter. The XGA takes advantage of semantic and sentiment features for detection.
To be specific, XLNet is used to produce text-based and sentiment-based embeddings. In addition,
BiGRU and the attention mechanism are involved to extract important semantic features. The structure
of the XGA model is shown in Figure 1.

3.1. Input Layer

In this work, we use the Cantonese Rumor Dataset (CR-Dataset) [22] we constructed before.
It contains 13,000 tweets, including 6377 rumors and 6623 non-rumors. As shown in Input Layer in
Figure 1, the input of the model I = {I1, I2, ..., In} is a pre-processed tweet. Since the maximum length
of a tweet written in Cantonese is 140, the maximum sequence length is set to 140 to cover the input.
Then we use tokens to represent each of the characters in the tweet and feed them into XLNet-Text and
XLNet-Sentiment, respectively.

3.2. Embedding Layer

As shown in Embedding Layer in Figure 1, the model generates text-based and sentiment-based
embeddings to extract the semantic and sentiment features of the tweet. In addition, we combine the
character embeddings produced by XLNet with Cantonese word embeddings to learn the contextual
information and internal structures of the words, so as to make the model more suitable for the
Cantonese rumor detection.

XLNet is a generalized Autoregressive (AR) pre-training method that combines the advantages of
AR and Autoencoder (AE) methods. The architecture of XLNet is developed to work seamlessly with
the AR objective, including integrating Transformer-XL and the design of the two-stream attention
mechanism. Experimental results show that XLNet achieves substantial improvement over previous
pre-training methods on various tasks [23]. In this study, we use XLNet to create embeddings and
pre-train the XLNet-Base [24] which contains 12-layer, 768-hidden, and 12-heads.

59

Appl. Sci. 2020, 10, 7093

n

Figure 1. Structure of the XLNet-based BiGRU network with Attention mechanism (XGA) model.

3.2.1. Text-based Embeddings

Firstly, in order to capture the features of Cantonese, we construct a multi-domain Cantonese
corpus, which includes new articles/blogs, the entities on Encyclopedia of Virtual Communities in
Hong Kong (EVCHK) [25], restaurant reviews, forum threads, etc. Then, XLNet-Base is pre-trained
on the corpus and fine-tuned using our constructed CR-Dataset. Specifically, the tokens of all
the characters in the tweet are fed into the XLNet model and we get 768-dimensional vectors
Ct = {Ct1 , Ct2 , ..., Ctn}, which are the outputs of the last hidden layer. In order to obtain the
words’ external contexts and internal structures, we present an addition operation for semantic
features between Ct = {Ct1 , Ct2 , ..., Ctn} (character embeddings) and Cantonese word embeddings
W = {W1, W2, ..., Wn} that provided by fastText [26]. The n denotes the number of characters
in the tweet. Finally, we take the results of the addition operation as text-based embeddings
Et = {Et1 , Et2 , ..., Etn} and then feed them into the BiGRU model. Et is calculated by

Eti = Cti + Wi, (1)

where Eti represents the text-based embedding of ith character in the tweet, Cti represents the character
embedding of ith character in the tweet, and Wi represents the word embedding of ith character in
the tweet.

60

Appl. Sci. 2020, 10, 7093

3.2.2. Sentiment-based Embeddings

Compared to non-rumors, rumors are more inflammatory and deceptive. Therefore, the sentiment
polarity of most rumors tends to be negative. For example, a rumor on Twitter is that “顏色水根本
唔系水！系化學毒劑，令皮膚很灼熱刺痛！唔好被政府誤導，唔好叫顏色水！請大家以後叫它「化學

毒劑」或「化武車」！化學毒劑傷害民眾，殘留毒物污染社區，已經瘋狂失控！” (Color water is not
water at all! It is a chemical poison that makes the skin very burning and stinging! Don’t be misled by
the government and don’t call it color water! Please call it “chemical toxic agent” or “chemical weapon
vehicle”! This chemical toxic agent hurts people and the residual poisons pollute the community.
It is out of control!). The probability that the sentiment polarity of this rumor to be negative is 73%,
which is given by the sentiment analysis of Baidu AI [27]. Since the text-based embeddings focus on
the semantic features of tweets, it is difficult for them to capture much information about sentiment.
So we propose a model to create sentiment embeddings and extract sentiment features of tweets.

In most cases, supervised machine learning approaches are used to train a sentiment classifier
with labeled data. But in this research, no data annotation indicating the sentiment polarity of tweets
has done on CR-Dataset. Thus, we fine-tune a pre-trained model on a Cantonese dataset with sentiment
polarity to solve this problem.

Similar to the work in Section 3.2.1, we first pre-train the XLNet-Base using a multi-domain
Cantonese corpus. The pre-trained XLNet is then fine-tuned by the openrice-senti dataset [28], which
contains random reviews of restaurants from OpenRice Hong Kong Section [29]. Then the tweet in
CR-Dataset is fed into the pre-trained XLNet. We add the outputs of the last hidden layer, which are
the character embeddings Cs = {Cs1 , Cs2 , ..., Csn}, with the word embeddings W = {W1, W2, ..., Wn}.
The sentiment-based embeddings Es = {Es1 , Es2 , ..., Esn} are calculated by

Esi = Csi + Wi, (2)

where Esi represents the sentiment-based embedding of ith character in the tweet, Csi represents the
character embedding of ith character in the tweet, and Wi represents the word embedding of ith
character in the tweet.

3.2.3. Joint Learning of Character and Word Embeddings

Most word embedding methods take a word as a basic unit and learn embeddings according to
words’ external contexts, ignoring the internal structures of words. However, in Cantonese, a word
is usually composed of several characters and contains rich internal information [30]. The semantic
meaning of a word is also related to the meanings of its composing characters. In some cases, a single
character in Cantonese is very ambiguous and may be composed of multiple words. If a character
is used as a semantic unit, it cannot accurately represent the current contextual information. As an
example, “鬼唔知咩” means that who doesn’t know. “鬼” has different meanings in Cantonese.
For instance, it can be used as a metaphor for people with various characteristics. But in this word,
it serves as the subject as an interrogative pronoun. This example shows that we cannot use a single
character as a semantic unit. So, in this part, we introduce internal character information into word
embedding methods to alleviate excessive reliance on external information.

3.3. Feature Extraction

In this work, we take the text-based embeddings as the inputs of BiGRU. Then, the attention
mechanism is used to focus on the important words in the tweet and output a 150-dimensional vector
which indicates the semantic features of the tweet. In addition, we perform the max-pooling step on
the sentiment-based embeddings to map the features to a lower-dimensional space. Then, we make
use of the Back Propagation (BP) neural network to learn the implicit relationship between features
and obtain a 50-dimensional vector which indicates the sentiment features of the tweet.

61

Appl. Sci. 2020, 10, 7093

3.3.1. Bidirectional Gated Recurrent Unit

Gated Recurrent Units (GRU) model consists of two gates: update gate and reset gate. The update
gate controls whether the status of GRU is updated or how many units are updated. The reset gate
determines how much previous information should be ignored. We use BiGRU for two reasons.
One is to solve the problem of vanishing gradients. The other is to obtain contextual information.

Specifically, the model feeds the text-based embeddings Et = {Et1 , Et2 , ..., Etn} into the BiGRU
network to learn the contextual features of the tweet. The output H = {h1, h2, ..., hk} is a
150-dimensional vector. k is the number of hidden units in the network. H = {h1, h2, ..., hk} is
given by

~hi = GRU(Eti ,~hi−1), (3)
←
h i = GRU(Eti ,

←
h i+1), (4)

hi =~hi ⊕
←
h i, (5)

where~hi−1 is the state generated in the previous step of GRU,
←
h i+1 is the state generated in the next

step of GRU, and hi is the output of BiGRU. The ⊕ denotes the concatenation of two vectors.

3.3.2. Attention

Our model uses the attention mechanism to automatically discover the typical words in the rumor
detection and capture the most important semantic information from each tweet. In addition, the input
sentence in this research is long. If all the semantic information is represented by an intermediate vector,
it would lead to the loss of many details. So it is necessary to introduce the attention mechanism which
can give higher weights to the words related to rumors and improve the accuracy of rumor detection.

Specifically, we use the attention mechanism to assign different weights to the outputs of BiGRU
H = {h1, h2, ..., hk} according to their importance. The 150-dimensional vector Ft that indicates
semantic features is described by

Ft = Attention(H). (6)

3.3.3. Back Propagation Neural Network

We add a max pooling layer to obtain new sentiment-based embeddings with smaller dimensions,
which are then mapped to a 50-dimensional vector through a BP neural network.

Pooling is a technique of reducing spatial dimensions. It can reduce the number of parameters
to learn and the amount of computation performed in the network. The max pooling layer in our
model is to take the maximum value of each dimension of the vectors [7]. To be specific, the size of
sentiment-based embeddings Es is turned from 13, 000× 140× 768 to 13, 000× 768 through the max
pooling layer. The output of the max pooling layer E

′
s is described by

E
′
s = Pooling(Es). (7)

Then, E
′
s is mapped to a 50-dimensional vector Fs through the fully connected layer of the BP

neural network. The Fs indicates the sentiment features of the tweet, which is given by

Fs = f (ws · E
′
s + bs), (8)

where f () is the activation function, ws is a weight matrix in the trained detection model, and bs is the
bias term.

62

Appl. Sci. 2020, 10, 7093

3.4. Feature Concatenation

The semantic and sentiment features of the tweet are distinguishing in the task of rumor detection.
So we concatenate Ft and Fs to obtain a 200-dimensional vector F, which indicates all the features
extracted for Cantonese rumor detection. F is given by

F = Ft ⊕ Fs. (9)

3.5. Output Layer

The vector F is passed into the Sigmoid function to obtain the result of classification, which is
given by

p = Sigmoid(F), (10)

y =

{
0, p ∈ [0, 0.5)
1, otherwise

, (11)

where p is the possibility that the tweet is a rumor, and p ∈ [0, 1]. The y is the classification result.
In this binary classification task, y = 1 indicates a rumor, and y = 0 indicates a non-rumor.

4. Experiments and Evaluation

In this section, we evaluate the performance of the proposed XGA model based on CR-Dataset.
All experiments were undertaken on a workstation with two Tesla-V100 32G GPUs. In the experiments,
we held out 80% of CR-Dataset for training, 10% for validation, and 10% for testing. The results shown
in this section are the average value of each experiment that was repeated ten times independently.

Four metrics are used to evaluate the performance of the embedding layer and the proposed
detection model, including Accuracy, Precision, Recall, and F-score. The True Positive (TP) is the number
of rumors that are correctly detected, the False Negative (FN) is the number of rumors that are incorrectly
detected, the False Positive (FP) is the number of non-rumors that are incorrectly detected, and the
True Negative (TN) is the number of non-rumors that are correctly detected. Accuracy, Precision, Recall,
and F-score can be computed by

Accuracy =
TP + TN

TP + TN + FP + FN
, (12)

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

F− score =
2× Precision× Recall

Precision + Recall
. (15)

In addition, we plot a Receiver Operating Characteristic (ROC) curve based on True Positive Rate
(TPR) and False Positive Rate (FPR) and compute the Area Under Curve (AUC) score to evaluate the
performance of our proposed model. TPR and FPR can be computed by

TPR =
TP

TP + FN
, (16)

FPR =
FP

FP + TN
. (17)

4.1. Evaluation of the Embeddings

We use XLNet as the embedding extractor in the XGA model. To evaluate the effectiveness of
XLNet, we compare it with the other five popular word embedding models. Note that the structures of

63

Appl. Sci. 2020, 10, 7093

the other parts in the model remain unchanged. The performance of models with different embeddings
is shown in Table 1.

Table 1. The performance of models with different embeddings.

Embedding Accuracy Precision Recall F-Score

BERT 0.9119 0.9099 0.9102 0.9101
GPT 0.9099 0.9092 0.9063 0.9076

ELMo 0.9048 0.9048 0.9046 0.9047
fastText 0.9030 0.9031 0.9028 0.9029

Word2vec 0.9079 0.9056 0.9063 0.9060
XLNet 0.9200 0.9224 0.9142 0.9176

In this study, we have pre-trained and fine-tuned the XLNet model on Cantonese data to achieve a
better performance of rumor detection. The XLNet used in this experiment is the original XLNet-Base
for the fairness of the experiment. As shown in Table 1, XLNet outperforms Bidirectional Encoder
Representations from Transformers (BERT) [31], Generative Pre-Training (GPT), and Embeddings from
Language Models (ELMo) [32]. This is because XLNet leverages the best of both AR language modeling
and AE while avoiding their limitations. Specifically, since an AR language model (e.g., ELMo, GPT)
is only trained to encode a uni-directional context, it is not effective at modeling deep bidirectional
contexts, which are often required in the downstream language understanding tasks. In comparison,
an AE pre-training method (e.g., BERT) is allowed to utilize bidirectional contexts. However, the artificial
symbols like [MASK] used by BERT during pre-training are absent from real data at fine-tuning,
resulting in a pretrain-finetune discrepancy [23]. In addition, XLNet is better than fastText and
Word2vec. This is because XLNet generates contextualized embeddings, which are computed for a
word based on its context by pre-trained models, while fastText and Word2vec produce embeddings
for each word regardless of its context. Therefore, XLNet achieves the best result among all the models.

4.2. Ablation Study

There are two kinds of features used in our model for rumor detection, i.e., semantic features and
sentiment features. In addition, the attention mechanism and word embeddings play an important
role in the model. To evaluate the contributions of these significant components to the model, we take
turns to exclude them from the model:

• XGA-SF-1: Only the semantic features are used.
• XGA-SF-2: Only the sentiment features are used.
• XG: The attention mechanism is removed.
• XGA-CE: The word embeddings are removed and only the character embeddings are used.
• XGA: Full model.

The results of the ablation study are shown in Table 2. We can see that both semantic and
sentiment features improve the performance of the model. Moreover, semantic features are more
effective than sentiment features in the detection. This is because the sentiment polarity of some
tweets is unclear. In addition, since the attention mechanism can give greater weights to typical rumor
vocabulary, XGA performs better than XG. What’s more, we compare XGA-CE with XGA and find
that performing joint learning of character and word embeddings is useful because it can obtain both
the words’ external contexts and internal information. In conclusion, XGA outperforms all the other
models, and all of these components make great contributions to the detection.

64

Appl. Sci. 2020, 10, 7093

Table 2. The results of ablation study.

Model Accuracy Precision Recall F-Score

XGA-SF-1 0.9175 0.9176 0.9178 0.9175
XGA-SF-2 0.8794 0.8820 0.8784 0.8789

XG 0.9157 0.9158 0.9161 0.9157
XGA-CE 0.9030 0.9031 0.9028 0.9029

XGA 0.9281 0.9259 0.9276 0.9267

4.3. Evaluation of the XGA Model

We compare the proposed XGA model with other widely used approaches in rumor detection,
including TextCNN, RNN, LSTM, att-BiGRU (BiGRU with the attention mechanism), and BERT.
We use Accuracy, Precision, Recall, and F-score as the evaluation metrics of the detection approaches.
The performance of different deep learning approaches and XGA is shown in Figure 2. The ROC curve
is shown in Figure 3.

TextCNN RNN LSTM att-BiGRU BERT XGA

Approach

0.7

0.75

0.8

0.85

0.9

0.95

1

M
e
tr

ic

Accuracy Precision Recall F-score

Figure 2. The performance of different deep learning approaches and XGA.

0 0.1 0.2 0.3 0.4 0.5 0.6

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

XGA (AUC = 0.9779)

BERT (AUC = 0.9702)

att-BiGRU (AUC = 0.9675)

TextCNN (AUC = 0.9665)

LSTM (AUC = 0.9502)

RNN (AUC = 0.9370)

Figure 3. The ROC curve.

65

Appl. Sci. 2020, 10, 7093

As shown in Figure 2, we can see that the XGA model achieves the F-score of 0.9267 on CR-Dataset
and shows the best result in all the four metrics. This is because XLNet uses Transformer-XL as
its feature extractor, which has better performance than CNN (used by TextCNN), RNN (used by
RNN, LSTM, and att-BiGRU), and Transformer [33] (used by BERT) on semantic feature extraction.
In addition, the AUC score shown in Figure 3 proves that att-BiGRU performs better than TextCNN,
RNN, and LSTM, which indicates that BiGRU and the attention mechanism have an advantage of
extracting features, and that is why we use them in the XGA model to create semantic feature vectors
for Cantonese tweets. What’s more, the XGA model outperforms att-BiGRU by a margin of 2%,
which proves the effectiveness of XLNet and sentiment views involved in our model. In conclusion,
compared with other deep learning approaches, the proposed XGA model using XLNet, BiGRU,
and the attention mechanism is more effective in Cantonese rumor detection. In the experiment,
among the test set which includes 1300 tweets, non-rumors are misclassified 55 times, and rumors
41 times. In some cases, a non-rumor is posted to refute a certain rumor and often contains reasoning or
turns. For example, a non-rumor may first explain an existing rumor, and use examples or reasoning to
prove that the rumor is false in the subsequent text. So, the final detection result of the non-rumor will
be affected by the rumor with negative emotional tendencies. That is the reason why some non-rumors
cannot be detected correctly. Moreover, the sentiment polarity of some rumors is unclear, which results
in the misclassification of rumors. In the future, to reduce the misclassification, we can optimize our
model to make it learn the mutual negation between paragraphs in the tweet.

5. Conclusions and Future Work

In this paper, we have proposed a novel hybrid model called XGA for detecting Cantonese rumors,
which takes advantage of XLNet, BiGRU, and the attention mechanism. To be specific, we extracted
both semantic and sentiment features for the detection. The XLNet, which was pre-trained and
fine-tuned on Cantonese data, was used to produce text-based and sentiment-based embeddings.
In addition, we combined the character embeddings extracted by XLNet with Cantonese word
embeddings to learn the words’ external contexts and internal structures. Furthermore, we made
use of BiGRU and the attention mechanism to obtain the important semantic features, which were
then concatenated with sentiment features to get the final classification results. We performed
two experiments to evaluate the effectiveness of our model and came to the following conclusions:
the XLNet performed better than other word embedding models, and the XGA model we designed
achieved the F-score of 0.9267 in Cantonese rumor detection and outperformed other widely used
detection models in all metrics.

In the future, we plan to conduct further research on Cantonese word segmentation to improve
the performance of word embeddings. In addition, we will try to discover more effective features for
the Cantonese rumor detection and make use of them in our model.

Author Contributions: Conceptualization, H.W., X.C., L.K., H.S. and Z.L.; methodology, H.W., X.C., and L.K.;
validation, X.C. and L.K.; formal analysis, X.C. and L.K.; investigation, X.C. and L.K.; data curation, X.C., L.K.,
Z.L. and H.S.; writing—original draft preparation, X.C. and L.K.; writing—review and editing, X.C., L.K., H.W.,
Z.L. and H.S.; supervision, H.W.; project administration, X.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was completed under the guidance of Haizhou Wang of Sichuan University, China.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Liang, G.; He, W.; Xu, C.; Chen, L.; Zeng, J. Rumor identification in microblogging systems based on users’
behavior. IEEE Trans. Comput. Soc. Syst. 2015, 2, 99–108. [CrossRef]

2. Snopes. Available online: https://www.snopes.com (accessed on 28 August 2020).
3. PolitiFact. Available online: https://www.politifact.com (accessed on 28 August 2020).

66

Appl. Sci. 2020, 10, 7093

4. Ma, J.; Gao, W.; Mitra, P.; Kwon, S.; Jansen, B.J.; Wong, K.F.; Cha, M. Detecting rumors from microblogs
with recurrent neural networks. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence, New York, NY, USA, 9–15 July 2016; pp. 3818–3824.

5. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. CSI:
A hybrid deep model for fake news detection. In Proceedings of the 26th 2017 ACM on Conference on
Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 797–806.

6. Liu, Y.; Wu, Y.F.B. Early detection of fake news on social media through propagation path classification
with recurrent and convolutional networks. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 354–361.

7. Ma, J.; Gao, W.; Wong, K.F. Rumor Detection on Twitter with Tree-structured Recursive Neural Networks.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne,
Australia, 15–20 July 2018; pp. 1980–1989.

8. Bondielli, A.; Marcelloni, F. A survey on fake news and rumour detection techniques. Inf. Sci. 2019,
497, 38–55. [CrossRef]

9. Meel, P.; Vishwakarma, D.K. Fake news, rumor, information pollution in social media and web:
A contemporary survey of state-of-the-arts, challenges and opportunities. Expert Syst. Appl. 2020, 153, 112986.
[CrossRef]

10. Zubiaga, A.; Aker, A.; Bontcheva, K.; Liakata, M.; Procter, R. Detection and resolution of rumours in social
media: A survey. ACM Comput. Surv. 2018, 51, 1–36. [CrossRef]

11. Chen, T.; Li, X.; Yin, H.; Zhang, J. Call attention to rumors: Deep attention based recurrent neural networks
for early rumor detection. In Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and
Data Mining, Melbourne, Australia, 3–6 June 2018; pp. 40–52.

12. Ma, J.; Gao, W.; Wong, K.F. Detect rumors on twitter by promoting information campaigns with generative
adversarial learning. In Proceedings of the 28th The World Wide Web Conference, San Francisco, CA, USA,
13–17 May 2019; pp. 3049–3055.

13. Kochkina, E.; Liakata, M.; Zubiaga, A. All-in-one: Multi-task Learning for Rumour Verification.
In Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA,
20–26 August 2018; pp. 3402–3413.

14. Kumar, S.; Carley, K.M. Tree lstms with convolution units to predict stance and rumor veracity in social
media conversations. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 5047–5058.

15. Yu, F.; Liu, Q.; Wu, S.; Wang, L.; Tan, T. A convolutional approach for misinformation identification.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia,
19–25 August 2017; pp. 3901–3907.

16. Qian, F.; Gong, C.; Sharma, K.; Liu, Y. Neural user response generator: Fake news detection with collective
user intelligence. In Proceedings of the 27th International Joint Conference on Artificial Intelligence,
Stockholm, Sweden, 13–19 July 2018; pp. 3834–3840.

17. Song, C.; Yang, C.; Chen, H.; Tu, C.; Liu, Z.; Sun, M. CED: Credible early detection of social media rumors.
IEEE Trans. Knowl. Data Eng. 2019, 1. [CrossRef]

18. Jin, Z.; Cao, J.; Guo, H.; Zhang, Y.; Luo, J. Multimodal fusion with recurrent neural networks for rumor
detection on microblogs. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain
View, CA, USA, 23–27 October 2017; pp. 795–816.

19. Ma, J.; Gao, W.; Joty, S.; Wong, K.F. An Attention-based Rumor Detection Model with Tree-structured
Recursive Neural Networks. ACM Trans. Intell. Syst. Technol. 2020, 11, 42. [CrossRef]

20. Bian, T.; Xiao, X.; Xu, T.; Zhao, P.; Huang, W.; Rong, Y.; Huang, J. Rumor Detection on Social Media with
Bi-Directional Graph Convolutional Networks. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence, New York, NY, USA, 7–12 February 2020; pp. 549–556.

21. Dashtipour, K.; Gogate, M.; Li, J.; Jiang, F.; Kong, B.; Hussain, A. A hybrid Persian sentiment analysis
framework: Integrating dependency grammar based rules and deep neural networks. Neurocomputing 2020,
380, 1–10. [CrossRef]

22. Cantonese Rumor Dataset. Available online: https://github.com/cxyccc/CR-Dataset (accessed on
28 August 2020).

67

Appl. Sci. 2020, 10, 7093

23. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive
pretraining for language understanding. In Proceedings of the 33rd Conference on Neural Information
Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 5753–5763.

24. XLNet-Base. Available online: https://github.com/zihangdai/xlnet (accessed on 28 August 2020).
25. Encyclopedia of Virtual Communities in Hong Kong. Available online: https://evchk.wikia.org/zh/wiki/

(accessed on 28 August 2020).
26. FastText Pre-trained Vectors. Available online: https://fasttext.cc/docs/en/pretrained-vectors (accessed on

28 August 2020).
27. Sentiment Analysis of Baidu AI. Available online: https://ai.baidu.com/tech/nlp_apply/sentiment_classify

(accessed on 28 August 2020).
28. Openrice-senti Dataset. Available online: https://github.com/toastynews/openrice-senti (accessed on

28 August 2020).
29. OpenRice Hong Kong Section. Available online: https://www.openrice.com/zh/hongkong (accessed on

28 August 2020).
30. Chen, X.; Xu, L.; Liu, Z.; Sun, M.; Luan, H. Joint learning of character and word embeddings. In Proceedings

of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015;
pp. 1236–1242.

31. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. In Proceedings of the 17th Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA,
2–7 June 2019; pp. 4171–4186.

32. Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized
Word Representations. In Proceedings of the 16th Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA,
1–6 June 2018; pp. 2227–2237.

33. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention
is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach,
CA, USA, 19 May 2017; pp. 5998–6008.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

68

applied
sciences

Article

Ontology Fixing by Using Software
Engineering Technology

Gabriela R. Roldan-Molina 1, Jose R. Mendez 1,2,3,* , Iryna Yevseyeva 4 and
Vitor Basto-Fernandes 5

1 Department of Computer Science, University of Vigo, ESEI-Escuela Superior de Ingeniería Informática,
Edificio Politécnico, Campus Universitario As Lagoas s/n, 32004 Ourense, Spain; groldan@uvigo.es

2 CINBIO-Biomedical Research Centre, University of Vigo, Campus Universitario Lagoas-Marcosende,
36310 Vigo, Spain

3 SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO,
36312 Vigo, Spain

4 Cyber Technology Institute, School of Computer Science and Informatics, Faculty of Computing, Engineering
& Media, De Montfort University, Gateway House, The Gateway, Leicester LE1 9BH, UK; iryna@dmu.ac.uk

5 Instituto Universitário de Lisboa (ISCTE-IUL), University Institute of Lisbon, ISTAR-IUL,
Av. das Forças Armadas, 1649-026 Lisboa, PT, Portugal; vitor.basto.fernandes@iscte-iul.pt

* Correspondence: moncho.mendez@uvigo.es; Tel.: +34-988-387-015

Received: 31 July 2020; Accepted: 9 September 2020; Published: 11 September 2020

Abstract: This paper presents OntologyFixer, a web-based tool that supports a methodology to build,
assess, and improve the quality of ontology web language (OWL) ontologies. Using our software,
knowledge engineers are able to fix low-quality OWL ontologies (such as those created from natural
language documents using ontology learning processes). The fixing process is guided by a set of
metrics and fixing mechanisms provided by the tool, and executed primarily through automated
changes (inspired by quick fix actions used in the software engineering domain). To evaluate the
quality, the tool supports numerical and graphical quality assessments, focusing on ontology content
and structure attributes. This tool follows principles, and provides features, typical of scientific
software, including user parameter requests, logging, multithreading execution, and experiment
repeatability, among others. OntologyFixer architecture takes advantage of model view controller
(MVC), strategy, template, and factory design patterns; and decouples graphical user interfaces
(GUI) from ontology quality metrics, ontology fixing, and REST (REpresentational State Transfer)
API (Application Programming Interface) components (used for pitfall identification, and ontology
evaluation). We also separate part of the OntologyFixer functionality into a new package called
OntoMetrics, which focuses on the identification of symptoms and the evaluation of the quality of
ontologies. Finally, OntologyFixer provides mechanisms to easily develop and integrate new quick
fix methods.

Keywords: ontologies; fixing ontologies; quick fix; quality metrics

1. Introduction and Motivation

Ontologies are knowledge representations, in which concepts and categories of a certain domain
are stored together with their properties and the relations between them. Currently, ontologies are
used to represent knowledge from a large number of domains in order to solve different problems
and improve the experience of users in different contexts. For example, in the Semantic Web, they are
used to describe terms, retrieve information, and interconnect web services. Due to the increasing
use of ontologies, a large number of models and languages have been introduced to manage them,
including resource description framework (RDF) [1], resource description framework schema (RDFS) [2],

69

Appl. Sci. 2020, 10, 6328

and ontology web language (OWL) [3], among others. However, it is necessary to be able to evaluate
the quality of the creation of these ontologies in order to guarantee good performance, and take
advantage of the benefits they offer. Currently, ontologies facilitate aspects such as communication,
interoperability, and automatic reasoning [4–7]. Ontologies allow us to represent and share knowledge
using a common vocabulary, and to exchange data between different systems and contexts [8].

Furthermore, ontologies are very useful to facilitate automatic reasoning. On the basis of
inferencing, a reasoning engine can use the ontology data (categories, concepts, relations, and properties)
to reach conclusions. On the other hand, the use of ontologies allows knowledge engineers to organize
and structure the information so that software agents can interpret their meaning, and, consequently,
search and integrate data much better. Using the knowledge stored in ontologies, applications
can automatically extract data from web pages, process them, draw conclusions, make decisions,
and negotiate with other agents or people [9,10].

A significant number of ontologies are manually generated or created by taking advantage of
applications, and implementing the extraction of information from natural language text [11]. The use
of these tools in conjunction with the natural inconsistencies of human languages can lead to the
appearance of errors, inconsistencies, or bad designs that require further debugging or repair processes.
The process of detecting and fixing errors or bad design symptoms is a difficult task and should be
done as an iterative process, where each step should include the evaluation of the state of the ontology,
selecting the most appropriate change for the current situation and evaluating whether the changes
made are appropriate.

The detection of ontology errors, inconsistencies, and flaws can be made using tools such as
OOPS! [12], a web application that detects bad practices when modelling ontologies. This tool provides
mechanisms for automatically detecting potential errors, called pitfalls, in order to help developers
during the validation process. However, some pitfalls are detected semi-automatically, such as “Creating
synonyms as classes” or “Creating unconnected ontology elements”, among others [13]. Each pitfall
provides the following information: title, description, elements affected, and importance level. A recent
study [14] showed a method for finding errors in apparently coherent and consistent ontologies,
but these may contain contradictions in the axiom statements and provide incorrect information.
The approach uses knowledge from other knowledge bases that debug ontology modelling errors.
Moreover, some frameworks have been introduced for measuring the quality of ontologies, most notably
OquaRE [15], which implements several quality metrics based on the SQuaRE (system and software
quality requirements and evaluation) [16] software quality standard. This framework provides a guide
to evaluate the quality of ontologies in diverse dimensions, such as reliability, operability, maintainability,
compatibility, transferability, and functional adequacy. Although some tools for error detection and/or
quality evaluation of ontologies are available, the process of aiding the debugging/fixing of ontologies
has not been addressed in a global form. Particularly, we found that these tools could be combined to
create a tool to fix errors, and improve the global quality of ontologies. Additionally, taking advantage
of quick fix schemes used in integrated development environments (IDEs), the fixing tool could suggest
appropriate solutions to address each detected trouble, to simplify the fixing process. In this study,
we developed a software tool implementing the proposed solution for ontology fixing, detailing its
architecture, functionality, and usage. The software integrates a wide amount of software technology
that has been successfully adapted to the context of knowledge engineering (OQuaRE, pitfalls, quick
fix schemes, etc.). The result is the creation of the OntologyFixer tool, which can be successfully
downloaded from GitHUB (Available at https://github.com/gabyluna/OntologyFixer) and is available
on http://ontologyfixer.online.

The remainder of the paper is structured as follows: Section 2 presents the state of the art in
the context of repairing ontologies. Section 3 presents the architecture of the developed software in
detail. Section 4 shows the main features of the generated software. Finally, Section 5 shows the main
conclusions, and future developments to complement this work.

70

Appl. Sci. 2020, 10, 6328

2. State of the Art

Given the increased use among software and knowledge engineering communities of ontologies
to represent knowledge, their quality and correctness have become two key aspects to consider. Quality
evaluation assists in finding design defects, inconsistencies, errors, or limitations in stored knowledge.
Moreover, the correction of an ontology implies the detection of a problem, the exploration of possible
ways to fix it, and the application of the selected correction. This section compiles previous studies
that have introduced algorithms and techniques to implement these functionalities, which are key to
the implementation of OntologyFixer.

The evaluation of ontology quality has been addressed in previous resources including (ordered
from most to least recent): (i) OquaRE [15], (ii) Foval [17], (iii) OntoQA [18], and (iv) OntoClean [19].

OQuaRE is a method of evaluating the quality of ontologies that emerged as an adaptation of
the SQuaRE (system and software quality requirements and evaluation) standard (ISO/IEC 25000)
to the context of knowledge engineering, comprising evaluation support, evaluation processes,
and quality metrics. OQuaRE uses different metrics to assess the quality of the ontologies with regard
to different dimensions, including reliability, operability, maintainability, compatibility, transferability,
and functional adequacy. Most quality sub-characteristics suggested by SQuaRE (system and software
quality requirements and evaluation) [20] were also adopted in OQuaRE. Additionally, OQuaRE
includes the structural characteristic, which is important in evaluating ontologies.

FOval provides an evaluation model to select ontologies that best fit the user needs (requirements),
while OntoQA is a suite of metrics that evaluates the quality of ontologies in different dimensions,
including schemas, knowledge base, and class metrics. Finally, OntoClean is a methodology for
the validation of the ontological adequacy and logical consistency of taxonomic relationships.
All of these works provide interesting measures to assess different aspects of quality including
(i) lexical, (ii) hierarchy, (iii) other semantic relationships, (iv) context, (v) syntactic, and (vi) structure,
as recommended in a previous study [21].

As in the case of OQuaRE, software engineering domain technology has inspired some proposals
that aid in the detection of the potential troubles of ontologies. Particularly, pitfall, code smells,
or simply smells, were popular forms of symptoms of software design troubles [22]. A recent study [12]
introduced how the same concept (pitfall) can be applied to the context of knowledge engineering,
to address the detection of design troubles. Given the success of the application of these software
engineering technologies, we suggest the possibility of using quick-fix schemes to improve some
knowledge engineering design processes. Introducing these concepts, in the context of ontologies,
and combining them with current technology will lead to new, and better, ontology fixing tools
(OntologyFixer).

The next section describes how quick-fix support has been included in our proposal, to be used as
an aid in fixing and improving the quality of ontologies.

3. System Overview

OntologyFixer diagnoses the quality of the ontologies, and also allows for the detection and
correction of errors. For the diagnosis, OntologyFixer applies different metrics that allow measuring
different aspects of the quality of ontologies, such as structure, logic, and semantics, among others.
Table 1 shows the measures we have selected for the evaluation of ontologies.

71

Appl. Sci. 2020, 10, 6328

Table 1. Quality Metrics.

Metric Description

ANOnto Measures annotation richness
CBOnto Determines coupling between Objects
CROnto Assess Class Richness
INROnto Number of relationships per class

LCOMOnto Measures the lack of Cohesion in Methods
NOMOnto Finds the number of properties per class

RCOnto Instances distributed across classes
RFCOnto Determines the response measure for a class
RROnto Assess relationship richness

Most of the selected metrics are available in the OQuaRE framework except for RCOnto, which is
provided by the OntoQA framework. Assuming the selected measures should be maximized,
we represent them in a radar chart, and compute the area of the polygon formed using the measures
evaluated as vertices. OntologyFixer supports the loading of an additional ontology (as a reference),
to compare its quality with that of the ontology being corrected. Figure 1 shows an example of a
diagnosis generated by the application.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 16

RFCOnto Determines the response measure for a class
RROnto Assess relationship richness

Most of the selected metrics are available in the OQuaRE framework except for RCOnto, which
is provided by the OntoQA framework. Assuming the selected measures should be maximized, we
represent them in a radar chart, and compute the area of the polygon formed using the measures
evaluated as vertices. OntologyFixer supports the loading of an additional ontology (as a reference),
to compare its quality with that of the ontology being corrected. Figure 1 shows an example of a
diagnosis generated by the application.

(a) (b)

Figure 1. Ontology quality assessment result: (a) Quality comparison with a reference ontology, (b)
Quality evaluation of an ontology.

As shown in Figure 1, the application can also compare a model ontology with the ontology to
be evaluated (Figure 1a), allowing the user to better visualize the weaknesses of the ontology that is
being fixed. However, it is also possible to visualize the diagnosis of the quality of the ontology
without the need to load a reference ontology (Figure 1b).

Additionally, OntologyFixer integrated OOPS! [12], to detect errors or pitfalls. OOPS! is a
framework that detects pitfalls, and prioritizes them according to their importance. OntologyFixer
implements a quick fix strategy to automate the correction of ontologies. Using OOPS!, OntologyFixer
is able to provide complete information about the errors of an ontology.

Currently, only two quick fixes were implemented in the first version of the application: (i)
RM_INVOLVED_ELEMENTS and (ii) RM_SIMILAR_ELEMENTS. The former removes some (or all)
ontology elements (classes, object properties, or data properties) that are causing troubles. The latter
searches and removes similar elements caused by typos (and the use of ontology automatic
generation tools) that are causing a pitfall in the ontology. To carry out this process, we applied the
Levenshtein algorithm [23] to find the lexical distance between two words. This quick fix removes
elements having a distance lower than, or equal to, 1. For example, when comparing the elements
“action” and “actions”, which could cause circularity in the ontology, the distance calculated between
them is 1; that is, there is a similarity between the terms so that when the RM_SIMILAR_ELEMENTS
quick fix is applied, one of the elements is removed from the ontology in conjunction with the axioms
related to it.

When the available quick fixes are not adequate, OntologyFixer allows downloading of the
current status of the ontology for manual editing. This allows users to modify the ontology using
their favourite ontology editor (e.g., Protégé), and to then upload the resulting ontology again.

Figure 1. Ontology quality assessment result: (a) Quality comparison with a reference ontology,
(b) Quality evaluation of an ontology.

As shown in Figure 1, the application can also compare a model ontology with the ontology to be
evaluated (Figure 1a), allowing the user to better visualize the weaknesses of the ontology that is being
fixed. However, it is also possible to visualize the diagnosis of the quality of the ontology without the
need to load a reference ontology (Figure 1b).

Additionally, OntologyFixer integrated OOPS! [12], to detect errors or pitfalls. OOPS! is a
framework that detects pitfalls, and prioritizes them according to their importance. OntologyFixer
implements a quick fix strategy to automate the correction of ontologies. Using OOPS!, OntologyFixer
is able to provide complete information about the errors of an ontology.

Currently, only two quick fixes were implemented in the first version of the application:
(i) RM_INVOLVED_ELEMENTS and (ii) RM_SIMILAR_ELEMENTS. The former removes some
(or all) ontology elements (classes, object properties, or data properties) that are causing troubles.
The latter searches and removes similar elements caused by typos (and the use of ontology automatic
generation tools) that are causing a pitfall in the ontology. To carry out this process, we applied the
Levenshtein algorithm [23] to find the lexical distance between two words. This quick fix removes
elements having a distance lower than, or equal to, 1. For example, when comparing the elements

72

Appl. Sci. 2020, 10, 6328

“action” and “actions”, which could cause circularity in the ontology, the distance calculated between
them is 1; that is, there is a similarity between the terms so that when the RM_SIMILAR_ELEMENTS
quick fix is applied, one of the elements is removed from the ontology in conjunction with the axioms
related to it.

When the available quick fixes are not adequate, OntologyFixer allows downloading of the
current status of the ontology for manual editing. This allows users to modify the ontology using their
favourite ontology editor (e.g., Protégé), and to then upload the resulting ontology again.

Another functionality of OntologyFixer is the possibility of performing a rollback of the ontology;
that is, the application has a history of versions with the possibility of returning to an earlier version,
which allows undoing changes, with respect to a quick fix previously applied. To this end, OntologyFixer
stores ontology snapshots before applying any operation (quick fix or manual edition). Nevertheless,
before applying a quick fix, OntologyFixer shows a detailed description of the actions that are going to
be performed to ensure the user agrees with the action.

One notable advantage of OntologyFixer is the evaluation and correction of errors without needing
to use multiple applications. Another advantage, is the possibility of integrating new quality metrics
and quick fix schemes, due to the scalable and decoupled nature of the tool’s design.

The following subsections provide a brief description of the architecture of the application
(Section 3.1), the integration with frameworks and APIs (Section 3.2), and the metrics adopted for the
research project (Section 3.3).

3.1. General Architecture

OntologyFixer was designed following a web-based client/server scheme. This section shows
the design of the architecture in detail as well as the main features of the application. Figure 2
shows the interaction of web browsers (clients) with OntologyFixer, which was deployed in a J2EE
Application Server.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 16

Another functionality of OntologyFixer is the possibility of performing a rollback of the
ontology; that is, the application has a history of versions with the possibility of returning to an earlier
version, which allows undoing changes, with respect to a quick fix previously applied. To this end,
OntologyFixer stores ontology snapshots before applying any operation (quick fix or manual
edition). Nevertheless, before applying a quick fix, OntologyFixer shows a detailed description of the
actions that are going to be performed to ensure the user agrees with the action.

One notable advantage of OntologyFixer is the evaluation and correction of errors without
needing to use multiple applications. Another advantage, is the possibility of integrating new quality
metrics and quick fix schemes, due to the scalable and decoupled nature of the tool’s design.

The following subsections provide a brief description of the architecture of the application
(Section 3.1), the integration with frameworks and APIs (Section 3.2), and the metrics adopted for the
research project (Section 3.3).

3.1. General Architecture

OntologyFixer was designed following a web-based client/server scheme. This section shows
the design of the architecture in detail as well as the main features of the application. Figure 2 shows
the interaction of web browsers (clients) with OntologyFixer, which was deployed in a J2EE
Application Server.

Figure 2. Application architecture.

As shown in Figure 2, user interaction takes place through a web browser, sending HTTPS
requests to a Glassfish application server running in the cloud. Persistence is supported by a Spring
ORM (object relational mapping) implementation that transparently manages the information stored
in a MySQL database engine. Additionally, the external RESTful Web Service (OOPS!) [24] API is
used for the evaluation and detection of errors in the ontologies. Figure 3 shows a set of technologies
separated into different layers, in order to delegate specific functions for each of them, promoting the
software development single responsibility principle [25]. Each of the technologies was specially
selected for the development of OntologyFixer, for its ease of integration, robustness, and availability
as open source software.

Figure 2. Application architecture.

As shown in Figure 2, user interaction takes place through a web browser, sending HTTPS requests
to a Glassfish application server running in the cloud. Persistence is supported by a Spring ORM
(object relational mapping) implementation that transparently manages the information stored in a
MySQL database engine. Additionally, the external RESTful Web Service (OOPS!) [24] API is used for
the evaluation and detection of errors in the ontologies. Figure 3 shows a set of technologies separated
into different layers, in order to delegate specific functions for each of them, promoting the software
development single responsibility principle [25]. Each of the technologies was specially selected for

73

Appl. Sci. 2020, 10, 6328

the development of OntologyFixer, for its ease of integration, robustness, and availability as open
source software.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 16

Figure 3. Layered architecture.

As shown in Figure 3, OntologyFixer implements a multiple-layer design in which the
functionalities defined in the lower layers provide access to resources or services to the upper layers.
The main advantage of this type of architecture is the ability to build scalable applications that favor
the integration of other components, software maintenance, and evolution. The presentation layer
uses web technologies such as JSF (Java Server Faces) version 2.2 [26]. JSF is a user-interface
framework implementing the MVC (model view controller) architecture pattern, which facilitates the
development and maintenance of web applications. Additionally, PrimeFaces framework version 5.3,
which provides open source visual components for JSF 2.2 and Bootstrap [27], was adopted to
provide a responsive interface design that can be easily used in a wide range of computing devices.
Finally, for ontology visualization, we took advantage of the WebVOWL (Web-based Visualization
of Ontologies) (Available at http://vowl.visualdataweb.org/webvowl.html) external web application.

The business logic layer was implemented using Spring framework because of its relevant
features (i.e., “Dependency Injection” or “Inversion of Control”). Currently, Spring provides a wide
variety of functionalities in the form of modules, including Spring Security, Spring AOP, Spring JPA,
etc.

Spring JPA and Hibernate were used for the development of the persistence and access layer of
OntologyFixer. These frameworks allowed the transparent access to the data stored in a MySQL
database. The next subsection introduces the main design patterns that were used in the development
of OntologyFixer and its main purpose.

Figure 3. Layered architecture.

As shown in Figure 3, OntologyFixer implements a multiple-layer design in which the
functionalities defined in the lower layers provide access to resources or services to the upper
layers. The main advantage of this type of architecture is the ability to build scalable applications that
favor the integration of other components, software maintenance, and evolution. The presentation
layer uses web technologies such as JSF (Java Server Faces) version 2.2 [26]. JSF is a user-interface
framework implementing the MVC (model view controller) architecture pattern, which facilitates the
development and maintenance of web applications. Additionally, PrimeFaces framework version
5.3, which provides open source visual components for JSF 2.2 and Bootstrap [27], was adopted to
provide a responsive interface design that can be easily used in a wide range of computing devices.
Finally, for ontology visualization, we took advantage of the WebVOWL (Web-based Visualization of
Ontologies) (Available at http://vowl.visualdataweb.org/webvowl.html) external web application.

The business logic layer was implemented using Spring framework because of its relevant features
(i.e., “Dependency Injection” or “Inversion of Control”). Currently, Spring provides a wide variety of
functionalities in the form of modules, including Spring Security, Spring AOP, Spring JPA, etc.

74

Appl. Sci. 2020, 10, 6328

Spring JPA and Hibernate were used for the development of the persistence and access layer
of OntologyFixer. These frameworks allowed the transparent access to the data stored in a MySQL
database. The next subsection introduces the main design patterns that were used in the development
of OntologyFixer and its main purpose.

3.2. Software Design Details

The MVC [28] design pattern was adopted for the software development, as it presents well-known
robust properties and software quality attributes. MVC separates business logic with respect to the
data (model) and the user interface (view/GUI). It allows independent changes in each component
without affecting the others. In other words, changes in the graphical user interface (GUI) do not affect
data handling, and data can be reorganized without changing the user interface. Figure 4 shows the
components that are part of the model.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 16

3.2. Software Design Details

The MVC [28] design pattern was adopted for the software development, as it presents well-
known robust properties and software quality attributes. MVC separates business logic with respect
to the data (model) and the user interface (view/GUI). It allows independent changes in each
component without affecting the others. In other words, changes in the graphical user interface (GUI)
do not affect data handling, and data can be reorganized without changing the user interface. Figure
4 shows the components that are part of the model.

Figure 4. Model View Controller design.

In the Views component shown in Figure 4 we can see the user interface for each functionality.
The controller uses Beans (one per view) that are responsible for making the connection between the
view and the application logic. Finally, the model component uses Spring JPA to access the data layer,
i.e., to make the call to the persistence layer that communicates with the MySQL database. To do so,
Spring uses the DAO (data access object) objects [29], which are design patterns, in which a data
access object provides an abstract interface to some type of database or other persistence technology.
DAOs provide some specific data operations without exposing database data model details (i.e.,
create, update, or delete).

Additionally, OntologyFixer integrates an external OntoMetrics API, developed in the context
of this research for computing the different metrics used to evaluate the quality of the ontologies.
This API was integrated as a Maven dependency in the OntologyFixer project. OntoMetrics were
structured into three modules: basic metrics, quality metrics, and symptom identification methods.

The development of this API involved the use of some design patterns that facilitate software
comprehension, maintenance, and evolution. The behavior pattern strategy [30] was used to define a
family of algorithms, each of them in separate classes, making their objects interchangeable. Figure 5
shows the design of the OntoMetrics API package.

Figure 4. Model View Controller design.

In the Views component shown in Figure 4 we can see the user interface for each functionality.
The controller uses Beans (one per view) that are responsible for making the connection between the
view and the application logic. Finally, the model component uses Spring JPA to access the data layer,
i.e., to make the call to the persistence layer that communicates with the MySQL database. To do
so, Spring uses the DAO (data access object) objects [29], which are design patterns, in which a data
access object provides an abstract interface to some type of database or other persistence technology.
DAOs provide some specific data operations without exposing database data model details (i.e., create,
update, or delete).

Additionally, OntologyFixer integrates an external OntoMetrics API, developed in the context of
this research for computing the different metrics used to evaluate the quality of the ontologies. This
API was integrated as a Maven dependency in the OntologyFixer project. OntoMetrics were structured
into three modules: basic metrics, quality metrics, and symptom identification methods.

The development of this API involved the use of some design patterns that facilitate software
comprehension, maintenance, and evolution. The behavior pattern strategy [30] was used to define a
family of algorithms, each of them in separate classes, making their objects interchangeable. Figure 5
shows the design of the OntoMetrics API package.

75

Appl. Sci. 2020, 10, 6328Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 16

Figure 5. OntoMetrics design.

As shown in Figure 5, the implementation of the package includes a Strategy interface,
implemented by strategy classes for basic and quality metrics. Moreover, the Template pattern [30]
was used to implement smell symptom identification. Finally, we used the Factory design pattern
[30] for creating objects, without having to specify their exact class. This Creational pattern avoids
close coupling between the creator and concrete products. In addition, it complies with the principle
of sole responsibility because it can move the product creation code to a specific place (the Factory
class) in the program, making the code easier to maintain. In addition, by combining the selected
patterns, the use of the metrics is clearly easier for developers. Figure 6 shows different examples of
using the metrics included in the library.

Figure 5. OntoMetrics design.

As shown in Figure 5, the implementation of the package includes a Strategy interface, implemented
by strategy classes for basic and quality metrics. Moreover, the Template pattern [30] was used to
implement smell symptom identification. Finally, we used the Factory design pattern [30] for creating
objects, without having to specify their exact class. This Creational pattern avoids close coupling
between the creator and concrete products. In addition, it complies with the principle of sole
responsibility because it can move the product creation code to a specific place (the Factory class) in the
program, making the code easier to maintain. In addition, by combining the selected patterns, the use
of the metrics is clearly easier for developers. Figure 6 shows different examples of using the metrics
included in the library.

76

Appl. Sci. 2020, 10, 6328
Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 16

Figure 6. Example of using different kinds of metrics from the package OntoMetrics.

Another of the main features of OntologyFixer is the possibility of applying quick fixes. The
application was designed with an architecture that allows for the easy addition of new quick fixes, to
improve ontologies. Figure 7 shows the QuickFixInterface interface, which specifies the methods that
should be implemented to develop additional quick fixes.

Figure 7. QuickFix interface.

In order to develop a new quick fix scheme, three methods should be implemented. The first one
(validateOntology) determines which nodes of an ontology that have a problem can be fixed by
applying the quick fix. Moreover, getListChangesToAppy finds the list of changes that are required
for fixing certain nodes of the ontology using the quick fix. Finally, the getResult method allows the
quick fix to be applied to certain nodes of an ontology. Currently, two quick fix methods
(RemoveInvolvedElements and RemoveSimilarElements) are supported by OntologyFixer.
However, the inclusion of new quick fix schemes can be easily added to the design by implementing
the QuickFixInterface and registering the implementation in the QuickFixFactory class. The
simplification and extensible design of the architecture ensures new quick solutions can be easily
added to OntologyFixer.

The next subsection compiles the metrics that were included in the OntoMetrics package.

Figure 6. Example of using different kinds of metrics from the package OntoMetrics.

Another of the main features of OntologyFixer is the possibility of applying quick fixes.
The application was designed with an architecture that allows for the easy addition of new quick fixes,
to improve ontologies. Figure 7 shows the QuickFixInterface interface, which specifies the methods
that should be implemented to develop additional quick fixes.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 16

Figure 6. Example of using different kinds of metrics from the package OntoMetrics.

Another of the main features of OntologyFixer is the possibility of applying quick fixes. The
application was designed with an architecture that allows for the easy addition of new quick fixes, to
improve ontologies. Figure 7 shows the QuickFixInterface interface, which specifies the methods that
should be implemented to develop additional quick fixes.

Figure 7. QuickFix interface.

In order to develop a new quick fix scheme, three methods should be implemented. The first one
(validateOntology) determines which nodes of an ontology that have a problem can be fixed by
applying the quick fix. Moreover, getListChangesToAppy finds the list of changes that are required
for fixing certain nodes of the ontology using the quick fix. Finally, the getResult method allows the
quick fix to be applied to certain nodes of an ontology. Currently, two quick fix methods
(RemoveInvolvedElements and RemoveSimilarElements) are supported by OntologyFixer.
However, the inclusion of new quick fix schemes can be easily added to the design by implementing
the QuickFixInterface and registering the implementation in the QuickFixFactory class. The
simplification and extensible design of the architecture ensures new quick solutions can be easily
added to OntologyFixer.

The next subsection compiles the metrics that were included in the OntoMetrics package.

Figure 7. QuickFix interface.

In order to develop a new quick fix scheme, three methods should be implemented. The first one
(validateOntology) determines which nodes of an ontology that have a problem can be fixed by applying
the quick fix. Moreover, getListChangesToAppy finds the list of changes that are required for fixing
certain nodes of the ontology using the quick fix. Finally, the getResult method allows the quick fix to be
applied to certain nodes of an ontology. Currently, two quick fix methods (RemoveInvolvedElements
and RemoveSimilarElements) are supported by OntologyFixer. However, the inclusion of new quick
fix schemes can be easily added to the design by implementing the QuickFixInterface and registering
the implementation in the QuickFixFactory class. The simplification and extensible design of the
architecture ensures new quick solutions can be easily added to OntologyFixer.

The next subsection compiles the metrics that were included in the OntoMetrics package.

77

Appl. Sci. 2020, 10, 6328

3.3. Implemented Metrics and Symptoms Detection

This subsection provides a complete list of the smell symptoms detection mechanisms
and the metrics (basic and quality) implemented by OntoMetrics API, as well as some of the
implementation details.

To compute basic metrics, we used the OWL API [31], which manages the ontologies and provides
components for the manipulation of ontological structures in different formats, such as OWL and RDF
(resource description framework) among others. In addition, we also used reasoning engines. Eight
basic metrics were implemented. Table 2 describes each of the basic metrics.

Table 2. Basic metrics implemented in OntologyFixer.

Metric Description

Number of annotations Indicates the total entries that exist in the ontology.
Number of classes Finds how many classes exist in ontology.

Number of classes with individuals Shows the number of classes that have at least one individual.
Number of instances Computes the number of instances of the ontology.
Number of properties Indicates the number of properties contained in the ontology.

Number of relations of Thing Stands for the relationships that exist towards “Thing”.
Number of subclasses Counts the total subclasses that exist in the ontology.

Number of superclasses Identifies the number of superclasses that exist in the ontology.

The implementation of quality metrics was based on the OQuaRE (framework described in
Section 2), which provides a guide to evaluate the quality of ontologies in diverse dimensions, such as
reliability, operability, maintainability, compatibility, transferability, and functional adequacy. Nine
quality metrics (see Table 1) were implemented to assess the quality of ontologies by using some
basic metrics.

Finally, for identifying smell symptoms, the web service that provides OOPS! [24] was used.
The service takes a file with an OWL extension of the ontology as input, evaluates it, and returns a list
of smell errors, with additional fields to identify the level of criticality it represents in the ontology.
The smell symptoms described in Table 3 were implemented for the project.

Table 3. Smell Symptoms (“ONTOLOGICAL ERRORS—Inconsistency, Incompleteness, and
Redundancy” 2008).

Smell Symptom Description

CircularitySymptoms Detects cycles between two (or more) classes

IncompletenessSymptoms The symptom entails not representing all the knowledge that
could be included in the ontology.

PartitionSymptoms
Detects symptoms when disjoint decomposition exists. There are

three types: Common Instances and Classes in Disjoint,
Decomposition and Partitions.

SemanticSymptoms The symptom entails problems in the logic between elements
and relationships of the ontology.

The next subsection presents the outcomes that emerged from the development of the tool.

3.4. Lessons Learned

This subsection identifies the main outcomes achieved by carrying out this study. The most
important conclusions are related to the successful testing and validation of software engineering
approaches, methods, and technologies, adapted and applied to knowledge engineering problems.
After their incorporation into the domain, the identification of bad design symptoms (smells), or the
use of quality metrics (OOPS!), we were able to successfully adapt quick fix mechanisms, included in
popular integrated development environments (IDEs), to improve the quality of the ontologies.

78

Appl. Sci. 2020, 10, 6328

Additionally, the combination of quality metrics, errors or smell symptoms detection, and quick
fix for developing an ontology fixing tool seems to be very reliable, as demonstrated in this study.
However, at the moment there is no quick fix tools for ontology-based knowledge representation
available, and we have to implement them following strategies similar to those used by software IDEs.

As a part of this study, we provided a collection of ontology quality metrics, the error detection,
and the identification of bad design symptoms for the OntoMetrics library. This facilitates the use
of these metrics, by providing a uniform way to access these functionalities. For the evaluation of
quality, OntoMetrics takes advantage of the metrics defined in the OQUARE framework. In the
case of symptom detection, OOPS! was integrated into our OntoMetrics library, to take advantage of
DrontoAPI to detect smells in analyzed ontologies. DrontoAPI functionalities are provided through a
web service which incorporates methods to find the elements of the ontology that are affected by any
type of symptom (circularity, incompleteness, semantics).

Finally, from a more technical perspective, we also employed different tools including Spring,
an open source application development framework for the Java platform. Spring is based on different
design patterns including DAO (data access object). This pattern is used to encapsulate data access
logic, thus avoiding mixing it with business logic. Spring also provides a consistent approach to
data access, either JDBC (Java DataBase Connectivity), or through some data access frameworks,
such as Hibernate, iBatis, JDO, or TopLink, among others, and allows changing the framework used
for persistence without affecting the code already written. For the construction of OntologyFixer
we used PrimeFaces, a library of visual components for Java Server Faces (JSF) providing a large
number of elements, to make the development of the presentation layer easier. A notable advantage
of using this library is the Ajax support for updating the components and achieving a better user
experience. Furthermore, to enhance the interface, we used Bootstrap, which embeds technologies
such as JavaScript and CSS (Cascading Style Sheets) in order to help developers quickly and efficiently
design a responsive website, and to make the design correct and usable both for conventional and
tactile devices (responsive web design). The combination of these tools makes the application more
robust and scalable over time, with the possibility of adding or changing new technologies that fit the
needs of the project.

The functionality of the resulting application is shown in the next section. Particularly, it highlights
some interface details and operations by using some screenshots and providing a detailed description
of the inner operation of OntologyFixer.

4. System Use

OntologyFixer was designed with a user friendly and easy to use graphical interface. It allows a
user to (i) upload an ontology, (ii) evaluate ontology quality, (iii) apply fixes to the ontology, and (iv) use
the changes history to restore a previous state when needed. An ontology can be evaluated by applying
two different strategies: performing a metrics-based quality evaluation, and finding possible troubles
(errors or symptoms of bad design) that may lead to ontology inconsistencies. Figure 8 shows the
interface details for both functionalities.

As shown in Figure 8a, the evaluation of the quality of Ontologies is made in the form of a radial
chart combining different quality measures. The quality is shown in a dashboard which includes
“Base Metrics” (located at the top of the figure), which include the number of classes, subclasses,
properties, instances, and annotations of the ontology to evaluate and compare with the reference
ontology (optional). The bottom of the dashboard contains a quality evaluation chart that perceives
the quality of the ontology at a simple glance. The chart represents RROnto, INROnto, ANNOnto,
CROnto, NOMOnto, RFCOnto, CBOOnto, LCOMOnto, and RCOnto scores (see Table 2), achieved by
the ontology. Additionally, the area of the figure described by the representation of these measurements
(that is also shown) could be used to assess the global quality of the ontology. Finally, the knowledge
engineer can graphically visualize the ontology itself if desired.

79

Appl. Sci. 2020, 10, 6328
Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 16

(a)

(b)

Figure 8. Different forms of ontology diagnosis implemented in OntologyFixer. (a) Quality
evaluation. (b) Errors and smells detection.

As shown in Figure 8a, the evaluation of the quality of Ontologies is made in the form of a radial
chart combining different quality measures. The quality is shown in a dashboard which includes
“Base Metrics” (located at the top of the figure), which include the number of classes, subclasses,
properties, instances, and annotations of the ontology to evaluate and compare with the reference
ontology (optional). The bottom of the dashboard contains a quality evaluation chart that perceives
the quality of the ontology at a simple glance. The chart represents RROnto, INROnto, ANNOnto,
CROnto, NOMOnto, RFCOnto, CBOOnto, LCOMOnto, and RCOnto scores (see Table 2), achieved
by the ontology. Additionally, the area of the figure described by the representation of these
measurements (that is also shown) could be used to assess the global quality of the ontology. Finally,
the knowledge engineer can graphically visualize the ontology itself if desired.

As shown in Figure 8b, the features allowing the detection of errors and smells enable the
knowledge engineer to identify and address specific troubles found in the ontology. The results table
included in Figure 8b details the trouble found in the ontology (circularity, incompleteness, and
semantics), a brief description for it, and its level of importance. The level of importance (which is
assessed by using the OOPS! framework) is highlighted using different background colors.
Specifically, critical errors are highlighted in red, important troubles are marked in orange, and
finally, minor issues are represented with a yellow background.

Figure 8. Different forms of ontology diagnosis implemented in OntologyFixer. (a) Quality evaluation.
(b) Errors and smells detection.

As shown in Figure 8b, the features allowing the detection of errors and smells enable the
knowledge engineer to identify and address specific troubles found in the ontology. The results
table included in Figure 8b details the trouble found in the ontology (circularity, incompleteness,
and semantics), a brief description for it, and its level of importance. The level of importance (which is
assessed by using the OOPS! framework) is highlighted using different background colors. Specifically,
critical errors are highlighted in red, important troubles are marked in orange, and finally, minor issues
are represented with a yellow background.

Once the main weaknesses and errors of the ontology have been identified, OntologyFixer
supports the application of a quick-fix and the upload of a new version of the ontology. Additionally,
OntologyFixer stores snapshots of the ontology each time a modification is made; this ensures that an
older version of the ontology can be restored. These snapshots are stored in a local database but also
in a Git repository (if configured) to ensure the versions of the ontology are shared according to the
preferences of the user. Figure 9 shows capabilities of the application for fixing ontologies.

80

Appl. Sci. 2020, 10, 6328

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 16

Once the main weaknesses and errors of the ontology have been identified, OntologyFixer
supports the application of a quick-fix and the upload of a new version of the ontology. Additionally,
OntologyFixer stores snapshots of the ontology each time a modification is made; this ensures that
an older version of the ontology can be restored. These snapshots are stored in a local database but
also in a Git repository (if configured) to ensure the versions of the ontology are shared according to
the preferences of the user. Figure 9 shows capabilities of the application for fixing ontologies.

(a)

(b)

Figure 9. Fixing errors in ontologies. (a) Applying a quick fix. (b) History of modifications.

Figure 9a shows the “Apply Quick Fix” button, which allows the execution of a quick fix to those
elements of the ontology (instances, classes, relationships) affected by some type of issue. This button
is used to compute the list of all affected items for an error. As shown in Figure 9a, OntologyFixer
users can select one or more elements found, and apply one of the quick fixes described in Section 3.
One of the functionalities of OntologyFixer is the possibility of simulating the results of applying a
quick fix, which is useful for deciding whether to apply a certain solution. The simulation result
shows a value for the current area and the new area calculated after applying the quick fix in the
ontology (Figure 9a). Finally, the “Apply Quick Fix” button shown in Figure 9a will generate a new
version of the ontology and store it as a new version in history.

As described in Section 3, one of the advantages of the application is the possibility of
performing a rollback in the ontology editions (Figure 9b). The button included in the “Status”
column can be used to return to an earlier version of the ontology. This action allows us to activate
an older version of the ontology, re-analyze, and fix it by applying a new quick fix. In addition, the
rollback function included in OntologyFixer offers the possibility of downloading each of the
versions to which changes were applied (button located at “Download” column). The next section
presents the main conclusions extracted from this work and outlines future research directions.

Figure 9. Fixing errors in ontologies. (a) Applying a quick fix. (b) History of modifications.

Figure 9a shows the “Apply Quick Fix” button, which allows the execution of a quick fix to those
elements of the ontology (instances, classes, relationships) affected by some type of issue. This button
is used to compute the list of all affected items for an error. As shown in Figure 9a, OntologyFixer
users can select one or more elements found, and apply one of the quick fixes described in Section 3.
One of the functionalities of OntologyFixer is the possibility of simulating the results of applying a
quick fix, which is useful for deciding whether to apply a certain solution. The simulation result shows
a value for the current area and the new area calculated after applying the quick fix in the ontology
(Figure 9a). Finally, the “Apply Quick Fix” button shown in Figure 9a will generate a new version of
the ontology and store it as a new version in history.

As described in Section 3, one of the advantages of the application is the possibility of performing
a rollback in the ontology editions (Figure 9b). The button included in the “Status” column can be
used to return to an earlier version of the ontology. This action allows us to activate an older version
of the ontology, re-analyze, and fix it by applying a new quick fix. In addition, the rollback function
included in OntologyFixer offers the possibility of downloading each of the versions to which changes
were applied (button located at “Download” column). The next section presents the main conclusions
extracted from this work and outlines future research directions.

5. Conclusions and Future Work

This work introduces OntologyFixer, a tool for assisting users in improving the quality of ontologies
and fixing their troubles, by using software engineering inspired techniques. The functionality of
OntologyFixer was achieved by combining some recently introduced techniques that are inspired by
software engineering (e.g., quality evaluation frameworks, such as OQUARE, or smell symptoms
detection, such as OOPS!), and others that are being introduced and used for the first time in this
study (quick fix for ontologies). OntologyFixer combines 17 measures to assess the quality of an

81

Appl. Sci. 2020, 10, 6328

ontology and supports the detection of four types of bad design symptoms (smells). This group of
functionalities was encapsulated into an external library (OntoMetrics) to standardize their invocation.
Additionally, the application was developed by incorporating recent and innovative frameworks
(Spring, PrimeFaces, Bootstrap) to ensure robustness, usability, and ease of maintenance.

The use of quick fix technology, extracted from popular IDEs for developing software, provides
an easy to use and customizable mechanism to fix ontologies more easily. Particularly, the application
of quick fix methods implies developing several methods that (i) determine which issues can be fixed
by using the quick fix, (ii) provide a list of changes that will be made through applying the quick fix,
and (iii) apply the changes. OntologyFixer functionalities were integrated into a graphical interface
that allows the user to identify those elements that present a symptom, also allowing one of the quick
solutions to be applied to one or more elements of the ontology that presents problems. One of the
more noteworthy advantages of the proposal is the possibility for the user to simulate the application
of a quick fix in order to determine whether the result is favorable, before applying it permanently.
However, after applying a quick solution there is the possibility of consulting/downloading/restoring
the different earlier versions generated by OntologyFixer.

OntologyFixer also defines a graphical method to represent the quality of an ontology (Figure 8a),
ensuring the user can get an overview of its quality at a glance. Additionally, the application supports
the detection of errors and smell symptoms that will guide the application of quick fixes. Finally,
the application of quick fixes can be rolled back if the ontology does not achieve the desired level of
quality (Figure 9b).

The number of implemented OntologyFixer quick fixes is expected to be developed as future
work in a short period of time.

Additionally, we believe that the tool could benefit from the use of multi-objective optimization
algorithms to implement a semi-automatic ontology fixing scheme. OntologyFixer multi-objective
optimization features will provide support to address the improvement of multiple ontology quality
metrics simultaneously, by searching and identifying the optimal subset of quick fix actions to be
applied to the ontology, and the optimal order of their application.

Although quality improvements of the ontology by the means of automatic and optimal fixing
decisions reduce the effort required by the knowledge engineer, the automatic decisions might favor
some quality attributes that do not correspond to the knowledge engineer’s preferences. Therefore,
the optimization process must consider the benefits and costs of the automatic decision, i.e., decrease
the efforts of the knowledge engineer by an automatic decision that generally improves the ontology
quality, or forward a diverse subset of optimal alternatives for the knowledge engineer to select,
according to his/her preferences.

The set of actions to be considered by the optimization process are dependent on the detected
pitfalls, e.g., annotation pitfalls that refer to the lack of information in the ontology can be fixed
by identifying the classes of greatest relevance in the ontology, and by asking the user to add the
comments or annotations that are pertinent to improve the understanding of the ontology and its
elements. Reasoning pitfalls may include relations incorrectly defined as inverse, which can be solved
by checking that they have a domain and range. If this were not the case, the tool could suggest
possible options for domains and ranges or suggest removing them. The OntologyFixer optimization
process will identify an optimal sequence of actions (quick fixes such as RM_INVOLVED_ELEMENTS
and/or RM_SIMILAR_ELEMENTS) to improve the ontology and will present alternative sequences
of actions (with the corresponding ontology quality attributes impact) to apply the one that best fits
the knowledge engineer’s preferences. The number of decisions to be forwarded to the knowledge
engineer must also be considered as criteria to be minimized in the optimization process.

82

Appl. Sci. 2020, 10, 6328

Author Contributions: Conceptualization, G.R.R.-M., J.R.M. and V.B.-F.; methodology, G.R.R.-M. and V.B.-F.;
software, G.R.R.-M.; validation, I.Y.; formal analysis, I.Y. and V.B.-F.; investigation, G.R.R.-M., J.R.M., I.Y. and V.B.-F.;
resources, G.R.R.-M., J.R.M. and V.B.-F.; data curation, G.R.R.-M. and V.B.-F.; writing—original draft preparation,
G.R.R.-M., J.R.M. and V.B.-F.; writing—review and editing, J.R.M., I.Y. and V.B.-F.; visualization, G.R.R.-M., J.R.M.,
I.Y. and V.B.-F.; supervision, J.R.M. and V.B.-F.; project administration, J.R.M. and V.B.-F.; funding acquisition,
J.R.M. and V.B.-F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Spanish Ministry of Economy, Industry and Competitiveness
(SMEIC), State Research Agency (SRA) and the European Regional Development Fund (ERDF) under the project
Semantic Knowledge Integration for Content-Based Spam Filtering, grant number TIN2017-84658-C2-1-R”.
This research was funded by FCT—Fundação para a Ciência e a Tecnologia, I.P., grant numbers UIDB/04466/2020
and UIDP/04466/2020.

Acknowledgments: SING group thanks CITI (Centro de Investigación, Transferencia e Innovación) from University
of Vigo for hosting its IT infrastructure.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. RDF Working Group RDF—Semantic Web Standards. Available online: https://www.w3.org/RDF/ (accessed
on 26 March 2020).

2. RDF Working Group RDFS—Semantic Web Standards. Available online: https://www.w3.org/2001/sw/wiki/
RDFS (accessed on 26 March 2020).

3. OWL Working Group OWL—Semantic Web Standards. Available online: https://www.w3.org/2001/sw/wiki/
OWL (accessed on 26 March 2020).

4. Köhler, S.; Bauer, S.; Mungall, C.J.; Carletti, G.; Smith, C.L.; Schofield, P.; Gkoutos, G.V.; Robinson, P.N.
Improving ontologies by automatic reasoning and evaluation of logical definitions. BMC Bioinform. 2011, 12,
418. [CrossRef] [PubMed]

5. Ali, N.; Hong, J.-E. Failure Detection and Prevention for Cyber-Physical Systems Using Ontology-Based
Knowledge Base. Computers 2018, 7, 68. [CrossRef]

6. Munir, K.; Sheraz Anjum, M. The use of ontologies for effective knowledge modelling and information
retrieval. Appl. Comput. Inform. 2018, 14, 116–126. [CrossRef]

7. Arch-int, N.; Arch-int, S. Semantic Ontology Mapping for Interoperability of Learning Resource Systems
using a rule-based reasoning approach. Expert Syst. Appl. 2013, 40, 7428–7443. [CrossRef]

8. Zhang, J.; Zhao, W.; Xie, G.; Chen, H. Ontology- Based Knowledge Management System and Application.
Procedia Eng. 2011, 15, 1021–1029. [CrossRef]

9. Uschold, M.; Gruninger, M. Ontologies: Principles, methods and applications. Knowl. Eng. Rev. 1996, 11,
93–136. [CrossRef]

10. Gruber, T.R. A translation approach to portable ontology specifications. Knowl. Acquis. 1993, 5, 199–220.
[CrossRef]

11. Storey, V.C.; Chiang, R.; Chen, G.L. Ontology Creation: Extraction of Domain Knowledge from Web
Documents. In Proceedings of the 2005 24th Conference on Conceptual Modelling, Klagenfurt, Austria,
24–28 October 2005; pp. 256–269.

12. Poveda-Villalón, M.; Gómez-Pérez, A.; Suárez-Figueroa, M.C. OOPS! (OntOlogy Pitfall Scanner!). Int. J.
Semant. Web Inf. Syst. 2014, 10, 7–34. [CrossRef]

13. Poveda-Villalón, M. OOPS!—OntOlogy Pitfall Scanner!—Pitfall Catalogue. Available online: http://oops.
linkeddata.es/catalogue.jsp (accessed on 26 March 2020).

14. Teymourlouie, M.; Zaeri, A.; Nematbakhsh, M.; Thimm, M.; Staab, S. Detecting hidden errors in an ontology
using contextual knowledge. Expert Syst. Appl. 2018, 95, 312–323. [CrossRef]

15. Duque-Ramos, A.; Fernández-Breis, J.T.; Iniesta, M.; Dumontier, M.; Egaña Aranguren, M.; Schulz, S.;
Aussenac-Gilles, N.; Stevens, R. Evaluation of the OQuaRE framework for ontology quality. Expert Syst. Appl.
2013, 40, 2696–2703. [CrossRef]

16. Bøegh, J. A New Standard for Quality Requirements. IEEE Softw. 2008, 25, 57–63. [CrossRef]
17. Bachir Bouiadjra, A.; Benslimane, S.-M. FOEval: Full ontology evaluation. In Proceedings of the 2011 7th

International Conference on Natural Language Processing and Knowledge Engineering, Tokushima, Japan,
27–29 November 2011; IEEE: Piscataway, NJ, USA; pp. 464–468.

83

Appl. Sci. 2020, 10, 6328

18. Tartir, S.; Arpinar, I.B. Ontology Evaluation and Ranking using OntoQA. In Proceedings of the International
Conference on Semantic Computing (ICSC) 2007, Irvine, CA, USA, 17–19 September 2007; IEEE: Piscataway,
NJ, USA; pp. 185–192.

19. Guarino, N.; Welty, C.A. An Overview of OntoClean. In Handbook on Ontologies; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 201–220.

20. International Organization for Standardization Systems and Software Engineering—Systems and Software
Quality Requirements and Evaluation (SQuaRE)—Guide to SQuaRE 2014. Available online: https://www.iso.
org/standard/64764.html (accessed on 26 March 2020).

21. Brank, J.; Grobelnik, M.; Mladenić, D. A Survey of Ontology Evaluation Techniques. In Procroceedings of the
8th International Multi-Conference Information Society, Ljubljana, Slovenia, 17 October 2005; pp. 166–169.

22. Tufano, M.; Palomba, F.; Bavota, G.; Oliveto, R.; Di Penta, M.; De Lucia, A.; Poshyvanyk, D. When and Why
Your Code Starts to Smell Bad. In Proceedings of the 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Florence, Italy, 16–24 May 2015; IEEE: Piscataway, NJ, USA; pp. 403–414.

23. Haldar, R.; Mukhopadhyay, D. Levenshtein Distance Technique in Dictionary Lookup Methods: An Improved
Approach. arXiv 2011, arXiv:1101.1232.

24. Poveda, M.; Delgado García, M.Á. OOPS!—OntOtology Pitfall Scanner! RESTFul Web Service 2013. Available
online: http://oops.linkeddata.es/webservice.html (accessed on 26 March 2020).

25. Martin, R.C. Agile Software Development, Principles, Patterns, and Practices; Prentice Hall: Upper Saddle River,
NJ, USA, 2003; ISBN 978-0135974445.

26. JSR-314 (JSF 2.0) Expert Group JavaServer Faces.org 2004. Available online: https://jcp.org/en/jsr/detail?id=314
(accessed on 26 March 2020).

27. GrayGrids Inc. Gentelella—Free Bootstrap Admin Template 2019. Available online: https://graygrids.com/

templates/gentelella-free-bootstrap-admin-template/ (accessed on 26 March 2020).
28. Grove, R.F.; Ozkan, E. THE MVC-WEB DESIGN PATTERN. In Proceedings of the 7th International Conference

on Web Information Systems and Technologies, SciTePress—Science and and Technology Publications,
Setúbal (Portugal), Noordwijkerhout, The Netherlands, 6–9 May 2011; pp. 127–130.

29. Baeldung SRL The DAO Pattern in Java 2020. Available online: https://www.baeldung.com/java-dao-pattern
(accessed on 26 March 2020).

30. Edwin, N.M. Software Frameworks, Architectural and Design Patterns. J. Softw. Eng. Appl. 2014, 07, 670–678.
[CrossRef]

31. Horridge, M.; Bechhofer, S. The OWL API: A Java API for OWL Ontologies. Semant. Web 2011, 2, 11–21.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

84

applied
sciences

Article

A Domain-Independent Classification Model for
Sentiment Analysis Using Neural Models

Nour Jnoub 1,*, Fadi Al Machot 2 and Wolfgang Klas 1

1 Faculty of Computer Science, University of Vienna, 1040 Vienna, Austria; wolfgang.klas@univie.ac.at
2 Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany; falmachot@fz-Borstel.de
* Correspondence: nour.jnoub@univie.ac.at

Received: 31 July 2020; Accepted: 28 August 2020; Published: 8 September 2020

Abstract: Most people nowadays depend on the Web as a primary source of information. Statistical
studies show that young people obtain information mainly from Facebook, Twitter, and other social
media platforms. By relying on these data, people may risk drawing the incorrect conclusions when
reading the news or planning to buy a product. Therefore, systems that can detect and classify
sentiments and assist users in finding the correct information on the Web is highly needed in order to
prevent Web surfers from being easily deceived. This paper proposes an intensive study regarding
domain-independent classification models for sentiment analysis that should be trained only once.
The study consists of two phases: the first phase is based on a deep learning model which is training a
neural network model once after extracting robust features and saving the model and its parameters.
The second phase is based on applying the trained model on a totally new dataset, aiming at correctly
classifying reviews as positive or negative. The proposed model is trained on the IMDb dataset and
then tested on three different datasets: IMDb dataset, Movie Reviews dataset, and our own dataset
collected from Amazon reviews that rate users’ opinions regarding Apple products. The work shows
high performance using different evaluation metrics compared to the stat-of-the-art results.

Keywords: sentiment analysis; natural language processing; deep learning

1. Introduction

Sentiment analysis is the task of recognizing positive and negative opinions of users regarding
different purposes, e.g., users’ opinions about movies, products, music albums, and many other
fields. To provide a better definition, the sentiment is referred to as a judgement, opinion, attitude,
or emotional state prompted by feeling. Sentiment analysis is an automated process in which, by
using the natural language processing (NLP), the subjective information is computationally identified,
analyzed, and classified into positive, negative, or neutral to specify the sentiment of that text which is
the result of its author’s attitude [1]. There are different types of sentiment analysis, the most popular
types are classified and described in the following:

1. Grained Sentiment Analysis: The results in this type are more than binary classification results
where two labels (positive, negative) are presented. It is achieved in fine-grained granularity
varying from strong negative, weakly negative, neutral, weakly positive to strong positive
based on the determined polarity, mainly used when the polarity precision is highly important
and binary results like negative or positive could not be useful and may provide incorrect
classifications [2].

2. Emotion detection: It classifies different emotions in the text such as fear, anger, sadness, joy,
disgust, etc. Sophisticated machine learning algorithms [3] are used to detect emotions for
different goals.

85

Appl. Sci. 2020, 10, 6221

3. Aspect-based Sentiment Analysis: The results in this type are achieved after splitting the text into
different aspects and then assign each aspect a corresponding sentiment. For instance, the result
of aspect-based sentiment analysis on a special product’s review “It is so easy to use but Insanely
Expensive” would be (a) Ease of use: positive and (b) Price: negative due to the nature of this type,
it is mostly utilized in customer-centric businesses to have a deeper understanding of customer’s
requirements [4].

The sentiment analysis field has many applications. For example, in businesses and organizations,
they need to find consumer or public opinions regarding their products and services. Individual consumers
may also need to know the evaluation of other users of a product before purchasing it.
Moreover, they might be interested in others’ opinions concerning political candidates before making
a voting decision in a political election. Furthermore, nowadays data are published enormously and
freely on the Web, but with no data quality assurance, it is left to the readers to decide whether they
believe it or not. This results in high demand for advanced fact checking techniques and applications
that contribute to the assurance of data quality. In particular, users surfing the Web are more often
inflicted with harm/damage by inconsistent information. In addition, designing and developing such
fact checking systems need robust models of sentiment analysis. This task for fact checking detection
can be fulfilled when fact checking systems are provided by a general or universal model that can be
trained once and then applied to other reviews. Surely, this model should show high performance to
increase the accuracy of such fact checking systems.

Hussein in [5] discussed the importance and effects of the challenges in sentiment analysis is
the domain-dependence. Moreover, the author concluded that the nature of the topic and the review
structure determine the suitable challenges for the evaluation of sentiment reviews. Hence, building a
generalized model is a challenge that should be considered by researchers in this research field.

This work focuses on providing a generalized model for sentiment analysis. It has two main
contributions: (a) it shows that convolutional neural networks (CNN) combined with our review to
vector algorithm can lead to design models that can be trained once and work well using other types of
data that might even be related to a different domain and (b) it shows high performance using different
precision metrics compared to other approaches from the state of the art that use same datasets for
evaluation. We believe that this is one of the few works that address the generalization capabilities of
deep models w.r.t. domain-Independence.

The remainder of this paper is organized as follows: Section 2 outlines a set of related works.
In Section 3, we present the proposed approach. Section 4 lists datasets that are used for evaluation
purposes. In Section 5, we cover experimental results. Section 6 illustrates a detailed discussion
containing the major contribution of the paper. Section 7 concludes the paper and gives an overview
of future work.

2. Related Works

Although linguistics and natural language processing (NLP) have a long history of research,
few works were published concerning sentiments before the year 2000 [6]. After 2000, the field has
attracted the attention of researchers and many research groups to work on.

To provide an example, [7] studies the prediction of every review for being negative or positive in
the aspect-oriented opinion in the opinion mining domain at the sentence level. The authors of this
work propose groups of selected models based on conditional random fields (CRFs) with an added
multi-label presentation that not only models the opinion in a review, but also models set of opinions
in a single review. In [8], authors suggest a sentiment analysis system that is able to identify and
relate the sentiment to every rated product or item in the reviews. They present a probabilistic model
to investigate the structure of each review and to which cluster each of them is related to, where it
represents a specific sentiment.

86

Appl. Sci. 2020, 10, 6221

In [9], the researchers offer a flexible automated classification system that uses supervised machine
learning techniques using Markov Logic for sentiment classification on a sub sentence level and
incorporates polarity differentiations from different origins.

Furthermore, in [10], enhanced latent aspect rating analysis model is presented. This model does
not require predefined keywords that are associated with specific aspects. This work investigates the
reviews in order to define the topical aspects, the ratings of the individual aspect and assigning weights
that differentiate depending on the aspects from a reviewer point of view. [11] proposes a simple
hierarchical clustering approach (unsupervised model) for product aspects extraction, clustering,
and also defining the relations between aspects (relevant and irrelevant). In [12], the authors introduce
a novel supervised approach for joint topic aspects for choosing specific reviews that are considered to
be helpful among a set of reviews.

Moreover, in [13], an employee dataset is created and a novel ensemble model for sentiment
analysis is proposed on aspects level. In [14], a sentiment analysis is conducted on movie reviews.
New features are extracted that have influence on determining the polarity scores of the opinion
more accurately. Natural language processing approaches are applied using the impact of the unique
extracted features. In [15], supervised and semi-supervised approaches are investigated for text
classification.

Additionally, deep learning is also used for sentiment analysis. Authors of convolutional neural
networks for sentence classification use CNN to classify users’ reviews for movies. Others, as in [15],
use bidirectional long-short term memory models which is applied to the IMDb dataset.

Table 1 shows a summary of the state-of-the-art approaches for sentiment analysis. More information
regarding the performance of different approaches can be found in Section 6.

Table 1. A summary of the state-of-the-art approaches for sentiment analysis.

Paper Dataset Labels Approach

[7] Hotel Reviews Multi-labels
Supervised machine learning techniques using
conditional random fields models for aspect detection
sentiment analyzing.

[8]
Multiple datasets
(Restaurant reviews, medical
descriptions, Yelp)

Two labels
Unsupervised machine learning technique using
probabilistic topic modeling approaches for sentiment
content clustering.

[9] Product reviews Two labels Supervised machine learning techniques using Markov
logic for sentiment classification.

[10]
Hotel Reviews and MP3
player product review from
Amazon

5 star rating Unsupervised machine learning techniques for Latent
Aspect Rating Analysis Model.

[11] Chinese product reviews Two labels A hierarchical clustering approach for product aspects
extraction and clustering.

[12] Companies employee
reviews Ratings A novel supervised joint topic model approach to select

helpful reviews among a set of reviews.

[13] Different products reviews Ratings
A novel hybrid approach to implement aspect-level
sentiment analysis that assigns sentiment labels to the
reviews.

[14] IMDb Two labels N-grams followed by a random forest classifier.

[15] IMDb Two labels Bidirectional LSTM.

[16] IMDb Two labels Maximum entropy classification combined with support
vector machines using unigrams and bigrams.

[17] IMDb Two labels Lexical filtering.

[18] IMDb Two labels Context-Free Grammars (CFGs).

[19] Movie Review Two labels Convolutional Neural Networks (CNN).

[20] Movie Review Two labels Novel machine learning frame-work based on recursive
autoencoders.

[21] Movie Review Two labels Multiple classifiers—a hybrid approach.

87

Appl. Sci. 2020, 10, 6221

Based on the previous works, this research has started to be one of the highlights for scientific
contributions because: (a) it has different applications for recommender systems and fact checking
systems, and (b) it contains several challenging research problems that motivate researchers to work
and improve their works on them.

3. Approach

In this section, we present the preprocessing, the review to vector algorithm and the design details
of the proposed neural models for sentiment analysis, and then the evaluation metrics and the overall
evaluation. We aim at training a neural model once using a batch of IMDb dataset and test it on other
reviews’ datasets to see how far the generalization is possible.

3.1. Review to Vector

Before features extraction, we removed the stop words from the given dataset, e.g., “the”, “a”,
“an”, and “in”. Then, the next step includes removing punctuation. In this step, we extracted feature
elements from a batch of IMDb dataset for positive and negative reviews. The batch size has been
determined using grid search (see Section 5). We formulated a function which works like a dictionary
where the keys are the words in the text and the values are the count associated with that word.
The output is saved in word_ f eatures.

Algorithm 1 illustrates the procedure of converting reviews to vectors. It takes two inputs and
returns the input vectors for all reviews saved in all_ f eatures. The output vectors will be fed later into
our proposed neural models The input parameters are word_ f eatures which is the first 4900 words
after calculating the frequency distribution of each word from both training data, mainly the positive
and negative reviews. The number 4900 words have been selected after applying grid search using
different lengths which give the highest performance. The second input parameter is the reviews.
The summary of the algorithm is as follows: for each review in the reviews, the function word_tokenize
splits the current review into sub-strings (words). After that, for each word in word_ f eatures, it should
be checked whether that word is a word in the current review. If yes, 1 is added to the features list or 0
is added if it is not. Finally, the function returns all_ f eatures, which is a matrix.

The vectors of the review to vector algorithm (see Algorithm 1) are used for training different
classification models (see Section 3.2).

3.2. Classification

3.2.1. Convolutional Neural Network (CNN)

To perform the sentiment classification task, we propose a neurocomputing-based approach.
A CNN is a kind of feed-forward network structure that consists of multiple layers of convolutional
filters followed by subsampling filters and ends with a fully connected classification layer. The classical
LeNet-5CNN was first proposed by LeCun et al. [22], which is the basic model of different CNN
applications for object detection, localization, and prediction. First, the output vectors of the review
to vector Algorithm 1 are converted to matrices where the goal is to make the application of CNN
model possible. As illustrated in Figure 1, the proposed CNN model has one convolutional layer,
one subsampling layer, and an output layer.

The convolutional layers generate feature maps using five (2 × 2) filters followed by a Scaled
Exponential Linear Units (SELU) [23] as an activation function. Additionally, in the subsampling
layers, the generated feature maps are spatially dissembled. In our proposed model, the feature maps
in layers are subsampled to a corresponding feature map of size 2 × 2 in the subsequent layer.

The final layer, which is a fully CNN model that performs the classification process, consists of
three layers. The first layer is the input layer which has 6125 nodes and the second that has five nodes.
Each SELU activation function.

88

Appl. Sci. 2020, 10, 6221

The final layer is the softmax output layer. The result of the mentioned layers is a 2D representation
of extracted features from input feature map(s) based on the input features for the reviews.

Algorithm 1
1: Input: word_ f eatures, Reviews
2:
3: function REVIEW_TO_VECTOR(Reviews)
4:
5: all_ f eatures = []
6:
7: for review in reviews do
8:
9: words = word_tokenize(review)

10:
11: features =[]
12:
13: for w in word_features do
14:
15: if (w in words) then
16:
17: Features[w] = 1
18:
19: else
20:
21: Features[w] = 0
22:
23: end if
24:
25: end for
26:
27: all_features+=[Features]
28:
29: end for
30: return all_ f eatures
31: end function
32:

Figure 1. The proposed CNN model.

The proposed CNN consists of one convolutional layer and a max-pooling layer is because the
small size of our input dimension does not require additional layers to extract features/patterns.
The reason for using SELU is due to the fact that (a) SELUs performed better than Rectified Linear
Units (RELUs), (b) SELUs offer self-normalization [23], and (c) they never lead to vanishing gradients
problem. Since the dropout is a regularization technique to avoid over-fitting in neural networks

89

Appl. Sci. 2020, 10, 6221

based on preventing complex co-adaptations on training data [24], our dropout for each layer was 0.75,
which is related to the fraction of the input units to drop.

The proposed CNN model has been trained on IMDb. Then, the model has been saved to be
tested on other datasets. The length of the considered feature vectors is 4900 words that are converted
to matrices of size (70 × 70).

The parameters of CNN are selected by using grid search from a scikit-learn library considering
different settings. Table 2 shows parameters used for all the layers of the proposed CNN model.

Table 2. Parameters used for all the layers of the proposed CNN model.

Layer Kernel, Units Other Layers Parameters

Convolution (2 × 2), 5 Activation = Selu, Strides = 1
Max Pooling (2 × 2) Strides = 2

Dropout 0.75
Fully Connected Units = 5, Activation = Selu

Softmax - NumbrOfClasses = 2

3.2.2. Shallow Neural Network (SNN)

To perform the sentiment classification task, we use a neural model [25,26]. First, the output
vectors of the review to vector algorithm are fed into the neural model to the hidden layer which
consists of three neurons and a hyperbolic activation function; then, the final layer is the output layer
which consists of a softmax activation function, Adam optimizer [27], and a cross entropy loss function.
The parameters are selected by using a grid search from scikit-learn library (https://scikit-learn.org,
see Figure 2), where the optimizer is Adam and the loss function is the binary cross entropy.

Figure 2. The proposed SNN model.

The proposed neural network model has been trained on a batch of IMDb datasets. Then, the
model has been saved to be tested on other datasets. Table 3 shows parameters used for all the layers
of the proposed CNN model.

Table 3. Parameters used for all the layers of the proposed SNN model.

Layer Units Other Layers’ Parameters

Hidden layer 3 Activation = Hyperbolic tangent activation (tanh)
Output layer 2 Activation = softmax

3.2.3. Other Classifiers

Additionally, we examine several classifiers to compare the performance of the existing models
and the proposed ones, particularly Support Vector Machines (SVM) [28], K–Nearest Neighbor
(KNN) [29], Naive Bayes [30], and Random Forest [31]. In addition, selecting the previous classifiers has

90

Appl. Sci. 2020, 10, 6221

different advantages such as the objective of random forests that they consider a set of high-variance,
low-bias decision trees, and the ability to convert them into a model that has both low variance and
low bias. On the other hand, K-nearest neighbors is an algorithm which stores all the available cases
and classifies new cases based on a similarity measure (e.g., distance functions). Therefore, KNN
has been applied in statistical estimation and pattern recognition from the beginning of 1970s on
as a non-parametric technique [29]. SVM are well-known in handling non linearly separable data
based on their nonlinear kernel; e.g., SVM with a polynomial kernel (SVM (poly)) and the SVM
with a radial basis kernel (SVM (rbf)). Therefore, we classify the reviews data using three types of
SVMs; the standard linear SVM (SVM (linear)), SVM (poly), and SVM (rbf). Finally, we used a simple
probabilistic model which is the Naive Bayes. The purpose of using such a probabilistic model is to
show how it behaves w.r.t. different contexts.

Table 4 shows values of parameters for the proposed SNN, CNN, and all other classifiers.

Table 4. Values of parameters of proposed CNN, SNN, and other classifiers.

Model Parameters

SVM (poly) Degree of the polynomial kernel function = 3, γ = 1
numbero f f eatures

SVM (rbf) γ = 1
numbero f f eatures

Random Forest Number of estimators estimators =10 trees, criterion = Gini impurity,
The minimum number of samples required to split an internal node = 2

Naive Bayes Prior = probabilities of the classes

Proposed (CNN) Loss = Softmax, optimizer = Adamax, batch_size =1000, epochs = 30

Proposed (SNN) Loss = cross entropy, optimizer = Adam, batch_size =128, epochs = 40,
lr = 0.001, beta1 = 0.9, beta2 = 0.999, epsilon = 0.01, decay = 0.0

3.3. Evaluation Metrics and Validation Concept

To evaluate the overall performance of the classifiers, we consider several performance metrics.
In particular, we use precision, recall, f-measure, and accuracy, as in [32].

Equations (1)–(4) show mathematical expressions of the metrics accuracy, precision, recall, and
f-measure, respectively, where TP, TN, FP, and FN refer respectively to “True Positives”,
“True Negatives”, “False Positives”, and “False Negatives”, respectively:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 · precision · recall
precision + recall

(4)

Regarding the evaluation scenarios, we consider two cases: the domain-dependent and
domain–independent cases. Domain-dependent means training and testing have been performed for
each dataset. Domain–independent means the training has been performed on a IMDb datasets of
subjects and testing has been performed on a totally new datasets. The reason for training on IMDb is
due to its large size and thus can support a better generalized model if the training has been preformed
and regularized properly.

91

Appl. Sci. 2020, 10, 6221

4. Datasets

4.1. IMDb Dataset

ACL-IMDb [33] dataset is a collection of reviews that are taken from Internet Movie Database
(IMDb). The dataset size is 50 K and contains highly polar movie reviews annotated as positive or
negative review, which makes it widely used for a binary classification tasks. The average length of
a document in the training set is 25 k for training and 25 k for testing. The dataset also contains an
additional bag of words formats and raw texts (http://ai.stanford.edu/~amaas/data/sentiment/).

4.2. Movie Reviews (MR)

Movie Reviews (MR) is a small sized dataset (https://www.cs.cornell.edu/people/pabo/movie-
review-data/) [34] (5 k positive and 5 k negative reviews) that contains reviews in the form of labeled
sentences, which can be specified as objective or subjective. Furthermore, the selected sentences
have been gathered from IMDb and Rotten Tomatoes websites (https://www.rottentomatoes.com/),
each selected sentence contains at least 10 words. The sentiments of these sentences have been classified
as positive or negative.

4.3. Amazon Dataset (Amazon)

Reviews data from iPhone wireless earphones on Amazon were collected. Overall, we collected
480 negative reviews and 480 positive ones in order to use the data to check the overall performance of
the proposed model. We annotated the data with 0 or 1 where every positive review is annotated or
labeled by 1 and the negative reviews were annotated by 0.

5. Results

In this section, we want to demonstrate the performance of the proposed approach. The prototype
is implemented in Python. In order to gain sufficient information and prove the applicability of
our approach, the following libraries have been used: NLTK (https://www.nltk.org/) library for
natural language processing, Keras (https://keras.io/) (Deep learning) and scikit-learn (https://scikit-
learn.org/stable/) (machine learning), which is mainly used for testing the performance of the other
classifiers. We applied 10-fold cross-validation for performance evaluation. The neural models have
been trained on a GeForce GTX 1080-NVIDIA (https://www.nvidia.com/de-de/geforce/products/
10series/geforce-gtx-1080/).

In order to conduct experimental results and check the performance of the proposed approach,
we tested the algorithm using the extracted features based on three datasets, namely IMDb,
Movie Reviews, and Amazon reviews.

To evaluate the overall performance of the classifiers, we consider several performance metrics.
In particular, we use precision, recall, f1, and accuracy, as in [32].

Regarding the evaluation scenarios, we used the trained model in Section 3.2.
Tables 5–7 present the precision, the recall, and the f-measure using IMDb, Movie Reviews,

and Amazon datasets, respectively.

Table 5. Performance metrics for IMDb, where SVM (poly): Support Vector Machine using a polynomial
kernel, SVM (rbf): Support Vector Machine using a radial basis function kernel.

Classifier Precision Recall F-Measure Accuracy

Random Forest 0.73 0.73 0.73 0.73
Naive Bayes 0.64 0.59 0.56 0.59
SVM (poly) 0.24 0.29 0.33 0.49
SVM (rbf) 0.24 0.29 0.33 0.49

Proposed SNN 0.87 0.87 0.87 0.87
Proposed CNN 0.81 0.81 0.81 0.81

92

Appl. Sci. 2020, 10, 6221

Table 6. Performance metrics for MR, where SVM (poly): Support Vector Machine using a polynomial
kernel, SVM (rbf): Support Vector Machine using a radial basis function kernel.

Classifier Precision Recall F-Measure Accuracy

Random Forest 0.67 0.66 0.65 0.66
Naive Bayes 0.58 0.58 0.57 0.58
SVM (poly) 0.23 0.48 0.31 0.48
SVM (rbf) 0.75 0.61 0.55 0.48

Proposed SNN 0.82 0.82 0.82 0.82
Proposed CNN 0.75 0.75 0.75 0.75

Table 7. Performance metrics for Amazon reviews, where SVM (poly): Support Vector Machine using
a polynomial kernel, SVM (rbf): Support Vector Machine using a radial basis function kernel.

Classifier Precision Recall F-Measure Accuracy

Random Forest 0.80 0.80 0.80 0.80
Naive Bayes 0.71 0.67 0.67 0.67
SVM (poly) 0.31 0.55 0.40 0.55
SVM (rbf) 0.31 0.55 0.40 0.55

Proposed SNN 0.77 0.76 0.74 0.74
Proposed CNN 0.67 0.67 0.67 0.68

In all tables, the proposed neural models show the highest performance compared to random
forest which is hereby the next best classifier. However, the support vector machine using a radial
basis function kernel also performs well for the IMDb dataset, but the Naive Bayes classifier performs
much better using our own Amazon dataset.

Additionally, it is remarkable to realize that the proposed shallow neural network performs better
than the proposed convolutional neural network model. However, random forest and our proposed
neural models show a robust behavior regarding sentiment classification.

Moreover, it should be realized that some classifiers show high precision and low recall or vice
versa where high precision relates to a low false positive rate, and high recall relates to a low false
negative rate. This reflects the complexity of this classification task and shows the robust performance
of the proposed neural models.

Furthermore, the trained neural models are applied on different datasets that are not related to
each other (see Table 8). Despite of this fact, it still behaves well and, consequently, it can be extended
for different applications in the research field of sentiment analysis.

Table 8. Performance metrics for Amazon reviews and MR reviews using the pretrained neural models
on the IMDb dataset.

Classifier Precision Recall F-Measure Accuracy

SNN (Amazon) 0.66 0.65 0.64 0.64
CNN (Amazon) 0.65 0.64 0.64 0.64

SNN (MR) 0.82 0.82 0.82 0.82
CNN (MR) 0.80 0.80 0.80 0.80

Figures 3 and 4 show the 10-folds cross-validation results for the trained CNN and SNN models,
respectively. In addition, they show the mean accuracy and the standard deviation for each fold.
We can observe a reasonable symmetric distribution and that the mean captures the central tendency
well. The cross-validation results belong to the pre-trained model which has been applied to calculate
the results in Table 8.

93

Appl. Sci. 2020, 10, 6221

Figure 3. The cross-validation results for the trained CNN model using IMDb model, which has been
used on MR and Amazon datasets.

Figure 4. The 10-fold cross-validation results for the trained SNN model using the IMDb model,
which has been used on the MR and Amazon datasets.

6. Discussion

Based on our results, we could demonstrate the following points:

1. Summarizing the final opinion in some words might lead to the problem that the extracted
features did not take that sentence as a feature of interest. For example, a reviewer might have a

94

Appl. Sci. 2020, 10, 6221

positive opinion about acting and the overall story of a movie, but he was not satisfied by the
music in certain scenes.

2. Sentiments can be expressed in different forms that might be even indirect expressions.
Therefore, they require common sense reasoning techniques to be classified. In addition, it is
challenging to analyze sentiments with complex structures of sentences, especially when negations
do exist.

3. Some reviewers may use expressions that have negative connotations, but at the end of the
review, they summarize their overall opinion clearly. Consequently, this makes the classification a
tough task.

4. Feature engineering suffers from overcoming the previous problems.
5. Sentiment analysis requires analyzing large units of individual words to capture the context in

which those words appear.
6. Table 8 shows that SNN shows a better generalization performance using the MR dataset

compared to CNN. The results of other approaches are listed in Tables 9 and 10 for movie
review data and IMDb, respectively. Some of the proposed approaches perform better; however,
they do not consider the domain-independent sentiment classification. It means that the results
are obtained for training and testing on the same dataset.

Table 9. A summary of state-of-the-art performance metrics for MR, where DCNN: Dynamic
Convolutional Neural Network, SVM: Support Vector Machine.

Paper Classifier Used Accuracy

[19] CNN 0.81

[20] Autoencoders 0.77

[35] SVM 0.77

[36] DCNN 0.86

Table 10. A summary of the state-of-the-art precision metrics for IMDb, where SVM: Support
Vector Machine.

Paper Classifier Used Accuracy

[16] SVM 0.82

[17] Markov Model 0.80

[14] Random Forest 0.88

[18] statistical approach 0.87

We can observe that this work is:

1. Able to classify binary reviews very well, especially, domain-independent reviews.
2. The first building block toward the generalization of sentiment classification where a model can

be trained once and tested on totally new datasets that even may come from different contexts.
3. It inherits the advantages of neural models which is nowadays able to classify hundreds of objects

using a pre-trained model.

This is due to the fact that CNN can overcome many challenges of sentiment analysis that have
been highlighted previously. For example, words in a specific region are more likely to be related than
words far away. Thus, CNN can automatically and adaptively extract spatial hierarchies of features
out of written reviews that may capture different writing styles of users.

95

Appl. Sci. 2020, 10, 6221

7. Conclusions

In this work, we proposed a sentiment analysis generalized approach that is able to classify the
sentiments of different datasets robustly. Additionally, the proposed approach showed promising
results in the context of domain-independent sentiment analysis. This is due to the fact that neural
models can extract robust features when reviews are converted to proper input vectors using
our proposed review for vector algorithms. Furthermore, it shows a high performance regarding
generalization. The proposed model has been trained once and tested on three different datasets from
different domains. The model could perform very well compared to other works that used the same
datasets and showed a generalization capability for sentiment classification w.r.t. different domains.
Furthermore, the paper covered a wide range of sentiment analysis approaches from the state of the
art and compared the results obtained to the performance of the proposed neural models.

Additionally, in our future work, we will integrate the implemented version of the algorithm into
different browsers and platforms aiming at using the power of this approach for fact checking purposes.

Author Contributions: Conceptualization: N.J.; Methodology: N.J. and F.A.M.; Supervision: F.A.M. and W.K.;
Formal analysis: N.J., F.A.M., and W.K. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest. The authors ensure that there are no personal
circumstances, interest, or sponsors that may be perceived as inappropriately influencing the representation or
interpretation of reported research results.

References

1. Cambria, E.; Das, D.; Bandyopadhyay, S.; Feraco, A. A Practical Guide to Sentiment Analysis; Springer:
Berlin/Heidelberg, Germany, 2017.

2. Wang, Z.; Chong, C.S.; Lan, L.; Yang, Y.; Ho, S.B.; Tong, J.C. Fine-grained sentiment analysis of social media
with emotion sensing. In Proceedings of the 2016 Future Technologies Conference (FTC), San Francisco, CA,
USA, 6–7 December 2016; pp. 1361–1364.

3. Suhasini, M.; Srinivasu, B. Emotion Detection Framework for Twitter Data Using Supervised Classifiers.
In Data Engineering and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 565–576.

4. Zainuddin, N.; Selamat, A.; Ibrahim, R. Discovering Hate Sentiment within Twitter Data through
Aspect-Based Sentiment Analysis. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK,
2020; Volume 1447, p. 012056.

5. Hussein, D.M.E.D.M. A survey on sentiment analysis challenges. J. King Saud Univ. Eng. Sci. 2018,
30, 330–338. [CrossRef]

6. Liu, B. Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 2012, 5, 1–167. [CrossRef]
7. Marcheggiani, D.; Täckström, O.; Esuli, A.; Sebastiani, F. Hierarchical multi-label conditional random

fields for aspect-oriented opinion mining. In European Conference on Information Retrieval; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 273–285.

8. Sauper, C.; Barzilay, R. Automatic aggregation by joint modeling of aspects and values. J. Artif. Intell. Res.
2013, 46, 89–127. [CrossRef]

9. Zirn, C.; Niepert, M.; Stuckenschmidt, H.; Strube, M. Fine-grained sentiment analysis with structural
features. In Proceedings of the 5th International Joint Conference on Natural Language Processing, Chiang
Mai, Thailand, 8–13 November 2011; pp. 336–344.

10. Wang, H.; Lu, Y.; Zhai, C. Latent aspect rating analysis without aspect keyword supervision. In Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM: New York,
NY, USA, 2011; pp. 618–626.

11. Zhao, Y.; Qin, B.; Liu, T. Clustering product aspects using two effective aspect relations for opinion mining.
In Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 120–130.

96

Appl. Sci. 2020, 10, 6221

12. Hai, Z.; Cong, G.; Chang, K.; Liu, W.; Cheng, P. Coarse-to-fine review selection via supervised joint aspect
and sentiment model. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development
in Information Retrieval; ACM: Berlin/Heidelberg, Germany, 2014; pp. 617–626.

13. Bajpai, R.; Hazarika, D.; Singh, K.; Gorantla, S.; Cambria, E.; Zimmerman, R. Aspect-Sentiment Embeddings
for Company Profiling and Employee Opinion Mining. arXiv 2019, arXiv:1902.08342.

14. Sahu, T.P.; Ahuja, S. Sentiment analysis of movie reviews: A study on feature selection & classification
algorithms. In Proceedings of the 2016 International Conference on Microelectronics, Computing and
Communications (MicroCom), Durgapur, India, 23–25 January 2016; pp. 1–6.

15. Sachan, D.S.; Zaheer, M.; Salakhutdinov, R. Revisiting LSTM Networks for Semi-Supervised Text
Classification via Mixed Objective Function. Proc. AAAI Conf. Artif. Intell. 2019, 6940–6948. [CrossRef]

16. Pang, B.; Lee, L.; Vaithyanathan, S. Thumbs Up? Sentiment Classification Using Machine Learning Techniques.
In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing—Volume 10
(EMNLP ’02); Association for Computational Linguistics: Stroudsburg, PA, USA, 2002; pp. 79–86. [CrossRef]

17. Salvetti, F.; Lewis, S.; Reichenbach, C. Automatic Opinion Polarity Classification of Movie Reviews.
Colo. Res. Linguist. 2004, 17. [CrossRef]

18. Dong, L.; Wei, F.; Liu, S.; Zhou, M.; Xu, K. A statistical parsing framework for sentiment classification.
Comput. Linguist. 2015, 41, 293–336. [CrossRef]

19. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882.
20. Socher, R.; Pennington, J.; Huang, E.H.; Ng, A.Y.; Manning, C.D. Semi-supervised recursive autoencoders for

predicting sentiment distributions. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing; Association for Computational Linguistics: Stroudsburg, PA, USA, 2011; pp. 151–161.

21. Tsutsumi, K.; Shimada, K.; Endo, T. Movie review classification based on a multiple classifier.
In Proceedings of the 21st Pacific Asia Conference on Language, Information and Computation, Seoul,
Korea, 1–3 November 2007; pp. 481–488.

22. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory
Neural Netw. 1995, 3361, 1995.

23. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. In Advances in
Neural Information Processing Systems; Curran Associates Inc: Red Hook, NY, USA, 2017; pp. 971–980.

24. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.

25. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators.
Neural Netw. 1989, 2, 359–366. [CrossRef]

26. Funahashi, K.I. On the approximate realization of continuous mappings by neural networks. Neural Netw.
1989, 2, 183–192. [CrossRef]

27. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
28. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
29. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992,

46, 175–185.
30. Webb, G.I. Naïve Bayes. In Encyclopedia of Machine Learning and Data Mining; Springer: Berlin/Heidelberg,

Germany, 2017; pp. 895–896.
31. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
32. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness &

correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [CrossRef]
33. Maas, A.L.; Daly, R.E.; Pham, P.T.; Huang, D.; Ng, A.Y.; Potts, C. Learning word vectors for sentiment

analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies—Volume 1; Association for Computational Linguistics: Portland, OR, USA, 2011;
pp. 142–150.

34. Pang, B.; Lee, L. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on
Minimum Cuts. arXiv 2004, arXiv:cs/0409058.

97

Appl. Sci. 2020, 10, 6221

35. Yessenalina, A.; Yue, Y.; Cardie, C. Multi-level structured models for document-level sentiment classification.
In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2010; pp. 1046–1056.

36. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A convolutional neural network for modelling sentences.
arXiv 2014, arXiv:1404.2188.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

98

applied
sciences

Article

Zero-Shot Learning for Cross-Lingual News
Sentiment Classification

Andraž Pelicon 1,2,*, Marko Pranjić 2,3, Dragana Miljković 1, Blaž Škrlj 1,2 and Senja Pollak 1,*
1 Jožef Stefan Institute, 1000 Ljubljana, Slovenia; dragana.miljkovic@ijs.si (D.M.); blaz.skrlj@ijs.si (B.Š.)
2 Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia; marko.pranjic@styria.ai
3 Trikoder d.o.o., 10010 Zagreb, Croatia
* Correspondence: Andraz.Pelicon@ijs.si (A.P.); senja.pollak@ijs.si (S.P.)

Received: 31 July 2020; Accepted: 25 August 2020; Published: 29 August 2020

Abstract: In this paper, we address the task of zero-shot cross-lingual news sentiment classification.
Given the annotated dataset of positive, neutral, and negative news in Slovene, the aim is to
develop a news classification system that assigns the sentiment category not only to Slovene news,
but to news in another language without any training data required. Our system is based on the
multilingual BERTmodel, while we test different approaches for handling long documents and
propose a novel technique for sentiment enrichment of the BERT model as an intermediate training
step. With the proposed approach, we achieve state-of-the-art performance on the sentiment analysis
task on Slovenian news. We evaluate the zero-shot cross-lingual capabilities of our system on a
novel news sentiment test set in Croatian. The results show that the cross-lingual approach also
largely outperforms the majority classifier, as well as all settings without sentiment enrichment in
pre-training.

Keywords: sentiment analysis; zero-shot learning; news analysis; cross-lingual classification;
multilingual transformers

1. Introduction

Sentiment analysis is one of the most popular applications of natural language processing
(NLP) and has found many areas of applications in customers’ product reviews, survey textual
responses, social media, etc. It analyzes users’ opinions on various topics, such as politics, health,
education, etc. In sentiment analysis, the goal is to analyze the author’s sentiments, attitudes, emotions,
and opinions [1]. Traditionally, such analysis was performed towards a specific entity that appears
in the text [2]. A less researched, but nevertheless prominent field of research in sentiment analysis
is to shift the focus from analyzing sentiment towards a specific target to analyzing the intrinsic
mood of the text itself. Several works try to model feelings (positive, negative, or neutral) that
readers feel while reading a certain piece of text, especially news [3,4]. In Van de Kauter et al. [5],
the authors claimed that the news production directly affects the stock market as the prevalence of
positive news boosts its growth and the prevalence of negative news impedes it. In the context of
news media analytics, the sentiment of news articles has been used also as an important feature in
identifying fake news [6] and biases in the media [7]. Rambaccussing and Kwiatkowski [8] explored
the change in sentiment of news articles from major U.K. newspapers with respect to current economic
conditions. Bowden et al. [9] took a step further and tried to improve the forecasting of three economic
variables, inflation, output growth, and unemployment, via sentiment modeling. They concluded
that, using sentiment analysis, out of the three variables observed, the forecasting can be effectively
improved for unemployment.

99

Appl. Sci. 2020, 10, 5993

In the last year, the use of pre-trained Transformer models has become standard practice
in modeling text classification tasks. Among the first such models was the BERT (Bidirectional
Encoder Representations from Transformers) model developed by [10], which achieved state-of-the-art
performance on several benchmark NLP tasks, as well as in real-world applications, e.g., Google search
engine [11] and chatbots [12]. The initial model was however pre-trained only on English corpora and
could consequently be used only for modeling textual data in the English language. A new version of
the BERT model, titled multilingual BERT or mBERT, soon followed. This model was pre-trained on
unlabeled data in 104 languages with the largest Wikipedias using a joint vocabulary. Several studies
noted the ability of the mBERT model to work well in multilingual and cross-lingual contexts even
though it was trained without an explicit cross-lingual objective and with no aligned data [13,14].

In the context of sentiment analysis of news articles, we however identified two potential
drawbacks of the mBERT model. The first is that the model accepts the inputs of a fixed length
where the length is determined by the length of the context window, i.e., the maximum length of
the input sequence during the pre-training phase. Since the training becomes computationally more
expensive with the size of the context window, several standard implementations of the mBERT model
have the context window set to a maximum length [15]. The standard solution for longer documents is
therefore to cut the inputs to the length of the context window [16]. This method however potentially
causes the loss of important information that could be present in the later parts of the document.
Another potential drawback is that the input representations produced by the Transformer models
may encode only a small amount of sentiment information. The pre-training objectives, namely the
masked language modeling and next sentence prediction, are designed to focus on encoding general
syntactic and certain semantic features of a language. The only explicit sentiment signal the models
get is during the fine-tuning phase, when the models are generally trained on a much smaller amount
of data.

The paper presents the advances achieved in the scope of the European project H2020 EMBEDDIA
(www.embeddia.eu, duration 2019–2021), which focuses on the development of cross-lingual
techniques to transfer natural language processing tools to less-resourced European languages with
applications to the news media industry. In this paper, we present our approach to cross-lingual
news sentiment analysis, where given an available sentiment-annotated dataset of news in Slovene [3],
we propose a news sentiment classification model for other languages. In this paper, we focus
on Croatian, where the news dataset is provided by 24sata, one of the leading portals in Croatia,
and was labeled with the same sentiment annotation scheme as the Slovenian dataset in order to allow
comparison in a zero-shot learning setting where no annotations in the target language are expected.

We identify three main contributions of this paper focusing mainly on the cross-lingual zero-shot
learning setting. First, we gathered a sentiment-annotated corpus of Croatian news, where the
annotation guidelines follow the annotation scheme of the Slovenian sentiment-annotated news
dataset [3], therefore enabling cross-lingual zero-shot learning sentiment evaluation. Second, we tested
several document representation techniques to overcome one of the shortcomings of the BERT
models of not being capable of efficiently processing longer text documents. Last, but not least,
we propose a novel intermediate training step to directly enrich the BERT model with sentiment
information in order to produce input representations of better quality for sentiment classification
tasks. These representations were then tested both in a monolingual setting, as well as in the zero-shot
cross-lingual setting, where the model was tested on a different language without any additional
target language training. Our experiments show that these representations improve the results in the
monolingual setting and achieve a substantially better result than the majority baseline classifier in the
cross-lingual setting.

The article is structured as follows. In Section 2, we first present the related work upon which
our study builds. In Section 3, we present two datasets of news articles that are manually labeled
in terms of sentiment: the existing Slovenian dataset [3] and the newly constructed Croatian test set.
Section 4, where we present the methodology, is followed by Section 5, explaining the experimental

100

Appl. Sci. 2020, 10, 5993

setup, with the training regime applied and the evaluation method. Section 6 presents the results of
the experiments and discusses their impact, which is followed by qualitative inspection of the models
in Section 7. Section 9 presents the conclusions of this work and ideas for future research.

2. Related Work

Traditionally, sentiment analysis was modeled through the use of classical machine learning
methods, where especially learners such as support vector machines combined with the TF-IDF text
representations proved to be widely successful [17,18]. Lately, however, deep neural networks have
become more frequent for sentiment analysis and started outperforming the classical approaches.
Mansar et al. [19] used convolutional neural networks (CNN), a variant of neural networks, which are
heavily utilized for computer vision. With the help of the convolutional layer, they acquired word-level
representations of individual news articles from the learning corpus and combined them with the
sentiment score of the individual article, which was obtained with a simple, rule-based model.
The attributes were used as input to the fully connected NN. Their model showed the best performance
on the SemEval2017 challenge (Task 5, Subtask 2). Moore and Rayson [20] used two models for
analyzing sentiment in financial news titles, a support vector machine and a bidirectional LSTM
(Long-Short Term Memory) neural network. They reported the LSTM neural network to outperform
the SVM modelsby 4–6%.

Several recent works also explored the problem of cross-lingual sentiment analysis. One of the
earlier studies [21] employed machine translation to translate a large corpus of sentiment-annotated
English training data for the development of a Chinese sentiment classifier. These translated data were
then used in addition to the original Chinese data to train an SVM-based classifier. While machine
translation can be a good solution for cross-lingual modeling, a quality machine translation system for
a particular language pair may not exist or may be expensive to train. Furthermore, machine learning
systems struggle with distant language pairs [22]. Zhou et al. [23] developed a cross-lingual
English-Chinese attention-based neural architecture for sentiment classification. It utilizes a two-level
hierarchical attention mechanism. The first layer of the model encodes each sentence separately by
finding the most informative words. Then, the second layer produces the final document representation
from lower-level sentence representations. The downside of their work is that the model uses aligned
data in two languages, which are not readily available for every language pair. Ref. [24] proposed a
representation learning method that utilizes emojis as an instrument to learn language-independent
sentiment-aware text representations. The approach is however limited to text types where emojis
regularly appear. The cross-lingual sentiment classification approaches presented above also do not
address news analysis, but focus on shorter social media texts, where there is no need for adaptation to
longer text sequences and they do not leverage cross-lingual Transformer models, such as mBERT, that
have been recently introduced as the state-of-the-art for cross-lingual classification tasks. In this paper,
we will bridge this gap by proposing a novel approach where we not only leverage standard transfer
learning where pretrained language models are fine-tuned for specific classification tasks (in the same
or another language), but introduce a novel intermediate training step for sentiment enrichment of
BERT models.

The need for labeled data is seen as one of the main obstacles in developing robust cross-lingual
systems for natural language processing, especially for low-resource languages. For this reason,
research has been focused lately on models that can work in a zero-shot setting, i.e., without being
explicitly trained on data from the target language or domain. This training paradigm has been utilized
with great effect for several popular NLP problems, such as cross-lingual document retrieval [25],
sequence labeling [26], cross-lingual dependency parsing [27], and reading comprehension [28].
More specific to classification tasks, Ye et al. [29] developed a reinforcement learning framework
for cross-task text classification, which was tested also on the problem of sentiment classification in
a monolingual setting. Jebbara and Cimiano [30] developed models for cross-lingual opinion target
extraction, which were tested in a zero-shot setting, similar to ours. Their approaches rely on the

101

Appl. Sci. 2020, 10, 5993

alignment of static monolingual embeddings into the shared vector space for input representation.
Fei and Li [31] trained a multi-view cross-lingual sentiment classifier based on the encoder-decoder
architecture used for unsupervised machine translation. Their systems showed state-of-the-art
performance on several benchmark datasets. The difference from our work is that the datasets used
are all product review datasets, which contain considerably shorter texts. Furthermore, as described in
Section 1, product reviews contain the target of the modeled sentiment in the text, while news articles
generally do not, which makes the two problems different on a more fundamental level.

Novel research has also been done on better input text representation techniques for classification
tasks. Tan et al. [32] proposed a clustering method for words based on their latent semantics. The vectors
composing the same clusters were then aggregated together into cluster vectors. The final set of cluster
vectors was then used as the final text representations. This novel text representation technique showed
improvement on five different datasets. Pappagari et al. [33] proposed a modification to the BERT model
for long document classification in a monolingual setting. They utilized a segmentation approach to
divide the input text sequences into several subsequences. For each subsequence, they obtained a feature
vector from the Transformer, which they then aggregated into one vector by applying another LSTM- or
Transformer-based model over it. This work has inspired part of our current research for obtaining better
Transformer-based representation of long text sequences. Ref. [34] recently presented a Transformer
architecture, which is able to produce input representations from long documents in an efficient manner.
However, the model they produced based on this architecture was pre-trained only on English data.

3. Datasets

In this section, we present in detail the two datasets of sentiment-labeled news that were used in
this experiment.

3.1. SentiNews Dataset in Slovene

We used the publicly available SentiNews dataset (available at https://www.clarin.si/repository/
xmlui/handle/11356/1110) [3], which is a manually sentiment-annotated Slovenian news corpus.
The dataset contains 10,427 news texts mainly from the economic, financial, and political domains
from Slovenian news portals (www.24ur.com, www.dnevnik.si, www.finance.si, www.rtvslo.si, www.
zurnal24.si), which were published between 1 September 2007 and 31 December 2013. The texts were
annotated by two to six annotators using the five-level Likert scale on three levels of granularity,
i.e., on the document, paragraph, and sentence level. The dataset contains information about average
sentiment, standard deviation, and sentiment category, which correspond to the sentiment allocation
according to the average sentiment score. The dataset statistics are:

• 10,427 documents;
• 89,999 paragraphs;
• 168,899 sentences.

For our news classification experiments, we used the document-level annotations,
with 10,427 news articles and an imbalanced distribution of 3337 (32%) negative, 5425 (52%) neutral,
and 1665 (16%) positive news, where the sentiment category corresponds to the sentiment allocation
according to the average sentiment score. For intermediate training, we also leveraged paragraph-level
annotations.

3.2. Croatian Sentiment Dataset

The Croatian dataset was annotated in the scope of project EMBEDDIA and for the purposes of
testing cross-lingual classification; therefore, the annotation procedure fully matched the Slovenian
dataset [3].

The data came from 24sata, one of the leading media companies in Croatia with the highest
circulation newspaper. The 24sata news portal is one of the most visited websites in Croatia, and it

102

Appl. Sci. 2020, 10, 5993

consists of a portal with daily news and several smaller portals covering news from specific topics
such as automotive news, health, culinary content, and lifestyle advice. Portals included in the
dataset are www.24sata.hr (daily news content, the majority of the dataset), as well as miss7.24sata.hr,
autostart.24sata.hr, joomboos.24sata.hr, miss7mama.24sata.hr, miss7zdrava.24sata.hr, www.express.hr,
and gastro.24sata.hr.

The dataset statistics are:

• 2025 documents;
• 12,032 paragraphs;
• 25,074 sentences.

As in [3], the annotators chose the sentiment score on the Likert [35] scale (corresponding to
the question: Did this news evoke very positive/positive/neutral/negative/very negative feelings?),
but for the final dataset, the average annotations were then three classes (positive, negative, and
neutral). Annotations were done on three levels: document, paragraph, and sentence level. The
distribution of positive, negative and neutral news texts of the document-level annotations used in this
study is as follows: 303 (15.1%) positive, 439 (21.5%) negative, and 1283 (63.4%) neutral. They will be
made available under a CC license upon acceptance of the paper. More details about inter-annotator
agreement and annotation procedure are available in the Appendix A of this paper.

As one of the contributions of this paper is the evaluation of representation learning for long
articles, we also provide the statistics of both datasets in terms of length. Table 1 compares the
Slovenian and Croatian news datasets in terms of the length of annotated articles. It presents the
average number of tokens per article, as well as the length of the longest and shortest articles in the
respective datasets. We present the lengths in terms of the standard tokenization procedure where each
word and punctuation mark counts as a separate token. However, the BERT model uses a different form
of tokenization, namely the WordPiece tokenization [36]. Using this tokenization process, each word
is broken into word pieces, which form the vocabulary of the tokenizer. The vocabulary is obtained
using a data-driven approach: given a training corpus G and a number of word pieces D, the task is
to select D word pieces such that the segmented corpus G contains as much unsegmented words as
possible. The selected word pieces then form the vocabulary of the tokenizer. This approach is proven
to handle the out-of-vocabulary words better than standard tokenization procedures. Since the inputs
to the BERT model have to be tokenized according to this algorithm in order for the model to properly
learn, we present the length statistics in terms of BERT’s WordPiece tokenization model as well in
the column “BERT tokens”. We may observe that the average length of the articles in both datasets
is relatively long in terms of the BERT tokens. Especially in the Slovenian dataset, which is used for
training in this experiment, the average length of an article surpasses the maximum window size of
the BERT model, which is set to 512 tokens in the implementation we are using for this work.

Table 1. Length of the articles in the Slovenian and Croatian datasets in terms of the number of tokens.
The row “Tokens” presents the length in terms of the standard tokenization procedure, and the row
“BERTtokens” presents the length of the articles in terms of BERT’s WordPiece tokenization.

Slovenian Croatian

Min Max Mean Min Max Mean

Tokens 10 2833 350 155 515 273
BERT tokens 19 4961 648 256 816 456

4. Methodology

We tested two approaches, one focusing on techniques for long document representation and
the second one on improving the performance on the sentiment analysis task through intermediate
pre-training.

103

Appl. Sci. 2020, 10, 5993

In this work, we model sentiment in news articles, which are frequently longer than the BERT
context windows, as discussed in Section 1. Therefore, in our first approach, we experiment with
several methods for representing longer documents.

The second approach, presented in Section 4.4, proposes a novel technique for sentiment
enrichment of mBERT. In standard BERT architectures, the pre-training phase of BERT consists of
masked language modeling and next sentence prediction tasks, which are robust, but not necessarily
relevant for sentiment classification, as discussed in Section 1. Therefore, we add an intermediate
training step where, aside from masked language modeling, the sentiment classification is used as a
learning objective. This model is then used for final fine-tuning. The role of intermediate training for
BERT is still unexplored in NLP, with some initial experiments presented in [37].

4.1. Beginning of the Document

In the first experimental setting, we produced the document representations by using only the
beginning part of the document. We first tokenized the document with the pre-trained multilingual
BERT tokenizer. We then took the sequence of 512 tokens from the beginning of the document and fed
them to the BERT language model. As proposed in Devlin et al. [10], we used the representation of the
[CLS] token produced by the language model as the document representation. The [CLS] token is a
special token prepended to every input of the BERT model, which, after fine-tuning, is used to represent
the input sequence for classification tasks. We then sent this representation to the classification head
composed of a single linear layer. This experiment mimics the usual usage of the BERT pre-trained
models for text classification tasks and is included in this work for better benchmarking of other
proposed text representation methods.

4.2. Beginning and End of the Document

For the second setting, we tried to produce the document representations by using the beginning
and end of the document. The length of the input sequence was retained at 512 tokens. For sequences
longer than 512 tokens after tokenization, we took 256 tokens from the beginning of the text and
256 tokens from the end of the text and concatenated them. We then fed the sequence to the BERT
language model and used the [CLS] token vector from the last layer as the document representation.
This document representation was then fed to the classification head composed of a linear layer.

4.3. Using Sequences from Every Part of the Document

In the third setting, we tried to compose our document representation by using information in the
whole document.

For the language model fine-tuning phase, we tokenized each document and broke it into
sequences of 512 tokens. We then used a sliding window that moved over all the subsequences
in the order they appeared in the original sequence. Each subsequent window would overlap the first
fifty tokens from the previous window. This way, we hoped our model would capture the relationships
across sentence boundaries. We attached the document sentiment label to each of the subsequences
from the same document. Such an oversampled dataset was then used to fine-tune the multilingual
BERT language model with the attached linear layer for classification. This method is graphically
presented in Figure 1.

After finetuning we again prepared each document in the dataset as described above and sent
every subsequence of a particular document to the fine-tuned BERT model. We extracted the [CLS]
vector representations from the last layer and combined them into a final document representation.
This approach is inspired by the work of Pappagari et al. [33]. The main difference of our study
is in the way the subsequence representations are merged into a document representation. In this
work, we tested three different ways of combining the output vector representations into the final
document representation.

104

Appl. Sci. 2020, 10, 5993

• Using the most informative subsequence representation:

In this approach, we tried to identify the most informative subsequence for the task at
hand. As the BERT language model was fine-tuned on the sentiment classification task, we
assumed some notion of the importance of different parts of the text was encoded directly
into the vector representations. Using this line of thought, we defined the most informative
subsequence as the subsequence with the highest euclidean vector norm. Formally, from the set
of ordered subsequence representations: S = {x1, x2, . . . xn} we chose: x = argmax(||x||2 : x ∈ S).
We then used only this representation as the final vector representation and discarded the rest.
The document representation is then sent into a two-layer fully connected neural network,
which produces the final predictions.

• Averaging the representations of all subsequences:

As the first approach is based on a strong assumption and it does not actually utilize the data from
the whole document, here we combine all the vector representations of subsequences into one
final document representation. We used a relatively naive approach of simply averaging all the
vector representations to produce the final document embedding. The document representation is
then sent into a two-layer fully connected neural network, which produces the final predictions.

• Using convolutional layers:

In this approach, we extracted the most informative parts of the document with the use of 1D
convolutional neural layers. We used a convolutional filter of size 2 with stride 2 that runs
over the produced subsequence representations. This way, the convolutional filter processes the
subsequences in pairs and extracts the most informative features from each pair of subsequences
from each part of the document. Since we have documents of variable lengths that may be
represented by a variable number of subsequences, all the representations were padded with
zero vectors up to the maximum length of 6. We used 128 filters to produce 128 feature maps.
We then mapped these maps to a final 128-dimensional document vector representation using
a max pooling operation. The final embedding is then sent into a linear layer that produces
the classification.

The advantage of the first two mapping operations is that, in comparison to the methods proposed
in Pappagari et al. [33], they are more computationally efficient as we need to perform simple
vector norm and averaging calculations to produce the final document representations. The third
mapping operations uses a convolutional layer to map the different subsequences into one document
representation. The convolutional networks have proven in the past to be competitive with other
text-processing approaches in NLP [38]; therefore, our approach presents an alternative to the LSTM
and Transformer-based sequence aggregation.

4.4. Sentiment Enrichment of the mBERT Model

In this approach, the aim is to to induce sentiment information directly into the vectorized
document representations that are produced by the multilingual BERT model. To do so, we added
an intermediate training step for the mBERT model before the fine-tuning phase. The intermediate
training phase consists of jointly training the model on two tasks. The first task we used was the
masked language modeling task as described in the original paper by Devlin et al. [10]. We left this
task unchanged in hopes that the model would better capture the syntactic patterns of our training
language and domain.

For the second task, we used the sentiment classification task, which mirrors the fine-tuning task,
but is trained using a different set of labeled data. With this task, we tried to additionally constrain
the model to learn sentiment-related information before the actual fine-tuning phase. The task was

105

Appl. Sci. 2020, 10, 5993

formally modeled as a standard classification task where we tried to learn a predictor that would map
the documents to a discrete number of classes:

γ : x → C

Figure 1. The document representation approach using a sliding window over the whole input
sequence. Each subsequence is embedded using a fine-tuned BERT model, and all the subsequences
are then merged into a final document representation, which is sent further as the input to the classifier.
The length of the sliding window is 512 tokens. The first 50 tokens of each subsequent sliding window
overlap with the last 50 tokens of the previous sliding window.

For each document xi in the training set S = {x1, x2, . . . , xn}, we produced a document
representation d ∈ R1×t, where t is the dimension of the representation, by encoding the document
with the mBERT model and taking the representation of the [CLS] token from the last layer. We sent
this representation through a linear layer and a softmax function to map it to one of the predefined
classes C = {y1, y2, . . . , yn}.

h = Linear(d, W) (1)

ŷ = So f tmax(h) (2)

We calculated the loss of the sentiment classification task: Ls at the end using the negative log
likelihood loss function

Ls = − log(ŷi)

where ŷi is the probability of the correct class.
The final loss L is computed as:

L = Lmlm + Ls

106

Appl. Sci. 2020, 10, 5993

where Lmlm represents the loss from the masked language modeling task. The model is then jointly
trained on both tasks by backpropagating the final loss through the whole network.

The original mBERT model is pre-trained on another task, namely next sentence prediction, which,
according to the authors, helps the model learn sentence relationships. During training, the input
for this task is treated as belonging to two separate sequences and the model has to decide if the
two sequences follow one another in the original text or not. This information is useful for a variety
of downstream tasks such as question answering. Since in this experiment we are dealing with a
classification task, where the input is treated as being a part of the same sequence, we felt the additional
training using the next sentence prediction task would not add much relevant information to the
model so we omitted it in the intermediate training phase.

5. Experimental Setup

This sections describes the setup that we used to perform the experiments. It is divided into three
subsections: the first subsection describes the regime we used for the fine-tuning phases; the second
subsection describes the regime we used for the intermediate training phase; and the third subsection
presents the evaluation of the trained models.

5.1. Fine-Tuning Phase

For the fine-tuning phase, we used the Slovenian news dataset [3] annotated on the document
level (see Section 3), as the goal of our classification is to assign the sentiment label to a news article.
We followed the suggestions in the original paper by Devlin et al. [10] for fine-tuning. We used the
Adam optimizer with the learning rate of 2E− 5 and learning rate warmup over the first 10% of the
training instances. For regularization purposes, we used the weight decay set to 0.01. We reduced the
batch size from 32 to 16 due to the high memory consumption during training, which was the result
of a long sequence length. For benchmarking purposes, we used the k-fold cross-validation training
regime for the fine-tuning phase, where we split the dataset into k folds. In each cross-validation step,
the k-1 folds are used as the training set, while the k-th fold is used as the testing set. The models in
each cross-validation step were trained for 3 epochs. To avoid overfitting, we split the training folds
into smaller training and development sets. After each epoch, we measured the performance on the
development set and saved the new model parameters only if the performance of the model on the
development set increased. For the document representation methods, described in Sections 4.1 and
4.2, the fine-tuning of the language model and the training of the classification head were performed
end-to-end, while for the methods, described in Section 4.3, the classification heads were trained after
the fine-tuning phase was completed. Otherwise, the training regime and the chosen hyperparameters
were the same for all the experiments.

5.2. Intermediate Training Phase Regime

For the intermediate training phase, we utilized the proposed modified modeling objectives,
described in Section 4.4. We used the Slovenian news dataset with annotations on the paragraph level.
The annotations on this level of granularity were used because we wanted to perform the intermediate
training phase on a different dataset than the one used for fine-tuning, but containing information
relevant for the document-level sentiment classification task.

Since the annotated paragraphs were part of the same documents we used for the fine-tuning step,
we took measures to prevent any form of data leakage. As described in Section 5.1, the fine-tuning
phase was performed using 10-fold cross-validation. We performed the intermediate training in
each cross-validation step, but excluded the paragraphs that were part of the documents in the k-th
testing fold of the fine-tuning step from the dataset. We split the remaining data into a training and
development set and trained the language model for a maximum of five epochs. At the end of each
epoch, we calculated the perplexity score of the model on the development set and saved the new
weights only if perplexity improved in the previous epoch. If perplexity did not improve for three

107

Appl. Sci. 2020, 10, 5993

consecutive epochs, we stopped the training early. For this phase, we used the same hyperparameter
settings as for the fine-tuning phase.

5.3. Evaluation

All the models were first trained and evaluated on the Slovenian dataset using 10-fold
cross-validation as described in Sections 5.1 and 5.2. Next, the performance of the models from
each fold was additionally tested on the Croatian test set to check the performance in the zero-shot
learning setting (i.e., without any Croatian data used in training). The performances from each
fold on the Croatian test set were then averaged and reported as a final result. The results for
this set of experiments are presented in Table 2. The performance of the models was summarized
using a standard classification metric, namely the macro-averaged F1 score, which is the appropriate
measure given the highly imbalanced nature of the dataset (dominant neutral class). For completeness,
we also separately report the precision and recall, both macro-averaged over all classes. Additionally,
we also report the average F1 score performance of the model on the Slovenian and Croatian test
sets. The performance of our models was compared to the baseline majority classifiers for both the
Slovenian and Croatian datasets.

Table 2. Results of the document representation approaches. The first column shows the performance
of models in the Slovenian 10-fold cross-validation setting; the second column is the average zero-shot
performance on the Croatian test set; and the last column presents the average F1 score of the results
on the Slovenian and Croatian datasets. Best results are marked in bold.

Model Slovenian Cross-Validation Croatian Test Set Average

Precision Recall F1 Precision Recall F1 F1

Majority classifier 17.34 33.33 22.76 0.20 0.33 25.00 /

Beginning of the document 65.45 ± 2.61 62.83 ± 2.46 63.34 ± 2.29 57.74 ± 1.20 53.91 ± 2.41 52.06 ± 2.64 57.70

Beginning and end of the document 64.72 ± 2.82 62.67 ± 2.69 63.33 ± 2.56 59.00 ± 1.62 53.53 ± 3.64 52.41 ± 2.58 57.87

Sequences from every part of the document

Most informative subsequence 64.42 ± 2.44 62.09 ± 2.27 63.00 ± 2.34 57.87 ± 1.32 53.23 ± 2.82 52.30 ± 2.86 57.65

Averaging subsequence representations 66.50 ± 3.13 62.00 ± 2.45 63.39 ± 2.42 57.53 ± 1.14 52.95 ± 3.38 51.55 ± 3.93 57.47

1D CNN 63.96 ± 10.02 60.91 ± 5.22 61.58 ± 7.78 54.96 ± 5.48 53.31 ± 3.62 50.28 ± 4.65 55.93

6. Results

This section presents the results of the experiments conducted in the course of this study. We first
present the results of the document representation approaches. The results are presented in Table 2.
Next, for the best performing representation approach, we test our newly introduced technique for
sentiment classification with intermediate training, and the results with and without the intermediate
training objective are compared in Table 3. We also compare our results with the previous sate-of-the-art
SVM and Naive Bayes models on the Slovenian dataset from [3], as well as with the neural network
model based on LSTMs and TF-IDF from [39]. We note, however, that the testing regime in these
experiments was not the same. In [3], the authors tested their models using five times 10-fold
cross-validation, while in [39], the model was trained and tested on a random train-test split of the
whole dataset with an 80:20 train-test split ratio. For this reason, the results are not directly comparable.

108

A
pp

l.
Sc

i.
20

20
,1

0,
59

93

Ta
bl

e
3.

P
er

fo
rm

an
ce

of
th

e
m

od
el

u
si

ng
ou

r
in

te
rm

ed
ia

te
se

nt
im

en
t

cl
as

si
fi

ca
ti

on
tr

ai
ni

ng
ap

p
ro

ac
h

co
m

p
ar

ed
to

th
e

m
od

el
w

it
ho

u
t

in
te

rm
ed

ia
te

tr
ai

ni
ng

.
A

dd
it

io
na

lly
,w

e
in

cl
ud

e
th

e
re

po
rt

ed
re

su
lt

s
fr

om
th

e
re

la
te

d
w

or
k

us
in

g
th

e
sa

m
e

da
ta

se
t.

Be
st

re
su

lt
s

ar
e

m
ar

ke
d

in
bo

ld
.

M
od

el
Sl

ov
en

ia
n

C
ro

at
ia

n
A

ve
ra

ge

Pr
ec

is
io

n
R

ec
al

l
F1

Pr
ec

is
io

n
R

ec
al

l
F1

F1

M
aj

or
it

y
cl

as
si

fie
r

17
.3

4
33

.3
3

22
.7

6
0.

20
0.

33
25

.0
0

/

R
ep

or
te

d
re

su
lt

s
fr

om
re

la
te

d
st

ud
ie

s

SV
M

(f
ro

m
Bu

ča
r

et
al

.[
3]

)5
×

10
C

V
/

/
63

.4
2
±

1.
96

/
/

/
/

N
BM

(f
ro

m
Bu

ča
r

et
al

.[
3]

)5
×

10
C

V
/

/
65

.9
7
±

1.
70

/
/

/
/

LS
TM

+T
F-

ID
F

(f
ro

m
Pe

lic
on

[3
9]

)t
ra

in
-s

et
sp

lit
/

/
62

.5
/

/
/

/

R
es

ul
ts

fr
om

th
e

cu
rr

en
ts

tu
dy

Be
gi

nn
in

g
of

th
e

do
cu

m
en

t
65

.4
5
±

2.
61

62
.8

3
±

2.
46

63
.3

4
±

2.
29

57
.7

4
±

1.
20

53
.9

1
±

2.
41

52
.0

6
±

2.
64

57
.7

0

Be
gi

nn
in

g
an

d
en

d
of

th
e

do
cu

m
en

tw
it

h
se

nt
im

en
ti

nt
er

m
ed

ia
te

tr
ai

ni
ng

67
.1

9
±

2.
67

66
.0

0
±

3.
00

66
.3

3
±

2.
60

56
.3

2
±

1.
88

54
.9

0
±

2.
36

54
.7

7
±

1.
39

60
.5

5

109

Appl. Sci. 2020, 10, 5993

As shown in Table 2, all the models using one of the tested document representation methods in
this experiment performed better than the majority baseline classifier by a substantial margin. The best
performing model on the Slovenian dataset (in terms of F1 score) utilizes document representations
formed by simple averaging of the subsequence representations. The different document representation
methods that were tested in this work do not seem to impact the model performance much as the
performances of all our models differed only by a small margin when tested on the Slovenian data.

As far as absolute performance, we can see that the tested methods achieved F1 scores in the
sixties for this particular Slovenian dataset with the best F1 score of 63.39 with averaging subsequence
representations. When these models were tested on the Croatian test set in a zero-shot setting,
the performance additionally dropped for approximately 11% with best the F1 scores achieving the
low fifties. The best performing representation on the Croatian dataset uses the beginning and end of
the document. Interestingly, the best performing model on the Slovenian dataset also saw the highest
drop on the Croatian dataset of 11.84%. We additionally observed high variance of the CNN model
compared to the other models.

Since the three best performing document representation techniques were within a 0.06%
difference on the Slovenian dataset, for experiments with intermediate training for sentiment
enrichment, we opted for the document representation that used the beginning and ending of the input
document as its average performance on the test sets of both Slovenian and Croatian languages was
the highest. The results for the intermediate training experiment (Table 3) show that the model with
the additional intermediate training step outperforms the model without the intermediate training
step when using the same document representation technique. The results show three points better
average performance on the Slovenian dataset and 2.68 points average improvement on the Croatian
dataset in terms of the F1 score. Our model also manages to outperform the previous state-of-the-art
models on the Slovenian dataset, achieving a 0.36 point increase in terms of F1 score, however this
should be taken with precaution as the two evaluation settings differ.

7. Qualitative Exploration of the Models: Behavior of the Attention Space

With the increasing use of neural language models, in recent years, the methodology aimed at
the exploration of the human-understandable patterns, emerging from trained models, has gained
notable attention. Models, such as BERT [40] and similar ones, can consist of hundreds of millions of
parameters, which carry little useful information in terms of studying which parts of the model input
were of relevance when making a prediction. To remedy this shortcoming, visualization methodologies
are actively developed and researched for the task of better understanding the associations between
the input token space and the constructed predictions.

The existing toolkits that offer the exploration of attention have been actively developed in recent
years [41,42] and are widely used to better understand a given model’s behavior. In this section, we
exploit the recently introduced, freely available AttViz [43], an online toolkit for the exploration of the
self-attention space of trained classifiers (http://attviz.ijs.si/). The tool is used to explore the behavior
of the self-attention when considering positive, negative, and neutral classifications. The original tool
was developed for instance-based exploration. In addition, we introduce a novel functionality of the
tool aimed at the analysis of global attention values (per class analysis on the token collection level).

In the remainder of this section, we fist present a collection of selected examples, offering insight
into the trained model’s behavior. We begin by discussing selected positive instances, followed by
neutral and negative ones. All the visualizations were done with the sentiment-enriched model that
we trained in the course of this study. The main aim of this section is to explore the currently available
means of inspecting trained neural language models. A positive example is shown in Figure 2.

110

Appl. Sci. 2020, 10, 5993

(a) Sequence view.

(b) Token view.

Figure 2. Positive Example No. 41. The red ellipse (a) highlights one of the tokens (byte pairs) with
the highest (normalized) self-attention—the token is part of the word “vizija” (translation: vision) (b).
Note also the peaks at the beginning and the end; these peaks refer to the special tokens (e.g., [CLS]]).

The positive example was selected as it has a very high probability of being positive class and
it showcases two main patterns that can be observed throughout the space of positively classified
examples: first, only a handful of tokens are emphasized (if any), and second, there appears to be
strong bias towards the first and the last token, indicating the potential effect of pre-training.

Next, we considered some of the examples classified as negative sentiment (see the example in
Figures 3 and 4).

Figure 3. Negative Example No. 62. In this example, one of the highest attention values was around
the token “izdaje” (translation: treason), which could be one of the carriers of the negative sentiment.
Note that individual lines represent attention values for each of the ten attention heads. The document
was classified with 87.45% probability.

The attention (highlighted red circle) peaks at the discussed token (translated as treason and
negotiations respectively) can be observed, indicating that the neural language model picked up a
signal at the token level during the association of the byte-paired inputs with outputs. Furthermore,
we observed a similar pattern related to the starting [CLS] token, as well as the ending [SEP]
token, i.e., token defining the end of the sentence. The pattern was consistent also throughout the
neutral examples.

111

Appl. Sci. 2020, 10, 5993

Figure 4. Negative Example No. 65. The highlighted region (red) corresponds to the term “pogajanja”
(translation: negotiations), which appears to be associated with the classification of the observed text
into the negative class.

The considered attention spaces offered insight into two main aspects of the trained model. First,
the self-attention space, i.e., the space of the attention values alongside the attention matrix diagonals,
offers relatively little insight into what the model learned. There are at least two main reasons for the
observed behavior, as it appears to deviate from the reported explanations [43]. First, the considered
documents are relatively long. Such documents give rise to a higher spread of the self-attention,
smoothing out the individual peaks. Second, the wider spread of the attention could also be to the
morphology-rich language considered (Slovene).

We next discuss the behavior of the global attention values both at the token, as well as the
distribution level. The top 15 tokens according to the mean attention values are shown in Figure 5.

The presented results confirm the initial finding (e.g., Figure 2) that most of the attention space has
high variability and, as such, does not directly offer interpretable insights; however, some meaningful
results are also observed, e.g., the token with the greatest attention value for the positive class is sport.
The final analysis we conducted was at the level of the global attention distributions. Here, we plotted
the kernel density estimates of raw attention values across different types of instances. The results are
shown in Figure 6.

The distribution visualization indicates that the main differences emerge when considering the
minimum value, a given token ever achieved; this result, albeit unexpected, potentially indicates
that the attention is for classification of negative texts focused on a more particular subset of tokens,
yielding a lower average subject to a skewed distribution. We finally offer quantile-quantile plots in
Figure 7.

112

Appl. Sci. 2020, 10, 5993

(a) Positive sentiment. (b) Negative sentiment.

(c) Neutral sentiment.
Figure 5. Visualization of token level attention. The figures represent the top 15 tokens according to
the mean attention values. In the background, the maximum attention for a given token is also plotted.
Note that the high standard deviation indicates little emphasis on the individual tokens.

(a) Maximum attention per token. (b) Mean attention per token.

(c) Minimum attention per token.
Figure 6. Visualization of attention (log-transformed) distributions. It can be observed that the largest
differences emerge when considering minimum attention. There, the negative texts’ distribution
is the most skewed. When considering maximum and mean distributions, however, no notable
differences emerge.

113

Appl. Sci. 2020, 10, 5993

(a) QQ plot: max attention. (b) QQ plot: min attention. (c) QQ plot: mean attention.
Figure 7. The quantile-quantile fits of the three considered attention distributions. It can be observed
that the min and max attention distributions are skewed, indicating the presence of more extreme
values.

The considered QQ-plots further confirm the observation that the skewed distribution of attention
can be observed when considering min-max values; however, on average, the log transform could be
interpreted to behave as a normal distribution; however, additional tests, such as Pearson’s sample

skewness (computed as n−1 ∑n
i=1(xi−x̄)3

(n−1 ∑n
i=1(xi−x̄)2)3/2 , where xi is the i-th value out of n samples) could be

conducted to further quantify the attention behavior.

8. Availability

The croatian news dataset with document-level sentiment annotations is available on the CLARIN
repository under the Creative Commons license (CC-BY-NC-ND) (http://hdl.handle.net/11356/1342).
The code for all the experiments is available on GitHub (https://github.com/PeliconA/crosslingual_
news_sentiment.git).

9. Conclusions and Future Work

In this work, we addressed the task of sentiment analysis in news articles performed in a zero-shot
cross-lingual setting. The goal was to successfully train models that could, when trained on data in one
language, perform adequately also on data in another language. For this purpose, we used publicly
available data of Slovenian news manually labeled for sentiment to train our models. Additionally, we
gathered a new dataset of Croatian news and labeled it according to the guidelines for the annotation of
the Slovenian dataset. This new dataset served as a test set for the zero-shot cross-lingual performance
of our models.

We based our models on the multilingual Transformer-based model BERT, which has shown
remarkable multilingual and cross-lingual performance. We however identified two potential
drawbacks with the BERT model. The input window of the BERT model is fixed and relatively
short. A widespread approach to this limitation is to shorten the input before sending it to the model
for processing. While this approach is adequate for shorter texts, with longer documents, like news
articles, it may cause severe information loss. The second drawback is that while BERT is pre-trained
on a large collection of data, the only explicit sentiment signal it gets is during the fine-tuning phase
on a usually small collection of labeled data.

To remedy the first potential drawback, we first tested several techniques for producing
more informative long document representations. The techniques, which were described in detail,
were partially inspired by earlier work, but to the best of our knowledge, they have not yet been tested
in a cross-lingual setting. Our results show that all the techniques outperform the majority baseline
classifier by a large margin, even when applied to the Croatian test set in a zero-shot setting where the
model is not fine-tuned on Croatian data.

For the second identified limitation of the BERT model, we proposed a novel intermediate learning
phase that encompasses the masked language modeling task and sentiment classification task. This phase
is performed before the fine-tuning phase using a training set with separate annotations. The goal of this

114

Appl. Sci. 2020, 10, 5993

phase is to induce the sentiment-related information directly into the BERT representations before the
fine-tuning begins on the target task data. Results show that after fine-tuning, the sentiment-enriched
model outperforms the models without the intermediate training phase both on the Slovenian dataset
and on the Croatian test set in a zero-shot setting. Additionally, it slightly outperforms the current
state-of-the-art on the Slovenian dataset, as reported in [3].

In the future, we plan to further test our proposed intermediate sentiment-enrichment phase
with masked language modeling and sentiment classification tasks. Currently, the fine-tuning and
the intermediate training phases share the dataset, but use labels on different levels of granularity:
we used document-level labels for fine-tuning and paragraph-level labels for intermediate training.
We would like to test how using training data from a very different training set would impact the
performance of the proposed intermediate training step. We will also test the general transferability
of this phase. Given a large enough corpus of sentiment-labeled instances that can be used for the
intermediate training step, we would like to see if a Transformer-based model enriched with our
proposed method can work well on sentiment tasks in different target languages and from different
domains. Another interesting research area would be using topic modeling as a supplementary
method for the news-related sentiment classification task. Such research would also test the underlying
assumption that there is a positive correlation between the topic of a news article and the sentiment
that a news article evokes in the readers. Even though the news articles in the datasets used for
this work are not explicitly labeled for topics, they nevertheless deal with varying content and could
support such research.

Author Contributions: A.P. and S.P. designed the study and developed its methodology. M.P. and D.M. provided
the data for the study and guided the annotation process. Formal analysis of the study was done by A.P. Software
for the experiments was written by A.P. Visualization of the trained models was done by B.Š. Validation of the
results and supervision of the study was done by S.P. A.P., M.P., D.M., B.Š. and S.P. cotributed to the writing,
reviewing and editing of the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the European Union’s Horizon 2020 research and innovation program
under Grant Agreement No. 825153, project EMBEDDIA (Cross-Lingual Embeddings for Less-Represented
Languages in European News Media). The work of A.P. was funded also by the European Union’s Rights,
Equality and Citizenship Programme (2014–2020) project IMSyPP (Innovative Monitoring Systems and Prevention
Policies of Online Hate Speech, Grant No. 875263). We acknowledge also the funding by the Slovenian Research
Agency (ARRS) core research program Knowledge Technologies (P2-0103). The results of this publication reflect
only the authors’ views, and the Commission is not responsible for any use that may be made of the information
it contains.

Acknowledgments: We would like to thank 24sata, especially Hrvoje Dorešić and Boris Trupčević, for making
the data available. We thank Jože Bučar for leading the annotation process.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Appendix A. Details on Croatian Dataset Construction

For the selection of articles, the time period was specified: approximately half of the articles
were selected from the period from 1 September 2007 to 31 December 2013 in order to match the
Slovenian dataset, while the other half were recent articles from last five years. From the initial set
of articles, short and medium length articles were kept, leading to final selection. The articles were
then cleaned and preprocessed, and the quality was checked (automatically and manually). The final
dataset consisted of 2025 news articles. The sentiment annotation task was performed on three levels:
document, paragraph, and sentence level.

For the selection of annotators, the condition of being native speakers was imposed, and we also
considered the candidate’s interest in the task.

The annotator were trained in two phases:

• In the first phase, we introduced the project EMBEDDIA and its goals. A referee introduced the
web application for the annotation task. The annotators received basic guidelines, which were
explained to them in detail by a referee. This was followed by the annotation of five articles,

115

Appl. Sci. 2020, 10, 5993

which were annotated together on the three levels (sentence, paragraph, and document level).
Using a five-level Likert scale: [35] (1—very negative, 2—negative, 3—neutral, 4—positive,
and 5—very positive), the annotators annotated each article according to the following
question: “Did this news evoke very positive/positive/neutral/negative/very negative feelings?
(Please specify the sentiment from the perspective of an average Croatian web user)”. Together
with a referee, they discussed the individual instances, every single decision, and the annotation
grade and resolved possible issues and doubts.

• In the second phase, all annotators annotated the same 25 articles individually. Afterwards,
we analyzed the results of the annotation. The agreement (Cronbach’s alpha measure) between
the annotators on the document level was 0.816, which was a very good achievement with only
25 articles. We planned to achieve a 0.8 threshold. If the annotators had not achieved the planned
threshold, they would repeat the second phase until they achieved it. The instances with lower
agreement were discussed, and the issues were resolved.

Since a satisfying inter-annotator agreement was reached, the rest of the 2000 were annotated
by different numbers of annotators. They followed the instructions they were given in the first and
second phases.

To evaluate the process of annotation, we explored correlation coefficients using various measures
of inter-annotator agreement at three levels of granularity, as shown in Table A1. The first three internal
consistency estimates of reliability for the scores, shown in Table A1, normally range between zero
and one. The values closer to one indicate more agreement, when compared to the values closer to
zero. Cronbach’s alpha values indicated a very good internal consistency at all levels of granularity.
Normally, we refer to a value greater than 0.8 as a good internal consistency and above 0.9 as an
excellent one [44]. The value of Krippendorff’s alpha [45] at the document level of granularity implied
a fair reliability test, whereas its values at the paragraph level and sentence level were lower. Fleiss’
kappa values illustrated a moderate agreement among the annotators at all levels of granularity.
In general, a value between 0.41 and 0.60 implies a moderate agreement, above 0.61 a substantial
agreement, and above 0.81 an almost perfect agreement [46]. Kendall’s values indicated a fair level
of agreement between the annotators at all levels of granularity. Correspondingly, the Pearson and
Spearman values range from –1 to 1, where 1 refers to the total positive correlation, 0 to no correlation,
and –1 to the total negative correlation. The coefficients showed moderate positive agreement among
the annotators, but their values decreased when applied to the paragraph and the sentence level.
Usually, the values above 0.3 refer to a weak correlation, above 0.5 to a moderate correlation, and above
0.7 to a strong correlation [47].

Table A1. Results of dataset annotation: level of inter-rater agreement for document, paragraph,
and sentence levels.

Document Level Paragraph Level Sentence Level

ac 0.927 0.888 0.881

ak 0.671 0.565 0.548

k 0.527 0.489 0.441

min max avg min max avg min max avg

rp 0.544 0.824 0.682 0.488 0.719 0.572 0.425 0.706 0.558

rs 0.557 0.762 0.669 0.474 0.702 0.548 0.42 0.696 0.54

W 0.508 0.73 0.625 0.449 0.656 0.513 0.389 0.649 0.504

Our results support the claim by [48] that it can be more difficult to accurately annotate sentences
(or even phrases). In general, the sentiment scores by different annotators were more consistent at the
document level than at the paragraph and sentence level.

116

Appl. Sci. 2020, 10, 5993

The final sentiment of an instance is defined as the average of the sentiment scores given by the
different annotators (as in the Slovenian news set). An instance was labeled as:

• negative, if the average of given scores was less than or equal to 2.4,
• neutral, if the average of given scores was between 2.4 and 3.6,
• positive, if the average of given scores was greater than or equal to 3.6.

References

1. Beigi, G.; Hu, X.; Maciejewski, R.; Liu, H. An overview of sentiment analysis in social media and its
applications in disaster relief. In Sentiment Analysis and Ontology Engineering; Springer: Cham, Switzerland,
2016; pp. 313–340.

2. Mejova, Y. Sentiment Analysis: An Overview; University of Iowa, Computer Science Department: Iowa City,
IA, USA, 2009.

3. Bučar, J.; Žnidaršič, M.; Povh, J. Annotated news corpora and a lexicon for sentiment analysis in Slovene.
Lang. Resour. Eval. 2018, 52, 895–919.

4. Liu, B. Sentiment Analysis and Opinion Mining. Synth. Lect. Hum. Lang. Technol. 2012, 5, 1–167.
doi:10.2200/s00416ed1v01y201204hlt016.

5. Van de Kauter, M.; Breesch, D.; Hoste, V. Fine-Grained Analysis of Explicit and Implicit Sentiment in
Financial News Articles. Expert Syst. Appl. 2015, 42, 4999–5010. doi:10.1016/j.eswa.2015.02.007.

6. Bhutani, B.; Rastogi, N.; Sehgal, P.; Purwar, A. Fake news detection using sentiment analysis. In Proceedings
of the IEEE 2019 Twelfth International Conference on Contemporary Computing (IC3), Noida, India, 8–10
August 2019; pp. 1–5.

7. El Ali, A.; Stratmann, T.C.; Park, S.; Schöning, J.; Heuten, W.; Boll, S.C. Measuring, understanding, and
classifying news media sympathy on twitter after crisis events. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–13.

8. Rambaccussing, D.; Kwiatkowski, A. Forecasting with news sentiment: Evidence with UK newspapers.
Int. J. Forecast. 2020. doi:10.1016/j.ijforecast.2020.04.002.

9. Bowden, J.; Kwiatkowski, A.; Rambaccussing, D. Economy through a lens: Distortions of policy coverage in
UK national newspapers. J. Comp. Econ. 2019, 47, 881–906.

10. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv 2018, arXiv:1810.04805.

11. Schwartz, B. Google’s Latest Search Algorithm to Better Understand Natural Language. Search Engine
Land. 25 October 2019. Available online: https://searchengineland.com/welcome-bert-google-artificial-
intelligence-for-understanding-search-queries-323976 (accessed one 28 August 2020).

12. Albarino, S. Does Google’s BERT Matter in Machine Translation? Slator. 17 October 2019. Available online:
https://slator.com/machine-translation/does-googles-bert-matter-in-machine-translation/ (accessed one
28 August 2020).

13. Pires, T.; Schlinger, E.; Garrette, D. How multilingual is Multilingual BERT? arXiv 2019, arXiv:1906.01502.
14. Karthikeyan, K.; Wang, Z.; Mayhew, S.; Roth, D. Cross-lingual ability of multilingual bert: An empirical

study. In Proceedings of the International Conference on Learning Representations, Scottsdale, AZ, USA,
2–4 May 2019.

15. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz,
M.; Brew, J. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. arXiv 2019,
arXiv:1910.03771.

16. Xie, Q.; Dai, Z.; Hovy, E.; Luong, M.T.; Le, Q.V. Unsupervised data augmentation for consistency training.
arXiv 2019, arXiv:1904.12848.

17. Lin, K.Y.; Yang, C.; Chen, H.H. Emotion Classification of Online News Articles from the Reader’s
Perspective. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology, Sydney, Australia, 9–12 December 2009; Volume 1, pp. 220–226.
doi:10.1109/WIIAT.2008.197.

18. Li, X.; Xie, H.; Chen, L.; Wang, J.; Deng, X. News Impact on Stock Price Return via Sentiment Analysis.
Knowl. Based Syst. 2014, 69. doi:10.1016/j.knosys.2014.04.022.

117

Appl. Sci. 2020, 10, 5993

19. Mansar, Y.; Gatti, L.; Ferradans, S.; Guerini, M.; Staiano, J. Fortia-FBK at SemEval-2017 Task 5: Bullish or
Bearish? Inferring Sentiment towards Brands from Financial News Headlines. In Proceedings of the 11th
International Workshop on Semantic Evaluation (SemEval-2017); Association for Computational Linguistics:
Vancouver, BC, Canada, 2017; pp. 817–822. doi:10.18653/v1/S17-2138.

20. Moore, A.; Rayson, P. Lancaster A at SemEval-2017 Task 5: Evaluation metrics matter: predicting sentiment
from financial news headlines. In Proceedings of the 11th International Workshop on Semantic Evaluation
(SemEval-2017); Association for Computational Linguistics: Vancouver, BC, Canada, 2017; pp. 581–585.
doi:10.18653/v1/S17-2095.

21. Wan, X. Co-training for cross-lingual sentiment classification. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP, Singapore, 2–7 August 2009; pp. 235–243.

22. Guzmán, F.; Chen, P.J.; Ott, M.; Pino, J.; Lample, G.; Koehn, P.; Chaudhary, V.; Ranzato, M. The FLoRes
evaluation datasets for low-resource machine translation: Nepali-english and sinhala-english. arXiv 2019,
arXiv:1902.01382.

23. Zhou, X.; Wan, X.; Xiao, J. Attention-based LSTM network for cross-lingual sentiment classification.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX,
USA, 1–5 November 2016; pp. 247–256.

24. Chen, Z.; Shen, S.; Hu, Z.; Lu, X.; Mei, Q.; Liu, X. Emoji-powered representation learning for cross-lingual
sentiment classification. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17
May 2019; pp. 251–262.

25. Funaki, R.; Nakayama, H. Image-mediated learning for zero-shot cross-lingual document retrieval.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon,
Portugal, 17–21 September 2015; pp. 585–590.

26. Rei, M.; Søgaard, A. Zero-shot sequence labeling: Transferring knowledge from sentences to tokens. arXiv
2018, arXiv:1805.02214.

27. Wang, Y.; Che, W.; Guo, J.; Liu, Y.; Liu, T. Cross-lingual BERT transformation for zero-shot dependency
parsing. arXiv 2019, arXiv:1909.06775

28. Hsu, T.Y.; Liu, C.L.; Lee, H.Y. Zero-shot Reading Comprehension by Cross-lingual Transfer Learning with
Multi-lingual Language Representation Model. arXiv 2019, arXiv:1909.09587

29. Ye, Z.; Geng, Y.; Chen, J.; Chen, J.; Xu, X.; Zheng, S.; Wang, F.; Zhang, J.; Chen, H. Zero-shot Text Classification
via Reinforced Self-training. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, Seattle, WA, USA, 5–10 July 2020; pp. 3014–3024.

30. Jebbara, S.; Cimiano, P. Zero-Shot Cross-Lingual Opinion Target Extraction. arXiv 2019, arXiv:1904.09122
31. Fei, H.; Li, P. Cross-Lingual Unsupervised Sentiment Classification with Multi-View Transfer Learning.

In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Seattle, WA,
USA, 5–10 July 2020; pp. 5759–5771.

32. Tan, X.; Yan, R.; Tao, C.; Wu, M. Classification over Clustering: Augmenting Text Representation with
Clusters Helps! In Proceedings of the CCF International Conference on Natural Language Processing and Chinese
Computing; Springer: Cham, Switzerland, 2019; pp. 28–40.

33. Pappagari, R.; Zelasko, P.; Villalba, J.; Carmiel, Y.; Dehak, N. Hierarchical Transformers for Long Document
Classification. In Proceedings of the 2019 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), Singapore, 14–18 December 2019; pp. 838–844.

34. Beltagy, I.; Peters, M.E.; Cohan, A. Longformer: The long-document transformer. arXiv 2020,
arXiv:2004.05150.

35. Likert, R. A Technique for the Measurement of Attitudes. Arch. Psychol. 1932, 140, 5–55.
36. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.;

et al. Google’s neural machine translation system: Bridging the gap between human and machine translation.
arXiv 2016, arXiv:1609.08144

37. Pruksachatkun, Y.; Phang, J.; Liu, H.; Htut, P.M.; Zhang, X.; Pang, R.Y.; Vania, C.; Kann, K.; Bowman, S.R.
Intermediate-Task Transfer Learning with Pretrained Models for Natural Language Understanding: When
and Why Does It Work? arXiv 2020, arXiv:2005.00628.

118

Appl. Sci. 2020, 10, 5993

38. He, C.; Chen, S.; Huang, S.; Zhang, J.; Song, X. Using Convolutional Neural Network with BERT for Intent
Determination. In Proceedings of the IEEE 2019 International Conference on Asian Language Processing
(IALP), Shanghai, China, 15–17 November 2019; pp. 65–70.

39. Pelicon, A. Zaznavanje sentimenta v novicah z globokimi nevronskimi mrežami. In Proceedings of the
Conference on Language Technologies and Digital Humanities 2020 (to appear), Ljubljana, Slovenia 17–20
March 2020.

40. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention
is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA,
USA, 4–9 December 2017; pp. 5998–6008.

41. Vig, J. Visualizing Attention in Transformer-Based Language Representation Models. arXiv 2019,
arXiv:1904.02679.

42. Vig, J.; Belinkov, Y. Analyzing the structure of attention in a transformer language model. arXiv 2019,
arXiv:1906.04284.

43. Škrlj, B.; Eržen, N.; Sheehan, S.; Luz, S.; Robnik-Šikonja, M.; Pollak, S. AttViz: Online exploration of
self-attention for transparent neural language modeling. arXiv 2020, arXiv:2005.05716.

44. George, D.; Mallery, P. SPSS for Windows Step-by-Step: A Simple Guide and Reference, 14.0 Update, 7th ed.;
Allyn and Bacon, Inc.: Boston, MA, USA, 2006.

45. Krippendorff, K. Content Analysis: An Introduction to Its Methodology, 2nd ed.; Sage Publications:
Thousand Oaks, CA, USA, 2004.

46. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33,
159–174.

47. Rumsey, D.J.; Unger, D. U Can: Statistics for Dummies; John Wiley: Hoboken, NJ, USA, 2015.
48. O’Hare, N.; Davy, M.; Bermingham, A.; Ferguson, P.; Sheridan, P.; Gurrin, C.; Smeaton, A. Topic-dependent

sentiment analysis of financial blogs. In Proceedings of the TSA 2009—1st International CIKM Workshop
on Topic-Sentiment Analysis for Mass Opinion Measurement, Hong Kong, China, 6 November 2009; TSA:
Arlington County, VA, USA, 2009; pp. 9–16, ISBN 978-1-60558-805-6.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

119

applied
sciences

Article

Incorporating Synonym for Lexical Sememe
Prediction: An Attention-Based Model

Xiaojun Kang 1, Bing Li 1, Hong Yao 1 , Qingzhong Liang 1, Shengwen Li 2,3 ,
Junfang Gong 2,4 and Xinchuan Li 1,*

1 School of Computer Science, China University of Geosciences, Wuhan 430074, China;
kangxj@cug.edu.cn (X.K.); 20141002431@cug.edu.cn (B.L.); yaohong@cug.edu.cn (H.Y.);
qzliang@cug.edu.cn (Q.L.)

2 School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China;
swli@cug.edu.cn (S.L.); jfgong@cug.edu.cn (J.G.)

3 National Engineering Research Center for Geographic Information System, China University of Geosciences,
Wuhan 430074, China

4 Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources,
Shenzhen 518034, China

* Correspondence: lixinchuan@cug.edu.cn; Tel.: +86-27-67883716

Received: 29 July 2020; Accepted: 27 August 2020; Published: 29 August 2020

Abstract: Sememe is the smallest semantic unit for describing real-world concepts, which improves
the interpretability and performance of Natural Language Processing (NLP). To maintain the
accuracy of the sememe description, its knowledge base needs to be continuously updated, which is
time-consuming and labor-intensive. Sememes predictions can assign sememes to unlabeled words
and are valuable work for automatically building and/or updating sememeknowledge bases (KBs).
Existing methods are overdependent on the quality of the word embedding vectors, it remains a
challenge for accurate sememe prediction. To address this problem, this study proposes a novel
model to improve the performance of sememe prediction by introducing synonyms. The model scores
candidate sememes from synonyms by combining distances of words in embedding vector space and
derives an attention-based strategy to dynamically balance two kinds of knowledge from synonymous
word set and word embedding vector. A series of experiments are performed, and the results show
that the proposed model has made a significant improvement in the sememe prediction accuracy.
The model provides a methodological reference for commonsense KB updating and embedding of
commonsense knowledge.

Keywords: natural language processing; knowledge base; commonsense; sememe prediction;
attention model

1. Introduction

In the field of Natural Language Processing (NLP), knowledge bases (KBs) play an important
role in many NLP tasks. They provide rich semantic information for downstream tasks such as
semantic disambiguation using WordNet’s categorical information [1], bilingual embedded learning
based on a multilingual KB [2]. Besides, recent researches have demonstrated that the introducing of
KBs, especially commonsense KBs, not only improves the interpretability and performance of natural
language processing task but also reduces the training time for machine learning [3–5].

In the commonsense KB of natural language, sememe denotes a single basic concept represented
by words in Chinese and English. Linguists pointed out a long time ago that sememes are finer-grained
semantic units than words [6], and a similar point is made in the theory of the universals of language [7].
For example, sememe is used as a basic representation object to reveal the relationship between

121

Appl. Sci. 2020, 10, 5996

concepts and properties they possess in HowNet, which is a well-known Chinese general KB [8].
HowNet employs linguists to artificially define some 2000 sememes as the smallest, most basic units of
meaning that cannot be subdivided. It uses these sememes to annotate over 100,000 words and phrases.
So far, HowNet has been successfully applied to a variety of NLP tasks, such as word similarity
computation [9], semantic disambiguation [10], sentiment analysis [11], and improving word vector
quality [12], and evaluating the semantic reasonableness of sentences [13].

The continued emergence of new words and the semantic evolution of words, facilitated by the
increase in human communication capabilities and methods, has made it necessary to frequently
enrich and update KBs. However, manually labeling sememes of words is a time-consuming and
labor-intensive process. Besides, it can also suffer from inconsistent annotation results if the peoples
who label sememes are not a domain knowledge expert. Benefiting the semantic information contained
in the pre-trained word vectors, Xie, R., et al. [14,15] proposed a series of automatic labeling methods
based on word vectors. These methods model the association between word vector representations by
collaborative filtering or matrix decomposition methods, achieving automatic assigning sememes into
unseen words.

However, there still remain challenges in accurately predicting sememes of unlabeled words.
One of the challenges is that the performance of the model is highly dependent on the quality of the
pre-trained word embedding vector. Furthermore, the word vector model is relatively simple, and the
word vectors it constructs may not fully represent the senses of words in the real world. Table 1
illustrates a real-world example of the word “Shen Xue (申雪)”, which means “redress an injustice”.
In Table 1, the similar words of the word "Shen Xue (申雪)" in the word embedding vector space
are more similar to skating, because there is a famous skater named “Shen Xue (申雪)”. That is to
say, sometimes a word’s embedding vector does not capture its semantics well. This may be due to
the fact that most language models learn vectors based on the assumption that co-occurrence words
are similar. We argue that the obtained word-embedding vectors mainly present correlations between
words, rather than similarities between words.

Table 1. Comparison of the synonyms words and the top similar words in embedding space of “Shen
Xue (申雪)”.

Metric Words Similarity in Embedding Space

Top similar words in embedding vector

Skating (滑冰) 0.617
winter Olympics (冬奥会) 0.573

Speedskating (速滑) 0. 536
Ice Arena (冰场) 0. 471

Gymnastics (体操) 0.466

Synonyms

complain of an injustice (叫屈) 0.136
appeal for justice (申冤) 0.122
cry out for justice (喊冤) 0.036

exonerate (昭雪) 0.057

True sememes Corrections (改正), result (结果), error (误)

To address the problem, we propose to use synonyms to improve the performance of the sememe
prediction. Compared to word embedding vectors, synonyms are more consistent with human
cognition, thus providing more solid references for predicting sememe. More importantly, synonym
acquisition does not require a lot of training like word embedding training. Assigning synonyms of
words does not require specialized knowledge, thus it can be done by volunteers.

This study aims to improve the prediction accuracy of the sememes of unlabeled words by
introducing synonyms. Our original contributions include: (1) By introducing synonym knowledge,
a sememe prediction model is explored from the perspective of word similarities rather than word
correlations. (2) An attention-based sememe prediction model that incorporates information on

122

Appl. Sci. 2020, 10, 5996

synonym sets and word embeddings is developed to optimize the prediction effect through an
attention strategy.

The rest of this paper is organized as follows. In Section 2, we review the related works and
illustrate the limitations that remain. Section 3 details how the proposed model works. The dataset
and evaluation experiments are presented in Section 4. We discuss several major factors that may affect
model performance in Section 5. Section 6 concludes our work.

2. Related Work

Many KBs have been built recently for understanding the processes of NLP and improving the
performance of NLP. One type of KB is known as commonsense KB, such as WordNet [16], HowNet [8],
and BabelNet [17]. Compared to other types of KBs, such as Freebase [18], DBPedia [19], and YAGO [20],
those manually defined commonsense KBs are richer in human knowledge and provide promising
backing for various NLP tasks.

Considering that commonsense knowledge is increasing and evolving, it is important to update
the commonsense KB, such as sememes of words, by automated approaches. The core of the automated
process is to build intelligent algorithms that can accurately predict the sememes of unlabeled words or
evolved words. To obtain higher accuracy, the algorithms may need to leverage all available knowledge.

One line of work that predicts sememes of unlabeled words was initiated using word embedded vectors.
It assumes that similar words in word vector space should share the same sememes, thus sememes of
unlabeled words can be inferred with pre-trained words embedded vector [21,22]. Sememe Prediction
with Word Embeddings (SPWE) model first retrieves words that are similar to the vector representation
of the word to be predicted and then recommends these words to the unlabeled word to be predicted,
which in turn leads to the sememe prediction [14]. The paper also developed models based on matrix
decomposition strategy to learn semantics and semantic relationships between words, including
Sememe Prediction with Sememe Embeddings (SPSE) model and Sememe Prediction with Aggregated
Sememe Embeddings (SPASE) model, and consequently predict the sememes of unlabeled words.
LD-seq2seq treats sememe prediction as a weakly ordered multi-label task to label new words [23].
The models above, however, are limited by the quality of the word embedding vector, and it remains a
challenge to obtain higher prediction accuracy.

To improve sememe prediction accuracy, various data have been introduced into existing
prediction models. By introducing the internal structural features of words to solve the out-of-vocabulary
(OOV) problem, Character-enhanced Sememe Prediction (CSP) model improves the prediction accuracy
of the low-frequency words [15]. The method can alleviate the problem of large errors in the word
vectors for words with fewer frequencies in the corpus. Based on the complementarity of different
languages, Qi, F., et al. [24] establishes the association between semantics and cross-lingual words in the
low-dimensional semantic space, and thus improves the ability of semantics prediction. Although the
above work is very innovative, the employed knowledge is not very closed with sememes, and there is
still a gap between the predicted results and the sememes that should be assigned.

Recently, the Sememe Prediction with Sentence Embedding and Chinese Dictionary (SPSECD)
model have been proposed, which incorporates a dictionary as auxiliary information and predicts the
sememe through the Recurrent Neural Network [25]. The model can account for the fact that some
words have multiple senses, achieving the improvement of prediction accuracy. However, both the
senses of new words and newly evolved sense of existing words cannot be presented by a dictionary
in time, because it also needs time for updating. Especially, the word item in dictionaries is a very
accurate expression, thus it needs more time to carefully revise new items by professional people.

3. Methodology

In our approach, we follow the basic idea of SPWE model, an assumption that similar words
will share sememes. However, we argue that although word vectors can represent some semantic
relatedness between words, it is not sufficient to represent the similarity of words in the real world,

123

Appl. Sci. 2020, 10, 5996

and thus are limited for accurately predicting the sememes of unlabeled words. Therefore, we employ
synonyms, which embed a more accurate and richer human knowledge, to achieve sememe prediction.

3.1. Score Sememes from Synonyms

In the study, words with similar semantics are grouped into the same set, which we refer to here as
synonym set, T =

{
w1, w2, . . . , wi, . . . , wj, . . . , wn

}
, where wi denotes a word. Any two words, wi and

wj, in the same synonym set are synonymous.
A score function is defined to score all the candidate sememes of unlabeled word w, in which

high-scored sememes will be predicted as the sememes of w. For incorporating the knowledge
in pre-trained word vectors, the distance of words in the pre-trained vector space is employed in
the function. The function, using synonyms, can be formulated as Equation (1):

ScoreSPS
(
s j, w

)
=

∑

wi∈T
cos(w, wi)·Mi j·cri (1)

where M is the matrix representing the relationship between words and sememes, and can be
calculated as

Mi j =

{
1 s j is sememe o f wi
0 otherwise

(2)

and cos(w, wi) presents the cosine distance between the embedding vector of w and that of wi.
Different from the classic collaborative filtering in recommendation systems, sememes of most
unrelated words do not include the true sememes of w in sememe prediction task. Therefore, the score
function should give significantly large weight to the most similar words. To increase the influences of
a few top words that are similar to w, a declined confidence factor cri for each word wi is assigned,
where ri the similarity rank of the word is wi. to the word w in embedding space.

3.2. Attention-Based Sememe Prediction

Although synonyms can more accurately depict semantic similarity between two words than
word embedding vector, the number of words existing in the synonym dataset is far fewer than the
number of words represented in the pre-trained word vector dataset, such as Glove [26]. For words that
are not included in synonym datasets, the above score function does not yet fully support the task of
sememe prediction. Besides, prediction accuracy may also be impaired for words with fewer synonyms.
Therefore, we combine synonym sets and pre-trained word vectors to depict the semantic similarity
between words. A straightforward model can be derived, which score recommendation sememes by
summing the scores of the two models using a coefficient of weight, as shown in Equation (3).

ScoreSPSW
(
s j, w

)
= αScoreSPS

(
s j, w

)
+ (1− α)ScoreSPWE

(
s j, w

)
(3)

where α is a hyperparameter, which denotes the weight of the SPS model’s score.
Actually, we found that the predicted sememes based on synonym and based on word vectors,

such as SPWE, were significantly different for different words. Using Equation (2) weights presented
by the hyperparameter α is relatively straightforward, it is not flexible enough to make full use of
knowledge from both the synonym and word embedding.

The study assumes that the weights of different knowledge should vary for different unlabeled
words that are to be predicted. Inspired by [27], this study introduces an attention mechanism to obtain
those weights. One of the benefits of attention mechanisms is that they allow for dealing with variable
inputs, focusing on the most relevant parts of the input to make decisions [28]. An attention function
can be described as mapping a query and a set of key-value pairs to an output [27], where the query
and keys are word vectors; output is the weights of related words. Thus, an attention-based model,

124

Appl. Sci. 2020, 10, 5996

named ASPSW (Attention-based Sememe Prediction combining Synonym and Word embedding),
is derived, and its score function can be calculated as Equation (4):

ScoreASPSW
(
s j, w

)
= Attn

(
s j, w, W

)
=

n∑

Wi∈Y
aAttn

i Score
(
s j, w

)
(4)

where aAttn
i denotes the weights of contributions to different knowledge for different sememes in the

joint model. The difference can be adjusted according to the distance in the word embedding space.
Based on this, the weights of the contributions of different knowledge can be calculated by dynamically
adjusting the score weights of the knowledge from Synonym and pre-trained word vector:

aAttn
i =

1
2 − log(|Simwe − Simsy|) i f wi ∈W

1 − log(|Simwe − Simsy|)
2 − log(|Simwe − Simsy|) i f wi ∈ T

(5)

Simwe =
1
K

∑

wi∈W
cos(w, wi) (6)

Simsy =
1
N

∑

wi∈T
cos(w, wi) (7)

where T is the synonym set of word w; W presents the top K similar words set of w in embedding space
respectively, where K is a hyperparameter; Simwe and Simsy represent the average semantic similarity
between new words and similar words in word embedding and synonyms, respectively; cos(w, wi) is
the cosine similarity between w and wi according to their embedding vectors.

4. Experiment and Results

4.1. Dataset

HowNet: HowNet is a commonsense KB, in which approximately 2,000 sememes are manually
defined. Those sememes serve as the smallest unit of meaning that is not easily re-divided, and more
than 100,000 words and phrases are annotated with these sememes. The structure of HowNet is
illustrated in Figure 1. The example in the figure shows the word “草根” explained in terms of
sememes. The word consists of two senses in Chinese. One is "Grass root", which means a certain
organ of a plant, and the other is “Grass roots”, which generally refers to people at the bottom level
or entrepreneurs starting from scratch. The former is explained by sememes, “part”, “base” and
“flowerGrass”, and the latter consists of sememes, “human” and “ordinary”. To reduce the noises
from low-frequency sememes, the study removed the low-frequency sememes following the approach
in [14] and experimented with only 1,400 remaining sememes.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 13

𝑆𝑐𝑜𝑟𝑒ASPSW(𝑠𝑗 , 𝑤) = 𝐴𝑡𝑡𝑛(𝑠𝑗 , 𝑤,𝑊) = ∑ 𝑎𝑖
𝐴𝑡𝑡𝑛𝑆𝑐𝑜𝑟𝑒(𝑠𝑗,𝑤)

𝑛

𝑊𝑖∈𝑌

 (5)

where 𝑎𝑖
𝐴𝑡𝑡𝑛 denotes the weights of contributions to different knowledge for different sememes in

the joint model. The difference can be adjusted according to the distance in the word embedding

space. Based on this, the weights of the contributions of different knowledge can be calculated by

dynamically adjusting the score weights of the knowledge from Synonym and pre-trained word

vector:

𝑎𝑖
Attn =

{

1

2 − 𝑙𝑜𝑔(|𝑆𝑖𝑚𝑤𝑒 − 𝑆𝑖𝑚𝑠𝑦|)
 if 𝑤𝑖 ∈ 𝑊

1 − 𝑙𝑜𝑔 (|𝑆𝑖𝑚𝑤𝑒 − 𝑆𝑖𝑚𝑠𝑦|)

2 − 𝑙𝑜𝑔 (|𝑆𝑖𝑚𝑤𝑒 − 𝑆𝑖𝑚𝑠𝑦|)
 if 𝑤𝑖 ∈ 𝑇

 (6)

𝑆𝑖𝑚𝑤𝑒 =
1

𝐾
  ∑ 𝑐𝑜𝑠(𝑤,  𝑤𝑖)

𝑤𝑖 ∈𝑊

  (7)

𝑆𝑖𝑚𝑠𝑦 =
1

𝑁
  ∑ 𝑐𝑜𝑠(𝑤,  𝑤𝑖)

𝑤𝑖 ∈𝑇

  (8)

where T is the synonym set of word w; W presents the top K similar words set of w in embedding

space respectively, where K is a hyperparameter; 𝑆𝑖𝑚𝑤𝑒 and 𝑆𝑖𝑚𝑠𝑦 represent the average semantic

similarity between new words and similar words in word embedding and synonyms, respectively;

𝑐𝑜𝑠(𝑤,  𝑤𝑖) is the cosine similarity between 𝑤 and 𝑤𝑖 according to their embedding vectors.

4. Experiment and Results

4.1. Dataset

HowNet: HowNet is a commonsense KB, in which approximately 2,000 sememes are manually

defined. Those sememes serve as the smallest unit of meaning that is not easily re-divided, and more

than 100,000 words and phrases are annotated with these sememes. The structure of HowNet is

illustrated in Figure 1. The example in the figure shows the word “草根” explained in terms of

sememes. The word consists of two senses in Chinese. One is "Grass root", which means a certain

organ of a plant, and the other is “Grass roots”, which generally refers to people at the bottom level

or entrepreneurs starting from scratch. The former is explained by sememes, “part”, “base” and

“flowerGrass”, and the latter consists of sememes, “human” and “ordinary”. To reduce the noises

from low-frequency sememes, the study removed the low-frequency sememes following the

approach in [14] and experimented with only 1,400 remaining sememes.

Figure 1. The sememes of Word “草根” in a commonsense database.
Figure 1. The sememes of Word “草根” in a commonsense database.

125

Appl. Sci. 2020, 10, 5996

Sogou-T: The Sogo-T Corpus is an Internet corpus developed by Sogou and its corporate partners,
which contains a variety of original web pages from the Internet, with a total of about 2.7 billion words.

Synonym dictionary: There are several available synonym data sources, such as the synonym
dictionary ABC Thesaurus, the Chinese Dictionary, HIT IR-Lab Tongyici Cilin from Harbin Institute of
Technology Social Computing and Information Retrieval Research Center, China. In the experiment,
we selected HIT IR-Lab Tongyici Cilin (Extended) as a data source of the synonym set. It contains a
total of 77,343 words. All words are organized together in a tree-like hierarchy with a total of five layers,
as shown in Figure 2. For each layer, each category corresponds to a different code, e.g., “Evidence”,
“Proof” belong to the same category with code “Db03A01”. The lower the layer, the finer the granularity
of the category and the more similar the sense of words under the same node. The study uses only the
lowest layer to construct synonym sets.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 13

Sogou-T: The Sogo-T Corpus is an Internet corpus developed by Sogou and its corporate

partners, which contains a variety of original web pages from the Internet, with a total of about 2.7

billion words.

Synonym dictionary: There are several available synonym data sources, such as the synonym

dictionary ABC Thesaurus, the Chinese Dictionary, HIT IR-Lab Tongyici Cilin from Harbin Institute

of Technology Social Computing and Information Retrieval Research Center, China. In the

experiment, we selected HIT IR-Lab Tongyici Cilin (Extended) as a data source of the synonym set.

It contains a total of 77,343 words. All words are organized together in a tree-like hierarchy with a

total of five layers, as shown in Figure 2. For each layer, each category corresponds to a different code,

e.g., “Evidence”, “Proof” belong to the same category with code “Db03A01”. The lower the layer, the

finer the granularity of the category and the more similar the sense of words under the same node.

The study uses only the lowest layer to construct synonym sets.

Figure 2. The five layers in HIT IR-Lab Tongyici Cilin.

4.2. Experimental Settings

The study employs Glove [26] to obtain the word embedding vectors of all words in the Sogou-

T corpus. To keep data alignment, we removed words that were not contained in the pre-trained

word vectors or not listed in the synonym sets. In the end, we selected a total of 44,556 words from

HowNet. Ten percent of the words are selected for the test, and the rest 90% words are for training.

Models in three state-of-the-art works are selected as baseline models. The first work [14]

includes five models, SPWE, SPSE, SPASE, SPWE+SPSE, and SPWE+SPASE. The second group

models are proposed in [15], including five models variants: SPWCF (Sememe Prediction with Word-

to-Character Filtering); SPCSE (Sememe Prediction with Character and Sememe Embeddings);

SPWCF+SPCSE models that use only the internal information of words and both internal and external

information for the original meaning; and the integrated framework of prediction CSP (Character-

enhanced Sememe Prediction), respectively. The model in the last group is LD-seq2seq (Label

Distributed seq2seq) that treats the sememe prediction as a weakly ordered multi-label task [23].

Follow the settings in [14], all the dimension sizes of word vectors, sememe vectors, and

character vectors are set to 200. For the baseline model, in the SPWE model, the hyperparameter c

that controls the contribution weight of different words is set to 0.8. The number of semantically

similar words in the word vector space is set to K=100, which is the same as the setting in work [14].

In the SPSE model, the probability of decomposing zero elements in the matrix of word-sememe is

set to 0.5%, the initial learning rate is set to 0.01, and the learning rate drops after iteration, and

λSPWE/λSPSE is set to 2.1 in its joint model, where 𝜆𝑆𝑃𝑊𝐸 and 𝜆𝑆𝑃𝑆𝐸 represent the weights of the SPWE

and SPSE models, respectively. For models from [15], we use cluster-based character embedding [29]

to learn pre-trained character embeddings; the probability of decomposing zero elements in the

Figure 2. The five layers in HIT IR-Lab Tongyici Cilin.

4.2. Experimental Settings

The study employs Glove [26] to obtain the word embedding vectors of all words in the Sogou-T
corpus. To keep data alignment, we removed words that were not contained in the pre-trained word
vectors or not listed in the synonym sets. In the end, we selected a total of 44,556 words from HowNet.
Ten percent of the words are selected for the test, and the rest 90% words are for training.

Models in three state-of-the-art works are selected as baseline models. The first work [14] includes
five models, SPWE, SPSE, SPASE, SPWE+SPSE, and SPWE+SPASE. The second group models are
proposed in [15], including five models variants: SPWCF (Sememe Prediction with Word-to-Character
Filtering); SPCSE (Sememe Prediction with Character and Sememe Embeddings); SPWCF+SPCSE
models that use only the internal information of words and both internal and external information for
the original meaning; and the integrated framework of prediction CSP (Character-enhanced Sememe
Prediction), respectively. The model in the last group is LD-seq2seq (Label Distributed seq2seq) that
treats the sememe prediction as a weakly ordered multi-label task [23].

Follow the settings in [14], all the dimension sizes of word vectors, sememe vectors, and character
vectors are set to 200. For the baseline model, in the SPWE model, the hyperparameter c that controls
the contribution weight of different words is set to 0.8. The number of semantically similar words in
the word vector space is set to K=100, which is the same as the setting in work [14]. In the SPSE model,
the probability of decomposing zero elements in the matrix of word-sememe is set to 0.5%, the initial
learning rate is set to 0.01, and the learning rate drops after iteration, and λSPWE/λSPSE is set to 2.1 in its
joint model, where λSPWE and λSPSE represent the weights of the SPWE and SPSE models, respectively.

126

Appl. Sci. 2020, 10, 5996

For models from [15], we use cluster-based character embedding [29] to learn pre-trained character
embeddings; the probability of decomposing zero elements in the matrix of word-sememe is set to 2.5%.
For the joint model, we set the weight ratio of SPWCF and SPCSE to 4.0, the r weight ratio of SPWE and
SPSE is 0.3125, and the weight ratio of internal and external models is 1.0. For LD-seq2seq [23] model,
the dimension size of all hidden layers is set to 300, and its training batch size is set to 20. For SPSW
model, we argue the contributions from SPS and SPWE are approximately equivalent, so α is set to 0.5.

4.3. Results

Since a large number of words have multiple sememes, the sememe prediction task can be
considered as a multi-label classification task. The study uses the Mean Average Precision (MAP) as
a metric, which is the same as previous work [14], to evaluate the accuracy of predicting sememe.
For each unlabeled word in the test set, our model and the baseline models ranked all candidate
sememes. Their MAPs are calculated by ranked results on the test dataset and are reported in Table 2.

Table 2. Prediction accuracy: Mean Average Precision (MAP); the best result is in bold-faced.

Model MAP

SPWE [14] 0.5610
SPSE [14] 0.3916

SPASE [14] 0.3538
SPWE+SPSE [14] 0.5690

SPWE+SPASE [14] 0.5684

SPCSE [15] 0.3105
SPWCF [15] 0.4529

SPWCF+SPCSE [15] 0.4849
CSP [15] 0.6408

LD-seq2seq [23] 0.3765

SPS 0.5818
SPSW 0.6578

ASPSW 0.6774

Table 2 shows the accuracy of the sememe prediction accuracies of the baselines model and
the proposed models in the study, where SPS, SPSW, and ASPSW are three models that employ
Equation (1), (2), and (3) as score function, respectively.

The results suggest the proposed models ASPSW had made significant improvements compared
to SPWE model. This experimental result further supports our idea that synonym sets, compared to
word vectors, can more accurately characterize the sememe correlated relationships between words.
The SPSW model has a larger gain than the SPS model, which shows that although the synonymy
forest can provide more accurate semantic similarity, the synonyms provided by the synonymy forest
are limited and rare, so the semantic information provided by the word vector can be combined to
further improve the accuracy of the prediction of sememes. The ASPSW, using attention strategy to
dynamic weigh model significantly, outperforms the fixed weights, which shows that the proposed
attention mechanism is effective in predicting the semantics for different unlabeled words and can
effectively adjust the effects of different knowledge for words to be predicted.

5. Discussion

5.1. The Two Ways of Combining Synonyms and Word Embedding Vectors

Two score functions are introduced in Section 3.2 for combining knowledge from synonyms
and word embedding vector. One is the static SPSW, as shown in Equation (2), and the other is
attention-based ASPSW, as shown in Equation (3). The former score function combines the knowledge
between synonyms and from pre-trained word vector by the hyperparameters, α, and the later score

127

Appl. Sci. 2020, 10, 5996

function dynamically balances two kinds of knowledge using an attention strategy. To examine the
performance of two models, we performed experiments with a different value on static SPSW, and listed
the results in Table 3.

Table 3. The prediction accuracy of different α; the best result is in bold-face.

α MAP

0.1 0.5820
0.2 0.6023
0.3 0.6222
0.4 0.6416
0.5 0.6578
0.6 0.6718
0.7 0.6787
0.8 0.6764
0.9 0.6674

ASPSW 0.6774

As shown in Table 3, the values of α have made a significant effect on the prediction accuracy.
When it was set to 0.7, the model SPSW achieved the best results, and the ASPSW obtained the
second-best results. Despite an appropriately selected α value, static SPSW achieves better results,
the best and the second results are a little different. Considering the robustness of methods, we argue
that ASPSW is a more promising model for sememe prediction.

To observe the difference caused by models, we performed experiments on random-selected
100 words with three typical models (score function), SPWE, SPS, and ASPSW. The scores of the three
models are recorded and plotted in Figure 3. The figure shows that some of the scores of the SPS model
are close to 0, which may be because the knowledge in the synonym dictionary is incomplete. For a
new word, SPS can rarely find a valid synonym for inferring sememes. In most cases, the prediction
score of the ASPSW model is higher than that of the SPWE model and the SPS model, indicating that
the dynamical weights in the joint model can make full use of different knowledge and avoid false
predictions due to incompleteness or inaccuracy in a single type of knowledge.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 13

performance of two models, we performed experiments with a different value on static SPSW, and

listed the results in Table 3.

Table 3. The prediction accuracy of different α; the best result is in bold-face.

α MAP

0.1 0.5820

0.2 0.6023

0.3 0.6222

0.4 0.6416

0.5 0.6578

0.6 0.6718

0.7 0.6787

0.8 0.6764

0.9 0.6674

ASPSW 0.6774

As shown in Table 3, the values of α have made a significant effect on the prediction accuracy.

When it was set to 0.7, the model SPSW achieved the best results, and the ASPSW obtained the

second-best results. Despite an appropriately selected α value, static SPSW achieves better results,

the best and the second results are a little different. Considering the robustness of methods, we argue

that ASPSW is a more promising model for sememe prediction.

To observe the difference caused by models, we performed experiments on random-selected 100

words with three typical models (score function), SPWE, SPS, and ASPSW. The scores of the three

models are recorded and plotted in Figure 3. The figure shows that some of the scores of the SPS

model are close to 0, which may be because the knowledge in the synonym dictionary is incomplete.

For a new word, SPS can rarely find a valid synonym for inferring sememes. In most cases, the

prediction score of the ASPSW model is higher than that of the SPWE model and the SPS model,

indicating that the dynamical weights in the joint model can make full use of different knowledge

and avoid false predictions due to incompleteness or inaccuracy in a single type of knowledge.

Figure 3. Randomly select 100 words and test their sememes prediction score (MAP value) of the

SPWE, SPS, and ASPSW models.

5.2. Impact of the Value of K

The parameter K is the number of similar words in the word vector space used to select candidate

sememe. As a hyperparameter, the size of K may affect the prediction accuracy of the proposed

Figure 3. Randomly select 100 words and test their sememes prediction score (MAP value) of the
SPWE, SPS, and ASPSW models.

128

Appl. Sci. 2020, 10, 5996

5.2. Impact of the Value of K

The parameter K is the number of similar words in the word vector space used to select candidate
sememe. As a hyperparameter, the size of K may affect the prediction accuracy of the proposed model.
To examine the effect of the value of K, we set the value K from 10 to 100. The accuracies of SPWE and
the proposed model, ASPSW, are listed in Table 4.

Table 4. Prediction accuracy of the SPWE and ASPSW models under setting different values of k;the
best results are in bold-face.

Nearest Word Number SPWE ASPSW

10 0.5478 0.6724
20 0.5566 0.6762
30 0.5587 0.6773
40 0.5597 0.6778
50 0.5602 0.6778
60 0.5605 0.6776
70 0.5606 0.6775
80 0.5608 0.6777
90 0.5609 0.6777

100 0.5610 0.6774

As shown in Table 2, ASPSW provides great prediction accuracy; even the value of K is set to
small values. When K is set to larger than 20, the prediction results tend to be stable, indicating that the
model has good robustness. From this, it suggests that smaller numbers of the most similar words will
cover the semantics of the words, thus achieving a quite accurate prediction of sememes. The results
further confirm that in Table 1, although the synonym KB provides a few synonyms, it is still possible
to reach an accuracy that exceeds the baseline. As the values of K increase, the prediction accuracy of
the model improves. In the process, the prediction accuracy of the ASPSW model is kept well above
the accuracy of the baseline model, SPWE, demonstrating the validity of the ASPSW model.

5.3. Calculation Performance Analysis

In the experiment, we examined the time efficiency of different models on predicting the sememes
of unlabeled words. As shown in Table 5, we randomly selected 5000 words as a test task for predicting
their sememes with different models and recorded the time consumption of the training process and
prediction, respectively.

Table 5. Time consumption for predicting sememes of 5000 unlabeled words.

Method Training Costs (s) Predicting Costs(s) Total (s)

SPWE NA 2129 2129
SPSE 6510 40 6550

SPWE+SPSE 6510 2195 8705

SPCSE 41,191 2031 43,222
SPWCF NA 334 334

SPWCF+SPCSE 41,191 2417 43,608
CSP 47,701 4656 52,357

SPS NA 22 22
SPSW NA 2169 2169

ASPSW NA 2639 2639

Table 5 shows that the SPSY model takes the least amount of time to accomplish this task.
It benefited from the fact that the model does not contain training the process of the reference words,
synonym, and thus, it does not need to calculate word similarities with word vectors. Actually, all the

129

Appl. Sci. 2020, 10, 5996

models without the training process spend less time than the models that contain a training process,
because the training process is very time-consuming. Although the SPS model based on matrix
decomposition and SPWCF model based on internal character features of words can complete the
prediction process in a relatively short time, their prediction accuracy still remains lower.

In addition, compared with SPSE and SPCSE models, the SPSW and ASPSW model does not
require additional time for training. The SPSW model based on fixed weights is similar to the SPWEA
model based on word embedding in time consumption. The ASPSW model based on an attention
mechanism can also improve the prediction accuracy of sememes without significantly increasing
time consumption.

5.4. Case Study

In the case study, we give further analysis by detailed examples to explain the effectiveness of
our model.

Table 6 lists the results of some of the SPWE model and ASPSW model sememe predictions.
Each word shows its top five predicted sememes, in which the true sememes are in bold. As it can
be seen from the table, ASPSW predicts the true sememes in their top positions, thus showing that
the finding of semantically similar words is crucial for the sememe prediction of words. In the SPWE
model using the word vector only, the corrected predicted sememe of words such as “saber” and “pull,
social connections” do not rank in top positions. For the word “saber”, the vector-based model focuses
more on the semantics of the simultaneous occurrence of the word “knife”, so that sememe “tools” and
“cutting” rank higher than the correct sememe “army” and “weapon”. With the introduction of the
synonym set, the ASPSW model can compensate for the inability of word embedding to accurately
define semantics and make the recommended sememe for “saber” more biased towards the sememes
of “army” and “weapon”. In addition, for words such as “appease” and “old woman”, the SPWE
model failed to predict correct sememes. For example, the SPWE model does not capture the semantic
information of the word “appease”, and the recommended sememe is all semantics that is not closed to
“appease”. The introduction of the ASPSW model with a synonym set achieves good prediction results,
which further demonstrates that word embedding has a significant gap in the capture of semantic
information from the synonym set.

Table 6. Comparison of sememe prediction examples for the SPWE and ASPSW models, the sememes
in bold font are the true sememes for each word.

Words Top 5 Sememes with SPWE Top 5 Sememes with ASPSW True Sememes

Saber (军刀)
tools, Cutting, Breaking,

Army, Weapons (用具,切削,
破开,军,武器)

army, weapons, tools, cutting,
piercing (军,武器,用具,

切削,扎)

Army, Weapons,
Piercing (军,武器,扎)

Kindergarten
(幼儿园)

place, education, teaching,
learning, people (场所,教育,

教,学习,人)

place, people, children, care,
education, people

(场所,人,少儿,照料,教育)

people, place,
children, care (人,
场所,少儿,照料)

special column
(专栏)

Chinese, books, publishing,
news, time (语文,书刊,出版,

新闻,时间)

book, special, Chinese,
publishing, news (书刊,特别,语

文,出版,新闻)

Parts, Books, special
(部件,书刊,特别)

appease (息怒) person, be kind, answer, sit,
emperor (人,善待,答,坐蹲,皇)

emotion, angry, stop, person, be
kind (情感,生气,制止,人,善待)

emotion, angry, stop
(情感,生气,制止)

pull, social
connections

(门路)

rich, become, method, person,
intimate (富,成为,方法,人,亲

疏)

method, person, intimate,
success, road (方法,人,亲疏,

成功,道路)

person, method,
intimate (人,方法,

亲疏)

old woman (妪)
crying, poultry, shouting,

diligent, surname (哭泣,禽,喊,
勤,姓)

person, elderly, female, crying,
poultry (人,老年,女,哭泣,禽)

person, elderly,
female (人,女,老年)

130

Appl. Sci. 2020, 10, 5996

To better illustrate the difference effect over different words, we took two more words as an example,
and distinguish their similar words by whether they contain correct sememes in the pre-trained word
vector space. As shown in Figure 4a, the top similar words to word “申雪” in the vector space do
not contain the sememe that should recommend the word “申雪”. For the unlabeled word “便士”,
as shown in Figure 4b, the words which contain the same sememe with it are clustered around it in the
vector space. The two examples show that there is a very clear deviation in the distribution of similar
words in word vector; this may be caused by the fact that the language model of generating word
embedding vectors is inferred from word co-occurrence instead of similar semantics. To overcome
those deviations, we suggest again that it is very necessary to combine the synonym and pre-trained
word vector for better understanding word embedding vectors and improving the performances of
various downstream tasks.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 13

To better illustrate the difference effect over different words, we took two more words as an

example, and distinguish their similar words by whether they contain correct sememes in the pre-

trained word vector space. As shown in Figure 4(a), the top similar words to word “申雪” in the

vector space do not contain the sememe that should recommend the word “申雪”. For the unlabeled

word “便士”, as shown in figure 4(b), the words which contain the same sememe with it are clustered

around it in the vector space. The two examples show that there is a very clear deviation in the

distribution of similar words in word vector; this may be caused by the fact that the language model

of generating word embedding vectors is inferred from word co-occurrence instead of similar

semantics. To overcome those deviations, we suggest again that it is very necessary to combine the

synonym and pre-trained word vector for better understanding word embedding vectors and

improving the performances of various downstream tasks.

(a) (b)

Figure 4. Top 300 similar words of the unlabeled word (a) “申雪” (b) “便士” in the word vector space,

where “+” means that the sememes can be recommended for the unlabeled word because the word

contains the true sememe of the unlabeled word; “*” presents a word that it is impossible to

recommend the true sememe for unlabeled word because the word and the unmarked word do not

contain the same sememes.

6. Conclusion and Future Work

In this study, we propose to predict the sememes of unlabeled words by introducing a synonym.

An attention-based model, ASPSW, is developed that incorporates similar relationships in the

synonym set into the sememe prediction decisions. A series of experiments are performed, and the

results show that the proposed model has made a significant improvement in the sememe prediction

accuracy. This study suggests that the dynamical fusion of knowledge from different sources is

expected to enhance the ability to perform NLP tasks, especially in the absence of training samples.

In our future work, we will make the following efforts: (1) There is a tree-like hierarchy structure

in HowNet dataset, and we plan to merge the hierarchical relationships between the sememes into

future prediction models, which may improve the accuracy of sememe prediction; (2) more synonym

datasets, including WordNet, will be combined to improve the performance of sememe prediction

Author Contributions: Conceptualization, X.K. and X.L.; methodology, X.K., X.L. and B.L.; software, B.L.;

resources, H.Y.; writing—original draft preparation, B.L. and S.L.; writing—review and editing, X.K., Q.L., S.L.,

H.Y. and J.G.; funding acquisition, H.Y. All authors have read and agreed to the published version of the

manuscript.

Funding: This research was supported by the NSF of China (Grant No. 61972365, 61673354, 61672474, 41801378),

and Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation，Ministry of Natural

Resources (grant number:KF-2019-04-033).

Acknowledgments: In this section you can acknowledge any support given which is not covered by the author

contribution or funding sections. This may include administrative and technical support, or donations in kind

(e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflict of interest.

Figure 4. Top 300 similar words of the unlabeled word (a) “申雪” (b) “便士” in the word vector space,
where “+” means that the sememes can be recommended for the unlabeled word because the word
contains the true sememe of the unlabeled word; “*” presents a word that it is impossible to recommend
the true sememe for unlabeled word because the word and the unmarked word do not contain the
same sememes.

6. Conclusions and Future Work

In this study, we propose to predict the sememes of unlabeled words by introducing a synonym.
An attention-based model, ASPSW, is developed that incorporates similar relationships in the synonym
set into the sememe prediction decisions. A series of experiments are performed, and the results show
that the proposed model has made a significant improvement in the sememe prediction accuracy.
This study suggests that the dynamical fusion of knowledge from different sources is expected to
enhance the ability to perform NLP tasks, especially in the absence of training samples.

In our future work, we will make the following efforts: (1) There is a tree-like hierarchy structure
in HowNet dataset, and we plan to merge the hierarchical relationships between the sememes into
future prediction models, which may improve the accuracy of sememe prediction; (2) more synonym
datasets, including WordNet, will be combined to improve the performance of sememe prediction.

Author Contributions: Conceptualization, X.K. and X.L.; methodology, X.K., X.L. and B.L.; software, B.L.;
resources, H.Y.; writing—original draft preparation, B.L. and S.L.; writing—review and editing, X.K., Q.L.,
S.L., H.Y. and J.G.; funding acquisition, H.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the NSF of China (Grant No. 61972365, 61673354, 61672474, 41801378),
and Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural
Resources (grant number: KF-2019-04-033).

Acknowledgments: In this section you can acknowledge any support given which is not covered by the author
contribution or funding sections. This may include administrative and technical support, or donations in kind
(e.g., materials used for experiments).

131

Appl. Sci. 2020, 10, 5996

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aouicha, M.B.; Taieb, M.A.H.; Marai, H.I. WordNet and Wiktionary-Based Approach for Word Sense
Disambiguation. In Transactions on Computational Collective Intelligence XXIX; Springer: Cham, Switzerland,
2018; pp. 123–143.

2. Artetxe, M.; Labaka, G.; Agirre, E. Learning bilingual word embeddings with (almost) no bilingual data.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC,
Canada, 30 July–4 August 2017; Volume 1, pp. 451–462.

3. Chen, Y.; Luo, Z. A Word Representation Method Based on Hownet. Beijing Da Xue Xue Bao 2019, 55, 22–28.
4. Peng-Hsuan, L. CA-EHN: Commonsense Word Analogy from E-HowNet. arXiv 2019, arXiv:1908.07218.
5. Iqbal, F.; Fung, B.C.M.; Debbabi, M.; Batool, R.; Marrington, A. Wordnet-based criminal networks mining for

cybercrime investigation. IEEE Access 2019, 7, 22740–22755. [CrossRef]
6. Bloomfield, L. A set of postulates for the science of language. Language 1926, 2, 153–164. [CrossRef]
7. Goddard, C.; Wierzbicka, A. Semantic and Lexical Universals: Theory and Empirical Findings; John Benjamins

Publishing: Amsterdam, The Netherlands, 1994; Volume 25.
8. Dong, Z.; Dong, Q. Hownet and the Computation of Meaning; World Scientific: Singapore, 2006; pp. 1–303.
9. Liu, Q.; Li, S. Word similarity computing based on Hownet. Comput. Linguist. Chin. Lang. Process. 2002,

7, 59–76.
10. Duan, X.; Zhao, J.; Xu, B. Word sense disambiguation through sememe labeling. In Proceedings of the

International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007; pp. 1594–1599.
11. Huang, M.; Ye, B.; Wang, Y.; Chen, H.; Cheng, J.; Zhu, X. New word detection for sentiment analysis.

In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore,
MD, USA, 22–27 June 2014; Volume 1, pp. 531–541.

12. Yang, L.; Kong, C.; Chen, Y.; Liu, Y.; Fan, Q.; Yang, E. Incorporating Sememes into Chinese Definition
Modeling. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 28, 1669–1677. [CrossRef]

13. Liu, S.; Xu, J.; Ren, X. Evaluating semantic rationality of a sentence: A sememe-word-matching neural
network based on hownet. In Proceedings of the CCF International Conference on Natural Language
Processing and Chinese Computing, Dunhuang, China, 9–14 October 2019; pp. 787–800.

14. Xie, R.; Yuan, X.; Liu, Z.; Sun, M. Lexical sememe prediction via word embeddings and matrix factorization.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia,
19–25 August 2017; pp. 4200–4206.

15. Jin, H.; Zhu, H.; Liu, Z.; Xie, R.; Sun, M.; Lin, F.; Lin, L. Incorporating Chinese Characters of Words for
Lexical Sememe Prediction. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics, Melbourne, Australia, 15–20 July 2018; Volume 1.

16. Miller, G.A. WordNet: A Lexical Database for English. Commun. ACM 1995, 38, 39–41. [CrossRef]
17. Navigli, R.; Ponzetto, S.P. BabelNet: The automatic construction, evaluation and application of a

wide-coverage multilingual semantic network. Artif. Intell. 2012, 193, 217–250. [CrossRef]
18. Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database

for structuring human knowledge. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Vancouver, BC, Canada, 10–12 June 2008; pp. 1247–1249.

19. Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. DBpedia: A nucleus for a Web of open
data. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2007; Volume 4825 LNCS, pp. 722–735.

20. Hoffart, J.; Suchanek, F.M.; Berberich, K.; Weikum, G. YAGO2: A spatially and temporally enhanced
knowledge base from Wikipedia. Artif. Intell. 2013, 194, 28–61. [CrossRef]

21. Rizkallah, S.; Atiya, A.F.; Shaheen, S. A Polarity Capturing Sphere for Word to Vector Representation.
Appl. Sci. 2020, 10, 4386. [CrossRef]

22. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the NAACL-HLT, Minneapolis, MN, USA, 2–7 June 2019.

23. Li, W.; Ren, X.; Dai, D.; Wu, Y.; Wang, H.; Sun, X. Sememe prediction: Learning semantic knowledge from
unstructured textual wiki descriptions. arXiv 2018, arXiv:1808.05437.

132

Appl. Sci. 2020, 10, 5996

24. Qi, F.; Lin, Y.; Sun, M.; Zhu, H.; Xie, R.; Liu, Z. Cross-lingual Lexical Sememe Prediction. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–
4 November 2018; pp. 358–368.

25. Bai, M.; Lv, P.; Long, X. Lexical Sememe Prediction with RNN and Modern Chinese Dictionary. In Proceedings
of the 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD), Huangshan, China, 28–30 July 2018; pp. 825–830.

26. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar,
25–29 October 2014; pp. 1532–1543.

27. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention
is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA,
USA, 4–9 December 2017; pp. 5998–6008.

28. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks.
In Proceedings of the 6th International Conference on Learning Representations, ICLR 2018-Conference
Track, Vancouver, BC, Canada, 30 April–3 May 2018.

29. Chen, X.; Xu, L.; Liu, Z.; Sun, M.; Luan, H. Joint learning of character and word embeddings. In Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina,
25–31 July 2015.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

133

applied
sciences

Article

DAWE: A Double Attention-Based Word Embedding
Model with Sememe Structure Information

Shengwen Li 1,2 , Renyao Chen 1, Bo Wan 1,2 , Junfang Gong 1 , Lin Yang 1,2 and
Hong Yao 3,*

1 School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China;
swli@cug.edu.cn (S.L.); cryao@cug.edu.cn (R.C.); wanbo@cug.edu.cn (B.W.); jfgong@cug.edu.cn (J.G.);
yanglin@cug.edu.cn (L.Y.)

2 National Engineering Research Center for Geographic Information System, University of Geosciences,
Wuhan 430074, China

3 School of Computer Science, China University of Geosciences, Wuhan 430074, China
* Correspondence: yaohong@cug.edu.cn; Tel.: +86-27-67883716

Received: 15 July 2020; Accepted: 19 August 2020; Published: 21 August 2020

Abstract: Word embedding is an important reference for natural language processing tasks, which can
generate distribution presentations of words based on many text data. Recent evidence demonstrates
that introducing sememe knowledge is a promising strategy to improve the performance of word
embedding. However, previous works ignored the structure information of sememe knowledges.
To fill the gap, this study implicitly synthesized the structural feature of sememes into word
embedding models based on an attention mechanism. Specifically, we propose a novel double
attention word-based embedding (DAWE) model that encodes the characteristics of sememes into
words by a “double attention” strategy. DAWE is integrated with two specific word training models
through context-aware semantic matching techniques. The experimental results show that, in word
similarity task and word analogy reasoning task, the performance of word embedding can be
effectively improved by synthesizing the structural information of sememe knowledge. The case
study also verifies the power of DAWE model in word sense disambiguation task. Furthermore,
the DAWE model is a general framework for encoding sememes into words, which can be integrated
into other existing word embedding models to provide more options for various natural language
processing downstream tasks.

Keywords: natural language processing; word representation learning; word2vec; sememes; attention
mechanism; structural information

1. Introduction

The basis of applying deep learning to solve natural language processing (NLP) tasks is to obtain
high-quality representations of words from large amounts of text data [1]. Traditionally, words are
represented in a sparse high-dimensional space using count-based vectors in which each word
in a vocabulary is represented by a single dimension [2]. In contrast, word embedding aims to
map words into continuous low-dimensional semantic space; in this way, each word is represented
by a real-valued vector, namely word vector, often composed tens or hundreds of dimensions [3].
Word embedding assumes that words used in similar ways should have similar representations,
thereby naturally capturing their meaning. Word vectors obtained from word embedding have been
widely used in many applications: text summarization, sentiment analysis, reading comprehension,
machine translation, etc.

In a great deal of word embedding-related works that have emerged in recent years,
the Word2Vec [3] model strikes a good balance between efficiency and quality. In the training

135

Appl. Sci. 2020, 10, 5804

process of Word2vec, words are mapped to the same vector space. For words that share a similar
context in the corpus, their corresponding vectors should be close to each other in the vector space [4].
During the training process, the vector assignments of the words are repeatedly adjusted until the values
are close enough to each other, if they are adjacent in the text corpus. As a result, the low-frequency
words in corpus cannot be accurately represented in Word2Vec model because the training process of
such words is not sufficient.

Recently, studies have shown that taking external knowledge as the complement of text corpus can
effectively improve the quality of word embeddings [5–10]. Among them, the “word–sense–sememe”
(Figure 1) knowledge is an intuitive form of organizing words and their senses that are easily organized
and understood [11]. By synthesizing the “word–sense–sememe” knowledge, Niu et al. [7] proposed
the sememe-encoded word representation learning (SE-WRL) model that made significant performance
in word embedding.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 20

obtained from word embedding have been widely used in many applications: text
summarization, sentiment analysis, reading comprehension, machine translation, etc.

In a great deal of word embedding-related works that have emerged in recent years, the
Word2Vec [3] model strikes a good balance between efficiency and quality. In the training
process of Word2vec, words are mapped to the same vector space. For words that share a
similar context in the corpus, their corresponding vectors should be close to each other in the
vector space [4]. During the training process, the vector assignments of the words are
repeatedly adjusted until the values are close enough to each other, if they are adjacent in the
text corpus. As a result, the low-frequency words in corpus cannot be accurately represented
in Word2Vec model because the training process of such words is not sufficient.

Recently, studies have shown that taking external knowledge as the complement of text
corpus can effectively improve the quality of word embeddings [5–10]. Among them, the
“word–sense–sememe” (Figure 1) knowledge is an intuitive form of organizing words and
their senses that are easily organized and understood [11]. By synthesizing the “word–sense–
sememe” knowledge, Niu et al. [7] proposed the sememe-encoded word representation
learning (SE-WRL) model that made significant performance in word embedding.

Figure 1. An example of the word–sense–sememe structure, where sememes are defined as
minimum units of word meanings. There exists a limited close set of sememes to compose the
open set of word meanings (i.e., word sense). For instance, the word (the first layer) “Apple”
contains three senses (the second layer): “Apple Brand” (a famous computer brand), “Apple”
(a sort of fruit) and “Apple Tree”. The third layer is those sememes explaining each sense. The
sememes of sense “Apple Brand” are “computer”, “PatternValue”, “able”, “bring” and
“SpeBrand (specific brand)”. The sememe of sense “Apple” is “fruit”. The sememes of sense
“Apple Tree” are “fruit”, “reproduce” and “tree”.

SE-WRL model believes that contributions of each sememe under a sense are equivalent.
However, the nature of sememes determines that different sememes under a sense may be
different, which means the contributions of each sememe to the sense should be varied
depending on the particular case. The inequality may be caused by two main reasons: (1)
Different senses correspond to the different hierarchical structures of sememes. The sememes
are organized into a hierarchical structure, such as the sememes in the sense “Apple brand” in
Figure 1. Because of the hierarchical structure, there is fusion among sememes, which means
that sememes at different branches of different levels are usually not equivalent. For example,
the sememe “computer” in the sense “Apple brand” can be presented by its under-layer
sememes (“PatternValue”, “able”, “bring” and “SpeBrand (specific brand)”). Furthermore,
sememes at the same level are not equivalent in most cases. (2) The context of sememes is varied.
The meaning of a word needs to be reflected in a special context, so the sememes are also
affected by the context of the word. As shown in Figure 2, when the word “Apple” appears in
the context “I am going to the ~ store now.”, the meaning of “Apple” should be close to the

Figure 1. An example of the word–sense–sememe structure, where sememes are defined as minimum
units of word meanings. There exists a limited close set of sememes to compose the open set of word
meanings (i.e., word sense). For instance, the word (the first layer) “Apple” contains three senses
(the second layer): “Apple Brand” (a famous computer brand), “Apple” (a sort of fruit) and “Apple
Tree”. The third layer is those sememes explaining each sense. The sememes of sense “Apple Brand”
are “computer”, “PatternValue”, “able”, “bring” and “SpeBrand (specific brand)”. The sememe of
sense “Apple” is “fruit”. The sememes of sense “Apple Tree” are “fruit”, “reproduce” and “tree”.

SE-WRL model believes that contributions of each sememe under a sense are equivalent.
However, the nature of sememes determines that different sememes under a sense may be different,
which means the contributions of each sememe to the sense should be varied depending on the
particular case. The inequality may be caused by two main reasons: (1) Different senses correspond
to the different hierarchical structures of sememes. The sememes are organized into a hierarchical
structure, such as the sememes in the sense “Apple brand” in Figure 1. Because of the hierarchical
structure, there is fusion among sememes, which means that sememes at different branches of different
levels are usually not equivalent. For example, the sememe “computer” in the sense “Apple brand”
can be presented by its under-layer sememes (“PatternValue”, “able”, “bring” and “SpeBrand (specific
brand)”). Furthermore, sememes at the same level are not equivalent in most cases. (2) The context of
sememes is varied. The meaning of a word needs to be reflected in a special context, so the sememes
are also affected by the context of the word. As shown in Figure 2, when the word “Apple” appears
in the context “I am going to the ~ store now.”, the meaning of “Apple” should be close to the sense
“Apple brand”. At this point, the sememe “SpeBrand” should have a higher weight than other sememes
of the sense “Apple brand”. Therefore, the weights of sememes in a sense should change dynamically
with different contexts.

136

Appl. Sci. 2020, 10, 5804

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 20

sense “Apple brand”. At this point, the sememe “SpeBrand” should have a higher weight than
other sememes of the sense “Apple brand”. Therefore, the weights of sememes in a sense
should change dynamically with different contexts.

Figure 2. Interpretation of weight changes of sense and sememe. Sense means the meaning that
exists within the word and does not change with the context, but its semantic contribution to
the word is different in different contexts. For example, the word “Apple” has three different
“senses”: “Apple Brand”, “Apple (Fruit)” and “Apple Tree”. In the context “I am going to the
~ store now.”, the semantic of the word “apple” tends to the sense “Apple Brand”. The
sememe’s contribution to the sense should be different.

To fill this gap, a “double attention” mechanism is proposed to capture the inequality of
sememes, thereby the meanings of words can be more accurately represented. Specifically, we
derive a double attention-based word embedding (DAWE) model. This model uses senses as a
bridge in the process of encoding sememes into words, in which the word can be represented
as a fusion of their different senses and a sense can be represented as the weighted sum of the
sememes of the sense.

The original contributions of this work can be summarized as follows: (1) The proposed
“double attention” mechanism captures the weight changes of the different sememes of a sense
with context, as well as the weight changes of the different senses within the word with context
so that the obtained word vectors can be represented completely and accurately by sememes.
(2) Two specific word training models are derived by combining the DAWE word encoding
model with context-aware semantic matching. The experimental results of both word similarity
task and word analogy reasoning task on the standard datasets show that the proposed models
outperform previous models. (3) The proposed DAWE model is a general framework of
encoding sememes into words and can be integrated with other existing word embedding
models to provide more methods for word embedding.

2. Notation and Definition

The symbolic conventions that are used below are given here: W, S and X represent word
set, sense set and sememe set, respectively. For each word w ∈ W, there are multiple senses s୧(୵) ∈ S(୵), and S(୵) represents the sense set corresponding to the word w; for each sense s୧(୵),
corresponding to several different sememes x୨(ୱ) ∈ X୧(୵), X୧(୵) represents the sememe set of the
ith sense corresponding to the word w and C(w) represents the context word set corresponding

Figure 2. Interpretation of weight changes of sense and sememe. Sense means the meaning that
exists within the word and does not change with the context, but its semantic contribution to the
word is different in different contexts. For example, the word “Apple” has three different “senses”:
“Apple Brand”, “Apple (Fruit)” and “Apple Tree”. In the context “I am going to the ~ store now.”,
the semantic of the word “apple” tends to the sense “Apple Brand”. The sememe’s contribution to the
sense should be different.

To fill this gap, a “double attention” mechanism is proposed to capture the inequality of sememes,
thereby the meanings of words can be more accurately represented. Specifically, we derive a double
attention-based word embedding (DAWE) model. This model uses senses as a bridge in the process
of encoding sememes into words, in which the word can be represented as a fusion of their different
senses and a sense can be represented as the weighted sum of the sememes of the sense.

The original contributions of this work can be summarized as follows: (1) The proposed “double
attention” mechanism captures the weight changes of the different sememes of a sense with context,
as well as the weight changes of the different senses within the word with context so that the obtained
word vectors can be represented completely and accurately by sememes. (2) Two specific word training
models are derived by combining the DAWE word encoding model with context-aware semantic
matching. The experimental results of both word similarity task and word analogy reasoning task on
the standard datasets show that the proposed models outperform previous models. (3) The proposed
DAWE model is a general framework of encoding sememes into words and can be integrated with
other existing word embedding models to provide more methods for word embedding.

2. Notation and Definition

The symbolic conventions that are used below are given here: W, S and X represent word set,
sense set and sememe set, respectively. For each word w ∈W, there are multiple senses s(w)

i ∈ S(w),

and S(w) represents the sense set corresponding to the word w; for each sense s(w)
i , corresponding to

several different sememes x(si)
j ∈ X(w)

i , X(w)
i represents the sememe set of the ith sense corresponding

to the word w and C(w) represents the context word set corresponding to the word w. We use the bold
form w/s/x ⊂ RD corresponding to w/s/x to represent the vectors of word/sense/sememe, where D
is the dimension of those vectors.

Definition 1. Word Embedding.

137

Appl. Sci. 2020, 10, 5804

As shown in Figure 3, for the text corpus C, word embedding maps each word w ∈ W to a
continuous low-dimensional spaceRD, while ensuring that the final embeddings (vectors) can represent
the semantic relevance between words in the original text corpus C.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 20

to the word w. We use the bold form w/s/x ⊂ ℝୈ corresponding to w/s/x to represent the
vectors of word/sense/sememe, where D is the dimension of those vectors.

Definition 1. Word Embedding
As shown in Figure 3, for the text corpus C, word embedding maps each word w ∈ W to a

continuous low-dimensional space ℝୈ, while ensuring that the final embeddings (vectors) can
represent the semantic relevance between words in the original text corpus C.

Figure 3. Word embedding workflow.

Definition 2. Encoding Words with Sememes
It is a process of using sememes as a semantic supplement to encode words. In the process,

word embedding can be simplified as the encoding of words from sememes to words, which
means word vectors can be obtained by encoding corresponding sememes of words: w = fଡ଼→୵൫X(୵), θଡ଼→୵൯, (1)

where θଡ଼→୵ represents the parameters when encoding sememe set X(୵) to its corresponding
word w . fଡ଼→୵(X(୵), θଡ଼→୵) can be a simple encoding function, such as sum operation
(fଡ଼→୵(X(୵), θଡ଼→୵) = ∑ x୧(୵)|ଡ଼(౭)|୧ୀଵ) or average operation (fଡ଼→୵൫X(୵), θଡ଼→୵൯ = ଵ|ଡ଼(౭)| ∑ x୧(୵)|ଡ଼(౭)|୧ୀଵ), or fଡ଼→୵൫X(୵), θଡ଼→୵൯ be neural networks, such as fଡ଼→୵(X(୵), θଡ଼→୵) = σ(W ∙ X(୵) + b) , where σ
denotes the activation function, W is the weight matrix and b is the bias.

Definition 3. Encoding Words with Sememes through Senses
As shown in Figure 1, a word may consist of many different senses, each of which is

described by several sememes. Therefore, this “word–sense–sememe” structure allows us to
achieve the encoding process from sememes to words using senses as a semantic bridge, that
is, the encoding process of the word w is represented as a mapping function of all its
corresponding senses S(୵). The formalization is as follows: w = fୗ→୵൫S(୵), θୗ→୵൯, (2)

for each sense s୧(୵) ∈ S(୵), it is encoded by all its corresponding sememes X୧(୵): s୧(୵) = fଡ଼→ୱ൫X୧(୵), θଡ଼→ୱ൯, (3)

where θୗ→୵ and θଡ଼→ୱ denote the trainable parameters.

Figure 3. Word embedding workflow.

Definition 2. Encoding Words with Sememes.

It is a process of using sememes as a semantic supplement to encode words. In the process, word
embedding can be simplified as the encoding of words from sememes to words, which means word
vectors can be obtained by encoding corresponding sememes of words:

w = fX→w
(
X(w), θX→w

)
, (1)

where θX→w represents the parameters when encoding sememe set X(w) to its corresponding word w.
fX→w(X(w), θX→w) can be a simple encoding function, such as sum operation (fX→w

(
X(w), θX→w

)
=

∑|X(w) |
i=1 x(w)

i) or average operation (fX→w

(
X(w), θX→w

)
= 1∣∣∣∣X(w)

∣∣∣∣

∑|X(w) |
i=1 x(w)

i), or fX→w

(
X(w), θX→w

)
be

neural networks, such as fX→w(X(w), θX→w) = σ
(
W·X(w) + b

)
, where σ denotes the activation function,

W is the weight matrix and b is the bias.

Definition 3. Encoding Words with Sememes through Senses.

As shown in Figure 1, a word may consist of many different senses, each of which is described by
several sememes. Therefore, this “word–sense–sememe” structure allows us to achieve the encoding
process from sememes to words using senses as a semantic bridge, that is, the encoding process of the
word w is represented as a mapping function of all its corresponding senses S(w). The formalization is
as follows:

w = fS→w
(
S(w), θS→w

)
, (2)

138

Appl. Sci. 2020, 10, 5804

for each sense s(w)
i ∈ S(w), it is encoded by all its corresponding sememes X(w)

i :

s(w)
i = fX→s

(
X(w)

i , θX→s

)
, (3)

where θS→w and θX→s denote the trainable parameters.
The objective of this study is to find the fS→w function and the fX→s function in Equation (2) and

Equation (3), while taking full advantage of the structure of the sememes.

3. Related Works

In this section, we mainly introduce the works related to this study, including classical word
embedding models and the word embedding models that introduce internal semantic information of
words and external semantic information (image, knowledgebase, etc.). These works are illustrated in
Figure 4.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 20

The objective of this study is to find the fୗ→୵ function and the fଡ଼→ୱ function in Equation (2)
and Equation (3), while taking full advantage of the structure of the sememes.

3. Related Works

In this section, we mainly introduce the works related to this study, including classical
word embedding models and the word embedding models that introduce internal semantic
information of words and external semantic information (image, knowledgebase, etc.). These
works are illustrated in Figure 4.

Figure 4. Several typical works of word embeddings.

3.1. Classical Word Embeddings

Word embedding aims to embed words into continuous low-dimensional, high-density
semantic space. Early models usually use an NLM (neural language model) to generate word
vectors (word-level word embedding vectors). The typical representative of them is the
Word2Vec, which includes a CBOW model (continuous bag-of-words model) and a Skip-gram
model (continuous skip-gram model), as shown in Figure 4. The key idea of Word2Vec is that
the words with similar text contexts (or those words appearing in the same window that slides
through the text with a size of k) should be close to each other in the semantic space, that is,
their word vectors should be similar. As shown in Figure 3, the words “first”, “second” and
“third” are close to each other in the semantic space because they have the same context “This
is the ~ sentence”.

Skip-gram is a model which predicts the context words (surrounding words) given a
target word (the center word). It intends to maximize the likelihood function as follows:

L(H) = logP(w୲ି୩, … , w୲ା୩|w୲)୬ି୩
୲ୀ୩ ≅ log ෑ P(wୡ|w୲)୵ౙ∈େ(୵౪)

୬ି୩
୲ୀ୩ . (4)

Figure 4. Several typical works of word embeddings.

3.1. Classical Word Embeddings

Word embedding aims to embed words into continuous low-dimensional, high-density semantic
space. Early models usually use an NLM (neural language model) to generate word vectors (word-level
word embedding vectors). The typical representative of them is the Word2Vec, which includes a
CBOW model (continuous bag-of-words model) and a Skip-gram model (continuous skip-gram model),
as shown in Figure 4. The key idea of Word2Vec is that the words with similar text contexts (or those
words appearing in the same window that slides through the text with a size of k) should be close to
each other in the semantic space, that is, their word vectors should be similar. As shown in Figure 3,
the words “first”, “second” and “third” are close to each other in the semantic space because they have
the same context “This is the ~ sentence”.

139

Appl. Sci. 2020, 10, 5804

Skip-gram is a model which predicts the context words (surrounding words) given a target word
(the center word). It intends to maximize the likelihood function as follows:

L(H) =
n−k∑

t=k

logP(wt−k, . . . , wt+k |w t) �
n−k∑

t=k

log
∏

wc∈C(wt)

P(wc |w t). (4)

where n is the size of the text corpus, that is, the number of words contained in the corpus.
P(wt−k, . . . , wt+k |w t) denotes the probability of the context [wt−k, . . . , wt+k] being predicted by the
target word wt, [wt−k, . . . , wt+k] is the set of the first and last k words of the current word wt in the
text sequence and k is the size of the context window. For example, for the text sequence, “I twisted
an apple off the tree,” when the target word is “apple” and k = 2, then [wt−k, . . . , wt+k] = [twisted,
an, off, tree]. Based on the assumption of context independence, the probability of predicting context
[wt−k, . . . , wt+k] by the target word wt can be converted to the product of the probability of predicting
each word wc in the context (the co-occurrence probability of the target word and the context word):
P(wt−k, . . . , wt+k |w t) �

∏
wc∈C(wt) P(wc |w t), where C(wt) = [wt−k, . . . , wt+k].

By introducing the negative sampling [12] method, the co-occurrence probability of each context
word and the target word can be formalized by the following:

P(wc |w t) � σ
(
wT

c ·wt
) ∏

w′t∈NEG(wt)

(
1− σ

(
wT

c ·w′t
))

, (5)

where σ(·) denotes the sigmoid function and NEG(wt) is the negative word set for the target word
wt. The objective of negative sampling is to make the context word wc as close as possible to the
target word wt in the semantic space and as far away as possible from the negative sample w′t . It aims
to make the co-occurrence probability of wc and wt (σ

(
wT

c ·wt
)
) greater than wc and w′t (σ

(
wT

c ·w′t
)
).

Although Word2Vec strikes a good balance between efficiency and quality, the representation of
low-frequency words remains a challenge on due to the lack of adequate training for sparse words.

3.2. Word Embeddings with Internal Semantic Information

In addition to the word co-occurrence, the internal features of words have also been shown to
contribute to word embedding. Related works can be roughly divided into three categories: models
based on morphological information, models based on character information and models based
on subword information. Examples of “morphological information”, “character information” and
“subword information” are illustrated in Figure 4, where morphological information mainly refers to
the features from components (i.e., prefix, root and suffix) of the word. Bian, Gao and Liu [1] utilized
morphological (prefix, root and suffix), syntactic and semantic knowledge to achieve high-quality
word embeddings. Chen et al. [13] and Sun et al. [14] performed character-level embedding and
word embeddings obtained by fusing character features and word features. Xu et al. [15] also used a
character-level embedding, and the weight information of different characters was taken into account
in the fusion process. Cao and Lu [16] combined both the morphological information of the word and
the information of the character-level and captured the structure information of the context by adding
the subword information (character n-gram, root/affix and inflections). To better discover the laws of
language for word embedding, Li et al. [17] tried to discover the relationship between morphology
and semantics in language expression and summarized 68 implicit morphological relationships and 28
display semantics relationships.

Actually, in Chinese, characters are not the smallest granularity units, but strokes. On top of
this, there are structures such as radicals and components. Shi et al. [18] and Yin et al. [19] added
the features of radicals of the characters inside target words to CBOW model. Yu et al.’s [20] method,
regarded as a more refined version of those of Shi, Zhai, Yang, Xie and Liu [18] and Yin, Wang, Li,
Li and Wang [19], captured not only the radical information but also other components inside the

140

Appl. Sci. 2020, 10, 5804

character. To better exploit the structural information inside the character, Cao et al. [21] proposed to
use the set of Stroke n-gram information of characters to supplement the semantics of characters.

The methods mentioned above only use the semantic information of the word itself, such as
from word-level embeddings to character-level embeddings or other more fine-grained embeddings.
However, the semantic information obtained from the word is limited. Besides, the models are
influenced by the formation of language, the characteristics of language, etc., thus it is difficult to
generalize to other languages.

3.3. Word Embeddings with External Semantic Information

A lot of semantic information related to words is now emerging, such as images with text labels,
as well as some semantic knowledge bases including WordNet [22], BabelNet [23], ConceptNet [24]
and HowNet [11]. These semantic data should help us improve the accuracy of word vectors.

A large and growing body of literature has researched on joining external semantic information
for word embedding. Liu et al. [25] proposed a character-level embedding model that attempts to
capture the common structure between characters from visual features by using morphological images
corresponding to characters. Wang, Zhang and Zong [26] proposed a word-level embedding model,
which uses images from the real world as a complement to text semantics, rather than directly replacing
text semantic information with visual feature information. In terms of considering external semantic
knowledge base, Yang and Sun [9] used Tongyici Cilin [27] whose purpose is to make the words
with the same semantic classification in the Tongyici Cilin close to each other (Tongyici Cilin is a
Chinese semantic knowledge base based on synonym sets, which can classify words according to their
semantics). Mancini, Camacho-Collados, Iacobacci and Navigli [6] used BabelNet to annotate the
different senses of words and then performed joint learning to get word and sense embeddings. Tissier,
Gravier and Habrard [8] introduced the concepts of “strong pairs” and “weak pairs” from dictionary
entries, so as to better distinguish the relative intensity of word pairs in the semantic space. Liu et al. [28]
proposed a knowledge-enabled language representation model with knowledge graphs (KGs), in which
KG triples are injected into the sentences as domain knowledge. Niu, Xie, Liu and Sun [7] proposed the
sememe-encoded word representation learning (SE-WRL) model. The SE-WRL model embeds words
by encoding sememe in word–sense–sememe knowledge of HowNet. Since the word–sense–sememe
is an intuitive form of organizing words, it is easily organized and interpretable [11] and has a wide
range of potential uses.

Specifically, three SE-WRL models are mentioned: simple sememe aggregation model (SSA),
sememe attention over context model (SAC) and sememe attention over target model (SAT).

(1) The SSA model simply represents vector w of each word as the average of all its sememe
vectors, as shown in Equation (6).

w =
1
m

∑

s(w)
i ∈S(w)

∑

x
(si)
j ∈X(w)

i

x(si)
j , (6)

where m is the number of sememes of the word w.
(2) Based on the SSA model, Niu, Xie, Liu and Sun [7] developed a SAC model and a SAT model

that can distinguish different word meanings:

att
(
s(wu)

j , wv

)
=

exp
(
wv·ŝ(wu)

j

)

∑|S(wu) |
k=1 exp

(
wv·ŝ(wu)

k

) . (7)

In the above formula, if wv represents the target word wt and wu represents the context wc, then it
is SAC model, while, if wv represents context wc and wu represents the target word wt, then it is the
SAT model.

141

Appl. Sci. 2020, 10, 5804

In this study, we used both sememe and word–sense–sememe structure as external supplements
to refine the process of word embedding. Different from SE-WRL, our model captures the weight
changes of different sememes under the same sense over different contexts, while using sememe to
encode words.

4. Methodology

The proposed double attention-based word embedding (DAWE) model is derived from SE-WRL,
where “double attention” refers to sense-level attention and sememe-level attention. The model
assumes that the meaning of a word in a sentence is composed of senses with different weights,
and each sense is composed of different sememes with different weights. In addition, the study
assumes that a better way to disambiguate the senses of words in different contexts is to carefully
design the process of constituting senses from sememes.

DAWE model, introduced in Section 4.1, is a general framework for encoding sememes into words.
Double attention over context model (DAC) introduced in Section 4.2 and double attention over target
model (DAT) introduced in Section 4.3 are two specific word training models that are obtained by
integrating the DAWE model through context-aware semantic matching.

4.1. Double Attention-Based Word Embedding Model

To encode the semantics of sememes into words through the “word–sense–sememe” structure,
a DAWE model is developed, as shown in Figure 5.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 20

captures the weight changes of different sememes under the same sense over different contexts,
while using sememe to encode words.

4. Methodology

The proposed double attention-based word embedding (DAWE) model is derived from
SE-WRL, where “double attention” refers to sense-level attention and sememe-level attention.
The model assumes that the meaning of a word in a sentence is composed of senses with
different weights, and each sense is composed of different sememes with different weights. In
addition, the study assumes that a better way to disambiguate the senses of words in different
contexts is to carefully design the process of constituting senses from sememes.

DAWE model, introduced in Section 4.1, is a general framework for encoding sememes
into words. Double attention over context model (DAC) introduced in Section 4.2 and double
attention over target model (DAT) introduced in Section 4.3 are two specific word training
models that are obtained by integrating the DAWE model through context-aware semantic
matching.

4.1. Double Attention-based Word Embedding Model

To encode the semantics of sememes into words through the “word–sense–sememe”
structure, a DAWE model is developed, as shown in Figure 5.

In the DAWE model, a “double attention” architecture is adopted: (1) Sense-level attention
is to capture senses weight changes with context. A word may have different meanings in
different contexts, but those meanings are not isolated. We argue that the meaning of a word
in a specific context should be a fusion of different senses. As the context changes, the fusion
weight of the senses also changes accordingly. (2) Sememe-level attention is to capture the
weight change of sememes with context. In the SE-WRL model, each weight of sememes that
constitutes the senses is thought as equivalent. Actually, when a sense presents different
meanings, the weights of sememes under a sense should be different.

Figure 5. DAWE model.

As shown in Figure 5, DAWE is a word embedding model based on the word–sense–
sememe structure, as well as a word sense disambiguation (WSD) model. In DAWE, sememes
constitute the different senses of a word, and then different senses reconstitute into word
meanings that are relevant to the textual context.

The purpose of word embedding is to keep semantic relevance of words while words are
embedded into a unified semantic space. However, word embedding has the semantic

Figure 5. DAWE model.

In the DAWE model, a “double attention” architecture is adopted: (1) Sense-level attention is to
capture senses weight changes with context. A word may have different meanings in different contexts,
but those meanings are not isolated. We argue that the meaning of a word in a specific context should
be a fusion of different senses. As the context changes, the fusion weight of the senses also changes
accordingly. (2) Sememe-level attention is to capture the weight change of sememes with context.
In the SE-WRL model, each weight of sememes that constitutes the senses is thought as equivalent.
Actually, when a sense presents different meanings, the weights of sememes under a sense should
be different.

As shown in Figure 5, DAWE is a word embedding model based on the word–sense–sememe
structure, as well as a word sense disambiguation (WSD) model. In DAWE, sememes constitute the
different senses of a word, and then different senses reconstitute into word meanings that are relevant
to the textual context.

142

Appl. Sci. 2020, 10, 5804

The purpose of word embedding is to keep semantic relevance of words while words are
embedded into a unified semantic space. However, word embedding has the semantic confusion
defect of representing all the meanings of a word in the same vector. To remedy such deficiencies,
the different meanings of words need to be modeled separately to overcome the chaos of word
embedding. The research suggests that better decomposition of word meanings combined with context
leads to better representations of word meanings. WSD is to distinguish the different senses of words
in different contexts, which can be roughly divided into unsupervised methods and knowledge-based
methods. DAWE uses a knowledge-based approach to disambiguate the different senses of words in
context using weighted sememes for the presenting of senses under a word. As a word embedding
model based on knowledge, the objective of DAWE is the same as conventional approaches based
on knowledge, which is to have words with the same semantics close to each other and words with
different semantics away from each other [29].

According to the location of the object of the “attention”, DAWE models can be extended to double
attention over context model (DAC) and double attention over target model (DAT). Figures 6 and 7
illustrate the relationships and differences between the two models.

4.2. Double Attention over Context Model

As shown in Figure 6, DAC consists of two parts: encoding part and training part, which correspond
to the DAWE encoding framework and Skip-gram training framework respectively.

For each context word wc ∈ C(w) (C(w) = [wt−k, . . . , wt−1, wt+1, . . . , wt+k], where k is the size of
the context window), we have:

wc =

|S(wc) |∑

i=1

att
(
s(wc)

i , wt

)
·s(wc)

i , (8)

where att
(
s(wc)

i , wt

)
denotes that the target word wt is used as attention to calculating the weight of the

ith sense of the context word wc, as follows:

att
(
s(wc)

i , wt

)
=

exp
(
ŝ(wc)

i ·wt

)

∑|S(wc) |
j=1 exp

(
ŝ(wc)

j ·wt

) , (9)

where ŝ(wc)
i denotes the value used in the calculation of weight, which is obtained by the sememe

embeddings of the sememe set X(wc)
i corresponding to the sense s(wc)

i . It can be formalized by the
following:

ŝ(wc)
i =

|X(wc)
i |∑

j=1

att
(
x(si)

j , wt

)
·x(si)

j . (10)

Similar to att
(
s(wc)

i , wt

)
, att

(
x(si)

j , wt

)
indicates that the target word wt is used as attention to

calculating the weight of the jth sememe in the ith sense of the context word wc, as follows:

att
(
x(si)

j , wt

)
=

exp
(
x(si)

j ·wt

)

∑|X(wc)
i |

k=1 exp
(
x(si)

k ·wt

) . (11)

DAWE is a two-layer encoding framework. The first layer is sense encoding, which corresponds
to Equation (10) and Equation (11). In the first layer, the sememe embeddings are used as input,
and then the sense embeddings are obtained through sememe-level attention. The second layer is word
encoding, corresponding to Equation (8) and Equation (9). In the second layer, the sense embeddings

143

Appl. Sci. 2020, 10, 5804

obtained by Equation (10) are used as input, and then the word embeddings are obtained through
sense-level attention. In DAC, the target word wt is used to guide the generation of word vectors of
context words. Under this attention mechanism, if the sememe vectors and sense vectors of the context
word are more relevant to the target word vectors, the corresponding sememes and senses will get
higher weight. This is similar to the idea in Word2Vec that the more similar words are closer in the
semantic space. In this way, the different senses of context words can be disambiguated too.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 20

confusion defect of representing all the meanings of a word in the same vector. To remedy such
deficiencies, the different meanings of words need to be modeled separately to overcome the
chaos of word embedding. The research suggests that better decomposition of word meanings
combined with context leads to better representations of word meanings. WSD is to distinguish
the different senses of words in different contexts, which can be roughly divided into
unsupervised methods and knowledge-based methods. DAWE uses a knowledge-based
approach to disambiguate the different senses of words in context using weighted sememes for
the presenting of senses under a word. As a word embedding model based on knowledge, the
objective of DAWE is the same as conventional approaches based on knowledge, which is to
have words with the same semantics close to each other and words with different semantics
away from each other [29].

According to the location of the object of the “attention”, DAWE models can be extended
to double attention over context model (DAC) and double attention over target model (DAT).
Figures 6 and 7 illustrate the relationships and differences between the two models.

Figure 6. Double attention over context model (DAC). Figure 6. Double attention over context model (DAC).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 20

Figure 7. Double attention over target model (DAT).

4.2. Double Attention over Context Model

As shown in Figure 6, DAC consists of two parts: encoding part and training part, which
correspond to the DAWE encoding framework and Skip-gram training framework
respectively.

For each context word wୡ ∈ C(w) (C(w) = [w୲ି୩, … , w୲ିଵ, w୲ାଵ, … , w୲ା୩], where k is the size
of the context window), we have:

wୡ = att ቀs୧(୵ౙ), w୲ቁ ∙ s୧(୵ౙ)หୗ(౭ౙ)ห
୧ୀଵ , (8)

where att ቀs୧(୵ౙ), w୲ቁ denotes that the target word w୲ is used as attention to calculating the
weight of the ith sense of the context word wୡ, as follows:

att ቀs୧(୵ౙ), w୲ቁ = exp ቀsො୧(୵ౙ) ∙ w୲ቁ∑ exp ቀsො୨(୵ౙ) ∙ w୲ቁหୗ(౭ౙ)ห୨ୀଵ , (9)

where sො୧(୵ౙ) denotes the value used in the calculation of weight, which is obtained by the
sememe embeddings of the sememe set X୧(୵ౙ) corresponding to the sense s୧(୵ౙ) . It can be
formalized by the following:

sො୧(୵ౙ) = att ቀx୨(ୱ), w୲ቁ ∙ x୨(ୱ)ቚଡ଼(౭ౙ)ቚ
୨ୀଵ . (10)

Similar to att ቀs୧(୵ౙ), w୲ቁ, att(x୨(ୱ), w୲) indicates that the target word w୲ is used as attention
to calculating the weight of the jth sememe in the ith sense of the context word wୡ, as follows:

Figure 7. Double attention over target model (DAT).

144

Appl. Sci. 2020, 10, 5804

4.3. Double Attention over Target Model

DAT is a variant of DAC, and word vectors are also encoded by the DAWE model and trained by
the Skip-gram model. In contrast to DAC, DAT takes context embedding as attention to guide the
generation of the word vector of the target word. The model structure of DAT is shown in Figure 7.

For each target word wt ∈W, we have:

wt =

|S(wt) |∑

i=1

att
(
s(wt)

i , C(wt)
)
·s(wt)

i , (12)

where att
(
s(wt)

i , wcontext

)
denotes that the context word set C(wt) is used as attention to calculating the

weight of ith sense of wt, as follows:

att
(
s(wt)

i , wcontext

)
=

exp
(
ŝ(wt)

i ·C(wt)
)

∑|S(wt) |
j=1 exp

(
ŝ(wt)

i ·C(wt)
) , (13)

The calculation of ŝ(wt)
i is similar to DAC (Equation. (10) and Equation (11)), which is the weighted

sum of all sememe embeddings of sememe set X(wt)
i corresponding to sense s(wt)

i , where C(wt) denotes
the context, and its corresponding word vector is obtained by the average of all context word vectors
in the context window. It is formalized by the following:

C(wt) =
1

2K

j=t+k∑

j=t−k

wj, j , t, (14)

where k is the size of the context window.
DAT uses context as attention and is richer in contextual semantics than DAC, hence it should be

more conducive to the choice of sememes and senses.

4.4. Optimization

This section takes DAT as an example to illustrate the training process of the proposed model.
As shown in Figure 8, in DAT’s pre-processing phase, each word in the vocab needs to be annotated
according to “word–sense–sememe” knowledge (association is established among sememe, sense and
word). Then, in DAWE framework, the target word wt is encoded through the “double-attention”
mechanism. In DAT, the context (Equation (14)) is used to guide the encoding of the target word
(see Section 4.3 for details). The objective of the optimization is the same as classical Skip-gram
(Equation (4)); however, the parameters that need to be optimized include not only word embeddings
but also sense embeddings and sememe embeddings:

wt := wt + α· 4wt

wt±i := wt±i + α· 4wt±i

S(wt) := S(wt) + α· 4 S(wt)

X(wt) := X(wt) + α· 4X(wt)

, i = {1, 2, . . . , k} . (15)

where α denotes the learning rate; k is the size of the context window (in Figure 8, k = 2); S(wt) denotes
the vector set of senses corresponding to wt; and X(wt) denotes the sememe vector set corresponding
to wt.

145

Appl. Sci. 2020, 10, 5804

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 20

optimization is the same as classical Skip-gram (Equation (4)); however, the parameters that
need to be optimized include not only word embeddings but also sense embeddings and
sememe embeddings:

൞ w୲: = w୲ + α ∙△ w୲w୲±୧: = w୲±୧ + α ∙△ w୲±୧S(୵౪): = S(୵౪) + α ∙△ S(୵౪)X(୵౪): = X(୵౪) + α ∙△ X(୵౪), i = ሼ1,2, … , kሽ. (15)

where α denotes the learning rate; k is the size of the context window (in Figure 8, k = 2); S(୵౪) denotes the vector set of senses corresponding to w୲; and X(୵౪) denotes the sememe vector
set corresponding to w୲.

Figure 8. Training with DAT.

The optimization process of DAC is similar to DAT, and is not be elaborated upon in this
paper.

5. Experiments and Results

Our experiments were conducted on a Chinese word embedding task. Model
performances were examined with two tasks: the word similarity task and the word analogy
task. In this section, we first introduce the experimental datasets, including the training set and
the evaluation set in the two evaluation tasks. Next, we introduce the experimental settings,
including the selection of baselines and the setting of parameters. Finally, we present the
metrics and results of the two evaluation tasks.

5.1. Datasets

For training, HowNet annotated text corpus Clean-SogouT1 [7] was selected to train our
model. Each word in the vocab of Clean-SogouT1 dataset is annotated in this form: (word w,
sense num (s), sememe number of first sense, sememe set of first sense Xଵ(୵) , …, sememe
number of the sth sense, sememe set of sth sense Xୱ(୵)). The example of “Apple” in Figure 1 can
be represented as (“Apple”, 3, 5, (“computer”, “PatternValue”, “able”, “bring”, “SpeBrand
(specific brand)”), 1, (“fruit”), 3, (“fruit”, “reproduce”, “tree”)). The basic statistics of the dataset
are shown in Table 1. Table 1 shows that more than 60% of the words in the dataset have more
than two senses, which suggests that dynamic sense disambiguation is necessary for improving

Figure 8. Training with DAT.

The optimization process of DAC is similar to DAT, and is not be elaborated upon in this paper.

5. Experiments and Results

Our experiments were conducted on a Chinese word embedding task. Model performances
were examined with two tasks: the word similarity task and the word analogy task. In this section,
we first introduce the experimental datasets, including the training set and the evaluation set in the
two evaluation tasks. Next, we introduce the experimental settings, including the selection of baselines
and the setting of parameters. Finally, we present the metrics and results of the two evaluation tasks.

5.1. Datasets

For training, HowNet annotated text corpus Clean-SogouT1 [7] was selected to train our model.
Each word in the vocab of Clean-SogouT1 dataset is annotated in this form: (word w, sense num (s),
sememe number of first sense, sememe set of first sense X(w)

1 , . . . , sememe number of the sth sense,

sememe set of sth sense X(w)
s). The example of “Apple” in Figure 1 can be represented as (“Apple”, 3,

5, (“computer”, “PatternValue”, “able”, “bring”, “SpeBrand (specific brand)”), 1, (“fruit”), 3, (“fruit”,
“reproduce”, “tree”)). The basic statistics of the dataset are shown in Table 1. Table 1 shows that more
than 60% of the words in the dataset have more than two senses, which suggests that dynamic sense
disambiguation is necessary for improving word embedding models. Following Niu, Xie, Liu and
Sun [7], this study removed words from the vocab set with word frequency under 50.

Table 1. Text corpus statistics. AS/PW, average senses/per word; AS/PS, average sememes/per sense;
PWMS, percentage of words that have multiple senses.

Text Corpus Words Vocab Size Sememes AS/PW AS/PS PWMS

Clean-SogouT1 1.8B 350K 1889 2.683 1.701 60.78%

For evaluation, we chose the Chinese word similarity (CWS) dataset and the Chinese word analogy
(CWA) dataset provided by Niu, Xie, Liu and Sun [7] to evaluate the performance of the models
in the word similarity task and the word analogy reasoning task. The CWS datasets Wordsim-240
and Wordsim-297 contain 240 similar word pairs and 297 similar word pairs, respectively, and each
word pair in the CWS dataset has its corresponding similarity score, e.g., “consumer, customer, 8.4”.
Each entry in the CWA dataset is composed of four words “w1, w2, w3, w4”. The form of word analogy

146

Appl. Sci. 2020, 10, 5804

is: w2 −w1 � w4 −w3, such as the classic example: wking −wman � wqueen −wwoman. The bold form
w ⊂ RD denotes the embedding of the word w. The statistics of the CWA dataset used in this study is
shown in Table 2.

Table 2. Chinese word analogy dataset, which contains three analogy types: capitals of countries
(Capital), e.g., wLondon −wEngland � wBeijing −wChina; cities in states (City), e.g., wJacksonville −wFlorida �
wFrancisco−wCalifornia; and family relationships (Relationship), e.g., wFather−wMather � wSon−wDauther.

Capital City Relationship All

677 175 272 1124

5.2. Experimental Settings

In the experiments, we chose Skip-gram (the basic training framework of our models),
CBOW (another model in Word2Vec, for comparison with Skip-gram) and GloVe [30] (different
from the calculation method of Skip-gram in the local context window, Glove obtains the word
embeddings by global matrix decomposition) as the comparison models. We also chose the SSA model
(encoding words with sememes without attention mechanism), SAC (for comparison with DAC) and
SAT (for comparison with DAT) proposed in Niu, Xie, Liu and Sun [7] as our baselines.

Following Niu, Xie, Liu and Sun [7], the vector dimensions of word embeddings, sense embeddings
and sememe embeddings were set to 200; the size of the context window was set to 8; the initial
learning rate was 0.025; and the number of negative samples was set to 25 in the negative sampling
method. For the SAT and DAT, we set the context embedding window size to 2.

Our DAWE models were implemented based on the code of the SE-WRL model (https://github.
com/thunlp/SE-WRL). The benchmark models and our models were trained on the same machine.

5.3. Word Similarity

In this section, this study examine the quality of word embeddings through the performance of the
proposed models in word similarity tasks. In the evaluation of the word similarity tasks, we used the
cosine value between the vectors of two words as their similarity scores to obtain the similarity ranking
of all pairs of words in the benchmark datasets (Wordsim-240 and Wordsim-297). By calculating
the Spearman correlation coefficient between the similarity ranking obtained by our models and the
similarity ranking in the benchmark datasets, we could evaluate the performance of the model in word
similarity tasks. The higher the Spearman correlation coefficient is, the better the model performs in
the word similarity task.

Table 3 shows the evaluation results on word similarity tasks. (1) On the Wordsim-240 dataset
and Wordsim-297 dataset, our models performed better compared to the baseline models. This shows
that distinguishing the sememes within the senses can help us to present different senses of the word
more accurately and deeply. (2) DAT performed better than DAC. DAT takes context embedding as
attention to guide the semantic generation to the target words, thus it can better capture contextual
semantic information. Therefore, when the training of words is sufficient, the results of DAT will be
better than DAC.

147

Appl. Sci. 2020, 10, 5804

Table 3. Evaluation results of word similarity tasks.

Model Wordsim-240 Wordsim-297

CBOW 57.987 62.063
GloVe 57.618 57.107

Skip-gram 55.279 60.565
SSA 60.410 60.167
SAC 57.574 57.825
SAT 60.480 62.280

DAC 57.157 59.671
DAT 61.162 63.327

5.4. Word Analogy

In this section, we examine the quality of word embeddings by the performance of the models in
the word analogy reasoning task. In the Chinese word analogy reasoning task, each analogy sample
consists of two-word pairs (w1, w2) and (w3, w4), which satisfy: w2 −w1 � w4 −w3, ie w2 −w1 +w3 �
w4.Therefore, in the word analogy reasoning task, the score of the candidate word is calculated by
replacing w4 with the candidate word w and by the following formula:

SA(w) = cos(w2 −w1 + w3, w). (16)

After obtaining the ranking of all candidate words, the experiment chose top-ranked words and
evaluated the performance of the model by calculating accuracy and mean rank metrics. The higher is
the accuracy and the lower is the mean rank, the better is the model.

The results of the word analogy reasoning task are shown in Table 4. From the evaluation results
of the word analog task, we can conclude that:

Table 4. Evaluation results of word analogy task.

Model
Accuracy Mean Rank

Capital
677

City
175

Relationship
272

All
1124

Capital
677

City
175

Relationship
272

All
1124

CBOW 45.05 86.85 84.19 61.03 60.28 1.43 41.87 46.66
GloVe 62.03 83.42 82.35 70.28 17.09 1.77 14.28 14.02

Skip-gram 60.26 96.00 77.57 70.01 78.67 1.05 2.98 48.27
SSA 72.67 80.00 74.63 74.28 21.05 7.21 2.74 14.45
SAC 66.24 92.28 71.87 71.66 40.86 5.74 2.56 13.51
SAT 71.64 87.14 74.44 74.73 14.79 2.07 2.34 9.80

DAC 68.53 93.14 72.24 73.26 14.10 1.15 2.74 9.34
DAT 74.00 91.42 75.36 77.04 8.87 1.71 2.58 6.23

(1) In the word analogy reasoning task, our models are significantly better than the previous
models. The accuracy of DAC is 2% higher than that of SAC, and the accuracy of DAT is 3% higher than
that of SAT. DAC has increased more than 4% compared to the SAC model and DAT has increased more
than 3% compared to the SAT model of mean rank. The experimental results show that both DAC and
DAT are more conducive to the accurate description of senses by distinguishing the internal sememes.

(2) Our models perform well in the class of Capital, which is the collection of groups of capital
and country around the world. Most of the words of the capital names have distinct meanings in
various contexts, such as the word “Washington” may be the name of a capital city, a state, a university,
a hotel, or a people. In the training process, the proposed model can dynamic adjustment the weights
of both senses and sememes by the “double-attention” mechanism, hence offering more powerful
ability on the embedding of those words.

148

Appl. Sci. 2020, 10, 5804

(3) Although the performances of our models are not the best in the classes of City and Relationship,
our models are more robust in the overall performance of accuracy and mean rank.

(4) DAWE models are significantly improved in the performance of the word analogy reasoning
task, but only a small increase in performance in the word similarity task. Since Skip-gram trains word
vectors based on context, the more similar the context is, the closer the word vector is in the semantic
space. Thus, with sufficient training, there is no significant difference among the performance of these
Skip-gram-based models for the word similarity task. By adding sememe-level attention, our models
can more accurately express the sense of the word, resulting in better results in the word analogy
reasoning task requiring higher semantic accuracy.

6. Discussions

6.1. Case Study

To illustrate the dynamic semantic generation of our models, we select some specific cases
for analysis. Tables 5–7 lists the relative weights of the different senses of the word “Apple”
(Sense 1: “Apple Brand” (Sememe: “computer”, “PatternValue”, “able”, “bring” and “SpeBrand
(specific brand)”); Sense 2: “Apple” (Sememe: “fruit”); Sense 3: “Apple Tree” (Sememe: “fruit”,
“reproduce” and “tree”)) in a specific context and the relative weights of different sememes within
the senses. Those weights are calculated by sense-level attention and sememe-level attention of
DAT. Tables 5–7 show that: (1) Our model correctly distinguishes the different senses of “Apple”
from different contexts. This shows the power of our model in word sense disambiguation (WSD).
(2) In the sense “Apple Brand”, the sememe “SpeBrand” gets a large weight. This is consistent with
our description in the Introduction. In the process of sense construction, the distribution of weights
between sememes should be unequal. (3) When the meanings of “Apple” changing with different
contexts (the meaning of “Apple” changes when the sentence changes), both the sense items of the
word and the sememe items in each sense of the word do not change, what changes with the context
are the weights of those senses and the weights of those sememes. The model of this paper is trained
on the large text corpus Clean-SogouT1, and the learned word vectors and model parameters are
consistent with the feature distribution of the entire corpus. As a result, the sense representation inside
the words will tend to be stable, that is, the weight distribution of sememes inside the senses will also
be stable (sememe consists of sense, sense and then word).

Table 5. “You can like apple (Apple Brand) computers, just don’t vilify other brands.”

Senses Sememes

Apple Brand
1.91

bring
5.15

PatternValue
0.00

SpeBrand
6.77

computer
0.31

able
8.06

Apple
0.86

fruit
0.00

Apple Tree
0.00

tree
19.93

fruit
21.28

reproduce
0.00

Table 6. “I just hit you with an apple (Apple) core.”

Senses Sememes

Apple Brand
0.00

bring
4.22

PatternValue
0.00

SpeBrand
6.94

computer
1.20

able
4.55

Apple
3.06

fruit
0.00

Apple Tree
0.08

tree
14.55

fruit
20.18

reproduce
0.00

149

Appl. Sci. 2020, 10, 5804

Table 7. “There are many kinds of high-quality apple (Apple Tree) seedlings in southeast Asia.”

Senses Sememes

Apple Brand
0.00

bring
4.50

PatternValue
0.00

SpeBrand
5.58

computer
1.85

able
5.97

Apple
0.05

fruit
0.00

Apple Tree
0.08

tree
12.60

fruit
12.30

reproduce
0.00

In the above cases, we take the word “Apple (Apple/Apple Brand/Apple Tree)” as an example to
examine the weight distribution of sememes and verify the effectiveness of our model in WSD. We take
the word “Notebook (Notebook/ Laptop Computer)” as an example to study the impact of sememe’s
weight distribution in a specific context. As shown in Table 8, when the meaning of word “Notebook”
in the context tends to the sense “Laptop Computer”, we observe the following:

Table 8. The impact of context on the weight of sememes. The values in this table represent relative
weights and the relative weight of the sense “Notebook” is 0. Word: “Notebook” (Sense 1: “Notebook”
(Sememe: “account”); Sense 2: “Laptop Computer” (Sememe: “bring”, “PatternValue”, “computer”
and “able”)).

Context Sememes

Bring PatternValue Computer Able

Laptop Computer (0.57): Those who want to
buy a notebook (Laptop Computer) can write

down my contact information
4.69 0.00 1.82 5.62

Laptop Computer (4.59): HP business
notebook (Laptop Computer) has

industry-leading security technology
5.85 0.00 2.07 4.49

Laptop Computer (1.21): Our shop can
provide you with notebook (Laptop

Computer) repair service
4.88 0.00 1.98 4.10

Laptop Computer (4.53): There are two
notebook (Laptop Computer) computers in
the computer room. They are very old and

slow

5.82 0.82 0.00 6.63

Laptop Computer (8.73): Everyone has the
chance to get refrigerator, notebook (Laptop

Computer) computer, LCD TV, etc
5.82 0.98 0.00 4.97

Laptop Computer (6.77): This notebook
(Laptop Computer) computer with a strong

display is a real eye-opener
5.20 0.43 0.00 6.20

(1) When the word “Notebook” and the word “Computer” appear together, that is, “Notebook
Computer”, the weight of the sememe “computer” is the lowest among all the sememes of the sense
“Laptop Computer”. It can be explained that, when “Notebook Computer” appear together, “Notebook”
is mainly used as a modifier of “Computer” to indicate that “Computer” is light, thin and portable.
Therefore, “Notebook” will have less “computer” meaning.

(2) When “Notebook” appears alone, sememe “computer” has more weight than when “Notebook
Computer” appear together. At this point, “Notebook” no longer appears as a modifier of “Computer”
but as a separate entity, thus it should cover the semantics that tends to favor “computer”.

(3) When “Notebook” appears alone, the weight of the sense “Laptop Computer” is generally
lower than when “Notebook Computer” appear together because, when “Notebook Computer” appear
together, the context carries more semantics that tends to the sense “Laptop Computer”, thus “Laptop
Computer” is generally weighted more heavily. (Note the second example of Table 8, where the weight

150

Appl. Sci. 2020, 10, 5804

of “Laptop Computer” reached 4.59. This is because “HP” is a computer brand, which results in the
“Laptop Computer” weight more than the other case of “Notebook” appearing alone).

The results in Table 8 also show the effectiveness of our model. In the DAWE model,
the representation of words depends on senses, the weight distribution of the sememes cannot
directly determine the final representation of words. As the word “Notebook” appears alone, the
weight of the sense “Laptop Computer” is lower than that when “Notebook Computer” appear
together, although the weight of the sememe “Computer” is higher than when “Notebook Computer”
appear together.

In summary, in the training process of word embeddings, the semantics of words are affected
not only by the semantic accumulation in corpus, but also by the context in the current slide window.
(1) The impact of semantic accumulation is mainly reflected in the gradual stabilization of the
representation of the inherent senses within the word. As shown in the examples in Tables 5–7,
the weight distribution of the sememes used to represent the internal senses of the word “Apple” is
consistent in different contexts. (2) The current context is mainly used to select the appropriate senses
and can affect the weight distribution of sememes. As shown in Tables 5–7, although the representation
of the inherent senses inside the word “Apple” tends to stable, the weight of these senses is varied
in different sentences. Besides, the senses of the target word “Notebook” and the weights of their
sememes in Table 8 also illustrate this point.

6.2. Integrating DAWE with Other Models

DAWE is a general encoding framework. In this paper, we integrate and train DAWE based on
the Skip-gram model. DAWE can be extended for other models many by the following steps:

(1) Data pre-processing. Using “word–sense–sememe” knowledge to annotate text corpus.
(2) Determine the encoding “target” of DAWE. For example, in DAC, the “target” is the context,

while, in DAT, the “target” is the target word.
(3) Determine the “object” of “double-attention”. For example, in DAC, the “object” is the target

word, while, in DAT, the “object” in the context.
(4) Forward propagation (encoding). According to the “target” and “object” determined in Steps 2

and 3, in the DAWE framework, “object” is used to guide the encoding of the “target” through the
“double-attention” mechanism.

(5) Back propagation. Model parameters (word embeddings, sense embeddings and sememe
embeddings) are updated according to the model optimization objective.

Among them, Steps 1 and 5 are relatively easy to implement. The core step is Step 4, which depends
on Steps 2 and 3. Therefore, in expanding DAWE, the parts that are difficult and require careful design
are Steps 2 and 3. Once Steps 2 and 3 are established, DAWE can be easily extended to other models.

7. Conclusion and Future Work

In this paper, double attention-based word embedding (DAWE) model is proposed to encode
sememes into words by a “double attention” mechanism, resulting in going deep into the senses of a
word to describe the word. Our proposed DAWE model is a general framework that can be applied
to other existing word embedding training frameworks, such as Word2Vec. In this paper, we extend
the DAWE model to get two specific training models. In the experiments of word similarity task
and word analogy task, the validity of our models was demonstrated. To further explore the models
proposed in this paper, some cases were analyzed in the experiment. The results show that word
semantics are not only affected by the global semantic accumulation, but also by the context of a word.
Experimental results show that DAWE models can effectively capture the semantic changes of words
through dynamic semantic generation, which means that our model is also effective in word sense
disambiguation. The findings of this study suggest it could get performance improvement of NLP
tasks if words are processed in a more fine-grained perspective.

151

Appl. Sci. 2020, 10, 5804

A limitation of this study is that the DAWE model requires more training time than baseline
models because it increases training parameters as it integrates the “double attention” mechanism.
Additionally, the values of hyperparameters in this study are set following previous research; further
experimental investigations are needed to estimate the impacts of those hyperparameters.

Author Contributions: Conceptualization, S.L. and H.Y.; methodology and software, R.C.; writing—original
draft preparation, R.C.; and writing—review and editing, S.L., H.Y., B.W., J.G. and L.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the NSF of China (Grant Nos. 61972365, 61673354, 41801378 and
61672474), and Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of
Natural Resources (Grant No. KF-2019-04-033).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bian, J.; Gao, B.; Liu, T.-Y. Knowledge-Powered Deep Learning for Word Embedding; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 132–148.

2. Cao, S.; Lu, W. Improving Word Embeddings with Convolutional Feature Learning and Subword Information; AAAI:
San Francisco, CA, USA, 2017; pp. 3144–3151.

3. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases
and their compositionality. In Proceedings of the 26th International Conference on Neural Information
Processing Systems, Sydney, Australia, 12–15 December 2013; Volume 2, pp. 3111–3119.

4. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector
Space. In Proceedings of the International Conference on Learning Representations, Scottsdale, Arizona,
2–4 May 2013.

5. Goikoetxea, J.; Soroa, A.; Agirre, E. Bilingual embeddings with random walks over multilingual wordnets.
Knowl. Based Syst. 2018, 150, 218–230. [CrossRef]

6. Mancini, M.; Camacho-Collados, J.; Iacobacci, I.; Navigli, R. Embedding Words and Senses Together via Joint
Knowledge-Enhanced Training. In Proceedings of the 21st Conference on Computational Natural Language
Learning (CoNLL 2017), Vancouver, BC, Canada, 3–4 August 2017; pp. 100–111.

7. Niu, Y.; Xie, R.; Liu, Z.; Sun, M. Improved word representation learning with sememes. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada,
30 July–4 August 2017; Volume 1, pp. 2049–2058.

8. Tissier, J.; Gravier, C.; Habrard, A. Dict2vec: Learning Word Embeddings using Lexical Dictionaries.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2017),
Copenhagen, Denmark, 7–11 September 2017; pp. 254–263.

9. Yang, L.; Sun, M. Improved learning of chinese word embeddings with semantic knowledge. In Chinese
Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data; Springer:
Guangzhou, China, 13–14 November 2015; pp. 15–25.

10. Zhang, Z.; Han, X.; Liu, Z.; Jiang, X.; Sun, M.; Liu, Q. ERNIE: Enhanced Language Representation with
Informative Entities. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 1441–1451.

11. Dong, Z.; Dong, Q. Hownet-a hybrid language and knowledge resource. In Proceedings of the International
Conference on Natural Language Processing and Knowledge Engineering, Proceedings 2003; IEEE: Piscataway, NJ,
USA, 2003; pp. 820–824.

12. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases
and their compositionality. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge,
MA, USA, 2013; pp. 3111–3119.

13. Chen, X.; Xu, L.; Liu, Z.; Sun, M.; Luan, H. Joint learning of character and word embeddings. In Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31
July 2015.

14. Sun, F.; Guo, J.; Lan, Y.; Xu, J.; Cheng, X. Inside out: Two jointly predictive models for word representations
and phrase representations. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
Phoenix, AZ, USA, 12–17 February 2016.

152

Appl. Sci. 2020, 10, 5804

15. Xu, J.; Liu, J.; Zhang, L.; Li, Z.; Chen, H. Improve chinese word embeddings by exploiting internal structure.
In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 1041–1050.

16. Cao, S.; Lu, W. Improving word embeddings with convolutional feature learning and subword information.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA,
4–9 February 2017.

17. Li, S.; Zhao, Z.; Hu, R.; Li, W.; Liu, T.; Du, X. Analogical reasoning on chinese morphological and semantic
relations. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,
Melbourne, Australia, 15–20 July 2018; Volume 2, pp. 138–143.

18. Shi, X.; Zhai, J.; Yang, X.; Xie, Z.; Liu, C. Radical embedding: Delving deeper to chinese radicals. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing, Beijing, China, 26–31 July 2015; Volume 2, pp. 594–598.

19. Yin, R.; Wang, Q.; Li, P.; Li, R.; Wang, B. Multi-granularity chinese word embedding. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–4 November
2016; pp. 981–986.

20. Yu, J.; Jian, X.; Xin, H.; Song, Y. Joint embeddings of chinese words, characters, and fine-grained subcharacter
components. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
Copenhagen, Denmark, 9–11 September 2017; pp. 286–291.

21. Cao, S.; Lu, W.; Zhou, J.; Li, X. Cw2vec: Learning chinese word embeddings with stroke n-gram information.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA,
2–7 February 2018.

22. Miller, G.A. Wordnet: A lexical database for english. Commun. ACM 1995, 38, 39–41. [CrossRef]
23. Navigli, R.; Ponzetto, S.P. Babelnet: The automatic construction, evaluation and application of a wide-coverage

multilingual semantic network. Artif. Intell. 2012, 193, 217–250. [CrossRef]
24. Speer, R.; Chin, J.; Havasi, C. Conceptnet 5.5: An open multilingual graph of general knowledge.

In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9
February 2017.

25. Liu, F.; Lu, H.; Lo, C.; Neubig, G. Learning character-level compositionality with visual features.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC,
Canada, 30 July–4 August 2017; Volume 1, pp. 2059–2068.

26. Wang, S.; Zhang, J.; Zong, C. Learning multimodal word representation via dynamic fusion methods.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7
February 2018.

27. Mei, J.; Zhu, Y.; Gao, Y.; Yin, H. Tongyici Cilin (Dictionary of Synonymous Words); Shanghai Cishu Publishing:
Shanghai, China, 1983.

28. Liu, W.; Zhou, P.; Zhao, Z.; Wang, Z.; Ju, Q.; Deng, H.; Wang, P. K-Bert: Enabling Language Representation with
Knowledge graph; AAAI: New York, NY, USA, 7–12 February 2020; pp. 2901–2908.

29. Camacho-Collados, J.; Pilehvar, M.T. From word to sense embeddings: A survey on vector representations of
meaning. J. Artif. Intell. Res. 2018, 63, 743–788.

30. Pennington, J.; Socher, R.; Manning, C. Glove: Global vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural language processing (EMNLP), Doha, Qatar, 25–29 October
2014; pp. 1532–1543.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

153

applied
sciences

Article

Can We Survive without Labelled Data in NLP?
Transfer Learning for Open Information Extraction

Injy Sarhan 1,2,* and Marco Spruit 2

1 Department of Computer Engineering, Arab Academy for Science, Technology and Maritime
Transport (AAST), Alexandria 21500, Egypt

2 Department of Information and Computing Sciences, Utrecht University, Princetonplein 5,
3584 CC Utrecht, The Netherlands; m.r.spruit@uu.nl

* Correspondence: injy.sarhan@aast.edu or i.a.a.sarhan@uu.nl

Received: 29 July 2020; Accepted: 18 August 2020; Published: 20 August 2020

Abstract: Various tasks in natural language processing (NLP) suffer from lack of labelled training
data, which deep neural networks are hungry for. In this paper, we relied upon features learned
to generate relation triples from the open information extraction (OIE) task. First, we studied how
transferable these features are from one OIE domain to another, such as from a news domain to a
bio-medical domain. Second, we analyzed their transferability to a semantically related NLP task,
namely, relation extraction (RE). We thereby contribute to answering the question: can OIE help
us achieve adequate NLP performance without labelled data? Our results showed comparable
performance when using inductive transfer learning in both experiments by relying on a very small
amount of the target data, wherein promising results were achieved. When transferring to the OIE
bio-medical domain, we achieved an F-measure of 78.0%, only 1% lower when compared to traditional
learning. Additionally, transferring to RE using an inductive approach scored an F-measure of 67.2%,
which was 3.8% lower than training and testing on the same task. Hereby, our analysis shows that
OIE can act as a reliable source task.

Keywords: transfer learning; open information extraction; relation extraction; recurrent neural
networks; word embeddings

1. Introduction

In deep learning for natural language processing (NLP), the collection of labelled data necessary
for training and building models is expensive. This has further highlighted the urgency towards
transfer learning research. The aim of transfer learning is to benefit from information gathered from
previous training data in directly making predictions in the target task by utilizing the extracted
information. Deep learning approaches in NLP did not start until the early 2000s [1]. Recently, there has
been an exponential increase in the number of scientific publications in neural networks in various
NLP tasks [1].

Open information extraction (OIE) is a challenging task of extracting relation tuples from an
unstructured corpus. Its main objective is to generate structured information from unstructured data in
the form of a relation triple, <Argument 1> <Relation> <Argument 2>, without the need of predefining
the relation between the two arguments. The extracted tuples can be binary, ternary, or n-ary, where the
relationship is expressed between more than two entities such as the Person–Location–BornIn–BornOn
relation (Jack Adams, Michigan, California, 1975).

Relation extraction (RE)—also classified as a category of information extraction—is the processes
of identifying semantic relationships between entities. Contrary to OIE, RE requires predefining
the relation prior to extraction. Similar to OIE, the extracted relation can either be a binary relation,

155

Appl. Sci. 2020, 10, 5758

for instance, Located-In (Berlin, Germany), or a higher order relation (n-ary), for instance, a 3-ary
relation between Employee–Position–Company (Adam Smith, Marketing Manager, XYZ Company).
Examples of both OIE and RE triples can be found in Table 1.

Table 1. Open information extraction and relation extraction example.

Sentence John Lennon Was Born on 9 October 1940, in Liverpool and Gained
Worldwide Fame as the Founder of the Beatles.

OIE Tuples
< John Lennon, Born, 9 October 1940>

< John Lennon, Born, Liverpool>
< John Lennon, founder, Beatles>

RE Tuples
Person-Born-On: < John Lennon, Born, 9 October 1940>

Person-Born-In: < John Lennon, Born, Liverpool >
Person-Organization: < John Lennon, founder, Beatles>

OIE is a crucial NLP task, and thus it was chosen as a source task to transfer to other NLP tasks due
to its various potential applications in information retrieval, information extraction, text summarization,
and question answering [2]. While various OIE algorithms have been developed in the past decade,
only a small number employ deep learning techniques.

In recent years, researchers have increasingly been showing interest towards model generalization
in deep learning due to the lack of labelled data. In this paper, we investigated the ability to transfer
OIE to other NLP tasks, ranging from domain–adaptation (news domain to bio-medical) to RE as a
semantically related task. RE task was chosen because of the nature of both OIE and RE, and our
choice was backed up by the semantic overlap between both tasks. Throughout our research, we also
compared and experimented with the use of different word embeddings.

This work aimed to measure how OIE can assist in other NLP tasks. Our primary objective was
to conduct a fair comparison of different methods and settings with respect to OIE transfer learning
effects to other NLP tasks. Therefore, we did not focus on outperforming state-of-the-art results in the
target tasks.

The remainder of the paper is structured as follows. Section 2 presents a brief overview of transfer
learning, while Section 3 surveys previous work in both OIE and RE. The neural network architecture
is explained in Section 4, and experimental setup is explained in Section 5. Results and evaluation are
discussed in Section 6. Finally, Section 7 concludes the paper and discusses future work.

2. Transfer Learning in NLP

Formerly, there was a misconception that a machine learning framework will achieve the desirable
results only if the testing data and training data have similar distribution and feature space. Thus,
a new framework was required for data with different distribution properties and features, making the
collection of labelled training data expensive and difficult. Transfer learning lessens the demand of
gathering an immense amount of labelled training data by reemploying the knowledge gained from a
different task to tackle new tasks faster and constructively.

Pan and Yang introduced a transfer learning taxonomy [3]. Additionally, they categorized transfer
learning into three classes:

Inductive transfer learning: labelled data are accessible in source and target domain.
Transductive transfer learning: labelled data are only available in the source domain.
Unsupervised transfer learning: No labelled data are both source and target domain.
Transfer learning has been implemented in various different machine learning tasks, achieving

notable results, for instance, textual summarization [4], named entity recognition [5], question
answering [6,7], and text classification [8].

BERT (Bidirectional Encoder Representations from Transformers) [9] was a breakthrough in
transfer learning on a range of language-based tasks, not only due to the fact that BERT was pretrained

156

Appl. Sci. 2020, 10, 5758

on an immense dataset, but also because it has a substantial number of transformer blocks (encoder
layers) and feed-forward networks. Later on, many transfer learning models built on BERT were
introduced, for example ULMFiT [10] and OpenAI transformer [11]. This novel development also
affected the way words are encoded, with more elaboration being found in Section 4.2.

As shown in Figure 1, in our work, two transductive transfer learning experiments were carried
out. The first one transfers knowledge learned from the OIE news domain to the OIE bio-medical
domain—this is referred to as domain adaptation. In contrast to transfer learning, domain adaption
entails adapting a model trained on one domain to other different domains on the same task. The default
process of supervised domain adaptation for neural models involves pre-training the network on data
from the source domain followed by fine-tuning hyperparameters on data from the target domain.
The second experiment transfers information from the OIE news domain to the RE news domain.
Moreover, a small percentage of OIE bio-medical data were added to OIE news data to experiment with
inductive transfer learning. Similarly, a small amount of RE training data were inputted to the neural
model along with OIE news corpus, with both experiments being referred to as multi-task learning.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 16

(encoder layers) and feed-forward networks. Later on, many transfer learning models built on BERT
were introduced, for example ULMFiT [10] and OpenAI transformer [11]. This novel development
also affected the way words are encoded, with more elaboration being found in Section 4.2.

As shown in Figure 1, in our work, two transductive transfer learning experiments were carried
out. The first one transfers knowledge learned from the OIE news domain to the OIE bio-medical
domain—this is referred to as domain adaptation. In contrast to transfer learning, domain adaption
entails adapting a model trained on one domain to other different domains on the same task. The
default process of supervised domain adaptation for neural models involves pre-training the network
on data from the source domain followed by fine-tuning hyperparameters on data from the target
domain. The second experiment transfers information from the OIE news domain to the RE news
domain. Moreover, a small percentage of OIE bio-medical data were added to OIE news data to
experiment with inductive transfer learning. Similarly, a small amount of RE training data were
inputted to the neural model along with OIE news corpus, with both experiments being referred to
as multi-task learning.

Figure 1. Open information extraction (OIE) transfer learning assessment. A total of four transfer
learning experiments were carried out in our work. Left: the two transductive transfer learning
experiments (BM1 and RE1). Right: illustration of the two experiments using inductive approaches
(BM2 and RE2). Middle: the red dotted line represents the original model (ROIE), in which we tested
our proposed neural model by testing and training on OIE news data, which is discussed in Section
4. The experiments’ ID and the section they are discussed in are encapsulated in the yellow rectangles.

3. Related Work

In this section, we focus on previous works performed on OIE and RE relation extraction in the
literature.

3.1. State-of-the-Art Open Information Extraction

OIE can be portrayed in three broad categories [12]: (a) machine learning classifier approaches,
(b) hand-crafted rules approaches, and (c) neural network approaches. The first two categories can
be further divided into two sub-categories: shallow syntactic analysis and dependency parsing.
Below we discuss state-of-the-art work in each of these categories.

3.1.1. Machine Learning Classifiers Approaches

OIE systems that are built on machine learning classifier techniques require automatically
generated data to train the classifier. In 2007, Banko et al. introduced the first OIE system based on
shallow syntactic analysis, TextRunner [13]. It implements extraction in three main phases. It starts
with a self-supervised learner that depends mainly on a conditional random field (CRF) classifier that
utilizes unlexicalized features required for relation extraction, followed by a single pass extractor that

Figure 1. Open information extraction (OIE) transfer learning assessment. A total of four transfer
learning experiments were carried out in our work. Left: the two transductive transfer learning
experiments (BM1 and RE1). Right: illustration of the two experiments using inductive approaches
(BM2 and RE2). Middle: the red dotted line represents the original model (ROIE), in which we tested
our proposed neural model by testing and training on OIE news data, which is discussed in Section 4.
The experiments’ ID and the section they are discussed in are encapsulated in the yellow rectangles.

3. Related Work

In this section, we focus on previous works performed on OIE and RE relation extraction in
the literature.

3.1. State-of-the-Art Open Information Extraction

OIE can be portrayed in three broad categories [12]: (a) machine learning classifier approaches,
(b) hand-crafted rules approaches, and (c) neural network approaches. The first two categories can be
further divided into two sub-categories: shallow syntactic analysis and dependency parsing. Below we
discuss state-of-the-art work in each of these categories.

3.1.1. Machine Learning Classifiers Approaches

OIE systems that are built on machine learning classifier techniques require automatically
generated data to train the classifier. In 2007, Banko et al. introduced the first OIE system based on
shallow syntactic analysis, TextRunner [13]. It implements extraction in three main phases. It starts
with a self-supervised learner that depends mainly on a conditional random field (CRF) classifier

157

Appl. Sci. 2020, 10, 5758

that utilizes unlexicalized features required for relation extraction, followed by a single pass extractor
that extracts any potential relation triple and classifies each as either trustworthy or not. Finally,
a redundancy-based assessor that re-ranks the extracted relations and assigns a confidence score to each
extracted tuple is implemented. Not only did the authors of TextRunner facilitate domain-independent
detection of relations from a corpus but their work triggered researchers towards developing OIE
systems. For instance, the WOE (Wikipedia-based Open Extractor) [14] system is built on TextRunner,
having two modes of operation: WOEPos and WOEParse. The main hypothesis behind WOE is the
automated assembly of training samples by heuristically pairing Wikipedia info box values with
corresponding texts, hence improving TextRunner’s performance. WOEPos exploits the CRF classifier
trained with shallow syntactic proprieties to extract specific words between two noun phrases that
represents a relation.

An example of an OIE approach that utilizes dependency parsing is WOEParse; it exploits a
rich dictionary of dependency path patterns acquired from Wikipedia extractions. While the OLLIE
(Open Language Learning for Information Extraction) approach [15] relies on the bootstrapping
concept, it learns semi-lexicalized pattern templates using dependency parses by bootstrapping a
plentiful amount of training data that results in surpassing WOE’s performance.

3.1.2. Hand-Crafted Rules Approaches

REVERB, introduced by Fader et al. [16], extracts tuples by singling out relation phrases that
satisfy syntactic and lexical constraints; for each relation phrase, a pair of noun phrase arguments are
identified. REVERB then uses logistic regression trained on 1000 sentences from the web with shallow
syntactic features to assign a confidence score to each extracted relation triple. The R2A2 approach [17]
upgrades REVERB by adding ARGLEARNER, an argument identifier that makes use of patterns as
features to identify the left and right boundaries of each argument.

KRAKEN [18] is one of the few OIE system that is able to capture N-ary relations. It utilizes
hand-crafted patterns to identify relation phrases and their correlated arguments over typed dependency
parsers. As a further matter, KRAKEN is able to detect completeness and correctness of the extracted
facts, thus increasing the quality of the extracted information. Del Corro and Gemulla proposed
ClausIE (Clause-based Open Information Extraction) [19], which locates clauses in input sentences by
making use of linguistic information of the English language’s grammar by computing a dependency
parse tree of the input phrase to determine its syntactical structure. Each clause is later classified to be
compatible with the grammatical function of its constituents. Unlike the aforementioned OIE systems,
ClausIE does not exploit any training data.

3.1.3. Neural Network Approaches

Recently, as a result of their successfulness in a diverse NLP tasks [1], deep neural networks
paved the way to the OIE task. A recurrent neural network (RNN) encoder–decoder OIE framework
was proposed by Cui et al. [20]. A fluctuating length sequence is sent to the network’s encoder as a
sole input. The encoder then generates a compressed representation vector to transfer to the decoder
in order to produce the output sequence. A three-layer long short-term memory (LSTM) [21] is the
internal structure of both the encoder and the decoder. Stanovsky et al. [22] presented a neural OIE
paradigm that trains a bidirectional LSTM (bi-LSTM) transducer to label each word, verifying that
supervised learning can have a positive effect on OIE performance.

3.2. State-of-the-Art Relation Extraction

RE research falls mainly under one of the following approaches: supervised, semi-supervised,
distant supervision, and unsupervised. As always, the main issue of supervised techniques
is the necessity of having a large amount of labelled data, which is difficult to gather [23].
Semi-supervised approaches mainly depend on bootstrapping techniques. Distant supervision
techniques merge both semi-supervised and unsupervised approaches. However, popularity of

158

Appl. Sci. 2020, 10, 5758

unsupervised techniques declined due to the fact that the learner is provided unannotated data, and for
that reason, evaluation becomes demanding at a large scale. We limited our discussion to supervised,
semi-supervised, and distant supervision approaches. Neural approaches appear as a subclass in all
the aforementioned classes.

3.2.1. Supervised Approaches

RE is treated as a multi-class classification task in supervised approaches. Supervised categories
can be classified into kernel-based approaches and feature-based approaches. An example of the latter
is the work of [24], who merged diverse features of lexical, syntactic, and semantic knowledge by
employing a support vector machine (SVM) to extract relations, proving the effectiveness of base phrase
chunking information. Authors of [25] introduced a kernel-based RE paradigm that incorporates term
generalization techniques—word clustering and latent semantic analysis—with structured kernels to
enhance RE results in different domains. Moreover, a neural approach based on adversarial training
was proposed by Peng Su and K. Vijay-Shanker [26], aiming to boost RE task performance through
various adversarial examples and adding perturbation on all input features of the model. Adversarial
learning is built on the basis that similar data instances are assigned the same label.

3.2.2. Semi-Supervised Approaches

The first bootstrapping algorithm was DIPRE (Dual Iterative Pattern Relation Expansion) [27],
which employs a pattern-matching model as classifier by using a set of seeds to extract patterns from the
dataset in order to extract new candidate relations. The DualRE model [28] was proposed to overcome
the problem of semantic drift associated with bootstrapping approaches. The key idea behind DualRE
is training a retrieval module along a relation prediction module, hereby mutually improving the
quality of one another through labelling data to use as auxiliary training data. In [29], a convolutional
neural network (CNN) RE architecture was proposed that employs graph-structured data where label
knowledge is smoothed over the graph by means of explicit graph-based regularization.

3.2.3. Distant Supervision Approaches

The traditional distant supervision RE approaches claim that if a sentence consists of two related
entities then the same relation lies between those two entities. Nevertheless, Sebastian et al. proposed
an RE model that supports a different claim, “if two entities participate in a relation, then at least
one sentence that mentions those two entities might express that relation” [30], by utilizing a factor
graph to aid in determining if two entities are related or not. Additionally, a learning algorithm
is employed to train this graphical framework by structuring distant supervision as an instance of
constraint-driven semi-supervision.

A piecewise CNN RE technique was proposed by [31], not only to overcome the noise generated
from the feature extraction phase, but also to address the issue of handling distant relation extraction as
a multi-instance task, which leads to lack of certainty of instance labels. By designing a convolutional
framework with piecewise max pooling as an alternative to feature engineering to automatically learn
related features, the authors of [31] were able to overcome the aforementioned problems.

4. ROIE: A Recurrent Neural Network Model for Open Information Extraction

Our recurrent neural network (RNN) model is based on our work in [32] by tackling the OIE
task as a sequencing labeling problem resulting in the extraction of multiple, overlapping tuples for
each sentence.

4.1. Neural Model Architecture

Throughout the back-propagation process, RNNs are prone to vanishing and exploding gradient
descent complications, making RNN training challenging. Thus, LSTMs and gated recurrent units

159

Appl. Sci. 2020, 10, 5758

(GRUs) were established to address the issues related to the unstable gradient. When the gradient
becomes too big or simply disappears, killing the learning process, LSTMs and GRUs aid by using the
relevant gates to allow the gradient to flow backward through time, freely and effectively keeping
long-term dependencies [33].

Both LSTMs and GRUs are able to train on long word contexts and connect information using cell
states. LSTM has three gates (input, output, and forget), contrary to GRU, which couples input and forget
gates in one gate—update gate, in addition to reset gate, which determines how to incorporate previous
memory with the current input. As a result, our model employs GRUs instead of LSTMs, since GRUs
are less complex with only two gates, and hereby they require less training parameters and utilize less
memory, effectively making GRU faster than LSTM.

The default operation in RNN captures context in a single direction, which may lead to
comprehending issues; for instance, consider the following two sentences:

“Second place is not as prestigious as first place.”
“Second is the standard international unit of time.”
In these sentences, the word “second” carries different meanings, which traditional RNNs will

not be able to comprehend, since it is the first word in the sentence; nevertheless, bidirectional RNNs
support learning from both ends. A bidirectional GRU (Bi-GRU) was employed in our model to
learn forward and backward lexical semantics of each word in a given sentence. There are two
different methods to implement a bidirectional network; either by having two RNNs operating in
opposite directions or within the internal architecture of the RNN itself. In our ROIE framework,
we implemented the latter approach.

4.2. Word Embeddings

Recently, several types of word embeddings have been introduced; nevertheless, they all serve
the same purpose of mapping words to low-dimensional vector representations. The aforementioned
OIE and RE deep learning-based approaches in Sections 3.1.3 and 3.2, respectively, utilized one of the
traditional word embeddings, either GloVe [34] or Word2Vec [35].

In our work, we incorporated the novel contextualized word embeddings. Due to their ability to
capture complex syntactic and semantic features of a word, deep contextualized word embeddings
have proven to be successful in various NLP tasks when compared to the traditional word embeddings.
The main concept behind contextualized word embeddings is that a word’s representation varies
according to its neighboring words, and thus the same word can have different representations
depending on its adjacent words.

Table 2 shows the word embeddings we employed in our experiment, along with the dimensionality
of each embedding and the data they are trained on. We picked one traditional non-contextualized
embedding, GloVe, and three contextualized embeddings with different dimensionalities: BERT [9],
XLNet [36], and XLM-RoBERTa [37]. XLNet is trained on data much larger than Google’s BERT training
data, and thus it outperforms BERT on 20 different NLP tasks [36]. Facebook’s XLM-RoBERTa depends
on the masked language model objective and is effective in text processing from 100 different languages.

Table 2. Word embeddings employed in our work.

Embedding Dimensionality Trained On

GloVe [34] 100 Aggregated global word–word co-occurrence
statistics from a corpus.

BERT [9] 3072 Wikipedia and +10,000 books of different genres.
XLNet [36] 2048 Over 130 GB of textual data.

XLM-RoBERTa [37] 1024 2.5 TB of filtered CommonCrawl data.

Flair [38] is a simple framework that offers a unified interface for conceptually varying types of
word and document embeddings, which we utilized in our experiments.

160

Appl. Sci. 2020, 10, 5758

4.3. Work Flow

The embedded sentence—composed of a fixed-length vector—is sent as an input to our ROIE
neural network framework. Specifically, predicates—the part of a sentence or clause containing a
verb and stating something about the subject—are regarded as the building blocks of most languages,
as they denote significant actions that are deemed extremely efficient in extracting relations of interest.
Therefore, in line with the work of [22,32], the predicate in each sentence is presumed to be the relation
that links the tuple; consequently, the predicate is inputted to the neural network framework as a
feature vector alongside the part of speech (POS) tag of the input sentence obtained using the NLTK
toolkit [39], as shown in Figure 2.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 16

verb and stating something about the subject—are regarded as the building blocks of most languages,
as they denote significant actions that are deemed extremely efficient in extracting relations of
interest. Therefore, in line with the work of [32] and [22], the predicate in each sentence is presumed
to be the relation that links the tuple; consequently, the predicate is inputted to the neural network
framework as a feature vector alongside the part of speech (POS) tag of the input sentence obtained
using the NLTK toolkit [39], as shown in Figure 2.

Figure 2. Our ROIE transferable neural model architecture.

After embedding the three aforementioned inputs, we concatenated them all to form our feature
vector of shape (3, length of sentence, embedding size); the feature vector is defined as follows:

Feature Vector = Embedded Word ⊕ Embedded POS ⊕ Embedded Predicate (1)

The generated feature vector is then passed to the two-layer Bi-GRU, which in turn outputs a
tensor that is progressed to three-layer time distributed dense (TDD) layers, which is finally passed
to the SoftMax layer for label prediction.

4.4. Sequence Labelling

In NLP, sequence labelling is the task of identifying and assigning a label to each word, for
instance the POS task, where each word is tagged to a particular POS. Sequencing labelling achieved
more promising results when compared to traditional statistical techniques among a diverse array of
NLP tasks [22]. In our work, we used BIO tags (Begin-Intermediate-Outside) [40] to indicate the
word’s location in the sentence and label it accordingly. The SoftMax output layer assigns the
probability score to each word to determine its corresponding label, as shown in Figure 2. Our
proposed ROIE paradigm is only able to capture binary relations. If a sentence contains more than
one predicate, another instance of that sentence is created to capture any possible relation. However,
if a sentence has no relations, only the predicate is labelled “P-B” (Predicate-Begin), “P-I” (Predicate-
Intermediate), while label “O” (Outside) is assigned to the remaining words in the sentence, without
assigning any “E” (Entity) labels.

4.5. Dataset

To train and test our OIE neural framework, we used the Wikipedia News Corpus (WikiNews)
[41]. Our dataset was split into a training set to train the network, a development set for validation
purposes and a test set to assess the performance of our ROIE framework on a 60/20/20 ratio. An
overview of the dataset is shown in Table 3.

Figure 2. Our ROIE transferable neural model architecture.

After embedding the three aforementioned inputs, we concatenated them all to form our feature
vector of shape (3, length of sentence, embedding size); the feature vector is defined as follows:

Feature Vector = Embedded Word ⊕ Embedded POS ⊕ Embedded Predicate (1)

The generated feature vector is then passed to the two-layer Bi-GRU, which in turn outputs a
tensor that is progressed to three-layer time distributed dense (TDD) layers, which is finally passed to
the SoftMax layer for label prediction.

4.4. Sequence Labelling

In NLP, sequence labelling is the task of identifying and assigning a label to each word, for instance
the POS task, where each word is tagged to a particular POS. Sequencing labelling achieved more
promising results when compared to traditional statistical techniques among a diverse array of NLP
tasks [22]. In our work, we used BIO tags (Begin-Intermediate-Outside) [40] to indicate the word’s
location in the sentence and label it accordingly. The SoftMax output layer assigns the probability score
to each word to determine its corresponding label, as shown in Figure 2. Our proposed ROIE paradigm
is only able to capture binary relations. If a sentence contains more than one predicate, another instance
of that sentence is created to capture any possible relation. However, if a sentence has no relations,
only the predicate is labelled “P-B” (Predicate-Begin), “P-I” (Predicate-Intermediate), while label “O”
(Outside) is assigned to the remaining words in the sentence, without assigning any “E” (Entity) labels.

161

Appl. Sci. 2020, 10, 5758

4.5. Dataset

To train and test our OIE neural framework, we used the Wikipedia News Corpus (WikiNews) [41].
Our dataset was split into a training set to train the network, a development set for validation purposes
and a test set to assess the performance of our ROIE framework on a 60/20/20 ratio. An overview of the
dataset is shown in Table 3.

Table 3. WikiNews dataset overview.

Dataset No. of Sentences No. of Tuples

Train set 1174 2906
Development set 392 946

Test set 393 993

4.6. Hyperparameter Settings

Our ROIE neural framework was implemented using the Keras framework [42] with a TensorFlow
backend [43]. Table 4 shows our model’s hyperparameter configurations that achieved the best results
when training and testing on OIE. As shown, our framework was trained on 20 epochs and the
training dataset was split into 100 batches. For regularization purposes, in order to avoid over-fitting,
the dropout rate was set to 0.1. Furthermore, early stopping was utilized to terminate training when
the training performance stopped improving. Both bidirectional GRU layers and the three TDD layers
had an identical number of units, 128 units. Additionally, rectified linear unit (ReLU) [44] was the
chosen activation function in the three TDD layers, while the Adam optimizer [45] was utilized to train
our framework.

Table 4. Hyperparameter settings used in ROIE.

Hyperparameter Value

Epochs 20
Batches 100

Bidirectional GRU 128 units
TDD activation function ReLU

TDD units 128 units
Dropout rate 0.1

Optimizer Adam

4.7. Results of our ROIE Model

It should be emphasized that our ROIE neural model outperformed other state-of-the-art neural
OIE approaches, as documented in [32], while using ELMo word embeddings [46], also a deep
contextualized word embedding that models both complex syntactic and semantic features of a word.

Better results were attained after XLNet was substituted for ELMo [46] when compared to our
results in [32]; the results are reported in Table 5. An exhaustive grid search was performed to single
out the best batch–epoch pair for each word embedding. Our batches and epochs ranged from 20
to 120 and 1 to 50, respectively, both with increments of 5. GloVe achieved an F-measure of 56.1%,
while BERT and XLM-RoBERTa achieved a F-measure of 61.1% and 61.5%, respectively. Nevertheless,
XLNet surpassed all the other embeddings—including ELMo’s 59% F-measure—and achieved 65%.

162

Appl. Sci. 2020, 10, 5758

Table 5. Results of the ROIE model using different word embeddings. Both training and testing were done
on the OIE WikiNews dataset. Recall (R), precision (P), and F-measure (F) were used as evaluation metrics.

Source Task
(Train)

Target
Task (Test)

Word
Embeddings

Hyper Parameters
(Batches–Epochs) Results (R–P–F)

OIE (news) OIE (news)

GloVe 100 5 58.2% 54.1% 56.1%
BERT 100 5 64.3% 58.2% 61.1%
XLNet 100 20 68.1% 62.2% 65.0%

XLM-RoBERTa 100 5 65.4% 58.1% 61.5%

5. Materials and Methods

In this section, we explain the experiments carried out and dataset utilized in our two main
tasks, transferring to OIE bio-medical domain and transferring to RE task. In the source task,
the aforementioned WikiNews training set [41] was utilized.

5.1. Transfering to OIE: Bio-Medical Domain

A classifier trained on a news corpus would observe an altered distribution if employed to classify
bio-medical data. Therefore, domain adaptation methods are deployed in transfer learning in such
scenarios. In the transductive learning task, specifically domain adaptation, we handle our pretrained
model as a feature extractor; in our case, the pretrained model was trained on the news domain,
where there is a characteristic shift in distribution of the data between source and target domains that
necessitates adjustments to effectively transfer knowledge.

DDIExtraction 2013 [47] is a bio-medical dataset mainly specialized in the subject of drug–drug
interactions. The dataset was structured from the DrugBank database [48] and MEDline abstracts [49]
related to drug–drug interactions. We utilized the DDIExtraction as a test set in the following
experiments. In our work, the performance of the following three experiments were compared against
each other:

Transductive transfer learning: transferring knowledge learnt from the OIE news domain to the
OIE bio-medical domain.

Inductive transfer learning: a small amount of bio-medical data also from DDIExtraction is fed to
the neural network alongside news data to train the neural network.

Traditional learning: both training and testing on bio-medical data.

5.2. Transfering to Relation Extraction

The OIE and RE tasks are both subclasses of information extraction, making the two tasks similar
in semantics. The dataset used in the RE task for training, testing, and validation is Semeval-2010 Task
8 [50]. The nine predefined relations in the dataset are shown in Table 6. The training set consists of
8000 sentences, however, for a fair comparison we trained our neural network on the same number of
relation tuples available in the OIE training set; thus, 2906 tuples were randomly selected from the
training set. Similarly, the same experiments were compared against each other when transferring
from the OIE news domain to RE:

Transductive transfer learning: transferring knowledge learnt from the OIE news domain to the
RE news domain.

Inductive transfer learning: a small percentage of the RE corpus is fed into the neural framework
along OIE news data to train the neural network.

Traditional learning: both training and testing on the RE news domain.
In all the above-mentioned experiments in both tasks, we used bio-medical OIE and RE, a development

set containing 946 tuples composed of the same structure as the source task, for validation purposes.

163

Appl. Sci. 2020, 10, 5758

Table 6. List of predefined relations in the Semeval-2010 corpus and their number of occurrences.

Relations.
Number of Instances

Train Set Test Set

1. Cause–Effect 485 228
2. Instrument–Agency 245 156
3. Product–Producer 320 231
4. Entity–Origin 398 258
5. Entity–Destination 392 252
6. Component–Whole 209 110
7. Content–Container 118 102
8. Member–Collection 345 233
9. Message–Topic 394 261

Total 2906 1831

6. Results and Evaluation

The following measures were used to measure the effect of transferring knowledge learnt from
our ROIE framework: Recall (R), Precision (P), and F-measure (F). All the aforementioned evaluation
metrics were expressed as percentages throughout the experiments, with the F-measure being the
determining performance measure. All hyperparameters—shown previously in Table 4—except for
epochs and batches were fixed throughout our experiments. Contextual embeddings were highly
sensitive to changes in hyperparameters, specifically with respect to number of epochs and batches.
Steep falls and rises were noticed when the number of epochs and batches were changed.

It is worth noting that the dimensionality of the word embeddings refers to the length of the vector;
in theory the size of the vector is directly proportional to the information it can store, which allows
NLP systems to perform better. However, in practice, there was not much benefit with the embeddings
with higher dimensionality when compared with lower dimensionality embeddings.

6.1. Results of Transferring to OIE: Bio-Medical Domain

In order to properly evaluate transfer learning results, we compared it with training and testing
on the target task. Detailed results of the experiments can be found in Table 7, indicating the source
task (training set) and the target task (testing set). The hyperparameters that achieved the highest
scores are the ones reported in Table 7.

OIE: Bio-Medical Domain Results Discussion

Our system achieved the highest results using XLM-RoBERTa in all three experiments: transductive
transfer learning, inductive transfer learning, and traditional learning, outperforming all other
word embeddings.

When our training set was composed entirely of news data, XLM-RoBERTa scored the highest
F-measure of 64.4%, with 100 batches and 5 epochs. XLNet and GloVe achieved the same F-measure
of 62.9% using the same number of batches and epochs, 100 and 5, respectively. Nevertheless,
BERT achieved the lowest F-measure of 60%.

In inductive transfer learning, a small amount of bio-medical data were inputted to the neural
framework by sampling a random batch from the DDIExtraction 2013 training data using a 4:1 ratio,
with bio-medical data having the lower ratio. A significant increase in the F-measure of 13.6% was
attained in inductive transfer learning when comparing to transductive transfer learning. Using both
XLM-RoBERTa and XLNet, our inductive transfer approach realized an F-measure of approximately
78%, with XLM-RoBERTa’s precision surpassing XLNet’s by 0.9%. BERT came in third and achieved
75.2%, while GloVe scored an F-measure of 73.7%.

164

Appl. Sci. 2020, 10, 5758

Table 7. Domain adaptation results by transferring from the OIE news domain to the OIE bio-medical
domain using four different word embeddings. Bold values indicate the highest achieved F-measure in each
of the three experiments (transductive transfer learning, inductive transfer learning, traditional learning).

Source Task (Train) Target Task (Test) Word
Embeddings

Hyperparameters
(Batches–Epochs) Results (R–P–F)

Transductive
Transfer

Learning (BM1)
OIE (news) OIE (bio-medical)

GloVe 100 5 68.2% 58.4% 62.9%
BERT 50 10 72.4% 51.3% 60.0%
XLNet 100 5 68.4% 58.3% 62.9%

XLM-RoBERTa 100 5 71.0% 59.0% 64.4%

Inductive
Transfer

Learning (BM2)

OIE (news) + OIE
(bio-medical)

OIE (bio-medical)

GloVe 100 15 69.8% 78.2% 73.7%
BERT 100 5 71.9% 78.9% 75.2%
XLNet 100 10 73.6% 82.9% 77.9%

XLM-RoBERTa 100 5 73.0% 83.8% 78.0%

Traditional
Learning OIE (bio-medical) OIE (bio-medical)

GloVe 100 5 70.8% 71.7% 71.2%
BERT 100 15 73.1% 85.9% 78.9%
XLNet 100 15 72.9% 84.2% 78.1%

XLM-RoBERTa 100 15 72.5% 86.9% 79.0%

The results scored using traditional learning by training entirely on bio-medical data were only
1% higher than the results achieved using the inductive transfer learning technique. Once again,
XLM-RoBERTa outperformed the other embeddings by scoring an F-measure of 79% using 100 batches
and 15 epochs. Additionally, BERT achieved roughly the same F-measure as XLM-RoBERTa of 78.9%,
using the same number of epochs and batches; however, it achieved a lower precision of 85.9%. It is
notable that GloVe achieved a higher F-measure in inductive transfer learning than traditional learning.
Our interpretation is that adding news training data to the biomedical tasks resulted in a higher
performance with GloVe embeddings. This could correlate with the original training data of the
GloVe model used in our experiments. Thus, our results show that using a small percentage from
the target task while training our neural network results in a proximate outcome when compared to
traditional learning.

6.2. Results of Transfering to Relation Extraction

Equally, in order to establish a fair comparison in the following three experiments, we fixed the
training set size to 2906 relation instances. Results of both transductive and inductive transfer learning
were compared against the results achieved by traditional learning. Results are reported in Table 8.

Relation Extraction Results Discussion

Firstly, in transductive transfer learning, with 50 batches and 10 epochs, BERT was able to achieve
an F-measure of 54.4%. Both XLNet and XLM-RoBERTa scored the same F-measure of 49.1%, which was
nearly 4.6% higher than the F-measure achieved using GloVe.

With inductive transfer learning, we found an improvement of 12.8% when compared to
transductive learning also using a 4:1 ratio, with the OIE news dataset overtaking the higher ratio.
Using XLM-RoBERTa, a 67.2% F-measure was attained when the network was trained on 15 epochs
and the training dataset was divided into 100 batches. BERT and XLNet did not fall far behind
XLM-RoBERTa, as they achieved F-measures of 66.3% and 65.4%, respectively. GloVe achieved the
lowest F-measure of 59.9%.

165

Appl. Sci. 2020, 10, 5758

Table 8. Results of transferring from OIE to RE using four different word embeddings. Bold values
indicate the highest achieved F-measure in each of the three experiments (transductive transfer learning,
inductive transfer learning, traditional learning).

Source Task (Train) Target Task (Test) Word
Embeddings

Hyperparameters
(Batches–Epochs) Results (R–P–F)

Transductive
Transfer

Learning (RE1)
OIE (news) RE (news)

GloVe 100 5 55.9% 37.0% 44.5%
BERT 50 10 62.2% 48.4% 54.4%
XLNet 50 5 58.8% 42.1% 49.1%

XLM-RoBERTa 100 15 53.2% 45.6% 49.1%

Inductive
Transfer

Learning (RE2)

OIE (news) + RE
(news)

RE (news)

GloVe 100 10 52.8% 69.3% 59.9%
BERT 100 5 61.7% 73.0% 66.3%
XLNet 100 15 59.7% 72.2% 65.4%

XLM-RoBERTa 100 15 59.7% 76.9% 67.2%

Traditional
Learning RE (news) RE (news)

GloVe 100 15 57.6% 77.1% 65.9%
BERT 100 15 62.4% 82.3% 71.0%
XLNet 100 5 61.6% 81.3% 70.5%

XLM-RoBERTa 100 15 59.8% 79.9% 68.4%

When employing default learning settings, where we train on our target task, there was a 3.8%
enhancement in the F-measure. Once again, BERT outperformed by scoring an F-measure of 71%,
only 0.5% higher than XLNet, and 2.6% higher than XLM-RoBERTa. Consistently, GloVe scored the
lowest F-measure of 65.9%, hereby proving the notable effect in the model’s performance when using
contextualized word embeddings in contrast with traditional word embeddings.

Table 9 summarizes the best results of the three main experiments acquired in our work:
ROIE model, transferring to bio-medical domain, and transferring to RE. As seen in Table 9, we could
not single out a particular contextualized word embedding to utilize, as the use of word embedding
may vary according to the various reasons: type of task (OIE, RE, or sentiment analysis), dataset
domain (news, bio-medical data, or financial data), and the computational power available to the user.
This is also in agreement with other papers that extensively compared embeddings in various tasks
and found that the most suitable one is highly dependent on the task and data nature [51,52].

Table 9. Summary of the best result obtained in each experiment by different systems described in the
paper: original ROIE model, transferring from OIE to bio-medical OIE (transductive transfer learning,
inductive transfer learning, traditional learning), and transferring from OIE to (transductive transfer
learning, inductive transfer learning, traditional learning).

Source Task (Train) Target Task (Test) Word
Embeddings

Hyperparameters
(Batches–Epochs) Results (R–P–F)

OIE (news) OIE (news) XLNet 100 20 68.1% 62.2% 65.0%

OIE (news) OIE (bio-medical) XLM-RoBERTa 100 5 71.0% 59.0% 64.4%

OIE (news) + OIE
(bio-medical) OIE (bio-medical) XLM-RoBERTa 100 5 73.0% 83.8% 78.0%

OIE (bio-medical) OIE (bio-medical) XLM-RoBERTa 100 15 72.5% 86.9% 79.0%

OIE (news) RE (news) BERT 50 10 62.2% 48.4% 54.4%

OIE (news) + RE (news) RE (news) XLM-RoBERTa 100 15 59.7% 76.9% 67.2%

RE (news) RE (news) BERT 100 15 62.4% 82.3% 71.0%

To further elaborate that the choice of the word embedding is dependent upon the task and nature
of data, XLNet outperformed all the other word embeddings when training and testing on the news
dataset. However, on bio-Medical data, XLM-RoBERTa performed better in all three experiments:
transductive transfer learning, inductive transfer learning, and traditional learning. It is worth noting
that XLM-RoBERTa outperformed in four out of a total seven experiments in our work. Thus, we were
motivated to compare and experiment with the use of different word embeddings.

166

Appl. Sci. 2020, 10, 5758

7. Conclusions and Future Work

Can we survive without labelled data in NLP? On the basis of our findings: yes! Nevertheless,
employing labelled data in NLP tasks still results in better performance. However, the process of
collection of labelled data is demanding and, in some cases, inaccessible. In this paper, we utilized
training on OIE to diminish the complication of insufficient training data of neural network models in
various NLP tasks and encourage model generalization. Since OIE plays a fundamental role in turning
massive, unstructured data into factual information that can be used as a foundation to many NLP
tasks, we favored OIE as our source task, thereby ensuring our work is useful and beneficial to the
NLP community.

In the domain adaptation experiment, we transferred information learnt from one domain to the
other on the same task. The neural model was trained on the OIE news domain and tested on the
bio-medical domain. Results obtained from the inductive approach indicated that our ROIE neural
model can play a fundamental role in domain adaptation.

Moreover, our research also covered the transferability to a semantically related task. Results
achieved from transferring from the OIE to RE followed the same pattern as transferring from the
OIE news domain to the bio-medical domain. Inductive transfer learning achieved promising and
comparable results with traditional learning. Thus, our work demonstrates that OIE can act as a
reliable source task, not only in domain adaptation but also when transferring to related tasks.

In the future, we intend to expand our work beyond sequence labelling tasks and experiment with
multi-transfer learning thoroughly on several NLP tasks, specifically tasks that are not semantically
related to OIE such as sentiment analysis. Additionally, we intend to investigate different transferring
mechanisms to study how to leverage knowledge acquired from pre-trained models in varied ways.

Author Contributions: Conception and design of the experiments, I.S. and M.S.; data curation, I.S.; methodology,
I.S.; software, I.S.; supervision, M.S.; validation, M.S.; writing—original draft, I.S.; writing—review and editing,
M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was made possible with funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement no. 883588 (GEIGER). The opinions expressed and arguments
employed herein do not necessarily reflect the official views of the funding body.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Otter, D.W.; Medina, J.R.; Kalita, J. A Survey of the Usages of Deep Learning for Natural Language Processing.
arXiv 2019, arXiv:1807.10854. [CrossRef] [PubMed]

2. Mausam, M. Open Information Extraction Systems and Downstream Applications. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 15 July 2016.

3. Yang, Q.; Zhang, Y.; Dai, W.; Pan, S. Foundations of transfer learning. In Transfer Learning; Cambridge
University Press: Cambridge, UK, 2020; pp. 1–2.

4. Keneshloo, Y.; Ramakrishnan, N.; Reddy, C.K. Deep Transfer Reinforcement Learning for Text Summarization.
In Proceedings of the 2019 SIAM International Conference on Data Mining, Calgary, AB, Canada,
2–4 May 2019; pp. 675–683.

5. Bhatia, P.; Arumae, K.; Celikkaya, E.B. Dynamic transfer learning for named entity recognition. In Social
Networks: A Framework of Computational Intelligence; Springer: Cham, Switzerland, 2019; pp. 69–81.

6. Min, S.; Seo, M.; Hajishirzi, H.; Barzilay, R.; Kan, M.Y. Question answering through transfer learning from
large fine-grained supervision data. arXiv 2017, arXiv:1702.02171.

7. Yu, J.; Qiu, M.; Jiang, J.; Huang, J.; Song, S.; Chu, W.; Chen, H. Modelling Domain Relationships for Transfer
Learning on Retrieval-based Question Answering Systems in E-commerce. In Proceedings of the Eleventh
ACM International Conference on Multimedia—MULTIMEDIA’03, Berkeley, CA, USA, 7 November 2003;
pp. 682–690.

8. Chuong, D.B.; Andrew, N.Y. Transfer learning for text classification. Adv. Neural Inf. Process. Syst. 2006, 299–306.

167

Appl. Sci. 2020, 10, 5758

9. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for
language understanding. arXiv 2018, arXiv:1810.04805.

10. Howard, J.; Ruder, S. Universal language model fine-tuning for text classification. arXiv 2018, arXiv:1801.06146.
11. Radford, A.; Karthik, N.; Salimans, T.; Sutskever, I. Improving Language Understanding by

Generative Pre-Training. 2018. Available online: https://www.cs.ubc.ca/~{}amuham01/LING530/papers/
radford2018improving.pdf (accessed on 20 August 2020).

12. Sarhan, I.; Marco, S. Uncovering algorithmic approaches in open information extraction: A literature review.
In Proceedings of the 30th Benelux Conference on Artificial Intelligence, Hertogenbosch, The Netherlands,
8–9 November 2018.

13. Etzioni, O.; Banko, M.; Soderland, S.; Weld, D. Open information extraction from the web. In Proceedings of
the Twentieth International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007;
Volume 7, pp. 2670–2676.

14. Wu, F.; Weld, D.S. Open information extraction using Wikipedia. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, Uppsala, Sweden, 11–16 July 2010; pp. 118–127.

15. Schmitz, M.; Bart, R.; Soderland, S.; Etzioni, O. Open language learning for information extraction.
In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning; Association for Computational Linguistics, Jeju Island,
Korea, 12–14 July 2012.

16. Fader, A.; Soderland, S.; Etzioni, O. Identifying relations for open information extraction. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, Association for Computational
Linguistics (ACL), Edinburgh, UK, 11 July 2011.

17. Christensen, J.; Soderland, S.; Etzioni, O. An analysis of open information extraction based on semantic
role labeling. In Proceedings of the K-CAP’2011: Knowledge Capture Conference, Banff, AB, Canada,
25–29 June 2011; Volume 11, pp. 3–10.

18. Akbik, A.; Löser, A. Kraken: N-ary facts in open information extraction. In Proceedings of the Joint Workshop
on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction, Montreal, QC, Canada,
7–8 June2012; pp. 52–56.

19. Del Corro, L.; Gemulla, R. ClausIE: Clause-based open information extraction. In Proceedings of the 22nd
International Conference on WWW, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 355–366.

20. Cui, L.; Wei, F.; Zhou, M. Neural open information extraction. arXiv 2018, arXiv:1805.04270.
21. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
22. Stanovsky, G.; Michael, J.; Zettlemoyer, L.; Dagan, I. Supervised Open Information Extraction. In Proceedings

of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Volume 1.

23. Sarhan, I.; El-Sonbaty, Y.; El-Nasr, M.A. Arabic relation extraction: A survey. Int. J. Comput. 2016, 5, 430–437.
24. Guodong, Z.; Jian, S.; Jie, Z.; Min, Z. Exploring various knowledge in relation extraction. In Proceedings of

the 43rd Annual Meeting, Ann Harbour, MI, USA, 25–30 June 2005.
25. Plank, B.; Moschitti, A. Embedding semantic similarity in tree kernels for domain adaptation of relation

extraction. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics,
Sofia, Bulgaria, 4–9 August 2013.

26. Su, P.; Vijay-Shanker, K. Adversarial learning for supervised and semi-supervised relation extraction in
bio-medical literature. arXiv 2020, arXiv:2005.04277.

27. Brin, S. Extracting patterns and relations from the world wide web. In The World Wide Web and Databases;
Springer: Berlin, Germany, 1999; pp. 172–183.

28. Lin, H.; Yan, J.; Qu, M.; Ren, X. Learning Dual Retrieval Module for Semi-supervised Relation Extraction.
In Proceedings of the World Wide Web Conference on—WWW ’19, San Fransisco, CA, USA, 13–17 May 2019;
pp. 1073–1083.

29. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016,
arXiv:1609.02907.

30. Riedel, S.; Yao, L.; McCallum, A. Modeling Relations and Their Mentions without Labeled Text. In Proceedings
of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Heidelberg,
Germany, 16–20 September 2010.

168

Appl. Sci. 2020, 10, 5758

31. Zeng, D.; Liu, K.; Chen, Y.; Zhao, J. Distant Supervision for Relation Extraction via Piecewise Convolutional
Neural Networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, Lisbon, Portugal, 19–23 September 2015.

32. Sarhan, I.; Spruit, M.R. Contextualized Word Embeddings in a Neural Open Information Extraction Model.
In Proceedings of the International Conference on Applications of Natural Language to Information Systems,
Salford, UK, 26–28 June 2019.

33. Pascanu, R.; Tomas, M.; Yoshua, B. On the Difficulty of Training Recurrent Neural Networks. In Proceedings
of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013.

34. Pennington, J.; Socher, R.; Manning, C. Glove: Global Vectors for Word Representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar,
19–25 October 2014; pp. 1532–1543.

35. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases
and their compositionality. arXiv 2013, arXiv:1310.4546.

36. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q.V. XLNet: Generalized autoregressive
pretraining for language understanding. Adv. Neural Inf. Process. Syst. 2019, 32, 5753–5763.

37. Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.; Wenzek, G.; Guzmán, F.; Grave, E.; Ott, M.;
Zettlemoyer, L.; Stoyanov, V. Unsupervised cross-lingual representation learning at scale. arXiv 2019,
arXiv:1911.02116.

38. Akbik, A.; Bergmann, T.; Blythe, D.; Rasul, K.; Schweter, S.; Vollgraf, R. FLAIR: An Easy-to-Use Framework
for State-of-the-Art NLP. In Proceedings of the 2019 Annual Conference of the North American Chapter of
the Association for Computational Linguistics (Demonstrations), NAACL, Princeton, MI, USA, 2–7 June
2019.

39. Loper, E.; Bird, S. NLTK: The natural language toolkit. arXiv 2002, arXiv:cs/0205028.
40. Ramshaw, L.; Mitchell, A.; Marcus, P. BIO Labels: Text Chunking Using Transformation-Based Learning. Natural

Language Processing Using Very Large Corpora; Springer: Dordrecht, The Netherlands, 1999; pp. 157–176.
41. Stanovsky, G.; Dagan, I. Creating a Large Benchmark for Open Information Extraction. In Proceedings

of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA,
2–6 November 2016; pp. 2300–2305.

42. Franois, C. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 20 March 2020).
43. Abadi, M. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA,
2–4 November 2016.

44. Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), Haifah, Isreal, 21–24 June 2010.

45. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
46. Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized

word representations. arXiv 2018, arXiv:1802.05365.
47. Segura-Bedmar, I.; Martínez, P.; De Pablo-Sánchez, C. Using a shallow linguistic kernel for drug–drug

interaction extraction. J. Biomed. Inform. 2011, 44, 789–804. [CrossRef]
48. Wishart, D.S. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids

Res. 2006, 34, D668–D672. [CrossRef]
49. Bethesda, M.D. National Library of Medicine (US). 2013. Available online: https://medlineplus.gov/ (accessed

on 29 March 2020).
50. Hendrickx, I.; Kim, S.N.; Kozareva, Z.; Nakov, P.; Séaghdha, D.Ó.; Padó, S.; Pennacchiotti, M.; Romano, L.;

Szpakowicz, S. SemEval-2010 Task 8: Multi-way classification of semantic relations between pairs of nominals.
arXiv 2019, arXiv:1911.10422.

51. Tawfik, N.S.; Spruit, M.R. Evaluating sentence representations for biomedical text: Methods and experimental
results. J. Biomed. Inform. 2020, 104, 103396. [CrossRef]

52. Perone, C.S.; Silveira, R.; Paula, T.S. Evaluation of sentence embeddings in downstream and linguistic
probing tasks. arXiv 2018, arXiv:1806.06259.

169

Appl. Sci. 2020, 10, 5758

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

170

applied
sciences

Article

Preliminary Results on Different Text Processing
Tasks Using Encoder-Decoder Networks and the
Causal Feature Extractor

Adrián Javaloy 1 and Ginés García-Mateos 2,*
1 Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany; adrian.javaloy@tuebingen.mpg.de
2 Department of Computer Science and Systems, University of Murcia, 30100 Murcia, Spain
* Correspondence: ginesgm@um.es; Tel.: +34-868-888-530

Received: 28 July 2020; Accepted: 18 August 2020; Published: 20 August 2020

Abstract: Deep learning methods are gaining popularity in different application domains, and especially
in natural language processing. It is commonly believed that using a large enough dataset and
an adequate network architecture, almost any processing problem can be solved. A frequent and
widely used typology is the encoder-decoder architecture, where the input data is transformed into an
intermediate code by means of an encoder, and then a decoder takes this code to produce its output.
Different types of networks can be used in the encoder and the decoder, depending on the problem of
interest, such as convolutional neural networks (CNN) or long-short term memories (LSTM). This paper
uses for the encoder a method recently proposed, called Causal Feature Extractor (CFE). It is based
on causal convolutions (i.e., convolutions that depend only on one direction of the input), dilatation
(i.e., increasing the aperture size of the convolutions) and bidirectionality (i.e., independent networks
in both directions). Some preliminary results are presented on three different tasks and compared
with state-of-the-art methods: bilingual translation, LaTeX decompilation and audio transcription.
The proposed method achieves promising results, showing its ubiquity to work with text, audio and
images. Moreover, it has a shorter training time, requiring less time per iteration, and a good use of the
attention mechanisms based on attention matrices.

Keywords: natural language processing; deep neural networks; causal encoder; bilingual translation;
speech-to-text; LaTeX decompilation

1. Introduction

Deep neural networks (DNN) are going through a golden era, demonstrating great effectiveness
and high ubiquity to be used in different areas of research, specifically in natural language processing
(NLP) tasks. Presently, hardware capabilities have been multiplied and dataset sizes have also grown to
the point of having millions of entries in problems such as bilingual translation, audio transcription or
LaTeX decompilation. For example, recently Yang et al. [1] presented an interesting survey of the state of
the art in bilingual translation or, in general, neural machine translation (NMT) problems. The existing
approaches are divided into recurrent and non-recurrent models; between them, the Transformer
model by Vaswani et al. [2] achieved remarkable improvements by exploiting the idea of fully
attention-based models. Some works, such as the ConvS2S model by Gehring et al. [3], address NMT
problems in a fully convolutional approach, obtaining results that are comparable to the state of the
art. This methodology has also been applied to speech recognition in audio, such as the work by
Kameoka et al. [4]. Concerning the problem of LaTeX decompilation, it can also be understood as
an NMT task, in this case from image to text [5]. Deng et al. [6] proposed a convolutional solution to
this problem using a hierarchical attention mechanism called coarse-to-fine, which produced significant
improvements over previous systems with simpler attention models.

171

Appl. Sci. 2020, 10, 5772

However, this progress in DNN applied in NMT has also translated into a more competitive
research environment, promoting some bad habits that have been built over the years. As stated by
Lipton and Steinhardt [7], these include claiming hypothesis as true even when they have not been
proved, not clearly differentiating between speculations and facts, or flooding their written works with
unnecessary mathematical formulas with the aim of showing expertise.

In this paper, a novel type of encoder recently proposed [8], called Causal Feature Extractor (CFE),
is assessed for different NLP tasks. It is based on the causal convolutional neural networks introduced
by Oord et al. [9], and it is used as the encoder in an encoder-decoder architecture, a commonly used
model in MNT tasks. Specifically, this encoder-decoder model is applied to a variety of NLP problems
which have something in common: all of them take a sequence as input, and output another sequence
that depends on the input. Thus, the main goal of this work is to test the new encoder in different types
of input, making use of statistical tests, giving them a strong basis that supports all the conclusions
based on the obtained results. A particularity of the selected MNT tasks is that they have different
types of input, while the output is always a text sequence: in bilingual translation problem (in our
case, from English to German) the input is a text; in LaTeX decompilation, the input is given by the
image of an equation; and in audio transcription, the input is a one-dimensional audio signal which is
transformed into a spectrogram. CFE is able to work in all these cases, achieving promising results.

2. Materials and Methods

2.1. Encoder-Decoder Architecture

Presently, the predominant technique for implementing deep neural networks in the field of
MNT is the encoder-decoder architecture. A great number of variations have been proposed in the
literature, offering solutions that make up the state of the art in different tasks [10]. It consists of two
parts that collaborate with each other. On the one hand, there is an encoder that, from the input vector
X = x1, x2 . . . xl , generates an intermediate vector Z = z1, z2 . . . zl of the same length as X, where each
column zi describes the characteristics of the environment around the i-th value of the input. On the
other hand, the decoder acts sequentially and, at each instant t, it takes the i-th input of the intermediate
vector, zi, and the output produced by itself at the previous instant, yt−1. It computes the output at the
current instant, yt, thus forming the output vector Y = y1, y2 . . . yl′ , with length l′, that can be different
from l. The output ends when the decoder produces a special “end of string” symbol.

An interesting complementary technique working in conjunction with the encoder-decoder
architecture is the attention mechanism, which was introduced by Bahdanau et al. [11]. It is an effective
method that allows the decoder to decide the most interesting parts of the input, i.e., what parts
of Z are used at each instant. This technique has proven to be effective on problems such as audio
textual interpretation [12] and other problems [13]. Figure 1a shows a graphical overview of the
encoder-decoder architecture with an attention mechanism.

In our case, the attention model is a fully connected neural network (FCNN) with 1 hidden layer
and l output values, where l is the size of the input. The input to this part is the intermediate code of
the encoder, Z, and the vector of hidden states of the decoder in the previous step, ht−1.

Additional techniques are used to improve the effectiveness of the system, such as
dropout [14,15] (randomly removing some neurons with a given probability), weight normalization [16]
(regularizing the weights of the neuron layers), gradient clipping [17] (limiting the norm of the gradient
to a maximum value), and random search of the hyperparameters [18] (performing different executions
of the process to find the optimal configuration of the hyperparameters of the network).

172

Appl. Sci. 2020, 10, 5772

x1

x2

x3

x4

x5

x6

x7

...

xl-2

xl-1

xl

a’1

a’2

a’3

a’4

a’5

...

a’l

b’1

b’2

b’3

b’4

b’5

...

b’l

a’’1

a’’2

a’’3

a’’4

a’’5

...

a’’l

b’’1

b’’2

b’’3

b’’4

b’’5

...

b’’l

z
a

1

z
a

2

z
a

3

z
a

4

z
a

5

z
a

6

z
a

7

...

z
a

l-2

z
a

l-1

z
a

l

z
b

1

z
b

2

z
b

3

z
b

4

z
b

5

z
b

6

z
b

7

...

z
b

l-2

z
b

l-1

z
b

l

INPUT

X ()l vx

INTERMEDIATE

Z ()l fx

INPUT

X ()l vx

x1

x2

x3

x4

...

xl

INPUT

X

z1

z2

z3

z4

...

zl

E
N

C
O

D
E

R
a1

a2

a3

a4

...

al

ATTENTION

VECTOR

a

ht-1

y =0

<sos>

OUT

PUT

yt

D
E

C
O

D
E

R

INTER-

MEDIATE

Z

A
T

T
E

N
T

IO
N

M
E

C
H

A
N

IS
M

(a) (b)

Figure 1. Scheme of the proposed neural network architecture. (a) Global scheme of the
encoder-decoder architecture including the attention mechanism. The input matrix, X, which contains
l vector elements (x1, x2 . . . xl), is transformed into an intermediate code, Z = z1, z2 . . . zl . Then,
the attention mechanism selects the importance, a, of each tuple at each time, t. Using both values,
the decoder produces the output at each instant, yt. The hidden state of the decoder at the previous
instant, ht−1, is fed into the attention mechanism and into the decoder. <sos> means “start of sequence”.
(b) Outline of the proposed Causal Feature Extractor for the part of the encoder, in this case with
3 layers. The input is matrix X, with l vectors of size v. There are two independent sub-nets (upper
and lower), each of which generates f /2 features for each input vector. They are convolutional NNs
which are causal (a uses the previous values, and b uses the later values) and dilated (the step in the 1st
layer is 1, in the 2nd layer 2, and in the 3rd layer 4). The output is the code Z, with f features for each
input vector.

2.2. Causal Feature Extractor

In the encoder-decoder architecture, both the encoder and the decoder are independent modules
that can be implemented in different ways. For example, they can consist of Convolutional Neural
Networks (CNN) [19], which is a typical selection method in images. In the case of sequential data,
Long Short-Term Memories (LSTM) [20] are more frequently found.

As mentioned before, the purpose of this study is to analyze the feasibility of a new type of layer
for the encoder, called Causal Feature Extractor (CFE) [8]. This method is inspired by the Dilated
Convolutional Neural Networks and the Causal Convolutional Neural Networks, introduced by
Oord et al. [9]. The proposed model, depicted in Figure 1b, is built under three main ideas:

• First, in order to extend the receptive field of the convolutions without requiring large kernels,
several convolutional neural layers are stacked, and each one has two times the dilation of the
previous one. That is, in the first layer, the convolution for position t depends on t, t− 1, t− 2 . . .;
in the second layer, it depends on t, t− 2, t− 4 . . .; in the third layer, t, t− 4, t− 8 . . ., and so on.

• Second, with the aim of making a better use of the attention mechanisms in comparison with
CNNs, these stacked convolutional layers are turned into causal convolutions, meaning that the
output at one position will depend on the inputs previous or next to that position, but never both.
This is the same idea as the Causal CNN proposed by Oord et al. [9].

• Third, considering that the use of causal layers means the misuse of one part of the input, two
stacks of causal convolution layers are used, each one taking into account a different direction of
the input (the previous or the subsequent input values). The same idea of bidirectionality has
also been applied to LSTMs [21].

The main hyperparameters that define the structure of the CFE encoder are the CNN kernel
width, the desired receptive field, and the number of features to generate, f . The first hyperparameter

173

Appl. Sci. 2020, 10, 5772

indicates the width of the kernels of the convolutions. Along with the second parameter, they determine
the number of layers of the CNN. For example, if the kernel width is 5 and the desired receptive field
is 20, then there would be 3 convolutional layers (since the dilations are multiplied by 2, the receptive
fields of the 1st, 2nd and 3rd layers would be 5, 10 and 20, respectively). Other hyperparameters
that are used during the training process are the size of the batches applied in the input, the way of
normalizing the weights of the convolutions, the maximum norm of the gradient, and the dropout rate
applied to the neurons; there is also the possibility of including or not the position of the input values
in the encoder.

In the previous work [8], CFE was applied in the encoder of a text normalization problem
(i.e., given a text with symbols, producing a text without symbols as it should be read by a text-to-speech
system), achieving a good effectiveness in this NLP problem. The accuracy of the result ranged from
83.5% to 96.8% depending on the training datasets. In the present paper, it is further applied to audio
and images; in the second case, the concept of causality considers an order of the pixels from top to
bottom and from left to right.

2.3. Language Processing Tasks

The proposed CFE encoder can be applied to any task that requires transforming an input
sequence into an output sequence. Thus, the experiments have been focused on the three following
well-known computational linguistic problems:

• Text translation or bilingual translation. This is one of the first and most studied problems in
machine NLP, so it is an interesting test bed for the proposed method. Given a text in one
language, the output is an equivalent phrase in another language. The difficulty of this task is
that there may be words and idioms that do not have a direct translation, or phrases that can
be translated into different ways, being all of them valid. The state-of-the-art system used for
comparison is given by the Transformer model introduced by Vaswani et al. [2] which overcame
the results of other popular machine translation systems such as the GMT model (used in Google
Translate). It uses an encoder-decoder architecture and new iterations and improvements of the
attention mechanism. We also included in the comparison an encoder-decoder model with LSTM
networks in the decoder.

In the experiments, we used the dataset for the translation from English to German provided
in the ACL 2016 Conference on Machine Translation (http://www.statmt.org/wmt16/).
The training set of this resource contains near two million parallel sentences (English-German),
with a total about 48 million words in English and 45 million words in German. The validation
set contains 3000 sentences, and the test set also 3000 sentences. The parameter used to measure
the quality of the result is the well-known Bilingual Evaluation Understudy (BLEU) [22].
Another interesting parameter is the perplexity [23], that is used during the training process in
the validation set to check the network progress. It is defined as 2 raised to the cross entropy of
the empirical distribution of the actual data and the distribution of the predicted values, so that
a lower value indicates a better result.

• LaTeX decompilation. This problem, which is useful in tasks such as digitization of scientific texts,
can also be seen as a particular case of automatic translation. In this case, the input is an image
containing a mathematical formula, and the output is a LaTeX command that must produce the
same formula as generated by a LaTeX engine. It combines computer vision and neural machine
translation, so it is interesting for studying the effectiveness of the proposed CFE model into
images. As before, the solution is not necessarily unique, since multiple LaTeX commands can
produce the same result.

The current state-of-the-art model used for comparison is the system presented by Deng et al. [6].
Again, it is based on an encoder-decoder architecture; the encoder consists of two steps, a CNN

174

Appl. Sci. 2020, 10, 5772

and a recurrent network, while the decoder is a recurrent network. The method introduces
a specific attention mechanism called coarse-to-fine attention. The experiments have been done
with the dataset available in [6], which contains over 103,000 training samples, 9300 validation
samples and 10,300 test samples. Some of these samples are shown in Figure 2. The accuracy
measures are also the BLUE and the perplexity.

(a) (b)

\widetilde\gamma_{\rm
hopf}\simeq\sum_{n>0}\widetilde{G}
_n{(-a)^n\over2^{2n-1}}\label{H4}

({\cal L}_a g)_{ij} = 0, \ \ \ \
({\cal L}_a H)_{ijk} = 0 ,

(c) (d)

Figure 2. Two sample images of the dataset for the LaTeX decompilation task. (a) and (b) Input images.
(c) and (d) Output LaTeX commands corresponding to the images. Information extracted from the
public dataset: http://lstm.seas.harvard.edu/latex/.

• Audio transcription. The task of audio transcription is another well studied problem, which can
also be understood as a type of translation, from audio to text. In this way, the main types of
input have been analyzed: text, audio, and images. This problem is used both in online services
and in out-of-line transcription of multimedia content. The defining characteristic, with respect
to the other problems, is the possible existence of noise in the audio.

The state of the art of this problem is given by models that do not follow an encoder-decoder
architecture, but techniques based on hidden Markov models. Nevertheless, there are good
encoder-decoder transcription systems which can be used for comparison. In particular, we used
the Listen-Attend-Spell model from Chan et al. [12] to compare the results of the proposed
CFE. The dataset is the AN4 set from CMU (http://www.speech.cs.cmu.edu/databases/an4/),
which contains more than 1000 recordings of dates, names, numbers, etc. Concreting, the training
set includes 1018 samples and the test set 140. The accuracy measures are the word error rate
(WER) defined as the correctly identified words over the total, and the perplexity.

3. Results and Discussion

3.1. Experimental Setup

For the execution of the experiments, OpenNMT (https://opennmt.net/) was used. It is an open
source ecosystem for neural machine translation using Python. We used the implementation based
on PyTorch (https://pytorch.org/) deep learning framework. Apart from the library functions,
it also offers useful implementations of some recent methods for different problems. In the bilingual
translation problem, it includes the Transformer method Vaswani et al. [2], and an alternative
encoder-decoder model using LSTM in the encoder. For the LaTeX decompilation problem, the model
called Im2Text Deng et al. [6] was used for the comparison; and in the speech-to-text problem,
the Listen-Attend-Spell model by Chan et al. [12].

The computer used in the experiments is a PC with an Intel(R) Core(TM) i7-5930K processor with
12 threads (6 with hyperthreading) at a frequency of 3.50 GHz; it has 3 NVIDIA GeForce GTX1080
GPUs and 600 Gb of SSD hard disk, although only one GPU is used in each execution.

For the configuration of the hyperparameters of the networks, two alternatives were tested:
a manual adjustment of the parameters; and a random search of the hyperparameters space. In the
second case, 30 random combinations of the hyperparameters were tested in a reduced execution of

175

Appl. Sci. 2020, 10, 5772

1 h for each test, selecting the combination with the least error. The resulting structure of the networks
using both methods is presented in Table 1. As indicated in this table, in all the cases the encoder is
a CFE network, the decoder is a recurrent neural network (RNN), and there can be a dense neural
network (or bridge) between them or not.

Table 1. Hyperparameters of the encoder-decoder networks used in the three problems of interest.
Bridge: add a dense layer between encoder and decoder. Global attention: score function used in the
attention model. Position encoding: add position information in the encoding. RNN layers: number of
layers in the RNN of the decoder. RNN size: number of units in each layer of the RNN. CNN kernel
width: size of the convolution filters in CFE. Receptive field: selected receptive field for the CFE.
Normalization: method used to normalize the gradients. Batch size: size of the batches used in the
training. Max grad. norm.: maximum allowed norm of the gradient. Dropout: dropout rate used.
Learning rate decay: value applied to reduce the learning rate.

Hyperparameter Text Translation LaTeX Decompilation Audio Transcription
Method Manual Random Manual Random Manual Random

Bridge no yes no yes no yes
Global attention general concat general dot general dot
Position encoding no yes no no yes no
RNN layers 3 4 2 1 2 1
RNN size 512 238 500 414 500 126
CNN kernel width 5 3 5 11 5 7
Receptive field 20 13 20 16 20 17
Normalization tokens sents sents sents sents tokens
Batch size 64 16 20 12 16 9
Max grad. norm. 1 14.12 20 28.68 20 3.79
Dropout 0.3 0.71 0.3 0.2 0.3 0.52
Learning rate decay 0.5 0.654 0.5 0.576 0.5 0.465

Finally, to validate the statistical significance of the results, the approximate randomization test of
Riezler and Maxwell [24] was applied. This test is used to prove that the outputs produced by two
prediction systems are statistically distinguishable.

3.2. Accuracy Performance Results

Table 2 summarizes the results obtained by the encoder-decoder networks using CFE configured
with both methods, manual and random search, and the alternative state-of-the-art methods, for the
three problems of interest.

Table 2. Experimental results for the proposed CFE model and other architectures. BLEU/WER:
accuracy measures for the test set, bilingual evaluation understudy (text translation and LaTeX
decompilation) and word error rate (audio transcription), respectively; ACC and PER: accuracy and
perplexity obtained for the validation set, respectively. The total number of iterations applied for each
problem in the training process is indicated.

Problem Method BLEU/WER % ACC % PER

Text translation CFE Manual 23.34 62.73 13.59
75,000 iterations CFE Random 27.80 63.02 13.39

LSTM 36.48 69.64 11.52
Transformer 34.95 67.78 14.30

LaTeX decompilation CFE Manual 77.57 96.55 1.24
25,000 iterations CFE Random 75.82 96.56 1.24

Im2Text 80.46 96.78 1.13

Audio transcription CFE Manual 53.12 60.13 8.84
60,000 iteration CFE Random 55.05 59.13 22.4

Lis.-Att.-Spell 43.14 70.98 5.37

176

Appl. Sci. 2020, 10, 5772

Figure 3 contains a graphical representation of the training process for these problems, showing the
cross entropy of the models throughout the iterations applied.

(a) (b)

(c)

Figure 3. Evolution of the training errors (cross entropy) of the different models compared, for the
three problems of interest. (a) Text translation. (b) LaTeX decompilation. (c) Audio transcription.

3.3. Discussion of the Results

In general, the proposed CFE encoder is able to achieve very promising results, near those that
are in the state of the art. The evolution of the CFE models in Figure 3 shows a behavior that is very
similar to the other systems used for comparison. In any case, these tests should be considered to
be preliminary results, needing further experiments and improvements to achieve its full potential.
For example, new adaptations could be studied for the decoder network, which was not the purpose
of the present work.

These are the main findings of the experiments:

• The proposed CFE models are not able to overcome the results of the state-of-the-art methods
used for comparison, as it can be seen in Table 2, although they are very close in many cases.
These differences between methods have been confirmed by the approximate randomization
tests, indicating that the differences of the predictors are statistically significant. However, it must
be observed that these alternative methods are specifically designed for each problem, while the
proposed method has shown to be generic, being able to work with text, audio and images,
with minimal adaptations for each problem.

• In all the experiments, the number of iterations of the learning process was fixed for each problem
(as indicated in Table 2). However, it has to be considered that the average time per iteration is not
the same for all the methods. In fact, the proposed CFE encoder is approximately 1.7 times faster
than the other alternatives. Thus, for a fixed learning time, the proposed solution could overcome
the other methods in some cases. This can be observed in the validation measures (ACC and
PER). For example, using the same learning time in the LaTeX decompilation task, CFE achieves
an ACC of 96.5%, while Im2Text achieves 96.1%. In other words, Im2Text method needs around

177

Appl. Sci. 2020, 10, 5772

70% more time to achieve its optimum result. A special case is the Transformer method for the
problem of bilingual translation, whose average time per iteration is 4 times greater than the time
of CFE; so, for the same training time, the performance achieved by CFE would be higher.

• It was observed that the proposed CFE encoder makes a better usage of the attention
mechanisms [8]. The attention matrices obtained by CFE are sharper than those obtained for the
other methods, i.e., they present a bigger different between the elements of interest and those that
are not interesting for the decoder. This effect can be observed in the attention matrices shown in
Figure 4 for the bilingual translation problem. This is a very positive aspect, since it indicates that
future improvements of the proposed method could benefit more from the attention mechanisms.(a) (b)(c) (d)
Figure 4. Attention matrices produced by the attention mechanism in the problem of bilingual
translation, for the translation of the sentence (horizontal axis) “A guy works on a building”.
(a) Attention matrix for manual CFE, the output (vertical axis) is “Ein Mann arbeitet an einem
Gebäude”. (b) Attention matrix for random CFE, the output is “Ein Mann arbeitet auf einem Gebäude”.
(c) Attention matrix for Transformer model, the output is “Ein Typ arbeitet an einem Gebäude”.
(d) Attention matrix for LSTM, the output is “Ein Mann arbeitet an einem Gebäude”.

4. Conclusions

In this paper, we analyzed the feasibility of a novel type of encoder, the Causal Feature Extractor,
as a part of an encoder-decoder deep neural network, in different problems of machine neural
translation. The results obtained are very promising, achieving a 63.0% accuracy in bilingual translation,
96.6% in LaTeX decompilation and 60.1% in audio transcription. However, the best solution is always
the specifically designed system, that has been adjusted and fine-tuned by the corresponding research
groups over the years, with improvements of 6.6%, 0.2% and 10.8% in the cited problems, respectively.

178

Appl. Sci. 2020, 10, 5772

Therefore, the results obtained by our approach are close to that of other works that constitute the state
of the art, especially in the image processing problem of LaTeX decompilation.

Furthermore, the proposed model has the inherent advantages of convolutional networks with
respect to recurrent and LSTM networks. On the one hand, it is a generic architecture that can be
adapted to a large number of scenarios, while the use of recurrent networks is more restricted. On the
other hand, convolutional networks are known for being parallelizable and highly optimized for
training using GPUs, so improving the implementation of this architecture should be much faster
than recurrent networks. This was observed in the average execution times per iteration, which is
considerably faster for CFE than for the specific models. Those solutions require on average 70% more
time than the proposed approaches.

Clearly, there is still ample room for improvement in the application of CFE to the problems of
natural language processing. For example, more complex attention mechanisms (such as multi-head
attention or local attention) could be combined with the proposed CFE architecture. Also, elimination
or relaxation of the use of dilations in the CFE architecture, which could be diluting the influence of
the input data too much, could be beneficial. Finally, since the proposed CFE model is very generic,
it could be interesting to analyze its application in other areas of computational learning.

Author Contributions: Conceptualization, A.J. and G.G.-M.; methodology, A.J. and G.G.-M.; software, A.J.;
validation, A.J. and G.G.-M.; formal analysis, A.J.; investigation, A.J. and G.G.-M.; resources, A.J.; data curation,
A.J.; writing—original draft preparation, A.J.; writing—review and editing, A.J. and G.G.-M.; visualization, A.J.;
supervision, G.G.-M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Spanish Ministry of Science, Innovation and Universities, FEDER funds,
under grant RTI2018-095855-B-I00 (G.G.-M.).

Acknowledgments: Adrián wants to acknowledge support from the Max Planck Institute for Intelligent Systems.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

ACC Accuracy
BLEU Bilingual evaluation understudy
CFE Causal feature encoder
CNN Convolutional neural networks
FCNN Fully connected neural network
LSTM Long short-term memory
MNT Machine neural translation
NLP Natural language processing
PER Perplexity
WER Word error rate
RNN Recurrent neural network

References

1. Yang, S.; Wang, Y.; Chu, X. A Survey of Deep Learning Techniques for Neural Machine Translation. arXiv
2020, arXiv:2002.07526.

2. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention
is all you need. Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA,
4–9 December 2017; pp. 5998–6008.

3. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional sequence to sequence learning.
arXiv 2017, arXiv:1705.03122.

4. Kameoka, H.; Tanaka, K.; Kwaśny, D.; Kaneko, T.; Hojo, N. ConvS2S-VC: Fully Convolutional Sequence-to-
Sequence Voice Conversion. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 1849–1863. [CrossRef]

179

Appl. Sci. 2020, 10, 5772

5. Daudaravicius, V. Textual and Visual Characteristics of Mathematical Expressions in Scholar Documents.
In Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications (ESSP),
Minneapolis, MN, USA, 6 June 2019; pp. 72–81.

6. Deng, Y.; Kanervisto, A.; Ling, J.; Rush, A.M. Image-to-markup generation with coarse-to-fine attention.
In Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, Australia,
7–9 August 2017; pp. 980–989.

7. Lipton, Z.C.; Steinhardt, J. Troubling trends in machine learning scholarship. Queue 2019, 17, 45–77.
8. Javaloy, A.; García-Mateos, G. Text Normalization Using Encoder–Decoder Networks Based on the Causal

Feature Extractor. Appl. Sci. 2020, 10, 4551. [CrossRef]
9. Oord, A.v.d.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.;

Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499.
10. Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019,

7, 53040–53065. [CrossRef]
11. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate.

arXiv 2014, arXiv:1409.0473.
12. Chan, W.; Jaitly, N.; Le, Q.; Vinyals, O. Listen, attend and spell: A neural network for large vocabulary

conversational speech recognition. In Proceedings of the 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 4960–4964.

13. Galassi, A.; Lippi, M.; Torroni, P. Attention, please! a critical review of neural attention models in natural
language processing. arXiv 2019, arXiv:1902.02181.

14. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

15. Baldi, P.; Sadowski, P. The dropout learning algorithm. Artif. Intell. 2014, 210, 78–122. [CrossRef] [PubMed]
16. Salimans, T.; Kingma, D.P. Weight normalization: A simple reparameterization to accelerate training of

deep neural networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS),
Barcelona, Spain, 5–10 December 2016; pp. 901–909.

17. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In
Proceedings of the International Conference on Machine Learning (ICML), Atlanta, GA, USA, 16–21 June
2013; pp. 1310–1318.

18. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
19. LeCun, Y.; Haffner, P.; Bottou, L.; Bengio, Y. Object recognition with gradient-based learning. In Shape,

Contour and Grouping in Computer Vision; Springer: Berlin/Heidelberg, Germany, 1999; pp. 319–345.
20. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

[PubMed]
21. Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-based bidirectional long short-term

memory networks for relation classification. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), Berlin, Germany, 7–12 August 2016; pp. 207–212.

22. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. BLEU: A method for automatic evaluation of machine translation.
In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Philadelphia, PA,
USA, 7–12 July 2002; pp. 311–318.

23. Nabhan, A.R.; Rafea, A. Tuning statistical machine translation parameters using perplexity. In Proceedings
of the IRI-2005 IEEE International Conference on Information Reuse and Integration, Las Vegas, NV, USA,
15–17 August 2005; pp. 338–343.

24. Riezler, S.; Maxwell, J.T. On some pitfalls in automatic evaluation and significance testing for MT.
In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation
and/or Summarization, Ann Arbor, MI, USA, 29 June 2005; pp. 57–64.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

180

applied
sciences

Article

Best Practices of Convolutional Neural Networks for
Question Classification

Marco Pota 1,* , Massimo Esposito 1 , Giuseppe De Pietro 1 and Hamido Fujita 2,3,4

1 Institute for High Performance Computing and Networking—National Research Council of
Italy (ICAR-CNR), 80131 Naples, Italy; massimo.esposito@icar.cnr.it (M.E.);
giuseppe.depietro@icar.cnr.it (G.D.P.)

2 Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH),
Ho Chi Minh City 720000, Vietnam; hfujita-799@acm.org

3 Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI),
University of Granada, 18010 Granada, Spain

4 Faculty of Software and Information Science, Iwate Prefectural University, Iwate 020-0693, Japan
* Correspondence: marco.pota@icar.cnr.it

Received: 16 June 2020; Accepted: 3 July 2020; Published: 8 July 2020

Abstract: Question Classification (QC) is of primary importance in question answering systems,
since it enables extraction of the correct answer type. State-of-the-art solutions for short text
classification obtained remarkable results by Convolutional Neural Networks (CNNs). However,
implementing such models requires choices, usually based on subjective experience, or on rare
works comparing different settings for general text classification, while peculiar solutions should be
individuated for QC task, depending on language and on dataset size. Therefore, this work aims at
suggesting best practices for QC using CNNs. Different datasets were employed: (i) A multilingual
set of labelled questions to evaluate the dependence of optimal settings on language; (ii) a large,
widely used dataset for validation and comparison. Numerous experiments were executed, to perform
a multivariate analysis, for evaluating statistical significance and influence on QC performance of all
the factors (regarding text representation, architectural characteristics, and learning hyperparameters)
and some of their interactions, and for finding the most appropriate strategies for QC. Results show
the influence of CNN settings on performance. Optimal settings were found depending on language.
Tests on different data validated the optimization performed, and confirmed the transferability of
the best settings. Comparisons to configurations suggested by previous works highlight the best
classification accuracy by those optimized here. These findings can suggest the best choices to
configure a CNN for QC.

Keywords: question classification; multilingual; convolutional neural networks; Natural Language
Processing (NLP); deep learning

1. Introduction

Nowadays, intelligent systems able to interact with users in natural language are being developed.
However, due to the difficulties associated with natural language understanding by computer systems,
this is still a field of research of increasing interest [1–3].

In particular, question answering systems should be able to answer automatically to questions
presented in natural language. In order to accomplish this task, a number of operations are
required, in order to eventually translating from spoken to written text, to process natural language
(tokenization, part-of-speech tagging, dependency parsing), to analyze the question (entity extraction,
question classification, query formulation), and to consult the information corpora (information retrieval
and answer extraction).

181

Appl. Sci. 2020, 10, 4710

This work concerns the Question Classification (QC) module, which is of primary importance [4,5],
since it is in charge of distinguishing different types of questions, corresponding to the expected Lexical
Answer Type, enabling the correct extraction of the answer [6].

The function of the QC module is accomplished by a model, trained on a set of already labelled
questions. This model classifies textual fragments according to a pre-defined taxonomy. Different types
of characteristics, i.e., morphological [7,8], syntactic [4,5], and semantic [9,10], should be considered to
interpret text correctly.

However, QC differs from other text classification problems, like sentiment analysis and
document categorization, due to the interrogative form and the length that are peculiar of questions.
As a consequence, the best performing approach for QC should be chosen peculiarly, and eventually
by adopting a different design with respect to methods used for other text classification tasks.

In addition, the ability to classify questions optimally could be accomplished differently,
depending on the language [9]. Indeed, syntax rules are different, e.g., English has a more rigid word
order to mark the difference between subjects and objects, with respect to Italian. This means that
one could have to consider differently sized sets of words together, to catch the same meaning in
different languages. Moreover, from the morphological point of view, some languages, like Italian,
are richer than others, like English, with impoverished inflection in nouns and verbs; e.g., a single verb
in Italian could be inflected in up to 50 different words, while this number is maximum 8 for English.
As a consequence, different approaches could be more useful to represent words, depending on the
morphological richness of languages.

Various approaches were employed in research literature to tackle short-text classification [11–14]
and for QC task in particular [15,16]. However, with respect to classical machine learning approaches,
which need the extraction of a big number of features from the text by Natural Language Processing
(NLP) methods [17], most recently, great improvements are gained by using neural networks, both from
the points of view of the speed of the model and of the classification performance. The text is
typically represented by a relatively small number of features obtained by the Word Embedding (WE)
process [18], performed by means of a technique chosen among different existing ones. The most
common architecture used for text classification by the state-of-the-art solutions was to implement
Convolutional Neural Networks (CNNs), since they allow to obtain outstanding results [19,20].
The details of the convolutional architecture and of the learning procedure have been chosen by
researchers mainly based on subjective choices. However, as written above, a peculiar solution should
be individuated for QC task, probably also depending on the language and on the dataset size.

This work aims at suggesting best practices for using CNNs for QC, with the aim of improving
the results of the best existing approaches. However, instead of proposing a different architecture,
the basic CNN architecture is implemented with freely adjustable settings, to have insights about
their influence and thus choosing the best configuration for the QC problem. Enough numerous
experiments, consisting in training and testing the neural network, are executed, to be able to perform
a multivariate analysis and evaluate the influence of all the factors and some of their interactions.
In particular, words representation, architectural characteristics and hyperparameters, detailed in the
following, are all examined as factors, with regard to their potential influence on the QC performance.
The expected result consists in the possibility of designing the most performing settings for classifying
questions depending on the language.

To the best of our knowledge, with respect to previous similar research [19,21,22], this work is the
first one focused on QC, that analyses all the factors involved in the model construction, and their
influence on classification performance depending on the language.

More in detail, the main contribution of this work consists in the analysis and optimization of
all the factors involved in the CNN design potentially contributing to the improvement of the QC
performance and of their interactions:

1. Regarding the text representation, the following approaches are compared here: The inclusion
or deletion of punctuation, the use of a well-established pre-trained WE model or of random

182

Appl. Sci. 2020, 10, 4710

vectors for words representation, the use of null vectors or of random vectors for representing
Out-Of-Vocabulary (OOV) words, the embedding dimension, and the possibility of fine-tuning
WE vectors during learning or keeping them constant;

2. regarding the CNN architecture, which uses filters to extrapolate features relative to sets of
consecutive words, the following characteristics are tuned here: Filter region size, number of
filters, and the activation function, while only the pooling strategy is fixed; and

3. regarding the learning hyperparameters, for training network weights and eventually the WE
vectors, the following are analyzed: Batch size, learning method, learning rate, and regularization
terms, while the number of epochs is chosen for each run to ensure convergence.

Moreover, the proposed procedure is performed and settings are tuned for two languages,
English and Italian, in order to evaluate differences of the contribution of each factor between languages
having different morphological richness, and to demonstrate that a system optimized by the proposed
approach can be employed successfully in a multilingual context.

The analysis and the subsequent application of the optimized QC model is performed for two
datasets of labelled questions made available in both English and Italian languages by a task presented at
Text Retrieval Conferences (TREC) 2002 and 2003 (https://trec.nist.gov/, accessed 1 July 2020). In addition,
a widely used dataset of English labelled questions (http://cogcomp.cs.illinois.edu/Data/QA/QC/,
accessed 1 July 2020) is employed to check transferability.

Finally, the optimal CNN configurations found here are compared with those found in the most
relevant previous similar works, [19,21].

The paper is structured as follows. The following part of this section summarizes related works,
while in Section 2 describes the data, formalizes the general QC approach comprising the CNN, and plan
the model optimization. The experimental plan with results and their discussion are presented in
Section 3. Finally, Section 4 draws conclusions of the work.

Related Works

QC, and more generally speaking sentence classification, is a crucial task for NLP [1,2,16].
Natural language sentences, in both affirmative and interrogative forms, have complicated structures,
both sequential and hierarchical, that must be handled to allow their comprehension. Thanks to their
ability to capture local relations of temporal or hierarchical structures, CNNs have emerged as a relatively
simple yet powerful class of models for sentence modelling and classification, since characterized
by remarkably strong performances, with different shallow or deep architectures proposed in the
recent years.

The first CNN for sentence classification with end-to-end training is proposed in [23,24]. In this
seminal work, one convolutional layer is used together with a new global max-pooling operation,
resulting to be very effective for text. Moreover, multiple deep models are co-trained on many tasks
to transfer task-specific information. Starting from the results of this work, a simpler architecture
with slight modifications have been presented in [21], achieving state-of-the-art performances even
on many small datasets. In particular, one convolutional layer with multichannel representation and
variable-size filters are employed, where fine-tuned or pre-trained word embeddings are combined in
multi-channels, convolutions allow determining high-level abstract features, and multiple linear filters
are used to effectively extract different n-gram features. Both the CNN architectures proposed in [23,24]
and in [21] make use of max-pooling to keep the most important information to represent the sentence.
Moreover, the pooling operation helps the network deal with variable sentence lengths. In [25] a
further variant of multi-layer CNN architecture was proposed, with a dynamic k-max-pooling, where k
depends on the length of the sentence and can be dynamically set as a part of the network. This allows
detecting the k most relevant features occurring into a sentence, independent of their specific position
and preserving their relative order. In [26], a multichannel variable-size CNN architecture for sentence
classification was described, further exploring the capabilities of multichannel and variable size feature

183

Appl. Sci. 2020, 10, 4710

detectors. In particular, it combines diverse versions of pre-trained word embeddings and extracts
features of multi-granular phrases with variable-size convolution filters.

All of CNNs presented in these works are based on word input tokens, encoded as distributed
representations in the form of WE vectors [27]. Moreover, they are rather shallow (two layers in most
of them), if compared to those successfully proposed to face computer vision problems, due to the
reduced length, in terms of number of words, of typical sentences and paragraphs.

Later, a first attempt of CNN jointly using character-level, word-level, and sentence-level
representations to perform sentence classification is described in [28], with a shallow architecture
made of two convolutional layers to extract relevant features from words and sentences of any size.
More recently, a deep CNN architecture, with up to 6 convolutional layers, was proposed in [29],
able to automatically learn the notions of words and sentences on texts operating directly at a character
level, without any pre-processing, not even tokenization. Convolutional kernels of size 3 and 7 were
used, as well as simple max-pooling layers. Another interesting aspect of this work is the usage of
several large-scale data sets for text classification. In [30], a new deep CNN architecture, with up to
29 convolutional layers, was proposed for text classification, operating directly at character level and
using only small convolutions and pooling operations.

More specifically with respect to QC, in [20], a CNN was used to classify Italian questions.
In particular, different solutions regarding the CNN architecture have been tested, and, according to
literature advices, the best settings have been searched in the proper ranges, in order to maximize
the classification power for the particular case of Italian questions dataset. In [31], an extended CNN
architecture is proposed, able to first classify a question into a broader category, and, successively,
based on the prior knowledge, assign to it a more specific category. This solution was tested on an
English questions dataset with pre-trained word embeddings, showing results on par or improved
with respect to other classical methods. In [32], a simple and effective method for QC is presented,
which increases generalization, by replacing entities with placeholders, and diversity of sentence
features, by reading sentence vectors from both forward and reverse directions. This approach has
shown better performance than many other complex CNN models, also proving its effectiveness
applied to question answering systems. Finally, in [33], a QC approach based on word embedding using
subword information and CNN is outlined, in order to improve classification accuracy. In particular,
a comparison between English and Italian languages is reported, by highlighting eventual improvements
obtained by initializing word embeddings with advanced vectors learned in an unsupervised manner
and comprising character-based information.

Summarizing, all the presented approaches based on CNNs for sentence classification,
and specifically for QC, are characterized by models, whose structure is designed by hand by
experts, thus requiring considerable skill and experience to select suitable hyperparameters such
as the learning rate, the size of convolutional filters, the number of layers and so on. Moreover,
these hyperparameters have internal dependencies, which make them particularly expensive for tuning
and can depend on the specific classification task considered. Even though some recent works have
shown that there exists much room to improve current optimization techniques for learning deep CNN
architectures [34], fundamental working principles and behaviors of CNN models when specifically
applied to QC have not been extensively investigated.

The most relevant works addressing these issues are generally tested for text classification.
In [21], different strategies for words representation are compared, by employing in turn, singularly or
combined in a multi-channel way, differently initialized, and eventually fine-tuned WE vectors.
On the basis of [21] model, a sensitivity analysis of CNNs is proposed in [19], summarizing the
influences of various hyperparameters, i.e., WE vectors, filter size, number of filters, activation function,
pooling strategy, and regularization. Both these works, for the QC task considered among the others,
found different best settings with respect to the other tasks.

184

Appl. Sci. 2020, 10, 4710

However, to the best of our knowledge, related research considered only few settings, and without
reference to possible interactions among them. Moreover, (i) QC was only considered as an instance of
text classification; (ii) the possible relation with the language not taken into account.

Thus, this work constitutes the first attempt of considering hyperparameters in a comprehensive
way, examining different possibilities with respect to morphologically different languages, to study the
problem of configuring the appropriate CNN architecture for QC.

2. Materials and Methods

2.1. Data

QC aims at associating each question to a class comprised in a given set. This is made accordingly
to a number of examples of labelled questions, used to train and test the model.

Different datasets are available, particularly for English language. The main example is the
TREC dataset provided by [35], used in various previous works, comprising [21], which is particularly
big. However, in order to study questions in different languages, multilingual data are rare and
less extensive.

In order to compare English and Italian languages, the chosen data are made of the union of two
datasets presented at TREC conferences 2002 and 2003, each comprising 500 training questions and
labelled according to the same taxonomy. The same 1000 questions are available in English and Italian,
among the other languages. For example, a row of the joint dataset is made of four attributes (coarse class,
fine class, question in English, question in Italian), as follows: “FACTOID—LOCATION—What is
Africa’s largest country?—Qual è il paese più vasto dell’Africa?”.

In Table 1, the two-levels taxonomy is reported.

Table 1. Taxonomy of question classes.

Coarse Classes Fine Classes

Definition Location, Person, Other.
Factoid Acronym, How, Location, Material, Measure, Person, Time, Title, Other.

List Location, Person, Title, Other.

Since the aim of the approach is the single (not hierarchical) classification task, coarse classes were
not considered in this work. On the other hand, all the questions were included, and the union of
fine classes for any of the three coarse classes is considered, which results in the following 9 labels:
“Acronym”, “How”, “Location”, “Material”, “Measure”, “Person”, “Time”, “Title”, “Other”.

Each experiment is performed by 10-fold cross-validation. Therefore, the runs are performed with
a number of examples for training Ntrain = 900, and a number of examples for testing Ntest = 100.

Moreover, the dataset provided by (Li and Roth 2002), available online, is also used, to compare
results with those of other state-of-the-art best convolutional architectures. It is already divided into
5452 questions for training and 500 for testing, and is based on a 2-levels taxonomy, whose coarse
level, used here, is made of the following 6 classes: “ABBREVIATION”, “ENTITY”, “DESCRIPTION”,
“HUMAN”, “LOCATION”, “NUMERIC”.

2.2. Question Classification Model

This section describes the structure of the model employed for classifying questions, and the learning
procedure. This model, firstly developed in [23,24], was implemented with variable settings in the open
source Python framework TensorFlow (https://www.tensorflow.org/, accessed 1 July 2020). The testing
platform consisted of a fold containing data, a main program with subroutines for pre-processing and
model architecture and producing the results, and three configuration json files, where the user can
manually change all the settings before each run. The variable settings were defined within sets chosen
coherently with findings of previous literature and with preliminary experiments. The model general form

185

Appl. Sci. 2020, 10, 4710

is schematized in Figure 1. It comprised a pre-processing phase, which allowed translation of the question
into a sparse matrix constituting the input layer, the embedding phase, which allowed representation of
the question by a matrix with smaller dimension constituting the embedding layer, and a CNN made of
convolutional layer, pooling layer, fully connected layer, and output layer, which finally associated each
question to a class.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 26

constituting the embedding layer, and a CNN made of convolutional layer, pooling layer, fully

connected layer, and output layer, which finally associated each question to a class.

Figure 1. The Question Classification model.

The following subsections describe in detail the pre-processing and WE phases (Section 2.2.1),

the CNN architecture (Section 2.2.2), and the procedure for learning network weights (Section 2.2.3).

Finally, since this approach is implemented here with freely adjustable settings, Section 2.2.4

summarizes the degrees of freedom considered with respective possible values, and explains the

optimization approach.

2.2.1. Question Pre-Processing and Word Embedding

Each question had to be pre-processed, to be divided into a sequence of tokens, and represented

as a sparse matrix.

Firstly, special characters, not comprised in the set {A-Za-z0-9(),;.:!?’`”} were substituted with

spaces. Then, apostrophes and some substrings comprising them were substituted, depending on the

language, as reported in Table 2.

Table 2. Substitution of strings comprising apostrophes.

English

Original Characters Substitution

‘‘ (double typewriter apostrophe) “ (quotation marks)

`` (double backtick) “ (quotation marks)

‘ve (apostrophe+”ve”) have (space+“have”)

n’t (“n”+apostrophe+”t”) not (space+”not”)

‘re (apostrophe+”re”) are (space+”are”)

‘s (apostrophe+”s”) ‘s (space added before)

‘d (apostrophe+”d”) ‘d (space added before)

‘ll (apostrophe+”ll”) ‘ll (space added before)

Italian

Original Characters Substitution

‘‘ (double typewriter apostrophe) “ (quotation marks)

`` (double backtick) “ (quotation marks)

‘a (apostrophe+”a”) ‘ a (space added between)

‘e (apostrophe+”e”) ‘ e (space added between)

‘i (apostrophe+”i”) ‘ i (space added between)

‘o (apostrophe+”o”) ‘ o (space added between)

‘u (apostrophe+”u”) ‘ u (space added between)

a’ (”a”+apostrophe) à (“a” with grave accent)

e’ (”e”+apostrophe) è (“e” with grave accent)

i’ (”i”+apostrophe) ì (“i” with grave accent)

o’ (”o”+apostrophe) ò (“o” with grave accent)

Figure 1. The Question Classification model.

The following subsections describe in detail the pre-processing and WE phases (Section 2.2.1),
the CNN architecture (Section 2.2.2), and the procedure for learning network weights (Section 2.2.3).
Finally, since this approach is implemented here with freely adjustable settings, Section 2.2.4 summarizes
the degrees of freedom considered with respective possible values, and explains the optimization approach.

2.2.1. Question Pre-Processing and Word Embedding

Each question had to be pre-processed, to be divided into a sequence of tokens, and represented
as a sparse matrix.

Firstly, special characters, not comprised in the set {A-Za-z0-9(),;.:!?’‘”} were substituted with
spaces. Then, apostrophes and some substrings comprising them were substituted, depending on the
language, as reported in Table 2.

Table 2. Substitution of strings comprising apostrophes.

English

Original Characters Substitution

“ (double typewriter apostrophe) “ (quotation marks)
“ (double backtick) “ (quotation marks)

‘ve (apostrophe+“ve”) have (space+“have”)
n’t (“n”+apostrophe+“t”) not (space+“not”)

‘re (apostrophe+“re”) are (space+“are”)
‘s (apostrophe+“s”) ‘s (space added before)
‘d (apostrophe+“d”) ‘d (space added before)
‘ll (apostrophe+“ll”) ‘ll (space added before)

Italian

Original Characters Substitution

“ (double typewriter apostrophe) “ (quotation marks)
“ (double backtick) “ (quotation marks)
‘a (apostrophe+“a”) ‘ a (space added between)
‘e (apostrophe+“e”) ‘ e (space added between)
‘i (apostrophe+“i”) ‘ i (space added between)

‘o (apostrophe+“o”) ‘ o (space added between)
‘u (apostrophe+“u”) ‘ u (space added between)
a’ (“a”+apostrophe) à (“a” with grave accent)
e’ (“e”+apostrophe) è (“e” with grave accent)
i’ (“i”+apostrophe) ì (“i” with grave accent)

o’ (“o”+apostrophe) ò (“o” with grave accent)
u’ (“u”+apostrophe) ù (“u” with grave accent)

186

Appl. Sci. 2020, 10, 4710

The possibility of eliminating the other standard punctuation symbols {(),;.:!?‘”} is a degree of freedom:

AvoidPunctuation =

{
True
False

. (1)

Therefore, if they were eliminated (AvoidPunctuation = True), they were substituted with spaces,
otherwise (AvoidPunctuation = False) a space was added before and after each of them. Finally, sets of
consecutive spaces were substituted with only one space. At this point, the text was already divided in
tokens by spaces.

Each question was made of L tokens, and the maximum length Lmax was calculated over the
whole dataset. Moreover, a vocabulary was assembled by gathering all V different tokens plus an entry
<UNK> in the first position corresponding to unknown token. Original tokens are used, instead of
lemmatizing them, to be coherent with pre-trained WE.

Once the vocabulary was fixed, each token was represented as a vector with V elements, which were
all equal to 0, except the element corresponding to the position of the token in the vocabulary, equal to 1.
Therefore, each question was represented as a matrix X with V columns and Lmax rows, composed by
vectors xj, with j = 1, . . . ,Lmax, where if L < Lmax, last rows were filled with all zeros. This matrix was the
input layer of the deep neural network.

The next embedding phase consisted in the linear transformation of X into a matrix with smaller
dimension. Each one-hot V-dimensional vector xj was transformed into a De-dimensional vector
corresponding to the representation of the word suggested by the pre-trained WE model or to a random
or null vector. In practice, X was multiplied by the embedding matrix Wemb with De columns and
V rows, to obtain a matrix Xemb made of De columns and Lmax rows:

Xemb = XWemb. (2)

The embedding matrix was initialized depending on the choice of the WEinit factor:

WEinit =
{

pre− trained
random

. (3)

If pre-trained WE vectors are used (WEinit = pre-trained), then the row of Wemb corresponding to
each known word was initialized as the pre-trained WE vector, while the other rows corresponding
to OOV words were initialized with null vectors (OOVinit = null). The pre-trained WE
representation chosen for this work was based on fastText model, with 300 dimensions (De = 300),
trained on the Wikipedia corpora (https://fb-public.app.box.com/s/htfdbrvycvroebv9ecaezaztocbcnsdn,
accessed 1 July 2020), both in English and Italian languages. This model was chosen for its outstanding
characteristics. In fact, it was an evolution of the skip-gram model, which trains the representation
of each word by unsupervised learning to predict words that appear in its context, but fastText
also measures similarity between words based on character n-grams included in them. Therefore,
these vectors encode information regarding syntactic structure of the text and semantic features like
the skip-gram model, as well as information regarding the morphology of the words.

On the other hand, if pre-trained vectors were not used (WEinit = random), then all the rows of
Wemb were initialized with random vectors, both for known or unknown words (OOVinit = random).
This representation was made with a number of dimension which was a further degree of freedom,
studied in the following interval:

De ∈ [10, 500]. (4)

Since the values assumed by OOVinit are coupled with those assumed by WEinit, in the following
OOVinit was omitted.

187

Appl. Sci. 2020, 10, 4710

In both cases, the embedding matrix Wemb could be kept constant or fine-tuned during the
network training:

WEtuning =

{
static

dynamic
. (5)

2.2.2. Convolutional Neural Network Architecture

A classical CNN architecture was used here for associating questions with labels. However,
here the architecture was not fixed, but was implemented with freely adjustable settings.

A convolution was firstly applied to Xemb, by using a single channel, with no padding and stride
1, as recommendable in text classification context. Filters of different sizes may be employed, therefore,
if there were Ns different sizes and for each size a number Nf of filters, the total number Ntot of filters was:

Ntot = N f ·Ns. (6)

The sizes and the total number of filters were degrees of freedom, and they were considered in
the following ranges:

Fs ∈ [1, 10], (7)

Ntot ∈ [50, 500]. (8)

Each filter of a certain size consists in a matrix Wi
conv, with i = 1, . . . ,Ntot made of De columns

and Fs rows. The result of the convolution was a vector xconv
i with dimension Lmax − Fs + 1,

whose components xi, j
conv, with j = 1, . . . ,Lmax − Fs + 1, can be written as:

xi, j
conv =

Fs∑

j j=1

De∑

d=1

(
Xemb[j + j j− 1][d]·Wi

conv[j j][d]
)
. (9)

Then a bias term bi
conv was added to each component, and an activation function f was applied,

to get each component xi, j
act, with j = 1, . . . ,Lmax − Fs + 1, of the vector xi

act, which was the final result
of the convolution by the given filter Wi

conv:

xi, j
act = f

(
xi, j

conv + bi
conv

)
. (10)

Of course, vectors xi
act with the same size were obtained by using filters with the same Fs,

while vectors of different sizes were obtained by differently sized filters. However, Ntot vectors were
obtained, and they constitute the convolutional layer.

The activation function to use for convolution was a degree of freedom of the proposed
implementation. The following functions were used, whose meaning is shown in Figure 2:

f =

eLU
Identity
ReLU
sigmoid
softplus
softsign
tan h

. (11)

188

Appl. Sci. 2020, 10, 4710

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 26

Figure 2. The activation functions employed.

The following operation was the pooling, which was implemented coherently with the common

choice, i.e., the 1-max pooling strategy. In fact, using the max function was forced by the padding with

zeros the input representation of questions shorter than Lmax, and the choice of only one maximum

element was certainly enough, due to the big number of filters employed. Therefore, the pooling layer

was constituted by a horizontal vector p with dimension Ntot, whose elements pi, with i = 1,…,Ntot,

were:

 actmaxi ip x . (12)

The following fully connected layer was constituted by K neurons, where K was also the number

of classes. In the considered case, K = 9. The vector of class activations y was computed by multiplying

p by a matrix of weights Wfc with Ntot rows and K columns, and adding a bias vector bfc:

 fc fcy pW b . (13)

The final output layer was made of only one node, which contains the position of the class with

the highest activation:

argmaxoutput y . (14)

2.2.3. Learning Procedure

The described model includes many parameters that were initialized randomly and have to be

trained, i.e., Wconvi with i = 1,…,Ntot, bconvi with i = 1,…,Ntot, Wfc, and bfc, for a total of De ⸱ Fs ⸱ Ntot +

Ntot ⸱ K + K. Moreover, Wemb can be initialized by pre-trained WE or randomly, but in both cases they

were fine-tuned if WEtuning = Dynamic, bringing other V ⸱ De parameters.

These parameters were adapted on data by a learning procedure summarized as follows.

Firstly, the training dataset was divided in batches composed of a certain number of examples.

In this work, the batch size was a degree of freedom, studied in its whole range:

 1,900batch . (15)

All examples of a batch were used as input of the model, but during the training, in order to

learn separately different parts of the network, the pooling layer was modified by the dropout

function, which randomly transforms each component pi multiplying it by zero with probability (1 –

Pkeep), and by 1 / Pkeep with probability Pkeep, so that the expected sum remains unchanged. Here, the

dropout was a degree of freedom, variable in the following interval:

 0.0,1.0keepP . (16)

Figure 2. The activation functions employed.

The following operation was the pooling, which was implemented coherently with the common
choice, i.e., the 1-max pooling strategy. In fact, using the max function was forced by the padding with
zeros the input representation of questions shorter than Lmax, and the choice of only one maximum
element was certainly enough, due to the big number of filters employed. Therefore, the pooling layer was
constituted by a horizontal vector p with dimension Ntot, whose elements pi, with i = 1, . . . ,Ntot, were:

pi = maxxi
act. (12)

The following fully connected layer was constituted by K neurons, where K was also the number
of classes. In the considered case, K = 9. The vector of class activations y was computed by multiplying
p by a matrix of weights Wfc with Ntot rows and K columns, and adding a bias vector bfc:

y = pWfc + bfc. (13)

The final output layer was made of only one node, which contains the position of the class with
the highest activation:

output = argmaxy. (14)

2.2.3. Learning Procedure

The described model includes many parameters that were initialized randomly and have to be
trained, i.e., Wi

conv with i = 1, . . . ,Ntot, bi
conv with i = 1, . . . ,Ntot, Wfc, and bfc, for a total of De · Fs ·

Ntot + Ntot · K + K. Moreover, Wemb can be initialized by pre-trained WE or randomly, but in both
cases they were fine-tuned if WEtuning = Dynamic, bringing other V · De parameters.

These parameters were adapted on data by a learning procedure summarized as follows.
Firstly, the training dataset was divided in batches composed of a certain number of examples.

In this work, the batch size was a degree of freedom, studied in its whole range:

batch ∈ [1, 900]. (15)

All examples of a batch were used as input of the model, but during the training, in order to learn
separately different parts of the network, the pooling layer was modified by the dropout function,
which randomly transforms each component pi multiplying it by zero with probability (1 − Pkeep),

189

Appl. Sci. 2020, 10, 4710

and by 1/Pkeep with probability Pkeep, so that the expected sum remains unchanged. Here, the dropout
was a degree of freedom, variable in the following interval:

Pkeep ∈ (0.0, 1.0]. (16)

For each input b, the loss was calculated by the cross entropy function (19), where pk (17) was the
softmax transform of the kth component of computed vector y, and ck (18) was 1 for the position of the
true label kTrue, 0 otherwise:

pk =
eyk

K∑
κ=1

eyκ

. (17)

ck =

{
1 if k = kTrue

0 otherwise
. (18)

lossb = −
K∑

k=1

ck· log(pk). (19)

After a batch, the whole associated loss was calculated as:

loss =
1

batch

batch∑

b=1

lossb + l2·
(|Wfc|2

2
+
|bfc|2

2

)
. (20)

The regularization parameter l2, used to prevent big values of fully connected layer weights,
was a degree of freedom here, studied in the following interval:

l2 ∈ [1.0, 5.0]. (21)

The loss gradient was used for updating network weights by a backpropagation approach based
on Stochastic Gradient Descent (SGD) algorithm, which implies a stochastic approximation [36] of
the basic gradient descent algorithm. Since it reduces the computational complexity, achieving faster
iterations in trade for a lower convergence rate [37], it was recognized as a very effective learning
algorithm in machine learning [38]. A variant of the updating rule was freely chosen among the
following ones:

optimizer =

Adadelta
Adagrad
Adam
Ftrl
GradientDescent
Momentum
ProximalAdagrad
ProximalGradientDescent
RMSProp

. (22)

While in case optimizer = Momentum, the momentum parameter was fixed to 0.1, according to
previous findings, the learning rate, which was a further parameter common to all the algorithms,
was the last considered degree of freedom, studied in the following wide range, enlarged with respect
to previous works [19,21]:

η ∈ [0.01, 10]. (23)

The intent in this work was to get the best possible model, therefore the number of epochs was
not taken as an adjustable setting.

190

Appl. Sci. 2020, 10, 4710

2.2.4. Threats to Validate

Different threats could affect the learning procedure.
First, underfitting could affect results, if the number of epochs chosen for learning was too low.

In order to avoid it, a sufficient number of epochs was chosen for different runs. For most of the runs,
2000 epochs result enough to reach convergence, while in some cases (properly compared with the
others) 20000 epochs were needed.

Second, a large number of epochs could cause overfitting on training data. In order to avoid it,
every 2 epochs, the model was tested on a randomly sampled dev set, and at the end of the epochs,
the model presenting the best accuracy on the dev set was chosen.

Finally, the choice of training and testing questions within the dataset could (positively or
negatively) influence and distort the results. In order to avoid it, each experiment was performed by
stratified 10-fold cross-validation. Therefore, the dataset was randomly divided into 10 subsets of
100 questions with approximately the same rate of labels. Each run was performed with the union of
9 question subsets for training, and the remaining subset for testing, this was repeated 10 times for
considering all the examples for testing, and the results of the 10 runs were averaged to obtain the
result of the experiment.

2.2.5. Model Optimization

In order to optimize the QC model, its classification accuracy was studied by analyzing different
experiments, corresponding to respective configurations of settings (factors).

Since each experiment was the set of 10 training and testing phases constituting a 10-fold
cross-validation, the accuracy of an experiment was the average of the accuracies gained by the
10 trained models on the respective test set. The accuracy on a test set was calculated as a percentage,
by averaging coutput, which was 1 if the network output (14) was equal to the position of the true label
associated with the bth input of the test set (output = kTrue), 0 otherwise:

Acc =
1

Ntest

Ntest∑

b=1

coutput·100%. (24)

The factors here considered to analyze their influence on the model accuracy are summarized in
Table 3. For categorical factors, all the possible values were considered, while for quantitative ones the
considered admitted ranges were based on previous literature findings.

Since considering all the possible interactions among factors would involve an unfeasible
experimentation, some factors were analyzed in the following one by one, since they were hypothesized
to have negligible interactions with the others, while some sets of factors were studied together to
verify potential interactions.

For each factor or set of factors, their individual influences and interactions (effects) were evaluated
in a chosen range by performing a set of experiments. Most sets of experiments were planned according
to full factorial designs, which comprise all the combinations of factors levels. This approach needs
more numerous experiments, but minimizes the risk of confounding different effects. The range of
each factor, and the fixed values of other settings, relative to factors not being evaluated in a set of
experiments, since were hypothesized to not interact, were chosen according to findings of previous
works [19–21,33], or to preliminary experiments.

191

Appl. Sci. 2020, 10, 4710

Table 3. Freely adjustable settings of the Question Classification (QC) model analyzed here and their
admitted values.

Setting Symbol Set of Admitted Values

Text representation

Eliminate punctuation AvoidPunctuation {True,False}
Pre-trained WE vectors for known words and

null vectors for OOV words, or random vectors
for all the words

WEinit {pre-trained,random}

Embedding dimension De [10,500]
Fine tuning of WE vectors together with other

network weights during training WEtuning {static,dynamic}

CNN architecture

Filter size Fs [1,10]
Total number of filters Ntot [50,500]

Activation function f {eLU,Identity,ReLU,sigmoid,softplus,softsign,tanh}

Learning procedure

Batch size batch [1,900]
Probability that dropout function keeps a node Pkeep (0.0,1.0]

Parameter of loss regularization l2 [1.0,5.0]

Weights updating rule optimizer {Adadelta,Adagrad,Adam,Ftrl,GradientDescent,Momentum,
ProximalAdagrad,ProximalGradientDescent,RMSProp}

Learning rate η [0.01,10]

Due to the random initialization of weights and to some other sources of randomness in the learning
procedure (splitting training data in batches, dropout function, and SGD algorithm), each run, and thus
each whole experiment, gave different results if repeated. Therefore, some repetitions were performed,
to estimate the experimental variance σ2, which was used to evaluate the experiments reproducibility.

The intrinsic variance in the measurement of the experiment performance implies that a
deterministic functional dependence between factors and model accuracy does not exist. Therefore,
in order to analyze the effects on the QC accuracy, an approximate function was extrapolated from
each set of experimental results:

acc = c0 + c1x1 + c2x2 + c12x1x2 + . . . (25)

where x1,x2, . . . represent the individual factors, x1x2, . . . represent their interactions, and coefficients
c0,c1,c2,c12, . . . were used to linearly combine these (also nonlinear) effects to predict
experimental accuracy.

The significance of effects was evaluated in terms of the respective coefficients [39]. Indeed,
each estimated coefficient belongs to a respective confidence interval, corresponding to the interval
comprising the true coefficient value with 95% probability, that was calculated as follows. Given the
estimated experimental varianceσ2, calculated with a certain number of degrees of freedom, the variance
of each coefficient can be estimated as σ2/N, where N is the number of experiments of the full factorial
design. Therefore, the width of the coefficient confidence interval can be calculated as σ/N1/2 · t0.975,
where t0.975 is the value of a t-student distribution with the same degrees of freedom corresponding to
0.975 cumulative probability (two tails t-test). As a consequence, if the estimated coefficient was lower
than the confidence interval semi-width, then the confidence interval comprises the null value, and the
hypothesis that the true coefficient value was zero cannot be rejected, and the corresponding effect was
not significant.

Moreover, the estimated function (24) comprising significant effects can be used to predict the
accuracy, on the basis of the considered factors and their eventual interactions. This allows finding
optimal values of factors, corresponding to higher calculated accuracy.

After that all the factors were individually optimized, some repetitions corresponding to the
optimal settings were performed, to evaluate the performance of the QC model in optimal conditions.
Moreover, optimal conditions were validated on a larger set of data.

192

Appl. Sci. 2020, 10, 4710

3. Results and Discussion

In this section, the results obtained by the QC model are reported and discussed. As described
before, the accuracy reported in correspondence of a configuration of settings was obtained by the
average of 10 cross-validation runs.

The results were obtained for each configuration by considering questions in both English and
Italian languages.

First of all (Section 3.1), repeated experiments using the same configuration are described
and discussed. Then, the influence of settings regarding text representation (Section 3.2),
network architecture (Section 3.3), and learning procedure (Section 3.4) was evaluated. In addition,
Section 3.5 takes into account all the previous findings to individuate the most influencing parameters.
Finally, Section 3.6 presents optimal settings obtained for different cases, and evaluates the performance
of the associated proposed models, also showing a comparison with baseline models found as optimal
in previous literature, on a widely used dataset.

In total, 2404 runs for training and testing the described QC model were performed.

3.1. Repetitions

As explained before, each experiment reported here was made of 10 runs since cross-validation is
performed. Therefore, for each experiment, an “internal” variance of the testing accuracy is calculated.
Averaging on all the experiments, the “internal” standard deviations found were about 4.0% for English
and 3.5% for Italian. These quite low values were due to the robustness of the random stratified
splitting of the dataset in folds.

On the other hand, some whole experiments were performed 5 times, to evaluate their
reproducibility. In the hypothesis that the system is homoscedastic, the accuracy variance could be
estimated in correspondence of only one configuration. Here, this hypothesis is relaxed, due to the
structural differences between runs performed by using fixed pre-trained WE vectors or random
vectors, and between runs performed with fixed WE vectors or by fine-tuning them. Therefore,
the accuracy variance is estimated in correspondence of the combinations of these settings. For each
configuration, 5 repetitions of the same experiment were performed. In Table 4, the experimental
variance σ2 calculated over repetitions is reported.

Table 4. Variance of testing accuracy over experiments repetitions 1.

WEinit\WEtuning Static Dynamic

σ2
English random 0.37 0.86

pre-trained 0.14 0.23

Italian
random 0.32 0.07

pre-trained 0.72 0.13
1 Other settings were: AvoidPunctuation = True, De = 300, Fs = {1,2,3}, Ntot = 300, f = ReLU, batch = 900, Pkeep = 0.5,
l2 = 3.0, optimizer = Adadelta, η = 0.1.

Since the estimated variance is itself a random variable, on the basis of results of Table 4,
the homoscedasticity can be hypothesized, also with respect to the language; therefore, the experimental
variance was estimated by averaging over different configurations the mean pure squared errors of the
repetitions. It corresponds to a low standard deviation σ = 0.6% (calculated with 32 degrees of freedom,
therefore t0.975 = 2.038), and compared to the variance of different experiments, corresponds to a good
reproducibility (= 0.90).

3.2. Text Representation

The first setting analyzed here regards the text representation, and in particular, the possibility
of eliminating all punctuation symbols from the question during pre-processing. This qualitative

193

Appl. Sci. 2020, 10, 4710

factor can assume 2 levels, and it was hypothesized to not interact with others. Therefore, the only
2 experiments for each language reported in Table 5 were performed.

Table 5. Testing accuracy obtained by eliminating or not punctuation from text 1.

AvoidPunctuation True False

Acc (%)
English 88.1 88.3
Italian 86.6 86.8

1 Other settings were: WEinit = pre-trained, De = 300, WEtuning = dynamic, Fs = {1,2,3}, Ntot = 300, f = ReLU,
batch = 10, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

Even if for both languages the case AvoidPunctuation = True gives slightly higher accuracy,
the differences with the case AvoidPunctuation = False were statistically not significant, since it is
comparable to (and even smaller than) the standard deviation of repeated experiments. In other words,
if a model describing the accuracy as a function of this variable is constructed, the linear coefficient
results 0.1% for both languages, which is smaller than the semi-width of its confidence interval (0.9%),
therefore the chance that the true value of the coefficient is zero cannot be discarded.

This finding suggests that, in order to simplify the QC model, punctuation can be eliminated
without significant loss of information.

Other two factors regarding the text representation, i.e., the possibility of initializing WE vectors
of known words by fastText pre-trained vectors and OOV words by null vectors or initializing all WE
vectors randomly, and the possibility of fine-tuning these vectors during training or not, were analyzed
together, to evaluate at the same time their effects and eventual interactions. Each of these qualitative
factors can assume 2 levels; therefore, 4 configurations for each language were tested. For each
configuration, 5 repeated experiments were performed, used to estimate variances reported in Table 4,
and whose mean accuracies are reported in Table 6.

Table 6. Testing accuracy obtained by different Word Embedding (WE) initialization and fine-tuning
strategy 1.

WEinit\WEtuning Static Dynamic

Acc (%)
English random 77.6 77.8

pre-trained 77.6 80.2

Italian
random 76.1 76.1

pre-trained 75.2 80.4
1 Other settings were: AvoidPunctuation = True, De = 300, Fs = {1,2,3}, Ntot = 300, f = ReLU, batch = 900, Pkeep = 0.5,
l2 = 3.0, optimizer = Adadelta, η = 0.1.

In this case, the effects of the evaluated factors WEinit and WEtuning, and of their interaction,
produced significant results. In particular, random or pre-trained WE vectors give equivalent results if
they are static, and fine-tuning of random vectors does not improve accuracy, but the combination of
WEinit = pre-trained and WEtuning = dynamic gives a contribution to the mean accuracy of about
2.6% for English and 4.3% for Italian. These contributions are greater than the confidence interval
semi-width (about 0.6%).

This behavior can be explained by observing that the generally valid information embodied
by WE pre-trained vectors was not necessarily the same required by the specific classification task,
therefore, if kept static, they could result equivalent to random ones; however, they embody semantic
information that allows, if properly fine-tuned, to get closer to optimal, with respect to random ones.

These findings suggest the following considerations:

• It is convenient to employ fastText pre-trained vectors to initialize WE vectors, which embody
semantic and morphological information in words representation;

194

Appl. Sci. 2020, 10, 4710

• it is convenient to fine-tune WE vectors, since optimizing the representation of the single words
most influencing on QC allows to stress their importance;

• a significant improvement on QC accuracy is gained if these two settings were used at the same time,
since the WE vectors of words semantically associated with question classes, already represented
by embodying semantic information, can be coherently optimized; and

• all these effects result more relevantly in the Italian language, with respect to English, since all
the improvements regarding words representation were more useful for a morphologically
rich language.

The last factor taken into account for text representation was the embedding dimension De,
hypothesized to have no interactions with the others. This quantitative factor was analyzed in the range
[10,500], and in particular, in correspondence of the representative levels {10,100,300,500}, to analyze
also its nonlinear effects. Therefore, four configurations for each language were tested, and results are
reported in Table 7 and shown in Figure 3.

Table 7. Testing accuracy obtained by different embedding dimensions 1.

De 10 100 300 500

Acc (%)
English 54.8 74.0 77.8 78.1
Italian 41.0 73.7 76.1 75.7

1 Other settings were: AvoidPunctuation = True, WEinit = random, WEtuning = dynamic, Fs = {1,2,3}, Ntot = 300,
f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 26

Figure 3. Testing accuracy obtained by different embedding dimensions, for English (red) and Italian

(blue).

From results reported in Table 7, a function was fitted for each language to predict accuracy as

a quadratic function of De in logarithmic scale, and all coefficients result much greater than their

confidence interval, therefore, De gives significant effects. The fitted function, in accordance with

results shown in Figure 3, explains that, as the embedding dimension increases, a great improvement

to QC was given, since more semantic, syntactic, and morphological aspects of words were

represented. However, for more than some hundreds dimensions, a plateau was reached, and adding

other dimensions does not give a significant improvement.

Therefore, also in accordance with most of the previous literature works, and with the majority

of the available pre-trained WE vectors, the value De = 300 was chosen as optimal here.

3.3. CNN Architecture

The CNN architecture was analyzed firstly in terms of both the filter size (7) and their total

number (8), and then with regard to the activation function involved in (10), while their interactions

were neglected.

Different filter sizes were experimented in the range [1,10], taking into account all possible sizes.

The functions fitted in this whole range to predict accuracy reveal no significant linear or quadratic

effect; however, in the restrictions of this range, the experimental results showed significant trends,

associated with significant improvements in correspondence of individual filter sizes with respect to

the others, as discussed in the following.

Firstly, all filters with the same size were employed. Results for both languages are reported in

Table 8 and shown in Figure 4.

Table 8. Testing accuracy obtained by different filter sizes 1.

Fs 1 2 3 4 5 6 7 8 9 10

Acc (%)
English 79.0 81.8 79.4 79.2 78.9 78.3 78.6 79.7 78.3 78.0

Italian 78.6 81.0 79.3 78.3 79.3 77.6 78.1 76.5 77.2 77.5
1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300,WEtuning = dynamic,

Ntot = 300, f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

Figure 3. Testing accuracy obtained by different embedding dimensions, for English (red) and Italian (blue).

From results reported in Table 7, a function was fitted for each language to predict accuracy as
a quadratic function of De in logarithmic scale, and all coefficients result much greater than their
confidence interval, therefore, De gives significant effects. The fitted function, in accordance with results
shown in Figure 3, explains that, as the embedding dimension increases, a great improvement to QC was
given, since more semantic, syntactic, and morphological aspects of words were represented. However,
for more than some hundreds dimensions, a plateau was reached, and adding other dimensions does
not give a significant improvement.

Therefore, also in accordance with most of the previous literature works, and with the majority of
the available pre-trained WE vectors, the value De = 300 was chosen as optimal here.

3.3. CNN Architecture

The CNN architecture was analyzed firstly in terms of both the filter size (7) and their total
number (8), and then with regard to the activation function involved in (10), while their interactions
were neglected.

195

Appl. Sci. 2020, 10, 4710

Different filter sizes were experimented in the range [1,10], taking into account all possible sizes.
The functions fitted in this whole range to predict accuracy reveal no significant linear or quadratic
effect; however, in the restrictions of this range, the experimental results showed significant trends,
associated with significant improvements in correspondence of individual filter sizes with respect to
the others, as discussed in the following.

Firstly, all filters with the same size were employed. Results for both languages are reported in
Table 8 and shown in Figure 4.

Table 8. Testing accuracy obtained by different filter sizes 1.

Fs 1 2 3 4 5 6 7 8 9 10

Acc (%)
English 79.0 81.8 79.4 79.2 78.9 78.3 78.6 79.7 78.3 78.0
Italian 78.6 81.0 79.3 78.3 79.3 77.6 78.1 76.5 77.2 77.5

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Ntot = 300,
f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 26

Figure 4. Testing accuracy obtained by different filter sizes, for English (red) and Italian (blue).

Within the first set of experiments, the best single filter size results Fs = 2, which corresponds to

significant improvements with respect to both Fs = 1 and Fs > 2. The trend was similar for both

languages, while a misalignment results for Fs = 8, which may be due to experimental variance.

Then, in order to evaluate the possibility of using filters of different sizes at the same time, as

suggested by previous works [19,20], 150 filters of size 2 were fixed, while the size of the other 150 was

varied in the same interval. Results for both languages are reported in Table 9 and shown in Figure 5.

Table 9. Testing accuracy obtained by different filter sizes 1.

Fs {2,1} {2,2} {2,3} {2,4} {2,5} {2,6} {2,7} {2,8} {2,9} {2,10}

Acc (%)
English 79.9 81.8 80.9 79.8 81.2 80.8 80.4 80.1 79.9 80.7

Italian 79.4 81.0 80.6 80.1 79.2 79.0 80.3 78.9 78.3 79.4
1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300,WEtuning = dynamic,

Ntot = 300, f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

Figure 5. Testing accuracy obtained by different filter sizes apart from 150 filters of size 2, for English

(red) and Italian (blue).

These results again allow to individuate Fs = 2 as the best filter size, also in association with

other filters of size 2. This corresponds to significant improvements with respect to Fs = 1 and slight

improvements with respect to Fs > 2.

These results mean that substituting 150 filters with others having different sizes does not

improve the accuracy. Therefore, further experiments were performed by fixing 200 filters of size 2,

while the size of only 100 varies. Results for both languages are reported in Table 10 and shown in

Figure 6.

Figure 4. Testing accuracy obtained by different filter sizes, for English (red) and Italian (blue).

Within the first set of experiments, the best single filter size results Fs = 2, which corresponds
to significant improvements with respect to both Fs = 1 and Fs > 2. The trend was similar for both
languages, while a misalignment results for Fs = 8, which may be due to experimental variance.

Then, in order to evaluate the possibility of using filters of different sizes at the same time, as suggested
by previous works [19,20], 150 filters of size 2 were fixed, while the size of the other 150 was varied in the
same interval. Results for both languages are reported in Table 9 and shown in Figure 5.

Table 9. Testing accuracy obtained by different filter sizes 1.

Fs {2,1} {2,2} {2,3} {2,4} {2,5} {2,6} {2,7} {2,8} {2,9} {2,10}

Acc (%)
English 79.9 81.8 80.9 79.8 81.2 80.8 80.4 80.1 79.9 80.7
Italian 79.4 81.0 80.6 80.1 79.2 79.0 80.3 78.9 78.3 79.4

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Ntot = 300,
f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

These results again allow to individuate Fs = 2 as the best filter size, also in association with
other filters of size 2. This corresponds to significant improvements with respect to Fs = 1 and slight
improvements with respect to Fs > 2.

196

Appl. Sci. 2020, 10, 4710

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 26

Figure 4. Testing accuracy obtained by different filter sizes, for English (red) and Italian (blue).

Within the first set of experiments, the best single filter size results Fs = 2, which corresponds to

significant improvements with respect to both Fs = 1 and Fs > 2. The trend was similar for both

languages, while a misalignment results for Fs = 8, which may be due to experimental variance.

Then, in order to evaluate the possibility of using filters of different sizes at the same time, as

suggested by previous works [19,20], 150 filters of size 2 were fixed, while the size of the other 150 was

varied in the same interval. Results for both languages are reported in Table 9 and shown in Figure 5.

Table 9. Testing accuracy obtained by different filter sizes 1.

Fs {2,1} {2,2} {2,3} {2,4} {2,5} {2,6} {2,7} {2,8} {2,9} {2,10}

Acc (%)
English 79.9 81.8 80.9 79.8 81.2 80.8 80.4 80.1 79.9 80.7

Italian 79.4 81.0 80.6 80.1 79.2 79.0 80.3 78.9 78.3 79.4
1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300,WEtuning = dynamic,

Ntot = 300, f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

Figure 5. Testing accuracy obtained by different filter sizes apart from 150 filters of size 2, for English

(red) and Italian (blue).

These results again allow to individuate Fs = 2 as the best filter size, also in association with

other filters of size 2. This corresponds to significant improvements with respect to Fs = 1 and slight

improvements with respect to Fs > 2.

These results mean that substituting 150 filters with others having different sizes does not

improve the accuracy. Therefore, further experiments were performed by fixing 200 filters of size 2,

while the size of only 100 varies. Results for both languages are reported in Table 10 and shown in

Figure 6.

Figure 5. Testing accuracy obtained by different filter sizes apart from 150 filters of size 2, for English
(red) and Italian (blue).

These results mean that substituting 150 filters with others having different sizes does not improve
the accuracy. Therefore, further experiments were performed by fixing 200 filters of size 2, while the
size of only 100 varies. Results for both languages are reported in Table 10 and shown in Figure 6.

Table 10. Testing accuracy obtained by different filter sizes 1.

Fs {2,2,1} {2,2,2} {2,2,3} {2,2,4} {2,2,5} {2,2,6} {2,2,7} {2,2,8} {2,2,9} {2,2,10}

Acc (%)
English 80.2 81.8 81.4 81.5 80.4 81.0 80.8 80.8 80.8 80.6
Italian 79.2 81.0 80.4 79.9 80.3 80.5 79.6 79.6 79.3 80.3

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Ntot = 300,
f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 26

Table 10. Testing accuracy obtained by different filter sizes 1.

Fs {2,2,1} {2,2,2} {2,2,3} {2,2,4} {2,2,5} {2,2,6} {2,2,7} {2,2,8} {2,2,9} {2,2,10}

Acc (%)
English 80.2 81.8 81.4 81.5 80.4 81.0 80.8 80.8 80.8 80.6

Italian 79.2 81.0 80.4 79.9 80.3 80.5 79.6 79.6 79.3 80.3
1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300,WEtuning = dynamic,

Ntot = 300, f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

Figure 6. Testing accuracy obtained by different filter sizes apart from 200 filters of size 2, for English

(red) and Italian (blue).

Also in this case, the filter size 2 results the best. However, it corresponds to significant

improvements with respect to Fs = 1, while the variations for Fs ≥ 2 were not significant, since they

were comparable with the confidence interval of the linear coefficient of the function approximating

this trend (about 0.9%).

This finding of the best filter size corresponding to Fs = 2 can be explained by observing that,

while other literature results were inferred for classifying sentences, if questions were considered as

in this work, their classification can be done for most of them by considering a sequence of maximum

2 words comprised in them. This is coherent with previous findings, e.g., [4], individuating single

words like “head words”, or “WH-words” (why, when, where, …), or couples of words (how much, how

long, …) as the most informative for QC.

The total number of filters was analyzed as well, within the range [50,500], by considering the

following values: {50,100,200,300,400,500}. Results are reported in Table 11 and shown in Figure 7.

Table 11. Testing accuracy obtained by different numbers of filters 1.

Ntot 50 100 200 300 400 500

Acc (%)
English 80.8 81.7 81.5 81.8 81.0 81.3

Italian 80.5 81.4 81.1 81.0 80.5 79.4
1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300,WEtuning = dynamic,

Fs = 2, f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

Figure 6. Testing accuracy obtained by different filter sizes apart from 200 filters of size 2, for English
(red) and Italian (blue).

Also in this case, the filter size 2 results the best. However, it corresponds to significant
improvements with respect to Fs = 1, while the variations for Fs ≥ 2 were not significant, since they
were comparable with the confidence interval of the linear coefficient of the function approximating
this trend (about 0.9%).

This finding of the best filter size corresponding to Fs = 2 can be explained by observing that, while
other literature results were inferred for classifying sentences, if questions were considered as in this
work, their classification can be done for most of them by considering a sequence of maximum 2 words

197

Appl. Sci. 2020, 10, 4710

comprised in them. This is coherent with previous findings, e.g., [4], individuating single words like
“head words”, or “WH-words” (why, when, where, . . .), or couples of words (how much, how long, . . .) as
the most informative for QC.

The total number of filters was analyzed as well, within the range [50,500], by considering the
following values: {50,100,200,300,400,500}. Results are reported in Table 11 and shown in Figure 7.

Table 11. Testing accuracy obtained by different numbers of filters 1.

Ntot 50 100 200 300 400 500

Acc (%)
English 80.8 81.7 81.5 81.8 81.0 81.3
Italian 80.5 81.4 81.1 81.0 80.5 79.4

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Fs = 2,
f = ReLU, batch = 900, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 26

Figure 7. Testing accuracy obtained by different numbers of filters, for English (red) and Italian (blue).

Also in this case, in the whole considered range, the functions fitted to predict accuracy reveal

no significant linear or quadratic effect, but a significant improvement can be detected in

correspondence of Ntot = 100 with respect to Ntot = 100. Moreover, starting from 100 filters, i.e.,

given that enough filters were used, as this number increases, the positive influence of adding filters

disappears. Even if for English the result for 300 filters was slightly better than that with 100, for both

languages similar trends can be recognized, therefore this difference can be ascribed to the

experimental variance. On the contrary, a decreasing trend of the accuracy can be detected as Ntot

increases.

These results mean that a minimum of 100 filters should be used, since at least 100 filters were

useful to extract different features from text. Moreover, the decreasing trend can be explained by

observing that each filter adds 609 weights to the model, therefore adding a great number of filters

cause overfitting on training data, and thus a worse accuracy on testing. Therefore, the value Ntot =

100 appears the best choice.

As far as the activation function is regarded, those reported in Table 12, together with respective

results, are analyzed.

Table 12. Testing accuracy obtained by different activation functions 1.

f eLU Identity ReLU sigmoid softplus softsign tanh

Acc (%)
English 84.9 84.7 85.1 65.6 85.0 79.0 83.4

Italian 84.1 84.0 83.7 56.7 84.3 79.2 82.9
1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300,WEtuning = dynamic,

Fs = {1,2,3}, Ntot = 300, batch = 100, Pkeep = 1, l2 = 3.0, optimizer = Adadelta, η = 0.1.

These results, similar for both languages, show that a very low accuracy was obtained by using

the sigmoid function. Also with f = softsign the accuracy was significantly lower than the others,

while using f = tanh, the accuracy was better, but however, a t-test still reveals that the difference

with the others (eLU, Identity, ReLU, softplus) was significant. On the other hand, the activation

functions f = eLU, f = Identity, f = ReLU, and f = softplus allow to obtain higher accuracies, with

variations among them comparable with the experimental variance. From Figure 2, it can be noticed

that these functions giving better results can be distinguished by their characteristic of infinitely

increasing trend, with respect to the worse ones that have asymptotic behavior. Since they offer

comparable results, one of them can be chosen. For example, f = softplus could be chosen by

considering resulting small differences in accuracy, while f = Identity could be preferred in order to

design the simplest network architecture.

3.4. Learning Procedure

Figure 7. Testing accuracy obtained by different numbers of filters, for English (red) and Italian (blue).

Also in this case, in the whole considered range, the functions fitted to predict accuracy reveal no
significant linear or quadratic effect, but a significant improvement can be detected in correspondence
of Ntot = 100 with respect to Ntot = 100. Moreover, starting from 100 filters, i.e., given that enough
filters were used, as this number increases, the positive influence of adding filters disappears. Even if
for English the result for 300 filters was slightly better than that with 100, for both languages similar
trends can be recognized, therefore this difference can be ascribed to the experimental variance. On the
contrary, a decreasing trend of the accuracy can be detected as Ntot increases.

These results mean that a minimum of 100 filters should be used, since at least 100 filters were
useful to extract different features from text. Moreover, the decreasing trend can be explained by
observing that each filter adds 609 weights to the model, therefore adding a great number of filters
cause overfitting on training data, and thus a worse accuracy on testing. Therefore, the value Ntot = 100
appears the best choice.

As far as the activation function is regarded, those reported in Table 12, together with respective
results, are analyzed.

Table 12. Testing accuracy obtained by different activation functions 1.

f eLU Identity ReLU Sigmoid Softplus Softsign Tanh

Acc (%)
English 84.9 84.7 85.1 65.6 85.0 79.0 83.4
Italian 84.1 84.0 83.7 56.7 84.3 79.2 82.9

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Fs = {1,2,3},
Ntot = 300, batch = 100, Pkeep = 1, l2 = 3.0, optimizer = Adadelta, η = 0.1.

198

Appl. Sci. 2020, 10, 4710

These results, similar for both languages, show that a very low accuracy was obtained by using
the sigmoid function. Also with f = softsign the accuracy was significantly lower than the others,
while using f = tanh, the accuracy was better, but however, a t-test still reveals that the difference with
the others (eLU, Identity, ReLU, softplus) was significant. On the other hand, the activation functions
f = eLU, f = Identity, f = ReLU, and f = softplus allow to obtain higher accuracies, with variations
among them comparable with the experimental variance. From Figure 2, it can be noticed that these
functions giving better results can be distinguished by their characteristic of infinitely increasing
trend, with respect to the worse ones that have asymptotic behavior. Since they offer comparable
results, one of them can be chosen. For example, f = softplus could be chosen by considering resulting
small differences in accuracy, while f = Identity could be preferred in order to design the simplest
network architecture.

3.4. Learning Procedure

The first hyperparameter defining the learning procedure considered here was the batch size,
i.e., the number of examples considered together to calculate the loss value. Given the training
dataset, the variability range was batch ∈ [1,900], and all the orders of magnitude were considered, i.e.,
batch = {1,10,100,900}. Results are reported in Table 13 and graphically represented in logarithmic scale
in Figure 8.

Table 13. Testing accuracy obtained by different batch sizes 1.

batch 1 10 100 900

Acc (%)
English 88.1 88.1 85.1 80.2
Italian 86.4 86.6 83.3 80.4

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Fs = {1,2,3},
Ntot = 300, f = ReLU, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 26

The first hyperparameter defining the learning procedure considered here was the batch size,

i.e., the number of examples considered together to calculate the loss value. Given the training dataset,

the variability range was batch [1,900], and all the orders of magnitude were considered, i.e., batch

= {1,10,100,900}. Results are reported in Table 13 and graphically represented in logarithmic scale in

Figure 8.

Table 13. Testing accuracy obtained by different batch sizes 1.

batch 1 10 100 900

Acc (%)
English 88.1 88.1 85.1 80.2

Italian 86.4 86.6 83.3 80.4
1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300,WEtuning = dynamic,

Fs = {1,2,3}, Ntot = 300, f = ReLU, Pkeep = 0.5, l2 = 3.0, optimizer = Adadelta, η = 0.1.

Figure 8. Testing accuracy obtained by different batch sizes, for English (red) and Italian (blue).

Figure 8 clearly shows that, while the influence of batch size was not significant for sizes between

1 and 10, as the batch size increases, the accuracy clearly decreases, with a very strong effect of this

hyperparameter. This finding confirms the usefulness of employing batches instead of summing up

the loss function for all the examples. In particular, the smaller the batch size was, the higher accuracy

was obtained. However, one should also take into account that smaller batch sizes also cause much

longer training time. For this reason, here, in order to choose the best batch size, between 1 and 10,

having comparable performances, batch = 10 was chosen.

The dropout was also varied, in the range Pkeep = (0,1], and in particular, in correspondence of

the following representative levels: Pkeep = {0.1,0.5,0.9,1}. Results are reported in Table 14.

Table 14. Testing accuracy obtained by different dropout 1.

Pkeep 0.1 0.5 0.9 1.0

Acc (%)
English 82.6 84.8 84.9 84.8

Italian 81.9 83.5 84.2 84.2
1 Other settings were: AvoidPunctuation = False, WEinit = pre-trained, De = 300,WEtuning = dynamic,

Fs = {1,2,3}, Ntot = 300, f = ReLU, batch = 100, l2 = 3.0, optimizer = Adadelta, η = 0.1.

From Table 14, it can be seen that, excepting the case Pkeep = 0.1, which causes significant accuracy

worsening, the other cases were very similar. This means that for this kind of system, and for the

considered size of the dataset, dropout was not strictly necessary. Therefore, for the considered dataset,

the dropout can be avoided, by choosing Pkeep = 1.0, or equivalently Pkeep = 0.9 can be chosen.

Figure 8. Testing accuracy obtained by different batch sizes, for English (red) and Italian (blue).

Figure 8 clearly shows that, while the influence of batch size was not significant for sizes between
1 and 10, as the batch size increases, the accuracy clearly decreases, with a very strong effect of this
hyperparameter. This finding confirms the usefulness of employing batches instead of summing up
the loss function for all the examples. In particular, the smaller the batch size was, the higher accuracy
was obtained. However, one should also take into account that smaller batch sizes also cause much
longer training time. For this reason, here, in order to choose the best batch size, between 1 and 10,
having comparable performances, batch = 10 was chosen.

The dropout was also varied, in the range Pkeep = (0,1], and in particular, in correspondence of the
following representative levels: Pkeep = {0.1,0.5,0.9,1}. Results are reported in Table 14.

199

Appl. Sci. 2020, 10, 4710

Table 14. Testing accuracy obtained by different dropout 1.

Pkeep 0.1 0.5 0.9 1.0

Acc (%)
English 82.6 84.8 84.9 84.8
Italian 81.9 83.5 84.2 84.2

1 Other settings were: AvoidPunctuation = False, WEinit = pre-trained, De = 300,WEtuning = dynamic, Fs = {1,2,3},
Ntot = 300, f = ReLU, batch = 100, l2 = 3.0, optimizer = Adadelta, η = 0.1.

From Table 14, it can be seen that, excepting the case Pkeep = 0.1, which causes significant accuracy
worsening, the other cases were very similar. This means that for this kind of system, and for the
considered size of the dataset, dropout was not strictly necessary. Therefore, for the considered dataset,
the dropout can be avoided, by choosing Pkeep = 1.0, or equivalently Pkeep = 0.9 can be chosen.

The regularization term l2 was also considered, at the following levels: l2 = {1.0,3.0,5.0}. Results are
reported in Table 15.

Table 15. Testing accuracy obtained by different regularization terms 1.

l2 1.0 3.0 5.0

Acc (%)
English 86.7 85.1 83.4
Italian 85.6 83.9 83.5

1 Other settings were: AvoidPunctuation = True, WEinit = pre-trained, De = 300, WEtuning = dynamic, Fs = {1,2,3},
Ntot = 300, f = ReLU, batch = 100, Pkeep = 0.5, optimizer = Adadelta, η = 0.1.

From Table 15, a slight but significant decreasing trend of the accuracy can be detected while l2
increases. Therefore, l2 = 1.0 was chosen.

Finally, the updating rule optimizer used to perform weights update by SGD backpropagation
algorithm, and the associated learning rate η, were studied together, in order to evaluate also their
probable interactions. According to a full factorial design, all the combinations of factors levels
were experimented, i.e., all the available updating rules optimizer = {Adadelta,Adagrad,Adam,Ftrl,
GradientDescent,Momentum,ProximalAdagrad,ProximalGradientDescent,RMSProp} combined with all the
magnitude orders in the considered range of the learning rate η = {0.01,0.1,1,10}. Results were reported in
Table 16 and shown in Figure 9. In Table 16, some results were not reported (“-“), since the corresponding
experiments were not performed, because they make no sense in light of the other experiments. Moreover,
the results of some experiments were reported as “<20.0”, since in those cases the learning procedure did
not offer acceptable accuracy. Some others were reported as “DIV”, since the learning procedure gave
exceptions due to overflow. The results indicated by an asterisk were obtained by 20,000 epochs instead
of 2000; however, results with different numbers of epochs can be compared, because in all the cases the
training was stopped after that convergence was reached. For each set of experiments with different
learning rates, the best result is reported in bold.

From Table 16, it can be evinced that some updating rules does not work with a too high
learning rate, giving overflow problems. In particular, when optimizer = {GradientDescent,Momentum,
ProximalGradientDescent}, the learning rate η = 1 was already too high. Moreover, when optimizer = Ftrl
and η = 0.01 (too low η), and when optimizer = RMSProp and η = 1 (too high η in this case), the learning
procedure does not improve the testing accuracy of the initial random model. Another point to take
into account was that experiments obtained by 20000 epochs, necessary to get convergence for some low
values of η, need much more computation time. These observations limit the range of the usable values of
η, peculiarly for each updating rule.

200

Appl. Sci. 2020, 10, 4710

Table 16. Testing accuracy obtained by different learning updating rules and learning rates 1.

optimizer\η 0.01 0.1 1 10

Acc (%)

English

Adadelta 84.9 * 87.2 * 88.4 88.2
Adagrad 85.8 * 86.1 55.7 -

Adam 85.1 65.8 50.5 -
Ftrl <20.0 57.4 53.5 -

GradientDescent 87.4 * 85.7 DIV -
Momentum 87.2 * 86.4 DIV -

ProximalAdagrad 85.4 * 86.6 57.1 -
ProximalGradientDescent 87.0 * 85.3 DIV -

RMSProp 87.0 55.3 <20.0 -

Italian

Adadelta 83.8 * 87.4 * 88.6 88.0
Adagrad 85.2 * 86.0 57.0 -

Adam 85.9 67.8 66.4 -
Ftrl <20.0 56.4 49.8 -

GradientDescent 86.2 * 82.3 DIV -
Momentum 86.2 * 82.8 DIV -

ProximalAdagrad 85.0 * 85.3 63.6 -
ProximalGradientDescent 86.0 * 82.5 DIV -

RMSProp 86.4 57.0 <20.0 -
1 Experiments not performed reported as “-”. Not acceptable accuracy reported as “<20.0”. Exceptions due to
overflow reported as “DIV”. Results obtained by 20,000 epochs instead of 2000 indicated by an asterisk. Best result for
each set of experiments with different learning rates reported in bold. Other settings were: AvoidPunctuation = True,
WEinit = pre-trained, De = 300, WEtuning = dynamic, Fs = {1,2,3}, Ntot = 300, f = softplus, batch = 100, Pkeep = 1.0, l2 =
3.0.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 21 of 26

Figure 9. Testing accuracy obtained by different weights updating rules and different learning rates,

for English (a) and Italian (b).

From Table 16, it can be evinced that some updating rules does not work with a too high learning

rate, giving overflow problems. In particular, when optimizer =

{GradientDescent,Momentum,ProximalGradientDescent}, the learning rate η = 1 was already too high.

Moreover, when optimizer = Ftrl and η = 0.01 (too low η), and when optimizer = RMSProp and η = 1

(too high η in this case), the learning procedure does not improve the testing accuracy of the initial

random model. Another point to take into account was that experiments obtained by 20000 epochs,

necessary to get convergence for some low values of η, need much more computation time. These

observations limit the range of the usable values of η, peculiarly for each updating rule.

Most updating rules result equivalent for low learning rates, as can be evinced by Figure 9, in

correspondence of η = 0.01. In particular, the cases optimizer =

{GradientDescent,Momentum,ProximalGradientDescent} result equivalent for this dataset in the whole

range of η. Moreover, as can be seen in Figure 9, in the acceptable ranges of η for each updating rule,

most of them present similar trends, with significantly increasing accuracy values as η decreases. This

can be explained by the network behavior of adapting fast to training data for high learning rates,

which allows to increase predictivity only during the first few epochs. Therefore, while

experimenting lower learning rates was not doable due to too high computation time, the option of

higher learning rates was not promising for most of the cases. On the other hand, when optimizer =

Adadelta, accuracy surprisingly increases with η, even if the differences in the range η = [0.1,10] were

comparable with experimental variance, and this allows using high learning rates (e.g., η = 1), and

not too many epochs. Moreover, in correspondence of optimizer = Adadelta and η ≥ 0.1, a significant

accuracy improvement was gained, with respect to the maximal values of the other algorithms

obtained with η = 0.01. Therefore, the following couple of values of the considered degrees of

freedom was chosen as optimal: optimizer = Adadelta and η = 1.

3.5. Most Influencing Hyperparameters

The previous findings can be compared and summarized as follows.

For classifying questions (in 9 classes, using 900 training instances, with a CNN), the influence

associated to variations of different settings, relative to text representation, CNN architecture, and

learning procedure, was qualitatively described in Table 17.

Table 17. Qualitative description of influence of settings.

Setting Symbol Influence

 Words representation

Eliminate punctuation AvoidPunctuation Not significant

Use of pre-trained and fine-tuned Word Embedding vectors WEinit AND WEtuning Significant

Embedding dimension De Very strong (De ≤ 100) – Significant (100 < De ≤ 300) –

Figure 9. Testing accuracy obtained by different weights updating rules and different learning rates,
for English (a) and Italian (b).

Most updating rules result equivalent for low learning rates, as can be evinced by
Figure 9, in correspondence of η = 0.01. In particular, the cases optimizer = {GradientDescent,
Momentum,ProximalGradientDescent} result equivalent for this dataset in the whole range of η.
Moreover, as can be seen in Figure 9, in the acceptable ranges of η for each updating rule, most of
them present similar trends, with significantly increasing accuracy values as η decreases. This can be
explained by the network behavior of adapting fast to training data for high learning rates, which allows
to increase predictivity only during the first few epochs. Therefore, while experimenting lower learning
rates was not doable due to too high computation time, the option of higher learning rates was not
promising for most of the cases. On the other hand, when optimizer = Adadelta, accuracy surprisingly
increases with η, even if the differences in the range η = [0.1,10] were comparable with experimental

201

Appl. Sci. 2020, 10, 4710

variance, and this allows using high learning rates (e.g., η = 1), and not too many epochs. Moreover, in
correspondence of optimizer = Adadelta and η ≥ 0.1, a significant accuracy improvement was gained,
with respect to the maximal values of the other algorithms obtained with η = 0.01. Therefore, the
following couple of values of the considered degrees of freedom was chosen as optimal: optimizer =

Adadelta and η = 1.

3.5. Most Influencing Hyperparameters

The previous findings can be compared and summarized as follows.
For classifying questions (in 9 classes, using 900 training instances, with a CNN), the influence

associated to variations of different settings, relative to text representation, CNN architecture,
and learning procedure, was qualitatively described in Table 17.

Table 17. Qualitative description of influence of settings.

Setting Symbol Influence

Words representation

Eliminate punctuation AvoidPunctuation Not significant
Use of pre-trained and fine-tuned

Word Embedding vectors WEinit AND WEtuning Significant

Embedding dimension De
Very strong (De ≤ 100) – Significant

(100 < De ≤ 300) –
Not significant (300 < De ≤ 500)

CNN architecture

Filter size Fs Significant

Total number of filters Ntot Significant (Ntot ≤ 100) – Not significant
(Ntot > 100)

Activation function f

Not significant (among
eLU,Identity,ReLU,softPlus) –
Significant (vs. softsign,tanh) –

Very strong (vs. sigmoid)

Learning procedure

Batch size batch Not significant (batch ≤ 10) – Strong
(batch > 10)

Dropout Pkeep
Significant (Pkeep < 0.5) – Not significant

(Pkeep ≥ 0.5)
Loss regularization l2 Significant

Weights updating rule optimizer Not significant (associated with η = 0.01) –
Very strong (associated with η ≥ 0.1)

Learning rate η
Significant (associated with optimizer =

Adadelta) –
Very strong (otherwise)

From Table 17, the set of possible causes of very bad results can be individuated, i.e., too few
embedding dimensions, sigmoid activation function, and a wrong choice of learning rate associated
with a certain weights updating rule.

On the other hand, the strongest positive effect on accuracy was associated with a small batch
size. Other settings give significant positive effects: Use of pre-trained and fine-tuned WE vectors,
minimum 300 embedding dimensions, filter size equal to 2, minimum 100 total number of filters,
choice of the activation function among {eLU,Identity,ReLU,softplus}, low loss regularization constant,
and low learning rate. On the contrary, the influence of eliminating punctuation, and of the dropout
function (given Pkeep ≥ 0.5) were not significant.

202

Appl. Sci. 2020, 10, 4710

3.6. Experiments with Optimal Settings

The results reported above allow individuating the best settings, for hopefully obtaining the
highest accuracy values, with respect to those reported so far.

Therefore, some experiments were performed in correspondence of the best settings, in CV and
with some repetitions, in order to validate the optimization procedure described before. In particular,
two different settings were chosen, one (OPT1) comprising one of the best activation functions
(f = softplus), the other without the activation function (f = Identity).

Moreover, the results obtained here were compared with those obtained with settings individuated
as optimal in previous works [19,21]. For configurations found in previous works, fastText WE
pre-trained vectors are used here.

In Table 18, the settings relative to different final experiments are reported, together with respective
accuracy on testing.

Table 18. Testing accuracy for optimal settings, averaged on experiments repetitions, and for settings
individuated in previous literature.

Symbol OPT1 (This Work) OPT2 (This Work) [21] [19]

Ntrain/Ntest 900/100

Words representation

AvoidPunctuation True True False False
WEinit pre-trained pre-trained pre-trained pre-trained

De 300 300 300 300
WEtuning dynamic dynamic dynamic dynamic

CNN architecture

Fs 2 2 {3,4,5} {2,3,4,5}
Ntot 100 100 300 400

f softplus Identity ReLU ReLU

Learning procedure

batch 10 10 50 50
Pkeep 1 1 0.5 0.7

l2 1.0 1.0 3.0 5.0
optimizer Adadelta Adadelta Adadelta Adadelta

η 1.0 1.0 0.1 0.1

Performance

Acc (%) for English 88.8 89.2 85.6 85.7
Acc (%) for Italian 89.0 89.0 85.4 85.0

Results presented in Table 18, firstly validate the optimization performed of the whole model.
Indeed, the accuracy values were the highest obtained so far on this dataset.

Moreover, the results obtained by taking into account optimal configurations individuated by [19,21]
were significantly worse than those obtained here. The most noticeable differences in the configurations
revealed that the model chosen here was much simpler, since it avoids considering punctuation, uses only
100 filters of size 2, and does not use dropout (nor any activation function, for OPT2).

Since [19,21] found their best configurations on a different dataset, the same comparison was
performed on the most used dataset provided by [35] for the English language. In Table 19, the settings
and the respective accuracy on testing were reported, relative to different final experiments, also on
this bigger sized dataset.

203

Appl. Sci. 2020, 10, 4710

Table 19. Testing accuracy on [35] data with optimal settings, and with settings individuated in
previous literature.

Symbol OPT1 (This Work) OPT2 (This Work) [21] [19]

Ntrain/Ntest 5452/500

Words representation

AvoidPunctuation True True False False
WEinit pre-trained pre-trained pre-trained pre-trained

De 300 300 300 300
WEtuning dynamic dynamic dynamic dynamic

CNN architecture

Fs 2 2 {3,4,5} {2,3,4,5}
Ntot 100 100 300 400

f softplus Identity ReLU ReLU

Learning procedure

batch 10 10 50 50
Pkeep 1 1 0.5 0.7

l2 1.0 1.0 3.0 5.0
optimizer Adadelta Adadelta Adadelta Adadelta

η 1.0 1.0 0.1 0.1

Performance

Acc (%) for English 93.0 92.2 91.8 91.0

Among results of Table 19, those obtained with the proposed optimal settings were better than
those obtained with settings optimized in previous works for this particular dataset. This confirms
the validity and transferability of the optimal text representation, CNN architecture, and learning
procedure obtained here for the QC task.

3.7. Limitations

The optimal settings found here were based on a multilingual dataset regarding QC, using the
taxonomy explained in Section 2.1. Moreover, they were validated on a further dataset, also regarding
QC, presenting a different taxonomy.

However, the optimality of those settings cannot be demonstrated for any taxonomy of question
classes. Moreover, it cannot be extended to other sentence classification tasks. For example, if a filter of
size 2 was enough to classify some questions by just individuating “How much” sequence of words,
the same small filter could be undersized to distinguish more fine-grained question classes or to classify
sentiment of affirmative sentences.

4. Conclusions

This paper presented a study performed to analyze the settings of Convolutional Neural
Networks for Question Classification, in terms of words representation, network architecture and
learning procedure.

Both English and Italian languages were considered, since they have different morphological
richness, and training sets made of different number of questions were tested. All experiments were
based on questions properly extracted from the same multilingual dataset, in order to check possible
dependencies of optimal settings with respect to language.

All the hyperparameters and the most plausible interactions among them were tested in
correspondence of wide ranges of variability. For each of them, statistical significance of its influence
was evaluated by means of a comparison with intrinsic variability, measured through repetitions of the
same experiments.

204

Appl. Sci. 2020, 10, 4710

Results of the huge number of experiments drove to the individuation of optimal settings,
which are similar for both languages. They can be summarized as follows. Regarding the text
representation, it is better to avoid punctuation, to use pre-trained word embedding vectors with
dimension 300, and fine-tune them according to available data; regarding the architecture, 100 filters of
size 2 were enough for coarse-grain classification, and an infinitely increasing activation function should
be preferred (eLU, ReLU, softplus), or equivalently no activation function (Identity); regarding the
learning procedure, using a small batch of 10 gives strong improvements, while choosing it smaller
only increases computation time, dropout and loss regularization should be avoided, and the best and
fastest optimizer was Adadelta, associated with learning rate 1.0.

The individuated best configuration was tested on the same data and on a different set of questions
widely used for QC, and compared to the configurations suggested by the most relevant previous
works. These further results validated the optimization performed and confirmed the transferability of
the best settings on different data, since in all cases the models optimized here showed significantly
better classification accuracy than those suggested before.

Author Contributions: Conceptualization, M.P., M.E. and H.F.; methodology, M.P. and M.E.; software, M.P.;
validation, M.E. and H.F.; formal analysis, M.P.; investigation, M.P. and M.E.; resources, G.D.P.; data curation, M.P.;
writing—original draft preparation, M.P. and M.E.; writing—review and editing, M.P. and M.E.; visualization,
M.P.; supervision, M.E., G.D.P. and H.F.; project administration, G.D.P.; funding acquisition, G.D.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yadav, A.; Vishwakarma, D.K. Sentiment analysis using deep learning architectures: A review. Artif. Intell. Rev.
2019. [CrossRef]

2. Yuan, S.; Zhang, Y.; Tang, J.; Hall, W.; Cabotà, J.B. Expert finding in community question answering: A review.
Artif. Intell. Rev. 2020, 53, 843–874. [CrossRef]

3. Wang, Y.; Wang, M.; Fujita, H. Word Sense Disambiguation: A comprehensive knowledge exploitation
framework. Knowl. Based Syst. 2020, 190, 105030. [CrossRef]

4. Pota, M.; Fuggi, A.; Esposito, M.; De Pietro, G. Extracting Compact Sets of Features for Question Classification
in Cognitive Systems: A Comparative Study. In Proceedings of the 10th International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, 3rd Workshop on Cloud and Distributed System Applications,
Krakow, Poland, 4–6 November 2015; IEEE: Piscataway, NJ, USA; pp. 551–556. [CrossRef]

5. Pota, M.; Esposito, M.; De Pietro, G. A forward-selection algorithm for SVM-based question classification
in cognitive systems. In Proceedings of the 9th International KES Conference on Intelligent Interactive
Multimedia: Systems and Services (KES-IIMSS-16), Tenerife, Spain, 15–17 June 2016; pp. 587–598. [CrossRef]

6. Pota, M.; Esposito, M.; De Pietro, G. Learning to rank answers to closed-domain questions by using fuzzy
logic. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy,
9–12 July 2017; pp. 1–6. [CrossRef]

7. Argamon, S.; Koppel, M.; Pennebaker, J.W.; Schler, J. Automatically profiling the author of an anonymous
text. Commun. ACM 2009, 52, 119–123. [CrossRef]

8. Estival, D.; Gaustad, T.; Pham, S.B.; Radford, W.; Hutchinson, B. Tat: An author profiling tool with application
to arabic emails. In Proceedings of the Australasian Language Technology Workshop, Melbourne, Australia,
21–30 December 2007.

9. Franco-Salvador, M.; Rangel, F.; Rosso, P.; Taulé, M.; Martí, M.A. Language variety identification using
distributed representations of words and documents. In Proceedings of the CLEF 2015 Conference and
Labs of the Evaluation Forum-Experimental IR meets Multilinguality, Multimodality, and Interaction, LNCS,
Toulouse, France, 8–11 September 2015; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9283, pp. 24–40.

10. Bayot, R.; Gonçalves, T. Author Profiling using SVMs and Word Embedding Averages—Notebook for PAN at
CLEF 2016. In Proceedings of the Working Notes of CLEF’2016—Conference and Labs of the Evaluation forum
CLEF 2016 Evaluation Labs and Workshop—Working Notes Papers, Évora, Portugal, 5–8 September 2016.

205

Appl. Sci. 2020, 10, 4710

11. Liu, G.; Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification.
Neurocomputing 2019, 337, 325–338. [CrossRef]

12. Guo, B.; Zhang, C.; Liu, J.; Ma, X. Improving text classification with weighted word embeddings via a
multi-channel TextCNN model. Neurocomputing 2019, 363, 366–374. [CrossRef]

13. Wang, P.; Xu, B.; Xu, J.; Tian, G.; Liu, C.-L.; Hao, H. Semantic expansion using word embedding clustering
and convolutional neural network for improving short text classification. Neurocomputing 2016, 174, 806–814.
[CrossRef]

14. Poria, S.; Peng, H.; Hussain, A.; Howard, N.; Cambria, E. Ensemble application of convolutional neural
networks and multiple kernel learning for multimodal sentiment analysis. Neurocomputing 2017, 261, 217–230.
[CrossRef]

15. Xia, W.; Zhu, W.; Liao, B.; Chen, M.; Cai, L.; Huang, L. Novel architecture for long short-term memory used
in question classification. Neurocomputing 2018, 299, 20–31. [CrossRef]

16. Loni, B. A Survey of State-of-the-Art Methods on Question Classification; Technical Report; Delft University of
Technology: Delft, The Netherlands, 2011.

17. Dale, R. Classical approaches to natural language processing. In Handbook of Natural Language Processing;
Chapman & Hall/CRC: Boca Raton, FL, USA, 2010.

18. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases
and their compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119.

19. Zhang, Y.; Wallace, B.C. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks
for sentence classification. In Proceedings of the 8th International Joint Conference on Natural Language
Processing, Taipei, Taiwan, 26–31 July 2015; pp. 253–263.

20. Pota, M.; Esposito, M.; De Pietro, G. Convolutional Neural Networks for Question Classification in Italian
Language. In Proceedings of the 16th International Conference on Intelligent Software Methodologies, Tools,
and Techniques (SOMET_17), Kitakyushu, Japan, 26–28 September 2017; pp. 604–615. [CrossRef]

21. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882.
22. Qin, P.; Xu, W.; Guo, J. An empirical convolutional neural network approach for semantic relation classification.

Neurocomputing 2016, 190, 1–9. [CrossRef]
23. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks

with multitask learning. In Proceedings of the 25th International Conference on Machine Learning,
New York, NY, USA, 5–9 July 2008; pp. 160–167.

24. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing
(almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537.

25. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A convolutional neural network for modelling
sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics,
Baltimore, MD, USA, 22–27 June 2014.

26. Yin, W.; Schütze, H. Multichannel variable-size convolution for sentence classification. In Proceedings of the
19th Conference on Computational Language Learning, Beijing, China, 30–31 July 2015; pp. 204–214.

27. Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C. A neural probabilistic language model. J. Mach. Learn. Res.
2003, 3, 1137–1155.

28. Dos Santos, C.N.; Gatti, M. Deep convolutional neural networks for sentiment analysis of short texts. In
Proceedings of the 25th International Conference on Computational Linguistics (COLING), Dublin, Ireland,
23–29 August 2014.

29. Zhang, X.; Zhao, J.; LeCun, Y. Character-level convolutional networks for text classification. In Proceedings
of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada,
8–13 December 2014.

30. Conneau, A.; Schwenk, H.; Barrault, L.; LeCun, Y. Very deep convolutional networks for natural language
processing. arXiv 2016, arXiv:1606.01781.

31. Dachapally, P.R.; Ramanam, S. In-depth Question classification using Convolutional Neural Networks. arXiv
2018, arXiv:1804.00968.

32. Lei, T.; Shi, Z.; Liu, D.; Yang, L.; Zhu, F. A novel CNN-based method for Question Classification in Intelligent
Question Answering. In Proceedings of the 2018 International Conference on Algorithms, Computing and
Artificial Intelligence, Sanya, China, 21–23 December 2018.

206

Appl. Sci. 2020, 10, 4710

33. Pota, M.; Esposito, M. Question Classification by Convolutional Neural Networks Embodying Subword
Information. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN),
Rio de Janeiro, Brazil, 8–13 July 2018. [CrossRef]

34. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Chen, T. Recent advances in convolutional neural
networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

35. Li, X.; Roth, D. Learning question classifiers. In Proceedings of the 19th International Conference on
Computational Linguistics (COLING’02), Morristown, NJ, USA, 26–30 August 2002.

36. Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400. [CrossRef]
37. Bottou, L.; Bousquet, O. The Tradeoffs of Large Scale Learning. In Optimization for Machine Learning; MIT Press:

Cambridge, MA, USA, 2012; pp. 351–368.
38. Bottou, L. Online Algorithms and Stochastic Approximations. In Online Learning and Neural Networks;

Cambridge University Press: Cambridge, UK, 1998.
39. Neyman, J. Outline of a theory of statistical estimation based on the classical theory of probability.

Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1937, 236, 333–380.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

207

applied
sciences

Article

Text Normalization Using Encoder–Decoder
Networks Based on the Causal Feature Extractor

Adrián Javaloy 1 and Ginés García-Mateos 2,*
1 Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany; adrian.javaloy@tuebingen.mpg.de
2 Department of Computer Science and Systems, University of Murcia, 30100 Murcia, Spain
* Correspondence: ginesgm@um.es; Tel.: +34-868-888-530

Received: 9 May 2020; Accepted: 27 June 2020; Published: 30 June 2020

Abstract: The encoder–decoder architecture is a well-established, effective and widely used approach
in many tasks of natural language processing (NLP), among other domains. It consists of two
closely-collaborating components: An encoder that transforms the input into an intermediate
form, and a decoder producing the output. This paper proposes a new method for the
encoder, named Causal Feature Extractor (CFE), based on three main ideas: Causal convolutions,
dilatations and bidirectionality. We apply this method to text normalization, which is a ubiquitous
problem that appears as the first step of many text-to-speech (TTS) systems. Given a text with symbols,
the problem consists in writing the text exactly as it should be read by the TTS system. We make use of
an attention-based encoder–decoder architecture using a fine-grained character-level approach rather
than the usual word-level one. The proposed CFE is compared to other common encoders, such as
convolutional neural networks (CNN) and long-short term memories (LSTM). Experimental results
show the feasibility of CFE, achieving better results in terms of accuracy, number of parameters,
convergence time, and use of an attention mechanism based on attention matrices. The obtained
accuracy ranges from 83.5% to 96.8% correctly normalized sentences, depending on the dataset.
Moreover, the proposed method is generic and can be applied to different types of input such as text,
audio and images.

Keywords: text normalization; natural language processing; deep neural networks; causal encoder

1. Introduction

Research in natural language processing (NLP) has traditionally focused on the resolution
of problems such as automatic bilingual translation [1], text summarization [2], automatic text
generation [3] and text classification [4]. However, there are also other not so well-known problems that
are often overlooked, despite being as difficult to solve as the former ones. In particular, the problem of
text normalization is one such case. Its definition is simple: Given an arbitrary text, transform it into its
normalized form. This normalized form depends on the context in which we are working. For example,
in the context of text-to-speech (TTS) systems—which is the objective of this paper—normalizing a
text means rewriting it as it should be read, for example:

I have $20→ I have twenty dollars

It happened in 1984→ It happened in nineteen eighty four

He weights 50kg→ He weights fifty kilograms

At first glance, this problem might seem trivial and rather unimportant.
Nevertheless, text normalization is a ubiquitous task, present in most NLP problems. The reason
is that normalizing the input as a first step significantly decreases the complexity of those subsequent tasks,

209

Appl. Sci. 2020, 10, 4551

since equivalent phrases—yet differently written—end up being exactly the same phrase, as illustrated in
Figure 1. WaveNet [5] is an example of these systems, where a generative model for TTS is trained with
normalized text as input.

minus fifty euros

-50e minus 50e

-50 eurosminus 50 euros

Figure 1. An example of equivalent phrases producing the same normalized output.

Despite its apparent simplicity, this problem entails an interesting challenge. Data-driven
approaches, specifically Deep Learning, deserve special attention since: (1) There exists a general
belief that Deep Learning can solve any problem; and (2) it is the framework used in this research.
Text normalization gathers three main features that make it challenging for this type of techniques,
as it has been already discussed by Sproat and Jaitly [6]. In short:

• Non-trivial cases (i.e., those whose output and input differ) are sparse.
• It is context-dependent, for example, a normalized date could change depending on the local

variant of the language.
• There is no natural reason for building a text normalization database. Everyone knows that 2

means two.

Different models have been developed to tackle this problem. The first attempts date back to
the times when researchers were developing the first complete TTS systems, as described by Sproat
and Jaitly [6]. Systems based on traditional techniques include finite state automata as well as finite
state transducers [7]. The usage of these models has the advantage of being well-known techniques
that work (and fail) as expected; yet, these solutions need to be hand-crafted from scratch for each
language, suffering from lack of flexibility (which translates into an increase in production costs).

Nowadays, many researchers are moving towards Deep Learning models, that try to learn how
to solve the problems from the data itself [6]. However, the amount of information that these models
require to work correctly can be prohibitive. In the cases where the target language is low-resourced,
that is, a language for which little data is available, rule-based solutions have been attempted [8],
as well as Deep Learning models that make use of data augmentation techniques to compensate
the lack of samples [9]. In particular, this system is based on an encoder–decoder architecture,
using bidirectional recurrent neural networks working at character-level; this is similar to our proposed
approach, except for the encoder and other adjustments of the network.

Text normalization is also a very common step in the analysis of social media messages,
where the input text is prone to present problems of misspelling, abbreviation, incorrect grammar,
etc. For example, Arora and Kansal [10] proposed a system to perform sentiment analysis in Twitter
messages using Convolutional Neural Networks (CNN), with text normalization as a preprocessing
step. Their method is based on character-level embedding (instead of the most common word-level
embedding), with convolutional, max-pooling and fully connected layers, achieving a classification
accuracy above 98.1%. However, the normalization step is based on traditional techniques using
tokenization, dictionary word replacement, lemmarization and stemming.

The models proposed by Sproat and Jaitly [6] deserve special attention. They are based on
Deep Learning techniques and, at each time-step, they read a character and produce an entire word,
thus being character-based at the input, and word-based at the output. These models obtained a high
accuracy performance (one case achieving a 99.8% on the English test set). Unfortunately, they suffered
from the so-called silly, undetectable or unrecoverable errors. This means that these errors cannot be
detected only looking at the produced output. For example, this is the case when normalizing I’m 12
as I am thirteen, yet the error Im twenty could be detected in the subsequent process. Our hypothesis is

210

Appl. Sci. 2020, 10, 4551

that these errors could be due to the use of recurrent word-level models, and they could be avoided to
a large extent by a character-level approach. More recently, this model was improved in [11], by using
a covering grammar for the given language, with the purpose of avoiding those unrecoverable errors.
This grammar constrains the execution of the recurrent neural network, with the particularity that
these grammars can be learned automatically from the samples.

The present approach has been designed with two main goals in mind. The first one is offering a
solution for the text normalization problem that exclusively uses neural networks, taking advantage of
the benefits of data-driven solutions. The second goal is to introduce convolutional components in
the neural model, substituting its recurrent counterparts and, thus, speeding up the whole process.
Moreover, proving the usefulness of such convolutional architecture would help to push even further
the idea that CNNs can be used outside of a computer vision framework.

The main contributions of this work are as follows: (1) Proposal of a character-based approach
for the text normalization problem which does not suffer from undetectable or unrecoverable errors;
(2) introduction of a new general-purpose encoder based on causal convolutions, the Causal Feature
Extractor (CFE); and (3) a variation of the traditional attention mechanisms, in which a context matrix
is generated, instead of a context vector.

2. Materials and Methods

2.1. Text Normalization Dataset

As stated in Section 1, it can be challenging to obtain a valid database of normalized text.
Fortunately, a huge database was built and released to the whole Machine Learning community
by Sproat and Jaitly [6]. This dataset occupies a total of 9.1 Gb and contains about 40 million phrases
extracted from Wikipedia. It includes 1.1 billion words of English text. The expected output for the
input sentences was mostly obtained with a set of hand-built rules used by a finite-state grammar [12].

The database was prepared for their word-level model and, therefore, requires some preprocessing
before being suitable for a character-level approach. Particularly, each entry on the original database is
a pair of words (or special symbols) plus an additional column describing its semiotic class, as shown
in Figure 2. In order to use a character-level approach, each row needs to be composed of all the words
belonging to the same phrase, and information regarding each individual word (such as its semiotic
class) has to be disregarded.

"Semiotic Class","Input Token","Output Token"
"PLAIN","Rosemary,"<self>"
"PLAIN","is","<self>"
"PLAIN","a","<self>"
"PLAIN","plant","<self>"
"PUNCT",".","<sil>"
"<eos>","<eos>",""
"DATE","2006","two thousand six"
"LETTERS","IUCN","i u c n"

Figure 2. Sample text from the original dataset (https://github.com/rwsproat/text-normalization-data).

As shown in Figure 2, there are special symbols in the original dataset, namely: (1) <eos>,
denoting the end of the current sentence; (2) <sil>, marking a silence (comma, colon, and so on);
and (3) <self>, meaning that the output in that entry is the same as the input. Since these symbols
cannot be used in a character-level approach (due to the alignment problem), they were removed
in the following way: <eos> disappears once the sentence has been recomposed; whereas <sil> and
<self> are substituted by the corresponding input.

Other minor changes have been made on the original dataset to speed up the training process,
obtaining a new dataset as shown in Figure 3. The process consists of the following steps:

211

Appl. Sci. 2020, 10, 4551

1. Concatenation of the words belonging to the same phrase and removal of special symbols,
as mentioned before.

2. Phrases with non-permitted characters are discarded, keeping an alphabet of v = 127 characters,
including numbers, basic arithmetic symbols, currency, and the English alphabet.

3. Entries with an output longer than 177 characters are discarded as well, which corresponds to
removing only 0.01% of the sentences.

4. Entries are sorted in descending order with respect to their output length. This way, the padding
introduced in batches is minimized and, as described by Xu et al. [13], convergence speed is
increased without a significant loss in accuracy.

"Input Token","Output Token"
"Rosemary is a plant.","Rosemary is a plant."
"2006 IUCN.","two thousand six i u c n."
"We all lost.","We all lost."
"vol 6 no","volume six no"
"Rees et al.","Rees et al."

Figure 3. Sample entries from the preprocessed dataset.

2.2. Character-Level Encoding

Regarding the actual input and output used in the model, we use a one-hot encoding, i.e., a string
s = s1s2 . . . sl of size l ∈ N is transformed into a matrix X ∈Mv×l , where the i-th column xi ∈ X is set
to zero in all positions except the one corresponding to the index of the character si, according to the
model alphabet. Recall that v is the size of the alphabet (127 in our case).

The advantages and disadvantages of using a character-level model—as opposed to word-level
models—have been described by some authors, since it appears as a basic design decision in many
NLP problems. Four arguments in favor of character-level approaches are shown, three of them
introduced by Chung et al. [14], and the last one given by Lee et al. [15]:

• Out-of-vocabulary issues do not appear, as it could happen in word-level models. We could suffer
from out-of-alphabet issues, but these can be easily solved.

• Such approaches are able to model rare morphological variants of a word.
• Input segmentation is no longer required.
• By not segmenting into words, the models have to discover the internal rules and structure of the

sentences by themselves.

Since text segmentation is known to be problematic and error-prone, even for well-known
languages such as English, removing this step without losing performance is a significant advantage
to consider. Moreover, we can provide an additional argument for character-level approaches: If the
model uses attention mechanisms, observing the attention matrices after a particular sample gives
a better understanding of the system’s logic and the language itself. For example, consider the case
where the model transforms 2s into two seconds; its attention matrix could potentially show that the
last letter was produced by looking at the number.

2.3. Encoder–Decoder Architecture

The encoder–decoder architecture is a common and popular design in recent Neural Machine
Translation literature [16]. The model is composed of two parts: (1) An encoder that takes the input X
(in this case, a phrase), and produces an intermediate representation Z (or code) that highlights its
main features; and (2) a decoder that processes that set of features and produces the required output
Y (in this case, a normalized phrase). Z is a matrix of size Z ∈M f×l , where f represents the selected
number of features to encode for each input value. Figure 4 shows a basic diagram of this model.

212

Appl. Sci. 2020, 10, 4551

z1 z2 z3 z4ZCode

x1 x2 x3 x4XInput

y1 y2 y3

y0
<sos>

y4
<eos>

YOutput

Figure 4. A basic encoder–decoder architecture. Blue: Encoder. Red: Decoder. Given an input sequence,
X = x1x2 . . . , the system produces an output sequence, Y = y1y2 . . . The intermediate code is Z = z1z2 . . .
There are two special symbols: <sos> start of sequence; <eos> end of sequence.

This is a simplified representation of the encoder–decoder architecture, involving that the size of
the input, the intermediate representation and the output is the same. This can be the case, for example,
of many image processing tasks. Nevertheless, in many NLP problems, they can have different sizes.
In our case, the intermediate code always has the same length, l, as the input, but the length of the
output can be different. The end of the output is determined by the production of an <eos> symbol.
Thus, a more precise diagram of the model is presented in Figure 5.

There is a trend in using Long Short-Term Memory (LSTM) neural networks as encoders and
decoders (for example, Sutskever et al. [17]) due to their ability to capture long dependencies among
the elements of a sequence. Our proposed model uses an LSTM network as decoder. However,
different encoders have been analyzed, including the proposed one, and their performances have been
tested and compared.

Besides, some additional techniques that are common in the deep learning field were applied
to improve the effectiveness of the system, such as batch processing (processing the input in batches
of a certain size), dropout [18,19] (randomly removing some neurons with a given probability),
weight normalization [20] (regularizing the weights of the neuronal layers), gradient clipping [21]
(limiting the norm of the gradient), and decaying learning rate combined with the Adam optimizer [22]
(progressively reducing the learning rate used in the backpropagation algorithm).

Attention Mechanisms

The basic encoder–decoder model is a very powerful and useful architecture, but some key
issues arise when it is put into practice. Two of them stand out and are worth mentioning: (1) As
shown in Figure 4, at each time step, the decoder only works with the code produced at that moment,
hindering the usage of long-term dependencies; and (2) output and input need to have the same length,
as previously mentioned, limiting its application to many practical problems.

We overcome these two restrictions by making use of attention mechanisms [23]. The idea behind
them, depicted in Figure 5, is simple: First, produce the codes of the whole input sequence at once
and, at each time step, let the decoder choose the most interesting elements of the input based on the
latest output.

213

Appl. Sci. 2020, 10, 4551

Encoder

XInput

ZCode

Attention

Decoder

hi

ci

yi Y Output

Figure 5. An encoder–decoder architecture with attention mechanism. X: Input sequence.
Z: intermediate code. Y: Output sequence. yi: Output at instant i. ci: Context coefficients at instant i.
hi: hidden states of the decoder at instant i.

This can be expressed in mathematical terms as follows. Suppose that Z = z1z2 . . . zl is the
obtained intermediate representation. The attention mechanism consists of a fully connected neural
network with one hidden layer, taking as input Z and the vector ht of the hidden state of the LSTM
decoder at each time step t. This network produces a vector of interesting features a ∈M f×1. This vector
a describes the characteristics that are expected to be obtained, so it is compared with each column of
Z, zi, using the dot product as a function of similarity. So, a vector α ∈M1×l is generated in this way:

α = α1α2 . . . αl = (a · z1, a · z2 . . . a · zl) (1)

Then, this vector α is transformed into a stochastic vector, i.e., a vector such that ∑ αi = 1, via:

α′i =
exp αi

∑j exp αj
(2)

Now, α′i represents the interest of the decoder with respect to the i-th element of the code, zi, at the
given time step. With this information, a context vector is produced, that is, a vector representing
the portion of the input that is actually interesting for the decoder at this instant. Traditionally,
this context vector is given by a weighted sum of the elements of zi, weighted by α′, i.e., c = ∑i α′izi.
Another possibility is to select only the code zi corresponding to the highest α′i. However, we propose a
different approach which consists in selecting several codes with the highest α′i values. Thus, instead of
performing a weighted sum or taking the maximum, a new hyperparameter d is introduced to indicate
the number of context elements that are considered. In this way, a context matrix c ∈M f×d is generated
at each time step t, where the i-th column, ci, corresponds to the vector α′jzj, where α′j is the i-th largest
value of α′. That is, c1 corresponds to the largest value of α′, c2 to the second largest value, etc.
Subsequently, the decoder receives this context matrix, c, instead of just a context vector.

The idea inspiring this modification is that taking the average of the feature vectors involves a
significant loss of information. Instead, by using the d greatest elements, the internal semantic of them
is preserved.

2.4. Proposed Causal Feature Encoder

In this paper we propose a new type of encoder, the Causal Feature Extractor (CFE), that can be
described as a two-step modification of a traditional CNN. The first change is that, instead of using regular
convolutions, causal convolutions are applied; this concept was introduced by van den Oord et al. [5].
Figure 6a,b show a basic representation comparing a regular and causal neural network, respectively.

214

Appl. Sci. 2020, 10, 4551

l1

l2

l3

l4

t

(a) A regular CNN

l1

l2

l3

l4

t

(b) A causal CNN

Figure 6. Comparison between a regular and a causal convolutional neural network, with dilatation
coefficient 2. (a) Sample regular convolutional neural networks (CNN). (b) Sample of the proposed
causal CNN. t: Temporal order of the input sequence. l1: First layer (input sequence). l2, l3, l4:
Subsequent convolutional layers.

In a regular one-dimensional convolution, the output for a position t depends on the input values
at . . . t− 2, t− 1, t, t + 1, t + 2 . . . Conversely, in a causal convolution, the output depends only on the
inputs previous or posterior to that position, but never both. In other words, the causal convolution
for t can use the values t, t + 1, t + 2 . . . or t, t− 1, t− 2 . . . This idea can be easily extended to images
or, in general, to n-dimensional data.

However, a convolution defined in such way only captures dependencies in one direction. To solve
this important drawback, we propose a second change. To make the CFE bidirectional, in a similar
fashion as it is done with LSTMs. Thereby, it contains two independent models that read the input in
each direction, and their outputs are concatenated to produce the encoded representation. We depict
this idea in Figure 7.

X

l × v

Causal CNN

Causal CNN

f
2

Z

f
2

l × f

Figure 7. Diagram showing the bidirectionality of the proposed Causal Feature Extractor (CFE)
encoder. The intermediate output of the encoder, Z, is the concatenation of two causal convolutions
in the opposite directions (blue and red), each of them generating f /2 features. X: Input sequence.
l: Length of the input sequence. v: Size of the alphabet in the one-hot encoding. f : Total number of
intermediate features.

An additional technique is applied in the proposed encoder. Considering the long sequences that
can be found in text normalization (in our datasets, up to 177 characters), we apply dilated convolutions
to the convolutional models, as described by van den Oord et al. [5]. This technique consists in doubling

215

Appl. Sci. 2020, 10, 4551

the dilatation of each convolutional layer as it goes deeper into the structure, as depicted in Figure 6.
So, in the first layer, the convolution for t depends on the input at t, t− 1, t− 2 . . . ; in the second layer,
it depends on the previous layer at t, t − 2, t − 4 . . . ; in the third layer, t, t − 4, t − 8 . . . , and so on.
Moreover, the same for the opposite causal direction. By doing that, the actual receptive field of the
model (i.e., the initial positions that contribute to the final result) is significantly increased without
increasing the number of parameters of the network.

This new encoder has been designed to solve a problem that many applications of CNNs have
with attention mechanisms. In previous experiments, it has been observed that CNNs tend to attend
the wrong inputs according to our prior intuition. Namely, they choose the i + C-th element instead of
the i-th element of the input, where C is a certain constant. Our intuition is that this could be caused
by the padding introduced in each side of the input. By using causal convolutions, the model is forced
to choose the outermost elements if it is interested in those.

2.5. Statistical Significance Test

When comparing the performance of various models, a critical aspect is to ensure that the obtained
differences are statistically significant. It must be proved that those differences are significant, and not
a mere product of the implicit variance of the training process. This is typically performed using some
statistical test that asserts that the differences are actual differences up to some confidence level of
probability, usually 95%.

In this paper, we have applied the approximate randomization test [24], also known as random
permutation test. This statistical test measures the probability of the outputs of two different models
of being indistinguishable, i.e., the probability that, by just looking at the predictions, we cannot
tell whether they come from different models. The main reasons for using this method are: (1) It is
computationally efficient; (2) it is distribution-free, meaning that it does not make any assumptions on
the measured distribution; and (3) it is model-free, that is, the only required resources to perform the
test are the actual predictions, making it suitable for any type of model.

Let us assume that the predictions of two different models are the ordered sets A = {ai}n
i=1 and

B = {bi}n
i=1, and we have a function e that measures the similarity of the predictions with respect to

the expected values, Y; for example, in our case e is the accuracy measure, defined as the percentage of
correctly predicted characters with respect to the length of the output. Then, we can define the function:

t(A, B) = e(A, Y)− e(B, Y) (3)

We want to estimate the probability of obtaining an error bigger than t(A, B), assuming that both
sets of predictions are indistinguishable, that is P(X ≥ t(A, B)H0), where H0 is the null hypothesis
(i.e., both models are not significantly different).

The algorithm to approximate this value consists in repeating many times the following process:
Randomly swap each element of the first set with its counterpart in the second set; and count the
number of times that the total error difference, measured by t, is greater or equal than the original one,
that is, t(A, B). Figure 8 shows the pseudocode of this algorithm. A small p-value, e.g., below 0.05,
0.02 or 0.01, indicates that the null hypothesis has to be rejected, so the models are significantly different.

In this test, the estimation of the p-value has an error itself, which is given by
√

p(1− p)/R,
where p is the obtained p-value, and R is the number of iterations. If this error is too large, the p-value
is unreliable; hence, the number of repetitions has to be computed to reduce the error [25]. In order to
force the upper bound of the confidence interval of the estimated p being below the decision threshold,
we need to find an R such that l2α(1− α)/P2 ≤ R, where l is the confidence interval. Using P at
α = 0.05 and requesting a 95% confidence interval, we get R ≥ 7600. Consequently, that is the number
of repetitions used in the tests.

216

Appl. Sci. 2020, 10, 4551

Figure 8. Pseudocode of the approximate randomization test. R is the number of repetitions selected.
Adapted from [24].

3. Experimental Results

In the following subsections we describe the results obtained in this research, comparing the
proposed encoder and other alternative methods. The last subsection is dedicated to the discussion of
these results.

3.1. Experimental Setup

Three different experiments have been performed using different subsets of the filtered database,
in order to analyze different aspects of the proposed model. The first two datasets are used to test
and compare different models, whereas the latter is used to train the final model. Table 1 shows their
name, training time, number of training/test/validation samples, and how the samples were selected;
random means that they were randomly taken, and shortest that the elements with shortest outputs
were selected. In all the cases, the validation and test size is 1/5 of the training size, and all the sets
are disjointed.

Table 1. Description of the datasets used in the experiments. Name: Dataset identifier. Duration: Time
used for training the models. Training size: Number of samples used for training. Test/validation size:
Number of samples used for test and for validation. Selection: Sample selection criteria.

Name Duration Training Size Test/Validation Size Selection

E1 1 h 50,000 10,000 shortest
E2 12 h 50,000 10,000 random
E3 22 h 1,000,000 200,000 random

Training time is a key parameter in most deep learning systems, since it can determine the
practical feasibility of a given method. Thus, accuracy is closely related with computational efficiency.
For this reason, the comparison in the datasets is done by setting the duration of the training process,
rather than fixing the number of training iterations or until reaching convergence.

For the execution of the experiments, all the computations were done in a remote server via
secure shell and distributed between three NVIDIA GeForce GTX1080 GPUs (each experiment using a
single GPU), in a computer with an i7-5930K Intel(R) CPU, 12 effective threads (6 with hyperthreading),
and 600GB hard disk drive. Regarding the software, the code was mainly written in Python v.3.6,
making use of the Pytorch v0.4 framework to build the neural models [26], as well as OpenNMT [27].
The latest is a neural machine translation toolkit used to speed up the process of solving and testing
different problem solutions.

217

Appl. Sci. 2020, 10, 4551

3.2. Proposed Methods and Number of Parameters

As stated before, the presented encoder–decoder architecture for text normalization was
implemented in Python, using Pytorch and OpenNMT. In order to analyze whether the proposed
CFE achieves a significant improvement, different existing encoders were taken into account.
These alternative encoders (and their aliases) are the following:

LSTM A 3 layer bidirectional LSTM network.
FCNN A 4 layer fully CNN encoder, where the i-th element is an embedding of the i-th input,

i.e., the encoded value only depends on the i-th input value.
FE A traditional CNN with dilated convolutions. This is similar to the proposed CFE,

but without considering causality.
CFE The proposed Causal Feature Extractor encoder.

In all these cases, the only modification on the architecture resides in the the encoder. The decoder
and attention mechanism remain always the same, that is, as they were described in the previous
section. The hyperparameters of the models were manually tuned by trial and error, trying to obtain
the best results. After that, the results presented here are averaged over five repetitions of the same
models trained with different random seeds. Table 2 presents the selected hyperparameters.

Table 2. Hyperparameters of the models used in the experiments.

Symbol Description Value

b Batch size 128
f Number of features produced by the encoder 256
s Size of the internal hidden vectors of LSTM 128
d Number of columns of the context matrix 10

ml Number of neurons of the intermediate dense networks 256
w Width of the convolutional filters 5
r f Receptive field to be considered in the input 10
lr Initial learning rate of Adam algorithm 0.001
β Multiplier used in the decay of the learning rate 0.85

step Number of iterations before applying the decay 400
pd Probability of disabling a neuron in the dropout 0.5
pt Probability of substituting a weight by expected value 0.4

clip Upper limit of the norm of the gradient in the clipping 5

The number of parameters of the four models used in the experiments are shown in Table 3.
These values correspond to the number of trainable parameters, i.e., the weights of the neural networks
of each model, considering the encoder and the whole model. In general, the more parameters,
the greater the complexity of the model is (and the greater the memory and time requirements are).
So, for a similar performance, simpler models are usually preferred.

Table 3. Number of internal parameters of the models compared (in millions), considering only the
encoder and the entire model (encoder + attention mechanism + decoder).

Number of Parameters of LSTM FCNN FE CFE

Encoder (millions) 1.102 0.285 0.111 0.111
Total (millions) 7.380 6.653 6.479 6.479

It can be observed that LSTM requires nearly 10 times more parameters than FE and CFE,
while FCNN requires 2.5 times more parameters. This translates into a lower efficiency and speed
of convergence of these models. In any case, the rest of the system (attention and decoder) has a
considerably larger number of parameters, with about 6.3 million values that have to be trained.
To initialize these parameters, the uniform method of Xavier [28] was used.

218

Appl. Sci. 2020, 10, 4551

3.3. First Experiment

The purpose of this first experiment is to compare the accuracy achieved by the different methods
in a reduced setup using the shortest entries containing: 50,000 training samples, 10,000 test samples,
and 10,000 validation samples, as presented in Table 1. These values have been chosen so that the
number of samples is large enough to train an accurate normalization model, but also small enough
to require a reasonable training time that allows multiple repetitions. Specifically, training is limited
to only 1 h in all cases. The obtained results are shown in Table 4. Observe that these results are
averaged over 5 runs and extracted from the test set, except from the results concerning the training
speed, which are taken from the training logs. From left to right, the columns of Table 4 indicate the
following parameters:

• Negative Log-Likelihood Loss (NLLLoss). It is the measure optimized by the neural networks
during training, since it is the common measure used in classification problems.

• Character Error Rate (CER). It is defined as the mean Levenshtein distance [29] between
the prediction and the expected value, that is, the minimum number of character
insertions/deletions/substitutions required to change one sentence into the other, for all the test
samples.

• Accuracy. It is a basic and well-known measure, defined as the percentage of correct output
values, measured at a character level.

• Number of iterations performed during the training phase in the duration of the experiment
(in this case 1 h).

• Rate. Number of iterations per second, on average, achieved during training.

Table 4. Results obtained by the four models for the first experiment (E1). Encoder: Name of the
encoder used. NLLLoss: Negative log-likelihood loss. CER: Character error rate. Acc (%): Accuracy.
No. iters: Number of iterations. Rate: Iterations per second.

Test Validation

Encoder NLLLoss CER (%) Acc (%) No. Iters Rate

LSTM 1.352 3.13 95.87 3620 1.005
FCNN 5.035 70.61 28.40 4370 1.214

FE 1.042 2.52 96.46 6980 1.939
CFE 0.952 2.24 96.83 6300 1.750

In order to get an in-depth view of the differences in the training process, Figure 9 shows the
evolution of the NLLLoss of the validation samples for each model during training. Table 5 shows the
resulting p-values after running the approximate randomization test for each pair of models.

In this first experiment, CFE is clearly able to achieve the best results in terms of accuracy, CER and
NLLLoss of the test set. It is interesting to observe that, although LSTM, FE and CFE tend to converge
to the same NLLLoss values on the validation set, as shown in Figure 9, the differences are more
prominent on the test set. Thus, the proposed method has a greater capacity for generalization on
previously unobserved samples. Moreover, the statistical tests in Table 5 prove that these differences
are significant. The probability that the results from FE and CFE are equivalent is below 2%. FCNN was
unable to provide correct results, producing a very large character error rate. Concerning the
computational efficiency, FE was able to execute almost 2 iterations per second. CFE is a 10% slower,
but it is faster than the remaining methods.

219

Appl. Sci. 2020, 10, 4551

Figure 9. Evolution of the validation error (NLLLoss) during training of the four models on E1.

Table 5. p-Values of the first experiment (E1), indicating the probability of the null hypothesis, i.e.,
the probability that the results of the models are not distinguishable.

p-Value LSTM FCNN FE CFE

LSTM 0.0001 0.0001 0.0026
FCNN 0.0001 0.0001 0.0001

FE 0.0001 0.0001 0.0184
CFE 0.0026 0.0001 0.0184

3.4. Second Experiment

The objective of the second experiment is to compare the four encoders in a more complex
scenario, where the samples were selected with more varied sizes. The number of samples of the
training, test and validation datasets is the same as in the first experiment, but the samples are
randomly selected from the whole dataset, with sizes varying at random between 1 and 177 characters
(the maximum allowed length of the output, as justified in Section 2.1).

As before, Table 6 presents the accuracy measures obtained by the four encoders for the second
experiment. Figure 10 and Table 7 show the evolution of the validation error and the results of the
statistical tests, respectively.

Table 6. Results obtained by the four models for the second experiment (E2). Encoder: Name of the
encoder used. NLLLoss: Negative log-likelihood loss. CER: Character error rate. Acc (%): Accuracy.
No. iters: Number of iterations. Rate: Iterations per second.

Test Validation

Encoder NLLLoss CER (%) Acc (%) No. Iters Rate

LSTM 3.310 25.59 71.06 8900 0.206
FCNN 5.396 82.09 17.90 17 750 0.411

FE 2.680 11.93 83.38 36 650 0.848
CFE 2.686 12.69 83.45 36 200 0.838

220

Appl. Sci. 2020, 10, 4551

Figure 10. Evolution of the validation error (NLLLoss) during training of the four models on E2.

Table 7. p-Values of the second experiment (E2), indicating the probability of the null hypothesis, i.e.,
the results of the models are not distinguishable.

p-Value LSTM FCNN FE CFE

LSTM 0.0001 0.0001 0.0001
FCNN 0.0001 0.0001 0.0001

FE 0.0001 0.0001 0.0003
CFE 0.0001 0.0001 0.0003

Again, FE and CFE are the two best encoders, being able to achieve an accuracy above 83.3%,
while LSTM only obtains a 71%. Moreover, FCNN is unable to function properly, with a poor 17.9%.
In fact, all the performance measures of FE and CFE are very close, and so are their computational
efficiencies. However, the statistical test, which is performed on the accuracy parameter, proves that
CFE is significantly better than FE; the probability that they are indistinguishable is only 0.03%.
Overall, the obtained results indicate that this experiment is far more complex than E1, which had a
best accuracy of 96.8%. Moreover, the training time in E2 is 12 h, while it was only 1 h for E1. Figure 10
suggests that LSTM would need even more time to reach convergence; it not only performs fewer
iterations per second, but it requires more iterations to converge.

3.5. Third Experiment

Unlike the other experiments, the purpose of dataset E3 is not to compare the different encoders,
but to train the final architecture of the proposed CFE method with a more complete and complex input,
in order to compare the obtained results with other state-of-the-art works reported in the literature.
Therefore, the training set contains 1 million samples, and the test and validation sets have 200,000
samples each.

The architecture is identical to the one used in the previous experiments, with the hyperparameters
presented in Table 2, and five repetitions. Figure 11 depicts the evolution of the training and validation
errors during the training phase, and Table 8 shows the accuracy measures obtained for the test set.

221

Appl. Sci. 2020, 10, 4551

Figure 11. Evolution of the training (red) and validation (blue) errors (NLLLoss) for the proposed
CFE encoder using dataset E3. In this case, the horizontal scale represents the number of iterations.
The training time was 22 h.

Table 8. Results obtained by the proposed CFE encoder for the third experiment (E3). Encoder: Name of
the encoder used. NLLLoss: Negative log-likelihood loss. CER: Character error rate. Acc (%): Accuracy.

Test

Encoder NLLLoss CER (%) Acc (%)

CFE 1.701 5.44 92.74

The accuracy measures achieved for E3 are between those obtained for E1 and E2, with a mean
accuracy of 92.74% and a CER of 5.44. This indicates that although the test cases are more complex and
varied than E2, having a larger training set is beneficial for the system. On the other hand, Figure 11
seems to indicate that convergence was reached long before the 22 h duration of the experiment.

3.6. Attention Matrices

In order to analyze whether the CFE encoder makes a better usage of the attention mechanisms
than its non-causal counterpart, it is interesting to observe some actual examples and the attention
matrices that they generate. These matrices are a representation of the decoder focus of interest while
it was processing the input: The i-th row represents the i-th predicted character, and the j-th column is
the model focus while predicting that character, i.e., the values of α′i (see Equation (2)).

The first case, shown in Table 9, is an example extracted from the test set of the first experiment,
E1. The input phrase is “23 Aug 2013”. Regarding what would be ideally expected from the attention
matrix, it should show three different phases: (1) First, it outputs the day while focusing on its digits;
(2) then, the attention is moved towards the month; and (3) it finishes by looking at the year. Figure 12
shows the four attention matrices obtained.

Table 9. Predictions obtained by the four different models for a selected sample case in the experiment
E1. The output produced by FCNN is incorrect since it falls in an infinite loop.

Input 23 Aug 2013.

Output the twenty third of august twenty thirteen .

LSTM 3 the twenty third of august twenty thirteen .
FCNN 7 the twent t t eeeeeeeeeeeeeeeeeeeeee. . .
FE 3 the twenty third of august twenty thirteen .
CFE 3 the twenty third of august twenty thirteen .

222

Appl. Sci. 2020, 10, 4551

(a) LSTM (b) FCNN

(c) FE (d) CFE

Figure 12. Attention matrices obtained by the four models for the sample selected from E1, shown in
Table 9. The input sentence (horizontal axis) is “23 Aug 2013”. The values represented are the attention
coefficients, α′i (see Equation (2)); a darker color represents a larger value.

The matrix obtained by CFE (Figure 12d) is the one that most closely resembles what one would
expect from a useful attention mechanism. It clearly presents the three phases of this prediction,
in which the system selects the day, the month and the year. FE and LSTM also follow this scheme,
although not so clearly defined.

The second prediction selected to exemplify the use of the attention mechanism is taken from the
test set of the second experiment, E2. It corresponds to the input sentence “Belpiela is a community in
Tamale Metropolitan District in the Northern Region of Ghana.” This sample has been specifically selected
because it is a longer case where the input and output are identical; thus, the ideally expected attention
matrices should resemble an identity matrix. Table 10 shows the predictions obtained by the four
models, whereas Figure 13 depicts the corresponding attention matrices.

Table 10. Predictions obtained by the four different models for a selected sample case in the experiment
E2. Only the output obtained by CFE is correct.

Input Belpiela is a community in Tamale Metropolitan District in the
Northern Region of Ghana.

Output Belpiela is a community in Tamale Metropolitan District in the
Northern Region of Ghana.

LSTM 7 Belpiela is a community in Tamale Metropolitan Disire
egion te i e . . .

FCNN 7 Th . . .
FE 7 Belpiela is a community in Tamale Metropolitan District in the

Northern Region Region of Ghana .
CFE 3 Belpiela is a community in Tamale Metropolitan District in the

Northern Region of Ghana .

223

Appl. Sci. 2020, 10, 4551

(a) LSTM (b) FCNN

(c) FE (d) CFE

Figure 13. Attention matrices obtained by the four models for the sample selected from E2, shown in
Table 10. The input sentence (horizontal axis) is “Belpiela is a community in Tamale Metropolitan District in
the Northern Region of Ghana.” The values represented are the attention coefficients, α′i (see Equation (2));
a darker color represents a larger value.

Again, CFE is the only model that is able to produce a valid attention matrix, clearly resembling
an identity. For this reason, it is the only method that was able to predict the correct output in this case.
FE has a similar shape, but it produces some gaps which lead to a repetition of the word “Region” in
the output.

3.7. Analysis of the Types of Errors

After analyzing the errors made by the proposed CFE method, we have observed that most of
these errors can be classified into a reduced set of types. To get a better understanding of these types, all
the incorrect predictions of CFE for the test set of the third experiment, E3, were dumped and classified
by hand. Based on these observations, the taxonomy of error types has been defined as follows:

• T1. Infinite loop errors. The attention system of the model gets stuck and the maximum number
of printed characters is reached. For example:

Input Ruppert, Edward E.; Fox, Richard, S.; Barnes, Robert D. (2004).
Output Ruppert, Edward e; Fox, Richard, s; Barnes, Robert d (two thousand four).

Prediction Ruppert, Edward e; Fox, Richard, s R s , , , , , , , , , , , , , , , , , , , . . .

• T2. Coincidental errors. Predictions where only a few isolated characters are wrongly printed.
For example:

Input The income was $11,091.
Output The income was eleven thousand ninety one dollars.

Prediction The income was fleven thousand ninety one dollars.

• T3. Early stop errors. Errors where the model finishes before processing the whole input.
For example:

224

Appl. Sci. 2020, 10, 4551

Input Parmentier, Bruno (1 May 2000).
Output Parmentier, Bruno (the first of may two thousand).

Prediction Parmentier, Bruno (.

• T4. (Finite) jumps. The attention model finds the same pattern in the entry and repeats/oversees
a part of it. For example:

Input According to the 2011 census of India, Bhisenagar has 818 households.
Output According to the twenty eleven census of India, Bhisenagar has eight hundred

eighteen households.
Prediction According to the twenty eleven census of India, Bhisenagar has eighteen households.

An automatic classification tool has been implemented in order to (approximately) quantify the
errors according to their type. The results are shown in Table 11 where Others refers to the errors
unclassified by the tool. Note that errors produced by jumps are not detected by the tool, since they
can have different forms, but they represent a big portion of the unclassified errors.

Table 11. Distribution of the main types of errors made by the proposed CFE encoder for the test set of
experiment E3.

Type T1 T2 T3 Others Total

Quantity 23,381 7159 50 10,696 41,286
Percentage (%) 56.63 17.34 0.12 25.9 100

As shown, more than half of the errors are produced by infinite loops. These are caused by a
malfunction of the attention mechanism, that returns to a previously treated character. The same
reason could be inferred for the errors of type T3, but these represent only a 0.12%. On the other hand,
the errors of type T2 are most probably due to deficiencies in the decoder. Moreover, the category
Others can be due to any component of the system.

Besides these types of errors, it is worth-mentioning that some observed errors were caused by the
dataset itself, which contains some examples whose expected output is debatable (or simply incorrect).
This was also observed by Sproat and Jaitly in [6], who estimated this error in a 0.1% of the total
(although it was done in a manual analysis of only 1000 samples). These come from different sources,
for example, from inconsistent rules for normalizing text among different entries, such as spelling or
not spelling an acronym:

Input Uppsala: Sprak och folkminnesinstitutet (SOFI).
Output Uppsala: Sprak och folkminnesinstitutet (SOFI).

Prediction Uppsala: Sprak och folkminnesinstitutet (S o f i).

Input Chloroformic acid has the formula ClCO 2 H.
Output Chloroformic acid has the formula c l c o two H.

Prediction Chloroformic acid has the formula ClCO two H.

Or providing a few entries for rare cases that resemble too much to other more common cases:

Input 1980 A engine added to Transporter (T 3).
Output one nine eight o A engine added to Transporter (T three).

Prediction nineteen eighty A engine added to Transporter (T three).

Or inconsistencies in the entries (e.g., American vs British English):

Input The mobilisation was announced by the mayor.
Output The mobilization was announced by the mayor.

225

Appl. Sci. 2020, 10, 4551

Prediction The mobilisation was announced by the mayor.

Input The Robinsons are a family in the soap opera Neighbours.
Output The Robinsons are a family in the soap opera neighbors.

Prediction The Robinsons are a family in the soapera Neighbors.

The proposed model also shows special difficulties deciding whether it should maintain capital
letters on the predictions or not. This last sample also contains an example of overseeing parts of the
input, probably because of the similarities between the words soap and opera. Another example of such
jumps, in this case going backward in the input and thus repeating words, is the following:

Input The primary east west highway passing through Belmont is interstate 85.
Output The primary east west highway passing through Belmont is interstate eighty five.

Prediction The primary east west west west highway passing through Belmont is interstate eighty five.

Which happened because the model confounds the suffix of west with the one of east as it can
be seen on Figure 14. Attention matrices can be displayed for all these errors, shedding light on the
underlying attention-related issues, except for the coincidental errors.

Figure 14. Attention matrix for a backwards finite jump error. The input sentence (horizontal axis)
is “The primary east west highway passing through Belmont is interstate 85.” and the predicted output
(vertical axis) is “The primary east west west west highway passing through Belmont is interstate eighty five.”

Finally, is it worth-noting the role of undetectable errors, since they were observed in previous
works in the literature [6]. This type of error also appeared in the analyzed cases, as in the example
shown for error type T4. However, in all the cases, they are a realization of another type of error
that happens to be undetectable by chance, so the source of the error can be explained and solved.
For example, the aforementioned error occurs as an occurrence of a jump error where the model
confounds the first 8 with the third one of 818 when processing the input.

4. Discussion

This section discusses the results presented in Section 3. More specifically, the main questions
raised in Section 1 can be formulated as follows:

1. Can the problem of text normalization be solved solely by means of neural networks?
2. Is such a solution viable using convolutional components? Which encoder is better?

Answering the first question, the most obvious result that we can extract based on any of the
results from E1 and E2 (for example, Figure 10), is that the FCNN encoder does not work at all.
Most probably, this erratic behavior comes from the differentiating feature of FCNN, that is, it extracts
information from a single character of the input (instead of a neighborhood of it). This is a clear proof

226

Appl. Sci. 2020, 10, 4551

of an expected result: In order to work properly, the decoder cannot act on its own; extracting high
level features from the surrounding characters is essential. So, the FCNN model should be discarded.

By looking at the second experiment, we can observe a significant difference between LSTM
and its convolutional counterparts. Specifically, Table 6 shows that the accuracy of the convolutional
encoders is about 12% higher than the LSTM encoder. Nevertheless, it could be the case that LSTM
only needs more time to reach convergence. This leads us to the major differences between them:
Number of parameters, convergence time, and iteration time. Three points strengthen this argument:

• Table 3 shows that the number of parameters of the LSTM encoder is ten times bigger than those
of the convolutional encoders, making it harder to train and more expensive to use.

• Figures 9 and 10 indicate that the LSTM encoder started to converge in E2 after 2 h 45 min of
training, whereas the convolutional encoders were close to their minimum at 1 h 23 min.

• Regarding the iteration speed, Tables 4 and 6 show that, besides being more accurate, the convolutional
encoders operate around 2 and 4 times faster than the LSTM encoder, respectively.

This phenomenon can be explained by three reasons: (1) The aforementioned difference in
the number of parameters; (2) the existence of recursive connections in LSTM, making it harder to
optimize; and (3) the fact that convolutional networks run very fast on GPUs. Hence, this ensures
that convolution-based encoders are viable, significantly faster, and statistically distinguishable from
recurrent encoders (as proved by the tests in Table 7).

This solves the first part of question 2, whereas the second part concerns the selection of the best
convolutional encoder. As show in Table 6, both encoders are quantitatively very similar, even though
CFE obtains slightly better results and is distinguishable from FE. Qualitatively, CFE presents some
advantages over FE regarding the attention mechanism:

• The first comparative of the attention matrices, Figure 12, shows that the three encoders behave
in a similar fashion. However, CFE seems cleaner and more localized, since it knows better where
to focus, distinguishing the three phases of this sample: Day, month, and year.

• The second comparative graphic, Figure 13, is even clearer. LSTM did not converge yet, so its
prediction is far from the expected result. Regarding the convolutional encoders, CFE gets the
example right, its attention matrix seems clean, and it resembles an identity matrix; whereas FE
struggles to maintain the focus (many non-diagonal elements have taken attention) and makes
erratic leaps (which results in missing words in the prediction, see Table 10).

Thus, it can be concluded that, in this case, CFE is preferable to FE due to its qualitative benefits
and, to a lesser extent, its quantitative results. Regarding the undetectable errors reported in Sproat
and Jaitly [6], it can be firmly confirmed that they are not an issue in these models as they appear
by chance due to solvable errors. Specifically, these errors are highly related with the attention
mechanism, as Table 11 shows, since the most common error is getting stuck in an infinite loop.
These problems cause the model to lose focus and jump around when confounding similar parts of the
input. Therefore, this could be greatly improved by using more sophisticated attention models that,
for example, focus on local neighborhoods, take into account the index, or force the model to put more
focus in the next character of the input.

Finally, we discuss the results obtained on the third experiment. Figure 11 shows that, during training,
the model quickly converged. There is a gap between training and generalization error that the model has
not been able to solve. However, the results obtained on the test set are very promising: It achieved 92.74%
accuracy and 5.44% CER, against the 99.8% accuracy and 13.43% CER obtained by the models of Sproat
and Jaitly [6] and Ikeda et al. [9], respectively. However, this comparison with previous works has to be
carefully taken, since there are differences that do not allow a direct comparison. For example, in the case
of [6], the dataset contains about 40 million sentences. This is translated into training times between 5 and
10 days using a system with eight GPUs. Compared to that, our method used 1 million sentences from the
same dataset, and the training time was 22 h with 1 GPU. The difference is also in the underlying model of

227

Appl. Sci. 2020, 10, 4551

the encoder, which is a 4-layer bidirectional LSTM in [6] and the convolutional CFE encoder in our case,
both working at character level. Lastly, in order to achieve the best accuracy of 99.8%, an additional finite
state filter is applied to guide the decoding, while our method is exclusively based on neural networks.

Considering the second work, by Ikeda et al. [9], it must be noted that it is specific for Japanese
text normalization. The system is also based on an encoder–decoder architecture, using bidirectional
recurrent neural networks in the encoder, working at character-level. Nevertheless, the corpus is
quite different, containing a set of over 200,000 synthesized sentences using 3500 Kanji characters;
the training time was not reported.

Consequently, we consider that the results obtained by the proposed CFE are promising, and point
out a viable direction to solve the problem of text normalization in a data-driven fashion. It is
computationally less expensive than LSTMs, and the analysis of the errors has shown that it not prone
to produce undetectable or unrecoverable errors, thus answering question 1.

5. Conclusions

In this paper, a new encoder–decoder architecture with attention mechanisms has been proposed
for the problem of text normalization, using a character-level approach and introducing a new type
of encoder. This encoder, called Causal Feature Extractor, is a novel technique designed to work
properly in cooperation with the attention mechanisms. The experiments have empirically proven
that this method is able to achieve very positive results, using the attention matrices more like it
would be expected. Besides, it is able to work at least as good as the best of the compared encoders,
and it brings all the benefits of using convolutional neural networks (e.g., computational efficiency
and fast convergence). The last aspect that distinguishes this encoder from the traditional recurrent
encoders is its simplicity to be adapted to other input layouts (for example, sound, images or video).
Another contribution is the introduction of a new variation of the attention mechanisms, by using a
context matrix instead of a vector.

Regarding previous works, the initial results have shown to be close to the state of the art,
with much room for future improvements. Despite getting worse accuracy than the method presented
in [6] (92.74% vs. 99.8%), it does not critically suffer from unrecoverable errors, nor it seems to
concentrate its errors on any particular semiotic class, since most errors are attention-based; besides,
the proposed method is less computationally expensive and does not include additional rule-based
filters.

From a general point of view, an interesting result that can be extracted is the empirical proof
that empowers the role of encoders in the encoder–decoder architectures. It has been shown that
the system does not work correctly if it only takes features of single elements (without considering
their neighborhood).

Future research lines could focus on some aspects such as applying the proposed CFE encoder as
a general-purpose encoder in different tasks of natural language processing. In particular, applications
to audio and images are already being studied. It is also interesting to develop new methods for
hyperparameter selection in order to obtain better results. The models have a large number of
hyperparameters, and each execution of the system can take several hours. Finally, future works could
consider conditioning the model to external factors, for example, to distinguish between British and
American English.

Author Contributions: Conceptualization, A.J. and G.G.-M.; methodology, A.J. and G.G.-M.; software, A.J.;
validation, A.J. and G.G.-M.; formal analysis, A.J.; investigation, A.J. and G.G.-M.; resources, A.J.; data curation,
A.J.; writing–original draft preparation, A.J.; writing–review and editing, A.J. and G.G.-M.; visualization, A.J.;
supervision, G.G.-M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Spanish Ministry of Science, Innovation and Universities, FEDER funds,
under grant RTI2018-095855-B-I00 (G.G.-M.).

Acknowledgments: We would like to express our gratitude to Richard Sproat for his useful feedback on this
article. Besides, Adrián acknowledges support from the Max Planck Institute for Intelligent Systems.

228

Appl. Sci. 2020, 10, 4551

Conflicts of Interest: The authors declare no conflict of interest.

229

Appl. Sci. 2020, 10, 4551

Abbreviations

The following abbreviations are used in this manuscript:

NLP Natural language processing
TTS Text-to-speech
CNN Convolutional Neural Networks
LSTM Long Short-Term Memory
FCNN Fully Convolutional Neural Network
FE Feature Encoder
CFE Causal Feature Encoder
NLLLoss Negative Log-Likelihood Loss
CER Character Error Rate
Acc Accuracy

References

1. Dabre, R.; Chu, C.; Kunchukuttan, A. A Comprehensive Survey of Multilingual Neural Machine Translation.
arXiv 2020, arXiv:2001.01115.

2. Gambhir, M.; Gupta, V. Recent automatic text summarization techniques: A survey. Artif. Intell. Rev.
2017, 47, 1–66. [CrossRef]

3. Gatt, A.; Krahmer, E. Survey of the state of the art in natural language generation: Core tasks, applications
and evaluation. J. Artif. Intell. Res. 2018, 61, 65–170. [CrossRef]

4. Minaee, S.; Kalchbrenner, N.; Cambria, E.; Nikzad, N.; Chenaghlu, M.; Gao, J. Deep Learning Based Text
Classification: A Comprehensive Review. arXiv 2020, arXiv:2004.03705.

5. Van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.W.;
Kavukcuoglu, K. WaveNet: A Generative Model for Raw Audio. In Proceedings of the 9th ISCA Speech
Synthesis Workshop, Sunnyvale, CA, USA, 13–15 September 2016; p. 125.

6. Sproat, R.; Jaitly, N. RNN Approaches to Text Normalization: A Challenge. arXiv 2016, arXiv:1611.00068.
7. Sproat, R. Multilingual text analysis for text-to-speech synthesis. Nat. Lang. Eng. 1996, 2, 369–380. [CrossRef]
8. Sodimana, K.; Silva, P.D.; Sproat, R.; Theeraphol, A.; Li, C.F.; Gutkin, A.; Sarin, S.; Pipatsrisawat, K.

Text Normalization for Bangla, Khmer, Nepali, Javanese, Sinhala, and Sundanese TTS Systems.
In Proceedings of the 6th International Workshop on Spoken Language Technologies for Under-Resourced
Languages (SLTU-2018), Gurugram, India, 29–31 August 2018; pp. 147–151.

9. Ikeda, T.; Shindo, H.; Matsumoto, Y. Japanese Text Normalization with Encoder–Decoder Model.
In Proceedings of the 2nd Workshop on Noisy User-generated Text, NUT@COLING 2016, Osaka, Japan,
11 December 2016; pp. 129–137.

10. Arora, M.; Kansal, V. Character level embedding with deep convolutional neural network for text
normalization of unstructured data for Twitter sentiment analysis. Soc. Netw. Anal. Min. 2019, 9, 12.
[CrossRef]

11. Zhang, H.; Sproat, R.; Ng, A.H.; Stahlberg, F.; Peng, X.; Gorman, K.; Roark, B. Neural models of text
normalization for speech applications. Comput. Linguist. 2019, 45, 293–337. [CrossRef]

12. Roark, B.; Sproat, R.; Allauzen, C.; Riley, M.; Sorensen, J.; Tai, T. The OpenGrm open-source finite-state
grammar software libraries. In Proceedings of the ACL 2012 System Demonstrations, Jeju Island, Korea,
10 July 2012; pp. 61–66.

13. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.C.; Salakhutdinov, R.; Zemel, R.S.; Bengio, Y. Show, Attend and
Tell: Neural Image Caption Generation with Visual Attention. In Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015; pp. 2048–2057.

14. Chung, J.; Cho, K.; Bengio, Y. A Character-level Decoder without Explicit Segmentation for Neural Machine
Translation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,
ACL 2016, Berlin, Germany, 7–12 August 2016; Volume 1: Long Papers.

15. Lee, J.; Cho, K.; Hofmann, T. Fully Character-Level Neural Machine Translation without Explicit
Segmentation. Trans. Assoc. Comput. Linguist. 2017, 5, 365–378. [CrossRef]

16. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation:
Encoder–decoder approaches. arXiv 2014, arXiv:1409.1259.

230

Appl. Sci. 2020, 10, 4551

17. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings
of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, Montreal, QC, Canada, 8–13 December 2014; pp. 3104–3112.

18. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

19. Baldi, P.; Sadowski, P. The dropout learning algorithm. Artif. Intell. 2014, 210, 78–122. [CrossRef] [PubMed]
20. Salimans, T.; Kingma, D.P. Weight normalization: A simple reparameterization to accelerate training of

deep neural networks. In Proceedings of the 30th Conference on Neural Information Processing Systems
(NIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 901–909.

21. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings
of the International Conference on Machine Learning (ICML 2013), Atlanta, GA, USA, 16–21 June 2013;
pp. 1310–1318.

22. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
23. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate.

arXiv 2014, arXiv:1409.0473.
24. Riezler, S.; Maxwell, J.T., III. On Some Pitfalls in Automatic Evaluation and Significance Testing for MT.

In Proceedings of the Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation
and/or Summarization@ACL 2005, Ann Arbor, MI, USA, 29 June 2005; pp. 57–64.

25. Ojala, M.; Garriga, G.C. Permutation tests for studying classifier performance. J. Mach. Learn. Res. 2010, 11,
1833–1863.

26. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.;
Lerer, A. Automatic differentiation in pytorch. In Proceedings of the 31st Conference on Neural Information
Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.

27. Klein, G.; Kim, Y.; Deng, Y.; Senellart, J.; Rush, A.M. Opennmt: Open-source toolkit for neural machine
translation. arXiv 2017, arXiv:1701.02810.

28. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia,
Italy, 13–15 May 2010; pp. 249–256.

29. Levenshtein, V.I. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet Physics
Doklady; MAIK Nauka/Interperiodica: Moscow, Rusia, 1966; Volume 10, pp. 707–710.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

231

applied
sciences

Article

A Polarity Capturing Sphere for Word to
Vector Representation

Sandra Rizkallah * , Amir F. Atiya and Samir Shaheen

Faculty of Engineering, Department of Computer Engineering, Cairo University, Giza Governorate 12613, Egypt;
amir@alumni.caltech.edu (A.F.A.); sshaheen@eng.cu.edu.eg (S.S.)
* Correspondence: sandrawahid@hotmail.com

Received: 20 May 2020; Accepted: 23 June 2020; Published: 26 June 2020

Abstract: Embedding words from a dictionary as vectors in a space has become an active research
field, due to its many uses in several natural language processing applications. Distances between the
vectors should reflect the relatedness between the corresponding words. The problem with existing
word embedding methods is that they often fail to distinguish between synonymous, antonymous,
and unrelated word pairs. Meanwhile, polarity detection is crucial for applications such as sentiment
analysis. In this work we propose an embedding approach that is designed to capture the polarity
issue. The approach is based on embedding the word vectors into a sphere, whereby the dot product
between any vectors represents the similarity. Vectors corresponding to synonymous words would
be close to each other on the sphere, while a word and its antonym would lie at opposite poles of the
sphere. The approach used to design the vectors is a simple relaxation algorithm. The proposed word
embedding is successful in distinguishing between synonyms, antonyms, and unrelated word pairs.
It achieves results that are better than those of some of the state-of-the-art techniques and competes
well with the others.

Keywords: word to vector; word embeddings; antonymy detection; polarity

1. Introduction

Word vector embeddings seek to model each word as a multi-dimensional vector. There are many
distinct benefits to modeling words as vectors. Implementing natural language processing (NLP)
algorithms using machine learning models necessitates converting a textual word or sentence to a
numeric format. Moreover, this conversion has to be meaningful. For example, words with similar
meanings should possess vectors that are in close proximity in the embedded space. This is because
such words should produce similar outputs, if applied to a machine learning model. Additionally,
a word embedding of a complete dictionary will provide a complete representation of the corpus.
In this, each word is assigned to its unique position in the vector space, which reflects its aggregate
relations with all other words in one cohesive construct. Word vector spaces have been very
useful in many applications; for example, machine translation [1], sentiment analysis [2–5], question
answering [6,7], information retrieval [8,9], spelling correction [10], crowdsourcing [11], named entity
recognition (NER) [12], text summarization [13–15], and others.

The problem of existing word vector embedding methods is that the polarity of words is not
adequately considered. Two antonyms are considered polar opposites, and have to be modeled as such.
However, most current methods do not deal with this issue. For example, they do not differentiate in
the similarity score between two unrelated words and two opposite words.

In this work we propose a new embedding that takes into account the polarity issue. The new
approach is based on embedding the words into a sphere, whereby the dot product of the corresponding
vectors represents the similarity in meaning between any two words. The polar nature of the sphere is

233

Appl. Sci. 2020, 10, 4386

the main motivation behind such embedding since this way antonymous relations can be captured such
that a word and its antonym are placed at opposite poles of the sphere. This polarity capturing feature
is essential for some applications such as sentiment analysis. Recently, word embedding methods
have started to pervade the sentiment analysis field, at the expense of traditional machine learning
algorithms, which rely on sentiment-polarity data that are annotated manually, and expensive feature
engineering. Using word embeddings, a sentence can be mapped to a number of features based on the
embeddings of its words. However, these embeddings should reflect the polarity of words in order to
be able to perform the sentiment analysis task. As mentioned before, this polarity issue is completely
addressed in our word embedding approach.

Figure 1 illustrates the concept of the proposed approach. As shown in the figure, the two vectors
corresponding to the words “happy” and “joyful” have close similarity because they are synonyms.
On the other hand, the vectors corresponding to “happy” and “sad” are on opposite poles and have a
similarity score of −1, because they are antonyms. The algorithm can infer a new relation that “joyful”
and “sad” are antonyms too, as their corresponding vectors are also placed close to opposite poles of
the sphere.

Figure 1. Semi-supervised illustration.

Two words that are similar in meaning are assigned vectors whose similarity measure is 1.
Two unrelated words will be assigned a similarity close to zero, and two antonyms are assigned
similarity close to−1. In other words, we specifically consider the polarity issue and make a distinction
between “opposite” and “unrelated”.

The fact that the similarity between opposing words or antonyms is close to −1 is consistent
with the logically appealing fact that negation amounts to multiplying by −1. Double negation
amounts to multiplying −1 twice, giving a similarity close to one (the antonym of an antonym is a
synonym). In our geometry, negation can also be considered as reflection around the origin. Thus,
the designed model makes logical sense. Another question to investigate is whether the unrelated
words should have similarity close to zero. The answer is yes. It is logical that unrelated words, e.g.,
“train” and “star”, would have their vectors far away from each other, because of our principle that
vector similarities or closeness should reflect relatedness. This is consistent with the theory that at a
high dimension, the dot product of randomly occurring unit vectors on the sphere is close to zero [16].
The algorithm has a number of beneficial features:

• The proposed algorithm is a very simple relaxation algorithm, and it converges very well and
fast. It is simpler than the typically used word to vector design methods, such as neural networks
or deep networks.

• We believe that embedding the vectors into a sphere provides a natural representation,
unlike distributional models for learning word vector representations and other co-occurrence-based
models. Some of these models often fail to distinguish between synonyms and antonyms,

234

Appl. Sci. 2020, 10, 4386

since antonymous words occur in similar context the same way synonymous words do.
Other models fail to distinguish between antonymous word pairs and unrelated word pairs.

• The learned word vectors can always be continuously augmented. The database can flexibly be
extended to include more words by simply feeding the algorithm with more word pairs with the
desired target similarity scores. The algorithm guarantees that these new vectors will be placed
correctly with regard to the existing vectors.

• Composite words can also be handled by our algorithm. This is because any word pair with
the desired similarity score can be fed into the algorithm . For example, “old-fashioned” is an
expression that combines two words: “old” and “fashion”; this combined expression can be given
to our algorithm as a synonym to a word that conveys its meaning; e.g., “outdated”.

• Generally it is a supervised procedure. The designer typically gives synonyms/antonyms from
thesauri or other sources. However, it could also be designed in a semi-supervised setting.
This means that in addition to the user-defined similarity scores between the collected words,
there could be many more unlabeled pairs that have to be learned from the text pieces available
(for example, through co-occurrence arguments). The labeled pairs will provide some anchor
around which the unlabeled pairs will organize, and are therefore essential for guiding the correct
vector placements. In other words, new relations between word pairs will be inferred from
existing ones.

2. Literature Review

One of the earliest word vector embeddings is the work by Mikolov et al. [17], who published the
Google word2vec representations of words. Their method relies on the continuous skip-gram model
for learning the vectors introduced in [18]. Finding vector representations that predict the surrounding
words is the training goal of the skip-gram model. For computational efficiency, the authors have
replaced the full softmax with three alternative choices, and evaluated the results for each: hierarchical
softmax, noise contrastive estimation, and negative sampling. Moreover, subsampling of frequent
words was introduced to speed up the training and leverage the accuracy of word representations.

Pennington et al. [19] have published another approach (called GloVe) of word vector modeling
using a method that combines the benefits of the techniques of global matrix factorization and local
context window. The authors have suggested the idea of learning the word vector with the ratios
of co-occurrence probabilities rather than the probabilities themselves. The result is a new global
log-bilinear regression model, where the model directly captures global corpus statistics.

Mikolov et al. [20] developed a model known as fastText that is based on continuous bag-of-words
(cbow) used in word2vec [18]. The authors used a combination of known improvements to
learn high-quality word vector representations. To obtain higher accuracy, the authors added
position-dependent weights and subword features to the cbow model architecture.

Dev et al. [21] developed a technique that aligns word vector representations from different
sources such as word2vec [17] and GloVe [19]. The authors extend absolute orientation approaches to
work for arbitrary dimensions.

It can be noted that word2vec [17,18], GloVe [19], and fastText [20] are distributional models for
learning word vector representations. Words are assigned similarity relations based on co-occurrence
in text. The limitation of these models is a weakness in distinguishing antonyms from synonyms
because antonymous words such as “good” and “bad” very often occur in similar contexts so their
learned vectors will be close. This way it may be hard to figure out whether a pair of words is a
pair of synonyms or antonyms. However, such information is crucial for some applications such as
sentiment analysis. On the other hand, our approach is a simple relaxation algorithm that takes into
account learning word vectors that are able to distinguish between word relations such as synonyms,
antonyms, and unrelated words. It is based on embedding the vectors on the sphere. The sphere
provides a natural setting for this task, because antonyms can be placed on opposite sides of the sphere.
In contrast, most methods embed the vectors in the space Rn, which does not provide a natural way of

235

Appl. Sci. 2020, 10, 4386

modeling opposites. The aforementioned models rely on corpus data of huge sizes to guarantee the
effectiveness of the generated vectors. In our approach, we make use of the available experts’ lexicons,
dictionaries, and thesauruses, and so the similarity relations are fairly accurate, because of the expert
knowledge used to construct these lexicons.

Other works include Vilnis et al. [22], who introduced density-based distributed embeddings by
learning representations in the space of Gaussian distributions. Bian et al. [23] focused on incorporating
morphological, syntactic, and semantic knowledge with deep learning to obtain more efficient word
embeddings. Zhou et al. [24] used the category information associated with the community question
answering pages as metadata. These metadata are fed to the skip-gram model to learn continuous
word embeddings, followed by applying Fisher kernel to obtain fixed length vectors.

Some works introduce retrofitting to overcome the deficiencies in distributional models in
representing the semantic and relational knowledge between words. Faruqui et al. [25] applied
retrofitting to pre-trained word vectors from distributional models. The vectors are refined to account
for the information in semantic lexicons. The method used is graph-based learning where the graph is
constructed for the relations extracted from the lexicons. Jo [26] proposed extrofitting by extracting
the semantic relations between words from their vectors using latent semantic analysis. The author
further combined extrofitting with external lexicons for synonyms to obtain improved results.

There have been some attempts at tackling the polarity issue. Mohammad et al. [27] proposed
an empirical none-word embedding approach for the detection of antonymous word pairs.
The authors’ approach relies on the co-occurrence and distributional hypotheses of antonyms,
stating that antonymous word pairs occur in similar contexts more often than chance. Nevertheless,
these hypotheses are only useful indications but not sufficient conditions to detect antonymous words.

Lobanova [28] proposed pattern-based methods to automatically identify antonyms. The author
pointed out how antonyms are useful in many NLP applications, including contradiction identification,
paraphrase generation, and document summarization.

Yih et al. [29] derived the word vector representations using latent semantic analysis (LSA),
with assigning signs to account for antonymy detection, and devising the polarity inducing LSA
(PILSA). Yet the authors pivoted on the fact that words with least cosine similarity are indeed opposites
without regard to distinguishing between unrelated word pairs, which also have low cosine similarity,
and antonymous word pairs. To embed out-of-vocabulary words, the authors adopted a two stage
strategy: first conducting a lexical analysis, and, if no match was found, using semantic relatedness.
This strategy weakens the smoothness of extending their approach.

Again, Mohammad et al. [30] devised an empirical method that marks word pairs that occur in
the same thesaurus category as synonyms and others that occur in contrasting categories as opposites.
They then apply postprocessing rules, since based on their method one word pair may be marked as
both synonym and antonym at the same time. The approach devised is a none-word embedding one.

Chang et al. [31] introduced multi-relational latent semantic analysis (MRLSA) that extends
PILSA [29], modeling multiple word relations. The authors proposed a 3-way tensor, wherein each
slice captures one particular relation. However, the model performance depends on the quality of
a pivot slice (e.g., the synonym slice), which MRLSA has to choose. Motivated by this approach,
Zhang et al. [32] introduced a Bayesian probabilistic tensor factorization model. Their model combined
both thesauri information and existing word embeddings, though their model used pre-trained
word embeddings.

Santus et al. [33] devised a new average-precision-based measure to discriminate between
synonyms and antonyms. The measure is built on the paradox of “simultaneous similarity and
difference between the antonyms.” The authors deduced that both synonyms and antonyms are similar
in all dimensions of meaning except one. This different dimension can be identified and used for the
discrimination task.

Ono et al. [34] trained word embeddings to detect antonyms. They introduced two models:
a word embeddings on thesauri information (WE-T) model and a word embeddings on thesauri and

236

Appl. Sci. 2020, 10, 4386

distributional information (WE-TD) model. For WE-T, the authors applied an AdaGrad online learning
method that uses a gradient-based update with automatically-determined learning rate. For WE-TD,
the authors introduce skip-gram with negative sampling (SGNS). However, their model is trained such
that synonymous and antonymous pairs have high and low similarity scores respectively. This imposes
a challenge in differentiating between antonymous word pairs and unrelated word pairs since both
will have low similarity scores.

Nguyen et al. [35] proposed augmenting lexical contrast information to distributional word embeddings
in order to enhance distinguishing between synonyms and antonyms. Moreover, the authors extended the
skip-gram model to incorporate the lexical contrast information into the objective function.

Motivated by the fact that antonyms mostly lie at close distances in the vector space, Li et al. [36]
proposed a neural network model that is adapted to learn word embeddings for antonyms.
These embeddings are used to carry out contradiction detection.

In most of these aforementioned antonymy construction methods the problem is that they focus
mostly on this task only. For example [29,32,34] only evaluated their vectors on antonymy detection
without showing the performance of these vectors on synonyms or unrelated words. The goal in these
works has mainly not been to obtain a global word embedding that works for synonyms, antonyms,
and unrelated words.

Word embeddings obtain the whole picture, as to the semantic relations of the words in a corpus.
As such, they have many applications. For example, Zou et al. [1] proposed a method to learn bilingual
embeddings to perform a Chinese–English machine translation task. Moreover, word embeddings
methods are applied to sentiment analysis; Maas et al. [2] proposed a model that combines supervised
and unsupervised techniques to learn word vectors that capture sentiment content. The goal was to be
able to use these vectors in sentiment analysis tasks. The authors used an unsupervised probabilistic
model of documents followed by a supervised model that maps a word vector to a predicted sentiment
label using a logistic regression predictor that relies on sentiment annotated texts. Tang et al. [3]
developed a word embedding method by training three neural networks. The method relies on
encoding sentiment information in the continuous representations of words. They evaluated their
method on a benchmark Twitter sentiment classification dataset. Dragoni et al. [4] employed word
embeddings and deep learning to bridge the gap between different domains, thereby building a
multi-domain sentiment model. Deho et al. [5] used word2vec to generate word vectors that learn
contextual information. To perform sentiment analysis, the generated vectors were used to train
machine learning algorithms in the form of classifiers. Question answering is another application
of word embeddings; for example, Liang et al. [6] tackled the rice FAQ (frequently asked question)
question-answering system. The authors proposed methods based on word2vec and LSTM (long-short
term memory). The core of the system is question similarity computing, which is used to match users’
questions and the questions in FAQ. Liu et al. [7] designed a deep learning model based on word2vec
to find the best answers to the farmers’ questions. Search service also exploits word embeddings;
Liu et al. [9] established a model based on word embeddings to improve the accuracy of data retrieval
in the cloud. Spelling correction can also be done using word embeddings. Kim et al. [10] proposed
a method of correcting misspelled words in Twitter messages by using an improved Word2Vec.
The authors in [11] proposed crowdsourcing where the relevance between task and worker is obtained.
The proposed model involves the computation of the similarity of word vectors and the establishment
of the semantic tags similar matrix database based on the Word2vec deep learning. Habibi et al. [12]
proposed a method based on deep learning and statistical word embeddings to recognize biomedical
named entities (NER), such as genes, chemicals, and diseases. Word embeddings have also tackled
the field of text summarization; to achieve automatic summarization Kågebäck et al. [13] proposed
the use of continuous vector representations as a basis for measuring similarity. Rossiello et al. [14]
proposed a centroid-based method for text summarization that exploits the compositional capabilities
of word embeddings.

237

Appl. Sci. 2020, 10, 4386

Word embeddings have been developed for other languages as well. Zahran et al. [37] compared
diverse techniques for building Arabic word embeddings, and evaluated these techniques using
intrinsic and extrinsic evaluations. Soliman et al. [38] proposed the AraVec model, a pre-trained
distributed word embedding project, which makes use of six different models. The authors described
the used resources for building such models and the preprocessing steps involved.

3. The Proposed Method

Let xi = (xi1, . . . , xiN)
T be an N-dimensional vector of unity length that represents word i;

i.e., ‖xi‖ = 1. The fact that the length of the vector is 1 means that the word is embedded on a sphere.
The dot product between two vectors xT

i xj represents the similarity between their corresponding
words. For example xT

i xj for the words easy and simple would be very high (close to 1). For the words
easy and manageable it would also be high, but a shade lower. For the opposites easy and difficult it
would be close to −1, and for unrelated words, such as easy and cat, it would be close to zero. It is
well known that when picking up any two random vectors on a sphere of high dimension, their dot
product will be close to zero. This means that the bulk of the words will have similarity close to zero
with the word easy. Note also that because of the unit length property, the dot product xT

i xj and the
distance are related in a one to one way (because ‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2xT

i xj = 2
[
1− xT

i xj
]
).

We collect a number of words for which we estimate a similarity number, on a scale from −1 to 1.
For example, for a pair of words with corresponding vectors xi and xj, let the estimated similarity be
sij. We collect a very large training set, obtained from some well-known synonym and antonym lists.
For any word relations that are not covered by these lists, we add a moderately sized but typically
not-large training set, mainly labeled by an expert human. The expert-labeled dataset serves as the
nucleus that will guide the training using the other larger collected datasets.

We develop an algorithm that estimates the vectors xi that would yield the similarity numbers as
close as possible to the given similarity numbers. We define the following error function:

E = ∑
i

∑
j

wij

[
xT

i xj − sij

]2

subject to ‖xi‖ = 1, i = 1, . . . , K (1)

where wij is a weighting coefficient representing the confidence in the similarity estimate sij.
For example, the word pairs labeled by an expert may have higher weighting coefficient than other
word pairs in the remaining larger training set. It is hard to solve this large optimization problem if
one seeks to obtain all K vectors xi at once. However, we propose a relaxation algorithm, that tackles
one xi at a time. In this algorithm we focus on some xk and fix all other xl ’s for the time being. Then we
optimize E with respect to xk. This is feasible and gives a close form solution. Then, we move on to
the next vector, and fix the others, optimize with respect to that vector. We continue in this manner
until we complete all vectors. Then we start another cycle, and re-optimize each xk, one at a time.
We perform a few similar cycles until the algorithm converges.

Consider that we are focusing now on vector xk, while keeping all other vectors constant. Then we
can decompose the objective function in (1) into a component containing xk and other components
that do not have xk in them, as follows.

E = ∑
i 6=k

∑
j 6=k

wij

[
xT

i xj − skj

]2
+ 2 ∑

j 6=k
wkj

[
xT

k xj − skj

]2

= Rk + 2 ∑
j 6=k

wkj

[
xT

k xj − skj

]2
(2)

238

Appl. Sci. 2020, 10, 4386

where Rk is the term not containing xk. We skipped the term xT
k xk − skk because it equals zero always

(the similarity between a vector and itself is 1, and the norm of any vector is enforced as 1 too).
The factor 2 in the RHS is to account for the existence of xk in first summation, and in the second
summation. The optimization will now focus on optimizing the second term in the summation. Using a
Lagrange multiplier to take into account the unity norm constraint, we formulate the augmented
objective function:

V = Rk + 2 ∑
j 6=k

wkj

[
xT

k xj − skj

]2
− λ

(
xT

k xk − 1
)

(3)

where λ is the Lagrange multiplier. For simplicity, let us redefine quantities in a way to skip the factor
of 2 in the equation. Simplifying, we get:

V = Rk + ∑
j 6=k

wkj

[
xT

k xjxT
j xk − 2xT

j skjxk + s2
kj

]

−λxT
k xk + λ

= Rk + xT
k
(
∑
j 6=k

wkjxjxT
j
)
xk −

(
2 ∑

j 6=k
wkjxT

j skj
)
xk

+ ∑
j 6=k

wkjs2
kj − λxT

k xk + λ

= Rk + xT
k Axk − 2bTxk + c (4)

where we isolated xk from the terms that do not contain xk, and the following matrices are defined as:

A = ∑
j 6=k

wkjxjxT
j − λI (5)

b = ∑
j 6=k

wkjxjskj (6)

c = ∑
j 6=k

wkjs2
kj + λ (7)

Taking the derivative with respect to xk and equating to zero, we get

dV
dxk

= 2Axk − 2b = 0 (8)

xk = A−1b (9)

To evaluate λ we enforce the condition xT
k xk = 1.

xT
k xk = bT A−2b = 1 (10)

where we used the fact that A is a symmetric matrix. We get

bT[A′ − λI
]−2b = 1 (11)

where

A′ = ∑
j 6=k

wkjxjxT
j (12)

To solve Equation (11), we note that λ is a scalar, so we simply implement a one-dimensional search.

239

Appl. Sci. 2020, 10, 4386

Once we obtain xk as above, we turn our attention to the next vector, and apply similar analysis.
Once we complete all vectors, we perform another cycle through all vectors, and so on. The algorithm
converges, in the sense that each step leads to a reduction in the objective function (1), leading to
a local minimum (akin to neural network training and other machine learning algorithms). This is
proven in the theorem described below.

Theorem 1. Let the errors before and after applying (9) and (11) be E1 and E2 respectively (we mean the errors
given by Equation (1)).

Then
E2 ≤ E1 (13)

The application of the steps with cycling through the vectors one by one, and repeating the cycles several
times will lead to a convergence of the attained vectors to some limiting values.

The proof of this assertion, as well as other details of the optimization problem, are given in
the Appendix A.

Figure 2 is a graph which empirically shows that the vectors stabilize one cycle after another.
Shown in the graph is max

(
|xk(new)− xk(old)|

)
against cycle number. The maximum is computed

over the components of the vector and over all vectors xk. One can observe that after around 15 cycles
the changes in vectors become very small, indicating their convergence to their particular positions in
the space.

Figure 2. Convergence.

4. Vocabulary and Data Gathering

To design the proposed word embedding, we have collected data in the form of labeled pairs of
words from multiple sources. Moreover, we explored the properties of the vocabulary that achieve
best results using our algorithm. We model our vocabulary as a graph referred to as the graph of
words, such that the words are the vertices and relations between the words are the edges. (graph
modeling has been a very useful tool in natural language processing; see [39].) Weights are attached
to the edges of the graph, and these weights represent the similarity scores between the two words
they each connect. The existence of an edge means that a labeled word pair exists as a part of the
vocabulary to train the algorithm. There is, however, a potential problem. The graph could have a
number of components that are disconnected from each other; i.e., no sequence of edges can lead from
one component to the other. This could lead to potentially multiple solutions for the optimization
task. The algorithm would not know where to place the vectors corresponding to the disconnected

240

Appl. Sci. 2020, 10, 4386

components with respect to each other. In other words, one can rotate entire connected groups without
them affecting the error function (in Equation (1)), because no similarity terms exist between any of
the disconnected groups’ vertices. This would lead to arbitrarily estimated similarities between the
vectors (words) of any two disconnected components.

Venkatesh p. 124 [40] provides an in depth investigation of when a large graph is void of
disconnected components; i.e., one large connected component. He proves the following theorem:

Theorem 2. Consider a graph with n vertices and with probability p that an edge exists between any two
vertices. If p =

log n
n + c

n , for some constant c, then the probability that the random graph G(n, p) is connected
tends to e−e−c

, as n −→ ∞.

This theorem essentially says that if p >> log(n)/n then the graph is one giant connected
component. Since the expected degree of each vertex is k = np, this means that the average degree
of our graph should be generally higher than log(n); i.e., k > log(n). We used this fact as a guide in
determining the number of synonym/antonym pairs used to create the training set, since each pair
will create an edge in the out graph of words.

At the end of generating the training set, we apply the networkx python algorithm [41] to detect
the number of components in a graph. There may still be several disconnected components. In such a
case, we manually select pairs of words corresponding to the disconnected components. We seek to
connect them by estimating the similarity using our judgment of the word meanings. This essentially
draws edges between the disconnected components. Ideally, how many edges should we add between
any two disconnected components? The answer is d, the dimension of our vector space. This would
essentially anchor the vectors in fixed places with respect to each other. It would also prevent the
possibility of rotating a component with respect to another along some remaining degrees of freedom
without violating the existing distances or similarities between the vectors as given in the training set.

To collect our vocabulary we have used several sources. This is in order not to rely overly on one
single source. We used the following:

• Lists for frequent English words’ synonyms and antonyms extracted from the web sites: [42,43].
• Lists for certain categories that we manually constructed; e.g., family, sports, animals, countries,

capitals, and others (we added 33 lists). Each list consists of many words, and we assigned a
specific similarity score among the words in each list, based on our judgment.

• We collected an extensive amount of words from WordNet [44] and from other sources, such as
educational websites and books [45–53]. Subsequently, we created a crawler that would visit
the site of thesaurus.com (the premier site for word meanings, synonyms, antonyms, etc.) [54].
The crawler would fetch the synonyms and antonyms of the sought words from the thesaurus.
The obtained words would be fed again to the site and more synonyms and antonyms were
obtained, and so on. These would then be added to the training set.

• We gathered random word pairs from a site that contains random phrases [55]. We checked
these pairs, and selected only the ones that were unrelated. As mentioned before, unrelated pairs
should give similarity around zero, and they have the important task of connecting disconnected
groups in the graph. In addition to the unrelated pairs, we collected synonyms and antonyms for
these selected words using the crawler from thesaurus.com.

• We gathered other unrelated word pairs randomly by pairing words manually in the constructed
vocabulary (of course after checking that they are indeed unrelated).

• We manually added some synonyms, antonyms, and unrelated word pairs using other different
online dictionaries.

For the collected pairs we have assigned a similarity close to 1 for synonyms and close to −1 for
antonyms. This is just the theoretical target function. After convergence it typically yields different
similarities. The reason is that there is competition between words to pull the vectors of its synonymous

241

Appl. Sci. 2020, 10, 4386

words towards its vector. This results in “middle ground” vector locations that satisfy reasonable
contiguity towards its different synonyms. Table 1 shows the structure of the constructed vocabulary
while Figure 3 is a histogram for the degree of vertices in the constructed vocabulary.

Table 1. Vocabulary structure.

Number of distinct words (graph vertices) 27770
Number of synonymous pairs 102260
Number of antonymous pairs 38783
Number of unrelated pairs 182287
Number of graph edges 323330
Ratio of number of edges to number of vertices 11.64
Average degree of the graph 23.29
Number of connected components 1

Figure 3. Histogram for the degree of vertices.

5. Results and Discussion

We have tested the proposed word embedding method. After a thorough design, and training
using our method, we have performed the following four evaluation experiments in addition to
outlining an opinion mining application for hotel reviews:

1. Word Similarity: We present the similarity scores obtained between many selected word pairs,
and compare with the scores of other published word vector representations. The comparison of
the performances should be done using the judgment of the reader.

2. Human Judged Similarity: We apply our approach and some competing methods on benchmark
word pair lists. These lists, published in some papers, have human-judged similarity scores.
So this allows comparison with actual numbers.

3. Antonymy Detection: We evaluate our approach on answering closest-opposite questions
(extracted from the GRE test), comparing our results with the published ones.

4. Antonym/Synonym Discrimination: We test the performance of our approach in discriminating
between antonyms and synonyms. The performance is compared with other published word
vector representations.

5. Opinion Mining: We outline the application of our method on an opinion mining task. Moreover, we use
other published word vectors to compare the performance on such task.

242

Appl. Sci. 2020, 10, 4386

All used datasets are the same for all the compared models in order to have fair comparisons. In all
the conducted experiments, we used the word vectors generated using our implemented algorithm.
The training vocabulary used is the one gathered as explained in the previous section. The generated
word vector’s number of dimensions is 50.

5.1. Word Similarity

Table 2 contains a number of word pairs where the corresponding similarity scores are obtained
by the proposed word embedding. The similarity score is computed as the dot product between unit
vectors. We have compared our scores with the scores of other published pre-trained word vectors:
word2vec [17], GloVe [19], and fastText [20]. The number of dimensions of the vectors in word2vec,
GloVe, and fastText is 300, while the dimension of the vectors in our approach is 50. The reason for
selecting a number of dimensions of 50 is that more dimensions lead to sparser space, and more
overfitting. N/A means that one or both of the words in the given pair have no pre-trained vectors in
the method considered. In the table we have included word pairs from different categories:

• Synonyms that occur in the training vocabulary of the proposed method.
• Synonyms that are not part of the training vocabulary of the proposed method (marked with the

* symbol in the table).
• Antonyms that are part of the training vocabulary.
• Antonyms that are not included as part of the training vocabulary (also marked with the *

symbol).
• Unrelated words that occur in the training vocabulary.
• Unrelated words that are not part of the training vocabulary (marked with the * symbol).
• Word pairs that belong to a certain category (e.g., countries).

Note that the pairs that are not part of the training set constitute an unbiased out of sample test,
since the algorithm has not seen them while training.

From Table 2, we can observe several interesting facts:

1. By human judgment, the proposed algorithm seems to be more successful in capturing the
similarity between the different words. For example, the pairs “happy–joyful”, “amusing–happy”
and “district–county” are close synonyms, and our algorithm manages to assign a high similarity.
Opposing algorithms give low similarity scores around 0.5 or so.

2. For the antonyms, our algorithm assigns rightly negative numbers. For example, the pairs
“modern–outdated” and “unlike–same” are assigned similarities lower than −0.8. The competing
algorithms assign similarities in the range of about 0.3 to 0.68, not really signaling that these
words are antonyms.

3. For unrelated words, the proposed embedding generally gives them similarities close to
zero. For example, the pairs “array–again”, “useful–wash” and “decent–morning” are given
respectively 0.294, 0.195, and 0.027, which are reasonably close to zero.

4. The competing algorithms are not very successful in differentiating antonyms from unrelated
pairs. They give them all comparable scores. For example, the antonyms “modern–outdated”
and “unlike–same”, and the unrelated pairs “array–again”, “useful–wash” and “decent–morning”
are given similarities in the same range. It is not clear from the scores whether the pair is an an
antonym or an unrelated pair. Additionally the pair “yes–no” is the most basic antonym, and in
spite of that, the competing algorithms do not give them a zero score.

5. An antonymous pair such as “happy–unhappy” is given a high similarity score in all the other
three competing approaches. Thus it is treated the same as a synonymous pair while it is given a
negative similarity score in our approach.

243

Appl. Sci. 2020, 10, 4386

6. An antonymous pair such as “decelerate–speed” is given a low similarity score in all the other
three approaches, and thus is treated the same as an unrelated pair while it is given a negative
similarity score in our approach.

7. In all the four approaches, the “country–capital” pairs have close similarities.
8. In all the four approaches, the “country–nationality” pairs have close similarities.
9. The pair “Japan–Greece” has a lower similarity score than the pair “Japan–China”, although both

pairs are country pairs. This is due to the fact that Japan and China have more properties in
common (both are Asian countries, and are distance-wise close to each other).

10. A combination such as “African-country” is not found in any of the other three vocabularies.
Since the other approaches do not represent such composite words as vectors.

11. We must caution, however, that the competing methods word2vec, GloVe, and fastText are not
specifically designed to handle antonyms. Therefore, the comparison presented, which shows
clear domination of our method for antonyms, may not be fully due to a particular design or
algorithmic outperformance, but also partly due to the fact that the competing methods were not
designed to deal with antonyms.

244

Appl. Sci. 2020, 10, 4386

Table 2. Word similarity comparison (* means the pair is not part of the training set for our method).

Word1 Word2 Sphere (Our Approach) Word2vec [17] GloVe [19] FastText [20]

happy joyful 0.944 0.424 0.598 0.701
amusing happy * 0.778 0.27 0.387 0.5

king queen * 0.83 0.651 0.76 0.764
boy girl * 0.859 0.854 0.825 0.862
male female * 0.702 0.841 0.938 0.945

education student 0.608 0.401 0.682 0.547
movement motion 0.887 0.231 0.56 0.583

oscillate move * 0.828 0.239 0.166 0.354
district county * 0.733 0.594 0.651 0.586
district commune 0.761 0.164 0.367 0.464
friend partner 0.96 0.37 0.609 0.619

valuable worthy 0.849 0.351 0.537 0.649
great tremendous 0.858 0.775 0.668 0.804

joyfulness joy * 0.986 0.513 0.362 N/A
France Paris 0.94 0.555 0.721 0.632

Germany Berlin 0.949 0.554 0.685 0.673
Egypt Cairo 0.934 0.602 0.699 N/A
France French 0.82 0.633 0.686 0.68

Germany German 0.801 0.681 0.7 0.742
Egypt Egyptian 0.869 0.602 0.718 0.753
Japan China * 0.738 0.315 0.697 0.645
Japan Greece * 0.609 0.545 0.494 0.595

african-country european-country * 0.88 N/A N/A N/A
modern ongoing * 0.487 0.129 0.357 0.424
obsolete outdated * 0.915 0.743 0.725 0.797
money shopping * 0.599 0.166 0.487 0.407
internet web 0.888 0.597 0.737 0.683
apple orange * 0.93 0.392 0.493 0.561
soccer football 0.926 0.731 0.819 0.804

lion tiger * 0.987 0.512 0.621 0.67
giraffe animal 0.954 0.422 0.436 0.573
light sun * 0.612 0.401 0.525 0.558

geology earth * 0.701 0.264 0.444 0.531
tenor opera * 0.847 0.459 0.395 0.519

unauthorized simultaneously * −0.101 0.175 0.237 0.3
bag country * 0.061 0.085 0.301 0.367

beach truck * 0.448 0.09 0.296 0.421
array again * 0.294 -0.011 0.314 0.317
useful wash * 0.195 0.073 0.288 0.224

tourism beach * 0.513 0.266 0.389 0.459
decent morning * 0.027 0.041 0.373 0.253

go new * 0.111 0.113 0.564 0.345
yes no −1 0.392 0.695 0.549

245

Appl. Sci. 2020, 10, 4386

Table 2. Cont.

Word1 Word2 Sphere (Our Approach) Word2vec [17] GloVe [19] FastText [20]

active passive −0.916 0.436 0.577 0.678
happy unhappy −0.912 0.613 0.565 0.767
young old −0.841 0.417 0.573 0.583
youth old * −0.357 0.212 0.384 0.392
youth elderly −0.674 0.215 0.39 0.499

valuable valueless * −0.912 0.334 0.262 0.614
recall forget * −0.907 0.3 0.532 0.567

education ignorance −0.854 0.2 0.306 0.487
complex easy * −0.769 0.213 0.439 0.453

beginning deadline * −0.73 0.22 0.447 0.348
modern outdated * −0.933 0.404 0.427 0.528
unlike same * −0.957 0.299 0.681 0.482
grow eradicate * −0.858 0.241 0.308 0.491

certainty uncertainty −0.931 0.492 0.617 0.706
truth lying * −0.766 0.237 0.468 0.479

daring coward * −0.676 0.196 0.233 0.432
decelerate speed * −0.843 0.212 0.22 0.385

5.2. Human Judged Similarity

We considered here datasets from other researchers that attached human-judged similarity scores
to the word pairs. This would give an unbiased assessment, as the similarity estimate is performed by
different researchers. None of the human-judged similarity scores associated with the pairs in these
datasets are included in our training set, in order to have it as an out of sample test.

We considered the labeled data of MC30 [56] and RG [57], which have human-judged similarity
measures. There is a third dataset available, namely, the WordSim-353 [58] human-judged dataset,
but we did not perform a test using this dataset because they estimated antonyms as similar while
in our approach we consider antonyms as opposites. We computed two metrics, the Spearman rank
correlation (Sp) and root mean square error (RMSE). Moreover, we have compared the obtained metrics’
values with those of word2vec [17], GloVe [19], and fastText [20]. Table 3 shows that we achieve the
best results for both metrics on both datasets.

Table 3. Results of human-judged datasets.

Approach MC30 RG

Sp RMSE Sp RMSE

Sphere (our approach) 0.91 0.18 0.9 0.15
word2vec 0.8 0.3 0.76 0.29
GloVe 0.79 0.27 0.82 0.25
fastText 0.83 0.24 0.84 0.22

5.3. Antonymy Detection

We have applied our approach on answering the closest-opposite GRE questions, collected
in [27,30]. The GRE, or Graduate Record Examinations, is a worldwide exam needed for admission to
graduate schools. The verbal part has a group of multiple choice questions that seek the closest-opposite.
The 162 questions of the development set are used as a part of our training vocabulary; i.e., the words
together with the correct answers are added to the training vocabulary as antonymous pairs. On the
other hand, both the 950 questions and the 790 questions datasets are used as test sets (i.e., their pairs
do not exist in our training set).

We applied our word embedding method to compute the similarities between the word in
question and all candidate answers, and selected the answer that is closest to −1, signifying an

246

Appl. Sci. 2020, 10, 4386

antonym. We have computed the precision, recall, and F-score as given in [27], so that we could make
comparisons with the numbers given in the competing methods. They are given by

Precision(P) =
Number of questions answered correctly

Number of questions attempted
(14)

Recall(R) =
Number of questions answered correctly

Total number of questions
(15)

F-score =
2× P× R

P + R
(16)

In our case we note that the precision = recall = F-score; this is because our approach attempted
all the questions. All the words that exist in the questions and in the candidate answers have
corresponding vectors in our word embedding method.

Furthermore, we compared our results with the best results recorded in [27,29–32,34] that use the
same dataset. From Table 4, it is shown that we achieved the best precision, recall, and F-score for the
development set. We achieved the second best scores in both test sets after [34]; however, the dimension
of their vectors is 300 while the dimension of our vectors is only 50. As mentioned earlier, their model
is trained such that there is no differentiation between antonymous pairs and unrelated pairs, as both
will have low similarity scores. Moreover, we were able to compare our results with [34] only on
antonymy detection as the authors did not include the performance of their vectors on synonyms or
unrelated words.

Table 4. Results of closest-opposite GRE.

Approach Development Set Test Set 950 Test Set 790
Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

Sphere (our approach) 0.98 0.98 0.98 0.83 0.83 0.83 0.8 0.8 0.8
Mohammad et al., 2008
[27] 0.76 0.66 0.70 0.76 0.64 0.70 - - -
Yih et al., 2012
[29] 0.88 0.87 0.87 0.81 0.80 0.81 - - -
Mohammad et al., 2013
[30] 0.79 0.66 0.72 - - - 0.77 0.63 0.69
Chang et al., 2013
[31] 0.88 0.85 0.87 0.81 0.77 0.79 - - -
Zhang et al., 2014
[32] 0.88 0.88 0.88 0.82 0.82 0.82 - - -
Ono et al., 2015
[34] 0.92 0.91 0.91 0.90 0.88 0.89 0.89 0.87 0.88

5.4. Antonym/Synonym Discrimination

In this section, we show using statistical measures how our approach perform in the task of
discriminating between antonyms and synonyms. Moreover, our approach’s performance is compared
to the other published word vectors’ models: word2vec [17], GloVe [19], and fastText [20]. The used
dataset is introduced by [35]. This dataset considers word pairs in three categories: adjectives,
nouns and verbs. The pairs are marked as antonyms or synonyms. Therefore, we have conducted
this experiment as a binary classification task with two classes namely, antonyms and synonyms.
The classification is done based on the similarity score between the vectors of the word pair. If this
similarity score is equal to or greater than a certain threshold (more specifically 0.5), then the pair is
classified as synonyms otherwise the pair is classified as antonyms. The used dataset is refined such
that pairs that have any non-existent word in any of the models are removed. After this refinement the
dataset has the following structure:

• 470 adjectives: (238 antonyms and 232 synonyms);
• 547 nouns: (276 antonyms and 271 synonyms);

247

Appl. Sci. 2020, 10, 4386

• 632 verbs: (311 antonyms and 321 synonyms).

In Tables 5–7 the performance measures are recorded for the four models and for the three
categories respectively. The results show that our model outperforms all the other three models in all
the categories.

Table 5. Antonym/synonym discrimination results—adjectives.

Approach Precision Recall F-Score Accuracy

Sphere (our approach) 0.86 0.83 0.83 82.98%
word2vec 0.61 0.56 0.50 55.96%

GloVe 0.65 0.60 0.57 60.43%
fastText 0.67 0.67 0.67 66.81%

Table 6. Antonym/synonym discrimination results—nouns.

Approach Precision Recall F-Score Accuracy

Sphere (our approach) 0.72 0.72 0.72 72.39%
word2vec 0.65 0.58 0.51 57.77%

GloVe 0.67 0.62 0.58 61.61%
fastText 0.67 0.66 0.65 65.81%

Table 7. Antonym/synonym discrimination results—verbs.

Approach Precision Recall F-Score Accuracy

Sphere (our approach) 0.83 0.81 0.81 81.49%
word2vec 0.70 0.54 0.43 53.80%

GloVe 0.69 0.59 0.53 59.02%
fastText 0.66 0.63 0.61 62.66%

5.5. Comments on the Results

We can observe that the proposed word embedding approach gives more reasonable similarity
scores than some of the major approaches, such as word2vec, GloVe, and fastText. These methods
have a particular deficit dealing with antonyms, and distinguishing between antonyms and unrelated
words. The failure of some of them in assigning the right similarity score to the pair “yes” and
“no” is case in point. Our algorithm also fared better on the two benchmarks tested. It also did
well compared to other algorithms that are specifically designed to deal with antonyms, on the GRE
antonym dataset. Furthermore, our approach proved its efficiency in discriminating between antonyms
and synonyms as compared to other published word vectors’ models. Our algorithm can handle
composite words (like “fairy tale”). It could potentially also handle words with multiple meanings,
such as “bat” (the animal) and “bat” (a club). The way to tackle these is to consider them as different
words, like “bat-1” and “bat-2”. The challenge facing all word embedding methods is to distinguish
words with multiple meanings from the context of the sentence.

5.6. Opinion Mining

Opinion mining application refers to classifying a review as positive or negative. We applied our
approach to learn vectors for words that have bias from which sentiments can be inferred. We have
begun with a small set of such words then grow our sphere by obtaining synonyms and antonyms
for these words. The generated word vectors are used to compute the sentiment that the review
reflects. Every word in the review has two sub-scores that are obtained by respectively the dot product
between this word and a number of positive words on one hand, and a number of negative words

248

Appl. Sci. 2020, 10, 4386

on the other hand, which are specifically collected to gauge sentiment. We applied the approach to
20,000 hotel reviews [59] from “515K Hotel Reviews Data in Europe” dataset [60] that are collected from
booking.com where each review is annotated as positive or negative. Furthermore, we used vectors
from other models to compare the results. We achieved the highest F-score compared to word2vec [17],
GloVe [19], and fastText [20]. The scores obtained are 0.81, 0.79, 0.74, and 0.79 respectively [61].

6. Conclusions

In this work we have devised a new approach for embedding words into a sphere. The algorithm
is a simple relaxation one without the need for intensive training phases. The approach is a polarity
capturing one in the sense that antonymous word pairs are located at opposite poles of the sphere.
Not only antonymy can be detected but also other relations (e.g. unrelated pairs).

We have managed to gather an adequate vocabulary that can flexibly be extended. Moreover,
we evaluated our approach using several datasets, showing that the approach competes well with
other approaches in the literature. We have successfully proved that our approach does not suffer from
the ambiguity in differentiating between various word pair relations such as synonyms, antonyms,
and unrelated pairs.

Author Contributions: Conceptualization, S.R. and A.F.A.; methodology, S.R., A.F.A. and S.S.; software, S.R.;
validation, S.R.; formal analysis, S.R., A.F.A., and S.S.; investigation, S.R., A.F.A., and S.S.; resources, S.R.; data
curation, S.R.; writing—original draft preparation, S.R.; writing—review and editing, S.R. and A.F.A.; visualization,
S.R.; supervision, A.F.A. and S.S.; project administration, A.F.A. and S.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to acknowledge the help and the discussions with Professor Aly Aly
Fahmy of the Arab Academy of Science and Technology, and Professor William Hager of University of Florida.

Conflicts of Interest: The authors declare no conflict of interest.

Data Availability: The word vectors generated are found at https://github.com/SandraRizkallah/Sphere-Eng-
WordVectors.

Appendix A. Proof of Theorem 1: Convergence of the Algorithm

When we consider a particular word, we apply Equations (9) and (11), in order to tune the position
of the word’s designated vector. To prove that the repeated application of this step (for one word
after another) leads to convergence, we show that each application leads to a non-increase of the
error function Equation (1). Since this error function is bounded from below by zero, the algorithm
converges to some limit of the error function.

This formulation of an optimization falls under the form of optimization of a quadratic function
on the sphere, i.e., subject to the solution lying on the sphere ‖x‖2 = r2. It has been studied in detail
by [62–65], as it is applied in types of optimization methods called trust region methods of nonlinear
optimization.

Let the errors before and after applying (9) be E1 and E2 respectively (we mean the errors given
by Equation (1)). Since both before and after the update the vector xk would be normalized to become
unit length, we can use V (given in (3), (4)) in place of E. The subtracted term λ

(
xk

Txk − 1
)

will equal
zero in both cases, so it will not impact it. Therefore

E2 − E1 = V2 −V1

= xk
T Axk − 2bTxk −

[
x′k

T Ax′k − 2bTx′k
]

(A1)

where x′k is the word vector before the update. After applying Equation (9) it becomes xk, given by:

xk = A−1b

=
(

A′ − λI
)−1b (A2)

249

Appl. Sci. 2020, 10, 4386

where the last step follows from the definitions of A and A′ (5) and (12). As mentioned, λ is
determined from:

bT[A′ − λI
]−2b = 1 (A3)

According to [62–65] Equation (A3) has at most 2N solutions for λ, where N is the dimension
of the vector xk, with the smallest and largest solutions corresponding to respectively the minimum
and the maximum of the optimization problem. The solutions in the middle correspond to the saddle
points. The smallest solution obeys the condition λ ≤ all eigenvalues of A′ [64], which means that
A′ − λI is positive semi-definite (because the eigenvalues of A′ − λI equal the eigenvalues of A′ minus
λ). Because of these conditions, the aforementioned works of [62–65] prove that E2 − E1 ≤ 0.

Irrespective of their proof, we formulated a simplified proof, given as follows: Substituting (A2)
into (A1), we get

E2 − E1 = bT A−1 AA−1b− 2bT A−1b−
[

x′k
T Ax′k − 2bTx′k

]

= −bT A−1b−
[

x′k
T Ax′k − 2bTx′k

]

= −
[

Ax′k − b
]T

A−1
[

Ax′k − b
]

(A4)

The latter line follows by expanding the two multiplied brackets. We find that it equals the
expression in the preceding line. Since the matrix A = A′ − λI, and the latter is shown to be positive
semi-definite,

E2 − E1 ≤ 0 (A5)

because any quadratic form yTQy ≥ 0 for any positive semi-definite matrix Q and any vector y.
So the error reduces after each iteration, or stays the same. After applying the update for every
word, and having a complete cycle where the error does not reduce any more for any of the vectors,
convergence of the algorithm is signified.

References

1. Zou, W.Y.; Socher, R.; Cer, D.; Manning, C.D. Bilingual word embeddings for phrase-based machine
translation. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
Seattle, WA, USA, 18–21 October 2013; pp. 1393–1398.

2. Maas, A.L.; Daly, R.E.; Pham, P.T.; Huang, D.; Ng, A.Y.; Potts, C. Learning word vectors for sentiment
analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, Portland, OR, USA, 19–24 June 2011; pp. 142–150.

3. Tang, D.; Wei, F.; Yang, N.; Zhou, M.; Liu, T.; Qin, B. Learning sentiment-specific word embedding for twitter
sentiment classification. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Baltimore, MD, USA, 22–27 June 2014; Volume 1, pp. 1555–1565.

4. Dragoni, M.; Petrucci, G. A neural word embeddings approach for multi-domain sentiment analysis. IEEE
Trans. Affect. Comput. 2017, 8, 457–470. [CrossRef]

5. Deho, B.O.; Agangiba, A.W.; Aryeh, L.F.; Ansah, A.J. Sentiment Analysis with Word Embedding.
In Proceedings of the 2018 IEEE 7th International Conference on Adaptive Science & Technology (ICAST),
University of Ghana, Legon, Accra, Ghana, 22–24 August 2018; pp. 1–4.

6. Liang, J.; Cui, B.; Jiang, H.; Shen, Y.; Xie, Y. Sentence similarity computing based on word2vec and LSTM
and its application in rice FAQ question-answering system. J. Nanjing Agric. Univ. 2018, 41, 946–953.

7. Liu, H. Agricultural Q&A System Based on LSTM-CNN and Word2vec. Revis. Fac. Agron. Univ. Zulia 2019,
36, 543–551.

8. Roy, D. Word Embedding based Approaches for Information Retrieval. In Proceedings of the Seventh
BCS-IRSG Symposium on Future Directions in Information Access 7, Barcelona, Spain, 5 September 2017;
pp. 1–4.

250

Appl. Sci. 2020, 10, 4386

9. Liu, Y.; Fu, Z. Secure search service based on word2vec in the public cloud. Int. J. Comput. Sci. Eng. 2019, 18,
305–313. [CrossRef]

10. Kim, J.; Hong, T.; Kim, P. Word2Vec based spelling correction method of Twitter message. In Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019;
pp. 2016–2019.

11. Pan, Q.; Dong, H.; Wang, Y.; Cai, Z.; Zhang, L. Recommendation of Crowdsourcing Tasks Based on Word2vec
Semantic Tags. Wirel. Commun. Mob. Comput. 2019, 2019, 2121850. [CrossRef]

12. Habibi, M.; Weber, L.; Neves, M.; Wiegandt, D.L.; Leser, U. Deep learning with word embeddings improves
biomedical named entity recognition. Bioinformatics 2017, 33, i37–i48. [CrossRef]

13. Kågebäck, M.; Mogren, O.; Tahmasebi, N.; Dubhashi, D. Extractive summarization using continuous
vector space models. In Proceedings of the 2nd Workshop on Continuous Vector Space Models and Their
Compositionality (CVSC), Gothenburg, Sweden, 26–30 April 2014; pp. 31–39.

14. Rossiello, G.; Basile, P.; Semeraro, G. Centroid-based text summarization through compositionality of word
embeddings. In Proceedings of the MultiLing 2017 Workshop on Summarization and Summary Evaluation
Across Source Types and Genres, Valencia, Spain, 3 April 2017; pp. 12–21.

15. Yang, K.; Al-Sabahi, K.; Xiang, Y.; Zhang, Z. An integrated graph model for document summarization.
Information 2018, 9, 232. [CrossRef]

16. Simard, P.Y.; LeCun, Y.A.; Denker, J.S.; Victorri, B. Transformation invariance in pattern recognition—Tangent
distance and tangent propagation. In Neural Networks: Tricks of the Trade; Springer: New York, NY, USA, 1998;
pp. 239–274.

17. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases
and their compositionality. Adv. Neural Inf. Process. Syst. 26 (NIPS 2013) 2013, 3111–3119.

18. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space.
arXiv 2013, arXiv:1301.3781.

19. Pennington, J.; Socher, R.; Manning, C. Glove: Global vectors for word representation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29
October 2014; pp. 1532–1543.

20. Mikolov, T.; Grave, E.; Bojanowski, P.; Puhrsch, C.; Joulin, A. Advances in pre-training distributed word
representations. arXiv 2017, arXiv:1712.09405.

21. Dev, S.; Hassan, S.; Phillips, J.M. Absolute Orientation for Word Embedding Alignment. arXiv 2018,
arXiv:1806.01330.

22. Vilnis, L.; McCallum, A. Word representations via gaussian embedding. arXiv 2014, arXiv:1412.6623.
23. Bian, J.; Gao, B.; Liu, T.Y. Knowledge-powered deep learning for word embedding. In Joint European

Conference on Machine Learning and Knowledge Discovery in Databases; Springer: New York, NY, USA, 2014;
pp. 132–148.

24. Zhou, G.; He, T.; Zhao, J.; Hu, P. Learning continuous word embedding with metadata for question retrieval
in community question answering. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), Beijing, China, 26–31 July 2015; Volume 1, pp. 250–259.

25. Faruqui, M.; Dodge, J.; Jauhar, S.K.; Dyer, C.; Hovy, E.; Smith, N.A. Retrofitting word vectors to semantic
lexicons. arXiv 2014, arXiv:1411.4166.

26. Jo, H. Expansional Retrofitting for Word Vector Enrichment. arXiv 2018, arXiv:1808.07337.
27. Mohammad, S.; Dorr, B.; Hirst, G. Computing word-pair antonymy. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing; Association for Computational Linguistics: Stroudsburg,
PA, USA, 2008; pp. 982–991.

28. Lobanova, A. The Anatomy of Antonymy: A Corpus-Driven Approach; University of Groningen: Groningen,
The Netherlands, 2012.

29. Yih, W.t.; Zweig, G.; Platt, J.C. Polarity inducing latent semantic analysis. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning;
Association for Computational Linguistics: Stroudsburg, PA, USA, 2012; pp. 1212–1222.

30. Mohammad, S.M.; Dorr, B.J.; Hirst, G.; Turney, P.D. Computing lexical contrast. Comput. Linguist. 2013, 39,
555–590. [CrossRef]

251

Appl. Sci. 2020, 10, 4386

31. Chang, K.W.; Yih, W.t.; Meek, C. Multi-relational latent semantic analysis. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, Seattle, WA, USA, 18–21 October 2013;
pp. 1602–1612.

32. Zhang, J.; Salwen, J.; Glass, M.; Gliozzo, A. Word semantic representations using bayesian probabilistic
tensor factorization. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1522–1531.

33. Santus, E.; Lu, Q.; Lenci, A.; Huang, C.R. Taking antonymy mask off in vector space. In Proceedings of the
28th Pacific Asia Conference on Language, Information and Computing, Phuket, Thailand, 12–14 December
2014; pp. 135–144.

34. Ono, M.; Miwa, M.; Sasaki, Y. Word embedding-based antonym detection using thesauri and distributional
information. In Proceedings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Denver, CO, USA, 31 May–5 June 2015;
pp. 984–989.

35. Nguyen, K.A.; im Walde, S.S.; Vu, N.T. Integrating Distributional Lexical Contrast into Word Embeddings
for Antonym-Synonym Distinction. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), Berlin, Germany, 7–12 August 2016.

36. Li, L.; Qin, B.; Liu, T. Contradiction detection with contradiction-specific word embedding. Algorithms 2017,
10, 59. [CrossRef]

37. Zahran, M.A.; Magooda, A.; Mahgoub, A.Y.; Raafat, H.; Rashwan, M.; Atyia, A. Word representations in
vector space and their applications for arabic. In International Conference on Intelligent Text Processing and
Computational Linguistics; Springer: New York, NY, USA, 2015; pp. 430–443.

38. Soliman, A.B.; Eissa, K.; El-Beltagy, S.R. Aravec: A set of arabic word embedding models for use in arabic
nlp. Procedia Comput. Sci. 2017, 117, 256–265. [CrossRef]

39. Mihalcea, R.; Radev, D. Graph-Based Natural Language Processing and Information Retrieval; Cambridge
University Press: Cambridge, UK, 2011.

40. Venkatesh, S.S. The Theory of Probability: Explorations and Applications; Cambridge University Press:
Cambridge, UK, 2013.

41. NetworkX Developers. 2015. Available online: https://networkx.github.io/documentation/networkx-1.10/
(accessed on 4 July 2019).

42. Smart Words—A Handpicked Collection of Gems of the English Language. Available online: http://www.
smart-words.org/list-of-synonyms/ (accessed on 4 July 2019).

43. Power Thesaurus. Available online: https://www.powerthesaurus.org (accessed on 4 July 2019).
44. Princeton University “About WordNet”. 2010. Available online: https://wordnet.princeton.edu/ (accessed

on 4 July 2019).
45. 100 Examples of Antonyms. Available online: https://www.powerthesaurus.org/100_examples_of_

antonyms (accessed on 23 July 2018).
46. List 24-Synonyms. Available online: http://myenglishgrammar.com/list-24-synonyms.html (accessed on

23 July 2019).
47. Course Hero.docx-SYNONYMS. Available online: https://www.coursehero.com/file/38484777/course-

herodocx/ (accessed on 23 July 2019).
48. Synonyms for the 96 Most Commonly Used Words in English. Available online: https://justenglish.me/

2014/04/18/synonyms-for-the-96-most-commonly-used-words-in-english/ (accessed on 23 July 2019).
49. List 23-Antonyms. Available online: http://myenglishgrammar.com/list-23-antonyms.html (accessed on 23

July 2019).
50. Fry, E.B.; Kress, J.E. The Reading Teacher’s Book of Lists; John Wiley & Sons: New York, NY, USA, 2012;

Volume 55.
51. List of 30 Antonyms You Should Know. Available online: https://www.indiatoday.in/education-today/

grammar-vocabulary/story/antonyms-264084-2015-09-21 (accessed on 23 July 2018).
52. Common Opposites-Antonyms Vocabulary Word List. Available online: https://www.enchantedlearning.

com/wordlist/opposites.shtml (accessed on 23 July 2018).
53. Antonym Word List. Available online: http://slplessonplans.com/files/antonymlist.pdf (accessed on 23

July 2018).

252

Appl. Sci. 2020, 10, 4386

54. Thesaurus.com. The World’s Favorite Online Thesaurus! 2013. Available online: https://www.thesaurus.
com/ (accessed on 4 July 2019).

55. Michael Fogleman: Random Phrases. Available online: https://www.michaelfogleman.com/phrases/
(accessed on 4 July 2019).

56. Miller, G.A.; Charles, W.G. Contextual correlates of semantic similarity. Lang. Cogn. Process. 1991, 6, 1–28.
[CrossRef]

57. Rubenstein, H.; Goodenough, J.B. Contextual correlates of synonymy. Commun. ACM 1965, 8, 627–633.
[CrossRef]

58. Finkelstein, L.; Gabrilovich, E.; Matias, Y.; Rivlin, E.; Solan, Z.; Wolfman, G.; Ruppin, E. Placing search in
context: The concept revisited. ACM Trans. Inf. Syst. 2002, 20, 116–131.

59. Li, Q.; Li, S.; Zhang, S.; Hu, J.; Hu, J. A Review of Text Corpus-Based Tourism Big Data Mining. Appl. Sci.
2019, 9, 3300. [CrossRef]

60. Liu, J. [dataset] 515K Hotel Reviews Data in Europe. Available online: https://www.kaggle.com/jiashenliu/
515k-hotel-reviews-data-in-europe (accessed on 12 October 2019).

61. Rizkallah, S.; Atiya, A.; Shaheen, S. Learning Spherical Word Vectors for Opinion Mining and Applying on
Hotel Reviews. Work. Pap. 2020.

62. Busygin, S. A new trust region technique for the maximum weight clique problem. Discret. Appl. Math. 2006,
154, 2080–2096. [CrossRef]

63. Busygin, S.; Butenko, S.; Pardalos, P.M. A heuristic for the maximum independent set problem based on
optimization of a quadratic over a sphere. J. Comb. Optim. 2002, 6, 287–297. [CrossRef]

64. Hager, W.W. Minimizing a quadratic over a sphere. Siam J. Optim. 2001, 12, 188–208. [CrossRef]
65. Forsythe, G.E.; Golub, G.H. On the stationary values of a second-degree polynomial on the unit sphere.

J. Soc. Ind. Appl. Math. 1965, 13, 1050–1068. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

253

applied
sciences

Article

Improving Sentence Retrieval Using
Sequence Similarity

Ivan Boban 1,* , Alen Doko 2 and Sven Gotovac 3

1 Faculty of Mechanical Engineering, Computing and Electrical Engineering, University of Mostar,
Mostar 88000, Bosnia and Herzegovina

2 Institute for Software Technology, German Aerospace Center, 28199 Bremen, Germany; alen.doko@dlr.de
3 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split,

21000 Split, Croatia; sven.gotovac@fesb.hr
* Correspondence: ivan.boban@hotmail.com or ivan.boban@student.fsre.ba; Tel.: +387-63-484-395

Received: 1 June 2020; Accepted: 19 June 2020; Published: 23 June 2020

Abstract: Sentence retrieval is an information retrieval technique that aims to find sentences
corresponding to an information need. It is used for tasks like question answering (QA) or novelty
detection. Since it is similar to document retrieval but with a smaller unit of retrieval, methods
for document retrieval are also used for sentence retrieval like term frequency—inverse document
frequency (TF-IDF), BM25, and language modeling-based methods. The effect of partial matching of
words to sentence retrieval is an issue that has not been analyzed. We think that there is a substantial
potential for the improvement of sentence retrieval methods if we consider this approach. We adapted
TF-ISF, BM25, and language modeling-based methods to test the partial matching of terms through
combining sentence retrieval with sequence similarity, which allows matching of words that are
similar but not identical. All tests were conducted using data from the novelty tracks of the Text
Retrieval Conference (TREC). The scope of this paper was to find out if such approach is generally
beneficial to sentence retrieval. However, we did not examine in depth how partial matching helps or
hinders the finding of relevant sentences.

Keywords: sentence retrieval; TF−ISF; BM25; language modeling; partial match; sequence similarity

1. Introduction

Information retrieval involves finding material (e.g., documents) of an unstructured nature
(e.g., text), that satisfies an information need from within large collections [1]. Information retrieval
systems generally consist of an index of documents and a query provided by the user [2]. Information
retrieval systems should rank documents by their relevance after processing the documents. When the
information retrieval system receives the query from the user, a system aims to provide documents
from within the collection that are relevant to an arbitrary user information need [1].

Sentence retrieval is similar to document retrieval but with smaller unit of retrieval [3]. Sentence
retrieval is defined as the task of acquiring relevant sentences as a response to a query, question,
or reference sentence [2]. It can be used in various ways to simplify the end user task of finding the right
information from document collections [4]. One of the first and most successful methods for sentence
retrieval is the term frequency—inverse sentence frequency (TF-ISF) method, which is an adaptation
of the term frequency—inverse document frequency (TF-IDF) method to sentence retrieval [3,5]. Also,
BM25 and language modeling-based methods are used for sentence retrieval where the sentence is the
unit of retrieval [6].

In this paper, we thoroughly tested the effect of partial matching of terms to sentence retrieval.
Text matching was the basis for each natural language processing task [7,8].

255

Appl. Sci. 2020, 10, 4316

We tested the TF-ISF, BM25, and language modeling-based method with sequence similarity
presented as the partial matching of words.

For the testing and evaluation of new methods, data of the Text Retrieval Conference (TREC)
novelty tracks [9–11] were used as a standard test collection for the sentence retrieval methods.

Many different information retrieval methods are used for sentence retrieval. These methods are
always document retrieval methods which are adapted for sentences. Contrary to document retrieval,
when implementing sentence retrieval, no processing is implemented that allows the non-exact or
partial matching of words. We think that taking the partial matching of words into account has a great
potential to improve sentence retrieval, especially when taking into account how little information a
sentence contains and that every clue about the relevance of the sentence can be precious. The remainder
of this paper is organized as follows. Previous work is shown in Section 2. The research objectives
are presented in Section 3. New methods, experiments, and results are presented in Sections 4 and 5,
respectively, and the conclusion is given in Section 6.

2. Previous Research

Sentence retrieval is similar to document retrieval, and sentence retrieval methods are usually
simple adaptations of document retrieval methods where sentences are treated as documents [3,6].
The sentence retrieval task consists of finding relevant sentences from a document base which has
been given a query [6].

Generally, when it comes to information retrieval, the TF-IDF method is still very much present
today. For example, the authors of [12] presented a text document search system on distributed
high-performance information systems, where initial document weighting was performed using the
TF-IDF method. The weighting of text by the TF-IDF method, or the assignment of weight to each
linguistic concept in comments from social networks, has also been described by the authors of [13].

The authors of [14] presented two different techniques (BM25 and TF-IDF) to extract the keywords
from data collection using Twitter. TF-IDF has also been also used for novelty detection in news
events [15]. TF-IDF is widely used for text pre-processing and feature engineering [13]. There have
also been attempts to outperform TF-IDF. For example, the authors of [16] presented a Phrase-Based
document similarity, which effectively outperformed term-based TF-IDF. The authors of [17] proposed
a refined TF-IDF method, called TA TF-IDF, for calculating the weights of hot terms. The vector-space
model is one of the most commonly used models for documents and sentence retrieval [2]. The authors
of [18] proposed a method of analyzing patent texts based on the vector space model, with the features
of patent texts being excluded. Using the proposed algorithm, the authors of [19] calculated the
distance between document and topics, and then each document was represented as a vector.

When it comes to sentence retrieval, TF-ISF (the sentence retrieval variation of the TF-IDF method)
is one of the first and most widely used methods for sentence retrieval [5]. TF-ISF has been shown to
outperform other methods, like BM25-based methods and methods based on language modeling [5,20].
The sentences are represented as a collection of unique words with the weights of words that appear
in the selected sentence [21]. The second method popularly used with sentence retrieval is query
probability [2,6]. There have been multiple attempts to improve the standard TF-ISF method, which
include analyzing the context in the form of a document and the previous, following, or current
sentences [6]. The authors of [22] analyzed the effectiveness of contextual information for answer
sentence selection.

In our research, we adapted tree standard retrieval models, TF-ISF, BM25 and the language
modeling-based method, to improve sentence retrieval using the partial matching of words.

3. Research Objective

The aim of the research was to determine whether and to what extent the partial matching of words
(terms between the query q and the sentence s) influences the performance of methods for sentence
retrieval. The influence of partial matching of words were presented by experimental results on three

256

Appl. Sci. 2020, 10, 4316

ranking models: TF-ISF, BM25 and the language modeling-based method. Sequence similarity is
a technique which allows matching of terms that are similar but not identical. By testing sequence
similarity, we intend to add some weight to the question of whether or not it is generally profitable to
use partial matching of terms for sentence retrieval.

In large, our research hypothesis was that the partial matching of words improves of sentence
retrieval methods.

4. Partial Match of Terms Using Sequence Similarity

The bulk of sentence retrieval methods proposed in the literature are adaptations of standard
retrieval models, such as TF-IDF, BM25, the language modeling-based method, where the sentence is
the unit of retrieval [6].

In this work, we showed sentence retrieval using sequence similarity and presented the
experimental results on three ranking models: TF-ISF (based on vector space model), BM25, and the
language modeling-based methods. All three models were adapted in such a way to allow us to test
the partial matching of terms.

4.1. TF-ISF Method with Sentence Retrieval

One of the first and most successful methods for sentence retrieval is the TF-ISF defined as [4,5,23]:

TF-ISF(s, q) =
∑

t∈q
log

(
t ft,q + 1

)
log(t ft,s + 1)log

(
n + 1

0.5 + s ft

)
(1)

The TF-ISF method assess relevance of sentence s with regard to query q, where

• s ft is the number of sentences in which the term t appears,
• n is the number of sentences in the collection,
• t ft,q is number of appearances of the term t in a query q, and
• t ft,s is number of appearances of the term t in a sentence s.

4.2. BM25 Model with Sentence Retrieval

The BM25 model uses document ranking, and this model can also be used for sentence retrieval.
The ranking function of the BM25 method used to sentence retrieval is defined as [6]:

BM25(s, q) =
∑

t∈q
log

N − s f (t) + 0.5
s f (t) + 0.5

· (k1 + 1)c(t, s)

k1
[
(1− b) + b |s|avsl

]
+ c(t, s)

· (k3 + 1)c(t, q)
k3 + c(t, q)

(2)

where

• N is the number of sentences in the collection,
• s f (t) is the number of sentences in which the term t appears,
• c(t, s) is the number of appearances of the term t in a sentence s,
• c(t, q) is the number of appearances of the term t in a query q,
• |s| is the sentence length,
• avsl is the average sentence length, and
• k1, k3, and b are the adjustment parameters.

257

Appl. Sci. 2020, 10, 4316

4.3. Sentence Retrieval with Language Model (LM)

The language modeling-based method (language mode) for document retrieval can be applied
analogously to sentence retrieval. The probability of a query q given the sentence s can then be
estimated using the standard LM approach [6]:

LM(q, s) =
∏

t∈q
P(t|s)c(t,q) (3)

P(t|s) = c(t, s)
|s| (4)

where

• c(t, s) is number of appearances of the term t in a sentence s, and
• |s| is the sentence length.

One of the most commonly used methods when it comes to sentence retrieval is Dirichlet
smoothing, which, when applied to Method (3), gives:

LM(q, s) =
∏

t∈q

c(t, s) + µP(t)
|s|+ µ (5)

where

• c(t, s) is the number of appearances of the term t in a sentence s,
• |s| is the sentence length,
• µ is the parameter that control the amount of smoothing, and
• P(t) can be calculated using the maximum likelihood estimator of the term in a large collection:

p(t, C) (where C is the collection) [6].

In the previous literature, previously presented ranking functions were combined with data
pre-processing and stop word removal. Removing stop words is generally considered to be useful,
since stop words do not contain any information [24].

There are several methods for removing stop words, which have been presented by the authors
of [25]. Some papers [26] have also proposed time efficient methods. The method we used in this
paper is based on a previously compiled list of words. The performance of functions was tested in its
basic form with stop word removal.

4.4. Sentence Retrieval Using Sequence Similarity

When it comes to the effect of sequence similarity on sentence retrieval, we made use of the
contextual similarity functions presented by the authors of [27]. This procedure enabled us to match of
terms that were not identical but similar. Through analyzing the equation for the assessment of the
common context by the authors of [27], we concluded that the same analogy could be used to find out
if a certain term from query q and a certain term from sentence s share a common subsequence.

In Reference [27], the formula δ(N, M) determines the appearance of subsequence N in a sequence
M. We can define the formula δ(q, s) analogous to the formula from Reference [27], with query q
(instead of subsequence in [27]) and sentence s (instead of sequence M in [27]) as follows:

δ(q, s) =
|q|∑

i=1

|q|∑

j=i

∣∣∣qi j ∩ s
∣∣∣ (6)

where

258

Appl. Sci. 2020, 10, 4316

• qi j presents subsequence of sequence s.

If sequence s does not contain the subsequence qi j, there is no need to check for qi(j + 1) [27].
When the sequence q is a subsequence of s, the δ(q, s) = 1.
Furthermore, we have to extend Formula (6) to include the normalization parameter Tσ that

is given in work [27]. This solves the measurement problem that appears when larger sequences
that have more subsequences are more similar than the sequences with shorter lengths, which is not
correct [27]. In other words, Tσ is the coefficient which represents the total score that can be achieved
under the assumption that the first sequence is a proper subsequence of the second, or N ⊆M [27].
After including the normalization parameter Tσ, we obtained:

δ(q, s) =
1

Tσ

|q|∑

i=1

|q|∑

j=i

∣∣∣qi j ∩ s
∣∣∣ (7)

where

• Tσ is the normalization parameter.

The importance of a word depends on its frequency inside its sentence [28] or the number of times
a particular word occurs in the sentence [29]. However, the exact matching of terms was used, and the
partial matching where words are similar but not identical was not considered. The assumption is that
instead of the total matching, the existing methods for sentence retrieval can be improved through
partial matching between subsequences and sequences, or in other words, between the term from the
query and the term from the sentence.

In Equations (1), (2), and (5), t ft,s and c(t, s) represent the number of appearances of term t in the
sentence s. Here, too, the exact matching of terms was used.

If instead of using the parameter t ft,s in the method TF-ISF(s, q), and c(t, s) in method BM25(s, q)
and LM(q, s), we define the parameters t ft,s (partial) and c(t, s)(partial) which are also defined using the
method δ(q, s), we can define t ft,s (partial) and c(t, s)(partial) parameters as follows:

sim(t, s)partial =
1

Tσ

|t|∑

i=1

|s|∑

j=i

∣∣∣ti j ∩ s
∣∣∣ (8)

where

• ti j presents subsequence of sequence s (term t from the query as a subsequence of term from the
sentence s as a sequence.

To include the partial matching of terms, we took all defined ranking functions and replaced t ft,s
and c(t, s) with sim(t, s)partial, and defined a new ranking functions for all three ranking models.

We further optimized all of the formulas to only consider terms that already appeared in both the
query and sentence or t ∈ q∩ s. The assumption is that if we have a minimum of one match between
the query and the sentence, it is more probable that additional matches in other terms between the
query and the sentence could be found using the sequence similarity.

New ranking functions have been defined in their final form, which assesses the relevancy of
the sentences regarding the query q, and considers the partial match of the term t from the query in
relation to the terms from the sentence (Equations (9)–(11)):

TF-ISFpartial(t,s)(s, q) =
∑

t∈q∩s

log
(
t ft,q + 1

)
log

(
sim(t, s)partial + 1

)
log

(
n + 1

0.5 + s ft

)
(9)

BM25partial(t,s)(s, q) =
∑

t∈q∩s

log
N − s f (t) + 0, 5

s f (t) + 0, 5
·

(k1 + 1) sim(t, s)partial

k1
[
(1− b) + b |s|avsl

]
+ sim(t, s)partial

· (k3 + 1)c(t, q)
k3 + c(t, q)

(10)

259

Appl. Sci. 2020, 10, 4316

LMpartial(t,s)(q, s) =
∏

t∈q∩s

sim(t, s)partial + µP(t)

|s|+ µ (11)

where

• t ∈ q∩ s is the postulate that only terms that are in the query and in the sentence are considered.
In this case, there was a minimum of at least one match of the terms from the query and from
the sentence.

To repeat the point of the new ranking functions, it considers the total match of the query term
and sentence term, as defined by the parameter t ft,s and c(t, s) in the ranking functions TF-ISF (s, q),
BM25(s, q), and LM(q, s).

The new ranking functions also consider additional appearances of terms from the query as the
subsequence of terms from the sentence.

We denoted the new methods and their ranking function as shown in the Table 1.

Table 1. Overview of all sentence retrieval methods tested in this paper.

Method Ranking Function

TF-ISF TF-ISF(s, q)
TF-ISFpart TF-ISFpartial(t,s) (s, q)

BM25 BM25(s, q)
BM25part BM25partial(t,s) (s, q)

LM LM(q, s)
LMpart LMpartial(t,s) (q, s)

5. Experiments and Results

The experiment was conducted using data from the novelty tracks of the Text Retrieval Conference
(TREC). There were three TREC novelty tracks in the years from 2002 to 2004: TREC 2002, TREC
2003, and TREC 2004 [9–11]. The task was novelty detection, which consists of two subtasks: Finding
relevant sentences and finding novel sentences. Our experiment was entirely focused on sentence
retrieval, which represents the first task of novelty detection. Three data collections were used, each
consisting of 50 topics (queries) and 25 documents per topic, with multiple sentences (Table 2) [30].

Table 2. Description of dataset characteristics.

Name of the
Collection

Number of Topics
(Queries)

Number of Documents
per Topic

Number of
Sentences

TREC 2002 50 25 57,792
TREC 2003 50 25 39,820
TREC 2004 50 25 52,447

When it comes to TREC topics, it must be emphasized that each one has a title, a description,
and narrative. These three parts represent three versions of the same query but with different lengths.
The title is the shortest query and narrative the longest. In our tests, we used the shortest version called
“title.” Figure 1 depicts the title of topic N1 from TREC 2003.

260

Appl. Sci. 2020, 10, 4316

Appl. Sci. 2020, 10, 4316 6 of 11

To repeat the point of the new ranking functions, it considers the total match of the query term
and sentence term, as defined by the parameter 𝑡𝑓௧,௦ and 𝑐(𝑡, 𝑠) in the ranking functions TF-ISF (𝑠, 𝑞), BM25(𝑠, 𝑞), and LM(𝑞, 𝑠).

The new ranking functions also consider additional appearances of terms from the query as the
subsequence of terms from the sentence.

We denoted the new methods and their ranking function as shown in the Table 1.

Table 1. Overview of all sentence retrieval methods tested in this paper.

Method Ranking Function TF-ISF TF-ISF(𝑠, 𝑞) TF-ISF௧ TF-ISF௧(,ೞ)(𝑠, 𝑞) BM25 BM25(𝑠, 𝑞) BM25௧ BM25௧(,ೞ)(𝑠, 𝑞) LM LM(𝑞, 𝑠) LM௧ LM௧(,ೞ)(𝑞, 𝑠)

5. Experiments and Results

The experiment was conducted using data from the novelty tracks of the Text Retrieval
Conference (TREC). There were three TREC novelty tracks in the years from 2002 to 2004: TREC 2002,
TREC 2003, and TREC 2004 [9–11]. The task was novelty detection, which consists of two subtasks:
Finding relevant sentences and finding novel sentences. Our experiment was entirely focused on
sentence retrieval, which represents the first task of novelty detection. Three data collections were
used, each consisting of 50 topics (queries) and 25 documents per topic, with multiple sentences
(Table 2) [30].

Table 2. Description of dataset characteristics.

Name of the
Collection

Number of Topics
(Queries)

Number of Documents
per Topic

Number of
Sentences

TREC 2002 50 25 57,792
TREC 2003 50 25 39,820
TREC 2004 50 25 52,447

When it comes to TREC topics, it must be emphasized that each one has a title, a description, and
narrative. These three parts represent three versions of the same query but with different lengths. The
title is the shortest query and narrative the longest. In our tests, we used the shortest version called
“title.” Figure 1 depicts the title of topic N1 from TREC 2003.

Figure 1. Example of query from Text Retrieval Conference (TREC) 2003 novelty track.

Every query was executed on 25 documents. Each of the documents consisted of multiple
sentences as described in Table 2. Each sentence was marked with a beginning and ending tag. Each

Figure 1. Example of query from Text Retrieval Conference (TREC) 2003 novelty track.

Every query was executed on 25 documents. Each of the documents consisted of multiple
sentences as described in Table 2. Each sentence was marked with a beginning and ending tag. Each
sentence had a number. Figure 2 shows an extract form document NYT19980629.0465 with sentence
number 11.

Appl. Sci. 2020, 10, 4316 7 of 11

sentence had a number. Figure 2 shows an extract form document NYT19980629.0465 with sentence
number 11.

Figure 2. Example of the sentence part within the document from TREC 2003 novelty track.

Each TREC data collection also contains a list of relevant sentences. Figure 3 depicts an excerpt
from the list of relevant sentences of TREC 2003.

The marked line in Figure 3 defines sentence 11 from the document NYT19980629.0465 as
relevant to the topic (query) N1 (“partial birth abortion ban”).

Figure 3. An excerpt in the dataset that contains a list of relevant sentences.

To test whether the new methods provide better sentence retrieval results than the existing
methods, we compared the performances of the new methods in relation to the existing methods
(baseline methods) using the following standard measures: P@10, the MAP, and the R-precision [1,6].

The precision at x or P@x can be defined as:

𝑃@𝑥൫𝑞൯ = number of relevant sentences within top 𝑥 retrieved𝑥 (12)

The P@10 values shown in this paper refer to average P@10 for 50 queries [30].
R-precision can be defined as [1]: 𝑅 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑟|𝑅𝑒𝑙| (13)

where

• |Rel| is the number of relevant sentences to the query, and
• R is the number of relevant sentences in top |Rel| sentences of the result.

The R-precision values shown in this paper are (analogous to P@10) averages for 50 queries [30].
The Mean Average Precision and R-precision gave similar results and were used to test high

recall. High recall means it is more important to find all of the relevant sentences, even if it means
searching through many sentences including many that are nonrelevant. Meanwhile, P@10 is used
for testing precision [30].

In terms of information retrieval, precision means it is more important to get only relevant
sentences than finding all of the relevant sentence [30].

Figure 2. Example of the sentence part within the document from TREC 2003 novelty track.

Each TREC data collection also contains a list of relevant sentences. Figure 3 depicts an excerpt
from the list of relevant sentences of TREC 2003.

Appl. Sci. 2020, 10, 4316 7 of 11

sentence had a number. Figure 2 shows an extract form document NYT19980629.0465 with sentence
number 11.

Figure 2. Example of the sentence part within the document from TREC 2003 novelty track.

Each TREC data collection also contains a list of relevant sentences. Figure 3 depicts an excerpt
from the list of relevant sentences of TREC 2003.

The marked line in Figure 3 defines sentence 11 from the document NYT19980629.0465 as
relevant to the topic (query) N1 (“partial birth abortion ban”).

Figure 3. An excerpt in the dataset that contains a list of relevant sentences.

To test whether the new methods provide better sentence retrieval results than the existing
methods, we compared the performances of the new methods in relation to the existing methods
(baseline methods) using the following standard measures: P@10, the MAP, and the R-precision [1,6].

The precision at x or P@x can be defined as:

𝑃@𝑥൫𝑞൯ = number of relevant sentences within top 𝑥 retrieved𝑥 (12)

The P@10 values shown in this paper refer to average P@10 for 50 queries [30].
R-precision can be defined as [1]: 𝑅 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑟|𝑅𝑒𝑙| (13)

where

• |Rel| is the number of relevant sentences to the query, and
• R is the number of relevant sentences in top |Rel| sentences of the result.

The R-precision values shown in this paper are (analogous to P@10) averages for 50 queries [30].
The Mean Average Precision and R-precision gave similar results and were used to test high

recall. High recall means it is more important to find all of the relevant sentences, even if it means
searching through many sentences including many that are nonrelevant. Meanwhile, P@10 is used
for testing precision [30].

In terms of information retrieval, precision means it is more important to get only relevant
sentences than finding all of the relevant sentence [30].

Figure 3. An excerpt in the dataset that contains a list of relevant sentences.

The marked line in Figure 3 defines sentence 11 from the document NYT19980629.0465 as relevant
to the topic (query) N1 (“partial birth abortion ban”).

To test whether the new methods provide better sentence retrieval results than the existing
methods, we compared the performances of the new methods in relation to the existing methods
(baseline methods) using the following standard measures: P@10, the MAP, and the R-precision [1,6].

261

Appl. Sci. 2020, 10, 4316

The precision at x or P@x can be defined as:

P@x
(
q j
)
=

number of relevant sentences
within top x retrieved

x
(12)

The P@10 values shown in this paper refer to average P@10 for 50 queries [30].
R-precision can be defined as [1]:

R− precision =
r
|Rel| (13)

where

• |Rel| is the number of relevant sentences to the query, and
• R is the number of relevant sentences in top |Rel| sentences of the result.

The R-precision values shown in this paper are (analogous to P@10) averages for 50 queries [30].
The Mean Average Precision and R-precision gave similar results and were used to test high recall.

High recall means it is more important to find all of the relevant sentences, even if it means searching
through many sentences including many that are nonrelevant. Meanwhile, P@10 is used for testing
precision [30].

In terms of information retrieval, precision means it is more important to get only relevant
sentences than finding all of the relevant sentence [30].

To compare the difference between methods, we used a two-tailed paired t-test with a significance
level of α = 0.05 [4]. The results of our tests are presented in tabular form.

Statistically significant differences in relation to the baseline methods are marked with a (*).
In each of the tested methods, we used stop word removal as pre-processing step.
Table 3 shows the results of our tests on two different versions of the TF-ISF method using TRECs

2002, 2003, and 2004.

Table 3. Test results of methods TF-ISF and TF-ISFpart.

Data Collection Measures TF-ISF TF-ISFpart

TREC 2002
P@10 0.304 0.32
MAP 0.196 * 0.204

R-prec. 0.245 0.250

TREC 2003
P@10 0.692 0.714
MAP 0.576 * 0.591

R-prec. 0.547 * 0.560

TREC 2004
P@10 0.434 0.468
MAP 0.324 * 0.335

R-prec. 0.336 * 0.355

* Statistically significant differences in relation to the baseline methods.

.
Table 3 shows that the TF-ISFpart methods provided better results and statistically significant

differences in relation to the base TF-ISF method when the MAP measures was used in all three
collections, and R-prec. in TREC 2003 and TREC 2004 collection. Better results were not achieved
when using the P@10 measures.

Table 4 shows the results of our tests on two different versions of the BM25 model using TRECs
2002, 2003, and 2004.

262

Appl. Sci. 2020, 10, 4316

Table 4. Test results of methods BM25 and BM25part (k1 = 1.5, b = 0.75, k3 = 0).

Data Collection Measures BM BMpart

TREC 2002
P@10 0.142 * 0.33
MAP 0.105 * 0.209

R-prec. 0.097 * 0.255

TREC 2003
P@10 0.628 * 0.75
MAP 0.464 * 0.601

R-prec. 0.4281 * 0.565

TREC 2004
P@10 0.366 * 0.472
MAP 0.242 * 0.342

R-prec. 0.236 * 0.363

* Statistically significant differences in relation to the baseline methods.

The parameters settings for the BM25 model were k1 = 1.5, b = 0.75, k3 = 0.
Table 4 shows that the BM25part method (method using sequence similarity) provided better results

and statistically significant differences in relation to the base method in all measures and collections.
Table 5 shows the results of our tests on two different version of the LM model using TREC

collections from 2002, 2003, and 2004. The parameter settings for LM were µ = 100.

Table 5. Test results of methods LM and LMpart (µ = 100).

Data Collection Measures LM LMpart

TREC 2002
P@10 0.268 * 0.356
MAP 0.170 * 0.207

R-prec. 0.215 * 0.250

TREC 2003
P@10 0.71 0.7
MAP 0.528 * 0.597

R-prec. 0.501 * 0.567

TREC 2004
P@10 0.388 * 0.458
MAP 0.287 * 0.334

R-prec. 0.306 * 0.355

* Statistically significant differences in relation to the baseline methods.

Table 5 shows that the LMpart method, as well the BM25part method, provided better results and
statistically significant differences in relation to the base method in all measures and collections, except
for the P@10 measures for TREC 2003 collection.

6. Conclusions

In this paper, we thoroughly tested sentence retrieval with sequence similarity, which allowed us to
match words that were similar but not identical. We tested sentence retrieval methods with the partial
matching of terms using TREC data. We adapted TF-ISF, BM25 and the language modeling-based
method to test the partial matching of terms using sequence similarity.

We found out that the partial matching of terms using sequence similarity can benefit sentence
retrieval in all three tested collection. We showed the benefits of partial matching using sequence
similarity through statistically significant better results.

The reason for the better position of the sentence when we used adapted methods using sequence
similarity is the additional matching of terms between the query q and the sentence s.

We conclude that partial matching of words is beneficial when combined with sentence retrieval.
However, we did not analyze whether some nonrelevant sentences were falsely high ranked. Therefore,
future research will include a thorough analyses of the effect of the partial matching of words on
sentence retrieval. Future research will also include experiments using pre-processing methods, such
as stemming and lemmatization or some other technique.

263

Appl. Sci. 2020, 10, 4316

Author Contributions: Conceptualization, I.B. and A.D.; methodology, I.B. and A.D. and S.G.; software, I.B. and
A.D.; validation, A.D. and S.G.; formal analysis, I.B.; investigation, I.B.; resources, I.B. and A.D.; data curation, I.B.
and A.D.; writing—original draft preparation, I.B.; writing—review and editing, I.B. and A.D.; visualization, I.B.;
supervision, S.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Manning, C.D.; Raghavan, P.; Schutze, H. Introduction to Information Retrieval; Cambridge University Press:
Cambridge, UK, 2008.

2. Murdock, V.G. Aspects of Sentence Retrieval. Ph.D. Thesis, University of Massachussetts, Amherst, MA,
USA, 2006.

3. Doko, A.; Štula, M.; Seric, L. Using TF-ISF with Local Context to Generate an Owl Document Representation
for Sentence Retrieval. Comput. Sci. Eng. Int. J. 2015, 5, 1–15. [CrossRef]

4. Doko, A.; Štula, M.; Seric, L. Improved sentence retrieval using local context and sentence length. Inf. Process.
Manag. 2013, 49, 1301–1312. [CrossRef]

5. Allan, J.; Wade, C.; Bolivar, A. Retrieval and novelty detection at the sentence level. In Proceedings of the
26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval
-SIGIR ’03, Toronto, ON, Canada, 28 July–1 August 2003.

6. Fernández, R.T.; Losada, D.E.; Azzopardi, L. Extending the language modeling framework for sentence
retrieval to include local context. Inf. Retr. 2010, 14, 355–389. [CrossRef]

7. Agarwal, B.; Ramampiaro, H.; Langseth, H.; Ruocco, M. A deep network model for paraphrase detection in
short text messages. Inf. Process. Manag. 2018, 54, 922–937. [CrossRef]

8. Kenter, T.; de Rijke, M. Short Text Similarity with Word Embeddings. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management—CIKM ’15, Melbourne, Australia,
19–23 October 2015.

9. Harman, D. Overview of the TREC 2002 novelty track. In Proceedings of the Eleventh Text Retrieval
Conference (TREC), Gaithersburg, MD, USA, 19–22 November 2002.

10. Soboroff, I.; Harman, D. Overview of the TREC 2003 novelty track. In Proceedings of the Twelfth Text
Retrieval Conference (TREC), Gaithersburg, MD, USA, 18–21 November 2003.

11. Soboroff, I. Overview of the TREC 2004 novelty track. In Proceedings of the Thirteenth Text Retrieval
Conference (TREC), Gaithersburg, MD, USA, 16–19 November 2004.

12. Chiranjeevi, H.; Manjula, K.S. An Text Document Retrieval System for University Support Service on a High
Performance Distributed Information System. In Proceedings of the 2019 IEEE 4th International Conference
on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 12–15 April 2019.

13. Yahav, I.; Shehory, O.; Schwartz, D.G. Comments Mining With TF-IDF: The Inherent Bias and Its Removal.
IEEE Trans. Knowl. Data Eng. 2018, 31, 437–450. [CrossRef]

14. Kadhim, A.I. Term Weighting for Feature Extraction on Twitter: A Comparison between BM25 and TF-IDF.
In Proceedings of the 2019 International Conference on Advanced Science and Engineering (ICOASE),
Zakho-Duhok, Iraq, 2–4 April 2019.

15. Fu, X.; Ch’Ng, E.; Aickelin, U.; Zhang, L. An Improved System for Sentence-level Novelty Detection in
Textual Streams. SSRN Electron. J. 2015. [CrossRef]

16. Niyigena, P.; Zuping, Z.; Khuhro, M.A.; Hanyurwimfura, D. Efficient Document Similarity Detection Using
Weighted Phrase Indexing. Int. J. Multimedia Ubiquitous Eng. 2016, 11, 231–244. [CrossRef]

17. Zhu, Z.; Liang, J.; Li, D.; Yu, H.; Liu, G. Hot Topic Detection Based on a Refined TF-IDF Algorithm. IEEE Access
2019, 7, 26996–27007. [CrossRef]

18. Lei, L.; Qi, J.; Zheng, K. Patent Analytics Based on Feature Vector Space Model: A Case of IoT. IEEE Access
2019, 7, 45705–45715. [CrossRef]

19. Xue, M. A Text Retrieval Algorithm Based on the Hybrid LDA and Word2Vec Model. In Proceedings of the
2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha,
China, 12–13 January 2019.

264

Appl. Sci. 2020, 10, 4316

20. Losada, D.E.; Fernández, R.T. Highly frequent terms and sentence retrieval. In International Symposium on
String Processing and Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2007; pp. 217–228.

21. Sharaff, A.; Shrawgi, H.; Arora, P.; Verma, A. Document Summarization by Agglomerative nested
clustering approach. In Proceedings of the 2016 IEEE International Conference on Advances in Electronics,
Communication and Computer Technology (ICAECCT), Pune, India, 2–3 December 2016.

22. Tan, C.; Wei, F.; Zhou, Q.; Yang, N.; Du, B.; Lv, W.; Zhou, M. Context-Aware Answer Sentence Selection
with Hierarchical Gated Recurrent Neural Networks. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26,
540–549. [CrossRef]

23. Losada, D.E. Statistical query expansion for sentence retrieval and its effects on weak and strong queries.
Inf. Retr. 2010, 13, 485–506. [CrossRef]

24. Srividhya, V.; Anitha, R. Evaluating preprocessing techniques in text categorization. J. Comput. Sci. Appl.
2010, 47, 49–51.

25. Vijayarani, S.; Ilamathi, M.J.; Nithya, M. Preprocessing techniques for text mining-an overview. Int. J. Comput.
Sci. Commun. Netw. 2015, 5, 7–16.

26. Behera, S. Implementation of a Finite State Automaton to Recognize and Remove Stop Words in English
Text on its Retrieval. In Proceedings of the 2018 2nd International Conference on Trends in Electronics and
Informatics (ICOEI), Tirunelveli, India, 11–12 May 2018.

27. Karic, I.; Vejzovic, Z. Contextual Similarity: Quasilinear-Time Search and Comparison for Sequential
Data. In Proceedings of the 2017 International Conference on Control, Artificial Intelligence, Robotics &
Optimization (ICCAIRO), Prague, Czech Republic, 20–22 May 2017.

28. Singh, J.; Singh, G.; Singh, R.; Singh, P. Morphological evaluation and sentiment analysis of Punjabi text
using deep learning classification. J. King Saud Univ.—Comput. Inf. Sci. 2018. [CrossRef]

29. Gupta, S.; Gupta, S.K. A Hybrid Approach to Single Document Extractive Summarization. Int. J. Comput.
Sci. Mob. Comput. 2018, 7, 142–149.

30. Boban, I.; Doko, A.; Gotovac, S. Sentence Retrieval using Stemming and Lemmatization with Different
Length of the Queries. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 349–354.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

265

applied
sciences

Article

Paraphrase Identification with Lexical, Syntactic and
Sentential Encodings

Sheng Xu 1,2 , Xingfa Shen 1 , Fumiyo Fukumoto 3,* , Jiyi Li 3 ,
Yoshimi Suzuki 3 and Hiromitsu Nishizaki 3

1 School of Computer Science and Technology, Hangzhou Dianzi University, HangZhou 310018, China ;
181050042@hdu.edu.cn (S.X.); shenxf@hdu.edu.cn (X.S.)

2 Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, Faculty of Engineering,
University of Yamanashi, Kofu 400-8511, Japan

3 Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu 400-8511, Japan;
jyli@yamanashi.ac.jp (J.L.); ysuzuki@yamanashi.ac.jp (Y.S.); hnishi@yamanashi.ac.jp (H.N.)

* Correspondence: fukumoto@yamanashi.ac.jp; Tel.: +81-55-220-8509

Received: 30 April 2020; Accepted: 9 June 2020; Published: 16 June 2020

Abstract: Paraphrase identification has been one of the major topics in Natural Language Processing
(NLP). However, how to interpret a diversity of contexts such as lexical and semantic information
within a sentence as relevant features is still an open problem. This paper addresses the problem
and presents an approach for leveraging contextual features with a neural-based learning model.
Our Lexical, Syntactic, and Sentential Encodings (LSSE) learning model incorporates Relational
Graph Convolutional Networks (R-GCNs) to make use of different features from local contexts,
i.e., word encoding, position encoding, and full dependency structures. By utilizing the hidden
states obtained by the R-GCNs as well as lexical and sentential encodings by Bidirectional
Encoder Representations from Transformers (BERT), our model learns the contextual similarity
between sentences effectively. The experimental results by using the two benchmark datasets,
Microsoft Research Paraphrase Corpus (MRPC) and Quora Question Pairs (QQP) show that the
improvement compared with the baseline, BERT sentential encodings model, was 1.7% F1-score on
MRPC and 1.0% F1-score on QQP. Moreover, we verified that the combination of position encoding
and syntactic features contributes to performance improvement.

Keywords: paraphrase identification; encodings, R-GCNs; BERT; contextual features

1. Introduction

Paraphrase identification is the task to identify whether a pair of sentences is a paraphrase or
not. It is highly related to the task of semantic textual similarity to measure the degree of semantic
equivalence between two sentences and has been an interest as it is necessary to accomplish most NLP
tasks such as question answering, information retrieval, textual entailment, and text summarization.
With a recent surge of interest in neural networks, paraphrase identification based on deep learning
techniques has been intensively studied. These attempts include Convolutional Neural Networks
(CNNs) based model [1,2], Long Short-Term Memory (LSTM) [3], Bidirectional-LSTM (BiLSTM) [4],
and gated recurrent averaging [5]. It enables us to utilize the contexts of the target sentences which
are powerful for learning features from the training data. Despite some successes, the approaches
explored so far rely on word sequence, not making use of different aspects of contexts simultaneously.
Several efforts have been made to utilize different representations of the contexts. One attempt is
pre-trained contextualized word/sentence representations [5–11]. They have been successfully applied
to many NLP tasks, while they explicitly rely on not syntax but the sequential context of words by
utilizing a large volume of data.

267

Appl. Sci. 2020, 10, 4144

Motivated by the previous work mentioned in the above, we incorporate several contextual
features into a unified framework, Relational Graph Convolutional Networks (R-GCNs) [12–14].
Consider the two sentences from the MRPC data shown in Figure 1. These two sentences are an
example of non-paraphrase sentence pair. Adjacent words such as “Hong” “Kong” and “South” “Korea”
marked with blue indicate compound nouns and those marked with red such as “0.2–0.4” “percent”
and “0.3” “percent” show numeric modifiers. These sentences have different contents/meanings,
while there exist many overlapping words such as “Australia”, “Singapore”, “flat” and “percent”.
The relative position information marked with blue and red is good indicators to discriminate whether
these sentences are a paraphrase or not. Similarly, in the top sentence, “Korea” modifies “lost” with
the nsubj (nominal subject) relation type, while in the second sentence, “Korea” modifies “added” with
the nsubj relation type. This syntactic structure information also becomes clues that these sentences are
not a paraphrase.

Our R-GCNs model integrates different features: (i) word encoding; (ii) position encoding; and (iii)
full dependency structures as syntactic encoding from a sentence. We used word encoding obtained by
Bidirectional Encoder Representations from Transformers (BERT) [11]. BERT models were pre-trained
using a large corpus of sentences. The training is done by masking a few tokens in a sentence and the
task is to predict the masked tokens. It learns to produce a powerful internal representation of words
as word embedding. Position encoding is a technique to inject information about a token’s position
within a sentence into a deep learning model. We applied the Stanford parser [15,16] to the input
sentences and obtained full dependency structures. Besides contexts with syntactic level, our Lexical,
Syntactic, and Sentential Encodings (LSSE) learning model also makes use of contextual information
with lexical and sentential levels obtained by the BERT model. Intuitively, by sharing rich contextual
features, the model can produce a more meaningful representation to identify paraphrases.

ROOT Hong Kong was flat, Australia, Singapore and South Korea lost 0.2-0.4 percent .

ROOT Australia was flat, Singapore was down 0.3 percent by midday and South Korea added 0.2 percent .

compound

nsubj

nsubj

root compound

ccomp

cop nsubj

conj

nsubj

ccconj

nsubj

nummod

dobj

cop

root

cop

nummod

nmod conj cc
conj

dobj

nummodcompound nsubj

nsubj

case

advmod

Figure 1. Non-paraphrase sentence pair from the MRPC corpus: Adjacent words such as “Hong” and
“Kong” marked with blue indicate compound nouns and those such as “0.2–0.4” and “percent” marked
with red show numeric modifiers.

The main contributions of our work can be summarized: (1) We propose a paraphrase
identification method that makes use of contextual information with lexical, syntactic, and sentential
levels; (2) We apply R-GCNs to utilize different features from local contexts; (3) The experimental
results on the two benchmark datasets show that our model is comparable to the related work,
and especially, the combination of syntactic features and position encoding contributes to performance
improvement in our method.

268

Appl. Sci. 2020, 10, 4144

2. Related Work

There is a large body of work on paragraph identification based on deep learning techniques.
The early attempts include a recursive neural network (RNN) [17], CNNs [1,18], and a tree-based
LSTM [19]. Despite some successes, techniques explored so far rely on word sequence, ignoring to
make use of different aspects of contexts simultaneously.

Several efforts have been made to handle different representations for the same sentence in
different contexts. One attempt is pre-trained contextualized language representations. Many authors
have attempted to learn contextualized language representation by pre-training a language model
with a large amount of unannotated data [7,9,20,21]. Melamud et al. proposed a method called
context2vec which learns each sense annotation in the training data by using a bidirectional LSTM
trained on an unlabeled corpus [7]. Peters et al. attempted to learn a model called Embeddings from
Language Models (ELMo) by using two-layer bidirectional LSTM [9]. More recently, sentence or
document encoders that produce contextual token representations have been processed by two steps:
pre-trained from unlabeled text and fine-tuned for a supervised downstream task. These approaches
can decrease the number of parameters to learn from scratch. One such attempt is Generative
Pre-Training (GPT-2) which enhances the context-sensitive embedding [20]. It achieved previously
state-of-the-art results in many sentence-level tasks including paraphrase identification from General
Language Understanding Evaluation (GLUE) benchmark datasets [21]. However, the attempt is based
on a left-to-right architecture. Therefore, every token can only attend to previous tokens, which may
cause an issue when we apply it to token-level downstream tasks such as question answering and
sentiment analysis.

Devlin et al. focused on the problem and presented a method, BERT, to pre-train deep bidirectional
representations from an unlabeled text by jointly conditioning on both left and right context in all
layers [11]. They adopted a Masked Language Model (MLM) by adding a next sentence prediction
task into the pre-training to learn text-pair representations and can pre-train a deep bidirectional
Transformer. Since then, BERT has realized a breakthrough in sentence representation learning which
is broadly applied to various NLP tasks including the paraphrase identification task. Lample et al.
extended the pre-training model to multiple languages and showed the effectiveness of cross-lingual
pre-training. They attempted to integrate two approaches to learn cross-lingual language models
(XLMs): the two unsupervised methods, i.e., Causal Language Modeling (CLM) and Masked Language
Modeling (MLM), and a supervised method [22]. CLM consists of a Transformer Language model
while MLM is based on the technique of Devlin et al. [11]. The supervised model, translation language
modeling (TLM) is to improve cross-lingual pre-training which is based on MLM. The common
framework related to pre-training mentioned in the above utilizes the Transformer that is the first
full-attentional mechanism for learning long-term dependency [23]. Moreover, several approaches
apply pre-trained language representation to a large variety of tasks such as named entity, semantic
closeness including paraphrase identification and discourse relations through multi-task learning
techniques [24–26].

Similar to the recent upsurge of pre-trained contextualized word/sentence representations,
graph neural networks [27] such as GCNs [12–14], R-GCNs [28], and Densely Connected GCNs [29]
have been successfully employed for many NLP tasks. Such attempts include neural machine
translation (NMT) [30,31], pronoun resolution [32], relation extraction [33], semantic role labeling [34]
and text classification [35–37]. Most of these attempts showed that the models have contributed
to improving the performance on each task, while it has so far not been used for the paraphrase
identification task. Moreover, most of them focus on one type of features, syntactic information,
and integrate them into their graph model.

269

Appl. Sci. 2020, 10, 4144

3. LSSE Learning Model

Our model leverages various contextual features obtained from the paraphrase-labeled data.
Figure 2 illustrates our Lexical, Syntactic, and Sentential Encoding (LSSE) learning framework.
The left-hand side of Figure 2 illustrates the overview of our LSSE and the right-hand side is its
corresponding flow of the input/output.

A pair of sentences

Dependency Parser,
Sentential and Lexical Encoder

Lexical
encoding

for
sentence 1

Sentential
encoding

Syntactic Encoder

Semantic Measurement Layer

Fully Connected Layer

Lexical
encoding

for
sentence2

Syntactic Encoder

Paraphrase Prediction

Depen-
dency
struc-
ture

Depen-
dency
struc-
ture

Semantic features

BERT

Stanford
Parser

...

...

R-GCNs

...

...

Semantic Measurement Layer

...Sentential
encoding

Fully Connected Layer

Output

...

...

R-GCNs

...

...

Stanford
Parser

Depen-
dency
struc-
ture

Depen-
dency
struc-
ture

Syntactic encoding Syntactic encoding

... ...
1S 2S

1+p
1+pm+p

n+p

1a ma 1a na

1x mx 1x nx

1w mw 1w nw

sv

Input

()
1

k
h

()k
mh

()
1

k
h

()k
nh

()
1 1,

k
a h

()
,

k

m ma h
()

1 1,
k

a h ()
,

k

n na h

Figure 2. LSSE learning model: S1 consisting a sequence of w1, w2, · · · , wm and S2 which consists
of w1, w2, · · · , wn are a pair of the input sentences. xi refers to a word encoding and pi indicates its
position encoding. ai ∈ Rd refers to the encoded node feature, i.e., it is obtained by summing up word

and position encodings. h(k)
i ∈ Rd is the hidden state of node vi (wi) in the k + 1-th layer.

3.1. Lexical and Sentential Contexts Learning with BERT

The contextualized word representation that we use is BERT which is a Bidirectional Transformer
model [11]. A transformer encoder computes the representation of each token through an attention
mechanism concerning the surrounding tokens.

BERT architecture consists of two steps: pre-training and fine-tuning. The pre-training BERT
model is trained on unlabeled data over different pre-training tasks. It can be easily fine-tuned
for NLP tasks by just adding a fully-connected layer. It is pre-trained by using a combination of
masked token prediction and next sentence prediction tasks. The input of the BERT is two sentences
that are concatenated by a special token [SEP]. It consists of tokens that are segmented by BERT
tokenizer using WordPiece embeddings vocabulary [38]. The representation of each token is the sum
of the corresponding token, segment, and position embeddings. The first token of every input is the
special token of [CLS], and the final hidden state corresponding to this [CLS] token is regarded as an
aggregated representation of the input sentence pair. We used this aggregated representation as our
sentential encoding of two sentences as well as each token embeddings.

270

Appl. Sci. 2020, 10, 4144

3.2. Syntactic Context Learning with R-GCNs

We utilize R-GCNs to learn syntactic context. It can capture syntactic dependency structures
naturally as well as word order because it allows the information to flow in the opposite direction of
edges. For example, the sentence in the top of Figure 1, the word “0.2–0.4” modifies the word “percent”.

Let S be a sentence and wi be the i-th absolute position word within the sentence. Let also
G = (V, E) be a directed graph, where each node vi ∈ V indicates the information of word wi, consisting
of a word encoding xi. BERT uses word pieces and not word embeddings. When wi consists of several
word pieces, we obtained the average value of all pieces corresponding to wi and set it to the wi
embeddings. and its position encoding pi shown in Figure 2. We can define a matrix A ∈ Rd×n where
each column ai ∈ Rd refers to the encoded node feature of vi, i.e., we sum up word and position
encodings as lexical encoding, ai = xi + pi. An edge from node vi to vj with a dependency relation
type (label) l ∈ L is denoted by <vi, vj, l> ∈ E, where L is a set of dependency relation types. Figure 3
illustrates dependency relations consisting of two information flows: from head to dependent and
self-loop. Self-loop is to ensure that the representation of the encoded node feature at the k + 1-th
hidden layer can also be informed by its corresponding representation at the k-th hidden layer [28].

Australia was flat and Singapore down 0.3 percent middaybywas

nsubj cop
cc

nsubj
cop

nmod

case

conj

advmod

Head to Dependent
Self-loop

self-loop

ROOT

root nummod

1
p

1
x

2
p

2
x

3
p

3
x

4
p

4
x

5
p

5
x

6
p

6
x

7
p

7
x

8
p

8
x

9
p

9
x

10
p

10
x

11
p

11
x

12
p

12
x

Figure 3. Dependency relations: “xi” and “pi” refer to the i-th word encoding and its position encoding,
respectively. Arcs indicate two types of edges: (i) head to dependent with labeled syntactic relations
such as nsubj(nominal subject) and nummod (numeric modifier); and (ii) self-loop.

The propagation model for calculating the forward-pass update of a node vi in a local graph can
be given by:

h(k+1)
i = f

∑

l∈L
∑

j∈Nl
i

(
1
cl

i
W(k)

l h(k)
j + b(k)

l

)
+ W(k)

0 h(k)
i

 , (1)

where h(k)
i ∈ Rd is the hidden state of node vi in the k-th layer of the neural network with d being

the dimensionality of the hidden representations, especially the initial value of h(0)
i equals to ai.

Nl
i refers to the set of neighbor indices of node vi under dependency label l ∈ L. cl

i shows a
normalization constant [28]. It can either be learned or chosen in advance. We empirically set cl

i

to 2 in the experiments. W(k)
l ∈ Rd×d stands for the weight matrix and b(k)

l ∈ Rd refers to the bias
vector under label l ∈ L of the k-th hidden layer. We used 32 syntactic dependency relation types
including nsubj and dobj provided by the Stanford parser for the first type of flows and their opposite
direction types which would result in having 64 (32 × 2) dependency labels. W(k)

0 ∈ Rd×d indicates
self-loop convolution weights and f refers to an activation function. We use the ReLU function.
Equation (1) shows that it accumulates transformed feature vectors of neighboring nodes which
depend on the relation type and the flow of an edge through a normalized sum. Motivated by the
method of Vashishth et al. [39], we also utilized a special gate mechanism. Our context learning model
is given by:

h(k+1)
i = f

∑

l∈L
∑

j∈Nl
i

g(k)l j ·
(

1
cl

i
W(k)

l h(k)
j + b(k)

l

)
+ W(k)

0 h(k)
i

 , (2)

271

Appl. Sci. 2020, 10, 4144

where g(k)l j is given by:

g(k)l j = σ
(

Ŵ(k)
l h(k)

j + b̂(k)
l

)
. (3)

g(k)l j is the so-called gate mechanism [34,40] which is to reduce the effect of false dependency edges.
The information from neighboring nodes may not be reliable as the dependency relations obtained by
some NLP tools are not perfect. Therefore, it needs to be down-weighted. Similar to [32,34], we use
the gate value obtained by Equation (3). σ refers to the sigmoid function so that the gate value ranging
from 0 to 1. Ŵ(k)

l ∈ Rd×d and b̂(k)
l ∈ Rd show weights and a bias for the gate under label l ∈ L of the

k-th hidden layer, respectively.
Figure 4 illustrates the R-GCNs model. The left-hand side of Figure 4 is the flow of the model

and the right-hand side shows Graph Convolution in the R-GCNs. In the Graph Convolution part
shown in the right-hand side of Figure 4, the update of a single node marked with red is computed.
Activations from neighboring nodes marked with blue are collected and transformed for each
dependency relation such as dep_1 and dep_N individually (for both “in” and “outgoing” edges).

The results marked with green, each of which corresponds to g(k)l j ·
(

1
cl

i
W(k)

l h(k)
j + b(k)

l

)
or W(k)

0 h(k)
i in

Equation (2), are accumulated and passed through an activation function (ReLU). As shown in the
left-hand side of Figure 4, in each hidden layer, the Graph Convolution is applied to update the state
of each node of the graph. The output of the R-GCNs is the last hidden layer states. For each sentence,
we applied R-GCNs.

Graph
Convolution

Graph
Convolution

Graph
Convolution

.
..

...

...
Graph

Convolution

Graph
Convolution

Graph
Convolution

.
..

...

Graph
Convolution

Graph
Convolution

Graph
Convolution

..
.

...

.
.
.

...

...

...

1st layer 2nd layer k-th layer

nsubj cc case
conjcop

...

A directed graph
 of a sentence

dep_1

dep_N

ReLU+

dep_N (in)

dep_N (out)

dep_1 (out)

dep_1 (in)

self-loopself-loop

.
.
.

.
.
.

Graph ConvolutionR-GCNs

()0
1h
()0
1h

()0
2h
()0
2h

()0
nh
()0
nh

()1
1h
()1
1h

()1
2h
()1
2h

()1
nh
()1
nh

()2
nh
()2
nh

()2
2h
()2
2h

()2
1h
()2
1h

()1
1

k−
h

()1
1

k−
h

()1
2

k−
h

()1
2

k−
h

()1k
n

−
h

()1k
n

−
h

()k
nh
()k
nh

()
2

k
h

()
2

k
h

()
1

i
h

()
1

i
h

()
2

i
h

()
2

i
h

()
3

i
h

()
3

i
h

()
1

i

n−h
()
1

i

n−h
()i
nh
()i
nh

()
1

k
h

()
1

k
h

root

 ()0,1,2,...,i k

 (k-1)-th layer

Figure 4. R-GCNs model [28]: The left-hand side is the flow of the model and the right-hand side
shows Graph Convolution in the R-GCNs.

3.3. Paraphrase Identification

Because graph convolution of the R-GCNs model is a special form of Laplacian smoothing, it mixes
the features of a node and its neighbors [41,42]. This smoothing operation makes the features of nodes
less distinguishable [32]. Therefore, when the training data is small, it often the case that it does not
work well. Adding more layers also does not work well as empirically it has been observed that the
best performance is achieved with a 2-layer model [41]. Therefore, as illustrated in the right-hand side
of Figure 2, after the hidden state hi has been learned, we concatenate the hidden state hi with the
lexical encoding ai to keep the original encoding. We obtain the syntactic encoding with the context
information aggregated, i.e., a′i = (ai, hi). The result by concatenation has a fixed length, i.e., 2×d.

272

Appl. Sci. 2020, 10, 4144

The two matrices Ms1 ∈ R2d×m and Ms2 ∈ R2d×n corresponding to each sentence S1 ∈ Rd×m and
S2 ∈ Rd×n are obtained by R-GCNs and passed to the semantic measurement layer which is shown in
Figure 5. For each of the two matrices Ms1 and Ms2 , we applied the row-based average pooling over
them and obtained two vectors, u1 and u2 ∈ R2d, respectively. We then calculate the similarity between
these vectors, i.e., for each dimension, we applied L1 distance, and obtain a similarity vector sv ∈ R2d.
The sv is further concatenated with sentential encoding obtained by BERT, and the result is passed to
the fully connected layer FC. We set the size of the output layer of the FC to two. Finally, we apply the
softmax function to obtain probabilities of two predicted labels, paraphrase or non-paraphrase, in the
output layer. The network is trained with the objective that minimizes the binary cross-entropy loss of
the predicted distributions and the actual distributions (one-hot vectors corresponding to the ground
labels) by performing Adam optimization algorithm [43].

pooling

. . .

. . .

. . .

. . .

1
a

2
a m

a

 2d

. . .

1
u

. . .

2
u

1
Ms

L1 distance

L1 distance

L1 distance

sv

pooling

pooling

pooling

. . .
. . .

. . .

. . .

1
a

2
a n

a

 2d

2
Ms

pooling

pooling

. . .

 2d

Figure 5. Semantic measurement: after the pooling operation, the similarity between sentences are
calculated by using L1 distance.

4. Experiments

4.1. Experimental Settings

We selected two benchmark datasets, Microsoft Research Paraphrase Corpus (MRPC) [44] and
Quora Question Pairs (QQP) [45]. MRPC contains 5801 pairs of sentences extracted from news on the
Internet and is annotated to capture the equivalence of paraphrase or semantic relationship between a
pair of sentences.

The QQP dataset consists of three folds: 363,870 for training data, 40,431 for validation, and 390,965
for test data. Of these, training and validation data are annotated with a binary classification indicating
whether these two questions are a paraphrase or not. We followed the method of Wang et al. [46].
More precisely, we merged training and validation data, and randomly selected 5000 paraphrases
and 5000 non-paraphrases as the test set. Table 1 illustrates some sentence pairs from MRPC and
QQP. Each data in Table 1 consists of the number of ID, two sentences and its ground labels that the
sentences are a paraphrase (1) or non-paraphrase (0).

273

Appl. Sci. 2020, 10, 4144

Table 1. Sentence pairs from MRPC and QQP datasets: Label indicates the ground-truth labels that the
sentences are paraphrase (1) or non-paraphrase (0).

Data #1 ID #2 ID #1 String #2 String Label

MRPC

2108705 2108831

Yucaipa owned Dominick’s
before selling the chain to
Safeway in 1998 for USD
2.5 billion.

Yucaipa bought Dominick’s
in 1995 for USD 693 million
and sold it Safeway for USD
1.8 billion in 1998.

0

702876 702977

Amrozi accused his brother,
whom he called “the
witness”, of deliberately
distorting his evidence.

Referring to him as only “the
witness”, Amrozi accused
his brother of deliberately
distorting his evidence.

1

QQP

364011 490273 What causes stool color to
change to yellow?

What can cause stool to
come out as little balls? 0

536040 536041 How do I control my
horny emotions?

How do you control
your horniness? 1

The paraphrase identification task is a binary classification. Given a pair of sentences,
classify them as paraphrases or not paraphrases. All the datasets are parsed by using Stanford
parser nlp.stanford.edu/software/lex-parser.shtml [16]. We utilized the BERT_base model as a
pre-training model of the lexical and sentential encodings [11] due to the environment with the
restricted computational resources. The experiments were conducted on Nvidia TITAN RTX
(24GB memory). We used the same model settings as BERT, i.e., the number of training epochs
was 3, the batch size was 8, and the number of dimensions of a word and position encoding
vectors was 768. The learning rate was 2 × 10−5 by using Adam, learning rate warmup over
the first 10,000 steps, and linear decay of the learning rate. We used a dropout probability
of 0.1 on all layers in BERT. The number of hidden layers of R-GCNs was optimized by using
Optuna https://github.com/pfnet/optuna where the range was [1, 2, 3, 4, 5, 6]. We used 10-fold
cross-validation on training data as Phang et al. pointed out that BERT performances become unstable
when a training dataset with fine-tuning is small [47]. As a result, we set the number of hidden
layers to 2 in the experiments. Following by General Language Understanding Evaluation (GLUE)
platform [21], gluebenchmark.com/tasks we used the Accuracy and/or F1-score for evaluation metrics.
Throughout the experiments using two benchmark datasets, we choose BERT sentential encodings as
a baseline model and implemented a fine-tuning approach in the same manner as with BERT [11].

4.2. Main Results

Table 2 shows the results by using MRPC data (Supplementary Materials). We can see from Table
2 that our model outperformed the baseline, BERT sentential encodings, by 2.0% accuracy and 1.8% F1
on the MRPC and 1.9% accuracy and 2.0% F1 on the QQP data. Why did our LSSE perform particularly
strong on the dataset QQP? We notice that the volume of this dataset is larger than that of the MRPC
dataset. This confirms our intuition that deep learning typically requires more training data to achieve
high performance, and our model could successfully take this advantage on the QQP dataset.

Table 2. Main result by using test dataset: Baseline shows the result obtained by BERT sentential
encodings [11]. Bold font shows the best result in each dataset.

Model
Baseline LSSE

Acc F1 Acc F1

MRPC 84.3 88.1 86.3 89.9
QQP 88.7 88.4 90.6 90.4

274

Appl. Sci. 2020, 10, 4144

Table 3 shows some examples obtained by both of the models. In Table 3, TP, FP, TN, and FN
refer to an abbreviation of true positive, false positive, true negative, and false negative, respectively.
“N” indicates the number of instances from the test data. For example “N = 70” in Table 3 shows that
the number of “LSSE(TP) and BERT(FN)”, i.e., the sentence pairs that were classified by LSSE as true
positive and classified by BERT as false negative is 70. We can see that the number of “LSSE(TP) and
BERT(FN)” is larger than that of “LSSE(FN) and BERT(TP)” in both datasets. However, the number of
“LSSE(FP) and BERT(TN)” is larger than that of “LSSE(TN) and BERT(FP)”. Most of the errors of FP
in our model are in the case that two sentences share the same contents but one sentence has more
detailed information of the other. For example in the MRPC dataset, one sentence (#1 String) includes
additional information, “private creditors”, while it is not mentioned in the second sentence (#2 String).
BERT sentential encodings is a simple paraphrase identification compared to our model. But why such
a relatively simple model leads to a better prediction for particular test data is not clear at this point.
Answering this question requires future research.

Table 3. Example sentences obtained by our LSSE and BERT model: TP, FP, TN and FN refer to an
abbreviation of true positive, false positive, true negative and false negative, respectively.

MRPC Dataset

#1 String #2 String LSSE BERT N

Licensing revenue slid 21 percent,
however, to USD 107.6 million.

License sales, a key measure of demand,
fell 21 percent to USD 107.6 million. TP FN 70

For the entire season, the average
five-day forecast track error was
259 miles, Franklin said.

The average track error for the five-day
(forecast) is 323 nautical miles. FN TP 19

By Sunday night, the fires had
blackened 277,000 acres, hundreds of
miles apart.

Major fires had burned 264,000 acres by
early last night. TN FP 36

Other countries and private creditors
are owed at least USD 80 billion in
addition.

Other countries are owed at least USD
US80 billion (USD 108.52 billion). FP TN 53

QQP Dataset

#1 String #2 String LSSE BERT N

What are the most intellectually
stimulating movies you have ever seen?

What are the most intellectually
stimulating films you have
ever watched?

TP FN 331

How do I get business ideas? How can I think of a business idea? FN TP 212

How do I remove dry paint from
my clothes?

How do I get acrylic paint out of
my clothes? TN FP 201

How do Champcash make money
from Chrome?

How do a Champcash customer make
money from Chrome? FP TN 130

We also examined how the percentage of training data affects overall performance. Figure 6
shows an F1-score against the percentage of the MRPC training data. We run ten times for each volume
of training data size except for 100% and obtained the average F1-score. Overall, the curves show that
more training data helps the performance, while the curves obtained by LSSE drop slowly compared
to the BERT sentential encodings. From the observation, we can conclude that our model works well
compared to BERT sentential encodings.

275

Appl. Sci. 2020, 10, 4144

100 90 80 70 60 50 40 30 20 10
A ratio of the training data (%)

82

84

86

88

90
F1
-s
co
re

LSSE
Baseline (BERT)

Figure 6. Performance against the percentage of the training data.

4.3. Comparison with Related Work

In MRPC dataset, we compared our model with eight related work, graph-based approach or
approaches which utilize BERT_base model to make a fair comparison. These are classified into
five types: (i) a relational graph-based approach, Str Align; (ii) BERT_base; (iii) Multi-task learning,
GenSen and ERNIE 2.0; (iv) extending BERT pre-trained model, Trans FT, and StructBERT_base;
and (v) an adversarial training algorithm, FreeLB-BERT, and its similar approach, ELECTRA.

1. Str Align

Structural Alignment (Str Align) uses a hybrid representation, attributed relational graphs to
encode lexical, syntactic and semantic information [48]. To create a relational graph, they used
token, lemma, Part-of-Speech (POS) tag, Named Entity Recognition (NER) tag, and Word2Vec
word embedding as an attribute of a node, and the dependency label by Stanford CoreNLP is
attached to the edge as an attribute. Given two attributed relational graphs, the structural aligner
generates an alignment. Then, the similarity score between the two graphs is applied to judge
whether they are equivalent or not.

2. BERT_base model

BERT is pre-train deep bidirectional representations from the unlabeled text by jointly
conditioning on both left and right context in all layers [11]. We used BERT_base model which
contains 12-layers, 12 self-attention heads and 768-dimensional of hidden size.

3. GenSen

GenSen is multi-task learning for sentence representations where a single recurrent sentence
encoder is shared across multiple tasks, i.e., multi-lingual NMT, natural language inference,
constituency parsing, and skip-thought vectors [49]. The model for multi-task learning is a
sequence-to-sequence model. We compared GenSen which utilizes BERT_base model.

4. ERNIE 2.0

Enhanced Representation through kNowledge IntEgration (ERNIE) 2.0 is a multi-task learning
model that learns pre-training tasks incrementally [25]. The architecture consists of pre-training
and fine-tuning that is the same manner as BERT models. In the process of pre-training,
ERNIE 2.0 continually construct unsupervised pre-training tasks with big data and prior
knowledge involved, and then incrementally update the model through multi-task learning.
In the fine-tuning with task-specific supervised data, the pre-trained model is applied to ten

276

Appl. Sci. 2020, 10, 4144

different NLP tasks in English and nine tasks in Chinese. We compared our model with ERNIE
2.0 using BERT_base model.

5. Trans FT

Transfer Fine-Tuning (Trans FT) is an extended model of BERT to handle phrasal paraphrase
relations. The model can generate suitable representations for semantic equivalence assessment
instead of increasing the model size [50]. The authors inject semantic relations between a
sentence pair into a pre-trained BERT model through the classification of phrasal and sentential
paraphrases. After the training, the model can be fine-tuned in the same manner as BERT models.
The model achieves improvement on downstream tasks that only have small amounts of training
datasets for fine-tuning.

6. StructBERT_base

StructBERT_base incorporates language structures into pre-training BERT_base model [51].
The architecture uses a multi-layer bidirectional Transformer network. It amplifies the ability of
the masked language model task by shuffling a certain number of tokens after token masking and
predicting the right order. To capture the relationship between sentences, StructBERT randomly
swaps the sentence order and predicts the next sentence and the previous sentence as a new
sentence prediction task. The model learns the inter-sentence structure in a bidirectional manner
as well as to capture the fine-grained word structure in every sentence. In the fine-tuning
process, the pre-trained model is applied to a wide range of downstream tasks including
GLUE benchmark, Stanford Natural Language inferences (SNLI corpus) and extractive question
answering (SQuADv1.1) with good performance.

7. FreeLB-BERT

Free-Large-Batch aims to improve the generalization of pre-trained language models such as
BERT, RoBERTAa [52], ALBERT [53] and T5 [54] by enhancing their robustness in the embedding
space during finetuning on the downstream language understanding tasks [55]. The method
adds norm-bounded adversarial perturbations to the embeddings on the input sentences by using
a gradient-based method. Their technique on embedding-based adversaries can manipulate
word embeddings which makes it produce powerful pre-trained language models. The results
achieved new state-of-the-art on GLUE and AI2 Reasoning Challenge (ARC) benchmark datasets.

8. ELECTRA-Base

“Efficiently Learning an Encoder that Classifies Token Replacements Accurately” (ELECTRA)
pre-trains the network as a discriminator that predicts for every token whether it is an original or a
replacement. The model trains two neural networks, a generator, and a discriminator. For a given
position, the discriminator predicts whether the token of this position comes from the data rather
than the generator distribution. The generator is trained to perform masked language modeling.
After pre-training, the model fine-tune the discriminator on downstream tasks. ELECTRA-Base
that we compared it with our LSSE model is pre-trained in the same manner as BERT_base model.

The results are shown in Table 4 (Supplementary Materials). We can see from Table 4 that LSSE
showed a 1.5% accuracy and 1.0% F1-score improvement over BERT_base model. Moreover, our model
is competitive for the best systems except for ELECTRA_Base, as ELECTRA_Base outperformed our
LSSE by 0.3% in accuracy. This shows that our model can leverage contextual features obtained from
the limited volume of the paraphrase-labeled data. We also compared our model with two approaches
by using the QQP dataset.

277

Appl. Sci. 2020, 10, 4144

Table 4. Comparative results with related work including state-of-the-art method: Str Align is based
on attributed relational graphs. Bold font shows the best result.

MRPC Dataset

Model Acc F1

Str Align [48] 78.3 84.9
BERT_base [11] 84.8 88.9

GenSen [49] 78.6 84.4
ERNIE 2.0 [25] 86.1 89.9
Trans FT [50] - 89.2

StructBERT_base [51] 86.1 89.9
FreeLB-BERT [55] 83.5 88.1

ELECTRA-Base [56] 86.7 -
LSSE (Our model) 86.3 89.9

1. BiMPM

A Bilateral Multi-Perspective Matching (BiMPM) model [46] encodes given two sentences with a
BiLSTM encoder and the two encoded sentences are matched two directions. In each matching
direction, each time step of one sentence is matched against all time-steps of another sentence from
multiple perspectives. Then, another BiLSTM layer is utilized to aggregate the matching results
into a fixed-length matching vector. Finally, a decision is made through a fully connected layer.
The authors reported that the experimental results on standard benchmark datasets including
QQP showed that the model achieved state-of-the-art performance on all the tasks.

2. SSE

Shortcut-Stacked Sentence Encoder Model (SSE) is a model which enhances multi-layer BiLSTM
with skip connection to avoid training error accumulation [57,58]. The input of the k-th BiLSTM
layer which is the combination of outputs from all previous layers represents the hidden state of
that layer in both directions. The final sentence embedding is the row-based max pooling over
the output of the last BiLSTM layer. The experimental results by using eight benchmark datasets
including QQP dataset shows that SSE improvs overall performance compared with the three
baselines, InferSent [59], Pairwise word interaction model [60], and the decomposable attention
model [61], especially it works well in the case that the number of training data is small.

Table 5 shows the results (Supplementary Materials). As we can be seen clearly from Table 5,
LSSE outperforms two baseline models as the improvement is 2.4∼2.8%. This indicates that our model
works well compared with the sequence model and sentence encoding model based on BiLSTM.

Table 5. Comparative restuls in accuracy by using QQP: Bold font shows the best result.

QQP Dataset

Model Acc

BiMPM [46] 88.2
SSE [58] 87.8

LSSE (Our model) 90.6

4.4. Ablation Study

We recall that our model utilizes lexical and syntactic encodings including the baseline model.
Moreover, the syntactic encoding integrates different features. We thus conducted ablation studies to
empirically examine the impact of these features/encodings. The results are shown in Table 6.

278

Appl. Sci. 2020, 10, 4144

Table 6. Ablation test: “PE” refers to position encoding and “SentE” indicates sentential encoding.
“BERT tokenE” stands for lexical encoding by BERT. “–X” indicates the result by using LSSE without “X”.
Bold font shows the best result.

MRPC Dataset

Model Acc F

LSSE (Our model) 86.3 89.9

–PE 85.3 89.0
–SentE 84.2 88.3
–SentE and –PE 83.5 88.1
–R-GCNs 85.7 89.5
–R-GCNs and –SentE 83.0 87.3
–R-GCNs and –BERT tokenE 84.3 88.1

Table 6 shows the results by using the MRPC dataset (Supplementary Materials). Overall, we can
see that integrating different features from the contexts is effective as LSSE was the best performance.
The results both without R-GCNs and BERT token encoding (–R-GCNs and –BERT TokenE) and
without R-GCNs and sentential encoding (–R-GCNs and –SentE) are worse than those without R-GCNs
(-R-GCNs). This shows that the combination of the sentential and lexical encoding is effective for
paraphrase identification.

We note that the result by “–SentE” is better than that with “–SentE and –PE”. This means that the
combination of R-GCNs output, BERT token encoding and position encoding is better than that with
only R-GCNs output and BERT token encoding. We can see a similar observation that the combination
of sentential encoding, R-GCNs output, BERT token encoding, and position encoding more works well
than that with sentential encoding, R-GCNs output, and BERT token encoding because our LSSE is
better than the result by “–PE”. From these observations, we can conclude that the combination of
syntactic features and position encoding contributes to performance improvement.

4.5. Qualitative Analysis of Errors

We performed an error analysis by using the MRPC dataset to provide feedback for further
improvement of our method. The number of false-positive and false-negative pairs of sentences was
61 and 38, respectively. These errors have occurred even though we used all the features or any
combination of these features. We found that there are mainly three types of errors.

1. Inclusion relation between sentences: As we mentioned in Table 3, this error is that two
sentences share the same contents but one sentence has more detailed information of the other.

(1) “There’s a Jeep in my parents’ yard right now that’s not theirs”, said Perry,
whose parents are vacationing in North Carolina.

(2) “There’s a Jeep in my parents’ yard right now that’s not theirs”, she said.

Sentence (1) and (2) are similar content and our model identified these sentences as paraphrases.
However, according to the Microsoft Research definitions, https://www.microsoft.com/en-
us/download/details.aspx?id=52398 these sentences should be identified as “non-paraphrase”
because the sentence (1) includes the information marked with the underlined that “Perry’s
parents are vacationing in North Carolina” and it is a significantly larger superset of the
sentence (2). We observed that 39 pairs were classified into this type.

2. Dependency relation: Dependency relation within a sentence is not correctly analyzed.
For example, in the sentence (3), “<.DDJ>” is divided into four tokens(“<”, “.”, “DDJ”, and “>”)
by BERT tokenizer. As a result, the Stanford parser incorrectly analyzed that “>” modifies
“added” with adverb modifier (advmod) relation. In total, 10 pairs of sentences were classified
into this type.

279

Appl. Sci. 2020, 10, 4144

(3) The Dow Jones industrial average <.DJI> added 28 points, or 0.27 percent, at 10,557,
hitting its highest level in 21 months.

3. Inter-sentential relations: Two sentences which have inter-sentential relations are difficult to
interpret correctly whether these sentences are paraphrase or not.

(4) British Airways’ New York-to-London runs will end in October.
(5) British Airways plans to retire its seven Concordes at the end of October.

Sentences (4) and (5) have the same sense, while different expressions such as
“New York-to-London” and “Concordes” are used and they are co-referred entities. To identify
these sentences as “paraphrases” correctly, it requires not only local dependency, i.e.,
dependency structure within a sentence but also non-local dependency between sentences.
There were nine pairs classified into this type.

Apart from these observations, we found that when the number of arcs from other nodes is
small, the performance of R-GCNs has not improved because convolution mixes the features of a
node and its neighbors. One solution is to incorporate more linguistics information such as tree-based
structure [62,63], Named Entity Recognition, and Co-Reference Resolution into our framework to
represent rich relations among nodes. This is a rich space for further exploration.

We recall that our model for lexical and sentential encodings are based on the BERT. The BERT
pre-training model, an unsupervised manner is to learn general, domain-independent knowledge.
However, most of the downstream tasks including paraphrase identification and even in the same task,
there are several domain-specific data which are collected from different genres such as MRPC and
QQP. It would be helpful to develop a good fine-tuning method in our future work.

5. Conclusions

We focused on the problem that how to interpret a diversity of context information as relevant
features and proposed an approach by leveraging a variety of features with a neural-based learning
model. For syntactic encodings, our LSSE model incorporates word encoding, position encoding,
and full dependency structures into a unified framework, R-GCNs. By utilizing the hidden states
obtained by the R-GCNs as well as lexical and sentential encodings by BERT, our model learns
contextual similarity between sentences. The experimental results by using two datasets showed
that our model attained at 86.3% accuracy and 89.9% F1-score in MRPC, and 90.6% accuracy in QQP
data which are comparable to the related work on paraphrase identification methods. Moreover,
throughout the ablation test, we found that the combination of position encoding and syntactic
features contributes to performance improvement.

There are several interesting directions for future work. We should be able to obtain further
advantages in efficacy in our syntactic embeddings obtained by the R-GCNs model. We empirically
examined that the best performance is achieved with a two-layer model, while R-GCNs with more
layers can be considered to capture richer neighborhood information of a graph. Guo et al. focused
on this problem and proposed a densely connected graph convolutional network that introduces
residual connections, dense connectivity, and graph attention techniques [29]. They reported that the
model attained at the current state-of-the-art neural models in the English–German and English–Czech
translation tasks. This is definitely worth trying with our LSSE learning model.

As we mentioned in Section 4.5, we found that more effective knowledge extraction improves the
overall performance of paraphrase identification. Our model utilized BERT_base model for lexical
and sentential encodings and applied it to two domain-specific data, MRPC and QQP. However,
the BERT pre-training model is to learn general domain-independent knowledge. In the phase of
fine-tuning, the model learns by using these domain-specific data which causes difficulty to estimate
optimal parameters. Moreover, Phang et al. reported that BERT is unstable when a training dataset

280

Appl. Sci. 2020, 10, 4144

with fine-tuning is small [47]. One approach is to develop a knowledge transfer technique which
is some empirical work along these lines in the deep learning field [64]. This is a rich space for
further exploration.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/12/4144/s1.
Tables 2, 4, 5, 6.

Author Contributions: Conceptualization, F.F., and S.X.; methodology, S.X. and F.F.; software, S.X.; validation,
S.X., F.F., X.S., and J.L.; investigation, S.X. and F.F.; writing—original draft preparation, S.X.; writing—review and
editing, F.F., X.S., J.L., Y.S., and H.N.; supervision, F.F., and X.S.; funding acquisition, F.F. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Grant-in-aid for JSPS, Grant Number 17K00299, and Support Center
for Advanced Telecommunications Technology Research, Foundation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. He, H.; Gimpel, K.; Lin, J. Multi-perspective Sentence Similarity Modeling with Convolutional Neural
Networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
Lisbon, Portugal, 17–21 September 2015; pp. 1576–1586.

2. Yin, W.; Schütze, H.; Xiang, B.; Zhou, B. ABCNN: Attention-based Convolutional Neural Network for
Modeling Sentence Pairs. Trans. Assoc. Comput. Linguist. 2016, 4, 259–272. [CrossRef]

3. Liu, P.; Qiu, X.; Huang, X. Modelling Interaction of Sentence Pair with Coupled-LSTMs. arXiv 2016,
arXiv:1605.05573.

4. Chen, Q.; Zhu, X.; Ling, Z.; Wei, S.; Jiang, H.; Inkpen, D. Enhanced LSTM for Natural Language Inference.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC,
Canada, 30 July–4 August 2017; pp. 1657–1668.

5. Wieting, J.; Gimpel, K.Revisiting Recurrent Networks for Paraphrastic Sentence Embeddings. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics,Vancouver, BC, Canada,
30 July–4 August 2017; pp. 2078–2088.

6. Wang, Y.; Huang, H.; Chong, F.; Zhou, Q.; Jiahui, G.; Xiong, G. CSE: Conceptual Sentence Embeddings
based on Attention Model. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, Berlin, Germany, 7–12 August 2016; pp. 505–515.

7. Oren, M.; Jacob, G.; Ido, D. Context2vec: Learning Generic Context Embedding with Bidirectional LSTM.
In Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, Berlin,
Germany, 11–12 August 2016; pp. 51–61.

8. Sanjeev, A.; Yingyu, L.; Tengyu, M. A Simple but Tough-to-Beat Baseline for Sentence Embeddings.
In Proceedings of the 5th International Conference on Learning Representations, Toulon, France,
24–26 April 2017.

9. Mark, N.; Mohit, I.; Matt, G.; Christopher, C.; Kenton, L.; Luke, Z. Deep Contextualized Word
Representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018;
pp. 2227–2237.

10. Cer, D.; Yang, Y.; Kong, S.; Hua, N.; Limtiaco, N.; St. John, R.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.;
Tar, C.; et al. Univeral Sentence Encoder. arXiv 2018, arXiv:1803.11175.

11. Jacob, D.; Ming-Wei, C.; Kenton, L.; Kristina, T. BERT: Pre-training on Deep Bidirectional Transfomers
for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA,
2–7 June 2019; pp. 24171–4186.

12. Michaël, D.; Xavier, B.; Pierre, V. Convolutiona Neural Networks on Graphs with Fast Localized Sectral
Filtering. In Proceedings of the 30th Conference on Neural Information Processing Systems, Barcelona,
Spain, 5–10 December 2016; pp. 3844–3852.

13. Thomas, K.; Max, W. SEMI-Supervised Classification with Graph Convolutional Networks. In Proceedings
of the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

281

Appl. Sci. 2020, 10, 4144

14. Felix, W.; Tianyi, Z.; de, S.J.A.H.; Christopher, F.; Tao, Y.; Q, W.K. Simplifying Graph Convolutional Networks.
In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June
2019; pp. 6861–6871.

15. Socher, R.; Bauer, J.; Manning, C.D.; Ng, A.Y. Parsing with Compositional Vector Grammars. In Proceedings
of the 51st Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia,
15–20 July 2018; pp. 455–465.

16. Danqi, C.; Manning, C.D. A Fast and Accurate Dependency Parser using Neural Networks. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014;
pp. 740–750.

17. Socher, R.; Huang, E.H.; Pennington, J.; Ng, A.Y.; Manning, C.D. Dynamic Pooling and Unfolding Recursive
Autoencoders for Paraphrase Detection. In Advances in Neural Information Processing Systems; The MIT press:
Cambridge, MA, USA, 2011; pp. 801–809.

18. Hu, B.; Lu, Z.; Li, H.; Chen, Q. Convolutional Neural Network Architectures for Matching Natural Language
Sentences. In Advances in Neural Information Processing Systems; The MIT press: Cambridge, MA, USA, 2015;
pp. 2042–2050.

19. Tai, K.S.; Socher, R.; Manning, C.D. Improved Semantic Representations from Tree-structured Long
Short-term Memory Networks. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics, Beijing, China, 26–31 July 2015; pp. 1556–1566.

20. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised
multitask learners. OpenAI Blog 2019, 1, 9.

21. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. GLUE: A Multi-task Benchmark and
Analysis Platform for Natural Language Understanding. arXiv 2018, arXiv:1804.07461.

22. Lample, G.; Conneau, A. Cross-lingual Language Model Pretraining. arXiv 2019, arXiv:1901.07291.
23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I.

Attention is All You Need. In Advances in Neural Information Processing Systems; The MIT press: Cambridge,
MA, USA, 2017; pp. 5998–6008.

24. Subramanian, S.; Trischler, A.; Bengio, Y.; Pal, J.C. Learning General Purpose Distributed Sentence
representations via Large Scale Multi-task Learning. In Proceedings of the 6th International Conference on
Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

25. Sun, Y.; Wang, S.; Li, Y.; Feng, S.; Tian, H.; Wu, H.; Wang, H. ERNIE 2.0: A Continual Pre-training Framework
for Language Understanding. arXiv 2019, arXiv: 1907.12412.

26. Liu, X.; He, P.; Chen, W.; Gao, J. Multi-task Deep Neural Networks for Natural Language Understanding.
arXiv 2019, arXiv:1901.11504.

27. Wu, Z.; Pan, S.; chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks.
arXiv 2019, arXiv:1901.00596.

28. Michael, S.; N, K.T.; Peter, B.; Rianne, V.D.B.; Ivan, T.; Max, W. Modeling Relational Data with Graph
Convolutional Networks. In Proceedings of the European Semantic Web Conference, Crete, Greece, 3–7 June
2018; pp. 593–607.

29. Zhijiang, G.; Yan, Z.; Zhiyang, T.; Wei, L. Densely Connected Graph Convolutional Networks for
Graph-to-Sequence Learning. Trans. Assoc. Comput. Linguist. 2019, 7, 297–312.

30. Joost, B.; Ivan, T.; Wilker, A.; Diego, M.; Khalil, S. Graph Convolutional Encoders for Syntax-aware Neural
Machine Translation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, Copenhagen, Denmark, 7–11 September 2017; pp. 1957–1967.

31. Beck, D.; Haffari, G.; Cohn, T. Graph-to-Sequence Learning using Gated Graph Neural Networks.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne,
Australia, 15–20 July 2018; pp. 273–283.

32. Yinchuan, X.; Junlin, Y. Look Again at the Syntax: Relational Graph Convolutional Network for Gendered
Ambiguous Pronoun Resolution. In Proceedings of the 1st Workshop on Gender Bias in Natural Language
Processing, Florence, Italy, 2 August 2019; pp. 99–104.

33. Zhijiang, G.; Yan, Z.; Wei, L. Attention Guided Graph Convolutional Networks for Relation Extraction.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy,
28 July–2 August 2019; pp. 241–251.

282

Appl. Sci. 2020, 10, 4144

34. Diego, M.; Ivan, T. Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen,
Denmark, 7–11 September 2017; pp. 1506–1515.

35. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of
the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 1024–1034.

36. Peter, V.; Guillem, C.; Arantxa, C.; Adriana, R.; Pietro, L.; Yoshua, B. Graph Attention Networks.
In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada,
30 April–3 May 2018.

37. Liang, Y.; Chengsheng, M.; Yuan, L. Graph Convolutional Networks for Text Classification. In Proceedings
of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
pp. 7370–7377.

38. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M. Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144.

39. Shikhar, V.; Manik, B.; Prateek, Y.; Piyush, R.; Chiranjib, B.; Partha, T. Incorporating Syntactic and Semantic
Information in Word Embeddings using Graph Convolutional Networks. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019;
pp. 3308–3318.

40. Van den Oord, A.; Kalchbrenner, N.; Espeholt, L.; Vinyals, O.; Graves, A. Conditional Image Generation
with PixelCNN Decoders. In Proceedings of the 30th Conference on Neural Information Processin System,
Barcelona, Spain, 5–10 December 2016; pp. 4790–4798.

41. Li, Q.; Han, Z.; Wu, X.M. Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning.
In Proceedings of the 32nd AAAI conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February
2018; pp. 3538–3545.

42. Yang, L.; Kang, Z.; Can, X.; Jin, D.; Yang, B.; Guo, Y. Topology Optimization based Graph Convolutional
Network. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China,
10–16 August 2019; pp. 4054–4061.

43. Kingma, D.P.; Ba, J. ADAM: A Method for Stochastic Optimization. In Proceedings of the 3rd International
Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

44. Dolan, W.B.; Brockett, C. Automatically Constructing a Corpus of Sentential Paraphrases. In Proceedings of
the Third International Workshop on Paraphrasing, Jeju Island, Korea, 14 October 2005; pp. 9–16.

45. Shankar, I.; Nikhil, D.; Kornél, C. First Quora Dataset Release: Question Pairs. 2016. Available online:
https://data.quora.com/First-Quora-Dataset-Releasee-Question-Pairs (accessed on 1 March 2020.)

46. Zhiguo, W.; Wael, H.; Radu, F. Bilateral Multi-Perspective Matching for Natural Language Sentences.
In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne,
Australia, 19–25 August 2017; pp. 4144–4150.

47. Phang, J.; Fevry, T.; Bowman, S.R. Sentence Encoders on STILTs: Supplementary Training on Intermediate
Labeled-data Tasks. arXiv 2019, arXiv: 1811.01088.

48. Liang, C.; Paritosh, P.K.; Rajendran, V.; Forbus, K.D. Learning Paraphrase Identification with Structural
Alignment. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
New York, NY, USA, 9–15 July 2016; pp. 2859–2865.

49. Subramanian, S.; Trischler, A.; Bengio, Y.; Pal, C.J. Learning General Purpose Distributed Sentence
Representations via Large Scale Multi-task Learning. arXiv 2018, arXiv:1804.00079.

50. Yuki, A.; Junichi, T. Transfer Fine-Tuning: A BERT Case Study. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, Hong Kong, China, 3–7 November 2019; pp. 5393–5404.

51. Wei, W.; Bin, B.; Ming, Y.; Chen, W.; Zuyi, B.; Liwei, P.; Luo, S. StructBERT: Incorporating Language
Structures into Pre-training for Deep Language Understanding. arXiv 2019, arXiv:1908.04577.

52. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V.
RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv: 1907.11692.

53. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In Proceedings of the 8th International Conference on Learning
Representations, Addis Ababa, Ethiopia, 26 April–1 May 2020.

283

Appl. Sci. 2020, 10, 4144

54. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv 2019, arXiv: 1910.10683.

55. Chen, Z.; Yu, C.; Zhe, G.; Siqi, S.; Thomas, G.; Jing, L. FreeLB: Enhanced Adversarial Training for Natural
Language Understanding. arXiv 2019, arXiv:1909.11764.

56. Clark, K.; Luong, M.T.; Le, Q.V.; Manning, C.D. ELECTRA: Pre-Training Text Encoders as Discriminators
Rather than Generators. In Proceedings of the 8th International Conference on Learning Representations,
Addis Ababa, Ethiopia, 26 April–1 May 2020.

57. Nie, Y.; Bansal, M. Shortcut-stacked Sentence Encoders for Multi-Domain Inference. In Proceedings of the
2nd Workshop on Evaluating Vector Space Representations for NLP, Copenhagen, Denmark, September
2017; pp. 41–45.

58. Wuwei, L.; Wei, X. Neural Network Models for Paraphrase Identification Semantic Textual Similarity
Natural Language Inference and Question Answering. In Proceedings of the 27th International Conference
on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 3890–3902.

59. Conneau, A.; Kiela, D.; Schwenk, H.; Barrault, L.; Bordes, A. Supervised Learning of Universal Sentence
Representations from Natural Language Inference Data. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; pp. 670–680.

60. He, H.; Lin, J. Pairwise Word Interaction Modeling with Deep Neural Networks for Semantic Similarity
Measurement. In Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016;
pp. 937–948.

61. Parikh, A.; Tom, O.; Das, D.; Uszkoreit, J. A Decomposable Attention Model for Natural Language Inference.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX,
USA, 1–5 November 2016; pp. 2249–2255.

62. Moschitti, A. Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees. In Proceedings
of the 17th European Conference on Machine Learning and the 10th European Conference on Principles and
Practice of Knowledge Discovery in Databases, Berlin, Germany, 18–22 September 2006; pp. 318–329.

63. Moschitti, A.; Chu-Carroll, J.; Patwardhan, S.; Fan, J.; Riccardi, G. Using Syntactic and Semantic Structural
Kernels for Classifying Definition Questions in Jeopardy! In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, Scotland, UK, 27–31 July 2011; pp. 712–724.

64. Papernot, N.; Abadi, M.; Úlfar, E.; Goodfellow, I.; Talwar, K. Semi-Supervised Knowledge Transfer for
Deep Learning from Private Training Data. In Proceedings of the International Conference on Learning
Representations, Toulon, France, 24–26 April 2017.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

284

applied
sciences

Article

A Rule-Based Approach to Embedding Techniques for
Text Document Classification

Asmaa M. Aubaid 1,2 and Alok Mishra 1,3,*
1 Department MODES, Department of Software Engineering, Atilim University, Ankara 06830, Turkey;

asmaamuhamed1971@yahoo.com
2 Ministry of Higher Education and Scientific Research, Directorates: Science and Technology, Directorate:

Information Technology, Baghdad/Al-Jadria 10070, Iraq
3 Faculty of Logistics, Molde University College (Specialized University in Logistics), 6410 Molde, Norway
* Correspondence: alok.mishra@himolde.no or alok.mishra@atilim.edu.tr

Received: 11 April 2020; Accepted: 5 June 2020; Published: 10 June 2020

Abstract: With the growth of online information and sudden expansion in the number of electronic
documents provided on websites and in electronic libraries, there is difficulty in categorizing text
documents. Therefore, a rule-based approach is a solution to this problem; the purpose of this study
is to classify documents by using a rule-based. This paper deals with the rule-based approach with
the embedding technique for a document to vector (doc2vec) files. An experiment was performed on
two data sets Reuters-21578 and the 20 Newsgroups to classify the top ten categories of these data
sets by using a document to vector rule-based (D2vecRule). Finally, this method provided us a good
classification result according to the F-measures and implementation time metrics. In conclusion, it was
observed that our algorithm document to vector rule-based (D2vecRule) was good when compared
with other algorithms such as JRip, One R, and ZeroR applied to the same Reuters-21578 dataset.

Keywords: text classification; rule-based; word embedding; Doc2vec

1. Introduction

There has been an urgency in terms of classifying the information available online in the past ten
years, prompting researchers to focus on automatic text classification (ATC). A widely used research
method for this problem depends on rule-based and embedding techniques. In the 1960s, rule-based
approaches began to emerge; however, they became more common in the 1970s and 1980s [1]. The late
1980s witnessed the formation of same-time or concurrent operations and activation of rules within
production systems, all of which carried on into the following decade. The rule-based system includes a
set of rules that can be implemented for many purposes, including the support of decision-making or for
a predictive decision in real implementations. It is possible to divide the methods of creating rules into
the categories of ‘conquer and separate’ [2] and ‘divide and conquer’ [3]. This produces categorization
rules in the intermediate form of a decision tree, such as C4.5, C5.0, and ID3 [2]. In the same manner,
ID3 is a covering technique [4] with an approach in the form of ‘if then’ rules. The structure of the
systems of rule-based methods depends on logic-specific types, such as deterministic logic, fuzzy logic,
and probabilistic logic. It can also divide the system of rule-based into the following types: systems
of fuzzy rule-based, deterministic rule-based and probabilistic rule-based and determine rule-based
systems being in the context of bases of the rule, which includes bases of modular rules, single rules,
and chained rules [5]. In practice, the task of ensemble learning may be performed in a parallel
form, in a distributed manner or on mobile platforms according to given computing environments.
Finally, rule-based systems are divided into three types, namely distributed, mobile and parallel [6].
The Reuters-21578 newswire benchmark and 20 Newsgroups are the most widely used benchmark

285

Appl. Sci. 2020, 10, 4009

corpora in the research community in the text categorization field. They can be found in comparative
studies of different approaches using flat (i.e., non-hierarchical) category systems in this corpus [7].
Hierarchical text classifiers are among the first works in this field, experiments with two classifiers on
the subset of the Reuters collection reported by Kollar and Sahami [8]. Our rule-based and embedding
models contributed to classifying the categories of Reuter’s dataset such as (Acq, Corn, Crude, Earn,
Grain, and Ship) according to their contents. The objective of this manuscript is to provide deeper
information about the performance of embedding to rule-based text classification. The main research
question to explore is how varying rule-based affects the performance of text classification and we
investigate the performance differences when combining our rules-based and one of the embedding
models such as (doc2vec) in the task of text classification on the different datasets. We will implement
many steps to acquire robust rules-based and embedding models using the Reuter 21578 and 20
Newsgroup corpora so as to make text categorization (TC) easier. Finally, Figure 1 summarizes the
essential steps for a rule-based approach.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 22

the most widely used benchmark corpora in the research community in the text categorization field.
They can be found in comparative studies of different approaches using flat (i.e., non-hierarchical)
category systems in this corpus [7]. Hierarchical text classifiers are among the first works in this field,
experiments with two classifiers on the subset of the Reuters collection reported by Kollar and Sahami
[8]. Our rule-based and embedding models contributed to classifying the categories of Reuter’s
dataset such as (Acq, Corn, Crude, Earn, Grain, and Ship) according to their contents. The objective
of this manuscript is to provide deeper information about the performance of embedding to rule-
based text classification. The main research question to explore is how varying rule-based affects the
performance of text classification and we investigate the performance differences when combining
our rules-based and one of the embedding models such as (doc2vec) in the task of text classification
on the different datasets. We will implement many steps to acquire robust rules-based and
embedding models using the Reuter 21578 and 20 Newsgroup corpora so as to make text
categorization (TC) easier. Finally, Figure 1 summarizes the essential steps for a rule-based approach.

Figure 1. Steps of rule-based processing.

2. Related Work

Various studies relating to classification have been carried out taking a number of approaches.
In classification systems, a rule-based learning approach to text categorization is utilized. Imaichi and
Yanase suggested using rule-based methods selectively depending on the nature of the information
to be extracted and make comparisons with the machine learning [9]. The model of rule-based
learning consists of a set of rules learned from data [10]. Han Liu introduced an integrated framework

Figure 1. Steps of rule-based processing.

2. Related Work

Various studies relating to classification have been carried out taking a number of approaches.
In classification systems, a rule-based learning approach to text categorization is utilized. Imaichi and
Yanase suggested using rule-based methods selectively depending on the nature of the information to
be extracted and make comparisons with the machine learning [9]. The model of rule-based learning
consists of a set of rules learned from data [10]. Han Liu introduced an integrated framework for the
design of systems of rule-based to implement missions of categorization, which included the process
of rule representation, rule generation, and rule simplification. The study stressed the importance of
the combination of different types of algorithms of rule learning techniques via ensemble learning [5].
Rule-based machine translation (RBMT) considers the unclear points pertaining to morphology and
lexicon as serious challenges. A contribution by Rios and Göhring [11] describes an approach to
resolving the forms of the morphologically ambiguous verb if a rule-based decision is not possible

286

Appl. Sci. 2020, 10, 4009

due to tagging errors or parsing. Cronin et al. developed an automated patient portal message
classifiers with the rule-based approach using natural language processing (NLP) and the bag of
words [12]. Ganglberger et al. discuss different automatic spike detection methods in order to improve
detection performance and establish a user-adjustable sensitivity parameter mainly by examining
the functioning of a rule-based system, artificial neural networks (ANNs) and random forests [13].
Accordingly, the rule-based system needed a feature selection to classify text documents. Feature
selection can be performed by following one of three approaches, i.e., filter, wrapper or embedded
approaches [14]. In this study, this depends on embedded methods to select a feature. The optimal
parameters are learned by using the embedded method to perform the feature selection approach [15].
INRA (Institut national de la recherche agronomique) and Cnrs (Centre national de la recherche
scientifique) at University Paris Saclay proposed a two-step method to normalize multi-word terms
with concepts from a domain-specific ontology. In this method, they used vector representations
of terms computed with word embedding information and hierarchical information from ontology
concepts [16]. Le and Mikolov presented word2vec and later introduced the doc2vec algorithm based
on adjusted techniques for learning how to embed texts identical to word2vec, thus turning doc2vec
into a branch of word2vec [17]. In their work, doc2vec was applied to model embedding for text
categorization. The motivation of this study was to classify text documents by taking a rule-based
approach to embedding techniques and this work will assist us in determining the acceptable methods
to follow for in-text categorization based upon measuring the related criteria. Finally, this manuscript
comprises eight sections containing all the necessary information related to the rule-based approach
using automatic text classification for the top ten categories of the Reuters-21578 and 20 Newsgroups
data sets. Then, the paper is structured as follows: Section 1 introduces the rule-based and text
classification approaches. Section 2 presents related work with the study. Section 3 explains in detail
the research methodology. Section 4 presents the data analysis and results. Section 5 discusses the
study results. Finally, Sections 6–8 provide a conclusion, future research directions and limitations

3. Materials and Methods

3.1. Embedding Methods

The presently applied rule-based with embedding technique comprises numerous factors and
is used in many applications, one being text categorization. Embedding is one of the promising
applications of unsupervised learning as well as transfer learning because embedding is induced by
the large unlabeled corpus. Embedding is used two character-level embedding models (fast text and
ELMo) and two document-level models (doc2vec and InferSent) to compare with word-level word2vec,
all in accordance to the novel approach introduced by References [18]. The rule classification system
uses the doc2vec model which is a type of the document embeddings of one of the embedding methods.
There are three types of embedding: word2vec, character and doc2vec, as shown in the following.

3.1.1. Word Embedding

We can define “a word embedding” as content representation such that words of similar meaning
also receive the same representation. This method deals with representing documents and words
and it may be seen as one of the keys in the procedures ahead of deep learning when testing natural
language processing (NLP) problems. Furthermore, it is a category of methodologies in which vectors
that are real-valued are used in a predefined vector space to represent single words. Every word is
determined to be a vector and the values of the vectors are discovered following a neural network
method. Later, the technique is usually grouped into a profound learning field. The key to the approach
is to use a densely dispersed representation for each word. A real-valued vector is utilized to represent
each word, frequently tens of, or many, measurements. This is divided into hundreds and thousands or
matched to larger numbers of dimensions required to represent a word, such as one-hot encoding [19].

287

Appl. Sci. 2020, 10, 4009

3.1.2. Character Embedding

Word2vec is arranged based on the character n grams in a character embedding model. As character
n grams is shared across words assuming a closed-world alphabet, these models can generate embedding
for out of vocabulary (OOV) words as well as words that occur infrequently. The two character-level
embedding patterns of fastText may be used as those appearing in References [20,21], which describe
ELMo in the following manner:

• fastText: applies a 300 dimensional model pre -rained on Common Crawl and Wikipedia
via the Continuous Bag of Words (CBOW). To generate a representation for joint multiword
expressions (MWE), fastText considers every word as whitespace delimited, taking away every
space and handling them in the form of a united compound. For instance, ‘couch potato’ becomes
‘couchpotato.’ In the case of paraphrases, it uses the same word averaging technique as word2vec.

• ELMo: utilizes the Elmo Embedder group of Python’s allennlp library, being pre trained in SNLI
and SQuAD, with a dimensionality of 1024. It is noted that the essential use case for ELMo is
implemented by generating embedding in context. However, it does not provide any context
in the input for compatibility with the other models. Thus, the benefits of the full potential of
this model are unknown. Therefore, ELMo is not suitable since the relative compositionality of a
compound is often predictable from its component words only [18], so the present study makes
use of doc2vec.

3.1.3. Document Embedding

In this study, doc2vec is a proposal for paragraph-level embedding from the research team
responsible for word2vec. It is possible to use the doc2vec approach to learn a model that can create an
embedding technique in a specific document. In contrast to some of the known used methods (such as
averaging word vectors, n gram models and bag of words (BOW)), doc2vec is public too and it can
be utilized to create embedding from any length of text. From large corpora of raw text, it can train
doc2vec in a totally unsupervised fashion. Doc2vec operates effectively once applied to represent
extended texts [22]. In this paper, doc2vec (Distributed Memory Model) is used. Doc2vec is an offset
to the present word embedding models and it is a popular method to learn word vectors. Moreover,
it can be divided into two partitions.

3.1.3.1. A Distributed Memory Model

This part of doc2vec contributes to our study; our methodology for learning doc2vec is a model
inspired by the techniques to learn the vectors of words. The inspiration is to provide a commitment
to a forecast about words following in the sentence. Although the fact that a word vector is instated
arbitrarily, as an indirect result, it can capture semantics from the forecasting task. Therefore, it will use
this idea in our doc2vec and in the identical method. The doc2vec can also help in the estimating task
of the following word since there are numerous settings that were inspected from the paragraph. In our
doc2vec framework (see Figure 2), a unique vector is mapped to every paragraph and described by a
column in matrix D for every word W. The two-word vectors and doc2vec are concatenated or averaged
to estimate the next word in a context. In the experiments, the concatenation method was used to
consolidate the vectors. The section token can be thought of as another word, and the paragraph works
as memory recalling what is absent from the subject or the setting of the section itself. For the previous
reason, the Distributed Memory Model of Paragraph Vectors (PV DM) is named doc2vec. The contexts
are fixed-length and are inspected from a sliding window over a section. The paragraph of a vector
is shared over all contexts produced from the same paragraph, but not over the paragraphs. In this
model, predicting the fourth word is possible by using the chain or the average of the related vector
along with a context of three words. The doc2vec is assumed to be the absent data from the present
context and it can function as a memory of the paragraph subject. After being trained, the doc2vec can
be utilized as vocabularies for the paragraph. In summary, the algorithm has two main stages:

288

Appl. Sci. 2020, 10, 4009

1. Training stage to acquire word vectors W, soft max weights U; b and doc2vec D on as of now
observed paragraphs.

2. The inference stage to acquire doc2vec D for new paragraphs by including more columns in
D and a gradient descending on D while holding W, U, and b fixed. D is utilized to make a
prediction about various specific labels utilizing a standard classifier [17].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 22

Vectors (PV DM) is named doc2vec. The contexts are fixed-length and are inspected from a sliding
window over a section. The paragraph of a vector is shared over all contexts produced from the same
paragraph, but not over the paragraphs. In this model, predicting the fourth word is possible by using
the chain or the average of the related vector along with a context of three words. The doc2vec is
assumed to be the absent data from the present context and it can function as a memory of the
paragraph subject. After being trained, the doc2vec can be utilized as vocabularies for the paragraph.
In summary, the algorithm has two main stages:

1. Training stage to acquire word vectors W, soft max weights U; b and doc2vec D on as of now
observed paragraphs.

2. The inference stage to acquire doc2vec D for new paragraphs by including more columns in D
and a gradient descending on D while holding W, U, and b fixed. D is utilized to make a
prediction about various specific labels utilizing a standard classifier [17].

Figure 2. Learning model for doc2vec illustrating information absent in the present context and acting
as a memory of the paragraph subject [17].

3.1.3.2. Distributed Bag of Words Model

The method described earlier involves forecasting the following words in a text window by
using a concatenation of the doc2vec by vectors. Another approach is to eliminate the context words
at the source by driving the model to estimate words sampled in any manner from the paragraph in
the output. In reality, it means that for each round of stochastic gradient descent, a text window is
examined, followed by sampling a random word from the text window and forming a classification
task given the doc2vec, as shown in Figure 3 [17].

Figure 3. Version of doc2vec with Distributed Bag of Words. Here, the doc2vec was trained to predict
the words in a small window [17].

To build the doc2vec model, the major stages of training need to be prepared and tested with a
dataset, as shown in the following.

Figure 2. Learning model for doc2vec illustrating information absent in the present context and acting
as a memory of the paragraph subject [17].

3.1.3.2. Distributed Bag of Words Model

The method described earlier involves forecasting the following words in a text window by using
a concatenation of the doc2vec by vectors. Another approach is to eliminate the context words at
the source by driving the model to estimate words sampled in any manner from the paragraph in
the output. In reality, it means that for each round of stochastic gradient descent, a text window is
examined, followed by sampling a random word from the text window and forming a classification
task given the doc2vec, as shown in Figure 3 [17].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 22

Vectors (PV DM) is named doc2vec. The contexts are fixed-length and are inspected from a sliding
window over a section. The paragraph of a vector is shared over all contexts produced from the same
paragraph, but not over the paragraphs. In this model, predicting the fourth word is possible by using
the chain or the average of the related vector along with a context of three words. The doc2vec is
assumed to be the absent data from the present context and it can function as a memory of the
paragraph subject. After being trained, the doc2vec can be utilized as vocabularies for the paragraph.
In summary, the algorithm has two main stages:

1. Training stage to acquire word vectors W, soft max weights U; b and doc2vec D on as of now
observed paragraphs.

2. The inference stage to acquire doc2vec D for new paragraphs by including more columns in D
and a gradient descending on D while holding W, U, and b fixed. D is utilized to make a
prediction about various specific labels utilizing a standard classifier [17].

Figure 2. Learning model for doc2vec illustrating information absent in the present context and acting
as a memory of the paragraph subject [17].

3.1.3.2. Distributed Bag of Words Model

The method described earlier involves forecasting the following words in a text window by
using a concatenation of the doc2vec by vectors. Another approach is to eliminate the context words
at the source by driving the model to estimate words sampled in any manner from the paragraph in
the output. In reality, it means that for each round of stochastic gradient descent, a text window is
examined, followed by sampling a random word from the text window and forming a classification
task given the doc2vec, as shown in Figure 3 [17].

Figure 3. Version of doc2vec with Distributed Bag of Words. Here, the doc2vec was trained to predict
the words in a small window [17].

To build the doc2vec model, the major stages of training need to be prepared and tested with a
dataset, as shown in the following.

Figure 3. Version of doc2vec with Distributed Bag of Words. Here, the doc2vec was trained to predict
the words in a small window [17].

To build the doc2vec model, the major stages of training need to be prepared and tested with a
dataset, as shown in the following.

3.2. Data Sets

3.2.1. Data Sets Types

A dataset is defined as a collection of related, but separated, features of related data that can be
accessed individually or in combination. It can be formed and arranged into a type of data structure.
For example, a dataset may be contained in the collection of business data (identity, salaries, names,

289

Appl. Sci. 2020, 10, 4009

address, contact information, etc.). It is possible to transform a database and use it as a set of data and
we can connect the data inside it with a particular type of information. We will evaluate the doc2vec
model for our rule-based approach applied to the following two datasets.

3.2.1.1. Reuters-21578 Dataset

The Reuters Newswire in 1987 saw the emergence of documents of the Reuters-21578 collection
and this is a publically available version of the well-known Reuters-21578 “ApteMod” corpus for text
categorization. A Reuters Ltd. (S. Weinstein, S. Dobbins, and M. Topliss) and the Carnegie Group, Inc.
(M. Cellio, P. Andersen, P. Hayes, Ir. Nirenburg, and L. Knecht) collected and indexed these documents
according to certain categories. The Reuters-21578 collection is distributed in 22 files. Each of the first
21 files (reut2-000.sgm through reut2-020.sgm) contains 1000 documents, while the last (reut2-021.sgm)
contains 578 documents. The files are in SGML format. Rather than going into the details of the
SGML language, it is described how the SGML tags are used to divide each file, and each document,
into sections. Each of the 22 files begins with a document type declaration line: <!DOCTYPE lewis
SYSTEM “lewis.DTD”>The documents of Reuters-21578 are divided into training and test sets. Each
document has five-category tags, namely, TOPICS, PLACES, PEOPLE, ORGS, and EXCHANGES. Each
category has the number of topics that are used for a document, but in this study focuses on the TOPIC
category only.

3.2.1.2. 20 Newsgroups Dataset

About 20,000 newsgroup documents are collected in the 20 Newsgroups dataset and these
documents are partitioned (almost) equally into 20 separate newsgroups. The data are organized
into 20 different newsgroups, each corresponding to a different topic. Some of the newsgroups
are very closely related to each other (including newsgroups such as comp.sys.mac.hardware
and comp.sys.ibm.pc.hardware), while others are highly unrelated (including newsgroups such
as misc.forsale and soc.religion.christian) [23].

3.2.2. Pre-Processing Data Sets

Pre-Processing is an important step for initializing the text, it takes an amount of processing time.
Pre-Processing includes several steps such as tokenization, punctuation, stop and stop words.

3.2.2.1. Tokenizing

Tokenizing is a process of cutting the input text into pieces of words/tokens by remembering
the sequence in the text that is in the tokenization and simultaneously discarding specific characters,
such as punctuation [24]. Tokenizing is defined as the process of breaking down documents into words
or terms called tokens. An entire text is lowercased when all the punctuation is removed and when
applying the process of tokenization [25].

3.2.2.2. Punctuation

Defined as a set of marks, they are used to make sentences flow smoothly and express meaning
accurately. These marks determine the place of pause or provide a signifying feeling to our words.
Punctuation makes sentences pure by breaking ideas. Moreover, the punctuation points quotes,
out titles and other main parts of the language. Finally, punctuation is vital in any text, necessitating
their introduction. Examples include “,”, “!”, “?”, “*”.

3.2.2.3. Stop Word Removal

One important step in text classification is to eliminate stop words. A stop word is defined as a
list of commonly used words that have an important function in a text but no meaning. A stop word in
a text is removed to reduce noise terms, and as a result, the keyword remains [26]. Stop words are

290

Appl. Sci. 2020, 10, 4009

common words occurring in most documents, such as “the,” “and,” “from,” “are,” “to,” etc. They are
required to apply this processing because these stop words cannot decide the category of the document
in the categorization system [25].

3.2.2.4. Stemming

When acquiring information, stemming changes a word form to its root by means of specific
principles related to the target language [27]. This is vital due to the presence of affixes, which consist
of prefixes, infixes, suffixes, and confixes (combinations of prefixes and suffixes) in derived words [28].
Stemming is a process of reducing the terms to their roots. For example, words such as “working,”
“worker” and “worked” are reduced to “work” and “crumbling” and “crumbled” are reduced to
“crumb.” This process is used to reduce the computing time and space as different forms of words are
stemmed into a single word. In fact, this is the main advantage of this process [25].

3.3. Local Dictionary Creation

It is the role of the main dictionary to perform feature selection in text categorization with a
different set of features being selected from each category. Several studies have been conducted which
used this type of dictionary. In the local dictionary, a contrasting set of features is selected from each,
independent of the other categories, and that dictionary works to increase the speed of the classification
process for each category by selecting the most important features in that category. Table 1 introduces
the local dictionary for a number of categories in the dataset.

Table 1. Local dictionary for some categories of the dataset.

Acq Corn Crude Earn Grain Ship

dollar govern rise second govern govern
unit soybean govern unit new spokesman

relate total spokesman rate hectare new
hold office new bank china strike
place report study project credit office

commissar maize total bus soybean japan
share ton unit result total report
result union end figure unit iran
debt earth tanker debt end boat

3.4. Rule-Based Approach

The rule based approach is considered to be one of the most flexible methods by which the
black box of the process of the text classification technique can be shown. The details of a process of
classification can be observed and it can add a number of tools or new instructions to obtain good
results. The next subsections will explain the approach of rule-based in briefly.

3.4.1. Rules—Preliminary

A rule-based system is commonly comprised of a set of if then rules [29] expressed such
that there are various approaches to information representation in the area of artificial intelligence.
However, the most famous one may be in the form of if then rules defined as: “IF cause (antecedent)
THEN effect (consequent).”

1. Rules: Data are used to derive the most known symbolic representations of knowledge:

• A natural and smooth form of representation → possible search by humans and
their interpretations;

2. A standard form of the rules;
3. If “condition” then “class”;
4. Other forms: Class if conditions; conditions→ class.

291

Appl. Sci. 2020, 10, 4009

3.4.2. Rules—Formal Notations

Rule-based processes, also known as expert or generation systems represent a type of artificial
intelligence. The rules in this system are used as the learning representation for the information that is
coded into the system [30]. The expert system affects the implications of rule-based systems completely
and it copies the reasoning of human experts in explaining an information-intensive issue. Instead of
learning in a declarative, static manner as a course action of things that are valid, rule-based systems
can be considered to be knowledge that can be represented as a set of rules determining what to do or
what to conclude in various situations.

3.4.3. Structure of a Rule-Based Expert System

In the early 1970s, Simon and Newell from the University of Carnegie Mellon proposed a
production system model which is the foundation of modern rule-based expert systems [31]. The idea
of that production model was based on whenever humans applied knowledge (expressed as production
rules); they can solve any problem represented by problem-specific information. The problem-specific
information or facts in short-term memory and the production rules were stored in long-term memory.
A rule-based expert system has five components: the database, the knowledge base, the explanation
facilities, the inference engine, and the user interface [32].

3.5. Classification Methods

Classification is a data mining technique that assigns items in a set to the target class. The aim of
classification is to visualize correctly the target categories for each case in the data [33]. Three rule-based
classification methods are applied in addition to our rule-based (D2VRule) method that is taken as a
benchmarking algorithm to be studied for the Reuters-21578 and 20 Newsgroups datasets.

3.5.1. JRip (RIPPER)

This algorithm is one of the essential and most well-known. A set of rules in growing the size is
used to examine classes and a premier set of rules for each category is created using JRip (RIPPER)
with gradually reduced errors by handling all the instances of a special decision in the training data as
categories. It returns a set of rules that cover every member of that class. Therefore, it proceeds to the
next categories and does the same, repeating these processes until every category covered [34].

3.5.2. One Rule (OneR)

Abbreviated to OneR, this method uses a simple algorithm in a text classification technique to
create a decision tree with one level. From different instances, OneR can deduce simple but precise
classification rules. In spite of its simplicity, OneR is able to treat lost values and lost numeric attributes
more flexibly. The OneR algorithm generates one rule for each predictor (class) in the data. The rule
with the minimum false rate is selected by depending on the principle of one rule for each attribute in
the training data [35].

3.5.3. ZeroR

ZeroR is considered to be the simplest classification method based on the target and it disregards
all other predictors. In spite of ZeroR lacking predictability power, it is helpful in determining the
performance of a baseline as a metric for other classification methods. ZeroR constructs a hesitancy
table for the feature and selects its highest hesitancy value [36].

3.6. Evaluation Measures

The performance evaluation feature selection approaches are computed using recall (R) and
precision (P) [37].

292

Appl. Sci. 2020, 10, 4009

3.6.1. Precision

Precision is defined as a percentage of relevant documents correctly retrieved by the system
having a symbol (TP) with respect to every document relevant to humans (TP + FN) [37]:

Precision =
TP

TP + FP
=

Retrieved Relevent
Retrieved

, (1)

where

• TP (true positive) is defined as the correctly assigned number of documents to Class (i).
• FP (false positive) is defined as the incorrectly assigned number of documents to Class (i) by the

classifier but which actually does not belong to that class.

3.6.2. Recall

The percentage of relevant documents correctly retrieved by the system (TP) with respect to every
document relevant to humans is TP + FN. In other words, recall is equal to the ratio of the retrieved
relevant documents to the relevant documents [37].

Recall(R) =
TP

TP + FN
=

Retrieved Relevent
Relevent

, (2)

where:

• TN (true negative) is defined as the classifier not assigning documents to Class (i); they actually
do not belong to Class (i).

• FN (false negative) is defined as the classifier not assigning documents to Class (i); however, they
actually do belong to Class (i).

3.6.3. F-Measure

This element is defined as a global estimation of the performance of an information retrieval (IR)
system by combining measure precision (P) and recall (R) in a single measure called F-measure [37].

F−M =
2(TP)

FP + FN + 2(TP)
=

2(Retrieved Relevent)
Relevent + Retrieved + 2(Retrieved Relevent)

. (3)

3.6.4. Error Rate Inverse of Accuracy

This element is defined as a global estimation of the performance of an information retrieval (IR)
system by combining measure precision (P) and recall (R) in a single measure called F-measure [37].

Error Rate =
FP + FN

TP + TN + FP + FN
. (4)

3.6.5. Accuracy

Accuracy is defined as the percentage of documents correctly classified by the system [36]

Accuracy =
TP + TN

TP + TN + FP + FN
. (5)

4. Experiment Setup

In this section, we describe the experimental setup of a text classification system which includes
the preprocessing, documents representation, rule-based induction in addition to evaluation metrics.

293

Appl. Sci. 2020, 10, 4009

4.1. Preparing the Dataset

A collection of documents was used from the Reuters-21578 dataset (for the training dataset) and
the top ten categories were selected for the 20 Newsgroups dataset. The first step of a prepared dataset
was implemented using:

1. Tokenization
2. Punctuation
3. Stop word
4. Stemming

These approaches are explained in detail in the previous sections. Figure 4 explains the steps of
preparing a dataset for a rule-based approach.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 22

In this section, we describe the experimental setup of a text classification system which includes
the preprocessing, documents representation, rule-based induction in addition to evaluation metrics.

4.1. Preparing the Dataset

A collection of documents was used from the Reuters-21578 dataset (for the training dataset)
and the top ten categories were selected for the 20 Newsgroups dataset. The first step of a prepared
dataset was implemented using:

1. Tokenization
2. Punctuation
3. Stop word
4. Stemming

These approaches are explained in detail in the previous sections. Figure 4 explains the steps of
preparing a dataset for a rule-based approach.

Figure 4. Dataset preparation for a rule-based approach.

4.2. Rule-Based Processing (Documents Representation)

Figure 4. Dataset preparation for a rule-based approach.

4.2. Rule-Based Processing (Documents Representation)

The previous steps were necessary to begin the rule-based creation process; however, the following
sections are more important to build our rule-based by using the doc2vec approach under a titled
document to the vector rule based (D2VRule).

4.2.1. Terms Indexing

The term indexing was considered a necessary step to build the dictionary and had benefits fpr
classification processes. This dictionary was named a local dictionary; it was considered the main
dictionary to apply feature selection in text categorization. In this dictionary, a different set of features
was selected from each category. Several studies have been performed using the local dictionary
policy. In the local dictionary, a contrasting set of features was selected from each independently of the
other categories, and this dictionary helped to increase the ability of the classification process for each
category by selecting the most important terms in that category.

294

Appl. Sci. 2020, 10, 4009

4.2.2. Doc2vec Creation

In this step, the doc2vec approach was taken (explained in detail in previous sections). A doc2vec
model was built by using documents of the training dataset. This step was necessary in order to
determine the similarity between vocabularies, which were sets of familiar words in the language of a
document of a local dictionary as well as training documents to acquire important features selection
(vocabularies). These were used to classify text documents of the test corpus.

4.2.3. Computing Similarity of Vocabularies

The vocabulary was extracted from documents by training the data set such that words that were
similar or had a related meaning to other words were extracted. This can be of benefit when one
wishes to avoid repeating the same word by concentrating on the value of similarity of vocabulary
near to 1 and removing the vocabulary which has a value near to 0 (zero) by depending on a threshold
value. The procedure of similarity was performed by building a doc2vec model to prepare documents
and compute the similarity of vocabularies in a local dictionary with doc2vec itself using special
instructions in Python (most similarity).

4.2.4. Sorting of Vocabularies

The values of similarities of vocabularies were arranged according to threshold values defined as
points beyond which there was a change in the manner a program executes. In particular, the threshold
value was represented as the value of the similarity of terms in documents and by which it determined
the important words in these documents. Figure 5 presents the steps used to implement the rule.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 22

Figure 5. Steps for starting applied classification with rule-based (D2VRule).

4.3. Rule-Based Induction

Promising results can be obtained when applying our rule-based (D2VRule) to the number of
standard problems in the text classification. Therefore, to classify the objects, it is necessary for most
learning algorithms in the first step to transform these objects into a representation suitable for
concept learning. The transformation process of electronic texts is discussed in the previous section
of Part 1 and Part 2. In the D2VRule, as in other rule induction systems, it is defined as a decision rule
that is a set of Boolean clauses linked by logical (AND , OR) operators which together imply
membership in a particular class. A sequence of rules ending in a default rule with an empty set of
clauses usually builds a hypothesis of a classification. When we apply the classification process, it
can divide the core of the rules-base into two parts, with the left-hand sides of the rules being
implemented sequentially until one of them evaluates to true, and the right-hand side of the rule
being offered as the class prediction.

4.3.1. Set of Rule-Based Instructions

Text categorization was implemented by depending on a measurement metric called the feature
selection metric. Its general idea was to determine the importance of words (vocabularies) using a
measure that can remove non-informative words and retain informative words.

The following are some of the rule-based structures that will be generated for one of ten
categories:

• if ((“corn” € doc or “maiz” € doc)
• or (“wheat” € doc and “maiz” € doc)
• or (“tonn” € doc and “wheat” € doc
• and “corn” € doc))then
• category = “corn”

Figure 5. Steps for starting applied classification with rule-based (D2VRule).

295

Appl. Sci. 2020, 10, 4009

4.3. Rule-Based Induction

Promising results can be obtained when applying our rule-based (D2VRule) to the number of
standard problems in the text classification. Therefore, to classify the objects, it is necessary for most
learning algorithms in the first step to transform these objects into a representation suitable for concept
learning. The transformation process of electronic texts is discussed in the previous section of Part 1
and Part 2. In the D2VRule, as in other rule induction systems, it is defined as a decision rule that is a
set of Boolean clauses linked by logical (AND, OR) operators which together imply membership in a
particular class. A sequence of rules ending in a default rule with an empty set of clauses usually builds
a hypothesis of a classification. When we apply the classification process, it can divide the core of the
rules-base into two parts, with the left-hand sides of the rules being implemented sequentially until
one of them evaluates to true, and the right-hand side of the rule being offered as the class prediction.

4.3.1. Set of Rule-Based Instructions

Text categorization was implemented by depending on a measurement metric called the feature
selection metric. Its general idea was to determine the importance of words (vocabularies) using a
measure that can remove non-informative words and retain informative words.

The following are some of the rule-based structures that will be generated for one of ten categories:

• if ((“corn” € doc or “maiz” € doc)
• or (“wheat” € doc and “maiz” € doc)
• or (“tonn” € doc and “wheat” € doc
• and “corn” € doc))then
• category = “corn”

4.3.2. Rule-Based Evaluation

The rule-based categories were checked according to dataset categories and classification rules,
followed by evaluation measurements being computed. The evaluation measurements include:

1. Precession measurements
2. Recall measurements
3. F-Measures
4. Error rate
5. Accuracy

Examples of an induction rule and the evaluation metrics are shown in Figure 6.
Finally, it can arrange the pre-processing of our rule-based approach according to the block

diagrams in Figure 7 and build the block diagram of the rule-based technique. The following figure
shows the processing of the rule-based approach for two partitions, which was used in the text
classification technique.

296

Appl. Sci. 2020, 10, 4009

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 22

4.3.2. Rule-Based Evaluation

The rule-based categories were checked according to dataset categories and classification rules,
followed by evaluation measurements being computed. The evaluation measurements include:

1. Precession measurements
2. Recall measurements
3. F-Measures
4. Error rate
5. Accuracy

Examples of an induction rule and the evaluation metrics are shown in Figure 6.

Figure 6. Steps of classification of rule-based and evaluation metrics.

Finally, it can arrange the pre-processing of our rule-based approach according to the block
diagrams in Figure 7 and build the block diagram of the rule-based technique. The following figure
shows the processing of the rule-based approach for two partitions, which was used in the text
classification technique.

Figure 6. Steps of classification of rule-based and evaluation metrics.
Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 22

Figure 7. Rule-based approach.

5. Results

In this section, it is possible to encounter extensive investigations of precision, recall, F-measure,
error rate, and accuracy criteria. Moreover, precision and recall formulations (Equations (1)–(4)) were
used for the Reuters-21578 and 20 Newsgroups datasets to classify the top ten categories individually.
The computations were compared in order to select the acceptable method to implement the text
classification. In addition, our rule-based approach examined the acq, corn, crude, earn, grain,
interest, money-fix, ship, trade, and wheat top ten categories for the Reuters-21578 dataset. For the
20 Newsgroups dataset, our rule-based approach examined the categories of data sets.

As seen in Figures 8–12, we explored the precision, recall, F-measures, error rates, and accuracy
of a rule-based approach to classify the test documents when we selected the top ten categories of the
Reuters-21578 and 20 Newsgroups datasets.

Figure 8. Variation in the precision of the rule-based text categorization technique for the Reuters-
21578 dataset.

Figure 7. Rule-based approach.

5. Results

In this section, it is possible to encounter extensive investigations of precision, recall, F-measure,
error rate, and accuracy criteria. Moreover, precision and recall formulations (Equations (1)–(4)) were
used for the Reuters-21578 and 20 Newsgroups datasets to classify the top ten categories individually.
The computations were compared in order to select the acceptable method to implement the text
classification. In addition, our rule-based approach examined the acq, corn, crude, earn, grain,
interest, money-fix, ship, trade, and wheat top ten categories for the Reuters-21578 dataset. For the 20
Newsgroups dataset, our rule-based approach examined the categories of data sets.

297

Appl. Sci. 2020, 10, 4009

As seen in Figures 8–12, we explored the precision, recall, F-measures, error rates, and accuracy of
a rule-based approach to classify the test documents when we selected the top ten categories of the
Reuters-21578 and 20 Newsgroups datasets.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 22

Figure 7. Rule-based approach.

5. Results

In this section, it is possible to encounter extensive investigations of precision, recall, F-measure,
error rate, and accuracy criteria. Moreover, precision and recall formulations (Equations (1)–(4)) were
used for the Reuters-21578 and 20 Newsgroups datasets to classify the top ten categories individually.
The computations were compared in order to select the acceptable method to implement the text
classification. In addition, our rule-based approach examined the acq, corn, crude, earn, grain,
interest, money-fix, ship, trade, and wheat top ten categories for the Reuters-21578 dataset. For the
20 Newsgroups dataset, our rule-based approach examined the categories of data sets.

As seen in Figures 8–12, we explored the precision, recall, F-measures, error rates, and accuracy
of a rule-based approach to classify the test documents when we selected the top ten categories of the
Reuters-21578 and 20 Newsgroups datasets.

Figure 8. Variation in the precision of the rule-based text categorization technique for the Reuters-
21578 dataset.

Figure 8. Variation in the precision of the rule-based text categorization technique for the
Reuters-21578 dataset.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 22

Figure 7. Rule-based approach.

5. Results

In this section, it is possible to encounter extensive investigations of precision, recall, F-measure,
error rate, and accuracy criteria. Moreover, precision and recall formulations (Equations (1)–(4)) were
used for the Reuters-21578 and 20 Newsgroups datasets to classify the top ten categories individually.
The computations were compared in order to select the acceptable method to implement the text
classification. In addition, our rule-based approach examined the acq, corn, crude, earn, grain,
interest, money-fix, ship, trade, and wheat top ten categories for the Reuters-21578 dataset. For the
20 Newsgroups dataset, our rule-based approach examined the categories of data sets.

As seen in Figures 8–12, we explored the precision, recall, F-measures, error rates, and accuracy
of a rule-based approach to classify the test documents when we selected the top ten categories of the
Reuters-21578 and 20 Newsgroups datasets.

Figure 8. Variation in the precision of the rule-based text categorization technique for the Reuters-
21578 dataset.

Figure 9. Variation in the recall of the rule-based text categorization technique for the Reuters
21587 dataset.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 22

Figure 9. Variation in the recall of the rule-based text categorization technique for the Reuters 21587
dataset.

Figure 10. Variation in F-measures of the rule-based text categorization technique for the Reuters-
21578.

Figure 11. Performance measures of the rule-based classifier for the Reuters-21578 dataset.

Figure 12. Performance of the rule-based text categorization technique for the Reuters-21578 dataset.

As shown in Figures 13–18, we explored the precision, recall, and accuracy of a rule-based
approach to classify the test documents when we selected the top ten categories of the 20 Newsgroup
dataset.

Figure 10. Variation in F-measures of the rule-based text categorization technique for the Reuters-21578.

298

Appl. Sci. 2020, 10, 4009

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 22

Figure 9. Variation in the recall of the rule-based text categorization technique for the Reuters 21587
dataset.

Figure 10. Variation in F-measures of the rule-based text categorization technique for the Reuters-
21578.

Figure 11. Performance measures of the rule-based classifier for the Reuters-21578 dataset.

Figure 12. Performance of the rule-based text categorization technique for the Reuters-21578 dataset.

As shown in Figures 13–18, we explored the precision, recall, and accuracy of a rule-based
approach to classify the test documents when we selected the top ten categories of the 20 Newsgroup
dataset.

Figure 11. Performance measures of the rule-based classifier for the Reuters-21578 dataset.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 22

Figure 9. Variation in the recall of the rule-based text categorization technique for the Reuters 21587
dataset.

Figure 10. Variation in F-measures of the rule-based text categorization technique for the Reuters-
21578.

Figure 11. Performance measures of the rule-based classifier for the Reuters-21578 dataset.

Figure 12. Performance of the rule-based text categorization technique for the Reuters-21578 dataset.

As shown in Figures 13–18, we explored the precision, recall, and accuracy of a rule-based
approach to classify the test documents when we selected the top ten categories of the 20 Newsgroup
dataset.

Figure 12. Performance of the rule-based text categorization technique for the Reuters-21578 dataset.

As shown in Figures 13–18, we explored the precision, recall, and accuracy of a rule-based approach
to classify the test documents when we selected the top ten categories of the 20 Newsgroup dataset.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 22

Figure 13. Variation in the precision of the rule-based text categorization technique for the 20
Newsgroups dataset.

Figure 14. Variation in the recall of the rule-based text categorization technique for the 20
Newsgroups dataset.

Figure 15. Variation in the F-measures of the rule-based text categorization technique for the 20
Newsgroups dataset.

Figure 13. Variation in the precision of the rule-based text categorization technique for the 20
Newsgroups dataset.

299

Appl. Sci. 2020, 10, 4009

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 22

Figure 13. Variation in the precision of the rule-based text categorization technique for the 20
Newsgroups dataset.

Figure 14. Variation in the recall of the rule-based text categorization technique for the 20
Newsgroups dataset.

Figure 15. Variation in the F-measures of the rule-based text categorization technique for the 20
Newsgroups dataset.

Figure 14. Variation in the recall of the rule-based text categorization technique for the 20
Newsgroups dataset.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 22

Figure 13. Variation in the precision of the rule-based text categorization technique for the 20
Newsgroups dataset.

Figure 14. Variation in the recall of the rule-based text categorization technique for the 20
Newsgroups dataset.

Figure 15. Variation in the F-measures of the rule-based text categorization technique for the 20
Newsgroups dataset.

Figure 15. Variation in the F-measures of the rule-based text categorization technique for the 20
Newsgroups dataset.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 22

Figure 13. Variation in the precision of the rule-based text categorization technique for the 20
Newsgroups dataset.

Figure 14. Variation in the recall of the rule-based text categorization technique for the 20
Newsgroups dataset.

Figure 15. Variation in the F-measures of the rule-based text categorization technique for the 20
Newsgroups dataset.

Figure 16. Performance measures of the rule-based classifier for the 20 Newsgroups dataset.

300

Appl. Sci. 2020, 10, 4009

Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 22

Figure 16. Performance measures of the rule-based classifier for the 20 Newsgroups dataset.

Figure 17. Performance of the text categorization system technique for the 20 Newsgroups dataset.

Figure 18. Comparison of performance results using the rule-based text categorization technique
applied to different categories within the Reuters-21578 and 20 Newsgroups datasets.

Finally, when the rules for JRip, OneR and ZeroR were applied to the Reuters-21578 dataset, we
obtained F-measures and accuracy metrics of 0.713–0.752, 0.506–0.598 and 0.219–0.39 for JRip, OneR
and ZeroR, respectively. Table 2 introduces the comparison measurements among three rule-based
classification methods, and the precision and recall of the system were averaged by using the micro-
average method.

Table 2. Shows the comparison of the metrics among JRip, OneR, and ZeroR on the Reuters-21578
dataset.

It Parameters D2VRule JRip OneR ZeroR
1 Precision 79 70.4 48.4 15.2
2 Recall 75 75.9 59.8 39.0
3 F-Measure 76.75 71.3 50.6 21.9
4 Accuracy 90.72 75.2 59.8 39

6. Discussion

The development of computer technologies, rule-based techniques, and automatic learning
techniques can make information retrieval technology easier and more efficient. There exist many
approaches to decision-making, such as rule-based and artificial neural networks. The rule-based
approach is considered one of the most flexible methods by which the black box of the process of text
classification techniques can be shown. The details of a process of classification can be seen and it can
add some tools or new instructions to obtain good results. All preprocessing on two datasets
(Reuters-21578 and 20 Newsgroups) is implemented using the Python programming language, an
open-source tools framework, and a document-level embedding (doc2vec) technique to represent

Figure 17. Performance of the text categorization system technique for the 20 Newsgroups dataset.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 22

Figure 16. Performance measures of the rule-based classifier for the 20 Newsgroups dataset.

Figure 17. Performance of the text categorization system technique for the 20 Newsgroups dataset.

Figure 18. Comparison of performance results using the rule-based text categorization technique
applied to different categories within the Reuters-21578 and 20 Newsgroups datasets.

Finally, when the rules for JRip, OneR and ZeroR were applied to the Reuters-21578 dataset, we
obtained F-measures and accuracy metrics of 0.713–0.752, 0.506–0.598 and 0.219–0.39 for JRip, OneR
and ZeroR, respectively. Table 2 introduces the comparison measurements among three rule-based
classification methods, and the precision and recall of the system were averaged by using the micro-
average method.

Table 2. Shows the comparison of the metrics among JRip, OneR, and ZeroR on the Reuters-21578
dataset.

It Parameters D2VRule JRip OneR ZeroR
1 Precision 79 70.4 48.4 15.2
2 Recall 75 75.9 59.8 39.0
3 F-Measure 76.75 71.3 50.6 21.9
4 Accuracy 90.72 75.2 59.8 39

6. Discussion

The development of computer technologies, rule-based techniques, and automatic learning
techniques can make information retrieval technology easier and more efficient. There exist many
approaches to decision-making, such as rule-based and artificial neural networks. The rule-based
approach is considered one of the most flexible methods by which the black box of the process of text
classification techniques can be shown. The details of a process of classification can be seen and it can
add some tools or new instructions to obtain good results. All preprocessing on two datasets
(Reuters-21578 and 20 Newsgroups) is implemented using the Python programming language, an
open-source tools framework, and a document-level embedding (doc2vec) technique to represent

Figure 18. Comparison of performance results using the rule-based text categorization technique
applied to different categories within the Reuters-21578 and 20 Newsgroups datasets.

Finally, when the rules for JRip, OneR and ZeroR were applied to the Reuters-21578 dataset,
we obtained F-measures and accuracy metrics of 0.713–0.752, 0.506–0.598 and 0.219–0.39 for JRip,
OneR and ZeroR, respectively. Table 2 introduces the comparison measurements among three
rule-based classification methods, and the precision and recall of the system were averaged by using
the micro-average method.

Table 2. Shows the comparison of the metrics among JRip, OneR, and ZeroR on the Reuters-21578 dataset.

It Parameters D2VRule JRip OneR ZeroR

1 Precision 79 70.4 48.4 15.2
2 Recall 75 75.9 59.8 39.0
3 F-Measure 76.75 71.3 50.6 21.9
4 Accuracy 90.72 75.2 59.8 39

6. Discussion

The development of computer technologies, rule-based techniques, and automatic learning
techniques can make information retrieval technology easier and more efficient. There exist many
approaches to decision-making, such as rule-based and artificial neural networks. The rule-based
approach is considered one of the most flexible methods by which the black box of the process of
text classification techniques can be shown. The details of a process of classification can be seen
and it can add some tools or new instructions to obtain good results. All preprocessing on two
datasets (Reuters-21578 and 20 Newsgroups) is implemented using the Python programming language,
an open-source tools framework, and a document-level embedding (doc2vec) technique to represent

301

Appl. Sci. 2020, 10, 4009

text documents being used, which appears to be more effective in the preparation of data. In addition,
the rule-based approach would support the classification approach by improving the recall, precision
and accuracy measurements of classification.

A suitable vocabulary (informative words) is selected according to the following criteria:

1. The highest value of similarity of the feature
2. The highest numbers of the term frequency (numbers of repetitions of important words

in documents)
3. Highest numbers of document frequency (number of documents including the feature)

The recall, precision, F-measures, error rate and accuracy are obtained according to a suitable
choice of vocabulary selection. It is clear that there are precision and other metrics evaluations in a
rule-based approach to classify categories of test datasets affected by the above criteria. According to
Ligęza [29], symbolic rules are some of the most popular knowledge representation and reasoning
methods. Therefore, we have many reasons to view the rule-based approach as superior to other
approaches. Firstly, for the naturalness of expression, expert knowledge can be used as guiding rules.
Secondly, we have modularity, in which the rules-based approach can be considered an independent
method. Thirdly, the restriction of syntax allows the construction of rules and checking of consistency
using other programs [38]. Fourthly, it is a compact representation of general knowledge; it can easily
form the representation of general knowledge about a problem. Fifthly, the provision of explanations
is represented by the ability of the rule-based approach to provide explanations for any derived
conclusions in a direct manner, which is considered to be a vital feature [39]. The information extraction
techniques of the rule-based approach have been used effectively in commercial systems and are
favored because they are easily understood and controlled [40]. The rule-based approach and temporal
specificity score TSS based classification approaches are proposed, and the results show that the
proposed rule-based classifier outperforms the other four algorithms by achieving 82% accuracy,
whereas the TSS classification achieves 77% accuracy [41]. In 2019, Li et al. [42], they proposed a
model where the performance for it was still good and mostly stable with respect to the F-measure,
and from the curve of this measure, when the number of extracted keywords N was 7, the F-measure
reached a maximum of 43.1% compared to Xia’s work. [43], in which, the basic idea of TextRank used
for keyword extraction was introduced. The process of constructing candidate keywords and the
F-measure up to 37.28%, and all these previous results were less than our results, where F-measures
reached 76.75%. Decision table, Ridor, OneR, DTNB and PART are five algorithms applied to the
chess end game dataset and by using evaluation metrics to check the performance of these algorithms,
it appears from the results that PART is the accept rule-based classification algorithm when compared
with other studied rule based algorithms.

On the other hand, the OneR algorithm showed an overall low performance for every parameter,
and when these results were matched with our results when applying the OneR rule to the Reuters-21578
dataset, it became clear that the OneR algorithm had low values of precision, recall, and F-Measures [44].
A single attribute-based classification (SAC) is needed to divide the original dataset into multiple
one-dimensional datasets. The experimental results show that SACs performed better than the classical
OneR algorithm. The performance of different classification methods was examined on the large
dataset [45].

The algorithms tested were SMO, J48, Zero, OneR, RPart and the Naive Bayes algorithm.
It was discovered that the highest error was found in the ZeroR classifier with an average score of
approximately 0.5. The other algorithms ranged on average 0.1–0.2. Therefore, the ZeroR technique
is not a good option for the classification of any dataset due to its many errors [46], these results
are in agreement with our conclusion. The performance of three rule classifier algorithms, namely
RIDOR, JRIP and Decision Table, using the Iris datasets, was calculated using the cross-validation
parameter. Finally, it was observed that the JRIP technique is not a good option for classification [47],
and when applying those algorithms to our dataset, it became apparent that our algorithm agrees

302

Appl. Sci. 2020, 10, 4009

with the results of other algorithms. In Reference [48], an improved hierarchical clustering algorithm
has been developed based on association rules and these algorithms were tested on benchmark data
set Reuters-21578, and the results (F-measures) produced by the association rule-based hierarchical
clustering (ARBHC) method are better than the results of the traditional hierarchical algorithm,
and these results (F-M equal to 29%) are so much less than our results. uRule is a new rule-based
classification and prediction algorithm, it was proposed to classify a limited number of uncertain data,
and the accuracy of the uRule classifier remains relatively stable like our rule-based, but our rule was
applied on a huge of documents within Reuters and 20Newgroups datasets [49]. Reference [50] presents
a new technique using state-of-art machine-learning methods, deep learning, and it is used to solve the
problem of choosing the best structures and architectures of neural networks out of many possibilities,
and it introduced the RMDL (random multimodel deep learning) for classification that combines
multi deep learning models to produce better performance, they have evaluated this approach on
datasets such as the Web of Science (WOS), Reuters, MNIST, CIFAR, IMDB, and 20NewsGroups dataset,
Furthermore, the proposed approach shows improvement in classification accuracy for both text and
image classification. Finally, this accuracy for Reuters-21578 and 20Newgroups datasets in the best
case is equal to 90.69% and 87.91% respectively, but our result related to accuracy for the same datasets
was 90.72%, 90.07% respectively.

This provides a better classification process according to evaluation metrics.

7. Conclusions

We selected our rule-based approach to classify text documents into ten categories for two datasets,
which in our case were the Reuters-21578 and 20 Newsgroups datasets. Computer programming
using Python was implemented. It was expected that these results would be beneficial for information
retrieval systems and this work has assisted us in setting the acceptable methods for use in text
classification by depending on precision, recall and accuracy approaches. In conclusion, the results
were, in the case of Reuters-21578, 79% precision, 75% recall, and 76.75% F-measures, 9.28% error rate,
and 90.72% accuracy measurement. For the 20 Newsgroups dataset, the results were 76% precision,
66.64% recall, 70.98% F-measures, 9.93% error rate, and 90.07% accuracy measurement. When we
compared our algorithms with other algorithms (JRip, OneR, and ZeroR) for the Reuters-21578 dataset
and by using the performance factors of precision, recall, F-measure, error rate, and classification
accuracy, it was observed that our algorithm performed better than other algorithms and had a good
classification process. Our intention is to make some improvements to the rule-based approach so as
to be more active with the real-time dataset of the Reuters agency as well as selecting new types of
machine learning.

8. Future Work

We intend to make further contributions, with some enhancements to the rule-based approach,
which are more active with real-time datasets, such as newspaper datasets. Tagging content or products
using categories as a way to improve browsing or to identify related content on your website. Platforms
such as E-commerce, news agencies, content curators, blogs, directories, and likes can use automated
technologies to classify and tag content and products.

9. The Limitations

Text classification is an important research problem in many fields. However, there are several
challenges remaining in the processing of textual data [51].

1. Our results pertain to two specific datasets, namely Reuters-21578 and 20 Newsgroups.
2. We worked to improve the classification technique by taking a large number of documents in the

training part of the dataset since the volume of the training data had an important role in learning
a model. Training data must be labeled and be large enough to cover all upcoming classes.

303

Appl. Sci. 2020, 10, 4009

3. The rules used were only for the English language and by adding a number of modifications;
they can be suitable for a new language.

4. Information retrieval systems experience the diverse nature of texts with highly variable content,
quality and length.

Author Contributions: Conceptualization, A.M.A. and A.M.; Data curation, A.M.A.; Formal analysis, A.M.A.;
Investigation, A.M.; Methodology, A.M.A. and A.M.; Software, A.M.A. and A.M.; Supervision, A.M.; Validation,
A.M.A.; Visualization, A.M.A.; Writing—original draft, A.M.A.; Writing—review and editing, A.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Levy, O.; Goldberg, Y. Linguistic regularities in sparse and explicit word representations. In Proceedings of
the Eighteenth Conference on Computational Language Learning, Baltimore, MD, USA, 26–27 June 2014;
pp. 171–180.

2. Quinlan, R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA,
1993; ISBN 1 55860 2380.

3. Partridge, D.; Hussain, K.M. Knowledge Based Information Systems; McGraw Hill, Inc.: New York, NY, USA,
1994; ISBN 0077076249.

4. Michalski, R.S. On the quasi-minimal solution of the general covering problem. In Proceedings of the Fifth
International Symposium on Information Processing, Bled, Yugoslavia, 8–11 October 1969; Volume A3,
pp. 125–128.

5. Han, L.; Alexander, G.; Cocea, M. Rule Based Systems for Big Data: A Machine Learning Approach; Springer:
Cham, Switzerland, 2015; ISBN 10 3319236954.

6. Mendel, J.M. Uncertain Rule Based Fuzzy Systems; University of Southern California: Los Angeles, CA, USA,
2017; ISBN 978 3 319 51369 0.

7. Sebastiani, F. Machine learning in automated text categorization. ACM Comput. Surv. 2002, 34, 1–47.
[CrossRef]

8. Koller, D.; Sahami, M. Hierarchically classifying documents using a very few words. In Proceedings of the
International Conference on Machine Learning, San Mateo, CA, USA, August 1997; Morgan Kaufmann:
San Mateo, CA, USA, 1997; Volume 14, pp. 170–178.

9. Imaichi, O.; Yanase, T.; Niwa, Y. A Comparison of Rule Based and Machine Learning Methods for Medical
Information Extraction. In Proceedings of the International Joint Conference on Natural Language Processing
Workshop on Natural Language Processing for Medical and Healthcare Fields, Nagoya, Japan, 14–18 October
2013; pp. 38–42.

10. Panthong, R.; Srivihok, A. Wrapper feature subset selection for dimension reduction based on ensemble
learning algorithm. Procedia Comput. Sci. 2015, 72, 162–169. [CrossRef]

11. Rios, A.; Göhring, A. Machine Learning Applied to Rule Based Machine Translation. In Hybrid Approaches to
Machine Translation; Costa Jussà, M., Rapp, R., Lambert, P., Eberle, K., Banchs, R., Babych, B., Eds.; Theory and
Applications of Natural Language Processing; Springer: Cham, Switzerland, 2016.

12. Cronin, R.M.; Joshua, D.F.; Denny, J.C. A Comparison of Rule Based and Machine Learning Approaches for
Classifying Patient Portal Messages. Int. J. Med. Inform. 2017, 105, 110–120. [CrossRef] [PubMed]

13. Ganglberger, W.; Gritsch, G.; Hartmann, M.M.; Fürbass, F.; Kluge, T. A Comparison of Rule Based and
Machine Learning Methods for Classification of Spikes in EEG. JCM 2017, 12, 589–595. [CrossRef]

14. Suto, J.; Oniga, S.; Sitar, P.P. Comparison of wrapper and filter feature selection algorithms on human activity
recognition. In Proceedings of the 2016 6th International Conference on Computers Communications and
Control (ICCCC), Oradea, Romania, 10–14 May 2016; pp. 124–129.

15. Naseriparsa, M.; Bidgoli, A.M.; Varaee, T. A hybrid feature selection method to improve the performance of
a group of classification algorithms. Int. J. Comput. Appl. 2013, 69, 28–35. [CrossRef]

304

Appl. Sci. 2020, 10, 4009

16. Ferré, A.; Deléger, L.; Zweigenbaum, P.; Nédellec, C. Combining Rule Based and Embedding Based
Approaches to Normalize Textual Entities with an Ontology. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12 May 2018;
pp. 3443–3447.

17. Le, Q.; Mikolov, T. Distributed Representations of Sentences and Documents. In Proceedings of the 31st
International Conference on MachineLearning, Beijing, China, 24 June 2014; Volume 32.

18. Nandakumar, N.; Salehi, B.; Baldwin, T. A Comparative Study of Embedding Models in Predicting the
Compositionality of Multiword Expressions. In Proceedings of the Australasian Language Technology
Association Workshop, Dunedin, New Zealand, 10–12 December 2018; pp. 71–76.

19. Stefanowski, J. Induction of Rules. Ph.D Thesis, Institute of Computing Sciences, Poznan University of
Technology, Catania Troina, Italy, April 2008.

20. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information.
Trans. Assoc. Comput. Linguist. 2017, 5, 135–146. [CrossRef]

21. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M. Deep contextualized word representations. In Proceedings
of the NAACL-HLT, New Orleans, LA, USA, 1–6 June 2018; pp. 2227–2237.

22. Lau, J.H.; Baldwin, T. An Empirical Evaluation of doc2vec with Practical Insights into Document Embedding
Generation. In Proceedings of the 1st Workshop on Representation Learning for NLP. Association for
Computational Linguistics, Berlin, Germany, 11 August 2016; pp. 78–86.

23. Rennie, J. 20 Newsgroup Data Set. Available online: http://qwone.com/~{}jason/20Newsgroups/ (accessed on
5 March 2019).

24. Deshmukh, P.R.; Ade, R. Classification of Students Using Psychometric Tests with the Help of Incremental
Naive Bayes Algorithm. Int. J. Comput. Appl. 2014, 89, 27–31.

25. Karamcheti, A.C. A Comparative Study on Text Categorization. M.Sc. Thesis, University of Nevada Las
Vegas, Las Vegas, NV, USA, 2010.

26. Arthana, R. Stop Word Indonesian (and Implementation on Apache LUCENE). Available online: http://www.
rey1024.com/2012/06/stop-word-bahasa-indonesia-dan-implementasi-pada-apache-lucene/ (accessed on
10 June 2019).

27. Asian, J.; Williams, H.E.; Tahaghoghi, S.M.M. Stemming Indonesian; ACM: New York, NY, USA, 2003; Volume
6, pp. 1–33.

28. Adriani, M.; Asian, J.; Nazief, B.; Tahaghoghi, S.M.M.; Williams, H.E. Confix Stripping: Approach to
Stemming Algorithm for Indonesian Language. ACM Trans. Asian Lang. Inf. Process. 2007, 6, 13.1–13.33.
[CrossRef]

29. Ross, T.J. Fuzzy Logic with Engineering Applications; John Wiley & Sons Ltd.: West Sussex, UK, 2004.
30. Ligęza, A. Logical Foundations for Rule based Systems. In Studies in Computational Intelligence, 2nd ed.;

Springer: Heidelberg, Germnay; AGH University of Science and Technology Press: Kraków, Poland, 2006;
pp. XX, 309. ISBN1 10 3540291172. ISBN2 13 9783540291176.

31. Simon, A.; Newell, A. Human Problem Solving: The State of the Theory in 1970. Am. Psychol. Assoc. 1970,
26, 145–159. [CrossRef]

32. Negnevitsky, M. Rule based expert systems. In Artificial Intelligence, a Guide to Intelligent Systems, 2nd ed.;
Pearson Education Limited: Harlow, UK, 2005; pp. 3–5.

33. Andreeva, P.; Dimitrova, M.; Radeva, P. Data Mining Learning Models and Algorithms for Medical
Application. In Proceedings of the 18-th Conference on Systems for Automation of Engineering and Research
SAER, Sofia, Bulgaria, April 2004; pp. 11–18.

34. Rajput, A.; Aharwal, R.P.; Dubey, M.; Saxena, S.P. J48 and JRIP Rules for E Governance Data. IJCSS 2011, 5,
201–207.

35. Buddhinath, G.; Derry, D. A Simple Enhancement to One Rule Classification. Ph.D. Thesis, Department of
Computer Science & Software Engineering University of Melbourne, Melbourne, Australia, 2006.

36. Available online: https://www.saedsayad.com/zeror.htm (accessed on 23 March 2019).
37. Manning, C.D.; Prabhakar, R.; Hinrich, S. Introduction to Information Retrieval; Cambridge University Press:

New York, NY, USA, May 2008; ISBN 13: 978 0521865715.
38. Available online: https://www.merospark.com/ (accessed on 13 April 2019).

305

Appl. Sci. 2020, 10, 4009

39. Prentzas, J.; Hatzilygeroudisa, I. Categorizing Approaches Combining Rule Based and Case Based
Reasoning. In University of Patras and Technological Educational Institute of Lamia Greece; Wiley online
library; Blackwell Publishing Ltd.: Hoboken, NJ, USA, April 2007; Volume 24, Issue 2, pp. 97–122.

40. Khademi, S.; Haghighi, P.D.; Burstein, F.; Palmer, C. Enhancing rule based text classification of neurosurgical
notes using filtered feature weight vectors. In Australian Conference on Information Systems; University of
Wollongong, Computer Science: Wollongong, Australian, 2016; pp. 1–11.

41. Khan, S.U.R.; Islam, M.A.; Aleem, M.; Iqbal, M.A. Temporal specificity based text classification for information
retrieval. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 2915–2926. [CrossRef]

42. Li, J.; Huang, G.; Fan, C.; Sun, Z.; Zhu, H. Key word extraction for short text via word2vec, doc2vec,
and textrank. Turk. J. Electr. Eng. Comput. Sci. 2019, 27, 1794–1805. [CrossRef]

43. Wen, Y.; Yuan, H.; Zhang, P. Research on Keyword Extraction Based on Word2Vec Weighted TextRank.
In Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC),
Chengdu, China, 14–17 October 2016; pp. 2109–2113.

44. Mahajan, A.; Ganpati, A. Performance Evaluation of Rule Based Classification Algorithms. Int. J. Adv. Res.
Comput. Eng. Technol. 2014, 3, 3546–3550.

45. Du, L.; Song, Q. A Simple Classifier based on a Single Attribute. In Proceedings of the 14th International
Conference on High Performance Computing and Communications, Liverpool, UK, 25–27 June 2012;
pp. 660–665.

46. Nasa, C. Evaluation of Different Classification Techniques for WEB Data. Int. J. Comput. Appl. 2012, 52,
34–40. [CrossRef]

47. Veeralakshmi, V.; Ramyachitra, D. Ripple down Rule learner (RIDOR) Classifier for IRIS Dataset. Int. J.
Comput. Sci. Eng. 2015, 4, 79–85.

48. Rose, D.J. An Effect Association Rule-Based Hierarchical Algorithm for Text Clustting. Int. J. Adv. Eng.
Technol. 2016, 751, 753.

49. Qin, B.; Xia, Y.; Prabhakar, S.; Tu, Y. A Rule-Based Classification Algorithm for Uncertain Data. In Proceedings
of the IEEE 25th International Conference on Data Engineering, Shanghai, China, 29 March–2 April 2009;
pp. 1633–1640. [CrossRef]

50. Heidarysafa, M.; Kowsari, K.; Brown, D.E.; Meimandi, K.J.; Barnes, L.E. An Improvement of Data Classification
using Random Multimodel Deep Learning (RMDL). Int. J. Mach. Learn. Comput. 2018, 8, 298–310.

51. Losiewicz, P.; Oard, D.W.; Kostoff, R.N. Textual Data Mining to Support Science and Systems. J. Intell.
Inf. Syst. 2000, 15, 99–119. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

306

applied
sciences

Article

Dual Pointer Network for Fast Extraction of Multiple
Relations in a Sentence †

Seongsik Park 1 and Harksoo Kim 2,*
1 Computer and Communications Engineering, Kangwon National University, Chuncheon 24341, Korea;

a163912@kangwon.ac.kr
2 Computer Science and Engineering, Konkuk University, Seoul 05029, Korea
* Correspondence: nlpdrkim@konkuk.ac.kr; Tel.: +82-2-450-3499
† This paper is an extended version of paper published in The Second Workshop on Fact Extraction

and VERification. (FEVER 2.0) at EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 November 2019.

Received: 25 April 2020; Accepted: 30 May 2020; Published: 1 June 2020

Featured Application: Ontology construction module for AI applications.

Abstract: Relation extraction is a type of information extraction task that recognizes semantic
relationships between entities in a sentence. Many previous studies have focused on extracting only
one semantic relation between two entities in a single sentence. However, multiple entities in a sentence
are associated through various relations. To address this issue, we proposed a relation extraction
model based on a dual pointer network with a multi-head attention mechanism. The proposed model
finds n-to-1 subject–object relations using a forward object decoder. Then, it finds 1-to-n subject–object
relations using a backward subject decoder. Our experiments confirmed that the proposed model
outperformed previous models, with an F1-score of 80.8% for the ACE (automatic content extraction)
2005 corpus and an F1-score of 78.3% for the NYT (New York Times) corpus.

Keywords: relation extraction; dual pointer network; context-to-entity attention

1. Introduction

Relation extraction is a task that involves recognizing semantic relations (i.e., tuple structures;
{subject, relation, object triples}) among entities in a sentence [1]. Zeng et al. [2] divided sentences into
three types according to the triplet overlap degree, i.e., normal, entity pair overlap (EPO), and single
entity overlap (SEO). In the normal type, the triples do not have overlapped entities; in the EPO type,
some triples have an overlapped entity pair; and in the SEO type, some triplets have an overlapped
entity, but these triplets do not have overlapped entity pairs. In this study, we focus on promptly
extracting both the normal and SEO types because most relations are included in these types, as shown
in Figure 1.

Appl. Sci. 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

Article

Dual Pointer Network for Fast Extraction of Multiple
Relations in a Sentence†
Seongsik Park 1 and Harksoo Kim 2,*

1 Computer and Communications Engineering, Kangwon National University, Chuncheon 24341, Korea;
a163912@kangwon.ac.kr

2 Computer Science and Engineering, Konkuk University, Seoul 05029, Korea
* Correspondence: nlpdrkim@konkuk.ac.kr; Tel.: +82-2-450-3499
† This paper is an extended version of paper published in The Second Workshop on Fact Extraction and

VERification. (FEVER 2.0) at EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 November 2019.

Received: 25 April 2020; Accepted: 30 May 2020; Published: date

Featured Application: Ontology construction module for AI applications

Abstract: Relation extraction is a type of information extraction task that recognizes semantic
relationships between entities in a sentence. Many previous studies have focused on extracting only
one semantic relation between two entities in a single sentence. However, multiple entities in a
sentence are associated through various relations. To address this issue, we proposed a relation
extraction model based on a dual pointer network with a multi-head attention mechanism. The
proposed model finds n-to-1 subject–object relations using a forward object decoder. Then, it finds
1-to-n subject–object relations using a backward subject decoder. Our experiments confirmed that
the proposed model outperformed previous models, with an F1-score of 80.8% for the ACE
(automatic content extraction) 2005 corpus and an F1-score of 78.3% for the NYT (New York
Times) corpus.

Keywords: relation extraction; dual pointer network; context-to-entity attention

1. Introduction

Relation extraction is a task that involves recognizing semantic relations (i.e., tuple structures;
{subject, relation, object triples}) among entities in a sentence [1]. Zeng et al. [2] divided sentences
into three types according to the triplet overlap degree, i.e., normal, entity pair overlap (EPO), and
single entity overlap (SEO). In the normal type, the triples do not have overlapped entities; in the
EPO type, some triples have an overlapped entity pair; and in the SEO type, some triplets have an
overlapped entity, but these triplets do not have overlapped entity pairs. In this study, we focus on
promptly extracting both the normal and SEO types because most relations are included in these
types, as shown in Figure 1.

Figure 1. Subject-relation-object triples in a sentence. PER: person; ORG: organization.
Figure 1. Subject-relation-object triples in a sentence. PER: person; ORG: organization.

In Figure 1, {Lee, employed, ABC Mart}, {Lee, Family, his Father} and {his Father, Owner, ABC
Mart} are SEO types. To promptly extract these relations, we adopt the concept of dependency parsing

307

Appl. Sci. 2020, 10, 3851

in which dependent words point to the head words by scanning each word in a sentence. We propose
a dual pointer network model to efficiently extract multiple relations from a sentence through forward
scanning (i.e., scanning from the first word to the last) and backward scanning (i.e., scanning from the
last word to the first). The proposed model discovers an object of the current subject during forward
scanning. Through forward scanning, all normal type relations can be found. However, SEO type
relations are only partially found because a subject should point to only one object in the pointer
network architecture. To address this limitation, the proposed model performs backward scanning to
identify the subject of the current object.

The remainder of this paper is organized as follows. In Section 2, we review previous studies
on relation extraction. Section 3 describes the proposed dual pointer network model. In Section 4,
we elaborate on the experimental setup and results. Finally, we conclude the study in Section 5.

2. Previous Works

With the significant success of deep neural networks in the field of natural language processing,
many researchers have proposed various relation extraction models based on convolutional neural
networks (CNNs). These include the CNN model based on max-pooling [3], the CNN model
based on multiple sizes of kernels [4], the combined CNN model [5], and the contextualized graph
convolutional network (C-GCN) model [6]. Relation extraction models based on recurrent neural
network (RNNs) have also been proposed, including the long-short term memory (LSTM) model based
on the dependency tree [7] and the LSTM model using the position-aware attention technique [8].
These models have focused on normal type extraction (i.e., extracting only one relation between
two entities from a single sentence). However, many entities in a single sentence can form multiple
relations. Some studies have proposed multiple relation extraction to resolve this problem. For example,
Luan et al. [9] treated triples in sentences as a graph and proposed a multiple relations extraction
model that iteratively extracts spans between triples in the graph. In the present study, we propose
a relation extraction model to simultaneously find all possible relations among multiple entities in
a sentence. The proposed model is based on the pointer network [10]. The pointer network is a
sequence-to-sequence (Seq2Seq) model in which an attention mechanism [11] is modified to learn
the conditional probability of an output, where the values correspond to positions in a given input
sequence. We modify the pointer network to include dual decoders, an object decoder (a forward
decoder) and a subject decoder (a backward decoder). The object decoder extracts n-to-1 relations as
shown in the following example: {Lee, employed, ABC Mart} and {his Father, Owner, ABC Mart} are
extracted from the sentence. The subject decoder extracts 1-to-n relations as shown in the following
example: {Lee, employed, ABC Mart} and {Lee, Family, his Father} are extracted from the sentence.

3. Dual Pointer Network Model for Relation Extraction

Figure 2 illustrates the architecture of the proposed model. This consists of two parts, a context
and entity encoder, and a dual pointer network decoder.

308

Appl. Sci. 2020, 10, 3851
Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 11

Figure 2. The overall architecture of dual pointer networks for relation extraction.

3.1. Context and Entity Encoder

The context and entity encoder computes the degree of association between words and entities
in a given sentence. For example, { ݓଵ , ݓଶ , …, ݓ } and { ݁ଵ , ݁ଶ , …, ݁ } refer to word and entity
embedding vectors, respectively. Figure 3 illustrates the process of word and entity embedding.

(a)

(b)

Figure 3. (a) Word embedding process, (b) Entity embedding process.

As shown in Figure 3, the word embedding vectors are concatenations of two types of
embeddings: word-level GloVe [12] embeddings for representing the meaning of words and
character-level CNN embeddings [13] for addressing out-of-vocabulary problems. The entity
embedding vectors are concatenations of three types of embeddings: word-level CNN embedding
for representing the meaning of entities composed of multiple words, character-level CNN
embedding for addressing out-of-vocabulary problems, and entity type embedding for representing
the categorical information of input entities. Word-level GloVe embeddings represent each word in
the word-level CNN embedding. The word embedding vectors are used as input for a bidirectional
LSTM network to obtain contextual information as follows:

ܿ⃗ = LSTM(ݓ , ܿ⃗ିଵ),

ܿ⃖ = LSTM(ݓ , ܿ⃖ିଵ),
(1)

Figure 2. The overall architecture of dual pointer networks for relation extraction.

3.1. Context and Entity Encoder

The context and entity encoder computes the degree of association between words and entities in
a given sentence. For example, {w1, w2, . . . , wi} and {e1, e2, . . . , em} refer to word and entity embedding
vectors, respectively. Figure 3 illustrates the process of word and entity embedding.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 11

Figure 2. The overall architecture of dual pointer networks for relation extraction.

3.1. Context and Entity Encoder

The context and entity encoder computes the degree of association between words and entities
in a given sentence. For example, { ݓଵ , ݓଶ , …, ݓ } and { ݁ଵ , ݁ଶ , …, ݁ } refer to word and entity
embedding vectors, respectively. Figure 3 illustrates the process of word and entity embedding.

(a)

(b)

Figure 3. (a) Word embedding process, (b) Entity embedding process.

As shown in Figure 3, the word embedding vectors are concatenations of two types of
embeddings: word-level GloVe [12] embeddings for representing the meaning of words and
character-level CNN embeddings [13] for addressing out-of-vocabulary problems. The entity
embedding vectors are concatenations of three types of embeddings: word-level CNN embedding
for representing the meaning of entities composed of multiple words, character-level CNN
embedding for addressing out-of-vocabulary problems, and entity type embedding for representing
the categorical information of input entities. Word-level GloVe embeddings represent each word in
the word-level CNN embedding. The word embedding vectors are used as input for a bidirectional
LSTM network to obtain contextual information as follows:

ܿ⃗ = LSTM(ݓ , ܿ⃗ିଵ),

ܿ⃖ = LSTM(ݓ , ܿ⃖ିଵ),
(1)

Figure 3. (a) Word embedding process, (b) Entity embedding process.

As shown in Figure 3, the word embedding vectors are concatenations of two types of embeddings:
word-level GloVe [12] embeddings for representing the meaning of words and character-level CNN
embeddings [13] for addressing out-of-vocabulary problems. The entity embedding vectors are
concatenations of three types of embeddings: word-level CNN embedding for representing the
meaning of entities composed of multiple words, character-level CNN embedding for addressing
out-of-vocabulary problems, and entity type embedding for representing the categorical information of
input entities. Word-level GloVe embeddings represent each word in the word-level CNN embedding.

309

Appl. Sci. 2020, 10, 3851

The word embedding vectors are used as input for a bidirectional LSTM network to obtain contextual
information as follows: →

c i = LSTM(wi,
→
c i−1),←

c i = LSTM(wi,
←
c i−1),

ci = [
→
c i;
←
c i],

(1)

where wi is an embedding vector of the i-th word in a sentence, and [
→
c i;
←
c i] is a concatenation of

→
c i

and
←
c i that represents the output vectors of a forward LSTM and a backward LSTM, respectively.

The entity embedding vectors are used as input for a forward LSTM network because the entities are
listed in the order that they appear in a sentence, as shown below.

st = LSTM(et, st−1), (2)

where et is an embedding vector of the t-th one among all entities occurring in a sentence, and st is an
output vector encoded by a forward LSTM. The output vectors of the bidirectional LSTM network
{c1, c2, . . . , ci} and the forward LSTM network {s1, s2, . . . , st} are used as input for the context-to-entity
attention layer (as shown in Figure 2), to compute the relative degrees of association between words
and entities. This is similar to the well-known multi-head attention mechanism [14], as shown below.

q j = wa ∗ split(q, n) j,

a j = so f tmax(
q jk j√

d
),

head j = a jv j,
ot = relu(wo[head0; head1; head2; . . . ; headn] + bo),

(3)

where the query q is set to st, the key k and the value v are set to C’s. The query q is split into n vectors,
where n is the number of heads. The attention score a j is calculated by a scaled-dot product, where d is
a normalization factor. The context-to-entity layer output ot is determined through a fully-connected
neural network (FNN) using a concatenation of n heads as input.

3.2. Dual Pointer Network Decoder

In a pointer network, attentions show the position distributions of an encoding layer. Since
attention is highlighted at only one position, the pointer network has a structural limitation when
one entity forms relations with several entities (for instance, “Lee” in Figure 1). The proposed model
adopts a dual pointer network decoder (see Figure 2) to overcome this limitation. The first decoder
called an object decoder, learns the position distribution from subjects to objects as follows:

ht = [et; st],
gt = LSTM(ht, gt−1),

scoreobj
t = vobjtanh(wobj[O; gt]),

aobj
t = softmax(scoreobj

t),
p̂obj

t = argmax(aobj
t),

r̂obj
t = argmax(uobjtan h(zobj[aobj

t O; gt])),

(4)

where ht is a concatenation of the entity embedding vector et and the LSTM-encoded entity embedding
vector st, and the decoding vector gt (i.e., the t-th entity to determine its objects) is calculated by the
forward LSTM. Then, aobj

t is the position distribution based on the attention scores scoreobj
t between

gt and the other entities o1, . . . , ot−1, ot+1, . . . , om in the context-to-entity attention layer. p̂obj
t and r̂obj

t
represent a position and a relation name of gt’s object, respectively. The weighting parameters
v, w, u, and z are set during the training phase. Conversely, the second decoder, called a subject decoder,

310

Appl. Sci. 2020, 10, 3851

learns the position distribution from objects to subjects in the same manner as the object decoder, as
shown below.

scoresub
t = vsubtanh(wsub[O; gt]),

asub
t = softmax(scoresub

t),
p̂sub

t = argmax(asub
t),

r̂sub
t = argmax(usubtan h(zsub[asub

t O; gt])),

(5)

where p̂sub
t and r̂sub

t represent a position and a relation name of gt’s subject, respectively. In Figure 1,
“Lee” should point to both “ABC mart” and “his father.” This problem cannot be solved using the
conventional forward decoder because it cannot point to multiple targets. However, the subject decoder
(a backward decoder) resolves this problem, because “ABC mart” and “his father” can point to “Lee.”
Additionally, we adopt a multi-head attention mechanism to improve the performance of the dual
pointer network; this is shown in the following equation.

q j = wl ∗ split(q, n) j,

a j = so f tmax(
q jk j√

d
),

head j = a jv j,
p̂t = argmax(1

n
∑n

k=0 ak),
r̂t = argmax(relu(wr[head0; head1; head2; . . . ; headn] + br)),

(6)

where the query q is set to gt, the key k and the value v are set to O’s. The position distribution p̂t is
calculated by an average of n multi-head attention vectors, and the relation name r̂t is determined
through an FNN using a concatenation of n heads as the input.

3.3. Implementation detail

The context and entity encoder comprised 256 hidden units in each layer, and the dual pointer
network decoder comprised 512 hidden units. We adopted a 0.1 drop-out probability for all the LSTM
cells. We used 8 heads, with 32 units per head, for the multi-head attention. The vocabulary size and
word-embedding size was set to 16,925 and 300, respectively. The filter size of the CNNs for character
and word embeddings were 3, 4, and 5. The total number of filters was 100. 50-dimensional random
initialized vectors were used for the character and entity embeddings. A cross-entropy function was
used as a cost function to maximize the log-probability as follows:

CE(y, ỹ) = −∑C
i yi log (ỹi),

Loss = α
2

(
CE(psub, p̃sub) + CE(pobj, p̃obj)

)
+

(1−α)
2 (CE(rsub, r̃sub) + CE(robj, r̃obj)),

(7)

where y is the target answer, ỹ is the score distribution of the model prediction, and C is the number of
target classes. The loss is calculated by the cross-entropy combination of all targets and predictions.
The weighting factor α was experimentally set to 0.6 as a scalar value.

4. Evaluation

4.1. Datasets and Experimental Setting

We evaluated the proposed model using the following benchmark datasets.
ACE-2005 corpus [15]: The automatic content extraction (ACE) dataset included seven major

entity types and six major relation types. The ACE-2005 corpus does not properly evaluate models
that extract multiple triples from a sentence. Therefore, if some triples in the ACE-2005 corpus share a
sentence (i.e., some triples occur in the same sentence), the triples were merged, as shown in Figure 4.

311

Appl. Sci. 2020, 10, 3851Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 11

Figure 4. ACE-2005 data preprocess. ORG-AFF: organization-affiliation; GEN-AFF: general entity-
affiliation.

As a result, we obtained a dataset annotated with multiple triples. We divided the new dataset into
a training set (5023 sentences), a development set (629 sentences), and a test set (627 sentences) by a
ratio of 8:1:1. Table 1 shows the composition of the preprocessed ACE-2005 corpus in detail.

Table 1. Composition of the preprocessed ACE-2005 corpus.

of entities per sentence (avg/max) 3.5/22
of triples per sentence (avg/max) 1.5/11

of entity types 7
of relation types 7

NYT corpus [16]: This is a news corpus sampled from news articles published in the New York Times
(NYT). The training data is automatically labeled using distant supervision. The NYT corpus was
manually converted to a relation extraction dataset by Zheng et al. [17]. We excluded sentences
without relation facts from Zheng’s corpus. Finally, we obtained 66,202 sentences in total. We used
59,581 sentences for training and 6621 for testing. Table 2 shows the composition of the NYT corpus
in detail.

Table 2. Composition of the NYT corpus.

of entities per sentence (avg/max) 3.2/20
of triples per sentence (avg/max) 1.7/26

of entity types 3
of relation types 25

Table 3 shows sample sentences and their tripe relations in the ACE-2005 corpus and the NYT corpus.

Table 3. Sample of the ACE-2005 corpus and the NYT corpus. PER-SOC: person-social.

Dataset Sentence Triple

ACE-
2005

Do you travel to meet up with
family or friends during the

holidays?

{you, PER-SOC, family},
{you, PER-SOC, friends}

NYT

Clarence Charles Newcomer
was born on Jan. 18, 1923, in

the Lancaster County town of
Mount Joy, Pa.

{Lancaster County,/location/location/contains,
Mount Joy},

{Clarence Charles
Newcomer,/people/person/place_of_birth,

Mount Joy}

Figure 4. ACE-2005 data preprocess. ORG-AFF: organization-affiliation; GEN-AFF:
general entity-affiliation.

As a result, we obtained a dataset annotated with multiple triples. We divided the new dataset
into a training set (5023 sentences), a development set (629 sentences), and a test set (627 sentences) by
a ratio of 8:1:1. Table 1 shows the composition of the preprocessed ACE-2005 corpus in detail.

Table 1. Composition of the preprocessed ACE-2005 corpus.

of entities per sentence (avg/max) 3.5/22

of triples per sentence (avg/max) 1.5/11

of entity types 7

of relation types 7

NYT corpus [16]: This is a news corpus sampled from news articles published in the New York
Times (NYT). The training data is automatically labeled using distant supervision. The NYT corpus
was manually converted to a relation extraction dataset by Zheng et al. [17]. We excluded sentences
without relation facts from Zheng’s corpus. Finally, we obtained 66,202 sentences in total. We used
59,581 sentences for training and 6621 for testing. Table 2 shows the composition of the NYT corpus
in detail.

Table 2. Composition of the NYT corpus.

of entities per sentence (avg/max) 3.2/20

of triples per sentence (avg/max) 1.7/26

of entity types 3

of relation types 25

Table 3 shows sample sentences and their tripe relations in the ACE-2005 corpus and the
NYT corpus.

312

Appl. Sci. 2020, 10, 3851

Table 3. Sample of the ACE-2005 corpus and the NYT corpus. PER-SOC: person-social.

Dataset Sentence Triple

ACE-2005
Do you travel to meet up with

family or friends during the
holidays?

{you, PER-SOC, family},
{you, PER-SOC, friends}

NYT

Clarence Charles Newcomer was
born on Jan. 18, 1923, in the

Lancaster County town of Mount
Joy, Pa.

{Lancaster County,/location/location/contains, Mount
Joy},

{Clarence Charles
Newcomer,/people/person/place_of_birth, Mount

Joy}

To evaluate the experimental results, we adopted the standard micro precision, recall, and F1 score:

Recall = # o f correct predict
o f all triple in the dataset

Precision =
o f correct predict

o f all triple in the model predict

F1− score = 2∗Precision∗Recall
Precision+Recall

(8)

4.2. Experimental Results

In the first experiment, we evaluated the effectiveness of the multi-head attention in the dual
pointer network decoder; the results are summarized in Table 4. The evaluation was performed using
the ACE-2005 corpus.

Table 4. Performance for different attention mechanisms in the dual pointer network decoder.

Model Recall Precision F1-Score

Single-head 0.800 0.759 0.779
Multi-head 0.832 0.787 0.808

In Table 4, single-head refers to a conventional attention mechanism proposed by Bahdanau
et al. [11]. As shown in Table 4, the multi-head attention mechanism used in the proposed model
demonstrated better performance than the single-head one. Then, using the ACE-2005 corpus, we
evaluated the effectiveness of multi-head attention in the context and entity encoder; the results are
summarized in Table 5.

Table 5. Performance for different attention mechanisms in the context and entity encoder.

Model Recall Precision F1-Score

BIDAF-C2Q 0.819 0.766 0.792
BIDAF-C2Q&Q2C 0.821 0.792 0.806

Multi-head 0.832 0.787 0.808

In Table 5, BIDAF [18] refers to a machine-reading and comprehension (MRC) model based
on a co-attention mechanism between a query and a context. C2Q and Q2C are referring to mean
context-to-query attention and query-to-context attention used in the BIDAF model, respectively.
As shown in Table 5, the multi-head attention mechanism used in the proposed model showed the best
F1-score. The p-values of F1-scores between multi-head and the comparison models were from 5.0E-4
to 0.0039. This implies that the performance differences are statistically significant at the 0.05 level.

In the second experiment, we compared the proposed model with previous state-of-the-art
models. Table 6 compares the performance of the proposed model and with other models for the
ACE-2005 corpus.

313

Appl. Sci. 2020, 10, 3851

Table 6. Performance comparison on the ACE-2005 corpus.

Model Recall Precision F1-Score

SPTree [6] 0.54 0.57 0.56
FCM [19] 0.49 0.72 0.58
DYGIE [9] 0.57 0.64 0.60

Span-Level [20] 0.58 0.68 0.63
HRCNN [21] - - 0.74

Walk-Based [22] 0.60 0.70 0.64
Our model 0.83 0.79 0.81

In Table 6, SPTree [6] is a model that applies the dependency information between the entities.
In FCM [19], handcrafted features are combined with word embeddings. DYGIE [9] dynamically
generates spans between entities and spans’ representations. Span-Level [20] jointly performs entity
mention detection and relation extraction. HRCNN [21] is a hybrid model of CNN, RNN, and FNN.
Walk-Based [22] is a graph-based neural network model. As shown in Table 6, the proposed model
outperformed all models across all metrics. The p-values of F1-scores between the proposed model and
the comparison models were from 5.81E-8 to 1.37E-5. This implies that the performance differences are
statistically significant at the 0.001 level. Table 7 compares the performance of the proposed model
with existing models for the NYT corpus.

Table 7. Performance comparisons on the NYT corpus.

Model Recall Precision F1-Score

NovelTag [17] 0.414 0.615 0.495
MultiDecoder [2] 0.566 0.610 0.587

GraphRE [23] 0.600 0.639 0.619
Our model 0.820 0.749 0.783

In Table 7, NovelTag [17] is an end-to-end model that extracts entities and their relations based on
a novel tagging scheme designed for relation extraction. MultiDecoder [2] is a Seq2Seq-based model
that combines the entity and relation extraction using a decoder with a copy mechanism. GraphRE [23]
is a joint model that extracts entities and their relationships using graph convolutional networks
(GCN) [24]. As shown in Table 7, the proposed model outperformed all models. It is not reasonable to
directly compare the proposed model with these models because it requires gold-labeled entities, while
the other models automatically extract entities from sentences. Although direct comparison is unfair,
the proposed model exhibited considerably better performance. If we adopt a state-of-the-art named
entity tagger based on BERT [25] with F1-scores of 0.9 or more, the proposed model is expected to
show F1-scores of 0.662 or more based on simple multiplication. Figure 5 describes the performances
according to relation types.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 11

In Table 6, SPTree [6] is a model that applies the dependency information between the entities.

In FCM [19], handcrafted features are combined with word embeddings. DYGIE [9] dynamically
generates spans between entities and spans’ representations. Span-Level [20] jointly performs entity
mention detection and relation extraction. HRCNN [21] is a hybrid model of CNN, RNN, and FNN.
Walk-Based [22] is a graph-based neural network model. As shown in Table 6, the proposed model
outperformed all models across all metrics. The p-values of F1-scores between the proposed model
and the comparison models were from 5.81E-8 to 1.37E-5. This implies that the performance
differences are statistically significant at the 0.001 level. Table 7 compares the performance of the
proposed model with existing models for the NYT corpus.

Table 7. Performance comparisons on the NYT corpus.

Model Recall Precision F1-score

NovelTag[17] 0.414 0.615 0.495

MultiDecoder [2] 0.566 0.610 0.587

GraphRE [23] 0.600 0.639 0.619

Our model 0.820 0.749 0.783

In Table 7, NovelTag [17] is an end-to-end model that extracts entities and their relations based

on a novel tagging scheme designed for relation extraction. MultiDecoder [2] is a Seq2Seq-based
model that combines the entity and relation extraction using a decoder with a copy mechanism.
GraphRE [23] is a joint model that extracts entities and their relationships using graph convolutional
networks (GCN) [24]. As shown in Table 7, the proposed model outperformed all models. It is not
reasonable to directly compare the proposed model with these models because it requires gold-
labeled entities, while the other models automatically extract entities from sentences. Although direct
comparison is unfair, the proposed model exhibited considerably better performance. If we adopt a
state-of-the-art named entity tagger based on BERT [25] with F1-scores of 0.9 or more, the proposed
model is expected to show F1-scores of 0.662 or more based on simple multiplication. Figure 5
describes the performances according to relation types.

Figure 5. Performances per relation type.

As shown in the right graph of Figure 5, the proposed model obtained the F1-score of 1.0 for the
relation type “ethnicity”, but it obtained the F1-score of 0.0 for the relation type “industry”. The
imbalance of training data caused these performance differences. For example, the “industry”
relation did not occur in the NYT training data at all.

The cases where the proposed model incorrectly extracted relations were also grouped in Table
8.

Figure 5. Performances per relation type.

314

Appl. Sci. 2020, 10, 3851

As shown in the right graph of Figure 5, the proposed model obtained the F1-score of 1.0 for
the relation type “ethnicity”, but it obtained the F1-score of 0.0 for the relation type “industry”.
The imbalance of training data caused these performance differences. For example, the “industry”
relation did not occur in the NYT training data at all.

The cases where the proposed model incorrectly extracted relations were also grouped in Table 8.

Table 8. Main reasons for errors in the ACE-2005 corpus (underline denotes incorrect results). ART:
artifact; GEN-AFF: general entity-affiliation; PHYS: physical; PART-WHOLE: part of whole.

Input Sentence Correct Relation Predicted Relation

Iraqi forces responded with
artillery fire

{Iraqi forces, ART, artillery}
{Iraqi forces, GEN-AFF, Iraqi}

{Iraqi forces, PART-WHOLE, Iraqi}
{Iraqi forces, GEN-AFF, Iraqi}

It is the first time they have had
freedom of movement with cars

and weapons since the start of the
intifada

{they, ART, cars}
{they, ART, weapons} {they, ART, cars}

It was in northern Iraq today that
an eight artillery round hit the site
occupied by Kurdish fighters near

Chamchamal

{Kurdish fighters, PHYS, the site}
{the site, PHYS, Chamchamal}
{Kurdish, GEN-AFF, Kurdish

fighters}
{the site, PART-WHOLE, northern

Iraq}

{Kurdish fighters, PHYS, the site}
{the site, PHYS, Chamchamal}

{the site, PART-WHOLE, northern
Iraq}

{Kurdish fighters, ART, artillery}

Most incorrect predictions included cases where the decoders incorrectly pointed out subjects or
objects, and these incorrect entities lead to incorrect relation names, as shown in the first and third
sentences in Table 8. In some cases, the decoder did not point out subjects or objects. As a result,
any triples in a sentence were not omitted, as shown in the second sentence.

5. Conclusions

We proposed a relation extraction model to find all possible relations among multiple entities
in a sentence simultaneously. The proposed model is based on pointer networks with multi-head
attention mechanisms. To extract all possible relations from a sentence, we modified a single decoder
into a dual decoder. In the dual decoder, the object decoder extracts n-to-1 subject–object relations,
and the subject decoder extracts 1-to-n subject–object relations. The results from the experiments with
the ACE-2005 corpus and the NYT corpus confirmed that the proposed model shows an improvement
in performance. Our future work will focus on an end-to-end model that directly extracts entities and
their relations. In addition, we will focus on a method for improving performance using a large-scale
language model like BERT [25].

Author Contributions: Conceptualization, H.K.; methodology, H.K.; software, S.P.; validation, S.P.; formal
analysis, H.K.; investigation, H.K.; resources, S.P.; data curation, S.P.; writing—original draft preparation, S.P.;
writing—review and editing, H.K.; visualization, H.K.; supervision, H.K.; project administration, H.K.; funding
acquisition, H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Institute for Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2013-0-00131, Development of Knowledge
Evolutionary WiseQA Platform Technology for Human Knowledge Augmented Services). This work was also
supported by the Institute for Information & Communications Technology Planning & Evaluation (IITP) grant
funded by the Korean government (MSIT) (No.2020-0-00368, A Neural-Symbolic Model for Knowledge Acquisition
and Inference Techniques).

Acknowledgments: We especially thank the members of the NLP laboratory at Kangwon National University
and Konkuk University for their technical support.

Conflicts of Interest: The authors declare no conflict of interest.

315

Appl. Sci. 2020, 10, 3851

References

1. Choi, M.; Kim, H. Extraction of Instances with Social Relations for Automatic Construction of a Social
Network. J. KIISE Comput. Pract. Lett. 2011, 17, 548–552. (In Korean)

2. Zeng, X.; Zeng, D.; He, S.; Liu, K.; Zhao, J. Extracting Relational Facts by an End-to-End Neural Model
with Copy Mechanism. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics, Melbourne, Australia, 15–20 July 2018; pp. 506–514.

3. Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; Zhao, J. Relation Classification via Convolutional Deep Neural Network.
In Proceedings of the 24th International Conference on Computational Linguistics, Dublin, Ireland, 23–29
August 2014; pp. 2335–2344.

4. Nguyen, T.H.; Grishman, R. Relation extraction: Perspective from convolutional neural networks.
In Proceedings of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology, Denver, CO, USA, 31 May–5 June 2015; pp. 39–48.

5. Yu, J.; Jiang, J. Pairwise Relation Classification with Mirror Instances and a Combined Convolutional Neural
Network. In Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Japan,
11–16 December 2016; pp. 2366–2377.

6. Zhang, Y.; Qi, P.; Manning, C.D. Graph Convolution over Pruned Dependency Trees Improves Relation
Extraction. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
Brussels, Belgium, 31 October–4 November 2018; pp. 2205–2215.

7. Miwa, M.; Bansal, N. End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin,
Germany, 7–12 August 2016; pp. 1105–1116.

8. Zhang, Y.; Zhong, V.; Chen, D.; Angeli, G.; Manning, C.D. Positionaware Attention and Supervised Data
Improve Slot Filling. In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
Copenhagen, Denmark, 9–11 September 2017; pp. 35–45.

9. Luan, Y.; Wadden, D.; He, L.; Shah, A.; Ostendorf, M.; Hajishirzi, H. A General Framework for Information
Extraction using Dynamic Span Graphs. In Proceedings of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology, Minneapolis, MN, USA, 2–7 June 2019;
pp. 3036–3046.

10. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer Networks. In Proceedings of the Advances in Neural Information
Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2692–2700.

11. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate.
In Proceedings of the International Conference on Learning Representations 2015 (ICLR 2015), San Diego,
CA, USA, 7–9 May 2015.

12. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014;
pp. 1532–1543.

13. Park, S.; Jang, Y.; Park, K.; Kim, H. Named Entity Recognizer Using Gloval Vector and Convolutional Neural
Network Embedding. J. KITI Telecommun. Inf. 2018, 22, 30–32. (In Korean)

14. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention
All You Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA,
USA, 4–9 December 2017; pp. 5998–6008.

15. ACE 2005 Multilingual Training Corpus. Available online: https://catalog.ldc.upenn.edu/LDC2006T06
(accessed on 31 May 2020).

16. Ren, X.; Wu, Z.; He, W.; Qu, M.; Voss, C.R.; Ji, H.; Abdelzaher, T.F.; Han, J. Cotype: Joint Extraction of
Typed Entities and Relations with Knowledge Bases. In Proceedings of the International World Wide Web
Conference, Perth, Australia, 3–7 April 2017; pp. 1015–1024.

17. Zheng, S.; Wang, F.; Bao, H.; Hao, Y.; Zhou, P.; Xu, B. Joint Extraction of Entities and Relations Based on a
Novel Tagging Scheme. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017; pp. 1227–1236.

18. Seo, M.; Kembhavi, A.; Farhadi, A.; Hajishirz, H. Bi-Directional Attention Flow for Machine Comprehension.
In Proceedings of the International Conference on Learning Representations 2017 (ICLR 2017), Toulon,
France, 24–26 April 2017.

316

Appl. Sci. 2020, 10, 3851

19. Gormley, M.R.; Yu, M.; Dredze, M. Improved Relation Extraction with Feature-Rich Compositional Embedding
Models. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Lisbon,
Portugal, 17–21 September 2015; pp. 1774–1784.

20. Dixit, K.; Onaizan, Y.A. Span-Level Model for Relation Extraction. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 5308–5314.

21. Kim, S.; Choi, S. Relation Extraction using Hybrid Convolutional and Recurrent Networks. In Proceedings
of the Korea Computer Congress 2018 (KCC 2018), Jeju, Korea, 20–22 June 2018; pp. 619–621. (In Korean).

22. Christopoulou, F.; Miwa, M.; Ananiadou1, S. A Walk-based Model on Entity Graphs for Relation Extraction.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne,
Australia, 15–20 July 2018; pp. 81–88.

23. Fu, T.J.; Li, P.H.; Ma, W.Y. GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation
Extraction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
Florence, Italy, 28 July–2 August 2019; pp. 1409–1418.

24. Kipf, T.; Welling, M. Semisupervised Classification with Graph Convolutional Networks. In Proceedings of
the International Conference on Learning Representations 2017 (ICLR 2017), Toulon, France, 24–26 April 2017.

25. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. In Proceedings of the North American Chapter of the Association for
Computational Linguistics on Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019;
pp. 4171–4186.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

317

applied
sciences

Letter

Evolutionary Neural Architecture Search (NAS) Using
Chromosome Non-Disjunction for Korean
Grammaticality Tasks

Kang-moon Park 1 , Donghoon Shin 2,* and Yongsuk Yoo 3,*
1 Department of Computer Science, College of Natural Science, Republic of Korea Naval Academy,

Changwon-si 51704, Korea; kmun422@naver.com
2 Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
3 Department of Foreign Languages, College of Humanities, Republic of Korea Naval Academy,

Changwon-si 51704, Korea
* Correspondence: dhshin@sookmyung.ac.kr (D.S.); yong.yoo@uconn.edu (Y.Y.); Tel.: +82-2-710-9154 (D.S.);

+82-55-907-5268 (Y.Y.)

Received: 19 April 2020; Accepted: 14 May 2020; Published: 17 May 2020

Featured Application: Neural Architecture Search (NAS) on linguistic tasks.

Abstract: In this paper, we apply the neural architecture search (NAS) method to Korean
grammaticality judgment tasks. Since the word order of a language is the final result of complex
syntactic operations, a successful neural architecture search in linguistic data suggests that NAS can
automate language model designing. Although NAS application to language has been suggested
in the literature, we add a novel dataset that contains Korean-specific linguistic operations, which
adds great complexity in the patterns. The result of the experiment suggests that NAS provides an
architecture for the language. Interestingly, NAS has suggested an unprecedented structure that
would not be designed manually. Research on the final topology of the architecture is the topic of our
future research.

Keywords: deep learning; neural architecture search; word ordering; Korean syntax

1. Introduction

In this paper, we apply a modified neural architecture search (NAS) proposed in [1–6] to a
grammaticality task for Korean linguistic phenomena. To our knowledge, it is a novel approach
to language modeling of Korean linguistic phenomena in terms of automatic neural architecture
design. The successful application of deep learning in various fields is due to its automation of
pattern finding and powerful performance on difficult problems [7,8]. The fields include image
recognition [9,10], natural language processing (NLP) [11,12], game artificial intelligence (AI) [13],
self-driving system [14,15], and agriculture [16], among many others. In particular, the deep learning
methods have been applied to the fields of psycholinguistics, which attempt to identify the cognitive
processing of human languages [17]. This success requires a need for architecture engineering, where
more complex neural architectures are designed manually for different tasks. Although open-source
toolkits for deep learning have become more various and easy to use [18], the diversity of tasks
raises the need for the automation of architecture engineering. NAS, which aims to automate
architecture engineering, focuses on automation of engineering architectures, and NAS methods have
shown successful results in various tasks including image classification [19,20], object detection [21],
or semantic segmentation [22].

319

Appl. Sci. 2020, 10, 3457

NAS can be treated as a subfield of autoML [1] and significantly overlaps with hyper-parameter
optimization [23]. Hyper-parameter optimization (HPO) mainly uses Bayesian optimization; however,
it cannot generate the topology of neural architecture. The purpose of Baysian optimization is not
on the generation of a topology. By its design, this focuses on parameter optimization of a neural
architecture. The optimized neural architecture by the HPO would not change the final topology of the
original neural network. The autoML thus contains two steps: the first step is to generate topology by
using NAS; the second step is to optimize the hyperparameter of the neural network created by NAS.
To generate topology, we need to adopt an evolutionary algorithm. While there are many different
kinds of evolutionary algorithms available, the algorithms in question are required to begin from the
minimum structure. Here we adopt the variable chromosome genetic algorithm [6], which does not
require the minimum structure. This translates into a more efficient tuning method for existing deep
learning models to achieve a higher rate of accuracy, as we can start directly from the previous status
into a higher accuracy model.

In line with this growing interest in automated architecture engineering, we apply the NAS
method to word order patterns found in Korean. Linearization is a process of generating grammatical
word orders for a given set of words. Syntactic linearization systems refer to the process of making the
grammatical word orders with their syntactic trees. Various word order patterns have been accounted
for under syntactic linearization [24,25]. Recently, various language models have been widely tested
with various types of word ordering tasks including sentence corrections and word predictions using
sequence-to-sequence approaches. They have been compared in terms of their accuracy, and the
literature has proven successful on the tasks even without any explicit syntactic information [26].
The Korean language poses an interesting challenge in word order patterns due to two linguistic
phenomena: (i) scrambling [4], which permits different ordering of elements, as shown in (1); and (ii)
argument ellipsis [5], which permits the missing argument as shown in (2) (the missing argument is
crossed in the example). These two properties add complexity into word order patterns, which only
exhibit a resulting linear word order that contains underlying linguistic operations.

(1) a. John-i Mary-lul coahanta.
John-subject Mary-object like
‘John likes Mary.’
b. Mary-lul Johin-i coahanta.
Mary-object John-subject like
‘John likes Mary.’

(2) a. (John-i) Mary-lul coahanta.
b. John-i (Mary-lul) coahanta.
c. (John-i) (Mary-lul) coahanta.

Our application of the NAS model to identify word order patterns in Korean yields interesting
findings. We show that the patterns in Korean shown above do not require recurrent neural network
language models [27] for the desired result. To our knowledge, the application of NAS with a
genetic algorithm to language modeling sheds new light on the automated architecture engineering of
language models.

This paper is organized as follows: Section 2 introduces NAS with a genetic algorithm suggested
in previous research [6]. Section 3 expresses methodology of NAS, Section 4 conducts an experiment
on Korean word order patterns. Subsequently, Section 5 contains a discussion and conclusion.

2. Background

2.1. Automated Machine Learning (AutoML)

AutoML is a state-of-the-art deep learning technique that automates the designing of neural
network architecture for deep learning. Designing architecture is the most important stage in deep
learning, since several types of performance are determined by the design. The majority of the current

320

Appl. Sci. 2020, 10, 3457

architecture is developed manually, which is both a time-consuming and error-prone process [1].
However, as problems for deep learning tasks have scaled up to more challenging and complex tasks,
a manual design has become more difficult [28].

The goal of autoML is to find the best performing learning algorithm without human
intervention [29]. There are several approaches to autoML: hyper-parameter optimization (HPO),
metalearning, and NAS.

HPO aims to find an optimal hyperparameter in a specific neural network. A hyperparameter is a
parameter that is necessary for a deep learning process [30]. The optimization of a hyperparameter
is very difficult because each deep learning process has different hyperparameters [2,3]. HPO finds
these hyperparameters automatically using various methods. Bayesian optimization (BO) is the most
famous method for this.

Metalearning can improve the performance of neural networks by using metadata. The challenge
for the meta-learning methods is that it must learn from the prior experience in a systematic, data-driven
way [2]. However, the final performance of the meta-learning methods is generally lower than the
HPO or NAS.

NAS techniques provide an auto-design process for the topology of deep neural network
architecture. Recent deep neural networks have been more complex due to their several layers and
nodes with links. However, most of the neural network architectures are designed by human experts [2].
Instead, NAS can generate the topology of a neural network architecture automatically. While NAS
has similarities with HPO, the difference is that NAS does not focus on parameter tuning.

2.2. Neural Architecture Search (NAS)

NAS has three stages: search space, search strategy, and performance estimation strategy [1,31].
In the search space, we have to define which architectures can be represented. To simplify the size
of the search space, it is necessary to incorporate prior knowledge. This stage is highly dependent
on human experts. The search strategy is the most important process in NAS; it determines how to
explore the search space. The performance estimation strategy evaluates the performance of neural
networks to achieve the goal of NAS, which is to find the architecture with the highest performance.

There are many different search strategies to explore the search space of the artificial neural
network, such as Bayesian optimization (BO), reinforcement learning (RL), and an evolutionary
algorithm (EA). HPO methods employ BO successfully; however, it is not appropriate to generate
topology of the neural network due to its goal being within HPO [32,33]. In order to design the
topology of the neural network, RL can be considered [34]. RL rewards the agents for their actions
distributed by their efficiency. EAs have been adopted by researchers to provide evolving artificial
neural networks. The characteristics of the EA methodology is that it generates the topology of neural
network architecture with its evolving processes. Since CoDeepNEAT has employed EA for image
recognition successfully [28], EA has been a focus of attention in the field. However, EA employs a
constructive algorithm which requires a minimum architecture for initialization. In order to overcome
this limitation, we will use the variable chromosome genetic algorithm (VCGA) with chromosome
non-disjunction [6]. It does not need minimum architecture since it uses a new genetic operation to
make the destructive method as well as a constructive method. Since the linguistic dataset we are
dealing with has not been tested previously, it does not have any sample of a minimum architecture as
well as a middle architecture. VCGA does not care for this issue as it does not require the minimum
architecture. It enables us to search the optimal architecture for the dataset. In particular, for this
reason, VCGA is used for the current language task since the final result of the experiment can show
the topology of the architecture.

3. Methodology

We used the modified NAS that is originally proposed in [6] in this experiment. It uses genetic
algorithms, where several genetic operators make different offsprings from their parents. The proposed

321

Appl. Sci. 2020, 10, 3457

method adopts a special genetic operation, called the chromosome non-disjunction, in order to allow
the destructive searching not possible in conventional auto-design artificial neural networks (ANN)
architectures [6]. The chromosome non-disjunction operation provides the variability for designing an
ANN architecture. Consequently, our approach does not need to start from the minimum architecture.
Instead, the designer should define the initial ANN architecture.

Figure 1 shows the system configuration of a modified NAS. It consists of a genetic algorithm (GA)
generator and a group of neural networks (NN) generators. The genetic operator has three operations:
(i) a cross-over operation that blends information of parents to make various but parent-like offspring;
(ii) a mutation operation that changes a random gene to make it different from parents; and (iii) a
non-disjunction operation [6] that makes two offspring where one has less information and the other
one has more information.

Appl. Sci. 2020, 9, x 4 of 10

variability for designing an ANN architecture. Consequently, our approach does not need to start
from the minimum architecture. Instead, the designer should define the initial ANN architecture.

Figure 1 shows the system configuration of a modified NAS. It consists of a genetic algorithm
(GA) generator and a group of neural networks (NN) generators. The genetic operator has three
operations: (i) a cross-over operation that blends information of parents to make various but parent-
like offspring; (ii) a mutation operation that changes a random gene to make it different from parents;
and (iii) a non-disjunction operation [6] that makes two offspring where one has less information and
the other one has more information.

Figure 1. Overall methodology.

The GA operator has a role in controlling the population. It makes new generations of
individuals which present ANN architectures. The genetic operator consists of selection, cross-over,
mutation, and non-disjunction. The selection operator selects the appropriate individuals which
survive from the application of the fitness function as defined in Equation (1). The cross-over operator
mixes the chromosomes between the two parents. The mutation operator mutates a part of the
information of the parents. The non-disjunction can add or discard the layers or the connections.

The chromosomes are organized with two types: neuron type and connection type. The neuron
type of chromosome contains the information of the neuron or layer. It presents the unique number
of layers, the numbers of inputs, activation function, stride, etc. The connection type of chromosome
contains the information of the connection between two layers with the unique number of them. We
refer readers to Park et al [6] for further details on the algorithm of generating NN using
chromosomes.

The NN generator designs neural architectures from chromosomes in individuals and evaluates
them. The deep neural architecture generator interprets chromosomes with a node checker and link
checker. Every individual has several chromosomes, which means layers and links. However, not all
individuals are runnable and learnable. Some have broken connections, and some have unmatched

Figure 1. Overall methodology.

The GA operator has a role in controlling the population. It makes new generations of individuals
which present ANN architectures. The genetic operator consists of selection, cross-over, mutation,
and non-disjunction. The selection operator selects the appropriate individuals which survive from
the application of the fitness function as defined in Equation (1). The cross-over operator mixes the
chromosomes between the two parents. The mutation operator mutates a part of the information of
the parents. The non-disjunction can add or discard the layers or the connections.

The chromosomes are organized with two types: neuron type and connection type. The neuron
type of chromosome contains the information of the neuron or layer. It presents the unique number of
layers, the numbers of inputs, activation function, stride, etc. The connection type of chromosome
contains the information of the connection between two layers with the unique number of them. We refer
readers to Park et al [6] for further details on the algorithm of generating NN using chromosomes.

The NN generator designs neural architectures from chromosomes in individuals and evaluates
them. The deep neural architecture generator interprets chromosomes with a node checker and link

322

Appl. Sci. 2020, 10, 3457

checker. Every individual has several chromosomes, which means layers and links. However, not all
individuals are runnable and learnable. Some have broken connections, and some have unmatched
input/output. The model checker and link checker classify these inappropriate neural architectures.
The NN architecture evaluator implements training and testing with deep learning. Users must
prepare preprocessed training data and testing data. Then, fitness values, which are calculated by NN
generators, are sent to the GA operator.

The accuracy of the experiment is calculated by fitness function. Fitness function (Equation (1)) is
defined as follows:

f itness = (1− loss) −R ∗ numlayer

numavg
∗ (2 ∗ (1− loss) − 1) (1)

where R means the coefficient of dependency rate of the number of layers between 0 to 1. Numlayer
means the number of layers and numavg means the average of the number of layers.

4. Experiment

4.1. Distribution of Grammatical Sentences in Four-Word Level Sentences in Korean

We have created four-word level sentences in Korean that contain seven syntactic categories:
noun phrase, verb phrase, prepositional phrase, adjective phrase, adverbs, complementizer phrase,
and auxiliary phrases, which result in 2401 combinations. To confirm the grammaticality of each
combination, we have consulted the Sejong Corpus and two linguists, and the distribution of
grammaticality is given below. To our knowledge, the data used in this experiment present a novel
approach since we have added two syntactic operations that are not visible in the Sejong Corpus.
In Table 1, one example of sentences containing scrambling and ellipsis is presented. Although the
input slots are counted as four, the underlying sentence may contain more than four words, as shown
in the table. This is because few of them can be elided (deleted words), and the orders can be changed.
One of the example sentences is given in Table 1. To our knowledge, the data used in this experiment
present a novel approach since we have added two syntactic operations that are not visible in the
Sejong Corpus.

Figure 2 shows the grammaticality of the dataset; it consists of 113 sentences (circles) that are
grammatical. Figure 1 consists of five dimensions, including colors. The X-axis refers to the first slot of
four words, and Y and Z refer to the second and the third slot, respectively. The color spectrum refers
to the fourth-word slot. The O/X represents grammaticality, which is presented as an output value of
the artificial neural network.

Appl. Sci. 2020, 9, x 5 of 10

input/output. The model checker and link checker classify these inappropriate neural architectures.
The NN architecture evaluator implements training and testing with deep learning. Users must
prepare preprocessed training data and testing data. Then, fitness values, which are calculated by
NN generators, are sent to the GA operator.

The accuracy of the experiment is calculated by fitness function. Fitness function (Equation (1))
is defined as follows:

ݏݏ݁݊ݐ݂݅ = (1 − loss) − ܴ ∗
௬݉ݑ݊

௩݉ݑ݊
∗ (2 ∗ (1 − (ݏݏ݈ − 1) (1)

where R means the coefficient of dependency rate of the number of layers between 0 to 1. Numlayer

means the number of layers and numavg means the average of the number of layers.

4. Experiment

4.1. Distribution of Grammatical Sentences in Four-Word Level Sentences in Korean

We have created four-word level sentences in Korean that contain seven syntactic categories:
noun phrase, verb phrase, prepositional phrase, adjective phrase, adverbs, complementizer phrase,
and auxiliary phrases, which result in 2401 combinations. To confirm the grammaticality of each
combination, we have consulted the Sejong Corpus and two linguists, and the distribution of
grammaticality is given below. To our knowledge, the data used in this experiment present a novel
approach since we have added two syntactic operations that are not visible in the Sejong Corpus. In
Table 1, one example of sentences containing scrambling and ellipsis is presented. Although the input
slots are counted as four, the underlying sentence may contain more than four words, as shown in
the table. This is because few of them can be elided (deleted words), and the orders can be changed.
One of the example sentences is given in Table 1. To our knowledge, the data used in this experiment
present a novel approach since we have added two syntactic operations that are not visible in the
Sejong Corpus.

Figure 2 shows the grammaticality of the dataset; it consists of 113 sentences (circles) that are
grammatical. Figure 1 consists of five dimensions, including colors. The X-axis refers to the first slot
of four words, and Y and Z refer to the second and the third slot, respectively. The color spectrum
refers to the fourth-word slot. The O/X represents grammaticality, which is presented as an output
value of the artificial neural network.

Figure 2. Distribution of input data. Figure 2. Distribution of input data.

323

Appl. Sci. 2020, 10, 3457

Although our experiment is limited to the four-word level, the Korean language adds a great deal
of complexity into patterns due to its underlying syntactic operations. For example, the sentence in
Table 1 counts as grammatical even though more than four words are present underlyingly.

Table 1. An example of input data.

Jane-i Yepputako John Maryekey Cipeysey Malhassta

Jane pretty John Mary home said
1st input 2nd input 3rd input 4th input

“At home, John said to Mary that Jane is pretty.”

4.2. Experiment Setups

We ran the experiment of NAS on Korean grammaticality judgment data. The initial neural
network of our NAS model is shown in Figure 3. This neural network consists of one input layer,
one hidden layer, and one output layer. This hidden layer has five nodes and Rectified Linear Unit
(ReLU) as an activation function. The loss of the initial neural architecture model is about 0.270816.
Parameters of these experiments are shown in Table 2.

Appl. Sci. 2020, 9, x 6 of 10

Although our experiment is limited to the four-word level, the Korean language adds a great
deal of complexity into patterns due to its underlying syntactic operations. For example, the sentence
in Table 1 counts as grammatical even though more than four words are present underlyingly.

Table 1. An example of input data.

Jane-i Yepputako John Maryekey Cipeysey Malhassta
Jane pretty John Mary home said

 1st input 2nd input 3rd input 4th input
“At home, John said to Mary that Jane is pretty.”

4.2. Experiment Setups

We ran the experiment of NAS on Korean grammaticality judgment data. The initial neural
network of our NAS model is shown in Figure 3. This neural network consists of one input layer, one
hidden layer, and one output layer. This hidden layer has five nodes and Rectified Linear Unit (ReLU)
as an activation function. The loss of the initial neural architecture model is about 0.270816.
Parameters of these experiments are shown in Table 2.

Figure 3. Initial architecture.

Table 2. Parameters of experiment.

Parameter Value

Population 50

Generations 30

Mutant rate 0.05

Figure 3. Initial architecture.

324

Appl. Sci. 2020, 10, 3457

Table 2. Parameters of experiment.

Parameter Value

Population 50
Generations 30
Mutant rate 0.05

Cross-over rate 0.05
Non-disjunction rate 0.1

Learning rate 0.01
Criterion MSELoss

4.3. Experiment Results

Figure 4 shows the entire evolution process of the experiment. The number of chromosomes
means the complexity of the neural architecture. It starts with five chromosomes within three layers
and grows to nine chromosomes. The loss of an auto-designed neural architecture starts from 0.270816
to 0.000096. The final architecture has a linear layer with five nodes and five links to the output
layer from a linear layer, as shown in Figure 5. It added a connection to the output layer from the
hidden layer every evolution step and converged after generation 6. The resulting topology we have
in Figure 5 is rather interesting. While there has to be one-to-one correlation between the input and
output, the five outputs of the hidden layer are added into the one input of the output layer. In other
words, the five outputs are identical.

The final result of the experiment shows that the initial neural architecture with the loss of
0.270816 is successfully evolved into the converged neural architecture with a loss that is close to 0.
In each evolution stage, we have noticed the addition of links into the output layer by one. While the
mechanism behind the addition needs to be explored, the final result with the loss that is close to 0
means the NAS can successfully find a neural architecture for the Korean language data.
Appl. Sci. 2020, 9, x 8 of 10

Figure 4. Evolution process of experiment.

Figure 5. Final architecture of experiment.

Figure 4. Evolution process of experiment.

325

Appl. Sci. 2020, 10, 3457

Appl. Sci. 2020, 9, x 8 of 10

Figure 4. Evolution process of experiment.

Figure 5. Final architecture of experiment. Figure 5. Final architecture of experiment.

5. Discussion and Conclusions

The results of this experiment show that it is plausible to apply the NAS method to linguistic
data. In spite of the complexity of the data we have used, the NAS method has been successful in the
automation of architecture designing. The experiment sheds new light on language modeling that is
generally focused on replicating word order patterns under recurrent neural networks. Furthermore,
this work contributes to the field of computational psycholinguistics, since the resulting model could
be associated to the block box problem of the generated language models. The result above shows that
a simple linear layer can learn the complex patterns in the linguistic data. However, the result of the
paper is somewhat limited due to the small amount of the dataset. In further researches, the expanded
dataset will be employed, and this will enable the direct comparison between the current NAS and
RNN. Furthermore, a modified NAS that can generate RNN will be also researched.

However, we need to improve the data with more inputs. We predict the number of inputs would
not affect the topology of the final architecture. In addition to this, cross-linguistic studies that involve
more than one language are in order for future research.

Furthermore, the final topology is rather intriguing in that it is not suggested anywhere but only
found in the automation of architecture designing. We speculate this structure to be language specific,
yet we need to expand our dataset as well as the methodology. This fork-like structure in Figure 4
needs to be investigated in various aspects; this will be done in future research.

Author Contributions: Conceptualization, K.-m.P. and Y.Y.; methodology, K.-m.P.; software, K.-m.P.; validation,
Y.Y. and D.S.; formal analysis, K.-m.P.; investigation, Y.Y.; resources, Y.Y.; data curation, Y.Y.; writing—original
draft preparation, K.-m.P. and Y.Y.; writing—review and editing, Y.Y. and D.S.; visualization, K.-m.P.; supervision,
Y.Y.; project administration, K.-m.P.; funding acquisition, D.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the 2020 National Research Projects of Naval Research Center, Republic of
Korea Naval Academy, and by the Sookmyung Women’s University Research Grants (1-2003-2008).

326

Appl. Sci. 2020, 10, 3457

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. arXiv 2018, arXiv:1808.05377.
2. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning; Springer: Berlin/Heidelberg, Germany, 2019.
3. Adam, G.; Lorraine, J. Understanding neural architecture search techniques. arXiv 2019, arXiv:1904.00438.
4. Saito, M. Some Asymmetries in Japanese and Their Theoretical Implications. Ph.D. Thesis, NA Cambridge,

Cambridge, UK, 1985.
5. Kim, S. Sloppy/strict identity, empty objects, and NP ellipsis. J. East Asian Linguist. 1999, 8, 255–284. [CrossRef]
6. Park, K.; Shin, D.; Chi, S. Variable chromosome genetic algorithm for structure learning in neural networks

to imitate human brain. Appl. Sci. 2019, 9, 3176. [CrossRef]
7. Wang, T.; Wen, C.-K.; Jin, S.; Li, G.Y. Deep learning-based CSI feedback approach for time-varying massive

MIMO channels. IEEE Wirel. Commun. Lett. 2018, 8, 416–419. [CrossRef]
8. Hohman, F.; Kahng, M.; Pienta, R.; Chau, D.H. Visual analytics in deep learning: An interrogative survey for

the next frontiers. IEEE Trans. Vis. Comput. Graph. 2018, 25, 2674–2693. [CrossRef] [PubMed]
9. Li, A.A.; Trappey, A.J.; Trappey, C.V.; Fan, C.Y. E-discover state-of-the-art research trends of deep learning for

computer vision. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics
(SMC), Bari, Italy, 6–9 October 2019; pp. 1360–1365.

10. Han, X.; Laga, H.; Bennamoun, M. Image-based 3D object reconstruction: State-of-the-art and trends in the
deep learning era. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 1, 1. [CrossRef] [PubMed]

11. Lopez, M.M.; Kalita, J. Deep learning applied to NLP. arXiv 2017, arXiv:1703.03091.
12. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent trends in deep learning based natural language

processing. IEEE Comput. Intell. Mag. 2018, 13, 55–75. [CrossRef]
13. Justesen, N.; Bontrager, P.; Togelius, J.; Risi, S. Deep learning for video game playing. IEEE Trans. Games

2019, 12, 1. [CrossRef]
14. Hatcher, W.G.; Yu, W. A survey of deep learning: Platforms, applications and emerging research trends.

IEEE Access 2018, 6, 24411–24432. [CrossRef]
15. Simhambhatla, R.; Okiah, K.; Kuchkula, S.; Slater, R. Self-driving cars: Evaluation of deep learning techniques

for object detection in different driving conditions. SMU Data Sci. Rev. 2019, 2, 23.
16. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018,

147, 70–90. [CrossRef]
17. Linzen, T.; Dupoux, E.; Goldberg, Y. Assessing the ability of LSTMs to learn syntax-sensitive dependencies.

Trans. Assoc. Comput. Linguist. 2016, 4, 521–535. [CrossRef]
18. Rebortera, M.A.; Fajardo, A.C. An enhanced deep learning approach in forecasting banana harvest yields.

Int. J. Adv. Comput. Sci. Appl. 2019, 10, 275–280. [CrossRef]
19. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–22 June 2018; pp. 8697–8710.

20. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized evolution for image classifier architecture search.
In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February
2019; Volume 33, pp. 4780–4789.

21. Zoph, B.; Cubuk, E.D.; Ghiasi, G.; Lin, T.-Y.; Shlens, J.; Le, Q.V. Learning data augmentation strategies for
object detection. arXiv 2019, arXiv:1906.11172.

22. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution
for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV),
Munich, Germany, 8–14 September 2018; pp. 801–818.

23. Feurer, M.; Hutter, F. Hyperparameter optimization. In Automated Machine Learning; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 3–33.

24. Zhang, Y.; Clark, S. Syntax-based grammaticality improvement using CCG and guided search. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, Association for Computational
Linguistics, Edinburgh, UK, 27–29 July 2011; pp. 1147–1157.

327

Appl. Sci. 2020, 10, 3457

25. Liu, Y.; Zhang, Y.; Che, W.; Qin, B. Transition-based syntactic linearization. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Denver, CO, USA, 31 May–5 June 2015; pp. 113–122.

26. Schmaltz, A.; Kim, Y.; Rush, A.M.; Shieber, S.M. Adapting sequence models for sentence correction. arXiv 2017,
arXiv:1707.09067.

27. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases
and their compositionality. In Proceedings of the Advances in Neural Information Processing Systems,
Lake Tahoe, CA, USA, 5–10 December 2013; pp. 3111–3119.

28. Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.;
Navruzyan, A.; Duffy, N. Evolving deep neural networks. In Artificial Intelligence in the Age of Neural Networks
and Brain Computing; Elsevier: Amsterdam, The Netherlands, 2019; pp. 293–312.

29. Wong, C.; Houlsby, N.; Lu, Y.; Gesmundo, A. Transfer learning with neural automl. In Proceedings of
the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018;
pp. 8356–8365.

30. Wicaksono, A.S.; Supianto, A.A. Hyper parameter optimization using genetic algorithm on machine learning
methods for online news popularity prediction. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 263–267. [CrossRef]

31. Weng, Y.; Zhou, T.; Li, Y.; Qiu, X. NAS-Unet: Neural architecture search for medical image segmentation.
IEEE Access 2019, 7, 44247–44257. [CrossRef]

32. Kandasamy, K.; Neiswanger, W.; Schneider, J.; Poczos, B.; Xing, E.P. Neural architecture search with bayesian
optimisation and optimal transport. In Proceedings of the Advances in Neural Information Processing
Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 2016–2025.

33. Ma, L.; Cui, J.; Yang, B. Deep neural architecture search with deep graph bayesian optimization. In Proceedings
of the 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Thessaloniki, Greece,
14–17 October 2019; pp. 500–507.

34. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

328

applied
sciences

Article

Source Code Assessment and Classification Based on
Estimated Error Probability Using Attentive LSTM
Language Model and Its Application in
Programming Education

Md. Mostafizer Rahman * , Yutaka Watanobe * and Keita Nakamura

School of Computer Science and Engineering, Graduate Department of Computer and Information Systems,
The University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan; keita-n@u-aizu.ac.jp
* Correspondence: mostafiz26@gmail.com (M.M.R.); yutaka@u-aizu.ac.jp (Y.W.)

Received: 23 March 2020; Accepted: 21 April 2020; Published: 24 April 2020

Abstract: The rate of software development has increased dramatically. Conventional compilers
cannot assess and detect all source code errors. Software may thus contain errors, negatively affecting
end-users. It is also difficult to assess and detect source code logic errors using traditional compilers,
resulting in software that contains errors. A method that utilizes artificial intelligence for assessing and
detecting errors and classifying source code as correct (error-free) or incorrect is thus required. Here,
we propose a sequential language model that uses an attention-mechanism-based long short-term
memory (LSTM) neural network to assess and classify source code based on the estimated error
probability. The attentive mechanism enhances the accuracy of the proposed language model for
error assessment and classification. We trained the proposed model using correct source code and
then evaluated its performance. The experimental results show that the proposed model has logic
and syntax error detection accuracies of 92.2% and 94.8%, respectively, outperforming state-of-the-art
models. We also applied the proposed model to the classification of source code with logic and syntax
errors. The average precision, recall, and F-measure values for such classification are much better
than those of benchmark models. To strengthen the proposed model, we combined the attention
mechanism with LSTM to enhance the results of error assessment and detection as well as source code
classification. Finally, our proposed model can be effective in programming education and software
engineering by improving code writing, debugging, error-correction, and reasoning.

Keywords: language modeling; classification; error probability; error assessment; logic error; neural
network; LSTM; attention mechanism; programming education

1. Introduction

A huge amount of software is written in educational institutions and industry, making software
reliability increasingly important. Source code usually contains multiple types of error, including
syntax, semantic, communication, calculation, and logic errors. A single error is often enough to cause
software failure. It is sometimes difficult for student or professional programmers to identify logic
errors in source code, even with the help of traditional compilers. Helping programmers, especially
novice programmers, properly assess and classify source code errors has become an important research
topic in software engineering and programming education [1,2]. In general, software is debugged
before it is released. Each software package must pass several testing phases. A crucial testing phase is
error debugging. Student and professional programmers spend a huge amount of time trying to find
source code errors. The entire source code must be searched to find even a single error, which is a
tedious, cumbersome, and time-consuming task. Student and professional programmers often make

329

Appl. Sci. 2020, 10, 2973

some common errors, such as missing semicolons, delimiters, or braces, and logic errors. These errors
may be caused by a lack of experience or attention to detail. Both novice and experienced programmers
make such errors, as reported in a study of programmers who build errors (Google) [3].

Machine learning (ML)-based classifiers can predict source code errors after being trained on a
correct source code corpus [4–6]. Source code classifiers can assist programmers in fixing potential
errors, thereby increasing source code correctness and reliability. Traditional source code error
prediction methods consist of two steps, namely the extraction of features from training datasets and
the development of an ML model (supervised or unsupervised) for classification. Previous research
has concentrated on the design of preferential metrics to obtain higher accuracy. Features can be
divided into Halstead [7] features depending on operators and operands, McCabe [8] features, and
CK [9] features extracted from object-oriented programs. Most supervised and unsupervised classifiers
are unable to properly classify source code using extracted features, inside the features logic, syntax,
and semantic errors may exist. Feature-based traditional classifiers consider only the current features
instead of checking all source code sequences.

Due to the sensitivity of source code, error assessment, detection, and classification is a challenging
task. Traditional compilers cannot accurately assess source code errors. Therefore, a method based on
artificial intelligence (AI) is required to assist programmers in the assessment and detection of such
errors. Artificial neural networks (ANNs) are attractive for this task.

Natural language processing (NLP) has recently produced a lot of remarkable results in applications
such as language processing, speech recognition, and machine translation. An n-gram model is an
example of a stochastic language model for predicting the next item or word based on a large text
corpus. N-gram models such as bi-gram, tri-gram, skip-gram [10], and GloVe [11] are statistical
language models that can be applied to language modeling. The availability of large text corpuses has
made NLP techniques effective. A language model is useful and intuitive for short repeated source
code sequences. However, for complex software engineering, the NLP language model is less useful.
Many researchers have focused on source code error assessment and classification using language
modeling. An ANN-based language model could be a replacement for error assessment and detection
as well as source code classification. Recurrent neural network (RNN)-based models have recently
achieved some success in language modeling. An RNN can hold a larger source code sequence context
compared with that for traditional n-gram and other language models [12]. RNNs have limitations
in terms of representing such large contexts due to gradient vanishing or exploding [13], making it
difficult to train RNN-based models using long source code sequences. RNNs are thus effective for
only short source code sequences. RNNs have been extended to long short-term memory (LSTM)
networks to avoid gradient vanishing or exploding. LSTM can remember both short and long source
code sequences using an internal gate structure.

In this paper, we present a language model for assessing and detecting various source code errors
(logic, syntax, semantic, runtime, etc.) as well as classifying the source code as correct (error-free) or
incorrect based on the estimated error probability. We developed the language model using LSTM
combined with the attention mechanism (hereafter referred to as LSTM-AttM). LSTM-AttM is more
powerful and effective than a basic RNN, standard LSTM, and other traditional baseline models.
We trained RNN, LSTM, and LSTM-AttM models with various numbers of hidden layers (50, 100,
200, 300, and 400) using a large correct source code corpus collected from an online judge system.
For the evaluation process, source code with and without errors were used as the input to the model.
The model then assessed and detected syntax and logic errors with locations in code and classified the
source code as either correct or incorrect based on the estimated error probability. The LSTM-AttM
model can detect many common errors in source code, including logic errors. The LSTM-AttM network
can use long source code sequences as the input to generate the optimal output. The proposed model
was tuned with various numbers of hyperparameters and hidden layers to optimize it in terms of
perplexity, accuracy, training time, and other performance measurement metrics. The output of the

330

Appl. Sci. 2020, 10, 2973

proposed model will be helpful for student and professional programmers as well as programming
education and software engineering. The contributions of our research are as follows:

• Our proposed model can provide a thorough evaluation of source code which includes error
detection, correct word prediction with line numbers, as well as classification. Thus, for learning
programming, the model can act as an intelligent compiler.

• The logic and syntax error detection accuracies are 92.2% and 94.8%, respectively, which are much
better than those for state-of-the-art models.

• The proposed model can classify source code as being either correct or incorrect based on the
estimated error probability. The average precision, recall, and F-measure values for source
code classification based on syntax and logic errors are much higher than those of reference
benchmark models.

• We combined the attention mechanism with the proposed neural network model to strengthen
the language model. Generally, in source codes, a single line can have a long dependency on the
previous line, in which case the attention mechanism uses all the hidden states of the past to make
accurate predictions.

• The proposed model can help novice and experienced programmers quickly fix their source code,
thus saving valuable time.

The rest of this paper is organized as follows. Section 2 presents the background and literature
review. Section 3 describes LSTM neural networks. Section 4 presents the proposed approach. Section 5
presents the data collection and normalization processes. Section 6 presents the experimental results
and evaluations. Section 7 discusses the results. Finally, Section 8 concludes this research and provides
suggestions for future work.

2. Background and Literature Review

In the source code, a single line may have reliance on the preceding lines, making it difficult to
evaluate complex source code by any conventional language model. The LSTM based language model
is a promising method for source code error assessment and classification.

Information and communication technology has become an influential economic catalyst. A huge
amount of source code is written and compiled globally. AI can be applied to assess source code
errors. AI-based language models are often used for source code assessment and classification to
obtain human-like responses. Many researchers have used AI-based models to detect source code
errors in software engineering and programming education.

Pu et al. [10] proposed a source code correction method based on LSTM using code segment
similarities. The study leveraged the sequence-to-sequence (seq2seq) neural network model with
natural language processing tasks for the code correction process. Another study [12] proposed a
deep software language model based on RNNs. The experimental results showed that the model
outperforms traditional language models such as n-gram and cache-based n-gram in a Java corpus.
The software language model shows great promise in the field of software engineering. Terada et al. [14]
proposed an LSTM-based model for programming education where the model predicts the next word
by analyzing incomplete source code. Novice programmers often struggle to write a complete program
from scratch. To help them, the model predicts the next word to complete a program. The LSTM-based
model achieved a high degree of prediction accuracy. Fault detection in source code has become
an important research topic [1]. In one study [15], source code defect prediction was performed
based on churn metrics combined with source code dependencies. In another [16], an extensive
analysis of metrics and static code attributes was conducted for error prediction. Arar et al. [17]
selected suitable features by employing a naive Bayes classifier. Jing et al. [18] introduced a vocabulary
learning model that calculates the incorrect classification cost for the prediction of source code defects.
Various ML approaches [19–21] have been proposed for classification, recommendation, and estimation
problems. Alreshedy et al. [22] presented an ML-based language model for classifying source code

331

Appl. Sci. 2020, 10, 2973

snippets based on the programming language. In their work, a multinomial naive Bayes classifier was
applied and code snippets from the website Stack Overflow were used as experimental data. Ram
and Nagappan [23] proposed a hierarchical model that uses convolutional neural networks (CNNs)
and LSTM for sentiment analysis in software engineering. This analysis model outperforms reference
state-of-the-art models. Reyes et al. [24] classified archived source code by type of programming
language using an LSTM network. Empirical results showed that the LSTM network outperformed
the naive Bayes classifier and linguist classifier.

Terada and Watanobe [25] presented a method for the automatic generation of fill-in-the-blank
problems for novice programmers using k-means clustering and the bidirectional LSTM model.
The k-means clustering method is used to select ideal source code from an online judge system
and the code to be made blank (to be filled with appropriate words using the bidirectional LSTM
model). Tai et al. [26] presented a model called Tree-LSTM where an LSTM network works like a
tree. The model evaluates the tasks of prediction of semantic relatedness based on sentence pairs and
sentiment classification. Pedroni and Meyer [27] presented a survey-based analysis that focused on
what type of compiler message helps novice programmers identify errors and what actions should be
taken regarding source code errors. They experimentally showed which type of message helps most.
Saito and Watanobe [28] proposed a learning path recommendation system for novice students based
on their desired learning ability chart. The students were clustered and an excellent student from each
cluster was selected. The model extracted features from the selected excellent students. Finally, the
model used the features as training input to the neural network. An LSTM network was used to predict
the learning path of the students. In another study [29], a source code bug detection technique that uses
LSTM was proposed. The hyperparameters of LSTM were adjusted to determine the optimal perplexity
and training time. The LSTM network produces a plausible outcome for source code bug detection.
Fan et al. [30] presented an attention-based RNN for source code defect prediction. F-measure score
and the area under the curve (AUC) were used as model evaluation metrics. The proposed model
improved the source code classification process. The F-measure score and AUC had 14% and 7% better
accuracy than those of state-of-the-art models, respectively. Ohashi et al. [31] proposed a source code
classification model that uses a CNN. The model classifies source code based on the type of algorithm
in the code. During CNN model training, all source code is converted into a simple structure of code
without any variables, functions, keywords, etc. The obtained classification accuracy of the CNN
model is very high.

In summary, many promising methods have proposed. Most researchers utilized traditional
supervised and unsupervised classifiers, RNNs, LSTM, or CNNs as language models for source code
classification and other applications. RNNs are much better than traditional language models such as
n-gram, but have limitations in terms of handling long input sequences. LSTM is a variant of RNNs
that overcomes the shortcomings of RNNs. The model proposed in the present study combines the
attention mechanism with LSTM (LSTM-AttM). The LSTM-AttM network is used as a language model
for source code assessment and classification based on the estimated error probability. The LSTM-AttM
network outperforms LSTM because the latter uses only the last hidden state outcome for prediction.
In contrast, LSTM-AttM considers all previous hidden state outcomes for prediction. Most of the
studies used different models for source code classification based on errors, programming language
detection, archive code classification, and simple error detection. On the other hand, our proposed
model specifically identifies logic, syntax and other errors in the source code. Furthermore, the model
can predict the correct words in place of the error location. Overall our proposed LSTM-ATM model
differs from other models in achieving unique goals.

3. Long Short-Term Memory Network

An LSTM network is a type of RNN. The LSTM network has been effectively used in the field of
deep learning. The main advantage of an LSTM network is ease of training because it does not face
problems such as gradient vanishing or exploding. LSTM can process entire input (source code, video,

332

Appl. Sci. 2020, 10, 2973

speech, image) sequences. An LSTM network memory unit consists of four attributes, namely a forget
gate, a cell state, an input gate, and an output gate. The cell state remembers the information of the
entire sequence and the three gates control the input and output of the cell, as shown in Figure 1.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 21

Figure 1. Internal structure of a simple long short-term memory (LSTM) unit.

At the start of the process, the forget gate checks which information to throw away and which
information to keep in the cell state. Equation (1) is used for the forget gate. It is calculated at cell state
ct-1 using hidden state ht-1 and input xt. The output of the forget gate, between 0 and 1, is produced by
the sigmoid function. An output value of 1 (0) means keep (remove) all information in (from) the cell
state. 𝑓௧ = 𝜎(𝑊[ℎ௧ିଵ, 𝑥௧] + 𝑏) (1)

To store a new piece of information in the cell state, the input gate decides which value will be
updated using the sigmoid function. The tanh function creates a new candidate value �̃�t for the cell
state. 𝑖௧ = 𝜎(𝑤 . [ℎ௧ିଵ, 𝑥௧] + 𝑏) (2) �̃�௧ = tanh(𝑤 . [ℎ௧ିଵ, 𝑥௧] + 𝑏) (3)

Then, the old cell state ct-1 is used to update ct. 𝑐௧ = 𝑓௧ ∗ 𝑐௧ିଵ + 𝑖௧ ∗ �̃�௧ (4)

We can now calculate the output of LSTM, which is based on a filtered version of the cell state.
The sigmoid function decides which part of the cell state is going to the output and then updates the
weight accordingly. 𝑜௧ = 𝜎(𝑤 . [ℎ௧ିଵ, 𝑥௧] + 𝑏) (5) ℎ௧ = 𝑜௧ ∗ tanh (𝑐௧) (6)

The combination of the attention mechanism with LSTM improves model performance for fault
assessment and detection and the classification of source code.

4. Proposed Approach

In the proposed model, an LSTM-AttM network is used as a seq2seq language model for error
assessment and detection as well as source code classification. We trained the proposed model using
correct source code. The model then generated the error probability through the softmax layer for
each error candidate word based on the context vector ct of all previous hidden states and the current
state output ht. The estimated error probability is also used to classify the source code as either correct
(error-free) or incorrect. The proposed LSTM-AttM model can identify many kinds of error (logic,
syntax, semantic, etc.) in source code to increase source code reliability. The workflow of the
proposed model is shown in Figure 2.

Figure 1. Internal structure of a simple long short-term memory (LSTM) unit.

At the start of the process, the forget gate checks which information to throw away and which
information to keep in the cell state. Equation (1) is used for the forget gate. It is calculated at cell state
ct-1 using hidden state ht-1 and input xt. The output of the forget gate, between 0 and 1, is produced
by the sigmoid function. An output value of 1 (0) means keep (remove) all information in (from) the
cell state.

ft = σ
(
W f [ht−1, xt] + b f

)
(1)

To store a new piece of information in the cell state, the input gate decides which value will
be updated using the sigmoid function. The tanh function creates a new candidate value c̃t for the
cell state.

it = σ(wi . [ht−1, xt] + bi) (2)

c̃t = tanh(wc . [ht−1, xt] + bc) (3)

Then, the old cell state ct-1 is used to update ct.

ct = ft ∗ ct−1 + it ∗ c̃t (4)

We can now calculate the output of LSTM, which is based on a filtered version of the cell state.
The sigmoid function decides which part of the cell state is going to the output and then updates the
weight accordingly.

ot = σ(wo . [ht−1, xt] + bo) (5)

ht = ot ∗ tan h(ct) (6)

The combination of the attention mechanism with LSTM improves model performance for fault
assessment and detection and the classification of source code.

4. Proposed Approach

In the proposed model, an LSTM-AttM network is used as a seq2seq language model for error
assessment and detection as well as source code classification. We trained the proposed model using
correct source code. The model then generated the error probability through the softmax layer for
each error candidate word based on the context vector ct of all previous hidden states and the current
state output ht. The estimated error probability is also used to classify the source code as either correct

333

Appl. Sci. 2020, 10, 2973

(error-free) or incorrect. The proposed LSTM-AttM model can identify many kinds of error (logic,
syntax, semantic, etc.) in source code to increase source code reliability. The workflow of the proposed
model is shown in Figure 2.
Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 21

Figure 2. Workflow of proposed model: (a) word embedding and encoding process, (b) training of
LSTM combined with the attention mechanism (LSTM-AttM) network using IDs, and (c) error
probability prediction followed by the softmax layer and source code classification.

4.1. Proposed LSTM-AttM Model Architecture

The attention mechanism has been adapted for performing various tasks [32–35]. It is most
commonly used in seq2seq modeling. A neural network that utilizes the attention mechanism is
called an attentive neural network. The conventional seq2seq model cannot properly process a long
sequence of input because only the last hidden state of the input is used as a context vector for output
[36]. The attention mechanism maps the most relevant words from the input sequence and then
assigns a higher weight to these words to enhance the output accuracy. We incorporated the attention
mechanism with LSTM, as shown in Figure 3, to better predict short and long sequences of source
code. The proposed LSTM-AttM model creates a potential application domain in programming
education arena.

Figure 3. Architecture of proposed LSTM-AttM network model.

Attention is a vector or dense output layer with a softmax function. It is used to enhance the
performance of machine translators and seq2seq models. Recently, the attention mechanism has
achieved great success in machine translation tasks. A machine translator sometimes compresses long

Figure 2. Workflow of proposed model: (a) word embedding and encoding process, (b) training
of LSTM combined with the attention mechanism (LSTM-AttM) network using IDs, and (c) error
probability prediction followed by the softmax layer and source code classification.

Proposed LSTM-AttM Model Architecture

The attention mechanism has been adapted for performing various tasks [32–35]. It is most
commonly used in seq2seq modeling. A neural network that utilizes the attention mechanism is
called an attentive neural network. The conventional seq2seq model cannot properly process a long
sequence of input because only the last hidden state of the input is used as a context vector for
output [36]. The attention mechanism maps the most relevant words from the input sequence and
then assigns a higher weight to these words to enhance the output accuracy. We incorporated the
attention mechanism with LSTM, as shown in Figure 3, to better predict short and long sequences of
source code. The proposed LSTM-AttM model creates a potential application domain in programming
education arena.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 21

Figure 2. Workflow of proposed model: (a) word embedding and encoding process, (b) training of
LSTM combined with the attention mechanism (LSTM-AttM) network using IDs, and (c) error
probability prediction followed by the softmax layer and source code classification.

4.1. Proposed LSTM-AttM Model Architecture

The attention mechanism has been adapted for performing various tasks [32–35]. It is most
commonly used in seq2seq modeling. A neural network that utilizes the attention mechanism is
called an attentive neural network. The conventional seq2seq model cannot properly process a long
sequence of input because only the last hidden state of the input is used as a context vector for output
[36]. The attention mechanism maps the most relevant words from the input sequence and then
assigns a higher weight to these words to enhance the output accuracy. We incorporated the attention
mechanism with LSTM, as shown in Figure 3, to better predict short and long sequences of source
code. The proposed LSTM-AttM model creates a potential application domain in programming
education arena.

Figure 3. Architecture of proposed LSTM-AttM network model.

Attention is a vector or dense output layer with a softmax function. It is used to enhance the
performance of machine translators and seq2seq models. Recently, the attention mechanism has
achieved great success in machine translation tasks. A machine translator sometimes compresses long

Figure 3. Architecture of proposed LSTM-AttM network model.

334

Appl. Sci. 2020, 10, 2973

Attention is a vector or dense output layer with a softmax function. It is used to enhance the
performance of machine translators and seq2seq models. Recently, the attention mechanism has
achieved great success in machine translation tasks. A machine translator sometimes compresses long
sequenced sentences into a fixed-length vector. Therefore, information may be lost. The attention
mechanism mitigates this problem. Although LSTM has outstanding performance in terms of capturing
long-range dependencies, a hidden state carries all the information into a fixed-length vector [36].
The attention mechanism has been applied to neural language models such as LSTM to overcome this
problem [37]. The attention mechanism allows a neural language model to retrieve and make use of
pertinent information in all previous hidden states, improving network retention. The mathematical
details of the attention mechanism are described in previous work [38]. For attention, we use external
memory M for previous hidden states, which is denoted as Mt = [ht−M ht−1] εRk∗M. At time
step t, the context vector ct and attention weight αt. Now, the model uses the attention layer between ht

and the hidden states in Mt. We defined our attention-based LSTM model by the following equations.

At = Mt.ht (7)

αt = so f tmax(At) (8)

ct = Mtα
T
t (9)

For predicting the next word at time step t, the calculation is based on current hidden states ht

and context vector ct. The vocabulary spaces are obtained using the softmax function to produce the
final probability ytε Rv. Gt is an output vector.

Gt = tan h
(
wg

[
wh(ht) + wm(ct)

])
(10)

yt = so f tmax(wvGt + bv) (11)

where wgε Rk∗2k and wvε Rv∗k are trainable projection matrices, bvε Rv is a trainable bias vector, and v
is the vocabulary size.

The attention mechanism facilitates the extraction of more accurate features from input sequences,
and thus the LSTM-AttM network increases the performance of the proposed model.

5. Data Collection and Normalization

In the present research, we collected all the datasets from the Aizu Online Judge (AOJ)
system [39,40]. The AOJ system has more than 2000 problems and 65,000 users as of February
2020. The problems and algorithms are divided into categories [28]. The AOJ system has more
than 4 million source code samples for various problems. A total of 18 programming languages,
including C++, C, Ruby, and Python, are supported by the AOJ system. The system keeps all statistical
information on programming and the submission logs of individual users. These resources can be used
to conduct research in programming education and software engineering. To train the proposed model,
we took correct solutions for Insertion Sort (IS), Greatest Common Divisor (GCD), Prime Numbers
(PN), Bubble Sort (BS), and Selection Sort (SS) problems from the AOJ system. All the source code was
written in the C language. The selected source code was archived on the AOJ system from August
2018 to September 2019. The total numbers of correct source code submissions for IS, GCD, PN, BS,
and SS are 2285, 1821, 1538, 2425, and 2294, respectively. The overall solution success rates for IS, GCD,
PN, BS, and SS are 35.16%, 49.86%, 30.8%, 47.74%, and 59.79%, respectively. A total of 10,362 correct
and incorrect source codes were used for model training where the number of correct and incorrect
codes was equal. Of the total source codes, we used 90% of the code for model training and 10% for
testing. To evaluate the error in the source code, we randomly selected 100 new source codes from
each category. A total of 500 source codes were examined by the model for logical, syntax, and others

335

Appl. Sci. 2020, 10, 2973

error evaluation. For classification, we selected approximately 1300 erroneous source codes from all
categories to evaluate the effectiveness of the classification.

Before model training, we refined all source code by removing unnecessary elements. We adopted
the source code conversion procedure applied in a previous study [29]. Initially, we removed all
comments, line breaks (\n), and tabs (\t) from the source code because they are not relevant for error
assessment and classification. The source code was converted to word sequences and then functions,
keywords, variables, and characters were considered as normal words. Each word was encoded
with an ID. The IDs for functions, variables, keywords, and characters are shown in Table 1. Any
user-defined functions and variables in the source code not defined in Table 1 were assigned unique
IDs from a defined range in the encoding process. The entire process, called word embedding and
encoding, is shown in Figure 4.

Table 1. Partial list of defined IDs for keywords, characters, and numbers.

ID Word ID Word ID Word ID Word

30 auto 46 int 62 78 .
31 break 47 long 63 ! 79 /
32 case 48 register 64 ? 80 0
33 char 49 return 65 _ 81 1
34 const 50 short 66 “ 82 2
35 continue 51 signed 67 # 83 3
36 default 52 sizeof 68 $ 84 4
37 do 53 static 69 % 85 5
38 double 54 struct 70 & 86 6
39 else 55 switch 71 ‘ 87 7
40 enum 56 typedef 72 (88 8
41 exturn 57 union 73) 89 9
42 float 58 unsigned 74 * 90 ;
43 for 59 void 75 + 91 :
44 goto 60 volatile 76 , 92 <
45 if 61 while 77 ~ 93 >
94 = 110 O 126 ‘ 142 p
95 @ 111 P 127 a 143 q
96 A 112 Q 128 b 144 r
97 B 113 R 129 c 145 s
98 C 114 S 130 d 146 t
99 D 115 T 131 e 147 u

100 E 116 U 132 f 148 v
101 F 117 V 133 g 149 w
102 G 118 W 134 h 150 x
103 H 119 X 135 i 151 y
104 I 120 Y 136 j 152 z
105 J 121 Z 137 k 153 {
106 K 122 [138 l 154 |
107 L 123 \ 139 m 155 }
108 M 124] 140 n
109 N 125 ˆ 141 o

After the training process, the performance of the model was evaluated in terms of source code
assessment and classification accuracy. To predict the next ID sequence, the model uses the prefix of all
ID sequences using the attention mechanism. The ID sequences are transformed in several phases
followed by a softmax layer to generate the probability for the next ID sequence or candidate word.
In the proposed model, a word is considered as an error candidate whose probability is less than
0.1 [29]. The difference between the predicted and actual results is called perplexity. The perplexity is
calculated at the softmax layer at each time step to observe the loss function.

336

Appl. Sci. 2020, 10, 2973

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 21

encoded with an ID. The IDs for functions, variables, keywords, and characters are shown in Table
1. Any user-defined functions and variables in the source code not defined in Table 1 were assigned
unique IDs from a defined range in the encoding process. The entire process, called word embedding
and encoding, is shown in Figure 4.

Figure 4. Word embedding and encoding process for source code.

Table 1. Partial list of defined IDs for keywords, characters, and numbers.

ID Word ID Word ID Word ID Word
30 auto 46 int 62 78 .
31 break 47 long 63 ! 79 /
32 case 48 register 64 ? 80 0
33 char 49 return 65 _ 81 1
34 const 50 short 66 “ 82 2
35 continue 51 signed 67 # 83 3
36 default 52 sizeof 68 $ 84 4
37 do 53 static 69 % 85 5
38 double 54 struct 70 & 86 6
39 else 55 switch 71 ‘ 87 7
40 enum 56 typedef 72 (88 8
41 exturn 57 union 73) 89 9
42 float 58 unsigned 74 * 90 ;
43 for 59 void 75 + 91 :
44 goto 60 volatile 76 , 92 <
45 if 61 while 77 ~ 93 >
94 = 110 O 126 ‘ 142 p
95 @ 111 P 127 a 143 q
96 A 112 Q 128 b 144 r
97 B 113 R 129 c 145 s
98 C 114 S 130 d 146 t
99 D 115 T 131 e 147 u
100 E 116 U 132 f 148 v
101 F 117 V 133 g 149 w
102 G 118 W 134 h 150 x
103 H 119 X 135 i 151 y
104 I 120 Y 136 j 152 z

Figure 4. Word embedding and encoding process for source code.

The softmax layer receives the vector x = [x1, x2,, xn] and returns the probability vector
p = [p1, p2, p3,, pn], expressed as follows:

Pi =
exp(xi)

∑k
j=1 exp

(
x j

) (12)

where i = 1, 2, 3, 4,, k.
Perplexity, expressed below, is a standard performance measurement. It indicates how well a

probability model predicts a sample. A lower value indicates a better model.

Hp ≈ − 1
N

m∑

i

log2p (Wi|Wi−1
i−n+1) (13)

where |N| is the length of the sample, wi is an ID in a sample, and P(wi) is the probability of wi.

6. Experimental Results and Evaluations

We developed a general model that can be trained on any type of problem set. In the present
research, we selected the source code for IS, PN, GCD, BS, and SS for the experiments. We trained
an RNN, LSTM, and the LSTM-AttM network with various numbers of hidden layers (50, 100, 150,
and 200). We recorded the epoch-wise perplexity and training times during the training period.
The perplexity determines the efficacy of a language model. The evaluation and training processes
were performed on a computer with an Intel Core i7-5600U CPU (2.60 GHz) with 8 GB of RAM running
64-bit Windows 10.

6.1. Experimental Setup

In our study, we use Python’s chainer framework to create deep learning model architecture. Also,
we considered the large number, length, and complexity of the source code to develop our proposed
model. Before the start of training, we defined several hyperparameters for the experiment to obtain
better results. First, we determine the number of hidden layers and epochs. Then the number of
neurons was determined based on the number of hidden layers. Thus, the neurons were equal to the
defined number of hidden layers. For example, If hidden layers hl = 100, 200, 300, 400, and so on. Thus,
the neurons at each hidden layer will be equal to the number of hidden layers, such as n_units = h1

337

Appl. Sci. 2020, 10, 2973

where n_units = neurons at each layer and hl = number of hidden layers. Dropout was used to regularize
the LSTM network performance to avoid overfitting. To obtain better training accuracy dropout ratio
was set to 0.5 [41]. We optimized the LSTM network using the Adam optimization algorithm [42].
Particularly, optimizer smoothing the model learning by binding together loss function and model
parameters in order to produce better training accuracy. The learning rate or step size of our network
was l = 0.001. The network weights were updated based on the value of l during training. A higher
(lower) value of l makes initial learning faster (slower). The values of β1 and β2, the exponential decay
rates for the first- and second-moment estimates, were set to 0.001 and 0.999, respectively. It is often
effective to reduce the learning rate when training is running. Without exponential decay, the loss
function cannot start again to diverge after decreased a certain point. The value of ε (= 1e−8) was used
to prevent division by zero in the implementation. We trained our network with various numbers of
hidden layers (50, 100, 150, 200, 250, 300, and 400). The corresponding models are called the 50-layer
model, 100-layer model, and so on. We evaluated the performance of all models to determine the
optimal number of hidden layers.

6.2. Perplexity, Training, and Hidden Layer Selection

The performance of a language model strongly depends on training time and perplexity. Perplexity
also determines how good a model training process as well as calculates the model loss function.
During training with various numbers of hidden layers, we calculated the epoch-wise perplexity to
determine the optimal number of hidden layers. Correct source code samples were selected from the
AOJ system for training. The perplexity at the last epoch (30th) of training for each type of program is
shown in Figure 5.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 21

exponential decay, the loss function cannot start again to diverge after decreased a certain point. The
value of 𝜀 (= 1𝑒ି଼) was used to prevent division by zero in the implementation. We trained our
network with various numbers of hidden layers (50, 100, 150, 200, 250, 300, and 400). The
corresponding models are called the 50-layer model, 100-layer model, and so on. We evaluated the
performance of all models to determine the optimal number of hidden layers.

6.2. Perplexity, Training, and Hidden Layer Selection

The performance of a language model strongly depends on training time and perplexity.
Perplexity also determines how good a model training process as well as calculates the model loss
function. During training with various numbers of hidden layers, we calculated the epoch-wise
perplexity to determine the optimal number of hidden layers. Correct source code samples were
selected from the AOJ system for training. The perplexity at the last epoch (30th) of training for each
type of program is shown in Figure 5.

Figure 5. Perplexity values at last epoch of proposed and other state-of-the-art models during the
training period for various problem sets.

The figure shows that the 200-layer model had the lowest perplexity during the training period.
The epoch-wise perplexity for the 200-layer model for various problem sets is shown in Figure 6.

Figure 5. Perplexity values at last epoch of proposed and other state-of-the-art models during the
training period for various problem sets.

The figure shows that the 200-layer model had the lowest perplexity during the training period.
The epoch-wise perplexity for the 200-layer model for various problem sets is shown in Figure 6.

338

Appl. Sci. 2020, 10, 2973
Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 21

Figure 6. Epoch-wise perplexity for LSTM and LSTM-AttM models with 200 hidden layers for various
problems.

Based on these results, we selected 200 hidden layers for LSTM-AttM and the other state-of-the-
art models for all subsequent experiments. The training accuracies for the RNN, LSTM, and LSTM-
AttM models are listed in Table 2.

Table 2. Average training accuracy of models for various problem sets.

Problem
Training Accuracy (%)

Correct Source Codes Incorrect Source Codes
RNN LSTM LSTM-AttM RNN LSTM LSTM-AttM

Insertion Sort 70 81 94 68.3 82.4 93.6
Greatest Common Divisor 68 80 92 71.5 81 92.3
Prime Numbers 75 83 90 73.5 84.5 90
Bubble Sort 72 79 89 73.2 81.7 90
Selection Sort 65 78 87 66 80 89.6

After model training, we evaluated the performance of the proposed model in terms of the
detection of syntax, logic, and other errors as well as source code classification (correct or incorrect).
We selected source code with errors for model validation and testing. Our goal was to evaluate the
performance of the proposed model in terms of how accurately it assesses and detects errors in source
code. To evaluate model performance, we adopted three evaluation indices, namely error detection
accuracy (EDA), error prediction accuracy (EPA), and model accuracy (MA), respectively defined
below. 𝐸𝐷𝐴 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 𝑊𝑜𝑟𝑑 (𝐴𝐸𝑊)𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐸𝑟𝑟𝑜𝑟𝑠 (𝑇𝐷𝐸) × 100% (14)

𝐸𝑃𝐴 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑊𝑜𝑟𝑑 (𝐴𝐶𝑊)𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑊𝑜𝑟𝑑𝑠 (𝑇𝑃𝑊) × 100% (15)

𝑀𝐴 = 𝐸𝐷𝐴 + 𝐸𝑃𝐴2 (16)

The proposed model detects errors in source code by utilizing the trained correct source code
corpus. Of the detected errors, there are some true errors, which are called actual error words (AEWs).
Of the predicted words, there are some true correct words, which are called actual correct words

Figure 6. Epoch-wise perplexity for LSTM and LSTM-AttM models with 200 hidden layers for
various problems.

Based on these results, we selected 200 hidden layers for LSTM-AttM and the other state-of-the-art
models for all subsequent experiments. The training accuracies for the RNN, LSTM, and LSTM-AttM
models are listed in Table 2.

Table 2. Average training accuracy of models for various problem sets.

Problem
Training Accuracy (%)

Correct Source Codes Incorrect Source Codes

RNN LSTM LSTM-AttM RNN LSTM LSTM-AttM

Insertion Sort 70 81 94 68.3 82.4 93.6
Greatest Common Divisor 68 80 92 71.5 81 92.3
Prime Numbers 75 83 90 73.5 84.5 90
Bubble Sort 72 79 89 73.2 81.7 90
Selection Sort 65 78 87 66 80 89.6

After model training, we evaluated the performance of the proposed model in terms of the
detection of syntax, logic, and other errors as well as source code classification (correct or incorrect).
We selected source code with errors for model validation and testing. Our goal was to evaluate the
performance of the proposed model in terms of how accurately it assesses and detects errors in source
code. To evaluate model performance, we adopted three evaluation indices, namely error detection
accuracy (EDA), error prediction accuracy (EPA), and model accuracy (MA), respectively defined below.

EDA =
Actual Error Word (AEW)

Total Detected Errors (TDE)
× 100% (14)

EPA =
Actual Correct Word (ACW)

Total Predicted Words (TPW)
× 100% (15)

MA =
EDA + EPA

2
(16)

The proposed model detects errors in source code by utilizing the trained correct source code
corpus. Of the detected errors, there are some true errors, which are called actual error words (AEWs).
Of the predicted words, there are some true correct words, which are called actual correct words

339

Appl. Sci. 2020, 10, 2973

(ACWs). It is noted that the estimated probabilities of AEW and ACW should be more than 0.90.
We used the above-mentioned evaluation indices to measure the performance of the models in terms
of syntax and logic error assessment and detection.

6.3. Syntax Error Assessment and Detection

A syntax error is an error where the program violates a structural rule of a certain programming
language. To compile, source code must follow the structural rules of a programming language, if it
does not, the compiler will output syntax errors. Common examples of syntax error include misspelled
keywords, missing single or double quotes, missing matching brackets, and a missing semicolon at
the end of a statement. To assess and detect syntax errors in source code, the proposed LSTM-AttM
language model calculates the error probability of each error candidate word. The error probability
determines the possibility of syntax errors in source code. The proposed model assesses the source
code thoroughly and detects syntax error candidates, as shown in Figure 7.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 21

(ACWs). It is noted that the estimated probabilities of AEW and ACW should be more than 0.90. We
used the above-mentioned evaluation indices to measure the performance of the models in terms of
syntax and logic error assessment and detection.

6.3. Syntax Error Assessment and Detection

A syntax error is an error where the program violates a structural rule of a certain programming
language. To compile, source code must follow the structural rules of a programming language, if it
does not, the compiler will output syntax errors. Common examples of syntax error include
misspelled keywords, missing single or double quotes, missing matching brackets, and a missing
semicolon at the end of a statement. To assess and detect syntax errors in source code, the proposed
LSTM-AttM language model calculates the error probability of each error candidate word. The error
probability determines the possibility of syntax errors in source code. The proposed model assesses
the source code thoroughly and detects syntax error candidates, as shown in Figure 7.

Figure 7. Syntax error assessment and detection for source code evaluated using LSTM-AttM.

In the figure, the proposed LSTM-AttM model assesses the source code and estimates the error
probability for each error candidate word. The corresponding location (line number) of each detected
word is listed in Table 3. The error probability determines the syntax error possibility for a particular
candidate word and location in the source code. Although the model detected all the potential
locations of syntax error, the detected error candidates might not have all been accurately identified.
Words with an error probability of more than 0.98 are outlined in blue in Figure 7. We considered
these errors to be confirmed syntax errors.

Table 3. Estimated error probability for source code in Figure 7.

Line Number Error Candidate
(Probability < 0.1)

Suggested Word Estimated Error Probability

8 n & 0.9999918
13 1 0 0.60096426
17 n key 0.7747942
19 i n 0.4699676
20 (& 0.98158526
22 0 1 0.9885606

To compare our model with baseline models, in addition to the above-mentioned example
(Figure 7) a large number of erroneous source code samples were used for the evaluation process.

Figure 7. Syntax error assessment and detection for source code evaluated using LSTM-AttM.

In the figure, the proposed LSTM-AttM model assesses the source code and estimates the error
probability for each error candidate word. The corresponding location (line number) of each detected
word is listed in Table 3. The error probability determines the syntax error possibility for a particular
candidate word and location in the source code. Although the model detected all the potential locations
of syntax error, the detected error candidates might not have all been accurately identified. Words with
an error probability of more than 0.98 are outlined in blue in Figure 7. We considered these errors to be
confirmed syntax errors.

Table 3. Estimated error probability for source code in Figure 7.

Line Number Error Candidate
(Probability < 0.1) Suggested Word Estimated Error Probability

8 n & 0.9999918
13 1 0 0.60096426
17 n key 0.7747942
19 i n 0.4699676
20 (& 0.98158526
22 0 1 0.9885606

To compare our model with baseline models, in addition to the above-mentioned example
(Figure 7) a large number of erroneous source code samples were used for the evaluation process.

340

Appl. Sci. 2020, 10, 2973

The obtained results are listed in Table 4. The syntax error assessment and detection accuracy results
for the proposed model for all problem sets are better than those for the state-of-the-art models.

Table 4. Assessment results of syntax error detection for erroneous source code.

Problem
Accuracy (%)

RNN LSTM LSTM-AttM

Insertion Sort 83 88 98
Greatest Common Divisor 81 90 95
Prime Numbers 74 85 93
Bubble Sort 80 80 96
Selection Sort 69 78 92
Average 77.4 84.2 94.8

6.4. Logic Error Assessment and Detection

A logic error in source code generates unexpected program output. The cause of logic error
is typically the incorrect application of mathematical logic in source code. Conventional compilers
cannot detect or assess logic error, and thus student and professional programmers must check the
entire source code line by line. This is a major problem, especially for novice programmers. A simple
program with logic error is shown in Figure 8. The program takes in an array of numbers and then
outputs it. In the example, four numbers are given for an array but because of incorrect logic, only
three of them are output.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 21

The obtained results are listed in Table 4. The syntax error assessment and detection accuracy results
for the proposed model for all problem sets are better than those for the state-of-the-art models.

Table 4. Assessment results of syntax error detection for erroneous source code.

Problem
Accuracy (%)

RNN LSTM LSTM-AttM
Insertion Sort 83 88 98
Greatest Common Divisor 81 90 95
Prime Numbers 74 85 93
Bubble Sort 80 80 96
Selection Sort 69 78 92
Average 77.4 84.2 94.8

6.4. Logic Error Assessment and Detection

A logic error in source code generates unexpected program output. The cause of logic error is
typically the incorrect application of mathematical logic in source code. Conventional compilers
cannot detect or assess logic error, and thus student and professional programmers must check the
entire source code line by line. This is a major problem, especially for novice programmers. A simple
program with logic error is shown in Figure 8. The program takes in an array of numbers and then
outputs it. In the example, four numbers are given for an array but because of incorrect logic, only
three of them are output.

Figure 8. Example of source code with logic error and its input and output.

Logic error assessment and detection is a challenging task for traditional compilers. The
proposed attention-based language model identifies logic error candidate words in source code to
reduce the time required to check for such errors. To identify logic errors, the model should be able
to calculate long dependent sequences of source code. We thus designed the seq2seq language model
by combining the attention mechanism with LSTM. We compared its performance with other state-
of-the-art models. Source code with logic error (an example for BS) was evaluated by the LSTM-AttM
model. The results are shown in Figure 9. The source code assessment and detection results are listed
in Table 5. The results reveal the effectiveness of the proposed LSTM-AttM model. The proposed
model assessed and identified logic errors and their locations in source code. The estimated error
probability ensures the logic error possibility on a particular line (blue outline) of source code. The
model detected two logic errors on line 6 and generated the corresponding error probabilities (see
Table 5). The estimated error probabilities are both more than 0.90, indicating possible logic errors on
line 6 of the source code.

Figure 8. Example of source code with logic error and its input and output.

Logic error assessment and detection is a challenging task for traditional compilers. The proposed
attention-based language model identifies logic error candidate words in source code to reduce the
time required to check for such errors. To identify logic errors, the model should be able to calculate
long dependent sequences of source code. We thus designed the seq2seq language model by combining
the attention mechanism with LSTM. We compared its performance with other state-of-the-art models.
Source code with logic error (an example for BS) was evaluated by the LSTM-AttM model. The results
are shown in Figure 9. The source code assessment and detection results are listed in Table 5.
The results reveal the effectiveness of the proposed LSTM-AttM model. The proposed model assessed
and identified logic errors and their locations in source code. The estimated error probability ensures
the logic error possibility on a particular line (blue outline) of source code. The model detected two
logic errors on line 6 and generated the corresponding error probabilities (see Table 5). The estimated
error probabilities are both more than 0.90, indicating possible logic errors on line 6 of the source code.

341

Appl. Sci. 2020, 10, 2973
Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 21

Figure 9. Logic error assessment and detection for source code evaluated using LSTM-AttM.

Table 5. Estimated error probability for erroneous source code in Figure 9.

Line Number
Error Candidates
(Probability < 0.1) Suggested Word Estimated Error Probability

6 1 0 0.9727551
6 a = 0.92732173

To assess logic errors, we selected source code from the AOJ system that generated a runtime
error (i.e., failure during execution) judge verdict. Runtime errors can be caused by invalid pointer
references (segmentation fault), overflow, division by zero, memory access violations, and
uninitialized memory access. In the experiment, in addition to the above-mentioned example (Figure
9) a large number of source code samples with logic errors were used. The evaluation results are
listed in Table 6. As shown, the proposed language model outperformed the reference benchmark
models.

Table 6. Assessment results of logic error detection for erroneous source code.

Problem
Accuracy (%)

RNN LSTM LSTM-AttM
Insertion Sort 60 75 95
Greatest Common Divisor 57 81 96
Prime Numbers 63 77 90
Bubble Sort 65 80 91
Selection Sort 56 78 89
Average 60.2 78.2 92.2

6.5. Source Code Classification

In this section, we present the source code classification performance of the proposed LSTM-
AttM and existing state-of-the-art models. We considered various kinds of error in source code,
including semantic, syntax, logic, and communication errors. We evaluated the source code
classification performance of the proposed model and state-of-the-art models by considering error
occurrences in the source code. The proposed model calculated the error probability of each error
candidate word to classify the source code.

In our model, each variable, keyword, operator, operand, class, function, etc. in the source code
was considered as a normal word. The model generated the error probability for each error candidate

Figure 9. Logic error assessment and detection for source code evaluated using LSTM-AttM.

Table 5. Estimated error probability for erroneous source code in Figure 9.

Line Number Error Candidates
(Probability < 0.1) Suggested Word Estimated Error Probability

6 1 0 0.9727551
6 a = 0.92732173

To assess logic errors, we selected source code from the AOJ system that generated a runtime
error (i.e., failure during execution) judge verdict. Runtime errors can be caused by invalid pointer
references (segmentation fault), overflow, division by zero, memory access violations, and uninitialized
memory access. In the experiment, in addition to the above-mentioned example (Figure 9) a large
number of source code samples with logic errors were used. The evaluation results are listed in Table 6.
As shown, the proposed language model outperformed the reference benchmark models.

Table 6. Assessment results of logic error detection for erroneous source code.

Problem
Accuracy (%)

RNN LSTM LSTM-AttM

Insertion Sort 60 75 95
Greatest Common Divisor 57 81 96
Prime Numbers 63 77 90
Bubble Sort 65 80 91
Selection Sort 56 78 89
Average 60.2 78.2 92.2

6.5. Source Code Classification

In this section, we present the source code classification performance of the proposed LSTM-AttM
and existing state-of-the-art models. We considered various kinds of error in source code, including
semantic, syntax, logic, and communication errors. We evaluated the source code classification
performance of the proposed model and state-of-the-art models by considering error occurrences in
the source code. The proposed model calculated the error probability of each error candidate word to
classify the source code.

In our model, each variable, keyword, operator, operand, class, function, etc. in the source code
was considered as a normal word. The model generated the error probability for each error candidate

342

Appl. Sci. 2020, 10, 2973

word followed by the softmax layer. In general, our model detects error candidate words and estimates
the corresponding error probability for each one. If the estimated error probability for any word is
greater than 0.90, the source code is classified as incorrect. To evaluate the classification performance,
we compared our model with some baseline methods, namely standard LSTM, RNN, and the random
forest (RF) method with a deep belief network (DBN) [43].

The performance of classification was evaluated in terms of precision, recall, and F-measure
indices, respectively expressed as follows:

Precision (Pi) =
TPi

TPi + FPi
(17)

Recall (Ri) =
TPi

TPi + FNi
(18)

F−measure =
2 ∗ Pi ∗Ri
Pi + Ri

(19)

where TPi is the true positive rate (erroneous source code classified as erroneous), FPi is the false
positive rate (correct source code classified as erroneous), and FNi is the false negative rate (erroneous
source code classified as correct). F-measure is the harmonic mean between precision and recall.
Usually, it is difficult to always obtain excellent precision and recall. If all samples are classified as
erroneous, the recall will be high but precision will be low. F-measure is a balance between precision
and recall. The F-measure value is between 0 and 1, where a higher value indicates better classification.

We evaluated the model performance in terms of classification accuracy using source code samples
with logic and syntax errors. Figure 10 shows the classification results for source code with syntax
errors. The results show that the precision and recall values for the proposed model are better than
those for the other models.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 21

word followed by the softmax layer. In general, our model detects error candidate words and
estimates the corresponding error probability for each one. If the estimated error probability for any
word is greater than 0.90, the source code is classified as incorrect. To evaluate the classification
performance, we compared our model with some baseline methods, namely standard LSTM, RNN,
and the random forest (RF) method with a deep belief network (DBN) [43].

The performance of classification was evaluated in terms of precision, recall, and F-measure
indices, respectively expressed as follows: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (17)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (18)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 𝑃 ∗ 𝑅𝑃 + 𝑅 (19)

where 𝑇𝑃 is the true positive rate (erroneous source code classified as erroneous), 𝐹𝑃 is the false
positive rate (correct source code classified as erroneous), and 𝐹𝑁 is the false negative rate
(erroneous source code classified as correct). F-measure is the harmonic mean between precision and
recall. Usually, it is difficult to always obtain excellent precision and recall. If all samples are classified
as erroneous, the recall will be high but precision will be low. F-measure is a balance between
precision and recall. The F-measure value is between 0 and 1, where a higher value indicates better
classification.

We evaluated the model performance in terms of classification accuracy using source code
samples with logic and syntax errors. Figure 10 shows the classification results for source code with
syntax errors. The results show that the precision and recall values for the proposed model are better
than those for the other models.

Figure 10. Comparison of precision and recall values for classification of source code with syntax
errors for (a) Insertion Sort (IS), (b) Greatest Common Divisor (GCD), (c) Prime Numbers (PN), (d)
Bubble Sort (BS), and (e) Selection Sort (SS).

We calculated the precision and recall values of each type of problem set. The proposed model
had better values than those of the other models. The average precision, recall, and F-measure values
are listed in Table 7.

Figure 10. Comparison of precision and recall values for classification of source code with syntax errors
for (a) Insertion Sort (IS), (b) Greatest Common Divisor (GCD), (c) Prime Numbers (PN), (d) Bubble
Sort (BS), and (e) Selection Sort (SS).

343

Appl. Sci. 2020, 10, 2973

We calculated the precision and recall values of each type of problem set. The proposed model
had better values than those of the other models. The average precision, recall, and F-measure values
are listed in Table 7.

Table 7. Average precision, recall, and F-measure values for classification of source code with
syntax errors.

Model Precision Recall F-Measure

DBN 0.50 0.50 0.50
RNN 0.54 0.58 0.56
LSTM 0.85 0.85 0.85
LSTM-AttM 0.97 0.96 0.96

Figure 11 shows the classification results for source code with logic errors. The average precision,
recall, and F-measure values are listed in Table 8. The F-measure value indicates the excellent
performance of the proposed LSTM-AttM model.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 21

Table 7. Average precision, recall, and F-measure values for classification of source code with syntax
errors.

Model Precision Recall F-Measure
DBN 0.50 0.50 0.50
RNN 0.54 0.58 0.56
LSTM 0.85 0.85 0.85
LSTM-AttM 0.97 0.96 0.96

Figure 11 shows the classification results for source code with logic errors. The average precision,
recall, and F-measure values are listed in Table 8. The F-measure value indicates the excellent
performance of the proposed LSTM-AttM model.

Figure 11. Comparison of precision and recall values for classification of source code with logic errors
for (a) IS, (b) GCD, (c) PN, (d) BS, and (e) SS.

Table 8. Average precision, recall, and F-measure values for classification of source code with logic errors.

Model Precision Recall F-Measure
DBN 0.53 0.50 0.51
RNN 0.55 0.56 0.55
LSTM 0.81 0.84 0.82
LSTM-AttM 0.91 0.95 0.93

6.6. Classification Result Comparison with Benchmark Models

We compared our experimental classification results with those for some baseline models. All
the researches have a unique goal to achieve by respective research methodology. Nevertheless, we
compared our proposed research with the most similar works. The results are presented in Table 9.

Figure 11. Comparison of precision and recall values for classification of source code with logic errors
for (a) IS, (b) GCD, (c) PN, (d) BS, and (e) SS.

Table 8. Average precision, recall, and F-measure values for classification of source code with
logic errors.

Model Precision Recall F-Measure

DBN 0.53 0.50 0.51
RNN 0.55 0.56 0.55
LSTM 0.81 0.84 0.82
LSTM-AttM 0.91 0.95 0.93

344

Appl. Sci. 2020, 10, 2973

6.6. Classification Result Comparison with Benchmark Models

We compared our experimental classification results with those for some baseline models. All the
researches have a unique goal to achieve by respective research methodology. Nevertheless, we
compared our proposed research with the most similar works. The results are presented in Table 9.

Table 9. Comparison with baseline models for defective source code classification.

Model Description F-Measure

RF+DBN [43] RF is used for classification based on hidden features
extracted using DBN. 0.50

RNN A basic RNN is used to develop a language model for
source code fault detection and prediction. 0.55

LSTM
A standard LSTM network is adapted to develop a
language model for source code error detection,
prediction, and classification.

0.79

DP-ARNN [30] DP-ARNN is a defect prediction model that uses
attention-based RNNs. 0.56

LSTM [29] A source code error detection and prediction model
based on a deep LSTM-based language model. 0.83

LSTM-AttM (Proposed)

A deep seq2seq language model that uses an attention
mechanism + LSTM [29] network with customized
hyperparameters for source code error assessment and
detection and source code classification based on
estimated error probability.

0.94

7. Discussion

The present research focused on source code fault assessment and classification. In software
engineering and programming education, logic error assessment in source code is challenging for
both student and professional programmers. We conducted experiments to assess and detect logic,
semantic, and syntax errors in source code and classify source code as correct or incorrect using various
models. The experimental results were compared with those for traditional unsupervised and other
neural-network-based unsupervised models. The proposed model had the best performance.

The performance of a seq2seq language model strongly depends on the selection of the optimal
number of hidden layers. This selection is based on the perplexity value. We calculated the perplexity
during the training period. Figure 5 shows the perplexity of the RNN, LSTM, and LSTM-AttM models
with various numbers of hidden layers at last epoch for various problems. The perplexity of 100, 150,
and 300 layers are much higher than the 200 layers. Figure 6 shows the epoch-wise perplexity of models
with 200 hidden layers for various problems. The perplexity was lowest for the 200-layer models
that is why we selected 200-layer models for all experiments. We measured the training accuracy of
the proposed language model and other models. The proposed LSTM-AttM model had the highest
training accuracy (see Table 2).

In software engineering and programming education, the assessment and detection of logic errors
in source code is a challenge. To address this problem, we used an attention-based language model
using a deep LSTM neural network. After slight modification in source code pre-processing phase, the
proposed model can be useful for any type of source code (Python, C++, Java, etc.). While a software
system may be large, it has several functions (routines) that each have a limited number of lines. Some
source codes are similar to such a routine. The difficulty level of each source code is not one, some
source code uses complex mathematical logic and functions and some use simple. To evaluate our
model, we used mixed (easy, medium, and hard) source code for error detection. The syntax error
assessment and detection accuracy (see Table 4) for the proposed LSTM-AttM model was better than
those for the LSTM and RNN models. The average accuracy of the proposed LSTM-AttM model was
94.8%, whereas those of LSTM and RNN models were 84.2% and 77.4%, respectively. The logic error
assessment and detection accuracy is shown in Table 6. For logic error detection, the proposed model

345

Appl. Sci. 2020, 10, 2973

(92.2%) outperformed LSTM (78.2%) and RNN (60.2%). To assess and detect logic errors in source code,
the attention mechanism considers all input sequences because logic error detection is more complex
than other error detection. The proposed model will especially help novice programmers most.

One of our main goals was to classify source code as either correct or incorrect. For this task, we
used the estimated error probability of source code. The proposed LSTM-AttM model detects error
candidates in source code and estimates the corresponding error probability for each error candidate
word. The weight of the estimated error probability might vary because the language model generates
the error probability for each error candidate word based on the training corpus. When the estimated
error probability of any error candidate word is more than 0.90, the source code is treated as incorrect.
The syntax error classification results are shown in Figure 10 and the average precision, recall, and
F-measure values are listed in Table 7. The obtained precision, recall, and F-measure values of the
proposed model are 0.97, 0.96, and 0.96, respectively, and those of the LSTM model are 0.85, 0.85, and
0.85, respectively. The precision and recall values for the classification of source code with logic errors
for various problem sets are shown in Figure 11. The proposed model outperformed the LSTM and
RNN models. The average precision, recall, and F-measure values for the classification of source code
with logic errors are listed in Table 8. The average precision, recall, and F-measure values for the
proposed model are 0.91, 0.95, and 0.93, respectively, better than those for the LSTM and RNN models.
These classification comparison results verify the superiority of the proposed LSTM-AttM model over
existing state-of-the-art models.

Source code classification results were also compared with those for some baseline models in
Table 9. The F-measure value for the proposed model is 0.94, which is far better than those for the
baseline models.

Finally, the experimental evaluation results demonstrate the superiority of the proposed model.
Learners may get stuck when looking for logic errors and may thus spend a huge amount of time
trying to fix them. In such cases, the proposed model can assist learners to accelerate the learning
process. The model identifies errors and predicts the correct words, it also gives the line number for
errors. The model can thus help students and programmers improve their programming skills and
effectively create programs.

8. Conclusion and Future Work

In this study, we proposed an attention-based LSTM language model for assessing and classifying
source code. In both programming education and software engineering, the proposed model can
effectively help programmers. Conventional compilers cannot assess and detect logic errors in source
code, and thus unexpected program output is generated. To avoid this adverse circumstance, the
neural network-based language model achieves great success. The experimental results show that
the accuracies of syntax and logic error detection using the LSTM-AttM model are approximately
94.8% and 92.2%, respectively. The proposed model calculates the error probability of all error
candidate words in the source code and uses it to classify the source code as either correct or incorrect.
The average precision, recall, and F-measure values of the proposed model are 0.97, 0.96, and 0.96,
respectively, for the classification of source code with syntax errors and 0.91, 0.95, and 0.93, respectively,
for the classification of source code with logic errors; these values are better than those for existing
state-of-the-art models. The proposed model shows better performance for long sequences of source
code compared to that for LSTM and RNN. Our model contributes to source code error assessment,
detection, and classification, especially logic error detection and classification, for which conventional
compiler fail. Furthermore, our model predicts the correct words in place of the error in the source
code, making these predicted words helpful for students and programmers to quickly fix the incorrect
code. In particular, newborn programmers will benefit more from the proposed model in learning
programming. The proposed model has some limitations. Error assessment and detection accuracy are
sometimes below the expected values. When the estimated error probability of an error candidate
word is below 0.9, the proposed model does not consider this word as an error candidate even though it

346

Appl. Sci. 2020, 10, 2973

might be an error. The experimental results obtained from the source code based on the C programming
language do not ensure that the model’s performance will be the same as using other programming
languages. In the future, we will work to resolve these issues using bidirectional LSTM and other
deep neural networks. The proposed model can be integrated with an online-based judge system to
evaluate source code.

Author Contributions: Conceptualization, M.M.R., Y.W. and K.N.; Data curation, M.M.R; Formal analysis, M.M.R;
Funding acquisition, Y.W.; Methodology, M.M.R and Y.W.; Resources, M.M.R; Software, M.M.R; Supervision, Y.W.;
Validation, M.M.R; Visualization, M.M.R; Writing – original draft, M.M.R; Writing – review & editing, M.M.R, Y.W.
and K.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Japan Society for the Promotion of Science (JSPS) under KAKENHI
grant number 19K12252.

Conflicts of Interest: The authors declare no conflicts of interest.

Data Availability: We collected all the training and test datasets from the Aizu Online Judge (AOJ) system.
The resources were accessed through the APIs for the websites https://onlinejudge.u-aizu.ac.jp/ and http:
//developers.u-aizu.ac.jp/index.

References

1. Minku, L.L.; Mendes, E.; Turhan, B. Data mining for software engineering and humans in the loop. Prog.
Artif. Intell. 2016, 5, 307–314. [CrossRef]

2. Monperrus, M. Automatic software repair: A bibliography. ACM Comput. Surv. (Csur) 2018, 51, 1–24.
[CrossRef]

3. Seo, H.; Sadowski, C.; Elbaum, S.; Aftandilian, E.; Bowdidge, R. Programmers’ build errors: A case study (at
google). In Proceedings of the 36th International Conference on Software Engineering (ICSE ‘14), Hyderabad,
India, 31 May–7 June 2014; pp. 724–734.

4. Li, Z.; Jing, X.-Y.; Zhu, X. Progress on approaches to software defect prediction. IET Softw. 2018, 12, 161–175.
[CrossRef]

5. Ozakıncı, R.; Tarhan, A. Early software defect prediction: A systematic map and review. J. Syst. Softw. 2018,
144, 216–239. [CrossRef]

6. Catal, C.; Diri, B. A systematic review of software fault prediction studies. Expert Syst. Appl. 2009, 36,
7346–7354. [CrossRef]

7. Halstead, M.H. Elements of Software Science (Operating and Programming Systems Series), 2nd ed.; Elsevier:
Amsterdam, The Netherlands, 1977.

8. McCabe, T.J. A complexity measure. IEEE Trans. Softw. Eng. 1976, SE-2, 308–320. [CrossRef]
9. Jureczko, M.; Spinellis, D.D. Using object-oriented design metrics to predict software defects. In Models and

Methods of System Dependability; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2010;
pp. 69–81.

10. Pu, Y.; Narasimhan, K.; Solar-Lezama, A.; Barzilay, R. Sk_p: A neural program corrector for mooc.
In Proceedings of the 2016 ACM SIGPLAN International Conference on Systems, Programming, Languages
and Applications: Software for Humanity, Amsterdam, The Netherlands, 30 October–4 November 2016;
pp. 39–40.

11. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29
October 2014; pp. 1532–1543.

12. White, M.; Vendome, C.; Linares-Vásquez, M.; Poshyvanyk, D. Toward deep learning software repositories.
In Proceedings of the 12th Working Conference on Mining Software Repositories (MSR ‘15), Florence, Italy,
16–17 May 2015; pp. 334–345.

13. Bengio, Y.; Boulanger-Lewandowski, N.; Pascanu, R. Advances in optimizing recurrent networks.
In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
Vancouver, BC, Canada, 26–31 May 2013; pp. 8624–8628.

14. Terada, K.; Watanobe, Y. Code Completion for Programming Education based on Recurrent Neural Network.
In Proceedings of the 2019 IEEE 11th International Workshop on Computational Intelligence and Applications
(IWCIA), Hiroshima, Japan, 9–10 November 2019; pp. 109–114.

347

Appl. Sci. 2020, 10, 2973

15. Nagappan, N.; Ball, T. Using software dependencies and churn metrics to predict field failures: An empirical
case study. In Proceedings of the First International Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), Madrid, Spain, 20–21 September 2007; pp. 364–373.

16. Moser, R.; Pedrycz, W.; Succi, G. A comparative analysis of the efficiency of change metrics and static code
attributes for defect prediction. In Proceedings of the 30th International Conference on Software Engineering,
Leipzig, Germany, 10–18 May 2008; pp. 181–190.

17. Arar, O.F.; Ayan, K. A feature dependent naive Bayes approach and its application to the software defect
prediction problem. Appl. Soft Comput. 2017, 59, 197–209. [CrossRef]

18. Jing, X.-Y.; Ying, S.; Zhang, Z.-W.; Wu, S.-S.; Liu, J. Dictionary learning based software defect prediction.
In Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May–7
June 2014; pp. 414–423.

19. Rahman, M.M.; Watanobe, Y. An efficient approach for selecting initial centroid and outlier detection of
data clustering. In Advancing Technology Industrialization Through Intelligent Software Methodologies, Tools and
Techniques; IOS Press: Amsterdam, The Netherlands, 2019; Volume 318, pp. 616–628.

20. Intisar, C.M.; Watanobe, Y. Classification of Online Judge Programmers based on Rule Extraction from
Self Organizing Feature. In Proceedings of the 9th International Conference on Awareness Science and
Technology (iCAST), Fukuoka, Japan, 19–21 September 2018; pp. 313–318.

21. Intisar, C.M.; Watanobe, Y. Cluster Analysis to Estimate the Difficulty of Programming Problems.
In Proceedings of the 3rd International Conference on Applications in Information Technology (ICAIT ‘18),
Aizu-Wakamatsu, Japan, 1–3 November 2018; pp. 23–28.

22. Alreshedy, K.; Dharmaretnam, D.; Germán, D.M.; Srinivasan, V.; Gulliver, T.A. SCC: Automatic Classification
of Code Snippets. In Proceedings of the 2018 IEEE 18th International Working Conference on Source Code
Analysis and Manipulation (SCAM), Madrid, Spain, 23–24 September 2018; pp. 203–208.

23. Ram, A.; Nagappan, M. Supervised Sentiment Classification with CNNs for Diverse SE Datasets. arXiv 2018,
arXiv:1812.09653.

24. Reyes, J.; Ramírez, D.; Paciello, J. Automatic classification of source code archives by programming language:
A deep learning approach. In Proceedings of the 2016 International Conference on Computational Science
and Computational Intelligence (CSCI), Las Vegas, NV, USA, 15–17 December 2016; pp. 514–519.

25. Terada, K.; Watanobe, Y. Automatic Generation of Fill-in-the-Blank Programming Problems. In Proceedings
of the 2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC), Singapore, 1–4 October 2019; pp. 187–193.

26. Tai, K.S.; Socher, R.; Manning, C.D. Improved semantic representations from tree-structured long short-term
memory networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, 26–31
July 2015; pp. 1556–1566.

27. Pedroni, M.; Meyer, B. Compiler error messages: What can help novices? In Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education, Portland, OR, USA, 12–15 March 2008; pp. 168–172.

28. Saito, T.; Watanobe, Y. Learning Path Recommendation System for Programming Education based on Neural
Networks. Int. J. Distance Educ. Technol. (Ijdet) 2019, 18, 36–64. [CrossRef]

29. Teshima, Y.; Watanobe, Y. Bug detection based on LSTM networks and solution codes. In Proceedings of
the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10
October 2018; pp. 3541–3546.

30. Fan, G.; Diao, X.; Yu, H.; Yang, K.; Chen, L. Software Defect Prediction via Attention-Based Recurrent Neural
Network. Sci. Program. 2019, 2019, 6230953. [CrossRef]

31. Ohashi, H.; Watanobe, Y. Convolutional Neural Network for Classification of Source Codes. In Proceedings of
the 2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC),
Singapore, Singapore, 1–4 October 2019; pp. 194–200.

32. Graves, A. Generating Sequences with Recurrent Neural Networks. arXiv 2014, arXiv:1308.0850.
33. Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent models of visual attention. In Proceedings of the

27th International Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada,
8–13 December 2014; pp. 2204–2212.

348

Appl. Sci. 2020, 10, 2973

34. Luong, T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Lisbon, Portugal, 17–21 September 2015; pp. 1412–1421.

35. Chen, J.; Zhang, H.; He, X.; Nie, L.; Liu, W.; Chua, T.-S. Attentive collaborative filtering: Multimedia
recommendation with item- and component-level attention. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR ‘17), Shinjuku, Tokyo,
Japan, 7–11 August 2017; pp. 335–344.

36. Cheng, J.; Dong, L.; Lapata, M. Long short-term memory-networks for machine reading. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), Austin, TX, USA, 1–5
November 2016; pp. 551–561.

37. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate.
In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA,
USA, 7–9 May 2015; pp. 1–15.

38. Li, J.; Wang, Y.; Lyu, M.R.; King, I. Code completion with neural attention and pointer networks. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18), Stockholm, Sweden, 13–19
July 2018; pp. 4159–4165.

39. Watanobe, Y. Aizu Online Judge. 2017. Available online: https://onlinejudge.u-aizu.ac.jp/ (accessed on 10
October 2019).

40. Aizu Online Judge. Developers Site (api). 2004. Available online: http://developers.u-aizu.ac.jp/index
(accessed on 10 October 2019).

41. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

42. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International
Conference for Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; pp. 1–13.

43. Hinton, G. Deep belief networks. Scholarpedia 2009, 4, 2009. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

349

applied
sciences

Article

Cooperative Multi-Agent Reinforcement Learning
with Conversation Knowledge for
Dialogue Management

Shuyu Lei * , Xiaojie Wang and Caixia Yuan

Center for Intelligence of Science and Technology (CIST), Beijing University of Posts and Telecommunications,
Beijing 100876, China; xjwang@bupt.edu.cn (X.W.); yuancx@bupt.edu.cn (C.Y.)
* Correspondence: leishuyu@bupt.edu.cn

Received: 25 March 2020; Accepted: 9 April 2020; Published: 15 April 2020

Abstract: Dialogue management plays a vital role in task-oriented dialogue systems, which has
become an active area of research in recent years. Despite the promising results brought from deep
reinforcement learning, most of the studies need to develop a manual user simulator additionally.
To address the time-consuming development of simulator policy, we propose a multi-agent dialogue
model where an end-to-end dialogue manager and a user simulator are optimized simultaneously.
Different from prior work, we optimize the two-agents from scratch and apply the reward shaping
technology based on adjacency pairs constraints in conversational analysis to speed up learning
and to avoid the derivation from normal human-human conversation. In addition, we generalize
the one-to-one learning strategy to one-to-many learning strategy, where a dialogue manager can
be concurrently optimized with various user simulators, to improve the performance of trained
dialogue manager. The experimental results show that one-to-one agents trained with adjacency
pairs constraints can converge faster and avoid derivation. In cross-model evaluation with human
users involved, the dialogue manager trained in one-to-many strategy achieves the best performance.

Keywords: dialogue management; user simulation; reward shaping; conversation knowledge;
multi-agent reinforcement learning

1. Introduction

A task-oriented dialogue system can help people accomplish specific goals, such as booking a hotel,
seeking a restaurant information. A typical text-based task-oriented dialogue system mainly comprises
three parts—Natural Language Understanding (NLU), Dialogue Management (DM), and Natural
Language Generation (NLG). DM plays a vital role which infers dialogue state from NLU and provides
appropriate action for NLG, and it has attracted much attention in recent years.

Recently, reinforcement learning has been widely studied as a data-driven approach for modeling
DM [1–9], where a state tracker maintains dialogue states and a policy model chooses a proper
action according to the current dialogue state. In most recent studies [4–9] on task-oriented dialogue
tasks, Deep Reinforcement Learning (DRL) was utilized to train the policy model in order to achieve
maximum long-term reward through interacting with a manual user simulator. To this end, most of
the studies need the additional development of a user simulator in task-oriented dialogue system.

To address the time-consuming development of simulator policy issue, we propose a Multi-Agent
Dialogue Model (MADM) where an end-to-end dialogue manager cooperates with a user simulator to
fulfill the dialogue task. Since user simulator is treated as one agent in multi-agent, the simulator policy
can be optimized in an automatic manner rather than laboring development. Different from prior
work [10], we optimize the cooperative policies concurrently via multi-agent reinforcement learning

351

Appl. Sci. 2020, 10, 2740

from scratch without supervised initializing process. For user simulator reward function, we use the
reward shaping technique [11] based on the adjacency pairs in conversational analysis [12] to make the
simulator learn real user behaviors quickly. In addition, we generalize the one-to-one learning strategy
to one-to-many learning strategy where a dialogue manager cooperates with various user simulators
to improve the performance of trained dialogue manager. We obtain these various user simulators
through changing the adjacency pairs settings, and then we mixture them with a dialogue manager to
optimize the cooperative policies via multi-agent reinforcement learning.

Compared with MADM without the constraints, MADM trained with adjacency pairs constraints
can converge faster and avoid derivation from normal human-human conversation. The experimental
results also show that the dialogue manager trained with one-to-many strategy achieves the
best performance in cross-model evaluation with human users involved. To summary, our main
contributions in this work are three-fold:

1. We propose an MADM to optimize the cooperative policies between an end-to-end dialogue
manager and a user simulator concurrently from scratch.

2. We apply reward shaping technique based on adjacency pairs to user simulator to speed learning
and to help the MADM generate normal human-human conversation.

3. We further generalize the one-to-one learning strategy to one-to-many learning strategy to
improve the performance for trained dialogue manager.

The rest of the paper is organized as follows—Section 2 gives an overview of related work.
Section 3 describes the MADM model in detail. Section 4 discusses the experimental results and
evaluations. Section 5 gives the conclusive discussions and the description of future work.

2. Related Work

Data-driven DM has become an active research area in the field of task-oriented dialogue system.
In recent years, a lot of promising studies [1,2,4,7–9] worked on the policy model in dialogue system
pipeline. Meanwhile, some studies [13–15] built the DM and NLU into an end-to-end model. In the
above studies, the dialogue policy was optimized with a user simulator as a trial-and-error manner
in reinforcement learning. However, the development of a user simulator was complex and it took
considerable time to built an appropriate user policy. Additionally, some studies [4,5,14,16] relied on
considerable supervised data. Reference [16] proposed an end-to-end model by jointly training NLU
and DM with supervised learning. References [4,5,14] applied the demonstration data to speed up
the convergence in a supervised manner. Preparing such supervised data is also laborious. Although
some studies [3,17] could optimize the policy model via on-line human interaction, these methods
required considerable human interaction. Meanwhile, the initial performance was still relatively poor,
which could impact negatively on the user experience. Different from the above studies, the dialogue
management in our framework is optimized from scratch without any laborious preparation for
supervised data and development of user policy.

As the user simulator plays a vital role in reinforcement learning for optimizing dialogue policy,
the studies on the user simulator also received a lot of attention. References [18–24] utilized the
data-driven approach to develop the user simulator. However, such statistic-based methods required a
lot of corpus. Once the training data were not sufficient, the data-driven simulator could only produce
a simplex response. Dialogue management trained with such simplex simulator might converge to a
solution with poor generalization performance. In addition, the obtained policy was uncontrollable
with statistic-based methods. Thus, an alternative approach was based on agenda rules. Reference [25]
proposed an agenda-based approach that does not necessarily need training data but can be trained in
case such data are available. This agenda-based simulator was realistic enough to successfully test
many DRL algorithms [6] and train a dialogue policy. However, the developer must maintain the
rules operating on agenda, working as simulation policy, with domain expertise. Different from above

352

Appl. Sci. 2020, 10, 2740

studies, user simulator in our framework is optimized from scratch without the need of pre-defined
rules or dialogue corpus.

To address the time-consuming development for simulator policy, recent studies [10,26,27]
proposed a one-to-one dialogue model where a dialogue manager and a user simulator were
optimized concurrently. Different from the above studies, our proposed MADM applies the reward
shaping technique [11] based on the adjacency pairs in conversational analysis [12], which can help
the cooperative policies learn from scratch quickly. By the method of reward shaping, our proposed
MADM avoids running a learning algorithm multiple times in a study [26] and collects the corpora in
studies [10,27].

Recently, multi-agent reinforcement learning has been applied in many interesting research areas.
References [28,29] proposed a cooperative ‘image guessing’ game between two agents – Q-BOT and
A-BOT– who communicate in natural language dialog so that Q-BOT can select an unseen image
from a lineup of images. References [30,31] showed it was possible to train a multi-agent model for
negotiation where agents with different goals attempt to agree on common decisions. Reference [32]
pointed out that a competitive multi-agent environment trained with self-play could produce behaviors
that were far more complex than the environment itself. Different from the above studies, we use
the multi-agent reinforcement learning to model the cooperation between dialogue manager and
user simulator.

3. Model

3.1. Notation

We consider a cooperative multi-agent reinforcement learning as a Decentralized
Partially Observable Markov Decision Processes (Dec-POMDP) [33] defined with a tuple
(α,S , {Ai}i∈α, T , {Oi}i∈α,Z , {Ri}i∈α), where α is a set of n agents, S is a set of states of the
world and the possible joint configuration of all the agents, Ai is a set of actions for agent i, the joint
action space are defined as A = A1 × ...×An, T : S ×A× S → [0, 1] is a state transition function,
Oi is a set of observations for agent i, the joint observation space are denoted as O = O1 × ...×On,
Z : S ×A×O → [0, 1] is an observation function, Si : S ×A× S → R is a reward function for agent
i. For the cooperative multi-agent reinforcement learning, each agent i has the equal reward in every
time step t. Each agent i chooses its own actions according to the policy function πi : Oi ×Ai → [0, 1].
Each agent i aims to maximize its own long-term discounted reward Ri = ∑T

t=0 γtri,t, where γ is a
discount factor and T is the time horizon.

3.2. Multi-Agent Dialogue Model (MADM)

We propose an MADM where a dialogue manager cooperates with a user simulator to fulfill
the dialogue task based on cooperative multi-agent reinforcement learning. The entire architecture is
illustrated in Figure 1. The basic MADM has two agents: a dialogue manager and a user simulator.
This basic MADM can be generalized to MADM with multiple agents—a dialogue manager and
various user simulators. The dialogue manager takes the historical dialogue sequence as input and
then produces the selected action. The user simulator takes the action from the dialogue manager
and then produces a user utterance back to dialogue manager. The dialogue manager and the user
simulator are described in detail, respectively, as follows.

353

Appl. Sci. 2020, 10, 2740

Manager policy

DNN
NLG

Goal generator
gt

gt

(w1
t+1, w

2
t+1, ..., w

I
t+1)

Observation maintainer

Simulator policy

MLP

as
t

os
t

Observation encoder

one hot

+
Utterance encoder

LSTMbwd LSTMbwd

LSTMfwd

LSTMbwd

LSTMfwdLSTMfwd

LSTMobs

(ŷ1
t , ŷ2

t , ..., ŷI
t), ẑt

(w1
t , w2

t , ..., wI
t)

dm
tem

t

am
t�1

om
t�1

om
t

am
t

om
t

Dialogue Manager User Simulator

Figure 1. The cooperative multi-agent dialogue model between dialogue manager and user simulator.

3.2.1. Dialogue Manager

Dialogue manager consists of two parts: an observation encoder and a manager policy as shown
in Figure 1. The observation encoder is employed to map historical dialogue sequence to observation
representation. As some slot dependent actions (e.g., confirm()) need to combine with slot values from
user utterances to make up an integral action, observation encoder also produces the slot values from
user utterance through slot filling and intent recognition. The manager policy is applied to map the
observation representation to a selected action for responding to user simulator. Observation encoder
and manager policy are described in detail, respectively, as follows.

Observation encoder: the historical dialogue sequence ht = [am
0 , u1, ..., am

t−1, ut] is encoded to an
observation representation om

t , meanwhile, the slot values information yt and the intent recognition
information zt are output, where am

t−1 denotes the selected action from manager in time step t− 1,
ut = [w1

t , w2
t , ..., wI

t] denotes the user utterance in time step t, wi
t denotes the i-th word (or i-th character

in Chinese) in the user utterance ut, and ŷt = [ŷ1
t , ŷ2

t , ..., ŷI
t] denotes the slot label information on

user utterance ut. To this end, a hierarchical recurrent neural network (HRNN) is applied to model
observation encoder. In the bottom layer of HRNN, a bidirectional LSTM [34] with attention pooling is
employed to obtain the sentence representation em

t for user utterance ut, which is computed as follows:

−→c i
t = LSTM f wd(

−→c i−1
t , e(wi

t)) (1)
←−c i

t = LSTMbwd(
←−c i+1

t , e(wi
t)) (2)

ei
t =

I

∑
i=1

αi[
−→c i

t ⊕←−c i
t] (3)

αi =
exp qi

t

∑I
i=1 exp qi

t
(4)

qi
t =g([−→c i

t ⊕←−c i
t]), (5)

where −→c i
t and ←−c i

t are the outputs of forward and backward LSTM in bottom layer of HRNN,
respectively, ei

t denotes the embedding of word wi
t, ⊕ is the concatenation operator, αi is the attention

354

Appl. Sci. 2020, 10, 2740

weights, and g is a feed-forward neural network. The bidirectional LSTM also outputs the slot values
information ŷt and the intent recognition information ẑt, which is computed as follows:

ŷi
t = arg max

l
(so f tmax(−→c i

t ⊕←−c i
t)) (6)

ẑt = arg max
k

(so f tmax(−→c I
t ⊕←−c 0

t)), (7)

where l denotes the set of slot labels and k denotes the set of intent labels. In top layer of HRNN,
a forward LSTM is applied to integrate the last observation representation om

t−1, last manager action
am

t−1 and current sentence representation em
t into current observation representation om

t , which is
computed as follows:

dm
t =em

t ⊕ o(am
t−1) (8)

om
t = LSTMobs(om

t−1, dm
t), (9)

where dm
t is the concatenation of sentence representation em

t and last action representation o(am
t−1),

and o(am
t−1) is a one-hot vector with the corresponding action position set to 1.

Manager policy: the observation representation om
t is projected to the selected action am

t .
To this end, a deep neural network (DNN) is applied to model manager policy, which is computed
as follows:

πm(am
t |om

t) = so f tmax(DNN(om
t)), (10)

where policy function πm(am
t |om

t) is a probability distribution on the action space. The selected action
am

t is drawn from the distribution πm(am
t |om

t). For convenience, πm(am
t |om

t ; θm) is denoted as the policy
function of dialogue manager, where θm are the parameters of the manager policy.

3.2.2. User Simulator

User simulator is composed of four parts: a simulator observation maintainer, a goal generator,
a simulator policy, and an NLG as shown in Figure 1. The observation maintainer is applied to obtain
the observation representation for user simulator. The goal generator is used to produce the user goal
(e.g., slot value) and simulate the goal change during a dialogue. The simulator policy is applied to
map the observation representation to a selected action for generating a user utterance. The NLG is
applied to generate the next user utterance to dialogue manager. The four parts of user simulator are
described in detail, respectively, as follows.

Observation maintainer: the observation representation os
t is a concatenated vector composed of

three parts: an embedding o(am
t) for manager action am

t , a binary variable bt that indicates whether
the slot value in manager action am

t is null, and an indicative vector vt that denotes which type of slot
value in confirm-action received from manager is different from user goal gt in time step t.

Goal generator: the user goal is generated at the start of the dialogue by sampling the candidate
slot values uniformly. As the initial goal may change in a real user dialogue, the variation of user
goals are also simulated during the interaction. For each session, the user goals are sampled from
the candidate slot values randomly at the beginning of the dialogue, meanwhile, an indicative vector
cc, which counts the number of variations for each slot, is set to be a zeroes vector. This indicative
vector cc is used to limit the number of variations for each slot to avoid overly complex conversations.
In each turn, a variation probability pv is sampled from [0, 1] randomly, if this variation probability pv

is bigger than threshold probability pth, then a random slot is selected to change the corresponding
value to another one from candidate slot values. Once a slot value is changed, the corresponding value
of variation slot in indicative vector cc is added 1. If the number of variations for some slots exceed the
limitation number, those slots will not be changed, even though the variation probability pv is bigger
than threshold probability pth.

355

Appl. Sci. 2020, 10, 2740

Simulator policy: the observation representation os
t is mapped to the selected action as

t .
To this end, a multi-layer perceptron (MLP) is applied to model simulator policy, which is computed
as follows:

πs(as
t |os

t) = so f tmax(MLP(os
t)), (11)

where policy function πs(as
t |os

t) is a probability distribution on the action space. The selected action as
t

is drawn from the distribution πs(as
t |os

t). For convenience, πs(as
t |os

t ; θs) is denoted as policy function
of user simulator, where θs are the parameters of the simulator policy.

NLG: the selected action as
t is projected to next user utterance ut+1 for replying to dialogue

manager. A template-based NLG is used to produce such user utterances. The responding template
is drawn from a set of pre-defined templates according to the selected action as

t . To assure the
generalization and expressiveness, the templates are delexicalized by replacing concrete slot values
with their slot names. For some slot dependent actions (e.g., inform()), the drawn template is lexicalized
with the goal slot values to generate the final user utterance. An example of user utterance generation
is shown in Figure 2, where B-loc, I-loc and O denote the slot labels of the beginning character of a
location, inter character of a location and other characters, respectively.

Goal slot value:

Drawn template:

Final utterance:

 capital
B-loc

 hotel
I-loc

The
O

meeting
O

place
O

is
O

$location.

 capital
B-loc

 hotel.
I-loc

The
O

meeting
O

place
O

is
O

Figure 2. An example of user utterance generation.

3.3. Cooperative Training

Policy gradient: the policy gradient is applied to compute an estimate of the gradient of policy
parameters in order to maximize the long-term discounted reward. In a cooperative dialogue,
the gradient of manager policy and simulator policy are denoted as follows:

∇θm J(θm) = Eπm ,πs [Am(am, om)∇θm log πm(am|om)] (12)

∇θs J(θs) = Eπm ,πs [As(as, os)∇θs log πs(as|os)], (13)

where Am(am, om) is the advantage function of manager, and As(as, os) is the advantage function of
simulator. REINFORCE with a baseline algorithm [35] is applied to estimate the advantage functions.
Thus, the advantage function Am(am, om) and the advantage function Am(am, om) are computed
as follows:

Am(am
t , om

t) =
J

∑
j=0

γjrt+j −Vπm
(om

t ; φm) (14)

As(as
t , os

t) =
J

∑
j=0

γjrt+j −Vπs
(os

t ; φs), (15)

356

Appl. Sci. 2020, 10, 2740

where Vπm
(om

t ; φm) is the value function of manager with parameters φm to estimate the return on
observation om

t , and Vπs
(os

t ; φs) is the value function of simulator with parameters φs to estimate the
return on observation os

t . The loss functions of Vπm
(om

t ; φm) and Vπs
(os

t ; φs) are computed as follows:

J(φm) =
1
2
[Am(am

t , om
t)]

2 (16)

J(φs) =
1
2
[As(as

t , os
t)]

2. (17)

The value function Vπm
(om

t ; φm) and policy function πm(am
t |om

t ; θm) share the same parameters,
meanwhile, the slot filling and intent recognition are optimized in a supervised manner jointly.
To this end, the total loss function of dialogue manager is computed as follows:

Jr(θ
m) = −Am(am, om)∇θm log πm(am|om) +

1
2
[Am(am, om)]2 (18)

Js(θ
m) =

T

∑
t=1

I

∑
i=1

ŷi
t log yi

t +
T

∑
t=1

ẑt log zt (19)

Jw(θ
m) = (1− λ)Jr(θ

m) + λJs(θ
m), (20)

where λ ∈ (0, 1] is a balance coefficient. Similar to dialogue manager, the value function Vπs
(os

t ; φs)

and policy function πs(as
t |os

t ; θs) share the same parameters in user simulator. The total loss function
of user simulator is computed as follows:

Jw(θ
s) = −As(as, os)∇θs log πs(as|os) +

1
2
[As(as, os)]2. (21)

The two total-loss functions are optimized cooperatively after a complete dialogue. In this way,
the dialogue manager and the user simulator are optimized cooperatively and simultaneously.
The alternate training method was tried to optimize dialogue manager and user simulator,
and empirical results show that alternate training method (every 10 training steps alternately) has
slower convergence than joint training method and achieves the same performance with training jointly.

Above all, the dialogue manager and the user simulator are optimized cooperatively in a
one-to-one manner. To improve the dialogue manager generalization performance, this one-to-one
cooperation is generalized to one-to-many cooperation where a dialogue manager cooperates with
various user simulators. These various user simulators are obtained through changing the settings of
adjacency pairs as described in the next paragraph. For one training step, dialogue manager interacts
with one user simulator to fulfill a complete dialogue, then the dialogue manager and the current
simulator are optimized via one-to-one training. For next training step, dialogue manger changes
to anther simulator to learn the cooperative policies. In this way, the dialogue management and the
various user simulators are optimized in a one-to-many manner alternately. We tried to use multi
one-to-one parallelly then share the gradient of dialogue manager, and empirically observed that
sharing gradient optimization is slower than learning one-by-one.

Reward shaping based on adjacency pairs: In cooperative multi-agent reinforcement learning,
each agent has the same reward for every time step. The naive reward function is assigned as follows:

• Manager reward r(st−1, am
t−1, st) and simulator reward r(st−1, as

t−1, st) are both +1, if st is a
successful completed state.

• Manager reward r(st−1, am
t−1, st) and simulator reward r(st−1, as

t−1, st) are both −1, if st is not a
successful completed state until the maximum length T in a dialogue.

• Manager reward r(st−1, am
t−1, st) and simulator reward r(st−1, as

t−1, st) are both−0.01 in otherwise.

This credit-assignment approach is sparse and delayed when a successful cooperative dialogue
between dialogue manager and user simulator has a long trajectory. In cold start situation, as the

357

Appl. Sci. 2020, 10, 2740

initial cooperative polices are nearly random, the successful dialogue with a long trajectory is easier
to be generated than one with a short trajectory. This credit-assignment approach leads to a slow
convergence. To alleviate this problem, we use the reward shaping technique [11] based on the
adjacency pairs in conversational analysis [12] to substitute the reward in user simulator. The reward
based on the adjacency pairs is assigned as follows:

• Simulator reward r(st−1, as
t−1, st) is −0.01, if st is a non-terminal state and the action pair

[am
t−1, as

t−1] does not belong to the set of adjacency pairs.
• Simulator reward r(st−1, as

t−1, st) is rs, if st is a non-terminal state and the action pair [am
t−1, as

t−1]

does not belong to the set of adjacency pairs, where rs is the shaping reward greater than −0.01.
• Manager reward r(st−1, am

t−1, st) and simulator reward r(st−1, as
t−1, st) are both +1, if st is a

successful completed state.
• Manager reward r(st−1, am

t−1, st) and simulator reward r(st−1, as
t−1, st) are both −1, if st is not a

successful completed state until the dialogue reaches maximum length T in a dialogue.
• Manager reward r(st−1, am

t−1, st) is −0.01, if st is a non-terminal state.

Through changing the set of adjacency pairs, various user simulators can be obtained. For
non-shaped reward setting, each agent has the equal reward every time step. For shaped reward
setting, each agent aims to maximize its own long-term discounted reward.

4. Experiment

To assess the performance, cross-model evaluation [36] is applied that is, training on one simulator
and testing on the other. In our cross-model evaluation, human users also take part in the test for
different dialogue managers. The evaluation is happened on Chinese meeting room booking tasks. It is
worth nothing that our proposed framework can be directly utilized on English tasks by substituting
Chinese characters to English words as inputs.

4.1. Dataset

The dataset was collected from 300 human-human dialogues on booking Chinese meeting room
task. The average length of collected dialogues is approximately 16 turns. For the NLG in user
simulator, 255 pre-defined templates and 240 slot values are extracted from collected dialogues.
The dialogue manager consists of 7 dialogue acts and 3 slots and the user simulator consists of 10
dialogue acts, as shown in Table 1.

Table 1. lists all dialogue acts in details.

Dialogue Acts

Dialogue manager ask_date,ask_location,ask_attendance,
confirm_date,confirm_location,confirm_attendance,bye

User simulator inform_date,inform_location,inform_attendance,update_date,
update_location,update_attendance,affirm,deny,error,hello

4.2. Cross-Model Evaluation with Human Users Involved

4.2.1. Users for Cross-Model Evaluation

To access the performance on different dialogue managers, simulated users and human users take
part in the cross-model evaluation.

A group of user simulators (Group-S): This group of user simulators is obtained through
changing the settings of adjacency pairs and is optimized with the dialogue manager in MADM
as one-to-many strategy via multi-agent reinforcement learning. The Group-S is composed of five
different simulators: all-simulator where all the types of adjacency pairs is applied to reward shaping,

358

Appl. Sci. 2020, 10, 2740

ask-simulator where only ask-action adjacency pairs (e.g., ask_loc() to inform_loc()) is applied to
reward shaping, confirm-simulator where only confirm-action adjacency pairs (e.g., confirm_loc()
to affirm()) is applied to reward shaping, bye-simulator where only bye-action adjacency pairs
(e.g., bye() to bye()) is applied to reward shaping and naive-simulator where no adjacency pairs
is applied. The shaping reward rs is set to +0.01. The probability of simulating goal change is set
to 0.5. Each slot is limited to change once to avoid overly complex conversations. For the NLG,
the collected pre-defined templates are used to generate the user utterance through lexicalization as
described in Section 3.2.2. Different dialogue managers are tested with each simulator in Group-S
through interacting 200 episodes.

A rule-based user simulator (Rule-S): This simulator is developed according to the mode
proposed in Reference [25,37]. The naive reward function is used in Section 3.3. The same settings in
Group-S is used for goal generator and NLG. Different dialogue managers are tested with this Rule-S
through interacting 200 episodes.

Human Users: 25 graduate volunteers are recruited to conduct human users test.
Comparing different model subjectively on human users always suffers from unfairness and human
user may fit in the system gradually. Thus, human users test is conducted in a paralleled manner
and is evaluated in objective assessment whether the system can help users accomplish tasks or not.
Before testing, the specific user goals are allocated to each users. In the guide of the same allocated
goal, the human users use the same natural language to interact with different dialogue managers.
Each of the volunteers conducts two parallel tests on different dialogue managers.

4.2.2. Dialogue Managers for Cross-Model Evaluation

To benchmark the dialogue manager from MADM trained as one-to-many strategy, five dialogue
managers take part in the cross-model evaluation.

A dialogue manager from MADM trained as one-to-many strategy (M-MADM-OM):
This end-to-end dialogue manager is built based on the dialogue manager as described in MADM and
optimized with the Group-S concurrently via multi-agent reinforcement learning. The character is
used as the model inputs, the size of character embedding is set to 8, the hidden sizes of the LSTM in
bottom layer of HRNN and LSTM in bottom layer of HRNN are both set to 16, the sizes of two hidden
layers in DNN are both set to 16 and the balance coefficient λ is 0.5.

A dialogue manager trained with Rule-S (Rule-M): This end-to-end dialogue manager is
implemented with the same inputs and structures as dialogue manager in MADM and is optimized
with the Rule-S through REINFORCE with baseline algorithm.

Yang 2017 [16]: A end-to-end dialogue manager is implemented as those in Reference [16].
The hidden size of the LSTM for NLU and system action prediction are both set to 16. This model is
optimized with standard supervised learning.

Zhao 2016 [13]: A end-to-end dialogue manager is implemented with the same inputs and
structure as those in Reference [13]. The hidden size of the LSTM is set to 256. The size of hidden layer
which maps LSTM output to action is 128. As the model in Reference [13] can only parse a Yes/No
answer, we connect this model with additional NLU. This NLU is modeled with a bi-directional
LSTM separately. The hidden size of separate bi-directional LSTM is set to 32. This model optimized
with REINFORCE with baseline outperforms the one optimized with deep Q-learning after repeated
experiments in our dialogue tasks. Thus, REINFORCE with baseline algorithm is used to optimize this
model with the Rule-S.

Peng 2018 [9]: A dialogue manager implements a model with the same inputs and structures
as dialogue manager in MADM. This dialogue manager is optimized with deep dyna-Q with a
world model and a user simulator. The world model is implemented with the same structure as
in Reference [9], where the input is the concatenation of an observation representation om

t and an
embedding of dialogue manager action am

t , where the size of hidden layer is set to 16. The user
simulator uses the same setting in Rule-S.

359

Appl. Sci. 2020, 10, 2740

4.2.3. Results

The results of the cross-model evaluation on success rate and average turns are shown in Table 2.
In Group-S test, M-MADM-OM achieves the best performance. In Rule-S test, although M-MADM-OM
does not achieve the best performance, it is only 0.2% lower than Rule-M and Peng 2018 [9]. In human
users test, M-MADM-OM achieves the best performance. Above all, our proposed M-MADM-OM
achieves the best performance in cross-model evaluation.

Table 2. Cross-model evaluation on Success Rate (SR) and Average Turns (AT).

Group-S Rule-S Human Users
SR AT SR AT SR AT

M-MADM-OM 0.902 18.86 0.925 17.28 0.84 18.04
Rule-M 0.582 24.94 0.945 17.04 0.76 19.56
Yang2017 0.577 25.03 0.860 21.56 0.68 21.08
Zhao2016 0.433 27.77 0.890 20.99 0.68 20.02
Peng2018 0.428 27.86 0.945 18.44 0.72 20.32

For the simulators performance, comparing Group-S test with Rule-S test, dialogue managers
trained with Rule-S show the bad performance while interacting with Group-S. This phenomenon
shows that Group-S may generate some user behaviors that Rule-S are unable to simulate.
Comparing Group-S test with human users test, the results of human users are better than Group-S,
which means that Group-S generate some user behaviors that human users may not produce. Even so,
to our surprise, the Group-S can improve the concurrent dialogue manager performance on human
users test.

Since our method applies a dynamic adjusted simulator without extensive involving of human
laboring, the built model is more time efficient in a long run, even though it is slower in learning an
optimal dialogue manager compared with the one-to-one methods with rule-based user simulator
(including the work in Reference [9]). As empirical analysis, we observed that dialogue manager with
dynamic adjusted simulator is four hours slower than deep dyna-Q method in Reference [9] as the
same experimental settings, finally we obtained the optimized simulator with better generalization
ability and without involving any more human efforts.

4.2.4. Good Case Study

Considering the improvement on M-MADM-OM in real scenario, two examples compared
between M-MADM-OM and Rule-M are shown in Table 3. The Rule-M may fail in the case that
the user always gives irrelevant answer (e.g., system request the number of people and user inform
the date of the meeting). On the other hand, the M-MADM-OM can tackle such irrelevant answer
and guide the user to inform the rest of slots. This is because the Group-S may generate more user
behaviors than Rule-S, and M-MADM-OM can learn more robust policy for real scenario than Rule-M.

360

Appl. Sci. 2020, 10, 2740

Table 3. Two sample dialogue sessions on human users comparing M-MADM-OM with Rule-M
dialogue manager (SYS: system, USR: human user).

M-MADM-OM Rule-M

1 SYS: Hello, where is the meeting? 1 SYS: Hello, where is the meeting?
2 USR:The location is in bupt technology building. 2 USR:The location is in bupt technology building.
3 SYS: Please confirm, the meeting place is in bupt

technology building?
3 SYS: Please confirm, the meeting place is in bupt

technology building?
4 USR:Yes. 4 USR:Yes.
5 SYS: How many people are there? 5 SYS: How many people are there?
6 USR:The meeting will be held at 10 a.m. on 5

April 2019.
6 USR:The meeting will be held at 10 a.m. on 5

April 2019.
7 SYS: Will the meeting be held at 10 a.m. on 5

April 2019?
7 SYS: How many people are there?

8 USR:Sorry, please change 2 p.m. on 5 April 2019. 8 USR:The meeting will be held at 10 a.m. on 5
April 2019.

9 SYS: Please confirm. the meeting be held at 2 p.m.
on 5 April 2019?

9 SYS: How many people are there?

10 USR:Pefect. .
11 SYS: How many people are there? .
12 USR:Eight. .
13 SYS: Is there eight people to participate? 32 SYS: How many people are there?
14 USR:For sure.
15 SYS: Booked at 14:00 on 5 April 2019 Sixth

meeting room at bupt technology building
for you, if there are any questions, please
call 010-52810888, good bye.

Success Failure: System does not book the right meeting
room within the max turn

4.3. Ablation

The ablation experiments are conducted to evaluate efficiency of the different settings on adjacency
pairs for reward shaping and the generalization performance on M-MADM-OM.

4.3.1. Adjacency Pair Performance

Considering reward shaping influence on convergence, the different adjacency pairs settings for
reward shaping are compared. There are five settings: all the types of adjacency pairs, only ask-action
adjacency pairs, only confirm-action adjacency pairs, only bye-action adjacency pairs and naive reward
function. The training curves are shown in Figure 3. These success rate curves are obtained through
testing dialogue managers with their respective learning simulator after every 300 training steps.
Two settings (i.e., all the types of adjacency pairs and only ask-action adjacency pairs) achieve the best
performance on speed up learning.

As the learning from scratch may cause that learned policy deviate from normal
human-human conversation, these final dialogue managers are also tested with human users to
check whether they deviate from normal human-human conversation or not. The same paralleled
test strategy as described in Section 4.2.1 is conducted in human users test. The success rate and
average turns are shown in Table 4. Results show that only all the types of adjacency pairs outperform
the Rule-M. Other settings show bad performance on human users test. There are two reason for
this: slow convergence and derivation from normal human-human conversation. Above results
demonstrate that all the types of adjacency pairs for reward shaping can speed learning and avoid
derivation from normal human-human conversation.

361

Appl. Sci. 2020, 10, 2740

0 12,000 24,000 36,000 48,000 60,000

training steps

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

e
ss

 r
a
te

all

ask

confirm

bye

naive

Figure 3. Training curves for different adjacency pairs settings.

Table 4. Human users evaluation on Success Rate (SR) and Average Turns (AT).

Human Users

SR AT

All 0.80 19.80
Ask 0.62 23.22
Confirm 0.30 27.30
Bye 0.22 20.00
Naive 0.32 21.30
Rule-M 0.76 19.56

4.3.2. Comparison of Various Simualtors Settings in One-to-Many Learning

Considering the various simualtors settings in one-to-many learning, we compare the combination
of multiple simulators. Since we change the adjacency pairs settings to obtain the different user
simulators, we can get 31 combinations based on five seed simulators (i.e., all, ask, confirm, bye and
naive). We compare M-MADM-OM with the dialogue managers trained with all combinations
containing two simulators, and then show the success rate and average turns in Table 5. We observe
that dialogue managers trained with the conbinations containing an all-simulator outperform those
dialogue managers trained without the all-simulator on the Group-S and the Rule-S, meanwhile,
we observe that all the dialogue managers can achieve the roughly same performance on corresponding
trained simulators. We obtain the same results in one-to-three and one-to-four learning. Through the
aforementioned results, we think user behaviors generated by the all-simulator can cover user
behaviors generated by the Rule-S and the other simulators can generate some user behaviors that
the Rule-S can not generate. Thus, we use the combination of five seed simulators to train the
M-MADM-OM jointly to improve the robustness and generalization.

362

Appl. Sci. 2020, 10, 2740

Table 5. The different combinations of seed simulators in one-to-two learning on Success Rate (SR) and
Average Turns (AT) (Corresponding-S denotes the corresponding training simulators).

Group-S Rule-S Corresponding-S

SR AT SR AT SR B

M-MADM-OM 0.902 18.86 0.925 17.28 0.902 18.86
all&ask 0.875 19.42 0.895 19.01 0.905 18.93
all&confirm 0.860 19.64 0.895 18.95 0.910 18.92
all&bye 0.825 20.34 0.905 18.65 0.905 18.85
all&naive 0.835 20.07 0.880 19.27 0.900 18.94
ask&confirm 0.825 24.94 0.645 23.73 0.895 18.91
ask&bye 0.760 21.43 0.645 25.52 0.900 18.89
ask&naive 0.815 20.02 0.550 24.73 0.895 18.93
confirm&bye 0.730 22.08 0.590 18.95 0.895 18.91
confirm&naive 0.725 22.23 0.505 17.04 0.905 18.89

4.3.3. One-to-One Learning vs. One-to-Many Learning

Considering the difference between one-to-one learning strategy and one-to-many learning
strategy. The cross-model evaluation is conducted on two dialogue managers: M-MADM-OM and
M-MADM-OO, where the M-MADM-OO is optimized via one-to-one learning strategy with all the
types of adjacency pairs for reward shaping. For the users in cross-model evaluation, a simulator
(MADM-S) trained with M-MADM-OO, Group-S, Rule-S and human users are employed. The results of
cross-evaluation on comparing M-MADM-OM with M-MADM-OO is shown in Table 6. Results show
that M-MADM-OM outperforms M-MADM-OO in cross-model evaluation, which demonstrates that
one-to-many learning strategy can improve the generalization performance of dialogue manager.

Table 6. Cross-model evaluation on Success Rate (SR) and Average Turns (AT).

MADM-S Group-S Rule-S Human Users

SR AT SR AT SR AT SR AT
M-MADM-OM 0.980 17.38 0.902 18.86 0.925 17.28 0.84 18.04
M-MADM-OO 0.975 17.47 0.775 21.27 0.935 18.23 0.78 19.80

5. Conclusions

We introduce a MADM, where an end-to-end dialogue manager cooperates with a user simulator
to fulfill a dialogue task. For user simulator reward function, we use the reward shaping technique
based on the adjacency pairs to make the simulator learn real user behaviors quickly while learning
from scratch. The experimental results show that reward shaping technique speeds up learning and
avoids derivation from normal human-human conversation. In addition, we generalize the one-to-one
learning strategy to one-to-many learning strategy where a dialogue manager cooperates with various
user simulators, which are obtained by changing the adjacency pairs settings. The experimental results
also show that the dialogue manager from MADM-OM achieves the best performance on human users
involving cross-model evaluation.

In our proposed MADM, there are several models that can be applied to get utterance embedding
in dialogue manager, such as TextCNN [38], BERT [39] and XLnet [40]. But these contextualized model
is orthogonal to MADM. In the future, we are planning to substitute these models to the bottom
bidirectional LSTM in dialogue manager. In addition, we will collect more dataset to enrich the
templates expressiveness for NLG and train the models iteratively.

Author Contributions: Methodology, S.L.; formal analysis, X.W.; data curation, S.L.; writing–original draft
preparation, S.L.; writing–review and editing, C.Y.; funding acquisition, X.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by NSFC (No.61273365).

363

Appl. Sci. 2020, 10, 2740

Acknowledgments: This paper is supported by 111Project (No. B08004), Beijing Advanced Innovation Center for
Imaging Technology, Engineering Research Center of Information Networks of MOE, China. The authors would
like to thank the reviewers for their comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

NLU Natural Language Understanding
DM Dialogue Management
NLG Natural Language Generation
DRL Deep Reinforcement Learning
MADM Multi-Agent Dialogue Model
HRNN Hierarchical Recurrent Neural Network
LSTM Long Short-Term Memory
DNN Deep Neural Network
MLP Multi-Layer Perceptron
ST Success Rate
AT Average Turns

References

1. Williams, J.D.; Young, S. Scaling POMDPs for spoken dialog management. TASLP 2007, 15, 2116–2129.
[CrossRef]

2. Young, S.; Gasic, M.; Thomson, B.; Williams, J.D. POMDP-Based Statistical Spoken Dialog Systems: A Review.
Proc. IEEE 2013, 5, 1160–1179. [CrossRef]

3. Gašić, M.; Breslin, C.; Henderson, M.; Kim, D.; Szummer, M.; Thomson, B.; Tsiakoulis, P.; Young, S.
On-line policy optimisation of bayesian spoken dialogue systems via human interaction. In Proceedings of
the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada,
26–31 May 2013; pp. 8367–8371.

4. Fatemi, M.; Asri, L.E.; Schulz, H.; He, J.; Suleman, K. Policy networks with two-stage training for dialogue
systems. arXiv 2016, arXiv:1606.03152.

5. Su, P.H.; Budzianowski, P.; Ultes, S.; Gasic, M.; Young, S. Sample-efficient Actor-Critic Reinforcement
Learning with Supervised Data for Dialogue Management. arXiv 2017, arXiv:1707.00130.

6. Casanueva, I.; Budzianowski, P.; Su, P.H.; Mrkšić, N.; Wen, T.H.; Ultes, S.; Rojas-Barahona, L.;
Young, S.; Gašić, M. A benchmarking environment for reinforcement learning based task oriented dialogue
management. arXiv 2017, arXiv:1711.11023.

7. Weisz, G.; Budzianowski, P.; Su, P.H.; Gasic, M. Sample Efficient Deep Reinforcement Learning for Dialogue
Systems With Large Action Spaces. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 2083–2097. [CrossRef]

8. Peng, B.; Li, X.; Gao, J.; Liu, J.; Chen, Y.N.; Wong, K.F. Adversarial advantage actor-critic model for
task-completion dialogue policy learning. In Proceedings of the 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 6149–6153.

9. Peng, B.; Li, X.; Gao, J.; Liu, J.; Wong, K.F. Deep Dyna-Q: Integrating Planning for Task-Completion Dialogue
Policy Learning. arXiv 2018, arXiv:1801.06176.

10. Liu, B.; Lane, I. Iterative policy learning in end-to-end trainable task-oriented neural dialog models. In
Proceedings of the 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU),
Okinawa, Japan, 16–20 December 2017; pp. 482–489.

11. Ng, A.Y.; Harada, D.; Russell, S. Policy invariance under reward transformations: Theory and application to
reward shaping. In Proceedings of the Sixteenth International Conference on Machine Learning (ICML),
Bled, Slovenia, 27–30 June 1999; pp. 278–287.

12. Liddicoat, A.J. Adjacency pairs. In An Introduction to Conversation Analysis; Bloomsbury Publishing: London,
UK, 2011; pp. 143–145.

13. Zhao, T.; Eskenazi, M. Towards End-to-End Learning for Dialog State Tracking and Management using Deep
Reinforcement Learning. arXiv 2016, arXiv:1606.02560.

364

Appl. Sci. 2020, 10, 2740

14. Williams, J.D.; Atui, K.A.; Zweig, G. Hybrid Code Networks: practical and efficient end-to-end dialog control
with supervised and reinforcement learning. arXiv 2017, arXiv:1702.03274.

15. Dhingra, B.; Li, L.; Li, X.; Gao, J.; Chen, Y.N.; Ahmad, F.; Deng, L. Towards End-to-End Reinforcement
Learning of Dialogue Agents for Information Access. arXiv 2017, arXiv:1609.00777.

16. Yang, X.; Chen, Y.N.; Hakkani-Tür, D.; Crook, P.; Li, X.; Gao, J.; Deng, L. End-to-end joint learning of natural
language understanding and dialogue manager. In Proceedings of the 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 5690–5694.

17. Pietquin, O.; Geist, M.; Chandramohan, S. Sample efficient on-line learning of optimal dialogue policies
with kalman temporal differences. In Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence, Barcelona, Spain, 16–22 July 2011; pp. 1878–1883.

18. Scheffler, K.; Young, S. Automatic learning of dialogue strategy using dialogue simulation and reinforcement
learning. In Proceedings of the Second International Conference on Human Language Technology Research,
San Diego, CA, USA, 24–27 March 2002; pp. 12–19.

19. Cuayáhuitl, H.; Renals, S.; Lemon, O.; Shimodaira, H. Human-computer dialogue simulation using hidden
markov models. In Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding,
San Juan, Puerto Rico, 27 November–1 December 2005; pp. 290–295.

20. Pietquin, O.; Dutoit, T. A probabilistic framework for dialog simulation and optimal strategy learning.
IEEE Trans. Audio Speech Lang. Process. 2006, 14, 589–599. [CrossRef]

21. Keizer, S.; Gasic, M.; Mairesse, F.; Thomson, B.; Yu, K.; Young, S. Modelling user behaviour in the
HIS-POMDP dialogue manager. In Proceedings of the 2008 IEEE Spoken Language Technology Workshop,
Goa, India, 15–19 December 2008; pp. 121–124.

22. Chandramohan, S.; Geis, M.; Lefèvre, F.; Pietquin, O. User Simulation in Dialogue Systems Using Inverse
Reinforcement Learning. In Proceedings of the 12th Annual Conference of the International Speech
Communication Association, Florence, Italy, 27–31 August, 2011; pp.1025–1028.

23. El Asri, L.; Hem, J.; Suleman, K. A Sequence-to-Sequence Model for User Simulation in Spoken Dialogue
Systems. Interspeech 2016, 1151–1155. [CrossRef]

24. Kreyssig, F.; Casanueva, I.; Budzianowski, P.; Gasic, M. Neural User Simulation for Corpus-based Policy
Optimisation of Spoken Dialogue Systems. arXiv 2018, arXiv:1805.06966.

25. Schatzmann, J.; Thomson, B.; Weilhammer, K.; Ye, H.; Young, S. Agenda-based user simulation for
bootstrapping a POMDP dialogue system. NAACL-HLT 2007, 149–152. [CrossRef]

26. English, M.S.; Heeman, P.A. Learning mixed initiative dialog strategies by using reinforcement learning on
both conversants. EMNLP 2005, 1011–1018. [CrossRef]

27. Chandramohan, S.; Geist, M.; Lefèvre, F.; Pietquin, O. Co-adaptation in spoken dialogue systems. In Natural
Interaction with Robots, Knowbots and Smartphones; Springer: New York, NY, USA, 2014; pp. 343–353.

28. Das, A.; Kottur, S.; Moura, J.M.; Lee, S.; Batra, D. Learning cooperative visual dialog agents with deep
reinforcement learning. In Proceedings of the IEEE International Conference on computer Vision, Venice,
Italy, 22–29 October 2017; pp. 2951–2960.

29. Kottur, S.; Moura, J.; Lee, S.; Batra, D. Natural language does not emerge ‘naturally’ in multi-agent dialog.
arXiv 2017, arXiv:1706.08502.

30. Georgila, K.; Nelson, C.; Traum, D. Single-agent vs. multi-agent techniques for concurrent reinforcement
learning of negotiation dialogue policies. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, Baltimore, MD, USA, 22–27 June 2014; pp. 500–510.

31. Lewis, M.; Yarats, D.; Dauphin, Y.; Parikh, D.; Batra, D. Deal or No Deal? End-to-End Learning of Negotiation
Dialogues. arXiv 2017, arXiv:1706.05125.

32. Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; Mordatch, I. Emergent complexity via multi-agent competition.
arXiv 2018, arXiv:1710.03748.

33. Bernstein, D.S.; Givan, R.; Immerman, N.; Zilberstein, S. The complexity of decentralized control of Markov
decision processes. Math. Oper. Res. 2002, 27, 819–840. [CrossRef]

34. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef]
35. Sutton, R.S.; Barto, A.G. Policy gradient methods. In Reinforcement Learning: An Introduction; MIT Press:

Cambridge, MA, USA, 1998; pp. 329–331.

365

Appl. Sci. 2020, 10, 2740

36. Schatztnann, J.; Stuttle, M.N.; Weilhammer, K.; Young, S. Effects of the user model on simulation-based
learning of dialogue strategies. In Proceedings of the IEEE Workshop on Automatic Speech Recognition and
Understanding, San Juan, Puerto Rico, 27 November–1 December 2005; pp. 220–225.

37. Li, X.; Lipton, Z.C.; Dhingra, B.; Li, L.; Gao, J.; Chen, Y.N. A user simulator for task-completion dialogues.
arXiv 2016, arXiv:1612.05688.

38. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882.
39. Devlin, J.; Chang, M.W.; Lee, K. Toutanova K. Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv 2019, arXiv:1810.04805.
40. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive

pretraining for language understanding. In Proceedings of the 2019 Conference on Neural Information
Processing Systems, Vancouver Convention Centre, Vancouver, BC, Canada, 8–14 December 2019; pp.
5754–5764.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

366

applied
sciences

Article

A Hybrid Deep Learning Model for Protein–Protein
Interactions Extraction from Biomedical Literature

Changqin Quan 1,*, Zhiwei Luo 1 and Song Wang 2

1 Graduate School of System Informatics, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan;
luo@gold.kobe-u.ac.jp

2 School of Elec Eng, Comp and Math Sci; Curtin University, Kent St, Bentley WA 6102, Australia;
Song.Wang@curtin.edu.au

* Correspondence: quanchqin@gold.kobe-u.ac.jp

Received: 11 March 2020; Accepted: 9 April 2020; Published: 13 April 2020

Abstract: The exponentially increasing size of biomedical literature and the limited ability of manual
curators to discover protein–protein interactions (PPIs) in text has led to delays in keeping PPI
databases updated with the current findings. The state-of-the-art text mining methods for PPI
extraction are primarily based on deep learning (DL) models, and the performance of a DL-based
method is mainly affected by the architecture of DL models and the feature embedding methods.
In this study, we compared different architectures of DL models, including convolutional neural
networks (CNN), long short-term memory (LSTM), and hybrid models, and proposed a hybrid
architecture of a bidirectional LSTM+CNN model for PPI extraction. Pretrained word embedding and
shortest dependency path (SDP) embedding are fed into a two-embedding channel model, such that
the model is able to model long-distance contextual information and can capture the local features
and structure information effectively. The experimental results showed that the proposed model is
superior to the non-hybrid DL models, and the hybrid CNN+Bidirectional LSTM model works well
for PPI extraction. The visualization and comparison of the hidden features learned by different DL
models further confirmed the effectiveness of the proposed model.

Keywords: protein–protein interactions; deep learning (DL); convolutional neural networks (CNN);
bidirectional long short-term memory (bidirectional LSTM)

1. Introduction

Protein–protein interactions (PPIs) play important roles in various biological processes and are
of pivotal importance in the regulation of biological systems, and are consequently implicated in the
development of disease states [1]. The exponentially increasing size of biomedical literature and the
limited ability of manual curators to discover PPIs in text has led to delays in keeping PPI databases,
such as BIND (The Biomolecular Interaction Network Database) [2], MINT (The Molecular INTeraction
Database) [3], and The IntAct molecular interaction database [4], updated with the current findings.
Consequently, this causes a bottleneck when leveraging the valuable information that is currently
available in order to develop personalized health care solutions.

Previous studies have explored different methods for PPI extraction. The dominant techniques
generally fall under the following three broad categories: co-occurrence-based methods [5], rule-and-pattern-
based methods [6,7], and statistical machine learning (ML)-based methods [8–12]. Co-occurrence- based
methods measure the correlation between each pair of entities by co-occurrence. A major weakness of
these methods is their tendency for having a high recall, but a low precision. This is mainly because
when entities do not appear in pairs in the training set, no co-occurrence with correlation can be recorded.
Rule-and-pattern-based methods employ predefined patterns and rules to match the labelled sequence.

367

Appl. Sci. 2020, 10, 2690

Although traditional rule-and-pattern-based methods have achieved high accuracy, their sophistication in
pattern design and attenuated recall performance make them unsuitable for practical usage. Compared
with co-occurrence- and rule–pattern-based methods, ML-based methods show a much better performance
and generalization. In particular, the recent surge of interest in deep learning (DL) methods is due to the
fact that they have been shown to outperform previous state-of-the-art techniques for PPI extraction tasks.

Generally, ML based approaches cast the problem of PPIs extraction into a classification
problem. Suppose to extract the binary PPIs between entity e1 and entity e2 in a given sentence
= w1w2 . . . e1 . . . e2 . . .wn, where wi is a word in S. The classification model is constructed to output 1
when e1 and e2 are related, otherwise it is 0. The inputs of the classification model are the features
extracted from S. A key difference between traditional ML and DL is in how features are extracted and
represented. Traditional ML-based methods usually collect words around target entities as features,
such as unigram, bigram, and some semantic and syntactic features, and then these features are put into
a bag-of-words model and encoded into one-hot type representations. However, such representations
are unable to capture semantic relations among words or phrases and fail in generalizing the long
context dependency [13]. The former issue is rendered as “vocabulary gap” (e.g., the words “depend”
and “rely” are different in one-hot representations, albeit their similar linguistic functions). The latter
one is introduced because of the n-order Markov restriction that attempts to alleviate the issue of
“curse of dimensionality.” Moreover, the inability to extract features automatically leads to laborious
manual efforts in designing features.

Different from one-hot encoding representation, word distribution representation is proposed
to solve the “vocabulary gap” problem by mapping words to dense vectors of real numbers in
a low-dimensional space [14,15]. In addition to using words as features, some semantic and syntactic
features, such as part-of-speech (POS), word position, and dependency path between two entities, can
also be embedded in their distribution representations for feature learning.

Recent studies have proposed several feature embedding methods combining DL models for PPI
extraction. Most of these studies focused on finding effective linguistic features for embedding or on
tuning model hyperparameters for a certain framework of DL (e.g., convolutional neural networks
(CNN) and long short-term memory (LSTM)). Different from previous work, this study focuses
on exploring hybrid deep learning architecture for PPI extraction tasks. Our contributions can be
summarized as follows:

(1) we propose a hybrid architecture of a bidirectional LSTM+CNN model for PPI extraction. The
proposed model is able to solve the main issue of the inability to model long-distance contextual
information with CNN for PPI extraction in a long sentence. Furthermore, CNN is applied to
encode the important information contained in the bidirectional LSTM networks, and to extract
the local features and structure information effectively.

(2) two embeddings (word-embeddings and shortest dependency path (SDP) embedding) are novelty
applied as the inputs of for the bidirectional LSTM networks, which are able to capture semantical
and syntactical features effectively.

(3) we investigate the hidden features learned by different DL models by reducing the feature
dimensions and visualizing these features, which can help to compare the classification
performance of these hidden features trained by different DL models in an approximate way.

The outline of the paper is as follows: Section 2 discusses related works. The framework of the
model is introduced in Section 3. The experimental study is shown in Section 4. Section 5 is the
discussion and Section 6 is the conclusion.

2. Related Work

Recent natural language processing (NLP) research is now increasingly focusing on the use of new
DL architectures and algorithms to solve difficult NLP tasks, including PPI extraction from biomedical

368

Appl. Sci. 2020, 10, 2690

literature. This section reviews significant DL-related models and methods that have been employed
for PPI extraction tasks.

The convolutional neural network (CNN) was originally developed for image recognition tasks [16–18]
and has been successfully applied to the NLP domain by exploiting distributed representations for words
(word embeddings). Collobert and Weston [19] made the first work to show the utility of pre-trained
word embeddings. They proposed a neural network architecture that forms the foundation of many
current approaches. The work also established word embeddings as a useful tool for PPI extraction tasks.

Like many other natural language tasks, using CNN along with word embeddings has been shown
to be effective in PPI extraction tasks [20], as they have the ability to extract salient n-gram features from
the input sentence in order to create an informative latent semantic representation of the sentence for
downstream tasks [21–23]. Hua and Quan [24] proposed a CNN with pre-trained word vectors of the
shortest dependency path between entity pairs for PPI extraction. In the literature [25], Quan extended
their work to propose a multichannel convolutional neural network (MCCNN) that enables the
fusion of multiple pre-trained word embeddings from various data sources (PubMed, PMC (PubMed
Central), MedLine, and Wikipedia), and consequently expands the coverage of input vocabulary.
A similar work includes the multichannel dependency-based convolutional neural network model
(McDepCNN) [26], which combines CNN along with more syntactic features (e.g., part-of-speech,
chunk, named entity, dependency, and position feature) for input embedding. CNN has been shown
to outperform previous state-of-the-art techniques for PPI extraction. However, the main issue with
CNNs is their inability to model long-distance contextual information and to preserve sequential order
in their representations [22,27].

Comparatively, the recurrent neural network (RNN) model [28] is able to model long-distance
contextual information by memorizing over previous computations and utilizing this information
in current processing. However, simple RNN-based methods suffer from the vanishing gradient
problem, which makes it hard to learn and tune the parameters of the earlier layers in the network.
This limitation was overcome by various networks, such as long short-term memory (LSTM) [29].
In addition, Lai et al. [30] proposed the bidirectional recurrent neural network (bidirectional RNN) to
capture the semantic information in different directions for sentence modeling. LSTM has also recently
been applied for PPI extraction [31,32]. These studies yield a comparable performance, but much more
attention has been paid to selecting the classification features or tuning model hyperparameters.

Hybrid models that combine CNN with RNN have aroused some interest in the DL domain, and
several different combinations of architecture have been proposed for different subjects [33]. In the NLP
domain, Zhou et al. [34] proposed C-LSTM, which combines CNN with LSTM for text classification.
It takes advantage of CNN to extract a sequence of higher-level phrase representations and feeds
them into LSTM to represent sentences. In the literature [35], a CNN–bidirectional gated recurrent
unit (BiGRU) model, integrating CNN and bidirectional gated recurrent unit (BiGRU), is proposed
for sentence semantic classification. This model utilizes CNN to obtain intermediate representations,
and utilizes BiGRU to obtain contextual representations and semantic distribution. Inspired by these
works, this study explores hybrid deep learning architecture for PPI extraction tasks.

3. The Model Description

The architecture of the proposed hybrid deep learning model is shown in Figure 1. By employing
bidirectional LSTM to extract the semantic information in both the preceding and succeeding contexts,
the proposed model is able to solve the main issue of the inability to model long-distance contextual
information with CNN for PPI extraction in a long sentence. Furthermore, CNN is applied to encode the
important information contained in the bidirectional LSTM networks, and to capture the local features
and structure information effectively. As shown in Figure 1, two embeddings (word-embeddings and
SDP embedding) are novelty applied as the input of bidirectional LSTM networks, which is able to
capture semantical and syntactical features effectively.

369

Appl. Sci. 2020, 10, 2690

Figure 1. Architecture of the hybrid deep learning model. The input of the model is a sentence which
is through two embeddings (word-embeddings and shortest dependency path (SDP) embedding).
The two embeddings are separately fed to a bidirectional long short-term memory (LSTM) network
followed by a convolutional neural networks (CNN) network, as two separate channels. The outputs
of the CNN networks of the two channels are concatenated together for classification.

3.1. Model Input

In the expression of PPIs, most of the interaction words are verbs and nouns, and thus dependency
parsing is particularly well-suited for relation extraction because the dependency grammar (DG) views
the verb as the structural center of all of the clause structure. Dependency parsing has been well used
for PPI extraction in previous studies [25,26,33]. Given an input sentence, we extract the SDP (shortest
dependency path) by dependency parsing. Figure 2 shows the dependency parsing graph (Stanford
parser [36] and a visualization tool [37] are utilized).

Figure 2. The dependency parsing graph for the sentence “alpha-catenin inhibits beta-catenin (Entity
2) signaling by preventing the formation of a beta-catenin T-cell-factor (Entity 1) DNA complex”
(dependency relations are shown by the arrow lines). The shortest dependency path extracted between
the target entity pairs is “T-cell-factor (Entity 1) compound complex nmod formation dobj preventing
advcl inhibits dobj signaling compound beta-catenin (Entity 2)”.

The extracted SDPs are treated as texts for the embedding. Embedding is a feature learning process
where words from the vocabulary are mapped to vectors of real numbers in a low-dimensional space
relative to the vocabulary size. For notation, we use D ∈ R|V|×d to represent the pretrained embedding,
where V is the vocabulary and d is the embedding dimension. Specifically, for word-embedding,
V is composed of the words from the input sentences and for SDP embedding, V is composed by the
symbols from the input SDPs.

When we assign each word (or symbol) in an input sentence (or SDP) with a corresponding
row vector from D, we would get a matrix representation P ∈ RN×d for an input sentence (or SDP).
The word-embedding and SDP embedding are two c×N× d tensors, where c is the input size of the
channel, N is the max length of input sentences, and d is the embedding dimension.

370

Appl. Sci. 2020, 10, 2690

The input of the model is a sentence that goes through two embedding channels, namely:
(1) pretrained word embedding trained on the PubMed abstract corpus [38] and (2) SDP embedding
trained on the shortest dependency paths extracted between target entity pairs.

3.2. Intermediate Structure

As shown in Figure 1, the two channel embeddings each separately pass through a bidirectional
LSTM network consequent with a CNN network. bidirectional LSTM enables learning long-term
dependencies for both the preceding and succeeding contexts. After that, CNN encodes the important
information contained in the bidirectional LSTM networks.

The bidirectional LSTM network is a combination of Bidirectional RNNs with LSTM, using an
input word embedding sequence (e1, e2, . . . , eN), where N denotes the max length of input sequences.

As illustrated in Figure 3, bidirectional RNNs compute the forward hidden sequence
→
h , the backward

hidden sequence
←
h , and the output sequence y by iterating the forward layer from t = (1, . . . , N),

the backward layer from t = (N, . . . , 1) and then updating the output layer as follows:

→
h t = S

(
W

e
→
h

et + W→
h
→
h

→
h t−1et + b→

h

)
(1)

←
h t = S

(
W

e
←
h

et + W←
h
←
h

←
h t+1et + b←

h

)
(2)

yt = W→
h y

→
h t + W←

h y

←
h t + by (3)

where W denotes weight matrices, b denotes bias vectors, and S is the hidden layer function on each
element of a vector.

Figure 3. Illustration of the bidirectional recurrent neural network.

In the bidirectional LSTM network, each unit of RNN is an LSTM (Figure 4):

ft = σ
(
We f et + Wh f ht−1 + Wc f ct−1 + b f

)
(4)

it = σ(Weiet + Whiht−1 + Wcict−1 + bi) (5)

ot = σ(Weoet + Whoht−1 + Wcoct + bo) (6)

ct = ftct−1 + ittan h(Wecet + Whcht−1 + bc) (7)

ht = ottan h(ct) (8)

where σ is the logistic sigmoid function, and ft, it, ot, ct are the forget gate, input gate, output gate,
and cell state, respectively at the time step t.

371

Appl. Sci. 2020, 10, 2690

Figure 4. Illustration of the long short-term memory (LSTM) cell.

The bidirectional LSTM network outputs for both channels are each separately fed to CNN
networks. Given an output sequence yi of the bidirectional LSTM network, it is input into the
convolutional layer. The convolutional layer contains a set of filters for different window sizes g, and
computes the output feature map C as follows:

C =
[
m1, m2, . . . , mN−g+1

]
(9)

mi = f
(
Wiyi:i+g−1 + bi

)
(10)

where f is an activation function, b is a bias term, and is element-wise multiplication.
Then the concatenation operation is applied to join multiple outputs from the Max-Pooling

layer into a single tensor for each channel. Finally, the CNN network outputs for both channels are
concatenated to a unique vector and fed to a fully connected layer.

4. Datasets and Experimental Setup

4.1. Datasets and Preprocessing

Two benchmarking corpora, Aimed [39] and BioInfer [40], were used for the experiments and
evaluation. The Aimed dataset was manually tagged, which includes 1955 sentences, and was
considered as the standard dataset for the PPI extraction tasks. BioInfer was developed by the Turku
BioNLP group [41], and contains 1100 sentences.

To ensure the generalization of features, we use a similar data preprocessing method to the authors
of [9], by replacing two target entities with special symbols “Entity 1” and “Entity 2”, separately,
and entities that are not target entities are all represented as “Entity”. Text preprocessing includes
dependency parsing and shortest dependency paths (SDPs) extraction. If there is an interaction
between the two entities, we consider this instance as a positive one; otherwise, we consider it as
a negative one. Table 1 shows the statistics for the PPIs corpora.

Table 1. Statistics for protein–protein interactions (PPIs) corpora.

Sentence Num. Positive Num. Negative Num.

BioInfer 1100 2534 7132
AIMed 1955 1000 4834

372

Appl. Sci. 2020, 10, 2690

4.2. The Experiments

4.2.1. Pretrained Embeddings

There are two pretrained embeddings used in our model, namely: word embedding and SDP
embedding. The pretrained word embedding is trained on PMC and PubMed (Pyysalo et al. [38]), with
a vocabulary size of 4,087,446 words. The SDP embedding is trained on the shortest dependency paths
extracted between the target entity pairs from PPIs corpora by Gensim Word2Vec tool (CBOW training
algorithm, Radim Řehůřek and Petr Sojka, Brno, Czech Republic) [42]. The vocabulary size of the SDP
embedding on the BioInfer corpus and Aimed corpus is 1840 words and 1349 words, respectively.
Corresponding to the word and SDP embeddings, two types of input, sentences and the shortest
dependency paths (SDPs) between target entity pairs, are fed into the model as inputs, separately.

4.2.2. Parameter Setting

The parameter setting is summarized in Table 2.

Table 2. Parameter setting.

Parameter Aimed BioInfer

Max length of sentences 133 95
Max length of SDPs 31 35

Optimization algorithm Adam
Learning rate 1 × 10−4

Number of epochs 100
Training batch size 128

Bidirectional LSTM network
Number of LSTM units 100

Dropout rate 0.2
Recurrent dropout rate 0.2

CNN network
Window sizes (3, 4, and 5)

Num. of filters on each window size 100
Dropout rate after each max pooling layer 0.5
Activation function in convolution layer Relu

4.2.3. Implementation and Evaluation Metrics

Keras 2.2.4 (https://keras.io/) is applied to implement the models. The configurations of the machine
are as follows: GPU—Quadro M1200/PCIe/SSE2, Nvidia, Santa Clara, CA, USA; CPU—Intel®Core™
i7-7820HQ CPU @ 2.90GHz × 8 Intel, Colorado Springs, CO, USA; System—Ubuntu 18.04.2 LTS 64-bit
Memory, 16 GiB, Canonical Ltd., London, UK.

We use the average F1 macro score to evaluate the performances of the DL models using the
10-cross-validation (10-fold CV) method. In the calculation of each fold, we calculate the F1 macro
score on the entire testing data by creating a Callback function at the end of each epoch, instead of
a batch-wise average value.

4.3. Performance Comparison

The performance of the proposed DL model is compared with the state-of-the-art non-hybrid
models and hybrid models. Table 3 shows the comparison results.

CNN-based models [24–26] and LSTM-based models [31,32] have been applied for PPI extraction
recently. However, there are many differences in the text preprocessing strategies (e.g., protein entities
are generalized with special symbols or protein IDs, utilizing different tokenization and parsing tools,
and utilizing filtering rules or not) and other experimental setups (e.g., hyperparameter settings and
evaluation metrics). These make it difficult to compare the performance of the DL models directly.

373

Appl. Sci. 2020, 10, 2690

In our experiments, we compare the non-hybrid models (1–5 in Table 3) and hybrid models (6–7 in
Table 3) with the same experimental settings, except for the models and the inputs of the models.

Table 3. Comparison of the F1 macro score for deep learning (DL) models on benchmark datasets.

Approach BioInfer Aimed

Non-hybrid
(1) CNN+word embedding 70.4 68.8
(2) CNN+word embedding+SDPs embedding 71.7 69.3
(3) LSTM+word embedding 72.2 71.6
(4) LSTM+word embedding+SDPs embedding 73.0 71.9
(5) Bidirectional LSTM+word embedding+ SDPs embedding 73.4 72.4

Hybrid
(6) CNN+Bidirectional LSTM+word embedding+ SDPs embedding 73.3 70.0
(7) Bidirectional LSTM+CNN+word embedding+ SDPs embedding (the proposed) 74.4 73.7

By comparing CNN-based models 1 with 2, and LSTM-based models 3 with 4 in Table 3, it can
be found that the two embeddings (word-embedding and SDP embedding) input is able to improve
the performance for both CNN- and LSTM-based models. This result demonstrates the effectiveness
of integrating word embedding and SDP embedding for PPI extraction. The interaction verbs (e.g.,
“affect” and “bind”) and dependency relation symbols (e.g., “nsubj” and “dobj”) in the SDPs could
provide useful information for classifying target protein pairs and extracting the relations.

It is also observed that the LSTM model outperforms the CNN model in the two datasets. The
bidirectional LSTM achieved the best performance among the non-hybrid models.

As a hybrid model, we compare the proposed bidirectional LSTM+CNN model (7 in Table 3) with
the hybrid CNN+bidirectional LSTM model (6 in Table 3), which is a variant of C-LSTM proposed by
the authors of [34]. C-LSTM learns the sentence representation by combining CNN and LSTM, and
has been shown to be superior to CNN and LSTM for some text classification tasks. The results show
that the proposed bidirectional LSTM+CNN model outperforms the CNN+bidirectional LSTM model
greatly for PPI extraction in both of the datasets.

4.4. Hidden Features Visualization and Comparison

We further investigate the hidden features learned by different DL models by reducing the feature
dimensions and visualizing these features. We choose four DL models (2, 4, 6, and 7 in Table 3,
represent CNN, LSTM, and the two hybrid-based DL models, respectively) for the visualization.

We first split the dataset into two parts randomly, as follows: training set 90% and testing set
10%. Using the same training set, we train the DL models separately. Then, we create a truncated
model for each DL model. The truncated model keep the same network layers until the last hidden
feature layer. Then, we set the weights for it from the trained model. The truncated model is used to
predict the features for the testing data. After that, we apply principal component analysis (PCA) [43]
to reduce the features predicted by the truncated model to a lower dimension. The PCA variance is
1.00, which implies that the reduced dimensions do represent the hidden features well (scale 0 to 1).
Then, t-Distributed Stochastic Neighbor Embedding (t-SNE) [44] is applied for the visualization.

Figure 5 illustrates the scatter plots of the hidden features on the last layer of the DL models (CNN,
LSTM, CNN+bidirectional LSTM, and Bidirectional LSTM+CNN) after dimensionality reduction.

In Figure 5, the comparison of the four DL models (CNN, LSTM, CNN+bidirectional LSTM, and
bidirectional LSTM+CNN) on both datasets shows that bidirectional LSTM+CNN has a much better
classification performance than the other models.

Figure 6 illustrates the F1-score increasing trends of the four DL models as the number of epochs
increase. The datasets are split into two parts randomly, as follows: training set 90% and testing set 10%.

374

Appl. Sci. 2020, 10, 2690

Figure 5. The scatter plots of the hidden features in the last layer of DL models (CNN, LSTM,
CNN+bidirectional LSTM, and bidirectional LSTM+CNN) after dimensionality reduction in the
Bioinfer and Aimed datasets. (a) CNN on Bioinfer; (b) LSTM on Bioinfer; (c) CNN+bidirectional
LSTM on Bioinfer; (d) Bidirectional LSTM+CNN on Bioinfer; (e) CNN on Aimed; (f) LSTM on Aimed;
(g) CNN+bidirectional LSTM on Aimed; (h) Bidirectional LSTM+CNN on Aimed

375

Appl. Sci. 2020, 10, 2690

Figure 6. The F1-score increasing trends of the DL models as the number of epochs increase, (a) F1-score
vs Epochs on Bioinfer; (b) F1-score vs Epochs on Aimed

As can be seen from Figure 6, bidirectional LSTM+CNN produces a high F1-score with less
epochs than the other models. It also keeps a high classification performance as the number of epochs
increases. We also found that LSTM also could obtain a high F1-score on some points, but it needs
more training than the proposed bidirectional LSTM+CNN model.

5. Discussion

Recently, DL models have been shown to be superior to traditional ML models in many NLP
tasks. In PPI extraction tasks, the performance of a DL-based method is mainly affected by the
architecture of the DL models and the feature embedding methods. In this study, we compared
different architectures of DL models, including CNN, LSTM, and hybrid models, and found that
the proposed bidirectional LSTM+CNN model is superior to the other DL models for PPI extraction.
As more complex network architectures (e.g., a deep hybrid model with more layers or a deep
reinforcement learning model) have not been considered in this study, there is still space for further
improvement of the DL model architecture.

In addition to the DL model architecture, the feature embedding methods also have an effect on the
classification performance. In DL models, the input semantic and syntactic features are embedded in
their distribution representations for feature learning. Previous studies have experimented with some
different feature embeddings (such as ngram, part-of-speech (POS), word position, and dependency
path). In this study, the stacked pretrained word embedding and SDP embedding are fed into a two
embedding channel (word embedding and SDP embedding) architecture, such that the model can
extract the feature information more accurately. With more feature channels, an improved performance
can be expected.

The difference in the text preprocessing strategies (e.g., protein entities are generalized with special
symbols or protein IDs, utilizing different tokenization and parsing tools, and utilizing filtering rules
or not) and other experimental settings (e.g., hyperparameter settings and evaluation metrics) make it
difficult to compare the performance of the DL models directly. This study did not directly compare the
results with other related studies. Instead, under the same experimental environment, our experiments
covered all of the DL models that have been applied in previous studies [24–26,31,32]. It would be
more objective to compare the performance of different DL models directly. The experiments of this
study used two standard PPI datasets, and a more robust DL model can be expected when using
large-scale training data.

DL models are generally opaque, meaning that although they can produce accurate predictions,
it is not clear how or why a given prediction is made. This study investigated the hidden features
learned by different DL models by reducing feature dimensions and visualizing these features. This
would help us to compare the classification performance of these hidden features trained by different

376

Appl. Sci. 2020, 10, 2690

DL models in an approximate way. However, how to connect an input with the hidden features and
how to control them during training stage are still challenging problems.

6. Conclusions

In this paper, a hybrid DL model is proposed for PPI extraction tasks. The model innovatively
integrates bidirectional LSTM with CNN in a two-embedding channel (word embedding and SDP
embedding) architecture.

CNN with word embeddings has been shown to be effective in PPI extraction tasks, as it has
the ability to extract salient n-gram features from the input sentence to create an informative latent
semantic representation of the sentence. However, a main issue with CNNs is their inability to model
long-distance contextual information for PPI extraction in a long sentence. To solve this problem, we
employ bidirectional LSTM to extract the semantic information in both the preceding and succeeding
contexts, because the architecture of LSTM is able to model long-distance contextual information
by memorizing over previous computations and utilizing this information in current processing.
Furthermore, CNN is applied to encode the important information contained in the bidirectional LSTM
networks, and to capture the local features and structure information effectively.

Under the same experimental environment, the results show that the proposed model is superior
to the non-hybrid DL models, including CNN-based and LSTM-based models. In addition, the
proposed bidirectional LSTM+CNN model outperformed another hybrid model (CNN+bidirectional
LSTM model) greatly for PPI extraction. The visualization and comparison of the hidden features
learned by different DL models further confirmed the effectiveness of the proposed model.

For future work, we will apply the proposed hybrid DL model to other NLP tasks in order to
explore its applicability, and will consider more complex network architectures (e.g., a deep hybrid
model with more layers or a deep reinforcement learning model) to improve the performance.

Author Contributions: C.Q. and Z.L. conceived and designed the model; C.Q. performed the experiment and
analyzed the results; C.Q. wrote the preliminary version of this manuscript; Z.W.L. and S.W. revised the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This study was partially supported by the National Natural Foundation of China under grant
no. 61472117.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Scott, D.E.; Bayly, A.R.; Abell, C.; Skidmore, J. Small molecules, big targets: Drug discovery faces the
protein–protein interaction challenge. Nat. Rev. Drug Discov. 2016, 15, 533–550. [CrossRef] [PubMed]

2. Bader, G.D.; Betel, D.; Hogue, C.W.V. BIND: The biomolecular interaction network database. Nucleic Acids
Res. 2003, 31, 248–250. [CrossRef] [PubMed]

3. Zanzoni, A.; Montecchi-Palazzi, L.; Quondam, M.; Ausiello, G.; Helmer-Citterich, M.; Cesareni, G. MINT:
A molecular interaction database. FEBS Lett. 2002, 513, 135–140. [CrossRef]

4. Kerrien, S.; Aranda, B.; Breuza, L.; Bridge, A. The intact molecular interaction database in 2012. Nucleic Acids
Res. 2012, 38, D525. [CrossRef] [PubMed]

5. Bunescu, R.; Mooney, R.; Ramani, A.; Marcotte, E. Integrating co-occurrence statistics with information
extraction for robust retrieval of protein interactions from medline. In Proceedings of the HLT-NAACL
Workshop on Linking Natural Language Processing and Biology (BioNLP ’06), New York, NY, USA, 8 June
2006; pp. 49–56.

6. Fundel, K.; Küffner, R.; Zimmer, R. RelEx—Relation extraction using dependency parse trees. Bioinformatics
2007, 23, 365–371. [CrossRef]

7. Segura-Bedmar, I.; Martínez, P.; De Pablo-Sánchez, C. A linguistic rule-based approach to extract drug-drug
interactions from pharmacological documents. BMC Bioinform. 2011, 12 (Suppl. 2). [CrossRef]

377

Appl. Sci. 2020, 10, 2690

8. Cui, B.; Lin, H.; Yang, Z. SVM-based protein-protein interaction extraction from medline abstracts.
In Proceedings of the 2nd International Conference on Bio-Inspired Computing: Theories and Applications
(BIC-TA ’07), IEEE, Zhengzhou, China, 14–17 September 2007; pp. 182–185.

9. Erkan, G.; Özgür, A.; Radev, D.R. Semi-supervised classification for extracting protein interaction sentences
using dependency parsing. In Proceedings of the Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL ’07), Prague, Czech
Republic, 28–30 June 2007; Volume 7, pp. 228–237.

10. Sun, C.; Lin, L.; Wang, X. Using maximum entropy model to extract protein-protein interaction information
from biomedical literature. In Proceedings of the Third International Conference on Intelligent Computing,
ICIC 2007, Qingdao, China, 21–24 August 2007; pp. 730–737.

11. Segura-Bedmar, I.; Martínez, P.; de Pablo-Sánchez, C. Using a shallow linguistic kernel for drug-drug
interaction extraction. J. Biomed. Inform. 2011, 44, 789–804. [CrossRef]

12. Quan, C.; Wang, M.; Ren, F. An unsupervised text mining method for relation extraction from biomedical
literature. PLoS ONE 2014, 9, e102039. [CrossRef]

13. Arora, K.; Rangarajan, A. A Compositional Approach to Language Modeling. arXiv 2016, arXiv:1604.00100.
14. Bengio, Y.; Schwenk, H.; Senécal, J.-S.; Morin, F.; Gauvain, J.L. Neural probabilistic language models.

In Innovations in Machine Learning, Studies in Fuzziness and Soft Computing; Springer: Berlin, Germany, 2006;
pp. 137–186.

15. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.
In Proceedings of the ICLR, Scottsdale, AZ, USA, 2–4 May 2013.

16. Krizhevsky, A.; Ilya, S.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
Adv. Neural Inf. Process. Syst. 2012, 1097–1105. [CrossRef]

17. Khawaldeh, S.; Pervaiz, U.; Rafiq, A.; Alkhawaldeh, R. Noninvasive Grading of Glioma Tumor Using
Magnetic Resonance Imaging with Convolutional Neural Networks. Appl. Sci. 2018, 8, 27. [CrossRef]

18. Dong, J.; Gao, Y.; Lee, H.; Zhou, H. Action Recognition Based on the Fusion of Graph Convolutional Networks
with High Order Features. Appl. Sci. 2020, 10, 1482. [CrossRef]

19. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th International Conference on Machine Learning, Helsinki,
Finland, 5–9 July 200; ACM: New York, NY, USA; pp. 160–167.

20. Rios, A.; Kavuluru, R. Convolutional neural networks for biomedical text classification: Application in
indexing biomedical articles. In Proceedings of the 6th ACM Conference on Bioinformatics, Computational
Biology and Health Informatics, Atlanta, GA, USA, 30 August–2 September 2015; ACM: New York, NY, USA;
pp. 258–267.

21. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing
(almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537.

22. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A convolutional neural network for modelling sentences.
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore,
MD, USA, 22 June 2014; pp. 655–665.

23. Kim, Y. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association
for Computational Linguistics: Stroudsburg, PA, USA; pp. 1746–1751.

24. Hua, L.; Quan, C. A shortest dependency path based convolutional neural network for protein-protein
relation extraction. BioMed Res. Int. 2016. [CrossRef] [PubMed]

25. Quan, C.; Hua, L.; Sun, X.; Bai, W. Multichannel convolutional neural network for biological relation
extraction. BioMed Res. Int. 2016, 1–10. [CrossRef]

26. Peng, Y.; Lu, Z. Deep learning for extracting protein-protein interactions from biomedical literature.
In Proceedings of the BioNLP, Vancouver, Canada, 4 August 2017; pp. 29–38.

27. Tu, Z.; Hu, B.; Lu, Z.; Li, H. Context-dependent translation selection using convolutional neural network.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing, Beijing, China, 26–31 July 2015; pp. 536–541.

28. Funahashi, K.-I.; Nakamura, Y. Approximation of dynamical systems by continuous time recurrent neural
networks. Neural Netw. 1993, 6, 801–806. [CrossRef]

29. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

378

Appl. Sci. 2020, 10, 2690

30. Lai, S.; Xu, L.; Liu, K.; Zhao, J. Recurrent convolutional neural networks for text classification. In Proceedings
of the AAAI, Austin, TX, USA, 25–30 January 2015; Volume 333, pp. 2267–2273.

31. Hsieh, Y.L.; Chang, Y.-C.; Chang, N.W.; Hsu, W.L. Identifying Protein-protein Interactions in Biomedical
Literature using Recurrent Neural Networks with Long Short-Term Memory. In Proceedings of the Eighth
International Joint Conference on Natural Language Processing, Taipei, Taiwan, 27 November–1 December
2017; pp. 240–245.

32. Yadav, S.; Ekbal, A.; Saha, S.; Kumar, A.; Bhattacharyya, P. Feature Assisted bi-directional LSTM Model
for Protein-Protein Interaction Identification from Biomedical Texts. Knowl. Based Syst. 2019, 166, 18–29.
[CrossRef]

33. Chen, X.; Xie, H.; Cheng, G. Trends and Features of the Applications of Natural Language Processing
Techniques for Clinical Trials Text Analysis. Appl. Sci. 2020, 10, 2157. [CrossRef]

34. Zhou, C.; Sun, C.; Liu, Z.; Lau, F.C.M. A C-LSTM Neural Network for Text Classification. arXiv 2015,
arXiv:1511.08630.

35. Zhang, D.; Tian, L.; Chen, Y. Combining Convolution Neural Network and Bidirectional Gated Recurrent
Unit for Sentence Semantic Classification. IEEE Access 2018, 6, 73750–73759. [CrossRef]

36. Stanford Parser. Available online: https://nlp.stanford.edu/software/lex-parser.shtml (accessed on
27 December 2019).

37. CoNLL-U Viewer. Available online: http://www.let.rug.nl/kleiweg/conllu/ (accessed on 27 December 2019).
38. Pyysalo, S.; Ginter, F.; Moen, F.; Salakoski, T. Distributional semantics resources for biomedical text processing.

In Proceedings of the Languages in Biology and Medicine (LBM ’13), Tokyo, Japan, 12–13 December 2013;
pp. 39–44.

39. Razvan, C.B.; Ruifang, G.; Rohit, J.K.; Edward, M.M.; Raymond, J.M.; Arun, K.R.; Yuk, W.W. Comparative
experiments on learning information extractors for proteins and their interactions. Artif. Intell. Med. 2005,
33, 139–155.

40. Pyysalo, S.; Ginter, F.; Heimonen, J.; Björne, J.; Boberg, J.; Järvinen, J.; Salakoski, T. BioInfer: A corpus for
information extraction in the biomedical domain. BMC Bioinform. 2007, 8, 1–24. [CrossRef] [PubMed]

41. Turku BioNLP group. Available online: http://bionlp.utu.fi/ (accessed on 27 December 2019).
42. Gensim–Deep Learning with Word2vec. Available online: https://radimrehurek.com/gensim/models/

word2vec.html (accessed on 5 October 2019).
43. Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer-Verlag: New York, NY, USA, 2002.
44. Maaten, L.V.D.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. J. Mach. Learn. Res. 2008, 9,

2579–2605.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

379

applied
sciences

Article

Medical Instructed Real-Time Assistant for Patient
with Glaucoma and Diabetic Conditions

Ubaid Ur Rehman 1,2 , Dong Jin Chang 3, Younhea Jung 3, Usman Akhtar 1,
Muhammad Asif Razzaq 1 and Sungyoung Lee 1,∗

1 Department of Computer Science and Engineering, Kyung Hee University (Global Campus),
1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea; ubaid.rehman@khu.ac.kr
(U.U.R.); usman@oslab.khu.ac.kr (U.A.); asif.razzaq@oslab.khu.ac.kr (M.A.R.)

2 School of Electrical Engineering and Computer Science, National University of Sciences and Technology,
Islamabad 44000, Pakistan

3 Department of Ophthalmology, Catholic University of Korea Yeouido Saint Mary’s Hospital,
Seoul 07345, Korea; hpalways@catholic.ac.kr (D.J.C.); younhea@hotmail.com (Y.J.)

* Correspondence: sylee@oslab.khu.ac.kr (S.L.); Tel.: +82-31-201-2514

Received: 21 February 2020; Accepted: 22 March 2020; Published: 25 March 2020

Abstract: Virtual assistants are involved in the daily activities of humans such as managing calendars,
making appointments, and providing wake-up calls. They provide a conversational service to
customers around-the-clock and make their daily life manageable. With this emerging trend, many
well-known companies launched their own virtual assistants that manage the daily routine activities
of customers. In the healthcare sector, virtual medical assistants also provide a list of relevant
diseases linked to a specific symptom. Due to low accuracy and uncertainty, these generated
recommendations are untrusted and may lead to hypochondriasis. In this study, we proposed
a Medical Instructed Real-time Assistant (MIRA) that listens to the user’s chief complaint and predicts
a specific disease. Instead of informing about the medical condition, the user is referred to a nearby
appropriate medical specialist. We designed an architecture for MIRA that considers the limitations
of existing virtual medical assistants such as weak authentication, lack of understanding multiple
intent statements about a specific medical condition, and uncertain diagnosis recommendations.
To implement the designed architecture, we collected the chief complaints along with the dialogue
corpora of real patients. Then, we manually validated these data under the supervision of medical
specialists. We then used these data for natural language understanding, disease identification,
and appropriate response generation. For the prototype version of MIRA, we considered the cases
of glaucoma (eye disease) and diabetes (an autoimmune disease) only. The performance measure
of MIRA was evaluated in terms of accuracy (89%), precision (90%), sensitivity (89.8%), specificity
(94.9%), and F-measure (89.8%). The task completion was calculated using Cohen’s Kappa (k = 0.848)
that categorizes MIRA as ‘Almost Perfect’. Furthermore, the voice-based authentication identifies
the user effectively and prevent against masquerading attack. Simultaneously, the user experience
shows relatively good results in all aspects based on the User Experience Questionnaire (UEQ)
benchmark data. The experimental results show that MIRA efficiently predicts a disease based on
chief complaints and supports the user in decision making.

Keywords: primary healthcare; chief complaint; virtual medical assistant; spoken natural language;
disease diagnosis; medical specialist

1. Introduction

With the emerging trends of technology, virtual assistants help users complete their daily routine
tasks efficiently. Most of the virtual assistants use artificial intelligence and provide personalized

381

Appl. Sci. 2020, 10, 2216

assistance to the users in the form of managing calendars, controlling smart environments, navigation,
making an appointment, providing wake-up calls, and many more things [1]. Many applications
from different domains currently have their own built-in virtual assistants such as televisions [2],
mobile devices [3], vehicles [4], and the Internet of things [5,6]. The virtual assistant is also known
as a chatbot, dialogue manager, virtual agent, interactive assistant, or conversational agent. Many
well-known companies including Apple (Siri), Google (Assistant), Samsung (Bixby) and Amazon
(Alexa) introduced their own virtual assistants. These virtual assistants provide an interactive user
interface (text, speech, or both) that have the ability to understand requests, handle complex tasks,
and generate an appropriate response using the machine learning model [7].

In the healthcare sector, the adoption of machine learning facilitated diagnosis [8,9], treatment [10,
11], and streamlining of administrative tasks [12]. With the popularity of virtual assistants, healthcare
is also moving toward this technology. It prevents unnecessary visits to the doctor, which reduces
the administrative burden, increases efficiency, and support clinical decisions. According to a survey
conducted in [13], primary care physicians spent more time managing electronic medical records
(EMRs) than engaging with patients. Therefore, several virtual medical assistants were introduced,
such as Nuance [14], Suki [15], and Robin Healthcare [16], which automate the process of documenting
clinical information using artificial intelligence and provide services to the healthcare provider [17–19].
Moreover, several virtual medical assistants provide trusted information based on an analysis of
medical symptoms, which include MedWhat [20], Your.MD [21], and Sensely [22]. These provide
personal healthcare assistance using medical knowledge on the web, and EMR. These virtual medical
assistants show a list of relevant diseases that match the input symptoms.

Suppose, a statement ‘I have abdominal pain’ is linked with a list of conditions, which include
bowel cancer, constipation, Crohn’s disease, and gluten intolerance. The recommendation is predicted
based on one symptom and requires approval from the medical specialist [23]. Due to the low accuracy
and uncertainty of the existing virtual medical assistants, the resulting list of conditions may lead
to depression, anxiety, and hypochondriasis [24]. To the best of our knowledge, none of the existing
virtual medical assistants in the natural language processing domain considered real-time disease
diagnosis based on the user’s chief complaint, which has the utmost priority, stated in the patient’s
own words, and is the main reason for the patient’s visit. It may be possible that more than one disease
has the same kind of chief complaint, making it hard to identify a specific disease. Furthermore,
every person has their own accent and way of explaining the chief complaint, so understanding this
type of conversation is a challenge for the virtual medical assistant as well.

In this study, we considered the challenges faced by the existing virtual medical assistant
and proposed a solution in terms of the Medical Instructed Real-time Assistant (MIRA). MIRA supports
primary healthcare services and uses spoken natural language for interactive communication to achieve
a high success rate on task completion [25]. Moreover, MIRA analyzes the user’s chief complaint
and predicts a specific disease. Then, the users are referred to a nearby appropriate medical specialist
based on the predicted disease. For the prototype version of MIRA, we used the chief complaint of
glaucoma and diabetes based on the availability of collaborative medical specialists from the Yeouido
Saint Mary’s Hospital, Republic of Korea.

The main contributions provided by this study are summarized as follows:

• We introduced the MIRA that identifies a disease based on user’s chief complaint, understands
single and multiple intent statements about a specific medical condition, and generates
an appropriate response.

• We added an identity and access manager, a session manager, and security event logging
and monitoring to the MIRA architecture. These provide strong authentication, manage
the conversational state, and monitor the system for anomalies, respectively.

• We created a dataset of 816 patient chief complaints that were manually validated under
the supervision of medical specialists, and were classified into glaucoma, diabetes, and other
labels under the broad category of diseases.

382

Appl. Sci. 2020, 10, 2216

• We designed stock phrases from the recorded 816 dialogue corpora that contain 11,532 utterances.
Each utterance was manually annotated for intent and context identification.

• We evaluated MIRA based on a performance measure (including accuracy, precision, sensitivity,
specificity, and f-measure), task completion, security, and user experience.

The rest of this paper is organized as follows. The overview of literature related to virtual
medical assistants is described in Section 2. Then, Section 3 provides a comprehensive description of
the MIRA methodology including system architecture, digital brain, and a case study. Subsequently,
the evaluation of MIRA is presented in Section 4. Finally, Section 5 summarizes the work proposed in
this study.

2. Related Work

We performed a systematic search of existing literature from the well-known digital libraries
such as IEEE, ScienceDirect, ACM, Springer, PubMed, and Scopus. Based on this study, we focused
on a spoken dialogue-based system that supports healthcare services. Therefore, we excluded
the literature that does not focus on healthcare services and uses text, click, or touch as an interactive
medium. Moreover, the studies that considered the Wizard-of-Oz concept were also filtered out. Based
on these criteria, we found 14 studies and classified them into Finite State Assistants (10 studies)
and Frame-based Assistants (4 studies). A comprehensive description of each category is provided in
the subsequent sections.

2.1. Finite State Assistants

The finite state assistant asks a series of relevant questions to make a decision. This type of
assistant does not support personalized recommendations because it follows the same sequential
steps for each user. Philip et al. designed an Embodied Conversational Agent (ECA) for sleep
disorder patients that ask questions using the Epworth Sleepiness Scale and identify the somnolence
patients [26]. Similarly, the mental disorder diagnostic system conducts an interview based on DSM-5
criteria and identifies patients with major depressive disorders [27]. Moreover, an ECA was proposed
for autism spectrum disorder patients that use audiovisual features for teaching social communication
skills [28]. The proposed system is also effective for those experiencing social complications. To reduce
hospitalization of suicidal patients, an e-caring avatar was proposed in [29], which involves patients in
self-care conversations and recommends relevant videos. To monitor chronic pain patients, Levin et al.,
proposed a Pain Monitoring Voice Diary that asks a sequence of questions and identifies the severity of
pain accordingly [30]. Moreover, the virtual agent for monitoring diabetic patients was proposed in [31],
which makes a phone call once a week to collect vitals. Similarly, the spoken dialogue-based diabetic
monitoring system collects patient vitals and helps physicians provide recommendations remotely
based on the recorded information [32]. Virtual human interviewers are becoming popular due to
anonymity and rapport building that supports posttraumatic stress disorder patients. Lucus et al.,
proposed a virtual human interviewer, which conducts an interview with military service members
involved in an intense situation and identifies the symptoms associated with their mental state [33].
A similar kind of virtual agent was proposed in [34], which interacts with the users and identifies
their mental symptoms using mixed methods for triangulation of data. Moreover, a rule-based
patient-centric application was proposed in [35], which provides medical coaching services.

2.2. Frame-Based Assistants

The frame-based assistant analyzes and extracts the content from the user’s conversation, then fills
in the existing template to generate an appropriate response. The generated response may be
personalized depending upon the business logic and training model of the corresponding virtual
assistant. Ireland et al., proposed ‘Harlie’, which converses with the user on a variety of topics
and helps in the neurological conditions of Parkinson’s patients [36]. Similarly, a virtual nurse was

383

Appl. Sci. 2020, 10, 2216

proposed in [37] to support maternal healthcare and provide guidance to expectant mothers during
pregnancy. A few smartphone applications are also available that provide medical information after
the analysis of symptoms such as MedWhat [20], Your.MD [21], and Sensely [22]. Giorgino et al.,
proposed a virtual medical assistant that interacts with hypertensive patients and collects relevant
data, which help the physician to evaluate the risk of cardiovascular disease [38]. In [39], the virtual
medical assistant supports general practitioners by analyzing patient health conditions (using a breast
cancer ontological model) and recommending an oncologist.

2.3. Limitations of Existing Studies

According to our survey analysis, we identified three limitations in the existing studies that
focused on spoken dialogue-based virtual medical assistants.

• None of the existing studies considered security as a primary factor except [30], which uses
the traditional PIN-based authentication mechanism [40], and it is vulnerable to brute-force
attack [41]. The virtual medical assistant interacts with users and gathers health-related
information. The leakage of such information may lead to different attacks such as masquerading,
and ransomware [42,43]. Moreover, commercially available applications such as Your.MD [21],
and Sensely [22] only comply with the security standards.

• Most of the existing studies along with commercially available virtual medical assistants analyze
the input symptoms, and either provide a list of specific diseases or relevant information [44].
None of the existing spoken dialogue-based system considered patient chief complaint corpora
for disease prediction or medical advice.

• Limited studies focused on frame-based assistants due to various challenges such as intent
identification, context awareness, and appropriate response generation. However, it provides
interactions in a natural way (i.e., similar to humans) and keeps the user motivated to continue
the conversation [45].

2.4. Medical Awareness Survey

We conducted a survey to assess medical awareness among university students and determine
the need for MIRA. For this purpose, we designed a questionnaire and obtained approval from
the Kyung Hee University Ethics Assessment Committee (KHU-EAC) after rigorous analysis of
privacy aspects. The questionnaire was distributed via email among different departments including
Computer Science and Engineering, Electrical and Electronic Engineering, Biomedical Engineering,
Life Sciences, and Foreign Languages. The survey form was active for five consecutive working
days. We received 119 responses from the age group (18 to 36 years) across 11 countries (International
Students). Figure 1 presents the country-based distribution of participants along with gender ratio
of male (50.8%) and female (49.2%). The participants responded to five polar questions as shown in
Table 1. The survey result showed that 25% of the respondents had an awareness of medication and take
medicine without doctor consultation (such as aspirin for pain and fever, amoxicillin for infection,
and many more). These participants are also able to identify appropriate medical specialists based on
their symptoms. The remaining 75% discuss with friends, family or general physicians. Healthcare
services are expensive in most countries. Therefore, the majority of respondents preferred to discuss
their symptoms with friends or family, which helps them to determine whether to seek an appropriate
medical specialist. However, a small number of participants are not open to these discussions due
to personal reasons. Overall, the majority of participants were excited about an application that
understands speech-based natural language, determines specific disease based on chief complaints,
and recommends a nearby appropriate medical specialist.

384

Appl. Sci. 2020, 10, 2216

Figure 1. Medical awareness survey: Country-based distribution of participants along with gender ratio.

Table 1. Medical awareness survey questionnaire results.

Serial No. Questions Responses

1 Do you have awareness of medication? Yes (25%) No (75%)

2 Are healthcare services expensive in your
country?

Yes (83.3%) No (16.7%)

3a Based on your chief complaint, can you
make a decision about an appropriate
medical specialist?

Yes (25%) No (75%)

3
3b If you selected ‘No’ in 3a, then with whom

will you discuss the situation?
Friends or Family
(61.1%)

General
Physician
(38.9%)

3c In the case of ‘Friends or Family’ in 3b, does
the discussion help you to decide about
the appropriate medical specialist?

Yes (63.6%) No (36.4%)

4 Are you interested in a smartphone
application that listens to your chief
complaint and recommends a nearby
appropriate medical specialist?

Yes (91.7%) No (8.3%)

5 What type of interactive communication
medium would you prefer for
the smartphone application?

Speech-based
(70.8%)

Text-based
(29.2%)

3. Methodology

In this section, we deliver a comprehensive description of our designed state-of-the-art virtual
medical assistant (MIRA), which provides efficient and reliable service to the user. First, we describe
the overall system architecture of MIRA as shown in Figure 2, where the three modules (such as identity
and access manager, session manager, and security event logging and monitoring) are introduced
and integrated with the basic architecture (i.e., voice user interface, speech recognition, natural
language understanding, and dialogue manager). Then, the next sub-section provides details about

385

Appl. Sci. 2020, 10, 2216

the composition of the MIRA’s digital brain, which includes the knowledge source and stock phrases
that support natural language understanding and appropriate response generation. Finally, we provide
a case study at the end of this section that gives a better understanding of the MIRA.

Figure 2. MIRA system architecture.

3.1. MIRA System Architecture

As illustrated in Figure 2, we added the identity and access manager, session manager, and security
event logging and monitoring to the existing architecture of the virtual assistant [46,47], which overcomes
the identified limitation of existing literature and virtual medical assistants. Here, the voice user interface
provides an interactive communication medium between the MIRA and the user. We developed
the prototype version of MIRA for Android due to wider compatibility with devices. Therefore, any
smart devices (including smartwatches, smartphones, tablets, laptops, and some vendor-specific devices)
that contain a microphone, speaker, and support Android can use the MIRA application. The speech
recognition module recognizes human speech, then breaks it into voice samples, and transcribes each
voice sample into text using the neural network algorithm for signal processing [48]. The MIRA
speech recognition module automatically transcribes the voice sample in a context-specific format.
Then the Natural Language Understanding (NLU) module determines the intent of user’s input based
on the trained model. We used the Rasa framework for machine learning-based NLU and dialogue
management [49]. For tokenization and part of speech annotation, we extracted the semantic concepts
from the Unified Medical Language System (UMLS) [50]. The NLU also analyzes the nature of intent
and forwards a request to a specific module (such as identity and access manager, session manager, or
dialogue manager).

To the best of our knowledge, MIRA is the only virtual medical assistant that uses the concept
of identity and access management [51]. We used our designed voice-based authentication protocol
that identifies the user based on their voice samples [52]. Instead of random text, we matched
the Mel-Frequency Cestrum Coefficients (MFCC) of each natural language input to provide a strong
authentication mechanism. Moreover, the identity and access management consists of two sub-modules
such as identity registration, and identity verification and validation. To use MIRA services, the user
has to complete the registration process using the identity registration sub-module. For this purpose,
MIRA collects a smart device identifier along with personal information such as name, address,
gender, age, medical history, and voice samples. Among the collected information, the smart
device identifier along with voice samples support authentication. The medical history, gender,
and age help in the personalized recommendation. Moreover, this module also analyzes the collected
information to avoid duplication and assigns a unique identifier of 7 digits, which can be used in
a crisis such as authentication failure, identity verification, or permanent data removal. The identity

386

Appl. Sci. 2020, 10, 2216

verification and validation sub-module verifies and validates the identity of a registered user. First,
the smart device identifier links a user to the information that they provided during the registration
phase. To authenticate the user, the smart device identifier helps to retrieve the provided voice
sample MFCC; it is then compared with the calculated MFCC of natural language input to calculate
the similarity index (SI). If the SI greater than 70%, then the user gets authenticated and MIRA generates
an appropriate response.

The session manager assigns a session identifier to the authenticated users, which binds with
the user identity and is valid for a specific session only. We used the keyword spotting technique,
which detects ‘Hello MIRA’ and ‘Bye MIRA’ keywords in the spoken utterances. ‘Hello MIRA’ is used
to initiate a session, and all the communication during this period is bound with the issued session
identifier. The ‘Bye MIRA’ is used to terminate the ongoing session. We used two types of templates
‘Hello [Given Name], How may I help you?’ and ‘Hello [Given Name], How may I help you today?’ for
greeting a new user with no medical history, and an established user with a medical history, respectively.
Moreover, MIRA checks the validity of a corresponding session upon receiving an input request. In
the case of timeout (idle for 60 minutes), the renewal request is forwarded to the session manager.

The dialogue manager is responsible for scenario understanding, state tracking and managing
the flow of the conversation. This module identifies the conversational context from the natural
language input and generates an appropriate response. It may be possible that the user starts another
conversation without terminating or concluding the previous one. This type of conversation handling is
not in the scope of this study. Moreover, the dialogue manager consists of six sub-modules. (i) The story
data are used to train the dialogue management model. A story is the representation of a complete
dialogue between the user and virtual assistant. We designed the story data manually from the recorded
dialogue corpora that facilitate MIRA to make the conversation real and natural. (ii) The state tracking
is the core module of MIRA that predicts the user goal (represented by slot-value pairs) at every
dialogue turn. It maintains the conversation state, performs an action based on policy, and generates
a relevant response after analyzing the natural language input. (iii) The dialogue templates consist of
predefined statements that can be used by filling in the keyword. Although we trained a model to
understand conversation and response generation, some statements are similar and common except for
the keyword. Consider the statements ‘Do you feel hungry?’ and ‘Do you feel tired?’. Both sentences
are similar except for the keywords ‘hungry’ and ‘tired’. To improve the performance and response
generation of MIRA, we used templates for these kinds of statements that have similar semantics.
(iv) The chief complaint data is the knowledge source that helps identify the conversation context.
Based on the identified context, MIRA analyzes the dialogue corpora and asks a follow-up question.
(v) The medical history consists of the health record that a user provided during registration. It
also stores each recommendation along with the key attributes (sign and symptom) that results from
the conversation between MIRA and the user. Keeping these health records helps the MIRA to generate
a personalized decision for future conversations. (vi) The response formulation has a challenging
role in the interaction because it generates a relevant response based on the input query. Therefore,
this module takes the necessary information from different sub-modules of the dialogue manager
and generates an appropriate text-based statement.

The text to speech synthesis analyzes and processes the text-based statement using natural
language processing. Then, it converts the processed text into synthesized speech using digital signal
processing and conveys it to the end-user in a polite female voice. MIRA deals with healthcare data
and directs the user to a nearby appropriate medical specialist based on the chief complaints. This kind
of dialogue contains sensitive information and its leakage may lead to serious consequences such
as a masquerading and ransomware attacks. The security event logging and monitoring module
continuously monitors the communication channels for anomalies. Also, it collects the information,
which can be used as an audit trail for intrusion prevention and event management. With the proposed
system architecture, MIRA understands single and multiple intent statements, supports adaptability,
and provides data control.

387

Appl. Sci. 2020, 10, 2216

3.2. Understanding the MIRA Digital Brain

According to [53], a virtual assistant consists of a digital brain, which is divided into a knowledge
source, stock phrases, and conversation memory. Our state-of-the-art MIRA’s digital brain is divided
into a knowledge source, and stock phrases. We incorporated the conversation memory inside
the stock phrases for efficient response generation. The knowledge source is an important part of
a virtual assistant that helps in understanding the context of a conversation. Our proposed MIRA
focused on the identification of a disease based on the user’s chief complaint. In this regard, the first
challenge that we faced was the selection of an appropriate dataset. We analyzed the publicly available
datasets on the Internet, but to the best of our knowledge, none of the available datasets in English
considered the patient chief complaint. Most of the datasets considered medical terminologies that
are hard to understand for non-medical professionals. Therefore, we decided to create a dataset
considering the patient chief complaints. For this purpose, we selected two well-known diseases,
glaucoma and diabetes, due to the availability of collaborative medical specialists from the Yeouido
Saint Mary’s Hospital in the Republic of Korea. Under the hospital’s legal policy (Institutional Review
Board approval) and HIPAA (Health Insurance Portability and Accountability Act), we briefed
the participants before their medical examinations, and a written consent form was signed by each
participant. This form explained that the data would be collected anonymously and strictly used for
research purposes (considered the privacy aspects) only. We collected 816 patient chief complaints
and, based on the medical specialist’s recommendation, classified them into glaucoma (48.5%),
diabetes (46.2%), and other (5.3%). These labels were assigned based on the broad category of
diseases. The glaucoma label consists of all patients, which includes angle-closure suspect, glaucoma
suspect, and pure glaucoma patients. Similarly, the diabetes label consists of all types of diabetic
patients, which include type 1, type 2, and gestational. The other label consists of those patients
that have diseases except glaucoma and diabetes, including normal conditions. We represented
the data in tabular form that consist of 816 rows and 32 columns. Each row represents one patient
with potential symptoms, while the columns represent observed features for that patient, including
the class of diagnosis label (glaucoma, diabetes, or other). Table 2 describes 31 features of the MIRA
dataset. Collecting such data helps us to identify specific patients based on their chief complaints
since the categorization of these patients is based on different laboratory test results and medical
specialist opinion.

After the creation of the knowledge source, the next challenge was to identify the most appropriate
predictive model. For this purpose, we used MOD [54], which filters out seven applicable machine
learning models (including decision trees, naive Bayes, K-nearest neighbors, random forest, random
tree, decision stump, and deep learning) based on the provided dataset features. To determine
the accuracy of each predictive model for MIRA’s dataset, we used RapidMiner with 10-fold
cross-validation and evaluated the predictive model accuracy as shown in Figure 3. The result
shows higher accuracy for the deep learning model (99.14%) because it learns from data incrementally
and identifies the hidden relationships. Therefore, we selected deep learning as the best suitable
predictive model for MIRA. The predictive model along with knowledge source helps in context
identification of a dialogue corpus, which determines the category of the disease such as glaucoma,
diabetes, or other. The stock phrases help MIRA to understand the user intent (what the user
is trying to say) and support response generation. We searched online for publicly available
patient-doctor dialogue corpora in the English language, but none of the relevant datasets were found.
Therefore, we decided to design the dialogue corpus from the recorded patient-doctor conversation,
which includes 816 dialogue corpora (11,532 utterances). We manually annotated each utterance for
NLU and the dialogue manager to make the interactive environment of MIRA as real and natural as
possible.

388

Appl. Sci. 2020, 10, 2216

Table 2. MIRA Dataset features with ranges, measurement units, and meaning of each feature.

Feature Name Value
Range

Measurement
Unit

Meaning

Age [17, 73] Years Age of the patients

Gender 0, 1 Category Male or Female

Urinating often 0, 1 Boolean Frequent urination can be a symptom of many diseases such as diabetes

Feeling thirsty 0, 1 Boolean Urge to drink too much may indicate diseases such as diabetes

Feeling hungry 0, 1 Boolean Patient may feel strong hunger due to low blood sugar; it may indicate diabetes because
of an abnormal glucose level

Extreme fatigue 0, 1 Boolean Uncontrolled blood glucose may leads to tiredness

Blurry vision 0, 1 Boolean In diabetes, a high blood glucose level may lead to temporary blurring of eyesight;
moreover, damaged optic nerves increase the intraocular pressure that may leads to
haziness or blurry vision

Slow-healing
wounds

0, 1 Boolean High blood glucose level may affect the blood circulation, which may leads to
the slow-healing of wounds.

Weight loss 0, 1 Boolean The body starts burning fat and muscle for energy with insufficient insulin

Has tingling
sensation

0, 1 Boolean Diabetic neuropathy may lead to tingling sensations in fingers, toes, hands, and feet,
and burning may occur as well

Pain 0, 1 Boolean Diabetic neuropathy may leads to pain in different body parts such as arms, legs or
sometimes the whole body

Numbness of hands 0, 1 Boolean Diabetic neuropathy may lead to numbness of hands

Numbness of foot 0, 1 Boolean Diabetic neuropathy may lead to numbness of feet

Burning sensation
in eye

0, 1 Boolean Stinging or irritating sensation in the eyes

Color vision
impairment

0, 1 Boolean Color vision impairment is the initial symptom of glaucoma

Difficulty walking 0, 1 Boolean Glaucoma patients frequently complain of difficulty walking

Difficulty in stair
climbing

0, 1 Boolean Glaucoma patients frequently complain of difficulty climbing stairs

Difficulty in face
recognition

0, 1 Boolean Glaucoma patients frequently complain of difficulty recognizing faces

Difficulty driving 0, 1 Boolean Glaucoma patients frequently complain of difficulty driving

Double vision 0, 1 Boolean Diplopia is considered to be a warning for glaucoma

Dryness of eyes 0, 1 Boolean Dryness of eyes is due to the lack of proper tear production

Swelling of eyelids 0, 1 Boolean Occurs due to inflammation or excess of fluid

Tear in eyes with
a strong glare

0, 1 Boolean Unusual squinting or blinking due to a strong glare or light

Image quality
decrease

0, 1 Boolean Peripheral vision loss may be an early symptom of glaucoma

Itchiness 0, 1 Boolean Itchiness caused due to the low quantity of eye fluid or low interocular pressure

Nausea
and vomiting

0, 1 Boolean Severe eye pain may cause nausea and vomiting

Headache 0, 1 Boolean Severe eye pain may cause headache

Night blindness 0, 1 Boolean Nyctalopia is a condition where the eye is unable to adapt to the surrounding conditions
such as low-light, or nighttime

Redness of eyes 0, 1 Boolean Caused due to swollen or dilated blood vessels

Severe eye pain 0, 1 Boolean The rapid eye pressure increase causes severe eye pain

Sudden onset of
visual disturbances
usually in low light

0, 1 Boolean The basic signs and symptoms of acute angle closure glaucoma

3.3. Case Study

To understand the working scenario of MIRA, consider John Doe, a registered user, who wants
to discuss his medical condition with MIRA and is looking for an appropriate medical specialist
nearby. John started the conversation by saying ‘Hello MIRA’. The speech recognition recognizes
the natural language input as received from the voice user interface, transcribes it into text, and sends

389

Appl. Sci. 2020, 10, 2216

Figure 3. MIRA prediction accuracy with machine learning models.

it to the NLU to identify the intent of the utterance, which is a greeting in this case. The intent-text pair
(intent: greeting, Text: Hello MIRA) along with voice-print is sent to the identity and access manager,
which verifies and validates John’s identity using the MFCC matching technique. Upon approval,
the request is forwarded to the session manager, which determines whether John has an ongoing
session or the phrase is to initiate a new conversational session. According to the session manager,
John does not have an ongoing session. Therefore, the session manager generates a new session
identifier linked with John’s identity and forwards the request to the dialogue manager for generating
a relevant response. At first, the dialogue manager analyzes the state for an ongoing conversation using
state tracking, then infers the intent of the request based on the chief complaint data and medical history.
In this case, John did not provide any medical history during the registration phase and initiated
the conversation with a greeting utterance, which does not link to any of the chief complaints. Therefore,
the inferred request is forwarded to the story data for selecting an appropriate story. Then, a new
user greeting template is selected using the dialogue templates and is forwarded to the response
formulation, which customizes the template based on the user identifier to generate a text statement.
The text to speech synthesis receives this text, transcribes it into a spoken response, and plays it on
a smart device speaker. A similar procedure will be followed for handling each dialogue corpus.
At any point of the conversation, the user can say ‘Bye MIRA’ to terminate the session. Figure 4
illustrates the MIRA implementation model for handling a complex conversation. The different
colored lines present the workflow and inter-connectivity between the basic modules.

Figure 5 presents the MIRA smartphone application screenshots. The user interface shows
a circularly shaped gray button on the main screen, which can be used to activate MIRA by pressing
the button. Upon activation, MIRA starts listening, and the color of the button changes to bright green.
We set the listening duration to 5 seconds, but it can be changed to 1 minute from the application
setting. When the time is up, MIRA starts analyzing the spoken natural language and changes
the button color to orange. We used the color change technique because warm colors have a positive
impact on the user’s emotions and behavior as per psychology [55]. Furthermore, MIRA displays
the input and output natural language on the smartphone screen in the form of a chat bubble for better
understanding along with the spoken response. MIRA switches to an idle state (gray color), if the user
does not speak for 5 seconds, which requires reactivation by pressing the gray button. However,
the session identifier will be valid until the user terminates by saying ‘Bye MIRA’ or the conversation is
idle for 60 consecutive minutes. As a final recommendation, a frame of Google maps shows the nearby
appropriate medical specialist. By clicking the map frame, the query will open in Google maps.

390

Appl. Sci. 2020, 10, 2216

Figure 4. MIRA implementation model for conversational handling.

Figure 5. MIRA smartphone application screenshot on android pie.

391

Appl. Sci. 2020, 10, 2216

4. Evaluation

MIRA provides efficient and reliable healthcare services to the users. To ensure productivity,
we evaluated MIRA based on performance measures, task completion, security, and user experience.
For this purpose, we circulated a call for participants on the university’s mailing list and social media.
A total of 33 participants belonging to seven countries registered, including 20 males and 13 females
within the age group of 18 to 43 years as shown in Figure 6. The participants were affiliated
with different departments such as Healthcare Subject Matter Experts (5), Medical Practitioners (4),
and students belonging to Medical (7), Computer Science (9), Bioinformatics (3), Life Science (3),
and International Relations (2) disciplines. Each participant was given a set of procedural documents,
which contained a checklist of tasks, consent form, hints for acting as a particular patient type,
and a user experience questionnaire. The consent form clearly describes the data collection procedure,
including audio and video recording of interactions with MIRA, data storage, data usage, and disposal
details. Moreover, participants were shortly briefed about the goal of the activity, and we instruct
them to sign the consent form after reading it carefully. Upon agreement, the voice sample along with
demographic information (name, address, gender, age, and medical history) was collected to complete
the MIRA registration process.

Figure 6. Country-based distribution of MIRA evaluation participants.

As per the scope of this study, MIRA predicts glaucoma and diabetes based on the trained model.
The remaining diseases including normal conditions are out of scope and are considered under the other
label. Therefore, MIRA analyzed user interactions, identified chief complaints, and categorized these
as glaucoma, diabetes, or other. Among the 33 registered participants, 17 did not belong to the medical
profession. For this reason, we provided a list of chief complaints as described in Table 3, which guide
the participants to act as a patient for three health conditions. In the case of other label, we selected
cardiovascular and orthopedic chief complaints that are similar to glaucoma and diabetes. If MIRA
did not generate a final recommendation for some reason, then it politely responded ‘I am sorry, I
am not able to diagnose your disease based on the provided knowledge. Do you want me to assist
you further?’. Moreover, the participants were allowed to use synonyms, ask questions in a random
sequence, and interact in a natural way of communication.

392

Appl. Sci. 2020, 10, 2216

Table 3. Sample of hints for acting as glaucoma, diabetes, and other, patient types.

Chief Complaints of Different Diseases
(Feel Free to Use Any Synonyms Related to These Chief Complaints)

Glaucoma Diabetes Other

Blurry vision Blurry vision Sweating

Burning sensation or dryness or
itchiness in eye(s)

Extreme fatigue Pain

Color vision impairment Feeling very hungry Nausea and vomiting

Difficulty in driving, face recognition,
stair climbing, and walking

Feeling very thirsty Shortness of breath

Double vision or decrease in image
quality or sudden onset of visual
disturbance usually in low light

Numbness of feet Discomfort in body parts such as
neck, jaw, shoulder, upper back,
or abdominal

Nausea and vomiting with headache Numbness of hands Unusual fatigue

Night blindness Pain Lightheadedness or dizziness

Red eyes Slow healing of cuts
and bruises

Stiffness

Severe eye pain Tingling sensation Swelling

Swelling in eyelid Urinating often Instability

Tears in eyes with a strong glare Weight loss Deformity

4.1. Experimental Setup

We set up an interactive environment based on the availability of resources, which includes three
android smartphones (Samsung Galaxy S7), three iPhones (6s), three cell phone holders, and three
tripod mounts. The MIRA application was installed on three android smartphones, and these
were attached to classroom desks with the help of cell phone holders, which can be adjusted.
The three iPhones attached to tripod mounts were used for audio and video recording of each user’s
interaction with MIRA. Complete sets of equipment were placed at three corners of the classroom,
which include an android smartphone, cell phone holder, iPhone, tripod mount, classroom desk,
and chair. Only three participants can interact with MIRA simultaneously in the design experimental
setup. Therefore, we divided the participants into 11 groups (three members per group) based on
their availability and feasibility. Each member of the group can interact with MIRA independently for
an allocated time of 60 minutes while acting like a patient using the provided hints.

4.2. Performance Evaluation

To assess the effectiveness of MIRA, we used the common performance evaluation measure based
on an independently distributed confusion matrix, as described in Table 4. The values were assigned
based on the final recommendation label. The diagonal and off-diagonal values of the confusion
matrix present correctly classified and incorrectly classified results, respectively. Similarly, the rows
and columns of the confusion matrix show actual values per label and predicted value per label,
respectively. Furthermore, the characteristics of performance evaluation measurement are reflected
in terms of accuracy, precision, sensitivity, specificity, and F-measure. The corresponding description
along with formulas for these measures are described as follows. Each participant completed
the interaction for three health conditions that included glaucoma, diabetes, and other. Figure 7
illustrates the value of each label. We recorded a total of 99 dialogue corpus based on the interactions
of 33 participants.

393

Appl. Sci. 2020, 10, 2216

Table 4. MIRA confusion matrix.

Glaucoma Diabetes Other

Glaucoma 30 1 2

Diabetes 3 28 2

Other 1 1 31

Figure 7. Performance evaluation measure of interactive scenarios.

• Accuracy identifies the effectiveness of an algorithm based on the probability of true values as
stated in Equation (1). MIRA gets an overall accuracy of 89.8% because it correctly identified 90.9%
glaucoma (30), 84.8% diabetes (28), and 93.9% other (31) labels among the recorded dialogue
corpus (99).

Accuracy =
Sumo f CorrectlyClassi f ied

TotalNumbero f Classi f ication
(1)

• Precision or confidence presents the positive predictive value of a label that can be derived
using Equation (2). We obtained the precision for each label including glaucoma (88.24%),
diabetes (93.33%), and other (88.57%), with an average precision of 90%.

Precision =
TruePositive

TruePositive + FalsePositive
(2)

• Sensitivity (also known as recall) corresponds to the true positive rate of a specific label and can
be computed with Equation (3) for glaucoma (90.91%), diabetes (84.85%), and other (93.94%),
with an average value of 89.8%.

Sensitivity =
TruePositive

TruePositive + FalseNegative
(3)

• Specificity corresponds to the true negative rate and can be computed using Equation (4)
for a specific label for glaucoma (93.94%), diabetes (96.97%), and other (93.94%), with an average
value of 94.9%.

394

Appl. Sci. 2020, 10, 2216

Speci f icity =
TrueNegative

FalsePositive + TrueNegative
(4)

• The F-measure, also known as F-score or F1-score, is the weighted harmonic mean of precision
and sensitivity (recall) as stated in Equation (5). The F-Measures for each label in MIRA were
as follows: glaucoma (89.55%), diabetes (88.89%), and other (91.18%), with an average value of
89.8%.We used β = 1 that evenly balances the F-score based on precision and sensitivity.

F−Measure =
(

β2 + 1
)
∗ Precision ∗ Sensitivity

β2 ∗ Precision + Sensitivity
(5)

4.3. Task Completion

Task completion is an important factor in the virtual assistant. It measures the task success
probability of dialogue corpora. To assess MIRA’s task completion, we used the PARADISE (PARAdigm
for DIalogue System Evaluation) framework that uses the Kappa coefficient to operationalize
the measure of task-based success [56]. The Kappa coefficient k measures the success rate of task
completion and is computed with Equation (6).

k =
P(A)− P(E)

1− P(E)
(6)

P(A) is the proportion of times that agreement occurs between the actual and scenario attribute
value. P(E) is the proportion of times when the agreement between the actual and scenario attribute
value is expected. The value of k considers task complexity and assesses the virtual assistant by
correcting for the expected agreement and performing different tasks. If agreement is only expected
by chance, then k = 1 and k = 0 for total agreement and no agreement, respectively. Moreover,
if the expected chance of agreement (P(E)) is unknown, then it can be calculated from the confusion
matrix using Equation (7).

P(E) =
n

∑
i=1

(
ti
T

)2
(7)

Here, ti is the sum of the ith column frequency of the confusion matrix. T is the sum of frequency
t1 + t2 + ... + tn in the confusion matrix. Similarly, P(A) can be calculated from the confusion matrix
with Equation (8), if unknown.

P(A) =
∑n

i=1 M(i, i)
T

(8)

MIRA task completion based on the PARADISE framework gives Expected Agreement
P(E) = 0.334, Actual Agreement P(A) = 0.898, and Kappa Coefficient k = 0.848. The interpretation
of Kappa categorized MIRA as ‘Almost Perfect’ in term of task completion [57].

4.4. Security

Healthcare applications deal with sensitive data such as medical records, health conditions,
and quality of life. The illegal usage of these data may lead to several attacks. For this purpose,
we launched a masquerading attack based on the scope of this study. The prevention of masquerading
attack also minimizes the risk of ransomware.

The masquerading attack uses a fake identity to gain unauthorized access [58]. To launch this
attack on MIRA, we asked the members of each group to shift their positions. Suppose the participants
on positions C, B, and A will shift to A, C, and B respectively. Then, the adjacent member gets
access to the authenticated user account of MIRA and starts an interaction. During the analysis of
natural language input, MIRA verifies the device identifier, but is unable to validate the MFCC value.

395

Appl. Sci. 2020, 10, 2216

Therefore, MIRA holds the ongoing session and asks the participant for identity verification as ‘Sorry
for the interruption, malicious activity was detected. To proceed with the ongoing session, please enter
your seven digit identity verification key’. At this stage, the user has to enter the identity verification
key to interact with MIRA. Moreover, if an unauthorized user wants to interact after session time out
(60 minutes), then MIRA will respond as ‘I am sorry, but I am not able to verify your identity. Do you
want me to assist you through the registration process?’. Furthermore, one smart device identifier can
bind with multiple user identities, which means that more than one user can use the same device, but
registration is mandatory for each user. The results show that MIRA prevents against masquerading
attacks because none of the participants were able to interact with other user applications due to
voice-based authentication.

4.5. User Experience

After interacting with MIRA, the participants were asked to fill out the User Experience
Questionnaire (UEQ) [59], which covers all the aspect of user experience in a comprehensive way.
The UEQ is widely used as a subjective measurement of user experience and provides a data analysis
tool for assessing user responses. Therefore, we used it to evaluate the MIRA user experience.
It consists of 26 items using a 7 point Likert scale for rating. The results of these 26 items are mapped
with 6-dimensional scales such as attractiveness (6 items), perspicuity (4 items), efficiency (4 items),
dependability (4 items), stimulation (4 items), and novelty (4 items) as shown in Figure 8. The x-axis
and y-axis present the list of items and rating scales (extremely good(+3), neutral (0), horribly bad (−3)),
respectively. Furthermore, the 6-dimensional scales are grouped into pragmatic quality (perspicuity,
efficiency, and dependability), and hedonic quality (stimulation, originality). The pragmatic deals with
task-related quality aspects, while the hedonic describes non-task related quality aspects.

Figure 8. MIRA user experience questionnaire mean value per item.

396

Appl. Sci. 2020, 10, 2216

Figure 9 illustrates the result of MIRA based on 6-dimensional scales, which exhibit accurate
measurements because the values are greater than 1.6. Moreover, Figure 10 presents MIRA’s
attractiveness and pragmatic quality along with hedonic quality, where the value is greater than 1.80,
reflecting a positive evaluation based on UEQ criteria. To identify the correlation of items per scale,
UEQ uses Cronbach’s alpha-coefficient, which measures the consistency of a scale as shown in Table 5.
The value of attractiveness is higher than 0.7, which means that all users enjoyed the interactions with
MIRA. Most of the participants recommend an avatar instead of a simple user interface for MIRA.
Therefore, the alpha-coefficient value of novelty was less than 0.5. Furthermore, Figure 11 presents
a comparative analysis of MIRA based on the UEQ benchmark dataset, which consists of 401 product
evaluations collected from 18483 participants. The results show that MIRA is relatively good in all
aspects based on the benchmark data.

Figure 9. MIRA user experience questionnaire resulting scores on six dimensional scale.

Figure 10. MIRA user experience questionnaire aggregated score of pragmatic and hedonic qualities.

397

Appl. Sci. 2020, 10, 2216

Table 5. Correlation of items per scale using Cronbach’s Alpha Coefficient.

Scale Alpha-Coefficient

Attractiveness 0.74

Perspicuity 0.67

Efficiency 0.77

Dependability 0.60

Stimulation 0.67

Novelty 0.48

Figure 11. MIRA user experience questionnaire scores on six dimensions scales along with benchmark data.

4.6. Discussion

MIRA was evaluated by 33 participants belonging to different domains, age groups, genders,
and diverse nationalities. The participants were given 60 minutes to complete a list of tasks during
the interaction with MIRA. Among the 33 participants, 27 completed their tasks at an average time
of 40 minutes because their interaction was smooth with little or no misinterpretation. However,
6 participants took an average of 55 minutes due to several misinterpretations such as ‘thirsty’
as ‘thirty’, ‘tired’ as ‘tire’, ‘driving’ as ‘diving’, and ‘tear’ as ‘tire’. Based on these interactions, MIRA
gets an overall accuracy of 89% because it used the deep learning predictive model, which learns from
the data incrementally and manages complex dialogues efficiently. We considered the macro-average
instead of micro-average for calculating precision (90%), sensitivity (89.8%), specificity (94.9%),
and F-measure (89.8%) of the complete system. Please note that the macro-average gives equal
weight to each class label, while the micro-average results are biased towards the larger class label.
Therefore, we showed impressive results for MIRA in terms of efficiency and effectiveness. Moreover,
the PARADISE framework was used to evaluate the task completion of MIRA, where the actual
agreement (P(A) = 0.898) is better than agreement-by-chance (P(E) = 0.334). Because the stock
phrases were designed from real conversations that facilitated MIRA for a better understanding of
natural language input. The Cohen’s Kappa value (k = 0.848) was interpreted as ‘Almost Perfect’
because MIRA generated the response in a real and natural way using a female voice that keeps
the user motivated to continue the interaction.

MIRA also keeps a record of the conversational dialogue corpus along with final recommendation
about the appropriate medical specialist that supports personalized interactions with the established

398

Appl. Sci. 2020, 10, 2216

user. For the prototype version of MIRA, we considered authentication instead of confidentiality,
integrity, and availability. A strong authentication mechanism minimizes the risk of exploiting security
vulnerabilities but will affect the performance and efficiency of the system. Therefore, we used
the lightweight version of our designed voice-based authentication protocol, which identifies the user
based on the extracted MFCC value of natural language utterances; this method was evaluated for
masquerading attack. The results showed that MIRA successfully identified the user in real time based
on their voice samples and strongly resisted a masquerading attack.

We used UEQ for evaluating the user experience because it provides ease of data analysis
and calculates the necessary statistics accordingly. Due to reliability, different organizations used
UEQ for evaluating their products and consider it to be a good measure. According to UEQ, MIRA
was evaluated in terms of attractiveness, pragmatic quality, and hedonic quality, where the value
of pragmatic is smaller than the other two qualities (attractiveness and hedonic). This is due to
the low value of secure and predictable items under the category of pragmatic quality because some
participants considered secure in terms of security, but it evaluates the user’s feelings regarding
the interaction control. Moreover, MIRA uses synonyms of specific words for generating a relevant
response, which may be unpredictable for a conversational scenario in some situations. Suppose in
one interaction MIRA asked a user, ‘How about your empty-bellied?’ instead of ‘Do you feel extremely
hungry?’. The value of pragmatic quality is affected by these two factors. However, the overall results
of UEQ present positive feedback, and users were satisfied with MIRA’s interactive communication.

After the completion of tasks, the participants were awarded a shopping coupon worth 30,000
KRW as an incentive. The participants belonged to diverse nationalities that helped assess how MIRA
deals with a variety of accents as well. According to our analysis, some participants do not realize
the voice-based authentication mechanism due to the lightweight protocol until they were asked to
switch their positions for performing a masquerading attack. In the future we plan to evaluate MIRA
with real glaucoma and diabetic patients, then compare the results of both assessments. Furthermore,
we will evaluate MIRA for relevant emerging cyber-attacks.

5. Conclusions

In this study, we introduced a state-of-the-art virtual medical assistant, MIRA, that interacts with
the user in a spoken natural language, diagnoses a disease based on a user’s chief complaint, and refers
the user to a nearby appropriate medical specialist. The key contribution of MIRA includes disease
identification based on chief complaint, understanding single and multiple intents, a voice-based
authentication mechanism, conversational state tracking, and continuous monitoring of the system
for detecting anomalies. Moreover, we designed a chief complaint dataset and stock phrases from
the recorded dialogue corpora. MIRA is the first assistant of its kind that considers security aspects
(such as authentication), which requires improvements in terms of transmission security and audit
control to become HIPAA compliant. The designed knowledge source of MIRA considered glaucoma
and diabetes chief complaints only, which can be extended to other medical conditions in the future.

There are many challenges in developing these kinds of interactive systems such as privacy
concerns, accuracy constraints, correct decision making, precise response generation, and gaining
user trust. The compliance with standards may help in risk minimization. Besides these challenges,
it is beneficial for society, especially in underdeveloped countries, where people are suffering from
many diseases due to the lack of healthcare facilities. These kinds of virtual medical assistants help
the patient identify an appropriate medical specialist and reduce healthcare cost. Also, it supports
medical practitioners and students in clinical decision making.

399

Appl. Sci. 2020, 10, 2216

Author Contributions: U.U.R. is the principal researcher, who proposed the idea, designed and developed
the prototype version, conducted the experiments based on the designed scenarios, and wrote the paper. D.J.C.
and Y.J. provided the medical related information, supported in data acquisition and analysis. U.A. and M.A.R.
contributed to participant management, English proofreading and finalized content flow in the manuscript. S.L.
supervised the whole process, provided advisory feedback, and reviewed the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-2017-0-01629) supervised by the IITP
(Institute for Information & communications Technology Promotion). This work was supported by the Institute
for Information & communications Technology Promotion (IITP) grant funded by the Korea government
(MSIT) (No. 2017-0-00655). This work was also supported by the National Research Foundation (NRF) under
the NRF-2016K1A3A7A03951968 and NRF-2019R1A2C2090504.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Canbek, N.G.; Mutlu, M.E. On the track of artificial intelligence: Learning with intelligent personal assistants.
J. Hum. Sci. 2016, 13, 592–601.

2. Van Os, M.; Saddler, H.J.; Napolitano, L.T.; Russell, J.H.; Lister, P.M.; Dasari, R. Intelligent Automated
Assistant for TV User Interactions. US Patent 9,338,493, 2016.

3. Bartie, P.; Mackaness, W.; Lemon, O.; Dalmas, T.; Janarthanam, S.; Hill, R.L.; Dickinson, A.; Liu, X. A dialogue
based mobile virtual assistant for tourists: The SpaceBook Project. Comput. Environ. Urban Syst. 2018,
67, 110–123.

4. Page, L.C.; Gehlbach, H. How an artificially intelligent virtual assistant helps students navigate the road to
college. AERA Open 2017, 3, 2332858417749220.

5. Lam, M.S. Keeping the Internet Open with an Open-Source Virtual Assistant. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking; ACM: New York, NY, USA, 2018; pp. 145–146.

6. Austerjost, J.; Porr, M.; Riedel, N.; Geier, D.; Becker, T.; Scheper, T.; Marquard, D.; Lindner, P.; Beutel, S.
Introducing a Virtual Assistant to the Lab: A Voice User Interface for the Intuitive Control of Laboratory
Instruments. SLAS TECHNOL. Transl. Life Sci. Innov. 2018, 23, 476–482.

7. Yan, R.; Song, Y.; Wu, H. Learning to respond with deep neural networks for retrieval-based human-computer
conversation system. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development
in Information Retrieval; ACM: New York, NY, USA, 2016; pp. 55–64.

8. Hwang, E.J.; Jung, J.Y.; Lee, S.K.; Lee, S.E.; Jee, W.H. Machine Learning for Diagnosis of Hematologic
Diseases in Magnetic Resonance Imaging of Lumbar Spines. Sci. Rep. 2019, 9, 6046.

9. Omondiagbe, D.A.; Veeramani, S.; Sidhu, A.S. Machine Learning Classification Techniques for Breast Cancer
Diagnosis. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019;
Volume 495, p. 012033.

10. Pigoni, A.; Delvecchio, G.; Madonna, D.; Bressi, C.; Soares, J.; Brambilla, P. Can Machine Learning help us in
dealing with treatment resistant depression? A review. J. Affect. Disord. 2019, 259, 21–26.

11. Künzel, S.R.; Sekhon, J.S.; Bickel, P.J.; Yu, B. Metalearners for estimating heterogeneous treatment effects
using machine learning. Proc. Natl. Acad. Sci. USA 2019, 116, 4156–4165.

12. Callahan, A.; Shah, N.H. Machine learning in healthcare. In Key Advances in Clinical Informatics; Elsevier:
Amsterdam, The Netherlands, 2017; pp. 279–291.

13. Sinsky, C.; Colligan, L.; Li, L.; Prgomet, M.; Reynolds, S.; Goeders, L.; Westbrook, J.; Tutty, M.; Blike, G.
Allocation of physician time in ambulatory practice: a time and motion study in 4 specialties. Ann. Intern. Med.
2016, 165, 753–760.

14. Nuance AI-Powered Virtual Assistants for Healthcare. Available online: https://www.nuance.com/
healthcare/ambient-clinical-intelligence/virtual-assistants.html (Accessed on March 13, 2019).

15. Suki Let Doctors Focus on What Matters. Available online: https://www.suki.ai/about-us
(Accessed on March 23, 2019).

16. Robin Healthcare. Available online: https://www.robinhealthcare.com (Accessed on March 24, 2019).
17. UHS Drives Quality through Cloud Speech and CDI Workflow. Available online: https://www.nuance.

com/content/dam/nuance/en_us/collateral/healthcare/case-study/cs-uhs-en-us.pdf (Accessed on March 15,
2019).

400

Appl. Sci. 2020, 10, 2216

18. Plastic Surgery Specialist Reduces Time Per Patient Note. Available online: https://resources.suki.ai/home/
case-study-dr-ereso-plastic-surgeon (Accessed on March 24, 2019).

19. Plastic Surgery Specialist Reduces Time Per Patient Note. Available online: https://www.mobihealthnews.
com/news/north-america/voice-enabled-clinician-workflow-tool-robin-healthcare-raises-115m
(Accessed on October 02, 2019).

20. Medwhat Virtual Medical Assistant. Available online: https://medwhat.com/ (Accessed on April 02, 2019).
21. Your.MD Symptom Checker. Available online: https://www.your.md/ (Accessed on April 02, 2019).
22. Sensely Engage Your Members. Reduce Your Costs. Available online: https://www.sensely.com/

(Accessed on April 02, 2019).
23. Bickmore, T.W.; Trinh, H.; Olafsson, S.; O’Leary, T.K.; Asadi, R.; Rickles, N.M.; Cruz, R. Patient and consumer

safety risks when using conversational assistants for medical information: An observational study of Siri,
Alexa, and Google Assistant. J. Med. Internet Res. 2018, 20, e11510.

24. Semigran, H.L.; Linder, J.A.; Gidengil, C.; Mehrotra, A. Evaluation of symptom checkers for self diagnosis
and triage: Audit study. BMJ 2015, 351, h3480.

25. Crestani, F.; Du, H. Written versus spoken queries: A qualitative and quantitative comparative analysis.
J. Am. Soc. Inf. Sci. Technol. 2006, 57, 881–890.

26. Philip, P.; Bioulac, S.; Sauteraud, A.; Chaufton, C.; Olive, J. Could a virtual human be used to explore
excessive daytime sleepiness in patients? Presence Teleop. Vir. Environ. 2014, 23, 369–376.

27. Philip, P.; Micoulaud-Franchi, J.A.; Sagaspe, P.; De Sevin, E.; Olive, J.; Bioulac, S.; Sauteraud, A. Virtual
human as a new diagnostic tool, a proof of concept study in the field of major depressive disorders. Sci. Rep.
2017, 7, 42656.

28. Tanaka, H.; Negoro, H.; Iwasaka, H.; Nakamura, S. Embodied conversational agents for multimodal
automated social skills training in people with autism spectrum disorders. PloS ONE 2017, 12, e0182151.

29. Dimeff, L.A.; Jobes, D.A.; Chalker, S.A.; Piehl, B.M.; Duvivier, L.L.; Lok, B.C.; Zalake, M.S.; Chung, J.; Koerner,
K. A novel engagement of suicidality in the emergency department: Virtual Collaborative Assessment
and Management of Suicidality. In General Hospital Psychiatry; Elsevier: Amsterdam, The Netherlands, 2018.

30. Levin, E.; Levin, A. Spoken dialog system for real-time data capture. In Proceedings of the Ninth European
Conference on Speech Communication and Technology, Lisbon, Portugal, 4–8 September 2005.

31. Black, L.A.; McTear, M.; Black, N.; Harper, R.; Lemon, M. Appraisal of a conversational artefact and its utility
in remote patient monitoring. In Proceedings of the 18th IEEE Symposium on Computer-Based Medical
Systems, Dublin, Ireland, 23–24 June 2005; pp. 506–508.

32. Harper, R.; Nicholl, P.; McTear, M.; Wallace, J.; Black, L.A.; Kearney, P. Automated phone capture of
diabetes patients readings with consultant monitoring via the web. In Proceedings of the 15th Annual IEEE
International Conference and Workshop on the Engineering of Computer Based Systems, ECBS, Belfast, UK,
31 March–4 April 2008; pp. 219–226.

33. Lucas, G.M.; Rizzo, A.; Gratch, J.; Scherer, S.; Stratou, G.; Boberg, J.; Morency, L.P. Reporting mental health
symptoms: breaking down barriers to care with virtual human interviewers. Front. Robot. AI 2017, 4, 51.

34. Yokotani, K.; Takagi, G.; Wakashima, K. Advantages of virtual agents over clinical psychologists during
comprehensive mental health interviews using a mixed methods design. Comput. Hum. Behav. 2018,
85, 135–145.

35. Ali, T.; Hussain, J.; Amin, M.B.; Hussain, M.; Akhtar, U.; Khan, W.A.; Lee, S.; Kang, B.H.; Hussain, M.; Afzal,
M.; et al. The Intelligent Medical Platform: A Novel Dialogue-Based Platform for Health-Care Services.
Computer 2020, 53, 35–45.

36. Ireland, D.; Atay, C.; Liddle, J.; Bradford, D.; Lee, H.; Rushin, O.; Mullins, T.; Angus, D.; Wiles, J.; McBride, S.;
et al. Hello Harlie: Enabling Speech Monitoring Through Chat-Bot Conversations. Studi. Health Technol. Inf.
2016, 227, 55–60.

37. Mugoye, K.; Okoyo, H.; Mcoyowo, S. Smart-bot Technology: Conversational Agents Role in Maternal
Healthcare Support. In Proceedings of the IEEE 2019 IST-Africa Week Conference (IST-Africa),
Nairobi, Kenya, 8–10 May 2019; pp. 1–7.

38. Giorgino, T.; Azzini, I.; Rognoni, C.; Quaglini, S.; Stefanelli, M.; Gretter, R.; Falavigna, D. Automated spoken
dialogue system for hypertensive patient home management. Int. J. Med. Inf. 2005, 74, 159–167.

39. Beveridge, M.; Fox, J. Automatic generation of spoken dialogue from medical plans and ontologies.
J. Biom. Inf. 2006, 39, 482–499.

401

Appl. Sci. 2020, 10, 2216

40. Clarke, N.L.; Furnell, S.M.; Rodwell, P.M.; Reynolds, P.L. Acceptance of subscriber authentication methods
for mobile telephony devices. Comput. Secur. 2002, 21, 220–228.

41. Raza, M.; Iqbal, M.; Sharif, M.; Haider, W. A survey of password attacks and comparative analysis on
methods for secure authentication. World Appl. Sci. J. 2012, 19, 439–444.

42. McDermott, D.S.; Kamerer, J.L.; Birk, A.T. Electronic Health Records: A Literature Review of Cyber Threats
and Security Measures. Int. J. Cyber Res. Educ. (IJCRE) 2019, 1, 42–49.

43. Frumento, E. Cybersecurity and the Evolutions of Healthcare: Challenges and Threats Behind Its Evolution.
In m_Health Current and Future Applications; Springer: Berlin, Germany, 2019; pp. 35–69.

44. Kao, H.C.; Tang, K.F.; Chang, E.Y. Context-aware symptom checking for disease diagnosis using hierarchical
reinforcement learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, LO, USA, 2–7 February 2018.

45. Morreale, S.P.; Spitzberg, B.H.; Barge, J.K. Human Communication: Motivation, Knowledge, and Skills;
Cengage Learning: Boston, MA, USA, 2007.

46. Glass, J. Challenges for spoken dialogue systems. In Proceedings of the 1999 IEEE ASRU Workshop;
MIT Laboratory fot Computer Science: Cambridge, MA, USA, 1999.

47. Kang, S.; Ko, Y.; Seo, J. A dialogue management system using a corpus-based framework and a dynamic
dialogue transition model. AI Commun. 2013, 26, 145–159.

48. Li, Y.; Feng, Z.; Xiao, Y.; Huang, J. A neural network algorithm for signal processing of LFMCW or IFSCW
system. In Proceedings of the 1999 Asia Pacific Microwave Conference—APMC’99—Microwaves Enter
the 21st Century, Conference Proceedings (Cat. No.99TH8473), Singapore, 30 November–3 December 1999;
Volume 3, pp. 900–903.

49. Rasa Documentation. Available online: https://rasa.com/docs/rasa/ (Accessed on March 19, 2020).
50. Unified Medical Language System Documentation. Available online: https://www.nlm.nih.gov/research/

umls/index.html (Accessed on March 19, 2020).
51. Hummer, M.; Groll, S.; Kunz, M.; Fuchs, L.; Pernul, G. Measuring Identity and Access Management

Performance-An Expert Survey on Possible Performance Indicators. In Proceedings of the 4th International
Conference on Information Systems Security and Privacy, Funchal - Madeira, Portugal, 22–24 January, 2018.
Available online: https://www.scitepress.org/Papers/2018/65577/65577.pdf (Accessed on 23 July 2019)

52. Rehman, U.U.; Lee, S. Natural Language Voice based Authentication Mechanism for Smartphones.
In Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services; ACM:
New York, NY, USA, 2019; pp. 600–601.

53. Biswas, M. AI and Bot Basics. In Beginning AI Bot Frameworks; Springer: Berlin, Germany, 2018; pp. 1–23.
54. Find Machine Learning Algorithms for Your Data. Available online: https://mod.rapidminer.com/

(Accessed on April 22, 2020).
55. Elliot, A.J.; Maier, M.A. Color psychology: Effects of perceiving color on psychological functioning in

humans. Ann. Rev. Psychol. 2014, 65, 95–120.
56. Walker, M.A.; Litman, D.J.; Kamm, C.A.; Abella, A. PARADISE: A framework for evaluating spoken dialogue

agents. arXiv preprint 1997, cmp-lg/9704004.
57. Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977,

159–174. Available online: https://www.jstor.org/stable/pdf/2529310.pdf (Accessed on 23 March 2019)
58. Pejovic, V.; Bojanic, S.; Carreras, C.; Nieto-Taladriz, O. Detecting masquerading attack in software and in

hardware. In Proceedings of the MELECON 2006—2006 IEEE Mediterranean Electrotechnical Conference,
Malaga, Spain, 16–19 May 2006; pp. 836–838.

59. Schrepp, M. User Experience Questionnaire Handbook. In All you Need to Know to Apply the UEQ Successfully
in Your Project; 2015.Available online: https://www.ueq-online.org/Material/Handbook.pdf (Accessed on
12 May 2019)

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

402

applied
sciences

Article

Assessment of Word-Level Neural Language Models
for Sentence Completion †

Heewoong Park and Jonghun Park *

Department of Industrial Engineering & Center for Superintelligence, Seoul National University,
Seoul 08826, Korea; hee188@snu.ac.kr
* Correspondence: jonghun@snu.ac.kr; Tel.: +82-2-880-7174
† This paper is an extended version of our paper published in the proceedings of 2018 IEEE International

Congress on Information Science and Technology (CiSt).

Received: 24 January 2020; Accepted: 12 February 2020; Published: 16 February 2020

Abstract: The task of sentence completion, which aims to infer the missing text of a given sentence,
was carried out to assess the reading comprehension level of machines as well as humans. In this work,
we conducted a comprehensive study of various approaches for the sentence completion based on
neural language models, which have been advanced in recent years. First, we revisited the recurrent
neural network language model (RNN LM), achieving highly competitive results with an appropriate
network structure and hyper-parameters. This paper presents a bidirectional version of RNN LM,
which surpassed the previous best results on Microsoft Research (MSR) Sentence Completion
Challenge and the Scholastic Aptitude Test (SAT) sentence completion questions. In parallel with
directly applying RNN LM to sentence completion, we also employed a supervised learning
framework that fine-tunes a large pre-trained transformer-based LM with a few sentence-completion
examples. By fine-tuning a pre-trained BERT model, this work established state-of-the-art results
on the MSR and SAT sets. Furthermore, we performed similar experimentation on newly collected
cloze-style questions in the Korean language. The experimental results reveal that simply applying
the multilingual BERT models for the Korean dataset was not satisfactory, which leaves room for
further research.

Keywords: BERT; bidirectional RNN; cloze test; Korean dataset; machine comprehension;
neural language model; sentence completion

1. Introduction

In the research domain of machine reading comprehension (MRC), a cloze-style task whose
objective is to restore the removed portion of text has been widely used to evaluate a machine’s level of
understanding [1–3]. Sentence completion is a specific type of cloze-style task whose goal is to choose
a correct word or phrase from the provided list of candidates to fill in the blank in a question sentence.
Despite its simplicity, this class of questions can assess diverse abilities including linguistic proficiency,
common knowledge, and logical reasoning at different levels.

To date, several publications have evaluated reading comprehension models through sentence
completion tests. As an earlier comparative study, Zweig et al. [4] tested various methods based on
different language models (LMs) and topic models against the Microsoft Research (MSR) Sentence
Completion Challenge [5] and the Scholastic Aptitude Test (SAT) sentence completion questions, while
these two datasets have become standard benchmark test sets for subsequent studies. Mikolov et al. [6]
achieved an improved accuracy on the MSR by using the combination of skip-gram and recurrent
neural network (RNN) LMs for sentence completion. Subsequently, deep neural models have received
continuous attention for sentence completion, while Tang [7] and Woods [8] attained comparable

403

Appl. Sci. 2020, 10, 1340

results with classical non-neural feature based methods. In [9], the authors introduced a neural model
named context2vec, which embeds a target word by considering the surrounding sentential context,
demonstrating its usefulness in sentence completion in addition to word sense disambiguation and
lexical substitution. Tran et al. [10] established the state-of-the-art results on the MSR set with Recurrent
Memory Network (RMN), which stacked memory network blocks on RNN for language modeling.

Recently, Park et al. [11] revisited the word-level RNN LM based approach for sentence
completion. Motivated by the empirical fact that the performance of the RNN LM highly depends
on the number of nodes and optimization parameters [12,13], Park et al. demonstrated that their
implementation of RNN LM surpassed the state-of-the-art models on the MSR set despite its
simple architecture. Furthermore, they proposed a bidirectional version, which delivered additional
performance gains by exploiting future context information. The authors also validated the RNN LMs
against the SAT dataset, and they achieved higher accuracy than the other previously published results.

This work extends the study of Park et al. [11] with extensive experiments on various sentence
completion methods based on neural LMs. To clarify which modification of the RNN LM mainly
brings the performance gain, we added more experimental results for different choices of the network.
Furthermore, this paper introduces and compares three criteria for selecting the answer based on a
trained LM for sentence completion.

This study also includes a supervised learning approach that directly receives supervision from
sentence completion questions. Specifically, we employed a task transfer framework that pre-trains an
LM with a large text corpus and adapts it for sentence completion by modifying the network structure
slightly and learning from a few questions. This framework has been emerging as a new paradigm in
natural language understanding owing to its great success on many datasets [14–17]. In this work, we
mainly follow the approach of Devlin et al. [16], while comparing pre-trained networks of BERT [16]
and GPT2 [18], both of which are based on transformer architecture [19].

Another contribution of this paper is that we collected cloze-style questions written in Korean
and evaluated the methods mentioned above with this dataset. There are few non-English datasets in
MRC [20,21], which hinders the verification of the effectiveness of models in cases of other languages.
The new dataset consists of 1823 multiple-choice questions from the Test of Proficiency in Korean
(TOPIK). We conducted the performance analysis of our RNN LM and multilingual BERT models on
this dataset.

In summary, our contributions are following:

• We demonstrate that, when properly trained, simple RNN LMs are highly competitive for the
sentence completion. Our word RNNs achieved results beyond the previous best reported on the
MSR and SAT datasets.

• We verify that the transfer learning approach that pre-trains a transformer-based LM from large
data and fine-tunes the model for the target task is also viable for the sentence completion.
Our experiments compared various pre-trained networks along with different settings for
fine-tuning, showing that the performance varied significantly with different networks, and we
were able to obtain state-of-the-art results for both datasets under certain configurations.

• The new cloze-style dataset written in Korean was collected from the government’s official
examinations. Experimental results show that the models that were effective for the English
datasets underperformed on the Korean dataset, leaving space for further investigation.

• The PyTorch implementation code (https://github.com/heevery/sentence-completion) for
experimentation is made available to encourage subsequent studies on neural approaches in
machine comprehension.

The remainder of this paper is organized as follows. In the next section, we begin with discussions
on related work. In Section 3, we delineate word-level RNN LMs, formalize how to apply these
LMs to sentence completion, and describe a fine-tuning approach that employs transformer-based
models. Sections 4 and 5 show the results of experiments on the MSR and SAT sets, respectively. Then,

404

Appl. Sci. 2020, 10, 1340

we present the new dataset and performance analysis on this set in Section 6. Finally, the paper is
concluded in the last section.

2. Related Work

The machine comprehension of text or MRC, in which a machine is expected to answer a question
in the form of natural language given a relevant source text, has become a major research topic in
both academia and industry [22]. A natural language question that requests information such as
WH-questions can be converted to the cloze-style counterpart in most cases by a simple algorithm that
constructs a declarative sentence with the answer and masks it. Owing to its wide coverage and ease of
generation, cloze-style datasets have been curated for different text domains and applications, including
children’s book test [3], CNN and daily mail reading comprehension [1], summary cloze [23], and story
cloze [24]. For this class of task, LM-based approaches have often served as solid baselines when the
masked answers are from the daily vocabulary such as verbs and prepositions in children’s book
test [3] or everyday life narratives [24,25]. Moreover, thanks to the gradual development of training
techniques for neural LM, its performance has been improved [12,13]. Establishing a simple but
effective baseline provides one of the key foundations for this kind of research, and this work attempts
to make contributions along this line for the sentence completion task with state-of-the-art LMs.

Meanwhile, building a general-purpose feature extractor for text data has been a long-standing
goal, as ImageNet-pretrained classifiers often play such a role for image data [26]. Among the notable
breakthroughs were ELMo [27] and ULMFit [14] that learn an LSTM-based LM from large-scale
plain text data and use the hidden representations as contextualized word embeddings of an input
word sequence. Subsequently, a transformer-based LM equipped with a self-attention mechanism
significantly reduced the LM perplexity and the error metrics of downstream tasks [15], while a
bidirectional transformer-based model called BERT showed impressive results [16]. Numerous studies
are still ongoing to further improve this transfer learning approach, including adding translation
task objectives to provide high-quality supervision in pre-training [28], permutation-based language
modeling to reduce the pretrain–finetune discrepancy [17], and robustly optimized pre-training [29].
However, the transfer learning approach has not been tested against the sentence completion datasets,
and we aim to provide a variety of experimental results based on it.

Another interesting observation on transformer-based LMs is that multilingual models which were
pre-trained from multiple monolingual corpora were able to generalize information across different
languages [30]. Wu and Dredze [31] confirmed that a multilingual BERT model performed well
uniformly across languages in document classification, named entity recognition, and part-of-speech
tagging, when fine-tuned with a small amount of target language supervision for the downstream
task. The more surprising finding of their work is that, even in a zero-shot cross-lingual setting,
where the multilingual model is fine-tuned with task-specific data from one language and tested in
another language, the multilingual BERT achieved comparable performance with the other models
that require some cross-lingual supervision. A recent study further suggested that shared subword
embeddings were not necessary, and monolingual models were also able to learn some universal
linguistic abstractions [32]. Motivated by the above empirical evidence, we conjecture that multilingual
BERT models might also perform well on the Korean cloze questions and accordingly considered them
in our experiments.

3. Methods

3.1. Word-Level RNN LM

RNN based word-level LMs [33] that exploit the advantage of RNN in modeling sequential
data have been widely applied in natural language processing [22]. The goal of word-level language
modeling is to estimate the probability of the next word based on a previous text. Let w1, w2, ..., wn

denote a word sequence. Then, a typical word-level RNN LM approximates the conditional probability

405

Appl. Sci. 2020, 10, 1340

of the tth position, p(wt|w1, w2, ..., wt−1), by encoding the context words with RNN layers and decoding
the output to the probability vector. In the following, we describe in turn a word-level RNN LM used
in this work (referred to as word RNN henceforth), its bidirectional version, and another variant that
adopts a training strategy called masked LM [16].

The unidirectional word RNN transforms each input word to a learnable embedding vector of
size demb. Then, recurrent layers take the word embedding and the previous hidden states where
the past text has been encoded. We choose Long Short-Term Memory (LSTM) for the recurrent cell
type and set the number of recurrent layers, l to 2, following the authors of [12,34]. A fully-connected
layer reduces the dimension of the output hidden vector of the topmost recurrent layer from dhid to
dout. After the linearly projected vector is multiplied by an output embedding matrix, the softmax
operation produces the likelihood of the next word, PLM(wi|w1, w2, ..., wi−1). The training objective
for the network is to minimize the negative log-likelihood of target words, also known as categorical
cross-entropy loss. Dropout is applied between recurrent layers [34].

For the bidirectional version, we design it to infer a target word based on not only the
previous words but also the subsequent words, which means the output of the network estimates
p(wi|w1, w2, ..., wi−1, wi+1, ..., wn). Although this formulation cannot be applied for the language
modeling in which a model is required to generate one word at a time from scratch, it fits in the sentence
completion, which determines the missing word based on both sides. Some probabilistic interpretation
of bidirectional modeling for sequences was suggested by Berglund et al. [35], who showed the
effectiveness of bidirectional reconstruction on inferring omitted symbolic tokens such as characters
in text and notes in midi-encoded music. It is noteworthy that our bidirectional model fuses forward
and backward hidden layers before the softmax operation rather than just ensembles the output
distributions of forward and backward LMs as in [14,27].

To be specific, our bidirectional word RNN (Figure 1) has separate word embedding lookup tables
for forward and backward directions, similar to context2vec [9]. Each word embedding is connected to
either forward or backward directional LSTM layers. The network then aggregates the output of the
bidirectional hidden layers into a final output vector. The aggregation consists of conducting a separate
linear projection for each hidden layer vector and then adding the two projected vectors. This way
of aggregation was slightly better than concatenation followed by a single linear projection in our
preliminary experiments. The main difference between our bidirectional word RNN and context2vec
is that our model computes the negative likelihood loss rather than an approximation of pointwise
mutual information between the target word and the context during training.

Lastly, we present a variant based on masked LM training, which is a crucial strategy to pre-train
bidirectional Transformers for language understanding [16]. We apply this to our bidirectional word
RNN to see if the training strategy has a synergy with RNN-based architecture in place of the
transformer-based one. Instead of aggregating the one-step-ahead hidden state from the forward layer
and the one-step-behind hidden state from the backward layer, the masked LM version aggregates
the current step hidden states from both directions. As an illustrative example, the bidirectional word
RNN aggregates the forward hidden representation of ‘was’ and the backward hidden representation
of ‘his’ for predicting ‘she’ in Figure 1, while the masked LM fuses the both directional hidden states
at the position of ‘she’ to reconstruct it. For the masked LM training, 15% of the input tokens were
replaced with noise data, and the network learned to reconstruct these tokens with the cross-entropy
loss. Among the 15%, 80% of them were masked with [MASK] tokens, 10% of them were substituted
with random words, and the others were kept unchanged, as suggested in [16].

3.2. LM-Based Scoring

This subsection describes three scoring strategies with respect to how to apply a trained word RNN
to sentence completion. Suppose the tth position is blank, w1, w2, ..., wt−1, wt+1, ..., wn are context words,
and c1, c2, ..., cm are candidate choices for the blank. Blank scoring strategy selects the choice word
that maximizes the conditional likelihood, PLM(c|w1, w2, ..., wt−1) for a typical unidirectional LM or

406

Appl. Sci. 2020, 10, 1340

PbiLM(c|w1, w2, ..., wt−1, wt+1, ..., wn) for our bidirectional model, where c ∈ {c1, c2, ..., cm}. This strategy
is equivalent to picking the choice that minimizes the cross-entropy loss on the blank. In the case that a
choice text spans more than a word, the strategy computes the score by summing the loss over the
blank span and multiplying by −1.

was she his client

Estimated target logits

Forward word embedding

Backward word embedding

was she his client

Decoding

layer

Projection

layer

LSTM

layer

Dropout × (𝑙 − 1)

LSTM

layer

···

···

···

···

···

···

···

···

···

···

···

···

Figure 1. Bidirectional word RNN (modified from Figure 1 in [11]).

In the unidirectional case, however, the blank scoring strategy does not reflect any contextual
information from future words following the blank. To compensate for this defect, we adopt
the full scoring strategy that minimizes the cross-entropy loss on the entire sentence instead
of the blank. Let wj

1, wj
2...., wj

nj be the word sequence obtained by replacing the blank with a

choice word cj, or phrase composed of multiple words cj
1, cj

2, ..., cj
rj where nj = n− 1 + rj. Then,

the strategy computes the score as ∑
nj
i=2 log PLM(wj

i |w
j
1, wj

2, ..., wj
i−1) for the unidirectional LM or

∑
nj−1
i=2 log Pbi(w

j
i |w

j
1, wj

2, ..., wj
i−1, wj

i+1, ..., wj
nj) for the bidirectional one, where j = 1, 2, ..., m. Even in

the bidirectional case, we observed that the full scoring strategy performed better than the former,
although the blank scoring strategy also considers the future context.

The third strategy, referred to as partial scoring strategy [36], computes the score as the likelihood
of the subsequent text conditioned on the choice word and its preceding text. For a unidirectional LM,
the score of c is defined as ∑n

i=t+1 log PLM(wi|w1, ..., wt−1, c, ..., wi−1), where the tth position is blank.
Since PLM(wi|w1, w2, ..., wi−1) for i = 1, ..., t− 1 does not depend on c, the strategy is equivalent to
picking the choice that minimizes ∑i 6=t log PLM(wi|w1, ..., wt−1, c, ..., wi−1), which equals the full score
minus the blank score. From this formulation, the partial score of c for the bidirectional model can be
naturally derived as ∑i<t log PbiLM(wi|w1, ..., wi−1, wi+1, ..., wt−1, c, ..., wn)+

∑i>t log PbiLM(wi|w1, ..., wt−1, c, ..., wi−1, wi+1, ..., wn). While Trinh and Le [36] reported that the partial
scoring strategy outperformed the full scoring strategy for pronoun disambiguation problems,
we observed that it did not hold for the sentence completion.

For networks based on masked LM training, we can apply the blank scoring strategy by defining
the score of choice c as Pmask(c|w1, w2, ..., wt−1, [MASK], wt+1, ..., wn), where [MASK] is inserted in the

407

Appl. Sci. 2020, 10, 1340

blank. If a choice text consists of multiple words, the corresponding number of [MASK] tokens are
inserted. Since it is not straightforward to apply either the partial or full scoring strategy to masked
LM based networks, we did not take them into account.

3.3. Fine-Tuning Pre-Trained LM for Sentence Completion

We introduce a supervised learning approach for the case in which a few sentence-completion
examples are available for model training. To mitigate this data insufficiency, which often occurs in
fully-supervised settings due to the difficulty in collecting high-quality MRC data, recently researchers
have proposed a task transfer framework that pre-trains an LM with a large amount of plain text,
slightly modifies the network structure, and then fine-tunes it with a small dataset of the target task.
For multiple-choice classification, the authors of [15,16] introduced a transferring method that adds a
new simple linear regression layer to a pre-trained LM at the first [15] or the last [16] time step of the
topmost hidden layers; obtains the scalar output values of input sequences corresponding to choices;
and performs the softmax operation to those values to produce a probability vector for answers.
We employ it for multi-choice questions for the sentence completion in a straightforward manner.

For construction of model input, we fill the blank with a choice word as in the full scoring strategy
and insert a special [CLS] token at the first time step at which the output vector of the topmost hidden
layer is fed into the simple linear regression layer. In contrast to Radford et al. [15] and Devlin et al. [16],
the delimiter tokens are not inserted between question and choice texts, since the text filled with the
correct answer forms a syntactically and semantically correct sentence. For a similar reason, while
BERT LM also takes as input segment identifiers, which indicate if the corresponding token belongs to
the question or the choice text, we feed the same segment identifier for the entire sequence into the
model. An experiment in the following section shows that this simple method was sufficient for the
sentence completion.

4. MSR Sentence Completion

First, we considered the MSR Challenge dataset [5] to evaluate the aforementioned methods.
The MSR sentence completion set includes 1040 questions whose source sentences are from five
Sherlock Holmes novels. Human workers were engaged in constructing the question sentences with
five candidate choices for each question to ensure that the questions require semantic knowledge
as well as logical inference [5]. We trained the neural LMs with the official training corpus for the
challenge to compare with previous work, and then further investigated how much the performance
can be improved with a larger model that was pre-trained with external data.

4.1. Results with the Official Training Data

For experiments in this subsection, we used 522 novels from Project Gutenberg written in
the nineteenth-century, which is the specified standard training corpus of the MSR Challenge.
We preprocessed the data through sentence splitting, followed by word tokenization and lower-casing
to feed word sequences into the word RNNs. Sentences consisting of more than eighty or less than ten
words were filtered out. As a result, the vocabulary was composed of 64K words after converting any
word with fewer than six occurrences in the corpus to [UNK] token.

To be specific about the implementation, demb, dhid, and dout were set to 200, 600, and 400,
respectively. We set the forward and backward embedding sizes of the bidirectional word RNN
to be equal. We trained all networks for ten epochs with stochastic gradient descent while applying
10% dropout. Twenty sentences of the same length comprised a mini-batch. Gradients were clipped at
the maximum norm of 5.0 and normalized by the mini-batch size [34]. The learning rate was started
at 0.5 and decreased by half at the beginning of each epoch after the fifth epoch. We determined
these settings by inspecting the performance on the first 520 questions of the MSR set, referred to as
development set, following prior work [9,37]. Accordingly, we refer to the remaining MSR questions
as test set.

408

Appl. Sci. 2020, 10, 1340

First, we investigated the performance of different language modeling and scoring strategies
(Table 1). We optimized the networks repeatedly with five different random seeds and considered the
average accuracy of those networks as a model accuracy. As expected, the full scoring was far more
beneficial than the blank scoring in the unidirectional cases. Likewise, the accuracy of the bidirectional
LM increased when using the full scoring compared to the blank scoring. In contrast to Trinh and Le [36],
the partial scoring strategy was inferior to the full scoring strategy. This can be explained by the fact
that a special word related to the answer appears in the following text of the blank in all questions
of Levesque et al. [38], whereas the presence of a special word is not ensured in the MSR questions.
In addition, the masked LM was inferior to the others, which differs from Devlin et al. [16]. It would
seem that the masked LM requires more training data and prefers the transformer architecture rather
than RNN layers. The performance gaps are visualized in Figure 2, where the error bars signify the
minimum and maximum accuracies obtained by five networks with different random seeds.

Table 1. Performance comparison of word RNNs for different scoring strategies on the MSR set.
We trained each model five times with different random seeds and report the average accuracy with
the standard deviation in parentheses.

LM Formulation Accuracy [%]

Blank Full Partial

Unidirectional LM 50.5 (0.4) 69.4 (0.8) 56.4 (0.9)
Bidirectional LM 69.8 (0.5) 72.3 (1.1) 63.7 (1.4)

Masked LM N/A 58.2 (1.6) N/A

2 4 6 8 10

0.4

0.5

0.6

0.7

Unidirectional LM
Bidirectional LM
Masked LM

(a)

2 4 6 8 10

0.50

0.55

0.60

0.65

0.70

0.75

Blank
Full
Partial

(b)
Figure 2. Performance comparison for different LM formulation and scoring strategies: (a) the full
scoring was applied except for the masked LM; and (b) the bidirectional model was used. The x-axis
represents the number of epochs and the y-axis represents the validation accuracy for the MSR dataset.

To justify the choice of the network size, we plot the validation results for the different numbers of
nodes in Figure 3. The unidirectional word RNN was evaluated on the MSR validation set with different
demb, dhid, and dout values. Figure 3 verifies that the choice of dhid greatly affected the performance,
while smaller embedding sizes than dhid led to better results possibly due to a regularization effect.
We further experimented with more numbers of nodes, but the accuracy increase was negligible.

409

Appl. Sci. 2020, 10, 1340

20
0-

20
0

40
0-

20
0

60
0-

20
0

20
0-

40
0

40
0-

40
0

60
0-

40
0

20
0-

60
0

40
0-

60
0

60
0-

60
0

Embedding sizes (demb-dout)

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Va
lid

at
io

n
ac

cu
ra

cy

dhid

200
400
600

Figure 3. Performance comparison for different numbers of nodes.

Table 2 compares the accuracy results of previous work with ours. An ensemble of differently
initialized RNNs having the same dimensions was defined by selecting the option that minimizes
the average loss obtained from the RNNs. All of our results in Table 2 were obtained by using the
full scoring strategy. To present the approximate network sizes, we specify the dimensions in the first
column as (demb-dhid-dout).

Table 2. Accuracy results (%) for the MSR Challenge dataset. The accuracies in italic were from their
corresponding publications. We present the accuracy results of the development and test sets using a
slash if they were measured separately. We report the average accuracy with the standard deviation if a
model was optimized repeatedly.

Model (demb-dhid-dout) Accuracy

RNNLMs [39] 55.4
Skip-gram [6] 48.0
Skip-gram + RNNLMs [6] 59.2/58.7
NPMI + Co-occ. Freq. + LSA + CBOW + CSKIP [7] 48
PMI using Unigrams + Bigrams + Trigrams [8] 61.44
Context2vec (300-600-600) [9] 66.2/64.0
LSTM (256-256-256) [10] 56.0
Unidirectional-RM (512-512-512) [10] 69.2
Bidirectional-RM (512-512-512) [10] 67.0

Unidirectional word RNN (200-600-400) 69.1 (0.9)/69.6 (0.8)
Bidirectional word RNN (200-600-400) 72.5 (1.4)/72.0 (2.0)
Unidirectional word RNN ensemble 72.0/71.5
Bidirectional word RNN ensemble 74.1/74.6

Interestingly, even the performance of our unidirectional word RNN was on par with or slightly
above the previous best accuracy results on the MSR dataset. As examined in Figure 3, most accuracy
gains compared to the LSTM of Tran et al. [10] were attributed to the appropriate embedding and
hidden sizes, and miscellaneous training settings contributed to additional gains. When compared to
the RMN [10], which contains a memory block consisting of two lookup tables for additional word
embeddings and calculates an attention distribution over context words at every timestep, our RNN
is simple and computationally inexpensive. In addition, our bidirectional version achieved the best
result among the individual models while the ensemble of those five networks further improved the
performance by leveraging the stochastic nature of deep learning. As mentioned above, adding more
nodes to the unidirectional word RNN (200-600-400) was not helpful. This implies that the benefit

410

Appl. Sci. 2020, 10, 1340

of bidirectional modeling did not come from mere increase of the number of learnable weights but
from incorporation of future context information. These results disagree with Tran et al. [10], whose
bidirectional model compared unfavorably with the unidirectional model.

4.2. Results with External Data

While the official training corpus is highly similar and relevant to the question sentences in
terms of linguistic styles and time periods of writing, the limited data may hinder the learning of a
deep neural network. We applied various pre-trained models that learn from large external data for
the MSR questions (Table 3). LM1B represents the best single model of Józefowicz et al. [12], who
experimented variants of LSTM-based LMs on the 1B word benchmark [40], which consists of news
text of about one billion words. We also include variants of BERT and GPT2 models which have
shown compelling results on many language understanding tasks with fine-tuning on small data or
zero-shot task transfer. We obtained the pre-trained weights of LM1B and the others from their publicly
available repositories (https://github.com/tensorflow/models/tree/master/research/lm_1b,
https://huggingface.co/transformers/pretrained_models.html). According to the results of the
scoring strategies (see Table 1), we applied the full scoring except for the BERT family for which we
deployed the blank scoring strategy since BERT adopts masked language modeling. We adhere to this
policy for further experiments unless noted otherwise.

Table 3. Accuracy results (%) of pre-trained models without fine-tuning for the MSR questions. The best
model trained with the official dataset is presented at the first row for comparison.

Model Dev. Test

Bidirectional word RNN ensemble 74.1 74.6

LM1B 70.2 67.7
BERT-base-uncased 55.38 58.46
BERT-base-cased 60.58 60.19
BERT-base-multilingual-uncased 22.50 20.58
BERT-base-multilingual-cased 41.54 41.92
BERT-large-uncased 54.23 55.00
BERT-large-cased 52.69 49.23
BERT-large-uncased-wwm 77.69 77.12
BERT-large-cased-wwm 75.19 77.12
GPT2 46.73 44.04
GPT2-medium 54.62 52.69

Although LM1B yielded better accuracy than the models of previous publications, its accuracy
could not reach those of our word RNNs, and even its size was substantially larger than ours.
Among BERT models, the performance differences between the case-sensitive ones (indicated as
‘-cased’) and the corresponding case-insensitive ones (indicated as ‘-uncased’) were inconsistent
across different training settings. The multilingual BERTs that were trained from Wikipedia dumps
of about one hundred languages were inferior to the monolingual ones, without fine-tuning to the
target language. The authors of BERT have warned that lower-casing non-Latin alphabets could
result in somewhat unwanted outcomes (https://github.com/google-research/bert), which might
be the reason for the poor accuracy of BERT-base-multilingual-uncased. Despite having three
times more learnable parameters, BERT-large models performed worse than BERT-base models
without whole-word-masking. The whole-word-masking technique masks all-at-once the group
of tokenized wordpieces [41] corresponding to a word during masked LM training (see details
in https://github.com/google-research/bert). With this modification, whole-word-masking BERTs
(indicated as ‘-wwm’) outperformed the BERT-large models without whole-word-masking and even
surpassed the best ensemble model that was trained from the official training data. On the other hand,

411

Appl. Sci. 2020, 10, 1340

GPT2 models, designed to be used with minimal adaptation, were less effective than BERT-base for
the MSR set.

Next, we applied the fine-tuning methods described in Section 3.3 to the transformer-based
models for the MSR set. The last one hundred questions of the development set were assigned to the
holdout set for tuning optimization parameters and model selection, while the others were used for
gradient updates. Among various design variables for optimization, we presumed that the learning rate
and the decision on which layers to either freeze or fine-tune were the most important ones throughout
preliminary experiments. Thus, a grid search for them was conducted with BERT-large-uncased-wwm,
which achieved the best performance in the above experiment. We constructed each batch to contain
only a single question and ran five epochs of gradient updates while using the slanted triangular
learning rate schedule of warm-up for the first epoch. Unless noted otherwise, the optimizer was kept
the same as the implementation employed (https://github.com/huggingface/transformers) [42].

Figure 4 displays holdout accuracies for different learning rates and subsets of weights to freeze
during fine-tuning. The results show that the maximum accuracy that can be obtained by an appropriate
learning rate did not differ much across different choices of updatable layers unless only a few
top layers were updated. It indicates that we can achieve a satisfactory accuracy by only tuning
learning rates while spending less effort on determining which layers to freeze. This simplification is
more practically convenient than gradual unfreezing [14], which increases the number of trainable
weights as iterations progress. Consequently, we took the approach that updates all layers for the
remaining experiments.

1.e-4 5.e-5 2.e-5 1.e-5 5.e-6 2.e-6 1.e-6
Learning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ho
ld

ou
t a

cc
ur

ac
y

None
Embeddings
Up to layer 6
Up to layer 12
Up to layer 18
Up to layer 24

Figure 4. Holdout accuracies for different learning rates and subsets of weights to freeze during
fine-tuning. Up to layer l in the legend indicates the setting that fixes the weights of the first l
self-attention layers as well as the embeddings. Note that, since the experimented BERT contains
24 self-attention layers in total, the bottommost setting updates the regression layer only.

Next, we conducted an experiment to validate the proposed method for the construction of input
sequences. Table 4 indicates that our simplified approach was comparable or superior to the others,
and, accordingly, we used it for the following experiments.

Finally, we present the MSR test accuracies of the fine-tuned models in Table 5. To see the effect
of fine-tuning, we also display side by side the corresponding results without fine-tuning, which
were copied from Table 3. The learning rate was chosen from {1× 10−4, 5× 10−5, 2× 10−5, 1× 10−5,
5× 10−6, 2× 10−6, 1× 10−6} for each pre-trained model by comparing the best holdout accuracy
results of five individual runs of fine-tuning with different random seeds. As shown in Table 5,
the accuracies increased after fine-tuning for most pre-trained models, among which BERT-large
models without the whole-word-masking strategy gained the most substantial amount of increase.

412

Appl. Sci. 2020, 10, 1340

Nonetheless, the whole-word-masking models were still at the top through improving the accuracy by
a healthy margin compared to the models that learned from the official training data.

Table 4. Accuracy results (%) on the holdout set for different input construction methods. For each
method, we performed five runs of fine-tuning with different random seeds, and the average accuracy
is reported with the standard deviation in parentheses.

Input Construction Accuracy

Proposed method 84.2 (2.3)

with [SEP] 84.2 (1.3)
with segment identifiers 84.6 (2.9)
with [SEP] and segment identifiers 74.6 (1.8)

Table 5. Accuracy results (%) of transformer-based models for the MSR test set with and without
fine-tuning, which are presented in w/o FT and w/FT columns, respectively.

Model w/o FT w/FT

BERT-base-uncased 58.46 68.65
BERT-base-cased 60.19 73.27
BERT-base-multilingual-uncased 20.58 21.92
BERT-base-multilingual-cased 41.92 47.88
BERT-large-uncased 55.00 79.23
BERT-large-cased 49.23 79.42
BERT-large-uncased-wwm 77.12 86.15
BERT-large-cased-wwm 77.12 85.77
GPT2 44.04 38.27
GPT2-medium 52.69 59.23

5. SAT Sentence Completion

To further verify our findings, we gathered 152 sentence completion questions from the eight SAT
practice exams provided by College Board (https://www.collegeboard.org) between 2003 and 2014.
The reading part of the collected practice set includes sentence completion questions, each of which
has one or two blanks in a sentence and provides five candidate choices. The collected SAT set contains
that of Tang [7] but is covered by that of Woods [8].

Since any standard training corpus is not specified for the SAT set, previous researchers used
different training corpora such as GloWbe [43], English Gigaword (LDC2009T13), and Wikipedia
dumps. We used 1B word benchmark [40] to train the word RNNs, whose demb, dhid, and dout were
set to 500, 2000, and 500, respectively. The learning rate was initialized to 1.0 and then multiplied by
0.8 after every epoch. We applied importance sampling to the output embedding matrix with sample
size of 8192 [12] to deal with the large vocabulary size, which was 409K even after lower-casing. Other
training details were kept identical to those for the MSR set, described in Section 4.1.

Table 6 shows the SAT evaluation results, including the previous best results. We also evaluated
the word RNNs that had been trained on the MSR official training corpus (denoted by 19C novels).
With more training data and larger network sizes, the SAT accuracies of the word RNNs increased
considerably, exceeding the previously published results while being comparable to that of LM1B.
Note that, besides its large size, LM1B utilized character level CNN layers to acquire intermediate
representations for 793K word types [12], requiring more computing resources than our RNNs.
In addition, bidirectional modeling was beneficial, as observed in Table 2.

Similar to the experimentation in Section 4.2, we also evaluated the transformer-based models
with and without fine-tuning (Table 7). Since the SAT set is not large enough for splitting, we treated
the entire MSR set as the training set while assigning the last hundred questions to the held-out
validation set. With the learning rate that had been selected for each pre-trained model in the previous

413

Appl. Sci. 2020, 10, 1340

section, we obtained the best model by re-running the fine-tuning five times on the new training set
with different random seeds.

Table 6. Accuracy results (%) for the SAT set. The accuracies in italic were copied from their
corresponding publications. We report the average accuracy with the standard deviation if a model
was optimized repeatedly.

Model (demb-dhid-dout) Training Corpus Accuracy

NPMI + Co-occ. Freq. + LSA + CBOW + CSKIP [7] GloWbe 59

PMI using Unigrams + Bigrams + Trigrams [8] English Gigaword 58.95

Unidirectional word RNN (200-600-400) 19C novels 29.6 (1.5)
Bidirectional word RNN (200-600-400) 33.3 (2.0)

Unidirectional word RNN (500-2000-500) 1B word benchmark 66.5
Bidirectional word RNN (500-2000-500) 69.1

LM1B (1024-8196-1024) 1B word benchmark 71.0

Table 7. Accuracy results (%) of transformer-based models for the SAT set with and without fine-tuning,
which are presented in w/o FT and w/FT columns, respectively.

Model w/o FT w/FT

BERT-base-uncased 30.92 42.11
BERT-base-cased 30.92 52.63
BERT-base-multilingual-uncased 17.11 22.37
BERT-base-multilingual-cased 23.03 36.84
BERT-large-uncased 25.66 73.03
BERT-large-cased 27.63 73.03
BERT-large-uncased-wwm 63.82 80.26
BERT-large-cased-wwm 59.87 80.92
GPT2 38.16 32.24
GPT2-medium 53.29 53.29

Among the networks without fine-tuning, the whole-word-masking models were outstanding,
while being outperformed by the word RNNs. Fine-tuning with the MSR questions was quite beneficial
to the BERT models for the SAT questions, which indicated that the model learned a common solving
strategy that worked across questions from different source texts. In addition, the BERT-large models
outperformed the BERT-base models after fine-tuning, possibly due to the fact that the sentences
and choice texts of the SAT questions were written using a difficult vocabulary compared to the
MSR questions. As a result, the fine-tuned whole-word-masking models achieved state-of-the-art
performance on the SAT questions.

6. TOPIK Cloze Questions

In this section, we attempt to confirm how effective the aforementioned methods are for a dataset
other than in English. To do this, we newly collected 1823 cloze-style questions from Test of Proficiency
in Korean (TOPIK) (https://www.topik.go.kr), provided by the website (https://studytopik.go.kr).
TOPIK aims to assess the linguistic ability and guide the learning of the Korean language for non-native
Korean speakers, and its results may be a prerequisite for entrance into universities or employment in
companies and public institutions.

Tables 8 and 9 show the statistics of the collected TOPIK dataset. According to the level
of difficulties, TOPIK test types have been divided into Levels 1–6 (lower is easier) until 2004,
novice/intermediate/advanced from 2004 to 2014, and Level I/II (I is easier than II) since 2014. Most
of the multiple-choice cloze-style questions appear in the easier test types except that 78 questions
are from Level II. TOPIK is composed of sections including vocabulary, reading, and writing. Each

414

Appl. Sci. 2020, 10, 1340

section contains a different number of cloze-style questions, while the lengths of questions in the
writing section are larger than those of the others. Each question was tagged with ‘long’ or ‘short’ for
its passage length and ‘single’ or ‘multi’ for the number of speakers. We counted for each tag type
the number of words after splitting with whitespace and punctuation. While the passage lengths of
the collected questions are not restricted to a single sentence, more than 70% are questions tagged
as ‘short’, whose passages contain fewer than 10 words on average. Some instances from the TOPIK
dataset are shown in Table 10.

Table 8. Statistics of the cloze-style questions collected from previous TOPIK tests.

Section Type The Number of Questions

Level 1 Level 2 Novice Level I Level II Total

Vocabulary Short-single 30 28 175 233
Short-multi 78 91 303 472
Long-single 6 14 48 68
Long-multi 32 12 102 146

Subtotal 146 145 628 919

Reading Short-single 26 19 100 36 12 193
Short-multi 4 4
Long-single 19 13 65 49 66 212

Subtotal 49 32 165 85 78 409

Writing Short-single 25 22 47
Short-multi 109 94 129 332
Long-single 32 21 53
Long-multi 41 22 63

Subtotal 175 170 150 495

Total 370 347 943 85 78 1823

Table 9. Lengths of the cloze-style questions collected from previous TOPIK tests.

Section Type Passage Length Choice Length

Words Chars Words Chars

Vocabulary Short-single 5.9 14.7 1.0 2.0
Short-multi 11.2 25.0 1.3 3.5
Long-single 42.4 107.7 1.7 4.2
Long-multi 30.5 69.7 1.4 3.9

Subtotal 15.2 35.6 1.3 3.3

Reading Short-single 9.7 25.3 1.0 3.3
Short-multi 10.2 26.0 1.2 5.0
Long-single 52.4 139.1 2.3 6.6

Subtotal 31.8 84.3 1.7 5.0

Writing Short-single 14.0 35.9 3.7 10.1
Short-multi 10.9 24.5 3.4 8.7
Long-single 45.3 117.0 4.0 11.1
Long-multi 41.4 93.1 3.4 8.5

Subtotal 18.8 44.2 3.5 9.1

Total 19.9 48.9 5.0 5.2

415

Appl. Sci. 2020, 10, 1340

Table 10. Samples from the TOPIK dataset.

Type Question Translation

Short-single 돈을찾으러 에갑니다.
1.은행 2.운동장 3.경찰서 4.백화점

I’m going to the to find the money.
1. bank 2. playground 3. police office 4.
department store

Short-multi 아침에다같이식사하세요?
우리는 시간이 다 다르니까 같이 못

먹어요.
1.쉬는 2.끝나는 3.일어나는 4.내는

Do you eat together in the morning?
No, we can’t eat together because the times
we are different.
1. rest 2. finish 3. wake up 4. pay

Long-single 친절은 다른 사람을 위한 따뜻한 마음과

행동입니다. 친절한 사람은 다른 사람에게

행동을 하지 않습니다. 그리고 남이

어려울때적극적으로도와줍니다.친절한말과
행동은이세상을더아름답게만듭니다.
1.좋은 2.기쁜 3.나쁜 4.착한

Kindness is a warm heart and action for others.
Kind people do not act others. They
actively help when others are in trouble. Kind
words and actions make this world more
beautiful.
1. well with 2. happy with 3. bad to 4.
nicely to

Long-multi 경찰관:어디에서잃어버리셨어요?
아주머니:택시안에놓고내렸어요.
경찰관:가방이
아주머니:까만색큰가방이에요.
경찰관:뭐가들어있습니까?
아주머니:지갑이요.꼭찾아야하는데요.
경찰관:알아보겠습니다.
아주머니:아저씨,꼭좀부탁드립니다.
경찰관: 너무 걱정하지 마십시오. 댁에 가서

기다리세요.
1. 어떻게 생겼어요? 2. 어떤 가게에서 샀어요?
3.어떻게만들었어요? 4.어디에서샀어요?

Officer: Where did you lose it?
Ma’am: I left it in the cab.
Officer: Your bag,
Ma’am: It’s a big black bag.
Officer: What do you have in it?
Ma’am: My wallet, I must find it.
Officer: I’ll see what I can do.
Ma’am: Please, officer.
Officer: Don’t worry too much, go home and
wait.
1. what does it look like? 2. what store did
you buy it from? 3. how did you make it?
4. where did you buy it?

We evaluated our word RNNs and the transformer-based models against the TOPIK dataset, which
was split in half for development and test. We trained the word RNNs with the Sejong corpus (downloaded
through https://ithub.korean.go.kr/user/total/database/corpusManager.do), applying the wordpiece
tokenizer that was used for the BERT-base-multilingual-cased model. The network size and the training
details were identical to those for the MSR experiment. The pre-trained BERT multilingual models were
evaluated with or without fine-tuned in the same manner as the previous sections.

As shown in Table 11, with or without fine-tuning, the BERT models were inferior to our
word RNNs. Moreover, the uncased BERT without fine-tuning was on par with a random classifier,
whose expected accuracy is 25% for the TOPIK questions, each of which contains four choices.
BERT-base-multilingual-cased was also not satisfactory on the Korean dataset as well as on the
English datasets (see Sections 4.2 and 5), which requires further inspection and analysis to utilize
multilingual models properly. Meanwhile, bidirectional modeling was not effective, which is likely
due to the inadequate size of the training corpus having fewer than 20M words.

For further analysis, we visualize the mean accuracies of the models on the TOPIK development
set for different difficulty levels and question types for each section in Figure 5. The fine-tuned models
received supervision directly from the development set, thus being excluded from the analysis. Since we
trained the word RNNs repeatedly with different random seeds, their mean accuracies are presented.
As can be seen, the vocabulary part was relatively easy, while the writing section was difficult for
the models, whose accuracy correlated with the length of the choice text. The word RNNs yielded
low accuracy when there were multiple speakers in the question compared to the single-speaker case
since the training corpus does not contain many articles in the form of conversations. Meanwhile,
the accuracies dropped as the difficulty levels increased (from Level 1 to 2, and from Level I to II) for
the word RNNs. Lastly, the accuracy patterns over the subsets of the two BERT models were similar,
which implies that the uncased model did not operate just randomly although its average performance
was on par with a random classifier.

416

Appl. Sci. 2020, 10, 1340

Table 11. Accuracy results (%) for the TOPIK set. We report the average accuracy with the standard
deviation if a model was optimized repeatedly. For the fine-tuned (FT) models, the held-out accuracies
are presented in Dev. column.

Model Dev. Test

Unidirectional word RNN 43.4 (0.5) 42.3 (0.6)
Bidirectional word RNN 43.3 (0.5) 40.8 (1.1)

BERT-base-multilingual-uncased 25.8 24.9
BERT-base-multilingual-cased 29.9 32.6

FT BERT-base-multilingual-uncased 30.0 27.3
FT BERT-base-multilingual-cased 38.0 33.7

Le
ve

l 1

Le
ve

l 2

No
vi

ce

Le
ve

l 1

Le
ve

l 2

No
vi

ce

Le
ve

l I

Le
ve

l I
I

Le
ve

l 1

Le
ve

l 2

No
vi

ce

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Vocabulary Reading Writing

Unidirectional word RNN
Bidirectional word RNN
BERT-base-multilingual-cased
BERT-base-multilingual-uncased

(a)

Sh
or

t-s
in

gl
e

Lo
ng

-s
in

gl
e

Sh
or

t-m
ul

ti

Lo
ng

-m
ul

ti

Sh
or

t-s
in

gl
e

Lo
ng

-s
in

gl
e

Sh
or

t-s
in

gl
e

Lo
ng

-s
in

gl
e

Sh
or

t-m
ul

ti

Lo
ng

-m
ul

ti

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Vocabulary Reading Writing

Unidirectional word RNN
Bidirectional word RNN
BERT-base-multilingual-cased
BERT-base-multilingual-uncased

(b)
Figure 5. Performance analysis on the TOPIK set. The mean accuracies for each difficulty level and
question type are shown in (a,b), respectively. The black dotted line signifies the accuracy of a random
classifier, which equals 0.25.

417

Appl. Sci. 2020, 10, 1340

One possible direction to improve pre-trained multilingual LMs for MRC questions in a target
language is to apply unsupervised domain adaptation [44]. Hundreds of questions would not be
enough for a multilingual LM to fully adapt to both the target language and the downstream task.
Accordingly, additional training of a pre-trained LM with unlabeled text data in a target language will
be useful. Part-of-speech tags and dependency edges and labels can be augmented as supervision [45]
to provide more explicit syntactic information in the target language. Inserting adapter modules [46]
to the multilingual LM can be an efficient solution to capture language-specific properties with the
modules while retaining universal linguistic abstractions learned by the pre-trained model. In addition,
starting from a multilingual model optimized with translation-based objectives [28,47] and adapting it
with available cross-lingual supervision for the target language and the downstream task is another
interesting research direction. Since research on multilingual transfer learning is still active, we are
currently investigating how to effectively apply those newly proposed methods to the TOPIK dataset.

7. Conclusions

In this study, we explored various methods based on neural LMs for sentence completion. With
well-tuned network sizes and optimization parameters, we were able to enhance the performance of
word RNNs, which reached beyond the previous state-of-the-art results on the MSR and SAT datasets.
Furthermore, by fine-tuning the pre-trained transformer-based LMs with a few sentence-completion
examples, we improved the accuracies significantly for both datasets. In addition, this paper presents
the experiments on the newly collected cloze-style questions in the Korean language. The experimental
results reveal that applying the multilingual BERT models for the Korean dataset led to unsatisfactory
results, which necessitates further investigation. We hope our reproducible benchmarks help
subsequent research to develop and validate diverse neural approaches in language understanding.

Author Contributions: Conceptualization, data curation, methodology, software, and writing—original draft,
H.P.; and project administration, writing—review and editing, funding acquisition, methodology, and supervision,
J.P. All authors have read and agreed to the published version of the manuscript.

Funding: Kakao Corp., Kakao Brain Corp., and National Research Foundation of Korea

Acknowledgments: This work was supported by Kakao and Kakao Brain corporations, and in part by the National
Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1F1A1053366).
The authors thank the administrative support from the Institute for Industrial Systems Innovation of Seoul
National University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hermann, K.M.; Kociský, T.; Grefenstette, E.; Espeholt, L.; Kay, W.; Suleyman, M.; Blunsom, P. Teaching
Machines to Read and Comprehend. In Proceedings of the NIPS, Vancouver, BC, Canada, 7–12 December
2015; pp. 1693–1701.

2. Chen, D.; Bolton, J.; Manning, C.D. A Thorough Examination of the CNN/Daily Mail Reading Comprehension
Task; ACL (1); The Association for Computer Linguistics: Stroudsburg, PA, USA, 2016.

3. Hill, F.; Bordes, A.; Chopra, S.; Weston, J. The Goldilocks Principle: Reading Children’s Books with Explicit
Memory Representations. arXiv 2016, arXiv:1511.02301.

4. Zweig, G.; Platt, J.C.; Meek, C.; Burges, C.J.C.; Yessenalina, A.; Liu, Q. Computational Approaches to Sentence
Completion; ACL (1); The Association for Computer Linguistics: Stroudsburg, PA, USA, 2012; pp. 601–610.

5. Zweig, G.; Burges, C.J.C. A Challenge Set for Advancing Language Modeling; WLM@NAACL-HLT; Association
for Computational Linguistics: Stroudsburg, PA, USA, 2012; pp. 29–36.

6. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space.
arXiv 2013, arXiv:1301.3781.

7. Tang, E. Assessing the Effectiveness of Corpus-Based Methods in Solving SAT Sentence Completion
Questions. JCP 2016, 11, 266–279. [CrossRef]

418

Appl. Sci. 2020, 10, 1340

8. Woods, A. Exploiting Linguistic Features for Sentence Completion; ACL (2); The Association for Computer
Linguistics: Stroudsburg, PA, USA, 2016.

9. Melamud, O.; Goldberger, J.; Dagan, I. Context2vec: Learning Generic Context Embedding with Bidirectional
LSTM. In Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning,
Berlin, Germany, 11–12 August 2016; pp. 51–61.

10. Tran, K.M.; Bisazza, A.; Monz, C. Recurrent Memory Networks for Language Modeling; HLT-NAACL;
The Association for Computational Linguistics: Stroudsburg, PA, USA, 2016; pp. 321–331.

11. Park, H.; Cho, S.; Park, J. Word RNN as a Baseline for Sentence Completion. In Proceedings of the
2018 IEEE 5th International Congress on Information Science and Technology (CiSt), Marrakech, Morocco,
21–27 October 2018; pp. 183–187.

12. Józefowicz, R.; Vinyals, O.; Schuster, M.; Shazeer, N.; Wu, Y. Exploring the Limits of Language Modeling.
arXiv 2016, arXiv:1602.02410.

13. Melis, G.; Dyer, C.; Blunsom, P. On the State of the Art of Evaluation in Neural Language Models. arXiv
2018, arXiv:1707.05589.

14. Howard, J.; Ruder, S. Universal Language Model Fine-tuning for Text Classification; ACL (1); Association for
Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 328–339.

15. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative
Pre-Training; Technical Report; OpenAI: San Francisco, CA, USA 2018.

16. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding; NAACL-HLT (1); Association for Computational Linguistics: Stroudsburg, PA, USA, 2019;
pp. 4171–4186.

17. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.G.; Salakhutdinov, R.; Le, Q.V. XLNet: Generalized Autoregressive
Pretraining for Language Understanding. arXiv 2019, arXiv:1906.08237.

18. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised
multitask learners. OpenAI Blog 2019, 1, 9.

19. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention
is All you Need. In Proceedings of the Advances in neural information processing systems, Long Beach, CA,
USA, 4–9 December 2017; pp. 5998–6008.

20. Hardalov, M.; Koychev, I.; Nakov, P. Beyond English-only Reading Comprehension: Experiments in Zero-Shot
Multilingual Transfer for Bulgarian. arXiv 2019, arXiv:1908.01519.

21. Cui, Y.; Liu, T.; Chen, Z.; Wang, S.; Hu, G. Consensus Attention-based Neural Networks for Chinese Reading
Comprehension. arXiv 2016, arXiv:1607.02250.

22. Liu, S.; Zhang, X.; Zhang, S.; Wang, H.; Zhang, W. Neural Machine Reading Comprehension: Methods and
Trends. Appl. Sci. 2019, 9, 3698. [CrossRef]

23. Deutsch, D.; Roth, D. Summary Cloze: A New Task for Content Selection in Topic-Focused Summarization;
EMNLP/IJCNLP (1); Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 3718–3727.

24. Schwartz, R.; Sap, M.; Konstas, I.; Zilles, L.; Choi, Y.; Smith, N.A. Story Cloze Task: UW NLP System;
LSDSem@EACL; Association for Computational Linguistics: Stroudsburg, PA, USA, 2017; pp. 52–55.

25. Xie, Q.; Lai, G.; Dai, Z.; Hovy, E.H. Large-scale Cloze Test Dataset Designed by Teachers. arXiv 2017,
arXiv:1711.03225.

26. Huh, M.; Agrawal, P.; Efros, A.A. What makes ImageNet good for transfer learning? arXiv 2016,
arXiv:1608.08614.

27. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized
Word Representations; NAACL-HLT; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018;
pp. 2227–2237.

28. Conneau, A.; Lample, G. Cross-lingual Language Model Pretraining. In Proceedings of the Advances in
Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 7057–7067.

29. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V.
RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

30. Pires, T.; Schlinger, E.; Garrette, D. How Multilingual is Multilingual BERT? ACL (1); Association for
Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 4996–5001.

31. Wu, S.; Dredze, M. Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT; EMNLP/IJCNLP (1);
Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 833–844.

419

Appl. Sci. 2020, 10, 1340

32. Artetxe, M.; Ruder, S.; Yogatama, D. On the Cross-lingual Transferability of Monolingual Representations.
arXiv 2019, arXiv:1910.11856.

33. Mikolov, T.; Karafiát, M.; Burget, L.; Cernocký, J.; Khudanpur, S. Recurrent neural network based language
model. In Proceedings of the Eleventh Annual Conference of the International Speech Communication
Association, Chiba, Japan, 26–30 September 2010; pp. 1045–1048.

34. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent Neural Network Regularization. arXiv 2014,
arXiv:1409.2329.

35. Berglund, M.; Raiko, T.; Honkala, M.; Kärkkäinen, L.; Vetek, A.; Karhunen, J. Bidirectional Recurrent Neural
Networks as Generative Models. In Proceedings of the NIPS, Vancouver, BC, Canada, 7–12 December 2015;
pp. 856–864.

36. Trinh, T.H.; Le, Q.V. A Simple Method for Commonsense Reasoning. arXiv 2018, arXiv:1806.02847.
37. Mirowski, P.; Vlachos, A. Dependency Recurrent Neural Language Models for Sentence Completion; ACL (2);

The Association for Computer Linguistics: Stroudsburg, PA, USA, 2015; pp. 511–517.
38. Levesque, H.J.; Davis, E.; Morgenstern, L. The Winograd Schema Challenge. In Proceedings of the Thirteenth

International Conference on the Principles of Knowledge Representation and Reasoning, Rome, Italy, 10–14
June 2012.

39. Mikolov, T. Statistical language models based on neural networks. In Proceedings of the Google, Mountain
View, CA, USA, 2 April 2012.

40. Chelba, C.; Mikolov, T.; Schuster, M.; Ge, Q.; Brants, T.; Koehn, P.; Robinson, T. One billion word benchmark
for measuring progress in statistical language modeling. arXiv 2014, arXiv:1312.3005.

41. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.;
et al. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine
Translation. arXiv 2016, arXiv:1609.08144.

42. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz,
M.; et al. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. arXiv 2019,
arXiv:1910.03771.

43. Davies, M.; Fuchs, R. Expanding horizons in the study of World Englishes with the 1.9 billion word Global
Web-based English Corpus (GloWbE). English World-Wide 2015, 36, 1–28. [CrossRef]

44. Han, X.; Eisenstein, J. Unsupervised Domain Adaptation of Contextualized Embeddings for Sequence Labeling;
EMNLP/IJCNLP (1); Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 4237–4247.

45. Kondratyuk, D.; Straka, M. 75 Languages, 1 Model: Parsing Universal Dependencies Universally; EMNLP/IJCNLP
(1); Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 2779–2795.

46. Houlsby, N.; Giurgiu, A.; Jastrzkebski, S.; Morrone, B.; de Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.;
Gelly, S. Parameter-Efficient Transfer Learning for NLP. Proc. Mach. Learn. Res. 2019, 97, 2790–2799.

47. Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.; Wenzek, G.; Guzmán, F.; Grave, E.; Ott, M.;
Zettlemoyer, L.; Stoyanov, V. Unsupervised Cross-lingual Representation Learning at Scale. arXiv 2019,
arXiv:1911.02116.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

420

applied
sciences

Article

Reliable Classification of FAQs with Spelling Errors
Using an Encoder-Decoder Neural Network in Korean

Youngjin Jang and Harksoo Kim *
Program of Computer and Communications Engineering, Kangwon National University,
Chuncheon 24341, Korea; dan_yon@kangwon.ac.kr
* Correspondence: nlpdrkim@kangwon.ac.kr; Tel.: +82-33-250-6388

Received: 7 October 2019; Accepted: 3 November 2019; Published: 7 November 2019

Abstract: To resolve lexical disagreement problems between queries and frequently asked questions
(FAQs), we propose a reliable sentence classification model based on an encoder-decoder neural
network. The proposed model uses three types of word embeddings; fixed word embeddings for
representing domain-independent meanings of words, fined-tuned word embeddings for representing
domain-specific meanings of words, and character-level word embeddings for bridging lexical
gaps caused by spelling errors. It also uses class embeddings to represent domain knowledge
associated with each category. In the experiments with an FAQ dataset about online banking, the
proposed embedding methods contributed to an improved performance of the sentence classification.
In addition, the proposed model showed better performance (with an accuracy of 0.810 in the
classification of 411 categories) than that of the comparison model.

Keywords: FAQ classification; encoder-decoder neural network; multi-level word embeddings

1. Introduction

Frequently asked questions (FAQs) in commercial services based on social media (e.g., chatbot for
online banking) accommodate both customer needs and business requirements. As a useful tool for
information access, most commercial services provide customers with a keyword search. However,
sometimes the keyword search does not perform well in FAQ retrieval because of lexical disagreements
between users’ queries and the predefined questions in an FAQ set, as shown in Figure 1.

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

Article

Reliable Classification of FAQs with Spelling Errors
Using an Encoder-Decoder Neural Network in
Korean
Youngjin Jang and Harksoo Kim*

Program of Computer and Communications Engineering, Kangwon National University, Chuncheon 24341,
Korea; dan_yon@kangwon.ac.kr (Y.J.)
* Correspondence: nlpdrkim@kangwon.ac.kr (H.K.); Tel.: +82-33-250-6388

Received: 7 October 2019; Accepted: 3 November 2019; Published: date

Abstract: To resolve lexical disagreement problems between queries and frequently asked questions
(FAQs), we propose a reliable sentence classification model based on an encoder-decoder neural
network. The proposed model uses three types of word embeddings; fixed word embeddings for
representing domain-independent meanings of words, fined-tuned word embeddings for
representing domain-specific meanings of words, and character-level word embeddings for
bridging lexical gaps caused by spelling errors. It also uses class embeddings to represent domain
knowledge associated with each category. In the experiments with an FAQ dataset about online
banking, the proposed embedding methods contributed to an improved performance of the
sentence classification. In addition, the proposed model showed better performance (with an
accuracy of 0.810 in the classification of 411 categories) than that of the comparison model.

Keywords: FAQ classification; encoder-decoder neural network; multi-level word embeddings

1. Introduction

Frequently asked questions (FAQs) in commercial services based on social media (e.g., chatbot
for online banking) accommodate both customer needs and business requirements. As a useful tool
for information access, most commercial services provide customers with a keyword search.
However, sometimes the keyword search does not perform well in FAQ retrieval because of lexical
disagreements between users’ queries and the predefined questions in an FAQ set, as shown in Figure
1.

Figure 1. Motivational example.
Figure 1. Motivational example.

In Figure 1, the lexical disagreements are caused by using different words with the same meanings
(e.g., remittance vs. bank transfer), and by using incorrect words with spelling errors (e.g., remittance

421

Appl. Sci. 2019, 9, 4758

vs. remitence). To resolve these lexical disagreement problems, most FAQ retrieval systems expand
keywords by looking up synonym dictionaries and bridge lexical gaps between different words
with the same meanings. However, they cannot cope with the lexical agreement problem caused by
spelling errors because it is impossible to pre-construct a synonym dictionary containing all misspelled
keywords. Recently, FAQ classification models based on deep learning have been proposed because
they have the ability to cluster semantically or lexically similar words through various distributed
representation schemes like word embeddings and character embeddings. In this paper, we propose an
FAQ classification model based on an encoder-decoder neural network with multiple word embedding
vectors instead of keyword search methods. To increase FAQ classification performance, the proposed
model adopts class embeddings, including domain knowledge of each FAQ category.

2. Previous Works

Initial sentence classification models based on deep learning were n-gram models using
convolutional neural networks (CNNs) [1–5]. The authors of [3] proposed a CNN architecture
using diverse versions of pre-trained static word vectors and variable size convolution filters. It was
shown in [2] that simple convolutions of word n-grams could contribute to improving the performance
of sentence classification by fine-tuning pre-trained static word vectors like Word2Vec [6]. These
n-gram models were effective in exploring the regional syntax of words, but they could not account
for order-sensitive situations where the order of words was critical to the meaning of a sentence.
To overcome this problem, [7] proposed a classification model combined with a recurrent neural
network (RNN) and a CNN. Then, some studies demonstrated that sub-word units like character
n-grams could contribute to improving the performance of downstream natural language processing
(NLP) tasks [8–13]. The authors of [12] proposed a part-of-speech tagging model based on an RNN in
which each word is represented by a combination of Korean alphabet embeddings for making the model
robust to typing errors. The authors of [13] proposed a character-level CNN model for text classification
which showed that the character-level CNN model could achieve state-of-the-art or competitive
results. In addition, [14] demonstrated that domain embeddings (i.e., embeddings of predefined
categories) could contribute to improving the performance of large-scale domain classification. Recently,
bidirectional encoder representations from transformers (BERT) was proposed [15], which is deeply
bidirectional, unsupervised language representation that is pre-trained using a large amount of plain
text corpus. BERT has shown state-of-the-art performance in many downstream NLP tasks such
as classification, sequence labeling, and span prediction by learning task-specific vectors through
fine-tuning. In sentence classification tasks such as sentiment analysis and semantic textual similarity
analysis, BERT also outperformed the previous state-of-the-art models.

3. FAQ Classification Using an Encoder-Decoder Neural Network

Figure 2 shows the overall architecture of the proposed FAQ classification model. As shown in
Figure 2, the proposed model consists of an embedding layer, a transformer encoder with attentions,
and an RNN decoder.

422

Appl. Sci. 2019, 9, 4758Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 9

Figure 2. Overall architecture of the proposed model.

To make the proposed model robust to lexical disagreements, the embedding layer consists of
three types of embedding vectors: Fixed word embedding vectors, fine-tuned word embedding
vectors, and character-level word embedding vectors using a CNN. We expect that the fixed word
embedding vectors represent domain-independent meanings of each word, and the fine-tuned word
embedding vectors represent domain-specific meanings of each word. For example, we hope that
“transfer” has the domain-independent meaning “move something” and the domain-specific
meaning “send money” in a banking domain. We also expect that the character-based word
embedding vectors alleviate lexical disagreement problems that are raised by spelling errors. For
example, we hope that the misspelled word “remitence” has a similar vector representation with
“remittance.” In Figure 2, ܹ and ܧ are [CLS] (a special symbol added in front of every input
example) and an embedding of [CLS], respectively. ܹ except ܹ and ܧ except ܧ are the i-th
word in a sentence, and its embedding vector concatenated with three types of word embedding
vectors, respectively. Figure 3 exemplifies three types of word embedding vectors.

Figure 3. Embedding layer of the proposed model. The Korean sentence “VR이 무엇이야?” means
“What is VR?” in English.

In Figure 3, ݁, ݁̂, and ݁ are a fixed word embedding vector, a fine-tuned word embedding
vector, and a character-level word embedding vector of the i-th one among n words in an input

Figure 2. Overall architecture of the proposed model.

To make the proposed model robust to lexical disagreements, the embedding layer consists of
three types of embedding vectors: Fixed word embedding vectors, fine-tuned word embedding vectors,
and character-level word embedding vectors using a CNN. We expect that the fixed word embedding
vectors represent domain-independent meanings of each word, and the fine-tuned word embedding
vectors represent domain-specific meanings of each word. For example, we hope that “transfer” has
the domain-independent meaning “move something” and the domain-specific meaning “send money”
in a banking domain. We also expect that the character-based word embedding vectors alleviate lexical
disagreement problems that are raised by spelling errors. For example, we hope that the misspelled
word “remitence” has a similar vector representation with “remittance.” In Figure 2, W0 and E0 are
[CLS] (a special symbol added in front of every input example) and an embedding of [CLS], respectively.
Wi except W0 and Ei except E0 are the i-th word in a sentence, and its embedding vector concatenated
with three types of word embedding vectors, respectively. Figure 3 exemplifies three types of word
embedding vectors.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 9

Figure 2. Overall architecture of the proposed model.

To make the proposed model robust to lexical disagreements, the embedding layer consists of
three types of embedding vectors: Fixed word embedding vectors, fine-tuned word embedding
vectors, and character-level word embedding vectors using a CNN. We expect that the fixed word
embedding vectors represent domain-independent meanings of each word, and the fine-tuned word
embedding vectors represent domain-specific meanings of each word. For example, we hope that
“transfer” has the domain-independent meaning “move something” and the domain-specific
meaning “send money” in a banking domain. We also expect that the character-based word
embedding vectors alleviate lexical disagreement problems that are raised by spelling errors. For
example, we hope that the misspelled word “remitence” has a similar vector representation with
“remittance.” In Figure 2, ܹ and ܧ are [CLS] (a special symbol added in front of every input
example) and an embedding of [CLS], respectively. ܹ except ܹ and ܧ except ܧ are the i-th
word in a sentence, and its embedding vector concatenated with three types of word embedding
vectors, respectively. Figure 3 exemplifies three types of word embedding vectors.

Figure 3. Embedding layer of the proposed model. The Korean sentence “VR이 무엇이야?” means
“What is VR?” in English.

In Figure 3, ݁, ݁̂, and ݁ are a fixed word embedding vector, a fine-tuned word embedding
vector, and a character-level word embedding vector of the i-th one among n words in an input

Figure 3. Embedding layer of the proposed model. The Korean sentence “VR이무엇이야?” means
“What is VR?” in English.

In Figure 3, ei, êi, and echar
i are a fixed word embedding vector, a fine-tuned word embedding

vector, and a character-level word embedding vector of the i-th one among n words in an input sentence

423

Appl. Sci. 2019, 9, 4758

S (i.e., an input query or a predefined question in a FAQ set), respectively. echar
i is generated by a CNN,

as shown in the following equation.

echar
i = CNN(c1, c2, . . . , c j, . . . , cl

)
, (1)

where c j is the j-th one among l characters in a word wi. In this paper, a character refers to the Korean
characters called jamo. A final word embedding vector Ei is represented by the concatenation of ei, êi,
and echar

i , as shown in the following equation:

Ei =
[
ei; êi; echar

i

]
. (2)

To supplement word embedding vectors with contextual information, we adopt an
encoder-decoder neural network in which word embedding vectors are encoded by a transformer’s
encoder [16]. The output Ti of the transformer’s encoder is represented by a multi-head scaled
dot-product self-attention mechanism, as shown in the following equations.

Q = K = V = E (3)

Attention(Q, K, V) = so f tmax

QKT
√

dk

V, (4)

where E is one among n word embedding vectors, and Q, K, and V are a query, a key, and a value for
calculating attentions, respectively. Then, dk is the size of E for scaling dot-products. In Equation (4), the
query, key, and value are the same vectors according to Equation (3). This case is called self-attention,
relating different positions of a single sequence E1, E2, . . . , En, to compute a representation of the
sequence. Self-attention has been successfully used in various NLP tasks, such as machine translation,
machine reading comprehension, abstractive document summarization, etc. The query, key, and value
are first linearly transformed into N heads. Then, each head is entered into Equation (4). Therefore, the
self-attention is calculated N times, making it so-called multi-headed.

The first output T0 (the final output vector of the special [CLS] token) of the transformer’s encoder
is input as an initial value of the RNN decoder, implemented by a gated recurrent unit (GRU) [17] with
Luong’s encoder-decoder attention mechanism [18], after passing through a fully connected neural
network (FNN). Figure 4 shows the RNN decoder with Luong’s encoder-decoder attention mechanism
in detail.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 9

sentence ܵ (i.e., an input query or a predefined question in a FAQ set), respectively. ݁ is
generated by a CNN, as shown in the following equation. ݁ = ,ଵܿ)ܰܰܥ ܿଶ, … , ܿ, … , ܿ), (1)

where ܿ is the j-th one among l characters in a word ݓ . In this paper, a character refers to the
Korean characters called jamo. A final word embedding vector ܧ is represented by the
concatenation of ݁, ݁̂, and ݁, as shown in the following equation: ܧ = [݁; ݁̂; ݁]. (2)

To supplement word embedding vectors with contextual information, we adopt an encoder-
decoder neural network in which word embedding vectors are encoded by a transformer’s encoder
[16]. The output ܶ of the transformer’s encoder is represented by a multi-head scaled dot-product
self-attention mechanism, as shown in the following equations. ܳ = ܭ = ܸ = (3) ܧ

,ܳ)݊݅ݐ݊݁ݐݐܣ ,ܭ ܸ) = (4) ,ܸ(ொඥௗೖ)ݔܽ݉ݐ݂ݏ

where ܧ is one among n word embedding vectors, and ܳ, ܭ, and ܸ are a query, a key, and a value
for calculating attentions, respectively. Then, ݀ is the size of ܧ for scaling dot-products. In
Equation (4), the query, key, and value are the same vectors according to Equation (3). This case is
called self-attention, relating different positions of a single sequence ,ଶܧ ,ଵܧ … , ܧ , to compute a
representation of the sequence. Self-attention has been successfully used in various NLP tasks, such
as machine translation, machine reading comprehension, abstractive document summarization, etc.
The query, key, and value are first linearly transformed into N heads. Then, each head is entered into
Equation (4). Therefore, the self-attention is calculated N times, making it so-called multi-headed.

The first output ܶ (the final output vector of the special [CLS] token) of the transformer’s
encoder is input as an initial value of the RNN decoder, implemented by a gated recurrent unit (GRU)
[17] with Luong’s encoder-decoder attention mechanism [18], after passing through a fully connected
neural network (FNN). Figure 4 shows the RNN decoder with Luong’s encoder-decoder attention
mechanism in detail.

Figure 4. Recurrent neural network (RNN) decoder with Luong’s encoder-decoder attention
mechanism.

As shown in Figure 4, each attention weight ܽ is induced by inner products between each
output ܶ of the transformer’s encoder and the first hidden state ℎ of the RNN decoder. The

Figure 4. Recurrent neural network (RNN) decoder with Luong’s encoder-decoder attention mechanism.

424

Appl. Sci. 2019, 9, 4758

As shown in Figure 4, each attention weight ai is induced by inner products between each output
Ti of the transformer’s encoder and the first hidden state ho of the RNN decoder. The attention weights
mean how much each output Ti is associated with the hidden state ho. Then, the context vector c is
constructed by the weighted sum of ai and Ti. Finally, the RNN decoder generates an output vector Vo

using the FNN-encoded input sentence FNN(T0), the start symbol <S>, and the context vector c, as
shown in the following equation:

Vo = Dec(FNN(T0),< s >, c). (5)

To supplement the output vector Vo with domain-specific knowledge, we adopt a domain
embedding scheme proposed by [14]. We define one class embedding vector per FAQ category, as
shown in the following equation.

VCt = mean(
∑

k

ek), (6)

where VCt is a class embedding vector that is calculated as an average of the word embedding vectors,
ek’s, in sentences belonging to the t-th FAQ category. Finally, to classify input sentences into FAQ
categories, we use an FNN. The vector of inner products between the output vector Vo of the RNN
decoder and the class embedding matrix VC is used as an input vector of the FNN.

4. Evaluation

4.1. Data Sets and Experimental Settings

We collected an FAQ dataset (10,495 pairs of FAQs about online banking). The FAQ dataset is a
set of users’ queries manually annotated with FAQ categories. The queries had many spacing errors
and spelling errors because they were collected from a real mobile app service. An FAQ in the dataset
consists of, on average, 23.3 eumjeols (Korean syllables) and contains, on average, 0.7 typo-like spelling
errors and spacing errors. The number of FAQ categories was 411. Table 1 shows a sample of the
FAQ dataset.

Table 1. Sample of the FAQ dataset.

Sentence (Korean) Sentence (English) ID of FAQ Category

간편이체 Easy bank transfer 3
쉽게송금하는방법 How to easily send money 3
비밀번호변경 How to change the password 7
비번바꾸는법 How to change PW 7

Figure 5 shows a full histogram of the data distribution over the full 411 categories. Figure 6 shows
the distribution of FAQ categories according to the number of queries included in each FAQ category.

As shown in Figures 5 and 6, 63% of FAQ categories included less than six queries. To evaluate
the proposed model, we divided the FAQ dataset into a training set, a validation set, and a test set
by a ratio of 8:1:1 according to a random sampling scheme. As an evaluation measure, we used an
accuracy calculation.

To implement the proposed model, we pre-trained GloVe [19] by using 20 GB of Korean news
articles. Then, we used the GloVe as the word embedding vectors in Equation (2). The vocabulary size
of the GloVe was 210,867. We initialized the character-level embedding vectors with random values.
The vocabulary size of the character-level embedding vectors was 132. We set the sizes of embedding
vectors (i.e., ei, êi, and echar

i) to 100, 100, and 300, respectively. We set the sizes of the class embedding
matrix (i.e., VC) to 100 × 411. We set the hidden size, the attention head size, and the number of layers
in the transformer’s encoder to 500, 12, and 6, respectively. We set the hidden size of the GRU neural
network to 100. The model optimization was done with Adam [20] at a learning rate of 0.00005, and
the learning rate was halved if the performance of the validation set did not improve. The dropout rate

425

Appl. Sci. 2019, 9, 4758

was set to 0.2, and the mini-batch size was set to 64 sentences, respectively. We empirically set the
learning rate, the dropout rate, and the mini-batch size in order to obtain the best performances.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 9

Figure 5. Distribution of the number of queries over the full FAQ categories.

Figure 6. Distribution of FAQ categories according to the number of queries.

As shown in Figures 5 and 6, 63% of FAQ categories included less than six queries. To evaluate
the proposed model, we divided the FAQ dataset into a training set, a validation set, and a test set by
a ratio of 8:1:1 according to a random sampling scheme. As an evaluation measure, we used an
accuracy calculation.

To implement the proposed model, we pre-trained GloVe [19] by using 20 GB of Korean news
articles. Then, we used the GloVe as the word embedding vectors in Equation (2). The vocabulary
size of the GloVe was 210,867. We initialized the character-level embedding vectors with random
values. The vocabulary size of the character-level embedding vectors was 132. We set the sizes of
embedding vectors (i.e., ݁, ݁̂, and ݁) to 100, 100, and 300, respectively. We set the sizes of the
class embedding matrix (i.e., ܸ) to 100 × 411. We set the hidden size, the attention head size, and the
number of layers in the transformer’s encoder to 500, 12, and 6, respectively. We set the hidden size
of the GRU neural network to 100. The model optimization was done with Adam [20] at a learning
rate of 0.00005, and the learning rate was halved if the performance of the validation set did not
improve. The dropout rate was set to 0.2, and the mini-batch size was set to 64 sentences, respectively.
We empirically set the learning rate, the dropout rate, and the mini-batch size in order to obtain the
best performances.

4.2. Experimental Results

The first experiment was to evaluate the effectiveness of the proposed embedding methods by
comparing the performance changes, as shown in Table 2.

Figure 5. Distribution of the number of queries over the full FAQ categories.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 9

Figure 5. Distribution of the number of queries over the full FAQ categories.

Figure 6. Distribution of FAQ categories according to the number of queries.

As shown in Figures 5 and 6, 63% of FAQ categories included less than six queries. To evaluate
the proposed model, we divided the FAQ dataset into a training set, a validation set, and a test set by
a ratio of 8:1:1 according to a random sampling scheme. As an evaluation measure, we used an
accuracy calculation.

To implement the proposed model, we pre-trained GloVe [19] by using 20 GB of Korean news
articles. Then, we used the GloVe as the word embedding vectors in Equation (2). The vocabulary
size of the GloVe was 210,867. We initialized the character-level embedding vectors with random
values. The vocabulary size of the character-level embedding vectors was 132. We set the sizes of
embedding vectors (i.e., ݁, ݁̂, and ݁) to 100, 100, and 300, respectively. We set the sizes of the
class embedding matrix (i.e., ܸ) to 100 × 411. We set the hidden size, the attention head size, and the
number of layers in the transformer’s encoder to 500, 12, and 6, respectively. We set the hidden size
of the GRU neural network to 100. The model optimization was done with Adam [20] at a learning
rate of 0.00005, and the learning rate was halved if the performance of the validation set did not
improve. The dropout rate was set to 0.2, and the mini-batch size was set to 64 sentences, respectively.
We empirically set the learning rate, the dropout rate, and the mini-batch size in order to obtain the
best performances.

4.2. Experimental Results

The first experiment was to evaluate the effectiveness of the proposed embedding methods by
comparing the performance changes, as shown in Table 2.

Figure 6. Distribution of FAQ categories according to the number of queries.

4.2. Experimental Results

The first experiment was to evaluate the effectiveness of the proposed embedding methods by
comparing the performance changes, as shown in Table 2.

Table 2. Performance changes according to the use of embedding methods.

Model Accuracy

WordEmbed (baseline) 0.705
WordEmbed + CharEmbed 0.756

WordEmbed + Char & TunedEmbed 0.784
WordEmbed + Char & TunedEmbed + ClassEmbed 0.810

In Table 2, the baseline model (WordEmbed) uses fixed GloVe embeddings as input vectors.
CharEmbed, TunedEmbed, and ClassEmbed refer to the character-level word embeddings, the
fine-tuned word embeddings, and the class embeddings that are proposed in this paper, respectively.
As shown in Table 2, the proposed embedding methods contributed to increasing the performance of
FAQ classification.

426

Appl. Sci. 2019, 9, 4758

The second experiment was to compare the proposed model with the previous models, as shown
in Table 3.

Table 3. Performance comparison.

Model Accuracy

CNN 0.638
OKAPI 0.705

BERT-Multilingual 0.779
Proposed Model 0.810

In Table 3, CNN is the sentence classification model based on a CNN [2] in which pretrained word
vectors are converted into feature maps by convolution operations based on multiple filters. OKAPI is
the Okapi BM25 retrieval model [21] which is a state-of-the-art ranking function used in document
retrieval. BERT-Multilingual is a multilingual version of BERT [15] that is pretrained using a large
multilingual text corpus, including Korean. In our experiments, BERT-Multilingual was fine-tuned for
15 epochs by using the FAQ dataset. As shown in Table 3, the proposed model outperformed both the
well-known sentence classification model and the keyword search model.

The last experiment was to compare the performance changes of the proposed model according to
the size of training data, as shown in Figure 7.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 9

Table 2. Performance changes according to the use of embedding methods.

Model Accuracy
WordEmbed (baseline) 0.705

WordEmbed + CharEmbed 0.756
WordEmbed + Char & TunedEmbed 0.784

WordEmbed + Char & TunedEmbed + ClassEmbed 0.810

In Table 2, the baseline model (WordEmbed) uses fixed GloVe embeddings as input vectors.
CharEmbed, TunedEmbed, and ClassEmbed refer to the character-level word embeddings, the fine-
tuned word embeddings, and the class embeddings that are proposed in this paper, respectively. As
shown in Table 2, the proposed embedding methods contributed to increasing the performance of
FAQ classification.

The second experiment was to compare the proposed model with the previous models, as shown
in Table 3.

Table 3. Performance comparison.

Model Accuracy
CNN 0.638

OKAPI 0.705
BERT-Multilingual 0.779

Proposed Model 0.810

In Table 3, CNN is the sentence classification model based on a CNN [2] in which pretrained
word vectors are converted into feature maps by convolution operations based on multiple filters.
OKAPI is the Okapi BM25 retrieval model [21] which is a state-of-the-art ranking function used in
document retrieval. BERT-Multilingual is a multilingual version of BERT [15] that is pretrained using
a large multilingual text corpus, including Korean. In our experiments, BERT-Multilingual was fine-
tuned for 15 epochs by using the FAQ dataset. As shown in Table 3, the proposed model
outperformed both the well-known sentence classification model and the keyword search model.

The last experiment was to compare the performance changes of the proposed model according
to the size of training data, as shown in Figure 7.

Figure 7. Performance changes according to the size of training data. “5+” means five or more.

In Figure 7, FAQ-n indicates FAQ categories in which n queries (i.e., n training data) are
contained. The parenthesized values indicate the number of FAQ categories associated with each

Figure 7. Performance changes according to the size of training data. “5+” means five or more.

In Figure 7, FAQ-n indicates FAQ categories in which n queries (i.e., n training data) are contained.
The parenthesized values indicate the number of FAQ categories associated with each FAQ-n in the
test data. It can be seen from the figure that the proposed model needed at least five training data per
FAQ category in order to obtain an accuracy of more than 0.8.

5. Conclusions

We proposed a high-performance sentence classification model based on an encoder-decoder
model with an attention mechanism. For bridging the lexical gaps between users’ queries and FAQs,
we used three types of word embeddings (fixed word embeddings, fine-tuned word embeddings,
and character-level word embeddings) as inputs to the transformer’s encoder. For supplementing
domain knowledge associated with categories, we added class embeddings to the outputs of the RNN
decoder. In the experiments with the FAQ dataset, the proposed model outperformed the comparison
models. We found that the proposed embedding methods contributed to improving the performance of
sentence classification. The proposed model showed low performances in FAQ categories containing a
small number of training data. To reduce this problem, we need to adopt pre-trained language models

427

Appl. Sci. 2019, 9, 4758

like BERT and XLNet [22] as encoders. In the future, we will try to combine the proposed model
with a chatbot model for assisting online banking customers. Therefore, we will study a method to
return a nil category to make the chatbot model generate proper responses when users’ queries are not
associated with any one of the predefined FAQ categories.

Author Contributions: Conceptualization, H.K. and Y.J.; methodology, H.K. and Y.J.; software, Y.J.; validation Y.J.;
formal analysis, Y.J.; investigation, Y.J.; data curation, Y.J.; writing—original draft preparation, Y.J.; writing—review
and editing, H.K.; visualization, H.K.; supervision, H.K.; project administration, H.K.; funding acquisition, H.K.

Funding: This work was supported by Shinhan Bank. It was also supported by the National Research Foundation
of Korea (NRF) and grant funded by the Korea government (MSIP) (No.2016R1A2B4007732).

Acknowledgments: The authors would like to thank the members of the NLP laboratory in Kangwon National
University for their technical support. We would specially like to thank Sebin Kim, Dongho Kang, and Hyunki
Jang at Shinhan Bank for their financial and technical support.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A Convolutional Neural Network for Modelling Sentences.
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Baltimore, MD, USA, 22–27 June 2014; pp. 655–665.

2. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1746–1751.

3. Yin, W.; Schütze, H. Multichannel Variable-size Convolution for Sentence Classification. In Proceedings of
the Nineteenth Conference on Computational Natural Language Learning, Beijing, China, 30–31 July 2015;
pp. 204–214.

4. Yu, L.; Hermann, K.; Blunsom, K.; Pulman, S. Deep Learning for Answer Sentence Selection. In Proceedings of
the NIPS Deep Learning and Representation Learning Workshop, Montreal, QC, Canada, 12 December 2014.

5. Zhang, Y.; Roller, S.; Byron, C. Mgnc-cnn: A Simple Approach to Exploiting Multiple Word Embeddings
for Sentence Classification. In Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA,
12–17 June 2016; pp. 1522–1527.

6. Mikolov, T.; Sutskever, H.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases
and their Compositionality. In Proceedings of the 26th International Conference on Neural Information
Processing Systems (Volume 2), Lake Tahoe, NE, USA, 5–10 December 2013; pp. 3111–3119.

7. Hsu, S.; Moon, C.; Jones, P.; Nagiza, F. A Hybrid CNN-RNN Alignment Model for Phrase-Aware Sentence
Classification. In Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers, Valencia, Spain, 3–7 April 2017; pp. 443–449.

8. Kim, Y.; Jernite, Y.; Sontag, D.; Rush, A. Character-Aware Neural Language Models. In Proceedings of the
AAAI 2016, Phoenix, AZ, USA, 12–17 February 2016; pp. 2741–2749.

9. Lee, J.; Cho, K.; Hofmann, T. Fully Character-Level Neural Machine Translation without Explicit Segmentation.
Trans. Assoc. Comput. Linguist. 2017, 5, 365–378. [CrossRef]

10. Ling, W.; Trancoso, I.; Dyer, C.; Black, A. Character-based Neural Machine Translation. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016;
pp. 357–361.

11. Park, S.; Byun, J.; Beak, S.; Cho, Y.; Oh, A. Subword-level Word Vector Representations for Korean.
In Proceedings of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018;
pp. 2429–2438.

12. Seo, D.; Chung, Y.; Kang, I. A typing error-robust Korean POS tagging using Hangul Jamo combination-based
embedding. In Proceedings of the of the HCLT, Daegu, Korea, 13–14 October 2017; pp. 203–208. (In Korean).

13. Zhang, X.; Zhao, J.; LeCun, Y. Character-level Convolutional Networks for Text Classification. In Advances in
Neural Information Processing Systems 28(NIPS 2015); Courant Institute of Mathematical Sciences: New York,
NY, USA, 2015.

428

Appl. Sci. 2019, 9, 4758

14. Kim, Y.; Kim, D.; Kumar, A.; Sarikaya, R. Efficient Large-Scale Domain Classification with Personalized
Attention. In Proceedings of the Association for Computational Linguistics, Melbourne, Australia,
15–20 July 2018; pp. 2214–2224.

15. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv 2019, arXiv:1810.04805v2.

16. Vaswabu, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention
Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010.

17. Chung, J.; Gulcehre, C.; Cho, K.; Bngio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling. arXiv 2014, arXiv:1412.3555v1.

18. Luong, M.; Pham, H.; Manning, C. Effective Approaches to Attention-based Neural Machine Translation.
In Proceedings of the Association for Computational Linguistics, Lisbon, Portugal, 17–21 September 2015;
pp. 1412–1421.

19. Pennington, J.; Socher, R.; Manning, C. Glove: Global Vectors for Word Representation. In Proceedings of the
Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1532–1543.

20. Kingma, D.; Ba, L. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980v9.
21. Robertson, S.; Walker, S.; Jones, S.; Beaulieu, M.; Gatford, M. Okapi at TREC-3. In Proceedings of the TREC-3,

Gaithersburg, MD, USA, 2–4 November 1994; pp. 109–126.
22. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q.V. XLNet: Generalized Autoregressive

Pretraining for Language Understanding. arXiv 2019, arXiv:1906.08237.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

429

applied
sciences

Article

A Text Abstraction Summary Model Based on BERT
Word Embedding and Reinforcement Learning

Qicai Wang 1 , Peiyu Liu 1,*, Zhenfang Zhu 2,*, Hongxia Yin 1, Qiuyue Zhang 1 and
Lindong Zhang 1

1 School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China;
2018020907@stu.sdnu.edu.cn (Q.W.); 2018020908@stu.sdnu.edu.cn (H.Y.);
2018309063@stu.sdnu.edu.cn (Q.Z.); 2018020898@stu.sdnu.edu.cn (L.Z.)

2 School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
* Correspondence: liupy@sdnu.com.cn (P.L.); zhuzf@sdjtu.edu.cn (Z.Z.);

Tel.: +86-131-8889-9297 (P.L.); +86-137-9310-0702 (Z.Z.)

Received: 9 October 2019; Accepted: 29 October 2019; Published: 4 November 2019

Abstract: As a core task of natural language processing and information retrieval, automatic
text summarization is widely applied in many fields. There are two existing methods for text
summarization task at present: abstractive and extractive. On this basis we propose a novel hybrid
model of extractive-abstractive to combine BERT (Bidirectional Encoder Representations from
Transformers) word embedding with reinforcement learning. Firstly, we convert the human-written
abstractive summaries to the ground truth labels. Secondly, we use BERT word embedding as text
representation and pre-train two sub-models respectively. Finally, the extraction network and the
abstraction network are bridged by reinforcement learning. To verify the performance of the model, we
compare it with the current popular automatic text summary model on the CNN/Daily Mail dataset,
and use the ROUGE (Recall-Oriented Understudy for Gisting Evaluation) metrics as the evaluation
method. Extensive experimental results show that the accuracy of the model is improved obviously.

Keywords: BERT word embedding; text summary; reinforce learning

1. Introduction

Text summarization is a task of compressing long text into short one meanwhile keeping up the
central idea. Automatic text summarization is one of the core tasks in natural language processing
(NLP) and information retrieval. As information techniques develop and change rapidly, especially for
Mobile Internet, there is a huge amount of data will inevitably be produced day to day. Nowadays,
the traditional manual summarization method is difficult to suit the needs of information retrieval in
people’s daily life. Therefore, automatic summarization is becoming more and more important in the
wave of mass information.

The text summary method can be classified into two paradigms: extractive and abstractive.
The extractive method extracts the important sentences or a section of text from the original text and
combines them to form a summary [1–4], while the abstractive method will generate novel words
which do not exist in the source text and while retaining the original meaning [5–8]. Compared with
the difference between them, the extraction paradigm is relatively simple and ensures grammatical
correctness, but the semantics are inconsistent; while the abstraction paradigm is more concise, but
redundant. When summarizing a very long text, the extractive approach is too simple and the
readability is poor, and the abstract method of compressing a long input sequence with a single
fixed-length vector may cause the information loss, neither of them could perform the long text
summary better. At present, some neural network models [9,10] combine the advantages of extractive

431

Appl. Sci. 2019, 9, 4701

and abstractive approaches. Firstly, selecting key sentences from the source text by the extractive
method, then generating a summary of these sentences by the abstractive method. Reference [11]
proposed a new model for the long text summary, which abstracts the summary by using a deep
communication agent, first of all, dividing the long input text into multiple agents encoders, and then
generating the summary through a unified decoder. Although these methods have achieved good
results, due to the limitation of specific data sets and the small amount of data, their word embedding
effect is not obvious and the semantic features of a text cannot be fully obtained.

In view of the above problems, we utilize the advantages of the pre-trained language model,
BERT (Bidirectional Encoder Representations from Transformers) [12], which is successfully applied in
many NLP tasks, and we use the pre-trained representation of BERT as the text representation of all
our models. BERT has been pre-trained on a large amount of unlabeled corpus to generate better word
embedding. Inspired by [9], we proposed a new method that integrates the extractive network and
abstractive network by using reinforcement learning. CNN/Daily Mail was used as the experimental
dataset in this paper. Firstly, we convert the human written abstractive summaries to the ground truth
labels. Secondly, we pre-train two sub-models respectively, the extractive model is trained according to
the generated pseudo-document summary data pairs, namely, the article and the ground truth labels
are paired; the abstractive model is trained on the basis of the ground truth labels and the abstractive
summaries labels. Finally, in order to train a complete end-to-end model, we use the strategy gradient
of reinforcement learning to bridge two well-trained networks.

In addition, in order to obtain better sentence and document vectors in the extractive sub-model,
we use the hierarchical self-attention mechanism. As we all know, each word contributes differently to
sentence semantics, and so does each sentence to document semantics.

Empirically, on CNN/Daily Mail dataset, we used the ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) metrics to evaluate the performance of our method. Our approach was the new
state-of-the-art. On the DUC2002 dataset, we only used it as a test dataset due to the small scale.
The experimental results show that our model has better generalization ability.

Our major contributions can be summarized as follows:

(1) In this paper, we applied BERT word embedding to the text summarization task, and improved
the performance of the task by taking advantage of the rich semantic features of BERT
word embedding.

(2) We train a single unified model, which combines the advantages of universal language model
BERT, extraction method, and abstraction method.

(3) Our approach is based on the strategy gradient of reinforcement learning and bridges the
abstractive model and the extractive model. We have carried experiments on a large dataset to
find that our approach achieves state-of-the-art ROUGE scores.

The rest of our paper is organized as follows. In Section 2, the related work is described.
In Section 3, the proposed approach is presented in detail. Section 4 describes the related content of the
experiments. We show the result and analysis of the result in Section 5. Section 6 presents conclusions
and future work.

2. Related Works

Text summarization has been widely studied in recent years. We first introduce the related works
of extractive and abstractive summarization and then introduce the related works of reinforcement
learning and self-attention. Finally, we introduce a few related works with BERT (Bidirectional Encoder
Representations from Transformers) and word embedding.

The previous works [1–4] mainly focused on extractive methods. References [1–3] select sentences
using RNN (Recurrent Neural Network) to get the vector representations of sentences and articles.
Reference [4] uses RNN and graph convolutional networks to compute the importance of sentences.
Although the extractive method can easily achieve a relatively high score, the consistency is usually

432

Appl. Sci. 2019, 9, 4701

poor. The sequence-to-sequence (seq2seq) model [13,14] has been successfully applied in various NLP
tasks such as NMT (Neural Machine Translate), QA (Question Answering), and Image Captioning.
The sequence model can freely read or generate text content that makes abstraction practical.
Reference [5] is the first to apply the attention mechanism model based on seq2seq to abstractive text
summarization. Compared with traditional methods, this method shows an obvious performance
improvement. The network [6] copies words from the source article by pointing or generate new
words from the vocabulary. References [7,15] also integrate pointer network [16] into their model
to handle the problem of OOV(Out-Of-Vocabulary) words. Other new methods (e.g., [8]) based on
the seq2seq framework are proposed, and all of them have achieved effectively result. Although
abstractive models are relatively concise by generating new words, due to the input text being too
large, they cause the problems of loss of information and high computational cost. The models [9,10]
combined the advantages of the extractive method and abstractive method and proposed a hybrid
extractive-abstractive architecture. The extractive network is used to extract the sentences with obvious
semantics from the input sequence, and then the abstractive network summarizes the selected sentences
and generates the final text summary.

There is a common problem of exposure bias in these models which are built on seq2seq framework,
namely, the reference abstract and the words generated by the previous time step are used as the
input of decoder in the training stage, and only the words generated by the previous time step are
used in the test stage; and the cross-entropy loss function was used in the training, but the metrics
were used in the test such as ROUGE, BLEU, etc. Previous works [3,7–9,11] used reinforcement
learning [17] to mitigate these existing problems. Reference [3] used reinforcement learning for ranking
sentences in pure extraction-based summarization. Reference [7] used reinforcement learning policy
gradient methods for abstractive summarization. Reference [8] used actor-critic policy methods for
abstractive summarization. Reference [11] combined a few independent and cooperative agents to
form an end-to-end training model by reinforcement learning. However, none of these methods used
reinforcement learning to bridge the non-differentiable computation of two neural networks. Following
the previous work [9], we also used reinforcement learning in the model to bridge the pre-trained
extractive network and abstractive network.

The attention mechanism has been successfully used in a variety of NLP tasks such as
machine translation [18] and text summarization [5,6]. We all know that each element in a sequence
contributes differently to the sequence. So self-attention is widely used in language modeling [19],
sentiment analysis [20], and other tasks. The hierarchical self-attention is also used to encode
sentences and documents for the extractive model in [21]. Inspired by [21], we use self-attention for
document representation.

Word embedding representations of the aforementioned model usually exist in two ways: direct
learning and pre-trained. Direct learning is the way that gets the word representation in the process of
model training, while pre-trained is the way that gets the word embedding initialization by training
word2vec on the dataset. For example, direct learning is used in the models [6,9], while models [10,22]
used word2vec as word embedding in their models. Although the aforementioned work makes a
beneficial exploration in the direction of model structure combination, it does not consider the role of the
pre-training universal language model, but applies it to the text summary model. The pre-trained model
was trained from large amounts of unlabeled text and has got more complete word representation.
The embedded vectors from pre-trained models are richer and more precise, whether in spatial
dimensions or semantic features.

BERT is the latest representation of the pre-trained language model, which has recently succeeded
in many NLP tasks. BERT is pre-trained for large scale text data, combining word representations and
sentence representations in a large transformer [23]. The strategies of applying pre-trained BERT are
mainly divided into feature-based and fine-tuning methods. Our method does not follow the tasks of
the literature [12], but uses a feature-based strategy, because BERT can generate better contextualized
token embeddings, thus our model based on top of them can get better performance.

433

Appl. Sci. 2019, 9, 4701

From the above analysis, the word vectors of the pre-trained models (BERT) are used as task
input respectively in this paper, reinforcement learning is used to integrate the extraction network and
generation network into a unified model. From a human-written manual summary, first of all, we
need to fully understand the main meaning of the article, then select key sentences according to the
context information of the article, and then rewrite the selected sentences. The model in this paper
adopts the same idea, and the corresponding relationship between them is shown in Figure 1.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 19

and generation network into a unified model. From a human-written manual summary, first of all,

we need to fully understand the main meaning of the article, then select key sentences according to

the context information of the article, and then rewrite the selected sentences. The model in this paper

adopts the same idea, and the corresponding relationship between them is shown in Figure 1.

BERT Word
Embedding

Extractor

Abstractor

Reinforcement
Learning

Word
semantics

Rewrite
setences

Extract
sentences

Repeatly
update

Figure 1. Automatic summary vs. manual summary.

3. Methods

3.1. Problems

The text summarization task can be seen as: in the case of fully understanding the information

of the input text, we select the important sentences from the input sequence, and then these sentences

are rewritten to the shorter version that do not change the main meaning. Our whole model is consists

of two sub-models: the extraction agent and abstraction agent. Formally, the input article is regarded

as a sequence of sentences. 𝑠 = [𝑠1, 𝑠2 ⋯𝑠𝑚], m is the index of input sentence sequence, each sentence

is a sequence of words. 𝑠𝑖 = [𝑤1, 𝑤2, ⋯ , 𝑤𝑛], n is the index of the word sequence. We select the

important sentences from the sequence s to make a new sequence: 𝑠′ = [𝑠1
′ , 𝑠2

′ , ⋯ , 𝑠𝑘
′], K < M, and then

generate the summary s’’ by rewriting the sequence s’. In the case of mentioned above, namely, by

fitting the training data, firstly find the extraction function: 𝑓1: 𝑠
′ = 𝑓1(𝑠) ,then find the abstraction

function: 𝑓1: 𝑠
′ = 𝑓1(𝑠), so the final objective function that will be obtained 𝑓: 𝑠′′ = 𝑓2(𝑓1(𝑠)). The

overall flowchart of this model can be seen in Figure 2.

Train
corpus

BERT
Encoder

extractor

abstractor

Final
model

Test
corpus

summary

Pre-training

extractor abstractor

End-to-end traing

REINFORCE
update reward

Figure 2. Automatic summary vs. manual summary.

In our works, we used BERT as our encoder for word tokens and sentences. Our main processes

include: firstly, we pre-trained our sub-models: abstractor and extractor; secondly, we trained the full

end-to-end model with REINFORCE LEARNING, which can bridge the sub-models. The three

training processes are mapped to the fitting processes of the aforementioned functions, respectively.

3.2. Word Embedding

Word embedding is based on the distributed hypothesis of word representation. Word

embedding represents natural language words as low-dimensional vector representations that

Figure 1. Automatic summary vs. manual summary.

3. Methods

3.1. Problems

The text summarization task can be seen as: in the case of fully understanding the information of
the input text, we select the important sentences from the input sequence, and then these sentences are
rewritten to the shorter version that do not change the main meaning. Our whole model is consists of
two sub-models: the extraction agent and abstraction agent. Formally, the input article is regarded as a
sequence of sentences. s = [s1, s2 · · · sm], m is the index of input sentence sequence, each sentence is a
sequence of words. si = [w1, w2, · · · , wn], n is the index of the word sequence. We select the important
sentences from the sequence s to make a new sequence: s′ =

[
s′1, s′2, · · · , s′k

]
, K < M, and then generate

the summary s” by rewriting the sequence s’. In the case of mentioned above, namely, by fitting the
training data, firstly find the extraction function: f1 : s′ = f1(s), then find the abstraction function:
f1 : s′ = f1(s), so the final objective function that will be obtained f : s′′ = f2(f1(s)). The overall
flowchart of this model can be seen in Figure 2.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 19

and generation network into a unified model. From a human-written manual summary, first of all,

we need to fully understand the main meaning of the article, then select key sentences according to

the context information of the article, and then rewrite the selected sentences. The model in this paper

adopts the same idea, and the corresponding relationship between them is shown in Figure 1.

BERT Word
Embedding

Extractor

Abstractor

Reinforcement
Learning

Word
semantics

Rewrite
setences

Extract
sentences

Repeatly
update

Figure 1. Automatic summary vs. manual summary.

3. Methods

3.1. Problems

The text summarization task can be seen as: in the case of fully understanding the information

of the input text, we select the important sentences from the input sequence, and then these sentences

are rewritten to the shorter version that do not change the main meaning. Our whole model is consists

of two sub-models: the extraction agent and abstraction agent. Formally, the input article is regarded

as a sequence of sentences. 𝑠 = [𝑠1, 𝑠2 ⋯𝑠𝑚], m is the index of input sentence sequence, each sentence

is a sequence of words. 𝑠𝑖 = [𝑤1, 𝑤2, ⋯ , 𝑤𝑛], n is the index of the word sequence. We select the

important sentences from the sequence s to make a new sequence: 𝑠′ = [𝑠1
′ , 𝑠2

′ , ⋯ , 𝑠𝑘
′], K < M, and then

generate the summary s’’ by rewriting the sequence s’. In the case of mentioned above, namely, by

fitting the training data, firstly find the extraction function: 𝑓1: 𝑠
′ = 𝑓1(𝑠) ,then find the abstraction

function: 𝑓1: 𝑠
′ = 𝑓1(𝑠), so the final objective function that will be obtained 𝑓: 𝑠′′ = 𝑓2(𝑓1(𝑠)). The

overall flowchart of this model can be seen in Figure 2.

Train
corpus

BERT
Encoder

extractor

abstractor

Final
model

Test
corpus

summary

Pre-training

extractor abstractor

End-to-end traing

REINFORCE
update reward

Figure 2. Automatic summary vs. manual summary.

In our works, we used BERT as our encoder for word tokens and sentences. Our main processes

include: firstly, we pre-trained our sub-models: abstractor and extractor; secondly, we trained the full

end-to-end model with REINFORCE LEARNING, which can bridge the sub-models. The three

training processes are mapped to the fitting processes of the aforementioned functions, respectively.

3.2. Word Embedding

Word embedding is based on the distributed hypothesis of word representation. Word

embedding represents natural language words as low-dimensional vector representations that

Figure 2. Automatic summary vs. manual summary.

In our works, we used BERT as our encoder for word tokens and sentences. Our main processes
include: firstly, we pre-trained our sub-models: abstractor and extractor; secondly, we trained the
full end-to-end model with REINFORCE LEARNING, which can bridge the sub-models. The three
training processes are mapped to the fitting processes of the aforementioned functions, respectively.

3.2. Word Embedding

Word embedding is based on the distributed hypothesis of word representation. Word embedding
represents natural language words as low-dimensional vector representations that computers could

434

Appl. Sci. 2019, 9, 4701

understand. The semantic relevance of words can be measured by the similarity between vectors.
Word embedding now commonly used in NLP tasks include Word2Vec, Glove, BERT, etc.

There are two existing strategies to apply pre-trained language representations to downstream
tasks: feature-based and fine-tuning [12]. Although BERT is mainly used in a fine-tuning mode in most
NLP tasks, we use it as a feature-based mode and only use it as our encoder for text representation.
As the same as BERT, the WordPiece tokenizer is used for input text sequence. Experiments show that
the WordPiece [24] tokenizer is more effective than the natural tokenizer (here, ‘natural tokenizer’ refers
to the method of word segmentation based on space, comma and other punctuation, and CoreNLP
toolkits (https://stanfordnlp.github.io/CoreNLP/) are generally used in the experiment.). BERT can
express tokenized words as corresponding word embeddings, as well as the sentences in the article
are input into the BERT model, and the sentence vector representation of each sentence is obtained.
The above process is expressed as Formula (1)

rm = BERT(sm) sm ∈ S, m ∈ [0, M] (1)

where M is the number of sentences, m is the index of a sentence, sm denotes the text of the mth sentence,
S is the set of sentences, rm is the sentence vector. Next, word embeddings or sentence vectors are used
as input in both extractor and abstractor.

3.3. Extraction Model

Our extraction model is motivated by [21,22]. The main difference is that our extractor uses BERT
as a sentence encoder and the document encoder adopts the self-attention mechanism. We take a
similar computation method and make some changes by adding a unidirectional GRU. Each sentence
of the document is visited sequentially to obtain a shortlist of remarkable sentences with high recall to
further facilitate the abstractor is our objectives.

The model consists of three components: a sentence encoder, a document encoder, and a sentence
extractor. The sentence encoder adopts BERT as the encoder, a bidirectional GRU with self-attention
is used to encode document, a unidirectional GRU is used to compute the summary representation.
Then, the representation, the document vector and the hidden state of bi-GRU are involved in the
computation of the sentence score. The architecture of the model is shown in Figure 3.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 19

computers could understand. The semantic relevance of words can be measured by the similarity

between vectors. Word embedding now commonly used in NLP tasks include Word2Vec, Glove,

BERT, etc.

There are two existing strategies to apply pre-trained language representations to downstream

tasks: feature-based and fine-tuning [12]. Although BERT is mainly used in a fine-tuning mode in

most NLP tasks, we use it as a feature-based mode and only use it as our encoder for text

representation. As the same as BERT, the WordPiece tokenizer is used for input text sequence.

Experiments show that the WordPiece [24] tokenizer is more effective than the natural tokenizer

(here, ‘natural tokenizer’ refers to the method of word segmentation based on space, comma and

other punctuation, and CoreNLP toolkits (https://stanfordnlp.github.io/CoreNLP/) are generally

used in the experiment.). BERT can express tokenized words as corresponding word embeddings, as

well as the sentences in the article are input into the BERT model, and the sentence vector

representation of each sentence is obtained. The above process is expressed as Formula (1)

𝑟𝑚 = 𝐵𝐸𝑅𝑇(𝑠𝑚) 𝑠𝑚 ∈ 𝑆,𝑚 ∈ [0,𝑀] (1)

where M is the number of sentences, m is the index of a sentence, 𝑠𝑚 denotes the text of the 𝑚th

sentence, S is the set of sentences, 𝑟𝑚 is the sentence vector. Next, word embeddings or sentence

vectors are used as input in both extractor and abstractor.

3.3. Extraction Model

Our extraction model is motivated by [21,22]. The main difference is that our extractor uses BERT

as a sentence encoder and the document encoder adopts the self-attention mechanism. We take a

similar computation method and make some changes by adding a unidirectional GRU. Each sentence

of the document is visited sequentially to obtain a shortlist of remarkable sentences with high recall

to further facilitate the abstractor is our objectives.

The model consists of three components: a sentence encoder, a document encoder, and a

sentence extractor. The sentence encoder adopts BERT as the encoder, a bidirectional GRU with self-

attention is used to encode document, a unidirectional GRU is used to compute the summary

representation. Then, the representation, the document vector and the hidden state of bi-GRU are

involved in the computation of the sentence score. The architecture of the model is shown in Figure 3.

Sentence encoder

×LBERT

Tok1 Tok2 TokN...

B
i-G

R
U

h1 h2 ... hN

Document encoder

ri

r1
r2
r3
...

rL

r1 r2 ... rN

+

D

h1 h2 ... hN

Score Score Score Score

D

1 0 0 1

G
R

U

G
R

U

G
R

U

G
R

U

r1 r1 rN...

Extractor

B
i-G

R
U

B
i-G

R
U

B
i-G

R
U

Figure 3. Extraction network model illustration.
Figure 3. Extraction network model illustration.

435

Appl. Sci. 2019, 9, 4701

After getting the vector representation of sentences by BERT encoder, we can summarize

information of documents from both directions. It includes the forward GRU
⇀
ht and a backward

GRU
←
ht

⇀
ht =

⇀
GRU

(
rt,

⇀
ht−1

)
(2)

←
ht =

←
GRU

(
rt,

←
ht+1

)
(3)

where rt is the sentence vector of tth sentence in the time step t.
Both GRU and LSTM are based on RNN (Recurrent Neural Network), there is no evidence to

show which one is the best [25,26]. However, GRU is simpler, more efficient, fewer parameters and
easier to implement. Therefore, we use a bidirectional GRU to encode the sentences in the documents
and a unidirectional GRU to obtain the summary representation which taking account of decisions
made previously. A GRU is a recurrent network with two gates, ug called the update gate and rg the
reset gate, it can be described by the following equations

ugj = σ
(
Wuxx j + Wuhh j−1 + bu

)
(4)

rgj = σ
(
Wrxx j + Wrhh j−1 + br

)
(5)

h′j = tanh
(
Whxx j + Whh

(
rgj � h j−1

)
+ bh

)
(6)

h j =
(
1− ugj

)
� h′j + u j � h j−1 (7)

where the W’s and b’s are learnable parameters and h j is the real valued hidden vector at time step j and
x j is the corresponding input vector namely aforementioned ri and � denotes the Hadamard product.

We concatenated the forward and the backward GRU hidden states to get the vector ht, which
summarizes the information of the sentence st and its context, as in Equation (8),

ht =
[⇀
ht,
←
ht

]
(8)

where dh denotes the size of hidden vector, M is the number of sentences in the document, so the
hD ∈ RM∗2dh denotes the whole GRU hidden states, as in Equation (9),

HD = (h1, h2, . . . , hM) (9)

We all know that we pay more or less attention to each sentence according to its contribution
to the article. The representation of the whole document is modeled as a weighted sum of the
concatenated hidden states of the bidirectional GRU by a self-attention mechanism [26]. We take the
concatenated hidden states HD as input and yield a vector of weights, aD, as output, calculated as
shown in Equation (10),

aD = so f tmax
(
Ws2 tanh

(
Ws1 , HT

D

))
(10)

where Ws2 and Ws1 are learnable parameters, Ws2 ∈ Rk∗2dh , Ws2 ∈ Rk, k is a hyper-parameter can be set
arbitrarily. The softmax() is the normalized function used to normalize the attention weights, which
sum up to 1. After getting the attention vector aD, the document vector is obtained as a weighted sum
of the GRU hidden states weighted by aD, as shown in Figure 4, and Equation (11),

d = aDHD (11)

where aD ∈ R1∗M, d ∈ R1∗2dh , so the document representation is a vector whose dimension is d.

436

Appl. Sci. 2019, 9, 4701
Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 19

Dot product

tanh

Dot product

softmax

Ws1

Ws2

Bidirectional GRU
hidden matrix

Attention vector

Figure 4. The self-attention unit.

For extractor, each sentence is viewed sequentially again, where a logistic layer makes a binary

decision as to whether that sentence belongs to the summary, as shown in Equation (12)

P(𝑦𝑗 = 1|ℎ𝑗 , 𝑂𝑗 , 𝑑) = 𝜎(𝑊𝑐ℎ𝑗 + ℎ𝑗
𝑇𝑊𝑠𝑎𝑙𝑑 − ℎ𝑗

𝑇𝑊𝑟𝑒𝑑 tanh(𝑂𝑗−1) + 𝑊𝑝𝑝𝑗 + 𝑏) (12)

where 𝑦𝑗 is a binary variable indicating whether the 𝑗th sentence is included in the summary, ℎ𝑗 is

the hidden state of bi-GRU at the 𝑗th time step, 𝑂𝑗−1 is the dynamic representation of the summary

before the 𝑗th time step, d is the document vector, 𝑊𝑐 , 𝑊𝑠𝑎𝑙 , 𝑊𝑟𝑒𝑑 , 𝑊𝑝 , and 𝑏 are all learnable

parameters. The expression 𝑊𝑐ℎ𝑗 denotes the information content of the 𝑗th sentence, ℎ𝑗
𝑇𝑊𝑠𝑎𝑙𝑑

represents the salience of the sentence with respect to the article, ℎ𝑗
𝑇𝑊𝑟𝑒𝑑 tanh(𝑂𝑗−1) obtains the

redundancy of the sentence with respect to the current representation of the summary, 𝑊𝑝𝑝𝑗 is the

position of the sentence with respect to the article. 𝑂𝑗−1 is calculated using Equation (13)

𝑂𝑗−1 = 𝐺𝑅𝑈(𝑆𝑒𝑙𝑗−1𝑟𝑗−1,𝑂𝑗−2) 𝑗 ≥ 2 (13)

where 𝑆𝑒𝑙𝑗−1∈ ∈ {0,1}, 𝑂0 a zero vector.

We do not follow the loss function of the literature [21,22], where they used the negative log-

likelihood. We use cross entropy loss as the loss function, as shown in Equation (14)

𝐿𝑒𝑥𝑡 = −
1

𝑀
∑(𝑔𝑗 𝑙𝑜𝑔 𝛽𝑗 + (1 − 𝑔𝑗) 𝑙𝑜𝑔(1 − 𝛽𝑗))

𝑀

𝑗=1

 (14)

where 𝑔𝑗 ∈ {0,1} is the ground-truth label for the sentence and M is the number of sentences. When

𝑔𝑗 = 1, it suggests that the 𝑗th sentence should be attended to help abstractive summarization. 𝛽𝑗 is

the normalize attention weights using softmax(), as shown in Equation (15)

𝛽𝑗 =
𝑒𝑥𝑝 (𝑃(𝑦𝑗 = 1|ℎ𝑗 , 𝑂𝑗 , 𝑑))

∑ 𝑒𝑥𝑝 (𝑃(𝑦𝑗 = 1|ℎ𝑗 , 𝑂𝑗−1, 𝑑))𝑀
𝑗=1

 (15)

In the end-to-end training phrase, 𝛽𝑗 as the sentence-level attention will be focused on abstract

summaries.

Essentially, our extraction model is a binary classifier, which classifies whether the sentences in

the input text sequence are important or not.

Figure 4. The self-attention unit.

For extractor, each sentence is viewed sequentially again, where a logistic layer makes a binary
decision as to whether that sentence belongs to the summary, as shown in Equation (12)

P
(
y j = 1

∣∣∣h j, O j, d
)
= σ

(
Wch j + hT

j Wsald− hT
j Wredtanh

(
O j−1

)
+ Wpp j + b

)
(12)

where y j is a binary variable indicating whether the jth sentence is included in the summary, h j is
the hidden state of bi-GRU at the jth time step, O j−1 is the dynamic representation of the summary
before the jth time step, d is the document vector, Wc, Wsal, Wred, Wp, and b are all learnable parameters.
The expression Wch j denotes the information content of the jth sentence, hT

j Wsald represents the salience

of the sentence with respect to the article, hT
j Wredtanh

(
O j−1

)
obtains the redundancy of the sentence

with respect to the current representation of the summary, Wpp j is the position of the sentence with
respect to the article. O j−1 is calculated using Equation (13)

O j−1 = GRU
(
Sel j−1r j−1,O j−2

)
j ≥ 2 (13)

where Sel j−1∈ ∈ {0, 1}, O0 a zero vector.
We do not follow the loss function of the literature [21,22], where they used the negative

log-likelihood. We use cross entropy loss as the loss function, as shown in Equation (14)

Lext = − 1
M

M∑

j=1

(
g j log β j +

(
1− g j

)
log

(
1− β j

))
(14)

where g j ∈ {0, 1} is the ground-truth label for the sentence and M is the number of sentences. When
g j = 1, it suggests that the jth sentence should be attended to help abstractive summarization. β j is the
normalize attention weights using softmax(), as shown in Equation (15)

β j =
exp

(
P
(
y j = 1

∣∣∣h j, O j, d
))

∑M
j=1 exp

(
P
(
y j = 1

∣∣∣h j, O j−1, d
)) (15)

In the end-to-end training phrase, β j as the sentence-level attention will be focused on
abstract summaries.

437

Appl. Sci. 2019, 9, 4701

Essentially, our extraction model is a binary classifier, which classifies whether the sentences in
the input text sequence are important or not.

3.4. Abstraction Model

Another part of our method is an abstraction model that rewrites the previously selected key
sentences and then generates a concise and readable summary. We use the pointer-generator network
proposed by [6]. The pointer-generator network facilitates copying words from the source text via
pointing [16], which improves accuracy and processing ability of OOV words, while retaining the
ability to generate new words [6]. The network contains an encoder and a decoder and can be seen as
a balance between extractive and abstractive methods. Many similar studies [6,7,11] show that such a
model can effectively improve the performance of text summary. More details of the network can be
found in the literature [6].

Although we used the pointer-generator network, we made some changes to improve the
performance and accuracy of the model. Compared with the vanilla network [6], there are some
differences: first, inspired by [10], the new network introduces the updated word attention combined
with sentence-level and word-level attentions as same as [10]; second, we replace the LSTM in the
network with the GRU, since the GRU is simpler and requires fewer parameters; third, the two models
input different amounts of data, when the article reaches 400 tokens the input of the vanilla network
is truncated, which causes loss of information, the input of the new network is the key sentences
from aforementioned extraction model; fourth, the word embedding of two models are different,
the word2vec is used for the vanilla pointer-generator network, the BERT is used in our abstractive
network. In addition, the WordPiece tokenizer can help to process the OOV words. The architecture of
the updated pointer-generator network is shown in Figure 5.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 19

3.4. Abstraction Model

Another part of our method is an abstraction model that rewrites the previously selected key

sentences and then generates a concise and readable summary. We use the pointer-generator network

proposed by [6]. The pointer-generator network facilitates copying words from the source text via

pointing [16], which improves accuracy and processing ability of OOV words, while retaining the

ability to generate new words [6]. The network contains an encoder and a decoder and can be seen

as a balance between extractive and abstractive methods. Many similar studies [6,7,11] show that

such a model can effectively improve the performance of text summary. More details of the network

can be found in the literature [6].

Although we used the pointer-generator network, we made some changes to improve the

performance and accuracy of the model. Compared with the vanilla network [6], there are some

differences: first, inspired by [10], the new network introduces the updated word attention combined

with sentence-level and word-level attentions as same as [10]; second, we replace the LSTM in the

network with the GRU, since the GRU is simpler and requires fewer parameters; third, the two

models input different amounts of data, when the article reaches 400 tokens the input of the vanilla

network is truncated, which causes loss of information, the input of the new network is the key

sentences from aforementioned extraction model; fourth, the word embedding of two models are

different, the word2vec is used for the vanilla pointer-generator network, the BERT is used in our

abstractive network. In addition, the WordPiece tokenizer can help to process the OOV words. The

architecture of the updated pointer-generator network is shown in Figure 5.

B
i-G

R
U

B
i-G

R
U

B
i-G

R
U

B
i-G

R
U

Context vector

G
R

U

G
R

U

G
R

U

output

U
p

d
a

ted

A
tten

tio
n

D

istrib
u

tion

V
o

ca
bu

lar
y

D

istrib
u

ti
o

n

...

<sos> y1 y2

BERT word embedding

E
n

co
d

er
H

id
d

en

states

D
eco

d
e

r
H

id
d

en

states

∗ (1 − 𝑝𝑔𝑒𝑛) 𝑝𝑔𝑒𝑛

Figure 5. Model of pointer-generator network [10].

There is a lot of evidence that attention mechanism is very important for NLP tasks (e.g.,

[5,19,23]). We use the sentence-level modulate the word-level attention such that words in less

attended sentences are less likely to be generated [10]. Take the simple scalar multiplication of the

aforementioned sentence attention 𝛽𝑚 in sec 3.3 and the word attention 𝛼𝑛
𝑡 of the 𝑚th sentence,

and then renormalize the result into the new attention. The updated word attention 𝜇𝑛
𝑡 ,

𝜇𝑛
𝑡 =

𝛼𝑛
𝑡 × 𝛽𝑚

∑ 𝛼𝑛
𝑡 × 𝛽𝑚𝑛

 (16)

The final probability distribution of word 𝑤 is related to the updated word attention 𝜇𝑡 as

follows

Figure 5. Model of pointer-generator network [10].

There is a lot of evidence that attention mechanism is very important for NLP tasks (e.g., [5,19,23]).
We use the sentence-level modulate the word-level attention such that words in less attended sentences
are less likely to be generated [10]. Take the simple scalar multiplication of the aforementioned sentence
attention βm in sec 3.3 and the word attention αt

n of the mth sentence, and then renormalize the result
into the new attention. The updated word attention µt

n,

438

Appl. Sci. 2019, 9, 4701

µt
n =

αt
n × βm∑

n α
t
n × βm

. (16)

The final probability distribution of word w is related to the updated word attention µt as follows

P f inal(w) = pgen(h∗)Pvocab(h∗, w) +
(
1− pgen(h∗)

) ∑

n:wn=w
µt

n (17)

h∗n =
∑

n
µt

nhn (18)

where pgen(h∗) ∈ [0, 1] is the generating probability (see Equation (8) in [6]), Pvocab(h∗, w) is the probability
distribution over word w being decoded, h∗ is the context vector, a function of the updated word
attention µt, hn is the encoder hidden state for the nth word.

During pre-training, the loss is the negative log likelihood, we minimize the loss as

Labs = − 1
T

T∑

t=1

log P f inal
(
w∗t ,µ

t
)

(19)

where w∗t is the target word in the reference abstractive summary at the time step t. The coverage
mechanism [6] is also used to prevent the abstractor from repeatedly putting the focus on the same
point. In each decoder step t, the coverage vector ct is calculated as follows, which is the sum of
attention over all previous timesteps

ct =
t−1∑

t′=1

µt′ (20)

Moreover, coverage loss Lcov is calculated as

Lcov =
1
T

T∑

t=1

N∑

n=1

min
(
µt, ct

n

)
(21)

We also apply the inconsistency loss as same as [10], the inconsistency loss is calculated by
Equation (22)

Linc =
T∑

t=1

log

1
|κ|

∑

n∈κ
αt

n × βm

 (22)

where κ is the set of top K attended words and T is the number of words in the summary. In conclusion,
the final loss of abstraction model is

L f inal_abs = Labs + λ1Lcov + λ2Linc. (23)

where λ1, λ2 are hyper-parameters.

3.5. Training Procedure

The training process of our method is divided into two phases: (1) pre-training phase, (2) full
training phase. Without well-trained extractor, the extractor would often select irrelevant sentences,
and without well-trained abstractor, the extractor would get noisy reward. We first pre-train the
extractor by minimizing Lext in Equation (14) and the abstractor by minimizing L f inal_abs in Equation
(23), respectively, and then, we apply standard policy gradient methods of reinforcement learning to
bridge together these two networks and to train the whole model in an end-to-end fashion.

439

Appl. Sci. 2019, 9, 4701

3.5.1. Pre-Training

The sentences with high informativity are our goal of the extractor, the extracted sentences should
contain as much information as possible to generate an abstract summary. In order to train the
extractive model, we need ground truth labels for each document, but our train corpus only contains
human written abstractive summaries, so we need to convert the abstractive summaries to extractive
labels. Similar to the extractive model of [22], we compute the ROUGE-L recall score [27] between
sentence and the reference abstractive summary, and measure the informativity of each sentence in the
document by score. We sort and select the sentences in order from high to low. We add one sentence
at a time if the new sentence can increase the score of all the selected. The selected sentences should
be the ones that maximize the ROUGE score with respect to gold summaries. Finally, we obtain the
ground truth labels and train our extraction model by minimizing Equation 14. We use the ROUGE
scores of the selected sentences as sentence-level attention of the corresponding sentences, respectively.

When pre-training, the abstractor takes ground truth sentences of the previously extracted as
input. The sentence-level attention of these input sentences is viewed as hard attention, which involves
the calculation of attention consistency. In the pre-training stage, we finally get these two well-trained
extractor and abstractor.

3.5.2. End-to-End Training

During full training stage, we employ a hybrid extractive-abstractive architecture, with policy
gradient of reinforcement learning to bridge together the aforementioned two pre-trained networks.
We first use an extractor agent to select important sentences and then employ an abstractor to paraphrase
each of these extracted sentences. In this stage, RL training work is as follows: if a good sentence is
selected by the extractor, the ROUGE match would be high after the abstractor paraphrase and thus
the action is encouraged. If a bad sentence is selected, the generated sentence would not match the
reference summary after rewrites and if the ROUGE score is low, the action is discouraged.

3.6. Reinforcement Learning

The abstraction model is the seq2seq model with copy mechanism, which can compress extracted
sentences into short text. We use reinforcement learning to connect the two models to form a unified
model for optimal training. We regard the existing training data as the environment, and the extractive
and abstractive models as agents of reinforcement learning. The agent observes the state from the
environment and then performs the extraction and abstraction. The abstraction summary is more
similar to the reference summary in the environment, we will get the higher score of the reward. If the
final summary does not match the reference summary, will get a lower score. Our reward function is
shown in Formula (24).

freward = ROUGELF1
(
sgold, f2(s′)

)
(24)

The corresponding relationship between the agent part and the environment part in reinforcement
learning is shown in Figure 6.

440

Appl. Sci. 2019, 9, 4701

Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 19

sentences should be the ones that maximize the ROUGE score with respect to gold summaries.

Finally, we obtain the ground truth labels and train our extraction model by minimizing Equation 14.

We use the ROUGE scores of the selected sentences as sentence-level attention of the corresponding

sentences, respectively.

When pre-training, the abstractor takes ground truth sentences of the previously extracted as

input. The sentence-level attention of these input sentences is viewed as hard attention, which

involves the calculation of attention consistency. In the pre-training stage, we finally get these two

well-trained extractor and abstractor.

3.5.2. End-to-End Training

During full training stage, we employ a hybrid extractive-abstractive architecture, with policy

gradient of reinforcement learning to bridge together the aforementioned two pre-trained networks.

We first use an extractor agent to select important sentences and then employ an abstractor to

paraphrase each of these extracted sentences. In this stage, RL training work is as follows: if a good

sentence is selected by the extractor, the ROUGE match would be high after the abstractor paraphrase

and thus the action is encouraged. If a bad sentence is selected, the generated sentence would not

match the reference summary after rewrites and if the ROUGE score is low, the action is discouraged.

3.6. Reinforcement Learning

The abstraction model is the seq2seq model with copy mechanism, which can compress

extracted sentences into short text. We use reinforcement learning to connect the two models to form

a unified model for optimal training. We regard the existing training data as the environment, and

the extractive and abstractive models as agents of reinforcement learning. The agent observes the

state from the environment and then performs the extraction and abstraction. The abstraction

summary is more similar to the reference summary in the environment, we will get the higher score

of the reward. If the final summary does not match the reference summary, will get a lower score.

Our reward function is shown in Formula (24).

𝑓𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑅𝑂𝑈𝐺𝐸𝐿𝐹1 (𝑠𝑔𝑜𝑙𝑑 , 𝑓2(𝑠
′)) (24)

The corresponding relationship between the agent part and the environment part in

reinforcement learning is shown in Figure 6.

RL Agent

Extractor Abstractor

Environment
<doc,ref_summary>...

observation
Action:

Extract+abstract𝑓𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑅𝑂𝑈𝐺𝐸(𝑠𝑔𝑜𝑙𝑑 , 𝑓2(𝑠))

Figure 6. Illustration of reinforcement learning for summary model.

3.7. Redundancy Issue

In our work, we first perform the extraction operation to obtain the extracted sentences

semantically independent of each other, which greatly reduces the frequency of common redundancy

problems in the abstraction model. As the extracted sentences inescapable have semantic crossover,

there is still a little redundancy. For simplicity, we did not use the same coverage mechanism as in

Figure 6. Illustration of reinforcement learning for summary model.

3.7. Redundancy Issue

In our work, we first perform the extraction operation to obtain the extracted sentences semantically
independent of each other, which greatly reduces the frequency of common redundancy problems in
the abstraction model. As the extracted sentences inescapable have semantic crossover, there is still
a little redundancy. For simplicity, we did not use the same coverage mechanism as in the previous
work [6] to define a coverage vector, sum up the previous time step’s attention, and then use the
coverage loss function to avoid repeatedly paying attention to the same position. We employ the same
reranking strategy as [7,9]. When conducting beam-search, the same triples are not allowed, and
then all combinations of the generated summary sentence bundles are reranked, and the smallest and
shortest combination are selected as the final summary.

4. Experiments

4.1. Datasets

The proposed method uses two well-known datasets as our experimental dataset: CNN/Daily
Mail and DUC2002. The first dataset proposed by [28] for reading comprehension tasks and then
reused for extractive [22] and abstractive text summarization tasks [6]. In recent years, the dataset
has been widely used in automatic text summary tasks due to its large data volume and long text
content. In this dataset, there are 287,113 data for training, 13,368 for validation, and 11,490 for testing.
On average, there are about 28 sentences per document in the training set [22]. The basic statistics of
the dataset are shown in Table 1. This dataset includes the anonymous version and the non-anonymous
version. The former is that all entity names of the data are replaced by special tag words, while the
latter is the original data. We adopt the non-anonymous version. The CNN/Daily Mail data consists of
several document summary pairs, each of which corresponds to a few highlighted sentences in manual
annotated documents.

Table 1. Basic statistics of the CNN/Daily Mail dataset.

Train Validation Test

Pairs of data 287,113 13,368 11,490
Article length 749 769 778

Summary length 55 61 58

The second dataset is DUC2002 (http://www-nlpir.nist.gov/projects/duc/guidelines/2002.html),
which is only used as a test-only test set since the size of the dataset is small. It contains 567 news
articles and the corresponding single-document summarization, or the multi-document summarization
generated for the same topics. In our work, we used the single-document summarization task. To verify

441

Appl. Sci. 2019, 9, 4701

the generalization ability of models, we use the DUC article as the test input of our trained model.
We evaluate the results using the official ROUGE F1 script.

4.2. Detail

We use PyTorch (https://pytorch.org) as our deep learning framework, and then we use the python
package PyTorch-Transformers (https://github.com/huggingface/pytorch-transformers) as our BERT
encoder, formerly known as pytorch-pretrained-bert. It should be noted that we do not need special
tokens (e.g., CLS, SEP) when encoding sentences.

Instead of extracting the list of words from the dataset as previous work ([6,9], etc.), we directly
use the vocabulary of the pre-trained BERT model as our vocabulary. The BERT model has two types
of vocabulary: the case-sensitive and the case-insensitive, we chose the case-insensitive vocabulary
with a total of 30,522 words for the experiment. For comparison, in our experiments, we use the word
embedding with 768 dimensions and 1024 dimensions as the word vector representation respectively.

We use the Adam optimizer [29] and apply early stopping based on the validation set. We apply
gradient clipping using 2-norm of 2.0. The batch size is 32 for all the training. For all GRU-RNNs, the
hidden layer number is set to 1, the hidden state size is set to 256, so the concatenated hidden state size
is 512, and the sentence attention context vector also has a dimension of 512. The learning rate of ML
(Machine Learning) is set to 3× 10−4. The maximum length of the input text sequence sentences is set
to 100, the maximum number of sentences is set to 60.

When pre-training the extractor, k is a hyper-parameter of Equation (10), k is set to 256.
When pre-training the abstractor, the maximum length of the sentence of the summary is set to
30, λ1, λ2 are all set to 1 in Equation (23). When full training end-to-end model, the discount factor of
reinforcement learning is set to 0.95, and the early stop factor is set to 3.

4.3. Metrics

Pyrouge package was used to write evaluation scripts for evaluation, and the ROUGE
(Recall-Oriented Understudy for Gisting Evaluation) was used as the standard for experimental
evaluation. The ROUGE standard was first used in reference [27] and subsequently became the metric
for evaluating the generated summary model. The ‘similarity’ between the generated summary and
the reference summary is evaluated by calculating the same number of units. Among them, rouge-1
(unigram), rouge-2 (bi-gram) and rouge-L (the longest common subsequences) are the most widely
used in single document abstract.

For all datasets, according to previous works [6,9,10], we use ROUGE-1, ROUGE-2, and ROUGE-L
on full-length F1 as evaluation metrics in the reported experimental results.

4.4. Baselines

To further illustrate the superiority of the proposed model over two datasets, we compare it with
several baseline models. Note that, most models serve as baselines on the CNN/Daily Mail dataset.
All comparison models are described in detail as follows:

• Leading sentences (Lead-3): It directly extracts the first three sentences of the article as a summary.
This model as extractive baseline.

• Refresh: The model proposed by [3], takes the reinforcement learning objective as the extraction
baseline and optimizes the rouge evaluation index globally.

• SummaRuNNer: It is proposed by [22] to generate the summary by extracting some key subset of
the content for the article, as an extractive baseline.

• HSSAS: It is proposed by [21] to employ the self-attention mechanism to create a good sentence
and document embeddings, as an extractive baseline.

• NeuSum: It is proposed by [30] to extract the document summarization by jointly learning to
score and select sentences, as an extractive baseline.

442

Appl. Sci. 2019, 9, 4701

• Pointer-generator+coverage: It is proposed by [6] to copy words from the source article and retain
the ability to generate new words, as an abstractive baseline.

• Inconsistency loss: The method proposed by [10], which uses sentence-level attention to modulate
the word-level attention, introduces inconsistency loss function to penalize the inconsistency
between two attentions, as an abstractive baseline.

• DCA: The method proposed by [11], which encodes long text with the deep communication
agents and then connects to a single decoder to generate a focused and coherent summary through
reinforcement learning, is the best abstract model in 2018 and serve as an abstractive baseline.

• RNN-ext+abs+rl+rerank: It is proposed by [9], which first selects salient sentences and then
rewrites them abstractly to generate a concise overall summary, as an abstractive baseline.

5. Result and Analysis

Due to our model employing a hybrid approach of extractive and abstractive, we can not
only generate the final abstract summaries, but also the extract summaries. So three groups of
experiments were conducted on CNN/Daily Mail dataset: the extraction experimental group, the
complete experimental group, and the comparison experimental group. In the comparison of the
experimental group, we compared the effects of the base one and the large model of BERT, the effects
of the tokenizers, and the effects of reinforcement learning. The results of extractive experiments are
shown in Table 2, and full experiments are shown in Table 3.

Table 2. Performance comparison of models with respect to the extractive baselines on CNN/Daily Mail.

Model R-1 R-2 R-L R-AVG

Lead-3 [6] 40.34 17.70 36.57 31.54
Refresh [3] 40.00 18.20 36.60 31.60

SummaRuNNer [22] 39.9 16.3 35.1 30.43
HSSAS [21] 42.3 17.8 37.6 32.57

NeuSUM [30] 41.59 19.01 37.98 32.86
(m1) BEAR (ext+base) 42.43 20.36 37.23 33.34
(m2) BEAR (ext +large) 42.54 20.35 37.24 33.38

Table 3. Performance comparison of models with respect to the abstractive baselines on CNN/Daily Mail.

Model R-1 R-2 R-L R-AVG

Pointer Generator + Coverage [6] 39.53 17.28 36.38 31.06
Inconsistency loss [10] 40.68 17.97 37.13 31.93

DCA [11] 41.69 19.47 37.92 33.11
Rnn-ext + abs + RL + rerank [9] 40.88 17.80 38.54 32.41

(m3) BEAR (ext + abs + base) 39.84 18.83 37.35 32.01
(m4) BEAR (ext + abs + RL + base) 40.91 19.88 38.45 33.08

(m5) BEAR (base + nature) 40.95 17.89 38.55 32.80
(m6) BEAR (base + WordPiece) 41.76 20.20 39.39 33.78
(m7) BEAR (large + WordPiece) 41.95 20.26 39.49 33.9

5.1. Result

In the extraction experimental group, only sentences are selected without rewriting, in other
words, the abstraction fitting function is f2 (s′) = s′, and the rest are the same as the full experiment.
As shown in Table 2, the experimental results of m1, m2 have many advantages in the ROUGE-1
standard compare with extractive baselines [3,6,22,30], and are slightly higher than the method in the
literature [21]. In the ROUGE-2 standard, our method has an obvious effect. In the ROUGE-L standard,
our model is superior to the models Refresh [3] and Lead-3 [6], but lower than the model NeuSUM [30].

443

Appl. Sci. 2019, 9, 4701

In the complete experimental group, the experimental results of our model are significantly
improved compared with the earlier work and baseline model. As we all know, we obtain the highest
ROUGE score for the current abstraction summary in the CNN/Daily Mail dataset. As shown in Table 3,
compared with the baseline model [9], the scores of ROUGE-1, ROUGE-2, ROUGE-L, and R-AVG are
respectively improved 1.07%, 2.46%, 0.95%, and 1.46%.Compared with the highest scoring model [11]
in 2018, the score of Rouge-1 is only slightly improved, but these two metrics of Rouge-2 and Rouge-L
are significantly improved, and these two models we have fully trained are also significantly better
than the abstraction methods [6,10].

We also compared our best model with the best extractive baseline model and the best abstractive
baseline model. The comparison bar chart is shown in Figure 7.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 19

We also compared our best model with the best extractive baseline model and the best

abstractive baseline model. The comparison bar chart is shown in Figure 7.

Figure 7. Performance comparison with respect to the best baselines on CNN/Daily Mail.

5.2. Ablation Study

In the comparison group, three comparison experiments are analyzed as follows:

Pre-trained BERT model with multiple versions, we used two versions in experiments: the base-

uncased and the large-uncased. In terms of pre-training complexity and the dimension of word

embeddings, the large-uncased version should be more powerful than the base-uncased. As shown

in Figure 8, in our extraction experiment (m1, m2) and the full experiment (m6, m7), the experimental

results are very comparable, and the large results are slightly better than the base version results, and

the difference in the performance of these two versions was not as much as we expected.

Figure 8. Performance comparison of the BERTbase mode with respect to the BERTlarge model of BERT.

When comparing the effect of WordPiece (m6) and natural (m5) tokenizer, the improvement of

WordPiece tokenizer is more obvious than that of the traditional tokenizer, with an average increase

of nearly 1 percentage point. There are two main reasons for this. Firstly, BERT adopts the WordPiece

tokenizer in their training process, and the word embedding obtained is more suitable for the

tokenizer. Secondly, it shows that the WordPiece tokenizer is more effective than natural tokenizer,

and the new tokenizer can capture richer semantic features. The comparison between two tokenizers

is shown in Figure 9.

0

5

10

15

20

25

30

35

40

45

ROUGE-1 ROUGE-2 ROUGE-L R-AVG

HSSAS DCA our

0

10

20

30

40

50

ROUGE-1 ROUGE-2 ROUGE-L R-AVG

ext-base(m1) ext-large(m2) full-base(m6) full-large(m7)

Figure 7. Performance comparison with respect to the best baselines on CNN/Daily Mail.

5.2. Ablation Study

In the comparison group, three comparison experiments are analyzed as follows:
Pre-trained BERT model with multiple versions, we used two versions in experiments: the

base-uncased and the large-uncased. In terms of pre-training complexity and the dimension of word
embeddings, the large-uncased version should be more powerful than the base-uncased. As shown in
Figure 8, in our extraction experiment (m1, m2) and the full experiment (m6, m7), the experimental
results are very comparable, and the large results are slightly better than the base version results, and
the difference in the performance of these two versions was not as much as we expected.

444

Appl. Sci. 2019, 9, 4701

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 19

We also compared our best model with the best extractive baseline model and the best

abstractive baseline model. The comparison bar chart is shown in Figure 7.

Figure 7. Performance comparison with respect to the best baselines on CNN/Daily Mail.

5.2. Ablation Study

In the comparison group, three comparison experiments are analyzed as follows:

Pre-trained BERT model with multiple versions, we used two versions in experiments: the base-

uncased and the large-uncased. In terms of pre-training complexity and the dimension of word

embeddings, the large-uncased version should be more powerful than the base-uncased. As shown

in Figure 8, in our extraction experiment (m1, m2) and the full experiment (m6, m7), the experimental

results are very comparable, and the large results are slightly better than the base version results, and

the difference in the performance of these two versions was not as much as we expected.

Figure 8. Performance comparison of the BERTbase mode with respect to the BERTlarge model of BERT.

When comparing the effect of WordPiece (m6) and natural (m5) tokenizer, the improvement of

WordPiece tokenizer is more obvious than that of the traditional tokenizer, with an average increase

of nearly 1 percentage point. There are two main reasons for this. Firstly, BERT adopts the WordPiece

tokenizer in their training process, and the word embedding obtained is more suitable for the

tokenizer. Secondly, it shows that the WordPiece tokenizer is more effective than natural tokenizer,

and the new tokenizer can capture richer semantic features. The comparison between two tokenizers

is shown in Figure 9.

0

5

10

15

20

25

30

35

40

45

ROUGE-1 ROUGE-2 ROUGE-L R-AVG

HSSAS DCA our

0

10

20

30

40

50

ROUGE-1 ROUGE-2 ROUGE-L R-AVG

ext-base(m1) ext-large(m2) full-base(m6) full-large(m7)

Figure 8. Performance comparison of the BERTbase mode with respect to the BERTlarge model of BERT.

When comparing the effect of WordPiece (m6) and natural (m5) tokenizer, the improvement of
WordPiece tokenizer is more obvious than that of the traditional tokenizer, with an average increase of
nearly 1 percentage point. There are two main reasons for this. Firstly, BERT adopts the WordPiece
tokenizer in their training process, and the word embedding obtained is more suitable for the tokenizer.
Secondly, it shows that the WordPiece tokenizer is more effective than natural tokenizer, and the new
tokenizer can capture richer semantic features. The comparison between two tokenizers is shown in
Figure 9.
Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 19

Figure 9. Performance comparison of tokenizer mode.

The reinforcement learning method was adopted in the experiment except model m3. Since

many previous works [7,10,11] have proved the effectiveness of reinforcement learning, this paper

only used the combination of the base model and WordPiece tokenizer for comparison and did not

use other combinations of the experiment for cross-comparison. By comparing the experimental

model (m3) with the model (m4), the scores of the model (m4) using reinforcement learning are more

than 1 percentage point higher than that of the model (m3), which proves that the effect of

reinforcement learning is quite significant in our experiment. The effect of reinforcement learning is

shown in Figure 10.

Figure 10. Performance comparison of the effect of reinforcement learning.

Also, by comparing model (m3) with the rnn-ext+abs model in paper [9], all the scores of the

model (m3) are more than 1 percentage point higher, which further proves that the word embedding

vector of BERT has the same result as reinforcement learning in our experiment and has the same

significant effect.

0

5

10

15

20

25

30

35

40

45

ROUGE-1 ROUGE-2 ROUGE-L R-AVG

Nature tokenizer WordPiece tokenizer

0

5

10

15

20

25

30

35

40

45

ROUGE-1 ROUGE-2 ROUGE-3 R-AVG

w/o RL(m4) w RL(m4)

Figure 9. Performance comparison of tokenizer mode.

The reinforcement learning method was adopted in the experiment except model m3. Since many
previous works [7,10,11] have proved the effectiveness of reinforcement learning, this paper only used
the combination of the base model and WordPiece tokenizer for comparison and did not use other
combinations of the experiment for cross-comparison. By comparing the experimental model (m3) with
the model (m4), the scores of the model (m4) using reinforcement learning are more than 1 percentage
point higher than that of the model (m3), which proves that the effect of reinforcement learning is quite
significant in our experiment. The effect of reinforcement learning is shown in Figure 10.

445

Appl. Sci. 2019, 9, 4701

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 19

Figure 9. Performance comparison of tokenizer mode.

The reinforcement learning method was adopted in the experiment except model m3. Since

many previous works [7,10,11] have proved the effectiveness of reinforcement learning, this paper

only used the combination of the base model and WordPiece tokenizer for comparison and did not

use other combinations of the experiment for cross-comparison. By comparing the experimental

model (m3) with the model (m4), the scores of the model (m4) using reinforcement learning are more

than 1 percentage point higher than that of the model (m3), which proves that the effect of

reinforcement learning is quite significant in our experiment. The effect of reinforcement learning is

shown in Figure 10.

Figure 10. Performance comparison of the effect of reinforcement learning.

Also, by comparing model (m3) with the rnn-ext+abs model in paper [9], all the scores of the

model (m3) are more than 1 percentage point higher, which further proves that the word embedding

vector of BERT has the same result as reinforcement learning in our experiment and has the same

significant effect.

0

5

10

15

20

25

30

35

40

45

ROUGE-1 ROUGE-2 ROUGE-L R-AVG

Nature tokenizer WordPiece tokenizer

0

5

10

15

20

25

30

35

40

45

ROUGE-1 ROUGE-2 ROUGE-3 R-AVG

w/o RL(m4) w RL(m4)

Figure 10. Performance comparison of the effect of reinforcement learning.

Also, by comparing model (m3) with the rnn-ext+abs model in paper [9], all the scores of the
model (m3) are more than 1 percentage point higher, which further proves that the word embedding
vector of BERT has the same result as reinforcement learning in our experiment and has the same
significant effect.

5.3. Generalization

Because the DUC2002 dataset is too small to train such a complex model, we only use it as our
test dataset. To test the generalization of our model, we directly use the trained model to summarize
the DUC article. Table 4 shows the generalization of our method to the DUC2002 dataset. The results
show that our model has better generalization ability than the other two models. The results of
pointer-generator model and rnn-ext+abs+RL model are obtained from [9].

Table 4. Generalization to DUC-2002(F1).

Models R-1 R-2 R-L R-AVG

Pointer-generator 37.22 15.78 33.90 28.97
Rnn-ext + abs + RL 39.46 17.34 36.72 31.17

BEAR (m7) 40.53 19.85 38.37 32.92

5.4. Redundancy Issue

Extracted sentences can effectively reduce the redundancy in the abstract model from the source.
For there may be some semantic cross, we use the rerank strategy mentioned earlier. As shown in
Table 3, our model evaluation score is higher than these two models in [6,10]. As shown in Table 5, the
sample sentences are concise and clear. Experiments show that our strategy can effectively reduce
redundancy and improve the accuracy of the evaluation.

Table 5. Speed comparison between BEAR, rnn-ext+abs+RL, and pointer-generator.

Pre-Traing Training Total
Training Test GPU

BEAR 19 h 6 h 22 h 0.67 h K80
Rnn-ext + abs + RL 4.15 h 15.56 h 19.71 h K40
Pointer-generator 76 h K40

446

Appl. Sci. 2019, 9, 4701

5.5. Training Speed

In the experiment, we train on a single Tesla K80 GPU, the extracted pre-training time is about 6 h,
the abstracted pre-training time is about 19 h, the mixed training time is about 3 h, and the test time is
about 40 min. Since extraction training and abstraction training can be carried out in parallel, the total
experimental time is about 23 h. When training the summary model, we use the extracted statement
training model instead of the whole document, and we can draw a conclusion that training with a few
sentences is faster than training with the whole document. The experiment shows that this paper is
faster than the pointer-generator [6] in the calculation, but the speed is not as fast as that of [9], because
the high dimension of BERT word embedding increases the computational complexity. The speed
comparison results are shown in Table 5.

In addition, the resource consumption of deep learning is increasingly a concern for researchers,
and we also estimate the carbon footprint of one training. According to the search result, the power of
Tesla K80 GPU is 0.3 kw/h, and the average carbon emission is 0.433 kg/kwh (data from the U.S. EIA).
It can be estimated that our carbon footprint is about 3 kg.

5.6. Case Study

We present two examples in Table 6 for comparison. As we can intuitively see from the sample of
the final summary, it is more concise, as shown in Table 6. The strategy of eliminating repetition can
effectively reduce semantic crossover and make the content of the summary more compact, which not
only maintains semantic relevance, but also takes into account the readability and fluency of language.

Table 6. Examples of generated summaries on CNN/Daily Mail dataset.

Reference:

“17 americans were exposed to the ebola virus while in sierra leone in march”,
“another person was diagnosed with the disease and taken to hospital in maryland”,
“national institutes of health says the patient is in fair condition after weeks of treatment.”

Model (m4):

five americans were monitored for three weeks at an omaha hospital.
one of the five had a heart—related issue on saturday and has been discharged but hasn’t left the area, taylor
wilson wrote.
they were exposed to ebola in sierra leone in march but none developed the virus.
the others have already gone home.

Model (m7):

five americans were monitored for three weeks at an omaha, nebraska.
they all had contact with a colleague who was diagnosed with the disease.
the last of 17 patients who were being monitored are expected to be released by thursday.
more than 10,000 people have died in a west african epidemic of ebola.

Also, we can find that the first sentence of model m4 and model m7 is basically the same, while
the latter three sentences are quite different. Semantically, model m7 is more relevant to the reference
than model m4, and the second and fourth sentences of model m4 are somewhat off topic, which is the
main reason for the low score. The final summary of model m7, although different from the reference,
talks about the same thing.

6. Conclusions and Future Work

At present, BERT has achieved the most advanced performance in many NLP tasks, but few works
combine it with the extract model and abstract model for text summarization by the strategy gradient
of reinforcement learning. We propose a new method to combine these methods into a unified model
that has been validated in summary tasks or other tasks. Experiments show that the model proposed
in this paper achieves the best results in the CNN/Daily Mail dataset. In the future, we will select

447

Appl. Sci. 2019, 9, 4701

another pre-training model that is more suitable for the generative task and combine the fine-tuning
pre-training model with the abstractive summary task.

Author Contributions: Conceptualization, Q.W. and P.L.; Funding acquisition, P.L.; Methodology, Q.W.;
Project administration, Z.Z.; Resources, P.L. and Z.Z.; Software, Q.W.; Validation, Q.W.; Visualization, Q.W.;
Writing—original draft, Q.W.; Writing—review and editing, H.Y., Q.Z., and L.Z.

Funding: This work was supported by the National Social Science Fund(19BYY076), the Science Foundation of the
Ministry of Education of China (no. 14YJC860042), and the Shandong Provincial Social Science Planning Project
(no. 19BJCJ51/18CXWJ01/18BJYJ04/16CFXJ18).

Acknowledgments: Thanks to all commenters for their valuable and constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cheng, J.; Lapata, M. Neural summarization by extracting sentences and words. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016;
Volume 1, pp. 484–494.

2. Nallapati, R.; Zhou, B.; Santos, C.N.D.; Gulcehre, C.; Xiang, B. Abstractive text summarization using
sequence-to-sequence rnns and beyond. In Proceedings of the SIGNLL Conference on Computational
Natural Language Learning, Berlin, Germany, 11–12 August 2016; p. 280.

3. Narayan, S.; Cohen, S.B.; Lapata, M. Ranking sentences for extractive summarization with reinforcement
learning. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA, 2–4 June 2018;
pp. 1747–1759.

4. Yasunaga, M.; Zhang, R.; Meelu, K.; Pareek, A.; Srinivasan, K.; Radev, D. Graph-based neural multi-document
summarization. In Proceedings of the 21st Conference on Computational Natural Language Learning,
Vancouver, BC, Canada, 3–4 August 2017; pp. 452–462.

5. Rush, A.M.; Chopra, S.; Weston, J. A neural attention model for abstractive sentence summarization.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
Lisbon, Portugal, 17–21 September 2015; pp. 379–389.

6. See, A.; Liu, P.J.; Manning, C.D. Get to the point: Summarization with pointer-generator networks.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,
Vancouver, BC, Canada, 30 July–4 August 2017; pp. 1073–1083.

7. Paulus, R.; Xiong, C.; Socher, R. A deep reinforced model for abstractive summarization. In Proceedings of
the Sixth International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May
2018.

8. Li, P.; Bing, L.; Lam, W. Actor-critic based training framework for abstractive summarization. arXiv 2018,
arXiv:1803.11070V2.

9. Chen, Y.C.; Bansal, M. Fast abstractive summarization with reinforce-selected sentence rewriting.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne,
Australia, 15–20 July 2018; pp. 675–686.

10. Hsu, W.T.; Lin, C.K.; Lee, M.Y.; Min, K.; Tang, J.; Sun, M. A unified model for extractive and abstractive
summarization using inconsistency loss. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, Melbourne, Australia, 15–20 July 2018; pp. 132–141.

11. Celikyilmaz, A.; Bosselut, A.; He, X.; Choi, Y. Deep communicating agents for abstractive summarization.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, New Orleans, LA, USA, 2–4 June 2018; pp. 1662–1675.

12. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA,
2–7 June 2019; pp. 4171–4186.

448

Appl. Sci. 2019, 9, 4701

13. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings
of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada,
8–13 December 2014; pp. 3104–3112.

14. Cho, K.; Van, M.B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase
representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014;
pp. 1724–1734.

15. Gu, J.; Lu, Z.; Li, H.; Li, V.O.K. Incorporating copying mechanism in sequence-to-sequence learning.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin,
Germany, 7–12 August 2016; pp. 1631–1640.

16. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. In Proceedings of the International Conference on
Neural Information Processing Systems, Montreal, QC, Canada, 7–10 December 2015.

17. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning Cambridge; MIT Press: Cambridge, MA, USA,
1998; Volume 2.

18. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate.
Comput. Sci. 2014.

19. Lin, Z.; Feng, M.; Santos, C.N.D.; Yu, M.; Xiang, B.; Zhou, B. A Structured Self-Attentive Sentence Embedding.
arXiv 2017, arXiv:1703.03130.

20. Li, Z.; Wei, Y.; Zhang, Y.; Yang, Q. Hierarchical attention transfer network for cross-domain sentiment
classification. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans,
LA, USA, 2–7 February 2018.

21. Al-Sabahi, K.; Zuping, Z.; Nadher, M. A hierarchical structured self-attentive model for extractive document
summarization (hssas). IEEE Access 2018. [CrossRef]

22. Nallapati, R.; Zhai, F.; Zhou, B. Summarunner: A recurrent neural network based sequence model for
extractive summarization of documents. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 3075–3081.

23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 5998–6008.

24. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W. Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv 2016, arXiv:1609.08144V2.

25. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv 2014, arXiv:1412.3555.

26. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. Lstm: A search space odyssey.
IEEE Trans. Neural Netw. Learn. Syst. 2015, 28, 2222–2232. [CrossRef] [PubMed]

27. Lin, C.Y. ROUGE: A Package for Automatic Evaluation of summaries. In Proceedings of the Workshop on
Text Summarization Branches Out, Barcelona, Spain, 25–26 July 2004; pp. 74–81.

28. Hermann, K.M.; Kocisky, T.; Grefenstette, E.; Espeholt, L.; Kay, W.; Suleyman, M.; Blunsom, P.
Teaching Machines to Read and Comprehend. In Proceedings of the 28th International Conference
on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 1693–1701.

29. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. Comput. Sci. 2014.
30. Zhou, Q.; Yang, N.; Wei, F.; Huang, S.; Zhou, M.; Zhao, T. Neural document summarization by jointly

learning to score and select sentences. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, Melbourne, Australia, 15–20 July 2018; Volume 1, pp. 654–663.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

449

applied
sciences

Article

Multi-Turn Chatbot Based on Query-Context
Attentions and Dual Wasserstein Generative
Adversarial Networks

Jintae Kim 1, Shinhyeok Oh 1, Oh-Woog Kwon 2 and Harksoo Kim 1,*
1 Program of Computer and Communications Engineering, Kangwon National University,

Chuncheon 24341, Korea; wlsxo1119@kangwon.ac.kr (J.K.); osh7605@kangwon.ac.kr (S.O.)
2 Electronics and Telecommunications Research Institute, Daejeon 34129, Korea; ohwoog@etri.re.kr
* Correspondence: nlpdrkim@kangwon.ac.kr; Tel.: +82-33-250-6388

Received: 20 August 2019; Accepted: 16 September 2019; Published: 18 September 2019

Abstract: To generate proper responses to user queries, multi-turn chatbot models should selectively
consider dialogue histories. However, previous chatbot models have simply concatenated or
averaged vector representations of all previous utterances without considering contextual importance.
To mitigate this problem, we propose a multi-turn chatbot model in which previous utterances
participate in response generation using different weights. The proposed model calculates the
contextual importance of previous utterances by using an attention mechanism. In addition,
we propose a training method that uses two types of Wasserstein generative adversarial networks to
improve the quality of responses. In experiments with the DailyDialog dataset, the proposed model
outperformed the previous state-of-the-art models based on various performance measures.

Keywords: multi-turn chatbot; dialogue context encoding; WGAN-based response generation

1. Introduction

Chatbots are computer systems that feature natural conversation with people. Recently, generative
chatbots that generate responses directly by the models have been developed with advances in deep
learning. Based on the number of dialogue contexts that chatbots should consider to generate responses,
chatbot models are divided into two categories: single-turn and multi-turn. Single-turn chatbots
generate a response based on an immediately preceding utterance called a user’s query (i.e., a user’s
utterance just before the response). Multi-turn chatbots generate a response based on multiple previous
utterances, called a dialogue context, as well as a user’s query. Table 1 shows the differences between
the responses of single- and multi-turn chatbots.

Table 1. Examples of chitchat.

ID Speaker Utterance

(1) User I like pork.
(2) Chatbot Me too.
(3) User So I like Chinese food.
(4) Chatbot I prefer Korean foods to Chinese food.
(5) User Why?

(6-1) Chatbot-SING No reason.
(6-2) Chatbot-MULT Korean food is healthier.

In Table 1, Chatbot-SING and Chatbot-MULT are single- and multi-turn chatbots, respectively.
As shown, Chatbot-SING generates the short and safe response, “No reason” because it cannot

451

Appl. Sci. 2019, 9, 3908

look up any other previous utterances except the immediately preceding one, “Why?”. Compared
with Chatbot-SING, Chatbot-MULT generates the more context-aware response, “Korean foods are
healthier.”, because it can look up the full dialogue history. Although multi-turn chatbots are more
natural and informative, implementing multi-turn chatbots is not easy because they must determine
the previous utterances that are associated with a response and also the degree to which those previous
utterances affect the generation of a response. To overcome this problem, we propose a multi-turn
chatbot model in which previous utterances are effectively and differently considered to generate
responses using an attention mechanism. In addition, the proposed model uses two types of generative
adversarial network (GAN) architectures [1–4]: One maps a vector representation of a dialogue history
to a vector representation of a response, and the other maps a vector representation of a generated
response (i.e., a decoded response) to a vector representation of an original response (i.e., an encoded
response). The first GAN plays the role of generating a response vector associated with a dialogue
history, and the second GAN plays the role of generating a surface sentence (i.e., a sequence of words)
to realize a response vector.

The remainder of this paper is organized as follows: In Section 2, we review the previous
studies on generative chatbots, and in Section 3, we describe the proposed multi-turn chatbot model.
In Section 4, we explain the experimental setup and report some of our experimental results. We
provide a conclusion to our study in Section 5.

2. Previous Works

Most of the recent approaches on generative chatbots are primarily based on sequence-to-sequence
(Seq2Seq) learning. Seq2Seq is a supervised learning algorithm in which the input and the generated
output are each a sequence of words [5,6]. In general, Seq2Seq models consist of two recurrent neural
networks (RNNs): An RNN for encoding inputs and an RNN for generating outputs. Previous studies
have demonstrated that chatbots based on Seq2Seq models often respond with either a safe response
problem (i.e., the problem returning short and general responses such as “Okay” and “I see”) or a
semantically erroneous response [7,8]. A variational auto-encoder (VAE) is a continuous latent variable
model intended to learn a latent space using a given set of samples. The model consists of an encoder
and decoder: The encoder maps inputs into latent variables, and the decoder generates outputs that
are similar to the inputs based on the latent variables. As a result, VAEs represent high-level semantics
of the responses and help chatbots to generate various responses [9,10]. However, VAE models tend to
suffer from collapse problems, where the decoder learns to ignore the latent variable and simplifies the
latent variable to a standard normal distribution [11,12]. This problem has been partially solved by
learning latent variable space through adversarial learning [12]. In addition, various studies using
GAN architecture have been conducted [1–4]. However, adversarial learning for discrete tokens is
difficult because of non-differentiability [2,4]. To solve these problems, various studies have been
conducted, including those on a hybrid model of a GAN and reinforcement learning [4,13]. These
studies have problems when considering non-differentiability. Moreover, they must calculate the
word probability distribution of each step of the decoder to learn a discriminant model. In this study,
we propose a learning method that does not consider non-differentiability when learning using a
GAN because it uses the response vector generated by the decoder. To generate natural responses in
multi-turn dialogues, we propose an attention method between a query and its previous utterances
that helps chatbots selectively consider the given context.

3. Multi-Turn Chatbot Model Based on Dual Wasserstein Generative Adversarial Networks

The proposed model consists of three sub-modules: a query encoder, a query-to-response (QR)
mapper, and a response-to-response (RR) mapper, as shown in Figure 1.

452

Appl. Sci. 2019, 9, 3908
Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 8

Appl. Sci. 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci

Figure 1. Overall architecture of the proposed chatbot. RNN: recurrent neural network; FNN: fully-

connected neural network.

The query encoder returns a query vector embedding a current utterance 𝑈𝑛 (i.e., user query)

and a dialogue context composed of k previous utterances 𝑈𝑛−1, 𝑈𝑛−2, … , 𝑈𝑛−𝑘, by using RNNs and a

scaled dot product attention mechanism [14]. At training time, the QR mapper makes a query vector

similar to an RNN-encoded response vector (i.e., a vector of a next utterance 𝑈𝑛+1; a vector of a

chatbot’s response) through an adversarial learning scheme. Then, it decodes an encoded response

vector through an auto-encoder learning scheme. At the inference time, a query vector is input to a

response decoder based on an RNN. The RR mapper makes an encoded response vector similar to a

response vector decoded by the RNN through an adversarial learning scheme.

3.1. Query Encoder

Given a current utterance 𝑈𝑛 (user query) and its dialogue context composed of k utterances,

𝑈𝑛−𝑘, … , 𝑈𝑛−1 , the query encoder encodes each utterance by using gated recurrent unit (GRU)

networks [15], as shown in the following equation:

𝐸𝑖 = 𝐺𝑅𝑈(𝑈𝑖) (1)

where 𝐸𝑖 is an utterance vector encoded by a GRU network (i.e., the last output vector of a GRU

network). Then, the query encoder reflects contextual information to each encoded utterance by using

GRU networks, as shown in the following equation:

�̃�𝑖 = 𝐺𝑅𝑈(𝐸𝑖) (2)

where �̃�𝑖 is an output vector of the ith step in a GRU network. To strongly reflect the contextual

associations between the current and previous utterances, the query encoder computes attention

scores through the well-known scaled dot products [14] between the encoded current utterance 𝐸𝑛

and the encoded previous utterances �̃�𝑛−𝑘 , … , �̃�𝑛−1 as shown in the following equation:

𝑎𝑖 =
1

𝑍
𝑒𝑥𝑝(

�̃�𝑖 ∘ 𝐸𝑛

√𝑑
), 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑛 (3)

where 𝑍 and 𝑑 are a normalization factor and the size of an encoded vector, respectively. Then, the

query encoder computes an attention vector 𝐴 known as a query-to-context (QC) attention, which

represents a dialogue context that should be considered to generate a response, as shown in the

following equation:

𝐴 = ∑ 𝑎𝑖

𝑘

𝑖=1

�̃�𝑖 (4)

Figure 1. Overall architecture of the proposed chatbot. RNN: recurrent neural network; FNN:
fully-connected neural network.

The query encoder returns a query vector embedding a current utterance Un (i.e., user query)
and a dialogue context composed of k previous utterances Un−1, Un−2, . . . , Un−k, by using RNNs
and a scaled dot product attention mechanism [14]. At training time, the QR mapper makes a query
vector similar to an RNN-encoded response vector (i.e., a vector of a next utterance Un+1; a vector of a
chatbot’s response) through an adversarial learning scheme. Then, it decodes an encoded response
vector through an auto-encoder learning scheme. At the inference time, a query vector is input to a
response decoder based on an RNN. The RR mapper makes an encoded response vector similar to a
response vector decoded by the RNN through an adversarial learning scheme.

3.1. Query Encoder

Given a current utterance Un (user query) and its dialogue context composed of k utterances,
Un−k, . . . , Un−1, the query encoder encodes each utterance by using gated recurrent unit (GRU)
networks [15], as shown in the following equation:

Ei = GRU(Ui) (1)

where Ei is an utterance vector encoded by a GRU network (i.e., the last output vector of a GRU
network). Then, the query encoder reflects contextual information to each encoded utterance by using
GRU networks, as shown in the following equation:

Ẽi = GRU(Ei) (2)

where Ẽi is an output vector of the ith step in a GRU network. To strongly reflect the contextual
associations between the current and previous utterances, the query encoder computes attention scores
through the well-known scaled dot products [14] between the encoded current utterance En and the
encoded previous utterances Ẽn−k, . . . , Ẽn−1 as shown in the following equation:

ai =
1
Z

exp(
Ẽi ◦ En√

d
), where i , n (3)

453

Appl. Sci. 2019, 9, 3908

where Z and d are a normalization factor and the size of an encoded vector, respectively. Then, the query
encoder computes an attention vector A known as a query-to-context (QC) attention, which represents a
dialogue context that should be considered to generate a response, as shown in the following equation:

A =
k∑

i=1

aiẼi (4)

Finally, the query encoder returns a query vector in which the encoded current utterance En and
the QC attention A are concatenated, as shown in the following equation:

Q = En ⊕A. (5)

3.2. Query-to-Response Mapper

The QR mapper plays the role of mapping a query vector into a response vector. To enhance
the mapping performance, we adopt the wasserstein auto-encoder (WAE) model [12], in which a
Wasserstein GAN (WGAN) [16] is used to optimize a generator. The reason we choose the WGAN
is that it has been shown to produce good results in text generation [16]. Given a dialogue history
Un−k, . . . , Un−1, Un and a next utterance Un+1 (chatbot response), the QR mapper encodes the next
utterance by using gated recurrent unit (GRU) networks [15] and generates a gold response vector R
by concatenating the query vector Q that embeds the dialogue history and the encoded next utterance
En+1, as shown in the following equation:

R = Q⊕ En+1. (6)

Then, the QR mapper adds two Gaussian noises ε and ε̃ to the gold response vector R and the query
vector Q by using prior networks that are fully-connected neural networks (FNNs) resulting in means
and co-variances, respectively. The Gaussian noises are transformed into two latent variables, namely
Z, representing a gold response, and Z̃ representing a query, through FNNs. The training process of
the QR mapper consists of two steps. In the first stage of training, the FNN-based discriminator D1

(i.e., a classifier based on a FNN), as given in Figure 1, tries to distinguish the fake vector Z̃ from the
real vector Z. Through this training process, the QR mapper makes the query vector Q similar to the
gold response vector R. In the second stage of training, the RNN-based response decoder G2 (i.e., a
language model based on an RNN), as given in Figure 1, tries to properly reconstruct a sequence of
words in a gold response. At the inference time, the query vector Q is transformed into the latent
variable Z̃. Then, the latent variable Z̃ is input to the response decoder G2.

3.3. Response-to-Response Mapper

The RR mapper plays the role of mapping a generated response vector into an encoded response
vector in an auto-encoder model. To enhance the mapping performance, we adopt the WAE model [12]
again. Through the WAE process based on WGAN, we expect that the qualities of generated responses
will be enhanced because the response decoder refers outputs of the response encoder once again.
Given an RNN-encoded next utterance En+1 (i.e., a last output vector of the response encoder; an
encoded response of a chatbot) and an RNN-decoded next utterance E′n+1 (i.e., a last output vector of
the response decode; a decoded response of a chatbot), the RR mapper makes E′n+1 similar to En+1

through adversarial learning. When training begins, an encoded gold response En+1, a gold latent
variable Z, and a decoded gold response E′n+1 are input to the FNN-based discriminator D2 as given in
Figure 1. The discriminator tries to distinguish E′n+1 from En+1.

454

Appl. Sci. 2019, 9, 3908

3.4. Implementation and Training

The proposed model was implemented using TensorFlow 1.4 [17]. The RNNs in the query encoder
were bidirectional GRU networks [18] with 300 hidden units in each direction. The RNNs in the QR
mapper were GRU networks with 1421 hidden units. The dimensions of QC attentions were 600.
The discriminators (i.e., D1 in the QR mapper and D2 in the RR mapper) were three-layer FNNs with
rectified linear unit activation [19]. The vocabulary size was set to 16,925, and all the out-of-vocabulary
words were defined to the special token “UNK” meaning an unknown word. The word-embedding size
was 200, and word-embedding vectors were initialized using pre-trained Glove vectors [20]. The size of
the dialogue context was set to 10 with a maximum utterance length of 41. The response decoder used a
greedy decoding algorithm. In the training step, the mini-batch size was set to 32. The training process
of the entire model consisted of three steps. First, the WGAN in the QR mapper was trained through
adversarial learning. Then, the entire model, except the RR mapper, was trained through multi-task
learning to maximize the log probability for the response decoder to generate correct words. Finally,
the WGAN in the RR mapper was trained through adversarial learning. All adversarial learning that
was employed reduced the Wasserstein distance [16]. In addition, the gradient penalty was used
when training the discriminant models [21], and its hyper-parameter λ was set to 10. To maximize the
log-probability, a cross-entropy function was used. In the inference step, Z̃ was used instead of Z as a
latent variable.

4. Evaluation

4.1. Data Sets and Experimental Settings

We evaluated our model on a DailyDialog dataset [22], which has been widely used in recent
studies. DailyDialog has 13,118 daily conversations for English learners. The datasets are separated into
training, validation, and testing as 8:1:1. Bilingual evaluation understudy (BLEU) [23,24], bag-of-words
(BOW) embedding [25], and Distinct [7] were used as performance measures. BLEU measures the
number of generated responses that contain word n-gram overlaps with gold responses, as shown in
the following equation:

BLEU = min(1,
length of a generated sentence

length of a gold sentence
)(

n∏

i=1

precisoni)

1
n

(7)

where n is the maximum number length of n-grams considered and is commonly set to 4, and precisoni
is a word i-gram precision (i.e., the number of correct word i-grams divided by the number of word
i-grams in a generated sentence). Precision of BLEU is an average score of BLEUs of 10 generated
sentences per query, and Recall of BLEU is a maximum score among BLEUs of 10 generated sentences
per query. The BOW embedding metric is the cosine similarity of BOW embedding between generated
and gold responses. The BOW embedding metric consists of three metrics: Greedy [26], Average [27],
and Extrema [28]. In our test, the maximum BOW embedding score among the 10 sampled responses
was reported. The distinct score, such as Intra-dist or Inter-dist, computes the diversity of the generated
responses. Dist-n is defined as the ratio of unique word n-grams over all word n-grams in the generated
responses. Intra-dist is defined as the average of distinct values within each sampled response, and
Inter-dist as the distinct value among all sampled responses.

4.2. Experimental Results

Our first experiment involved evaluating the effectiveness of the proposed model at the architecture
level, as shown in Table 2.

In Table 2, WAE is a conditional WAE model [12] that is the baseline model because it has similar
architecture to that of the proposed model. WAE + query encoder (QE) is a modified WAE in which
the encoding module of a dialog context is changed into the proposed query encoder. WAE + QE +

455

Appl. Sci. 2019, 9, 3908

RR is a modified WAE + QE to which the RR mapper (i.e., WGAN for response generation) is added.
As shown in Table 1, WAE + QE showed better BLEU-R and BLEU-F1 than did WAE. This means that
the proposed query encoder can provide some assistance in generating words in gold responses by
selectively looking up dialogue contexts. The final model, WAE + QE + RR, showed better performance
than did WAE + QE at all measures except Intra-dist. This means that WGAN for response generation
improves the overall quality of responses.

Table 2. Performance comparison based on change in architecture.

Model
BLEU BOW Embedding Intra-dist Inter-dist

R P F1 A E G Dist-1 Dist-2 Dist-1 Dist-2

WAE 0.341 0.278 0.306 0.948 0.578 0.846 0.830 0.940 0.327 0.583

WAE + QE 0.442 0.268 0.334 0.947 0.680 0.845 0.913 0.995 0.322 0.475

WAE + QE + RR 0.463 0.283 0.351 0.949 0.688 0.851 0.902 0.993 0.371 0.585

P: Precision, R: Recall, F1: F1 score, A: Average, E: Extrema, G: Greedy. BLEU: bilingual evaluation understudy;
BOW: bag-of-words; WAE: wasserstein auto-encoder; QE: query encoder; RR: response-to-response. The bolds
indicate the highest scores in each evaluation measure.

In the second experiment, we compared the performance of the proposed model with those of the
previous state-of-the-art models, as shown in Table 3.

Table 3. Performance comparison between proposed and previous models.

Model
BLEU BOW Embedding Intra-dist Inter-dist

R P F1 A E G Dist-1 Dist-2 Dist-1 Dist-2

HRED 0.232 0.232 0.232 0.915 0.511 0.798 0.935 0.969 0.093 0.097

CVAE 0.265 0.222 0.242 0.923 0.543 0.811 0.938 0.973 0.177 0.222

CVAE-BOW 0.256 0.224 0.239 0.923 0.540 0.812 0.947 0.976 0.165 0.206

CVAE-CO 0.259 0.244 0.251 0.914 0.530 0.818 0.821 0.911 0.106 0.126

WAE 0.341 0.278 0.306 0.948 0.578 0.846 0.830 0.940 0.327 0.583

WAE + QE + RR 0.463 0.283 0.351 0.949 0.688 0.851 0.902 0.993 0.371 0.585

The bolds indicate the highest scores in each evaluation measure.

In Table 3, HRED is a generalized Seq2Seq model with a hierarchical RNN encoder [29]. CVAE
is a conditional VAE model with KL-annealing [9]. CVAE-BOW is a conditional VAE model with a
BOW loss [9]. CVAE-CO is a collaborative conditional VAE model [10]. WAE is a conditional WAE
model [12]. As shown in Table 3, the proposed model, WAE + QE + RR, outperformed the comparison
models at all measures except Dist-1.

5. Conclusions

We proposed a generative, multi-turn chatbot model. To generate responses that consider dialogue
histories, the proposed model used the query-context attention mechanism in the query encoding
step. Furthermore, to improve the quality of responses, the proposed model used two types of
WGAN: A WGAN for dialogue modeling and a WGAN for response generation. In experiments with
DailyDialog datasets, the proposed model outperformed the previous state-of-the-art models and
generated responses with higher quality. The proposed chatbot model has the lack of a consistent
personality because it is typically trained using many dialogues from different speakers. To alleviate
this problem, we will study how to have a chatbot that maintains a consistent persona. In addition,
we will study how a chatbot can search and use outer knowledge for open-domain dialogue.

456

Appl. Sci. 2019, 9, 3908

Author Contributions: Conceptualization, H.K. and J.K.; methodology, J.K.; software, J.K.; validation, J.K.
and S.O.; formal analysis, J.K.; investigation, J.K.; resources, S.O.; data curation, S.O.; writing—original draft
preparation, J.K.; writing—review and editing, H.K.; visualization, H.K.; supervision, H.K. and O.-W.K.; project
administration, H.K. and O.-W.K.; funding acquisition, H.K. and O.-W.K.

Funding: This work was supported by the Institute of Information and Communications Technology Planning and
Evaluation (IITP), grant funded by the Korean government (MSIT) (2019-0-0004, Development of semi-supervised
learning language intelligence technology and Korean tutoring service for foreigners), and was partially
supported by the National Research Foundation of Korea (NRF), grant funded by the Korean government
(MSIP) (No.2016R1A2B4007732). This work was also partially supported by the Hyundai motor group.

Acknowledgments: We would especially like to thank the members of NLP laboratory in Kangwon National
University for their technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative Adversarial Nets. In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook,
NY, USA, 2014; pp. 2672–2680.

2. Li, J.; Monroe, W.; Shi, T.; Jean, S.; Ritter, A.; Jurafsky, D. Adversarial Learning for Neural Dialogue Generation.
arXiv 2017, arXiv:1701.06547.

3. Xu, Z.; Liu, B.; Wang, B.; Chengjie, S.U.; Wang, X.; Wang, Z.; Qi, C. Neural Response Generation via GAN
with an Approximate Embedding Layer. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, Copenhagen, Denmark, 9 September 2017; pp. 617–626.

4. Yu, L.; Zhang, W.; Wang, J.; Yu, Y. Seqgan: Sequence Generative Adversarial Nets with Policy Gradient.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA,
13 February 2017.

5. Vinyals, O.; Le, Q. A neural conversational model. arXiv 2015, arXiv:1506.05869.
6. Shang, L.; Lu, Z.; Li, H. Neural Responding Machine for Short-Text Conversation. In Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing, Beijing, China, 26–31 July 2015; Volume 1, pp. 1577–1586.

7. Li, J.; Galley, M.; Brockett, C.; Gao, J.; Dolan, B. A Diversity-Promoting Objective Function for Neural
Conversation Models. In Proceedings of the NAACL-HLT, San Diego, CA, USA, 1–26 July 2016; pp. 110–119.

8. Sato, S.; Yoshinaga, N.; Toyoda, M.; Kitsuregawa, M. Modeling Situations in Neural Chatbots. In Proceedings
of the ACL 2017, Student Research Workshop, Vancouver, BC, Canada, 30 July–4 August 2017; pp. 120–127.

9. Zhao, T.; Zhao, R.; Eskenazi, M. Learning Discourse-level Diversity for Neural Dialog Models using
Conditional Variational Autoencoders. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017; Volume 1, pp. 654–664.

10. Shen, X.; Su, H.; Niu, S.; Demberg, V. Improving Variational Encoder-Decoders in Dialogue Generation.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, Lyon, France, 23–27 April 2018.

11. Goyal, P.; Hu, Z.; Liang, X.; Wang, C.; Xing, E.P. Nonparametric Variational Auto-Encoders for Hierarchical
Representation Learning. In Proceedings of the IEEE International Conference on Computer Vision, Sinaia,
Romania, 19–21 October 2017; pp. 5094–5102.

12. Gu, X.; Cho, K.; Ha, J.W.; Kim, S. DialogWAE: Multimodal Response Generation with Conditional Wasserstein
Auto-Encoder. arXiv 2018, arXiv:1805.12352.

13. Shen, T.; Lei, T.; Barzilay, R.; Jaakkola, T. Style Transfer from Non-Parallel Text by Cross-Alignment. In Advances
in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 6830–6841.

14. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention
is All You Need. In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA,
2017; pp. 5998–6008.

15. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation:
Encoder-decoder approaches. arXiv 2014, arXiv:1409.1259.

457

Appl. Sci. 2019, 9, 3908

16. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875.
17. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.;

Isard, M.; et al. Tensorflow: A System for Large-Scale Machine Learning. In Proceedings of the 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA,
2–4 November 2016; pp. 265–283.

18. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning
Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar,
25–29 October 2014; pp. 1724–1734.

19. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 July 2010; pp. 807–814.

20. Pennington, J.; Socher, R.; Manning, C. Glove: Global Vectors for Word Representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar,
25–29 October 2014; pp. 1532–1543.

21. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved Training of Wasserstein
GANs. In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017;
pp. 5767–5777.

22. Li, Y.; Su, H.; Shen, X.; Li, W.; Cao, Z.; Niu, S. DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset.
In Proceedings of the Eighth International Joint Conference on Natural Language Processing, Taipei, Taiwan,
27 November–1 December 2017; Volume 1, pp. 986–995.

23. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. BLEU: A Method for Automatic Evaluation of Machine
Translation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics,
Philadelphia, PA, USA, 6 July 2002; Association for Computational Linguistics: Stroudsburg, PA, USA, 2002;
pp. 311–318.

24. Chen, B.; Cherry, C. A Systematic Comparison of Smoothing Techniques for Sentence-Level Bleu.
In Proceedings of the Ninth Workshop on Statistical Machine Translation, Baltimore, MD, USA, 26–27 June
2014; pp. 362–367.

25. Liu, C.W.; Lowe, R.; Serban, I.; Noseworthy, M.; Charlin, L.; Pineau, J. How not to Evaluate Your Dialogue
System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX,
USA, 1–4 November 2016; pp. 2122–2132.

26. Rus, V.; Lintean, M. A Comparison of Greedy and Optimal Assessment of Natural Language Student Input
using Word-to-Word Similarity Metrics. In Proceedings of the Seventh Workshop on Building Educational
Applications Using NLP, Montréal, QC, Canada, 7 June 2012; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2012; pp. 157–162.

27. Mitchell, J.; Lapata, M. Vector-Based Models of Semantic Composition. In Proceedings of the ACL-08: HLT,
Columbus, OH, USA, 15–20 June 2008; pp. 236–244.

28. Forgues, G.; Pineau, J.; Larchevêque, J.M.; Tremblay, R. Bootstrapping Dialog Systems with Word Embeddings.
In Proceedings of the Nips, Modern Machine Learning and Natural Language Processing Workshop, Geneva,
Switzerland, 12 December 2014.

29. Serban, I.V.; Sordoni, A.; Bengio, Y.; Courville, A.; Pineau, J. Building End-to-End Dialogue Systems Using
Generative Hierarchical Neural Network Models. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 3776–3783.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

458

applied
sciences

Article

A Text-Generated Method to Joint Extraction of
Entities and Relations

Haihong E *, Siqi Xiao and Meina Song

School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
* Correspondence: ehaihong@bupt.edu.cn; Tel.: +86-156-0010-5933

Received: 26 July 2019; Accepted: 2 September 2019; Published: 10 September 2019

Abstract: Entity-relation extraction is a basic task in natural language processing, and recently, the use
of deep-learning methods, especially the Long Short-Term Memory (LSTM) network, has achieved
remarkable performance. However, most of the existing entity-relation extraction methods cannot
solve the overlapped multi-relation extraction problem, which means one or two entities are shared
among multiple relational triples contained in a sentence. In this paper, we propose a text-generated
method to solve the overlapped problem of entity-relation extraction. Based on this, (1) the entities
and their corresponding relations are jointly generated as target texts without any additional feature
engineering; (2) the model directly generates the relational triples using a unified decoding process,
and entities can be repeatedly presented in multiple triples to solve the overlapped-relation problem.
We conduct experiments on two public datasets—NYT10 and NYT11. The experimental results show
that our proposed method outperforms the existing work, and achieves the best results.

Keywords: relation extraction; entity recognition; information extraction; long short-term
memory network

1. Introduction

Entity-relation extraction is the core task and important segment in the fields of information
extraction, knowledge graph, natural language understanding, etc. In recent years, knowledge
graph [1] has been widely applied. Many achievements have also been made in the downstream
tasks such as question answering and retrieval based on knowledge graph. The basis for constructing
the knowledge graph is to build a knowledge base. In the knowledge base, the structured relational
triples are preserved in formats such as <entity 1, rel, entity 2>, which means that there is a relation
rel between entity 1 and entity 2. The goal of entity-relation extraction task is to extract the semantic
relations between entity pairs from unstructured text. With the application of deep learning in joint
learning and distant supervision, the relation extraction task has obtained rich research results.

The supervised entity-relation extraction methods can be divided into pipeline and joint learning.
The pipeline methods take the named entity recognition (NER) and relation classification (RC) as
two separate subtasks, and extract the relations between entities based on the completion of entity
recognition [2–4]. However, this kind of methods ignores the relevance between these two subtasks.
Recent work using joint learning [5–8] can make use of the tight interaction information between
entities and relations and use a single model to extract entities and classify the relations between
entities simultaneously, which solves the problems of the pipeline method well. However, most of
the existing work often requires complex feature engineering or relies heavily on the NLP tools to
extract features.

Moreover, most existing relation extraction models focus on scenarios dealing with a single
relation within one sentence, but there are usually multiple relations between entity mentions in one
sentence. Sentences can be divided into three classes based on the degree of entity overlap [9], as

459

Appl. Sci. 2019, 9, 3795

shown in Table 1: (1) Normal: a sentence belongs to Normal class if none of its triplets have overlapped
entities; (2) Entity Pair Overlap: some of its triplets have overlapped entity pair; (3) Single Entity
Overlap: some of its triplets have an overlapped entity and these triplets do not have overlapped
entity pair. Even though there are already several works to address the triplet overlap issue [9–11],
their effects are far from good enough, cannot solve the problems of relation extraction in complex
situations very well. As a result, the triplet overlap issue is not actually addressed.

Table 1. Examples of three classes: Normal, Entity Pair Overlap, and Single Entity Overlap. S1 belongs
to Normal class because there are no overlaps in its triplets; S2 belongs to Entity Pair Overlap class
since the entity pair (Sudan, Khartoum) are overlapped; S3 belongs to Single Entity Overlap class
because the entity Los Angeles is overlapped and its two triplets have no overlapped entity pairs.

Class Sentence Relation Triples

Normal S1: Chicago is in the United States. <The United States, contains, Chicago>

Entity Pair Overlap
S2: News of the list’s existence unnerved

officials in Khartoum, Sudan’s capital.
<Sudan, contains, Khartoum>
<Sudan, capital, Khartoum>

Single Entity Overlap
S3: John, 23, who lives in Los Angeles,

California.
<John, placelived, Los Angeles>

<California, contains, Los Angeles>

In reality, natural language texts, such as news and blogs, usually express multiple relations and
it is also common that one or more entity mentions appear among multiple relations. Therefore, it
is necessary to extract overlapping relations from the perspective of practical application scenarios.
The overlapping multi-relation extraction problem is more complex than single-relation extraction
because the single-relation extraction scenario can be basically divided into the following two types: (1)
for sentences with the given entity pairs, relation classification can be modeled as a text classification
problem; (2) for sentences with non-annotated target entity pairs, the model assumes that sentence
contains only one pair of entities and relation classification is performed after entity recognition; these
two cases usually use the softmax function in the relation classification phrase, so only one relation
can be extracted. In the multi-relation extraction situation, we need to find every complete relational
triple. The model needs to simultaneously extract the relation and the corresponding entity pairs.
Reference [8] provided an idea to integrate entity mention and relation type information into each
label, this two information can be obtained simultaneously when tagging each word. Zeng’s [9] work
is similar to ours, which is based on a sequence-to-sequence learning framework, but it cannot extract
multi-word entities because of the model design.

To tackle this problem, we completely convert entity-relation extraction task into text generation
task. We generate entity pairs and relational representation words according to source texts, without
any additional feature engineering. The task of generating target texts from source texts, including text
summarization [12,13], machine translation [14,15]. In the text summarization task, target texts are
keywords or key sentences that are copied from source texts or generated from vocabulary through
the semantic understanding of source text contents. For the relation extraction task, our target texts are
the entity pairs contained in the source texts and their corresponding relations, i.e., relational triplets.

In this paper, we adopt a sequence-to-sequence framework with the pointer, where using the
encoder to obtain the semantic encoding vector and the decoder with pointer is used to generate
entities or relations. Inspired by the text summarization paper [16], we also use a generation probability
pgen as a soft switch to select whether the current decoding time is more likely to copy words from
the original input or to generate words from the vocabulary. According to the specific situation of the
original input, one or more groups of relational triplets are generated, thereby implementing the joint
extraction of entities and relations. Entities can be repeated in multiple triplets, which can solve the
problem of overlapped multiple relational triplet extraction.

The main contributions of our work are concluded as follows:

460

Appl. Sci. 2019, 9, 3795

(1) We completely convert the entity-relation extraction to the text generation task, and use a unified
decoding method to generate entities and relational expressions as target text to realize the joint
extraction of entities and relations.

(2) Based on the text generation framework, the model is designed to generate multiple groups of
relational triplets. Entities can be repeated in multiple triplets to solve the problem of overlapped
multiple relational tuples.

(3) We conduct experiments on NYT10 and NYT11 public datasets, and the experimental results
show that we proposed method outperforms state-of-the-art with 4.7% and 11.4% improvements
in F1 score, respectively.

The remainder of the paper is organized as follows: Section 2 reviews the related works. Section 3
describes the proposed method in detail. In Section 4, datasets and settings used in the experiment are
presented and Section 5 shows the results. Section 6 discusses the performance comparison between
our model and the baseline methods. Section 7 concludes the paper.

2. Related Work

Entity and relation extraction methods can be divided into pipeline and joint learning.
Pipeline method regards entity recognition and relation extraction as two separate tasks, and

extracts relations based on entity recognition. Some pipeline methods based on RNN and CNN models
have been proposed. Ref. [17] first used RNN for relation extraction. Ref. [4] first introduced CNN to
this task. Refs. [2,18–20], improved on the previous work and enhanced the effect of relation extraction.
The pipeline method has the disadvantages of error propagation, ignoring the relevance between these
two subtasks and generating redundant information, while joint learning method proposed in recent
years which uses a single model to extract entities and relations simultaneously and can use the close
interaction information between entities and relations.

The joint learning method is further divided into feature-based structured systems [21] and neural
network models. Ref. [7] first used neural network methods with the dependency tree to jointly extract
entities and relations. Ref. [22] proposed a hybrid neural network which has two channels after the
encoding layer, one links to the NER module, the other feeds into the relation extraction module.
Ref. [5] first introduced the attention mechanism in combination with bidirectional LSTMs for joint
extraction of entities and relations. Ref. [8] proposed an entity-relation extraction method based on
a novel tagging scheme. This method completely transforms the joint learning model into sequence
labeling problem, it can extract multiple relations, but cannot deal with entity overlap because the
model can only assign a label to each word. Ref. [11] based on Zheng’s work [8], further transformed
the joint task into a graph problem and proposed a transition-based method, can model underlying
dependencies between relations and identify overlapped relational triples.

Ref. [9] first proposed a solution for overlapping relation extraction, and divided the sentences
into three classes according to the degree of entity overlap: Normal, Entity Pair Overlap, and Single
Entity Overlap. They proposed an end-to-end model based on sequence-to-sequence learning with
copy mechanism, copying entity pairs from the original input, and classifying the relation types in the
predefined relational table. Unlike [9], our model uses a unified way to generate token at any time in
the decoding process, instead of judging whether to copy entities or predict relations at different steps.
By calculating a generate probability distribution, the model can automatically learn whether entities
or relations should be generated at each moment. At the same time, because [9] presupposes that a
relational triple is generated every three steps, they can only recognize the last word of a multi-word
entity. While our model does not limit the number of words contained in each relational triple, it can
recognize multi-word entities and can copy entity words from the original text.

461

Appl. Sci. 2019, 9, 3795

3. Materials and Methods

In this section, we first formalize the description of the entity-relation problem. Then, we introduce
the sequence-to-sequence model with the pointer we use in detail.

3.1. Problem Formulation

Giving the training data [x, y], x represents the input text of the model and y represents the target
output. In the target sentence, we use ‘.’ to divide multiple triples, and within the triple, we use ‘,’ to
divide relational words, the first entity, and the second entity.

The goal of the model is to generate one or more groups of relational triplets according to the
specific situation in the source text, while allowing entities to be repeatedly presented. The model can
copy words from the source text by the pointer or generate words from the predefined vocabulary.
The overall structure of our model is shown in Figure 1.

Figure 1. The overall structure of our model. The blue block represents the bidirectional LSTMs in the
encoder, the red block represents the unidirectional LSTM in the decoder, the green block represents
the attention weight distribution, and the yellow block represents the final generation probability
distribution. All these above descriptions will be introduced in Section 3.

3.2. Model Description

3.2.1. Encoder

Giving a sentence s = [w1, w2, ... , wn], where wt represent the t-th word in the sentence of length
n, we first convert the word with one hot encoding into the embedding matrix through the word
embedding layer, and get e = [x1, x2, ... , xn], where xt ∈ Rd represents the embedding vector of
t-th word. The embedding layer randomly initializes the embedding matrix and updates the weight
parameters with the training of the model.

Then, we use LSTM to further encode the sequence. Long Short-Term Memory (LSTM) is a variant
of Recurrent Neural Network (RNN) which is widely used in various NLP tasks because it has ability
to capture long-term dependencies and solve the problem of gradient vanish in RNN. Specifically,
we use bidirectional LSTMs (Bi-LSTMS) which consists of two separate LSTM layers. The forward
LSTM layer

−→
h encodes the input sequence from x1 to xn. Similarly, the backward LSTM layer

←−
h will

462

Appl. Sci. 2019, 9, 3795

encode the input sequence from xn to x1. We then concatenate
−→
ht and

←−
ht to represent final encoder

information of t-th word, denoted as ht = [
−→
ht ,
←−
ht], in this way, the encoder vector of each step can

obtain the semantic information of its context.

ft = σ(W f · [ht−1, xt] + b f)

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, xt] + bc)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(1)

In LSTM, as shown in Equation (1), xt represents the word vector of the t-th word, and ht

represents the hidden state vector at the time t. W and b represent the weight matrices and bias vectors
that can be learned, respectively.

3.2.2. Decoder

The decoder is aimed to generate tokens consisting of a layer of unidirectional LSTM.

ot, st = cell([xt−1, h∗t], st−1) (2)

In Equation (2), cell is an LSTM unit, during training xt−1 represents the embedding of the
previous word in the target output sequence; in the test phase, it represents the embedding of the
word generated by the model at the previous step, and st−1 represents the decoding state at time t− 1.
At the same time, we use the attention mechanism to calculate the weight of the hidden vectors in
the encoder at the current decoding time, the attention distribution can be viewed as a probability
distribution over the source words. The greater the attention weight, the greater the influence on
the word generated at the current decoding time. In addition, h∗t represents the weighted sum of the
encoder hidden states based on attention weight, i.e., context vector. We use the attention calculation
method of [14] to obtain the context vector:

et
i = vTtanh(Whhi + Wsst + battn)

at = so f tmax(et)

h∗t = ∑
i

at
i hi

(3)

where v, Wh, Ws, and battn in Equation (3) are learnable parameters, hi represents the hidden state
vector of the encoder at time i .

at is the influence weight in attention which is also a probability distribution. When the model
wants to ‘copy’ a word from the original text, the word with the largest weight value will be selected
as the predicted word. Therefore, we also call at ‘pointer’.

Then the context vector is concatenated with the decoder state st and fed through linear layers to
produce the vocabulary distribution Pvocab:

Pvocab = so f tmax(Wv[st, h∗t] + bv) (4)

where Wv and bv are learnable parameters, Pvocab is a probability distribution over all words in the
predefined vocabulary.

463

Appl. Sci. 2019, 9, 3795

To make the model have the ability to copy words from the source text, and to retain the ability to
select words through the predefined vocabulary, we calculate a generation probability pgen ∈ [0, 1] at
each decoding step, refer to [16]:

pgen = σ(wT
h ∗ h∗t + wT

s st + wT
x xt + bgen) (5)

where wh, ws, wx and bgen are learnable parameters and σ is the sigmoid function, pgen is calculated by
context vector h∗t , decoder state st, and decoder input xt. pgen is aimed to select the word output at the
current decoding time, with a greater probability of copying from the source text or more likely to be
generated from the predefined vocabulary.

And now we get the final probability distribution:

P(w) = pgenPvocab(w) + (1− pgen)∑
i

at
i (6)

where at represents the attention weight on the hidden states of the encoder. We select the word with
the greatest probability as the predicted word of the current step. In the test phase, the embedding of
this word will be sent to the next decoding step.

For entities, the model will tend to copy from the source text, so that for entities that do not appear
in the predefined vocabulary (unseen entities), the model also has the ability to correctly identify; for
relational expressions, the model is more tend to generate from the vocabulary.

3.2.3. Training and Decoding

During training, given a batch of data with B sentences S = {s1, s2, ... , sb} with their corresponding
target sequences Y = {y1, y2, ... , yb}, where yi = {w1

i , w2
i , ... , wT

i } is the reference of i-th sentence. The
loss function is defined as follows:

loss =
1

B× T

B

∑
i=1

T

∑
t=1
−log(P(w)) (7)

where T is the maximum time step of decoder.
While decoding, the model adopts beam search to increase the accuracy of the output. The

advantage of beam search is that we have multiple choices at each step, instead of selecting the word
with the highest probability at each time, in case that the optimal local prediction is incorrect. The
candidate predictions are ranked by global scores; thus, error propagation can be alleviated.

4. Experimental Setup

In this section, we present our experimental results on two different public datasets NYT10 and
NYT11, and compare them with the baseline methods to demonstrate the effectiveness of our model
from multiple perspectives.

4.1. Dataset

We conduct experiments on two public datasets NYT10 and NYT11. NYT (New York Times)
dataset is developed by distant supervision method. The original corpus in this dataset is extracted
from sentences in New York Times articles. NYT10 and NYT11 are two versions of NYT dataset.
Specifically, NYT10 dataset contains 29 valid relations, including 74,345 sentences, which is originally
released by [23]. NYT11 is relatively small, including 24 valid relations, which is provided by [24]. We
filtered the sentences that do not contain valid triples in the dataset, leaving 66,336 sentences. The
training set, valid set, and test set are split by random sampling. Some statistical data of the two
datasets are shown in Table 2.

464

Appl. Sci. 2019, 9, 3795

Table 2. Statistics of NYT10 and NYT11 datasets.

NYT10 NYT11

Relation types 29 24
Training set 66,828 58,356

Training tuples 84,166 98,393
Test set 4000 4998

Test tuples 5010 8226

4.2. Settings

We set 256 as the hidden state dimension of LSTM, 128 as the word embedding dimension, and
the batch size is 16. We set the maximum number of decoding steps to 60, so the model can generate
up to 10 groups of relational triples. We use Adam to optimize parameters and learning rate is set to
0.001 during training. We set beam size is 4, which means that the top 4 optimal generated sequences
are preserved during the decoding phase, and finally the one with the highest probability is selected as
the final output.

4.3. Baseline and Evaluation Metrics

We select four models as our baselines, CoType is a joint extraction model based on feature
system. SPTree uses neural network model with abundant linguistic resources. Noveltagging and
MultiDecoder both use neural network to jointly extract entities and relations without additional
features. These models all achieved the best results at that time.

• CoType [24]: a domain-independent framework by jointly embedding entity mentions, relation
mentions, text features, and type labels into representations, which formulates extraction as a
global embedding problem.

• SPTree [7]: an end-to-end relation extraction model that represents both word sequence and
dependency tree structures using bidirectional sequential and tree-structured LSTM-RNNs.

• Noveltagging [8]: an approach that treats joint extraction as a sequential labeling problem using a
tagging schema where each tag encodes entity mentions and relation types at the same time to
achieve joint extraction of entities and relations.

• MultiDecoder [9]: a sequence-to-sequence learning framework with a copy mechanism for joint
extraction, where multiple decoders are applied to generate triples to handle overlapping relations,
completing the extraction of a relational triple every three steps. This method is the first time to
solve the overlapping problem of multi-relational extraction.

We compare our method with the above four baselines on NYT10 and NYT11 dataset respectively.
In addition, we evaluate the performance of each model with micro Precision, Recall, and F1 score.
Only when the relation and entity pair are all correct, we think this relational triplet is correctly
predicted, where an entity is considered correct if the head and tail offsets are both correct. We used
the source code provided by above baselines to reproduce their performance on NYT10 and NYT11
dataset, respectively.

5. Results

In this section, we will show the experimental results of our proposed method and baseline
methods on NYT10 and NYT11, we reproduce the results of the baseline methods.

Model Performance

In which Table 3 shows the comparison of extraction effects on test sets of NYT10 and NYT11,
respectively. It can be found that our proposed method is better than baseline methods both on
NYT10 and NYT11 datasets, and outperforms [9] with 4.7% and 11.4% improvements in F1 score,

465

Appl. Sci. 2019, 9, 3795

respectively. At the same time, to prove the ability of our model to extract overlapped multi-relations,
we respectively divide two subsets from the NYT10 and NYT11 test sets. All sentences in one subset
have entity pair overlap, and all sentences in the other subset have single entity overlap. Please note
that some sentences may exist in both cases, in this experiment, this kind of sentence will exist in both
subsets. We compare our model with Noveltagging and MultiDecoder. Figures 2 and 3 show the
precision, recall, and F1 score of entity pair overlap and single entity overlap on NYT10 and NYT11
datasets, respectively. In the figure, blue, yellow, and green blocks represent the experimental results
of Noveltagging, MultiDecoder, and our model, respectively. As we can see, our model can handle
overlapped multi-relation extraction better than the baseline methods on both datasets.

Table 3. Comparison of results of our model and baselines in NYT10 and NYT11 datasets.

Model NYT10 NYT11

Precision Recall F1 Precision Recall F1

CoType - - - 0.417 0.320 0.362
SPTree 0.464 0.591 0.519 0.493 0.634 0.555

Noveltagging 0.563 0.334 0.419 0.622 0.341 0.440
MultiDecoder 0.543 0.530 0.536 0.586 0.574 0.580
Our Method 0.592 0.533 0.561 0.702 0.598 0.646

Bold numbers represent the results of proposed method and are also the highest scores of the three evaluation
metrics (precision, recall and F1 score) in the comparative experiment.

Figure 2. Results of our model and baseline models in Entity Pair Overlap class and Single Entity
Overlap class in NYT10 dataset.

Figure 3. Results of our model and baseline models in Entity Pair Overlap class and Single Entity
Overlap class in NYT11 dataset.

466

Appl. Sci. 2019, 9, 3795

6. Discussion

In this section, we focus on the advantages of our model over other baselines, and explain and
analyze the experimental results in detail.

6.1. Comparison of Overall Performance

Table 3 shows the Precision, Recall, and F1 scores of the baseline models and our proposed method.
CoType is a feature-based system whose performance is not as good as neural network models. SPTree
uses more linguistic resources (e.g., POS tags, chunks, syntactic parsing trees) to obtain better results
Noveltagging method [8] cannot solve the problem of overlapping multi-relations because it can only
assign a tag to each word in the sequence, which leads to a decrease in accuracy. Ref. [9] decides
to copy entities or predict relations according to different decoding steps. The copy mechanism is
used to calculate the probability distribution to select entities on the source texts at the time of entity
recognition, and at the steps of relation prediction, the probability distribution is calculated on the
relational table. While, during decoding, we do not distinguish the generation time of entities or
relations, and relational words are also distributed in the predefined vocabulary, rather than having a
separate relational table. We adopt a more unified decoding method, the predicted word at any time is
generated by calculating the mixed probability distribution P(w) over the vocabulary at each decoding
step. We hope that the model can learn whether to generate entities or relational words at each step in
the process of training.

Meanwhile, we set a maximum decoding step of 60 to generate up to 10 relational triples, while [9]
can generate up to 5 relational triples. At the same time, Zeng’ s model can extract multiple triples,
but it is limited to the 3t + 1, 3t + 2 (5 > t > = 0) to generate the first entity and the second entity of
the current triple. According to its presupposition, multi-word entity cannot be extracted completely,
which is a disadvantage in its model design. Our method can extract the whole part of each entity
completely, so when we judge whether the model extracts a triple correctly, Zeng’ s model is more
relaxed than our model, because it is equivalent to just extracting the last word in the entity as if the
entity was correctly extracted.

6.2. Comparison of Overlapped Multi-Relations Extraction Performance

To further contrast with baselines, we experiment with sentences of different entity overlap
degrees, respectively. Figures 2 and 3 show the experimental results of our proposed method and
two of our baseline methods (Noveltagging and MultiDecoder), respectively. As we can see in Entity
Pair Overlap class and Single Entity Overlap class, our method performs much better than others.
We think that our method generates entities and their relations as target texts, if there are multiple
relations between the entity pairs or an entity belongs to multiple triplets, then it can be understood
that this entity or entity pair has more abundant semantic information, and these entities will get more
attention at the moment of decoding. Therefore, there are greater probabilities for the model to select
them from the source texts. Thus, our method is more suitable for processing the relation extraction
in entity overlap case than [9]. Again, Noveltagging [8] cannot assign multiple tags to a single word,
which makes it impossible to extract overlapped relational triples.

6.3. Comparison of the Multiple Relational Triples Extraction Performance

We further divide the NYT11 test set and classify test set into 7 subclasses according to the
relation number of the entity pairs in each sentence. We test the extraction capability of our model
and MultiDecoder on each class which contains 1, 2, 3, 4, 5, 6 and >= 7 relational triples, respectively.
The results are shown in Figure 4, we can see that as the number of relations contained in a sentence
increases, the performance of MultiDecoder decreases. However, when the sentence has one to four
relational triples, the effect of our model is gradually increasing, and achieves the best performance

467

Appl. Sci. 2019, 9, 3795

when the number of relations is 4. When the number of relations between the same entity pair is
greater than 4, the extraction effects will gradually decrease.

(a) Precision (b) Recall

(c) F1 score

Figure 4. Results of Precision, Recall and F1 score of sentences that contains different number of triplets
of our model and MultiDecoder on NYT11 dataset.

As the number of relations increases, extraction becomes more difficult, so the performance of
MultiDecoder decreases gradually. For our model, as mentioned earlier, if there are multiple relations
between entities, it will be more likely to be noticed when decoding and thus extracted, but this is
within a certain threshold range (<=4), when the number of relations continues to increase, our model
will also have a performance degradation.

We will analyze why F1 score is the highest when there are 4 relational triples in a sentence from
the perspective of the proportion of entity pair overlap in each subclass. From Figures 2 and 3, we can
see that our model is more suitable for dealing with entity pair overlap class than single entity overlap
class. If there are more than two relations in the sentence, there will usually be one of two types of
overlapping situations. Therefore, we analyze the proportion of entity pair overlap situation in these
sentences which contain more than two relations. We count the number of relations that an entity pair
contains when there are 2, 3, and 4 relations in the sentence respectively, if the entity pair contains 2 or
more relations, it means there is entity pair overlap.

Table 4 shows the statistical results. From the table, we can see that in the subclass containing 4
triples in the sentence, has the largest proportion of entity overlap, reaching 80%, which is beyond the
other subclasses, so we think this is the reason makes the model perform best on this subclass. The more
relations are contained in sentences, the more complex the extraction is. When sentences contain more
relations (>4), we consider the following two reasons leading to the performance degradation of the
model. First, since our model generates relatively independent words rather than sentences with

468

Appl. Sci. 2019, 9, 3795

contextual contexts, it is relatively weak for LSTM to generate such a long sequence without coherent
semantics. Secondly, because the training set contains less than 3% of the sentences with more than 4
relations, the model is not sufficient to learn this situation.

Table 4. Statistics Results.

1 2 3 >=4 Percentage

sentences containing 2 relation triples 514 943 - - 0.647
sentences containing 3 relation triples 210 72 182 - 0.547
sentences containing 4 relation triples 70 71 12 194 0.800

Bold numbers represent the largest proportion of entity pair overlap in the three cases.

6.4. Case Study

Table 5 shows three examples of our model extracted from the NYT11 dataset, corresponding to
three categories: normal, single entity overlap, and entity pair overlap. The first sentence belongs to
the normal class and does not have multiple relations. ’contains’ means the relation of entity America
and entity Houston. Our model generate ’contains’ from predefined vocabulary and copy America,
Houston from input text. The second sentence contains two relations in which there is overlap of a
single entity, Italy. The third sentence contains two relations where entity pairs overlapped, <Microsoft,
Bill Gates>. The entity pair in the last sentence is <Somerset County, Quecreek>, but the model only
copies the last word ‘County’ in Somerset County from the original text, and does not extract entity
completely. In this case, we think that the triple predicted by the model is wrong.

Table 5. Extraction examples of our models. The first column in the table is the input of the model,
and the second column is the corresponding sentences of the output of the model. As described in
Section 3.1 above, multiple relational triples in the model output are separated by ‘.’ and ‘,’ separates
relational words and two entities within each triple.

Input Output of Our Model

Kevin Steurer is helping complete arrangements for
a family trip to Houston , America . contains , America , Houston .

You can take the train from many cities in Italy to Lecce ,
which is about 45 min from Otranto by car.

contains , Italy , Lecce .
contains , Italy , Otranto .

The real power at Microsoft resides with its longtime
leaders—Bill Gates, the co-founder and chairman.

work_in , Bill Gates , Microsoft .
founder , Microsoft , Bill Gates .

Somerset County has experienced disaster , with the crash
of flight and nine coal miners trapped at Quecreek. contains, County, Quecreek

7. Conclusions

In this paper, we propose to completely transform the entity-relation extraction task into the text
generation task to solve the entity overlap problem in relation extraction. We use a pointer-based
sequence-to-sequence framework to enable the model to copy words from the source text or to select
words from the predefined vocabulary. We further analyze the extraction ability of our model on
different degrees of entity overlap, and classify the sentences according to the different number of
relations between two entities, and test the extraction effects of our model on these subclasses. We
conduct experiments on the public datasets NYT10 and NYT11. The experimental results show that
our method outperforms the baselines.

Author Contributions: Conceptualization, H.E. and S.X.; Data curation, H.E.; Formal analysis, H.E.; Funding
acquisition, H.E.; Investigation, S.X.; Methodology, S.X.; Project administration, H.E.; Resources, H.E.; Software,
H.E.; Supervision, H.E.; Validation, H.E., S.X. and M.S.; Visualization, H.E.; Writing—original draft, S.X.;
Writing—review & editing, H.E., S.X. and M.S.

469

Appl. Sci. 2019, 9, 3795

Funding: This work was supported in part by the National Key R&D Program of China under Grant
SQ2018YFB140079.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

RC Relation Classification
NER Named Entity Recognition
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
CNN Convolutional Neural Network

References

1. Zhao, M.; Wang, H.; Guo, J.; Liu, D.; Xie, C.; Liu, Q.; Cheng, Z. Construction of an Industrial Knowledge
Graph for Unstructured Chinese Text Learning. Appl. Sci. 2019, 9, 2720.

2. Cai, R.; Zhang, X.; Wang, H. Bidirectional recurrent convolutional neural network for relation classification.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Berlin, Germany, 7–12 August 2016; Volume 1, pp. 756–765.

3. Hashimoto, K.; Miwa, M.; Tsuruoka, Y.; Chikayama, T. Simple customization of recursive neural networks
for semantic relation classification. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, Seattle, WA, USA, 18–21 October 2013; pp. 1372–1376.

4. Zeng, D.; Liu, K.; Lai, S.; Zhou, G.; Zhao, J. Relation classification via convolutional deep neural network.
In Proceedings of the COLING 2014, the 25th International Conference on Computational Linguistics:
Technical Papers, Dublin, Ireland, 23–29 August 2014; pp. 2335–2344.

5. Katiyar, A.; Cardie, C. Investigating lstms for joint extraction of opinion entities and relations. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Berlin, Germany, 7–12 August 2016; Volume 1, pp. 919–929.

6. Katiyar, A.; Cardie, C. Going out on a limb: Joint extraction of entity mentions and relations without
dependency trees. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Vancouver, BC, Canada, 30 July–4 August 2017; Volume 1, pp. 917–928.

7. Miwa, M.; Bansal, M. End-to-end relation extraction using lstms on sequences and tree structures. arXiv 2016,
arXiv:1601.00770.

8. Zheng, S.; Wang, F.; Bao, H.; Hao, Y.; Zhou, P.; Xu, B. Joint extraction of entities and relations based on a
novel tagging scheme. arXiv 2017, arXiv:1706.05075.

9. Zeng, X.; Zeng, D.; He, S.; Liu, K.; Zhao, J. Extracting Relational Facts by an End-to-End Neural Model
with Copy Mechanism. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018; Volume 1, pp. 506–514.

10. Christopoulou, F.; Miwa, M.; Ananiadou, S. A Walk-based Model on Entity Graphs for Relation Extraction.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), Melbourne, Australia, 15–20 July 2018; Volume 2, pp. 81–88.

11. Wang, S.; Zhang, Y.; Che, W.; Liu, T. Joint Extraction of Entities and Relations Based on a Novel Graph
Scheme. In Proceedings of the IJCAI, Stockholm, Sweden, 13–19 July 2018; pp. 4461–4467.

12. Nallapati, R.; Zhai, F.; Zhou, B. Summarunner: A recurrent neural network based sequence model for
extractive summarization of documents. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, San Francisco, CA, USA, 4–9 February 2017.

13. Zhang, Y.; Li, D.; Wang, Y.; Fang, Y.; Xiao, W. Abstract Text Summarization with a Convolutional Seq2seq
Model. Appl. Sci. 2019, 9, 1665.

14. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate.
arXiv 2014, arXiv:1409.0473.

15. Cheng, Y.; Yang, Q.; Liu, Y.; Sun, M.; Xu, W. Joint training for pivot-based neural machine translation.
In Proceedings of the IJCAI, Melbourne, Australia, 19–25 August 2017.

470

Appl. Sci. 2019, 9, 3795

16. See, A.; Liu, P.J.; Manning, C.D. Get to the point: Summarization with pointer-generator networks. arXiv 2017,
arXiv:1704.04368.

17. Socher, R.; Huval, B.; Manning, C.D.; Ng, A.Y. Semantic compositionality through recursive matrix-vector
spaces. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, Jeju Island, Korea, 12–14 July 2012; pp. 1201–1211.

18. Xu, K.; Feng, Y.; Huang, S.; Zhao, D. Semantic relation classification via convolutional neural networks with
simple negative sampling. arXiv 2015, arXiv:1506.07650.

19. Santos, C.N.D.; Xiang, B.; Zhou, B. Classifying relations by ranking with convolutional neural networks.
arXiv 2015, arXiv:1504.06580.

20. Xu, Y.; Mou, L.; Li, G.; Chen, Y.; Peng, H.; Jin, Z. Classifying relations via long short term memory networks
along shortest dependency paths. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 1785–1794.

21. Yu, X.; Lam, W. Jointly Identifying Entities and Extracting Relations in Encyclopedia Text via A
Graphical Model Approach. In Proceedings of the International Conference on Coling, Beijing, China,
23–27 August 2010.

22. Zheng, S.; Hao, Y.; Lu, D.; Bao, H.; Xu, J.; Hao, H.; Xu, B. Joint entity and relation extraction based on a
hybrid neural network. Neurocomputing 2017, 257, 59–66.

23. Riedel, S.; Yao, L.; McCallum, A. Modeling relations and their mentions without labeled text. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 148–163.

24. Ren, X.; Wu, Z.; He, W.; Qu, M.; Voss, C.R.; Ji, H.; Abdelzaher, T.F.; Han, J. Cotype: Joint extraction of typed
entities and relations with knowledge bases. In Proceedings of the 26th International Conference on World
Wide Web, Perth, Australia, 3–7 April 2017; pp. 1015–1024.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

471

applied
sciences

Article

Information Extraction from Electronic Medical
Records Using Multitask Recurrent Neural Network
with Contextual Word Embedding

Jianliang Yang 1 , Yuenan Liu 1, Minghui Qian 1,*, Chenghua Guan 2 and Xiangfei Yuan 2

1 School of Information Resource Management, Renmin University of China, 59 Zhongguancun Avenue,
Beijing 100872, China

2 School of Economics and Resource Management, Beijing Normal University, 19 Xinjiekou Outer Street,
Beijing 100875, China

* Correspondence: qmh@ruc.edu.cn; Tel.: +86-139-1031-3638

Received: 13 August 2019; Accepted: 26 August 2019; Published: 4 September 2019

Abstract: Clinical named entity recognition is an essential task for humans to analyze large-scale
electronic medical records efficiently. Traditional rule-based solutions need considerable human
effort to build rules and dictionaries; machine learning-based solutions need laborious feature
engineering. For the moment, deep learning solutions like Long Short-term Memory with Conditional
Random Field (LSTM–CRF) achieved considerable performance in many datasets. In this paper,
we developed a multitask attention-based bidirectional LSTM–CRF (Att-biLSTM–CRF) model with
pretrained Embeddings from Language Models (ELMo) in order to achieve better performance. In the
multitask system, an additional task named entity discovery was designed to enhance the model’s
perception of unknown entities. Experiments were conducted on the 2010 Informatics for Integrating
Biology & the Bedside/Veterans Affairs (I2B2/VA) dataset. Experimental results show that our model
outperforms the state-of-the-art solution both on the single model and ensemble model. Our work
proposes an approach to improve the recall in the clinical named entity recognition task based on the
multitask mechanism.

Keywords: clinical named entity recognition; information extraction; multitask model; long short-term
memory; conditional random field

1. Introduction

Along with the popularization of medical information systems, more and more electronic medical
records (EMR) are produced. As most of the content in EMRs involves unstructured texts, interpretation
from specialists is needed to acquire relevant information in EMRs. However, in the face of large-scale
EMRs, automated solutions are indispensable. Clinical named entity recognition (CNER) is a particular
case in natural language processing (NLP) information extraction tasks, and it aims to extract specific
conceptions from unstructured texts, such as problems, medical tests, and treatments [1], which is an
essential process for transforming unstructured EMR texts into structured medical data. A highly
effective CNER solution will help improve the efficiency of analyzing large-scale EMRs, thus supporting
extensive medical research and the development of medical information systems.

Traditional clinical named entity solutions are rule-based, for example, Medical Language
Extraction and Encoding System (MedLEE) [2], MetaMap [3], clinical Text Analysis and Knowledge
Extraction System (cTAKES) [4], and KnowledgeMap [5]. Rule-based systems need considerable
human effort to build basic rules and sometimes a specialized sub-field dictionary, which is specific to
the existing entities, with a weak ability to recognize new entities and misspellings [6]. Rule-based

473

Appl. Sci. 2019, 9, 3658

systems have a high precision score; however, due to the limited rules, they have a low recall in
general [7]. Given the disadvantages of rule-based systems, systems based on machine learning were
proposed for implementing clinical information extraction to reduce the reliance on human-built rules
and dictionaries. Furthermore, an increasing number of public medical sequence labeling datasets
such as the Center for Informatics for Integrating Biology and the Bedside (I2B2) 2010 [8] and Semantic
Evaluation (SemEval) 2014 [9] offer data fundamentals for training machine learning models. Machine
learning models like support vector machine (SVM), conditional random field (CRF), and hidden
Markov model (HMM) achieved superior results [10–12]. Among these models, linear chain CRF [13]
could be one of the most widely used algorithms on account of its strong ability to model the state
transition in the token sequence and tag sequence. Compared to rule-based systems, systems based on
machine learning let the system learn rules based on the clinical records instead of prior defined rules,
which enhances the system’s ability to identify unknown entities.

Solutions based on machine learning usually contain two main processes: feature engineering
and classification [7]. However, the feature engineering process is a weak link in machine learning
systems. Researchers need to manually select possible features and design feature combinations, which
is time-consuming, and the features selected could be exclusive to the given task. Being limited by
the cognitive differences and deficiencies of humans, manually identified features are incomplete [14].
With the development of deep learning, more researchers focused on deep learning models to implement
named entity recognition. Compared to machine learning-based solutions, the advantage of deep
learning can free the feature engineering part by changing it to an automated process in the training
process. Among deep NLP studies, one branch of recurrent neural networks, the long short-term
memory network (LSTM), is a prevalent model for feature extraction due to its ability to keep memories
of preceding contents of each token [15]. Recent works used bi-directional LSTM (biLSTM) to extract
features and a CRF model to infer sequence labels, called the biLSTM–CRF hybrid model. Compared to
machine learning algorithms, the biLSTM–CRF model achieved considerable performance compared
to previous machine learning models [16–19]. Furthermore, biLSTM–CRF models use unsupervised
pretrained word embeddings as features instead of manually engineered features, which reduces
human factors in the system.

Recently, contextual word embeddings such as Embeddings from Language Models (ELMo) [20]
and Bidirectional Encoder Representations from Transformers (BERT) [21] brought new improvements
to the named entity recognition (NER) task. Embedding algorithms like Word2vec [22] and GloVe [23]
are based on the meanings of words (the meaning is speculated by word co-occurrences), and they map
each word to a vector using a language model. However, in different contexts, the same word may
have different meanings. For instance, the meaning of the word “bank” in “go to the riverbank” and
“go to the bank to deposit” is different. Contextual word embedding algorithms solve this problem
by giving various embedding vectors of the same word in various contexts [20,21]. In CNER studies,
models with pretrained contextual word embeddings in medical corpora outperformed those with
Word2vec and GloVe [24].

With the proposal of contextual word embedding, methods like character combined embeddings
and attention mechanism are yet to be tested, and prior studies based on deep learning did not
pay enough attention to the system’s perception of unknown entities, as the recall of those systems
is relatively low. Our study hypothesizes that, through combining contextual word embedding,
multitask, and attention mechanisms, the system can achieve better performance than previous
works and recognize more unknown entities. Thus, we propose a multitask biLSTM–CRF model
with pretrained ELMo contextual word embeddings to extract clinical named entities. The multitask
mechanism separates the NER task into two parts: named entity discovery and named entity
classification, in which the classification task is the primary task, and the discovery task is the secondary
task. Usually, the secondary task in a multitask model can be seen as a regularizer [25]; this mechanism
was implemented to reduce noise in the social media named entity recognition task [26]. We constructed
the multitask mechanism to enhance the model’s perception of unknown entities to improve recall.

474

Appl. Sci. 2019, 9, 3658

In addition, we drew a self-attention mechanism into the model. Experiments were done on the I2B2
2010/VA [8] dataset. The results show that our model outperforms the typical LSTM–CRF models
with ELMo contextual word embeddings. Our work provides an approach to improve the system’s
performance and perception of unknown entities based on multitask mechanism.

The paper is organized as follows: Section 2 summarizes previous studies on methods of clinical
named entity recognition and describes the multitask recurrent neural network model and the ELMo
pretrained contextual word embedding. Section 3 presents the experimental setting and results.
Section 4 discusses the experimental results. At last, Section 5 concludes the findings of this study and
describes some possible future directions based on this work.

2. Materials and Methods

In this section, we describe related work on clinical named entity recognition and how our model
was designed. Section 2.1 describes related work on clinical named entity recognition. Section 2.2
describes the algorithm of ELMo contextual word embedding and its pretraining corpus. Section 2.3
describes the structure of the bi-directional LSTM with attention layers. Section 2.4 describes the
multitask mechanism, which consists of the sequential inference task and the entity discovery task.

2.1. Related Work on Clinical Named Entity Recognition

The development of clinical named entity recognition systems approximately goes through three
stages, which are rule-based systems (also known as knowledge-based or lexicon-based), feature
engineered machine learning systems, and deep learning systems. Rule-based systems mainly rely
on search patterns in the form of characters and symbols which contain the content information
of some specific entity. Once the search patterns are built, the rule-based system searches records
based on these pre-defined patterns. Prior works commonly built regular expressions to express the
recognizing rules for named entities, and those regular expressions contained names or part of the
names of target entities. Savova et al. extracted peripheral arterial disease (PAD) if the phrase in
medical notes matched the pre-defined regular expressions. [27]; Bedmar et al. used similar methods
to extract drug entities [28]. The rule-based system works like a retrieval system, and it compares
every phrase to its regular expressions to check if the phrase is a named entity. However, the system
can recognize an entity only if it fits some regular expressions; in other words, if the system has more
regular expressions, it would recognize more entities. A well-performed rule-based system needs
abundant lexicon resources to pre-define search patterns [6,29]. Knowledge bases like Unified Medical
Language System (UMLS) [30] and DrugBank [31] are commonly used for the pre-definition work.
Furthermore, a rule-based system can accurately identify a named entity that appears in its lexicon but
becomes helpless for named entities not in its lexicon. Hence, the rule-based system usually has high
precision but low recall [7]. Also, building and maintaining a domain-specific lexicon with regular
expressions needs many resources. In the face of those shortcomings, machine learning-based systems
were put forward.

Machine learning-based systems allow the system itself to learn rules and patterns from clinical
records, which decreases the manual work in constructing them. SVM, logistic regression (LR),
and CRF are the most commonly implemented algorithms in these systems [29]. These systems
achieved relatively excellent performance [32–35]. For implementing algorithms like SVM, LR,
and CRF, pivotal content and structural information should be provided and converted into particular
forms to allow the learning model to understand sequences and learn patterns. Therefore, feature
engineering becomes essential in machine learning-based systems [14]. For example, Roberts et al.
implemented SVM to recognize anatomic locations from medical reports, and nine features including
lemmas of words, grammatical dependency structure information, and path along the syntactic parse
tree were engineered [32]. Sarker et al. implemented three classification approaches including SVM,
naïve Bayes, and maximum entropy to extract adverse drug reaction entities; n-grams features, UMLS
semantic types, sentiment scores, and topic-based features were engineered [33]. Rochefort et al.

475

Appl. Sci. 2019, 9, 3658

identified geriatric competency exposures from students’ clinical notes with LR; features including the
number of notes, bag of words features, concept code features, Term Frequency–Inverse Document
Frequency (TF-IDF) features, and semantic type features were engineered [34]. Deleger et al. recognized
pediatric appendicitis score (PAS) from clinical records with CRF, and more than 20 features were
engineered [35]. Manual feature selection is time-consuming, and, as there is no general standard,
the manually identified features are usually incomplete [14]. Moreover, some of the features are also
based on the medical knowledge base [33,34], which indicates that feature engineering processes also
need abundant knowledge resources. Feature engineered machine learning systems can learn rules
and patterns through a training process, which dramatically improves efficiency, and studies showed
that these systems achieve considerable performance [32–35]. However, the system’s performance
highly relies on the features that humans selected, which decreases the robustness of the system.

Along with the development of deep learning in NLP, systems based on deep learning methods
were proposed. Compared to systems based on machine learning algorithms, one of the best advantages
of deep learning systems is the avoidance of manual work. It benefits from unsupervised pretrained
embeddings like Word2vec [22] and GloVe [23]. Actually, the first neural network architecture proposed
by Collobert et al. for NER tasks constructed features by orthographic information and lexicons which
also contained manual work [25], whereas Collobert et al. improved his model by replacing those
manually built features with word embedding, which converts a word into an N-dimension vector
through an unsupervised training process [36]. Studies on CNER based on deep learning methods
mainly follow two directions. One is to optimize the learning model, and the other is to construct or
pre-train better embeddings, which can provide more information for the learning model.

For the studies on learning models, Collobert et al. firstly proposed a model with convolution
layers to capture local information in the sequence [36]. Models based on Recurrent Neural Network
(RNN) were proposed due to its superior ability in sequence learning. Huang et al. proposed a
bi-directional LSTM model for sequence labeling and showed that assembling a CRF layer on top of an
LSTM could improve performance [37]. Lample et al. proposed the biLSTM–CRF model for NER [38].
The biLSTM with CRF-based model showed its success in many CNER studies. Chalapathy et al.
extracted clinical concepts with a biLSTM–CRF architecture, and achieved 83.88% F1 score, 84.36%
precision score, and 83.41% recall score on the 2010 I2B2/VA dataset (the version with 170 training
notes), which was better than all prior work [7]. Xu et al. extracted disease named entities with the
same architecture, and achieved 80.22% F1, which was also better than prior work [39]. Wu et al.
compared CRFs, Structured Support Vector Machines (SSVMs), semi-Markov, Convolutional Neural
Network (CNN), and biLSTM–CRF on the 2010 I2B2/VA dataset (the version with 349 training notes)
and found that biLSTM–CRF achieved the best performance among all learning models with 85.94%
F1 score [14]. Xu et al. combined biLSTM–CRF with a global attention mechanism, and conducted
experiments on the 2010 I2B2/VA dataset (the version with 170 training notes). They achieved 85.71%
F1 score, 86.27% precision score, and 85.15% recall score, which performed the best compared to prior
work [19]. At present, biLSTM–CRF is the most approved learning architecture for CNER tasks.

For studies on embeddings, word embedding was widely used in NER tasks. Chalapathy et al.
compared random embedding, Word2vec, and GloVe in biLSTM–CRF, and found that the system with
GloVe outperformed others [7]. Habibi et al. showed that the pre-training process of word embedding
is crucial for NER systems, and, for domain-specific NER tasks, domain-specific embeddings could
improve the system’s performance [40]. Liu et al. used pretrained Word2vec embeddings on (Medical
Literature Analysis and Retrieval System Online) MEDLINE and Wikipedia corpus and achieved
considerable performance compared to other studies [41]. As a word can be seen as a sequence of
characters, and characters in a word contain parts of a word’s meaning and orthographic information,
character-level embedding is quite useful for NER tasks. Normally, character-level embeddings
are not pretrained; they are initialized randomly and trained by a sub-CNN or sub-RNN in the
whole architecture. Liu et al. combined Word2vec embedding and an LSTM-trained character-level
embedding as features of a word, which performed much better than only word embeddings [41].

476

Appl. Sci. 2019, 9, 3658

Zeng et al. combined a Word2vec embedding, and a CNN-trained character-level embedding as
features of a word, which performed better for some indicators [18]. Along with the development
of contextual word embeddings, studies [20,21] showed that contextual embeddings achieved better
performance than previous work [7,14,19]. Just like Word2vec embedding, a domain-specific pretrained
contextual embedding model performs better in the domain-specific NER task. Zhu et al. compared
general pretrained ELMo and clinical pretrained ELMo, and found that clinical ELMo performed
much better than general ELMo. They achieved 88.60% F1 score, 89.34% precision score, and 87.87%
recall score on the 2010 I2B2/VA dataset (the version with 170 training notes) [24]. Si et al. compared
Word2vec, GloVe, fastText, ELMo, BERT-base, BERT-large, and Bio-BERT, and found that BERT-large
achieved the best performance [42].

In general, systems with biLSTM–CRF architecture and contextual word embedding set
the new state-of-the-art record in many CNER datasets at present [24,42]. However, methods
that combine character-level embedding and attention mechanisms, such as in References [41]
and [19], with contextual word embeddings are yet to be tested. Moreover, among the existing
studies [7,14,19,40–42], the systems all had a relatively low recall, which indicates that those systems
were not sensitive enough to unknown entities. Aguilar et al. proposed a multitask system for NER
in social media in order to reduce noise, and their system achieved the highest F1 score and decent
precision score compared to other systems [26]. Aguilar et al.’s work indicates that we can try to
introduce the multitask mechanism in CNER tasks to make the system more sensitive to emerging
clinical concepts.

In our work, we design a multitask attention-based biLSTM–CRF model (Att-biLSTM–CRF) to
test the effect of the multitask mechanism in the CNER task. Compared with rule-based systems
and machine learning-based systems, our work is based on deep learning, whereby we do not
rely on human-designed rules and manually engineered features, which significantly improves our
system’s robustness and usability. Compared to prior work based on deep learning, we combine the
biLSTM–CRF architecture, clinical pretrained context embedding, attention mechanism, and multitask
mechanism in order to achieve better performance than prior work. Specifically, we test whether the
multitask mechanism can improve the system’s recall.

2.2. ELMo Contextual Word Embedding

ELMo is a pretrained contextual word embedding model. It is a bidirectional LSTM (biLSTM)
language model which can generate context-dependent word embeddings [20]. The prediction process
of the biLSTM language model is to maximize the log-likelihood of the probability of token i from
both directions.

N∑

i=1

(log p(ti | t1, t2 . . . , ti−1; Θx,
→
ΘLSTM, Θs) + log p(ti | ti+1, ti+2 . . . , tN; Θx,

←
ΘLSTM , Θs)), (1)

where ti is token i, (t1, t2 . . . ti−1) is the forward context of token i, (ti+1, ti+2 . . . , tN) is the backward

context of token i, Θx represents the parameters of the token’s representations,
→
ΘLSTM represents

the LSTM parameters in the forward direction,
←
ΘLSTM represents the LSTM parameters in the

backward direction, and Θs represents the parameters of the Softmax layer. Then, ELMo combines the
representation from each layer of token i as follows:

Ri =
{
hLSTM

i, j

∣∣∣∣ j = 0, 1, . . . , L
}
, (2)

477

Appl. Sci. 2019, 9, 3658

where Ri is the representation of token i, and hLSTM
i, j is the hidden layer which is equal to [

→
h

LSTM

i, j ;
←
h

LSTM

i, j].
ELMo collapses the representations from all layers into one single vector. For a specific task, the ELMo
representation of token i is calculated by

ELMotask
i = γtask

L∑

j=0

stask
j hLSTM

k, j , (3)

where γtask is the scalar factor to adjust the scale of vector based on the feature of a specific task, and stask
j

is the normalized weight of each layer.
ELMo showed better performance in several NLP tasks compared to other context-independent

embedding models like Word2vec and GloVe [20]. For some specific domains, a domain-pretrained
ELMo model had better performance than generalized ELMo [43,44]. In the clinical NER task,
the LSTM–CRF model with ELMo pretrained on the medical corpus Multiparameter Intelligent
Monitoring in Intensive Care III (MIMIC III) [45] significantly outperformed the same model with
generalized ELMo [24]. In our work, we use the MIMIC III medical corpus pretrained ELMo to produce
word embeddings as input variables. Thus, the main comparison is between our work and previous
work with clinical ELMo embeddings.

2.3. The Att-biLSTM Model

A recurrent neural network (RNN) is a type of neural network designed to handle sequential
data. For sequential data such as stock price data within a period and every token in one sentence,
the data in step t typically have some relationships with the previous step. In a language model,
the RNN can “remember” the information before the current step, which makes it suitable for sequence
prediction [46]. Particularly, for a sequential data series xtask = {x0, x1, x2, . . . , xt, . . . , xn} where xt is the
t step of xtask, the model calculates the hidden cell output ht by xt and ht−1 for each step at first; then,
computing hidden state outputs of all the steps, the model computes its output otask, and each ot is
calculated by ht. The mathematical expression of the forward propagation process is as follows:

it = tan h(Uxt), (4)

ht = Wht−1 + it + biash, (5)

ot = Vht + biaso, (6)

where U is the weight of the input layer, W is the weight in the hidden cell, and V is the weight
of the output layer. U, W, and V are shared for all steps. Commonly, after computing the outputs,
another layer is added based on the task. For a classification task, a softmax function is usually used to
normalize the probability of each class.

Theoretically, a naïve RNN model can handle the previous information for each step. However,
in practice, the problems of vanishing gradient and exploding gradient in backpropagation through
time (BPTT) result in it failing to learn enough information from previous steps and handle long-term
dependencies [47]. Facing this dilemma, the LSTM model was implemented. The LSTM model combats
the vanishing gradient and exploding gradient problem by its gating and cell state mechanism [15].
The mechanism includes a forget gate f, an input gate I, and a cell state C. The forward propagation
process in an LSTM cell is as follows:

ft = σ
(
W f hht−1 + W f xxt + bias f

)
, (7)

It = σ(Wihht−1 + Wixxt + biasi), (8)

Ct = ftCt−1 + ittanh(WChht−1 + Wcxxt + biasC), (9)

478

Appl. Sci. 2019, 9, 3658

zt = σ(Wzhht−1 + Wzxxt + biaso), (10)

ht = zttanh(Ct), (11)

where ft is the forget weight, and σ is the sigmoid function which restricts ft between [0, 1]. In the
range, 0 means to completely forget previous information, and 1 means to completely remember the
previous information. It is the input weight of cell t, and it decides how much information should
enter the cell. Ct is the value of the current cell t. It consists of previous information adjusted by the
forget gate and current information by the input gate. At last, the output of the LSTM cell ht is the
cell state value normalized by a tanh function and then adjusted by zt, in which zt decides how much
information should be added to the output.

In our work, the model needs to decide a token’s label not only by the previous tokens but also by
the tokens behind it; thus, we use a two-layer biLSTM to gather information on each token from both

directions (shown in Figure 1). As described above, a single bidirectional LSTM generates an output
→
h t

and, for a biLSTM, it uses two independent single LSTM layers to generate an output [
→
h t,

←
h t]. [

→
h t,

←
h t]

is the final representation of token t in our model.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 15

biLSTM layer. In this layer, we compute the attention score by a query vector (Q), a key vector (K),
and a value vector (V). Attention(Q, K, V) = softmax ቆ𝑄𝐾்ඥ𝑑 ቇ V, (12)

where 𝑑 is the number of dimensions in K to scale the dot product of Q and K. Based on the self-
attention mechanism, Q, K, and V are computed from the same input, which is the biLSTM
representation in our model. Specifically, Q = [ℎሬ⃗ ௧, ℎ⃖ሬ௧]W୕, K = [ℎሬ⃗ ௧, ℎ⃖ሬ௧]W, and V = [ℎሬ⃗ ௧, ℎ⃖ሬ௧]W. We use
two heads to capture information from different perspectives; then, we concatenate the attention
matrices and send them into a dense layer to obtain the final representation. The architecture of the
Att-biLSTM part in our work is shown in Figure 1.

r(0) r(1) r(2) r(3) r(t) r(t+1) r(n)

Relu

biLSTM
layer

Self-
attention

0h

1h

2h

3h

th

nh

t+1h

nh

t+1h

th

3h

2h

1h

0h

0h

0h

1h

1h

2h

2h

3h

3h

th

th

t+1h

t+1h

nh

nh

(, ,)
, ,Q K V

Attention Q K V
W W W

Figure 1. The architecture of attention-based bidirectional Long Short-term Memory (Att-biLSTM).
The biLSTM layer captures input data and generates embeddings from two directions. The
embedding of each token from two directions is concatenated into one vector as the output of the
biLSTM layer. Then, the vectors go through a multi-head self-attention layer. A relu function activates
the outputs of the attention layer. Dropout is applied in the biLSTM layer. This part is a part of the
encoder in our model.

2.4. Multitask Mechanism

After the model obtains the representations from the Att-biLSTM, it separates the NER task into
a primary task and a secondary task. The primary task is a sequential inference task, and the
secondary task is an entity discovery task. The two tasks are conducted simultaneously.

In the sequential inference task, the representation vectors are sent to a CRF model to decide
which label should be assigned on each token. The reason that we do not use a dense layer and
softmax function to estimate the class of each token is that the label of each token has sequential
dependence, and the softmax function can capture the dependence information. For instance, it is
impossible that a label representing the beginning of an entity follows another beginning label in one
entity in the real data, but it may happen in the prediction if we use a dense layer and a softmax
function. The CRF model can infer the dependence of token t with token t − 1 and token t + 1 in a
sequence by its state transition algorithm [13]. Thus, a CRF layer is used to infer the sequence in our
model. Specifically, giving a sequence 𝑥 = {𝑥, … , 𝑥௧, … , 𝑥} and its label sequence 𝑦௧௦ = {𝑦, … , 𝑦௧, … , 𝑦}, it complies with the following Markov property:

Figure 1. The architecture of attention-based bidirectional Long Short-term Memory (Att-biLSTM).
The biLSTM layer captures input data and generates embeddings from two directions. The embedding
of each token from two directions is concatenated into one vector as the output of the biLSTM layer.
Then, the vectors go through a multi-head self-attention layer. A relu function activates the outputs
of the attention layer. Dropout is applied in the biLSTM layer. This part is a part of the encoder in
our model.

Considering that, when human beings classify a token into some kind of entity, they may rely on
some similar representations around it, we add a multi-head self-attention layer [48] after the biLSTM
layer. In this layer, we compute the attention score by a query vector (Q), a key vector (K), and a value
vector (V).

Attention(Q, K, V) = softmax

QKT
√

dk

V, (12)

where dk is the number of dimensions in K to scale the dot product of Q and K. Based on the self-attention
mechanism, Q, K, and V are computed from the same input, which is the biLSTM representation in

479

Appl. Sci. 2019, 9, 3658

our model. Specifically, Q = [
→
h t,

←
h t]WQ, K = [

→
h t,

←
h t]WK, and V = [

→
h t,

←
h t]WV . We use two heads to

capture information from different perspectives; then, we concatenate the attention matrices and send
them into a dense layer to obtain the final representation. The architecture of the Att-biLSTM part in
our work is shown in Figure 1.

2.4. Multitask Mechanism

After the model obtains the representations from the Att-biLSTM, it separates the NER task into a
primary task and a secondary task. The primary task is a sequential inference task, and the secondary
task is an entity discovery task. The two tasks are conducted simultaneously.

In the sequential inference task, the representation vectors are sent to a CRF model to decide
which label should be assigned on each token. The reason that we do not use a dense layer and softmax
function to estimate the class of each token is that the label of each token has sequential dependence,
and the softmax function can capture the dependence information. For instance, it is impossible that a
label representing the beginning of an entity follows another beginning label in one entity in the real
data, but it may happen in the prediction if we use a dense layer and a softmax function. The CRF
model can infer the dependence of token t with token t − 1 and token t + 1 in a sequence by its state
transition algorithm [13]. Thus, a CRF layer is used to infer the sequence in our model. Specifically,
giving a sequence x = {x0, . . . , xt, . . . , xn} and its label sequence ytask =

{
y0, . . . , yt, . . . , yn

}
, it complies

with the following Markov property:

P
(
yt

∣∣∣x, y0, . . . yt−1, yt+1, . . . , yn
)
= P

(
yt

∣∣∣x, yt−1, yt+1
)
. (13)

Then, P(ytask
∣∣∣x) is a chain conditional random field, and the conditional probability of ytask is

P(ytask1

∣∣∣x) =
exp

(∑n,K1
i,k λktk(yi−1, yi, x, i) +

∑n,K2
i,l µlsl(yi, x, i)

)

Z(x)
, (14)

where tk is a transition eigenfunction, sl is a state feature function, λk and µl are weight parameters,
K1 is the number of transition features, and K2 is the number of state features. Z(x) is a normalization
function to normalize the probability. tk and λk can be united into one feature function: fk(y, x) =

n∑
i=1

fk(yi−1, yi, x, i). Then, the probability of given sequence x with label sequences ytask1 is expressed by

the following equation:

P(ytask1

∣∣∣x; w) =
exp

(∑m
k=1

∑n
i=1 wk fk(yi−1, yi, x, i)

)

∑z
y′=0 exp

(∑m
k=1

∑n
i=1 wk fk

(
y′i−1, y′i , x, i

)) , (15)

where w is the weight matrix of fk, and z is the set of labels in the label sequence. To maximize
P(ytask1

∣∣∣x; w), we optimize w by the log-likelihood estimation algorithm. To obtain the label sequence
ytask1, we use the Viterbi algorithm to decode the label sequence solved by the CRF layer. Before the
representations enter the CRF layer, they go through a dense layer first, and this dense layer has 13
output neural cells which represent all 13 labels.

In the entity discovery task, the representations generated from the Att-biLSTM are sent into a
binary classifier; this classifier classifies a token as being an entity or not. A dense layer with two
output neural cells is used to represent the two classes, and a softmax function is used to normalize
the probability. The following equation expresses the probability of given sequence x with label
sequences ytask2:

P(ytask2

∣∣∣x; w) =

∑n
i=1 exp

(
xTwi

)

∑K
k
∑n

i=1 exp
(
xTwk

i

) . (16)

480

Appl. Sci. 2019, 9, 3658

In the backpropagation process, the loss values of two tasks are combined by a linear process,
which is

losstotal = γ1losst1 + γ2losst2, (17)

where γ1 and γ2 are factors of two loss values, and they represent the priority of the two tasks. In every
backpropagation process, the model computes the total loss and conducts gradient descent. The entire
architecture of our model is shown in Figure 2. The source code of our model was published online in
the Supplementary Materials.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 15

w(0) w(1) w(2) w(3) w(t)

ELMo

Emb(0) Emb(1) Emb(2) Emb(3) Emb(t)

ELMo ELMo ELMo ELMo

r(0) r(1) r(2) r(3) r(t) r(t+1)

w(t+1) w(n)

Emb(t+1) Emb(n)

ELMo ELMo

r(n)

Relu

ELMo

biLSTM
layer

attention
layer

0h

1h

2h

3h

th

nh

t+1h

nh

t+1h

th

3h

2h

1h

0h

0h

0h

1h

1h

2h

2h

3h

3h

th

th

t+1h

t+1h

nh

nh

(, ,)
, ,Q K V

Attention Q K V
W W W

1 l(1) l(2)l(0) l(3) ...

Ent

CRF

B-problem

0

Softmax
CRF
layer

Softmax
layer

Figure 2. The architecture of our model. Firstly, the tokens in a sequence enter the pretrained
Embeddings from Language Models (ELMo) model, and ELMo outputs the contextual embeddings
of each token. Then, the Att-biLSTM layer receives the contextual embeddings and outputs the
encoded vector of each token. At last, the encoded vectors are sent to the softmax layer to conduct the
entity discovery task and to the Conditional Random Field (CRF) layer to decode the sequential labels
synchronously.

3. Results

To test the model’s performance, in this section, we describe the process of experiments and the
experimental results. Section 3.1 describes the dataset we use. The dataset 2010 I2B2/VA is a public
dataset for the CNER task, and several studies conducted experiments on this dataset [7,19,24].
Section 3.2 describes the experimental setting such as hyperparameters and the learning optimizer.
Section 3.3 describes the evaluation metrics, for which exact precision, recall, and F1 are used. Section
3.4 describes the results of our experiments.

3.1. Dataset

To examine our model, we used the 2010 I2B2/VA dataset from the 2010 I2B2 challenge. This
dataset is a set of medical records contributed by Partners Healthcare, Beth Israel Deaconess Medical

Figure 2. The architecture of our model. Firstly, the tokens in a sequence enter the pretrained
Embeddings from Language Models (ELMo) model, and ELMo outputs the contextual embeddings
of each token. Then, the Att-biLSTM layer receives the contextual embeddings and outputs the
encoded vector of each token. At last, the encoded vectors are sent to the softmax layer to conduct
the entity discovery task and to the Conditional Random Field (CRF) layer to decode the sequential
labels synchronously.

481

Appl. Sci. 2019, 9, 3658

3. Results

To test the model’s performance, in this section, we describe the process of experiments and
the experimental results. Section 3.1 describes the dataset we use. The dataset 2010 I2B2/VA is a
public dataset for the CNER task, and several studies conducted experiments on this dataset [7,19,24].
Section 3.2 describes the experimental setting such as hyperparameters and the learning optimizer.
Section 3.3 describes the evaluation metrics, for which exact precision, recall, and F1 are used. Section 3.4
describes the results of our experiments.

3.1. Dataset

To examine our model, we used the 2010 I2B2/VA dataset from the 2010 I2B2 challenge. This
dataset is a set of medical records contributed by Partners Healthcare, Beth Israel Deaconess Medical
Center, and the University of Pittsburgh Medical Center [8]. The records in the dataset are in text format,
and the dataset is already separated into a training set and testing set. There are three different entities
in the dataset: problem, test, and treatment. The descriptions of records, sentences, and tokens are
shown in Table 1. In the training set, there are 7073 problem entities, 4844 test entities, and 4606 entities.
In the testing set, there are 12,592 problem entities, 9225 test entities, and 9344 treatment entities.

Table 1. Descriptions of training set and testing set in the 2010 Informatics for Integrating Biology &
the Bedside/ Veterans Affairs (i2b2/VA) dataset.

Dataset Records Sentences Tokens Tokens Per Sentence

Training set 170 16,315 149,666 9.17
Testing set 256 27,626 267,758 9.69

3.2. Experimental Setting

In our experiment, we labeled the data with BIEOS format (label prefix B is the token in the
beginning of an entity, label prefix I is the token inside an entity, label prefix E is the token at the end of an
entity, label prefix O is the token outside any entity, and label prefix S is a single entity). For the training
progress, we used the Adam optimizer [49] to train the model and tune the hyperparameters by random
search [50]. The early stopping strategy was used to prevent overfitting. The final hyperparameters
are shown in Table 2. We implemented our model on the pytorch library on Python 3.7.

Table 2. Hyperparameters chosen in our work.

Hyperparameters Value

Dimension of Embeddings from Language Models (ELMo) 1024
Bidirectional Long Short-term Memory (biLSTM) hidden size 256
Number of biLSTM layers 2
Number of attention heads 2
Dropout rate 0.5
Learning rate 0.001
Batch size 64
Epochs 100

3.3. Evaluation Metrics

The evaluation metric followed the regulation “Evaluation Methods and Procedures for 2010
I2B2/VA Challenge” [51]. We used the exact F1, exact precision, and exact recall score to evaluate
the performance of our model as most works using this dataset did. “Exact” means that the concept

482

Appl. Sci. 2019, 9, 3658

entities extracted must match the ground-truth entities exactly both in terms of boundaries and concept
type. The definitions of precision, recall, and F1 are shown below.

Precisionc =
TPc

TPc + FPc
, (18)

Recallc =
TPc

TPc + FNc
, (19)

F1c =
2 ∗ (Recallc ∗ Precisionc)

Recallc + Precisionc
, (20)

where c is the tag of an entity; TPc stands for the true positives of entity c, which means that the actual
tag of this entity is c, and the predicted tag is also c; FPc stands for the false positives, which means
that the actual tag of this entity is not c, but the predicted tag is c; and FNc stands for false negatives,
which means that the actual tag of this entity is c, but the predicted tag is not c. Specifically, as we used
the exact metrics, we treated a predicted entity as a true positive only if it matched both the boundary
and tag type of the corresponding actual entity. Micro F1 was used to integrate all F1c.

3.4. Results

We trained the model with different ransom seeds 10 times, and the mean and standard deviations
of metrics are reported. Table 3 shows the performance of our model, and the performances from other
models which experimented on the same dataset. Our solution in single-model mode achieved an exact
F1 score of 87.53 ± 0.11%, exact precision of 87.75 ± 0.18%, and exact recall of 87.32 ± 0.26%. Before our
work, the best performing single model was the “ELMo (clinical) + BiLSTM–CRF (single) model” [24],
which also used clinical pretrained ELMo word embeddings. We obtained an improvement of 0.69%
in mean F1, an improvement of 0.31% in mean precision, and an improvement of 1.06% in mean recall
compared with the best performing model.

Table 3. Results of experiments on the 2010 i2b2/VA dataset.

Solutions F1 Precision Recall

GloVe-biLSTM–CRF [7] 83.88 84.36 83.41
Clinical Named Entity Recognition system

(CliNER) 2.0 [52] 83.8 84.0 83.6

Att-biLSTM–CRF + Transfer [19] 85.71 86.27 85.15
ELMo (General) + BiLSTM–CRF (Single) [24] 82.54 ± 0.14 83.26 ± 0.25 81.84 ± 0.22

Word2vec + multitask-Att-biLSTM–CRF 78.70 79.98 77.47
ELMo (General) + multitask-Att-biLSTM–CRF 83.00 82.91 83.09

ELMo (Clinical) + BiLSTM–CRF (Single) [24] 86.84 ± 0.16 87.44 ± 0.27 86.25 ± 0.26
Our model (Single) 87.53 ± 0.11 87.75± 0.18 87.32 ± 0.26

ELMo (Clinical) + BiLSTM–CRF (Ensemble) [24] 88.60 89.34 87.87
Our model (Ensemble) 88.78 89.11 88.46

Additionally, we build an ensemble model based on 10 single models trained on different random
seeds [53]. The ensemble model classified tokens based on a voter mechanism that chose the most
voted label by the 10 single models. The results of our ensemble model are also shown in Table 3.
We can see that our ensemble model achieved an F1 score of 88.78, precision of 89.11, and recall of 88.46.
Compared to the previous best solution “ELMo (clinical) + BiLSTM–CRF (ensemble)”, our model
improved by 0.18% in F1 and 0.59% in recall, but had a lower performance for precision (−0.23%).
The F1 and precision had a slight variation between our model and the previous best solution, but we
can see a noticeable improvement in recall, just like the comparison between the single models.
The improvement in recall agrees with the aim of the multi-task mechanism in our model, which was
to enhance the model’s sensibility to unknown tokens. To see how the multitask mechanism performed

483

Appl. Sci. 2019, 9, 3658

if different embedding methods were implemented, we changed the embedding part of our system
to general pretrained Word2vec and general pretrained ELMo, and the results are shown in Table 3.
The result shows that the system with Word2vec embeddings performs not as good as we expected.
The reason may be that the hyperparameters and label format of our system were adjusted for the
contextual word embedding. However, the system with general ELMo performed better compared
to the result in Reference [24]. The result indicates that the multitask mechanism may have better
performance with contextual word embeddings.

The evaluation of the prediction for each type of medical entities is shown in Table 4. We can see
that the performance of our system on predicting problem entities was better than the other two kinds
of entities in all three indicators, and the prediction of medical test was a little worse than problem
and treatment entities. The reason for this difference may be the imbalance of the training dataset, in
which there were 7073 problem entities, 4844 test entities, and 4606 entities. However, the prediction
results of the three entities were quite close with tiny standard deviations (0.21 F1 score, 0.25 precision,
and 0.16 recall), which indicates that our system is stable when predicting the different types of entities.

Table 4. Evaluation of each type of entity.

Entity Type F1 Precision Recall

Medical Test 88.37 88.61 88.13
Problem 89.03 89.40 88.66

Treatment 88.96 89.34 88.58
SD 0.21 0.25 0.16

Some works using the 2010 I2B2/VA original dataset are not reported in Table 3, because those
works used the original larger dataset of 2010 I2B2/VA which contained 349 records in its training set
and 477 records in its testing set [41,42]. For some reason, I2B2 now only provides a smaller dataset
with 170 records in the training set and 256 records in the testing set. Theoretically, the same model
trained on the larger dataset should perform better than on the smaller dataset. However, our model
performed even better than most models trained on the original larger dataset [12,41]. For the works
conducted on the smaller dataset, the solution “ELMo (clinical) + BiLSTM–CRF (ensemble)” [24] was
the previous state-of-the-art model, and the result shows that our model significantly outperformed
the state-of-the-art model in recall and slightly outperformed it in F1 score.

4. Discussion

The experimental results both on the single model and ensemble model showed the ability to
improve the system’s recall using an additional entity discovery task. According to the results from
previous CNER models [7,12,19,24,41,42], those models with a single task always had a relatively
lower recall compared to their precision; however, it could be used to discover more entities in practice.
In our model, the multitask mechanism was used to balance discovering more entities and correctly
identifying entities, and the use of the additional task can be seen as a process to add extra weights to
discovering clinical entities. For the models with a single task, the model optimizes parameters only
by the loss of the ground-truth tags and estimated tags by cross-entropy. Compared to the models
with a single task, the multitask model tends to optimize parameters based primarily on if a token is
an entity, and correspondingly reduces the reliability on a token being assigned the right tag. In the
backpropagation process, gradients are independent of each other in the softmax and CRF parts.
Then, by backpropagating to the encoder parts, the gradients from the two parts are merged; thus,
the multitask mechanism mainly changes the way of encoding.

5. Conclusions

In this paper, we firstly discussed recent work on clinical named entity recognition and highlighted
the new improvements brought by contextual embeddings. Then, we proposed the multitask

484

Appl. Sci. 2019, 9, 3658

Att-biLSTM–CRF model with contextual embeddings. The multitask mechanism separates the
entity recognition task into two simultaneous sub-tasks, entity discovery and sequential inference.
Our experiment conducted on the 2010 I2B2/VA dataset showed that our model achieved better
performance than the previous state-of-the-art solution. Notably, our model improved the recall
significantly, which agrees with what we expected.

Our algorithm improved the perception of unknown entities just as we hypothesized, which
means that the system should have a better capability to deal with emerging medical concepts without
extra training resources. This idea could not only be applied in medical concept extraction, but also
other medical named entity recognition applications such as drug names and adverse drug reactions,
as well as named entity recognition tasks in other fields. For future studies, we want to put forward
two ideas. One is a transfer learning idea. We can already see the improvements brought by the
multitask mechanism in this paper, and the multitask mechanism can be seen as a task-oriented
regularizer. Therefore, it could be meaningful to train the model for the entity discovery task so as
to regularize the model first, and then implement transfer learning to train the same model for the
sequential inference task. Another idea is that, in previous work, character-level embedding was very
useful for improving the system’s performance; thus, it would be worthwhile to build a model with
combined character-level embedding and contextual word embedding.

Supplementary Materials: The source code is available at https://github.com/jeffy129/multi_cner.

Author Contributions: Conceptualization, J.Y. and Y.L.; data curation, J.Y. and C.G.; methodology, J.Y. and M.Q.;
resources, J.Y.; software, J.Y. and X.Y.; investigation, J.Y. and Y.L.; supervision, M.Q.; validation, J.Y. and M.Q.;
visualization, J.Y. and Y.L.

Funding: This research was supported by the China Scholarship Council (CSC) (grant number: 201806360227),
also was partially supported the Major Project for the Research and Application of Generic Technologies of
National Quality Infrastructure (NQI) (grant number:2018YFF0215803-3) and the Ministry of Education in China
(MOE) Project of Humanities and Social Sciences (grant number:18YJA630087).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Meystre, S.M.; Savova, G.K.; Kipper-Schuler, K.C.; Hurdle, J.F. Extracting information from textual documents
in the electronic health record: A review of recent research. Yearb. Med. Inform. 2008, 17, 128–144.

2. Friedman, C.; Alderson, P.O.; Austin, J.H.; Cimino, J.J.; Johnson, S.B. A general natural-language text
processor for clinical radiology. J. Am. Med. Inform. Assoc. 1994, 1, 161–174. [CrossRef] [PubMed]

3. Aronson, A.R.; Lang, F.-M. An overview of MetaMap: Historical perspective and recent advances. J. Am.
Med. Inform. Assoc. 2010, 17, 229–236. [CrossRef] [PubMed]

4. Savova, G.K.; Masanz, J.J.; Ogren, P.V.; Zheng, J.; Sohn, S.; Kipper-Schuler, K.C.; Chute, C.G. Mayo clinical Text
Analysis and Knowledge Extraction System (cTAKES): Architecture, component evaluation and applications.
J. Am. Med. Inform. Assoc. 2010, 17, 507–513. [CrossRef] [PubMed]

5. Denny, J.C.; Irani, P.R.; Wehbe, F.H.; Smithers, J.D.; Spickard, A., III. The KnowledgeMap project: Development
of a concept-based medical school curriculum database. In Proceedings of the AMIA Annual Symposium
Proceedings, Washington, DC, USA, 8–12 November 2003; pp. 195–199.

6. Liu, S.; Tang, B.; Chen, Q.; Wang, X. Drug name recognition: Approaches and resources. Information 2015,
6, 790–810. [CrossRef]

7. Chalapathy, R.; Borzeshi, E.Z.; Piccardi, M. Bidirectional LSTM–CRF for clinical concept extraction. arXiv
2016, arXiv:1611.08373.

8. Uzuner, Ö.; South, B.R.; Shen, S.; DuVall, S.L. 2010 i2b2/VA challenge on concepts, assertions, and relations in
clinical text. J. Am. Med. Inform. Assoc. 2011, 18, 552–556. [CrossRef] [PubMed]

9. Pradhan, S.; Elhadad, N.; Chapman, W.; Manandhar, S.; Savova, G. Semeval-2014 task 7: Analysis of clinical
text. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin,
Ireland, 23–24 August 2014; pp. 54–62.

485

Appl. Sci. 2019, 9, 3658

10. Boag, W.; Wacome, K.; Naumann, T.; Rumshisky, A. CliNER: A lightweight tool for clinical named entity
recognition. In Proceedings of the AMIA Joint Summits on Clinical Research Informatics, San Francisco, CA,
USA, 23–25 March 2015.

11. Wang, Y.; Patrick, J. Cascading classifiers for named entity recognition in clinical notes. In Proceedings of
the Workshop on Biomedical Information Extraction, Association for Computational Linguistics, Borovets,
Bulgaria, 14–16 September 2009; pp. 42–49.

12. DeBruijn, B.; Cherry, C.; Kiritchenko, S.; Martin, J.; Zhu, X. Machine-learned solutions for three stages of
clinical information extraction: The state of the art at i2b2 2010. J. Am. Med. Inform. Assoc. 2011, 18, 557–562.
[CrossRef]

13. Lafferty, J.; McCallum, A.; Pereira, F.C. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the 18th International Conference on Machine Learning
(ICML 2001), Williamstown, MA, USA, 28 June–July 1 2001; pp. 282–289.

14. Wu, Y.; Jiang, M.; Xu, J.; Zhi, D.; Xu, H. Clinical named entity recognition using deep learning models.
In Proceedings of the AMIA Annual Symposium Proceedings, Washington, DC, USA, 4–8 November 2017;
pp. 1812–1819.

15. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
16. Unanue, I.J.; Borzeshi, E.Z.; Piccardi, M. Recurrent neural networks with specialized word embeddings for

health-domain named-entity recognition. J. Biomed. Inform. 2017, 76, 102–109. [CrossRef]
17. Luo, L.; Yang, Z.; Yang, P.; Zhang, Y.; Wang, L.; Lin, H.; Wang, J. An attention-based BiLSTM–CRF approach to

document-level chemical named entity recognition. Bioinformatics 2017, 34, 1381–1388. [CrossRef] [PubMed]
18. Zeng, D.; Sun, C.; Lin, L.; Liu, B. LSTM–CRF for drug-named entity recognition. Entropy 2017, 19, 283.

[CrossRef]
19. Xu, G.; Wang, C.; He, X. Improving clinical named entity recognition with global neural attention.

In Proceedings of the Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint
International Conference on Web and Big Data, Macau, China, 23–25 July 2018; pp. 264–279.

20. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized
word representations. arXiv 2018, arXiv:1802.05365.

21. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv 2018, arXiv:1810.04805.

22. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.
arXiv 2013, arXiv:1301.3781.

23. Pennington, J.; Socher, R.; Manning, C. Glove: Global vectors for word representation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29
October 2014; pp. 1532–1543.

24. Zhu, H.; Paschalidis, I.C.; Tahmasebi, A. Clinical Concept Extraction with Contextual Word Embedding.
arXiv 2018, arXiv:1810.10566.

25. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th International Conference on Machine Learning (ICML 2008),
Helsinki, Finland, 5–9 July 2008; pp. 160–167.

26. Aguilar, G.; Maharjan, S.; López-Monroy, A.P.; Solorio, T. A Multi-task Approach for Named Entity
Recognition in Social Media Data. In Proceedings of the Third Workshop on Noisy User-generated Text of
Association for Computational Linguistics, Copenhagen, Denmark, 7 September 2017; pp. 148–153.

27. Savova, G.K.; Fan, J.; Ye, Z.; Murphy, S.P.; Zheng, J.; Chute, C.G.; Kullo, I.J. Discovering peripheral arterial
disease cases from radiology notes using natural language processing. In Proceedings of the AMIA Annual
Symposium Proceedings, Washington, DC, USA, 13–17 November 2010; pp. 722–726.

28. Bedmar, I.S.; Martínez, P.; Herrero Zazo, M. Semeval-2013 task 9: Extraction of drug-drug interactions
from biomedical texts (ddiextraction 2013). In Proceedings of the Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 2: Seventh International Workshop on Semantic Evaluation
(SemEval 2013), Atlanta, GA, USA, 13–14 June 2013; pp. 341–350.

29. Wang, Y.; Wang, L.; Rastegar-Mojarad, M.; Moon, S.; Shen, F.; Afzal, N.; Liu, S.; Zeng, Y.; Mehrabi, S.; Sohn, S.
Clinical information extraction applications: A literature review. J. Biomed. Inform. 2018, 77, 34–49. [CrossRef]

30. Hebbring, S.J. The challenges, advantages and future of phenome—Wide association studies. Immunology
2014, 141, 157–165. [CrossRef]

486

Appl. Sci. 2019, 9, 3658

31. Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, M.;
Neveu, V. DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Res. 2013, 42, D1091–D1097.
[CrossRef]

32. Roberts, K.; Rink, B.; Harabagiu, S.M.; Scheuermann, R.H.; Toomay, S.; Browning, T.; Bosler, T.; Peshock, R.
A machine learning approach for identifying anatomical locations of actionable findings in radiology reports.
In Proceedings of the AMIA Annual Symposium Proceedings, Chicago, IL, USA, 3–7 November 2012;
pp. 779–788.

33. Sarker, A.; Gonzalez, G. Portable automatic text classification for adverse drug reaction detection via
multi-corpus training. J. Biomed. Inform. 2015, 53, 196–207. [CrossRef]

34. Rochefort, C.M.; Buckeridge, D.L.; Forster, A.J. Accuracy of using automated methods for detecting adverse
events from electronic health record data: A research protocol. Implement. Sci. 2015, 10, 5. [CrossRef]

35. Deleger, L.; Brodzinski, H.; Zhai, H.; Li, Q.; Lingren, T.; Kirkendall, E.S.; Alessandrini, E.; Solti, I. Developing
and evaluating an automated appendicitis risk stratification algorithm for pediatric patients in the emergency
department. J. Am. Med. Inform. Assoc. 2013, 20, e212–e220. [CrossRef]

36. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing
(almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537.

37. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM–CRF models for sequence tagging. arXiv 2015, arXiv:1508.01991.
38. Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural architectures for named entity

recognition. arXiv 2016, arXiv:1603.01360.
39. Xu, K.; Zhou, Z.; Hao, T.; Liu, W. A bidirectional LSTM and conditional random fields approach to medical

named entity recognition. In Proceedings of the International Conference on Advanced Intelligent Systems
and Informatics 2015 (AISI 2015), Beni Suef, Egypt, 28–30 November 2015; pp. 355–365.

40. Habibi, M.; Weber, L.; Neves, M.; Wiegandt, D.L.; Leser, U. Deep learning with word embeddings improves
biomedical named entity recognition. Bioinformatics 2017, 33, i37–i48. [CrossRef] [PubMed]

41. Liu, Z.; Yang, M.; Wang, X.; Chen, Q.; Tang, B.; Wang, Z.; Xu, H. Entity recognition from clinical texts via
recurrent neural network. BMC Med. Inform. Decis. Mak. 2017, 17, 67. [CrossRef]

42. Si, Y.; Wang, J.; Xu, H.; Roberts, K. Enhancing Clinical Concept Extraction with Contextual Embedding. arXiv
2019, arXiv:1902.08691. [CrossRef] [PubMed]

43. Jin, Q.; Liu, J.; Lu, X. Deep Contextualized Biomedical Abbreviation Expansion. arXiv 2019, arXiv:1906.03360.
44. Jin, Q.; Dhingra, B.; Cohen, W.W.; Lu, X. Probing biomedical embeddings from language models. arXiv 2019,

arXiv:1904.02181.
45. Johnson, A.E.; Pollard, T.J.; Shen, L.; Li-wei, H.L.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.;

Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [CrossRef]
[PubMed]

46. Mikolov, T.; Karafiát, M.; Burget, L.; Černocký, J.; Khudanpur, S. Recurrent neural network based language
model. In Proceedings of the 17th Annual Conference of the International Speech Communication Association,
Makuhari, Chiba, Japan, 26–30 September 2010; pp. 1045–1048.

47. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of
the 30th International Conference on Machine Learning (ICML 2013), Atlanta, GA, USA, 16–21 June 2013;
pp. 1310–1318.

48. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention
is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA,
USA, 4–9 December 2017; pp. 5998–6008.

49. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
50. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
51. I2B2. Evaluation Methods and Procedures for 2010 i2b2/VA Challenge. Available online: https://www.

i2b2.org/NLP/Relations/assets/Evaluation%20methods%20for%202010%20Challenge.pdf (accessed on 25
May 2019).

52. Boag, W.; Sergeeva, E.; Kulshreshtha, S.; Szolovits, P.; Rumshisky, A.; Naumann, T. CliNER 2.0: Accessible
and Accurate Clinical Concept Extraction. arXiv 2018, arXiv:1803.02245.

53. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection.
In Proceedings of the 1995 International Joint Conference on AI, Montreal, QC, Canada, 20–25 August 1995;
pp. 1137–1145.

487

Appl. Sci. 2019, 9, 3658

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

488

applied
sciences

Review

A Review of Text Corpus-Based Tourism Big
Data Mining

Qin Li 1,2, Shaobo Li 3,4,* , Sen Zhang 1,2, Jie Hu 5 and Jianjun Hu 3,6,*
1 Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu 610041, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
4 Guizhou Provincial Key Laboratory of Public Big Data (Guizhou University), Guiyang,

Guizhou 550025, China
5 College of Big Data Statistics, GuiZhou University of Finance and Economics, Guiyang,

Guizhou 550025, China
6 Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
* Correspondence: lishaobo@gzu.edu.cn (S.L.); jianjunh@cse.sc.edu (J.H.); Tel.: +01-803-777-7304 (J.H.)

Received: 25 June 2019; Accepted: 6 August 2019; Published: 12 August 2019

Abstract: With the massive growth of the Internet, text data has become one of the main formats of
tourism big data. As an effective expression means of tourists’ opinions, text mining of such data has
big potential to inspire innovations for tourism practitioners. In the past decade, a variety of text
mining techniques have been proposed and applied to tourism analysis to develop tourism value
analysis models, build tourism recommendation systems, create tourist profiles, and make policies
for supervising tourism markets. The successes of these techniques have been further boosted by
the progress of natural language processing (NLP), machine learning, and deep learning. With the
understanding of the complexity due to this diverse set of techniques and tourism text data sources,
this work attempts to provide a detailed and up-to-date review of text mining techniques that have
been, or have the potential to be, applied to modern tourism big data analysis. We summarize and
discuss different text representation strategies, text-based NLP techniques for topic extraction, text
classification, sentiment analysis, and text clustering in the context of tourism text mining, and their
applications in tourist profiling, destination image analysis, market demand, etc. Our work also
provides guidelines for constructing new tourism big data applications and outlines promising
research areas in this field for incoming years.

Keywords: tourism big data; text mining; NLP; deep learning

1. Introduction

Text is an effective and widely existing form of opinion expression and evaluation by users,
as shown by the large number of online review comments over tourism sites, hotels, and services.
As a direct expression of users’ needs and emotions, text-based tourism data mining has the potential
to transform the tourism industry. Indeed, tourists’ decision-making is dramatically influenced by
the travel experience of other individuals [1] in forms of tourism reviews or blogs, etc. These texts
can give valuable insight for potential tourists, and assist them in optimizing destination choices and
exploring travel routes, or for tourism practitioners to improve their services. Tourism platforms
such as TripAdvisor and Ctrip now routinely provide an explosive amount of text data, which makes
it possible to use deep learning [2], NLP [3], and other machine learning [4,5] and data mining
techniques for tourism analysis. Studies [6,7] have shown that the competitiveness of the tourism
industry dramatically relies on tourists’ sentiment and opinions about the events occurring during

489

Appl. Sci. 2019, 9, 3300

the travel. In order to utilize this user-generated content properly and further to meet the needs
of tourists and promote the tourism industry, we need to analyze and exploit tourists’ needs and
opinions, and then identify the problems of tourism services or destinations, which has become a
new path for tourism development. Besides, as tourism needs become increasingly personalized,
visitors begin to pursue self-likeness, self-worth, and diversified travel experiences, and they are
no longer willing to endure delays or waits. How to recognize and respond to visitors’ behaviors
and needs quickly and identify potential customers have become essential factors for the success
of tourism stakeholders. By exploiting the subjective information contained in tourism text data,
we can assist tourism stakeholders to provide better services for tourists.

A large number of text mining techniques have been proposed and applied to tourism text data
analysis for creating tourist profiles [8–15] and making effective market supervision [16–25]. These
approaches exploit a variety of text representation strategies [26–32] and use different NLP techniques
for topic extraction [33], text classification [34], sentiment analysis [35], and text clustering [36].
Moreover, while aiming to make computers understand human language, NLP has become the
essential tool for text data analysis and is undergoing fast-pace growing based on the applications
of deep learning in word embedding, syntax analysis, machine translation, and text understanding.
Machine learning-based NLP techniques have been widely used in tourism text analysis, with superior
results [19,25]. In addition, due to its high capability for extracting selective and invariant features
from texts, and its independency of prior knowledge and linguistic resources, deep learning has been
reported to achieve higher performance than other approaches on many NLP tasks [32]. A range of
deep learning algorithms such as deep neural networks (DNNs), recurrent neural networks (RNNs),
and convolutional neural networks (CNNs), along with special DNN techniques such as memory
strategies and attention mechanisms [37], have been successfully applied to NLP tasks.

Due to the significance of tourism text data mining and the emergence of a large number of recent
applied text mining techniques with diverse design strategies and methodologies, this paper aims to
give a systematic review of these tourism text data mining techniques and applications. This paper
divides NLP techniques into two types, in which NLP based on language scenes requires knowledge
rather than text, such as knowledge of the domains and common sense, while text corpus-based big
data analysis requires only an amount of text data for macro analysis. Figure 1 shows the basic process
of applying text corpus-based NLP techniques to tourism analysis.

The structure of the paper is as follows: Section 2 introduces the recent text representation
strategies and summarizes the basic applications of text corpus-based NLP techniques and their
applications to tourism text data analysis in recent years. Section 3 provides a global analysis of the
special tourism application techniques from the perspective of tourists and market. Section 4 also
provides guidelines to be followed in the design of tourism value analysis or tourism recommendation
systems, and outlines the most promising areas in the future of text corpus-based tourism big data
mining. Section 5 summarizes our work from the exploration of the existing techniques.

490

Appl. Sci. 2019, 9, 3300
Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 29

Natural language processing technology

Natural Language Understanding based on Language Scene Big Data Analysis based on Text Corpus

Tourism network platform, forum, blog, Weibo, etc.Text corpus source

Text Representation based
on Deep Learning Word vector: such as word2vec, glove, fasttext, BERT, etc.

Language Model Machine learning: such as Naïve Bayes, Decision tree, SVM, LDA, etc.

Basic Application Text Classification; Topic Extraction; Sentiment Analysis; Text Clustering

Business Applications
in Travel Big Data

Tourist Protrait Market Supervision

Personalized Recommendation;
Tourism Planning

Document vector: such as doc2vec, LDA, Skip-thoughts, etc.

Deep learning: such as recurrent neural networks, convolutional neural networks, etc.

 Destination Image;
Public Opinion Monitoring;

Hot Spot Discovery;
Market Positioning;

Market Segmentation

Figure 1. Text corpus-based tourism big data mining.

2. Review Protocol Used in This Review

We have followed a systematic review protocol [38,39] to write this paper, to reduce bias in
literature included and to improve the comprehensiveness in our review activities. It is suggested
that following an explicit review protocol can help define the source selection and search processes,
quality criteria, and information synthesis.

We have used the following digital libraries to search for primary related studies:

• Google Scholar;
• Science Direct;
• ACM Digital Library;
• Citeseer Library;
• Springer Link;
• IEEE explore; and
• Web of Science.

The following queries have been created to conduct the keywords based search:
Text mining; topic extraction, text classification, sentiment classification; text clustering ; tourist

profile; destination image; market supervision/demand; transfer learning; meta-learning; sentiment
aspect; aspect-base sentiment analysis; target-dependent sentiment analysis; NLP; deep learning;
machine learning; text representation; word embedding; document vector; supervised learning,
semi-supervised learning, unsupervised learning; short text; keyword; attention mechanism;
tourism; tourism recommendation; tourism hotspot; crisis events or emergency analysis; tourism
dataset; domain adaptability; tourism review. Logical OR, AND, and NOT descriptors have been
used also during the literature search.

We have also listed our inclusion criteria in Table 1.

Figure 1. Text corpus-based tourism big data mining.

2. Review Protocol Used in This Review

We have followed a systematic review protocol [38,39] to write this paper, to reduce bias in
literature included and to improve the comprehensiveness in our review activities. It is suggested that
following an explicit review protocol can help define the source selection and search processes, quality
criteria, and information synthesis.

We have used the following digital libraries to search for primary related studies:

• Google Scholar;
• Science Direct;
• ACM Digital Library;
• Citeseer Library;
• Springer Link;
• IEEE explore; and
• Web of Science.

The following queries have been created to conduct the keywords based search:
Text mining; topic extraction, text classification, sentiment classification; text clustering; tourist

profile; destination image; market supervision/demand; transfer learning; meta-learning; sentiment
aspect; aspect-base sentiment analysis; target-dependent sentiment analysis; NLP; deep learning;
machine learning; text representation; word embedding; document vector; supervised learning,
semi-supervised learning, unsupervised learning; short text; keyword; attention mechanism; tourism;
tourism recommendation; tourism hotspot; crisis events or emergency analysis; tourism dataset;
domain adaptability; tourism review. Logical OR, AND, and NOT descriptors have been used also
during the literature search.

We have also listed our inclusion criteria in Table 1.

491

Appl. Sci. 2019, 9, 3300

Table 1. Inclusion criteria.

Include Exclude

Studies focused on text mining techniques based on
macro corpus analysis, including topic extraction, text
classification, sentiment classification, and text
clustering.

NLP based on language scenes which requires
knowledge rather than text, such as knowledge of
domains and common sense.

Tourism related studies in which text is the main
research object, and other data structures can be the
auxiliary means.
Text corpus-based tourism big data mining related to
tourist profiling and market supervision.

Tourism related studies in which other data
structures (pictures, videos, etc.) are the main
research object, while text can be the auxiliary means.
Text corpus-based tourism big data mining related to
question answering, or others.

English texts. All other languages.

Studies published between 2014 and 2019. Studies published before 2014.

Peer reviewed academic journals or books, conference
proceedings. Dissertations, non-peer reviewed sources.

In person context. Online context.

Study selection procedure: We first checked the paper titles and then reviewed the abstracts,
keywords, results, and conclusions to obtain the first list of studies. Then, we screened the remaining
list by the inclusion criteria in Table 1. We then double checked the reference list to identify additional
studies that were relevant to our review topic. Finally, we evaluated the quality of remaining list of
related studies using the checklist as suggested in [40].

3. Text Corpus-Based Tourism Big Data Mining Techniques

3.1. Text Representations

Recently, text data mining techniques have been mainly based on machine learning and deep
learning, which play a decisive role for the improvement of NLP. In order to transform NLP problems
into the problem of machine learning, symbols such as text need to be digitized firstly; that is, text
representation must be obtained. In 2003, Bengio et al. [41] proposed a word vector model based on
N-gram statistical language, which pioneered the neural network as a language model. Since then,
a lot of word representations in low-dimensional space have been proposed, which are pre-trained on
a large set of unlabeled text corpus. In contrast to high-dimensional space, these word representations
or word embeddings can be compared in sematic distance and can be easily applied to other models.
Traditionally, word embedding methods such as Word2vec [26,27] and Glove [28] were proposed to
create a global word representation which considers the word in all sentences. Currently, more and
more works have started to notice the different semantics of a word in different contexts. For example,
contextual word vectors (CoVe) [29] capture contextual information by an encoder in an attentional
seq-to-seq machine translation model; and embeddings from language model (ELMO) [30] extracts
context-sensitive features from a bidirectional language model (biLM). Subsequently, with the proposal
of Transformer network, generative pre-training Transformer (OpenAI-GPT) [31] and large-scale
pre-training language model based on bidirectional Transformer (BERT) [32] pre-trained language
models from Transformers for extracting contextual word embeddings and showed better performance
than ever on many tasks [32]. Table 2 provides a directory of existing main pre-trained models
which can be used for generating embeddings as an input of the next model training. In addition,
the supervised methods for generating word vectors [42–44] can also promote word representations,
such as the methods for improving the topics extraction or sentiment classification and so on.

492

Appl. Sci. 2019, 9, 3300

Table 2. Pre-trained models for word embeddings.

Time Pre-Trained Model URL Accessed Data

2013 Word2vec https://radimrehurek.com/gensim/models/
word2vec.html 24 July 2019

2014 Glove https://nlp.stanford.edu/projects/glove/ 24 July 2019
2016 FastText [45] https://fasttext.cc/ 24 July 2019

2016 WordRank [46] https://radimrehurek.com/gensim/models/
wrappers/wordrank.html 24 July 2019

2017 CoVe https://github.com/salesforce/cove 24 July 2019
2018 ULMFiT [47] http://nlp.fast.ai/ulmfit 24 July 2019

2018 ELMO https://github.com/allenai/allennlp/blob/master/
tutorials/how_to/elmo.md 24 July 2019

2018 OpenAI-GPT https://openai.com/blog/language-unsupervised/ 24 July 2019
2018 BERT https://github.com/google-research/bert 24 July 2019

A word is a basic unit of a sentence, paragraph, or document. To better represent a text, converting
the word vectors into a short text or long text representation is an efficient operation. Early typical text
representations have bag-of-words (BOW) and term frequency-inverse document frequency (TF-IDF)
models, but these document vector models are usually too simple and lack context information and
word-to-word associations. They often perform poorly on some complex tasks. Latent Dirichlet
Allocation (LDA) computes the distribution of topics for documents, which is commonly used for
representation of documents. Doc2vec [48] was proposed based on Word2vec, which considered
the context information and semantic information, while it is only slightly better than the simple
average word vectors of the document in the classification task. Aiming at it, Arora et al. [49] encoded
sentences by a linear weighted combination of word vectors for improvement. For a long time,
researchers have focused on unsupervised sentence learning, such as Skip-thoughts [50] and its
improved Quick-thought [51] afterwards. When the supervised task is suitable for sentence embedding
training, such as the natural language inference (NLI) task, the quality of sentence vectors learned by
supervised methods can achieve higher performance [52], especially under the framework of multi-task
learning [53].

The vector representation for the granularity of words, sentences, documents, etc., is the basis
for related machine learning, and the pre-trained models of these vectors provide the premise for
the input of other models. In contrast to randomly initialized vectors, the vectors provided by these
pre-training models can reduce the data demand and save training time for deep learning, and the
captured features of vectors can also significantly improve the performance of the model.

3.2. Text Corpus-Based NLP Techniques in Tourism Data Mining

This section analyzes four basic technical applications of text corpus-based NLP techniques: Topic
extraction, text classification, sentiment analysis, and text clustering. These basic technical applications
are the basis of related tourism business applications. In order to illustrate them and their applications
in tourism, we firstly analyze recent tourism business works based on these techniques and then
outline the recent techniques of the basic technical applications.

3.2.1. Topic Extraction

Topic extraction is a technique for extracting topics or aspects from large-scale text data, which
can give the decision-maker some insights and help them identify associated sentiments. In tourism,
topic extraction can be used to capture tourism public concerns and track hot events, by which tourists
can track travel trends and important events and tourism practitioners can find business opportunities
or travel crisis in real time, accordingly, to take measures to guide public opinion or promote related
fields. Hot topics are often reviewed and reprinted more frequently. Based on this idea, the study [54]
filtered out information with high evaluation and reload times, and introduced time distribution
calculation methods into LDA to detect hot topics. In the study [55], Structure Topic Model (STM) [56]

493

Appl. Sci. 2019, 9, 3300

was adopted to detect negative reviews and how public concerns vary over different hotel grades.
In addition, topic extraction can also be used to find tourism characteristics of attractions or build
tourism product and user profiles. For example, the study [4] defined the global topic as “scenic spot”
to filter noise semantics from tourism corpus, to explore the local topics of “scenic spot” by LDA,
and then display the distribution of the attraction types or the local topics in the form of attraction
maps. In this study [5], a season topic model based on LDA (STLDA) was proposed to explore the
topic characteristics of attractions with seasonal features, which was of great significance for mining
related topics with seasons and for personalized recommendations. In this study [57], a topic model
was utilized to detect explicit interests by interactions between users for the following users’ implicit
interest profile building.

Topic extraction has been studied a lot recently and is an important issue for tourism analysis.
There are many text mining techniques for topic extraction. Traditionally, keywords are usually used
for expressing the topics of documents, and keyword extraction has played an important role in topic
extraction for many years. According to existing studies, most of keyword extraction techniques are
based on unsupervised learning [58], such as algorithms based on statistical word features (e.g., TF-IDF,
Kullback–Leibler divergence, chi-square test, etc.), algorithms based on topic models (e.g., LDA,
etc.), and algorithms based on network graphs (e.g., TextRank, Rapid Automatic Keyword Extraction
(RAKE) [59], TopicRank [60]). With the appearance of word-distributed representations, some works
have also tried to make use of Word2vec to improve keyword extraction, while only considering the
similarity calculation of words [61].

Keywords can express topics, but currently, their relevance with document topics mainly depends
on the improvement of existing probability topic models [33], such as the LDA model. As a probability
generation model, LDA can be easily extended to other probability models. For example, the study [62]
considered that different topics in the same corpus are often related, and used this idea as a research
perspective to promote topic extraction of the LDA model; some probability topic models for specific
tasks such as topic sentiments, time changes, document authors, etc. are also expected to extract the
topics related to target task [63]. To extract more relevant topics, some experts have also considered
using word-distributed representation to improve the semantics and syntactics of text information.
For example, the study [64] introduced the similarity of word embedding into LDA to calculate the
relevance of the acquired words; the study [65] improved the way of context acquisition by introducing
LDA into Word2vec; the study [66] introduced Word2vec to calculate the distance between the topic
vector and the document vector to correct the topics of LDA mining. Moreover, the combination of
deep learning and LDA has become another topic extraction method. For example, in this study [67],
a novel neural topic model was proposed to acquire the N-gram topic by the deep neural network
and then used LDA to obtain the topic representation of the document; the study [68] integrated LDA
into language model LSTM for joint training. In addition to the LDA and its extensions, there are also
methods for generating subject-related vectors by the neural attention model, such as Attention-based
Aspect Extraction (ABAE) [69].

In summary, researches about topic extraction are mostly dependent on the topic probability
model such as LDA, and improved aiming at different text structures. Topic extraction in short text
often suffers from data sparseness due to the insufficient word co-occurrence and lack of context
information. Using long text to assist short text by importing external-related information from
Wikipedia and WordNet, etc. [70], or aggregating short text based on the posterior probability of words
in original documents [71] can help with the short text task to some extent. Another approach of
improving short text task is to enhance the interpretability or the semantical coherence of the topic
model, such as informative words rewarding [72]. Besides, as above analysis, LDA ignores the order
structure of texts and the meaning of words, so it is one of the research directions that scholars have
focused on by exploring the features of words and sentences, etc., to enhance the ability of topic
extraction, and will be show great potential in the future. Except for the issue of short text, in business
application, users or practitioners may concern different aspects of a topic or aspect related information;

494

Appl. Sci. 2019, 9, 3300

the context information of the topic aspect is often used to explore topic-sensitive content [73]. In order
to understand a topic more granularly, the structural relation among topics is also a problem, which is
widely concerned such as the exploring the hierarchical structure among topics or the global and local
relation [74].

3.2.2. Text Classification

Text classification is a process in which the computer automatically classifies the input texts
according to their content, and it includes spam filtering, information retrieval, topic classification,
sentiment classification, and so on; sentiment classification of which will be discussed in the Section 3.2.3.
In tourism, text classification is generally about topic classification, and the topics of texts in travel
mostly involve various aspects of the travel process, such as transportation, accommodation, food,
entertainment, and so on. In addition, tourism texts such as tourism comment reviews are often short
but contain a lot of information. They usually contain multiple topics but cannot be attributed to one
certain aspect or target. Therefore, text classification in the current tourism field is usually carried out
by topic extraction, to extract all aspects of the text for targeted analysis [22,75].

Traditionally, text classifications are mainly based on machine learning such as Naive Bayes [76],
maximum entropy [77], Support Vector Machine [78], K-nearest neighbor algorithm [78], etc. They
usually use keywords or topics to reflect the feature of documents and realize text classification
automatically [79], which still plays an important role currently [80]. At present, the mainstream feature
extraction techniques characterized by keywords include TF-IDF and information divergence, and more
advanced deep learning approaches [81]. Besides, there are some classic feature representation models
for words such as Vector Space Model, N-grams [82], etc., but these models have some disadvantages,
such as semantic information being missing. With word-distributed representations, text classification
no longer relies on the keywords only and begins to pay more attention to the semantics of words
themselves. Following this trend, there have emerged a lot of text classification algorithms based on
the improvement of word embedding features [45,65,83].

Benefitting from deep learning, various researches on text classification techniques based on deep
neural networks have also made significant progress. For example, the representative and innovative
algorithms of CNN in text classification include the CNN proposed by Kim [34], character-level
convolutional network (ConvNets) proposed by Zhang [84], the CNN-based classification algorithm
applied to patent classification [85], the RNN-based text classification algorithms which includes
bidirectional RNNs [86], hierarchical attention mechanism (HAN) [35], and the recurrent convolutional
network (RCNN) [87]. In addition, the connection between CNNs and RNNs [88], the introduction of
multi-task learning frameworks [89], and the increased depth in deep learning models [90] will also
improve the performance of text classification to a certain extent.

At present, text classification models are mostly based on supervised learning. Supervised text
classification often relies on the integrity of the domain corpus, as well as its annotations, so researchers
are more concerned with the improvement of theory but lack of practical applications. In order to
solve the issue of few in-domain labeled data, many following studies have been made; Table 3 shows
four different strategies: Co-training, training samples extension, meta-learning, and transfer learning.
Among them, co-training and training samples extension need auxiliary training with unlabeled data
or external knowledge, but as the training samples increase, the noise in the auto-tagging instance will
continue to accumulate. Meta-learning or transfer learning attempt to learn general representation
or meta knowledge among tasks, but still have to make further improvement, such as in the issue of
negative transfer.

495

Appl. Sci. 2019, 9, 3300

Table 3. Strategies of few in-domain labeled data in 2018.

Author-Study Contribution Basic Language Model/Classifier

[91]

It proposes a novel co-training algorithm which uses an
ensemble of classifiers created in multiple training
iterations, with labeled data and unlabeled data trained
jointly and with no added computational complexity.

Naïve Bayes; Support Vector
Machine

[92] It uses the knowledge of Wikipedia to extend the training
samples, which is realized by network graph construction.

Naïve Bayes; Support Vector
Machine; Random Forest

[93]

It introduces an attentive meta-learning method for
task-agnostic representation and realizes fast adaption in
different tasks, thus having the ability of learning shared
representation across tasks.

Temporal Convolutional
Networks (TCN)

[47]

It proposes a transfer learning method of universal
language model fine-tuning (ULMFiT), which trains on
three common text classification tasks; it can prevent
overfitting, even with few labeled data in classification
tasks by novel fine-tuning techniques.

Averaged stochastic gradient
descent Weight-Dropped LSTM

(AWD-LSTM) [94]

3.2.3. Sentiment Analysis

In tourism, the application of sentiment classification techniques can help manage obtain tourist
sentiment tendency and opinions in real time, thus making appropriate measures. For example,
the study [95] proposed a tourist destination recommendation system by analyzing and evaluating the
user’s sentiment tendency; the study [96] explored the sustainable tourism development path through
the sentiment analysis of the user reviews of the shared bicycle system in Spain; and in this study [97],
a visual analysis system was designed to analyze regional trends and sentiment changes in visitors.

Text sentiment analysis is the process of automatically classifying the polarity of a given text with
subjective sentiments by computer. It includes many tasks, such as sentiment classification, opinion
extraction, and so on [98]. We only discuss sentiment classification here. The method of sentiment
classification can be divided into two categories: The first one is based on machine learning methods
such as neural networks, and the other is based on dictionary-based methods that use pre-defined
sentiment dictionaries such as WordNet, HowNet, LIWC, etc., which have sentiment-related terms,
and their polarity values. Dictionary-based methods are based on grammatical rules of text analysis,
relying on the quality of the sentiment dictionary and its continuous updating, involving more work
refinement, such as the extraction and discrimination of evaluation words, and the consideration of
the influence of the word contexts, etc. [99]. In addition to the two types of sentiment classification
methods, sentiment classification through the integration of machine learning and dictionary-based
methods also shows great potential. For example, this research [100] used the sentiment polarity and
part of speech in the sentiment dictionary to extract the feature of the text representation combined
with convolutional neural networks.

Sentiment classification with machine learning methods is mostly based on supervised learning
and relies on the completeness of the labeled training corpus, which is a classification method about
features. This research [101] pointed out that feature extraction, feature weight, and sentiment classifier
are three essential design elements that affect the accuracy of text sentiment classification. Based
on this, sentiment classification with machine learning is mainly carried out around these elements.
No matter what kind of design element, the optimal vector representation is sought to achieve better
precision and speed for model training. With the development of deep language models and their
superiority, sentiment classifiers are more improved and optimized based on recurrent neural networks
and convolutional neural networks [102]. Researchers have proposed different feature improvement
strategies. For example, for short texts presented on social networks, the study [103] used a two-layer
convolutional network to jointly train characters, words, and sentence features. For the long-distance
dependence problem of long text, in the study [104], a TopicRNN model was proposed to get the global
semantic information, which introduced the topic model to RNN model training to obtain unsupervised

496

Appl. Sci. 2019, 9, 3300

feature of document global semantic information. Aiming at the respective characteristics of the
classifiers, such as the dependence of the CNN model on window size and step size [105], and the
long-distance dependence problem of the mechanism of the RNN model, the study [106] proposed to
use LSTM as the pooling layer in CNN to promote sentiment classification. In view of the fact that
there are similar contexts in the representation of sentiment words and the opposite of the emotional
tendency of words, such as “good” and “bad”, the research [107] proposed to introduce sentiment
information into the word vector, thus promoting the learning and classification of sentiment words.

In recent years, the attention mechanism has become one of the mainstream techniques of text
processing due to its superior performance. In previous text research, the attention mechanism was
mainly applied in the recurrent network structure. For example, in this study [35], a hierarchical
attention mechanism (HAN) was proposed to achieve sentiment classification, which constructed the
sentence representation with the word-level attention mechanism and the document representation
with sentence-level attention mechanism. However, the recurrent network is a sequence-dependent
structure, which has a disadvantage in training speed and memory consumption. Aiming at these
problems, the Transformer model [37] was proposed, which consists entirely of attention mechanisms
and applied self-attention mechanism, and has a complete advantage over the structure of recurrent
and convolutional sentiment classification [108].

In the last few years, most of the research on sentiment classification focuses on how to improve
the classification accuracy of the entire text, but rarely analyzes the sentiment polarity based on the
aspects or targets appearing in the text. In tourism analysis, not only is knowing the overall sentiment
tendency of the tourists’ comments needed, but also knowing the various sentiments of each entity in
the tourism or each aspect of the tourist comments is required, so as to better self-evaluate and propose
more targeted solutions. Due to the complexity of the process and the lack of related corpora, most of
the works are unable to achieve an effective evaluation of aspect extraction and sentiment classification.
The research [3] considered the possibility of describing the topic words by considering the distance
between the topic words and the sentiment words, and exploring the preferences of tourists for tourism
products. This method is simple, but the accuracy of the result is low due to the existence of the virtual
target and the implicit evaluation object [109]. The study [22] extracted topics from the destination
reviews based on LDA and then analyzed the sentiment state of each topic in more detail or for finer
gain. The study [110] used text mining and sentiment analysis techniques to analyze hotel online
reviews to explore the characteristics of hotel products that visitors were more concerned about. Most
of these methods only make use of the model, while the adaptability of the model to the domain is not
well explained.

At present, sentiment analysis based on specific targets or aspects has become a research hotspot
for scholars. This method no longer separates the topic model from the sentiment analysis, but unites
them into a single model [109,111]. Most works for aspect-based or target-dependent sentiment
classification are based on supervised learning and achieve good results, as shown in Tables 4 and 5.
While manually labeling data for the supervised model is usually insufficient and costly, unsupervised
or semi-supervised models can utilize unlabeled samples for training, which can resolve the problem
of insufficient resources. For example, the study [63] incorporated sentiment distribution and
sentiment-oriented local topic distribution into the topic probability distribution model, so that the
mining of sentiments and local topics was carried out simultaneously. The study [112] proposed to learn
specific aspects of word embeddings based on the Topic Word Embeddings model (TWE2), and used
the semi-supervised variational autoencoder (SSVAE) to perform aspect-level sentiment analysis.

497

Appl. Sci. 2019, 9, 3300

Table 4. Common aspect-based sentiment analysis (ABSA) and target-dependent sentiment analysis
on SemEval 2014 Task 4 in restaurant domain.

Time Model Basic Idea Accuracy (%)

2016 AE-LSTM [113]
The target words given in each sentence of the training corpus
are vectorized and added to the LSTM model as input for
training together.

76.20

2016 AT-LSTM [113] An attention mechanism is proposed to capture key parts of a
sentence related to a given aspect. 77.90

2018 AF-LSTM [114]
A new association layer that defines two correlation operators,
circular convolution and cyclic correlation, is introduced to
learn the relationship between sentence words and aspects.

75.44

2015 TD-LST [115]
Two LSTM networks are adopted to model separately, based on
context before and after target words for target-dependent
sentiment analysis tasks.

75.63

2015 TC-LSTM [115] On the basis of TD-LSTM, target word information is added as
an input. 76.01

2016 ATAE-LSTM [113] On the basis of TD-LSTM, aspect information is introduced in
two parts of the model: Input part and hidden part 77.20

2017 IAN [116] It learns attentions in target and context words interactively, and
generates the representations for targets and contexts separately. 78.60

2016 MemNet(k) [117]
It uses deep memory network with multiple computational
layers (hops) to classify sentiments at the aspect level, where k is
the number of layers.

(k = 2) 78.61
(k = 3) 79.06

2018
Coattention-LSTM

Coattention-MemNet(3)
[118]

A collaborative attention mechanism is proposed to alternately
use target-level and context-level attention mechanisms. 78.8 79.7

2017 BILSTM-ATT-G [119]
Based on the Vanilla Attention Model, this model is extended to
differentiate left and right contexts, and uses the gate method to
control the output of the data stream.

79.73

2018 TNet-LF
TNet-AS [120]

The CNN is used to replace the attention-based recurrent neural
network (RNN) to extract the classification features, and the
context-preserving transformation (CPT) structure such as
lossless forwarding (LF) and adaptive scaling (AS) is used to
capture the target entity information and the retention context
information.

80.79 80.69

2018 AE-DLSTMs [121]
On the basis of AE-LSTMs, this model captures contextual
semantic information in both forward and backward directions
in aspect words.

79.57

2018 AELA-DLSTMs [121] Based on AE-DLSTMs, this model introduces the context
position information weight of the aspect word. 80.35

2018 StageI+StageII [122]
It introduces a position attention mechanism based on position
context between aspect and context, and also considers the
disturbance of other aspects in the same sentence.

80.10

2018 DMN+AttGRU (k = 3)
[123]

A dynamic memory network which uses multiple attention
blocks of multiple attention mechanisms is proposed to extract
sentiment-related features in memory information, where k
stands for attention steps.

81.41

2018 MGAN [124]

This model designs an aspect alignment loss to depict
aspect-level interactions among aspects with the same context,
and to strengthen the attention differences among aspects with
the same context and different sentiment polarities.

81.25

In the training process, the pre-trained word vectors in these models were all initialized by 300-dimension Glove
embeddings and the sentiment classification was performed in a three-way classification.

498

Appl. Sci. 2019, 9, 3300

Table 5. Common aspect-based sentiment analysis (ABSA) and target-dependent sentiment analysis
on subtask 1 (slot 2) SemEval 2016 Task 5 in restaurant domain.

Time Model Basic Idea Accuracy (%)

2019 BERT [125] Bidirectional Transformer (BERT) is extended with an additional
task-specific layer and fine-tuned on each end task 81.54

2019 BERT-PT [125]

On the basis of BERT, two pre-training objectives are used:
Masking language model (MLM) and next sentence prediction
(NSP), to post-train domain knowledge, and else task (MRC)
knowledge.

84.95

The sentiment classification is performed in a three-way classification.

As shown in Tables 4 and 5, the sentiment classification algorithms are all trained on existing
data sets from SemEval2014 and SemEval2016 on which they achieved excellent performance, while
the limited data sets making them not universally applicable in other new domains. An effective
way to enhancing the ability of automatic labeling for target domain is learning shared features
from source domain or transferring knowledge from source domain into target domain. Aiming
at it, some works have been done attempting to enhance transfer learning, such as importing of
domain knowledge into the training process expecting to contribute to the knowledge transfer for
realizing cross-domain aspect sentiment classification [126], but which still need human intervention
or processing in a semi-supervised manner. As a result, in tourism application, few studies about
aspect-based or target-dependent sentiment classification have been made. The study [2] considered
using lda2vec to explore the focuses of tourist reviews and also as an input knowledge to enhance the
sentiment analysis of these focuses, but still had room for fine-grained sentiment analysis for aspects.
The study [127] proposed a novel probability model to judge user sentiment and topic sentiment in an
unsupervised manner, which provides a direction for tourism recommendation due to its introduction
of user information, but an effective evaluation method is needed.

In summary, the sentiment classification model, improved by the attention mechanism, will be
the mainstream trend in the future. In addition, based on the study of sentiment targets or sentiment
aspects, the sentiments can be more fine-grained and interpretable, which will be more conducive to
the practical application analysis of tourism.

3.2.4. Text Clustering

Text clustering mainly involves unsupervised algorithms that can discover potential knowledge
and rules from large-scale text data sets, facilitating the effective organization, abstracting,
and navigation of texts. In the field of tourism, text clustering is mainly applied in the research
of tourist hotspots or emergencies. For example, the study [128] performed co-occurrence clustering
analysis by constructing a high-frequency word co-occurrence matrix in order to acquire hot things,
and measured the weights of the connection between the regions within or outside the Tibet by
degree centrality in the social network map; the tourist hotspots and their interrelationships were
then obtained and tourism planning was further promoted. In this study [129], cohesive hierarchical
clustering methods were used to detect the emergencies by using bursty topics to represent texts.
Besides, text clustering can also be applied in the subdivision problem of the tourism market in which
a clustering method is used to obtain different characteristics of the group for targeted analysis and
self-improvement. In this study [130], the collaborative clustering algorithm was used to cluster
the five-star hotels and hotel reviews in Rome from two dimensions, which not only solved the
feature clustering of each hotel, but also solved the description of the features. As mentioned above,
text clustering can be an efficient method for tourism analysis. Next we will review it from the
technical perspective.

The object for text clustering can be documents, sentences, paragraphs, and so on. Similarity is
the basis of text clustering. At present, the mainstream text similarity calculation method is mainly
based on vector space method, including cosine similarity, Manhattan distance, Euclidean distance,

499

Appl. Sci. 2019, 9, 3300

and so on. With the development of deep learning, word vectors generated by neural networks such as
Word2vec can make words closer in semantic distance, and are more suitable for similarity calculation
of various text granularities.

Document clustering techniques include multiple types, such as agglomerative hierarchical
clustering algorithm, partitioning clustering algorithm, density-based clustering algorithm, etc.
Different clustering algorithms have different requirements for application scenarios, and the prior
knowledge of specific tasks [131] must be considered. Currently, there are few researches on text
clustering algorithms. The main reason is that the computational overhead of clustering algorithms
tends to be large. When the amount of data rises to a certain extent, most clustering algorithms cannot
be used, so the time complexity of most clustering algorithms needs to be considered [132]. K-means,
which belongs to the partitioning clustering algorithm, is a commonly used text clustering algorithm
whose disadvantage is that it cannot effectively determine the number of clusters and select the initial
clustering point, and has poor performance on high dimensional data, etc. While compared to other
clustering algorithms, K-means is fast and easy to implement on a huge database [36]. Consequently,
there are many researches carried out based on K-means, such as through optimization or dynamic
definition of the initial clustering point [133,134], improvement of text representation by genetic
algorithm, graph structure, deep learning, etc. [135–137], and optimization of algorithm objective
function [138].

Text clustering can also be a semi-supervised algorithm, which mainly uses text labels like potential
topics as prior knowledge to guide the clustering process, and is a bridge connecting unsupervised
clustering and supervised classification problems [139]. The semi-supervised clustering algorithm is
usually a combination of unsupervised clustering algorithm and supervised model, which is mainly
used to find the similarity between texts and label data samples currently, and can alleviate the
demand for data volume and improve the performance of supervised models. With the research and
application of large-scale knowledge graph, text clustering algorithms will play more of a role—for
example, clustering algorithms can be used to build hierarchical ontological relationships, discover
semantic relationships between domain concepts [140], and gradually form large-scale semantic
network diagrams, etc.

4. Applications of Text Corpus-Based Tourism Big Data Mining

The tourism process mainly includes five stages: Imagination, planning, scheduling, experience,
and sharing [141]. The sharing stage is the most critical stage in the tourism process. Whether tourism
behavior occurs or not depends on whether the plan is successfully completed, and the tourism
plan depends on other completed visitor shares. If a tourism stakeholder or destination wants to
improve their services and attract more visitors, it must know what the tourists are thinking and
needs to understand their preferences, needs, and purposes. As tourists, they hope that the journey
will involve “zero” conflict, and they can get useful information from the travel network platform.
The recommended destination is based on their preferences, and the tour route is greatly optimized.

Tourists share the experience based on their own experience, which can not only reflect their
preferences, but also the problems of tourism stakeholders and destinations in time. From the tourism
innovative applications based on the techniques of text corpus-based tourism big data mining, this
section analyzes the two main tourism application scenarios: Tourist profile and market supervision.

4.1. Tourist Profile

Tourist profile is used to abstract the specific labels from the attribute information of a tourist.
The attributes usually include: Demographic characteristics (individual or organization, age, gender,
location), mental state and lifestyle (education, profession, purchasing ability, family, property,
emotional attitude, interest, fear, etc.), travel preferences, and travel purposes. The tourist attributes
are diverse, which leads to that the demand is also diverse, driven by the consumption upgrade [142].
Therefore, tourist market segmentation is of great significance to tourism destinations such as the

500

Appl. Sci. 2019, 9, 3300

discovery of market opportunities, the planning of right marketing and competition strategies, and the
realization of personalized recommendations.

By dividing their natural attributes, tourists can be divided into female and male groups, youth and
old age groups, single and married groups, local and foreign groups, etc. By the analysis of preferences
and behaviors, tourists can be divided into more groups such as travel buyers, the decompressions,
and so on. Different groups have different characteristics, and individuals with the same attributes may
have similarities in tourism behavior [143]. Study [73] has confirmed that differences in tourist attributes
can also lead to differences in tourist perceptions. Through the study of the Cape Town tourism
market [144], it was found that visitors’ age, place of residence, destination stay time, return visits, etc.,
had an important influence on the perception of tourists, and the sentiments they conveyed [145] also
had different characteristics.

Tourist profile are an important means of understanding tourist behavior and meeting the tourist
expectation. Since the content of the tourists’ comments often reflects their subjective thinking, we
can extract information such as preferences, concerns, and purposes of different tourists from the
texts. By obtaining their relevant attributes, tourists’ profiles can be effectively created. While how to
generate user profiles through practical text analysis is still a hot and challenging issue for scholars,
through literature research, it has been found that user profiles are mainly obtained by supervised
learning, or realized by the feature recognition from data labeled gender, age, occupation, ratings,
and so on [14]. In addition, the user attributes for profiles are always treated as isolated in feature
recognition; in other words, the relationship between user attributes is ignored, while the attributes are
often interrelated. Aiming at this problem, multiple attributes joint learning can be efficient to improve
the user attribute prediction [8]. However, although the supervised learning for tourist profiles has
achieved good results, it still has limitations because its performance depends entirely on the number
of data and its domain. Taking some sample data as the research object, the study [9] extracted the
“co-words” from different users in the sample to obtain a universal judgment criterion for each user,
but the viewpoints or conclusions derived from the sample were often one-sided due to the limited
numbers. By using the text information from a large number of existing users on social media, a unified
user vector learning model can be obtained to fill the knowledge gap between the source social media
and the target social media, and then the problem of uncertainty of user labels for the target media
can be solved [10]. Similar works [15] were also done, which considered matching user accounts
on different social networks to build user profiles by user identification based on User Generated
Content (UGC) in a supervised manner. These methods are all based on this assumption that the
data for the same attribute or the same person has common features, such as commonality of the
same gender [13], to resolve the problem of the limited labeled data. In supervised learning, current
methods for tourist profiles are usually around gender, age, and other explicit feature predictions.
The topic-based model is an unsupervised algorithm which can extract user preferences or hobbies,
etc., and is an efficient method for the acquisition of the user’s attribute information, except for explicit
feature classification [11]. Furthermore, the unsupervised aspect-based or target-dependent sentiment
analysis, which is studied a lot currently, can recognize user preference for aspects or the target,
and provide a more fine-grained analysis for user profiles [12].

Tourist profile is a feature extraction process and a vital step of the personalized recommendation
in tourism big data mining. The personalized recommendation system is a process of intelligent
recommending for users according to their preferences, habits, and individual needs. In the field
of tourism, the recommendation system is more complicated, because we not only need to consider
personal attributes, but also need consider travel characteristics. These two considerations jointly
determine tourist decision-making behavior [146]. Travel characteristics include destination type,
travel distance, traffic mode, travel expenses, and so on. Different tourist personal attributes have
different features in the performance of travel characteristics [147], and tourist characteristics directly
influence the choice of travel characteristics, such as the choice of destination.

501

Appl. Sci. 2019, 9, 3300

Mastering the tourist psychological characteristics in travel planning is the critical procedure
for a good personalized recommendation system design, and the text reviews become an important
supplement to the data sparsity in the tourism recommendation process. By mining user reviews, user
preferences, and travel destination, reputation or features can be gained and introduced to the travel
recommendation system for final recommendations [148]. Because the topic model can detect tourists’
preferences, frequent behaviors, or new travel trends in an unsupervised manner, it has become a
hot research direction for scholars. For example, the study [149] mined the feature information of
tourists and locations by the topic model, and used knowledge-based filtering techniques to achieve
destination recommendations for tourists by semantic similarity. The study [150] proposed a Topic
Criterion (TC) model by improving the topic model and the Topic Sentiment Criterion (TSC) model
to calculate tourist profiles and item profiles, as well as their matching degrees to achieve project
recommendations for potential tourists. In addition, some scholars have also considered the context
of travel in the recommendation process, such as seasons, holidays, etc. In the study [95], a text
mining technique was used to calculate the user’s sentiment tendency toward the destination, and the
influence of time elements such as seasons and holidays on the tourists’ sentiments were considered
comprehensively to promote the tourism recommendation system greatly. Based on the literature
research of tourism recommendation system [151,152], we summarize the general framework of the
tourism recommendation system based on text mining (shown in Figure 2).

Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 29

to achieve project recommendations for potential tourists. In addition, some scholars have also
considered the context of travel in the recommendation process, such as seasons, holidays, etc. In the
study [95], a text mining technique was used to calculate the user’s sentiment tendency toward the
destination, and the influence of time elements such as seasons and holidays on the tourists’
sentiments were considered comprehensively to promote the tourism recommendation system
greatly. Based on the literature research of tourism recommendation system [151,152], we summarize
the general framework of the tourism recommendation system based on text mining (shown in Figure
2).

Contextual Information

• Time (time overhead, business
hours)

• Location (visitor location and scenic
location)

• Weather and environmental
conditions

• Social factors (number of tourists,
scenic reputation, traffic conditions,
medical care and safety, etc.)Tourist similarity

Item similarity

Recommendation based on
Collaborative Filtering

The match degree
between tourists and

items

Content-based
Recommendation

Function or Goal of Tourism
Recommendation

• Travel destination advice or
destination attraction recommendation

• Travel route planning
• Detailed planning for multi-day travel
 ...

Hybrid
Recommendation

...

Tourism Information Base

Tourism industry database (including
attractions, hotels, restaurants, etc.)

Service information base (such as
scenic opening hours, traffic schedules,

etc.)

Tourism domain knowledge base

Text Review
Database

Tourism Protrait

• Demographic
characteristics (individual
or organization, age,
gender, location)

• User preferences, needs,
etc.

Tourism Recommendation Object Modeling

• Tourist destinations (food,
accommodation, entertainment, etc.)

• Hotel (environment, hygiene,
transportation, service, facilities,
price, etc.)

• Restaurant (price, food style,
decoration, service, etc.)

 ...

Figure 2. Tourist recommendation system framework based on text mining.

4.2. Market Supervision

The tourism market is the basis for tourism to survive in. Research on the tourism destination
market has important theoretical and practical significance for tourism development [50]. The
existence of the tourism system depends on the existence of tourist demand, which is always related
to aspects of the tourism process such as “food, accommodation, transport, sightseeing, purchase,
entertainment”, and is diverse due to the difference of tourist natural and social attributes. By the
analysis of tourist demand and preferences, researchers or practitioners can assess the market
composition of tourism destinations and adjust the tourism market resource allocation or make
marketing strategies to maximize the degree of satisfaction of tourists.

In the context of big data, the online tourism market is gradually driven by user data. Texts, as
a main component of user-generated content, can accurately reflect the needs of visitors. From the
perspective of market or tourism stakeholders, this paper summarizes five aspects of text content
analysis: Target topic, dimension and weight of concerns, satisfaction evaluation or preference, the
reason for sentiment, and new trend, to assist market strategy planning. The analysis of specific
“target topic” of the text can analyze the tourist needs more specifically; “dimension and weight of
concerns” is to analyze the tourist demand from their attention to various aspects and compute their
weights on the attention; “satisfaction evaluation or preference” is to analyze the sentiment
orientation of comments to obtain tourists’ satisfaction with the travel experience; “the reason for
sentiment” uses sentiment cause detection techniques to detect the cause of sentiment in order to find
the reason behind the sentiment; and the “new trend” analyzes the emergence and developing
process of new things from the perspective of time series. Next, we will explain with examples in
detail. The study [17] explored the key elements of hotel customer comment by the topic model LDA
and analyzed the significance of their influence through the perception map of hotel reviews, which

Figure 2. Tourist recommendation system framework based on text mining.

4.2. Market Supervision

The tourism market is the basis for tourism to survive in. Research on the tourism destination
market has important theoretical and practical significance for tourism development [50]. The existence
of the tourism system depends on the existence of tourist demand, which is always related to aspects of
the tourism process such as “food, accommodation, transport, sightseeing, purchase, entertainment”,
and is diverse due to the difference of tourist natural and social attributes. By the analysis of tourist
demand and preferences, researchers or practitioners can assess the market composition of tourism
destinations and adjust the tourism market resource allocation or make marketing strategies to
maximize the degree of satisfaction of tourists.

In the context of big data, the online tourism market is gradually driven by user data. Texts,
as a main component of user-generated content, can accurately reflect the needs of visitors. From

502

Appl. Sci. 2019, 9, 3300

the perspective of market or tourism stakeholders, this paper summarizes five aspects of text content
analysis: Target topic, dimension and weight of concerns, satisfaction evaluation or preference, the
reason for sentiment, and new trend, to assist market strategy planning. The analysis of specific “target
topic” of the text can analyze the tourist needs more specifically; “dimension and weight of concerns”
is to analyze the tourist demand from their attention to various aspects and compute their weights
on the attention; “satisfaction evaluation or preference” is to analyze the sentiment orientation of
comments to obtain tourists’ satisfaction with the travel experience; “the reason for sentiment” uses
sentiment cause detection techniques to detect the cause of sentiment in order to find the reason behind
the sentiment; and the “new trend” analyzes the emergence and developing process of new things from
the perspective of time series. Next, we will explain with examples in detail. The study [17] explored
the key elements of hotel customer comment by the topic model LDA and analyzed the significance
of their influence through the perception map of hotel reviews, which are important for the analysis
of customer satisfaction. The study [18] combined the three elements of tourist market share, tourist
sentiment orientation, and potential tourist awareness to define and calculate the competitiveness of
the tourism destination market, the tourists’ sentiment orientation of which is obtained through the
sentiment analysis model based on text comments. In this study [19], sentiment analysis on a specific
topic, “traffic”, was conducted to analyze the causes of negative sentiments by using the method of
co-occurrence of words and evaluation objects.

The destination image is a reflection of the tourist market, including the national country image,
the city image, the scenic spot image, etc. Research on the destination image was first proposed by
Gunn [153]. As a basis of market positioning, the destination image has attracted a lot of attention
from scientists. Compared with the traditional customer survey method, the method of user-generated
text analysis can reflect the various dimensions of the destination image more accurately [154], and the
real travel experience of the tourists can effectively improve the accuracy of the destination image
evaluation [155]. This research [20] was the early study of using online text content for destination
image analysis. With the rapid process of “Internet Tourism”, more and more researches have begun
to explore text analysis as a means of destination image analysis [16,21].

In the process of evaluating the destination image, it is necessary to recognize the tourists’
sentiments and the sentiments for all aspects in their tourism in order to assess the satisfaction of the
destination components [21,22]. Specifically, the components which compose the destination image
are extracted by text mining techniques, and the sentiment analysis is performed for each component
to obtain the satisfaction evaluation. Figure 3 shows the key determinants of tourist satisfaction and
their impact from a macro-causal perspective. Customer satisfaction is determined by a combination
of customer expectations, perceived quality, and value; it has a direct effect on customer loyalty,
which is essential for destinations in gaining competitive advantage [156,157]. Besides, because the
determinants of tourist satisfaction may be different for different destinations, it is also a feasible
method for studying the constituent variables of the image and their weights [23] to promote the
evaluation of destination image.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 29

are important for the analysis of customer satisfaction. The study [18] combined the three elements
of tourist market share, tourist sentiment orientation, and potential tourist awareness to define and
calculate the competitiveness of the tourism destination market, the tourists’ sentiment orientation of
which is obtained through the sentiment analysis model based on text comments. In this study [19],
sentiment analysis on a specific topic, “traffic”, was conducted to analyze the causes of negative
sentiments by using the method of co-occurrence of words and evaluation objects.

The destination image is a reflection of the tourist market, including the national country image,
the city image, the scenic spot image, etc. Research on the destination image was first proposed by
Gunn [153]. As a basis of market positioning, the destination image has attracted a lot of attention
from scientists. Compared with the traditional customer survey method, the method of user-
generated text analysis can reflect the various dimensions of the destination image more accurately
[154], and the real travel experience of the tourists can effectively improve the accuracy of the
destination image evaluation [155]. This research [20] was the early study of using online text content
for destination image analysis. With the rapid process of “Internet Tourism”, more and more
researches have begun to explore text analysis as a means of destination image analysis [16,21].

In the process of evaluating the destination image, it is necessary to recognize the tourists’
sentiments and the sentiments for all aspects in their tourism in order to assess the satisfaction of the
destination components [21,22]. Specifically, the components which compose the destination image
are extracted by text mining techniques, and the sentiment analysis is performed for each component
to obtain the satisfaction evaluation. Figure 3 shows the key determinants of tourist satisfaction and
their impact from a macro-causal perspective. Customer satisfaction is determined by a combination
of customer expectations, perceived quality, and value; it has a direct effect on customer loyalty,
which is essential for destinations in gaining competitive advantage [156,157]. Besides, because the
determinants of tourist satisfaction may be different for different destinations, it is also a feasible
method for studying the constituent variables of the image and their weights [23] to promote the
evaluation of destination image.

Perceived
Quality

Customer
Expectation

Perceived
Value

Customer
satisfaction

Customer
Complaints

Customer
Loyalty

Figure 3. Tourist satisfaction model [18].

From the perspective of tourist behavior, market supervision also includes public sentiment
analysis, such as tourism hotspots, crisis events, or emergency analysis, among which tourism
hotspots include popular attractions, popular tourist routes, and hot topics. People often show strong
concern about current hot spots, hot issues, or public opinion crisis. Especially in the era of highly
developed online media, these concerns are often presented in the form of text on the network
platform and show high-frequency characteristics. Some scholars take this as a point of view, using
statistical word frequency and word frequency co-occurrence to explore tourism hotspots. In the
study [24], the location of popular attractions and tourist routes were obtained by mining frequent
geographic patterns in travel journals. The study [25] used the maximum confidence and frequent
mining patterns to capture neighborhood relationships of the attractions in the tourist log, and further
to obtain the most famous sights and frequent tourist routes. Some scholars also use the method of
keyword extraction or text clustering to explore the common concerns, get tourist hotspot events, and
use sentiment analysis techniques to obtain public opinion orientation with the event [158]. For
emergencies or crisis events, due to their real-time characteristics—that is, sudden bursts of growth
in a short time—the timing changes of words need to be considered.

Figure 3. Tourist satisfaction model [18].

From the perspective of tourist behavior, market supervision also includes public sentiment
analysis, such as tourism hotspots, crisis events, or emergency analysis, among which tourism hotspots
include popular attractions, popular tourist routes, and hot topics. People often show strong concern

503

Appl. Sci. 2019, 9, 3300

about current hot spots, hot issues, or public opinion crisis. Especially in the era of highly developed
online media, these concerns are often presented in the form of text on the network platform and
show high-frequency characteristics. Some scholars take this as a point of view, using statistical word
frequency and word frequency co-occurrence to explore tourism hotspots. In the study [24], the location
of popular attractions and tourist routes were obtained by mining frequent geographic patterns in
travel journals. The study [25] used the maximum confidence and frequent mining patterns to capture
neighborhood relationships of the attractions in the tourist log, and further to obtain the most famous
sights and frequent tourist routes. Some scholars also use the method of keyword extraction or text
clustering to explore the common concerns, get tourist hotspot events, and use sentiment analysis
techniques to obtain public opinion orientation with the event [158]. For emergencies or crisis events,
due to their real-time characteristics—that is, sudden bursts of growth in a short time—the timing
changes of words need to be considered.

For the convenience of readers, we summarize the main contributions, benefits, and main methods
of a selected list of informative articles in Table 6.

Table 6. Informative articles about text corpus-based tourism big data mining between 2015 and 2019.

Contributions Benefits Methods

[5]
The topic features of attractions in the context
of seasons are firstly explored, which are
precisely at the fine-grained season levels.

The proposed a season topic
model based on LDA (STLDA)
model can distinguish
attractions with different
seasonal feature distributions,
which helps improve
personalized recommendations.

Latent Dirichlet
Allocation (LDA)

[12]

This paper proposes a sentiment-aspect-region
model with the information of Point of Interests
(POIs) and geo-tagged reviews to identify the
topical-region, topical-aspect, and sentiment for
each user; it also proposes an efficient online
recommendation algorithm and can provide
explanations for recommendations.

POI recommendation, user
recommendation, and aspect
satisfaction analysis in regions
can be achieved by this model.

Probability generative
model;
expectation-maximization
(EM)

[25]

It firstly divides tourism blog contents into
semantic word vectors and creatively uses the
frequent pattern mining and maximum
confidence to capture the neighborhood
relationships of the attractions in the tourist log.

Popular attractions and frequent
travel routes from massive blog
data analysis can be extracted,
and thus potential tourists can
schedule their travel plans
efficiently.

Term Frequency (TF);
frequent pattern mining;
maximum confidence

[55]

It proposes a negative review detection method
by adapting Structure Topic Model (STM); the
variation of document-topic proportions with
different level of covariates can be easily
determined.

It enhances our understanding
of the aspects of dissatisfaction
in text reviews.

STM

[95]

It employs text mining techniques to access
sentiment tendency which is incorporated into
an enhanced Singular Value Decomposition
(SVD++) model for model amendment also
with the temporal influence, such as seasons
and holidays on the tourists’ sentiments.

It can help alleviate the
cold-start problem effectively
and thus improve the tourism
recommendation system.

SVD++

[127]
It proposes a topic model which can judge
users’ sentiment distribution and topic
sentiment distribution in a topical tree format.

It offers a general model for
practitioners to determine why
users like or dislike the topics.

Hierarchical probability
generative model

[150]

It proposes a Topic Criterion (TC) model and
the Topic Sentiment Criterion (TSC) model to
calculate tourist profiles and item profiles, as
well as their matching degrees to achieve
recommendations.

It can be beneficial to tourism
recommendation and provide an
interpretation of users and item
profiles.

LDA; JST (Joint
Sentiment-Topic model)

504

Appl. Sci. 2019, 9, 3300

5. Outlook

Tourism big data in the form of text plays an important role in tourism applications. First of all,
tourism is a service system, emphasizing the sentiment or value experience of tourism individuals.
Text mining techniques have become indispensable to the sentiment judgment and value-oriented
analysis in modern tourism applications. Secondly, text mining techniques are experiencing a period
of rapid development and are achieving much improvement. Benefit from deep learning techniques
such as text classification and sentiment analysis have made many breakthroughs [159].

However, text mining techniques based on deep learning are often less practical in tourism due
to the requirements of deep learning for data volume and labeled data, and most of them only use
existing data to explore future tourism trends. Aiming at the problem of lack of existing standard
tourism corpus and the limitations of deep learning such as interpretability, this paper makes a detailed
analysis and puts forward some major trends of future tourism text data mining.

(1) Lack of domain corpus. The languages of the existing tourism corpora are mostly English and the
limited multi-language categories make the existing tourism corpora not universally adaptable.
In addition, the annotation of the tourism corpus often relies on manual labor, lack of system and
formativeness, and the scale of the corpus is usually small. How to automatically and effectively
construct a standardized large-scale multi-language tourism corpus has become one of the keys
to the successful application of tourism big data. Given the impact of publicly annotated data
sets on tourism big data mining and for the convenience of research, we summarize some of
the relevant publicly available text data sets currently in the tourism domain, with the data sets
described and the dataset sources listed in Table 7.

Table 7. Publicly available tourism data sets.

Name Description Source Accessed
Date

Hotel_Reviews 515,000

It contains 515,000 customer reviews with
positive and negative aspects and ratings
of 1493 luxury hotels across Europe, as
well as the location of the hotel.

https://www.kaggle.com/
jiashenliu/515k-hotel-reviews-
data-in-europe

24 July 2019

TripAdvisor Hotel Review
Dataset

It contains 20,490 hotel customer reviews
and related review ratings.

https://zenodo.org/record/
1219899#.XFSETygzY2w 24 July 2019

Citysearch Restaurant
Review Dataset

It contains 35,000 food reviews and lists
representative words related to the
attributes of each entity. It also includes
3418 sentences with labeled sentiment
polarity for the attributes of each entity.

http://dilab.korea.ac.kr/jmts/
jmtsdataset.zip 24 July 2019

OpinRank Dataset

It contains 259,000 reviews of 10 different
cities (Dubai, Beijing, London, New York,
New Delhi, San Francisco, Shanghai,
Montreal, Las Vegas, and Chicago), each
city of which has approximately 80–700
hotels, with dates, comment title, and full
comment included.

https://github.com/kavgan/
OpinRank/blob/master/
OpinRankDatasetWithJudgments.
zip

24 July 2019

SemEval ABSA Restaurant
Reviews-English (2014–2016)
SemEval ABSA Hotels
Domain-English (2015–2016)

It includes multiple English data sets for
restaurants and hotels which are
composed of comments, with the
attributes (E#A pairs) and the target and
the corresponding sentiment polarities
marked.

http://metashare.ilsp.gr:8080/
repository/search/?q=SemEval 24 July 2019

SentiBridge: A Knowledge
Base for Entity-Sentiment
Representation

The dictionary contains a total of 300,000
entity-sentiment pairs, currently from the
three domains of news, travel, and
catering.

https:
//github.com/rainarch/SentiBridge 24 July 2019

ChnSentiCorp-Htl-unba-10000 It contains 7000 positive and 3000
negative hotel reviews in Chinese.

https:
//download.csdn.net/download/
sinat_30045277/9862005

24 July 2019

505

Appl. Sci. 2019, 9, 3300

Table 7. Cont.

Name Description Source Accessed
Date

TourPedia

It contains two main data sets: Places,
and reviews about places. Places contains
accommodations, restaurants, attractions,
and points of interest, and each place is
descripted with address, location,
polarity, etc. Reviews about places has
some auxiliary information such as rating,
time, polarity, place, etc.

http://tour-pedia.org/about/
datasets.html 24 July 2019

Museum reviews from
TripAdvisor

It contains 1600 museum data including
address, category, review, rating,
popularity, etc.

https://www.kaggle.com/
annecool37/museum-data 24 July 2019

Recently, knowledge transfer has attracted a lot of attention, with attempts to transfer the
knowledge learned from the existing large-scale data to the target task to reduce the demand for the
target data, and plays a decisive role in putting future research of tourism big data mining into practical
applications. At present, transfer learning has made good progress in cross-domain feature extraction
and sentiment analysis [160]. For the lack of training data, scholars have proposed some transfer
learning models such as few-shot, one-shot and zero-shot, which can learn the relevant features of
the data for classification prediction if the training samples in the target area are not provided or only
provided a small, and they have achieved good results in the text data mining [161,162]. Recently, the
pre-trained BERT model shows great advantages in multi-language and multi-task transfer learning,
without substantial task-specific architecture modifications, which makes transfer learning widely
applicable to the text mining.

Meta-learning also achieves outstanding results in response to the problem of too little training
data in the target domain. The goal of meta-learning is to train a model on multi-task and to obtain
common attributes that adapt to a new task, reducing the need for pre-trained data. For example, for the
problem of fuzzy learning tasks with the small sample in NLP field, an adaptive metrics meta-learning
method has been proposed, which automatically captures the best-weighted combination of metrics
from the meta-training task [161].

In addition, the use of semi-supervised and unsupervised learning methods can also reduce the
dependence of labeled data. Studies [163] have pointed out that when multilingual transfer learning
such as BERT, unsupervised models, and meta-learning are combined, the areas with fewer data
resources are very promising.

(2) Limitations of deep learning. The first one is poor interpretability. For a long time, deep learning
has been lacking in rigorous mathematical theory, and it is impossible to explain the quality of
the results and the variables that lead to the results. In the tourism domain, the interpretable
performance of deep learning is more conducive to discover knowledge and understand the
nature of the problem, thus the practitioners can make operational service adjustments. The use
of attention mechanisms in deep learning also provides an interpretable channel for deep learning.
However, for deep learning itself, it still seems to be a black box problem. Some scholars also
consider using the knowledge graph to eliminate the semantic gap between NLP and deep
learning, which will provide vital support for deep learning interpretability in the future.

The second is the limited expression capability. Text information extraction can be realized by
multiple feature learning layers of deep learning model. However, as the complexity of the model
increases, the learning ability strengthens, but there exists an over-fitting problem. This problem can be
solved by acquiring massive data to a certain extent, while the lack of labeled data and the finiteness of
hierarchy in deep learning models restricts the learning ability of deep learning. Currently, transfer
learning is an effective way to solve this problem. Besides, some scholars, such as Professor Zhou

506

Appl. Sci. 2019, 9, 3300

Zhihua, have considered the use of non-differentiable models to enhance the expressive ability of deep
learning aiming at simulate the diversity of the real world, which is a great challenge for deep learning.

(3) The future trend of text corpus-based tourism application. Tourism has a high degree of social
nature. It uses the text information shared in social network media to explore the new vitality of
tourism services or develop products by feedbacks from tourists, which is the general way of
tourism text data mining currently. Tourism personalized recommendation is a significant and
potential direction because it caters to current social needs. However, in tourism recommendation,
the cold start problem for tourists or tourism items has always been a difficult task for scholars to
explore, and thus fail to solve. Combined with other enriched multimedia content such as videos,
photographs, text, links to websites, etc., text-based recommendation will be enhanced [164,165],
which is also a supplement for addressing the cold start problem. Besides, how to dynamically
explore tourist preferences and how to explore the unknown or unfamiliar tourism area or travel
style for tourists will become a hot spot for future research.

This paper mainly reviews the automatic text mining techniques in NLP, which can assist people
to acquire information from a large of text data. Text generation techniques will also be necessary for
future tourism development and application. From tourism recommendations, NLP is transitioning to
the process of assisting people in understanding, which will provide a decisive or interpretable way
for tourism. In the future, with the improvement of interactive NLP [166], the machine will be able
to understand human language more accurately and communicate more naturally with users, thus
providing tourists with real-time intelligent answers and suggestions. In the future, reinforcement
learning (RL) [167] will give a powerful impetus to tourism big data because it can adapt to the instant
changes in the environment.

For the convenience of readers, we summarize the main key methodologies of the text mining
techniques in the surveyed papers in Table 8:

Table 8. Main take-aways for the reader.

Main Take-Aways

Topic probability model is a basic model used in most topic extraction algorithms, which can be improved by
enhancing topic coherence of short texts or exploiting the sematic feature of words and text enabled by
deep learning.

Language models based on deep learning models such as CNN and RNN, etc., are widely applied in text
classification. Focusing on their requirement for abundant labeled data for supervised learning, many
strategies have been proposed such as co-training, training samples extension, meta-learning, and
transfer learning.

One of the mainstream trends in sentiment classification is to exploit the attention mechanism in deep learning.
Based on the study of sentiment targets or sentiment aspects, the sentiments can be more fine-grained and
interpretable, which is more conducive to practical application analysis.

K-means is a method often commonly used in text clustering due to its small time complexity. Optimization of
initial clustering points, improvement of text representation, and optimization of objective functions are all
popular aspects of improvements to K-means-based text clustering.

6. Conclusions

Big data analysis is changing the operating mode of the global tourism economy, providing
tourism managers with deeper insights, and infiltrating into all aspects of tourist travels, while driving
tourism innovation and development [168]. Tourism text big data mining techniques have made it
possible to analyze the behaviors of tourists and realize real-time monitoring of the market. As the
key technique of text analysis, NLP is experiencing a period of vigorous development. Both machine
learning and current deep learning with high achievements have been greatly applied in NLP. The deep
learning language model provides a general learning framework, which can flexibly represent the

507

Appl. Sci. 2019, 9, 3300

text, and can be easily extended to different network models—such as standard methods CNN, LSTM,
GRU, and various variants of standard methods—which laid the foundation for the deepening of the
deep learning theory in the NLP field, and thus provided a solid theoretical basis for the improvement
of the text corpus-based tourism big data mining.

This paper systematically summarizes current and potential applications of big data text mining
techniques in Internet tourism economy and provides some guides for further research in tourism big
data analysis. At present, most of the existing studies on tourism big data mining tend to be driven
by data and algorithm innovation. However, tourism data analysis and service evaluations without
considering the subjective nature of tourists may be inherently biased. Personalized subjective analysis
and evaluation methods, such as Kansei engineering, widely use product evaluation [169], and thus
have big potential in tourism big data analysis. Combining data-driven methods with tourism domain
knowledge, such as the considering of domain-specific words [170], is also another direction that needs
exploration in the future.

Author Contributions: Q.L. and S.L. conceived the conception; Q.L. conducted literature collection and manuscript
writing; S.L., J.H. (Jianjun Hu), J.H. (Jie Hu) and S.Z. revised and polished the manuscript. All authors read and
approved the final manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under Grant No.
91746116, National Science and Technology Support Program under Grant No. 2014BAH05F02, Science and
Technology Program of Guizhou Province Nos. [2015]4011, Nos. [2016]5103, Nos. [2017]5788, and the Science and
Technology Project of Guizhou Province under Grant Talents Nos. [2018] 5774-034.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ye, Q.; Law, R.; Gu, B.; Chen, W. The influence of user-generated content on traveler behavior: An empirical
investigation on the effects of e-word-of-mouth to hotel online bookings. Comput. Hum. Behav. 2011, 27,
634–639. [CrossRef]

2. Li, Q.; Li, S.; Hu, J.; Zhang, S.; Hu, J. Tourism Review Sentiment Classification Using a Bidirectional Recurrent
Neural Network with an Attention Mechanism and Topic-Enriched Word Vectors. Sustainability 2018, 10,
3313. [CrossRef]

3. Marrese-Taylor, E.; Velásquez, J.D.; Bravo-Marquez, F.; Matsuo, Y. Identifying Customer Preferences about
Tourism Products Using an Aspect-based Opinion Mining Approach. Proc. Comput. Sci. 2013, 22, 182–191.
[CrossRef]

4. Xu, J.; Fan, Y.; Bai, B. Knowledge mining and visualizing for scenic spots with probabilistic topic model.
J. Comput. Appl. 2016, 36, 2103–2108.

5. Huang, C.; Wang, Q.; Yang, D.; Xu, F. Topic mining of tourist attractions based on a seasonal context aware
LDA model. Intell. Data Anal. 2018, 22, 383–405. [CrossRef]

6. Al-Horaibi, L.; Khan, M.B. Sentiment analysis of Arabic tweets using text mining techniques. In Proceedings
of the First International Workshop on Pattern Recognition, Tokyo, Japan, 11–13 May 2016; p. 100111F.

7. Okazaki, S.; Andreu, L.; Campo, S. Knowledge sharing among tourists via social media: A comparison
between Facebook and TripAdvisor. Int. J. Tour. Res. 2017, 19, 107–119. [CrossRef]

8. Wang, J.; Li, S.; Zhou, G. Joint Learning on Relevant User Attributes in Micro-blog. In Proceedings of the
26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017;
pp. 4130–4136.

9. Gu, H.; Wang, J.; Wang, Z.; Zhuang, B.; Su, F. Modeling of User Portrait Through Social Media. In Proceedings
of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27
July 2018.

10. Wang, J.; Li, S.; Jiang, M.; Wu, H.; Zhou, G. Cross-media User Profiling with Joint Textual and Social User
Embedding. In Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe,
NM, USA, 21–25 August 2018; pp. 1410–1420.

11. Pennacchiotti, M.; Popescu, A. A Machine Learning Approach to Twitter User Classification. In Proceedings
of the International Conference on Weblogs and Social Media, Barcelona, Spain, 17–21 July 2011.

508

Appl. Sci. 2019, 9, 3300

12. Zhao, K.; Cong, G.; Yuan, Q.; Zhu, K.Q. SAR: A Sentiment-aspect-region Model for User Preference Analysis
in Geo-tagged Reviews. In Proceedings of the 2015 IEEE 31st International Conference on Data Engineering,
Seoul, Korea, 13–17 April 2015; pp. 675–686.

13. Teso, E.; Olmedilla, M.; Martínez-Torres, M.; Toral, S. Application of text mining techniques to the analysis of
discourse in eWOM communications from a gender perspective. Technol. Forecast. Soc. Chang. 2018, 129,
131–142. [CrossRef]

14. Škrlj, B.; Martinc, M.; Kralj, J.; Lavrač, N.; Pollak, S. tax2vec: Constructing Interpretable Features from
Taxonomies for Short Text Classification. arXiv 2019, arXiv:1902.00438.

15. Li, Y.; Zhang, Z.; Peng, Y.; Yin, H.; Xu, Q. Matching user accounts based on user generated content across
social networks. Fut. Gen. Comput. Syst. 2018, 83, 104–115. [CrossRef]

16. Költringer, C.; Dickinger, A. Analyzing destination branding and image from online sources: A web content
mining approach. J. Bus. Res. 2015, 68, 1836–1843. [CrossRef]

17. Yue, G.; Barnes, S.J.; Jia, Q. Mining meaning from online ratings and reviews: Tourist satisfaction analysis
using latent dirichletallocation. Tour. Manag. 2017, 59, 467–483. [CrossRef]

18. Wang, Y. More Important than Ever: Measuring Tourist Satisfaction; Griffith Institute for Tourism, Griffith
University: Queensland, Australia, 2016.

19. Kim, K.; Park, O.; Yun, S.; Yun, H. What makes tourists feel negatively about tourism destinations? Application
of hybrid text mining methodology to smart destination management. Technol. Forecast. Soc. Chang. 2017,
123. [CrossRef]

20. Govers, R.; Go, F.M. Projected destination image online: Website content analysis of pictures and text.
Inf. Technol. Tour. 2005, 7, 73–89. [CrossRef]

21. Chi, T.; Wu, B.; Morrison, A.M.; Zhang, J.; Chen, Y.C. Travel blogs on China as a destination image formation
agent: A qualitative analysis using Leximancer. Tour. Manag. 2015, 46, 347–358. [CrossRef]

22. Ren, G.; Hong, T. Investigating Online Destination Images Using a Topic-Based Sentiment Analysis Approach.
Sustainability 2017, 9, 1765. [CrossRef]

23. Rodrigues, A.I.; Correia, A.; Kozak, M.; Tuohino, A. Lake-destination image attributes: Content analysis of
text and pictures. In Marketing Places and Spaces; Emerald Group Publishing Limited: Bingley, UK, 2015;
pp. 293–314.

24. Yuan, H.; Xu, H.; Qian, Y.; Ye, K. Towards Summarizing Popular Information from Massive Tourism Blogs.
In Proceedings of the IEEE International Conference on Data Mining Workshop, Shenzhen, China, 14
December 2014; pp. 409–416.

25. Yuan, H.; Xu, H.; Qian, Y.; Li, Y. Make your travel smarter: Summarizing urban tourism information from
massive blog data. Int. J. Inf. Manag. 2016, 36, 1306–1319. [CrossRef]

26. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space.
arXiv 2013, arXiv:1301.3781.

27. Mikolov, T.; Sutskever, I.; Chen, K. Distributed Representations of Words and Phrases and their
Compositionality. In Proceedings of the International Conference on Neural Information Processing
Systems, Lake Tahoe, CA, USA, 5–10 December 2013; pp. 3111–3119.

28. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global Vectors for Word Representation. In Proceedings of
the Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1532–1543.

29. McCann, B.; Bradbury, J.; Xiong, C.; Socher, R. Learned in translation: Contextualized word vectors.
In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; pp. 6294–6305.

30. Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized
word representations. N. Am. Chapter Assoc. Comput. Linguist. 2018, 1, 2227–2237.

31. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by
generative pre-training. Available online: https://s3-us-west-2.amazonaws.com/openai-assets/research-
covers/languageunsupervised/languageunderstandingpaper.pdf (accessed on 7 June 2018).

32. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv 2018, arXiv:1810.04805.

33. Xu, G.; Wang, H. The Development of Topic Models in Natural Language Processing. Chin. J. Comput. 2011,
34, 1423–1436. [CrossRef]

509

Appl. Sci. 2019, 9, 3300

34. Kim, Y. Convolutional Neural Networks for Sentence Classification. Empir. Methods Nat. Lang. Process. 2014,
1746–1751. [CrossRef]

35. Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical attention networks for document
classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 13–15 June 2016;
pp. 1480–1489.

36. Suyal, H.; Panwar, A.; Negi, A.S. Text Clustering Algorithms: A Review. Int. J. Comput. Appl. 2014, 96, 36–40.
[CrossRef]

37. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention
is all you need. In Proceedings of the Advances in neural information processing systems, Long Beach, CA,
USA, 4–9 December 2017; pp. 5998–6008.

38. Genc-Nayebi, N.; Abran, A. A systematic literature review: Opinion mining studies from mobile app store
user reviews. J. Syst. Softw. 2017, 125, 207–219. [CrossRef]

39. Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred
reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev.
2015, 4, 1. [CrossRef] [PubMed]

40. Keele, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Technical Report Ver.
2.3 EBSE Technical Report; EBSE: Durham, UK, 2007.

41. Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C. A neural probabilistic language model. J. Mach. Learn. Res.
2003, 3, 1137–1155.

42. Qiao, C.; Huang, B.; Niu, G.; Li, D.; Dong, D.; He, W.; Yu, D.; Wu, H. A New Method of Region Embedding for
Text Classification. In Proceedings of the International Conference on Learning Representations, Vancouver,
BC, Canada, 30 April–3 May 2018.

43. Xiong, S.; Lv, H.; Zhao, W.; Ji, D. Towards Twitter sentiment classification by multi-level sentiment-enriched
word embeddings. Neurocomputing 2018, 275, 2459–2466. [CrossRef]

44. Xiong, S. Improving Twitter Sentiment Classification via Multi-Level Sentiment-Enriched Word Embeddings.
arXiv 2016, arXiv:1611.00126. [CrossRef]

45. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of Tricks for Efficient Text Classification. Conf. Eur.
Chapter Assoc. Comput. Linguist. 2017, 2, 427–431. [CrossRef]

46. Ji, S.; Yun, H.; Yanardag, P.; Matsushima, S.; Vishwanathan, S.V.N. WordRank: Learning Word Embeddings
via Robust Ranking. Comput. Sci. 2015, 658–668. [CrossRef]

47. Howard, J.; Ruder, S. Universal language model fine-tuning for text classification. arXiv 2018, arXiv:1801.06146.
48. Le, Q.V.; Mikolov, T. Distributed Representations of Sentences and Documents. In Proceedings of the

International Conference on International Conference on Machine Learning, Beijing, China, 21–26 June 2014;
pp. 1188–1196.

49. Arora, S.; Liang, Y.; Ma, T. A Simple but Tough-to-Beat Baseline for Sentence Embeddings. In Proceedings of
the International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

50. Kiros, R.; Zhu, Y.; Salakhutdinov, R.R.; Zemel, R.; Urtasun, R.; Torralba, A.; Fidler, S. Skip-thought vectors.
In Proceedings of the Advances in Neural Information Processing Systems, Montreal, Canada, 7–12 December
2015; pp. 3294–3302.

51. Logeswaran, L.; Lee, H. An efficient framework for learning sentence representations. arXiv 2018, arXiv:1803.02893.
52. Conneau, A.; Kiela, D.; Schwenk, H.; Barrault, L.; Bordes, A. Supervised Learning of Universal Sentence

Representations from Natural Language Inference Data. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, Copenhagen, Denmark, 31 October–4 November 2018; pp. 670–680.

53. Subramanian, S.; Trischler, A.; Bengio, Y.; Pal, C. Learning General Purpose Distributed Sentence
Representations via Large Scale Multi-task Learning. In Proceedings of the International Conference
on Learning Representations, Vancouver, Canada, 30 April–3 May 2018.

54. Liu, G.; Xu, X.; Zhu, Y.; Li, L. An Improved Latent Dirichlet Allocation Model for Hot Topic Extraction.
In Proceedings of the IEEE Fourth International Conference on Big Data and Cloud Computing, Sydney,
Australia, 3–5 December 2014; pp. 470–476.

55. Hu, N.; Zhang, T.; Gao, B.; Bose, I. What do hotel customers complain about? Text analysis using structural
topic model. Tour. Manag. 2019, 72, 417–426. [CrossRef]

510

Appl. Sci. 2019, 9, 3300

56. Roberts, M.E.; Stewart, B.M.; Tingley, D.; Lucas, C.; Lederluis, J.; Gadarian, S.K.; Albertson, B.; Rand, D.G.
Structural topic models for open ended survey responses. Am. J. Polit. Sci. 2014, 58, 1064–1082. [CrossRef]

57. Zarrinkalam, F.; Kahani, M.; Bagheri, E. Mining user interests over active topics on social networks.
Inf. Process. Manag. 2018, 54, 339–357. [CrossRef]

58. Rana, T.A.; Cheah, Y.N. Aspect extraction in sentiment analysis: Comparative analysis and survey.
Artif. Intell. Rev. 2016, 1–25. [CrossRef]

59. Rose, S.; Engel, D.; Cramer, N.; Cowley, W. Automatic Keyword Extraction from Individual Documents.
Text Min. Appl. Theory 2010, 1–20. [CrossRef]

60. Bougouin, A.; Boudin, F.; Daille, B. TopicRank: Graph-Based Topic Ranking for Keyphrase Extraction.
In Proceedings of the International Joint Conference on Natural Language Processing, Nagoya, Japan, 14–18
October 2013; pp. 543–551.

61. Ning, J.; Liu, J. Using Word2vec with TextRank to Extract Keywords. New Technol. Libr. Inf. Serv. 2016, 32,
20–27. [CrossRef]

62. Xun, G.; Li, Y.; Zhao, W.X.; Gao, J.; Zhang, A. A Correlated Topic Model Using Word Embeddings.
In Proceedings of the International Joint Conference on Artificial Intelligence, Melbourne, Australian, 19–25
August 2017; pp. 4207–4213.

63. Alam, M.H.; Ryu, W.-J.; Lee, S. Joint multi-grain topic sentiment: Modeling semantic aspects for online
reviews. Inf. Sci. 2016, 339, 206–223. [CrossRef]

64. Yao, L.; Zhang, Y.; Chen, Q.; Qian, H.; Wei, B.; Hu, Z. Mining coherent topics in documents using word
embeddings and large-scale text data. Eng. Appl. Arti. Intell. 2017, 64, 432–439. [CrossRef]

65. Moody, C.E. Mixing dirichlet topic models and word embeddings to make lda2vec. arXiv 2016, arXiv:1605.02019.
66. Wang, Z.; Ma, L.; Zhang, Y. A hybrid document feature extraction method using latent Dirichlet allocation

and word2vec. In Proceedings of the 2016 IEEE First International Conference on Data Science in Cyberspace
(DSC), Changsha, China, 13–16 June 2016; pp. 98–103.

67. Cao, Z.; Li, S.; Liu, Y.; Li, W.; Ji, H. A novel neural topic model and its supervised extension. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015;
pp. 2210–2216.

68. Lau, J.H.; Baldwin, T.; Cohn, T. Topically driven neural language model. arXiv 2017, arXiv:1704.08012.
69. He, R.; Lee, W.S.; Ng, H.T.; Dahlmeier, D. An Unsupervised Neural Attention Model for Aspect Extraction.

In Proceedings of the Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada,
30 July–4 August 2017; pp. 388–397.

70. Qiu, L.; Yu, J. CLDA: An effective topic model for mining user interest preference under big data background.
Complexity 2018, 2018. [CrossRef]

71. Zheng, C.T.; Liu, C.; San Wong, H. Corpus-based topic diffusion for short text clustering. Neurocomputing
2018, 275, 2444–2458. [CrossRef]

72. Li, X.; Zhang, A.; Li, C.; Ouyang, J.; Cai, Y. Exploring coherent topics by topic modeling with term weighting.
Inf. Process. Manag. 2018, 54, 1345–1358. [CrossRef]

73. Liang, Y.; Liu, Y.; Chen, C.; Jiang, Z. Extracting topic-sensitive content from textual documents—A hybrid
topic model approach. Eng. Appl. Artif. Intell. 2018, 70, 81–91. [CrossRef]

74. Xu, Y.; Yin, J.; Huang, J.; Yin, Y. Hierarchical topic modeling with automatic knowledge mining.
Expert Syst. Appl. 2018, 103, 106–117. [CrossRef]

75. Afzaal, M.; Usman, M.; Fong, A.C.M.; Fong, S.; Zhuang, Y. Fuzzy Aspect Based Opinion Classification
System for Mining Tourist Reviews. Adv. Fuzzy Syst. 2016, 2016, 1–14. [CrossRef]

76. Tang, B.; Kay, S.; He, H. Toward optimal feature selection in naive Bayes for text categorization. IEEE Trans.
Knowl. Data Eng. 2016, 28, 2508–2521. [CrossRef]

77. Hamzah, A.; Widyastuti, N. Opinion classification using maximum entropy and K-means clustering.
In Proceedings of the 2016 International Conference on Information & Communication Technology and
Systems (ICTS), Surabaya, Indonesia, 12 October 2016; pp. 162–166.

78. Chen, K.; Zhang, Z.; Long, J.; Zhang, H. Turning from TF-IDF to TF-IGM for term weighting in text
classification. Expert Syst. Appl. 2016, 66, 245–260. [CrossRef]

79. An, J.; Chen, Y.P. Keyword extraction for text categorization. In Proceedings of the Active Media Technology,
Kagawa, Japan, 19–21 May 2005; pp. 556–561.

511

Appl. Sci. 2019, 9, 3300

80. Hu, J.; Li, S.; Yao, Y.; Yu, L.; Yang, G.; Hu, J. Patent keyword extraction algorithm based on distributed
representation for patent classification. Entropy 2018, 20, 104. [CrossRef]

81. Hu, J.; Li, S.; Hu, J.; Yang, G. A Hierarchical Feature Extraction Model for Multi-Label Mechanical Patent
Classification. Sustainability 2018, 10, 219. [CrossRef]

82. Ogada, K.; Mwangi, W.; Cheruiyot, W. N-gram Based Text Categorization Method for Improved Data Mining.
J. Inf. Eng. Appl. 2015, 5, 35–43.

83. Zhang, H.; Zhong, G. Improving short text classification by learning vector representations of both words
and hidden topics. Knowl. Based Syst. 2016, 102, 76–86. [CrossRef]

84. Zhang, X.; Zhao, J.J.; Lecun, Y. Character-level convolutional networks for text classification. Neural Inf.
Process. Syst. 2015, 649–657. [CrossRef]

85. Li, S.; Hu, J.; Cui, Y.; Hu, J. DeepPatent: Patent classification with convolutional neural networks and word
embedding. Scientometrics 2018, 117, 721–744. [CrossRef]

86. Zhou, P.; Qi, Z.; Zheng, S.; Xu, J.; Bao, H.; Xu, B. Text Classification Improved by Integrating Bidirectional
LSTM with Two-dimensional Max Pooling. Int. Conf. Comput. Ling. 2016, 3485–3495.

87. Lai, S.; Xu, L.; Liu, K.; Zhao, J. Recurrent convolutional neural networks for text classification. In Proceedings
of the 29th AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.

88. Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, Long Short-Term Memory, fully connected Deep
Neural Networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, Brisbane, QLD, Australia, 19–24 April 2015; pp. 4580–4584.

89. Liu, P.; Qiu, X.; Huang, X. Recurrent neural network for text classification with multi-task learning. arXiv
2016, arXiv:1605.05101.

90. Conneau, A.; Schwenk, H.; Barrault, L.; Lecun, Y.; Conneau, A.; Schwenk, H.; Barrault, L.; Lecun, Y. Very
Deep Convolutional Networks for Text Classification. Comput. Sci. 2016, 1107–1116. [CrossRef]

91. Katz, G.; Caragea, C.; Shabtai, A. Vertical Ensemble Co-Training for Text Classification. ACM Trans. Intell.
Syst. Technol. TIST 2018, 9, 21. [CrossRef]

92. Zhu, W.; Liu, Y.; Hu, G.; Ni, J.; Lu, Z. A Sample Extension Method Based on Wikipedia and Its Application in
Text Classification. Wirel. Pers. Commun. 2018, 102, 3851–3867. [CrossRef]

93. Jiang, X.; Havaei, M.; Chartrand, G.; Chouaib, H.; Vincent, T.; Jesson, A.; Chapados, N.; Matwin, S. On the
Importance of Attention in Meta-Learning for Few-Shot Text Classification. arXiv 2018, arXiv:1806.00852.

94. Merity, S.; Keskar, N.S.; Socher, R. Regularizing and optimizing LSTM language models. arXiv 2017,
arXiv:1708.02182.

95. Zheng, X.; Luo, Y.; Sun, L.; Ji, Z.; Chen, F. A tourism destination recommender system using users’ sentiment
and temporal dynamics. J. Intell. Inf. Syst. 2018, 1–22. [CrossRef]

96. Serna, A.; Gerrikagoitia, J.K.; Bernabe, U.; Ruiz, T. A Method to Assess Sustainable Mobility for Sustainable
Tourism: The Case of the Public Bike Systems. In Proceedings of the Enter Conference | Etourism: Sustaining
Culture & Creativity Organized by International Federation for Information Technology & Travel & Tourism,
Rome, Italy, 24–26 January 2017.

97. Li, Q.; Wu, Y.; Wang, S.; Lin, M.; Feng, X.; Wang, H. VisTravel: Visualizing tourism network opinion from the
user generated content. J. Vis. 2016, 19, 489–502. [CrossRef]

98. Zong, C. Statistical Natural Language Processing; Tsinghua University Press: Beijing, China, 2013.
99. Zhao, Y.; Qin, B.; Liu, T. Sentiment Analysis. J. Softw. 2010, 21, 1834–1848. [CrossRef]
100. Chen, Z.; Xu, R.; Gui, L.; Lu, Q. Combining Convolutional Neural Networks and Word Sentiment Sequence

Features for Chinese Text Sentiment Analysis. J. Chin. Inf. Process. 2015, 29, 172–178.
101. Fu, Y.; Hao, J.-X.; Li, X.; Hsu, C.H. Predictive Accuracy of Sentiment Analytics for Tourism: A Metalearning

Perspective on Chinese Travel News. J. Travel Res. 2018, 0047287518772361. [CrossRef]
102. Zhang, L.; Wang, S.; Liu, B. Deep learning for sentiment analysis: A survey. Wiley Interdiscip. Rev. Data Min.

Knowl. Discov. 2018, 8, e1253. [CrossRef]
103. Santos, C.N.D.; Gatti, M.A.D.C. Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts.

In Proceedings of the International Conference on Computational Linguistics, Dublin, Ireland, 23–29 August
2014; pp. 69–78.

104. Dieng, A.B.; Wang, C.; Gao, J.; Paisley, J. Topicrnn: A recurrent neural network with long-range semantic
dependency. arXiv 2016, arXiv:1611.01702.

512

Appl. Sci. 2019, 9, 3300

105. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A Convolutional Neural Network for Modelling Sentences.
Meet. Assoc. Comput. Ling. 2014, 655–665.

106. Hassan, A.; Mahmood, A. Deep Learning approach for sentiment analysis of short texts. In Proceedings of
the International Conference on Control and Automation, Ohrid, Macedonia, 3–6 July 2017; pp. 705–710.

107. Tang, D.; Wei, F.; Yang, N.; Zhou, M.; Liu, T.; Qin, B. Learning Sentiment-Specific Word Embedding for Twitter
Sentiment Classification. In Proceedings of the Meeting of the Association for Computational Linguistics,
Baltimore, MD, USA, 22–27 June 2014; pp. 1555–1565.

108. Ambartsoumian, A.; Popowich, F. Self-Attention: A Better Building Block for Sentiment Analysis Neural
Network Classifiers. Empir. Methods Nat. Lang. Process. 2018, 130–139. [CrossRef]

109. Jiang, T.; Wan, C.; Liu, D. Extracting Target-Opinion Pairs Based on Semantic Analysis. Chin. J. Comput. 2017,
40, 617–633.

110. He, W.; Tian, X.; Tao, R.; Zhang, W.; Yan, G.; Akula, V. Application of social media analytics: A case of
analyzing online hotel reviews. Online Inf. Rev. 2017, 41, 921–935. [CrossRef]

111. Hu, C.; Liang, N. Deeper attention-based LSTM for aspect sentiment analysis. Appl. Res. Comput. 2019, 36.
112. Fu, X.; Wei, Y.; Xu, F.; Wang, T.; Lu, Y.; Li, J.; Huang, J.Z. Semi-supervised Aspect-level Sentiment Classification

Model based on Variational Autoencoder. Knowl. Based Syst. 2019, 171, 81–92. [CrossRef]
113. Wang, Y.; Huang, M.; Zhao, L. Attention-based LSTM for aspect-level sentiment classification. In Proceedings

of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5
November 2016; pp. 606–615.

114. Tay, Y.; Tuan, L.A.; Hui, S.C. Learning to attend via word-aspect associative fusion for aspect-based sentiment
analysis. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, LO, USA, 2–7
February 2018.

115. Tang, D.; Qin, B.; Feng, X.; Liu, T. Effective LSTMs for target-dependent sentiment classification. arXiv 2015,
arXiv:1512.01100.

116. Ma, D.; Li, S.; Zhang, X.; Wang, H. Interactive attention networks for aspect-level sentiment classification.
arXiv 2017, arXiv:1709.00893. [CrossRef]

117. Tang, D.; Qin, B.; Liu, T. Aspect level sentiment classification with deep memory network. arXiv 2016,
arXiv:1605.08900. [CrossRef]

118. Yang, C.; Zhang, H.; Jiang, B.; Li, K. Aspect-based sentiment analysis with alternating coattention networks.
Inf. Process. Manag. 2019, 56, 463–478. [CrossRef]

119. Liu, J.; Zhang, Y. Attention modeling for targeted sentiment. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics (Volume 2, Short Papers), Valencia,
Spain, 3–7 April 2017; pp. 572–577.

120. Li, X.; Bing, L.; Lam, W.; Shi, B. Transformation networks for target-oriented sentiment classification. arXiv
2018, arXiv:1805.01086.

121. Shuang, K.; Ren, X.; Yang, Q.; Li, R.; Loo, J. AELA-DLSTMs: Attention-Enabled and Location-Aware Double
LSTMs for aspect-level sentiment classification. Neurocomputing 2019, 334, 25–34. [CrossRef]

122. Ma, X.; Zeng, J.; Peng, L.; Fortino, G.; Zhang, Y. Modeling multi-aspects within one opinionated sentence
simultaneously for aspect-level sentiment analysis. Fut. Gen. Comput. Syst. 2019, 93, 304–311. [CrossRef]

123. Zhang, Z.; Wang, L.; Zou, Y.; Gan, C. The optimally designed dynamic memory networks for targeted
sentiment classification. Neurocomputing 2018, 309, 36–45. [CrossRef]

124. Fan, F.; Feng, Y.; Zhao, D. Multi-grained attention network for aspect-level sentiment classification.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, 31 October–4 November 2018; pp. 3433–3442.

125. Xu, H.; Liu, B.; Shu, L.; Yu, P.S. BERT Post-Training for Review Reading Comprehension and Aspect-based
Sentiment Analysis. arXiv 2019, arXiv:1904.02232.

126. Yang, M.; Yin, W.; Qu, Q.; Tu, W.; Shen, Y.; Chen, X. Neural Attentive Network for Cross-Domain Aspect-level
Sentiment Classification. IEEE Trans. Affect. Comput. 2019. [CrossRef]

127. Almars, A.; Li, X.; Zhao, X. Modelling user attitudes using hierarchical sentiment-topic model. Data Knowl. Eng.
2019, 119, 139–149. [CrossRef]

128. Li, J.; Yujie, C.; Zhao, Z. Tibetan Tourism Hotspots: Co-word Cluster Analysis of English Blogs. Tour. Trib.
2015, 30, 35–43.

513

Appl. Sci. 2019, 9, 3300

129. Ding, S.; Gong, S.; Li, H. A New Method to Detect Bursty Events from Micro-blog Posts Based on Bursty
Topic Words and Agglomerative Hierarchical Clustering Algorithm. New Technol. Libr. Inf. Serv. 2016, 32,
12–20. [CrossRef]

130. Celardo, L.; Iezzi, D.F.; Vichi, M. Multi-mode partitioning for text clustering to reduce dimensionality and
noises. In Proceedings of the 13th International Conference on Statistical Analysis of Textual Data, Nice,
France, 7–10 June 2016.

131. Allahyari, M.; Pouriyeh, S.; Assefi, M.; Safaei, S.; Trippe, E.D.; Gutierrez, J.B.; Kochut, K. A Brief Survey of
Text Mining: Classification, Clustering and Extraction Techniques. Min. Text Data 2017. [CrossRef]

132. Huang, L.-J.; Cheng, M.-Z.; Xiao, Y. Text Clustering Algorithm Based on Random Cluster Core. In Proceedings
of the ITM Web of Conferences, Julius, France; 2016; p. 05001.

133. Xiong, C.; Hua, Z.; Lv, K.; Li, X. An Improved K-means Text Clustering Algorithm by Optimizing Initial
Cluster Centers. In Proceedings of the International Conference on Cloud Computing & Big Data, Macau,
China, 16–18 November 2016.

134. Huan, Z.; Pengzhou, Z.; Zeyang, G. K-means Text Dynamic Clustering Algorithm Based on KL Divergence.
In Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science
(ICIS), Singapore, 6 June 2018; pp. 659–663.

135. Abualigah, L.M.; Khader, A.T.; Al-Betar, M.A. Unsupervised feature selection technique based on genetic
algorithm for improving the Text Clustering. In Proceedings of the 7th International Conference on Computer
Science and Information Technology (CSIT), Amman, Jordan, 13–15 July 2016; pp. 1–6.

136. Jin, C.X.; Bai, Q.C. Text Clustering Algorithm Based on the Graph Structures of Semantic Word Co-occurrence.
In Proceedings of the International Conference on Information System and Artificial Intelligence, Hangzhou,
China, 14–16 July 2017; pp. 497–502.

137. Wang, B.; Liu, W.; Lin, Z.; Hu, X.; Wei, J.; Liu, C. Text clustering algorithm based on deep representation
learning. J. Eng. 2018, 2018, 1407–1414. [CrossRef]

138. Abualigah, L.M.; Khader, A.T.; Al-Betar, M.A. Multi-objectives-based text clustering technique using K-mean
algorithm. In Proceedings of the International Conference on Computer Science & Information Technology,
Amman, Jordan, 13–15 July 2016.

139. Aggarwal, C.C.; Zhai, C. A survey of text clustering algorithms. In Mining Text Data; Springer: Boston, MA,
USA, 2012; pp. 77–128.

140. Yu, J.C.X. Ontology Concepts Clustering Based on Encyclopedia Entr. J. Univ. Electron. Sci. Technol. China
2017, 46, 636–640.

141. Horner, S.; Swarbrooke, J. Consumer Behaviour in Tourism; Routledge: London, UK, 2016.
142. Alén, E.; Losada, N.; Domínguez, T. The Impact of Ageing on the Tourism Industry: An Approach to the

Senior Tourist Profile. Soc. Indic. Res. 2016, 127, 1–20. [CrossRef]
143. Liu, Y.; Huang, K.; Bao, J.; Chen, K. Listen to the voices from home: An analysis of Chinese tourists’

sentiments regarding Australian destinations. Tour. Manag. 2019, 71, 337–347. [CrossRef]
144. Ezeuduji, I.O.; November, K.L.; Haupt, C. Tourist Profile and Destination Brand Perception: The Case of

Cape Town, South Africa. Acta Univ. Danub. Oeconomica 2016, 12, 115–132.
145. Padilla, J.J.; Kavak, H.; Lynch, C.J.; Gore, R.J.; Diallo, S.Y. Temporal and Spatiotemporal Investigation of

Tourist Attraction Visit Sentiment on Twitter. PLoS ONE 2018, 13, e0198857. [CrossRef]
146. Pan, M.H.; Yang, X.X.; Pan, Z. Influence Factors of the Old-age Care Tourism Decision Making Behavior

based on the Life Course Theory: A Case of Chongqing. Hum. Geogr. 2017, 6, 154–160. [CrossRef]
147. Qi, S.; Wong, C.U.I.; Chen, N.; Rong, J.; Du, J. Profiling Macau cultural tourists by using user-generated

content from online social media. Inf. Technol. Tour. 2018, 1–20. [CrossRef]
148. Zheng, X.; Luo, Y.; Xu, Z.; Yu, Q.; Lu, L. Tourism Destination Recommender System for the Cold Start

Problem. KSII Trans. Internet Inf. Syst. 2016, 10. [CrossRef]
149. Leal, F.; González–Vélez, H.; Malheiro, B.; Burguillo, J.C. Semantic profiling and destination recommendation

based on crowd-sourced tourist reviews. In Proceedings of the International Symposium on Distributed
Computing and Artificial Intelligence, Porto, Portugal, 21–23 June 2017; pp. 140–147.

150. Rossetti, M.; Stella, F.; Cao, L.; Zanker, M. Analysing User Reviews in Tourism with Topic Models; Springer
International Publishing: Lugano, Switzerland, 2015; pp. 47–58.

151. Borràs, J.; Moreno, A.; Valls, A. Intelligent tourism recommender systems: A survey. Expert Syst. Appl. 2014,
41, 7370–7389. [CrossRef]

514

Appl. Sci. 2019, 9, 3300

152. Qiao, X.; Zhang, L. Overseas Applied Studies on Travel Recommender System in the Past Ten Years.
Tour. Trib. 2014. [CrossRef]

153. Batat, W.; Phou, S. Building Understanding of the Domain of Destination Image: A Review; Springer International
Publishing: Atlanta, GA, USA, 2016.

154. Dickinger, A.; Költringer, C.; Körbitz, W. Comparing Online Destination Image with Conventional Image
Measurement—The Case of Tallinn; Springer: Vienna, Austria, 2011; pp. 165–177.

155. Gunn, C.A. Vacationscape: Designing Tourist Regions; Van Nostrand Reinhold: New York, NY, USA, 1988.
156. Castro, J.C.; Quisimalin, M.; de Pablos, C.; Gancino, V.; Jerez, J. Tourism Marketing: Measuring Tourist

Satisfaction. J. Serv. Sci. Manag. 2017, 10, 280. [CrossRef]
157. San Martín, H.; Herrero, A.; García de los Salmones, M.d.M. An integrative model of destination brand

equity and tourist satisfaction. Curr. Iss. Tour. 2018, 1–22. [CrossRef]
158. Kim, J.; Bae, J.; Hastak, M. Emergency information diffusion on online social media during storm Cindy in

US. Int. J. Inf. Manag. 2018, 40, 153–165. [CrossRef]
159. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent trends in deep learning based natural language

processing. IEEE Comput. Intell. Mag. 2018, 13, 55–75. [CrossRef]
160. Liao, X.; Wu, X.; Gui, L.; Huang, J.; Chen, G. Cross-Domain Sentiment Classification Based on Representation

Learning and Transfer Learning. Beijing Da Xue Xue Bao 2019, 55, 37–46. [CrossRef]
161. Yu, M.; Guo, X.; Yi, J.; Chang, S.; Potdar, S.; Cheng, Y.; Tesauro, G.; Wang, H.; Zhou, B. Diverse Few-Shot Text

Classification with Multiple Metrics. arXiv 2018, arXiv:1805.07513. [CrossRef]
162. Lampinen, A.; Mcclelland, J.L. One-shot and few-shot learning of word embeddings. arXiv 2017, arXiv:1710.10280.
163. Gu, J.; Wang, Y.; Chen, Y.; Li, V.O.K.; Cho, K. Meta-Learning for Low-Resource Neural Machine Translation.

Empir. Methods Nat. Lang. Process. 2018, 3622–3631.
164. Stai, E.; Kafetzoglou, S.; Tsiropoulou, E.E.; Papavassiliou, S. A holistic approach for personalization, relevance

feedback & recommendation in enriched multimedia content. Multimed. Tools Appl. 2018, 77, 283–326.
[CrossRef]

165. Pouli, V.; Kafetzoglou, S.; Tsiropoulou, E.E.; Dimitriou, A.; Papavassiliou, S. Personalized multimedia content
retrieval through relevance feedback techniques for enhanced user experience. In Proceedings of the 13th
International Conference on Telecommunications (ConTEL), Graz, Austria, 13–15 July 2015; pp. 1–8.

166. Zhang, H.; Yu, H.; Xu, W. Listen, interact and talk: Learning to speak via interaction. arXiv 2017,
arXiv:1705.09906.

167. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
168. Li, J.; Xu, L.; Tang, L.; Wang, S.; Li, L. Big data in tourism research: A literature review. Tour. Manag. 2018, 68,

301–323. [CrossRef]
169. Quan, H.; Li, S.; Hu, J. Product Innovation Design Based on Deep Learning and Kansei Engineering. Appl. Sci.

2018, 8, 2397. [CrossRef]
170. Li, W.; Guo, K.; Shi, Y.; Zhu, L.; Zheng, Y. DWWP: Domain-specific new words detection and word

propagation system for sentiment analysis in the tourism domain. Knowl. Based Syst. 2018, 146, 203–214.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

515

applied
sciences

Article

A Hybrid Adversarial Attack for Different
Application Scenarios †

Xiaohu Du *,‡ , Jie Yu ‡, Zibo Yi, Shasha Li, Jun Ma, Yusong Tan and Qinbo Wu

College of Computer Science and Technology, National University of Defense Technology,
Changsha 410073, China; yj@nudt.edu.cn (J.Y.); yizibo14@nudt.edu.cn (Z.Y.); shashali@nudt.edu.cn (S.L.);
majun@nudt.edu.cn (J.M.); yusong.tan@nudt.edu.cn (Y.T.); qinbo.wu@nudt.edu.cn (Q.W.)
* Correspondence: duxiaohu18@nudt.edu.cn; Tel.: +86-155-8098-5235
† This paper is an extended version of our paper published in the 6th International Conference on Artificial

Intelligence and Security (ICAIS 2020).
‡ These authors contributed equally to this work.

Received: 28 April 2020; Accepted: 15 May 2020; Published: 21 May 2020
����������
�������

Abstract: Adversarial attack against natural language has been a hot topic in the field of artificial
intelligence security in recent years. It is mainly to study the methods and implementation of
generating adversarial examples. The purpose is to better deal with the vulnerability and security
of deep learning systems. According to whether the attacker understands the deep learning model
structure, the adversarial attack is divided into black-box attack and white-box attack. In this paper,
we propose a hybrid adversarial attack for different application scenarios. Firstly, we propose
a novel black-box attack method of generating adversarial examples to trick the word-level
sentiment classifier, which is based on differential evolution (DE) algorithm to generate semantically
and syntactically similar adversarial examples. Compared with existing genetic algorithm based
adversarial attacks, our algorithm can achieve a higher attack success rate while maintaining a lower
word replacement rate. At the 10% word substitution threshold, we have increased the attack success
rate from 58.5% to 63%. Secondly, when we understand the model architecture and parameters, etc.,
we propose a white-box attack with gradient-based perturbation against the same sentiment classifier.
In this attack, we use a Euclidean distance and cosine distance combined metric to find the most
semantically and syntactically similar substitution, and we introduce the coefficient of variation (CV)
factor to control the dispersion of the modified words in the adversarial examples. More dispersed
modifications can increase human imperceptibility and text readability. Compared with the existing
global attack, our attack can increase the attack success rate and make modification positions in
generated examples more dispersed. We’ve increased the global search success rate from 75.8% to
85.8%. Finally, we can deal with different application scenarios by using these two attack methods,
that is, whether we understand the internal structure and parameters of the model, we can all generate
good adversarial examples.

Keywords: adversarial attack; adversarial example; sentiment classification; deep learning

1. Introduction

In the past few decades, machine learning and deep learning techniques have achieved great
success in some applications. However, so far, there are some technologies that have proven to be
vulnerable. Some modified inputs can be easily distinguished by humans, but the neural network
model will be classified incorrectly [1]. Adversarial attacks on neural networks have attracted a lot of
attention. The main target of these attacks is a computer vision model for image classification [2,3].
Since the input features of these models are continuous, we can apply artificially indistinguishable

517

Appl. Sci. 2020, 10, 3559 2 of 15

perturbations. Unlike image data, text input consists of individual words represented by word
embeddings, but we cannot directly perturb them and find another word because we need to consider
whether the context and the grammar are smooth. We call the perturbed words an adversarial example.

The adversarial example is a small modification to the input, which can change the judgment
of the classifier but is not easily detected by humans. These adversarial examples expose some of
the vulnerabilities of classifiers and can be used to evaluate and improve machine learning models.
Liang et al. [4] pointed out that, if we want to produce a very effective adversarial example, we need to
solve two problems. The first is to maintain the original meaning of the adversarial example sentences.
The second problem is making it difficult for humans to detect that the adversarial examples are
modified. Adversarial attacks can be divided into two cases: white-box attacks and black-box attacks.
The former can obtain the parameters and structure of the model, while the latter lacks this information.
Black-box attacks are more challenging because they often require a large number of queries on the
model. White-box attacks have some gradient-based methods for specific models. Alzantot et al. [5]
proposed a black-box based genetic algorithm (GA) to generate semantic and grammatically similar
adversarial examples. These examples are used to obfuscate the sentiment classification and textual
entailment models with good training results; their attack success rates have reached 97% and 70%,
respectively. Based on the above work, Wang et al. [6] proposed an improved genetic algorithm (IGA).
Compared with GA, IGA can achieve higher attack success rates while maintaining the transferability
of the adversarial examples. The use of differential evolution (DE) for generating adversarial images
has be proved to be effective [7]. Both GA and DE are population based optimization algorithms.
DE has mechanisms in the population selection phase that maintains the diversity. For that, we propose
a novel black-box attack for generating adversarial text examples based on differential evolution.

When we understand the model parameters and structure, we can use white-box attack.
Most white-box attacks are based on gradient methods. Greedy attack has proven to be a very effective
attack method [8]. However, it also has some problems. Tsai et al. [9] pointed out that greedy attack
may not guarantee optimal results. Another limitation is that substitute words often appear in the
close range of the sentence, especially in front. This greatly reduces the readability of the sentence and
even destroys the semantic meaning of the original text. They proposed a “global search” algorithm
that computes a perturbation to obtain candidate words, and then replaces the words of the more
perturbed locations. The larger the perturbation, the more sensitive the classifier is to changes in the
word. Global search results produce better examples than greedy attack and have a higher attack
success rate. When generating candidate words, the global search only uses the Euclidean distance
to find the nearest word. We consider combining Euclidean distance and cosine distance to find
similar words, and find that some of the original attack failed examples can be re-attacked successfully
when we use the cosine distance. In the process of generating the adversarial examples, the existing
methods modify the word without considering the dispersion of the modified position in the whole
sentence. In particular, the word replacement position of a greedy attack is often close in the sentence,
which greatly reduces the readability. Our method is essentially to use different metrics to measure
embedding distance to find similar words in generating candidate words and introduce the CV in the
Generate Adversary Function in [9]. We compare results of different CV weight on the success rate of
the attack, and finally get the best CV weight for generating adversarial examples.

In summary, our contributions in this work are as follows:

(1) We propose a novel black-box attack for generating adversarial text examples based on
differential evolution.

(2) We use a Euclidean distance and cosine distance combined metric to find the similar words when
generating perturbations and candidate words; the results show that the combining metric can
increase the attack success rate.

(3) We propose a white-box attack to generate adversarial examples in which the modified words
have high semantic relevance and their positions are more dispersed.

518

Appl. Sci. 2020, 10, 3559 3 of 15

(4) Finally, we prove that the global search attack with a coefficient of variation is more similar to the
original text and more imperceptible for humans, which is verified by human evaluation.

The rest of this paper is organized as follows: In Section 2, we describe the related works done
by the previous scholars, and some of them are our comparison objects. In Section 3, we describe our
methods in detail. Section 4 introduces the relevant contents of the experiment, including the target
model, data set, experimental parameters, experimental results, and so on. Finally, we analyze and
summarize the experiment. Section 5 introduces the final conclusions and future work.

2. Related Work

The first adversarial attack originates in 2014, when Szegedy et al. [1] find that deep neural
networks used for image classification could be tricked by a tiny pixel perturbations added to the input
image. They found that image classifiers have a high rate of misclassification, but humans have not
detected such changes in images. In 2017, Jia et al. [10] are the first to consider generating adversarial
examples on text-based deep neural networks. Since then, people have begun to pay attention to
generating adversarial examples for text.

2.1. Black-Box Attack on Text

Robin et al. [10] propose a black-box attack in 2017; this is the first job for the reading
comprehension system. The attack proposed by the author is to add distracting but meaningless
sentences to the end of the paragraph. These distracting sentences do not change the semantics of
paragraphs and answers, but they can trip up the neural network model. The distracting sentence can
be a carefully generated real sentence or an arbitrary sequence of words using 20 random common
words. Finally, the attack is considered successful when the neural network is queried iteratively
until the output changes. Later, Yicheng et al. [11] improve the work by changing the position of
noise words and expanding the false answer set used to generate the noise words. They provide new
adversarial examples that can help train more robust neural models. Yonatan et al. [12] propose in 2018
that interfered with the input data of neural machine translation applications in two ways: synthesis,
which changes the order of characters, such as swapping, and randomization in the middle (that is,
except for the first and last characters, Randomly change the order of characters); and completely
random (that is, randomly change the order of all characters) and keyboard typing error types.
They also collect typographical and typographical errors as adversarial examples. These take advantage
of typos in the data set. Gao et al. [13] present a novel algorithm, DeepWordBug. They use a new scoring
strategy to identify key tokens. If these tokens are modified, it will cause the classifier to misclassify.
They use simple character substitution for the highest-ranking tokens to minimize the edit distance of
the perturbation, and change the original classification. Their method has achieved good results in
tasks such as text classification, sentiment analysis, and spam detection, and reduces the prediction
accuracy of the current state-of-the-art deep learning models. In the same year, Alzantot et al. [5] used
genetic algorithms (GA) to minimize the number of word replacements in the original text, but, at the
same time, they can make the model wrong. They use crossover and mutation operations in genetic
algorithms to generate disturbances. Their attack targets are sentiment classification and textually
implied DNN models. In 2019, Ren et al. [14] propose a greedy algorithm called probability weighted
word saliency (PWWS) for text ad-versarial attack. They think that, compared with images, the main
difficulty of generating text adversarial examples is that the text space is discrete, and it is difficult to
make small perturbations along the gradient direction. The challenge is that the generated results need
to ensure vocabulary correctness, grammatical correctness, and semantic similarity. Therefore, on the
basis of the synonym replacement strategy, they introduce a new vocabulary replacement method that
is determined by the POS saliency and classification probability. Wang et al. [6] propose an improve
genetic algorithm (IGA) based on the above genetic algorithm. Compared with existing genetic-based
adversarial attacks, IGA changed from the random initialization of the GA to the first population.
Synonyms randomly replace each word to initialize the first population, making the population more

519

Appl. Sci. 2020, 10, 3559 4 of 15

diverse. It also allows replacing previously replaced words to avoid local minima. In the cross section,
in order to better simulate breeding and biological crossing, the text of the two parents is randomly
cut, and the two fragments are merged into a new text, instead of randomly selecting a word from
each position of the two parents. In 2020, Jin et al. [15] propose a black-box attack method called
TEXTFOOLER. Different from the above method, they define a new method for ranking the importance
of words; TEXTFOOLER first obtains the prediction score FY(X) for the Y label corresponding to the
original text X through the model, and the score FY(X\wi) of X after deleting the word wi. Then,
it calculates the importance score of wi according to the relationship between FY(X), FY(X\wi), Y,
and Ŷ. Finally, it replaces the words according to the importance score. This method achieves good
results in text classification and text implication tasks.

To sum up, the above black-box attack method consists of many similarities. Because the black-box
does not know the internal structure and specific parameters of the model, scholars attempt to find
the optimal replacement in the word space by different methods. Some of them replace the words
first and then calculate the prediction score after the replacement, such as multiple iterations of GA to
find the optimal replacement. At the same time, they also try to find out the important score of the
replacement words and then replace them in order to minimize the word replacement ratio, such as
DeepWordBug and TEXTFOOLER. However, they all have the same goal, which is to find an optimal
adversarial examples.

2.2. White-Box Attack on Text

In terms of white-box attacks, the related works are not as much as black-box attacks, which are
mainly based on gradient methods. Ebrahimi et al. [16] propose a gradient-based white-box attack
method to generate adversarial examples. This attack aims at a character level RNN classifier and
greatly increases the error rates on text classification and machine translation.Cheng et al. [17] propose
a white-box method to generate adversarial examples against NMT and improve the robustness
of NMT. Greedy attack proves to be a very effective method of attack [8,9,18], and Yang et al. [8]
even show that greedy attack achieves state-of-the-art attack rates across various kinds of models.
However, it also has some problems. Tsai et al. [9] propose that it may not guarantee producing
the optimal results and sometimes spends too much time because the algorithm needs to search the
candidate words for every iteration, at the same time, due to the nature of being greedy, the algorithm
can replace sub-optimal words that do not contribute much to the final goal in an earlier position.
Another limitation is that replaced words tend to be in a close area of the sentence, especially in the
front. This greatly reduces the readability of the sentence and even destroys the semantic meaning
of the original text. They propose a “Global Search” algorithm, which obtains candidate words by
calculating a perturbation, and then replace the words in the position where the perturbation is larger.
The larger the perturbation, the more sensitive the classifier is to the change of the word. Results of
global search prove to generate better examples than the greedy attack and higher attack success rate,
which is the baseline used in our experiments. In addition, Lei et al. [19] propose a greedy method can
be very time consuming when the space of attacks is large and give the optimization scheme.

The related work of white-box attacks have proved to be very effective in text-based attacks,
but there are still some problems to be solved, such as a good algorithm in the replacement percentage,
attack success rate, word similarity, grammatical correctness, and semantic similarity can still have
better results. Based on the strategy of gradient generation perturbation, we propose a new white-box
attack method for sentiment classification task and make some progress in the above aspects.

2.3. Different Measures of Textual Similarity

An important problem is that the generated adversarial examples must not only fool the target
model, but also keep the perturbation undetected. A good adversarial example should convey the
same semantics as the original text, so we need some metrics to quantify the similarity. There are three
metrics that used on vectors and documents [20,21].

520

Appl. Sci. 2020, 10, 3559 5 of 15

Euclidean Distance. In text, Euclidean Distance measures the linear distance between two vectors
in Euclidean space.

Cosine Similarity. Cosine similarity represents the semantic similarity of two words by
calculating the cosine of the angle between two vectors. Cosine distance is more concerned with
the direction difference between two vectors. The smaller the angle between two vectors (the larger
the cosine value), the greater the similarity.

Word Movers Distance (WMD). WMD [22] mainly reflects the distance between documents, so it
is not suitable for finding similar words. Its semantic representation can be based on the embedding
vector obtained by word2vec. Of course, it can also be based on other word embedding methods.
This algorithm constructs the document distance into a combination of the semantic distances of the
words in the two documents. For example, the Euclidean distance is obtained from the word vectors
corresponding to any two words in the two documents and then weight and sum. The WMD distance
between two documents A and B is:

WMD(A, B) =
n

∑
i,j=1

T ij ·D(
−→
i ,
−→
j) (1)

where D(
−→
i ,
−→
j) is the Euclidean distance of the word vectors corresponding to the two words i and

j. The Bag Of Words model is used to get the word frequency of the word in the document (as the
weight of a word in the document), and the problem then becomes how to “carry“ all the word units
of document A to the corresponding word units of document B with the minimum cost, and finally
get the weight matrix T. The WMD algorithm is a special case of the EMD [23] algorithm, and some
improved algorithms based on WMD, such as WCD and RWMD.

3. Methods

3.1. Black-Box Attack on Text

In the black-box attack, we adopt the method based on a differential evolution (DE) algorithm
to generate an adversarial example, a differential evolution algorithm with a genetic algorithm (GA)
has some similarities. It has the choice stage to keep a population diversity mechanism; therefore,
in practice, it is expected to be more effective than other types of group evolution algorithms to find
a higher quality solution. In a black-box setting, the attacker does not know the model architecture
and parameters. They can only use the input provided to query the target model to get prediction
results and corresponding confidence scores. The whole algorithm of black-box attack is described
in Algorithm 1, which basically follows the idea of differential evolution algorithms. The overall
structure of the differential evolution algorithm is similar to the genetic algorithm. It also has mutation,
crossover, and selection operations, but it is different from the genetic algorithm. The main difference
from the basic genetic algorithm is the mutation operation. For example, in the genetic algorithm,
two children are generated by the intersection of two parent individuals, and, in the differential
evolution algorithm, the difference vector of two or several individuals is used to perturb. Then,
we will get the new individuals. In traditional genetic algorithms, offspring individuals replace their
parent individuals with a certain probability, and newly generated individuals in differential evolution
only replace individuals in a population when they are better than individuals in the population.
In traditional genetic algorithms, offspring individuals replace their parent individuals with a certain
probability, and newly generated individuals in differential evolution only replace individuals in a
population when they are better than individuals in the population.

521

Appl. Sci. 2020, 10, 3559 6 of 15

Algorithm 1: Black-box Attack on Text
Input: Original text X, target model f, maximum iterations G, initial generation size S
Output: Adversarial text Xadv
1: y← f (X)

2: for i = 1→ S population do
3: P0

i ← Mutate(X, wi)

4: for g = 1→ G generations do
5: for i = 1→ S population do
6: Fg−1

i = f (P g−1
i)

7: Xadv = argmin(Fg−1
i)

8: if f (Xadv) 6= y then return Xadv
9: P g

1 ← Xadv
10: for i = 2→ S population do
11: P g

i ← Di f f erential(P g
i ,P g

j ,P g
k) 3 ≤ i 6= j 6= k ≤ S

12: Xadv = argmin(f (P g
i))

13: if f (Xadv) 6= y then return Xadv
14: else
15: Randomly Sample parent1, parent2 from P g−1

16: child = Crossover(parent1, parent2)

17: if f (child) 6= y then return child as Xadv
18: P g

i ← Mutate(child, w) Randomly word w in child
19: if f (P g

i) 6= y then return child as Xadv

The algorithm consists of the following steps:
Step 1: Mutation Given a text of n words X = {w1, w2, ..., wn}, we look for the most similar word

to replace one of them, then we get the mutated text. We use the counter-fitting method as word
embedding from [24]. We use Euclidean distance to calculate the N nearest neighbors of the word
to replace, whose cosine similarity with the word to be replaced are smaller than δ, and this word
embedding ensures that the neighbors we find are synonyms. Then, we use the Google language
model [25] to select the most context-appropriate K words, and replace a word in the original text with
these words respectively. Finally, we choose the word with the lowest confidence score of the model to
replace, and get the replaced text. We can get an initial population P0 of S individuals by repeating
this process of mutation S times. The prediction score of each individual can be obtained by querying
the victim model function f. In each generation of evolution, we select the individual with the lowest
prediction score of the target model and make it the first individual P g+1

1 in the next generation. If the
prediction tag of one of the members of the population is not the original tag, the attack is completed.
However, it is rare that only one word can change the model’s prediction, and most of the examples go
to the next step.

If there is no sample in the initial population that can change the prediction of the target model,
we do a different operation. For all individuals of the g-th generation, P g = {P g

1 ,P g
2 , ...,P g

n}. For each
individual, the algorithm continues to generate mutants according to the following formula:

P g
i

′
= P g

i + F · (P g
j −P

g
k) i = 1, 2, ..., n (2)

where P g
j and P g

k are two randomly selected individuals in the population, and i 6= j 6= k, and F is the

mutation factor, which is generally 0 to 2, so as to obtain the mutant P g
i

′
. If the prediction tag of one of

the individuals after differential operation is not the original tag, the attack is completed. Otherwise,
the algorithm proceeds to the next step.

522

Appl. Sci. 2020, 10, 3559 7 of 15

Step 2: Crossover In this step, the new individual is obtained from the mutant

individual P g
i

′
= {P g

i1

′
,P g

i2

′
, ...,P g

in

′
} and the parent individual P g

i = {P g
i1,P g

i2, ...,P g
in} through a

crossover operation.

child =

{
P g

i

′
if rand[0 1] ≤ CR

P g
i if rand[0 1] > CR

(3)

where rand [0 1] is a random number between [0 1], and CR is a constant between [0 1], which is called
a crossover factor. The greater the value of CR, the greater the probability of crossover. If the prediction
tag of one of the individuals after crossover is not the original tag, the attack is completed. Otherwise,
the mutation subroutine is applied to the resulting children.

Compared with the genetic algorithm, the black-box attack based on the differential evolution
algorithm has a higher attack success rate and a smaller word replacement rate. At the same time,
it is also superior to GA in terms of running time because GA uses Perturb every time a new word
is generated. Perturb is a multi-step process of finding similar word replacements, which will take
a lot of time. The more words a text needs to replace, the more time it takes, such as long sentences.
Our method only takes more time to generate the first generation of individuals. In the subsequent
evolution process, the difference operation is used to perform subtraction and multiplication based on
the existing words, which takes very little time.

3.2. Greedy Search Attack

Greedy search attack is our comparative experiment. We follow the greedy search algorithm
in [9,18], which starts from the first word and then selects the word that has the greatest influence
on the success of the attack according to different labels in the k nearest of each word. To find the
word with the closest Euclidean distance or cosine distance in word space E, if the modification of the
word causes the classifier logit output to be larger than the original and the label is pos or the logit
output is smaller than the original and the label is neg, the word is replaced. Otherwise, the word is
not modified. Finally, the attack is successful until the label of the classifier output is different from the
original, and the total number of replacement words is lower than our threshold.

3.3. White-Box Attack on Text

The white-box attack algorithm is described in Algorithm 2. The algorithm is divided into two
parts including generating candidate words and modifying the candidate words which have the
most influence on the classifier. We use the whole text as the research object. X represents word
embedding of the original input text. y and ŷ represent the original and adversarial label. For a
text of n words, X = {w1, w2, ..., wn}, and a valid adversarial example Xadv should conform to the
following requirements:

ŷ 6= y, and Sim(wi, w
′
i) ≤ threshold (4)

where Sim is the distance between wi and w
′
i in the word space. It should be less than a threshold.

In the first loop, we obtain a perturbed embedding X
′

by the gradient-based method, and then traverse
every word in X

′
, in order to find the word with the closest Euclidean distance or cosine distance in

word space E, and then generate a list of candidate words. In this candidate words list, every word in
the original text has been modified. The subsequent second loop will choose to modify these words
successively according to priority. We attack the classifier with this list. If the label is not the same as
the original input, the loop ends. Otherwise, the algorithm continues to calculate the gradient to get a
new X

′
. After obtaining a list of valid candidate words, we will make a modification order selection.

523

Appl. Sci. 2020, 10, 3559 8 of 15

Algorithm 2: White-box Attack on Text
Input: Original text X = {w1, w2, ..., wn}, target model f, perturbation δ

Output: Adversarial text Xadv
1: y← f (X)

2: Initialization : Xadv ← X, δ← 0, success = False,candidates← ∅, finCandidates← ∅
3: Filter out the stop words in X.
4: while not success do
5: X

′ ← X + δ / back propagation
6: for wi in X

′
do

7: candidates← extracting the top N synonyms using Euclidean and Cosine
distance for wi.

8: candidates← POScheck(candidates)
9: for ki in candidates do

10: X
′ ← Replace wi with ki in Xadv

11: Pi ← f (X
′
)

12: w∗ ← argmax(Pi)

13: f inCandidates← f inCandidates append w∗

14: ŷ← f (finCandidates)
15: if ŷ 6= y then break
16: grad← ||δ||2
17: selected← 0, list← ∅, Ω← ∅
18: while not success do
19: selectedX = selected.index(0)
20: for x in total(grad) and selected[x] 6= 1 do
21: CV1 = CV(list append x), CV2 = CV(list append selectedX)

22: if grad[x] + λ · CV1 > grad[selectedX] + λ · CV2 then
23: selectedX ← x
24: Ω← Ω append x
25: selected[selectedX] = 1, list← list append selectedX
26: for wi in Ω do
27: if distance < threshold and i

len(x) < r then Xadv ← Replace wi
28: if ŷ 6= y then
29: success = True
30: return Xadv
31: else
32: return None

In the second loop, first, we will take the gradient of the first loop. We set a full 0 tensor with
the same dimensions as the original text, with selected for recording the position of the selected word,
list for the sequence of selected words, and positions for the last modified order. Then, start the loop
selection. First, we select the index number selectedX whose value is 0 from the selected, the number
of words in the text is the traversal range, and the variable is represented by x, when selected [x] 6= 1,
calculating the coefficient of variation CV1 of x added to the list and the CV2 of the selectedX added
to the list, if the weighted sum of gradient and CV1 is greater than the sum of gradient and CV2,
we then replace selectedX with x, add x to positions, update selected and list, let selected [selectedX] =
1, and add selectedX to list. Finally, a modification sequence is generated. Then, we modify them in
order until the output of the classifier is different from the original text. In the process, we can set the
word distance threshold, word replacement rate, and other parameters, and compare different results
under different parameters. The whole attack process of white-box attack is shown in Figure 1.

524

Appl. Sci. 2020, 10, 3559 9 of 15

Embedding Candidates

Classifier

Grad+λCV
Modification
Sequence

Fulfill Request

Adversarial
Text

Original
 Text

same label

different label

same label different label

word distance

replace ratio

Grad

Figure 1. The whole attack process of white-box attack.

Simply put, we combine the gradient of the word we want to modify and coefficient of variation of
the text position of all modified words after the word is modified, and use these two data to determine
the order of modification.

We can control the degree of dispersion of the word’s position by the weight value λ of the CV.
When λ is too large, the modified words will be more dispersed. The order of modification is closer to
the global search algorithm when λ is smaller; when λ = 0, the algorithm becomes the global search.

4. Experiments

4.1. Dataset and Target Model

The dataset contains 25,000 IMDB film reviews specifically for sentiment analysis. The mood of
the comment is binary. Labels are pos(positive) and neg(negative). We randomly segment 25,000 data
into 20,000 examples as training sets and 5000 examples as test sets.

We use the CNN model and some of its hyperparameters [26] as our target model. In this model,
there are filter windows of 3, 4, and 5 with 100 feature maps each, a dropout rate of 0.5, and a max
pooling layer. The batch size has been modified to 64. We use 20,000 examples to train the model and
test the model with 5000 examples. The results of this model are that the accuracy of training sets is 1
and the accuracy of testing sets is 0.89.

4.2. Evaluation

4.2.1. Black-Box Attack Based on Differential Evolution

We randomly sample 200 correctly classified examples from the IMDB test set to evaluate our
algorithm. We choose examples of correct classification to avoid the impact of model accuracy.
Our purpose is to make the model prediction error, that is, the original prediction is positive. The model
will be judged as negative after the adversarial attack, so that our attack is considered successful.

We limit the attacker to maximum G = 20 iterations. We also fix the maximum percentage of each
text change to 10% and 20%. We believe that the quality of the text will decrease if the modification
ratio exceeds 20%. Although the success rate of black-box attack based on a genetic algorithm has
reached 97%, its word replacement rate has reached 25%. If an attack fails within the iteration limit or
exceeds a specified threshold, it is considered a failure. Table 1 shows the attack success rate under
different F-values and percentage of modified words. From our results, we can see that we can achieve
a high success rate by making small changes to the text. In addition, our algorithm is significantly
better than the genetic algorithm in word modification percentage and attack success rate.

It is worth noting that, under the 10% replacement rate threshold, GA and DE have only about
a 60% attack success rate, which is far lower than the white-box attack algorithm mentioned later.
It shows that there is still a lot of room for improvement in a black-box attack. Once the threshold of
the word replacement rate is increased to 20%, we see that both GA and DE exceed 90% in the attack
success rate, and our method even approaches 100%. This shows that the word replacement rate is

525

Appl. Sci. 2020, 10, 3559 10 of 15

an important factor affecting the success rate of attack. Algorithms that do not strictly limit the word
replacement rate are not good algorithms.

Table 1. Attack success rate with different word modifiers and F values.

GA F = 0.1 F = 0.3 F = 0.5 F = 1.2 F = 1.5

10% modified 58.5% 63% 62.5% 56.5% 55% 53%
20% modified 91% 96% 94.5% 94.5% 96% 97.5%

The mutation factor F can be used to control the degree of scaling of the difference vector
between two random individuals. F value has a great influence on the success rate of the final attack.
Experiments show that the smaller the F value, the higher the attack success rate at low replacement
rates. When the F value is larger, the attack success rate is higher at a relatively higher replacement
rate. Moreover, when F is 0.3, the attack success rate of our algorithm is higher than that of the
genetic algorithm in terms of 10% and 20% word substitution rate. The example output generated by a
black-box attack is shown in Table 2. From the results, the examples we generated can maintain the
original sentence form to some extent.

Table 2. Original text and adversarial example of black-box attack.

Original Text Prediction = Positive.

absolutely fantastic whatever i say wouldn’t do this underrated movie the justice it
deserves watch it now fantastic.

Adversarial Text Prediction = Negative.

absolutely fantastic whatever i say wouldn’t do this underestimated movie the justice it
deserve watch it now fantastic.

Original Text Prediction = Negative.

poorly directed short film shot on hi def or betacam it appears it screams student film
video all the way the premise is limited in scope and the short actually feels a lot
longer than it runs some interesting acting moments and some decent production
value but not enough to lift this film from the hole it has fallen into.

Adversarial Text Prediction = Positive.

poorly directed gunshot film shot on hi def or betacam it appears it shrieks student film
video all the way the premises is limited in scope and the short actually feels a lot
longest than it runs some interesting acting moments and some decent production
value but not enough to lift this film from the hole it has fallen in.

4.2.2. White-Box Attack with the Coefficient of Variation

Our experimental goal is to generate adversarial examples to confuse the classifier. As long as the
prediction result of the adversarial example is different from the original comment result, the attack is
considered successful. At the same time, we need to exclude the influence of classifier accuracy on
the experimental results, so we select 500 correctly classified examples. Our experiments have the
same word distance threshold and word replacement rate, the word Euclidean distance is set at 50 and
the word replacement rate is set at 0.1, and k is set at 35 in the greedy attack. Finally, we add cosine
distance experiments for greedy attack and global attack.

We calculate the attack success rate corresponding to several different cosine distance thresholds.
The experimental results are shown in Figure 2. We can see that the smaller the cosine distance is,
the higher the success rate the attack will have because the word angle is larger and their similarity is
smaller. Greedy attack and global attack without cosine distance had original success rates of 65.8%
and 75.8%. In the global attack, there is increased cosine distance, even if the cosine distance is set
to 0.9848; the final success rate will increase to 77.4%, while the greedy attack has no new successful

526

Appl. Sci. 2020, 10, 3559 11 of 15

examples. There is no significant change in the number of increases between the cosine of 0.9848
and 0.6428. An angle of more than 0.6428 will have a significant increase in the number of successful
attacks. In addition, we do an experiment to find candidate words only by cosine distance as a contrast.
We find that, in the case of high cosine distance threshold, the attack success rate is very low, but finally
when the cosine distance threshold is 0, it can also achieve a high attack success rate, which shows,
that in terms of word similarity, the effect of cosine distance is worse than that of European distance.
We can use the cosine distance as a supplement of European distance to improve the overall attack
success rate. The evaluation of adversarial examples shows that greedy attack still shows that the
replacement locations are sometimes close, or even in the front of the text, for which readability is
not good, while the replacement position of global attack is relatively random. The following human
evaluation also shows this conclusion. The example output generated by black-box attack is shown in
Table 3.

Table 3. Original text and three adversarial examples of white-box attack.

Original Text, Prediction = Negative.

The Pallbearer is a disappointment and at times extremely boring with a love story that just doesn’t
work partly with the casting of Gwyneth Paltrow (Julie). Gwyneth Paltrow walks through the entire
film with a confused look on her face and its hard to tell what David Schwimmer even sees in her.
However The Pallbearer at times is funny particularly the church scene and the group scenes with
his friends are a laugh but that’s basically it. Watch the Pallbearer for those scenes only and fast
forward the rest. Trust me you aren’t missing much.

Greedy Attack Text, Prediction = Positive.

on despite has given tempered well outside well surprisingly boring with a love story that just doesn’t
work partly with the casting of Gwyneth Paltrow (Julie). Gwyneth Paltrow walks through the entire
film with a confused look on her face and its hard to tell what David Schwimmer even sees in her.
However The Pallbearer at times is funny particularly the church scene and the group scenes with
his friends are a laugh but that’s basically it. Watch the Pallbearer for those scenes only and fast
forward the rest. Trust me you aren’t missing much.

Global Attack Text, Prediction = Positive.

The Pallbearer is a artist and at times extremely boring with affection love story that just doesn’t
work partly with the american of Paltrow Paltrow (Julie). Paltrow Paltrow walks through the entire
film with a confused look on her face and its hard to tell what David Schwimmer even sees in her.
However The Pallbearer at times is funny particularly the church scene and the group scenes with
his friends are a laugh but that’s basically it. Watch the Pallbearer for those scenes only and fast
forward the rest. Trust me you aren’t missing much.

Global Attack Text with CV, Prediction = Positive.

The Pallbearer is affection artist and at times extremely boring with a love story that just doesn’t
work partly with the casting of Gwyneth Paltrow (Julie). Paltrow Paltrow walks through the entire
film with a confused look on her face and its hard to tell what David Schwimmer even sees in her.
However The Pallbearer at times is funny particularly the church scene and the group scenes with
his friends are affection laugh but that’s basically it. Watch the Pallbearer for those scenes only and fast
forward the rest. Trust me you aren’t missing much.

Because greedy attack may make the word modification position close and result in poor
readability, global search improves this situation to some extent, but it does not have the ability
to effectively control the dispersion of word modification positions because the modified word is
selected from big to small according to the gradient magnitude. We propose a method to control the
dispersion of the modified position by adding the coefficient of variation, and control the dispersion
degree of the modified position by the weight of CV. We introduced the CV factor into the global
search with a combining metric. Finally, we use global attack with the combined metric and set the
cosine distance threshold to 0.9848 to maintain the word’s high similarity, and compare the attack
success rate under different CV weight. We select 500 comments used by greedy attacks and calculate
the attack success rate under different CV weight(λ).

527

Appl. Sci. 2020, 10, 3559 12 of 15

0.0 0.2 0.4 0.6 0.8 1.0
cosine distance

0.0

0.2

0.4

0.6

0.8

at
ta

ck
 su

cc
es

s r
at

e

greedy attack with cosine
global attack with cosine
global attack with two metric
greedy attack with two metric

Figure 2. The total success rate of greedy attack and global attack added cosine distance.

In order to prove the validity of adding the CV factor when determining the modification order,
we select 50 comments that are correctly classified by the classifier and the algorithm attack is successful,
and calculate the CV value of the adversarial examples under different λ. When the CV weight value
is 0, our method becomes the global search attack [9].

Experiments shown in Table 4, when λ is larger, the degree of dispersion of the modified positions
of the adversarial example is larger (CV value is larger), and the final attack success rate has a slight
decrease overall, which indicates that the word with a larger gradient magnitude has more influence
on the classifier. We analyze the adversarial examples and find that some examples of the original
attack failure will be re-attacked successfully after joining CV, and some examples of the original
successful attack will fail the attack after joining CV. Taken as a whole, the attack success rate basically
decreases as λ increases, but this change is very small. The experiments also show that even if we
set the λ to 30 after we add the cosine distance, the attack success rate still reaches 76.2%, which still
exceeds the original global attack success rate of 75.8%. Thus, our methods can improve the attack
success rate and make the modification positions in an adversarial example more dispersed.

Table 4. The attack success rate and CV value under different λ.

λ 0 1 5 10 20 30

CV value 0.487 0.589 0.70 0.73 0.827 0.886
attack rate 77.4% 77.6% 76.6% 76.8% 77% 76.2%

4.2.3. Human Evaluation

In order to illustrate that adversarial text with more dispersion words modification could lead to
being more similar to the original text and more imperceptible for humans, we select five volunteers to
score the similarity between the adversarial examples and the original text from 1 to 5. We randomly
chose 10 comments with positive and negative examples and their adversarial examples generated by
greedy search, global search, and the global search with CV. This is used to prove the similarity between
the original text and adversarial examples. On the other hand, we select 15 comments including the
original text, greedy text, global text, and global text with CV, and then ask volunteers to identify which
of them are modified adversarial examples. This is used to prove the imperceptibility for humans.
After counting all the scoring results, in terms of similarity, we calculate the average score, the global
text with CV similarity score is 3.642, the global text score is 3.612, and the greedy text score is 2.91.
Because the greedy text often modifies the front words by a large amount, it can obviously find the
difference from the original text. In terms of imperceptibility, the global text with CV has a detectable
ratio of 0.37, the global text has a detectable ratio of 0.4, and the greedy text has a detectable ratio of

528

Appl. Sci. 2020, 10, 3559 13 of 15

0.46. We find that the scores of global attack and global attack with CV are close, and they are better
than greedy attacks.

5. Conclusions and Future Work

In this paper, we propose a hybrid adversarial attack for different scenarios. Specifically, we adopt
different attack measures for whether we understand the deep neural network internal structure
and specific parameters. If we do not understand the above information, it is suitable for us to use
a black-box attack, so we propose a new black-box attack method based on a differential evolution
algorithm, and generate adversarial examples with low word substitution ratio and high attack success
rate. Since black-box attack does not need to know the model parameters and structure, it also has
better universality to attack different natural language processing tasks. At the same time, in the case
of a white-box attack, for the problem of greedy search, we propose the factors of increasing CV in the
modification position of words to prevent the position of words from being too close. Our algorithm
proves that the placement of word modifiers in the adversarial example can be more dispersed with the
addition of CV factors. It makes up for the poor readability of the greedy attack example. Our approach
maintains a high attack success rate and makes the locations of changes in the adversarial example
more diffuse through the CV factor. In pursuit of a high attack success rate, we improve the quality
of the adversarial example. We compare the two types of adversarial attacks above against different
scenarios with existing attack methods. Our method has a certain degree of improvement in word
replacement rate and attack success rate.

In our experiments, although we try to find the most similar words, some of them didn’t
look the same in real life, according to the example of adversarial actually generated. For example,
the substitution of some synonyms does not conform to the context of movie reviews. Therefore,
word embedding trained for a specific data set will greatly improve this situation. Word embedding
that better reflects word similarity can also enhance our work. At the same time, the adversarial
example can reveal the vulnerability of the NLP model, and we can use it to improve the robustness
of the model. Although we find what is most similar to a word, in a specific context, the original
words should conform the most to the original context. In defense against attack, we can use the
idea of adversarial attack to restore the text. Before entering the classifier, we first preprocess the text,
which will improve the security and robustness of the model. This will be future work.

Author Contributions: Writing—original draft preparation, X.D.; methodology, X.D. and J.Y.; writing—review
and editing, Z.Y., J.Y. and J.M.; supervision, J.Y., Y.T. and Q.W.; funding acquisition, J.Y. and S.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Key Research and Development Program of China
(No. 2018YFB0204301).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Szegedy, C.; Zaremba, W.; Sutskever, I.; Estrach, J.B.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing
properties of neural networks. In Proceedings of the 2nd International Conference on Learning
Representations (ICLR 2014), Banff, AB, Canada, 14–16 April 2014.

2. Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial Examples in the Physical World. In Artificial Intelligence
Safety and Security; Chapman and Hall/CRC: London, UK, 2018; pp. 99–112.

3. Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; Li, J. Boosting adversarial attacks with momentum.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 9185–9193.

4. Liang, B.; Li, H.; Su, M.; Bian, P.; Li, X.; Shi, W. Deep text classification can be fooled. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018;
pp. 4208–4215.

529

Appl. Sci. 2020, 10, 3559 14 of 15

5. Alzantot, M.; Sharma, Y.S.; Elgohary, A.; Ho, B.J.; Srivastava, M.; Chang, K.W. Generating Natural Language
Adversarial Examples. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, 31 October–4 November 2018.

6. Wang, X.; Jin, H.; He, K. Natural language adversarial attacks and defenses in word level. arXiv 2019,
arXiv:1909.06723.

7. Su, J.; Vargas, D.V.; Sakurai, K. One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput.
2019, 23, 828–841. [CrossRef]

8. Yang, P.; Chen, J.; Hsieh, C.J.; Wang, J.L.; Jordan, M.I. Greedy attack and gumbel attack: Generating
adversarial examples for discrete data. arXiv 2018, arXiv:1805.12316.

9. Tsai, Y.T.; Yang, M.C.; Chen, H.Y. Adversarial Attack on Sentiment Classification. In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Florence, Italy,
28 July–2 Augusy 2019; pp. 233–240.

10. Jia, R.; Liang, P. Adversarial Examples for Evaluating Reading Comprehension Systems. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark,
7–11 September 2017; pp. 2021–2031.

11. Wang, Y.; Bansal, M. Robust Machine Comprehension Models via Adversarial Training. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), New Orleans, LA, USA, 1–6 June 2018; pp. 575–581.

12. Belinkov, Y.; Bisk, Y. Synthetic and natural noise both break neural machine translation. arXiv 2017,
arXiv:1711.02173.

13. Gao, J.; Lanchantin, J.; Soffa, M.L.; Qi, Y. Black-Box Generation of Adversarial Text Sequences to Evade Deep
Learning Classifiers; IEEE: Piscataway, NJ, USA, 2018; pp. 50–56.

14. Ren, S.; Deng, Y.; He, K.; Che, W. Generating Natural Language Adversarial Examples through Probability
Weighted Word Saliency. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, Florence, Italy, 28 July–2 Augusy 2019; Association for Computational Linguistics: Stroudsburg,
PA, USA, 2019; pp. 1085–1097. [CrossRef]

15. Jin, D.; Jin, Z.; Zhou, J.T.; Szolovits, P. Is BERT Really Robust? A Strong Baseline for Natural Language
Attack on Text Classification and Entailment. arXiv 2020, arXiv:2002.06261.

16. Ebrahimi, J.; Rao, A.; Lowd, D.; Dou, D. HotFlip: White-Box Adversarial Examples for Text Classification.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), Melbourne, Australia, 15–20 July 2018; pp. 31–36.

17. Cheng, Y.; Jiang, L.; Macherey, W. Robust Neural Machine Translation with Doubly Adversarial Inputs.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy,
28 July–2 August 2019; pp. 4324–4333.

18. Kuleshov, V.; Thakoor, S.; Lau, T.; Ermon, S. Adversarial Examples for Natural Language Classification
Problems. 2018. Available online: https://openreview.net/forum?id=r1QZ3zbAZ (accessed on 20 May 2020)

19. Lei, Q.; Wu, L.; Chen, P.Y.; Dimakis, A.; Dhillon, I.; Witbrock, M. Discrete Adversarial Attacks and
Submodular Optimization with Applications to Text Classification. arXiv 2018, arXiv:1812.00151.

20. Zhang, W.E.; Sheng, Q.Z.; Alhazmi, A.; Li, C. Adversarial attacks on deep learning models in natural
language processing: A survey. arXiv 2019, arXiv:1901.06796.

21. Wang, W.; Tang, B.; Wang, R.; Wang, L.; Ye, A. A survey on Adversarial Attacks and Defenses in Text. arXiv
2019, arXiv:1902.07285.

22. Kusner, M.; Sun, Y.; Kolkin, N.; Weinberger, K. From word embeddings to document distances.
In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015;
pp. 957–966.

23. Rubner, Y.; Tomasi, C.; Guibas, L.J. A Metric for Distributions with Applications to Image Databases; IEEE:
Piscataway, NJ, USA, 1998.

24. Mrkšic, N.; OSéaghdha, D.; Thomson, B.; Gašic, M.; Rojas-Barahona, L.; Su, P.H.; Vandyke, D.; Wen, T.H.;
Young, S. Counter-fitting Word Vectors to Linguistic Constraints. In Proceedings of the NAACL-HLT,
Atlanta, GA, USA, 12–17 June 2016; pp. 142–148.

530

Appl. Sci. 2020, 10, 3559 15 of 15

25. Chelba, C.; Mikolov, T.; Schuster, M.; Ge, Q.; Brants, T.; Koehn, P.; Robinson, T. One billion word benchmark
for measuring progress in statistical language modeling. arXiv 2013, arXiv:1312.3005.

26. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014;
pp. 1746–1751.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

531

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Applied Sciences Editorial Office
E-mail: applsci@mdpi.com

www.mdpi.com/journal/applsci

MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-2272-2

	Cover-front.pdf
	Book.pdf
	Cover-back.pdf

