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Preface to ”Biosensors: 10th Anniversary

Feature Papers”

Defined as devices that produce a measurable signal that is proportional to the concentration

of the targeted analyte, biosensors incorporate a biological sensing element and measure signals

that derive from biological interactions. Easy, fast, low cost and both highly sensitive and

selective, biosensors have contributed to significant advances in next-generation medicine, including

individualized medicine and the ultrasensitive point-of-care detection of markers for multiple

diseases. Environmental, water and food quality monitoring, as well as drug delivery are also fields

that have benefited from the exponential development in biosensors achieved in the last decade. With

the advances observed in nanotechnology, research and development in biosensing applications have

become open and expanded the multidisciplinary nature of biosensors, as these materials provide

the possibility of improving their performance, allowing for an enhanced power of detection and

quantification through the control of size and morphology.

This book marks the 10 year anniversary of Biosensors, a period during which the journal

published more than 50 Special Issues and 550 papers, welcoming the breakthroughs and innovations

in biosensors developed for applications in the areas of food, health and environment, as well as

security and defense, topics that were covered in this Special Issue, now published as a book.

Teresa A. P. Rocha-Santos, João P. da Costa

Editors
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Abstract: Herein we review the recent advances in biosensors for antioxidants detection underlying
principles particularly emphasizing advantages along with limitations regarding the ability to
discriminate between the specific antioxidant or total content. Recent advances in both direct
detection of antioxidants, but also on indirect detection, measuring the induced damage on DNA-based
biosensors are critically analysed. Additionally, latest developments on (bio)electronic tongues are
also presented.

Keywords: antioxidants; biosensor; nanomaterials

1. Introduction

Antioxidants (AOx) play an important role, since they represent a defense system of all aerobe
organisms, especially in the case of humans, where as a consequence of the metabolic and physiological
processes, unstable reactive substances are generated as byproducts [1]. These unstable substances
are referred to as reactive oxygen/nitrogen species (ROS/RNS), and they are molecules containing
oxygen or nitrogen, with one or more unpaired electrons, making them very reactive. Some of the
most important oxygen-derived molecules are the radicals of hydroxyl (-OH), singlet oxygen (O2) and
superoxide anion (O2

-) and hydrogen peroxide (H2O2) as non-radical. Nitrogen-derived species are
nitric oxide (NO), peroxynitrite (HNO3

-) or dinitrogen dioxide (N2O2) [2]. An increase of reactive
oxygen species can overwhelm the natural antioxidant system of the organism leading to oxidative
stress (OS). An increasing number of medical studies correlate the presence of OS to various disorders
and medical conditions caused by damage inflicted to healthy cells [3]. For a variety of cardiovascular
diseases, including strokes, OS has been, at least partially, viewed as one common etiology, with an
increased ROS production of the organism [4]. An abnormal oxidation status has further been linked
with chronic diseases such as diabetes [5] and neurological diseases such as Alzheimer’s [6,7]. In the
case of cancer, it has already been proven that the level of ROS is increased [8,9].

Antioxidants have the role of reducing the adverse effects caused by ROS or RNS, and can herewith
be divided in two categories. The first category consists of primary, or so-called chain-breaking AOx
(e.g., vitamins, carotenes, phenols), which inhibit the oxidation of biomolecules; the second category
comprises AOx that prevent ROS/RNS formation. The essential characteristic of an AOx is its property
to donate the hydrogen from its active hydroxyl group (A-OH) in order to generate more stable
radicals [10]. In more detail, AOx use two major mechanisms to deactivate radicals: hydrogen atom
transfer (HAT), mentioned above, and single electron transfer (SET). Through the SET mechanism,

Biosensors 2020, 10, 112; doi:10.3390/bios10090112 www.mdpi.com/journal/biosensors1
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the AOx transfers one electron (A-OH+) in order to reduce any compound, being followed by
deprotonation in solution [11]. Herewith, the distinction between AOx and phenolic compounds is
also a question of oxidation potential, as thoroughly described by Buratti et al. [12]. The antioxidant
capacity of phenols depends on their redox properties, which depend on the presence of a phenolic
aromatic ring with hydroxyl substituents in their chemical structure. It is well known that anodic
peaks at low oxidation potentials (below ~ 0.5 V) occur for compounds with significant antioxidant
activity [13], while, at potentials greater than +0.6 V, all phenolic compounds will be oxidized [12].
Some major benefits of AOx are described in the literature. Vitamin C reduces the incidence of
degenerative and chronic diseases [14], while polyphenols prevent cardiovascular diseases and show
anti-viral and anti-inflammatory properties [15]. Since many fruits, vegetables and medicinal herbs
are known for their high content of AOx, proper alimentation and food supplements are often
advised. The antioxidant properties of different plants are not only claimed by the pharmaceutical
industry, but also the food and cosmetic industry. Herewith, detection and quantification of AOx is of
great importance.

Given the increased interest in AOx detection from various resources (foods, supplements, plants)
various methods can be employed. Most analytical methods focus on in vitro determination of the
antioxidant capacity (AC) following a competitive or noncompetitive reaction, which can be correlated
with the anodic area of cyclic voltammetries and/or the electrochemical index using electrochemical
measurements [16,17]. In the case of competitive reactions, a competing target molecule is required to
compete with the AOx for the reactive species. A good example for this mechanism is the classical
technique of chemiluminescence, where the reaction of ROS with chemiluminescence reagents results
in a species in an excited state, capable of emitting light. When AOx are added to the solution, and
they react with the initiating reactive species, light emission will be inhibited [16]. In the case of
non-competitive reactions, AOx compounds interact directly with ROS. Other classical techniques
which offer a complex chemical composition analysis of various AOx-containing compounds include
chromatographic methods, such as high-performance liquid chromatography used as such [18] or
coupled with a 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical reaction system [19]. Spectroscopic
methods are also widely used. Raman spectroscopy allows a fast quality check [20], while Fourier
transform infrared spectroscopy (FT-IR) allows the determination of both phenolic content and
AC for some rice varieties [21]. Such classical techniques are elaborate, time-consuming, require
specific chemical reagents or solvents, and mostly need specialized personnel. To overcome these
shortcomings, electroanalytical methods based on sensors and biosensors have been attracting
increasing attention and were proven to be more rapid (real-time analysis). Both can be successfully
incorporated with the “lab on a chip” technique, offering flexibility, sensitivity and specificity towards
the analysed compounds.

The importance of biosensors keeps increasing, since they allow the integration of innovative
materials to increase their performance in terms of sensitivity and specificity. The sensitivity of a
biosensor depends on the type of transducer (electrochemical, optical) and the technique used to
immobilize or functionalize various nanomaterials, polymers that amplify the output signal. Selectivity
and specificity depend on the choice of used materials and specific recognition elements such as
enzymes or DNA [22].

Although most biosensor configurations focus on the evaluation of the total antioxidant capacity
(TAC), this review focuses on biosensors which discriminate among antioxidant species, classes of
phenolic compounds, flavonoids or even specific antioxidants such as rutin. Most described biosensors
are used for analysis in food or health-related products, but are not limited to these industries.
Most reported biosensors are electrochemical ones (amperometric and voltametric), but colorimetric
or luminescent assays and optical biosensors are also taken into consideration. A few (bio)electronic
tongues are also presented. The described biosensors focus on both direct detection of certain AOx,
but also on indirect detection, measuring the induced damage on DNA-based biosensors. Last, a few
sensor configurations are also worth mentioning due to their innovation and analytical performances.
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What highlights the ability of a biosensor to discriminate among phenolic content, AC or a specific AOx
compounds lies mainly on the specific behaviour of the (bio)materials (e.g., enzymes, nanomaterials)
used for the biosensor architecture. Additionally, the different electrochemical mechanisms allow the
identification of each electroactive compound in complex natural samples [16,22]. Enzymes such as
Laccase or Tyrozinase are known to favor the detection of phenolic content. Herewith, Tyrozinase
oxidizes monophenols and o-diphenols to their corresponding quinone in a two-electron process,
whereas Laccase catalyzes the oxidation of several aromatic substrates in a one-electron process.
Addition of nanoparticles such as gold nanoparticles, enhance the enzymatic catalytic activity towards
specific compounds such as catechol. Cyclodextrins (a family of oligosaccarides) also act as molecular
receptors for phenolic substances. The overall antioxidant capacity can be assessed using the principle
of inflicted oxidative damage upon DNA or proteins. Thus, the addition of a specific antioxidant
or a mixture of antioxidant compounds (including phenolic compounds) in the presence of ROS,
will decrease the effect of oxidative damage, allowing the quantification of AC.

2. Classification of Antioxidant Species

Several criteria, such as activity, solubility, size, kinetics and occurrence, are used to classify
antioxidants [23]. The classification and schematic representation of phenolic compounds is shown in
Figure 1.

Figure 1. Classification and schematic representation of phenolic compounds.

Most papers in the literature focus on the detection of polyphenols or phenolic compounds due to
their health benefits. Polyphenols are usually naturally occurring compounds, found in various plants,
and contain multiple functionalities [24]. There are also synthetic phenolic compounds like butylated
hydroxyl anisole (BHA), butylated hydroxyltoluene (BHT), and tertiary butyl hydroquinone (TBHQ),
for whose detection special enzymatic biosensors have been developed [25]. The activity of polyphenols
has been shown to prevent cardiovascular diseases, but also has important anti-inflammatory and
anti-viral properties [15]. Polyphenols, alongside vitamins and carotenoids, represent the main classes
of dietary AOx. Several classes of polyphenolic compounds can be found in fruits like grapes, apple,
pear, cherries and berries [26], or in herbs like lavender [27] and tea [28].

Flavonoids, a widely explored class of polyphenols, are mainly responsible of the colour
pigmentation of flowers, fruits and leaves [29]. High contents of flavonols can be found in grapes [30]
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or walnuts [31]. Vitamins also interrupt free radical chain reactions, and vitamin C (vit C) can be
found in various plants [14] and is often consumed as a dietary supplement. There are quite a few
ascorbate biosensors to be found in literature, but also vitamins such as vitamins E and D are of
interest. A very interesting aspect of biosensors based on ascorbate oxidase is the fact that they
enable discrimination between phenols and vit C contribution to the AC of the analysed compound.
A review [32] reports a few papers by the group of P.A. Serra in which they highlight the advantages of
ascorbate-based biosensors in terms of oxidizing the substrate (vit C) before it reaches the electrode
surface. A comparison was performed with the sensor without the enzyme, and the difference in
response was used to calculate the vit C selectivity index, thereby underlining vit C detection in a
mixture of phenols. Very often, vitamin C is also used as a standard expression of the AC of other
analysed AOx [33]. Biosensors for the detection of antioxidant enzymes are less encountered in
literature. These enzymes are usually incorporated in the biosensor architecture in order to detect AOx
compounds. One such enzyme is peroxidase extracted from a plant known as ice-cream-bean, which is
used for the detection of TBHQ [25].

3. Biosensors for the Assessment of Phenol Classes

Most biosensors reported in the literature focus on the detection of TAC, where this review focuses
on biosensors or even sensors that discriminate among antioxidant compounds or classes of antioxidant
compounds. Of great interest is the detection of total phenolic content (TPC), but also the singular or
simultaneous detection of certain antioxidants. We present the recent advances achieved in biosensor
technologies for AOx evaluation, directed toward phenolic compounds, and the analytical parameters
of each biosensor architecture and their corresponding performances are presented in Table 1.

3.1. Biosensors for Phenolic Content Assessment

The biosensors for phenolic compounds mainly incorporate two enzymes: tyrosinase (Tyr) and/or
laccase (Lac). A laccase crude extract from Pycnoporus sanguineus was mixed with graphite and
mineral oil to obtain a laccase-based modified carbon paste biosensor [34]. The biosensor was able
to detect the TPC in red fruit extracts. In another configuration, the carbon paste was modified
with organofunctionalized silica and the new biosensor was used to estimate the TPC of honey
samples through the enzymatic oxidation of phenolic compounds, which after reaching a plateau,
were electrochemically reduced at the electrode surface [35]. The corresponding cathodic peak currents
were used to express the TPC value in gallic acid equivalent (μg (GAE).g−1), which were close to the
values obtained using the classical assay of Folin-Ciocalteu (FC).

Another simple biosensor architecture was reported by Rodríguez-Sevilla et al. [36]. They immobilized
mushroom tyrosinase (Tyr) onto screen-printed electrodes (SPE) using three different techniques:
entrapment with water-soluble polyvinyl alcohol (PVA), and crosslinking with glutaraldehyde (GA) in
the absence and presence of human serum albumin (HSA). All biosensor configurations were tested
in the presence of catechol (CAT), and the best performances were obtained for SPE/Tyr/GA with a
sensitivity (S) of 26 ± 4 nA μM−1. Finally, this biosensor was used for the quantification of the Trolox
Equivalent Antioxidant Capacity (TEAC) of real medicinal plant samples.

Another simple biosensor design was done by García-Guzmán et al. [37] by modifying a
Sonogel-Carbon electrode with Lac from Trametes versicolor mixed with GA and Nafion, drop-casting
the obtained solution onto the electrode. Phenolic compounds in wines were analysed, first for the
detection of individual phenolic compounds (gallic acid; quercetin; rutin; tannic acid; ferulic acid;
(+)catechin; (-)epicatechin (ECAT); tyrosol; caffeic acid (CA); vanillic acid; syringic acid; p-coumaric acid
and 4-methyl catechol) and second, the total polyphenols content. From the first assay, the authors found
that not all selected polyphenols gave an amperometric response; whereas they found good sensitivities
for most of the o-diphenols. For the second assay, an increase in the signal compared with the signal
obtained for individual phenols was explained either by the synergic effect among the polyphenols or
by the contribution from several not individually detectable polyphenols. The same group improved
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the biosensor a few years later by adding a polymer film, poly(3,4-ethylenedioxythiophene (PEDOT),
into the biosensor architecture and using Lac instead of Tyr [38]. Another simple approach based on a
carbon paste electrode on which Tyr is immobilized in a Nafion film was presented by Sýs et al. [39].
A mushroom Tyr was used to catalyze the oxidation of p-hydroquinone (HQ) and a satisfactory LoD
of 1.6 μM was obtained. An interference study with vitamin C concluded that the vitC:HQ molar
concentration ratio should not exceed 1 in order to avoid an interference. For substrate specificity
experiments, catechol, resorcinol, phenol and Trolox were used, and the authors concluded that
Tyr catalyzes predominantly the oxidation of polyphenols having their hydroxyl group in ortho
position. Compounds with this group in meta or para positions need longer time of oxidation,
thereby allowing the biosensor to be used for TEAC determinations in wine samples. Another simple
and interesting concept was based on α-cyclodextrin modified CPE electrochemical biosensor to
detect trans-resveratrol in grape with a sensitivity of S = 310.78 nA μg/L and a limit of detection of
LoD = 12 μg/L [40]. The cyclodextrins act as molecular receptors for resveratrol due to their stable
“host–guest inclusions” with phenolic substances.

Recent advances in nanomaterial technology have been employed for a variety of biosensors
incorporating carbon-based nanomaterials, metallic nanoparticles, or polymers. A solid-contact
potentiometric biosensor with two-layer transducer was reported by [41]. The first layer contains a
blend of poly(vinyl) chloride carboxylate (PVC-COOH), graphite and potassium permanganate, and
the second one contains a mixture of PVC-COOH and graphite, which was deposited on top of the first
one. On the last layer, tyrosinase enzyme, extracted from green yellow banana peel, was immobilized
by reaction with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride. Catechol was used
as reference phenol, and its concentration was plotted against a relative potential, obtained through the
difference between initial and final potential. In the same manner, honey and propolis samples were
analysed for their phenolic content, and the results were expressed in mg of GAE by 100 g of sample.
For most samples, they found very similar values when compared to the classical Folin–Ciocalteu
method. Additionally, using catechol as reference, Cabaj et al. immobilized Tyr in an electrochemically
synthesized copolymer based on N-nonylcarbazole derivatives [42]. A platinum electrode was coated
with a thin polymer film through electropolymerization, while fungal Tyr from Agaricus Bisporus was
electrodeposited. A temperature study for Tyr electrodeposition was conducted, and the authors found
that T = 47 ◦C is optimal. They recorded the current response in PBS buffer (pH 7.0) containing 0.2 mM
catechol for the temperature range (0–50 ◦C), and they assigned this high thermal stability to the
porosity of the electrosynthesized polymer 2,7-BSeC (poly [2,7-bis(selenophene)-N-nonylcarbazole]),
which reduces the conformational flexibility and prevents enzyme unfolding. Both cathechol and
L-Dopa were analysed as phenolic compounds, and the sensitivity for catechol was determined to
be 2.45 μA mM-1, where LoD was found to be quite low (0.02 μM) compared to other biosensor
configurations at that time.

The Langmuir–Blodgett technique was used to develop films containing mushroom tyrosinase,
lutetium bisphthalocyanine and arachidic acid (Tyr/AA/LuPc2) adsorbed onto ITO glass [43] and was
used for the detection of several phenol derivatives. The main advantage was that the Langmuir–Blodgett
film could be cycled up to 50 times for which the percentage of decay was lower than 4%.

Nanoparticles are widely used to either improve the enzymatic catalytic activity, enhance biosensor
selectivity or gain more control over the electrode microenvironment [13,16,44]. Carbon-based
nanomaterials such as single- or multi-walled carbon nanotubes (SW-, MW-CNT), carbon nanofibers
are available on a large scale and are most often incorporated into biosensor architectures. De Oliveira
et al. [25] used MWCNT mixed with graphite powder and sepiolite clay mineral containing peroxidase.
The homogeneous paste, incorporated into a plastic syringe, was used as a working electrode for
the detection of the synthetic TBHQ. Square wave voltammetry (SWV) was used to monitor the
reduction potential of TBHQ at the biosensor surface. The LoD and quantification limit (LoQ) were
determined to be 0.41 and 1.25 mg L−1. Furthermore, the biosensor was used to determine TBHQ
recovery from salad dressing samples, and the results were comparable with those obtained with the
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classical HPLC technique. Also, the biosensor was sufficiently sensitive to be used in the quality control
of foods. MWCNTs alongside reduced graphene oxide (GO) were used by Vlamidis et al. [45] for the
detection of polyphenols in fruit juices. Several biosensor architectures were tested and compared,
using both laccase from Trametes versicolor and tyrosinase from mushroom, immobilized onto GCE,
employing different agents such as bovine serum albumin (BSA) and glutaraldehyde as crosslinking
agents, chitosan, and Nafion. The Lac-based biosensor showed a better performance towards catechol
detection and the biosensor configuration was optimized as follows: GCE was modified with a
mixture of reduced GO and MWCNT (denoted as “hybrid” layer), followed by Lac immobilization.
To extend the lifetime of the biosensor, several protective biomembranes were tested, and a mixture
of 20 mg mL−1 BSA and 2.5% (v/v) GA, denoted BSA-GA1 was found to be optimal. Finally, the
chronoamperometric response of the biosensor was recorded at 0 V and the calibration graphs were
constructed by plotting the reduction current as a function of catechol concentration. This is the first
work using Lac for catechol detection in this review, obtaining a LoD of 0.3 μM, while in the case of Tyr,
the LoD is slightly higher (0.5 μM). Only the biosensor Pt/2,7-BSeC/Tyr [42] managed to obtain a lower
detection limit for catechol using Tyr. The GCE/hybrid/Lac/BSA-GA1 biosensors performance was
tested towards a variety of polyphenols (gallic acid, pyrogallol, 2,3-di-hydroxybenzoic acid, dopamine,
epicatechin, catechin, rutin, caffeic acid and chlorogenic acid) displaying a good sensitivity towards
most compounds. For real sample analysis, fruit juices were analysed comparing the results obtained
with Lac- and Tyr-based biosensors for the total polyphenolic content.

The group of Zgardzińska [46] used microporous carbon fibers as electro-conductive immobilization
matrixes for Lac. The authors prepared two different types of carbon fibers (CFs) by cellulose
carbonization. The differences were mainly in the specific surface area and their preparation process.
Both CFs (CFA and CFB) had delignified cellulose as precursor, but for CFB, a ZnCl2 activator was
used, flattening the microfibers. Laccase from Trametes versicolor was coupled with CFs-modified
graphite-rod electrodes, both showing a very similar response during CVs. The optimal working
parameters were determined for ABTS (2,2′- Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)) and
catechol. For both compounds, the amperometric detection is based on the reduction of oxidized
electroactive products (ABTS cation radicals and semiquinone intermediates) formed during the
enzymatic reaction. The detection limit to catechol for both biosensors was less than 5 μM, where the
sensitivity for CFA was 1000 A M−1 m−2 and for CFB 1137 A M−1 m−2. The CFA-modified biosensor
was used for analysis of catechol in raw and spiked (0.25 mM CAT) wastewater samples and the
results were compared with those obtained with HPLC. Between the two techniques, a significant
difference could be noticed and was attributed to the fact that wastewater could have contained some
catechol-like components that were also oxidized by the enzyme, due to the broad specificity of laccase.
When using the “standard addition mode” on the CFA-modified biosensor, its sensitivity towards
raw wastewater was very similar to that of catechol standard solution (5.54 ± 0.29 mA mM−1 and
5.6 ± 0.4 mA mM−1), demonstrating the high accuracy of biosensing.

Gold nanoparticles (AuNPs) are also widely used due to their enhanced catalytic properties.
A layer-by-layer (LbL) biosensor architecture containing AuNPs was developed by Salvo-Comino
et al. [47]. Using an ITO electrode, successive immersions of the substrate into electrocatalytic solutions,
containing chitosan (CHI), positively charged, and two negatively charged solutions with copper(II)
phthalo-cyanine-tetrasulfonic acid tetrasodium salt (CuPcS) and AuNPs were performed. Two LbL
architectures were tested, [(CHI)-(AuNP)-(CHI)-(CuPcS)]2 and [(CHI)-(CuPcS)-(CHI)-(AuNP)]2, and
on each multilayer covered electrode, either Tyr (from Agaricus bisporus) or Lac (from Trametes versicolor)
was immobilized. The LbL structure with higher roughness and pore size (meaning the presence of
(CuPcS) as top layer) was shown to facilitate the diffusion of catechol, and among the two enzymes,
Tyr showed the best catalytic properties, obtaining the lowest LoD to date, at 0.85 nM. The use of two
enzymes was to better evaluate the electron mediator capability of the LbL, knowing that Tyr oxidizes
monophenols and o-diphenols to the corresponding quinone (in a two-electron process), whereas
Lac catalyzes the one-electron oxidation of several aromatic substrates. Chronoamperograms were
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recorded for increasing concentrations of catechol, and a sensitivity of 0.681 A M−1 was calculated
for the best performing LbL/Tyr configuration. No real sample analysis was done in this work.
Another biosensor configuration containing AuNPs alongside graphene nanoplatelets was developed
by Zrinski et al. [48]. Graphene nanoplatelet-modified screen-printed carbon electrodes were fabricated
by printing with a graphene nanoplatelets modified carbon ink on a ceramic substrate. Next, a solution
of AuNPs was drop-casted on the surface, followed by the enzyme solution containing a mixture
of nafion, ethanol, water and Lac from Rhus vernicifera. After drying, the electrode was used for
HQ detection. The electrochemical behaviour of HQ was also evaluated at each modification step,
and in the end, the TEAC assay was chosen as the reference method. Great attention was given
to the sensor modification, parameter optimization and characterization. The biosensor analytical
performances are presented in Table 1, and for repeatability and reproducibility, an RSD (relative
standard deviation) of ± 2% and ± 3% was obtained. The authors also made a comparison of their
biosensor performances with literature, and where lower LoDs were found, the linear range was
shorter. The wider linear range reported in this work was considered suitable for easy evaluation
of TEAC in real samples. First, several representative phenolic antioxidants and related compounds
were analysed using hydrodynamic amperometry, and the results were presented in a histogram as
equimolar ratio of HQ. There was low or no interference with paracetamol, dopamine, ascorbic acid,
where a ratio up to 41.2% was found for phenols such as CA, phenol, p-coumaric acid or syringic acid.
Using the same method, the total phenolic antioxidant capacity was assessed as Trolox equivalent and
hydroquinone equivalent, and the results were compared with those obtained from the TEAC assay.
The values obtained with the newly developed Lac biosensor were comparable with those from the
conventional spectrophotometric method.

Due to the increased catalytic properties of gold, Liu et al. [49] developed aloe-like Au–ZnO
micro/nanoarrays for the detection of catechol. A lot of effort was put into the growth of the aloe-like
Au–ZnO arrays on an ITO electrode, and this process is illustrated in Figure 2. Zinc oxide (ZnO) was
chosen since it is a well-known semiconducting material on which enzymes can easily adsorb. ZnO/ITO
was prepared through a modified wet chemical process, after which the aloe-like ZnO was coated with
adsorbed Zn2+; followed by the electrodeposition of gold from a HAuCl4 electrolyte solution.

 

Figure 2. Schematic illustration of the preparation of aloe-like Au–ZnO arrays on an ITO electrode
(reproduced from [49] with permission of Elsevier).

Due to electrostatic force, AuCl4- can easily accumulate on the surface of the ZnO. The nanostructure
evolution of the arrays was continuously optimized, and the growth mechanism of the crystals was
closely monitored in order to obtain the best configuration. The electrochemical behaviour of the
Au-ZnO-based electrodes was monitored using electrochemical impedance spectroscopy (EIS), which
showed that the introduction of AuNPs efficiently improved the conductivity of ZnO, benefiting
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of a current signal amplification. After this step, the enzyme was immobilized, and the biosensor
performances were tested in the presence of catechol. Since phenol, HQ and resorcinol (RS) may
produce interference, the authors tested the influence of these phenolic compounds on the oxidation of
catechol. Using CV, only the addition of CAT generated a clearly defined redox signal when compared
to the other compounds. Using amperometry in different pH electrolytes, both HQ and CAT generated
a current response from the oxidation process at pH 8.25. This happened due to the over-oxidation
behaviour of the ZnO material in alkaline environments. However, for the neutral pH of 7.0, only the
current change caused by CAT had a significant intensity, while phenol, HQ and RS produced little
interference. Herewith, for increasing CAT concentrations, a sensitivity of 131 μA mM−1 and a LoD of
25 nM were calculated. The biosensor showed good reproducibility with an RSD of 3.29%, and showed
an exceptional stability in the first 10 days, retaining most of its initial sensitivity, starting to decrease
up to 15% after 30 days. The biosensor was also tested in real water samples and the results were
compared with those of HPLC. No CAT was detected in the water samples, so manual addition was
required, and the recovery varied between 98.90% and 101.10%. All results prove that a very sensitive,
selective biosensor was developed, and its use in real samples is reliable.

A very interesting and less encountered nanoparticle type was used and functionalized by
Palomar et al. [50]. The authors used tungsten disulfide nanotubes (WS2) functionalized with carboxylic
acid functions (WS2-COOH). The carboxylic acid groups served as an anchor for the immobilization
of Tyr from mushroom via a standard EDC/NHS coupling reaction. The electrochemical behaviour
of the WS2-COOH films on GCEs was monitored using CV in organic media, where the irreversible
oxidation of WS2 is shown. The WS2-COOH nanotube films with a controlled thickness of 6.2 μm,
were then used as a support for the immobilization of tyrosinase, as shown in Figure 3.

 

Figure 3. Sketch of the functionalization of WS2 modified glassy carbon electrodes with the enzyme
tyrosinase via a standard EDC/NHS coupling reaction. These modified bioelectrodes served in the
detection of catechol (bottom left) and dopamine (bottom right) at −0.2 V vs. Ag+/Ag. (reproduced
from [50] with permission of RSC Publishing).

For this, the electrode was first incubated with PBS (phosphate buffered saline), pH 7.4, containing
EDC (N-(3-Dimethylaminopropyl)-N0-ethylcarbodiimide hydrochloride), NHS (N-hydroxysuccinimide)
and DMAP (4-(dimethylamino)pyridine) for 12 h, followed by another immersion of 12 h in Tyr
solution. The authors used the newly developed biosensor for the detection of catechol and dopamine
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due to the enzymatic oxidation of the phenol ring, present in both compounds. Chronoamperometric
measurements were done at −0.2 V vs. SCE, and the current density was proportional to the CAT
concentration. CAT will be regenerated during the reduction at the electrode, allowing the amplification
of the signal, leading to an increased sensitivity of 152.5 mA L cm−2 mol−1. Although the sensitivity
is quite low compared to other reports, the linear range is similar. This can be explained by the
presence of the functionalized WS2 nanotubes, which allow a high amount of enzyme immobilization.
The low sensitivity on the other hand was explained either due to rapid oxygen consumption and/or
reduced permeability of the WS2-COOH film, as well as lack of conductivity at the used potential.
In that same manner as CAT, dopamine was also detected with a sensitivity of 6.2 mA L cm−2 mol−1

over a linear range between 0.5 and 10 μM. The authors did not obtain spectacular results, but they
showed that the WS2-COOH nanotubes can be promising components for the development of
electrochemical biosensors.

3.2. DNA- and Protein-Based Biosensors for Phenolic Content Assessment

DNA-based biosensors use DNA as a recognition element, and their performance is assessed based
on the principle of oxidative damage inflicted on the DNA by ROS/RNS. By adding an antioxidant to
the solution, the oxidative damage should decrease, indirectly evaluating the antioxidant capacity of
the analysed phenolic compounds [51]. Either single- or double-stranded DNA can be immobilized
on the electrode surface, or one of the amino acids can be used. Wang et al. [52] chose guanine to be
added in a composite membrane, as shown in Figure 4.

Figure 4. Mechanism of the biosensor and the detection method. SWV (square wave voltammetry).
Reproduced from [52] with permission from ESG publisher under a Creative Commons Attribution 4.0
International License http://creativecommons.org/licenses/by/4.0/).

The membrane was built on a GCE by first immersing the electrode into a buffered guanine
solution, which adsorbed on the activated GCE surface at a potential of +0.4 V for 180 s under constant
stirring. Then, the guanine-modified surface was sequentially covered with Fe@Fe2O3 and glucose
oxidase (GOX). The resulting biosensor was named GOX/PDDA-Fe@Fe2O3/G/GCE. The biosensor was
built in such way that the reactions between GOX, glucose and Fe@Fe2O3 generated a hydroxyl radical,
which oxidized the guanine. SWV was used to determine the biosensor performances, first in PBS,
pH 3.5, recording the peak current as i0; and second, in PBS, pH 5.0, containing 50 mmol L−1 glucose
in the absence or presence of an antioxidant, after incubation for a certain time. The peak current
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was recorded as it, and the guanine oxidative damage, as well as AC, was detected by calculating the
signal change for G. Vit C was used as a well-known radical scavenger in order to show the effect of
incubation time on the intensity of the peak potential Δip (in the presence and absence of vit C). In the
presence of vit C, Δip was smaller, indicating some protective effects on the oxidation of G. In the same
manner, several phenolic compounds were tested, and their AC was expressed as AOT% = it/i0 × 100.
The AOT% was determined for CA, coumaric acid and resveratrol, where the highest value was
obtained for resveratrol and the lowest for CA. The authors highlight the fact that the G damage
process and the protection of phenolic compounds was achieved via a series of biochemical reactions
in the composite membrane, simulating the in vivo processes.

Although most DNA-based biosensors found in the literature focus on DNA damage and the
detection of TAC, we found two examples where DNA was used as a biopolymer. The first was
the work of Mello et al. [53], which describes the use of a DNA additive in the architecture of an
enzymatic biosensor, and the focus is on the relationship between total antioxidant activity (TAA)
and total phenol content of Ilex paraguariensis extracts. This is the only work we found that does not
monitor the oxidative damage on DNA, but works as a classical electrochemical biosensor for the
detection of chlorogenic acid (CGA). The CPE was prepared by immobilizing the DNA additive and
horseradish peroxidase solution (HRP) on silica-titanium with GA. After drying, graphite powder
and mineral oil were added to the mixture in order to obtain a homogeneous paste, which was put
into a glass tube. The biosensor response was measured as the difference between total and residual
current using amperometry. The development and optimization parameters of the biosensor were
described in a previous work [54]. The TAA was evaluated by the DPPH colorimetric UV–Vis assay,
on the basis of IC50, which represents the AOx concentration needed to reduce 50% of the initial
amount of DPPH·. A low IC50 value indicates the presence of strong AOx compound in the extracts.
By plotting the results obtained for TAA against polyphenols compound concentration using the
biosensor method, a linear relationship was observed with correlation coefficients > 0.9 for all analysed
samples. Thereby, the authors highlight that the determination of the TPC was representative in terms
of AOx compounds, and interferents like ascorbate or carbohydrates showed no response; thus, the
phenol content is the main source of AOx in Ilex paraguariensis extracts. Another work using DNA
as a biopolymer was authored by Ferreira Garcia et al. [55], where the effect of different biosensor
modifiers was evaluated on a laccase CPE. The laccase crude extract was obtained through submerged
fermentation of Pycnoporus sanguineus in a specific growth medium. First, the Lac crude extract was
mixed with graphite powder (CPL), to which various modifiers (GA, BSA, chitosan, DNA, silica,
titanium dioxide, activated and non-activated CNTs) were added, left to dry, and finally mixed with
mineral oil. The homogeneous paste was then filled into an electrode support. After the optimization
of parameters and the voltametric characterization of all electrode configurations, the best results were
obtained by CPL-DNA:CNT. The presence of activated CNTs significantly improved the biosensor
sensitivity, which was further improved by the presence of DNA, whose biocompatibility lead to a
better enzymatic activity of the immobilized enzyme. A calibration plot for the detection of rutin was
constructed, obtaining an LoD of 12 μM and an LoQ of 38 μM. To further optimize the CPL-DNA:CNT
biosensor for the detection of phenolic compounds, the influence of conditioning time and starting
potential were evaluated and determined to be optimal at a conditioning time of 30 s and starting
potential of 0.5 V. These parameters were kept for an affinity assay; where the relative response of
CPL-DNA:CNT against equimolar concentrations of different phenolic compounds (CAT, gallic acid,
rutin, CA, CGA, phenol and chlorophenol) was monitored. The highest response was obtained for
CAT, closely followed by gallic acid and rutin. For real sample analysis, the total phenolic content in
crude coffee samples was determined and compared with the classical Folin–Ciocalteu assay. The total
phenolic values for both methods were expressed as GAE mg mL−1, and they were found to be in
good agreement, with an RSD% of the biosensor lower than the one obtained for the FC method.
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Returning to the principle of oxidative damage detection, protein-based sensors are an alternative
to DNA-based biosensors. In the group of R. Apak, Akyüz et al. published two papers on
protein-based solid biosensors, evaluating protein damage. The first biosensor was used for the
determination of Cu(II)-induced pro-oxidant activity of several phenolic compounds alongside
non-phenolic vitamin C [56]. The protein-based solid sensor was prepared by completely separating
the egg white from the yolk, to which water and CaCl2 was added dropwise as protein precipitation
agent. The Ca−proteinate precipitate was filtered, washed, dried and grinded, after which the
dried protein residue was ready to use. The powder was diluted in phosphate buffer, pH 7.4,
copper(II) solution and various concentrations of standard antioxidant solutions or herbal plant
infusions. The final solution was vortexed, centrifuged, and the upper liquid decanted. The remaining
protein-based sensor was washed and solutions of neocuproine (Nc), NH4Ac buffer and water were
added. The solution was again agitated, filtered and the absorbance at 450 nm was recorded against a
reagent blank. The blank was missing the antioxidant standard. Such an assay involves the reduction
of Cu(II) ions to Cu(I) due to the presence of the antioxidant compounds, where Cu(I) binds to the
solid biosensor. The protein-bound Cu(I), is an indicator of the pro-oxidant activity of antioxidants
on proteins, which can be colorimetrically determined through absorbance measurements at 450 nm
with Nc. Phenolic compounds from several classes were chosen for analysis: phenolic acids (gallic
acid and CGA), flavanols (CAT and ECAT) and flavonols (quercetin—QUE and myricetin—MYR).
The pro-oxidant activity of these compounds was generally visible above the critical concentration
of 2.50 μM. ECAT was chosen as a standard compound, and analytical performances such as LoD
(1.2 μM) and LoQ (4.0 μM) were determined using two methods, the biosensor and the carbonyl
assay (considered a standard method as comparison for pro-oxidative status detection), where the
biosensor assay was shown to be more sensitive. Vit C had the least pro-oxidant activity, while CAT
and ECAT had similar effects and QUE showed the highest activity. For statistical comparison of the
two methods, the total pro-oxidant activities of ECAT standard and sage extract were calculated as
ECAT equivalent. The obtained pro-oxidant activities can be easily converted to antioxidant activity
(given as the ratio between the slopes of the calibration plot for the test compound and reference
compound); however, these values were not calculated by the authors. The recovery values were
close to 100%, demonstrating that the solid biosensor used with the Cu(II)-Nc assay was suitable to
determine the pro-oxidant activity of plant extracts containing polyphenolic compounds. The authors
also highlight a close relationship between the pro-oxidative behaviour and the ion reducing ability of
transition metals of phenolic compounds. In their second work [57], the group uses the same solid
biosensor for developing a novel Fe(III)-ferrozine (Fz) spectrophotometric pro-oxidant activity assay.
The Fe(III) reducing ability generated by AOx compounds is an indirect measure of their pro-oxidant
activity, since reduced ions may generate ROS. The formed Fe(II) will bind to the solid biosensor,
enabling the measurement of the absorbance at 562 nm of the Fe(II)-ferrozine chelate. The solutions
were prepared in the same manner, only the buffer was adjusted to pH 5.5, and Nc was replaced with
Fz. Again, ECAT was chosen as the standard compound and analytical performances such as LoD
(0.5 μM) and LoQ (1.8 μM) were determined. Compared to previous Cu(II)-Nc assay, the performances
were improved with ~58%. The pro-oxidant activity of several phenolic compounds was determined,
followed by ECAT recoveries from herbal infusions. Although a very elaborated assay as compared to
what a biosensor stands for, quite low values for the detection limits of ECAT were obtained.

3.3. Biosensor Trends and Perspectives

This chapter refers to new concepts, trends and promising perspectives, where a classical
“biosensor” will not always be described. In response to the demand for fast, sensitive and
selective techniques, bioelectronic tongues (BioETs) have been designed, combining achievements of
chemometric analysis with the unique properties of biological compounds. Such a device is described
by Medina-Plaza et al. [58], based on a previously presented work [43]. Based on the results obtained
using principal component analysis (PCA), which demonstrated that a multisensor system was able to
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discriminate phenols according to the number of phenolic groups present in the structure, the authors
formed an array of three electrodes in order to discriminate among phenolic antioxidants in the
food industry. The three (bio)sensors were developed as follows: Langmuir–Blodgett (LB) films
were prepared using a PBS-NaCl subphase, onto which a mixture of arachidic acid and lutetium
bisphtalocyanine was spread. Twenty such monolayers were deposited onto an ITO glass surface,
obtaining the first sensor (AA/LuPc2). For the other two enzymatic biosensors, onto 10 monolayers
of AA/LuPc2, 10 monolayers of enzyme/AA/LuPc2 were added. Two enzymes were used, Lac form
Trametes versicolor and Tyr from mushroom. After preparation, the Enz/AA/LuPc2 films were treated
with glutaraldehyde to covalently immobilize the enzyme. Cyclic voltammetry was used to evaluate
the response of the three-electrode array towards six phenolic compounds: a monophenol (vanillic acid-
VA), two ortho-diphenols (CAT and CA), one para-diphenol (HQ) and two triphenols (gallic acid and
pyrogallol). The responses, calculated from the peaks associated with AOx, were highly reproducible,
lower than 1.5%. The reproducibility of different sensors containing the same enzyme was also found to
be lower than 1.75%. The AA/LuPc2 film showed a quasi-reversible and intense redox pair, associated
with the presence of LuPc2, which acts as a mediator, amplifying the signal. It can be also noticed,
that the LuPc2 redox pair appears at different positions with varying intensities, specific to each
analysed compound. The authors also found that the presence of the enzyme increased even more the
peak intensities associated with the phtalocyanine ring (~ −0.2 V). From the presented voltammograms,
they also concluded that they attained an important degree of cross-selectivity due to the array of
sensors. The authors observed significant differences in the response of the Enz/AA/LuPc2 electrodes,
attributed to the enzyme specificity, on which a nice discussion was elaborated. The detection limits
were determined for each biosensor by measuring the associated peak intensities towards increasing
concentrations of the phenolic compounds. The peak intensity linearly increased with the AOx
concentration, and the lowest LoD was calculated for gallic acid with the Lac/AA/LuPc2 biosensor,
with a value of 4.1 × 10−8 mol L−1. Overall, the detection limits for Enz/AA/LuPc2 were at least one
order of magnitude lower than for AA/LuPc2. In the case of CAT, for both Enz/AA/LuPc2 biosensors
the LoDs were calculated to be around ~ 4.7 x 10−7 mol L−1, values that are among the lowest (Table 1).
Since the array of voltametric electrodes generated signals of intrinsic complexity and cross-selectivity,
the authors were able to discriminate the phenolic compounds using PCA. The obtained PCA score plot
showed separated clusters (three clusters corresponding to the mono-, di- and tri-phenols). To validate
the results obtained with PCA, the BioET was used in musts prepared from grapes of different varieties.
The voltammograms clearly showed the response of the phenolic groups present in must, and the
peak intensities and positions were related with the total polyphenol index measured by standard
chemical methods, which depends on the grape variety. Applying PCA, the biosensor array was able
to discriminate grapes according to the grape variety, and the results were validated with the chemical
composition of the grape juice.

Another voltametric BioET was described by Ceto et al. [59], comprising an array of four
enzyme-modified (bio)sensors. The electrodes were prepared by mixing resin with its corresponding
hardener in a ratio of 20:3 (w/w), then adding 15% (w/w) graphite and 2% (w/w) modifier (either Tyr,
Lac or copper NPs); after which the mixture was homogenized and left to dry. One electrode was kept
as a blank, without any modifier. The electrochemical cell was formed by the four (bio)sensors as a
working electrode array, with a double junction Ag/AgCl reference and a platinum counter electrode.
The obtained data were further processed with various chemometric tools, including PCA. Since the
(bio)sensor array had been already successfully used in the resolution of phenolic compound mixtures
in wine samples, the authors proceeded to directly analyse 20 varieties of wine, by recording a complete
voltammogram with each sensor for each sample. The working principle of the BioET is presented in a
schematic approach in Figure 5.
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Figure 5. Schematic representation of the BioET approach (reproduced from [59] with permission of
Elsevier Publishing).

Overall, the oxidation of the phenolic compounds was noticed in all cases, while the reducing
behaviour occurred only in some of the samples. Obtaining a large amount of data with variability
among them and among the different biosensors, the condition for developing an ET is fulfilled.
Since the BioET array clearly recognizes phenolic content, PCA was used to detect any similarities
between the obtained voltametric responses. Thereby, the PCA plot shows how the samples group
according to their phenolic content. It could be clearly observed that one cluster groups samples with
low phenolic content, while another cluster groups the samples with the highest phenolic content,
obtaining six clusters in total. No specification was made on any specific phenolic compound, all the
data being regarded as the total phenolic index. To validate the BioET response, modelling software
was used (ANN), about which we will only specify that the theoretical expected values were very close
to the predicted ones.

An interesting topic worth debating is the replacement of biocomponents with NPs or polymers
capable of mimicking the biological component in question. Such systems gain more and more attention
due to increased stability and long-term use. Cui et al. [60] found a promising alternative for natural
enzymes in a catalytically active nanomaterial by synthesizing a porphyrin-based porous organic
polymer, named FePPOP-1. Porphyrin-based porous organic polymers (PPOPs) present a large specific
surface area, tuneable pore structures and high stability, properties which facilitate electron and mass
transfer. Introducing metalloporphyrins in a POPs framework, the PPOPs skeleton itself will act as a
catalyst, integrating the polymeric structure into the family of nanozymes. FePPOP-1 was obtained by
the reaction between iron 5,10,15,20-tetrakis-(4′-bromophenyl) porphyrin and 1,3,5-triethynylbenzene,
presenting a high peroxidase activity and low LoDs, as will be shown. To verify the peroxidase-like
activity of FePPOP-1, the authors used the typical peroxidase substrate of 3,3′,5,5′-Tetramethylbenzidine
(TMB) in the presence of H2O2, where FePPOP-1 catalyses the oxidation of TMB. The decomposition of
H2O2 into ·OH radicals was highlighted by using terephthalic acid as a fluorescent probe. The authors
presented the following reaction mechanism: FePPOP-1 catalyses the decomposition of H2O2 into
·OH, which oxidizes the TMB substrate. By varying the concentration of FePPOP-1, the fluorescence
intensity gradually increased, proving H2O2 decomposition. The detection of H2O2 was achieved

14



Biosensors 2020, 10, 112

by adding different concentrations into a mixture of acetate buffer (pH 3.8), TMB and FePPOP-1,
after which UV–Vis spectra were recorded. Since the catalytic activity of FePPOP-1 depends on H2O2

concentration, a linear dependence of the TMB absorbance with increasing H2O2 concentration was
observed, and an LoD of 6.5 μM was determined. H2O2 is also considered a free radical, which means
that in the presence of an antioxidant species, H2O2 scavenging should occur. Thereby, the antioxidant
capacity of the phenolic compounds gallic acid and tannic acid (TA), alongside vit C was achieved
through indirect detection. First, it should be mentioned that in the AOx-free FePPOP-1-TMB mixture,
TMB oxidation resulted in a blue colour, which faded upon AOx addition. Thereby, UV–Vis absorption
allows the colorimetric detection of AOx. To highlight this process, the AOx were mixed with acetate
buffer, TMB and FePPOP-1. Next, a fixed concentration of 50 mM H2O2 was added to the mixture
for 3 min and the UV–Vis spectra were recorded. The absorbance intensity decreased with increasing
AOx concentration. After construction, the calibration plots for each compound, vit C, gallic acid
and TA, could be detected to be as low as 0.35, 0.75 and 0.048 μM. The antioxidative abilities of the
compounds were evaluated in the following order: TA > vit C > gallic acid. Table 1 presents only
one work [37] that uses gallic acid as a standard, and if we compare the two LoDs, this assay is more
sensitive compared to the amperometric assay.

The concept of indirect detection of AOx capacity has been widely discussed in the literature,
and although it is not the main topic in this review, in addition to the previous reference, we found
another interesting biosensor architecture based on the indirect detection of gallic acid via H2O2

inhibition. An amperometric biosensor using Prussian Blue (PB) and xanthine oxidase (XOD) was
developed by Becker et al. [61]. SPE were first modified with PB, which acts as a suitable mediator for
H2O2 reduction. Next, a homogeneous mixture containing XOD solution and Azide-unit Pendant
Water-soluble Photopolymer (PVA/AWP) was spread on the SPE. The electrode was then exposed
to neon light at +4 ◦C to allow polymerization. Amperometric measurements were performed in a
dark glass cell in K-PBS at a working potential of -0.1 V vs. Ag/AgCl. After signal stabilization, 5 mM
hypoxanthine (HX—the specific substrate for XOD) was successively added. This procedure was
repeated in the absence and presence of different AOx samples, and the corresponding calibration
plots were constructed. The evaluation of the AOx capacity is based on monitoring the H2O2 produced
during the oxidation of HX to uric acid in the presence of the enzyme. The generated H2O2 is then
reduced at the polarized surface of the biosensor. The addition of AOx reduces the H2O2 concentration.
The biosensor was used for the determination of gallic acid antioxidant capacity, by recording the
amperometric response as a function of successive addition of 5 mM HX in the absence and presence of
several gallic acid concentrations ranging between 12.5 and 200 μM. With increasing AOx concentration,
the current signal decreased and its AC correspondent was expressed in percentage. For a concentration
of 200 μM, an AC of 42% was calculated. The authors presented further analytical data on the biosensor
performance for HX detection in the absence and presence of 12.5 μM gallic acid as follows: the
biosensor response was linear only in the absence of gallic acid in the range of 1.0–75 μM HX, the LoDs
were 2.17 and 0.72 μM in the absence and presence of gallic acid, and the LoQ also decreased from 7.15
to 2.42 μM in the presence of gallic acid. The biosensor was then successfully applied in real samples
of Amazonian fruits.

4. Conclusions

Although a large number of publications focus on the evaluation of TAC, using direct or indirect
(ROS scavenging) methods, we managed to bring together several publications focusing on the specific
detection of a phenolic compound, with a final chapter dedicated to concepts and methodologies worth
mentioning due to their novelty, complexity or improved performance. Most described biosensors
were also applied in real sample analysis, mainly related to food or health industries. The majority
of biosensors were electrochemical, using mostly amperometric, followed by voltametric (DPV)
techniques to evaluate their performances. The newest trends are based on the synthesis of novel
materials or combination of various nanomaterials due to their physical, chemical or optical properties.
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The authors also look to replace biological compounds with materials which are perfectly capable of
mimicking the biological activity (e.g., nanozymes).

Even though the performance of the biosensors is continuously improving, their miniaturization
and portability is still an issue that needs to be overcome. Since most of the described biosensors have
applicability in the food industry, their portability should be an important aspect.

A rigorous comparison and analysis of all presented biosensors is difficult to obtain due to the
many differences and variables determined by each research group. Even though many biosensors
use laccase, the enzyme is extracted from various sources, introducing already a factor of uncertainty.
Catechol is one of the main phenolic standards used in seven assays, and the LoD varies from
8.55 × 10−4 to 5 μM. A difference of 4 orders of magnitude is quite significant, though different enzymes,
NPs, polymers and detection techniques were employed.

Biosensors are therefore a fast, reliable alternative to classical techniques. Depending on the
scope of research, however, biosensors can be used as a complementary technique alongside classical
ones, especially when the focus of research is based on understanding the role of each molecule in a
matrix. Plant matrices are very complex, and as some reviewed articles highlighted, there are scenarios
where biosensors detect a class of phenols or TPC, depending on their architecture. On the other hand,
focusing on specific analytes, biosensors have the advantage to lower the detection limit and increase
selectivity and specificity using various nanomaterials or polymers. The versatility of (bio)sensors is of
great importance, since they can be used independent or combined with standard classical methods
depending on the scope of research.
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Abstract: The persistence of endocrine disrupting compounds (EDCs) throughout wastewater
treatment processes poses a significant health threat to humans and to the environment. The analysis
of EDCs in wastewater remains a challenge for several reasons, including (a) the multitude of
bioactive but partially unknown compounds, (b) the complexity of the wastewater matrix, and (c)
the required analytical sensitivity. By coupling biological assays with high-performance thin-layer
chromatography (HPTLC), different samples can be screened simultaneously, highlighting their
active components; these may then be identified by chemical analysis. To allow the multiparallel
detection of diverse endocrine disruption activities, we have constructed Saccharomyces cerevisiae-based
bioreporter strains, responding to compounds with either estrogenic or androgenic activity, by the
expression of green (EGFP), red (mRuby), or blue (mTagBFP2) fluorescent proteins. We demonstrate
the analytical potential inherent in combining chromatographic compound separation with a direct
fluorescent signal detection of EDC activities. The applicability of the system is further demonstrated
by separating influent samples of wastewater treatment plants, and simultaneously quantifying
estrogenic and androgenic activities of their components. The combination of a chemical separation
technique with an optical yeast-based bioassay presents a potentially valuable addition to our arsenal
of environmental pollution monitoring tools.

Keywords: Bioassays; high performance thin layer chromatography; endocrine disrupting
compounds; fluorescent proteins; wastewater

1. Introduction

Endocrine disrupting chemicals (EDCs) are exogenous agents with structural similarity to
endogenous hormones, that may therefore interfere with natural hormonal activity by blocking,
competing or mimicking natural hormones [1]. The biological effects associated with exposure to
EDCs include numerous physiological processes, among them homeostasis disruption, immunological
damages and developmental impairments [2]. Furthermore, some EDCs were suggested to act
as carcinogenic agents [3]. These adverse health effects, in some cases triggered by exposure to
parts-per-billion level concentrations [4–6], have raised concern among public health authorities. This
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concern is exacerbated when considering the possible manifestation of certain health effects associated
with exposure to EDCs across generations [2]. Besides being a human health risk, the release of EDCs
to aquatic systems also poses a significant ecological threat. Continuous exposure to such chemicals
may affect local species and ecosystems. It has been shown, for example, that chronic exposure to
EDCs causes abnormalities in the reproductive system of certain fish species [1,7–9].

The estrogen (ER) and the androgen (AR) receptors are prominent members of a hormone receptor
superfamily that mediates a wide range of significant biological activities. These vary from reproductive
development to the regulation of the cardiovascular system, the immune system, the central nervous
system, and more [10,11]. Both of these steroid hormone receptors are comprised of three main
structural domains with similar functionalities: (a) the N-terminal transcription regulation domain;
(b) the ligand binding domain (LBD), which attaches to the target ligand, prompting a conformational
change that allows the receptor–ligand complex to enter the nucleus; and (c) the DNA binding domain.
A ligand–receptor dimer complex is translocated into the nucleus, and binds to a DNA consensus
sequence at the promoter of a target gene, known as the Hormone Response Element (HRE), leading to
the transcription of the gene [2,10,12].

Detecting specific pollutants that exhibit hormonal activity in complex environmental samples,
e.g., treated wastewater, is very challenging due to the complexity of the matrix. Such samples may
contain a large variety of EDCs, as well as numerous unknown EDC metabolites, which may also exert
endocrine disrupting activity. The need to focus on the presence of unknown but bioactive compounds,
renders traditional detection methodologies, e.g., liquid- or gas-chromatography coupled to mass
spectrometry (LC/MS and GC/MS, respectively), less suitable for the detection of EDCs in complex
samples [12,13].

A possible alternative to such methods is the use of whole-cell biosensors, genetically engineered
to emit a detectable signal upon exposure to chemicals exerting hormonal activity. Such effect-based
methods require no prior information regarding the chemical structure of the EDCs in the sample. When
applied in a microtiter plate-based assay, this methodology allows quantifying the combined biological
effect resulting from exposure to the EDCs in the sample, rather than assessing the concentrations
of individual chemicals. This feature adds important information on the toxic effects of compound
mixtures. A notable disadvantage of this approach is the inability to distinguish between different
components exerting similar biological effects [14]. To overcome this difficulty, a number of reports
describing the direct coupling of effect-based methods to high-performance thin-layer chromatography
(HPTLC) have been published recently [13,15,16]

The combination of chemical separation by high-performance thin-layer chromatography (HPTLC)
and the effect-based assay by yeast-based sensor strains allowed the separation of environmental
samples and the discovery of individual sample components exhibiting hormonal activity. These
active compounds can then be removed from the HPTLC plate and identified via traditional analytical
methods (e.g., LC/MS, GC/MS) [17,18]. However, since a separate assay has to be conducted for each
biological endpoint, the throughput potential of this approach is low. In an answer to this need,
the present article describes the development of yeast (Saccharomyces cerevisiae)-based sensors that
detect the presence of chemicals exerting androgenic and estrogenic activity by expressing spectrally
different fluorescent proteins. Following characterization of the constructed sensor strains in a 96-well
microtiter plate format, they were sprayed over HPTLC plates, in which model compounds and later
wastewater samples were separated. Following incubation, EDCs with estrogenic and androgenic
activities were simultaneously detected in the same sample. In contrast to a previously described
Arxula adeninivorans-based assay with similar objectives [19], we have employed a spray-on-technology
to apply a uniform layer of the yeast bioreporters to the HPTLC surface [20]. This methodology allows
the control of the thickness of the suspension layer and produces clear and sharp bands, as opposed to
an immersion procedure.
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2. Materials and Methods

2.1. Chemicals

Testosterone (CAS: 58-22-0) and 5α-androstan-17β-ol-3-one (DHT, CAS: 521-18-6) were used
as androgenic reference compounds. Estrone (E1, CAS: 53-16-7), 17β-estradiol (E2, CAS: 50-28-2),
estriol (E3, CAS: 50-27-1), and 17α-ethinylestradiol (EE2, CAS: 57-63-6), were used as estrogenic
reference compounds. These chemicals were of the highest analytical grade and were purchased from
Sigma-Aldrich. Stock solutions of reference compounds (0.5 mg/mL for DHT, 5 mg/mL for the rest)
were prepared in ethanol. Chromatographic separation was performed on silica gel HPTLC plates of
type 60G F254 (20 × 10 cm or 10x10 cm) purchased from Merck. Solvents used for HPTLC were of the
highest analytical grade and were purchased from Merck.

2.2. Yeast Strains, Plasmids, and Growth Conditions

Two previously constructed S. cerevisiae sensor strains and two plasmids were employed in this
study as a basis for the construction of the new fluorescent bioreporters. The two strains, harboring
either the human estrogen nuclear receptor (hER) or the human androgen receptor (hAR), integrated
into the yeast genome, were purchased from BioTech (Knoxville, TN, USA). The two plasmids were
kindly donated by Prof. S. Ripp (University of Tennessee, Knoxville, TN, USA). Plasmids pUTK407
and pUTK420 [21,22], contained an estrogenic or an androgenic hormone response element (HRE),
respectively, between bidirectional constitutive and strong yeast promoters, upstream of the luxA
and luxB genes of the luminescent bacterium Photorhabdus luminescens. Plasmid pUTK407 carries
two copies of the human estrogen HRE, located between the constitutive divergent promoters GPD
and ADH1. Similarly designed, pUTK420 carries four copies of the human androgen HRE, located
between the same two promoters. The luxA and luxB genes are located downstream of the GPD and
ADH1 promoters, respectively. The palindromic nature of the HRE region forms a hairpin structure
that represses the activation of the GPD and ADH1 promoters. Upon binding of the ligand–receptor
complex to its respective HRE, this hairpin structure is released, and both luxA and luxB are divergently
transcribed, yielding the two structural subunits of the bacterial luciferase.

In the present study, the luxB sequences from the skeleton plasmids [21,22] were replaced by one
of three fluorescent protein (FP) genes (Figure 1): green (EGFP), red (mRuby2), or blue (mTagBFP2).
These genes were extracted from plasmids pFA6a-link-yoEGFP-spHIS5, pFA6a-link-yomRuby2-spHIS5
and pFA6a-link-yomTag BFP2-spHIS5, respectively [23]. All three plasmids were a kind gift from
Wendell Lim and Kurt Thorn (Addgene plasmids #44,838, #44,858 and #44,836, respectively). A set of
complementary oligonucleotides, for each of the fluorescent protein sequences, was obtained using
KOD Hot Start DNA polymerase (Merck). The six new plasmids generated in this manner are listed in
Table 1, and the PCR primers employed for cloning the fluorescent protein genes are listed in Table S1.
DNA manipulations were performed according to standard protocols [24].

Yeast extract–peptone–dextrose (YPD) liquid medium was used for routine growth of the
plasmid-free S. cerevisiae strains. A modified minimal medium without uracil (Sigma-Aldrich/
Formedium, United Kingdom) was employed to grow strains harboring plasmids with a uracil
selective marker.
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Figure 1. Schematic design of the hER-FP (A) and hAR-FP (B) plasmids used in this study for the
detection of estrogenic and androgenic activity, respectively. Plasmid hER-FP (A), derived from
plasmid pUTK407 (21), contains two copies of the human estrogen response element (ERE). Plasmid
hAR-FP (B), derived from plasmid pUTK420 (22), contains four copies of the human androgen response
element (ARE). Upon binding of a receptor–ligand complex to its respective response element, a hairpin
structure is released and activation of the constitutive GPD and ADH1 promoter is enabled, resulting
in transcription of luxA and fluorescent genes (FP), either EGFP, BFP, or Ruby.

Table 1. Saccharomyces cerevisiae strains and plasmids used in this study.

Strain or Plasmid Description Source or Reference

S. cerevisiae parental strains

hER
MATa; leu2; his3;

Human estrogen receptor gene in the
chromosome.

[25]

hAR

BJ 1991 MATa; prb1-1122; pep4-3; leu2; trp1;
ura3-52; GAL

Human estrogen receptor gene in the
chromosome.

[26]

Parental plasmids

pFA6a-link-
yomRuby2/yomTagBFP2/yoEGFP

containing Ruby, BFP, EGFP gene
respectively

Addgene #44858 #44839#44836
respectively [23]

pUTK407
Contains the luxA and luxB genes expressed
from the bidirectional promoters GPD and

ADH1 separated with two EREs.
[21]

pUTK420
Contains the luxA and luxB genes expressed
from the bidirectional promoters GPD and

ADH1 separated with four AREs.
[22]

ER and AR reporter plasmids

ER fluorescent
reporter (FP)

pUTK407 in which luxB was substituted by
EGFP/Ruby/BFP gene. This study

AR fluorescent
reporter (FP)

pUTK420 in which luxB was substituted by
EGFP/Ruby/BFP gene. This study
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Table 1. Cont.

Strain or Plasmid Description Source or Reference

Fluorescent sensor strains

hER-EGFP
Contains the EGFP gene contred by ADH1

promoter and the luxA gene expressed from
GPD promoter, with two repeats of EREs.

This study

hER-Ruby
Contains the Ruby gene contred by ADH1

promoter and the luxA gene expressed from
GPD promoter, with two repeats of EREs.

This study

hER-BFP
Contains the BFP gene contred by ADH1

promoter and the luxA gene expressed from
GPD promoter, with two repeats of EREs.

This study

hAR-EGFP
Contains the EGFP gene contred by ADH1

promoter and the luxA gene expressed from
GPD promoter, with two repeats of EREs.

This study

hAR-Ruby
Contains the Ruby gene contred by ADH1

promoter and the luxA gene expressed from
GPD promoter, with two repeats of EREs.

This study

hAR-BFP
Contains the BFP gene contred by ADH1

promoter and the luxA gene expressed from
GPD promoter, with two repeats of EREs.

This study

Transformation of plasmids into S. cerevisiae cells was performed according to a standard lithium
acetate protocol [27]. Briefly, S. cerevisiae cells were grown overnight (30 ◦C, 200 rpm), and then
diluted 100-fold into 10 mL of fresh medium. The cells were grown under the same conditions to late
exponential growth phase, until the optical density at 600 nm (OD600) was 0.6 to 1, and then washed with
nuclease-free water, and pelleted at 10,600 RCF (Eppendorf 5417C) at room temperature. Following
a second washing step with 0.1 M lithium acetate (CAS: 6108-17-4, Sigma-Aldrich), the cells were
resuspended in 240 μL 50% polyethylene glycol (PEG 4000, CAS: 25322-68-3, Merck). Subsequently,
36 μL of 1 M lithium acetate, 25 μL of carrier DNA (10 mg/mL, fish testes denatured DNA, CAS:
100403-24-5, USA Bioworld) and 45 μL of the DNA to be transformed (up to 1 μg) were added. The cells
were then incubated at 30 ◦C on a gently rotating platform for 45 min, following which they were
subjected to a 25 min heat shock at 42 ◦C. The cells were pelleted, resuspended in 50 μL of nuclease-free
water, and plated on minus ura synthetic complete (SC) agar plates [28]. Successful transformations
were verified by colony PCR and sequencing.

2.3. Endocrine Assay in 96-Well Plates

Yeast strains were grown overnight (30 ◦C, 250 rpm) in a selective medium (a synthetic complete
medium, lacking uracil, unless mentioned otherwise). The culture was diluted 100-fold in fresh
medium, and re-grown under the same conditions to late exponential growth phase (O.D.600 = 0.6–1).
Aliquots (40 μL) of the culture were then dispensed into each well of a 96-well black clear-bottom
microtiter plate (Greiner), containing 80 μL of reference compounds at predetermined concentrations
(0.0122–200 μg/l). The reference compounds, either E2 (estradiol), or testosterone, were dissolved in
ethanol, which also served as a negative control (1%).

The 96-well plates were incubated at 30 ◦C for 18 h ± 1 h in a TECAN plate reader (Infinite M200
PRO), and the fluorescent signal was read every hour, following a 10 sec vigorous shaking of the plate.
The readings were performed using excitation/emission wavelengths of 559/600 nm for Ruby, 488/507
nm for EGFP and 399/454 nm for BFP. Fluorescence values are displayed as the instrument’s arbitrary
relative fluorescence units (RFU).
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2.4. Calculation of the Corrected Fluorescence and the Reporter Gene Induction in 96-Well Plates

A corrected fluorescence [13] value, accounting for cell density as well as background fluorescence,
was calculated according to the following equation:

Fc(i) =

[
AFluorescence(i) − B f luorescence(i)

]
[
A600(i) − B600(i)

]

where Fc(i) is corrected fluorescence for test i (sample dilutions, reference dilutions, negative control);
A f luorescence(i) is fluorescence intensity for test i; B f luorescence(i) is mean fluorescence intensity for blank
replicates of test i; A600(i) is absorbance at 600 nm for test i; and B600(i) is absorbance at 600 nm for
blank replicates of test i.

2.5. Endocrine Assay on the HPTLC Plate Surface

HPTLC plates (Silica gel, F254, 20 × 10 cm, Merck) were developed with methanol to 5 mm
below the rim, dried at 120 ◦C for 30 min, and stored in a desiccator at room temperature until used.
Samples and reference compounds were applied by an Automatic TLC Sampler 4 (ATS 4, CAMAG,
Muttenz, Switzerland), in amounts ranging from 0.5 pg to 1000 pg per spot, as described before [13].
Samples were focused with 100% methanol to a distance of 20 mm, followed by 5 min drying in a
chemical hood. Chromatographic development, up to 10 mm below the rim, was performed using
an Automated Multiple Development System (AMD 2, CAMAG, Muttenz, Switzerland). For the
separation of estrogen-like compounds, a chloroform/acetone/petroleum ether (55:20:25) mixture was
used as the mobile phase. Ethylacetate/n-hexane (50:50) served as the mobile phase for the separation
of androgen-like compounds [13,29]. For the simultaneous detection of estrogenicity and androgenicity,
a mobile phase consisting of ethylacetate/n-hexane (50:50) was employed. Following separation, the
plates were dried in a chemical hood until the organic solvents evaporated [13].

For the detection of endocrine activity on the HPTLC plate, an overnight culture of the yeast-based
bioreporters was centrifuged at 10,600 RCF for 5 min (Eppendorf centrifuge 5417C). The pellet was then
resuspended in fresh minimal medium without uracil, and regrown under the same conditions to late
exponential growth phase (OD600 = 0.6–1). The cells were sprayed homogenously on the developed
HPTLC plate, either manually with a glass reagent sprayer (CAMAG, Muttenz, Switzerland), or by
using an automated spraying device (CAMAG Derivatizer, CAMAG, Muttenz, Switzerland, 2.5 mL,
spraying level 3, yellow nozzle). Images of the fluorescent signal were obtained after an incubation of
4 h to 18 h at 30 ◦C in an opaque plastic box, in which humidity was maintained by a water-soaked
paper towel. The fluorescent EGFP signals were detected using Fusion FX imaging system (Vilber
Lourmat) at excitation and emission wavelength of 365 nm 565 nm, respectively. The fluorescent
Ruby and BFP signals were detected using a TLC Scanner 4 (CAMAG) operated under the visionCATS
software (version 2.3. SP1, CAMAG, Muttenz, Switzerland). Ruby signals were detected at λex =

525 nm with a cutoff filter of 540 nm, and BFP signals at λex = 396 nm and a cutoff filter of 400 nm.
Additionally, qualitative assessment was performed on images acquired with a TLC Visualizer 2
(CAMAG) operated under the visionCATS software (version 2.3. SP1,) under long wavelength UV light
(λ em = 366 nm).

2.6. Preparation of Wastewater Samples

Freshly collected influent samples of municipal wastewater treatment plants were centrifuged
(Thermo Scientific, Sorvall RC 6 Plus Centrifuge, 17,000 RCF, 20 min) and the supernatant was
filtered through a glass fiber filter (Pall, type A/C, Ø 47 μm). Filtered samples were concentrated by
solid-phase extraction (SPE) using Oasis HLB cartridges (200 mg, 6 mL). The columns were conditioned
by the successive application of 2 mL n-heptane, 2 mL acetone, three aliquots of 2 mL methanol,
and four aliquots of 2 mL deionized water. Methanol (2 × 4 mL) was used to elute the adsorbed
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sample components from the cartridges. The extracts were reduced to 500 μL using a Turbo Vap II
Concentration Workstation (Biotage AB, Uppsala, Sweden) under a gentle nitrogen flow. The extracts
were transferred into amber glass vials. The evaporation tubes were rinsed three times with methanol,
which was then used to fill up the extracts to a final volume of 1 mL, resulting in a final 200-fold
enrichment. The extracts were stored at −20 ◦C until use.

2.7. Fluorescent Microscopy

Microscope images were obtained using a VF1200 confocal microscope (Olympus, Tokyo, Japan)
with a 60 × 1.42 oil objective. The excitation wavelengths and emission filters were 488/507 nm for
EGFP, 559/600 nm for Ruby and 399/454 nm for BFP.

2.8. Data Processing and Statistical Analysis

Statistical analysis of the HPTLC combined bioassays was performed as previously described [13],
using the intensity (in arbitrary units) of the determined peak areas obtained with the visionCATS
software (version 2.5. SP1, CAMAG). Data were further processed using Excel® and R version 3.5.2
(R Core Team, Vienna, Austria) [30], the ‘drc’ [31] and the ‘ggplot’ [32] packages. Signal-to-noise-ratios
(S/N) were determined to calculate the limit of detection (LOD) and limit of quantification (LOQ) with
S/N ≥ 3 and S/N ≥ 10, respectively.

3. Results

3.1. Sensor Strain Characterization in a 96-Well Plate Assay

To reach the study’s objective, developing a method for multi parallel detection of different
endocrine disruptors in environmental samples within a single assay, we have designed and constructed
a battery of yeast-based sensor strains. The six members of the sensor panel, addressing two target
chemical groups (with estrogenic or androgenic activities), with three reporter proteins (green, red
and blue) each, are listed in Table 1. The responses to their designated model targets have first been
characterized in a conventional 96-well microtiter plate procedure in liquid medium. The activities
of two bioreporters out of this list, an estrogenic sensor (ER-Ruby) and an androgenic (AR-BFP) are
presented, as an example, in Figure 2.

 

Figure 2. Dose-response curves of two fluorescent bioreporters. (A) Response of strain ER-Ruby to
β-Estradiol (E2; 0.0122–200 μg/L); (B) Response of strain AR-BFP to testosterone (0.0122–200 μg/L).
Estrogenic and androgenic activities were determined after an incubation time of 18 h at 30 ◦C. Corrected
fluorescence values were calculated as detailed in Materials and Methods (Section 2.4), and the error
bars show the respective standard errors. The solid line was fitted to the data using a five-parameter
log-logistic function.

The response of both strains to increasing concentrations of their respective reference compounds
followed a classic asymmetrical logistic dose-response curve. Both strains exhibited high sensitivity
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towards their reference compounds; calculated LOD values for 17β-estradiol (E2) by ER-Ruby and
testosterone by AR-BFP were 0.032 and 0.070 μg/L, respectively.

Thin-layer chromatography allows the separation of compounds based on polarity-governed
partitioning between the solid and the mobile phases. A planar yeast estrogen screen (pYES) to
investigate estrogenic activities of environmental sample components was previously described, using
yeast bioreporters coupled with HPTLC [29,33,34]. Recently, Riegraf et al. [13] demonstrated that
additional modes of action can be addressed by combining other yeast-based reporter gene assays
with HPTLC, including androgenic effects. In all of these cases, β-galactosidase has been employed
as the reporter entity, and only one type of endocrine activity could be assayed in a single plate.
In the present study, the optimized working protocols described in these publications have been
used to test the performance of the newly developed fluorescent yeast strains. Mixtures of estrogenic
[E1 (estrone), E2 (17β- estradiol), EE2 (17α- ethinylestradiol) and E3 (estriol)] and androgenic [DHT
(dihydrotestosterone) and testosterone] reference compounds were applied and subsequently separated
by HPTLC, as described under Material and Methods. The yeast fluorescent bioreporter cells were
then sprayed as a thin layer on top of the silica plate, and their activity was monitored following
an 18 h incubation. Successful performance was achieved for both the ER-Ruby and the AR-BFP
strains. The resulting fluorescence signals of the ER-Ruby strain are shown in Figure 3, and the
corresponding dose-response curve in Figure 4. The respective results for the AR-BFP strain are
displayed in Figures 5 and 6.

 
Figure 3. Detection of estrogenic activity by the ER-Ruby sensor strain following high-performance
thin-layer chromatography (HPTLC) separation. Different amounts (indicated below the image) of a
mixture consisting of the reference compounds estrone (E1), 17α-ethinylestradiol (EE2), 17β-estradiol
(E2), and estriol (E3) were separated by a two-step chromatographic development using methanol
and a chloroform/ethyl acetate/petroleum ether mixture (55:20:25, v/v/v). Ethanol served as blank on
track 11. Following an 18 h incubation at 30 ◦C, fluorescence was imaged using a TLC Visualizer 2 at
λex = 366 nm. Signals were enhanced using the enhancement tool of the visionCATS software.
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Figure 4. Dose-response curves of estrogenic reference compounds Estrone (E1, A), 17α-Ethinylestradiol
(EE2, B), 17β-Estradiol (E2, C), and Estriol (E3, D), as derived from the experiment described in Figure 3
above. Fluorescent signal intensity determined by the peak area was plotted against the applied
amount. Data points represent the mean values of the signal and the error bars show the respective
standard error (nblack = 3, ngrey = 2 and nwhite = 1). The solid lines were fitted to the data using a
five-parameter log-logistic function.

 

Figure 5. Detection of androgenic activity by the AR-BFP sensor strain following HPTLC separation.
Different amounts (indicated below the image) of a testosterone/DHT (5α-androstan-17β-ol-3-one)
mixture were separated by a two-step chromatographic development using methanol and an ethyl
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acetate/n-hexane mixture (50:50, v/v). Ethanol served as blank on track 11. Following an 18 h incubation
at 30 ◦C, fluorescence was imaged using a TLC Visualizer 2 at λex = 366 nm. Signals were enhanced
using the enhancement tool of the visionCATS software.

 

Figure 6. Dose-response curves of androgenic reference compounds testosterone (A) and
5α-Androstan-17β-ol-3-one (DHT, B), as derived from the experiment described in Figure 5 above.
Fluorescent signal intensity determined by the peak area detected using a TLC Scanner 4 (λex = 396 nm,
cut-off filter of 400 nm) was plotted against the applied amount. Data points represent the mean values
of the signal, and the error bars show the respective standard error (n = 3). The solid lines were fitted
to the data using a five-parameter log-logistic function.

3.2. Simultaneous Detection of Estrogenic and Androgenic Activities—Model Compounds

To demonstrate the simultaneous detection of different EDC classes, we have tested the response
of a 1:1 blend (v:v) of two of the newly constructed yeast fluorescent bioreporters, ER-Ruby (red
fluorescence) and AR-EGFP (green fluorescence), to a E2/testosterone mixture. Exposure was first
conducted in liquid culture; Figure 7 presents microscopic images obtained in the presence of different
concentrations of the model inducers. Both strains have responded by a bright fluorescence of the
respective newly synthesized reporter protein, with a larger number of fluorescent cells visible in the
presence of the higher inducer dose.

 

Figure 7. Simultaneous detection of estrogenic (E2) and androgenic (testosterone) model compounds
by mixed ER-Ruby and AR-EGFP sensor strains in liquid culture. Images were obtained with a VF1200
confocal microscope (Olympus, Tokyo, Japan) with a 60 × 1.42 oil objective, following an 18 h incubation
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at 30 ◦C. Images were taken in a sequential mode using λex = 488 nm and λem = 505–540 nm for the
EGFP signal (column 1) and λex = 561 nm and λem = 570λ620 nm for Ruby (column 2). Merged images
are shown in column 3. Row (A)—a testosterone/E2 mixture, 250 ng/l each; Row (B)—no ligand.

Following the successful demonstration of the combined fluorescent detection of the two hormonal
activities in liquid medium, we have investigated the possibility of combining the two assays also on the
surface of an HPTLC plate. To characterize a possible crosstalk between the quantification of estrogenic
and androgenic effects, two reporter strains (ER-Ruby and AR-BFP) were sprayed, either individually
or in a 1:1 mixture, onto an HPTLC plate on which two blends of estrogenic and androgenic model
compounds were chromatographically separated, either individually or in a mixture. The on-plate
responses of the two reporter strains are presented in Figure 8. On all three plates, an estrogen mix
consisting of E1, E2 and E3 and an androgenic mix consisting of testosterone and DHT were applied
on tracks 1–3 and 4–6, respectively, while a combined mixture of both classes was applied on tracks
7–9. Activity detection was performed either with strain AR-BFP alone (top panel), ER-Ruby alone
(middle panel) and with a mixture of the two reporter strains (bottom panel). The HPTLC plates were
scanned at the wavelengths appropriate for the excitation of both fluorescent reporter proteins, and the
fluorescence intensities are represented by the heights of the bars in Figure 8. These data were also
used to calculate the LOD values for the different compounds, as presented in Table 2.

Table 2. Limit of detection (LOD), limit of quantification (LOQ) and Rf values calculated for the
ER–Ruby and AR-BFP sensor strains in response to HPTLC-separated reference compounds.

Single Strain Both Strains Rf Values
Individual Mix Individual Mix

E3 Mean LOD (ng) 0.82 1.43 1.7 3.6 0.19
SE (ng) 0.02 0.09 0.4 1.9

E2 Mean LOD (ng) 0.0081 0.012 0.03 0.04 0.60
SE (ng) 0.0009 0.001 0.02 0.02

E1 Mean LOD (ng) 0.0120 0.016 0.05 0.06 0.76
SE (ng) 0.0002 0.002 0.03 0.04

Mean LOQ (ng) 0.042 0.058
SE (ng) 0.003 0.008

Testosterone Mean LOD (ng) 0.3 0.70 0.8 (*) 0.9 0.46
SE (ng) 0.2 0.04 0.2 0.2

DHT Mean LOD (ng) <0.5 <0.5 0.3 (*) 0.4 0.61
SE (ng) 0.1 0.1

(*) Two replicates only.

The blue fluorescence sensor strain AR-BFP detected the two androgenic model chemicals
(Figure 8A), when on their own (tracks 4–6) as well as in the presence of the estrogenic mixture (tracks
7–9). Similarly, the red fluorescence sensor ER-Ruby displayed a clear response (Figure 8B) to the three
estrogenic compounds, both in the absence (tracks 1–3) and the presence (tracks 7–9) of the androgenic
substances. In all cases, the responses were dose-dependent. The intensity of the responses when
both hormone classes were combined (Figure 8C) tended to be lower than when the mixtures were
separated. This was more evident in the case of the ER-Ruby sensor (Figure 8B), which also displayed
a minor response to the higher doses of the androgenic compounds. The reduced sensitivities in the
combined presence of the two hormone classes are also evident from the higher LODs listed in Table 2.
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Figure 8. Multi-effect detection of chromatographically separated model compound mixtures by strain
AR-BFP (A), strain ER-Ruby, (B) and both strains together (C). The HPTLC plates with the sprayed-on
sensor cells were incubated for 18 h at 30 ◦C, following which fluorescence was scanned at λ = 396 nm
and λ = 525 nm. Fluorescence intensities are presented in arbitrary units (AU). The estrogen mixture,
separated on tracks 1–3 and 7–9, was composed of E1 (0.01 ng, 0.05 ng and 0.1 ng), E2 (0.005 ng, 0.01 ng
and 0.02 ng), and E3 (0.5 ng, 1 ng and 2 ng). The androgen mixture, separated on tracks 4–6 and 7–9,
was composed of testosterone (T; 0.5 ng, 1 ng and 5 ng) and DHT (0.5 ng, 1 ng and 5 ng). Ethanol
served as blank on track 10. A two-step chromatographic development was performed, with 100%
methanol for the first 20 mm, and an ethyl acetate/n-hexane 1:1 mixture for the next 70 mm.

3.3. Simultaneous Detection of Estrogenic and Androgenic Activities—Wastewater Samples

The robustness of the HPTLC combined bioassay using the newly developed fluorescent yeast
sensor cells was further demonstrated by its application to wastewater samples. Concentrated influent
samples from two municipal wastewater treatment plants (WWTPs) were separated by HPTLC,
following which the plates were sprayed with a 1:1 mixture of two reporter strains, ER-Ruby and
AR-BFP, and incubated for 18 h at 30 ◦C. An estrogenic mix consisting of E1, E2, and E3 and an
androgenic mix consisting of DHT and testosterone were identically treated. Figure 9 displays an
image of the plate (top) and the fluorescence scans of the individual lanes (bottom).
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Figure 9. Simultaneous detection of androgenic and estrogenic effects in extracts of two wastewater
treatment plants (WWTP) influent (In1, In2; 10 μl and 20 μl each) by a 1:1 mix of two yeast bioreporter
strains, ER-Ruby and AR-BFP. An estrogen mix consisting of E1 (a: 0.1, b: 0.2 and c: 0.4 ng), E2 (0, 20 and
40 pg) and E3 (1, 2 and 4 ng), and an androgen mix of DHT (a: 10, b: 25 and c: 50 ng) and testosterone
(10, 25 and 50 ng) were separated on the same plate. Ethanol served as blank on track 10. A two-step
chromatographic development was performed, with 100% methanol for the first 20 mm, and an ethyl
acetate/n-hexane 1:1 mixture for the next 70 mm. Top: plate image displaying the fluorescent signal
using a TLC Visualizer 2 at λex = 366 nm following an 18 h exposure at 30 ◦C. Signals were enhanced
using the enhancement tool of the visionCATS software. Bottom: scans of the individual tracks for both
ER-Ruby- and AR-BFP-fluorescence (TLC Scanner settings: Ruby: λex = 525 nm, a 540 nm cutoff filter;
BFP: λex = 396 nm a 400 nm cutoff filter).

As is evident from the data in Figure 9, both influent samples contain components with potential
estrogenic and androgenic activities. For example, the Ruby fluorescent signal, detected in both
influent samples at Rf = 0.75, is similar in its chromatographic migration distance to that of E1, hinting
at the presence of a molecule with an estrogenic activity chemically resembling E1. In the same
location in sample In2 there is also an apparent androgenic activity, which is not shared by sample
In1. Additional fluorescent signals were detected at Rf = 0.6 in sample In 2, and to a lesser extent
also in In1 for both yeast bioreporter strains. These signals showed a similar migration behavior as
the estrogenic model compound E2 and the androgenic model compound DHT. Clearly, however,
while the fluorescent intensity of each active sample constituent on the HPTLC plate can be accurately
quantified, a determination of its actual concentration cannot be performed before it is fully identified
by analytical chemical means.

4. Discussion

Cell-based assays utilizing reporter gene technology have been widely promoted for environmental
monitoring; in contrast to chemical analysis, they provide information about the biological effects of a
tested sample, even if its exact composition is unknown. Furthermore, such assays can be tailored
to detect chemicals with specific modes of action, such as an interference with cellular processes,
including hormone receptor signaling [35,36].

Many assays for the detection of endocrine disrupting effects employ yeast cells as the cellular
chassis, and rely on the expression of LacZ as the reporting element [25,26,37,38]. However, to measure
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the level of LacZ expression, the cell membrane must be disrupted, and an external substrate needs
to be added to visualize the extent of gene expression induced by the target chemical(s). In contrast,
fluorescent proteins provide a fast and accurate alternative [39,40] for signal detection even in living
cells. Furthermore, as demonstrated in the present article, it allows the multi-parallel detection of
several types of fluorescent proteins, differing in their optical attributes. Here we have described a
set of Saccharomyces cerevisiae fluorescent protein-based bioreporters for the detection of two classes
of endocrine disrupting chemicals in complex samples, in combination with sample separation by
HPTLC, with LOD values similar or lower to those reported for other cellular assays (Table 2).

Probably the most relevant comparison of our results is to those described in the recently published
reports of an Arxula Adeninivorans-based cell assay, employing three fluorescent bioreporter strains for
the detection of estrogenic, androgenic, and progesterone activity, combined with HPTLC [19]. In that
study, a clear peak with the fluorescent Arxula adeninivorans yeast strain G1212/YRC102-hER-DsRed,
was detected for E2 > 0.0075 ng, without chromatographic separation. This result indicates a similar
sensitivity compared to the strain generated in the current study, hER-Ruby, with a LOD of 0.008 ng,
after chromatographic separation. The minimal detectable amount of DHT by the YRC102-hAR-GFP
strain was 0.025 ng [19], lower than our strain hAR-BFP with a LOD < 0.5 (following chromatographic
separation). However, a direct comparison of the performance characteristics of the bioreporter strains
described by Chamas et al. [19] is not possible, since in the current study the cells were applied to the
plate surface by spraying, compared to immersion of the developed plate in a suspension of the yeast
bioreporters. The spray-on technology, as described herein, allows control over the thickness of the
yeast layer as well as the plate’s moisture, producing clear and sharp bands [20]. Furthermore, as noted
above, the LOD values reported here were determined following full chromatographic migration
and separation.

A main objective of the current study was to allow a multi-parallel effect detection of both
estrogenic and androgenic activities by complex samples and their components. This was achieved by
combining sample separation by HPTLC with the concomitant application of two representative sensor
strains; in these, red and blue fluorescence are induced in the presence of estrogenic or androgenic
compounds, respectively. The general functionality of both reporters in parallel is demonstrated in
Figures 8 and 9. The former figure describes a systematic experiment addressing the possible crosstalk
between the assays, in terms of false positive signals and effects on assay sensitivity. In the case of the
AR-BFP strain, intensity of the signal caused by the androgenic model compounds remained virtually
unchanged in the presence of the estrogenic model compounds. Furthermore, no false positive results
were detected at 595 nm, indicating that the potential presence of estrogenic compounds is detected
specifically by the ER-Ruby strain even in the presence of androgenic compounds. A possible crosstalk
between androgenic compounds such as DHT and an activation of the estrogen receptor is discussed
in literature either via a direct binding of DHT to the estrogen receptor [36] or due to a metabolic
conversion of testosterone [41,42], but was not found in the present study.

Nevertheless, apparent false positive signals were detected at 396 nm as a strain ER-Ruby
response, on its own, to estrogenic compounds. The increasing intensity of this signal correlates with
the increasing signals at 595 nm in the presence of higher concentrations of the model compounds.
Possibly, when the concentration of this fluorescent protein is sufficiently high, the low excitation of
Ruby at 396 nm becomes visible. This artefact may be avoided by the introduction of a better-tuned
filter system. The 595 nm signal intensity, indicating the presence of the Ruby protein, is lower
when the estrogenic and androgenic model compounds are applied in a mixture. While actual signal
intensities remain quite stable in the co-exposure (Figure 8), assay sensitivity is reduced due to an
increased noise level leading to reduced S/N-values. While future refinement of the optical system is
certainly desirable, the results presented in Figure 8 clearly demonstrate the possibility of a specific
multi-parallel effect detection.

34



Biosensors 2020, 10, 169

The specificity and robustness of the constructed yeast strains and the adaptability of the combined
method for screening environmental samples is demonstrated by the characterization of influent
samples from two different WWTPs. As in any chromatographic system, TLC separation of a complex
sample into its components depends on adsorption properties of the compounds to the solid phase, as
well as their solubility and migration distance with the mobile phase. Since estrogens and androgens
share similar structures and physico-chemical properties, it is challenging to separate the two classes
from each other with HPTLC [19]. The use of the multi-parallel effect detection is thus advantageous,
as different effects may be detected even if the active compounds are not fully separated. This is clearly
visible for the influent sample from the second WWTP (sample In 2). In this sample, two strong signals
for estrogenicity and androgenicity at Rf-values of 0.75 and 0.61 are superimposed. The estrogenic
bands at Rf 0.75 and 0.61 migrate similarly to E1 and E2, respectively; the androgenic compound Rf
migrates similarly to DHT, while no candidate compound can be assigned to the androgenic signal at
Rf = 0.75. Interestingly, no androgenic signals above a signal to noise ratio of 3 could be detected in
the influent sample of WWTP 1 at these positions, underlining the specificity of the detection even in
complex environmental samples.

5. Conclusions

We have presented a panel of sensitive, specific, and robust fluorescent bioreporter S. cerevisiae
strains for the detection of compounds exerting estrogenic and androgenic effects in complex samples,
and have demonstrated their efficacy in the analysis of both model compounds and multi-component
wastewater samples. The use of fluorescent proteins as reporter elements obviates the requirement for
cell lysis, substrate addition, and a second incubation step. The information emerging from such assays,
when combined with thin layer chromatographic separation, can serve to restrict subsequent chemical
analysis only to the small number of active fractions of the sample; this; in turn, will allow significant
savings in time and costs, and a more focused and efficient risk assessment. To further broaden the
applicability of the approach, it would be desirable to expand the panel of sensor strains for additional
hormone classes, lower limits of detection, and optimize separation conditions for different classes
of endocrine and endocrine-like compounds. Furthermore, as for other whole-cell based assays, the
approach described above is limited to the detection of compounds that are at least partially permeable
into the intracellular environment; enhancing cellular permeability to a broader spectrum of potential
target molecules should therefore be another objective in the design of future EDC sensor strains.
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Abstract: An electromagnetic piezoelectric acoustic sensor (EMPAS) was used to study the non-specific
adsorption of human red blood cell-derived extracellular vesicle preparations. Vesicle storage history
(temperature and duration) highly affected the obtained results: The signal change, namely the
frequency decrease of the crystal measured at 20 ◦C, was negligibly small (<1 s−2) when the
vesicle solutions had previously been stored at 4 ◦C, and was in the order of 10 s−2 when the
vesicle solutions had been stored at −30 ◦C. Moreover, the rate of frequency decrease increased
exponentially with the storage time at −30 ◦C. Upon a 4 ◦C storage period following the −30 ◦C
storage period of the same sample, the measured frequency decrease dropped, suggesting a partial
relaxation of the system. The results are explained by the disintegration of the vesicles triggered
by the freeze–thaw cycle, likely due to the detachment of proteins from the vesicle surface as was
proved by size-exclusion chromatography. Surface modification of the sensor crystal provided
the possibility of signal enhancement, as the maximum rate of the frequency change for the same
vesicle concentrations was higher on hydrophobic, octadecyl trichlorosilane–modified quartz than
on hydrophilic, bare quartz. The EMPAS signal has been associated with the amount of detached
proteins, which in turn is proportional to the originating vesicle concentration.

Keywords: electromagnetic piezoelectric acoustic sensor; quartz; adsorption; diagnostics;
extracellular vesicle

1. Introduction

Extracellular vesicles (EVs) are cell-released lipid particles containing a large variety of proteins,
nucleic acids and metabolites. They offer vast biological information as a cargo in intercellular
communication, and are also a potential target in diagnostic techniques [1,2]. In order to use EVs in
diagnosis, well characterized sampling and separation requirements must be fulfilled.

Guideline literature MISEV2018 [3] stresses that purity requirements must be met in order for EV
isolates to provide reliable information on associated functional activity. Isolation of EVs from non-EV
material and soluble non–EV-associated proteins is of high importance as the impurities may interfere
with particle number counts and biomarker analysis.

Problems concerning EV particle detection methods originate from the fact that most of the
methods cannot distinguish EVs from other biological nanoparticles and may require antibody
labelling or antibody capture. One possible solution is to consider indirect indicators, such as total
protein-to-particle or protein-to-lipid ratios. Particle number determination methods include flow
cytometry [4,5], nanoparticle tracking analysis [6,7], and resistive pulse sensing [8–10].
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Surface-based analytical methods, such as optical surface plasmon resonance [11–13] can provide
sensitive particle counting. Acoustic surface sensitive detection techniques do not require an optically
transparent medium; therefore, the analysis of biological fluids is more feasible. Changes in conditions
at the interface between the sensor and the liquid due to molecular/cellular adsorption/desorption or
viscosity change all shift the frequency of the oscillating sensor that provides the measurement signal.
The oscillating sensor surface can be modified to specifically or non-specifically capture EVs. A quartz
crystal microbalance (QCM) with a CD63 EV specific antibody modified sensor has been used to detect
EVs from isolates [14].

The electromagnetic piezoelectric acoustic sensor (EMPAS) [15,16] operates by remotely induced
ultra-high frequency (up to 1.06 GHz) acoustic shear wave generation in the AT-cut quartz sensor
crystal. The EMPAS is a highly sensitive method due to the applicable ultra-high frequency overtones.
As the EMPAS, unlike the QCM, does not require electrode connections, the homogenous surface
of the quartz sensor allows for versatile surface chemistry routes to engineer the surface for a given
interaction. EMPAS devices have been used for detection of HIV-2 antibodies in human serum [17],
endotoxin of pathogenic E. coli in full human blood plasma [18], cocaine [19], breast and prostate
cancer metastasis biomarker (PTHrP) [20]. They have also been used in the study of antifouling coating
against undiluted goat serum [21], full human blood plasma [22], human serum and bovine milk [23],
as well as in the determination of plasmin enzyme of pM concentration levels [24].

The main aim of this study was to investigate the ability of an EMPAS device to detect EVs.
For this purpose, a well characterized [25,26] model EV was used: namely, a red blood cell-derived EV.
We aimed to follow the non-specific adsorption; therefore, no specific immuno-capture capability has
been introduced. Only a clear comparison of interactions with hydrophobic and hydrophilic surfaces
has been probed. The results have revealed that a hydrophobic surface has higher binding capacity
than a hydrophilic surface in the assayed EV dispersion. A huge increase in the adsorption capacity
was observed after one freeze–thaw cycle of the EV sample. This observation shed light not only on
the effect of freezing on the integrity of EVs, but also to the possible application of EMPAS devices for
the characterization of the purity of EV samples without the need for separation.

2. Materials and Methods

2.1. Isolation of Red Blood Cell Derived EVs (REVs)

The use of human blood samples was carried out by following the guidelines and regulations of the
Helsinki Declaration in 1975, and was approved by the Scientific and Research Ethics Committee of the
Hungarian Medical Research Council (ETT TUKEB 6449-2/2015). Human red blood cell-derived EVs
(REVs) were isolated according to the protocol described previously [25]. Briefly, 3 × 6 mL whole blood
was collected from healthy volunteers with informed consent into vacuum tubes containing EDTA
anticoagulant (VACUETTE® TUBE 6 mL K3EDTA, Greiner Bio_One, Mosonmagyaróvár, Hungary).
The red blood cells (RBC) were sedimented by centrifugation at 2500 g for 15 min (Nüve NF800R),
and after the removal of plasma and white blood cells, were resuspended in isotonic saline solution
(0.9% NaCl, B. Braun AG) and washed three times (2500 g for 10 min at 4 ◦C). 3.5 mL of washed RBC
were diluted to 10 mL with phosphate buffered saline (PBS, pH = 7.4, Sigma-Aldrich and stored at
4 ◦C for 7 days. REVs were isolated from the RBC suspension via two consecutive centrifugations
(1500 g for 10 min and 2850 g for 30 min). The supernatant was centrifuged at 16,000 g for 30 min
(Eppendorf 5415R). The final pellet was suspended in total 100 μL PBS, and purified with size exclusion
chromatography (SEC) using a 3.5 mL gravity column filled with Sepharose CL-2B gel (GE Healthcare,
Sweden). The 100 mL EV sample was pipetted into the column followed by 900 mL PBS. The second
1 mL fraction containing the purified EVs was collected and kept at 4 ◦C.
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2.2. Microfluidic Resistive Pulse Sensing (MRPS)

MRPS is based on the Coulter principle realized in a microfluidic cartridge. MRPS measurements
were performed with an nCS1 instrument (Spectradyne LLC, Torrance, CA, USA). The samples were
diluted 20-fold with a bovine serum albumin (BSA, Sigma-Aldrich, Hungary) solution at 1 mg/mL in PBS
buffer (Sigma-Aldrich, Hungary), filtered through an Amicon Ultra 0.5 centrifugal filter with 100 kDa
MWCO (Merck-Millipore, Hungary) according to the manufacturer’s instructions. All measurements
were performed using factory calibrated TS-400 cartridges with a measurement range from 65 nm to
400 nm.

2.3. Fourier-Transform Infrared Spectroscopy (FTIR)

Attenuated total reflection (ATR) infrared spectroscopy was used to obtain signature spectra for
protein and lipid composition of isolated REV samples. 3 μL of fresh REV sample was spotted and
dried under ambient conditions on the top of the diamond ATR element of a single reflection Golden
Gate accessory (Specac Ltd., Orpington, UK) fitted into a Varian 2000 FT-IR spectrometer (Varian Inc.,
Paolo Alto, CA, USA). Spectra were recorded by coaddition of 64 individual scans with a nominal
spectral resolution of 2 cm−1. Before the spectrum evaluation, ATR correction and the subtraction of
the PBS buffer background were performed. For all spectral manipulations, the GRAMS/32 software
package (Galactic Inc, Birmingham, AL, USA) were used.

2.4. Size Exclusion Chromatography with On-Line Fluorescence Detection (Flu-SEC)

Flu-SEC was used to study the release of soluble proteins from EVs upon a freeze–thaw cycle.
10 μL of REV sample was injected into a Jasco HPLC system (Jasco, Tokyo, Japan) consisting of a
PU-2089 pump with a UV-2075 UV/Vis detector and a FP-2020 fluorescence detector controlled by the
Chromnav software v. 1.17.02. Tricorn 5/100 glass columns (GE Healthcare Bio-Sciences AB) were
packed with Sepharose CL-2B (GE Healthcare Bio-Sciences AB), and the eluent was PBS with a flow rate
of 0.5 mL/min. The fluorescence chromatograms were collected at excitation and emission wavelength
corresponding to the intrinsic fluorescence of proteins (280/340 nm), and the area under the curve of
the EV peak and the free protein peak was used to quantify the amount of unbound proteins.

2.5. Electromagnetic Piezoelectric Acoustic Sensor (EMPAS) Measurements

Hydrophilic (θa = 15◦) [24] quartz crystal discs were obtained using the following method.
The discs underwent ultrasound cleaning in detergent solution for 30 min in test tubes, then were
copiously rinsed with tap water and distilled water, followed by a 30 min treatment in Piranha solution
(3:1 V/V mixture of 98% H2SO4 and 30% H2O2) at 90 ◦C pre-heated in a water bath. They were then
thoroughly rinsed with distilled water and methanol, followed by sonication in another portion
of methanol for 2 min, and a final rinse with methanol. Hydrophobic (θa = 106◦) [24] discs were
obtained by further processing the hydrophilic ones as follows. The cleaned, hydrophilic discs were
individually transferred into glass vials, which were subsequently placed in an oven maintained
at 150 ◦C for drying. After 2 h, the vials were immediately transferred into a humidity chamber
(70–80% relative humidity, room temperature) for 36 h of surface moisturization. Then, the quartz
discs were individually transferred to silanized test tubes and moved into a glove box under nitrogen
atmosphere. Portions of 1 mL of octadecyltrichlorosilane (OTS) solution in anhydrous toluene (1 μL
OTS/999 μL toluene, corresponding to 2.5 mM) were added individually to the test tubes. The tubes
were then sealed with rubber stoppers, removed from the glove box, and allowed to stay on a shaker
for 2 h. The quartz discs were then rinsed thoroughly with toluene, followed by chloroform, and dried
under a gentle stream of nitrogen before being stored in scintillation vials.

The experiments were run using a home-built electromagnetic piezoelectric acoustic sensor [15].
The setup consisted of a Plexiglas flow-through cell (~78 μL internal volume); a ~5 mm diameter
hand-wound coil of a 105 μm diameter polyurethane-coated copper wire (Goodfellow); a frequency
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generator (Hewlett Packard 8648B); a trimmer (muRata, Seminole, FL, USA) placed in parallel with
the coil terminals in order for the coil to be tuned to electrical resonance; a lock-in amplifier (SR510,
Stanford Research Systems); a diode detector (made in house) to measure the voltage drop developed
across the coil terminals at acoustic resonance, with the output being fed into the lock-in amplifier;
a digital oscilloscope (Tektronix TDS 210); and a syringe pump (Harvard Apparatus Pump 11) equipped
with a 60 mL plastic syringe (Henke-Sass, Wolf GmbH, Germany) providing a flow rate of 25 μL/min.
Teflon tubing (1.58 mm od, 0.8 mm id, Supelco, Bellefonte, PA, USA) was used to connect the syringe,
flow-through cell and sample vial. In order to minimize temperature effect on the resonant frequency,
AT-cut quartz crystal wafer resonators were used. The crystals (∅ = 13 mm diameter, t = 83 μm
thickness, Laptech Precision Inc., Bowmanville, ON, Canada) were operated at the 49th overtone
of their f 0 = 20 MHz fundamental frequency (f 49 ≈ 984 MHz). A code running under LabView 6.0
was used to control the frequency generator and the lock-in amplifier, as well as for data acquisition.
REV samples were used in half logarithmic serial dilutions with PBS (pH = 7.4, Sigma-Aldrich),
with the dilution factor denoted with D, where D ≡ −log (c/c0) = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0], c being the
concentration of the diluted solution and c0 the original concentration of the sample. Measurements
were conducted at 20 ◦C with REV samples stored at 4 ◦C after 1 h waiting for thermal equilibration
or with REV samples stored at 4 ◦C, followed by a storage at −30 ◦C for periods ranging from 1 h to
several days, after 1 h waiting for thermal equilibration.

3. Results and Discussion

3.1. Characterization of EV Samples

Characterization of REVs has been accomplished by MRPS and FTIR methods. The characteristic
results are shown in Figure 1. Figure 1A illustrates MPRS measurement results showing that the REVs,
prepared as described, are a homogeneous EV sample with well-defined particle size distribution.
The results can be well fitted with a Gaussian distribution which results in a mean diameter of
(196.9 ± 0.3) nm with standard deviation (32.26 ± 0.3) nm (adj. R2 = 0.985). The measured concentration
is (1.44 ± 0.01) × 1010 mL−1 over a size range from 65 nm to 400 nm. The FTIR spectrum in
Figure 1B indicates the characteristic lipid and protein bands of REVs. Characteristic bands of
the peptide backbones of proteins report at 3299 cm−1 (amide A, N–H stretching vibrations), 1654 cm−1

(amide I, primarily the C=O stretching vibrations of the amide groups) and 1545 cm−1 (amide II,
combination of N–H bending and C–N stretching of the amide groups). The long acyl chains of
lipids exhibit C–H stretching vibrations in the 3020–2800 cm−1 wavenumber region with peaks at
2925 and 2849 cm−1, corresponding to antisymmetric and symmetric stretching of methylene groups,
respectively. The relative weak band at 1739 cm−1 belongs to the glycerol carbonyl stretching of
the phospholipids. Since the protein-to-lipid ratio can be used to assess EV type and purity [3,27],
we calculated the spectroscopic protein-to-lipid ratio [28]. Based on the integrated area of amide I band
and C–H stretching bands (3020–2800 cm−1) a spectroscopic protein-to-lipid ratio value of 1.52 ± 0.05
was obtained, which is in line with our previous results on purified REV samples [25]. The calculated
protein-to-lipid ratio indicates a homogeneous EV sample without impurities. Moreover, as the intensity
of the amide I band is proportional with the number of peptide groups, an estimation of the total
protein concentration of intact EVs, based on IR spectrum, is also feasible. Using the protocol elaborated
by Szentirmai et al. [26], the IR spectroscopy-based total protein concentration of the REV sample is
(0.95 ± 0.09) mg/mL.
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Figure 1. Characterization of red blood cell-derived EVs. (A) Particle size distribution of REVs by
Microfluidic Resistive Pulse Sensing (MRPS). Number concentration (n) of vesicles as a function of the
diameter (d) (50-fold dilution of the original sample); (B) Fourier-transform infrared (FTIR) spectrum of
the REV sample and the assignment of the main lipid and protein bands.

3.2. Effect of Freezing Temperature and the Duration of Frozen Storage of EVs on EMPAS Signal

Two typical EMPAS measurements are presented in Figure 2. In both cases, after recording the
baseline with PBS only, the EV solution enters the cell at Δt = 0 s, producing a frequency shift of
the quartz resonator. The general observation was that the time course of the frequency shift was of
a modest rate for EV samples stored at room temperature and 4 ◦C, even at the relatively high EV
concentrations (3.16× dilution of the original sample, D = 0.5), whereas the frequency decreased much
faster if an identical EV sample had previously been stored at −30 ◦C, suggesting that freezing might
induce structural changes of the EV samples resulting in either an increased number, or a reduced size
(i.e., larger diffusion coefficient) of any adsorbates.

Figure 2. A typical measurement outcome: time course of frequency shift at the 49th overtone of two
hydrophobic quartz crystals, under two EV samples of identical dilution, D = 0.5 (3.16× dilution of the
stock), without freezing (�), and after a 1 h exposure to −30 ◦C followed by 1 h thermal equilibration at
lab temperature (�). The slope of the thick black fitted line represents the maximum rate of frequency
shift, (df /dt)max, for the second case.

Interestingly, the duration of frozen storage was found to affect the EMPAS signal in a broad REV
concentration range spanning three orders of magnitude. Figure 3A,B illustrate the qualitative changes
observable as a result of storage temperature dependence. The maximum rate of frequency change,
rmax, defined in Equation (1), has been used to express the adsorption rate of the sample components.

rmax
def
= −(d f /dt)max (1)
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The increase of rmax with EV concentration is not surprising, as rmax is expected to be a
symbatic function of the maximum rate of adsorption, which in turn is expected to increase with
increasing mass transport, and therefore, concentration. However, surprising is the markedly different
dependence of rmax on concentration for the samples stored for different time intervals (1 h or 4 d)
at −30 ◦C. The observation suggests that the structural change phenomenon induced by freezing
is not instantaneous, but progresses, even at −30 ◦C, on a timescale of several days. The study of
this effect for additional storage time values with identical REV concentrations lead to the result
shown in Figure 3B. rmax shows a clear, nonlinear, probably exponential dependence on the storage
time at −30 ◦C. Figure 3B also illustrates an interesting, and not yet fully understood, phenomenon
about the reversibility of long-term storage effect: namely, the storage time dependent adsorption
rate increase can be turned back to a lower value by storing the sample in a thawed state for 4 days.
This result might indicate a slow, partial re-aggregation of the REV component molecules after thawing,
decreasing the concentration, and re-increasing the size (hence decreasing the diffusion coefficient) of
the available adsorbates.

Figure 3. (A) rmax at the 49th overtone on hydrophilic quartz crystals for different dilutions of the REV
stock solution, after a 60 min (�) and 4 days (�) exposure, respectively, to −30 ◦C. (B) Exponential
dependence of rmax on the storage time at −30 ◦C of REV D = 1.5 solutions (i.e., 31.6× dilution of the
original stock), measured at the 49th overtone on hydrophilic quartz crystals (�). Data point marked
with �was measured after at 12.6 d storage at −30 ◦C, followed by a 4 d storage at +4 ◦C.

The effect of freeze–thaw cycles on EV functionality has been investigated in multiple cases,
but the results are quite variable. Kim et al. [29] observed that four freeze–thaw cycles disrupted
the integrity of exosomes (from murine bone marrow-derived dendritic cells), and consequently,
the immunosuppressive ability of exosomes was lost. In an untreated sample the exosome-associated
heat shock protein Hsc70 was found to be associated with the exosomes but not in the freeze–thaw
treated exosome fractions. Lőrincz et al. have found that the storage of neutrophilic granulocyte-derived
EVs at room temperature or 4 ◦C for a day did not influence the vesicle count, but induced a loss of
function. Sample storage at −20 ◦C resulted in changed light scattering properties, and the functionality
was almost completely lost after 28 days. After storage at −80 ◦C for 1 month, light scattering properties
did not change, but the number and size of vesicles changed slightly, and the functionality was partially
lost [30]. The concentration of exosomes from Sprague Dawley rat bone marrow mesenchymal stem
cells was reported to lower after freezing to −80 ◦C and subsequent thawing. The functionality was
also affected [31].

In our case, the changed sample integrity, i.e., protein desorption from the protein corona of the
vesicle, might serve as a feasible explanation for the different EMPAS signals in the detection of frozen
and non-frozen REVs. To evaluate this possibility, Flu-SEC chromatograms have been measured in
consecutive freeze–thaw cycles (Figure 4). Control REVs are eluted at 1.5 min retention time and no sign
of free proteins can be observed. Freeze–thaw cycles result in the appearance of a second peak at 4.1 min
retention time, which corresponds to free proteins, i.e., to unbound membrane-associated proteins.
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Figure 4. Size exclusion (Flu-SEC) chromatograms (fluorescence intensity I versus retention time tR)
of control REVs (solid line), and REVs after one (dashed line) and two (dotted line) freeze–thaw (FT)
cycle(s) measured at excitation and emission wavelengths of 280 nm and 330 nm, respectively.

As a sum of observations, we can conclude that intact REVs produce low EMPAS signals,
but freezing resulted in disintegration and protein desorption, which appears in a well observable,
EV concentration dependent signal. To explain these differences, two effects can be considered: (1) the
penetration depth of the acoustic wave, and (2) a large difference in the diffusion coefficients of free
protein molecules and EVs. The penetration depth (δ) of the acoustic wave is the distance perpendicular
to the surface of the resonating quartz crystal which is reached by the 1/e-th (~37%) of the energy
of the acoustic wave. This distance is a function of the viscosity (η) and density (ρ) of the medium,
as well as the ground resonance frequency (f 0) of the crystal and the overtone number (n) at which
it is operated. By approximating the viscosity and density of the PBS solution with that of water
(η = 10−3 Pas, ρ = 103 kg/m3), and further plugging in f 0 = 20 × 106 Hz and n = 49, the resulting
estimate is δ = 18 nm. Table 1 shows the mean square displacement values of intact vesicles and
disintegrated proteins calculated for 180 s time scale, the average duration of stay in the flow cell.
By comparing this penetration depth with the mean diameters of EVs (Table 1), it becomes clear that a
large frequency shift cannot be obtained if the EVs adsorb as whole, intact globules, not even at high
surface coverages; conversely, a large frequency shift is potentially observed if only proteins, or other
EV-fragments adsorb, even at lower surface coverages (Figure 5).

δ =

√
η

πρn f0
(2)

Table 1. Comparison of mean square displacement values of intact vesicles and disintegrated proteins
calculated for 180 s time scale, the average duration of stay in the flow cell.

Particle Radius (nm) Diffusion Coefficient (m2/s) Mean Square Displacement (μm)

protein 2.5 9.8 × 10−11 325.4
vesicle 100 2.5 × 10−12 51.4
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Figure 5. Penetration depth (δ) compared to the size of adsorbed entire extracellular vesicles (EVs) (A)
and EV-proteins (B), respectively, approximately to scale. For maximum packing densities, the frequency
shift on the 49th overtone is higher if only proteins adsorb: Δf B > Δf A.

3.3. Quantitative Assay Feasibility Study and Sensor Surface Modification for Optimal Detection with EMPAS

Although the results have shown that EMPAS measurements based on non-specific adsorption
are insensitive for EVs, the freezing-detached protein fraction of EV suspension can still be a sensitive,
quantitatively correlating target to determine. Very importantly, it may even provide a separation-free
way to characterize EV isolations in accordance with MISEV 2018 guidelines.

To optimize the adsorption of the protein fraction, measurements using hydrophilic and
hydrophobic EMPAS crystals have been conducted. EV dilution series after one freeze–thaw cycle
have been measured (Figure 6).

Figure 6. Surface modification effect on the frequency response of electromagnetic piezoelectric acoustic
sensor (EMPAS) signal upon adsorption. (A) Time course of frequency shift at the 49th overtone on
hydrophilic (blue) and hydrophobic (red) quartz crystals, for different dilutions expressed as –log(c/c0)
of the EV stock solution, after a short exposure (less than 1 day) to −30 ◦C. (B) rmax at the 49th overtone
on hydrophilic (blue) and hydrophobic (red) quartz crystals, for different dilutions of the REV stock
solution, after a short exposure (less than 1 day) to −30 ◦C.

A comparison of hydrophobic and hydrophilic surfaces shows that for the same EV dilution
the EMPAS signal has a greater frequency shift in the case of hydrophobic surfaces, indicating a
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higher adsorption rate. Although vesicle quantification cannot be directly achieved with the present
configuration, the amount of measurable free proteins adsorbed on the crystal correlates to the number
of vesicles, and thus the methodology developed may serve as an indirect method for quantification.
For this approximation, we use the protein concentration calculated from IR measurements given as
c0 = 950 μg/mL. Based on Flu-SEC measurements, we assume that 30% of the total protein is detached,
and as the most diluted sample is −log(c/c0) = 2.5 ≈ 0.3% dilution, the detection limit is in the range
of 0.9 μg/mL of protein. The vesicle concentration in the original sample is cREV = 5.6 × 1011 mL−1

according to MPRS measurements, so the detection limit for vesicle concentration in the given conditions
is in the range of 10−9 mL−1. By considering the average size (r = 100 nm) and concentration of REVs
measured by MRPS and estimating the protein size with the size of an average human protein, we arrive
at a realistic approximation of 0.15 protein/nm2 of vesicle for the given experimental conditions. It is
important to emphasize that the detection limit is valid for the proteins in the EV suspension, hence in
the presence of EVs, without separation.

4. Conclusions

The adsorption properties of well-characterized red blood cell–derived extracellular vesicles have
been investigated with a high sensitivity electromagnetic piezoelectric acoustic sensor. Maximum rates
of frequency shifts of the oscillating sensor have been compared to represent differences in adsorption
capacities. Freeze–thaw pretreatment of the samples has largely affected the measurable signal,
indicating that the disrupted integrity of the vesicles, verified with chromatography, results in
well-detectable substances. Hydrophobic surfaces proved to adsorb faster sample content than
hydrophilic surfaces did. The phenomenon is well known from the biofouling field: in aqueous
environment, low surface energy (hydrophobic) surfaces tend to adsorb faster than high surface energy
(hydrophilic) surfaces, especially when the adsorbates are macromolecules, such as (bio)polymers
(e.g., proteins). The most plausible explanation is based on the total entropy gain of the system upon
releasing the hydrate shell water molecules during the adsorption of the macromolecule. The maximum
rates of frequency shifts increased with increasing initial vesicle concentration. As such, this method
provides the possibility of indirect vesicle quantification even without separation steps applied.
The assay can also be considered as a follow-up technique in sample storage standardization processes.
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Abstract: Breast cancer is the most common cancer in women. Early diagnosis improves outcome
and survival, which is the cornerstone of breast cancer treatment. Thermography has been utilized
as a complementary diagnostic technique in breast cancer detection. Artificial intelligence (AI)
has the capacity to capture and analyze the entire concealed information in thermography. In this
study, we propose a method to potentially detect the immunohistochemical response to breast cancer
by finding thermal heterogeneous patterns in the targeted area. In this study for breast cancer
screening 208 subjects participated and normal and abnormal (diagnosed by mammography or
clinical diagnosis) conditions were analyzed. High-dimensional deep thermomic features were
extracted from the ResNet-50 pre-trained model from low-rank thermal matrix approximation using
sparse principal component analysis. Then, a sparse deep autoencoder designed and trained for
such data decreases the dimensionality to 16 latent space thermomic features. A random forest
model was used to classify the participants. The proposed method preserves thermal heterogeneity,
which leads to successful classification between normal and abnormal subjects with an accuracy of
78.16% (73.3–81.07%). By non-invasively capturing a thermal map of the entire tumor, the proposed
method can assist in screening and diagnosing this malignancy. These thermal signatures may
preoperatively stratify the patients for personalized treatment planning and potentially monitor the
patients during treatment.

Keywords: vasodilator activity; breast cancer screening; imaging biomarker; deep sparse autoencoder;
dimensionality reduction; deep-learning features

1. Introduction

Breast cancers caused an estimated 41,760 deaths out of 606,808 overall deaths for females
and 500 deaths for males, while the estimated new cases were 271,270 deaths for both genders
(268,600 women and 2670 men) in the United States in 2019. This evidence shows that despite
considerable advancement in breast cancer screening and treatment, breast cancer is still the second
cause of cancer death among women [1]. Clinical breast exam (CBE), magnetic resonance imaging
(MRI), mammography, and ultrasound are widely used for the diagnosis of breast cancer. Among them,
CBE and mammography are considered the most common breast screening tools [1]. This study
proposes machine learning techniques and analyses using infrared thermography as a new technique for
breast cancer screening. We hypothesized that thermal heterogeneity may associate with angiogenesis,
nitric oxide vasodilatory phenomena, inflammation, and estrogen caused by cancer symptoms.

Mammography has been the gold standard for diagnosing breast cancer since the early 1960s
despite numerous studies indicating the variability of this imaging modality is affected by breast density,
age, type of problem, and family history [2–5]. Mammography showed weakness in being used for
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breast cancer screening for women with dense breasts, hormone replacement therapy, and fibrocystic
breasts [6–9]. Research showed the detection rate of mammography considerably diminishes by
increasing breast density among the patients [7]. The studies show that age has a reverse association with
breast cancer detection using mammography [10]. Moreover, findings show that during mammography
the pressure on the breast tumors is adequate to rupture the encapsulated tumors (depends on the
location of the tumor) and possibly circulate malignant cells in the bloodstream [11].

The risk of radiation using mammography is one of the important disadvantages of using this
imaging modality. Younger women are more susceptible to the risk of radiation-induced breast
cancer than older women due to their undifferentiated cells being prone to influence by ionizing
radiation [5,10–15].

Family history of breast cancer and/or the BRCA1/2 gene mutations are other factors that this gene
mutation may be the result of radiation effect, which might be induced indirect effects to damage DNA
by producing reactive oxygen species (ROS) from the cell’s water molecules [16,17]. Some studies
showed that the ionizing radiation by mammography might be more dangerous for patients with such
mutations [16–19].

For the dense breast, ultrasound can be an adjunctive tool used with mammography screening
for detecting the abnormality [2]. However, it shows a dependency on tumor size, palpability,
breast density, tools’ quality, physician’s expertise who performs the procedure, and interpreting
the image [2,5,20–22]. Magnetic resonance imaging (MRI) is also an alternative imaging modality,
which can identify early breast cancer in the place where conventional imaging fails to detect the
abnormalities [23,24]. Ahen et al. (2014) concluded that the high costs and low specificity of MRI
limits the popularity of MRI for annual screening for high-risk women [25]. CBE is considered as a
great alternative conducted by the clinician and can help to detect at least 50% of asymptomatic breast
cancers but has not been used alone [26,27].

2. Thermography and Biological Rationale as an Alternative Imaging Modality

Infrared thermography is used as an additional cost-effective alternative for breast cancer
screening as a non-invasive procedure that does not pressurize the breast tissue nor expose the body to
ionizing radiation. The skin emission is about 0.98, which is close to the emission of the blackbody.
Thermal radiation emitted from the body has a wavelength of 8–10 μm bandwidth, which can be
captured by the infrared camera [28–30]. Due to the relatively lower sensitivity of thermographic
screening, it usually adds to other diagnosing methods, mainly with CBE to increase the overall
diagnostic accuracy [31,32].

Blood circulation is the main contributor to heat transfer in the body. Vascularity is also considered
an important parameter for heat transfer [33]. Evidence supports different thermal conductivity
between normal tissues in breasts and cancerous lesion thermal profile discrepancy [34], also abnormal
skin temperature manifestation is an indicator of pathological changes explained by metabolic activity
associated with the tumor such as angiogenesis, nitric oxide, inflammation, and estrogen [5,33,35].
Changing in the endocrine due to the presence of tumors alters the thermal profile by changing
the vascularization of the tissues to deliver oxygen and nutrients to tumors [36], in the process of
pathologic angiogenesis. In such chaotic and pathological processes of angiogenesis, smooth muscle
cells receiving abnormal vasoconstrict blood vessels in the area [36]. Several studies proved the value
of infrared thermography on detecting hypervascularity and hyperthermia on non-palpable breast
cancer [36–38].

Tumor angiogenesis and metastatic behavior are biomarkers of breast carcinoma and c-Met
pathway activation, which are used also for tumor progression. Also, there is an association of c-Met
and downstream signaling pathways with angiogenesis that can be assessed by microvessel density
(MVD) [39]. Infrared was used to assess the existence of MVD, which is associated with endothelial cell
(CD34) marker and downstream signaling pathways (angiogenesis, RAS-MAPK, and PI3K-AKT) [39].
In another study, there is a relationship between MVD and tumor-associated macrophages (TAMs) and
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vascular endothelial growth factor (VEGF) expression [23,40,41]. In addition, white blood cells produce
nitric oxide as a defense mechanism against cancerous cells that is a vasodilatory substance [31,37].
Nitric oxide performs as a vasodilator in cancerous tissues in the breasts to enhance oxygen and nutrient
delivery, which increases the local temperature in the area [42–44]. In general, cancer (including breast
cancer) is influenced by different cellular factors including reactive oxygen and nitrogen species (RONS)
and, as reported, hypoxic condition elevated RONS production [44–47]. Nitric oxide has reactive
diatomic free radical plays a role in promoting and inhibiting cancer [48].

DNA damage occurs once nitric oxide reacts to form other reactive metabolites as well as nitrite,
peroxynitrite, nitrate, or S-nitroso-thiols, which provoke genotoxic effects [48,49]. Reactive nitrogen
species (RNS) exposure causes post-translational changes, which leads to different interactions by
other cellular targets and causes diverse locally dependent concentration effects [49,50]. In the late
stages of breast cancer also, c-Met promotes metastases by having vascular reprogramming and
inflammatory cytokine upregulation [51], inflammation-related cytokine tumor necrosis factor-alpha
(TNF-α) in tumor invasion [52]. This often happens due to a long period of remission before the
diagnosis of breast cancer [53], which can be detected faster using the combination of CBE and infrared
screening. The presence of inflammation is another mechanism of local heat generation. Cancer causes
a vasodilatory response, due to the inflammatory cell involvement’ which increases temperature [42].
Estrogen also facilitates vasodilation by locally enhancing nitric oxide production. Imbalanced estrogen
could change the vasodilatory effects of the tissue resulting in thermal variations [54]. Evidence shows
that ecto-5′- nucleotidase (eN) is negatively controlled by estrogen receptor-α (ERα). This suggests that
eN expression and its adenosine generation associate with breast cancer progression. eN expression in
estrogen receptor-negative cells considered to be an aggressive breast cancer biomarker [55].

Such process metabolic heat generation investigated for normal and cancerous breast tissues
and its rates reached 20K W/m3 and the range between 100K–1200K W/m3 for two types of tissues,
respectively [56]. Despite United States Food and Drug Administration (FDA) approval for using
infrared thermography, it can be used as an adjunct screening modality along with MRI, mammography,
and ultrasound [57,58]. A visual summary of the factors influencing the heterogeneity in thermal
imaging are presented in Figure 1.

Figure 1. The block diagram of the biological connection to the response of infrared thermography as a
fast step with other methods such as clinical breast exam (CBE) in breast cancer screening and cancer
presence in the breast area are shown.

In this study, we propose a method to use high-dimensional deep-learning features to track
the vasodilator activities in the breast area as a potential biomarker in detecting breast cancer.
The contributions of the paper are as follows:
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• The sparse principal component analysis in the thermography (Sparse PCT) is used to compress the
input thermal sequence and capture high temporal variance across the acquisitions. This leads to
capture thermal heterogeneity patterns in three first initial bases, called avatars, which concatenate
in three different channels similar to a red, green and blue (RGB) image as the input for our
pretrained model.

• Deep thermal features, called deep-thermomics inspired by radiomics, are extracted to measure
thermal heterogeneity in breast cancer screening using infrared thermography.

• The proposed approach tackles the problem of the curse of dimensionality in deep-thermomics using
a sparse deep autoencoder without using traditional human-engineered feature selection methods.

• The multivariate models trained and validated using the obtained descriptors successfully classify
between symptomatic and non-symptomatic subjects. We also provided a comparative analysis
using a non-sparse PCT.

• This study shows the association between thermal heterogeneous patterns and potential
vasodilation in the breast area, as a new potential imaging biomarker.

The rest of the paper is organized as follows. In the next section, thermal transfer in passive
thermography is summarized. In Section 3, the methodology of the approach will be briefly described
by applying sparse PCT analysis for thermography and pre-trained ResNet-50 deep neural networks.
The experimental results are presented in Section 5, and the discussion is in Section 6. The conclusions
are summarized in Section 7.

3. Thermal Transfer in Thermography

A thermal camera captures the spatial heterogeneity of temperature on the targeted region of
interest (ROI) over time. This heat transient can be through active or passive thermography techniques.
In general, the thermal transfer/heat conduction equation of a specimen can be summarized by the
following equation:

ρCp
∂T
∂t

= k
∂2T
∂t2 +

.
q (1)

where T = T(x, y, z) is a temperature field, k is thermal conductivity constant from the material
(W/m.K). ρ is the density

(
kg/m3

)
, Cp is specific heat (J/kg.K),

.
q(x, y, z, t) is the internal heat generation

function per unit volume, in the passive thermography.
Applying infrared thermography on biological organs and tissues, as a complex structure,

composed of fat, blood vessels, parenchymal tissues, and nerves with some uncertainty for the rate
of blood perfusion and metabolic activity. Pennes’ bioheat equation [59] provides accurate thermal
computations and states as follows:

ρtct

(
∂Tt

∂t

)
= ∇.(kt∇Tt) +ωbcb(Ta − Tt) + qm (2)

where ωb represents the flow rate of blood, qm is the metabolic rate (heat generation), and b, and a in
ωbcb(Ta − T) the additive term stands for blood, and arteries (in targeted tissue), respectively.

4. Methodology

Infrared thermography records thermal heterogeneity in the subdermal area of the breast in
temporal order. To capture such effect by abstracting such patterns, low-rank matrix approximation is
used to maximize the variance across thermal acquisition time.

4.1. Low-Rank Approximation of Thermal Stream

Low-rank matrix approximation is commonly used in thermography [60–68], due to capturing
thermal variations across the temporal order in the sequence. This leads to detecting thermal patterns
on the subsurface of specimens. Such analyses capture thermal heterogeneity in the skin area for breast
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cancer screening patients. Principal component analysis (PCA), called PCT for thermography [60],
through singular value decomposition (SVD) used for decomposing the input matrix (heat matrix) X,
which is p × n, where n is the vectorized thermal image (breast screening) in every sequence and p
corresponds to the number of observations and decomposes to:

X = UΓVT (3)

where U is the p × n matrix (p > n) and Γ is a diagonal matrix with a dimension of n × n and either
zero or positive elements. VT denotes the transpose of the n × n matrix. The method captures the
spatiotemporal variance by selecting the bases correspond to 80% of variance from the eigenvector
matrix. Matrix U represents the bases of the input matrix.

The PCT is a linear transformation technique that decomposes the input zero-mean data matrix
into the bases and coefficient matrix. To find the optimal solution for such transformation, 	2 and 	1
penalty terms with regularization parameters were added to the PCT, which led to Sparse PCT [61,62]
and increased the performance of such a technique, particularly when encountering additive noise.

Such modifications in Sparse PCT not only turned PCT into a nonlinear transformation but
following the same maximization of the variance among the bases. If the empirical covariance matrix
of X p×n is presented by XTX, Sparse PCT is the maximization of variance in the direction of vector
v ∈ Rp for 1 ≥ k ≥ p.

max vTΣv
such that ‖ v ‖2 = 1 , ‖ v ‖0 ≥ k

(4)

Let v be a variance of the input matrix and ‖ v ‖0 be 	0 norm of v, which is the non-zero components.
This is an NP-hard (non-deterministic polynomial-time hard) problem and Zou et al. (2006) and elastic
net algorithms used to solve this optimization [69]. Sparse PCT showed considerable performance in
thermography to find a low-rank approximation of input thermal images. Here, we applied sparse
PCT to preserve thermal heterogeneity in the subsurface of skin as a potential biomarker leading to
early diagnosis of breast cancer.

Let I is thermal imaging stream taken from the participants such that I ∈ R
n×m×τ. If x is a

vectorized matrix named heat matrix made by stacking vectorized infrared images, x ∈ R
n.m×k.

B =
{
β1, β2, . . . , βτ

}
denotes a set of bases obtained by sparse PCT. Each β cropped to a squared matrix

focusing more on the ROI as an input to the ResNet-50 (spatial dimension of 224 × 224). Using k = 3
corresponding to three predominant low-rank matrix approximation, we capture dynamic variations
on thermal images in the ROI during τ time.

4.2. Deep Thermomics

Deep neural networks and particularly convolutional neural networks (CNN) are widely used by
researchers in various fields with diverse applications, comprising image processing, and particularly
medical imaging. CNN is a group of connected deep neural networks that uses a variation of
multi-layer perceptron with many hidden layers [70]. The hidden layers of CNN normally consist of
convolutional (cross-correlation) layers (filtering), pooling layers, rectifier layer (ReLu), fully connected
layers, and normalization layers [71,72]. Several adaptive filters (as kernels) with small receptive
fields layers makes CNN different from other similar deep neural networks. Because of such filtering
in the input layers using a 2-dimensional dot product between the filter entries and the input data,
the model extracts some features with higher sensitivity in spatial positions of input. This increases the
applications of CNN-based networks in a variety of applications with the focus of imaging. Some of
these networks are already trained for specific imaging datasets and used as a pre-trained network to
perform classification or recognition.

After the success of the AlexNet [72] in image processing at the LSVRC2012, deep residual network
(ResNet) [73] was perhaps the most innovative research in the computer vision and deep learning
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research community. ResNet provides the ability of a trainable network with many layers while
holding a compelling performance.

The state-of-the-art CNN architectures are going deeper such as the very deep CNN for large-scale
visual recognition (VGG) network [74], GoogleNet (also codenamed Inception-v1) [75] that have 19 and
22 layers respectively. ResNet tackle the vanishing gradient issue by introducing an “identity shortcut
connection” that skips one or more layers [73], which does not degrade the network performance,
since it simply stacks identity mappings in every layer. The pre-activation variant of residual block [76]
increases the popularity of ResNet with an excessive number of hidden layers in the computer vision
and medical image processing.

A deep learning method has been employed to non-invasively detect chemically treated
collagenous tissue nonlinear anisotropic stress-strain responses in the microscopic images [77]. VGG16 is
used for the prognosis of glioblastoma and as a radiographic biomarker for noninvasive categorization
between true progression and pseudo-progression in these patients [78]. The initial application of the
deep features in infrared analyses has been presented for finding defective patterns in the specimens
using spectral difference among various areas of specimens [79]. Using traditional dimensionality
reduction or feature selection is not a substantial way due to the low-level status of hidden weights
in this model, which might be perceived as collinearity among features. In infrared breast cancer
screening methods, a comparative analysis on AlexNet, GoogLeNet, ResNet-18, VGG-16, and VGG-19
for 88 patients using a pre-trained model resulted in discrimination between normal and pathologic
patients [80]. ResNet50 was applied to extract features from histopathological images and followed
by autoencoder, K-means clustering to choose discriminative patches using PCA to diagnose breast
cancer [81]. A CNN approach tackled the same dataset using ResNet34 and ResNet50 and achieved a
significant performance on detection of breast cancer in blind validation, and used the entire thermal
sequences as the input of their system [82]. A cohort of 57 cases used applying a new configuration
of CNN showed promising accuracy, while they outperformed ResNet50, SeResNet50 and Inception
models [83]. Similarly, CNN used with additional algorithms such as with Bayes algorithm [84]
or support vector machine (SVM) [85] to conduct diagnosis assessments.

In this paper, a pre-trained residual deep convolutional network for large-scale image recognition
(ResNet-50) [73,86] was used. ResNet-50 is used as a hybrid feature generator (deep features).
The method uses low-rank matrix approximation of thermal sequences as a sparse representation of
the whole set, called avatar. Three first bases make three channels representing the entire thermal set as
an input to the ResNet-50 model and extracted deep-thermomic features, 2048 size vector, as output.

Since the input of the ResNet-50 model requires an RGB squared image, we leverage this property
to embed three first bases obtained by sparse PCT as three channels of the input image, showed by
ψ, where ψRGB −→ ψβ1β2β3 (see Figure 2). Applying feed-forward convolution in neural network
lookalikes of multiple-internal-functions gives:

F (ψ) = FL(. . .F2(F1(ψ; {W1}); {W2}) . . . ; {WL}). F : R
224×224×3 (5)

Let Fi represents the residual mapping to be learned and {Wi} denotes weights in each layer.
The regular linear convolution involves a filter bank where the output also contains the input
dimensional property. The last layer contains a vector by the size of 2048 and links to three channels
low-rank representation of infrared stream. This gives 2048 low-level features from the image used as
input to the deep learning-based dimensionality reduction model.
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Figure 2. Workflow of the proposed approach in temporal compression and extraction of low-rank
matrix approximation and generating the deep thermomics using residual network (ResNet-50)
is presented.

4.3. Sparse Autoencoder for Dimensionality Reduction for Deep Thermomics

Radiomics, high-throughput features, refer to sub-visual/quantitative feature extraction and
consider a vital part of medical image analysis and radiology which strive to exploit the amount
of quantitative minable features extract from imaging data [87]. Every feature contains a distinct
phenotype of the tumor which may have diagnosis/prognostic power and adjunctive clinical importance
across the different diseases. In oncology, identified features from radiology or any other imaging data
facilitate prediction, diagnosis, and prognosis associated with cancer disease to monitor the response,
like survival, as a progression criterion of disease and treatment response. Pretrained deep neural
networks provide high-dimensional features as an opportunity to gain information on tumor area and
its environment that is not otherwise available to the radiologist.

Having sufficed features from the medical images leverage better diagnostic/prognostic decisions
whereas high-dimensional feature space can impede computation and enervates the performance of
feature selection known as the curse of dimensionality problem. This creates a wrong outcome of the
model due to overfitting the decision-making unit. Traditional feature selection might not the best
solution for such an issue because the low-level informative features provided by the network might
translate as collinearity among the descriptors and lead to the elimination of valuable information.
Here, we propose an autoencoder trained specifically for such high-dimensional throughput features to
reduce the dimensionality hierarchically to the lower dimension. Autoencoders are data compression
algorithms that make of hierarchical compression and decompression units cascade to each other.
They are data-specific, automatically learn from training input data instead of being obtained by
human interference, and lossy. Autoencoders can compress data like what they have been trained on
and cannot be generalized for other dissimilar data, while they are different from lossless arithmetic
compression [88]. An autoencoder contains encoding and decoding parametric functions with a
measure of distance, or “loss” function, between the compressed representation of the input data and
the final decompressed representation. The parameters of the encoding/decoding functions can be
optimized by using stochastic gradient descent to minimize the reconstruction loss.

Autoencoder architecture. Several dense layers with different sizes were employed to reduce the
dimensionality from 2048 to 16 compressed descriptors, in the latent space. Eight dense (8D) layers,
including 4 dense layers in each of encoder and decoder, were used. The intermediate representation
of feature dimensionality was varied from the size of 1024, 256, and then 64, to latent space with size
16. Each layer has a ReLu activation function and the last layer has a Sigmoid activation function, with
sparse constraints in the initial layer (Figure 3). The network trained for the batch size of 128, with a
total of 3000 iterations, with an unfixed learning rate in the Adam optimization algorithm.

Let x ∈ R
F considers as the first mapped input, where F = 2048, to the latent space with

h = fe(x) = ae(Wx + be) is the hidden representation of the input vector, ae is the encoder activation,
W ∈ RF×G is the weight matrix, and be ∈ RF is the encoder bias. y = fd(h) = ad

(
WTh

)
span the latent
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features back to the original space and y is the counterpart of x and ad is the activation for the decoder.
Since we use a deep autoencoder encoder and decoder functions are expanded for multilayer
as hi = fei(. . . fe2( fe1(x))) = aei(. . . ae2(W2ae1(W1x + be1) + be2)) yi = fd1

(
. . .
(

fdi−1

(
fdi(hi)

)))
=

ad1

(
WT

1 . . .
(
WT

i−2adi−1

(
WT

i−1adi

(
WT

i hi
)
hi−1
)))

, respectively. The objective of an autoencoder is to minimize{
Wi, bei

}
:

JAE = Ex
[
	
(
x, fdi

(
fei(x)

))]
(6)

This captures the predominant patterns in the data and provides a noise invariant representation
(manifold) of data which is very valuable considering the sensitivity of the infrared to noise. 	(.) denotes
the loss function and here, we use binary cross-entropy (BCE), as presented below:

LBCE = − 1
F

F∑
i=1

yilog(p(yi)) + (1− yi) log(1− p(yi)) (7)

where y is the label and p(y) is the predicted probability of the segmented label for all F points.
Having a Sigmoid function, 1

1+e−y makes the function a binarized value, representing the existing class
against background class.

Learning a dictionary fitted to a training set with the sparse latent code is formulated by the
optimization below [89,90]:

minWi, hi

F∑
j=1

(
‖ xj −WT

j hj ‖2 + λ‖ hj ‖1
)

(8)

This is a convex objective in every Wi and hi when the other is fixed. 	1 penalty term is the
driving force in the above object forces for the sparse latent variable [88]. Here, the aforementioned
objective is implemented for W1 and h1. Having sparse distributed representation (SDR) in this
autoencoder not only follows the fundamental direction of deep learning but also creates robustness
against noise [91]. Having our data compressed, we use a random forest to stratify the participants
based on the sparse-latent deep features (Figure 3).

Figure 3. The proposed sparse deep autoencoder to reduce the dimensionality of the deep-thermomics
is presented.

5. Results

The proposed method for thermal pattern detection was examined by thermal breast cancer
screening datasets. The results of the low-rank approximation using sparse PCT were then
compared to PCT thermal low-rank matrix approximation algorithm, as commonly used in infrared
diagnostic systems.
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5.1. Patient Population and Infrared Breast Cancer Study Data

We used 208 participants from Database for Mastology Research (DMR) infrared breast screening
dataset [92], who were healthy (without symptoms) or sick (diagnosed by mammographic imaging as
breast cancer cases or non-cancerous but with symptoms). The median age in our study sample was
60 years, and the participants comprised 77 (37%) Caucasian, 57 African (27.4%), 72 Pardo (34.6%),
1 Mulatto (0.5%), and 1 indigenous (0.5%) women. Among the participants, 52 had a history of
diabetes in their families (25%), and 38 were undergoing hormone replacement (18.3%). All patients
had infrared images obtained by the following acquisition protocol: images have a spatial resolution
of 640 × 480 pixels and were captured by a FLIR thermal camera (model SC620) with a sensitivity
of less than 0.04 ◦C range and capture standard of −40 ◦C to 500 ◦C [27,92]. Table 1 shows the
clinical information and demography of the cohort. In this study, we considered symptomatic patients
(who are not diagnosed with cancer but have similar signs) and sick (cancer) patients in one group,
called the symptomatic group. The rationale behind this is due to having such analyses as the first
line of screening, and once heterogeneity is detected by this system, further investigations need to
be performed by a physician and another imaging modalities, i.e., mammography, to confirm the
malignancy and specify the possible type of tumor.

Table 1. Clinical information and demographics of the breast cancer screening database using
thermal imaging.

DMR—Database for Mastology Research

Age Median (±IQR) 60 (25,120)

Race

Caucasian 77 (37%)
African 57 (27.4%)
Pardo 72 (34.6%)
Mulatto 1 (0.5%)
Indigenous 1 (0.5%)

Diagnosis 1
Healthy 2 128 (61.5%)
Symptomatic (with and without cancer) 80 (38.5%)
Sick 3 36 (17.3%)

Family history

Diabetes 52 (25%)
Hypertensive 5 (2.4%)
Leukemia 1 (0.5%)
None 150 (72.1%)

Hormone therapy (HT)
Hormone replacement 38 (18.3%)
None 170 (81.7%)

1 This diagnosis performed with mammography as ground truth in this Dataset. 2 Healthy term is used as
non-cancerous and non-symptomatic patients. 3 We use the term “sick”, which includes different types of breast
cancer patients diagnosed by mammographic imaging.

5.2. Results of Low-Rank Sparse PCT (Principal Component Analysis)

Three low-rank matrices were extracted from the 23 initially thermal sequences by using Sparse
PCT. Some representative results of the low-rank approximation manually selected for our study
cohort are shown in Figure 4. Low-rank approximation in the sequence of thermal images resulted
in a heterogeneous breast area for 80 participants for breast cancer screening (sick and healthy with
symptoms versus completely healthy without any symptom, Figure 4a–c). Thermal patterns showed
more heterogeneous textures presenting the vasodilatory effect on the subdermal area of the breast.
However, there was much less thermal heterogeneity found among the healthy participants (Table 1,
Figure 4d–f). The targeted areas indicate significantly lesser heterogeneous patterns projected by the
low-rank Sparse PCA in the ROI.
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5.3. Deep-Thermomic Features

We extracted 2048 deep thermomic features from the targeted ROI in the thermal imaging
(solely breasts area) using the latest layer of the ResNet-50 pre-trained model. The ResNet-50
pre-trained model contained five identical blocks having a convolutional layer, max-pooling,
ReLu, and many repetitive identity connections between each layer. Convolutional blocks consisted of
three convolution layers like identity block. The ResNet-50 model had 25,583,592 trainable parameters
and 53,120 non-trainable parameters. The preferred input image to ResNet-50 was an RGB image with
a dimension of 224× 224× 3. This squared image slipped through the entire process and ResNet-50
model re-scaled the spatial dimensions of the input image from 224 to 230, 112, 56, 28, 14, 7 while
the fourth dimension grew from 3 to 64, 128, 256, 512, and 2048. Here, we used this to leverage the
low-rank matrix approximation for each participant. We extracted three bases using sparse low-rank
matrix approximations from the original thermal stream and stacked them like three channels in
the input image. The input image was cropped around the ROI to create a square matrix for each
channel identically.

Figure 4. Low-rank approximation of thermal sequence determined using different Sparse PCT
(principal component analysis) matrix factorization technique. Each column shows different case,
columns (a–c) show symptomatic patients (diagnosed by mammography as cancer patients or healthy
with symptoms), whereas columns (d–f) show the result of methods for healthy cases.

5.4. Result of the Sparse Autoencoder and Dimensionality Reduction

We used 2048 deep features extracted from the ResNet-50 pre-trained model as the input of
the proposed autoencoder. The autoencoder consisted of seven layers (Figure 3) and reduced the
dimensionality from 2048 to 1024, 256, 64, and 16. The model was trained and validated with 4000,
and 2000 vectors obtained by the ResNet-50 model from infrared images in the breast screening dataset.
The model had 4,744,784 trainable parameters and was trained by Adam optimizer with the learning
	1 with a regularization value of 10−5 and for 500 epochs. The batch size was 128 for the model network.
Figure 5 shows the loss of the model during the training.

From 2048 initially extracted deep thermomic features, the extracted features from the battle-neck
layer of autoencoder resulted in 16 deep-thermomic features (Figure 5). Subsequently, the level of
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the heterogeneity for each participant measured through compressed descriptors was obtained by
128 times compression on the deep-thermomics.

Figure 5. The binary cross entropy loss is presented for training and validation of the proposed sparse
autoencoder for 300 epochs.

5.5. Result of Random Forest Classification of Symptomatic and Non-Symptomatic Participants

We stratified the participants based on the 16 sparse latent deep thermomic descriptors and
compared them with the ground truth data based on mammography information. To examine the
hypothesis that the thermal heterogeneity extracted by the deep learning model can be used as
a biomarker to stratify among participants, a random forest classifier was fitted for multivariate
covariates with leave-one-out cross-validation. The best multivariate model resulted accuracy of
75.24% (72.33–77.67%) for Sparse PCT, which was challenged by other matrix approximation technique
PCT (73.27% (71.84–76.21%)). A multivariate model contains clinical information and demographics
(age, and family history) gave an accuracy of 71.36% (69.42–73.3%). A full multivariate model having
all clinical and demographic information with the extracted features resulted in 78.16% (73.3–81.07%)
for Sparse PCT and 73.79% (72.33–76.7%) for PCT (see Table 2). The receiver operating characteristic
(ROC) curve of comparative analyses of baseline models is shown in Figure 6. The entire computational
experiments were conducted by Python programming language [93] (for training and testing the model).

 

Figure 6. Receiver operating characteristic (ROC) curve for different multivariate model using deep
thermomic features and clinical and demographic information is presented for classifying between
symptomatic and non-symptomatic participants (for baseline model).
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Table 2. The results of random forest classification for the cross-validated model.

Methods Cross-Validated Accuracy

Sparse PCT 75.24 (72.33–77.67)%
PCT 73.27 (71.84–76.21)%
Clinical information * 71.36 (69.42–73.3)%
Sparse PCT with clinical information * 78.16 (73.3–81.07)%
PCT with clinical information * 73.79 (72.33–76.7)%

* Clinical and demographic covariates: age, and family history.

6. Discussion

In this study, we proposed a system to reduce the dimensionality of deep-thermomic features to
extract thermal patterns for infrared diagnostic systems for thermography imaging. This study was
designed based on the general trend of dimensionality reduction and to alleviate the possibility of
over-fitting but used sparse multiple low-rank matrix approximations. This study showed a possibility
to identify potential patients with breast cancer along with other clinical throughputs (such as CBE)
using non-invasive, faster, and more cost-efficient thermography imaging.

The application of deep sparse autoencoder not only reduced the initial high-dimensional
deep-thermomics but also added sparsity to the initial sparse representative of the thermal stream,
which theoretically increases the robustness of the system against noise. It also showed significant
improvements in stratifying symptomatic patients from healthy participants (Figure 6, and Table 2).
Moreover, using sparse PCT showed higher accuracy than other approaches in finding heterogeneous
thermal patterns, which might be due to the nature of sparsity in the calculation of the low-rank
representative of the basis matrices, which were preserved by ResNet-50 level-level features and
recursive training of the autoencoder network. This indicates the penalty terms in Sparse PCT creates
constraints that worked in favor of detecting symptomatic cases while eliminating noise.

The application of deep thermomics considerably increased the dimensionality of the input
thermal imaging and intensify the possibility of overfitting the random forest model, called the
curse of dimensionality. The proposed sparse autoencoder reduced the dimensionality by removing the
redundancy among the features by spanning thermomics to lower-dimensional space, while increasing
the robustness of feature selection due to rigorous training of the model (this method is also used
in other applications in medicine such as segmentation [94]). Since the infrared images used in this
study had intensity information similar to natural images, using this pre-trained model is seemingly
appropriate despite the medical nature of the analysis.

Thermal and infrared imagery has been used to determine breast abnormality, as the first medical
application of thermography [92]. There are many discussions about more suitable positions for
such imaging acquisitions [35] and the reliability of this modality [57,58] that have been reported.
However, the association of sparse autoencoder on the abundant deep thermomics finding thermal
heterogeneity with a breast abnormality has not been discussed in literature which increases the
novelty of this contribution to the field. One of the reasons that the proposed system performs
well finding thermal heterogeneity might be because of the association of low-level deep features
representing basis set and their sensitivity to slight intensity variation of thermal images. This can be
justified by vasodilatory activity in the ROI for symptomatic patients. Despite some argument against
using a thermal infrared imaging system as a solo-imaging modality for detecting breast abnormality,
this technology has still been used as one of the important diagnostic tools with CBE and other imaging
modalities (as discussed in Section 2).

One limitation to applying the presented models is related to data, and even with a considerable
number of cases there is a need to increase the cohort to confirm the accuracy of the system. Having a
larger cohort of patients increases the statistical power of such analysis by increasing the possibility
of independently validating the system (substitute cross-validation). The other limitation may be
using limited deep thermomic features. Having more deep-thermomics helps to assess the strength of
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the sparse autoencoder approach to select better compressing features that lead to capturing better
thermal characteristics. There is an inherent limitation of using infrared thermography for detecting
cancerous tissues once they are deeper into the tissues, as despite tracking the vasodilatory effects in
the skin subsurface, deeper lesions might not be easy to detect. This might require further investigation
using multimodal imaging analyses. There are also discussions on using a single thermal frame or
multiple frames for selecting variability of thermal patterns across the acquisition time using different
infrared-based approaches [5,35,95–97], which can be investigated further. Applying multiple thermal
frames provided a chance of capturing thermal heterogeneity in the ROI for the duration of the
acquisition, which might not be recorded by a single frame input system.

The presented technique offers some advantages. First, applying low-rank matrix approximation
to extract thermal avatars during imaging acquisition provides a significant projection of thermal
heterogeneity leading to better diagnosis of abnormal patients. Second, a sparse autoencoder eliminates
the manual selection or human-engineering feature selection for reducing the dimensionality of the
deep thermomics. Third, the proposed method considerably alleviates the effect of motion artifacts
and imaging acquisition noise, which can be substantial improvements in infrared thermography
applications. To the best of our knowledge, this is the first study which performs such analyses.

7. Conclusions

This study addressed one of the biggest challenges in high-dimensional deep feature selection,
which selected the best representative deep thermomics from high-dimensional features extracted from
a pre-trained deep neural networks model. The method performed multilayer dimensionality reduction
using Sparse PCT to select the low-rank approximation of the thermal sequence. They extracted
high-dimensional features from the ResNet-50 pre-trained model. Then, it used a trained sparse
autoencoder to hierarchically reduce the size of the feature to 16 thermomic descriptors. We tested
our method for 208 thermal breast cancer screening cases. We compared the appropriateness of
these approaches with similar state-of-the-art thermographic methods, i.e., PCT. The results indicated
the significant performance of the full multivariate model using Sparse PCT in preserving thermal
heterogeneity to discriminate between symptomatic and healthy participants (accuracy of 78.16%
(73.3–81.07%)).

Future works should involve more thermomics extracted from the different low-rank
approximations to increase the potential of assessing the entire thermal characteristics of cancerous
parenchymal tissues. Moreover, an expansion of the validation set to a larger infrared imaging cohort
can further confirm the strength and limitations of this approach.
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Abstract: Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-
based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and
precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high
density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied
for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-
insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO2-Ta2O5 layer structure for the sequential
detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea
and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1–3 mM.
For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles
immobilized with either penicillinase or urease were also investigated. The surface morphology
of the TMV-modified Ta2O5-gate was analyzed by scanning electron microscopy. Additionally, the
bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate.

Keywords: tobacco mosaic virus (TMV); capacitive field-effect sensor; bi-enzyme biosensor; enzyme-
logic gate; urease; penicillinase

1. Introduction

The field effect in an electrolyte-insulator-semiconductor (EIS) system offers a universal
transducer principle for designing many kinds of chemical sensors and biosensors (see e.g.,
recent reviews [1–9]). EIS capacitors (EISCAP) are considered as the simplest type of such
field-effect sensors [10]. They have been implemented for detecting various biochemical
species such as ions [11–14], charged molecules (DNA (deoxyribonucleic acid) [15–17],
protein biomarkers [18–22], polyelectrolytes [23,24]), virus-like particles [25,26], ligand-
stabilized nanoparticles [27,28], etc. In addition, numerous enzyme-modified EISCAP
biosensors were constructed for the detection of various analytes such as glucose [29–31],
urea [30–32], creatinine [33], penicillin [31,34], formaldehyde [35], triglycerides [36], and
acetoin [37]. The operation mechanism of these biosensors is based on the detection of
local pH changes resulting from the catalytic reaction of the immobilized enzyme on the
sensor surface with its specific substrate [10]. Moreover, the ability of EISCAP sensors
for multi-analyte detection using a single EISCAP chip or an array of EISCAPs has been
demonstrated [31,38–44].
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Generally, the analytical characteristics of enzyme-based biosensors are strongly af-
fected by the enzyme immobilization method [45,46]. Therefore, the choice of an appropri-
ate enzyme immobilization strategy is a key factor for designing the biorecognition part of
biosensors, including EISCAPs. The immobilization method must provide a high enzyme
load on the biosensor surface, a good accessibility of the active sites for the target analytes,
as well as to retain the structure, function, and catalytic activity of the enzyme [45,46].
Intensive efforts have been made during the last decade to develop novel immobilization
techniques to improve the biosensor performance: the use of nanomaterials (e.g., metal,
oxide or organic nanoparticles, nanowires, carbon nanotubes, magnetic beads) as nanoscale
scaffolds for the immobilization of receptor molecules [47–50] as well as the incorporation
of enzymes within nanoscale structures (e.g., alginate gels [51], polyelectrolyte/enzyme [52]
or carbon nanotube/enzyme multilayers [53]). More recently, due to their regular shape,
high surface-to-volume ratio, and extremely high density of surface docking sites, biolog-
ical nanoscaffolds such as plant virus-like particles have increasingly been used for the
precisely positioned immobilization of receptors on different transducers for biosensing
purposes [54–56]. In contrast to various chemically synthesized nanoparticles, which are
typically polydisperse with a more randomized and unreproducible distribution of particle
size and density of shell molecules, many types of virus particles are monodisperse with
regard to uniform morphologies and specific dimensions.

The tobacco mosaic virus (TMV) is one of the most comprehensively investigated plant
viruses. Native full-length TMV particles are 300 nm long, nanotube-like nucleoprotein
complexes with inner and outer diameters of 4 and 18 nm, respectively [56,57]. TMV
particles exhibit excellent chemical and physical stability: in solutions, they can withstand
90 ◦C [58] and pH values between pH 3 and pH 9 [57]. The outer surface of each TMV
nanotube holds thousands of docking sites accessible on about 2130 identical, helically
arranged coat protein (CP) subunits, capable in the coupling of functional molecules. There-
fore, TMV particles have often been utilized as biological nanoscaffolds for an extremely
dense and precisely controlled immobilization of biorecognition molecules (receptors),
including enzymes [55,56,59]. Moreover, TMV particles functionalized with bioreceptors
can be simply combined with different transducer structures for chemical and biological
sensing. For example, TMV particles were applied to assist the detection of the explosive
agent trinitrotoluene [60], volatile organic compounds [61], and antigen-antibody bind-
ing [62,63]. The authors introduced amperometric glucose [64] as well as colorimetric and
field-effect penicillin biosensors [65,66] by using TMV particles as nanoscaffolds for the
immobilization of glucose oxidase and penicillinase, respectively. TMV particles as receptor
nanocarriers usually enable increased receptor densities per sensor area, an enhanced mass
transport of the target molecules to the TMV surface in comparison to planar surfaces,
and a favorable orientation of the receptor molecules for an increased receptor-substrate
interaction; all these factors enhance the overall biosensor performance [56,64].

In this work, the ability of TMV-assisted enzyme-based EISCAPs for multi-analyte
detection was demonstrated. Penicillinase and urease were co-immobilized onto TMV
surfaces for the sequential detection of penicillin and urea using the same p-Si-SiO2-Ta2O5
field-effect sensor. These two enzyme/substrate systems (i.e., penicillinase/penicillin and
urease/urea) represent typical model experiments inducing counter-rotating pH shifts on
the sensor surface: a) generating hydrogen ions (penicillinase/penicillin → pH decrease) or
b) consuming hydrogen ions (urease/urea → pH increase). For comparison, TMV-modified
EISCAPs immobilized with either penicillinase or urease (no co-immobilization) were also
studied. Finally, in a proof-of-concept experiment, the newly developed TMV-assisted bi-
enzyme EISCAP biosensor was applied to mimic an XOR (Exclusive OR) enzyme logic gate.

2. Materials and Methods

2.1. Preparation of Biotinylated Tobacco Mosaic Virus Particles

A TMV variant (TMVCys) containing a S3C mutation close to the N-terminus of
every CP was employed as a viral enzyme nanocarrier with a spacing of 2.5 to 3.5 nm of
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coupling sites on their outer protein coat [67]. This mutant exposed 2130 cysteine residues
on each TMV particle presenting surficial sulfhydryl groups. TMVCys extracted from
infected Nicotiana tabacum leaves were equipped with PEG11-biotin moieties via maleimide-
sulfhydryl-coupling (EZ-Link®Maleimide-PEG11-Biotin, Thermo Scientific, Rockford, IL,
USA) according to [56]. Briefly, a maleimide-PEG11-biotin linker was incubated with
TMVCys particles in a molar ratio of 3:1 (linker/CP) for 3 h at 26 ◦C under agitation.
Unbound linker molecules were removed by centrifugal ultrafiltration (Amicon Ultra,
30 kDa molecular weight cut-off, Merck-Millipore, Darmstadt, Germany) in five consecutive
washing steps with 10 mM of sodium-potassium-phosphate (SPP) buffer (pH 7.0). The
resulting biotinylated TMVCys (TMVCys/Bio) particles were resuspended and stored in this
buffer at 4 ◦C. The particles were analyzed by sodium dodecyl sulphate–polyacrylamide gel
electrophoresis and colloidal Coomassie Brilliant Blue G-250 staining [68]. Densitometric
comparison of the signals corresponding to the biotinylated and the non-modified form of
the CP confirmed biotinylation of >90 % of the CPs.

2.2. Preparation of Streptavidin-Enzyme Conjugates

Penicillinase from Bacillus cereus (1500–3000 Units/mg protein, Sigma Aldrich, Darm-
stadt, Germany) and urease from Canavalia ensiformis (75,265 Units/g solid, from Jack bean,
Sigma Aldrich, Germany) were applied as the model enzymes. In order to immobilize them
on the biotinylated TMV particles, they were conjugated with streptavidin (SA), allowing
strong attachment via SA-biotin high affinity binding. The streptavidin conjugation was
performed by utilizing a commercial conjugation kit (LYNX Streptavidin rapid conjugation
kit, Bio-Rad, Great Britain). The conjugation of penicillinase was performed as described
in [65], using a molar ratio between penicillinase and SA of 1:25 in the reaction mixture.
For the urease conjugation, the same protocol was applied with a molar ratio of 1:10. The
streptavidin-conjugated enzymes (SA-enzymes) were stored in stock solutions (10 mM
phosphate buffered saline (PBS)) with a concentration of 600 Units/mL (SA-penicillinase)
and of 2000 Units/mL (SA-urease) at 4 ◦C. For the fabrication of the bi-enzyme biosen-
sors, both enzyme solutions were mixed in a ratio of 1:1, resulting in an enzyme cocktail
containing 300 Units/mL SA-penicillinase and 1000 Units/mL SA-urease.

2.3. Modification of EISCAP Sensors with TMV Particles and Coupling of SA-Enzyme Conjugates

In this study, EISCAPs with an Al/p-Si/SiO2 (30 nm)/Ta2O5 (60 nm) layered structure
were used as the sensor platform, as schematically represented in Figure 1a. Details of
the fabrication process were described in [25]. Prior to their modification with the TMV
particles and enzymes, the sensors were cleaned in an ultrasonic bath for 5 min each with
acetone, isopropanol, ethanol, and deionized water, and then installed into a homemade
measurement cell. In the measurement cell, the sensor chip was sealed by an O-ring,
with 0.5 cm2 of the sensor surface in contact with the electrolyte (see Figure 1a). A 50 μL
TMV solution (0.1 mg/mL) was incubated for one hour at room temperature (RT) on
this exposed Ta2O5 surface to allow TMV adsorption. Subsequently, not-adsorbed TMV
particles were washed away with 10 mM PBS buffer. Afterwards, 50 μL of the particular
SA-enzyme solution (single enzyme EISCAP: 50 μL SA-penicillinase or 50 μL SA-urease
solution; bi-enzyme EISCAP: 50 μL SA-penicillinase + SA-urease solution) were incubated
for two hours at RT. The sensor surface was then flushed three times with 0.33 mM PBS and
conditioned in 0.33 mM PBS buffer solution for at least one hour, before the electrochemical
measurements were started. When the EISCAPs were not in use, they were stored in
0.33 mM PBS buffer at 4 ◦C.
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Figure 1. (a) Photo of the EISCAP sensor chip (left) and schematic layer structure (right) of the TMV-
assisted Al/p-Si/SiO2/Ta2O5-EISCAP sensor modified with penicillinase and/or urease, mounted in
a measurement cell and sealed by an O-ring. (b) Scanning electron microscopic (SEM) image of the
Ta2O5-gate surface showing the distinguished areas where the Ta2O5 surface is covered by the O-ring
preventing TMV adsorption (right) and the area inside the O-ring, where the Ta2O5 is modified with
TMV particles (left). (c) Magnification of the border line between TMV particle-modified and bare
Ta2O5 surface. (d) Zoomed out image of the TMV particle-modified surface area. VG: gate voltage.

2.4. Electrochemical Characterization of TMV-Modified EISCAP Biosensors

For electrochemical characterization of the TMV-assisted EISCAPs, an Ag/AgCl ref-
erence electrode (filled with 3 M KCl, Metrohm, Filderstadt, Germany) was immersed in
the buffer solution and connected to an impedance analyzer (Zahner Zennium, Zahner
Elektrik, Kronach, Germany). Furthermore, the Al rear-side contact was electrically con-
nected to the impedance analyzer. All measurements were performed in a measurement
buffer (0.33 mM PBS buffer) with varying concentrations of penicillin G (Sigma Aldrich,
Darmstadt, Germany) and/or urea (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) at
RT. In order to avoid signal interferences, the set-up (except of the impedance analyzer)
was integrated in a dark Faraday cage. As a first step, leakage-current measurements were
carried out in a measurement solution without penicillin and urea. Therefore, gate voltages
from –3 V to +3 V were applied with 100 mV steps between the reference electrode and the
Al rear-side contact. These measurements served as a quality control of the insulator layer,
where only sensors exhibiting a leakage current < 10 nA were selected for further electro-
chemical measurements. In the next step, capacitance–voltage (C–V) measurements were
performed in the measurement buffer (by applying a gate voltage between –2 V and +2 V
with 100 mV steps) to check the correct functioning of the field-effect EISCAPs. In order to
measure the capacitance of the EISCAP, a small AC (alternating current) voltage of 20 mV
with a frequency of 120 Hz was superimposed. For the following constant-capacitance
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(ConCap) measurements, a working point was set in the depletion region of the C–V curve
at about 60% of the maximum capacitance. The ConCap mode offered the time-dependent
detection of surface-charge (potential) changes induced by, e.g., local pH changes at the
sensor surface. During the ConCap mode, the capacitance of the sensor structure in the
working point was kept constant by a control loop: Changes of the surface potential, e.g.,
induced by the enzymatic conversion of penicillin or urea, were compensated by applying
an opposed voltage at the reference electrode. These voltage changes were recorded over
time, allowing for the dynamic detection of changes in the penicillin and urea concentra-
tions. A detailed description of the C–V and ConCap-measurement mode was provided
in [23]. The ConCap measurements were conducted in a measurement buffer as well as in
penicillin and urea solutions with concentrations between 0.1 and 5 mM for single-enzyme
sensors and between 0.1 mM and 3 mM for bi-enzyme sensors. The penicillin and urea were
purchased from Sigma Aldrich (Darmstadt, Germany) and GE Healthcare Bio-Sciences AB
(Uppsala, Sweden), respectively.

2.5. Characterization of Surface Morphology by SEM

To control and characterize the TMV adsorption on the Ta2O5-gate surface, SEM
images of the TMV-modified sensor chip were taken using a JEOL JSM-7800F Schottky field-
emission microscope (JEOL GmbH, Freising, Germany). For this purpose, the sensors were
mounted out of the measurement chamber, rinsed with deionized water, and dried with
nitrogen to remove the salt residues of the buffer solution. Subsequently, an approximately
5 nm thick platinum-palladium layer was sputtered onto the sensor surface to provide
conductivity and prevent the additional charging of the sensor surface.

3. Results and Discussion

3.1. SEM Images of TMV-Modified EISCAPs

To ensure that the TMV particles had adsorbed to the Ta2O5-gate surface within the
O-ring and thus could act as nanocarriers for enzyme attachment, SEM images of the sensor
surface were obtained after TMV loading. Figure 1b–d shows exemplary SEM images of
the chip surface with a clear boundary between the TMV-modified region and the area
sealed by the O-ring (see Figure 1c). Within the O-ring, TMV particles were homogeneously
distributed on the Ta2O5 surface, with some virus particles present as lateral or head-to-tail
aggregates (Figure 1d), as is typical for TMV particles [25,26,66]. The TMV particles were
adsorbed in a high density of about 6.3 × 109 particles/cm2 on the Ta2O5 surface, which
was slightly higher than was reported in previous works [25,26,66] and revealed that the
TMVs had been successfully attached to the Ta2O5 surface where they were available for
enzyme immobilization.

3.2. TMV-Assisted Single-Enzyme EISCAPs

In order to study the sensor performance of TMV-assisted single enzyme EISCAPs,
penicillin and urea biosensors with penicillinase and urease, respectively, were fabricated
separately. Penicillinase catalyzes the conversion of penicillin to penicilloic acid, whereby
H+ ions are produced, leading to a local pH decrease [69]. In contrast, during the hydrolysis
reaction of urea catalyzed by the urease, OH– ions are produced (or H+ ions are consumed),
resulting in a local pH increase [70,71]. Changes in pH at the EISCAP surface cause the
surface to become more positively charged (in the case of a pH decrease) or more negatively
charged (in the case of a pH increase). This surface-charge change influences the width
of the space-charge region in the semiconductor layer and, thus, the total capacitance
of the sensor structure. Choosing these two enzymes enabled investigating whether
EISCAPs modified with TMV particles as enzyme nanocarriers were suitable for enzymatic
reactions involving both acidification and alkalization. The direction of the EISCAP-signal
changes would directly correlate with these two kinds of enzymatic reactions, generating
(penicillinase/penicillin) or consuming (urease/urea) hydrogen ions.
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3.2.1. Penicillin Biosensor

Figure 2a shows a ConCap curve of the TMV/SA-penicillinase modified EISCAP
biosensor in the loop of penicillin concentrations of 0.1, 0.5, 1, 3, 5, 3, 1, 0.5, and 0.1 mM.
The measurements were carried out in 0.33 mM PBS at pH 8.0, which corresponds to the
pH optimum of the penicillinase [72]. For each penicillin concentration, the ConCap signal
was recorded for approximately 5 min.

 

Figure 2. (a) ConCap curve of a TMV/SA-penicillinase-modified EISCAP recorded in 0.33 mM
PBS buffer (pH 8.0) with different penicillin concentrations between 0.1 and 5 mM. The inset figure
presents the resulting calibration curves with a penicillin sensitivity of about 98 and 95 mV/dec for
the increasing (black) and decreasing (red) concentration series of measurements, respectively. (b) Re-
producibility of the TMV-assisted EISCAP penicillin biosensor: the ConCap signal was repeatedly
measured in buffer and in 0.5 mM penicillin solution in alternating order.

As expected, with increasing penicillin concentration, the recorded signal shifted
towards less positive voltages. By increasing the penicillin concentration, more H+ ions
were generated and the local pH value at the sensor surface became lower: The produced
H+ ions protonate the hydroxyl groups on the Ta2O5 surface making it more positively
charged. Consequently, the total capacitance of the EISCAP was decreased. To keep the
total capacitance of the sensor constant, the applied voltage at the reference electrode
should become more negative (or less positive), which is visible as a shift in the ConCap
signal. Conversely, with decreasing penicillin concentration, the ConCap signal shifted in
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the opposite direction. The clear steps at different penicillin concentrations also underlined
a fast response time of the TMV-based penicillin biosensor.

The measurement curve revealed that the sensor had a low hysteresis of 1 and 3 mV
in the buffer without penicillin and in the 3 mM penicillin solution, respectively. However,
it was observed that hysteresis is somewhat higher at lower penicillin concentrations with
a maximum value of 8 mV at 0.5 mM. Generally, hysteresis of pH-sensitive field-effect
devices is interpreted as slow response due to the slow buried sites underneath the gate-
insulator surface (see e.g., [73,74]). It was reported that the hysteresis increases with an
increasing pH-loop time, and in acid solutions it is smaller than in alkaline solutions [73,74]
In addition, the hysteresis width may be affected by the background long-term drift, slow
states at the Si-SiO2 interface, as well as by the possible alteration of the enzyme activity
due to local pH changes. The experiments performed in this study did not allow us to
provide a clear explanation for the analyte-concentration dependence of the hysteresis
width. Therefore, additional in-depth studies are needed to quantify this phenomenon.

The inset figure indicated the calibration plots for upward and downward penicillin-
concentration loops evaluated from the ConCap response. The TMV-assisted EISCAP
biosensor exhibited a high penicillin sensitivity of about 98 and 95 mV/dec for the increas-
ing and decreasing concentration series of measurements, respectively. The small difference
in penicillin sensitivities of 3 mV/dec observed for upward and downward concentration
loops could be attributed to the hysteresis effect. The obtained sensitivity values were com-
parable to our previous work with TMV-based penicillin biosensors [66] and were higher
than sensitivity values obtained for EISCAPs with adsorptively immobilized penicillinase
(68.7 mV/dec) [31].

One of the important operation characteristics of biosensors is the reproducibility
of the sensor response. To demonstrate the reproducibility of the TMV-assisted EISCAP
penicillin biosensor, the ConCap signal was repeatedly measured in buffer (six times)
and in a 0.5 mM penicillin solution (five times) in alternating order. The results of these
experiments are shown in Figure 2b. The mean signal was 67 ± 1 mV, which underlines
the high reproducibility of the developed penicillin biosensor.

3.2.2. Urea Biosensor

Figure 3a depicts a ConCap curve of an EISCAP modified with TMV/SA-urease,
which was recorded in 0.33 mM PBS at pH 7.4, specified by the supplier as the optimum
pH for urease [75].

Here, the ConCap signal behaved in the opposite way to that of the penicillin biosensor:
with an increasing urea concentration from 0.1 to 5 mM, the measurement signal rose in
the direction of the more positive (or less negative) voltages. The observed signal behavior
could be explained as follows: an increase of the urea concentration resulted in a rise of the
local pH value and deprotonation of the hydroxyl groups on the Ta2O5 surface, making it
more negatively charged, whereby the total capacitance of the EISCAP increased. To keep
the overall capacitance of the EISCAP sensor constant, the applied voltage at the reference
electrode must be more positive (or less negative), which appeared as a signal shift in the
ConCap curve.

Again, as with the penicillin measurements, clearly delineated signal levels could be
seen at different urea concentrations with a low hysteresis of 2 mV for 3 mM urea. However,
the hysteresis width increased with a decreasing urea concentration and amounts of 11 mV
at 0.1 mM. In contrast to the penicillin measurements, a relatively large hysteresis of 8 mV
was also recorded in the buffer solution. Additionally, at low urea concentrations, it took
longer before a stable sensor signal was achieved. From the ConCap response at different
urea concentrations, the calibration curves for the upward and downward concentration
loops were evaluated, which are depicted in the inset figure. The TMV-assisted urea
biosensor reveals a high urea sensitivity of 55 and 49 mV/dec for the increasing and
decreasing concentration series of measurements. The difference in urea sensitivities for
the upward and downward concentration loops was larger (6 mV/dec) than that of the

75



Biosensors 2022, 12, 43

TMV-assisted penicillin biosensor. In other studies with urea sensors based on EISCAPs,
urea sensitivities of 16 mV/dec (1 to 100 mM) by using a layer-by-layer nanofilm of ZnO
nanocrystals and carbon nanotubes [76], 32 mV/dec by the immobilization of urease
on magnetic particles [71], and 40.5 mV/dec (1 to 25 mM) in the case of nano-spotted
urease [31] were achieved. Thus, the EISCAP modified with TMV/SA-urease offers a
higher sensitivity and the ability of detecting low urea concentrations.

 

Figure 3. (a) ConCap curve of a TMV/SA-urease-modified EISCAP recorded in 0.33 mM PBS buffer
(pH 7.4) with different urea concentrations between 0.1 and 5 mM. The inset figure presents the
resulting calibration curves with a urea sensitivity of about 55 and 49 mV/dec for increasing (black)
and decreasing (red) concentration series of measurements, respectively. (b) Reproducibility of the
TMV-assisted EISCAP urea biosensor: the ConCap signal was repeatedly measured in buffer solution
and in 0.5 mM urea solution in alternating order.

The results of the reproducibility experiments are shown in Figure 3b. Like the
penicillin biosensor, the ConCap signal of the TMV-assisted EISCAP urea biosensor was
repeatedly measured in buffer (six times) and in a 0.5 mM urea solution (five times) in
alternating order. The urea biosensor signal was reproducible with a mean signal of
(88 ± 5) mV.

3.3. TMV-Assisted Bi-Enzyme EISCAP Biosensor

The TMV-assisted bi-enzyme EISCAP, where both enzymes had been co-immobilized
on the same sensor chip, was applied for the serial detection of urea and penicillin for
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the first time. Figure 4a depicts the ConCap response at different urea and penicillin
concentrations ranging from 0.1 to 3 mM.

 

Figure 4. (a) ConCap curve of the TMV-assisted bi-enzyme EISCAP biosensor recorded in buffer
and at different concentrations of urea and penicillin. (b) Calibration curves for urea and penicillin
evaluated from the ConCap response in (a). (c) ConCap curve recorded with an EISCAP sensor before
and after TMV loading (without enzymes) in 0.33 mM PBS (pH 7.4) and in 0.33 mM PBS (pH 7.4)
with 0.5 mM urea and 0.5 mM penicillin, respectively.
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The measurements were performed in the following order: First, the ConCap response
was recorded in the buffer solution (0.33 mM PBS, pH 7.4) to obtain the baseline signal
for the sensor, followed by measurements in urea solutions with different concentrations.
Second, the sensor signal was recorded again in the buffer solution to obtain the baseline
signal for the subsequent penicillin measurements with varying penicillin concentrations.
Finally, the ConCap signal was recorded again in the buffer and urea solution. Such
sequential arrangements of experiments are useful to examine the recoverability of the
sensor signal as well as to identify possible hysteresis and drift effects.

As expected, the bi-enzyme sensor showed distinct signal steps towards more positive
voltages with an increasing urea concentration and towards more negative voltages with
an increasing penicillin concentration. For example, at a urea and penicillin concentration
of 3 mM, the signal shift reached approximately 114 and 146 mV, respectively. Taking into
account a pH sensitivity of 56 mV/pH for the Ta2O5-gate EISCAPs studied in this work,
the local pH value on the TMV/SA-enzyme modified EISCAP surface was estimated to
be pH = 9.4 or pH = 4.8 at a urea or penicillin concentration of 3 mM, respectively. This
indicated the stability of the TMV/SA-enzyme system on the EISCAP surface over a wide
pH range.

In Figure 4b, the evaluated calibration curves of the TMV-assisted bi-enzyme EIS-
CAP for urea and penicillin are illustrated. The biosensor exhibited a urea sensitivity of
54 mV/dec, which was nearly similar to that of the single-enzyme biosensor. The penicillin
sensitivity of the bi-enzyme EISCAP amounted to 85 mV/dec, which was slightly lower
than that achieved with the single-enzyme EISCAP (see Section 3.2.1). The results indicated
that both enzymes maintained their activity after the co-immobilization.

In general, a possible non-specific adsorption of analyte molecules onto the gate
surface of the field-effect device may induce an unwanted background signal, and, thus,
may reduce the signal-to-noise ratio of the sensor signal [1,4,10]. In our case, such non-
specific adsorption may occur either on the TMV particles or on TMV-free areas of the gate
surface of the EISCAP. Therefore, we studied the signal behavior of the TMV-modified (but
enzyme-free) EISCAP in the urea and penicillin solutions. Figure 4c depicts the ConCap
signal of the EISCAP recorded in 0.33 mM PBS (pH 7.4) buffer before (unmodified sensor)
and after the loading of TMV particles, followed by measurements in buffer containing
0.5 mM urea or penicillin. As TMV particles are negatively charged [26], the sensor signal
shifted to more positive voltages after their loading onto the Ta2O5 surface. However,
upon subsequent measurements in analyte solutions, the signal remained almost constant,
indicating that the existence of urea or penicillin molecules in the solution had practically
no impact on the EISCAP sensor signal.

3.4. XOR Logic Gate Using TMV-Assisted Bi-Enzyme Biosensor

In the past, intensive research was performed in the field of enzyme-based logic gates,
which mimic the operation of electronic logic gates (see e.g., [77,78]). In enzyme logic gates,
Boolean logic operations are activated by specific molecular inputs via enzymatic reactions.
An interfacing of enzyme logic gates with electronic transducers was considered a very
promising approach for designing digital biosensors that could provide qualitative evidence
(in a YES/NO format) concerning the presence or absence of a specific analyte in the
sample [79–81]. In previous works, we demonstrated the successful integration of enzyme
logic gates with pH-sensitive EISCAPs as AND-Reset, OR-Reset, CNOT (controlled NOT)
and XOR gates [82–85]. In these logic gate devices, enzymes were immobilized onto
the biosensor surface by means of physical entrapment within a membrane or through
physical adsorption. In this work, the EISCAP modified with TMV particles (as bi-enzyme
nanocarriers) was applied to mimic an XOR enzyme logic gate.

The XOR gate is one of the important elements of biocomputing systems: it provides a
true output (1) if only one of the inputs is true. If both input signals are false (0) or both are
true (1), it must remain inactive (output signal 0). As was noted in [86], the enzyme-based
XOR gate is difficult to realize, because it requires enzymatic reactions that are able to
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produce approximately equal signals of opposite direction (net output signal should be
0), when both input signals simultaneously appear. The enzyme/substrate systems used
in this work (i.e., urease/urea and penicillinase/penicillin) represented typical examples
of such enzymatic reactions producing pH changes and consequently EISCAP signals in
opposite direction (see Figure 4).

Figure 5a shows the schematic symbol and truth table for the enzyme-based XOR

gate with urea as input A and penicillin as input B. The expected ConCap signal of the
TMV-assisted bi-enzyme EISCAP biosensor for different input combinations is illustrated
in Figure 5b.

 

Figure 5. (a) Schematic symbol and truth table of an XOR gate with urea and penicillin as input
signals. (b) Expected ConCap response for different input combinations. (c) Experimental ConCap
curve of the TMV-assisted bi-enzyme EISCAP biosensor recorded in buffer (input combination (0,0)),
in 0.1 mM urea or penicillin solution (input combination (1,0) or (0,1)) and in a mixture of 0.1 mM
urea and 0.1 mM penicillin solution (input combination (1,1)). U: urea, P: penicillin.
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The presence of the respective analyte in the solution corresponded to the input
signal 1, while the absence of an analyte was considered as the input signal 0. When
no analyte was present in the solution (input combination (0,0)), the resulting output
signal became 0, because no local pH change occurred. If one of the analytes (urea or
penicillin) was present (input combination (1,0) or (0,1)), the output signal became 1 due
to the enzymatically induced pH change. The presence of both analytes led to an output
signal 0, as both enzymatic reactions occurred simultaneously with opposing pH shifts
which compensated each other.

Figure 5c represents an experimental ConCap logic signal of the TMV-assisted bi-
enzyme EISCAP biosensor corresponding to various input combinations: The measure-
ment was started in the buffer solution in the absence of the analyte (input combination
(0,0)), followed by measurement in a 0.1 mM urea (input combination (1,0)) and 0.1 mM
penicillin solution (input combination (0,1)). To return the local pH to its initial value, after
each measurement in the particular analyte solution, the biosensor was exposed to the
buffer solution and the baseline signal was recorded again. Finally, the ConCap signal
was recorded in the solution containing both 0.1 mM urea and 0.1 mM penicillin (input
combination (1,1)). Relatively large signal shifts of opposite direction were observed when
only one of the analytes was present in the solution (24 mV at 0.1 mM urea; 12 mV at
0.1 mM penicillin). In contrast, a very small signal shift of 3 mV was detected if both
analytes were present in the solution: two simultaneously occurring enzymatic reactions
produced opposing pH changes, resulting in a nearly negligible sensor output signal.

The described proof-of-principle experiment demonstrated the successful application
of the TMV-assisted bi-enzyme EISCAPs for the development of XOR enzyme logic gates.
Future work will be directed to minimize the output signal (should be ideally 0) of the EIS-
CAP in the presence of both analytes via the optimization of the ratio of urease/penicillinase
activities and/or urea/penicillin concentrations in the solution.

4. Conclusions

The appropriate enzyme immobilization strategy is a key factor for the design of
enzyme-based biosensors. Plant virus-like particles offer the possibility of extremely
dense and precise immobilization of enzymes, due to uniform 3D structures and a high
density of surface binding sites. In this study, TMV particles were utilized for the co-
immobilization of penicillinase and urease onto the Ta2O5-gate surface of an EISCAP
sensor for the serial detection of penicillin and urea. These two enzyme/substrate systems
(i.e., penicillinase/penicillin and urease/urea) allowed the performance of typical model
experiments with opposing pH shifts on the sensor surface: (a) generating hydrogen ions
(penicillinase/penicillin with associated pH decrease) or (b) consuming hydrogen ions
(urease/urea with associated pH increase). The sensitive characteristics of TMV-assisted
bi-enzyme EISCAPs were characterized in the ConCap mode and compared with those of
single-enzyme EISCAPs.

The single-enzyme biosensors offered a high penicillin (95–98 mV/dec) and urea
(49–55 mV/dec) sensitivity and remarkable reproducibility. These notable sensor properties
were retained even when both enzymes were co-immobilized on the TMV particles, result-
ing in a penicillin and urea sensitivity of 85 and 54 mV/dec, respectively. The successful
application of the TMV-assisted biosensor for designing an XOR enzymatic gate further
highlighted the potential of the presented sensor arrangement.

The results achieved in this study demonstrated the great prospects of TMV particles
as enzyme nanocarriers in constructing EISCAP biosensors for multi-analyte detection. In
future studies, TMV-assisted multi-enzyme EISCAPs could be extended to other enzymes.
Furthermore, TMV-assisted EISCAPs could be employed for the characterization and
application of two- or multi-step enzymatic cascades. Due to the uniform 3D structure of
the TMV particles, the enzymes are geometrically close to each other, whereby enzymatic
product/substrate diffusion can optimally take place, and the influence of interfering
substances could be reduced. This may include not only arrangements with blends of
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distinct enzymes immobilized on the TMV nanoscaffolds but could also be tailored to
enzyme systems collaborating between separate particles. If installed on TMV carriers with
length-defined, selectively addressable longitudinal subdomains, such sensors might even
provide fundamental insights into spacing-dependent interactions of enzyme groups and,
thus, ease the design of high-efficiency artificial biocatalytic systems [87].
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Abstract: Dithiocarbamate fungicides (DTFs) are widely used to control various fungal diseases
in crops and ornamental plants. Maximum residual limits in the order of ppb-ppm are currently
imposed by legislation to prevent toxicity problems associated with excessive use of DTFs. The
specific analytical determination of DTFs is complicated by their low solubility in water and organic
solvents. This review summarizes the current analytical procedures used for the analysis of DTF,
including chromatography, spectroscopy, and sensor-based methods and discusses the challenges
related to selectivity, sensitivity, and sample preparation. Biosensors based on enzymatic inhibition
demonstrated potential as analytical tools for DTFs and warrant further research, considering novel
enzymes from extremophilic sources. Meanwhile, Raman spectroscopy and various sensors appear
very promising, provided the selectivity issues are solved.

Keywords: dithiocarbamate fungicides; chromatography; Raman spectroscopy; sensors; enzyme
inhibition; voltammetry; biosensors

1. Introduction

Dithiocarbamate fungicides (DTFs) are non-systemic pesticides that have been used
since the 1940s to control a number of fungal diseases in various crops and ornamental
plants. Propineb, zineb, maneb, thiram, and mancozeb are amongst some of the most well-
known and used fungicides, the chemical structures of which are presented in Figure 1.

While the development of new pesticide molecules and formulations has continued
over the years, currently used DTFs such as maneb, mancozeb, propineb, thiram, and
ziram were introduced more than 50 years ago (Figure 2) [1]. Mancozeb, propineb, and
thiram are among the top selling fungicides, e.g., mancozeb sales are expected to reach $18
billion by 2025 [2].

Based on their chemical structure, DTFs are classified as propylene-bis-dithiocarbamates
(PBs, e.g., propineb), ethylene-bis-dithiocarbamates (EBs, e.g., mancozeb, maneb, and
zineb), and dimethyl dithiocarbamates (DDs, e.g., thiram, ziram, and ferbam). The DTFs
from different groups have different toxicity, resulting in variances in the risk assessment
for exposure to specific fungicides. Due to their toxicity, fungicides like zineb were banned
in many countries around the globe, including the US and the EU, while in countries
where it is currently allowed for use, maximum residue limits in the range of ppm are
imposed by various organizations worldwide, for various food and agricultural products.
The European Commission established maximum residue limits (MRL) of 0.01–25 ppm for
dithiocarbamates in various plants and products of vegetable or animal origin (expressed
as CS2, including maneb, mancozeb, metiram, propineb, thiram, and ziram) [3]. Excessive
use of DTFs has continued in recent years, e.g., amounts higher than the MRL have been
detected in tomatoes [4], kiwi, and pears [5], etc.
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Figure 1. Classification of dithiocarbamate fungicides (DTF) and chemical structures of main repre-
sentatives from each group.

Figure 2. Timeline of the development of fungicides, showing the appearance of DTFs from 1930s onwards. Reproduced
from [1], with permission.

Dithiocarbamate pesticides have low solubility in water and a number of organic
solvents; hence, they are not typically extracted and analyzed by the multiresidue chro-
matographic methods used for screening other pesticides. This limitation, coupled to the
wide number of DTF compounds applied as pesticides (Figure 2) meant that the simplest
method for the analysis of dithiocarbamates relies on their degradation in acid media
and analysis of the resulting CS2 by spectrophotometric or chromatographic methods [3].
A major drawback to the detection of DTFs by quantification of formed CS2 is the lack
of specificity, as this does not allow the identification of parent DTFs present within the
sample. Additionally, the analysis of DTFs based on CS2 is affected by false positive results
in agricultural products containing high levels of organic sulfur compounds: notably, CS2
produced in acidic media by Brassicaceae and Alliaceae vegetables (e.g., cabbage and onion)
was identified [3].

In a 2017 report, the European Food Safety Agency EFSA reiterated the need to develop
specific analytical procedures for each active substance in this group of fungicides [5].
Currently, specific, single residue methods are available for thiram, propineb, and ziram [3].
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Details of the various analytical procedures available for the determination of DTFs
are given below, together with a discussion of the recent progress and perspectives in this
field. A particular focus is placed on sensors and biosensors with the potential of delivering
simple and fast detection.

2. Advances in DTFs Detection

2.1. Standard Chromatographic Methods for DTFs Detection

As with many other pesticide classes, the most selective methods for the determination
of DTFs are based on gas chromatography coupled with-mass spectrometry (GC-MS) [6]
and on reverse phase liquid chromatography coupled with optical, electrochemical, or
mass-spectrometry detectors [7–10].

Nakamura et al. described a GC-MS method for the detection of 10 dithiocarbamates in
foods [6]. The compounds were extracted as water-soluble sodium salts with cysteine and
ethylenediaminetetraacetic acid (EDTA) and then were derivatized by methylation. This
strategy enables differentiation between the DTFs from different groups, i.e., thiram, ziram,
ferbam, zineb, maneb, mancozeb, milneb, metiram, propineb, nickel bis(dithiocarbamate),
and polycarbamate. The quantification limits, expressed as CS2 were 0.01 mg/kg in brown
rice, soybean, potato, spinach, cabbage, apple, orange, pumpkin, cacao, cattle muscle, cattle
fat, cattle liver, salmon, eel, milk, chicken egg, honey, and shrimp and 0.1 mg/kg in green
tea samples [6].

An alternative approach based on reverse-phase liquid chromatography circumvented
the need for derivatization [10], being based on the formation of ion pairs between the
DTFs anions and tetrabutylammonium cations in alkaline media containing EDTA. The
approach used two detectors connected in series, UV and electrochemical, achieving
limits of quantitation, of 9, 12, 8 and 12 μg/L CS2 for N-methyl-DTF, N,N-dimethyl-DTF,
ethylenebis-DTF, and propylenebis-DTF [10]. However, while this method appears simpler
and provided good recoveries from spiked fruit and tomatoes, accurate results can only be
obtained for surface-intact vegetables.

Chromatographic methods developed with the aim of achieving sensitive and selective
detection of DTFs relied not only on mass-spectrometry, UV, and electrochemical detectors
but were also coupled with atomic absorption spectrometers. Indeed, the presence of
different metals like zinc, manganese, and nickel in the structure of some DTFs makes
it possible to identify the DTFs by atomic absorption spectrometry. Thus, procedures
requiring high instrumental infrastructure like HPLC-UV with detection at 272 nm coupled
with atomic absorption spectrometry were used for the determination of 10 pesticides, and
were able to distinguish between zineb, maneb, and mancozeb in diverse matrices [11].

More recently, an LC-MS method was described for the analysis of 10 DTFs in beer,
fruit juice, and malt samples, based on the common strategy of transforming the fungicides
in water soluble salts and derivatizing them with methyl iodide [8]. The extraction of
methylated derivatives of the DTFs was performed using a “quick, easy, cheap, effective,
rugged, and safe” (QuEChERS) method, subsequently purifying the extracts by dispersive
solid-phase extraction prior to LC-MS analysis. Separation of the methyl derivative DTFs
compounds by Ultra Performance Liquid Chromatography (UPLC) used a C18 column and
the detection was performed by ESI-MS in selected reaction monitoring (SRM), positive
ion mode. The quantitation limits reached by this method for three representatives of
the main groups of DTFs, i.e., propineb (a propylene-bis-dithiocarbamate), mancozeb
(an ethylene-bis-dithiocarbamate), and thiram (dimethyl dithiocarbamate) were 0.52, 0.55
and 6.97 μg/kg, respectively. The procedure was successfully applied for the determination
of DTFs in beer and fruit juice. A similar approach but with derivatization to dimethyl
derivatives was described by Li et al., who reported detection limits of 0.6–1.6μg/kg
and 0.8–2.5 μg/kg for mancozeb and propineb, respectively, in different vegetable food
matrices [9].

While the selective detection of relevant DTFs at sensitivities below those required
for the ppm MRL established for foodstuffs has been reported for several applicable
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matrices [7–10,12–14], the main limitations to the use of chromatographic techniques in
routine detection of DTFs remain the cost of equipment and the relative complexity of
analysis. Despite advances made in the field of portable GC-MS and HPLC chromato-
graphic devices [15], the base costs of this equipment remain important (~US $100,000
or more). Similarly, the reliance of these techniques on purified organic solvents and the
complex protocols required to satisfactorily detect DTFs with these approaches, including
derivatization, purification, and pre-concentration of samples prior to the analysis (e.g., [8])
may prove prohibitive when attempting to apply these techniques at the scale required
for the routine detection of DTFs in agricultural products. In summary, despite general
progress in the development of cleaning cartridges, QuEChERS extraction methods and
analytical instrumentation for chromatography and MS, there was not a huge advancement
in the last years regarding the determination of DTFs.

2.2. Spectroscopy-Based Analysis Methods

Raman spectroscopy provides information about the vibrational states of molecules
and therefore their functional groups and chemical structure. It is considered a fingerprint
technique since each Raman spectrum corresponds to a unique chemical compound and
a spectra library repository can provide rapid identification of molecules for analytical
purposes. This highly selective technique is balanced by a lack of sensitivity due to
the standard weak Raman scattering signals that usually provides detection limits at
concentrations in the order of 10−2 M.

A great enhancement of the Raman signal can be obtained by the interaction of the
analyte with some metallic surfaces mainly made of gold, copper or silver. Surface en-
hanced Raman scattering (SERS) was firstly introduced by Fleishman et al. in 1974 working
with pyridine as a model probe and an electrochemically roughened silver electrode as
surface [16]. The SERS effect increases the interest of Raman spectroscopy in analytical
chemistry due to the sensitivity increase that can led towards to the detection of a single
molecule [17].

First peak spectra assignments of dithiocarbamates (DMDTC and DEDTC) over sil-
ver surfaces (colloids and surfaces) were obtained in the 1990s by Mylrajan [18] and
Tse Yuen [19], including FT-IR data.

For quantitative analysis several works have been done using as analytical signal the
strongest band at around 1380 cm−1 assigned to the C-N stretching mode and symmetric
CH3 deformation mode of dithiocarbamates pesticides. Most of these approaches rely on
silver or gold based nanomaterials to get the SERS enhancement:

Thiram was analyzed using silver nanoparticles clusters for SERS analysis, reach-
ing a detection limit of 24 ppb (10−7 M) that is much lower than the maximum residue
limit ranging from 2 to 15 ppm in fruit prescribed by the U.S. Environmental Protection
Agency (EPA) [20]. A combination of silver nanocubes with reduced graphene oxide in
a sponge-like structure was used for the detection of thiram and ferbam achieving de-
tection limits of 10 and 16 ppb, respectively, based on the intensity of the characteristic
signal at 1382 cm−1 [21]. In this case (Figure 3A) graphene oxide was used to remove the
interference from aromatic pesticides adsorbed to it and allowing the SERS effect in the
silver nanocubes to be detected only with DTF pesticides. As SERS spectra of ferbam and
thiram were similar in terms of peak location and intensity ratios, principal component
analysis (PCA) was used to distinguish which fungicide is present in the environment (see
Figure 3B). It should be noted that the tolerances for ferbam residues in pear, apple, grape,
mango, cabbage, and lettuce, range from 4 to 7 ppm, much higher concentrations than the
ppb level achieved with this approach.
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Figure 3. (A) Principle of the surface enhanced Raman scattering (SERS) detection of DTF using rGO-wrapped Ag nanocubes.
(B) Principal component analysis (PCA) plot (PC1 versus PC2) of signals extracted from 10 SERS spectra of thiram and
ferbam with concentration ranging from 50 nM to 2 μM. Reproduced from [21] with permission.

The results revealed that while there is a clear differentiation between the two DTFs
based on PCA when analyzing individual spectra, it was not possible to distinguish
between them when present in mixtures. Still, the total amount of the S−C−S group
in the fungicide mixture was correlated with I0.5, where I is the intensity of the SERS
signal at 1382 cm−1. Other recently published papers related to the detection DTFs usually
work with thiram as probe analyte using a variety of silver nanomaterials for the SERS
effect [22–24].

Gold nanorods were used for ultra-sensitive detection of DTFs [25,26]. Thiram, ferbam,
and ziram were determined in the range of low ppb concentrations (108 M). The interaction
of the fungicide with the gold substrate is supposed to undergo spontaneous cleavage of
their metal–sulfur bonds to produce the dimethyldithiocarbamate ion which then assembles
on the substrate surface. Since the degradation processes produce identical ions for all
these molecules, the SERS spectra of the three pesticides appear very similar; therefore,
multivariate data analysis techniques can be coupled when working with real samples [25].
For additional information of the spontaneous assembly of dithiocarbamate ligands on
gold metal substrates, a research paper by Alexander Wei et al. [27] can be revisited. Gold
nanoparticles trapped into cellulose matrices has been reported as an interesting solution for
the in situ extraction and detection of thiram in residues in soil and fruits [28]. In addition,
screen printed gold electrodes roughened through an electrochemical pretreatment arise
as an easy to use and portable solution for the detection of thiram and other pesticides
as well [29].

Efficient sampling, enabling fast and quantitative recovery of DTFs is a limiting factor
for the practical applications of SERS. In this respect significant progress was reported in
the last years with regards to flexible substrates that can be brought in close contact with
sample surface, with double role of collecting the DTFs from samples and as SERS substrate.
This includes an approach for the in situ extraction and SERS substrate formation [28],
applied for samples with irregular surfaces such as soil, strawberries, and cucumbers as
well as swab-type devices, e.g., applied for sampling thiram from the surface of intact fruits
and vegetables [24].

The detection of thiram was demonstrated in a variety of spiked samples, includ-
ing soil, strawberries, tomato, cucumber, water, etc., for which satisfactory recoveries
were calculated.

Raman spectroscopy is one of the best suited techniques for the determination of
dithiocarbamates due to the high selectivity provided by the fingerprint spectrum of
each molecule and the high sensitivity achieved through the SERS effect. Additionally
the potential use of portable analyzers and cost effective disposable SERS substrates
allows its application in field analysis. However, some different sensing alternatives based
on other optical detection modes are reported showing advantages and drawbacks for
dithiocarbamate determination.
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Fourier transform infrared (FTIR) spectrometric procedures were developed for the
determination of ziram and thiram in solid samples [30] and in vapor phase samples, after
ziram decomposition [31]. Both FTIR-based methodologies allowed for pesticide detection
in the order of tens and hundreds of mg as absolute detection limits.

From our perspective the rapid evolution of Raman spectrometers from benchtop
instruments to portable devices and the cost reduction of the technology makes it very
powerful for “in situ” analysis. Moreover the huge number of cost-effective SERS substrates
developed using different nanomaterials position this technique as the leader in terms
of sensitivity. The intrinsic selectivity provided by the Raman spectrum avoids the need
of any other recognition element. However, when several DTFs are present in the same
sample, chemometrics methods have to be applied to SERS data in order to specifically
detect individual fungicides. Sample collection and sample immobilization in the SERS
substrate to get quantitative analysis are still the main drawbacks to be solved.

2.3. Optical and Electrochemical Assays

Electrochemical sensors and optical assays have been investigated as simpler, minia-
turized, and cost-effective analytical devices that could represent viable alternatives to the
chromatographic methods and Raman spectroscopy.

2.3.1. Electrochemical Sensors

The electrochemical detection of dithiocarbamate fungicides has been well-known
for several decades [32,33], facilitated by the multiple electroactive sites present on these
compounds (Figure 4A).

Under aqueous conditions, detection via the thiol groups is facilitated by the dissocia-
tion of metal-complexed dithiocarbamates to produce carbamate anions (Figure 4A) [34].
At mercury electrodes, carbamate anions are readily reduced to form mercury complexes
(e.g., Figure 4B). At inert electrodes (such as carbon and platinum), carbamate anions are
broadly irreversibly oxidized (e.g., Figure 4C) by a monoelectron step [33]. This forms
radical intermediates that frequently dimerize via the sulfur atoms to form disulfide
products [33]; this complex being further oxidized at higher anodic potential [33,35].

Apart from the particular structure of dithiocarbamate under investigation, the exact
detected moiety/ies can be controlled by the selection of experimental parameters, such as
electrode type, electrolyte solvent selection (especially pH) and the electrochemical wave-
form applied to their detection. This has facilitated the detection of numerous commercially-
used dithiocarbamates in multiple studies (Table 1), in both laboratory-formulated pure
standards and within real samples (predominantly commercial formulations of the pesti-
cides, and pesticide-spiked foodstuffs).
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Figure 4. Electrochemical detection of dithiocarbamate pesticides is facilitated by the multiple electrochemically-active
moieties they possess. (A) Commonly-reported electroactive moieties of dithiocarbamates, using Propineb® (extracted
from [36]) as a general example of this class of compound. (B) Cyclic voltammograms of Mancozeb at a Boron-doped
diamond electrode in phosphate buffer (extracted from [36]), showing anodic processes involving its thiol and/or amine
moieties: two separate possible mechanisms behind the more positive peak are shown, one cited in [36] and that discussed
by [35]. (C) Cyclic voltammogram of Ziram at a Hanging Mercury Drop Electrode in Britton–Robinson buffer, pH 2.8
(extracted from [37]. Peaks are attributed to the reversible reduction of the thiol moieties and subsequent displacement of
the zinc moiety (inset, from same reference) at mercury electrodes. Reproduced from [36,37], by permission).
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Table 1. Direct electrochemical detection: selectivity via catalysis and/or electrode potential control.

Dithiocarbamate
Pesticides

Investigated

Electrode Surface
(Catalyst/Modifier) a

Real Samples
Investigated

Signal Basis b
L.O.D.

(Analytical
Ranges Reported)

Ref.

Ziram Polished silver solid
amalgam electrode Spiked river waters SWV 0.24 μM [38]

Thiram Hg
CS-DPV peak at

−0.55 V vs.
Ag/AgCl

0.12 μM [39]

Thiram Rotating gold disk electrode
Commercial

formulations; spiked
water samples

Ads-LSV, peak at
+1.4 to +1.5 V vs.

Ag/AgCl
16 nM [40]

Thiram
Disulfiram

Graphite-PTFE
composite electrode

Extracts of spiked
strawberry samples

Ads-LSV, peaks at
+0.85 V vs. SCE

Thiram:
54 nM (0.2 to 1 μM)

Disulfiram:
20 nM (0.2 to 1 μM)

[41]

Thiram
Disulfiram

Graphite-PTFE
composite electrode

Spiked tap and well
water samples

FIA-CA at +1V vs.
Ag/AgCl

Thiram:
43 nM (0.1 to 1 μM)

Disulfiram:
20 nM (0.1 to 1 μM)

[42]

Ziram Hg Extracts of spiked
rice samples CS-DPV 32 nM i.e., 10 ppb [43]

Zineb Hg
AdSV, cathodic

peak at −0.455 V
vs. Ag/AgCl

1 nM [44]

Carbathion,
Ferbam, Nabam,

Thiram, Thiuram,
Zineb, Ziram

Carbon paste electrode -
Fe(II)metallophthalocyanine

composite
Ads-LSV

Ranged from 10 nM
(carbathion) to

200 nM (Thiuram)
[45]

Nabam
GCE, modified with Co(II)

phthalocyanine and
carbon ink

LSV, peak at −0.2V
vs. Ag/AgCL 28.8 nM [46]

Thiram GCE

Commercial
formulations; plant

sample extracts
exposed to thiram

SWV at +0.34 V vs.
Ag/AgCl n.r. [47]

Carbathion GCE

CV, peak forming
at +1.46 vs.
Ag/AgCl

9.3 μM
(132 μM to 224 μM)

[48]
SWV, peak

forming at +1.46 vs.
Ag/AgCl

85 nM
(2 μM to 7.7 μM))

FIA-CA potential
of +1.3 V vs.
Ag/AgCl

10 nM
(1.2 μM to 6 μM)

Ziram Hg Extracts of spiked
vegetable samples

SWV, −1.1V vs.
Ag/AgCl.

23 nM
(33 to 328 nM) [37]

Thiram Copper-mercury amalgam
electrode

Spiked river
water samples

CS-SPV, peak
between −0.59 and

−0.8 V vs.
Ag/AgCl

16 nM [49]

Propineb
Carbon-paste electrode

(Cu2+-enriched
montmorillonite)

Commercial
formulation

Ads-SWV, peak at
~−0.1V vs. SCE 1 μM [50]

Mancozeb BDD PAD at +0.3V vs.
Ag/AgCl)

0.514 μM
(40 to 650 μM) [36]

Mancozeb GCE Commercial
formulation

Ads-SWV, peaks
forming at −0.7V

vs. Ag/AgCl
7 μM [51]

Ziram BDD Spiked river
water samples FIA-CA at +0.55 V 2.7 nM [52]
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Table 1. Cont.

Dithiocarbamate
Pesticides

Investigated

Electrode Surface
(Catalyst/Modifier) a

Real Samples
Investigated

Signal Basis b
L.O.D.

(Analytical
Ranges Reported)

Ref.

Maneb BDD River water DPV peak at +0.9V
vs. Ag/AgCl

24 nM
(80 nM to 3 μM) [53]

Mancozeb Single-crystal (Au(111) and
Au(110)

Ads-LSV, peaks at
−0.6 to −0.96V vs.

Ag/AgCl

Au(110):
100 nM
Au(111):
500 nM

[54]

Mancozeb

Gold electrode modified
with Poly (3,4-ethylene

dioxythiophene),
multi-walled carbon

nanotubes, and
gold nanoparticles

Water
CV, anodic peak

+0.65 V vs.
Ag/AgCl

5 μM [55]

Thiram Carbon paste electrode
modified with zeolite

Aqueous extracts of
fruit juices

DPV, anodic wave
at +0.70V vs.
Ag/AgCl;

4 nM
(14 nM to 4.2 μM) [56]

Thiram Platinum, modified with
silver nanoparticles

Tap, canal, and
river water DPV and CV 0.731 μM or

0.18 ppm [57]

Thiram GCE (dissolved Zn2+ and
Cu2+ cations)

River water

CS-LSV: −1.330 V
vs. Ag/AgCl for

Zn-Thiram;
+0.020V for
Cu-Thiram
complexes.

n.r.
(5 to 50 μM) [58]

1 Where possible, analytical parameters have been standardized: limits of detection and analytical ranges of reported sensitivities
are standardized to mol/L (M) units and detection sensitivities of amperometric and voltametric signals (i.e., peak currents and or
response currents) were standardized to μA/μM values; a—Electrode surfaces:BDD: Boron-doped diamond; GCE: Glassy carbon elec-
trodes; Hg: Mercury (Drop) Electrodes; PTFE: poly(tetrafluoroethylene); b—Signal basis:Ads-: Adsorptive (prefix); AS—Anodic Strip-
ping (prefix); CS—Cathodic Stripping (prefix); FIA—Flow-injection analysis (prefix);CA: Chronoamperometry CV: Cyclic Voltammetry;
DPV—differential pulse voltammetry; LSV: Linear Sweep Voltammetry; PAD: Pulsed Amperometric Detection; SCE: Saturated calomel
electrode; SWV: Square-wave voltammetry; IUPAC designations of commercial dithiocarbamates studied in published articles: Car-
bathion: sodium N-methyldithiocarbamate (also known as metam sodium); Disulfiram: tetraethylthiuram disulfide; Diram: sodium
N,N-dimethyldithiocarbamate; Ferbam: iron N,N’-dimethyldithiocarbamate; Maneb: Manganese ethylene-bis-dithiocarbamate; Mancozeb:
1,2-ethanedicarbamic acid, tetrathio- Manganese Zinc ethylene-bis-dithiocarbamate); Metam sodium: sodium N-methyldithiocarbamate;
Nabam: sodium N,N’-ethylene-bis-dithiocarbamate; Propineb: Zinc propylene 1,2-bis-dithiocarbamate; Thiram: tetramethylthiuram
disulfide; Thiuram: tetraethylthiuram disulfide; Zineb: zinc N,N’-ethylene-bis-dithiocarbamate; Ziram: N,N’-dimethyldithiocarbamate.

As is evident by the large number of recent publications, the application of electro-
chemical methods of detection of dithiocarbamates remains an actively-researched field
of enquiry. This is due to a combination of their aforementioned ready detection via elec-
trochemical means and the inherent sensitivity of electrochemical detection methods. A
number of publications report the sensitive detection of different dithiocarbamate fungi-
cides: analytical quantification ranges of reports are frequently in the μM-to-nM orders of
magnitude and reported limits of detection often in the nM range (Table 1).

The large variation in the dithiocarbamates studies, the working electrodes and wave-
forms in the literature reviewed makes direct comparison across all the entries difficult,
but nonetheless, some trends are evident across the literature.

At high concentrations of unionized forms of DTC pesticides, the low aqueous solubil-
ity remained a continual analytical challenge. Most concentrated stocks were formulated
in the μg/mL range, typically achieving this by including chelating agent, most often
EDTA, e.g., [36,51] and high pH in aqueous solvents to improve solubility; sometimes with
combinations of the two [59]. Others make use of organic solvents: acetonitrile (e.g., [56],
chloroform [59], methanol [12,39,40,42], and ethanol [47] to solubilize these.)

The low aqueous solubility of these pesticides somewhat improves sensitivity by
electrochemical methods, due to the tendency of target molecules to adsorb to the surface
of electrodes, effectively preconcentrating the analyte before quantification. To capitalize
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on this phenomenon, most reported investigations explicitly make use of adsorptive wave-
forms (Table 1): dithiocarbamates have been routinely detected using adsorptive stripping
voltammetry waveforms, e.g., [51], cathodic stripping voltammetry [43], anodic stripping
voltammetry [45] or other forms that deliberately include an adsorptive step prior to analy-
sis (e.g., pulsed amperometric detection by [36]. The majority of electrode surfaces selected
tend to be those extensively used for adsorptive studies: aromatic and graphitized carbon
preconcentrating the pesticides using the hydrophobic nature of the ethylene backbones. A
more specific targeting of the thiol moieties of thiocarbamates has been reported, either
using gold electrodes (e.g., [54] to form thiol-gold self-assembled adlayers at the electrode
surface or the formation of mercury amalgams at mercury drop-electrodes [34].

As previously discussed, mercury drop electrodes were frequently employed for the
detection of dithiocarbamates. All of the identified studies made use of cathodic stripping
voltammetry to detect and quantify their investigated dithiocarbamates, preceded by an
adsorptive preconcentration. Several of these reports explicitly cited the reduction of
thiol moieties as the basis for signal generation at these electrodes [37,44,49]. A similar
catalytic effect using copper–mercury amalgam electrodes was reported for monitoring
of thiram [49]. Despite the overall sensitivity of this approach (the majority of studies
reporting limits of detection in the low nM range), the use of mercury electrodes in routine
electrochemistry has declined in recent years, due to the associated health and environ-
mental hazards of this metal and may preclude its use in the commercial detection of
these fungicides.

The detection of dithiocarbamates by unmodified carbon electrode surfaces (i.e., en-
tries reported to use boron-doped diamond, glassy carbon electrodes, carbon-paste elec-
trodes) form the largest group found during this review. Similar to expectations, these
predominantly use anodic processes to detect their targets, for reasons discussed previously.
While inherently less sensitive than the cathodic approach for mercury drop electrodes
(stated limits of detection using voltametric approaches with carbon surfaces typically
reported at μM levels in Table 1), optimization of the detection waveform used and other
experimental conditions can enhance sensitivity to the nM level (e.g., [48,59] in Table 1),
similar to those achieved using mercury drop electrodes.

Many of the detection methods investigated using unmodified metal and carbon
electrodes share a disadvantage: the application of substantial cathodic or anodic voltages
required to effectively detect dithiocarbamates. These substantially decrease the signal
specificity used, as numerous other compounds capable of electrochemical reactions at
more negative working electrode potentials (for anodic detection) or more positive (for
cathodic detection) will also contribute signal and decrease selectivity. Several of these
reports [59] reported that operating at electrode potentials where Faradaic processes in the
electrolyte occurred began affecting signal-to-noise ratios due to this limitation. Despite
this, numerous reports in Table 1 also include samples extracted from foodstuffs, soil and
river water samples and report satisfactory detected recoveries from these using the above
analytical approaches.

To further improve selectivity, reverse phase liquid chromatographic separation of
sample components has been reported as a means of coupling the sensitivity of amperomet-
ric detection using unmodified electrodes with some means of separating out the various
components of the samples (Table 2). This allowed for several investigations to separately
measure dithiocarbamates in a mixture of these pesticides.
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Table 2. Chromatography-coupled detection: selectivity via chromatographic separation of sample components.

DTF
Investigated

Electrode Surface
(Catalyst/Modifier)

Sample Applied Potential L.O.D. Ref.

Thiram CPE Spiked river water +1.1V vs. Ag/AgCl 2.07 μM, [12]

Thiram
Disulfiram

Composite
PTFE-graphite

paste electrodes
Spiked apple samples +1V vs. Ag/AgCl

Thiram:
1.66 μM

Disulfiram:
3.37 μM

[60]

Carbathion
Thiram
Zineb

GCE Spiked fruit pulp samples +1.1 V vs. Pd

0.7 μM
Thiram:
1.5 μM

Carbathion:
0.7 μM

[59]

Carbathion
Mancozeb
Propineb

Ziram

not reported +0.6V vs. Pd.

Carbathion:
31 nM

Mancozeb:
7 nM

Propineb:
26 nM
Ziram:
26 nM

[10]

Thiram GCE Spiked tap water and
beetroot juice +1.4V vs. Ag/AgCl. 13.4 nM [13]

Thiram, disulfiram AuNP-SPCE Spiked apple, grape and
lettuce samples +1.2 V vs. Ag/AgCl

Thiram:
91 nM

Disulfiram:
0.56 μM

[14]

CPE: carbon paste electrode. GCE: glassy carbon electrode. AuNP-SPCE: Gold nanoparticle modified screen-printed carbon.
PTFE: poly(tetrafluoroethylene).

Increasingly, possibly as a sustainable alternative to mercury electrodes, the more
recent trend is the investigation of catalysts and/or electrode modifiers to improve sig-
nal specificity or sensitivity [50] of the assays. Some of these forms of modification at-
tempt to enhance the adsorption of dithiocarbamates to enhance detection sensitivity
e.g., PTFE [41,42] and mercury amalgams [49]. Others apply catalysts to facilitate electron-
transfer between DTFs and the electrode: the most commonly-identified are metalloph-
thalocyanines [45,46] and metal nanoparticles [55,57] to catalyze anodic detection of DTFs.
While all of the catalysts reportedly impart enhanced sensitivity, none of them increase
specificity: the broad electrocatalytic effects of metallophthalocyanines [61] and metal
nanoparticles [62] are widely-known.

While overall good sensitivity is reported using electrochemical detection of DTFs,
neither the electrode surfaces nor the waveforms selected are specific enough for routine
detection and are inherently prone to multiple interferences. Despite the recent research
focus on alternative catalysts and modifiers, a specific electrochemical DTF chemosensor is
not yet apparent in the literature.

2.3.2. Optical Assays

Some simple colorimetric assays working with metallic nanoparticles based on copper [63],
silver [64], or gold [65] can be used for the detection of pesticides due to the solution colour
change after nanoparticles aggregation in presence of the analyte. In these approaches
nanoparticle protective agents such as sodium dodecyl sulfate (SDS), cetyl tributylam-
monium bromide (CTAB) or citrate play a key role in the procedure that finally allows
a semiquantitative detection by naked eye or a quantitative detection by using a simple
spectrophotometer. Detection limits in the ppb level can be achieved in samples of envi-
ronmental interest [65]. Ease of use and no need for expensive analytical instrumentation
are the main advantages of this approach; however, a lack of selectivity can be highlighted
as the main drawback. A multicolor sensor for visual screening of total dithiocarbamates
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based on the inhibition of gold nanoparticles growth in presence of the fungicides [66]
clearly demonstrates these conclusions. Sufficient sensitivity, and short analysis time makes
it useful for screening purposes but the lack of selectivity between ziram, thiram, and zineb
makes it only useful for total DTCs detection.

Ziram was quantified with a detection limit of 2nM in tomatoes and rice using the
same gold nanoparticle aggregation principle. In this case, the detection was made using a
fluorimeter since a yellow fluorescence decrease of quantum dots was monitored because
of a quenching mechanism [67]. Working with phosphorescent Mn doped ZnS quantum
dots a quenching effect was also used for the detection of thiram at a detection limit of
50 nM. This chemosensor was tested in fruit peels and minor interferences were found
with atrazine [68].

There are some other works related to the detection of thiram by electrochemilumi-
nescence (ECL), but these cannot be considered in the range of sensor devices. Most of
them are online analytical methodologies based on Flow Injection Analysis systems where
the ECL analytical signal is enhanced in the presence of thiram [69,70]. Working with the
same highly sensitive analytical technique (ECL), an ELISA assay was developed for the
detection of thiram in honeybees. An indirect competitive assay was implemented and a
detection limit of 9 ppb was achieved [71]. According to the state of art, there is still enough
scope for the development of optical sensors working in the detection of dithiocarbamates
fungicides, mainly combining specific recognition elements for these analytes with an
optical transducer. In this case enzymatic, antibody, or aptamer based optical biosensors
should be further developed.

2.4. Biosensors Based on Enzyme Inhibition

Coupling a specific biorecognition element with a sensitive detection method as is
achieved in biosensors goes a long way towards improving the selectivity of detection and
eliminating the need for chromatographic separation or complicated chemometric analy-
sis. In addition, compared to electrochemical sensors for DTFs discussed in Section 2.3.1,
operating at large overpotentials where interferences in real samples are important, elec-
trochemical biosensors rely on electron transfer mediators or on direct electron transfer
from the enzymes to the electrode. Electrochemical biosensors are thus operated at lower
overpotentials, alleviating the problems related to nonspecific Faradaic reactions, common
for electrochemical sensors.

However, the detection of DTFs was very little explored in the biosensing field com-
pared to other classes of pesticides. While the first ELISA tests for the detection of thiram in
a food matrix, i.e., in spiked lettuce was reported 20 years ago [72], no reports of biosensors
based on antibodies followed. Moreover, there are no recent reports on specific antibod-
ies and related kits for DTFs, no aptamers have been selected for specific DTFs and no
sensors or sample extraction methods based on molecularly imprinted polymers have
been reported for this type of pesticides. The only attempts to specifically detect DTFs
with biosensors exploited enzyme inhibition and the toxic effects on mammalian cells as
detailed in Section 2.4.1 below.

The detection of pesticides based on the principle of enzyme inhibition has long
been explored as an alternative to chromatographic and spectroscopic methods. Vari-
ous enzymes, including acetylcholinesterase, butyrylcholinesterase, alkaline phosphatase,
organophosphorus hydrolase, the enzymatic complex of Photosytem II in plants, algae, and
cyanobacteria, as well as urease, laccase, tyrosinase, and aldehyde dehydrogenase have
been used for the detection of various classes of pesticides [73–76]. DTFs are known in-
hibitors of aldehyde dehydrogenase, tyrosinase, and laccase, which led to the development
of several biosensors that make use of these enzymes [77–83].

In inhibition-based biosensors, the analytical signal is measured before and after
exposure of the sensor to a sample containing the pesticide target; corresponding changes
in signal are correlated to the concentration of the pesticide (Figure 5).
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Figure 5. Generalized schematic of the operating principles of DTF-monitoring electrochemical
biosensors. 1: During operation, enzymes immobilized at, or near an electrode, are supplied with
their required cofactors and substrates which produce a constant rate of enzymatic product. 2: The
electrochemical detection of the formed enzymatic products generates the biosensor’s signal. 3: The
presence of DTF pesticides inhibits the enzyme activity, lowering the electrochemical signal to an
extent proportional to DTF concentration.

Depending on the precise enzyme and target under study, enzymatic inhibition is
either reversible or irreversible and can follow either competitive, uncompetitive, non-
competitive, or mixed types of inhibition mechanisms. Understanding the kinetics of the
enzymatic reaction and the inhibition mechanism is very useful for developing an efficient
biosensor [76]. Inhibition-based biosensors rely mainly on optical and electrochemical
detection methods, similar to those discussed in Sections 2.3.1 and 2.3.2 above. A more
detailed discussion can be found in [76] and [74], amongst others.

It is important to note that the enzymes employed are not inhibited by a specific
compound, but by a range of pesticides belonging to specific chemical groups, as well
as by other compounds such as heavy metals for example. This lack of selectivity has
prompted some skepticism regarding the analytical opportunities of inhibition-based
enzymatic biosensors [84]. Nonetheless, the potential advantages of such analytical devices
(particularly, portability, and fast sensor responses) seem to prevail, making them suitable
as rapid screening and alert systems. Consequently, these biosensors continue to attract
interest. To address the lack of selectivity, multiplexed sensors coupled with chemometric
analysis, genetically modified enzymes, as well as novel enzymes, e.g., extracted from
extremophilic microorganisms, with different substrate specificity and inhibitor profile are
continuously explored.

2.4.1. Examples of Biosensors for the Determination of DTFs

For the detection of DTFs, several electrochemical biosensors have been developed as
presented in Table 3 and detailed further below.
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Table 3. Examples of biosensors for DTF based on enzymatic inhibition.

Fungicide Detection Method Enzyme Limit of Detection Incubation Time Reference

Ziram Square wave
voltammetry/GPE

LACC 1, adsorption on
electrodeposited

Prussian Blue film
0.002 ppm 15 min [77]

Ziram Square wave
voltammetry/GPE

LACC-TYR-AuNPs -CS
electrodeposited film 1 ppb 20 min [79]

Maneb Amperometry/Pt
electrode

ALDH+DP, entrapment
in PVA/SbQ 1.48 ppb 15 min [81]

Zineb
Amperometry/Pt-

sputtered
SPCE

ALDH and NADH
oxidase/entrapment in

PVA/SbQ

8 ppm
8–80 ppb 5 min [82]

MITC Amperometry/MBRS
SPCE

ALDH/entrapment in
PVA/SbQ 100 ppm 10 min [78]

Maneb and zineb Chronoamperometry/MBRS-
SPCE

ALDH/ entrapment in
PVA/SbQ or

cross-linking with
glutaraldehyde

31.5 ppb–maneb
35 ppb-zineb 10 min [80]

Propineb (and
organophos-

phates)

Potentiometry/Ag coated
with AgCl

Working electrode
inserted into

Calcium-alginate beads
containing 5 × 104

cultured N2a or Vero
mammalian cells.

0.33 μM (Vero
cells) to

1.65 μM (N2a)
2.5 min [83]

1 Abbreviations: PVA-SbQ: poly(vinyl alcohol), bearing styrylpyridinium groups. MITC: Methyl Isothiocyanate. MBRS: Meldola Blue-
Reinecke salt. GPE: Graphene doped carbon paste electrode. AuNO: gold nanoparticles. CS: chitosan SPCE: screen-printed carbon electrode.
LACC: laccase. Tyr: tyrosinase. ALDH: aldehyde dehydrogenase. DP: diaphorase.

In a departure from most biosensor configurations, a whole-cell potentiometric sensor
was developed using mammalian N2a (murine neuroblastoma) and Vero (green mon-
key kidney epithelial) cells entrapped in alginate beads, attached to a silver working
electrode [73]. Detection of propineb in this format using the N2a cells was attributed to
inhibition of membrane-bound acetylcholinesterases expressed by the mammalian cells
and subsequent influence on the membrane polarization of these cells; a similar response
was separately attributed to binding of the zinc-centered zineb to a zinc ion channel protein
expressed by the Vero cells.

Laccases (polyphenol oxidase, EC 1.10.3.2) catalyze the oxidation of a wide range of
aromatic organic compounds, including diphenols in the presence of molecular oxygen.
The activity of laccase from Trametes versicolor is inhibited by ziram, but also by carbamate
insecticides such as methomyl, pirimicarb, formetanate, carbaryl, and carbofuran [77,85,86]
and by arsenate and arsenite. [87], among others. In a biosensor for the detection of ziram,
laccase was dropcasted on a graphene doped carbon paste electrode, coated with a film
of Prussian Blue [77]. When the biosensor was inserted in a solution of 4-aminophenol,
upon sweeping the potential from +0.3 V to −0.1 V, 4-aminophenol was electrochemically
reduced to an imine-quinone intermediate, that was further transformed into p-quinone in
a reaction catalyzed by laccase. The cathodic peak current at −0.05 V due to the reduction
of p-quinone, formed in the enzymatic reaction was proportional with laccase activity.
Based on this principle, the biosensor enabled the analysis of ziram with a detection limit of
0.002 ppm, in a linear range between 2.49 × 10−8 M and 5.66 × 10−7 M. Several carbamate
pesticides were also determined with detection limits of 0.001 ppm (carbaryl), 0.007 ppm
(pirimicarb), 0.013 ppm (formetanate), and 0.022 ppm (carbofuran).

Tomato and potato extracts, spiked with pesticides at two concentration levels, were
analyzed with the biosensor. Remarkably, a Quick, Easy, Cheap, Effective, Rugged, and
Safe—QuEChERS method was used for pesticides extraction from the vegetable samples.
The recoveries for ziram were 97.6–101.1% while for the other pesticides were 90.2–100.3%,
indicating a satisfactory accuracy of the biosensor. In addition, the biosensor had a good
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reproducibility (RSD = 5.0%, n = 4 sensors) and repeatability (RSD = 1.8%, 2.4% for intra-day
and inter-day repeatability) and was stable for 20 days. The selectivity study has focused on
vitamins contained by tomatoes and potatoes (beta-carotene, i.e., pro-vitamin A, thiamine,
i.e., vitamin B1 and ascorbic acid, i.e., vitamin C). Significant interferences, i.e., amounting
to 11.4–13.2% of the analytical signal were found for beta-carotene and ascorbic acid, when
tested at very high concentrations that were 10 times higher than those of spiked pesticides.

This report on a laccase-based biosensor provides a good illustration of both the
potentialities and the challenges for the electrochemical biosensors for pesticides that rely
on enzyme inhibition. The good sensitivity of the biosensor was attributed in part to the
characteristics of the electrochemical transducer, obtained from carbon paste containing
20% graphene flakes and modified with an electrodeposited film of Prussian Blue. The
graphene flakes had a thickness of few layers, a length of 500 nm–1.5 μm and contained
12.4% oxygen, 87.0% carbon, and 0.5% nitrogen. Modification of the carbon paste with
this type of graphene improved the speed of the charge transfer in the electrochemical
reduction of 4-aminophenol to the imine-quinone intermediate. Further modification of
the electrode with Prussian Blue enhanced the cathodic current by approximately 27%.
The use of nanomaterials to improve the conductivity and enhance the active surface
area of the base transducer in biosensors is common nowadays, with more nanomaterials
explored each day. Nonetheless, the characteristics of these nanomaterials vary in large
limits, depending on the method used for obtaining them which dictates properties such
as the degree of oxidation, number of stacked layers, size and possible contaminants, all
influencing the electrochemical characteristics of the modified electrodes. While in this
2013 report [77] laccase was simply adsorbed on the electrode, controlled immobilization
of laccase was also demonstrated in inhibition based biosensors for arsenate and arsenite
[87]. Anthracene moieties covalently bound to multi-walled carbon nanotubes anchor
laccase in a controlled manner, with the copper center of laccase oriented towards the
electrode surface, thus allowing for direct electron transfer from enzyme to the electrode
for the catalytic oxygen reduction. This immobilization approach also minimizes potential
interferences due to chloride [87]. It is therefore reasonable to expect that better, more
sensitive and selective inhibition-based biosensors can be obtained by exploiting the
knowledge accumulated so far with regards of different nanomaterials and their coupling
with enzymes and other modifiers. With regards to practical applications, the report of
Oliveira et al., [77] emphasized the necessity of application-targeted investigations of
possible interferences. Furthermore, QuEChERS methods have all the advantages for
sample extraction denoted by their name but require lab-dedicated equipment. Sample pre-
treatment remains therefore a bottleneck for the development of applications for in-field
screening of DTFs and other pesticides. Moreover, definitive proof of biosensor accuracy
should be obtained by comparing the results obtained with the biosensor with a standard
confirmatory method or by using certified materials.

In addition to laccase, tyrosinase is another enzyme that is inhibited by DTFs. Ty-
rosinase (EC 1.14.18.1, monophenol, o-diphenol: oxygen oxidoreductase) catalyzes the
oxidation of monophenols to o-diphenols, as well as the further oxidation of diphenols to
their corresponding quinones. Tyrosinase is also inhibited by atrazine, hydrazines, and
cyanide. In electrochemical biosensor investigations, tyrosinase was coupled with laccase
in a biosensor for the detection of carbamate pesticides, achieving higher sensitivity than
when each enzyme was used alone [79]. The mono and bi-enzymatic laccase biosensors
were applied for the determination of ziram, as well as the carbamate pesticides carbofuran,
formetanate carbaryl, and propoxur in spiked vegetables (tomato, potato) and citrus fruit
(lemon, tangerine, and orange). According to the principle depicted in Figure 6A, 4 amino-
phenol was used as an enzymatic substrate that was converted into p-benzoquinone under
the catalytic action of tyrosinase and laccase. The magnitude of the cathodic current due to
the reduction of p-benzoquinone to p-hydroquinone was correlated with enzyme activity.
The cathodic current decreased in the presence of ziram in a concentration dependent
manner as depicted in Figure 6B.
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Figure 6. (A) Principle of DTF detection with a bi-enzymatic biosensor based on laccase and tyrosinase. (B) Magnitude of
cathodic currents recorded with the bi-enzymatic biosensor for the reduction of p-benzoquinone to p-hydroquinone by
square wave voltammetry, reported in [79]. Reproduced fro [79] with permission.

The recovery results from fungicide-spiked vegetables and citrus fruit determined
with the biosensors reported in [77,79] were in the range 90.2–101.1%, emphasizing the
accuracy of the biosensors and supporting the feasibility of inhibition-based biosensors in
detecting ziram and other pesticides in real samples.

Aldehyde dehydrogenase (E.C. 1.2.15, AlDH) catalyzes the transformation of alde-
hydes to the corresponding carboxylic acids in the presence of the enzymatic cofac-
tor nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide
phosphate (NADP+):

Aldehyde + NAD+ + H2O
ALDH
� Carboxylic Acid + NADH + H+

In the human body, aldehyde dehydrogenase, more specifically ALDH2 is behind
the connection between the exposure to pesticides and Parkinson’s disease. Aldehyde
dehydrogenases, in general, are inhibited by a whole range of compounds, including
dithiocarbamate fungicides, benzimidazole fungicides and some heavy metals [88].

In biosensors, measuring the activity of aldehyde dehydrogenase is achieved by
determining the reduced cofactor, NADH, formed in the enzymatic reaction. DTFs inhibit
the activity of ALDH, causing a decrease in the amount of NADH. The reduced cofactor
can be sensitively detected by electrochemical oxidation at the surface of carbon electrodes.
Furthermore, the electrochemical detection of NADH is efficiently accomplished using
electrochemical mediators or various carbon nanomaterials such as carbon nanotubes,
graphene, nanofibers, etc., which decrease the potential required for NADH oxidation [89].
By measuring at low potentials, close to 0 V, the risk of potential interferences from other
electrochemically active compounds in samples is minimal, supporting the accuracy of
the detection.

Noguer et al. and others have described several biosensors for the detection of
dithiocarbamate fungicides, based on the inhibition of aldehyde dehydrogenase from
baker’s yeast [78,80–82,90]. The equilibrium of the enzymatic reaction favors the reactants’
side, consequently, high concentrations of cofactor, alkaline pH, or coupled enzymatic
reactions are used to shift the equilibrium of the enzymatic reaction towards the products
side and achieve quantitative conversion of aldehydes and the NAD+ cofactor. A successful
approach for the highly sensitive detection of fungicides, such as maneb and zineb [81,82],
was to use a second enzyme, either NADH oxidase or diaphorase in order to convert very
fast NADH, back to the oxidized form NAD+.
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For example, the determination of maneb and zineb was achieved with a bi-enzyme
biosensor comprising aldehyde dehydrogenase and diaphorase [90], according to the
following scheme:

Propionaldehyde + NAD+ + H2O
ALDH
� Acetic acid + NADH + H+ (1)

NADH + [Fe(CN)6]
3− Diaphorase−−−−−−→ NAD+ + [Fe(CN)6]

4− + H+ (2)

[Fe(CN)6]
4− E > E0′−−−−→ [Fe(CN)6]

3− + e− (3)

The NADH produced in the enzymatic reaction catalyzed by aldehyde dehydrogenase
(1) is oxidized back to NAD+ by diaphorase, in a reaction where ferricyanide acts as electron
acceptor (2). (3), the ferrocyanide formed in reaction (2) is oxidized at the surface of a Pt
electrode, polarized at +0.1 V. The magnitude of the anodic current from (3) is proportional
to the activity of aldehyde dehydrogenase in the reaction medium.

The enzymes were used either free in solution or immobilized in a matrix of PVA-SbQ,
being retained at the surface of a Pt electrode with a cellophane membrane (Figure 7A).
Enzyme immobilization in PVA-SbQ proved advantageous: after incubation with the pesti-
cide solution for 10 min, the biosensor enabled detection as low as 1.48 ppb (maneb) and
9 ppb (zineb) [90] (Figure 7B). It should be highlighted here the approach used to solubilize
zineb in alkaline medium in the presence of EDTA, thus transforming it into a disodium
salt, known as nabam. Nabam is another DTF that inhibits aldehyde dehydrogenase.

Figure 7. (A). Experimental setup used for the bi-enzymatic sensor for maneb and zineb. (B). Response of the biosensor at
different concentration of zineb, expressed as percentage of the signal in the absence of the inhibitor. Reproduced from [90],
by permission.

The use of more stable NADH oxidase instead of diaphorase and disposable screen-
printed electrodes instead of Pt electrodes were reported to simplify and reduce the costs
of the enzymatic biosensor [82].

While achieving limits of detection in the ppb range, these devices were demonstrated
exclusively with standard solutions of pesticides in buffer, with no testing of real samples.

The biosensors based on the inhibition of aldehyde dehydrogenase were developed
more than 13 years ago. Re-starting the research efforts in this direction can bring improved
performances and wider applications, considering the growing use of nanomaterials in
enzymatic inhibition-based biosensors in the last years [75,91] and the opportunities
brought by novel enzymes, isolated from various sources. These enzymes have potentially
different substrate specificities and inhibitor profiles (discussed below).

The critical factors affecting the analytical performance of the inhibition based en-
zymatic biosensors are: the amount of enzyme, the incubation time, the design of the
device and of the sensing layer, including the matrix and type of immobilization of the
enzyme. In general, as summarized in Table 3, the enzymes were entrapped in polymers
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by photopolymerization (e.g., in PVA-SbQ), adsorbed on electrochemically deposited films
of Prussian Blue or were cross-linked with glutaraldehyde in a matrix of bovine serum
albumin. The incubation time with the fungicide was less than 20 min. The design of
the test must consider the reversibility and the mechanism of inhibition. For example,
aldehyde dehydrogenase inhibition by dithiocarbamate fungicides is competitive versus
the cofactor NAD+ and is irreversible. Therefore, the analytical signal is registered first
in the absence of the fungicide, to get a reference signal, then the NAD+ is eliminated
by washing and the signal is recorded in the absence of the cofactor. Next, the biosensor
is incubated with the fungicide, followed by a short incubation with NAD+ and by the
addition of the substrate, before recording the final signal. The biosensor is discarded after
this, since the original activity of the enzyme cannot be restored (Figure 8).

Figure 8. Typical experimental protocol for an amperometric biosensor for DTF based on aldehyde
dehydrogenase. Reproduced from [78], by permission.

These steps require an adequate operational stability of the sensor and appear to be
too complex to be compatible with in-field testing. A possible solution to circumvent such
complexity can be the use of magnetic beads with immobilized enzymes. A magnetic field is
applied to “immobilize” the enzyme at electrode surface [92], the enzyme-modified magnetic
particles are discarded after the test and the electrode is used for the next measurements.

From a practical application point of view, commercializing such biosensors would
require adequate storage and operational stability and production by methods compatible
with mass-production, simple use and relatively short analysis time.

With regards to the storage stability, enzymes from extremophilic sources, able to
operate in a wider range of temperatures than their mesophilic counterparts, are a viable
choice as specific receptors in the biosensor.

The following section details some examples of extremozymes, most promising with
regards to stability and therefore with real potential to meet the requirements to be applied
in biosensors for practical applications.

2.4.2. Extremozymes as Potential Biorecognition Elements in Biosensors for DTFs

Extremophilic microorganisms constitute a recently exploited reservoir of enzymes
stable under various conditions. These microbes developed a particular proteome present-
ing specific structural and functional features in order to cope with extreme temperatures,
hydrostatic pressure, alkaline and acid pHs, high salinity, and radiations [93]. Therefore,
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for the last few decades, a series of enzymes (extremozymes) were investigated and used
for improved industrial processes. Among extremophiles, thermophilic and hyperther-
mophilic bacteria and archaea represent the most abundant source of extremely stable
enzymes that are also resistant to various chemical agents and extreme pH values [94].

Aldehyde dehydrogenases (ALDH, E.C 1.2.1.3) are one of the important yet little
explored biocatalysts in biotechnologies and biosensing [95,96]. The inhibition pattern of
these extremozymes was poorly studied, in particular the effect of dithiocarbamate derivates
known as ALDH inhibitors on their NAD(P)-dependent activity [88]. Nonetheless, the high
stability of these enzymes from thermophilic [97], psychrophilic [98], and halophilic microor-
ganisms [99], over a broad pH and temperature range both in solution and immobilized,
recommends them as putative enhanced biocatalysts for commercial operations.

Among this class of enzymes from hyperthermophiles, the bifunctional aldehyde
dehydrogenase from the archaeon Pyrococcus furiosus appeared to be extremely stable, up
to 100 ◦C, and highly active between pH 9.4 and 10.2 at 80 ◦C [100], while the heterologous
ALDH from the thermoacidophilic archaeon Sulfolobus solfataricus P2 also stable at high
temperatures optimally catalyzed the NAD+-dependent aldehydes oxidation at 70 ◦C
and pH 6.5 [101]. ALDH from the thermophilic and alkaliphilic Natronomonas pharaonis
isolated from a highly saline soda lakes in Egypt; thus, adapted to hypersaline conditions
and high pH, showed an optimal temperature of 60 ◦C in the presence of 0.25 M NaCl
at pH 8 [97]. This extremozyme also showed a high long-term stability, preserving its
full activity after 24 h storage in various concentrations of NaCl and a specific activity of
~1 μmol·min−1·mg−1 when oxidizing acetaldehyde at 20 ◦C [97].

Scant information is available so far on cold-active aldehyde dehydrogenases, con-
sidering that psychrophilic and psychrotolerant microorganisms constitute an impor-
tant source of stable enzymes that are highly active at low temperatures. Among im-
portant cold-active candidates, the ALDH from the psychrotrophic marine Antarctic
Flavobacterium frigidimaris KUC-1 (formerly Cytophaga sp.) presented a broad-range ther-
mostability up to 60 ◦C, with optimal pH >10 [98]. This extremozyme preserved 70% of the
activity when incubating at 45 ◦C for 2 h and has a half-like of 65 min at 50 ◦C, being showed
a lower activation energy at 30 ◦C as compared to the mesophilic Saccharomyces cerevisiae
ALDH [102], favoring catalysis at commonly used temperatures in applicative reactions [98].

Moreover, the homologous recombinant enzyme from the same family originating
from the Antarctic Flavobacterium PL002 strain was recently used in an electrochemical
test and in a biosensor for the detection of benzaldehyde [89,103]. The enzyme has wide
substrate specificity and was shown to be inhibited by thiram [104], thus it appears to
be a good candidate as a biorecognition element in a biosensor for DTFs. Moreover, the
cold-active PL002 ALDH had only 20% activity reduction after storage for 1 week at 4 ◦C
(C. Purcarea, unpublished data), as an important advantage for biosensing.

Studies of Rhodococcus sp. NI86/21 able to degrade the thiocarbamate herbicide S-ethyl
dipropylcarbamothioate revealed the presence of a NAD+-dependent ALDH active on
aliphatic aldehydes involved in this cytochrome P-450 related process [105]. Knowing that
Rhodococcus genus contained widespread polyextremophilic actinobacteria able to survive
within a 4 ◦C to 45 ◦C temperature range, high hydrostatic pressure, UV irradiation and
osmotic stress [106,107], with an extended array of enzymes as putative candidates for
environmental and biotechnological applications [108], further investigation of ALDHs
from extremophilic Rhodococcus species could lead to developments in biosensing for
pesticides detection.

Microbial laccases (E.C. 1.10.3.2) constitute currently used sensing biocomponents for
pesticides detection [85,109]. During the last decades, the characteristics of a large variety
of native and recombinant laccases from thermophilic, psychrophilic, and alkaliphilic
bacteria and fungi were reported [110]. The enzyme from the alkalotolerant gamma-
proteobacterium JB isolated from industrial waste water, optimally active at 55 ◦C and
pH 6.5, was 100% inhibited by 3.5 mM diethyldithiocarbamate when using syringaldazine
as substrate, with a Ki of 0.163 mM, an effect reversed by 1.5 mM CuCl2 [111]. Meanwhile,
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in the case of the thermostable laccase from Streptomyces lavendulae REN-7, only a slight
inhibition (14%) by sodium N,N-diethyldithiocarbamate trihydrate was observed [112].

Although the inhibitory effect of dithiocarbamate derivates was not investigated for
a large variety of these extremozymes, functional studies of laccases from extremophilic
microorganisms revealed their high thermal stability and a wide pH interval for catalysis that
makes them good candidates for enhanced biosensing components for pesticides monitoring.

2.4.3. Challenges in the Application of Biosensors for DTFs Determination in Real Samples

Most challenges to be solved in order to apply the biosensors for the determination of
DTFs in real samples are common with those observed for other pesticides [113], namely,
(i) improving the sensitivity, storage stability, reproducibility, and robustness of the sensing
device, (ii) demonstration of selectivity in complex matrices, (iii) simplification of sample
pre-treatment, and (iv) development of adequate working protocols to allow real time, on
field analysis.

An additional hurdle though compared to other types of pesticides that were prefer-
entially studied, is the lack of specific bioreceptors such as antibodies or aptamers and the
lack of sample extraction cartridges based on molecularly imprinted polymers [114].

With regards to the sensitivity of enzymatic biosensors, bi-enzymatic devices, such
as those based on laccase/tyrosinase and those combining aldehyde dehydrogenase with
NADH oxidase or diaphorase, lead to enhanced performance for DTFs detection compared
to mono-enzymatic ones. However, complexity, costs, and finding operational conditions
that represent a good compromise for both enzymes have to be weighed against the
increase in sensitivity. Rational biosensor design, including the controlled immobilization of
enzymes and the use of well-characterized nanomaterials and modifiers provides a wealth
of possibilities for biosensors for pesticides with improved characteristics [75,91,115].

As with all enzyme-inhibition based biosensors, the selectivity has to be accurately
evaluated in accordance to the targeted application. For example, the sensitivity of laccase,
tyrosinase and aldehyde dehydrogenase enzymes to several DTFs and other inhibitors can
be exploited to develop screening-type systems, alerting on possibly contaminated samples
that should be analyzed further by standard methods. Alternatively, sensors arrays such as
bioelectronic tongues including several enzymes with different susceptibilities to DTFs,
coupled with chemometrics for data analysis can be envisaged for the selective detection
of specific compounds, similar to other devices described in literature [116].

Use of enzymes with improved stability, genetically modified enzymes or newly
discovered enzymes with different inhibition profiles, inclusion of nanomaterials and
stabilizers and fabrication by methods compatible with mass-production are expected to
solve issues related to sensitivity, stability, reproducibility and robustness.

The low solubility of DTFs in water is a further complication for sample preparation
as are the extraction steps needed to ensure quantitative recovery from food matrices. The
development of portable biosensor-based devices can be envisaged however, for the fast
screening of DTFs on the surface of intact fruits and vegetables and wherever DTFs can
be converted easily to soluble salts. In this sense, a wearable glove biosensor, based on
the inhibition of acetylcholinesterase that was recently demonstrated for the detection of
organophosphorus pesticides on the surface of intact vegetables [117] can serve as a model.

Comparison with standard confirmatory methods, lacking in biosensor reports will
go a long way to support the feasibility of such devices and is anticipated to encourage
research in this direction.

3. Conclusions and Perspectives

Despite the large use of DTFs in agriculture, research in the field of analytical methods
dedicated to these fungicides has been very limited compared to other classes of pesticides.
Today, like 20 years ago [72], most standard methods for the analysis of DTFs remain based
on the degradation of fungicides to CS2 and measuring the resulting amount of CS2, which
does not make it possible to discriminate between various DTFs with different toxicities.
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A small number of chromatographic methods coupled with mass spectrometric detec-
tion enable the separation and detection of DTFs from different groups, i.e., propylene-bis-,
ethylene-bis and dimethyl-dithiocarbamates. Moreover the specific detection of metal
containing DTFs was achieved by coupling chromatographic separation with atomic ab-
sorption spectroscopy. Recent advances in chromatography based approaches mainly
concerned sample extraction procedures.

Most research efforts in the last years were concentrated on the SERS-based detection
of DTFs, targeting: (i) portable devices, (ii); simple and effective sampling procedures; and
above all (iii) the discovery of new cost-effective Ag, Au, and Cu-based nanomaterials and
composites as SERS substrates for the highly sensitive detection of DTFs and thiram in
particular. Various nanomaterial morphologies, modifiers for specific anchoring the analyte
to the hot spots, 2D and hierarchical 3D nanostructures have been investigated aiming for
high sensing area with a high density of “hot spots” for enhanced signals. In line with the
current trends, significant advances were noted for the “paste and peel” sensors based on
flexible supports, which could be brought in close contact with the sample surface and
thus play a double role, i.e., sampling and sensing, to enable the fast, in situ analysis of
thiram. The detection of thiram, as a prominent example of DTFs was demonstrated in
a variety of spiked samples, including soil, strawberries, tomato, cucumber, water, etc.,
for which satisfactory recoveries were calculated. Without any doubt, considering the
effervescence of research on this topic, the progress with portable devices and the efforts
towards enhancing the accuracy of the detection (e.g., by including internal standards,
using chemometrics for analyzing the data etc.), SERS-based methods have a very high
potential to achieve in situ selective detection of specific DTFs.

In addition to SERS, many assays based on optical and electrochemical detection have
been developed. Oftentimes the accent was placed on developing simple and low cost pro-
cedures. However, the selectivity of most devices was not unambiguously demonstrated,
and their accuracy remains to be confirmed by comparison with standard methods.

While biosensors appear as an attractive alternative to separation-based methods
with their promise for fast, selective, cost effective, portable, and simple detection, the
detection of DTFs was rarely explored. This is in part because antibodies, aptamers, and
molecularly imprinted polymers for DTFs are not available commercially as for other
pesticides. The few reports on biosensors for DTFs based on the inhibition of laccase,
tyrosinase or aldehyde dehydrogenase (some more than 10 years old) emphasize their
capability to reach detection limits compatible with practical applications. The development
of biosensors for DTFs can be fast tracked by exploiting the knowledge and adapting
concepts from biosensors for other pesticides, e.g., the widely studied organophosphates
and carbamates that inhibit cholinesterases.

More specifically, controlled immobilization of enzymes, use of nanomaterials to
enhance the electrochemical signal, embracing the trend for flexible devices used for
both sampling and detection can potentially lead to highly sensitive biosensors for DTFs
for in situ detection applications. For example, many opportunities are anticipated for
devices such as biosensor swipes or gloves for thiram detection on the surface of fruits
and vegetables.

Considering that laccase, tyrosinase and aldehyde dehydrogenase are inhibited in
different proportions not by a single fungicide, but by a group of DTFs as well as by
several other compounds, the most direct application of enzyme-based biosensors is as
alert systems. Selective detection of a particular compound might be attempted in the
future with bioelectronic tongues. Enzymes obtained by engineering approaches, with
improved selectivity and stability, or new enzymes isolated from extremophiles, with new
substrate specificity profile and enhanced stability can contribute to meet the requirements
for practical applications of biosensors in DTFs analysis.

Obviously, there is a high need of stable, specific receptors such as aptamers or molec-
ularly imprinted polymers that could simplify the analysis of DTFs and assist not only with
detection but also with sample extraction and cleaning. Two main strategies are currently
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pursued with sample pre-treatment: development of QuEChERS methods, suitable for
laboratory-based analysis of any type of sample and fast methods, such as “paste and
peel”,“swipe”, etc., mainly intended for fast, in situ sampling, resulting in flexible films
adhering to sample surfaces that collect the contaminants and are afterwards directly used
for sensing by SERS. While acknowledging limitations due to the low solubility in water
and organic solvents of most DTFs, further progress enabling fast, quantitative recovery of
DTFs is expected for specific applications, such as the detection of thiram from the surface
of intact fruits and vegetables.

In summary, although various approaches are available for the detection of DTFs, se-
lectivity remains a critical issue to be addressed in a more detailed and application-oriented
manner in the coming years. Clearly, there are many analytical opportunities ahead in the
analysis of DTFs and the field is one deserving far more concentrated research efforts.
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