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Preface to ”The 40th International Workshop on

Bayesian Inference and Maximum Entropy Methods

in Science and Engineering”

40-years anniversary: MaxEnt and Bayesian Inference

This workshop series was initiated by Myron Tribus and Edwin T. Jaynes, and organised for the

first time by C.Ray Smith and Walter T. Grandy in 1981 at the University in Wyoming. Since then,

tremendous progress has been made and the number of publications based on Bayesian methods

is impressive.

The workshops are a platform for the presentation of new, sometimes highly revolutionary and

ambitious ideas, and for lively and controversial discussions. Some of these ideas have proved very

fruitful over the years and have also found their way into other disciplines, while others have proved

useless. This year’s workshop was also a platform for a mix of ideas that are unanimously considered

valuable and correct, and ideas that may have very high potential but are still disputed. We believe

that it is in the spirit of the workshop and the conference proceedings to give these ideas a forum for

further discussion.

Due to the COVID-19 pandemic, the 2020 workshop had to be cancelled and this year’s

workshop was held online; however, the lively atmosphere was still unbroken.

In agreement with the general framework of the annual workshop, and due to the

broad applicability of Bayesian inference, this year’s presentations cover many research areas,

such as physics (e.g., plasma physics, astro-physics, statistical mechanics, foundations of

quantum mechanics), geodesy, biology, medicine, phonetics, ecology, hydrology, measure theory,

image reconstruction, computational engineering, machine learning, and, quite appropriately,

epidemiology.

We would like to thank TU Graz and Entropy (MDPI) for their institutional and financial

support, as well as Brigitte Schwarz, Stefan Schmutzler and Sabine Pucher for their organizational

support. Finally, we thank all authors and speakers as well as the reviewers for their invaluable

contributions, and all participants for a constructive and inspiring debate.

Wolfgang von der Linden is a full professor and head of the institute of Theoretical and

Computational Physics at TU Graz (Austria). His research focuses on strongly correlated many body

physics and Bayesian probability theory, which in 30 years has led to more than 100 papers on this

topic. He has collected his wealth of experience together with Volker Dose and Udo von Toussaint,

both from the IPP in Garching (Germany) in the book “Bayesian probability theory: applications in

the physical sciences”, Cambridge University Press, 2014.

Sascha Ranftl is a post-doctoral researcher at the Institute of Theoretical and Computational

Physics and Graz Center of Computational Engineering at TU Graz (Austria). His research interests

are Bayesian probability theory, physics-informed machine learning, uncertainty quantification for

computer simulations and their applications to (biomedical) engineering problems such as the

mechanics or detection of aortic dissections.
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Proceeding Paper

Surrogate-Enhanced Parameter Inference for
Function-Valued Models †

Christopher G. Albert 1,2,*, Ulrich Callies 3 and Udo von Toussaint 1

1 Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany; udt@ipp.mpg.de
2 Institute of Theoretical and Computational Physics, Technische Universität Graz, 8010 Graz, Austria
3 Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany; ulrich.callies@hereon.de
* Correspondence: albert@alumni.tugraz.at
† Presented at the 40th International Workshop on Bayesian Inference and Maximum Entropy Methods in

Science and Engineering, online, 4–9 July 2021.

Abstract: We present an approach to enhance the performance and flexibility of the Bayesian inference
of model parameters based on observations of the measured data. Going beyond the usual surrogate-
enhanced Monte-Carlo or optimization methods that focus on a scalar loss, we place emphasis on
a function-valued output of a formally infinite dimension. For this purpose, the surrogate models
are built on a combination of linear dimensionality reduction in an adaptive basis of principal
components and Gaussian process regression for the map between reduced feature spaces. Since
the decoded surrogate provides the full model output rather than only the loss, it is re-usable for
multiple calibration measurements as well as different loss metrics and, consequently, allows for
flexible marginalization over such quantities and applications to Bayesian hierarchical models. We
evaluate the method’s performance based on a case study of a toy model and a simple riverine diatom
model for the Elbe river. As input data, this model uses six tunable scalar parameters as well as silica
concentrations in the upper reach of the river together with the continuous time-series of temperature,
radiation, and river discharge over a specific year. The output consists of continuous time-series data
that are calibrated against corresponding measurements from the Geesthacht Weir station at the Elbe
river. For this study, only two scalar inputs were considered together with a function-valued output
and compared to an existing model calibration using direct simulation runs without a surrogate.

Keywords: parameter inference; Monte Carlo; surrogate model; Gaussian process regression; dimensionality
reduction

1. Introduction

Delayed acceptance [1,2] can accelerate Markov chain Monte Carlo (MCMC) sampling
up to a factor of one over the acceptance rate. In order to do so, it requires a surrogate
of the posterior that contains the cost function inside the likelihood in the case of model
calibration. The simplest way to implement delayed acceptance relies on a surrogate with
scalar output built for this cost function or for the likelihood. Here, we take an intermediate
step and construct a surrogate for the functional output of a blackbox model to be calibrated
against reference data. Typical examples are numerical simulations that output time-series
or spatial data and depend on tunable input parameters.

There exist numerous related works treating blackbox models with functional outputs
with surrogates. Campbell et al. [3] used an adaptive basis of principal component analysis
(PCA) to perform global sensitivity analysis. Pratola et al. [4] and Ranjan et al. [5] used
GP regression for sequential model calibration in a Bayesian framework. Lebel et al. [6]
modeled the likelihood function in an MCMC model calibration via a Gaussian process.
Perrin [7] compared the use of a multi-output GP surrogate with a Kronecker structure to
an adaptive basis approach.

The present contribution relies on the adaptive basis approach in principal components
(Karhunen–Loéve expansion or functional PCA) to reduce the dimensions of the functional

Phys. Sci. Forum 2021, 3, 11. https://doi.org/10.3390/psf2021003011 https://www.mdpi.com/journal/psf
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output, while modeling the map from inputs to weights in this basis via GP regression. We
demonstrate the application of this approach on two examples using usual and hierarchical
Bayesian model calibration. In the latter case, a surrogate beyond theL2 cost function is
required if the likelihood depends on additional auxiliary parameters. As an example, we
allow variations of the (fractional) order of the norm, thereby, marginalizing over different
noise models, including Gaussian and Laplacian noise.

2. Gaussian Process Regression and Bayesian Global Optimization

Gaussian process regression [8–10] is a commonly used tool to construct flexible non-
parameteric surrogates. Based on the observed outputs f (xk) at training points xk and a
covariance function k(x, x′), the GP regressor predicts a Gaussian posterior distribution
at any point x∗. For a single prediction f (x∗), the expected value and variance of this
distribution are given by

f̄ (x∗) = m(x∗) + K∗(K + σn I)−1y, (1)

var[ f (x∗)] = K∗∗ − K∗(K + σn I)−1K∗T , (2)

where m(x∗) is the mean model, the covariance matrix K contains entries Kij = k(xi, xj)
based on the training set, K∗

i (x∗, xi) are entries of a row vector, and K∗∗ = k(x∗, x∗) is
a scalar. The unit matrix I is added with the noise covariance σn, which regularizes the
problem and is usually estimated in an optimization loop together with other kernel
hyperparameters.

Such a surrogate with uncertainty information can be used for Bayesian global
optimization [11–13] of the log-posterior as a cost function. Here, we apply this method
to reach the vicinity of the posterior’s mode before sampling. As an acquisition function,
we use the expected improvement (see, e.g., [12]) at a newly observed locationx∗ given
existing training data D,

aEI(x�) = E[max(0, f̄ (x∗)− f̂ )|x∗,D]

= ( f̄ (x∗)− f̂ )Φ( f̂ ; f̄ (x∗), var[ f (x∗)]) + var[ f (x∗)]N ( f̂ ; f̄ (x∗), var[ f (x∗)]), (3)

where f̂ is the optimum value for f (x) observed thus far. Due to the non-linear transformation
from the functional blackbox output to the value of the cost function, it is more convenient
to realize Bayesian optimization with a direct GP surrogate of the cost function that is
constructed in addition to the surrogate for the functional output for the KL expansion
coefficients described below.

3. Delayed Acceptance MCMC

Delayed acceptance MCMC builds on a fast surrogate for the posterior p̃(x|y) to reject
unlikely proposals early [1,2]. Following the usual Metropolis–Hastings algorithm, the
probability to accept a new proposal x∗ in this first stage in the n-the step of the Markov
chain is, as usual,

P̃n
acc =

p̃(x∗|y)
p̃(xn−1|y)

g(xn−1|x∗)
g(x∗|xn−1)

, (4)

whereg is a transition probability that has been suitably tuned during warmup. The true
posterior p(x|y) is only evaluated if the proposal“survives” this first stage and enters the
final acceptance probability

Pn
acc =

p(x∗|y)
p(xn−1|y)

p̃(xn−1|y)
p̃(x∗|y) . (5)

Actual computation is typically performed in the logarithmic space with a cost function

�(x|y) ≡ −logp(x|y). (6)

2
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If this function is fixed, it is most convenient to directly build a surrogate �̃(x|y) for
the log-posterior �(x|y) including the corresponding prior.

4. Bayesian Hierarchical Models and Fractional Norms

One application of modeling the full functional output instead of only the cost function
is the existence of additional distribution parameters θ in the likelihood in addition to
the original model inputs x. Such dependencies appear within Bayesian hierarchical
models [14], where θ are again subject to a certain (prior) distribution with possibly further
levels of hyperparameters. There are essentially two ways to construct a surrogate with
support for additional parameters θ: Building a surrogate for the cost function that adds θ
as independent variables or constructing a surrogate with functional output for fk(x) and
keeping the dependencies on θ exact. Here, we focus on the latter, and apply this surrogate
within delayed acceptance MCMC with both, x and θ as tunable parameters.

As an example, we use a more general noise model than the usual Gaussian likelihood
that builds on arbitrary �θ norms [15–17] with real-valued θ not fixed while traversing the
Markov chain. We allow members of the exponential family for observational noise and
specify only its scale, but keep θ as a free parameter. Namely, we model the likelihood for
observing y in the output as

p(y|x, θ) =
1

2
√

2σ Γ(1 + θ−1)
e−�(y;x,θ), (7)

with the normalized �θ norm to the power of θ,

�(y; x, θ) ≡ 1
D

D

∑
i=1

∣∣∣∣yi − fi(x)√
2σ

∣∣∣∣θ (8)

as the loss function between observed data yi and blackbox model fi(x). Choosing the
usual L2 norm leads to a Gaussian likelihood for the noise model, whereas using the L1
norm means Laplacian noise. To maintain the relative scale when varying θ, it is important
to add the term log Γ(1 + θ−1) from (7) to the negative log-likelihood. In the following use
cases, we are going to compare the cases of fixed and variable θ.

5. Linear Dimension Reduction via Principal Components

Formally, the blackbox output for given input x can be a function f (t) ∈ H in an
infinite-dimensional Hilbert space (though sampled at a finite number of points in practice).
Linear dimension reduction in such a space means finding the optimum set of basis
functions ϕk(t) that spans the output space f (t; x) for any input x given to the blackbox.
The reduced model of order r is then given by

f (t; x) ≈
r

∑
k=1

zk(x)ϕk(t). (9)

This approach is known as the Karhunen–Loéve (KL) expansion [18] in case f (t; x) are
interpreted as realizations of a random process, or as the functional principal component
analysis (FPCA) [19]. For our application, this distinction does not matter. The KL
expansion boils down to solving a regression problem in the non-orthogonal basis of
N observed realizations to represent new observations. Then, an eigenvalue problem is
solved to invert the N × N collocation matrix with entries

Mij =
〈

f (t; xi), f (t; xj)
〉
. (10)

3
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Here, the inner product in Hilbert spaces and its approximation for a finite set of
support points is given by

〈u, v〉 =
∫

Ω
u(t)v(t)dt ≈ 1

Nt

Nt

∑
k=1

u(tk)v(tk). (11)

If Nt 
 N (many support points, few samples), solving the eigenvalue problem
of the collocation matrix M is more efficient than the dual one of the covariance matrix
C with Cij = ∑k f (ti, xk) f (tj, xk) in the usual PCA (see [9] for their equivalence via the
singular value decomposition of Yij = f (ti, xj)). The question of at which r to truncate
the eigenspectrum in (9) depends on the desired accuracy in the output, which is briefly
analyzed in the following paragraph.

Error Estimate

Here, we justify why we can assume an L2 truncation error of the order of the ratio
λr/λ1 between the smallest eigenvalue considered in the approximation and the largest
one. The truncated SVD can be shown to be the best linear approximation M(r) of lower
rank r to an N × N matrix M in terms of the Frobenius norm ||M||F (see, e.g., [20]). Its
value is simply computed from the L2 norm of singular values,

||M||F =

(
N

∑
k=1

σ 2
k

)1/2

, (12)

where σ 2
k = λk in the case of real eigenvalues λk of a positive semi-definite matrix as for

the covariance or collocation matrix. The truncation error is given by

||M(r) − M||F =

(
N

∑
k=r+1

λk

)1/2

. (13)

The error estimate for the KL expansion uses this convenient property together with
the fact that the Frobenius norm is compatible with the usual L2 norm |x| of vectors y, i.e.,

|My| ≤ ||M||F|y|. (14)

Representing y via the first r eigenvalues of the collocation matrix yields a relative
squared reconstruction error of

|(M(r) − M)y|2/|y|2 ≤
N

∑
k=r+1

λk ≤ (N − r)λr. (15)

The last estimate is relatively crude if N 
 r, and the spectrum decays fast with the
index variable k. If one assumes a decay rate α with

λk ≈ λr(k − r)−α, (16)

one obtains
N

∑
k=r+1

λk ≈
∞

∑
k=r+1

λr(k − r)−α = λr

∞

∑
k=1

k−α = λrζ(α), (17)

where ζ is the Riemann zeta function. This function diverges for a spectral decay of
order α = 1 and reaches its asymptotic value ζ(∞) = 1 relatively quickly for α ≥ 2
(e.g., ζ(3) = 1.2). The spectral decay rate α can be fitted in a log–log plot of λk over index k
and takes values between α = 3 and 5 in our use case. The underlying assumptions are
violated if the spectrum stagnates at a large number of constant eigenvalues for higher
indices k.

4
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6. Implementation and Results

The idea behind the realization of MCMC with a function-valued surrogate is quite
simple. Instead of directly using the surrogate for the cost � with fixed θ, we take a step
in-between. Multiple surrogates z̃k(x) are built, where each maps the input x to one weight
zk(x) in the KL expansion. A surrogate f̃i(x) ≡ f̃ (ti; x) for the model output is then given
by replacing zk(x) by z̃k(x) in (9). The according surrogate �̃(y; x, θ) for the cost function
uses f̃i(x) instead of fi(x) in (8). Dependencies on θ are kept exact in this approach. The
main algorithm proceeds in the following steps:

1. Construct a GP surrogate for the L2 cost function on a space-filling sample sequence
over the whole prior range.

2. Refine the sampling points near the posterior’s mode through Bayesian global optimization
with the L2 cost surrogate.

3. Train a multi-output GP surrogate for the functional output z(x) on the refined
sampling points.

4. Use the function-valued surrogate for delayed acceptance in the MCMC run.

For all GP surrogates, we use a Matern 5/2 kernel for k(x, x′) together with a linear
mean model for m(x), as realized in the Python package GPy [21]. For step 4, we use Gibbs
sampling and the surrogate for z(x), yielding the full output y(t, x) rather than only the L2
distance to a certain reference dataset. The idea to refine the surrogate iteratively during
MCMC had to be abandoned early. The problem is that detailed balance is violated as soon
as the surrogate proposal probabilities change when modifying the GP regressor with a
new point. In the following application cases, we compare a usual MCMC evaluation using
the full model to MCMC with delayed acceptance using the GP surrogate together with the
KL expansion/functional PCA (GP+KL) in the output function space.

6.1. Toy Model

First, we test the quality of the algorithm on a toy model given by

y(t, x) = x1 sin((t − x2)
3). (18)

We choose reference values x1 = 1.15, x2 = 1.4 to test the calibration ofx against the
according output yref(t) ≡ y(t, xref) and add Gaussian noise of amplitude σ = 0.05. A
flat prior is used for x. For the hierarchical model case (7), we choose a starting guess of
θ = 2 for the norm’s order and a Gaussian prior with σθ = 0.5 around this value together
with a positivity constraint. The initial sampling domain in the square x1, x2 ∈ (0, 2). The
comparison between MCMC and delayed acceptance MCMC is made once for fixed θ = 2
(Gaussian likelihood) and then for a hierarchical model with a random walk also in θ. The
respective Markov chain with 10,000 steps has a correlation length of ≈ 10 steps (Figure 1)
and yields a posterior parameter distribution for (x1, x2) depicted in Figure 2.

The results in Figure 2 show good agreement in the posterior distributions of full
MCMC and delayed acceptance MCMC. Compared to the case with fixed θ = 2, the
additional freedom in θ in the hierarchical model leads to further exploration of the
parameter space. The posterior of θ according to the Markov chain is given in Figure 3. The
similarity to the prior distribution shows that the data does not yield new information on
how to choose θ.

5
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Figure 1. Autocorrelation over lag in MCMC steps for inputs x1 (solid) and x2 (dashed) in the toy
model. Top: Gaussian likelihood, and bottom: hierarchical model. Left: full MCMC, and right:
delayed acceptance MCMC with GP+KL surrogate.

Figure 2. Posterior distribution of the calibrated parameters x in (18). Top: Gaussian likelihood,
bottom: hierarchical model. Left: full MCMC, right: delayed acceptance MCMC with GP+KL
surrogate.

Figure 3. Posterior distribution of the fractional order θ in the loss function with �θ norm. Left: full
MCMC, right: delayed acceptance MCMC with GP+KL surrogate.

6
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6.2. Riverine Diatom Model

The final application of the described method is on a riverine diatom model [22,23].
This model predicts the chlorophyll a concentration at an observation point at the Elbe
river as a time series and depends on several input parameters. For simplicity, and to limit
computational resources, we select only two of the six scalar inputs and use fixed values
for the remaining four. Namely, the chosen parameters x1 = Klight and x2 = μ0 appear in
the growth rate inside the diatom model. The latter is given by the “Smith formula” [24]
for photosynthesis,

μ(t) ∝ μ0
1
D

∫ D

0

I(t)e−λ(t)z√
K 2

light + I2(t)e−2λ(t)z
dz,

where D is the water depth, and I(t) is the radiation intensity prescribed at the water surface.
Light attenuation λ(t) ≡ λSCchl(t) is modeled to be proportional to the chlorophyll a
concentration Cchl(t). Equations are solved within a Lagrangian setup, following water
parcels that travel down the Elbe river. Data points of the local chlorophyll time series
simulated at Geesthacht Weir are made up by chlorophyll a values at the Lagrangian
trajectory end points. These values are the functional model output y(t) for which the
model is calibrated with respect to measurements yref(t). As the parameters are positive
and limited by reasonable maximum values from domain knowledge, we use a half-sided
Cauchy (Lorentz) prior

p(xk) =
2
π

bk

b 2
k + x 2

k
for xk > 0, p(xk) = 0 for xk ≤ 0. (19)

Here, we choose a scale value x∗k for which P∗ = 90% of the probability volume is
contained withinxk < x∗k . Considering the cumulative distribution, we have to set

bk =
x∗k

tan
(

π
2 P�

) (20)

to realize this condition.
As in the case of the toy model, we use 10,000 steps in the Markov chain. The results

for autocorrelation and posterior samples using the full model versus delayed acceptance
are shown in Figures 4 and 5. The correlation time of ≈500 steps is much larger than in
the toy model, and the decay of the autocorrelation over the lag roughly matches between
the two approaches. Delayed acceptance sampling produces similar posterior samples in
Figure 5 at about one third of the overall computation time. There, one also sees the issue
of high correlation between Klight and μ0 in the posterior of the calibration, making Gibbs
sampling inefficient in that particular case.

Figure 4. Autocorrelation over lag in MCMC steps for inputs Klight (solid) and μ0 (dashed) in the
riverine diatom model. Top: Gaussian likelihood, bottom: hierarchical model. Left: full MCMC,
right: delayed acceptance MCMC with GP + KL surrogate.

7



Phys. Sci. Forum 2021, 3, 11

Figure 5. Posterior distribution of calibrated parameters for the riverine diatom model. Left: full
MCMC, right: delayed acceptance MCMC with GP + KL surrogate.

7. Conclusions and Outlook

We illustrated the application of function-valued surrogates to delayed acceptance
MCMC for parameter calibration in simple as well as hierarchical Bayesian models. Using
a surrogate for the functional output rather than a cost function or likelihood is useful for
several reasons. Conceptually, it allows introducing additional distribution parameters in
Bayesian hierarchical models. Our results demonstrate that it is possible and efficient to
perform MCMC with delayed acceptance on such models while keeping the dependencies
in these additional parameters exact. In particular, the fractional order of the norm
appearing in the cost function was left free, which is useful for robust model calibration.

The method was applied to a toy model and an application case of a riverine diatom
model. In both cases, using delayed acceptance with a surrogate for the functional output
produced results comparable to using the full model at only about one third of the actual
model evaluations. Compared to direct surrogate modeling of the cost function, we could
also observe an increase in the quality of the predicted cost. This is likely connected to the
higher flexibility of modeling weights to multiple principal components with Gaussian
processes with individual hyperparameters.

The described approach is not immune to the curse of dimensionality. On the one
hand, the number of required GP regressors grows linearly with the effective dimensions
of the output function space. Since evaluation is fast and parallelizable, this is a minor issue
in practice. On the other hand, increasing the dimension of the input space soon prohibits
the construction of a reliable surrogate due to the required number training points to fill
the parameter space. In such cases, the preprocessing overhead is expected to outweigh
the speedup of delayed acceptance MCMC for either functional or scalar surrogates. More
detailed investigations will be required to give quantitative estimates on this trade off.
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Abstract: The mathematical formalism of quantum mechanics is derived or “reconstructed” from
more basic considerations of the probability theory and information geometry. The starting point is
the recognition that probabilities are central to QM; the formalism of QM is derived as a particular
kind of flow on a finite dimensional statistical manifold—a simplex. The cotangent bundle associated
to the simplex has a natural symplectic structure and it inherits its own natural metric structure from
the information geometry of the underlying simplex. We seek flows that preserve (in the sense of
vanishing Lie derivatives) both the symplectic structure (a Hamilton flow) and the metric structure
(a Killing flow). The result is a formalism in which the Fubini–Study metric, the linearity of the
Schrödinger equation, the emergence of complex numbers, Hilbert spaces and the Born rule are
derived rather than postulated.

Keywords: information geometry; symplectic geometry; Hamilton–Killing flows; entropic dynamics

1. Introduction

In the traditional approach to quantum mechanics (QM), the Hilbert space plays a
central, dominant role and probabilities are introduced, almost as an afterthought, in order
to provide the phenomenological link for handling measurements. The uneasy coexistence
of the Hilbert and the probabilistic structures is reflected in the two separate modes of
wave-function evolution; one is the linear and deterministic Schrödinger evolution and
the other is the discontinuous and stochastic wave function collapse. It has given rise to
longstanding problems in the interpretation of the quantum state itself [1–5].

These difficulties have motivated alternative approaches in which, rather than pos-
tulating Hilbert spaces as the starting point, one recognizes that probabilities play the
dominant role; probabilities are not just an accidental feature peculiar to quantum mea-
surements. The goal there is to derive or “reconstruct” the mathematical formalism of QM
from more basic considerations of probability theory and geometry. (See, e.g., [6–11] and
references therein.)

In the entropic dynamics (ED) approach the central object is the epistemic configu-
ration space, which is a statistical manifold—a space in which each point represents a
probability distribution [11]. In this paper, our goal is to discuss those special curves that
could potentially play the role of trajectories. What makes those curves special is that they
are adapted to the natural geometric structures on the statistical manifold.

Two such structures are of central importance. The first is familiar from statistics,
i.e., all statistical manifolds have an intrinsic metric structure given by the information
metric [12,13]. The second is familiar from classical mechanics [14–16]. Since we are
interested in trajectories, we are naturally led to consider the vectors that are tangent to such
curves, as well as the dual vectors, or covectors—it is these objects that are used to represent
the analogues of the velocities of probabilities and their momenta. Vectors and covectors
live in the so-called tangent and cotangent spaces, respectively. It turns out that the
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statistical manifold plus all its cotangent spaces is itself a manifold—the cotangent bundle—
that can be endowed with a second natural structure called symplectic. In mechanics, the
cotangent bundle is known as phase space and the symplectic transformations are known
as canonical transformations.

There is extensive literature on the symplectic and metric structures inherent to QM.
They have been discovered, independently rediscovered, and extensively studied by many
authors [17–26]. Their crucial insight is that those structures, being of purely geometrical
nature, are not just central to classical mechanics, they are also central to quantum me-
chanics. Furthermore, the potential connection and relevance of information geometry to
various aspects of QM, including its metric structure, has also been studied [9–11,27–30].

To characterize congruences of curves in the epistemic phase space—or, equivalently,
the flows on the cotangent bundle—we must address two problems. First, we must charac-
terize the particular cotangent space and the symplectic structure that is relevant to QM.
This amounts to establishing the correct conjugate momenta to be paired to the coordinates,
which, in our case, are probabilities. In classical mechanics, this pairing is accomplished
with the help of a Lagrangian L(q, q̇) and the prescription p = ∂L/∂q̇. In the present prob-
lem, we have no access to a Lagrangian and a different criterion is adopted [11]. The second
problem is to provide the cotangent bundle with a metric structure that is compatible with
the information metric of the underlying statistical manifold. The issue is that cotangent
bundles are not statistical manifolds and the challenge is to identify the natural set of
assumptions that leads to the right metric structure.

We show that the flows that are relevant to quantum mechanics are those that preserve
(in the sense of vanishing Lie derivatives) both the symplectic structure (a Hamilton flow)
and the metric structure (a Killing flow). The characterization of these Hamilton–Killing
(HK) flows results in a formalism that includes states described by rays, a geometry given
by the Fubini–Study metric, flows that obey a linear Schrödinger equation, the emergence
of a complex structure, the Born rule, and Hilbert spaces. All these elements are derived
rather than postulated.

The present discussion includes two new developments. First, our focus is on isolating
the essential geometrical aspects of the problem (a discussion of the physical aspects is
given in [11]) and the main ideas are presented in the simpler context of a finite-dimensional
manifold—a simplex. Thus, what we derive here is the geometrical framework that applies
to a toy model—an n-sided quantum die. Second, the metric structure of the cotangent
bundle is found by a new argument involving the minimal assumption that the metric
of phase space is determined by the only metric structure at our disposal, namely, the
information metric of the simplex.

Is this all there is to quantum mechanics? We conclude with a word of caution.
The framework developed here takes us a long way towards justifying the mathematical
formalism that underlies quantum mechanics, but it is only a kinematical prelude to the
true dynamics. The point is that not every HK curve is a trajectory and not every parameter
that labels points along a curve is time. All changes of probabilities, including the changes
we call dynamics, must be compatible with the entropic and Bayesian rules that have been
found to be of universal applicability in inference. It is this additional requirement that
further restricts the HK flows to an entropic dynamics that describes an evolution in a
suitably constructed entropic concept of time [7,11].

This paper focuses on deriving the mathematical formalism of quantum mechanics,
but the ED approach has been applied to a variety of other topics in quantum theory.
These include the quantum measurement problem [31,32]; momentum and uncertainty
relations [33,34]; the Bohmian limit [34,35] and the classical limit [36]; extensions to curved
spaces [37]; to relativistic fields [38–40]; and the ED of spin [41].

2. Some Background

We deal with several distinct spaces. One is the ontic configuration space of microstates
labeled by i = 1 . . . n, which are the unknown variables we are trying to predict. Another
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is the space of probability distributions ρ = (ρ1 . . . ρn), which is the epistemic configuration
space or, to use a shorter name, the e-configuration space. This (n − 1)-dimensional statistical
manifold is a simplex S ,

S =
{

ρ| ρi ≥ 0 ; ∑n
i=1 ρi = 1

}
. (1)

As coordinates for a generic point ρ on S , we shall use the probabilities ρi themselves.
Given the manifold S , we can construct two other special manifolds that will turn out

to be useful, the tangent bundle TS and the cotangent bundle T∗S . These are fiber bundles;
the base manifold is S and the fibers at each point ρ are respectively the tangent TSρ and
cotangent T∗Sρ spaces at ρ. The tangent space at ρ, TSρ, is the vector space composed of
all vectors that are tangent to curves through the point ρ. While this space is obviously
important (it is the space of “velocities” of probabilities), in what follows, we will not have
much to say about it. Much more central to our discussion is the cotangent space at ρ, T∗Sρ

which is the vector space of all covectors at ρ.
As already mentioned, the reason we care about vectors and covectors is that these

are the objects that are used to represent velocities and momenta. The cotangent bundle
T∗S , plays the central role of the epistemic phase space, or e-phase space.

A point X ∈ T∗S is represented as X = (ρ, π), where ρ = (ρ1 . . . ρn) are coordinates
on the base manifold S and π = (π1 . . . πn) are some generic coordinates on the cotangent
space T∗Sρ at ρ. Curves on T∗S allow us to define vectors on the tangent spaces T(T∗S)X .
Let X = X(λ) be a curve parameterized by λ; then, the vector V̄ tangent to the curve at
X = (ρ, π) has components dρi/dλ and dπi/dλ and is written as

V̄ =
d

dλ
=

dρi

dλ
ρ̄i +

dπi
dλ

π̄i =
dρi

dλ

∂

∂ρi +
dπi
dλ

∂

∂πi
, (2)

where ρ̄i and π̄i are the basis vectors, the index i = 1 . . . n is summed over and we adopt
the standard notation in differential geometry, ρ̄i = ∂/∂ρi and π̄i = ∂/∂πi. The directional
derivative of a function F(X) along the curve X(λ) is

dF
dλ

=
∂F
∂ρi

dρi

dλ
+

∂F
∂πi

dπi
dλ

def
= ∇̃F[V̄] , (3)

where ∇̃ is the gradient in T∗S , that is, the gradient of a generic function F(X) = F(ρ, π) is

∇̃F =
∂F
∂ρi ∇̃ρi +

∂F
∂πi

∇̃πi , (4)

where ∇̃ρi and ∇̃πi are the basis covectors and the tilde ‘˜’ serves to distinguish the gradient
∇̃ on the bundle T∗S from the gradient ∇ on the simplex S .

Here, unfortunately, we encounter a technical difficulty due to the fact that the space
S is constrained to normalized probabilities so that the coordinates ρi cannot be varied
independently. This problem is handled, without loss of generality, by embedding the
(n − 1)-dimensional manifold S into a manifold of one dimension higher, the so-called
positive-cone, denoted S+, where the coordinates ρi are unconstrained.

To simplify the notation, a point X = (ρ, π) in the 2n-dimensional T∗S+ is labeled by
its coordinates Xαi = (X1i, X2i) = (ρi, πi), where αi is a composite index. The first index α
(chosen from the beginning of the Greek alphabet) takes two values, α = 1, 2. Since α keeps
track of whether i is an upper ρi index (α = 1) or a lower πi index (α = 2), from now on we
can set ρi = ρi. Then, Equations (2) and (4) are written as

V̄ =
d

dλ
= Vαi ∂

∂Xαi and ∇̃F =
∂F

∂Xαi ∇̃Xαi . (5)
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The repeated indices indicate a double summation over α and i. The action of the basis
covectors ∇̃Xαi on the basis vectors, ∂/∂Xβj = ∂βj, is given by

∇̃Xαi[∂βj] =
∂Xαi

∂Xβj = δαi
βj so that ∇̃F[V̄] =

∂F
∂Xαi Vαi =

dF
dλ

(6)

is the directional derivative of F along the vector V̄.

3. Hamiltonian Flows

Just as a manifold can be supplied with a symmetric bilinear form, the metric tensor,
which gives it the fairly rigid structure described as its metric geometry, cotangent bundles
can be supplied with an antisymmetric bilinear form, the symplectic form, which gives them
the somewhat floppier structure called symplectic geometry (Arnold 1997 [15,16]).

A vector field V̄(X) defines a space-filling congruence of curves Xi = Xi(λ) that are
tangent to the field V̄(X) at every point X. We seek those special congruences or flows that
reflect the symplectic geometry.

3.1. hE Symplectic Form

Once the local coordinates (ρi, πi) on T∗S+ are established there is a natural choice of
symplectic form

Ω = ∇̃ρi ⊗ ∇̃πi − ∇̃πi ⊗ ∇̃ρi . (7)

The question of how to choose those local coordinates, which are Darboux coordinates
for the cotangent bundle, remains open. The answer is not to be found in mathematics
but in physics. In classical mechanics, the criterion for choosing a canonical momentum
is provided by a Lagrangian; however, here, we do not have a Lagrangian. An alter-
native criterion more closely tailored to the framework presented here is provided by
entropic dynamics [11]. From now on, we assume that the correct πi coordinates have
been identified.

The action of Ω[·, ·] on two vectors V̄ = d/dλ and Ū = d/dμ is obtained using (6).

∇̃ρi(V̄) = V1i and ∇̃πi(V̄) = V2i . (8)

The result is

Ω[V̄, Ū] = V1iU2i − V2iU1i = Ωαi,βjVαiUβj where Ωαi,βj =

[
0 1
−1 0

]
δij . (9)

3.2. Hamilton’s Equations and Poisson Brackets

Next, we derive the 2n-dimensional T∗S+ analogues of the results that are standard
in classical mechanics [14–16]. We seek those vector fields V̄(X) that generate flows (the
congruence of integral curves) that preserve the symplectic structure in the sense that

£VΩ = 0 , (10)

where the Lie derivative [16] is

(£VΩ)αi,βj = Vγk∂γkΩαi,βj + Ωγk,βj∂αiVγk + Ωαi,γk∂βjVγk . (11)

Since, by Equation (9), the components Ωαi,βj are constant, ∂γkΩαi,βj = 0, we can rewrite
£VΩ as

(£VΩ)αi,βj = ∂αi(Ωγk,βjVγk)− ∂βj(Ωγk,αiVγk) , (12)
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which is the exterior derivative (roughly, the curl) of the covector Ωγk,αiVγk. By Poincare’s
lemma, requiring £VΩ = 0 (a vanishing curl) implies that Ωγk,αiVγk is the gradient of a
scalar function, which we denote by Ṽ(X),

Ωγk,αiVγk = ∂αiṼ or Ω(V̄, ·) = ∇̃Ṽ(·) . (13)

In the opposite direction, we can easily check that (13) implies £VΩ = 0. Using (9),
Equation (13) is more explicitly written as

dρi

dλ
∇̃πi −

dπi
dλ

∇̃ρi =
∂Ṽ
∂ρi ∇̃ρi +

∂Ṽ
∂πi

∇̃πi , (14)

or
dρi

dλ
=

∂Ṽ
∂πi

and
dπi
dλ

= − ∂Ṽ
∂ρi , (15)

which we recognize as Hamilton’s equations for a Hamiltonian function Ṽ. This justifies
calling V̄ the Hamiltonian vector field associated to the Hamiltonian function Ṽ. In other words,
the flows that preserve the symplectic structure, £VΩ = 0, are generated by Hamiltonian
vector fields V̄ associated to Hamiltonian functions Ṽ.

From (9) and (15) the action of the symplectic form Ω on two Hamiltonian vector
fields V̄ = d/dλ and Ū = d/dμ generated, respectively, by Ṽ and Ũ, is

Ω[V̄, Ū] =
dρi

dλ

dπi
dμ

− dπi
dλ

dρi

dμ
=

∂Ṽ
∂ρi

δŨ
δπi

− ∂Ṽ
∂πi

∂Ũ
∂ρi

def
= {Ṽ, Ũ} , (16)

where, on the right hand side, we have introduced the Poisson bracket notation. In other
words, the action of Ω on two Hamiltonian vector fields is the Poisson bracket of the
associated Hamiltonian functions. We can also check that the derivative of an arbitrary
function F(X) along the vector field V̄ = d/dλ is

dF
dλ

= {F, Ṽ} . (17)

Thus, the Hamiltonian formalism that is so familiar in physics emerges from purely geometrical
considerations. It might be desirable to adopt a more suggestive notation; instead of (Ṽ, λ) let
us write (H̃, τ). Then, the flow generated by a Hamiltonian function H̃ and parameterized
by “time” τ is given by Hamilton’s equations in the standard form,

dρi

dτ
=

∂H̃
∂πi

and
dπi
dτ

= −∂H̃
∂ρi , (18)

and the τ evolution of any well-behaved function f (X) is given by

d f
dτ

= H̄( f ) = { f , H̃} with H̄ =
∂H̃
∂πi

∂

∂ρi −
∂H̃
∂ρi

∂

∂πi
. (19)

The difference with classical mechanics is that, here, the degrees of freedom are probabilities
and not ontic variables such as, for example, the positions of particles.

3.3. The Normalization Constraint

Since our actual interest is not in flows on T∗S+ but on the bundle T∗S of normal-
ized probabilities, we shall restrict ourselves to flows that preserve the normalization of
probabilities. Let

|ρ| def
=

n

∑
i=1

ρi and Ñ def
= 1 − |ρ| . (20)
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We seek those special Hamiltonians H̃ such that the initial condition Ñ = 0 is preserved by
the flow, that is,

∂τ Ñ = {Ñ, H̃} = 0 or ∑i
∂H̃
∂πi

= ∑i
dρi

dτ
= 0 . (21)

Indeed, the actual quantum Hamiltonians will preserve Ñ = const. even when the constant
does not vanish [11]. Since the probabilities ρi must remain positive, we further require
that dρi/dτ ≥ 0 when ρi = 0.

We can also consider the Hamiltonian flow generated by Ñ and parameterized by ν.
From Equation (15) the corresponding Hamiltonian vector field N̄ is given by

N̄ = Nαi ∂

∂Xαi with Nαi =
dXαi

dν
= {Xαi, Ñ} , (22)

or, more explicitly,

N1i =
dρi

dν
= 0 and N2i =

dπi
dν

= 1 . (23)

The integral curves generated by Ñ are found by integrating (23). The result is

ρi(ν) = ρi(0) and πi(ν) = πi(0) + ν , (24)

which amounts to shifting all momenta by the i-independent parameter ν. We can also see
that, if Ñ is conserved along H̄, then H̃ is conserved along N̄.

dH̃
dν

= {H̃, Ñ} = 0 , (25)

which implies that the conserved quantity Ñ is the generator of a symmetry transformation.
To summarize: the phase space of interest is T∗S , but the description is simplified

by using the unnormalized coordinates ρ of the larger embedding space T∗S+. The in-
troduction of one superfluous ρ coordinate forces us to also introduce one superfluous π
momentum. We eliminate the extra coordinate by imposing the constraint Ñ = 0. We elimi-
nate the extra momentum by declaring it unphysical; the shifted point (ρ′, π′) = (ρ, π + ν)
is declared to be equivalent to (ρ, π). This equivalence is described as a global “gauge”
symmetry which, as we shall see later in the paper, is the reason why quantum mechanical
states are represented by rays rather than vectors in a Hilbert space.

4. The Information Geometry of E-Phase Space

Our next goal is to extend the metric of the simplex S—given by information geometry—
to the full e-phase space, T∗S . The extension can be carried out in many ways [9–11,42].
The virtue of the derivation below is that the number of input assumptions is kept to a
minimum.

4.1. The Metric on the Embedding E-Phase Space T∗S+

First, we assign a metric to the embedding bundle T∗S+; then, we consider the metric
it induces on T∗S . The metric of the space S+ of unnormalized probabilities [13,43] is

δ�2 = gijδρiδρj with gij = A(|ρ|)ninj +
B(|ρ|)

2ρi δij , (26)

where n is a covector with components ni = 1 for all i = 1 . . . n and A(|ρ|) and B(|ρ|) are
smooth scalar functions of |ρ| = ∑ ρi. Since the only tensor at our disposal is gij the length
element of T∗S+ must be of the form

δ�̃2 = αgijδρiδρj + βgj
i δρiδπj + γgijδπiδπj , (27)
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where α, β and γ are constants. Since δρi and δπi are vectors and covectors, the requirement
that δ�̃2 induce the same magnitudes gijδρiδρj on TS+

ρ and gijδπiδπj on T∗S+
ρ , as given by

information geometry, implies that α = γ = 1. To fix β, let us consider a curve ρ = ρ(τ)
and π = π(τ) on T∗S+ and its flow-reversed or τ-reversed curve given by ρ′(τ) = ρ(−τ)
and π′(τ) = −π(−τ). We require that the speed (d�̃/dτ)2 remains invariant under flow-
reversal. Since, under flow-reversal, the mixed ρπ terms in (27) change sign, it follows
that invariance implies that β = 0. We emphasize that imposing that the e-phase space
be symmetric under flow-reversal does not amount to imposing time-reversal invariance;
time-reversal violations might still be caused by interaction terms in the Hamiltonian.
The resulting line element, which has been designed to be fully determined by information
geometry, takes the form

δ�̃2 = Gαi,βjδXαiδXβj = gijδρiδρj + gijδπiδπj . (28)

4.2. A Complex Structure for T∗S+

The metric tensor G and its inverse G−1 can be used to lower and raise indices. In par-
ticular, with G−1, we can raise the first index of the symplectic form Ωαi,βj in Equation (9).

Gαi,γkΩγk,βj
def
= −Jαi

βj . (29)

The tensor J has several important properties. These are most easily derived by writing G
and Ω in block matrix form, i.e.,

G−1 =

[
g−1 0

0 g

]
, Ω =

[
0 1
−1 0

]
, J =

[
0 −g−1

g 0

]
. (30)

We can immediately check that J J = −1, which shows that J is a square root of the
negative identity matrix. Thus, J endows T∗S+ with a complex structure. To summarize, in
addition to the symplectic Ω and metric G structures, the cotangent bundle T∗S+ is also endowed
with a complex structure J. Such highly structured spaces are generically known as Kähler
manifolds. Here, we deal with a special Kähler manifold where the space of ρs is a statistical
manifold and the spaces of πs are flat cotangent spaces. However, ultimately, the geometry
of T∗S+ is only of marginal interest; what matters is the geometry it induces on the e-phase
space T∗S of normalized probabilities, to which we turn next.

4.3. The Metric Induced on the E-Phase Space T∗S

As we saw above the e-phase space T∗S can be obtained from the space T∗S+ by the
restriction |ρ| = 1 and by identifying the gauge equivalent points (ρi, πi) and (ρi, πi + niν).
Consider two neighboring points (ρi, πi) and (ρ′i, π′

i) with |ρ| = |ρ′| = 1, the metric
induced on T∗S is defined as the shortest T∗S+ distance between (ρi, πi) and the points
on the ray defined by (ρ′i, π′

i). Since the T∗S+ distance between (ρi, πi) and (ρi + δρi, πi +
δπi + niν) is

δ�̃2(ν) = gijδρiδρj + gij(δπi + niν)(δπj + njν) , (31)

the metric on T∗S is defined by δs̃2 = minν δ�̃2. Imposing |δρ| = 0, the value of ν that
minimizes (31) is ν = −〈δπ〉 = −∑i ρiδπi. Therefore, the metric on T∗S , which measures
the distance between neighboring rays, is

δs̃2 =
n

∑
i=1

[
B(1)
2ρi (δρi)2 +

2ρi

B(1)
(δπi − 〈δπ〉)2

]
. (32)

From now on, we set B(1) = 1, which only amounts to a choice of units and has no effect
on our results. (In [11], we chose B(1) = h̄.)

Although the metric (32) is expressed in a notation that may be unfamiliar, it turns
out to be equivalent to the well-known Fubini–Study metric. Thus, the recognition that the
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e-phase space is the cotangent bundle of a statistical manifold led us to a novel derivation
based on information geometry.

An important feature of the T∗S metric (32) is that, except for the irrelevant constant
B(1), it has turned out to be independent of the particular choices of the functions A(|ρ|)
and B(|ρ|) (see Equation (26)) that define the geometries of the embedding spaces S+ and
T∗S+. Therefore, without any loss of generality, we can simplify the analysis considerably
by choosing A(|ρ|) = 0 and B(|ρ|) = 1, which gives the embedding spaces the simplest
possible geometries, namely, they are flat. With this choice the T∗S+ metric, Equation (28)
becomes

δ�̃2 =
n

∑
i=1

[
1

2ρi δρ2
i + 2ρiδπ2

i

]
= Gαi,βjδXαiδXβj with Gαi,βj =

[
δij/2ρi 0

0 2ρiδij

]
(33)

and the tensor J, Equation (30), which defines the complex structure, becomes

Jαi
βj = −Gαi,γkΩγk,βj =

[
0 −2ρiδij

δij/2ρi 0

]
. (34)

4.4. Refining the Choice of Cotangent Space: Complex Coordinates

Having endowed the e-phase spaces T∗S+ and T∗S with both metric and complex
structures, we can now revisit and refine our choice of cotangent spaces. So far, we assumed
the cotangent space T∗S+

ρ at ρ to be the flat Euclidean n-dimensional space Rn. It turns out
that the cotangent space that is relevant to quantum mechanics requires a further restriction.
To see what this is, we use the fact that T∗S+ is endowed with a complex structure, which
suggests a coordinate transformation from (ρ, π) to complex coordinates (ψ, iψ∗),

ψi = ρ1/2
i eiπi and iψ∗

i = iρ1/2
i e−iπi , (35)

Thus, a point ψ ∈ T∗S+ has coordinates

ψμi =

(
ψ1i

ψ2i

)
=

(
ψi

iψ∗
i

)
, (36)

where the index μ = 1, 2 takes two values (with μ, ν, . . . chosen from the middle of the
Greek alphabet).

Since changing the phase πi → πi + 2π yields the same point ψ, we see that the new
T∗S+

ρ is a flat n-dimensional “hypercube” (its edges have a coordinate length of 2π) with
the opposite faces identified (periodic boundary conditions). Thus, the new T∗S+

ρ is locally
isomorphic to the old Rn, which makes it a legitimate choice of cotangent space. (Strictly,
T∗S+

ρ is a parallelepiped; from (28), we see that the lengths of its edges are �i = 2π(2ρi)
1/2

which vanish at the boundaries of the simplex.)
We can check that the transformation from real (ρ, π) to complex coordinates (ψ, iψ∗)

is canonical, so that

Ωμi,νj =

[
0 1
−1 0

]
δij , (37)

retains the same form as (9).
Expressed in ψ coordinates, the Hamiltonian flow generated by the normalization

constraint (24) is the familiar phase shift ψi(ν) = ψi(0)eiν. Thus, the gauge symmetry
induced by the constraint Ñ = 0 is the familiar multiplication by a constant phase factor.

In ψ coordinates, the metric G on T∗S+ Equation (33) becomes

δ�̃2 = −2i
n

∑
i=1

δψiδiψ∗
i = Gμi,νj δψμiδψνj where Gμi,νj = −iδij

[
0 1
1 0

]
. (38)
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Finally, using the inverse Gμi,λk to raise the first index of Ωλk,νj gives the ψ components of
the tensor J,

Jμi
νj = −Gμi,λkΩλk,νj =

[
i 0
0 −i

]
δij . (39)

5. Hamilton–Killing Flows

In the previous sections we studied those Hamiltonian flows K̄ that, in addition to
preserving the symplectic form, are generated by a gauge invariant K̃ so they also preserve
the normalization constraint Ñ. Our next goal is to find those flows that also happen to
preserve the metric G of T∗S+, that is, we want K̄ to be a Killing vector. The vector field K̄
is determined by the Killing equation [16], £KG = 0, or

(£KG)μi,νj = Kλk∂λkGμi,νj + Gλk,νj∂μiKλk + Gμi,λk∂νjKλk = 0 . (40)

Since Equation (38) gives ∂λkGμi,νj = 0, the Killing equation simplifies to

(£KG)μi,νj = −i

⎡
⎣ ∂K2j

∂ψi
+ ∂K2i

∂ψj
; ∂K1j

∂ψi
+ ∂K2i

∂iψ∗
j

∂K2j

∂iψ∗
i
+ ∂K1i

∂ψj
; ∂K1j

∂iψ∗
i
+ ∂K1i

∂iψ∗
j

⎤
⎦ = 0 , (41)

where ∂/∂iψ∗
i

def
= −i∂/∂ψ∗

i . If we further require that K̄ is a Hamiltonian flow, £KΩ = 0,
then Kμi satisfies Hamilton’s equations,

K1i =
∂K̃

∂iψ∗
i

and K2i = − ∂K̃
∂ψi

. (42)

Substituting into (41), we find

∂2K̃
∂ψi∂ψj

= 0 and
∂2K̃

∂ψ∗
i ∂ψ∗

j
= 0 . (43)

Therefore, in order to generate a flow that preserves both G and Ω, the function K̃(ψ, ψ∗)
must be linear in both ψ and ψ∗.

K̃(ψ, ψ∗) =
n

∑
i,j=1

ψ∗
i K̂ijψj +

n

∑
i=1

(
ψ∗

i L̂i + M̂iψi
)
+ const . (44)

The kernels K̂ij, L̂i and M̂i are independent of ψ and ψ∗. Imposing that the flow preserves
the normalization constraint Ñ = const, Equation (21), implies that K̃ must be invariant
under the phase shift ψ → ψeiν. Therefore, L̂i = M̂i = 0 and we conclude that

K̃(ψ, ψ∗) =
n

∑
i,j=1

ψ∗
i K̂ijψj + const . (45)

The corresponding HK flow is given by Hamilton’s equations

dψi
dλ

= K1i =
∂K̃

∂iψ∗
i
=

1
i

n

∑
j=1

K̂ijψj , (46)

diψ∗
i

dλ
= K2i = − ∂K̃

∂ψi
= −

n

∑
j=1

ψ∗
j K̂ji . (47)
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The constant in (45) can be dropped, because it has no effect on the flow. Taking the complex
conjugate of (46) and comparing with (47) show that the kernel K̂ij is Hermitian and that
the corresponding Hamiltonian functionals K̃ are real.

K̂∗
ij = K̂ji and K̃(ψ, ψ∗)∗ = K̃(ψ, ψ∗) . (48)

To summarize, the preservation of the symplectic structure, the metric structure and the nor-
malization constraint leads to Hamiltonian functions K̃ that are bilinear in ψ and ψ∗, Equation (45).
This is the main result of this paper. To appreciate its significance, once again, we adopt a
more suggestive notation, i.e., the flow generated by the Hamiltonian function

H̃(ψ, ψ∗) =
n

∑
i,j=1

ψ∗
i Ĥijψj is

dψi
dτ

= {ψi, H̃} or i
dψi
dτ

=
n

∑
j=1

Ĥijψj , (49)

which is recognized as the Schrödinger equation. Beyond being Hermitian, the actual form
of the kernel Ĥij remains undetermined.

The central feature of Hamilton’s Equations (46) or of the Schrödinger Equation (49)
is that they are linear. Given two solutions ψ(1) and ψ(2) and arbitrary constants c1 and
c2, the linear combination ψ(3) = c1ψ(1) + c2ψ(2) is also a solution and this is extremely
useful in calculations. Unfortunately, this is an HK flow on the embedding space T∗S+ and,
when the flow is projected onto the e-phase space T∗S , the linearity is severely restricted
by normalization. If ψ(1) and ψ(2) are normalized points on T∗S , the superposition ψ(3)

is not in general a normalized point on T∗S , unless the constants c1 and c2 are chosen
appropriately. Furthermore, the states ψ′(1) = ψ(1)eiν1 and ψ′(2) = ψ(2)eiν2 are supposed to
be “physically” equivalent to the original ψ(1) and ψ(2), but, in general, the superposition
ψ′(3) = c1ψ′(1) + c2ψ′(2) is not equivalent to ψ(3). In other words, the mathematical linearity
of (46) or (49) does not extend to a full-blown superposition principle for physically equivalent
states. On the other hand, any point ψ deserves to be called a “state” in the limited sense
that it may serve as the initial condition for a curve in T∗S+. Since, given two states ψ(1)

and ψ(2), their superposition ψ(3) is also a state, we see that the set of states {ψ} forms a
linear vector space. This is a structure that turns out to be very useful.

6. Hilbert Space

Above we saw that the possible initial conditions for an HK flow, the points ψ of
T∗S+, form a linear vector space. To take full advantage of linearity we would like to
endow this vector space with the additional structure of an inner product and turn it into a
Hilbert space—a term which we loosely use to describe any complex vector space with a
Hermitian inner product. The metric tensor G (Equation (38)) and the symplectic form Ω
(Equation (37)) are supposed to act on vectors d/dλ; their action on the points ψ or (ρ, π) is
not defined. However, the choice of inner product for the points ψ is natural, in the sense
that the necessary ingredients, G and Ω, are already available.

We adopt the familiar Dirac notation to represent the states ψ as vectors |ψ〉. In order
that the inner product 〈ψ|φ〉 be preserved it is defined in terms of the preserved tensors G
and Ω,

〈ψ|φ〉 def
=

1
2
(
Gμi,νj + αΩμi,νj

)
ψμiφνj , (50)

where α is a constant and, to follow convention, the overall constant is set to 1/2. Using
Equation (37) and (38), we obtain

〈ψ|φ〉 = 1
2
(ψi, iψ∗

i )(G + αΩ)

(
φj

iφ∗
j

)
=

1
2

n

∑
i=1

((1 − iα)ψ∗
i φi + (1 + iα)φ∗

i ψi) . (51)

To fix α, we impose that 〈ψ|φ〉∗ = 〈φ|ψ〉, which implies that α = ±i. In order to comply
with the standard convention that the inner product 〈ψ|φ〉 is anti-linear in the first factor
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and linear in the second factor, we select α = +i. The result is the familiar expression for
the positive definite inner product,

〈ψ|φ〉 def
=

1
2
(
Gμi,νj + iΩμi,νj

)
ψμiφνj =

n

∑
i=1

ψ∗
i φi . (52)

Here we see that the choice of 1/2 as the overall constant leads to the standard relation
〈ψ|ψ〉 = |ρ|. The map between points and vectors, ψ ↔ |ψ〉, is defined by |ψ〉 = ∑i |i〉ψi ,
where ψi = 〈i|ψ〉 and the vectors {|i〉} form a basis that is orthogonal and complete.

The bilinear Hamilton function K̃(ψ, ψ∗) with kernel K̂ij can now be written as the
expected value, K̃(ψ, ψ∗) = 〈ψ|K̂|ψ〉, of the Hamiltonian operator K̂ with matrix elements
K̂ij = 〈i|K̂|j〉. The corresponding HK flows are given by

i
d

dλ
〈i|ψ〉 = 〈i|K̂|ψ〉 or i

d
dλ

|ψ〉 = K̂|ψ〉 , (53)

which are described by unitary transformations |ψ(λ)〉 = ÛK(λ)|ψ(0)〉 where ÛK(λ) =
exp(−iK̂λ). Finally, the Poisson bracket of two Hamiltonian functions Ũ[ψ, ψ∗] and
Ṽ[ψ, ψ∗] can be written in terms of the commutator of the associated operators, {Ũ, Ṽ} =
−i〈ψ|[Û, V̂]|ψ〉. Thus, the Poisson bracket is the expectation of the commutator. This
identity is much sharper than Dirac’s pioneering discovery that the quantum commuta-
tor of two quantum variables is analogous to the Poisson bracket of the corresponding
classical variables.

7. Conclusions

There have been numerous attempts to derive or construct the mathematical formalism
of quantum mechanics by adapting the symplectic geometry of classical mechanics. Such
phase space methods invariably start from a classical phase space of positions and momenta
(qi, pi) and, through some series of “quantization rules,” posit a correspondence to self-
adjoint operators (Q̂i, P̂i) which no longer constitute a phase space. The connection to
classical mechanics is lost. The interpretation of Q̂i and P̂i and even the answer to the
question of what is ontic and what is epistemic become highly controversial. Probabilities
play a secondary role in such formulations.

In this paper, we take a different starting point that places probabilities at the forefront.
We discuss special families of curves—the Hamilton–Killing flows—that promise to be
useful for the study of quantum mechanics. We show that the HK flows that preserve the
symplectic and the metric structures of the e-phase space reproduce much of the mathemat-
ical formalism of quantum theory. It clarifies how the linearity of the Schrödinger equation,
complex numbers and the Born rule ρi = |ψi|2 (the Born rule for generic observables is dis-
cussed in [31,32]) follow from the symplectic and metric structures, while the normalization
constraint leads to the equivalence of states along rays in a Hilbert vector space.
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Abstract: Motivated by applications of statistical mechanics in which the system of interest is
spatially unconfined, we present an exact solution to the maximum entropy problem for assigning
a stationary probability distribution on the phase space of an unconfined ideal gas in an anti-de
Sitter background. Notwithstanding the gas’ freedom to move in an infinite volume, we establish
necessary conditions for the stationary probability distribution solving a general maximum entropy
problem to be normalizable and obtain the resulting probability for a particular choice of constraints.
As a part of our analysis, we develop a novel method for identifying dynamical constraints based
on local measurements. With no appeal to a priori information about globally defined conserved
quantities, it is therefore applicable to a much wider range of problems.

Keywords: maximum entropy; unconfined gases; general relativity; anti-de Sitter spacetime

1. Introduction

Despite its overarching success, the statistical mechanics of Gibbs [1] falls short in its
description of spatially unconfined systems. In the canonical ensemble, a classical gas of N
particles is described by a Gibbs probability distribution f (y), y ∈ Y defined over the phase
space Y = {(qi, pi)}, for i ∈ {1, 2, . . . , N} where qi and pi are the position and momentum
for the i-th particle). The Gibbs distribution is of the form f (y) ∝ e−βH(y), where β is
the unit-corrected inverse temperature (throughout this paper, we choose units in which
kB = c = 1) and H is the system Hamiltonian. In cases where the gas is unconfined,
meaning the set of allowed positions is unlimited, the canonical ensemble may not lead to
a valid probability distribution. The normalization condition in this ensemble is∫

dy e−βH(y) < ∞. (1)

One usually can write the Hamiltonian in the block-diagonal form

H(y) = ∑
ij

F(qij) + ∑
i

p2
i

2m
,

where qij = qi − qj. Condition (1) is manifestly not satisfied whenever F falls off to infinity
slower or as slow as 1/|qij|. In particular, the normalization condition is not met for
Newton/Coulomb-type interactions or a constant in qij (i.e., the ideal gas).

In the kinetic theory, the situation is no better. As already pointed out in ref. [2],
solutions to the equilibrium Boltzmann equation are spatially homogeneous in the absence
of external forces.

There are, however, examples of unconfined systems of physical interest, for example,
an unconfined gas of particles interacting through gravity, such as a star or a galaxy cluster.
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The statistical mechanics of such a system has been studied before and, to the best of our
knowledge, every study thus far on the self-gravitating gas (or a gas of Coulomb-interacting
particles [3]) requires confinement demanding that the particles are only allowed to occupy
a limited set of position coordinates, i.e., confined in a box [4–7]. This approach allows one
to bypass the normalization problem by restraining the integral (1) over the coordinates qi
to a compact domain of volume V.

Despite its effectiveness for astrophysical applications, progress in this direction
leaves fundamental questions about the awkwardness of dealing with unconfined systems
unanswered. For example, whether or not it is possible to display a system that reaches
thermodynamical equilibrium while kinematically allowed to occupy an infinite volume.
This article answers this question affirmatively.

2. Background

The work of Jaynes [8] solidified the statistical mechanics of Gibbs through what is
currently known as the method of maximum entropy (MaxEnt). Further developments—
starting with Shore and Johnson [9]—present MaxEnt as a method to select and update
probability distributions f when information about the system is revealed by maximizing
the functional

S[ f ] = −
∫

dy f (y) log
(

f (y)
ϕ(y)

)
, (2)

where ϕ is a prior distribution, with constraints meant to represent the information at hand.
Usually these constraints are in the form of expected values for a series of functions aμ(y),
namely sufficient statistics. The f that maximizes (2) under normalization,

∫
dy f (y) = 1,

and a set of n expected value constraints, Aα =
∫

dy f (y)aα(y) for α ∈ {1, . . . , n}, is the
Gibbs distribution

f (y|β) = ϕ(y)
Z

exp

{
−∑

α

βαaα(y)

}
, (3)

where Z(β) is a normalization factor, Z =
∫

dy q(y) exp{−∑α βαaα(y)}, and βα are the
Lagrange multipliers associated with the expected value constraint Aα. Fundamental
factors in statistics imply that only entropies of the form (2) are appropriate for updating
information—see, e.g., [9–11]. It follows from (3) that the Lagrange multipliers and the
expected values are related through Aα = − ∂

∂βα
log Z.

The canonical ensemble of statistical mechanics assumes a system of interest connected
to a heat bath, namely a much larger system that exchange energy with the system of
interest (see, e.g., [10]). In this model, the only sufficient statistic is given by the Hamiltonian
of the system a1(y) = H(y).

In the description given by the canonical ensemble, one may say that when the
variational problem of extremizing (2) with the expected value of energy constraint cannot
be solved, it means the system does not reach thermal equilibrium. This is the case for
the self-gravitating gas, as explained in the introduction. It then follows that, in order to
properly describe a thermodynamical system held to itself by gravity, we should evolve
MaxEnt into the dynamical description, allowing the system to evolve in time.

Describing time evolution, in our context, means studying how the function f changes
when a particle moves along its worldline (i.e., its trajectory in spacetime). Since we are
dealing with massive particles, we can always use the proper time τ to parametrize their
worldlines. Please note that a change in the position xa is accompanied by a change in the
tangent vectors to the trajectory, which are proportional to the momentum pa. To keep our
notation as simple as possible, we implicitly interpret f below as a function of τ using the
composition f (xa(τ), pa(τ)).

In statistical mechanics, a very common choice for the prior ϕ(y) in Equation (2) is a
uniform distribution over Y . This choice implements a symmetrical ignorance about the
system: in the lack of information favouring a point over any other, it is fair to demand the
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prior to reflect the homogeneity. Under the understanding that time evolution preserves
information, we have, adopting a uniform prior,

d
dτ

S[ f (xa, pa)] =
δS
δ f

× d f (xa, pa)

dτ
. (4)

The first factor is, by Equation (2), nonzero. Hence, dS
dτ = 0, implying d f

dτ = 0 and
consequently [12], (

1
m

pμ ∂

∂xμ +
dpμ

dτ

∂

∂pμ

)
f = 0, (5)

where τ is the proper time along the integral curves of pa and m is the mass of a particle of
the gas.

Equation (5) provides us with a necessary condition the function f has to fulfil in
order to extremize the entropy.

Our case of study is the anti-de Sitter spacetime, a maximally symmetric space with
negative curvature. As for any space of constant curvature, its curvature tensor is fully
determined by its scalar curvature R. In our case, R = −12/Λ2, where Λ is the anti-de Sitter
length. Consequently, the limit Λ → ∞ recovers the local geometry of Minkowski spacetime.
The anti-de Sitter space can be thought of as a solution for the vacuum Einstein’s equation
with a cosmological constant −3/Λ2. For a lengthy discussion about this spacetime, we
suggest the refs. [13,14]. For the purposes of the discussion presented here, note that
although it is not globally hyperbolic, the anti-de Sitter spacetime can be foliated by a
family of spacelike surfaces of infinite volume.

3. Solutions of the Boltzmann Equation in Anti-De Sitter Spacetime

We work with the universal covering space of an anti-de Sitter spacetime described by
the metric

ds2 = −
(

1 +
r2

Λ2

)
dt2 +

(
1 +

r2

Λ2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 , (6)

with t ∈ R, r ∈ [0, ∞), θ ∈ [0, π] and φ ∈ [0, 2π). In these coordinates, it is clear that

ξa =
(

∂
∂t

)a
is a timelike Killing vector field.

The collisionless Boltzmann equation for an ideal gas in a generic curved spacetime
follows from applying the geodesic equation to Equation (5) and reads [15](

pμ ∂

∂xμ − Γμ
νρ pν pρ ∂

∂pμ

)
f (xλ, pλ) = 0 , (7)

where Γμ
νρ are the Christoffel symbols. Equation (7) assumes the motion to be geodesic.

This means that the ideal gas is an inbuilt assumption for its validity.
We shall seek spherically symmetric solutions of Equation (7) on the metric (6). For

these solutions f (xλ, pλ) can be written as a four-variable function f̃ (t, r, p0, pr), which,
when substituted in (7), yields

p0 ∂ f̃
∂t

+ pr ∂ f̃
∂r

− 2r
r2 + Λ2 p0 pr ∂ f̃

∂p0 −
[

r(r2 + Λ2)

Λ4 (p0)2 − r
r2 + Λ2 (pr)2

]
∂ f̃
∂pr = 0 , (8)

restricted to the submanifold with pθ = pφ = 0.
Equation (8) admits a separation of variables as

f̃ (t, r, p0, pr) = T(t)S(r, p0, pr), (9)

where T and S are functions to be determined.
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The equation for t has a simple exponential solution T(t) ∝ e−t/tc , while the equation
for S cannot be solved using elementary methods unless the separation constant 1/tc = 0,
in which case the solutions are referred to as stationary. It is important to bear in mind that
the condition d f /dτ = 0, which follows directly from the maximization of the entropy,
does not necessarily entail d f /dt = 0.

By direct substitution into Equation (9), we can see that

S = h

(
p0
(

1 +
r2

Λ2

)
,−

(
1 +

r2

Λ2

)
(p0)2 +

(
1 +

r2

Λ2

)−1

(pr)2

)
, (10)

for any function h ∈ C 2(R2) solves Equation (8).
The arguments of the function h have a simple physical interpretation. The second

is gμν pμ pν when pθ = pφ = 0. This quantity is merely a constant, namely −m2, where
m > 0 is the mass of the particles constituting the gas. The first argument is an integral of
the motion,

ε ≡ −paξa, (11)

the conserved energy of a particle [16].
This result is not surprising. Indeed, progress was made in the 1960s for simultane-

ously solving Einstein’s equations and the equations of motion for matter consisting of a
collection of particles. When a Hamiltonian can be defined for such systems, Liouville’s
equation is a consequence of Einstein’s field equations. Fackerell [17] and Ehlers et al. [18],
based on an analysis of the characteristic equations of (7), identified that the general solu-
tions of Equation (5) can be written as functions of the conserved quantities. As a matter
of fact, it follows that any function of first integrals of motion of the individual particles
automatically satisfies the stationary Liouville Equation (5). This shows that not only is
Equation (10) the general solution for the stationary spherically symmetric case, but also a
particular solution for the general stationary case, i.e., when f is allowed to depend on the
angular variables as well as having non-zero arguments pθ and pφ.

Please note that unlike in refs. [17,18], we are not interested in finding solutions to the
full gravitational problem. Rather, we wish to preserve the analogy with the flat spacetime
version of the problem, thereby neglecting any gravitational effects caused by the gas or
its parts.

The nature of the constant −m2 is different to the nature of ε. The latter is a first
integral of the motion, i.e., a function of phase space that is a constant along the geodesics.
The former is more conveniently thought of as a kinematic invariant. For simplicity, we
henceforth focus on solutions with vanishing angular part of the four-momentum but we
shall return to this point in due time. Hereafter, we use the −m2 invariant to restrict S to the
co-dimension one subspace P of the section of Y and write S = h̃(ε) for a single-variable
function h̃ of ε, defined in (11).

Naturally, not all solutions of the form S = h̃(ε) are normalizable. The ubiquitous
normalization constraint reads [19]

∫ ∞

m
dp0

∫ ∞

0
dr

r2
√

1 + r2/Λ2
h̃(ε(p0, r)) < ∞ , (12)

leads to an asymptotic (large r) behaviour of h̃ falling off at least as quickly as

h̃(ε) ∼ εα with α < −1. (13)

Equation (13) shows that normalizable solutions to the Liouville equation are achiev-
able. Had we allowed for non-zero angular components of the four-momentum, this
conclusion would not be challenged. Owing to the parity-reversal symmetry of the metric,
we study the geodesics on the equatorial plane θ = π/2 without loss of generality. Instead of
Equation (10), we now have S = h(ε, r2 pφ, m2) since � ≡ paψa = r2 pφ is another indepen-
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dent integral of the motion associated with the Killing field ψa = (∂/∂φ)a. The constant of
the motion � can be thought of as the angular momentum of a particle per unit mass. Using
an entirely analogous reasoning, we construct the two-variable function h̃(ε, �), which
behave as h̃ ∼ εα�γ for large values of the radial coordinate. The normalization conditions
for p0, pφ, and r demand, respectively, that α < −1, γ < −1, and α + γ < −2, the last of
which, of course, is redundant. This shows that there are normalizable solutions to the
Liouville equation also when the angular part of the four-momentum is free to assume any
kinematically allowed value. In other words, normalized distributions in the momenta are
also automatically normalizable with respect to the configuration space variables.

4. Constraints and MaxEnt

Because the format of f as h̃(ε, �) was derived from imposing dS/dτ = 0, we have
thus far deduced a necessary condition for f to extremize the entropy, but by no means
sufficient. We now show that among solutions obeying Equation (13), there are extremes of
the entropy subjected to physically relevant constraints.

We adapt the arguments from Caticha [10] to model a “measuring device” one can
use to extract information about the gas and subsequently use the acquired information
to set constraints upon the variational problem. The procedure we describe below uses
local measurements to impose constraints on the system of interest. This idea can be
used in other problems in general relativity where the use of global conditions are not
as straightforward or uniquely defined as they are in non-relativistic mechanics. An
idea similar to ours was discussed in flat spacetime by Kubli and Herrmann in ref. [20],
where the authors elegantly described the interaction between their measuring device
and the system of interest through an extra interaction term in the Hamiltonian. Our
approach instead appeals to kinetic theory, is more general, and agrees with their results
for relativistic particles in flat spacetime.

Our measuring device D consists of another ideal gas; this time confined into a box
whose walls are perfectly permeable to the unconfined gas’ particles, but impenetrable
to the particles of D. As with any measuring device, D has to interact with the system of
interest. We model this interaction by elastic collisions between particles of D and particles
of the unconfined gas. D itself being an ideal gas, its constituents follow geodesics between
successive collisions and hence cannot absorb energy from the gravitational field. In
addition, we make the box large enough so that the thermodynamic limit can be applied to
the gas D, but small in comparison to Λ3 so that D possesses a well-defined total energy E.
If this energy changes by an amount ΔE, a small subset I of the particles of the unconfined
gas must have suffered a change of Δ ∑i∈I εi = −ΔE. Therefore,

E ≡ ∑
i

εi + E (14)

is an unknown constant, and the sum runs over all the particles of the unconfined gas. It is
important to emphasize that E does not have the same status as the “total energy” in the
non-relativistic theory. Its physical interpretation is neither as straightforward nor easily
relatable to the Arnowitt-Deser-Misner conserved mass of the spacetime, which would
include contributions of pure gravity, as well as the backreaction of the gas onto the metric.

With the knowledge of the value of E given by the measurement in D [21], we impose
the normalization constraint and∫

P
{E − ε(y)} f (y)dy = E, (15)

which leads to the Gibbs distribution

f (y) =
1
Z

e−βε(y) ∝ e−β p0 (1+r2/Λ2). (16)
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Here, for sake conformity with the notation from Section 2, we changed the notation
from discrete sums ∑i to integrals

∫
P .

Clearly Equation (16) respects condition (13) and consequently the normalization
constant Z is finite. A substitution of (16) into (15) reveals

E =
∂

∂β
log Z + E . (17)

The partition function, as for any ideal gas, factors out [22] as Z = ζN and can be
calculated explicitly:

ζ = 4π
∫ ∞

m
dp0

∫ ∞

0
dr

r2 exp
[
−βp0

(
1 + r2

Λ2

)]
√

1 + r2

Λ2

=
2πΛ3

β
e−βm/2

[
(1 + βm)K0

(
βm
2

)
− βmK1

(
βm
2

)]
, (18)

where Kν(z) is the modified Bessel function of the second kind. The flat spacetime is
recovered from Equation (18) in the limit Λ → ∞, in which case the partition function
diverges as it should.

Remarkably, substituting Equation (18) into (17), we see that E does not depend on the
anti-de Sitter length Λ, suggesting that the equations of state so obtained could accurately
describe the gas in flat space as well. A calculation of the entropy from Equations (16)
and (18) yields a term independent of Λ and another depending on Λ logarithmically. The
latter, in the case of N indistinguishable particles, can be made small in comparison with
the former for sufficiently large N.

5. Discussion and Prospects

With the example of an ideal gas in anti-de Sitter spacetime, we hope to have eluci-
dated that it is not the kinematical possibility to occupy an infinite volume that prevents
a system from having a well-posed equilibrium probability distribution. We emphasize
that the results of Section 3 are independent of the choice of constraints made in Section 4.
Specifically, all normalizable stationary solutions of the MaxEnt problem supplied with
whatever set of constraints must obey condition (13).

We interpret the divergence of the partition function of the ideal gas in flat spacetime
as follows. When the phase space Y describes a collection of a fixed number of particles
and the partition function factors out as Z = ζN as above (see also footnote [22]), if particles
of arbitrarily low energies can visit any point of the qi section of Y , the spatial integral of
the partition function is forced to sample the infinite volume in all its glory.

The convergence in anti-de Sitter space is explained after describing its radial timelike
geodesics. They can be calculated directly from (6) requiring gab pa pb = −m2 together with
the condition that ε is a constant along them. The results are sinusoidal functions r of
the proper time τ [23]. A more geometrical interpretation is that timelike geodesics are
oscillatory: they continue indefinitely departing from a point and reconverging to another,
never reaching infinity. Higher amplitudes are accompanied by higher values of ε so that
the ζ-integral only samples the infinite spatial volume “weighed down” by an appropriate
decreasing function. This view is endorsed by the realization that Equation (18) is divergent
on the limit m → 0: null geodesics do not share the oscillatory behaviour of their timelike
counterparts. Rather, they reach the null infinity I regardless of their energy ε.

In this respect, one can think of the anti-de Sitter geometry acting on massive particles
as an “external field” binding the system together. Let us digress and illustrate this
analogy with an example: an unconfined, non-relativistic ideal gas in Minkowski spacetime
interacting with a spherically symmetric harmonic well is described by the Hamiltonian
H = ∑i p2

i/2m + 1/2 mω2r2
i , where ri is the radial distance from the i-particle and the centre

of the well. For this system, the sum of the energies of each individual particle is the total
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energy and the canonical ensemble exists. In this ensemble, the probability distribution
has the same Gaussian dependence on the radial variable as in Equation (16). A direct
integration gives

ζ =
8π3

β3ω3 . (19)

In this simple system, the frequency ω acts like the reciprocal of the anti-de Sitter
length Λ. The expected value of the total energy per particle, − ∂

∂β log ζ = 3/β, does not
depend on ω, in direct analogy with our earlier observation that for the gas in anti-de Sitter,
E is independent of Λ.

The static patch of the de Sitter spacetime permits another straightforward test case.
This patch is described by the metric (6) under the replacement Λ2 → −Λ2. The separation
of variables for the dynamical case discussed in the paragraph below Equation (8) applies
equally well for the de Sitter case. However, the static patch, being part of the steady-
state universe, drives a family of geodesic-following particles apart from one another.
Therefore, based on the interpretation above, we do not anticipate the existence of stationary
normalizable solutions whatsoever. This is indeed the case. The convergence of the spatial
integral of h̃(ε) as r approaches Λ requires h̃ ∼ εα with α ≥ 1/2, while the convergence
condition on the integral over p0 requires α < −1. The impossibility of satisfying both these
conditions at once proves that no function h̃ can be normalized. Again, this conclusion
would not be altered if we allow the angular momentum � to be free. This can be seen
immediately from the realization that an extra factor of �γ is regular on r = Λ for all γ,
therefore playing no role when studying the possible divergences near the de Sitter horizon
at r = Λ.

In summary, this paper undertook two missions. First, it established general necessary
conditions for the existence of normalizable stationary solutions for the maximum entropy
problem for a relativistic ideal gas in anti-de Sitter spacetime. Such conditions show that
normalizable solutions may exist even when there is no “wall” or external forces confining
a gas in place. Second, it proposed a type of constraints based on local measurements that
can have applications transcending the study of unconfined systems. Making use of these
constraints, we found an explicit solution to the MaxEnt problem that is normalizable, as
shown for the finiteness of ζ in (18).

The success of our programme for ideal gases invites its application for long-range
interacting gases. It would be instructive to compare the dependence of thermodynamic
properties of, say the self-gravitating star, on the “regularization procedure”. That is to
say, if the equations of state of a self-gravitating star in anti-de Sitter spacetime with very
large Λ agree with, e.g., the large-V results from refs. [6,7]. We anticipate, of course, that
the results thereby obtained will not agree with the ones from refs. [4,5] because these
references introduce an interaction cut-off, which ultimately leads to extensivity, a property
not expected to hold when the interaction is Newtonian until infinity [24]. Even more
importantly in future applications, special attention must be given to any thermodynamic
potential that turns out to be independent of Λ.
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The following abbreviations are used in this manuscript:
MaxEnt MAXimum ENTropy principle
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Abstract: The Full Bayesian Significance Test (FBST) has been proposed as a convenient method
to replace frequentist p-values for testing a precise hypothesis. Although the FBST enjoys various
appealing properties, the purpose of this paper is to investigate two aspects of the FBST which
are sometimes observed as measure-theoretic inconsistencies of the procedure and have not been
discussed rigorously in the literature. First, the FBST uses the posterior density as a reference for
judging the Bayesian statistical evidence against a precise hypothesis. However, under absolutely
continuous prior distributions, the posterior density is defined only up to Lebesgue null sets which
renders the reference criterion arbitrary. Second, the FBST statistical evidence seems to have no
valid prior probability. It is shown that the former aspect can be circumvented by fixing a version of
the posterior density before using the FBST, and the latter aspect is based on its measure-theoretic
premises. An illustrative example demonstrates the two aspects and their solution. Together, the
results in this paper show that both of the two aspects which are sometimes observed as measure-
theoretic inconsistencies of the FBST are not tenable. The FBST thus provides a measure-theoretically
coherent Bayesian alternative for testing a precise hypothesis.

Keywords: Full Bayesian Significance Test (FBST); statistical hypothesis testing; e-value; p-value

1. Introduction

Statistical hypothesis testing is an important method in a broad range of sciences [1].
However, the recent problems with the validity of research results have been termed a
scientific replication crisis [2,3], at the core of which lie some fundamental flaws in the
statistical analysis of data [4]. Various papers have discussed the reproducibility of research
and often the inadequate use of null hypothesis significance tests (NHST) substantiates
a major cause of the replication crisis [5]. This holds in particular in the biomedical and
cognitive sciences [6,7], where the p-value is the gold standard for quantifying the evidence
against a precise null hypothesis.

Bayesian hypothesis testing has become increasingly popular in the biomedical and
cognitive sciences due to the above problems [8–10]. It is well known that Bayesian
data analysis solves some of the problems of NHST by allowing researchers to make use
of optional stopping [11,12] and by simplifying the interpretation of censored data [13].
Together, these aspects are consequence of Bayesian inference being consistent with the
likelihood principle [13]. An appealing proposal for a Bayesian test of a precise hypothesis
is the Full Bayesian Significance Test (FBST), which has been applied in a wide range
of domains [8,14–18]. The FBST advocates the e-value as a Bayesian replacement of the
frequentist p-value for quantifying the statistical evidence against a precise hypothesis [19].
The FBST is a fully Bayesian procedure [19], accords with the likelihood principle [15],
and enjoys attractive asymptotic properties [20] next to transformation invariance [16].
However, the FBST seems to suffer from two aspects which are studied in detail in this
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paper. First, the reference criterion in the FBST is only defined up to Lebesgue null sets,
which seems to be make the evidential threshold arbitrary. Thus, it seems that the FBST
statistical evidence, the e-value, lacks a calibration. Second, the statistical evidence in the
FBST seems to have no prior probability, which contradicts common Bayesian reasoning.
For other criticisms on the FBST see Ly & Wagenmakers [21] and for a more optimistic
perspective Kelter [22]. In this paper it is shown that both aspects can be solved by fixing
a version of the posterior distribution for statistical inference, and assigning one of two
possible interpretations to the prior probability of the statistical evidence in the FBST. These
aspects have not yet been discussed extensively in the literature and present a further
justification of the FBST as an attractive replacement of frequentist p-values to remedy
the ongoing problems with the replication of scientific results. The plan of the paper
is as follows: The next section outlines the theory behind the FBST. After that, the two
problematic aspects mentioned above are detailed and illustrated by an example from
medical research. The following section elaborates on the problems and provides solutions
to them. After that, a conclusion is provided.

2. The Full Bayesian Significance Test

This section outlines the theory behind the FBST. First, the required notation is introduced.

2.1. Notation

In contrast to the frequentist approach, in the Bayesian approach the parameter
θ ∈ Θ is modelled as a random variable, and the data y ∈ Y are fixed. Denote by Θ
the parameter space and G as the σ-algebra on Θ, and let Pϑ be the prior probability
measure on G, leading to the triple (Θ,G, Pϑ). The observed sample is modelled by the
random variable Y : Ω → Y which takes values in the measurable space Y , where Y is
endowed with a σ-algebra B. The uncertainty in the data generating mechanism producing
a sample Y(ω) = y for ω ∈ Ω is modelled via the assumption of a statistical model
P := {Pθ : θ ∈ Θ} which is dominated by a σ-finite measure ν. In practice, ν often is the
Lebesgue measure λ. The latter requirement guarantees the existence of Radon-Nikodým
derivatives dPθ/dλ = f (y|θ). Let (Ω,A, P∗) be the product space defined as Ω := Θ ×Y ,
A := G × B and P∗ the product measure induced by the selection of Pϑ and P , where Pθ

must be a measurable function on B for every y on Y . Thus, Pϑ is the marginal distribution
of P∗ with respect to the parameter θ, and the marginal distribution with respect to Y is
the prior predictive Pϑ(B) :=

∫
Θ Pθ(B)dPϑ for any B ∈ B. The parameter, as noted above,

is modelled mathematically as a random variable ϑ : Ω → Θ. The resulting operational
models from a Bayesian point of view are thus given as

1. the prior model (Θ,G, Pϑ)
2. the statistical model P on (Y ,B), leading to (Y ,B, {Pθ : θ ∈ Θ}), and
3. the posterior model (Θ,G, {Pϑ|Y : Y ∈ Y})

The existence of the posterior distribution Pϑ|Y is guaranteed on Polish spaces [23] and
inference about θ is conducted with respect to the posterior distribution Pϑ|Y with density
p(θ|y) := dPϑ|Y/dλ, which exists under the assumption that Pϑ << λ where << denotes
absolute-continuity of Pϑ with respect to the measure λ.

2.2. Theory behind the Full Bayesian Significance Test (FBST)

The Full Bayesian Significance Test (FBST) was originally developed by Pereira and
Stern [14] as an alternative to frequentist null hypothesis significance tests based on the
p-value. It was created under the assumption that a significance test of a sharp hypothesis
had to be conducted, where a sharp hypothesis refers to any submanifold of the parameter
space of interest [20]. This includes, in particular, precise hypotheses like H0 : θ = θ0 for
θ0 ∈ Θ [15]. The FBST assumes a standard parametric statistical model, where θ ∈ Θ ⊆ Rp

is a (possibly vector-valued) parameter of interest, f (y|θ) is the density corresponding
to the model distribution PY|ϑ and p(θ) is the prior density corresponding to the prior
distribution Pϑ, where we again assume a dominating measure ν to guarantee the existence
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of Radon-Nikodým densities. A hypothesis H makes the statement that the parameter θ
lies in the corresponding null set ΘH , where for simple (or precise) hypotheses ΘH := {θ0},
where θ0 is the value specified in H : θ = θ0. The Full Bayesian Significance Test (FBST)
then defines two quantities: ev(H), which is the e-value supporting (or in favour of) the
hypothesis H, and ev(H), the e-value against H, also called the Bayesian evidence value
against H [14]. First, the posterior surprise function s(θ) and its maximum s∗ restricted to
the null set ΘH are introduced:

Definition 1 (Posterior surprise function). The posterior surprise function s(θ) for a reference
function r : Θ → (T , C) from Θ to a measurable space (T , C) is defined as

s(θ) :=
p(θ|y)
r(θ)

(1)

In the definition of the posterior surprise function s(θ), the denominator r(θ) serves as
a reference density, and often the measurable space (T , C) is equal to (Rd,B(Rd)). When
the improper flat reference function r(θ) = 1 is used, the surprise function becomes the
posterior density p(θ|y). Otherwise, a weakly informative prior density can be used as a
reference function, see Pereira and Stern [16]. Then,

s∗ := s(θ∗) = sup
θ∈ΘH

s(θ) (2)

is defined as the supremum of the surprise function s(θ) over the null hypothesis support.
For a precise null hypothesis, s∗ is simply s(θ0). Next, the tangential set is introduced:

Definition 2 (Tangential set). The tangential set T(ν) is defined as

T(ν) := Θ \ T(ν) (3)

where

T(ν) := {θ ∈ Θ|s(θ) ≤ ν} (4)

Thus, T(ν) includes all parameter values θ ∈ Θ which attain a surprise function value
s(θ) smaller or equal to the threshold ν. The tangential set T(ν) is then the set complement
and includes all parameter values θ ∈ Θ which yield a surprise function value s(θ) larger
than ν. Fixing ν = s∗ yields T(s∗), which is called the tangential set to the hypothesis H.
This set T(s∗) contains the points θ of the parameter space Θ with higher surprise (or
corroboration relative to the reference function r(θ)) than the point θ0 in the null set ΘH .
Then, the cumulative surprise function is introduced which is required to compute the
e-value in the final step:

Definition 3 (Cumulative surprise function). The map W : Θ → [0, 1] given by

W(ν) :=
∫

T(ν)
p(θ|y)dθ (5)

is called the complementary cumulative surprise function, and

W(ν) := 1 − W(ν) (6)

is called the cumulative surprise function.

Thus, the complementary cumulative surprise function W(ν) is the integral of the
posterior density p(θ|y) over the set T(ν), and the cumulative surprise function W(ν) is
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simply the integral of the posterior density over the tangential set T(ν). The final step
towards the e-value is to integrate the posterior density p(θ|y) over this set:

Definition 4 (e-value). The e-value against a sharp null hypothesis H0 : θ = θ0 is defined as

ev(H0) := W(s∗) (7)

and can be interpreted as the Bayesian evidence against H0.

Clearly, ev(H0) := W(s∗) is the integral of the density p(θ|y) over the tangential set
T(s∗), which can be interpreted as the integral of the posterior density p(θ|y) over all
parameter values θ which fulfill the condition s(θ) ≥ s∗. The e-value ev(H0) supporting
H is obtained as ev(H) := 1 − ev(H0) under r(θ) := 1. Large values of ev(H0) thus
indicate that the hypothesis H traverses low-density regions (or equivalently, that the
alternative hypothesis traverses high-density regions) so that the evidence against H0 is large.
For r(θ) �= 1 the argument is identical as H0 traverses low posterior-surprise regions then.

For theoretical properties of the FBST and the e-value see Pereira and Stern [16] and
Kelter [18]. The FBST then uses ev(H) to reject H if ev(H) is sufficiently small (or when
ev(H) is large) [14,15].

3. On Two Aspects of the FBST

Now, this section demonstrates the two aspects briefly mentioned in the introduction
based on an illustrative example.

3.1. The Reference Criterion

To illustrate the first problem, data of Rosenman et al. [24] of the Western Collaborative
Group Study about coronary heart disease is used.

Example 1 (Coronary heart disease data). The Western Collaborative Group Study began in
1960 with 3524 male volunteers who were 39 to 59 years old and free of heart disease as determined
by electrocardiogram. After the initial screening, the study population dropped to 3154 because
of various exclusions. Multiple endpoints were studied and average follow-up continued for
8.5 years with repeat examinations. As an illustrative example, suppose interest lies in testing
for differences in systolic blood pressure between light smokers and heavy smokers. Thus, we test
the hypothesis H0 : δ = 0 against the alternative H1 : δ �= 0 where we classify participants with
more than 5 cigarettes per day as heavy smokers. A Bayesian two-sample t-test using the model of
Rouder et al. [25] is conducted, and the left plot in Figure 1 shows the results of the FBST using
a flat reference function r(δ) := 1. The model is parameterized in the effect size δ of Cohen [26],
and the e-value ev(H0) is given as ev(H0) = 0.4362, which equals the posterior probability mass
visualized as the blue area in the left plot of Figure 1. Thus, 43.62% of the posterior probability
indicate evidence against the null hypothesis, and the situation is inconclusive. The right plot in
Figure 1 shows the result of the FBST when replacing the flat reference function r(δ) := 1 with
a Cauchy C(0,

√
2) density (note the different scaling on the y-axis), which is also used as the

prior on δ in the two-sample t-test. In this case, the e-value ev(H0) = 0.4367 indicates a similarly
inconclusive situation and changes the result barely.

Now, the above example shows that calculation of the e-value is straightforward and
universally applicable. However, the parameter space Θ is continuous in the example (the
effect size δ ∈ R is a continuous quantity) and any usual prior distribution Pϑ assigned
to θ is absolutely continuous with respect to the Lebesgue measure λ. It is well-known
that the posterior distribution Pϑ|Y is absolutely continuous with respect to the prior
distribution [27], and thus any Pϑ-null-set N ⊂ Θ with Pϑ(N) = 0 is also a Pϑ|Y-null-set
with Pϑ|Y(N) = 0. Problematically, the set Θ0 := {δ0} = {0} which is used in the precise
null hypothesis H0 : δ = 0 is a Pϑ-null-set under both the improper flat and Cauchy
prior, as both of these are absolutely continuous with respect to the Lebesgue measure
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λ, and submanifolds are Lebesgue-null-sets [28]. Thus, λ({δ0} = λ({0}) = 0 implies
Pϑ({0}) = 0 due to Pϑ << λ, which implies in turn that the posterior probability Pϑ|Y({0})
of the value δ0 = 0 is a Pϑ|Y-null-set due to Pϑ|Y << Pϑ. As a consequence, the value of
the posterior density p(0|y) = 9.4693 which is shown as the blue point in the left plot of
Figure 1 could be chosen arbitrarily. Problematically, this value is used as the reference
criterion in the calculation of the e-value ev(H0) in the computation of the tangential set
T(ν). Thus, one could assign p(0|y) an entirely different value, say, c ∈ R, and obtain
a different e-value ev(H0) than the one calculated from the value p(0|y) = 9.4693. This
seems to render the calculation of the statistical evidence ev(H0) in the FBST arbitrary,
questioning the use of the procedure.

Figure 1. Results of the Full Bayesian Significance Test using a flat reference function (left) and a
C(0,

√
2) Cauchy density as reference function (right) for testing the hypothesis of no difference

H0 : δ = 0 in terms of systolic blood pressure between smokers and non-smokers.

3.2. Prior Probability of the e-Value

The second issue with the FBST may be phrased as the e-value having no valid prior
probability. In fact, the e-value in Equation (7) is based on the cumulative surprise function
W(s∗), which itself depends on the tangential set T(s∗) and the posterior density p(θ|y).
Before data y ∈ Y are observed, the posterior Pϑ|Y has not been realized as Pϑ|Y=y and
thus there exists no prior probability Pϑ which is associated with the e-value. Even the
tangential set T(s∗) := {θ ∈ Θ|s(θ) > s∗} which is a subset of Θ seems to have no prior
probability, because it depends on the surprise function s(θ) which itself depends on the
posterior density p(θ|y), compare Equation (1). Thus, the statistical evidence in the FBST
seems to escape the natural Bayesian transition from prior to posterior probability.

4. Solutions to the Two Aspects

4.1. The Reference Criterion

If the above criticism that the reference criterion in the FBST is arbitrary would
hold, the procedure would be of little use in practice. However, the solution to the
problem is given by fixing a specific version of the posterior distribution and performing
all calculations conditional on fixing such a version. It is well known that probability
distributions (which are probability measures corresponding to a random variable) are
defined up to Lebesgue-null-sets (when they are dominated by the Lebesgue measure).
The values on null-sets do not influence these probability measures and therefore they are
identified with each other whenever they only differ on Lebesgue-null-sets [28]. Technically,
this corresponds to the shift from the vector space Lp

Lp(Ω,A, μ) :=
{

f : Ω → K

∣∣∣∣f is measurable,
∫

Ω
| f (x)|pdμ(x) < ∞

}
(8)
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on a probability space (Ω,A, μ), K ∈ {R,C} for 0 < p < ∞ to the quotient space Lp, see
Bauer [28]. The latter space is defined as Lp := Lp/N , where

N :=
{

f ∈ Lp
∣∣∣∣ f = 0 μ-almost-everywhere

}
(9)

and the elements in Lp are equivalence classes. Thus, two elements [ f ], [g] ∈ Lp are equal
if and only if they differ only on μ-null-sets, that is, [ f ]− [g] ∈ N . Thus, the arbitrariness
of the reference criterion in the FBST exists only unless a specific representant of the
equivalence class, in which the posterior density p(θ|y) is located, is selected. In the context
of Example 1, this implies that a specific version of the posterior density p(δ|y) needs to be
chosen, which fixes the densities value on δ0 = 0 (and the other values δ ∈ Θ). Thus, setting
p(δ0|y) := p(0|y) := 9.4693 explicitly by definition fixes one representant of the equivalence
class of Pϑ|Y and bypasses the problem that the reference threshold p(δ0|y) in the FBST is
arbitrary. Whenever the posterior is obtainable as a closed-form solution, that is, follows a
well-known probability density P̃ϑ|Y with Lebesgue-density p̃(θ|y), setting p(θ|y) := p̃(θ|y)
as the value of this known probability density p̃ for the posterior density p in the FBST
by definition solves the first problem. Whenever numerical techniques like Markov-Chain-
Monte-Carlo (MCMC) are used to produce the posterior, the resulting posterior distribution
PMCMC

ϑ|Y and the posterior density pMCMC(θ|y) approximate the true posterior distribution

Pϑ|Y and the posterior Lebesgue-density p(θ|y). Thus, setting p(θ|y) := pMCMC(θ|y)
by definition for a fixed numerical technique like MCMC with given random number
generator seed fixes a version of the posterior density and renders the reference threshold
in the FBST unique. In Example 1 this equals the choice of p(δ0|y) := 9.4693 by definition
(as MCMC sampling was used), and p(δ|y) := pMCMC(δ|y) for all δ ∈ R. In summary,
the above considerations provide the following result:

Theorem 1. Let s∗ := s(θ∗) = sup
θ∈ΘH

s(θ) be the supremum of the surprise function in the Full

Bayesian Significance Test, and Lp and Lp the corresponding vector spaces on (Θ,G, Pϑ|Y) with
quotient space Lp/N for N := { f ∈ Lp| f = 0 μ-almost-everywhere}. Whenever Pϑ|Y is a known
probability distribution P̃ϑ|Y with Lebesgue-density p̃(ϑ|Y), defining p(θ|y) := p̃(θ|y) pointwise
for all θ ∈ Θ renders the e-value ev(H0) against H0 : θ = θ0 for θ0 ∈ Θ well-defined and unique
for the choice of p(θ|y).

Proof. See Appendix A.

Note that when using numerical methods such as MCMC, ergodic theory ensures that
PMCMC

ϑ|Y → Pϑ|Y in distribution and pMCMC
ϑ|Y → pϑ|Y, that is, the MCMC posterior density

approximates the posterior Lebesgue-density pointwise with increasing precision for in-
creasing number of MCMC samples [29]. Thus, fixing a version of the posterior, Theorem 1
extends also to situations where numerical techniques such as MCMC are required.

4.2. Prior Probability of the e-Value

The solution to the second problem is more involved and less technical. Conceptually,
from the above line of thought it is immediate that under absolutely continuous priors
Pϑ with respect to the Lebesgue measure λ, the prior probability Pϑ(Θ0) will be zero for
any precise null hypothesis H0 := Θ0 with Θ0 := {θ0} for θ0 ∈ Θ. The posterior Pϑ|Y is
absolutely continuous with respect to the prior Pϑ, so Pϑ|Y(Θ0) = 0. Thus, it is simply
not possible to use a natural Bayesian workflow which assigns positive probability mass
to a Lebesgue-null-set Θ0 whenever the statistician uses an absolutely continuous prior
distribution Pϑ with respect to λ. Traditional Bayesian hypothesis testing and model
selection bypasses this inconvenience by introducing an arbitrary mixture prior structure
Pϑ := �1Θ0 + (1 − �)P̃ϑ which assigns positive probability mass � > 0 to the null set Θ0,
and distributes the rest of the probability mass (1 − �) ∈ [0, 1] by means of a probability
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distribution P̃ϑ on the alternative hypothesis space Θ1 = Θ \ Θ0. Early proposals of
such a mixture prior structure include Jeffreys [30] and Haldane [31], see also Robert [29]
and Kleijn [23]. Such a prior allows computation of a Bayes factor, and furthermore,
the Bayes factor itself also has no prior probability which is naturally associated with it.
Importantly, this mixture prior structure imposes a dichotomy between hypothesis testing
and parameter estimation, because such a mixture prior structure is reasonable only from a
hypothesis testing perspective. Whenever parameter estimation is the goal, the assignment
of probability mass � > 0 to a specific value is highly questionable and often contradicts
reasonable a priori beliefs. In these cases, prior beliefs are expressed better through a prior
which is absolutely continuous with respect to the Lebesgue measure λ.

The FBST avoids the introduction of such a mixture structure and thus allows for a
unified prior elicitation which is coherent both from a Bayesian hypothesis testing and
Bayesian parameter estimation stance. Importantly, the e-value is intended to be a Bayesian
replacement of the frequentist p-value which measures the statistical discrepancy between
the observed data to an assumed precise hypothesis. Thus, the e-value provides the
Bayesian evidence against such a precise hypothesis. From a measure-theoretic point of
view, every precise null hypothesis is assumed to be false and the FBST thus aligns with
the empirical rationalism of Popper [32]. For the use of testing a precise hypothesis as
an approximation of a small interval hypothesis see Berger [33], Rousseau [34], Rao &
Lovric [35] as well as Kelter [36]: Often, the approximation of a small interval hypothesis
via a precise point null hypothesis will be bad, and thus the e-value does not assign
positive probability mass to such a precise null hypothesis. Instead, the FBST quantifies
the discrepancy between the observed data and the hypothetical precise null value, while
simultaneously implementing I.J. Good’s principle of least surprise [37–39]. Note further
that the mathematical introduction of positive prior probability � > 0 to a precise value
θ0 ∈ Θ when using a mixture prior does not render such a precise hypothesis H0 : θ = θ0
more realistic in practice.

Furthermore, next to its measure-theoretic premises, there exists another argument
which weakens the criticism that there is no prior probability of the e-value: When a prior
distribution Pϑ is selected and no data y ∈ Y has been observed, the posterior distribution
can be identified conceptually as the prior distribution. Thus, replacing the posterior
density p(θ|y) with the λ-density p(θ) of the prior Pϑ yields s(θ) := p(θ)

r(θ) , which implies

that the tangential set T(ν) := Θ \ T(ν) for T(ν) := {θ ∈ Θ|s(θ) ≤ ν} includes those
parameter values θ ∈ Θ for which p(θ)/r(θ) > ν. Using the fact that s∗ = p(θ0)/r(θ0) for
a precise hypothesis H0 : θ = θ0 then, yields T(ν) = {θ ∈ Θ|p(θ)/r(θ) > p(θ0)/r(θ0)}.
Plugging this tangential set into Equation (6) yields the e-value

ev(H0) := W(s∗) =
∫

T(s∗)
p(θ)dθ

which is the integral of the prior density p(θ) over T(s∗). When the reference function r(θ)
is chosen as a flat improper prior r(θ) := 1, this becomes

ev(H0) =
∫
{θ∈Θ|p(θ)>p(θ0)}

p(θ)dθ

which is the integral of the prior density p(θ) over all values which attain higher prior
density values than the null value θ0 in H0 : θ = θ0. Thus, the e-value in such a case
quantifies the discrepancy of the precise hypothesis H0 : θ = θ0 with the prior beliefs Pϑ.
The above line of thought provide the following result:
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Theorem 2. Let r(θ) := 1. In case no data y ∈ Y has been observed, the e-value quantifies the
discrepancy between the precise hypothesis H0 := Θ0 for Θ0 := {θ0} and θ0 ∈ Θ and the prior
distribution Pϑ, that is,

ev(H0) = Pϑ({θ ∈ Θ|p(θ) > p(θ0)}) (10)

Proof. See Appendix A.

Whenever r(θ) �= 1, the interpretation is more complicated because such a reference
function incorporates a surprise element into the tangential set, but the conclusions remain
the same. The e-value then quantifies the discrepancy between the precise hypothesis and
the prior surprise.

5. Discussion

The Full Bayesian Significance Test (FBST) has been proposed as a convenient method
to replace frequentist p-values for testing a precise hypothesis [14–16]. Although the FBST
enjoys various appealing properties [8,19,20,40], two aspects of the FBST are sometimes
observed as measure-theoretic inconsistencies of the procedure and have not been dis-
cussed rigorously in the literature. First, the FBST uses the posterior density as a reference
for judging the Bayesian statistical evidence against a precise hypothesis. However, un-
der absolutely continuous prior distributions, the posterior density is defined only up
to Lebesgue null sets which renders the reference criterion arbitrary. Second, the FBST
statistical evidence seems to have no valid prior probability. In this paper, it was shown
that the former problem can be circumvented by fixing a version of the posterior density
before using the FBST. Theorem 1 demonstrated that then, the e-value is well-defined and
unique after observing the data y ∈ Y .

The latter aspect is based on the measure-theoretic premises of the FBST. As shown
in this paper, the FBST avoids the use of a mixture prior structure which imposes a
dichotomy between Bayesian hypothesis testing and parameter estimation. Thus, the FBST
is compatible with absolutely continuous priors with respect to the Lebesgue measure λ
(the Bayes factor, for example, is not). As a consequence, there exists no prior probability
of the e-value and a precise hypothesis H0 : θ = θ0 under an absolutely continuous prior
Pϑ. Theorem 2 showed that even then, the e-value has a proper interpretation from a prior
perspective: It quantifies the a priori discrepancy of the hypothesis H0 with the prior beliefs
which are expressed by Pϑ whenever the reference function r(θ) is flat. When r(θ) �= 1,
the interpretation is more difficult but the conclusion remains the same.

Together, the results in this paper show that both of the two aspects which are
sometimes observed as measure-theoretic inconsistencies of the FBST are not tenable.
The FBST thus provides a measure-theoretically coherent Bayesian alternative for testing a
precise hypothesis.
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Appendix A

Proof of Theorem 1. From Definition 1 and Equation (2) it follows that the tangential set
T(ν) := Θ \ T(ν) becomes T(s∗) := Θ \ T(s∗), which equals the set

{θ ∈ Θ : s(θ) > s(θ∗)} =

{
θ ∈ Θ :

p(θ|y)
r(θ)

>
p(θ∗|y)
r(θ∗)

}

=

{
θ ∈ Θ :

p(θ|y)
r(θ)

>
p(θ0|y)
r(θ0)

}
(A1)

where the first equality uses Definition 2 and the second equality uses θ∗ = θ0 for a precise
hypothesis H0 : θ = θ0 for θ0 ∈ Θ. By assumption, the posterior distribution Pϑ|Y is
known to take the form P̃ϑ|Y with Lebesgue-density p̃(θ|y). Defining the posterior density
p : Θ → Rd pointwise as p(θ|y) := p̃(θ|y) implies that the value p(θ0|y) is equal to p̃(θ0|y).
Thus, the tangential set T(s∗) in Equation (A1) is well-defined and unique for this fixed
value p(θ0|y) := p̃(θ0|y). From Definition 3 and Equation (7) it follows that the e-value
ev(H0) is well-defined and unique for the choice of p(θ|y).

Proof of Theorem 2. Let Pϑ be the prior distribution and r(θ) := 1. Suppose no data
y ∈ Y has been observed, then the posterior distribution Pϑ|Y can be identified as the prior
distribution Pϑ. Thus, replacing the posterior density p(θ|y) with the λ-density p(θ) of
the prior Pϑ yields s(θ) := p(θ)

r(θ) , which implies that the tangential set T(ν) := Θ \ T(ν) for
T(ν) := {θ ∈ Θ|s(θ) ≤ ν} includes the parameter values θ ∈ Θ which fulfill the condition
p(θ)/r(θ) > ν. It follows that s∗ = p(θ0)/r(θ0) for a precise hypothesis H0 : θ = θ0,
and this yields T(ν) = {θ ∈ Θ|p(θ)/r(θ) > p(θ0)/r(θ0)} for the tangential set to H0.
Using the latter in Equation (6) yields the e-value

ev(H0) := W(s∗) =
∫

T(s∗)
p(θ)dθ

which is the integral of the prior density p(θ) over T(s∗). By assumption, r(θ) := 1, so
this becomes

ev(H0) =
∫
{θ∈Θ|p(θ)>p(θ0)}

p(θ)dθ = Pϑ({θ ∈ Θ|p(θ) > p(θ0)})

which is the statement in Equation (10).
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Abstract: Earth’s gravitational field provides invaluable insights into the changing nature of our
planet. It reflects mass change caused by geophysical processes like continental hydrology, changes in
the cryosphere or mass flux in the ocean. Satellite missions such as the NASA/DLR operated Gravity
Recovery and Climate Experiment (GRACE), and its successor GRACE Follow-On (GRACE-FO)
continuously monitor these temporal variations of the gravitational attraction. In contrast to other
satellite remote sensing datasets, gravity field recovery is based on geophysical inversion which
requires a global, homogeneous data coverage. GRACE and GRACE-FO typically reach this global
coverage after about 30 days, so short-lived events such as floods, which occur on time frames from
hours to weeks, require additional information to be properly resolved. In this contribution we treat
Earth’s gravitational field as a stationary random process and model its spatio-temporal correlations
in the form of a vector autoregressive (VAR) model. The satellite measurements are combined with
this prior information in a Kalman smoother framework to regularize the inversion process, which
allows us to estimate daily, global gravity field snapshots. To derive the prior, we analyze geophysical
model output which reflects the expected signal content and temporal evolution of the estimated
gravity field solutions. The main challenges here are the high dimensionality of the process, with a
state vector size in the order of 103 to 104, and the limited amount of model output from which to
estimate such a high-dimensional VAR model. We introduce geophysically motivated constraints in
the VAR model estimation process to ensure a positive-definite covariance function.

Keywords: GRACE/GRACE-FO; gravity field recovery; vector autoregressive models

1. Introduction

Earth’s gravitational field is key quantity for observing the state and change of our
planet. Its variations in time can be related to surface mass changes [1] and thus it provides
insight into geophysical and climate relevant processes, for example, sea level rise [2], ice
mass loss [3], or the terrestrial water cycle [4]. Since 2002, the dedicated satellite mission
Gravity Recovery And Climate Experiment (GRACE) [5,6] and its successor GRACE
Follow-On (GRACE-FO) [7] have monitored temporal variations of Earth’s gravitational
field and have provided an invaluable data record for climate and Earth system sciences.
The standard data products of both missions are unconstrained and constrained monthly
snapshots of potential or surface mass changes. The time period of one month is not chosen
arbitrarily but is a consequence of the orbit geometry of the satellites. As the satellites
do not directly observe the changes in gravitational attraction but rather provide very
precise measurements of their absolute and relative motion, the underlying potential field
must be determined by an inversion process. This inversion process requires a global,
homogeneous data coverage which for GRACE and GRACE-FO is reached after about
30 days.

However, in recent years different approaches to derive sub-monthly gravity field vari-
ations which combine satellite measurements with prior information have been developed.
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Notable examples are the Kalman smoother approach by [8], a moving window approach
by [9], constrained surface mass estimates from the Center of Space Research (CSR) [10]
and a Kalman filter approach for regional applications [11]. Data sets dervied with these
approaches have seen various applications in Earth system sciences, for example, analysis
of large scale flood events [12], evaluation of geophysical models [13,14] or near real-time
flood monitoring [15].

In this contribution we show how maximum entropy spectral estimation can be used
to derive prior information for regularizing the inversion process for daily gravity field
variations. To that end, we estimate a vector autoregressive (VAR) model from a time series
of geophysical model output which approximates the expected signal. Following [15],
we show how this spatio-temporal covariance information can be introduced into the
inversion process and present a time series of daily gravity field variations derived from
approximately thee years of GRACE-FO data.

2. Materials and Methods

A widely used method to recover Earth’s gravitational field from a set of measure-
ments is to solve an overdetermined system of equations in a least-squares adjustment [16].
Here, the measurements or observations l are related to unknown gravity field parameters
through a (possibly non-linear) functional model f with:

l = f(x) + e. (1)

We added the residual vector e because (1) equation is generally not consistent due to
the stochastic nature of l. To solve for x, we expand f into a Taylor series around x0 and
truncate it after the linear term. This yields the reduced observations equations:

Δl = l − f(x0) = A(x − x0) + e, e ∼ N (0, ΣΔl), (2)

where the matrix A consists of the partial derivatives of f with respect to the parameter
vector x. In (2), the residual vector e is assumed to be centered and normally distributed
with the covariance matrix ΣΔl. This system of linear equations can be solved for the
parameter corrections Δx̂ = x̂ − x0 by forming the system of normal equations:

(ATΣ−1
Δl A)Δx̂ = ATΣ−1

Δl Δl, (3)

or more concise, NΔx̂ = n. For this study, we express the changes Earth’s gravitational
field as spherical harmonic series expansion:

ΔV(r, ϑ, λ) =
GM

R

∞

∑
n=0

n

∑
m=−n

(
R
r

)n+1
anmYnm(ϑ, λ), (4)

where the fully normalized surface spherical harmonics Ynm are given by:

Ynm =

{
Pnm(cos ϑ) cos λ if m ≥ 0
Pn|m|(cos ϑ) sin λ if m < 0

, (5)

with Pnm being the fully normalized associated Legendre functions [17]. In practice, the
series is truncated at a maximum degree nmax, which depends on the application and is
chosen here with nmax = 40. Furthermore, we set degrees n = {0, 1} to zero because we
assume that Earth’s mass does not vary and we fix the coordinate reference frame in Earth’s
center of mass. The unknown parameter corrections Δx therefore consist of the spherical
harmonic coefficients anm with n ∈ {2, . . . , 40}.

Since we want to determine daily temporal changes in Earth’s gravitational field
we set up this least-squares adjustment for a time series ti = iΔt, i ∈ {0, . . . , N − 1},
where Δt is 1 day. We denote the resulting observation equations for time step i with a
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corresponding subscript: Δli = AiΔxi + ei. All epochs can be combined in a single least
squares adjustment with the block-diagonal normal equation coefficient matrix N̄ii = Ni
and the right hand side n̄ = ni. Given the block-diagonal structure of N̄ we can solve for
each time step individually resulting in the estimated parameter corrections Δx̂i and their
corresponding variance-covariance matrix Σ̂Δx̂i = N−1

i . Next to the input data quality, the
uncertainty of Δx̂i primarily depends on the spatial data coverage within the observation
interval. To recover the full spherical harmonic spectrum, a global homogeneous data
coverage is required. For the application here, where the observation time span is a
single day, the satellites perform approximately 15 revolutions and thus we can only infer
spherical harmonic coefficients up to order m = 15 [18]. The effect this sparse data coverage
has on the estimated gravity field solution can be seen in Figure 1, where we propagated
the uncertainty of an unconstrained daily GRACE-FO solution to equivalent water height
(EWH) in space domain.

Figure 1. Uncertainty of an unconstrained daily gravity field estimated from one day of GRACE-FO
data propagated to equivalent water height (EWH) in space domain. The solid black lines show the
satellite ground tracks for this given day.

The uncertainty between the satellite ground tracks is magnitudes higher than the
expected signal, which is in the order of ±25 cm. Consequently, to recovery global, sub-
monthly gravity field variations, additional external information is required.

We introduce prior information on the parameter corrections Δx = [ΔxT
0 , . . . , ΔxT

N−1]
T

in the form of a positive definite covariance matrix R. We further assume that Δxi is a Gaus-
sian, temporally stationary random process with an expected value of zero. This implies
that their temporal covariance function ΣΔx(ti, tj) only depends on the lag h between the
epoch i and j [19]. The prior distribution is then given by:

Δx ∼ N (0, R). (6)

If we sort all epochs in temporally ascending order, the variance-covariance matrix R

of the resulting vector is block-Toeplitz with the individual blocks given by

Rij =

{
ΣΔx(h = |j − i|) if i ≤ j
ΣT

Δx(h = |j − i|) else
. (7)

This prior information is then incorporated into the least squares adjustment as
pseudo-observations of the form:

0 = Δx + v v ∼ N (0, R), (8)
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with v = [vT
0 , . . . , vT

N−1]
T . The constrained system of normal equations for the whole time

series is subsequently given by:

(N̄ + R−1)Δx̂ = n̄. (9)

The solution to this augmented least-squares problem is numerically equivalent to the
Bayes estimate under the assumption of the given prior information.

Both GRACE and GRACE-FO exhibit an approximate repeat cycle of 4–5 days at the
equator. As the observation information is closely tied to the ground track coverage es
presented in Figure 1, this means that points at the equator are also updated at this repeat
frequency. Between these updates, the solutions are supported by the introduced temporal
constraint and slowly tend towards the Taylor series expansion point x0. We chose x0 as
a long-term estimate of the secular and seasonal gravity field variations, which captures
a large part of the total signal. In higher latitudes, where the ground tracks converge,
observation updates occur more frequently. This means that as we move closer to the poles,
the gravity field solutions become less reliant on the prior information.

Note that the covariance function ΣΔx(h) is still unknown at this point. To estimate
the stochastic properties we perform maximum entropy spectral estimation by fitting a
vector autoregressive model (VAR) with:

Δxi =
p

∑
k=1

ΦkΔxi−k + wi, wi ∼ N 0, Σw (10)

to a time series of geophysical model output mi, which approximates the true spatio-
temporal covariance structure of Earth’s time-variable gravity field. We make use of the
Earth System Model of the European Space Agency (ESA ESM, [20]) to generate daily
spherical harmonics coefficients vectors. To estimate the VAR model, we use Yule–Walker
equations [19] to estimate the empirical covariance matrices for lags h ∈ {0, . . . , 3} using
the unbiased estimator:

Σ̂(h) =
1

M − h

M−h−1

∑
k=0

mkmT
k+h. (11)

After estimating the empirical covariance function and before solving the Yule–Walker
equations, we apply geophysically motivated constraints onto the obtained covariance
matrices. Specifically, we want set correlations between land and ocean to zero and
reduce the overall correlation length. These constraints are very easy to introduce in
space domain so we first propagate Σ̂(h) from the spherical harmonics domain to an
EWH grid in space domain. Now the matrices can be decomposed into σij(h) = rij(h)σiσj,
where rij(h) represents the correlation between two grid points at lag h and σi/j is the
standard deviation of the corresponding grid points. The constraints are then realized
by setting rij(h) = 0 if the points i and j are on different domains and applying a decay
function r̃ij(h) = rij(h)e−ψ/ψ0 . The amount at which the correlation between points in
dependence of their spherical distance ψ is reduced is governed by the the parameter ψ0
which we chose as 1100 km. After propagating the modified empirical covariance matrices
back to spherical harmonics domain, we can now solve the Yule–Walker equations to
obtain the VAR model coefficients Φk and compute the white noise covariance matrix Σw.
Now we could compute the covariance function for all lags h, however, given the high
dimensionality of the problem, assembling the full block variance-covariance matrix is not
feasible. Instead we use the VAR model to transform the pseudo-observation equations (8).
For each time step i, we apply 0 = −Δxi + ∑

p
k=1 ΦkΔxi−k, which can also be written as a

lower triangular block matrix applied to the full time series Δx as in:
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0 = Φ̄Δx + w w ∼ N (0, Σ̄w), (12)

where Σ̄w = Φ̄RΦ̄T is a block diagonal matrix with Σw on the main diagonal. This has
the great advantage that the resulting normal equation coefficient matrix is block-banded
with a bandwith of p + 1 and thus greatly reduces the memory demands. The transformed
system of normal equations which we use to estimate the full time series of gravity field
variations is then given by:

(N̄ + Φ̄TΣ̄−1
w Φ̄)Δx̂ = n̄. (13)

Note that for a VAR model of order 1, (13) yields the same results as the Kalman
smoother approach presented in [8].

3. Results

To showcase how the VAR regularization affects the gravity field estimates, we com-
puted systems of normal equations from close to three years of GRACE-FO sensor data [21].
Figure 2 shows the autocovariance matrix computed from the VAR model and the temporal
variability of the computed time series propagated to space domain.

Figure 2. Comparison of (a) the autocovariance matrix derived from the estimated VAR model expressed as standard
deviation per grid point and (b) the temporal RMS of the computed gravity field solutions.

As can be seen, the estimated gravity field time series shows a lot more signatures
than the expected signal covariance. This means that the GRACE-FO observations provide
significant information and are not overly constrained by the derived VAR model. It should
be noted that the VAR model and subsequently the spatio-temporal constraints depend
on the geophysical models used in their derivation. However, the influence of different
hydrological models is very small as shown in [12]. This suggests that the daily gravity
field solutions are primarily data driven.

To gauge how the daily gravity field variations compare with standard GRACE/GRACE-
FO products, we compute area mean time series for selected hydrological basins. As
monthly data set we use the unconstrained monthly solutions of ITSG-Grace_operational [22,23]
computed at Graz University of Technology, filtered with DDK4 spatial filter [24].

Figure 3 shows the area mean time series of 4 regions where we see larger water storage
variations. We can see that the daily gravity field solutions clearly pick up sub-monthly
signal and thus provide additional information compared to the standard GRACE/GRACE-
FO products.
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Figure 3. Total water storage anomaly (TWSA) in equivalent water height for (a) Tigris/Euhprates,
(b) Danube, (c) Orinoco, and (d) Ganges basin for the year 2019 (trend and annual signal are
removed). The estimated daily solutions are compared with DDK4-filtered monthly solutions from
ITSG-Grace_operational shown as step function.

4. Discussion

We have shown that VAR models provide an efficient way of introducing spatio-
temporal prior information into the gravity field inversion process. This approach is
equivalent to constraining the gravity field estimates with the full block-Toeplitz variance-
covariance matrix, however requires only a fraction of the memory. Constraining the
inversion of daily gravity field variations with a VAR model of arbitrary order p constitutes
the generalization of the Kalman smoother approach of [8], which is the special case for
p = 1. If the VAR model is derived as a maximum entropy spectral estimate from a time
series of geophysical model output, a few challenges arise. The high-dimensionality of
the problem with a state vector size in the order of 103 to 104, combined with the limited
availability of model output results in a very low redundancy in the VAR model estimation.
We counteract this by introducing geophysically motivated constraints on the empirical
covariance matrix estimates. First, we decouple the land and ocean domain and then we
reduce the remaining correlation between far away point by introducing an exponential
decay function dependent on the spherical distance. This drastically improves the condition
of the VAR estimation problem. Finally, we show that the derived prior information in
combination with GRACE-FO measurement data yields reasonable results by computing a
time series of daily gravity field variations from June 2018 to March 2021. Here, we can
clearly see sub-monthly signals which underlines the proficiency of the approach.

Author Contributions: A.K. worked on the theoretical background, performed the gravity field
recovery and wrote the manuscript; T.M.-G. worked on the theoretical background. All authors have
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Abbreviations

The following abbreviations are used in this manuscript:

GRACE Gravity Recovery And Climate Experiment
GRACE-FO GRACE Follow-On
CSR Center for Space Research
VAR vector autoregressive
EWH equivalent water height
RMS root mean square
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Abstract: In previously published articles, our research group has developed the Haphazard Intentional
Sampling method and compared it to the Rerandomization method proposed by K.Morgan and D.Rubin.
In this article, we compare both methods to the pure randomization method used for the Epicovid19
survey, conducted to estimate SARS-CoV-2 prevalence in 133 Brazilian Municipalities. We show that
Haphazard intentional sampling can either substantially reduce operating costs to achieve the same
estimation errors or, the other way around, substantially improve estimation precision using the
same sample sizes.

Keywords: haphazard intentional sampling; rerandomization; pure randomization; optimal sam-
pling design

1. Introduction

Traditional sampling with face-to-face interviews usually demands large staff and
infrastructure and expensive field operations to cover a representative group of the popula-
tion of interest. Even then, pure (or stratified) randomized experiments do not guarantee
efficient control over specific sets of covariates, and there may be large divergences between
sample and population statistics. To address this problem, Lauretto et al. [1,2] and Fos-
saluza et al. [3] developed the Haphazard Intentional Sampling method, an approach that
combines intentional sampling, using methods of numerical optimization for an appropri-
ate objective function, with random disturbances ensuring good decoupling properties.
The word haphazard was used by Dennis Lindley to distinguish the decoupling effect from
the tool used to obtain the desired decoupling, namely, randomization; for further details,
see [1,3,4]. For a fixed sample size, this technique aims at diminishing the distance between
sample and population regarding specific covariates of interest or, the other way around,
minimizing the sample size needed to achieve good enough expected agreement between
sample and population regarding specific covariates of interest. The Mahalanobis distance
is the natural choice for the statistical model at hand, but other Lp distances, or convex
combinations thereof, will be used as approximations useful for numerical computation,
as explained in the following sections. This method can be applied in several contexts,
such as allocations of treatment and control groups in medical trials [2] or in statistical
sampling problems [5]. In this method, a weight factor, λ, adjusts the weight of the random
perturbation relative to the deterministic objective function of the optimization problem.
In practical problems, the weight factor λ can be calibrated in such a way that, on the
one hand, it is small enough to generate only slightly sub-optimal solutions and, on the
other hand, it is large enough to break potential confounding effects that could introduce
spurious statistical biases in the study.
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In this paper, the performance of the Haphazard intentional sampling method is com-
pared to pure random sampling and to the Rerandomization methods proposed by Morgan
and Rubin [6]. As a benchmark, we use an artificial sampling problem concerning infer-
ences about the prevalence of Sars-CoV-2, using covariates from public data sets generated
by the 2010 Census of the Brazilian Institute of Geography and Statistics (IBGE). Pending
analyses of this benchmark study, real epidemiological applications shall be developed in
the near future. Sampling procedures of the three aforementioned methods were repeatedly
applied to the benchmark problem, in order to obtain performance statistics regarding how
well generated samples represent the population.

2. Haphazard Intentional Sampling Method

In this section, we present the formulation of the Haphazard intentional sampling
method presented by Lauretto et al. [1,2]. Let X denote a matrix in Rn×d, where n is the
number of candidate sampling units and d is the number of covariates of interest. An
allocation consists of assigning to each unit a group chosen from a set of possible groups,
G = {0, 1, 2, ...g}. We denote by w an allocation vector in Gn, assigning each unit to a
group. For simplicity, we assume only two groups, that is, G = {0, 1}, the control and
treatment groups, or the unsampled and sampled units. We also assume that the number
of units assigned to each group is previously defined. That is, integers n1 and n0 exist
such that n1 + n0 = n, 1wt = n1 and 1(1 − w)t = n0. 1 denotes a vector of ones with the
proper size; therefore, the scalar product 1wt is the sum of the scalar components of w. The
goal of the allocation problem is to generate an allocation, w, that, with high probability,
approximately minimizes the imbalance between groups with respect to a loss function,
L(w, X).

The Mahalanobis distance is the metric of choice for statistical models based on
the multivariate normal distribution; for further details, see Stern [7] (Section 6.2). The
Mahalanobis distance between the covariates of interest in each group is defined as follows.
Let A be an arbitrary matrix in Rn×m. Furthermore, define A∗ := AL, where L is the
lower triangular Cholesky factor [8] of the inverse of covariance matrix of A; that is,
Cov(A)−1 = LLt.

For an allocation w, let A∗1 and A∗0 denote the averages of each column of A∗ over
units allocated to, respectively, groups 1 and 0 according to the row vector w:

A∗1 := (1/n1)wA∗ and A∗0 := (1/n0)(1 − w)A∗ . (1)

The Mahalanobis distance between the average of the column values of A in each
group specified by w is defined as:

M(w, A) := m−1‖A∗1 − A∗0‖2 , (2)

where m denotes the number of columns of A.

2.1. Pure Intentional Sampling Formulation

Under the Mahalanobis loss function, a pure intentional sampling procedure consists
of generating an allocation w that minimizes the following optimization problem:

minimize M(w, X)
subject to 1wt = n1

1(1 − w)t = n0
w ∈ {0, 1}n

(3)

The formulation presented in Equation (3) is a Mixed-Integer Quadratic Programming
Problem (MIQP) [9], that can be computationally very expensive. The hybrid loss function,
H(w, A), is a surrogate function for M(w, A) built using a linear combination of L1 and
L∞ norms; see Ward and Wendell [10]:
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H(w, A) := m−1
(
‖A∗1 − A∗0‖1 +

√
m ‖A∗1 − A∗0‖∞

)
(4)

The minimization of H(w, A) yields the Mixed-Integer Linear Programming Problem
(MILP) defined in the next equation, which is computationally much less expensive than
the MIQP problem (3); see Murtagh [11] and Wolsey and Nemhauser [9].

minimize H(w, X)
subject to 1wt = n1

1(1 − w)t = n0
w ∈ {0, 1}n

(5)

Statistical inference based on pure intentional sampling is vulnerable to malicious
manipulation, unconscious biases, and many other confounding effects. In the Frequentist
School of statistics, the use of intentional allocation is anathema, whereas in the Bayesian
School, it has been the subject of long-standing debates. The solution presented in this paper
is a compromise aiming to achieve the effective performance of intentional sampling but
using moderate randomization to avoid systematic confounding effects. Lauretto et al. [1]
and Fossaluza et al. [3] give a thorough discussion of the motivation and history of the
ideas leading to the Haphazard intentional sampling method.

2.2. Haphazard Formulation

The Haphazard intentional sampling method consists of extending the pure intentional
sampling method, formulated in Equation (5), as a MILP optimization problem, with the
introduction of a noisy component. Let Z be an artificially generated random matrix in
Rn×k, with elements that are independent and identically distributed according to the
standard normal distribution. For a given tuning parameter, λ ∈ [0, 1], the Haphazard
method, aims to solve the following optimization problem:

minimize (1 − λ) H(w, X) + λ H(w, Z)
subject to 1wt = n1

1(1 − w)t = n0
w ∈ {0, 1}n

(6)

The parameter λ controls the amount of perturbation that is added to the surrogate
loss function, H(w, X). If λ = 0, then w∗ is the deterministic optimal solution for H(w, X),
corresponding to the pure intentional sampling. If λ = 1, then w∗ is the optimal solution
for the artificial random loss, H(w, Z), corresponding to a completely random allocation.
By choosing an intermediate value of λ (as discussed in Section 3.2), one can obtain w∗ to
be a partially randomized allocation such that, with a high probability, H(w∗, X) is close to
the minimum loss.

3. Case Study

The artificial data set used for the simulations carried in this study are inspired by
Epicovid19 [12], a survey conducted by the Brazilian Institute of Public Opinion and
Statistics (IBOPE) and the Federal University of Pelotas (UFPel) to estimate SARS-CoV-2
infection prevalence in 133 Brazilian municipalities. Our study is supplemented by data
from the 2010 Brazilian census conducted by IBGE, giving socio-economic information by
census sector. Sectors are the minimal units by which census information is made publicly
available. Typically, each sector has around 200 households. Furthermore, households in a
sector form a contiguous geographic area with approximately homogeneous characteristics.

The first step of the sampling procedure of Epicovid19 study consisted of randomly
selecting a subset of census sectors of each surveyed municipality. As a second step, at
each of the selected sectors, a subset of households was randomly selected for a detailed
interview concerning socio-economic characteristics and SARS-CoV-2 antibody testing.
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Our benchmark problem is based on the original Epicovid19 study, where we evaluate the
impact of alternative census sector sampling procedures on the estimation of the response
variable, namely, SARS-CoV-2 prevalence. In order to simulate outcomes for alternative
sector selections, we used an auxiliary regression model for this response variable, as
explained in the sequel.

3.1. Auxiliary Regression Model for SARS-CoV-2 Prevalence

The auxiliary regression model for SARS-CoV-2 prevalence had the Epicovid19 esti-
mated infection rates adjusted for the spread of the pandemic in subsequent months and
corrected for underreporting due to lack of intensive testing in Brazil. As explanatory
variables, this auxiliary model used 15 socio-demographic covariates, including income,
ethnicity, age, sanitation condition, etc. The parameters of this auxiliary regression model
were estimated using standard regression packages available at the R statistical environ-
ment. Since the response variable is simulated by this auxiliary regression model, its
covariates and their weight coefficients in the regression can be taken as a valid representa-
tivity target, that is, the Haphazard and Rerandomization methods will try to make sector
selections that resemble the population characteristics corresponding to these 15 covariates.

The auxiliary model was a logit link regression, specified by selecting three of the most
relevant predictive variables, namely, average income, population percentage with zero
income, and percentage of households with two or more bathrooms (a standard indirect
measure of wealth used by IBGE):

ln(pi/(1 − pi)) = ηi = β̂0 + β̂1xi,1 + β̂2xi,2 + β̂3xi,3 + εi (7)

pi =
eηi

(1 + eηi )
(8)

pi: simulated SARS-CoV-2 prevalence in sector i;
xi,1: income in census sector i;
xi,2: zero income population percentage in census sector i;
xi,3: percentage of households with two or more bathrooms in census sector i.

3.2. Balance and Decoupling Trade-Off in the Haphazard Method

The Haphazard intentional sampling method is not exclusively concerned with choos-
ing maximally representative samples. Equally important is to prevent estimation biases
induced by spurious confounding effects. This is exactly the role of the decoupling effects en-
gendered by standard randomization procedures. We need a quantitative measure to assess
how effectively the noise introduced in the method, with weight λ, is performing this task.
A proxy measure of this sort can be constructed using Fleiss’ Kappa coefficient, conceived
to measure the degree of agreement between nominal scales assigned by multiple raters,
see Fleiss [13]. In our context, it is used as follows.

For r repetitions of a sampling procedure, let ri,j denote the number of times element
i ∈ {1, 2, . . . , N} is allocated to group j ∈ {0, 1}. Let Po denote the observed average
proportion of concordance among all allocation pairs. Let Pe denote the expected agreement
that would be obtained by chance, conditional on the proportion of assignments that were
observed in each group j.

Po =
1

Nr(r − 1)

N

∑
i=1

1

∑
j=0

ri,j(ri,j − 1) Pe =
1

∑
j=0

(
∑N

i=1 ri,j

)2

(Nr)2 (9)

The Fleiss’ Kappa coefficient is obtained by the ratio of the difference between the
observed and the expected random agreement, Po − Pe, and the difference between total
agreement and the agreement obtained by chance, 1 − Pe:
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κ =
Po − Pe

1 − Pe
(10)

The relation between decoupling and the degree of disturbance added is assessed
empirically. The following transformation between parameters λ and λ∗ is devised to
equilibrate the weights given to the terms of Equation (6) corresponding to the covariates
of interest and artificial noise, according to dimensions d (the number of columns of X)
and k (the number of columns of Z).

λ = λ∗ / [λ∗(1 − k/d) + k/d] , where λ∗ ∈ {0.005, 0.01, 0.05, 0.1, 0.25, 0.5}. (11)

The trade-off between balancing and decoupling also varies according to the charac-
teristics of each municipality. Small municipalities have only a limited number of census
sectors and, hence, also a limited set of near-optimal solutions. Therefore, for small mu-
nicipalities, good decoupling requires a larger λ∗. Figure 1a shows, for the smallest of the
133 municipalities in the database (with 34 census sectors), the trade-off between balance
and decoupling (Fleiss’ Kappa) as λ∗ varies in proper range. Figure 1b shows the same
trade-off for a medium sized municipality. Since it has many more sectors (176), it is a lot
easier to find well-balanced solutions and, hence, good decoupling is a lot easier to achieve.

(a) (b)

Figure 1. Trade-off between balance and decoupling in 300 allocations for two municipalities
containing, respectively, 34 (panel a) and 176 (panel b) sectors. Sectors are the minimal units by
which census information is made publicly available, each containing about 200 households. Balance
between allocated and non-allocated sectors is expressed by the 95th percentile of Mahalanobis
distance. Decoupling is expressed by Fleiss’ Kappa coefficient—notice the different range in each
case (a,b).

Larger municipalities engender larger optimization problems (for the number of
binary decision variables equals the number of census sectors) that, in turn, usually require
more CPU time for the MILP solver. Table 1 displays empirically calibrated parameters λ∗

and maximum CPU times under the hardware configuration described in Section 3.3.

Table 1. Parameters λ∗ and maximum CPU time for MILP solver by number of sectors.

Sectors λλλ∗ Time (s)

<50 0.1 5
50–4000 0.01 30
>4000 0.001 120

3.3. Benchmark Experiments and Computational Setups

Our performance experiments used a subset of 10 municipalities of the 133 in the
original Epicovid19 study, covering a wide range of population size and characteristics.
Following the original Epicovid19 protocol, a sample of 25 census sectors was selected at
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each municipality. The sampling procedure for selecting these 25 sectors was repeated 300
times, using each of the three methods under comparison, namely, Haphazard method,
Rerandomization, and pure randomization.

Numerical optimization and statistical computing tasks were implemented using the
R v.3.6.1. environment [14] and the Gurobi v.9.0.1 optimization solvers [15]. The computer
used to run these routines had an AMD RYZEN 1920X processor (3.5 GHz, 12 cores,
24 threads), ASROCK x399 motherboard, 64 GB DDR4 RAM, and Linux Ubuntu 18.04.5
LTS operating system. There is nothing particular about hardware configuration, with
performance being roughly proportional to general computing power.

4. Experimental Results

In this section, we present the comparative results for the Haphazard, Rerandomiza-
tion, and simple randomization methods, considering the metrics discussed in the sequel.

4.1. Group Unbalance among Covariates

We compute the standardized difference between group means for each covariate,
based on 300 simulated allocations per method. Specifically, we compute the empirical
distribution of the statistics (X1

,j − X
0
,j)/sj, where X

1
,j and X

0
,j denote the averages of the j-th

column of X over units allocated to, respectively, groups 1 and 0 (see Equation (1)); and sj

is the reference scale given by the standard deviation of X
1
,j − X

0
,j computed over 300 pure

random allocations.
Figure 2 shows the distribution of standardized differences in each covariate (see Mor-

gan and Rubin [16]) for São Paulo, the largest Brazilian municipality (18,182 sectors). It can
be easily seen that differences are remarkably smaller for the haphazard allocations than
for the rerandomization allocations, which, in turn, are remarkably smaller than for the
pure randomization allocations. It is important to mention that this same pattern is verified
in all other municipalities.

Figure 2. Difference between groups 1 (sampled sectors) and 0 (not sampled sectors) with respect to
average standardized covariate values for each type of allocation.

54



Phys. Sci. Forum 2021, 3, 4

4.2. Root Mean Square Errors of Simulated Estimations

We now consider simulated scenarios where, once we have sampled the sectors in each
municipality, we estimate the municipality’s SARS-CoV-2 prevalence based on observed
prevalences on these sectors. Here, SARS-CoV-2 prevalence in each sector is simulated
by the auxiliary regression model described in Section 3.1. To assess the estimation er-
ror yielded in each sampling method and to estimate variability, we compute, for each
municipality, the root mean square error (RMSE) and the standard deviation of estimates,
as follows:

RMSE(θ̂) =

√
1
r

r

∑
a=1

(
θ̂a − θ

)2 SD(θ̂) =

√
1

r − 1

r

∑
a=1

(
θ̂a − E(θ̂)

)2
, (12)

where r = 300 denotes the number of allocations, θ̂a denotes the SARS-CoV-2 prevalence
estimated from allocation a, θ denotes the SARS-CoV-2 prevalence considering all sectors
of the municipality, and E(θ̂) denotes the average of θ̂a computed over r allocations.

Table 2 presents the RMSE(θ̂) and SD(θ̂) yielded by each sampling method for the
10 municipalities selected for this study. Both the Haphazard and the Rerandomization
methods show RMSEs and SDs that are much smaller than the pure randomization method.
Moreover, the Haphazard method outperforms the Rerandomization method, in the fol-
lowing sense: (a) the Haphazard method yields smaller RMSEs than the Rerandomization
methods (in 9 out of 10 municipalities for this simulation); (b) moreover, the SDs are
substantially smaller for the Haphazard method.

Table 2. Root mean square error (RMSE) and standard deviation (SD); red: best result; black: worst.

City
Haphazard Rerandomizaton Pure Randomizaton

RMSE SD RMSE SD RMSE SD

São Paulo 1.6558% 1.6516% 2.4683% 2.3900% 4.9930% 4.9899%
Rorainópolis 0.8582% 0.7487% 1.5116% 1.4310% 3.0028% 3.0008%
Rio de Janeiro 1.3864% 1.3310% 1.9441% 1.9394% 4.6324% 4.6216%
Oiapoque 1.3887% 1.3835% 1.7651% 1.7509% 3.2107% 3.2107%
Marília 1.1624% 1.1603% 1.4787% 1.4737% 3.4950% 3.4919%
Iguatu 0.8329% 0.8196% 1.3029% 1.3025% 3.9094% 3.9003%
Cruzeiro do Sul 1.3873% 1.3489% 2.0482% 2.0457% 5.0029% 5.0003%
Corrente 0.7496% 0.7000% 1.0708% 1.0665% 2.8250% 2.8230%
Campos dos Goytacazes 0.9419% 0.9350% 1.8786% 1.8522% 4.4839% 4.4829%
Brasília 1.7978% 1.3434% 1.5739% 1.5299% 3.9608% 3.9539%

The RMSEs analyzed in the last paragraphs can be used to compute the sample size
required to achieve a target precision in the statistical estimation of SARS-CoV-2 prevalence
(as mentioned in Section 3, each sampling unit consists of a census sector containing
around 200 households; the sample size refers to the number of sectors to be selected from
each municipality). Figure 3 shows RMSEs as a function of sample size. If the sample
size for each municipality is calibrated in order to achieve the target precision of the
original Epicovid19 study (black horizontal line), using the Haphazard method implies an
operating cost 40% lower than using the Rerandomization method and 80% lower than
using pure randomization.
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Figure 3. RMSE averaged among municipalities x number of sampled sectors.

5. Final Remarks

Both Haphazard and Rerandomization are promising methods in generating samples
that provide good estimates of the population parameters with potentially reduced sample
sizes and consequent operating costs. Alternatively, if we keep the same sample sizes, the
use of Haphazard or Rerandomization methods will substantially improve the precision
of statistical estimation. The Rerandomization method is simple to implement. The
Haphazard intentional method requires the use of numerical optimization software and
the empirical calibration of auxiliary parameters. Nevertheless, from a computational
point of view, as the dimension of the covariate space or the number of elements to be
allocated increases, the Haphazard method will be exponentially more efficient. Finally, the
theoretical framework of the Rerandomization method has been fully developed [6,16]. In
further research, we intend to better develop the theoretical framework of the Haphazard
intentional sampling method and continue to show its potential for applied statistics.
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Abbreviations

The following abbreviations are used in this manuscript:

IBGE Instituto Brasileiro de Geografia e Estatística
(Brazilian Institute of Geography and Statistics)

IBOPE Instituto Brasileiro de Opinião Pública e Estatística
(Brazilian Institute of Public Opinion and Statistics)

MILP Mixed-Integer Linear Programming
MIQP Mixed-Integer Quadratic Programming
RMSE Root mean square error
SD Standard deviation
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Abstract: Here I investigate some mathematical aspects of the maximum entropy theory of ecology
(METE). In particular I address the geometrical structure of METE endowed by information geometry.
As novel results, the macrostate entropy is calculated analytically by the Legendre transformation
of the log-normalizer in METE. This result allows for the calculation of the metric terms in the
information geometry arising from METE and, by consequence, the covariance matrix between
METE variables.

Keywords: METE; metabolic rate distributions; information geometry; Legendre transformation;
Lambert W function

1. Introduction

The method of maximum entropy (MaxEnt) is usually associated with Jaynes’ work [1–3]
connecting statistical physics and the information entropy proposed by Shannon [4]—
although its mathematics is known since Gibbs [5]. It consists of selecting probability
distributions by maximizing a functional—namely entropy—usually under a set of ex-
pected values constraints, arriving at what is known as Gibbs distributions. Since Shore
and Johnson [6] MaxEnt has been understood as a general method for inference—see
also [7–9]—hence it is not surprising that (i) Gibbs distributions are what is known in
statistical theory as exponential family—the only distributions for which sufficient statistics
exist (see e.g., [10]), (ii) MaxEnt encompasses the methods of Bayesian statistics [11], and
(iii) MaxEnt has found successful applications in several fields of science (e.g., [12–22]).

One of the scientific fields in which MaxEnt has been successfully applied is macroecol-
ogy. The work of Harte and collaborators [23–27] presents what is known as the maximum
entropy theory of ecology (METE). It consists of finding, through MaxEnt, a joint condi-
tional distribution for the abundance of a species and the metabolic rate of its individuals.
From the marginalization and expected values of the MaxEnt distribution, it is possible
to obtain (i) the species abundance distribution (Fisher’s log series), (ii) the species-area
distribution, (iii) the distribution for metabolic rates over individuals, and (iv) the relation-
ship between the metabolic rate of individuals in a species and that species abundance
—for a comprehensive confirmation of METE with experimental data see [28]. In a recent
article Harte [29] brings forward the need for dynamical models based on MaxEnt, as
METE assume the variables to be static—It is relevant to say that Jaynes applied dynamical
methods based on information theory for nonequilibrium statistical mechanics [30] leading
to what is known as maximum caliber [31,32]. However, maximum caliber assumes a
Hamiltonian dynamics and, therefore, does not generalize to ecology and other complex
systems.

The field known as information geometry (IG) [33–36] assigns a Riemannian geometry
structure to probability distributions. In information geometry the distances are given by
the Fisher-Rao information metric (FRIM) [37,38], which is the only metric in accordance
with the grouping property of probability distributions [39]. IG has found important
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applications for probabilistic dynamical systems [34,40–43]. Here the FRIM terms for the
distributions arising from METE will be calculated. In a future publication I will evolve
METE into entropic dynamical models for ecology, as explained in [43], in order to do
so it is necessary to calculate the macrostate entropy and the FRIM terms—which can be
obtained from differentiating the macrostate entropy. Therefore, present article performs
the calculations necessary for an entropic dynamics model for macroecology.

The layout of the paper is as follows: The following section (2) presents MaxEnt in gen-
eral terms followed by the MaxEnt process in METE. In particular we obtain the macrostate
entropy through the Legendre transform, and the Lambert W special function [44,45],
which is a novel result to the best of my knowledge. Section 3 presents some general results
of IG and calculate the information metric terms for METE. Section 4 concludes the present
article by commenting on possible applications and perspectives for IG in a dynamical
theory of macroecology.

2. Maximum Entropy

In information theory, probability distributions encode the available information
about a system’s variables x ∈ X . MaxEnt consists of updating from a prior distribution
q(x)—usually, but not necessarily, taken to be uniform—to a posterior ρ(x) that maximizes
the entropy functional under a set of constraints meant to represent the known information
about the system. Usually these constraints are the expected values Ai of a set of real
valued functions {ai(x)} namely sufficient statistics. The distribution ρ is found as the
solution to the following optimization problem

max
ρ

H[ρ] = −
∫

dx ρ(x) log
(

ρ(x)
q(x)

)
, (1a)

s.t.
∫

dx ρ(x) = 1 (1b)∫
dx ai(x)ρ(x) = Ai . (1c)

where
∫

dx refers to the appropriate measure of the set X ; if one is interested in a discrete
set X = {xμ}, where μ corresponds to an enumeration of X , we have

∫
dx = ∑μ, if one is

interested in a continuous subset of real variables, e.g., X = [a, b], we have
∫

dx =
∫ b

a dx.
The solution of (1) is the Gibbs distribution

ρ(x|λ1, λ2, ..., λn) =
q(x)
Z(λ)

exp

(
−

n

∑
i=1

λiai(x)

)
, (2)

where λ = {λi} is the set of Lagrange multipliers dual to the expected values A = {Ai}
and Z(λ) is a normalization factor given by

Z(λ) =
∫

dx q(x) exp
(
−λiai(x)

)
. (3)

Above, and on the remainder of this article, we use Einstein’s summation notation
AiBi = ∑i AiBi. The expected values can be recovered as

Ai = − 1
Z

∂Z
∂λi

=
∂F
∂λi

, where F(λ) .
= − log(Z(λ)) . (4)

We will refer to F as the log-normalizer, which displays a role similar to free energy in
statistical mechanics.

If one is able to invert the equations arriving from (4), obtaining this way λi(A)
they can express the probability distributions in terms of the expected values, ρ(x|A) =
ρ(x|λ(A)). This also allows one to calculate the entropy H at its maximum—that means
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H[ρ(x|A)] for ρ in (2)—as a function of the expected values, rather than a functional of ρ,
obtaining

H(A)
.
= H[ρ(x|λ(A))] = −

∫
dx ρ(x|λ(A)) log

ρ(x|λ(A))

q(x)
= λi(A)Ai − F(λ(A)) . (5)

We will refer to H(A) as the macrostate entropy, which is what we refer to in statistical
mechanics as thermodynamical entropy—meaning the one that appears in the laws of
thermodynamics (Since the arguments that identify the macrostate entropy as the ther-
modynamical entropy assume that the sufficient statistics are conserved quantities in a
Hamiltonian dynamics [2], analogous ‘laws of thermodynamics’ - e.g., conservation of A2

in (12) or an impossibility of H in (15) to decrease— are not expected in ecological systems).
One can see from (5) that H(A) is the Legendre transformation [46] of F(λ). It also follows
that λi =

∂H
∂Ai .

METE

The first step towards a MaxEnt description involves choosing the appropriate vari-
ables for the problem at hand. In METE [24] one assumes an ecosystem of S species
supporting N individuals with a total metabolic rate E, meaning in a unit of time the
ecosystem consumes a quantity E of energy. The state of the system x on MaxEnt is defined
for a singular species as the number of individuals (abundance) n, n ∈ {1, 2, . . . , N} and
the metabolic rate of an individual of that species ε, ε ∈ [1, E]—note that one can choose a
system of units so that the smallest metabolic rate is the unit, εmin = 1. We represent the
state as x = (n, ε).

The second step consists of assigning the sufficient statistics that appropriately cap-
tures the information about the system. In METE [24] the statistics chosen are the number
of individuals in the species a1(n, ε)

.
= n and the total metabolic rate a2(n, ε)

.
= nε. Substi-

tuting these into the defined expected value constrains for the sufficient statistics (1), we
obtain constraints on average abundance per species

A1 =
N

∑
n=1

∫ E

1
dε n ρ(n, ε|λ) = N

S
.
= N′ , (6)

and a constrain on the average metabolic consumption per species

A2 =
N

∑
n=1

∫ E

1
dε nε ρ(n, ε|λ) = E

S
.
= E′ . (7)

The defined variable N′ and E′ will replace A1 and A2, respectively, when convenient.
Having the state variables and the sufficient statistics chosen, we can compute all

quantities defined in the previous subsection for the specific system defined by METE.
With a uniform prior q, justified by the fact that at its level of complexity organisms should
be considered as distinguishable, this leads to the canonical distribution (2) of the form

ρ(n, ε|λ) = 1
Z(λ)

e−λ1ne−λ2nε , (8)

where the normalization factor (3) is given by

Z(λ) =
N

∑
n=1

∫ E

1
dε e−λ1ne−λ2nε =

N

∑
n=1

e−λ1n
(

e−λ2n − e−λ2nE

λ2 n

)
, (9)

from which the expected values (4) can be calculated as
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A1 = N′ =
1

λ2 Z(λ)

N

∑
n=1

e−λ1n(e−λ2n − e−λ2nE) , (10a)

A2 = E′ =
1

λ2

[
1 +

1
Z(λ)

N

∑
n=1

e−λ1n(e−λ2n − Ee−λ2nE)

]
. (10b)

These are complicated equations, however some approximations may make them more
treatable.

A fair assumption, knowing what the variables are supposed to represent, is that there
are far more individuals than species, N 
 S and the average metabolic rate per individual
is far greater than the unit of metabolic rate E/N = E′/N′ 
 1. This allows for a sequence
of approximation that we will treat like assumptions here, namely (i) e−λ2nE � e−λ2n,
(ii) Ee−λ2nE � e−λ2n, (iii) λ1 + λ2 � 1, and (iv) e−(λ1+λ2)N � 1. Further explanation on
the validity of these assumptions, under S � N � E, can be seen in [24,26] and their
confirmation by numerical calculation can be seen in [24]. Under this understanding we
can substitute (9) into (10a) obtaining

N′ =

N
∑

n=1
e−λ1n(e−λ2n − e−λ2nE)

N
∑

n=1

1
n e−λ1n

(
e−λ2n − e−λ2nE

) ≈

N
∑

n=1
e−(λ1+λ2)n

N
∑

n=1

1
n e−(λ1+λ2)n

(11a)

N′ ≈ −
[

1
(λ1 + λ2) log(λ1 + λ2)

]
. (11b)

We can also rewrite (10b) obtaining

E′ =
1

λ2
+

N
∑

n=1
e−λ1n(e−λ2n − Ee−λ2nE)

N
∑

n=1

1
n e−λ1n

(
e−λ2n − e−λ2nE

) ≈ 1
λ2

+ N′ . (12)

In order to obtain the macrostate entropy analytically (5) one needs to perform the
Legendre transformation for METE, which includes inverting (11) and (12) obtaining
λ1(N′, E′) and λ2(N′, E′). In page 149 of [24] it is said to be unfeasible. However, it is
possible to do so obtaining

λ1 = β(N′)− 1
E′ − N′ , and λ2 =

1
E′ − N′ , (13)

where

β(N′) .
= −

[
N′ W−1

(
− 1

N′

)]−1
, β̇(N′) .

=
dβ

dN′ =
[

N′2 − N′

β(N′)

]−1

, (14)

and W−1 refers to the second main branch of the Lambert W function (see [44,45]). The
details on how (13) inverts (11) and (12) are presented in Appendix A. The macrostate
entropy can be calculated directly from (5) as

H(N′, E′) = N′β(N′) + log
(
E′ − N′)− log

(
N′β(N′)

)
+ 1 . (15)

With the calculation of the macrostate entropy finished, we can move into a geometric
description of METE.
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3. Information Geometry

This section presents the elementary notions of IG—for more in depth discussion and
examples see e.g., [33–36]—and some useful identities for the IG of Gibbs distributions.
IG consists of assigning a Riemmanian geometry structure to the space of probability
distributions, meaning if a set of distributions p(x|θ) is parametrized by a finite number
of coordinates, θ = {θi}, the distances—which are a measure of distinguishability—d� be-
tween the neighbouring distributions P(x|θ + dθ) and P(x|θ) are given by d�2 = gijdθidθ j.
The work of Cencov [39] demonstrated that the only metric invariant under Markov
embeddings—and, therefore, the only one adequate to represent a space of probability
distributions—is the metric of the form

gij =
∫

dx P(x|θ)∂ log P(x|θ)
∂θi

∂ log P(x|θ)
∂θ j , (16)

know as FRIM.
Considering the MaxEnt results presented in previous section, we can restrict our

investigation to the Gibbs distributions using the expected values A as coordinates—
θi = Ai and P(x|θ) = ρ(x|A) as in (2). Two useful expressions arise in that case—for
proofs see e.g., [33]—first: the metric terms are the Hessian of the negative of macrostate
entropy, meaning

gij = − ∂2H
∂Ai∂Aj = − ∂λi

∂Aj , (17)

and second: the covariance matrix between the sufficient statistics ai(x) is the inverse
matrix of gij, meaning

Cijgjk = δi
k , where Cij =

〈
ai(x)aj(x)

〉
− Ai Aj . (18)

We can, then, see how these quantities are calculated for METE.

Information Geometry of METE

By substituting the macrostate entropy for METE (15) in (17) we obtain the FRIM terms:

g11 = −β̇(N′) +
1

(E′ − N′)2 , g12 = g21 = − 1
(E′ − N′)2 ,

g22 =
1

(E′ − N′)2 , and g =− β̇(N′)
(E′ − N′)2 .

(19)

where g = det gij. Per (18) and from the general form of inverse matrix of a two dimensional
matrix, the covariance matrix terms can be calculated directly inverting (19) obtaining

C11 =
g22

g
=

N′

β(N′)
− N′2 , C12 = C21 = − g12

g
=

N′

β(N′)
− N′2 ,

and C22 =
g11

g
= E′2 − 2E′N′ +

N′

β(N′)
;

(20)

completing the calculation. The matrix Cij can be interpreted directly as the covariance
between a species abundance and its total metabolic rate—METE sufficient statistics. The
information metric terms presented in (19) allow for further studies on dynamical ecology
from a information theory background, as we will comment in the following section.

4. Discussion and Perspectives

The present article calculates the macrostate entropy (15) for METE. This was made
possible by the analytical calculation of the Lagrange multipliers (13) as functions of the
expected values (10), previously believed to be unfeasible. This allows for a complete
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description of METE in terms of the average abundance N′ and the expected metabolic rate
E′ of each of the ecosystem species. This opens a broad range of investigations possible by
analytical calculations. In particular, the IG arising from METE is presented by calculating
the FRIM terms in (19). Independently of any geometric interpretation, that was equivalent
to calculate the covariance between METE sufficient statistics (20).

The variables that define an ecosystem’s state are not expected to remain constant.
Because of this, and the growing relevance of IG in dynamical systems, the calculations
made in the present article are an important step into expanding maximum entropy ideas
into further investigation in macroecology. The calculations done here allow for evolving
METE into an entropic dynamics for ecology, as in the framework developed in [43], this
venue of research will be explored in future publication.
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Appendix A. On the Lambert W Function

In this appendix we will explain how (13) inverts (11) and (12). The Lambert W
function is defined as the solution of

W(x)eW(x) = x . (A1)

The python library SciPy [47] implements the numerical calculation of W. This relates to
(11b) in the following manner: by defining the variable β = λ1 + λ2 we obtain

1
N′ = −β log β ⇐⇒ 1

βN′ e
− 1

βN′ =
1

N′ , (A2)

hence β = −
[

N′W
(
− 1

N′

)]−1
. It is relevant to say that, from (A1), W(x) is multivalued—

the terminology Lambert W ‘function’ is used loosely. The several single-valued functions
that solve (A1) are known as the different ‘branches’ of the Lambert W. In (13) and (14)
only the W−1 branch was taken into account. Given our object of study, we will restrict to
functions that are guaranteed to give a β that is real for large N′. As explained in [44], the
two branches W0(x) and W−1(x) are real and analytic for −e−1 < x < 0, of equivalently β
is real for N′ > e. Coherent with the fact that (11) was derived for large N′.

Figure A1 presents the graphs of β obtained from the W0(x) and W−1(x) branches, as
well as a comparison to the β obtained numerically from inverting (11a). Even though per
(A2) the β obtained by both branches inverts (11b), it can be seen from Figure A1 that only
the one obtained from W−1(x) approximates the inverse of (11a) for large N′ and, therefore,
it is the only one appropriate for the present investigation.

To complete the claim that λ1 and λ2 in (13) are calculated analytically, it is relevant to
say that W−1

(
− 1

N′

)
can be calculated using the series expansion (see page 153 in [44])

W−1

(
− 1

N′

)
= −

∞

∑
m=0

amzm , where z =
√

2(log N′ − 1) , (A3)

and am is defined recursively as a0 = 1, a1 = 1, and

am =
1

m + 1

(
am−1 −

m−1

∑
k=2

k ak am+1−k

)
. (A4)
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Note that real z implies N′ > e, which is coherent with the condition for W−1 to be real.

Figure A1. Graphical comparison between the functions defined as: β0(N′) .
= −

[
N′W0

(
− 1

N′

)]−1
,

β−1(N′) .
= −

[
N′W−1

(
− 1

N′

)]−1
, and βi(N′)—obtained numerically from inverting (11a), here using

S = N/N′ = 20. W0 and W−1 have complex values for N′ < e, the graph above only plots the real
part in that region.
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Abstract: A Gaussian-process surrogate model based on already acquired data is employed to
approximate an unknown target surface. In order to optimally locate the next function evaluations
in parameter space a whole variety of utility functions are at one’s disposal. However, good choice
of a specific utility or a certain combination of them prepares the fastest way to determine a best
surrogate surface or its extremum for lowest amount of additional data possible. In this paper,
we propose to consider the global (integrated) variance as an utility function, i.e., to integrate the
variance of the surrogate over a finite volume in parameter space. It turns out that this utility not
only complements the tool set for fine tuning investigations in a region of interest but expedites the
optimization procedure in toto.

Keywords: global optimization; Bayesian optimization; utility function; global variance

PACS: 02.50.-r; 52.65.-y

1. Introduction

In many experimental or theoretical approaches the effort of acquiring data may
be costly, time consuming or both. The goal is to get insights in either the overall or
extremal behaviour of a target quantity with respect to a set of parameters. If insights to
functional dependencies between target and parameters are only to be obtained from a
computationally expensive function, which may be considered as a black box function,
it is instructive to employ surrogate modelling: already acquired data serve as a starting
basis for establishing a surrogate surface in parameter space which then gets explored
by Bayesian optimization [1]. An overall survey about Bayesian optimization may be
found in [2], though it concentrates on an expected improvement (EI) utility and considers
noise in the data only in the last paragraph, again by concentrating on EI. In contrast to
this nice study we propose to alternate the different utilities at hand. Moreover, a fast
information theory related to Bayesian optimization is shown in [3], though this approach
approximates any black-box function by a parabolic form which differs from our ansatz
letting the black-box function untouched. Interesting insights to multi-objective Bayesian
optimization are provided by [4], which considers “multi-objective” in the sense of seeking
the extrema–each is free of choice maximum or minimum–of a bunch of single-objective
functions. However, the present paper concentrates on finding a common extremum
depending on multiple parameters.

For the surrogate modelling we use the Gaussian process method (GP) [5] whose
early stages date back to the middle of last century with very first efforts in geosciences [6]
tackling the problem of surrogate modelling by so-called kriging [7]. Afterwards, GP
has been appreciated much in the fields of neural networks and machine learning [8–12]
and further work showed the applicability of active data selection via variance based
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criterions [13,14]. Our implementation of the GP method in this paper was already in-
troduced at [15], and follows in notation–and apart from small amendments—the very
instructive book of Rasmussen & Williams [5].

While in a previous work [16] we investigated the performance of utility functions for
the expected improvement of an additional data point or for a data point with the maximal
variance, in this paper we would like to introduce the global variance, i.e., the integral over
the variance for a target surrogate within a region of interest with respect to a newly added
data point. It is the substantial advantage of the Gaussian process method that such a task
may be tackled simply on the basis of already acquired data, i.e., before new data have to
be determined.

2. Global Variance for Gaussian Process-Based Model

In the following we concisely report the formulas leading to the results in this paper.
For a thorough discussion of Gaussian processes please refer to the above mentioned
papers, especially to the book of Rasmussen & Williams [5].

The problem of predicting function values in a multi-dimensional space supported by
given data is a regression problem for a non-trivial function of unknown shape. Given are
n target data y for input data vectors xi of dimension Ndim with matrix X = (x1, x2, ..., xn)
written as

y =

⎛
⎜⎜⎜⎜⎜⎝

y1

y2

...

yn

⎞
⎟⎟⎟⎟⎟⎠ , xi =

⎛
⎜⎜⎜⎜⎜⎝

xi1

xi2
...

xiNdim

⎞
⎟⎟⎟⎟⎟⎠ , X =

⎛
⎜⎜⎜⎜⎜⎝

x11 x21 . . . xn1

x12 x22 . . . xn2

...
...

. . .
...

x1Ndim x2Ndim . . . xnNdim

⎞
⎟⎟⎟⎟⎟⎠ . (1)

We assume that target data yi are blurred by Gaussian noise with σ2
di

. Further, we assume
that the black box function interconnecting input X and target y is at least uniformly
continuous and thereby justifies a description of a target surface with a surrogate from the
Gaussian process method. Despite the experimental data and the physics background all
quantities throughout this paper are without units.

The decisive quantity of a Gaussian process is the covariance function k describing
the distance between two vectors xp and xq defined by

k(xp, xq) = σ2
f exp

{
−1

2

∣∣∣∣ xp − xq

λ

∣∣∣∣2
}

. (2)

with the signal variance σ2
f and length scale λ. A covariance matrix (K)ij = k(xi, xj)

considers the covariances of all input data X. The GP method describes a target value f∗ at
test input vector x∗ by a normal distribution p( f∗|X, y, x∗) ∝ N

(
f̄∗, var(x∗)

)
with mean

f̄∗ = kT
∗
(
K + σ2

nΔ
)−1y, and variance var(x∗) = k(x∗, x∗)− kT

∗
(
K + σ2

nΔ
)−1k∗, where the

term σ2
nΔ represents the degree of information in the data. While Δ is the diagonal matrix

of the given variances σ2
di

, the variance σ2
n accounts for an overall noise in the data. Then

the full covariance matrix M of the Gaussian Process is

M = K + σ2
nΔ (3)

In Bayesian probability theory the three parameters θ = (λ, σf , σn)T are considered to
be hyper-parameters which show up in the marginal likelihood as

log p(y|θ) = const − 1
2

yT
[
K(λ, σf ) + σ2

nΔ
]−1

y − 1
2

log
∣∣∣K(λ, σf ) + σ2

nΔ
∣∣∣. (4)

In [16], we showed, that for a sufficiently large data base the target surrogate is well
described by using the expectation values of the hyper-parameters in the formulas for f∗
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and var( f∗), at least well enough to determine a global optimum in a region of interest
(RoI). The global optimum is found by employing utility functions, as there are the ex-
pected improvement UEI(x∗) = 〈I〉 =

∫ ∞
fmax

f∗p( f∗|X, y, x∗)d f∗ and the maximum variance
UMV(x∗) = var( f∗). For both the respective maximum at x∗max = arg max{x∗} UEI/MV is
sought. While the first one (UEI) evaluates the possible information gain from a new data
point, the second utility (UMV) simply estimates the vector in input space with largest
variance in the target surrogate.

In order to have a look on the implications of an additional data point in the sur-
rogate, we propose a further utility function, i.e., the global variance defined on the
multi-dimensional RoI∈ [−1 : 1] by

UGV =
∫ 1

−1
var(x)dx . (5)

The exact integration shown in the Appendix A leads to

Uexact
GV = 2Ndim σ2

f − σ4
f

(√
πλ

2

)Ndim n

∑
ij

(
M−1

)
ij

·
Ndim

∏
k

{
erf

[
1
λ
−

xik + xjk

2λ

]
− erf

[
− 1

λ
−

xik + xjk

2λ

]}
(6)

Though Equation (6) represents the correct result, it may turn out in computation runs
that the determination of the error-function is substantially time consuming compared to
the total expenditure. Therefore, we would like to introduce two alternatives to the exact
integration in Equation (5).

The first one is kind of an approximation. Since outside of the RoI the integrand in
Equation (5) shows only trivial contributions we shift the upper and lower integral bounds
to ± infinity and get from the simple Gaussian integrals

Uinf
GV ≈ −σ4

f
(√

πλ
)Ndim

n

∑
ij

(
M−1

)
ij

exp
{
− 1

4λ2

(
xi − xj

)T(xi − xj
)}

. (7)

We dropped the first term in the integral over [σ2
f x]∞−∞ for being infinity, since at least

it is a constant contribution regardless of changes in the input X. Although the utility
UGVinf in Equation (7) is an approximation only, it has the advantage of being much easier
accessible by numerical means and its computation performs much faster compared to
Equation (6).

A second much more sophisticated approach is to insert an enveloping Gaussian
function with adjustable location xG (guiding center) and variance σG in the integral of
Equation (5). Again the integration limits are shifted to ± infinity, however this time the
enveloping Gaussian function takes care of the integrability and we get

Uenv
GV =

∫ ∞

−∞
var(x)

⎛
⎝ 1√

2πσ2
G

⎞
⎠Ndim

exp

[
1

2σ2
G
(x − xG)

T(x − xG)

]
dx

= σ2
f − σ4

f

⎛
⎝ λ√

2σ2
G + λ2

⎞
⎠Ndim

n

∑
ij

(
M−1

)
ij

(8)

· exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩−1

2

⎡
⎢⎢⎢⎣ xT

i xi + xT
j xj

λ2 +
xT

GxG

σ2
G

−

(
xi+xj

λ2 + xG
σ2

G

)T( xi+xj
λ2 + xG

σ2
G

)
2

λ2 +
1

σ2
G

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭.
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The two parameters xG and σG provide a toolset to guide the search for the next
target data evaluations: a smaller standard deviation σG shifts the attention to the center of
the enveloping Gaussian, while xG gives us the possibility to focus on certain regions in
the RoI.

All three utilities employing the global variance, Uexact
GV , Uinf

GV, Uenv
GV require the in-

version of the full covariance matrix M of Equation (3). Since the inversion has to be
performed for every newly proposed test input x∗ this is the main time consuming part in
the whole procedure. Let us remind the reader, that the method we are proposing fully
resides on input space (together with already acquired data) and the bottle neck is the
generation of new target data. Therefore, the starting condition of very expensive (aka
time consuming) data acquisition still holds. However, we can beneficially use blockwise
matrix inversion [17] since a new input vector xn+1 expands the covariance matrix for
one additional row and line only. Consequently, we reduced the computational effort to
n2-behaviour instead of n3 for standard inversion.

3. Proof of Principle

We follow the global optimization scheme from Section 4 of [18]. Again we give proof
of principle with a “black box” model featuring a broad parabolic maximum 2 − ∑Ndim

k x2
k +

(−1)k0.3 together with a smaller cosine structure 0.1cos[2π(xk − 0.3)/Δcos] on top of it,
while we focus on a decent ripple on Δcos=0.6 in one and two dimensions (Ndim=1, 2).

Figures 1–3 show in left and right panels the results for one and two dimensions,
respectively. The x axis to the right counts the number of newly acquired data for the utility
comparisons in Figure 3 and in the bottom rows (c), (d) of Figures 1 and 2.

For every newly added data point proposed by the various utilities, the distance
between the true location of the global optimum and the maximal value of the surrogate
residing on the data at hand is calculated in Figure 1. In a similar fashion, the search for
the best surrogate description of the hidden model is shown in Figure 2.

Eventually Figure 3 demonstrates the use of an enveloping Gaussian function in the
integral of the global variance by varying its center xG, e.g., if an educated guess about
the location of the extremal structure is at hand, i.e., the guiding center xG is preset to
the positive axis (1d) or the quadrant (2d) with the true model maximum. Consequently,
Table 1 displays for 1d the specific number of data and for 2d the saturation level for which
the target surrogate enters the stage of resembling the true model, i.e. the summed up
(absolute) differences between all grid points of the target surrogate and the model starts
to diminish with the number of target data only.

Table 1. Comparison of enveloping Gaussian utilities with different integral weights and guiding cen-
ters in finding the best surrogate. 1d: Changing step to solution. 2d: Saturation level of the solution.

Integral Weight of env. Gaussian within RoI 0.6 0.8 0.95

1d: Corresponding width of env. Gaussian σG 1.38 0.95 0.71

UGV with xG = 0 15 14 22
UGV with xG = 0.5 13 12 13

2d: Corresponding width of env. Gaussian σG 0.99 0.79 0.67

UGV with xG=(0;0) 0.23 0.61 0.21
UGV with xG=(0.5;-0.5) 0.06 0.14 0.05
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Figure 1. (a,b): One- and two-dimensional model with target data (full circles). The square in the
bottom line/surface represents the true maximum. On the left the gray shaded area represents the
uncertainty region of the surrogate (full line) from using the expected improvement utility only.
On the right the points in the bottom surface are input data. Full circles represent additional data
proposed by combination of all three utilities. (c,d): Distance surrogate/true maximum for different
utilities employed in the global optimization procedure.
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Figure 2. (a,b): One- and two-dimensional surrogate with newly acquired data. Surrogate solution
(full line) on the left from using combination of UMV and UGV. Surrogate surface on the right
from employing UGV only. (c,d): Comparison of the differences between surrogate and true model
integrated over RoI for various utilities.
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Figure 3. Summation over difference between grid points of target surrogate and true model as
function of additionally acquired data. (a,b): One and two-dimensional case for enveloping Gaussian
utility with various weights and guiding center at origin and at (0.5) or (0.5; −0.5).

4. Discussion

The results above show the usage of various utilities as a toolbox for surrogate mod-
eling. Depending on the task—either to find an extremum or to get a best surrogate
description of an unknown “black box” model—and depending on the prior knowledge at
hand—presumption of location of the sought extremum or concentration on the region of
interest—it is advisable to choose the most eligible utility function. However, even more
promising is the combination of utilities of different character to profit from their benefits
in toto and to compensate for pitfalls and drawbacks of one or the other utility.

As can be seen in the very first example in Figure 1 for the one-dimensional case
the global optimum is found very fast with help of the expected improvement utility UEI
(starting to enter the bump with the correct extremum already below N = 10). However,
a known drawback of this utility is that it gets stuck in local extrema and that it takes an
unreasonably high number of additional data to get distracted from this pitfall.

This is taken into account for the two-dimensional case where the best result with
lowest difference to the exact result is obtained by acting in combination of all three utilities
UEI, UMV and UGV. Focusing the maximum search on the utility regarding expected
improvement alone (black line in Figure 1d would have got stuck in a local extremum with
y = 2.03 in the “wrong” quadrant at (−0.26; −0.29) for not recovering from this at all at
about N = 63 (internal stop of algorithm for no improvement after entering computing
accuracy level) and totally missing the true optimum with y = 2.2 at (0.3; −0.3).

The situation changes for the task of getting a best overall description within the
region of interest. To accomplish this the newly introduced global variance utility UGV is
of tremendous help both in one and two dimensions—either alone or in combination with
at least the maximum variance utility UMV. As shown in Figure 2d the best surrogate can
already be established around ninety data points by employing UGV only (full circles in
the target surface of Figure 2b, with very few deviations from the true model left.

A guess about the approximate occurrence of an extremal structure–without excluding
another region—can be emphasized by a further refinement to the global variance utility.
In letting act an enveloping Gaussian within the global variance integral Equation (5) the
result is not only much easier to be tackled from a computational point of view, but also
the focus of the numerical search for the global optimum can be guided by predetermining
the center of Gaussian xG and its integral weight (aka width σxG ).

Figure 3 shows the results for three different integral weights (0.6; 0.8; 0.9) of the
enveloping Gaussian function at two guiding centers: the first one at the origin corresponds
to an ignorant scenario where one is not sure about a certain position of some global
optimum at all. In the second approach we suppose that the extremal structure may
be found in one dimension for positive values and thereby set xG = 0.5, while in two
dimensions it may be located within the quadrant with positive values for x1 and negative
ones for x2 resulting in xG = [0.5;−0.5]. As can be seen already in Figure 3, but all the more
learned from the numbers of Table 1, displacing the center of the enveloping Gaussian
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function to the real center of the optimum of the hidden model facilitates the development
of a best—regarding similarity to the true model—surrogate surface.
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Appendix A. Global Variance: Derivation of the Exact Integration

The variance at some (test) point xT = (x1, x2, . . . , xNdim) in a region confined to [−1, 1]
of dimension Ndim is

var(x) = k(x, x)− kT(K + σ2
nΔ)−1k . (A1)

The covariance k(xp, xq) between pairs of input variables (xp, xq) is defined by

k(xp, xq) = σ2
f exp

[
− (xp − xq)T(xp − xq)

2λ2

]
. (A2)

While the first term in Equation (A1) is simply k(x, x) = σ2
f , we need for the sec-

ond term

k = σ2
f

⎛
⎜⎜⎜⎜⎜⎜⎝

exp
[
− 1

2λ2 (x − x1)
T(x − x1)

]
exp

[
− 1

2λ2 (x − x1)
T(x − x2)

]
...

exp
[
− 1

2λ2 (x − x1)
T(x − xN)

]

⎞
⎟⎟⎟⎟⎟⎟⎠ (A3)

and the inversion of the matrix M = K + σ2
nΔ, where the matrix elements are Δii = σdi

(Δij = 0 for i �= j) and Kij = σ2
f exp

[
− 1

2λ2 (xi − xj)
T(xi − xj)

]
. For a given set of hyper-

parameters the matrix M does not depend on the test vector x and may be treated as a
constant in integration over dx. Therefore, after the inversion has been performed, M−1

can easily be regarded as a pure number. So the second term in Equation (A1) is just a sum
over all components with indices {i, j} ∈ (1, . . . , N),

kT
∗ (K + σ2

nΔ)−1k∗ =
N

∑
i,j=1

k∗i

(
M−1

)
ij

k∗j (A4)

= σ4
f

N

∑
i,j=1

(
M−1

)
ij

e−
(x−xi)

T (x−xi)
2λ2 e−

(x−xj)
T (x−xj)

2λ2 . (A5)

Further let us concentrate on the terms in the nominator of the exponential:

(x − xi)
T(x − xi) + (x − xj)

T(x − xj) = 2

[
−xT xi + xj

2
−

xT
i + xT

j

2
x

]
+ xixT

i + xjxT
j . (A6)

Completing the square gives

2

[(
x −

xi + xj

2

)T(
x −

xi + xj

2

)]
+

1
2
(

xi − xj
)T(xi − xj

)
. (A7)
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We insert Equation (A7) in Equation (A5) and finally get for the variance

var(x) = σ2
f − σ4

f

N

∑
i,j=1

(
M−1

)
ij

e−
1

4λ2 (xi−xj)
T
(xi−xj)e

− 1
λ2

[(
x−

xi+xj
2

)T(
x−

xi+xj
2

)]
. (A8)

Only the second exponential in Equation (A8) depends on x and therefore needs to be
considered in the integral of the global variance:

∫ 1

−1
dx var(x) . (A9)

We insert Equation (A8) into Equation (A9) and let the integral stay only for the term
with x dependency:

∫ 1

−1
dx var(x) = 2ND σ2

f − σ4
f

N

∑
i,j=1

(
M−1

)
ij

e−
1

4λ2 (xi−xj)
T
(xi−xj)

·
∫ 1

−1
dx e

− 1
λ2

[(
x−

xi+xj
2

)T(
x−

xi+xj
2

)]
. (A10)

Since the term in the exponential is quadratic it separates into a sum, which itself
facilitates the separation of the integral into each dimension. Being simplified to a number
of Nd one-dimensional integrals they can easily be solved by employing the error function.
To prove this, let us have a closer look at the integral only:

∫ 1

−1
dx e

− 1
λ2

[(
x−

xi+xj
2

)T(
x−

xi+xj
2

)]
=

Ndim

∏
k

∫ 1

−1
dxke

− 1
λ2

[(
xk−

xik+xjk
2

)2
]

. (A11)

Focusing on a the kth integral and substituting τk = (xk −
xik+xjk

2 )/λ some error
functions evolve to end up finally in:

∫ 1

−1
dxke

− 1
λ2

[(
xk−

xik+xjk
2

)2
]
= λ

∫ − 1
λ −

xik+xjk
2λ

1
λ −

xik+xjk
2λ

dτke−τ2
k (A12)

= λ

⎡
⎣∫ 0

1
λ −

xik+xjk
2λ

dτke−τ2
k +

∫ − 1
λ −

xik+xjk
2λ

0
dτke−τ2

k

⎤
⎦ (A13)

=

√
π

2
λ

{
erf

[
1
λ
−

xik + xjk

2λ

]
− erf

[
− 1

λ
−

xik + xjk

2λ

]}
. (A14)

This concludes the study. Simply inserting Equation (A14) into Equation (A10) suc-
ceeds in the result reported in the paper:

∫ 1

−1
dx var(x) = 2ND σ2

f − σ4
f

(√
π

2
λ

)Ndim N

∑
i,j=1

(
M−1

)
ij

e−
1

4λ2 (xi−xj)
T
(xi−xj)

·
Ndim

∏
k

{
erf

[
1
λ
−

xik + xjk

2λ

]
− erf

[
− 1

λ
−

xik + xjk

2λ

]}
. (A15)
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Abstract: The quantification of uncertainties of computer simulations due to input parameter uncer-
tainties is paramount to assess a model’s credibility. For computationally expensive simulations, this
is often feasible only via surrogate models that are learned from a small set of simulation samples. The
surrogate models are commonly chosen and deemed trustworthy based on heuristic measures, and
substituted for the simulation in order to approximately propagate the simulation input uncertainties
to the simulation output. In the process, the contribution of the uncertainties of the surrogate itself
to the simulation output uncertainties is usually neglected. In this work, we specifically address
the case of doubtful surrogate trustworthiness, i.e., non-negligible surrogate uncertainties. We find
that Bayesian probability theory yields a natural measure of surrogate trustworthiness, and that
surrogate uncertainties can easily be included in simulation output uncertainties. For a Gaussian
likelihood for the simulation data, with unknown surrogate variance and given a generalized linear
surrogate model, the resulting formulas reduce to simple matrix multiplications. The framework
contains Polynomial Chaos Expansions as a special case, and is easily extended to Gaussian Process
Regression. Additionally, we show a simple way to implicitly include spatio-temporal correlations.
Lastly, we demonstrate a numerical example where surrogate uncertainties are in part negligible and
in part non-negligible.

Keywords: uncertainty quantification; uncertainty propagation; surrogate models; meta-modeling;
Bayesian

1. Introduction

Uncertainty quantification of simulations has gained increasing attention, e.g., in the
field of Computational Engineering, in order to address doubtful parameter choices and
assess the models’ credibility. Surrogate models have become a popular tool to propagate
simulation input uncertainties to the simulation output, particularly for modern day
applications with high computational cost and many uncertain model parameters. For
that, a parametrized surrogate model (synonyms: meta-model, emulator) is learned from a
finite set of simulation samples. i.e., the surrogate is a function of the uncertain simulation
input parameters that is ’fitted’ to the simulation output data. The quality of this fit is then
judged by heuristic diagnostics, and the surrogate deemed trustworthy, respectively. A
key aspect of this procedure is that the surrogate can be evaluated much faster than the
simulation, and still retains a reasonable approximation to the simulation.

The simulation is then substituted with the surrogate model in order to compute the
marginal probability density function of the simulation output. The simulation uncertain-
ties are thus inferred from the surrogate model instead of the original simulation model
at a significantly reduced computational effort. While this practice allows for obtaining
estimates on uncertainties of expensive simulations in the first place, the contribution
of the uncertainty of the surrogate itself to the total simulation uncertainty is commonly
neglected. In other words, the estimation of the surrogate parameters based on the finite set
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of simulation samples entails an additional uncertainty in the sought-for uncertainty of the
simulation output. The purpose of this paper is to investigate this surrogate uncertainty as
the natural measure for the surrogate’s trustworthiness, and how the surrogate uncertainty
affects the simulation output uncertainty.

In many cases, the surrogate uncertainty is indeed small if the heuristic diagnostics
naively imply so. If the heuristic diagnostics imply that the surrogate is not trustworthy,
one may resort to two options: (i) Acquire more simulation data until the surrogate is
trustworthy. This is limited by the computational budget and the surrogate’s convergence
properties. (ii) Shrink the parameter space, e.g., omit a number of uncertain simulation
parameters by assuming definite parameter values. However, in some cases, (i) is not feasi-
ble and (ii) is not desired. In this contribution, we demonstrate how to include surrogate
uncertainties if the user deals with a surrogate model with doubtful trustworthiness.

Popular surrogate models are Polynomial Chaos Expansions [1–3] and Gaussian Pro-
cess Regression [4,5], the latter of which has had its renaissance recently from within the
machine learning community. In this work, we assume a Gaussian likelihood for the simu-
lation data with unknown variance and given a generalized linear surrogate model (i.e.,
linear in the surrogate parameters) that includes Polynomial Chaos Expansions as a special
case and is easily extended to Gaussian Process Regression. Other Bayesian perspectives on
Uncertainty Quantification of computer simulations with these popular surrogate models
are given in [6–13]. A comprehensive collection of reviews on Uncertainty Quantification,
from the point of view of computational engineering and applied mathematics, can be
found in [14]. In [7,15], a statistician’s perspective is discussed. Here, we will use Bayesian
Probability Theory [16].

2. Bayesian Uncertainty Quantification

We start with the general structure of uncertainty propagation problems based on
surrogate models in Section 2.1. In Section 2.2, we analyze a generalized linear surrogate
model with a Gaussian likelihood for the simulation data with unknown surrogate variance.
In Section 2.3, we proceed to use the surrogate model to propagate the input uncertainties
to the output, and show how the surrogate’s uncertainties too can be included.

2.1. General Structure of the Problem

The goal in this paper is to quantify the uncertainties of the simulation results for the
observable z(x) at different measurement points x = 1, ..., Nx in the simulation domain. e.g.,
z could be the mechanical stress resulting from a structural analysis with a finite element
simulation, where x could denote the location of the measurement probe in or on the
analyzed structure. z(x) depends on unknown or uncertain model parameters a = {ai}Na

i=1,
which are generally inferred from experimental data dexp. Based on these data, Bayes’
theorem allows for determining the posterior probability density function (pdf) for a,

p
(
a | dexp, I

)
, (1)

where all background information on the experiment is subsumed in I . The implications
of the background information I will be discussed later. This pdf will be assumed to
be (almost) arbitrary but given in the following considerations. It usually is the result
of a statistical data analysis of the foregoing experiment. This experiment could be the
measurement of some material property needed for the simulation, e.g., viscosity for a
computational fluid dynamics simulation. The uncertainty of the model parameters a
entails an uncertainty in the simulated observable z(x), and the latter is determined by the
marginalization rule,

p
(
z(x) | dexp, I

)
=

∫
p
(
z(x) | a,���dexp, I

)
p
(
a | dexp, I

)
dVa . (2)
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In the first pdf, we have struck out dexp because the knowledge of a suffices to perform
the simulation to obtain z(x). If a consists of only one or two parameters (Na = 1, 2),
then the numerical evaluation of the integral over the model parameters a will typically
require a few dozens to hundreds of simulations. The uncertainty propagation is then done
and no surrogate is needed. However, this is the trivial case, and usually a will consist
of way more parameters. Let us assume that a consists of, e.g., four parameters. That
would imply the need for performing simulations at least 105 times, which is way too CPU
expensive for most real problems. This can be avoided if the simulations are replaced by a
surrogate model that approximates the observable z by a suitable parametrized surrogate
function zsur = g(a|c), where c are yet unknown parameters. The simulation may yield
the observable z(x) at different sites x in the domain; however, x could also denote the
time-instance in non-static problems. Clearly, the parameters of the surrogate model will
also depend on those positions. Thus, we actually have

z(x) ≈ z(x)
sur = g(a|c(x)) . (3)

The unknown parameters will be inferred from a suitable training data. To this end,
simulations are performed for a finite set of model parameters As = {a(i)

s }Ns
i=1 and the

corresponding observables Zs = {z(x),(i)
s }Ns ,Nx

i,x=1 are computed and combined in Dsim =

{As, Zs}. The surrogate parameters c(x) are then inferred from Dsim, and the surrogate is
thus constructed. We now proceed to substitute the simulation for the surrogate, z(x) →
z(x)

sur, in order to solve Equation (2) at a significantly reduced computational cost. This
implies that the background information has changed. We will denote this as Ĩ , suggesting
that we take the observable z entering the integral in Equation (2) from the surrogate
model Equation (3) rather than from the expensive simulation. More precisely, instead of
Equation (2), we now need to consider

p
(
z(x) | dexp, Dsim, Ĩ

)
=

∫
dVa p

(
z(x) | a, Dsim,���dexp, Ĩ

)
p
(
a |���Dsim, dexp, Ĩ

)
. (4)

As far as the (second) pdf for the model parameters is concerned, we can omit the informa-
tion on the training set Dsim, as it does not tell us anything about the model parameters.
This pdf is actually the same as that in Equation (1), i.e., p

(
a | dexp, Ĩ

)
= p

(
a | dexp, I

)
, as

it makes no difference for the model parameters how we solve the equations underlying
the simulation. In the first pdf, we can omit the information on the experiment dexp, as
we only need the simulation data Dsim to fix the surrogate model, which in turn defines
the observable z. The first pdf can be further specified by the marginalization rule upon
introducing the surrogate parameters C = {c(x)}Nx

x=1, where x is an index denoting the
measurement points as introduced for z(x),

p
(
z(x) | a, Dsim, Ĩ

)
=

∫
dVC p

(
z(x) | C, a,���Dsim, Ĩ

)
p
(
C | �a, Dsim, Ĩ

)
.

The first pdf is uniquely fixed by the knowledge of a and C, hence Dsim is superfluous.
Similarly, in the second pdf, where C is inferred from the training data, additional model
parameters without the corresponding observables’ values z, are useless. In summary,
substituting the latter equation into Equation (4), we have

p
(
z(x) | dexp, Dsim, Ĩ

)
=

∫∫
dVadVC p

(
z(x) | C, a, Ĩ

)
p
(
C | Dsim, Ĩ

)
p
(
a | dexp, I

)
. (5)
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The first pdf is rather simple. According to the background information Ĩ , we will deter-
mine the observable via the surrogate model. Since the necessary parameters c(x) ∈ C and
a are part of the conditional complex, the surrogate model allows only one value

z(x)
sur = g(a | c(x)) .

for the observable. This means that p
(
z(x) | C, a, Ĩ

)
is equivalent to the probability density

function for z(x) given z(x) = g(a | c(x)). Hence, the pdf is a Dirac-delta distribution

p
(
z(x) | C, a, Ĩ

)
= δ

[
z(x) − g(a | c(x))

]
. (6)

Finally, we have

p
(
z(x) | dexp, Dsim, Ĩ

)
=

∫∫
dVadVC δ

[
z(x) − g(a | c(x))

]
p
(
C | Dsim, Ĩ

)
p
(
a | dexp, I

)
. (7)

Before we can evaluate this integral, we first need to determine the two terms, which
have their own independent significance. The last term is the result of a data analysis of a
specific foregoing experiment, and will therefore not be treated here. We will suppress the
background information in the following, as ambiguities should no longer occur.

2.2. Bayesian Analysis and Selection of the Surrogate Model

We recall that Equation (7) allows for determining the pdf for the observable based on
the pdf for the model parameters, and the pdf for the parameters of the surrogate model
p
(
C | Dsim

)
that we will determine now. To this end, we have to specify the form of the

surrogate model. We use the expansion

zsur =
Np

∑
ν=1

cνΦν(a) , (8)

in terms of basis functions Φν(a) and expansion coefficients cν. No further specification
is needed at this point. Without loss of generality, we will use multi-variate Legendre
polynomials for the numerical examples. This expansion is similar to the frequently used
generalized Polynomial Chaos Expansfion [1], where the polynomials Φν(a) are orthogonal
with respect to the L2 inner product with the prior of a, p

(
a
)
, as an integration measure.

However, here we actually consider a posterior p
(
a | dexp

)
that generally has no standard

form, for which no standard orthogonal polynomial chaos basis is known, and for which
conditional independence of the model parameters a does not hold. Polynomial Chaos
Expansions have been extended to arbitrary probability measures [17] and dependent
parameters [18], but, in the present context; however, these polynomials are not of primary
interest and would only complicate the numerical evaluation. Note that the approach
presented here does not demand any orthogonality properties for the basis, and thus
avoid the practical problems encountered with the construction of such orthogonal bases.
Parameters here may have complex dependence structures, and the only requirement
for the probability distribution p

(
a | dexp

)
is that the integrals with respect to it exist.

As outlined in Section 2.1, Ns simulations are performed for a set of model parameters
As = {a(i)

s }Ns
i=1 and the corresponding observables Zs are computed. The theory is so far

agnostic to the experimental design of these simulations, and it is therefore not of concern
here. Now, we want to determine the pdf for the surrogate parameters C, which are
combined in a matrix with elements Cν,x, where ν enumerates the surrogate basis functions
and x enumerates the measurement positions in the domain for which the observables are
computed. We abbreviated the simulation data by the quantity Dsim = {As, Zs}, where
the matrix Zs has the elements (Zs)i,x, which represent the observable z(x) at position
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x corresponding to the model parameter vector a(i)
s . The sought-for pdf follows from

Bayes’ theorem

p
(
C | Dsim

)
= p

(
C | Zs, As

)
∝ p

(
Zs | C, As

)
p
(
C | As

)
∝ p

(
Zs | C, As

)
.

The proportionality constant is not required in the ensuing considerations, and we have
assumed an ignorant, uniform prior for the coefficients c, i.e., p

(
C | I) = const. We note

that this is also the transformation invariant Riemann prior (see Appendix B). However, any
prior that is conjugate to the likelihood will retain analytical tractability. For the likelihood,
we need the total misfit, which is given by

χ2 =
Ns

∑
i=1

Nx

∑
x=1

(
(Zs)i,x −

Np

∑
ν=1

(Ms)i,ν(C)ν,x

)2

= ∑
i,x

(
Zs − MsC

)2

i,x

= tr
{(

Zs − MsC
)T(Zs − MsC

)}
, (9)

with (Ms)i,ν = Φν(a(i)
s ) and Nsx = Ns · Nx. We assume a Gaussian type of likelihood, i.e.,

p
(
Zs | C, As, Δ

)
=

Δ−Nsx

Z′ exp
{
− χ2

2Δ2

}
. (10)

with normalization Z′. We have mentioned the Δ-dependence of the normalization explic-
itly, while the rest of of the normalization is irrelevant in the present context. Usually, the
misfit entering the likelihood comes from the noise of the data. In the present case, however,
there is no noise (merely a tiny numerical error), but the surrogate model is presumably
not an exact description of the simulation data and Δ covers the corresponding uncertainty.
However, the uncertainty level Δ is not known and has to be marginalized over. Along
with the appropriate Jeffreys’ prior, p

(
C, Δ

)
= p

(
C
)

p
(
Δ
)
, p
(
Δ
)
= 1

Δ , p
(
C
)
= const. (see

Appendix B), the integration over Δ yields

p
(
C | Zs, As

)
=

1
Z
(
χ2)− Nsx

2 . (11)

with terms independent of C subsumed in the normalization Z. For computing the mean,
variance, and evidence, we first complete the square in Equation (9) to get a quadratic form
in C, which can then be integrated analytically (see Appendix A). The result is

〈C〉a = H−1
s MT

s Zs , Hs = MT
s Ms , (12a)

〈ΔCνxΔCν′x′ 〉a =
χ2

min
(Ns − Np)Nx − 2

(
H−1

s
)

ν,ν′ δxx′ , χ2
min = tr

{
ZT

s
(
11 − Ms H−1

s MT
s
)
Zs

}
. (12b)

We argue that the prefactor of H−1
s is the Bayesian estimate for Δ2, the variance of the

Gaussian in Equation (10). This reasoning is similar to [19]. Note that Zs is a matrix of
size Ns × Nx, containing the data vectors of length Ns for each measurement site x. As
shown in Appendix A, Equation (A6), the evidence for a particular set of surrogate models
is computed as

p
(
{z(x)

sur}Nx
x=1 | Dsim, Ĩ

)
= Z = ΩNpx |Hs|−

1
2
(
χ2

min
)− Nsx−Npx

2
Γ(Npx

2 )Γ(Nsx−Npx
2 )

Γ(Nsx
2 )

, (13)

where ΩNpx is the solid angle in Npx dimensions. The evidence is the probability for a
surrogate model given the data. Note that this quantity does not depend on p

(
a | dexp, I

)
.

This is reasonable because the analysis of the experimental data should be independent
of the analysis of the simulation data. However, p

(
a | dexp, I

)
will typically be used for
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the experimental design of the simulation data acquisition. By comparing the evidence for
different models, the user can choose a particular surrogate model or, if the results do not
overwhelmingly suggest one single model, average the results for the surrogate analysis
and the following uncertainty propagation over several plausible models. Note that the
evidence is the pillar of a Bayesian procedure to select a surrogate model, and is distinct
from the procedure of incorporating the trustworthiness or uncertainty of the surrogate in
the subsequent uncertainty propagation.

2.3. Bayesian Uncertainty Propagation with Surrogate Models

Now that we have selected the surrogate model and determined the ingredients of
Equation (7), we can determine the pdf for the observables in the light of the experimental
data and the simulation results of the training set. The form in Equation (5) allows an easy
evaluation of the mean value by using Equation (12) (see also Equation (A3)),〈

z(x)
〉
=

∫∫
dVadVC f (a | c(x)) p

(
C | Dsim, Ĩ

)
p
(
a | dexp, I

)
= ∑

ν

∫
dVaΦν(a)〈Cνx〉a p

(
a | dexp, I

)
. (14)

Similarly, we obtain (see Equations (12) and (A8))

〈
z(x)z(x′)

〉
=

∫∫
dVadVC f (a | c(x)) f (a | c(x′)) p

(
C | Dsim, Ĩ

)
p
(
a | dexp, I

)
= ∑

νν′

∫
dVa Φν(a) Φν′ (a) 〈CνxCν′x′ 〉a p

(
a | dexp, I

)
= ∑

νν′

∫
dVa Φν(a) Φν′ (a)

(
〈Cνx〉a〈Cν′x′ 〉a + 〈ΔCνxΔCν′x′ 〉a

)
p
(
a | dexp, I

)
. (15)

The covariance then follows from〈
Δz(x)Δz(x′)

〉
=
〈

z(x)z(x′)
〉
−
〈

z(x)
〉〈

z(x′)
〉

. (16)

If we neglected the uncertainty of the surrogate, i.e.,

p
(
C | Dsim

)
= δ(C − Ĉ) ,

Ĉ = 〈C〉a ,

then we retain the widely known special case of ’perfectly trustworthy’ surrogates〈
z(x)z(x′)

〉
= ∑

νν′

∫
dVa Φν(a) Φν′(a) 〈Cνx〉a〈Cν′x′ 〉a p

(
a | dexp, I

)
.

Thus, the first part in the integral of Equation (15) is the uncertainty of the observable due
to experimental uncertainties and given the surrogate model, while the second term adds
the uncertainty of the surrogate itself. The term 〈ΔCνxΔCν′x′ 〉a is commonly neglected, but
easily computed. This result also suggests a natural measure for the trustworthiness of the
surrogate model, which is directly linked to the specific experiment:

∑νν′
∫

dVa Φν(a) Φν′(a) 〈ΔCνxΔCν′x′ 〉a p
(
a | dexp, I

)
∑νν′

∫
dVa Φν(a) Φν′(a) 〈Cνx〉a〈Cν′x′ 〉a p

(
a | dexp, I

) < ε . (17)

If the surrogate uncertainties are, on average, smaller than the experimental uncertainties
by a few orders of magnitude, e.g., ε = 10−3, then they may be neglected. However, ε is the
user’s choice. Note that this result does not spare the user to solve the foregoing surrogate
model selection problem by e.g., computing evidence. This work only demonstrates
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how surrogate uncertainties can be incorporated and a practical rule when they could be
neglected, given that the surrogate model has already been selected before.

3. Numerical Example

Here, we demonstrate an application where surrogate uncertainties were in part
negligible and in part non-negligible. We apply our method to a computational fluid
dynamics simulation of aortic hemodynamics, i.e., blood flow in an aorta resembled by
the simplified geometry of an upside down umbrella stick. The simulation depends on
a non-Newtonian viscosity model with four parameters a = {a1, a2, a3, a4}. The model
was accompanied by viscosity measurements of human blood samples, thus determining
p
(
a | dexp, I

)
. This posterior turned out to have a complex landscape that cannot be

reasonably approximated by standard distributions. Particularly, strong correlations and
multi-modality were observed, i.e., p

(
a | dexp, I

)
�= ∏i p

(
ai | dexp, I

)
. This means

that vanilla Polynomial Chaos Expansions could not be applied without an undesirable
transformation to conditionally independent variables. The posterior is described in detail
in [20]. Based on p

(
a | dexp, I

)
, Ns = 100 parameter samples as were chosen and the

simulation evaluated accordingly. The output, Zs, was the absolute values of the wall
shear stress that the blood flow exerts on the aortic wall, for Nx = 10 measurement
probes at different locations, each for Nt = 101 time-instances equidistantly spaced over
one cardiac cycle (ca. 1 s). Further details on the simulation are not relevant here but are
documented [20]. A simulation time on the order of 150 CPU hours per sample suggested to
use a surrogate for the inference. For the surrogate’s basis functions, Φν(a), we found multi-
variate Legendre polynomials of up to order two sufficient. The numerical integrals were
computed with Riemannian quadrature and convergence checked with successive grid
refinement; however, stochastic integration would work just as well. A sketch example on
how to implement this procedure computationally efficient via vectorisation in parameter
space can be found at https://github.com/Sranf/BayesianSurrogate_sketch.git (1 January
2021).

In Figure 1, we compare the simulation uncertainty (including surrogate uncertainty)
as computed with our Bayesian approach (Equation (15)) to the naive estimate for the
simulation uncertainty (without surrogate uncertainty, i.e., neglecting 〈ΔCνxΔCν′x′ 〉a in
Equation (15). The surrogate uncertainties in the first half (left hand side) are relatively
small, comprising only a few percent of the total uncertainty, and could possibly be
neglected. In the second half (right-hand side), however, the surrogate uncertainties make
up to ∼50% of the total uncertainty. This demonstrates that simulation uncertainties
inferred via surrogate models can be severely underestimated if the surrogate uncertainties
are neglected, and subsequently lead to overconfidence in the simulation model. In practice,
one would acquire more data in order to reduce the surrogate uncertainties, e.g., more data
at later time-instances in Figure 1 are particularly promising. This was limited here not
only by the computational budget, but also the impracticality in that dynamic simulations
require the full evaluation of all previous time instances where the surrogate is already
reasonably accurate. Thus, the procedure of instead explicitly including the surrogate
uncertainties here also has proven to be practical. A similar situation is to be expected for
most transient simulations, as uncertainties will usually increase as time progresses.
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Figure 1. Simulation data (black dots) and simulation uncertainty (1σ) according to our Bayesian
approach (red, including surrogate uncertainty) as well as the naive simulation uncertainty (blue,
neglecting surrogate uncertainty). The black line is the surrogate mean.

4. Discussion

In this work, we have assumed a Gaussian likelihood for the simulation data, with
unknown variance, for a surrogate that is linear in its parameters. Surrogates that are
nonlinear in its parameters (e.g., neural networks) may promise higher capacity, however
at the expense of losing analytical tractability of the surrogate uncertainty entirely. Other
likelihood functions might be useful if further information is available, such as bounds on
the observable (Gamma- or Beta-likelihood).

The result is a simple formula to incorporate surrogate uncertainties in the simulation
uncertainties. This formula will be particularly useful if ’convergence’ in the sense of
finding the coefficients of e.g., a Polynomial Chaos Expansion is doubtful or not achievable
due to a limit to the computational budget. The formula immediately suggests an intrinsic
measure for the trustworthiness of the surrogate, distinct from commonly used ad hoc
diagnostics. This measure is not to be confused with the evidence and should not be used
for model selection because it would not preclude over-fitting, etc. It is merely a measure
for the trustworthiness of the already selected surrogate.

Let us now explore the connections of this work to Polynomial Chaos Expansions
(PCE) and Gaussian Process Regression (GPR). PCE is a special case of our generalized
linear surrogate model, in that the basis functions of the surrogate are chosen such that∫

Φν(a)Φν′(a)p
(
a | dexp, I

)
dVa := δν,ν′ . (18)

The double sum in Equation (15) then contracts to a single sum, and the diagonal of the
term for the surrogate uncertainty, 〈ΔCνxΔCν′x′ 〉a, survives. This is expected, in that PCE
is defined such that the basis functions are uncorrelated, but still the expansion coefficients
must be uncertain to a finite degree, and this must carry over to the simulation uncertainty.
A severe limitation of PCE is that it is rather difficult to find basis function sets {Φν}
that fulfill Equation (18), depending on p

(
a | dexp, I

)
. For most practical purposes, one

demands (i) conditional independence of the simulation parameters, i.e., p
(
a | dexp, I

)
=

∏i p
(
ai | dexp, I

)
, as well as (ii) simple standard distributions for p

(
ai | dexp, I

)
, in order

to find a solution (usually a tensor-product) to Equation (18). Known albeit tedious work-
arounds are for (i) variable transformations and numerical orthonormalisation [18] and for
(ii) PCE-constructions for arbitrary pdfs [17]. Note that also [17] demands (i) conditional
independence of the simulation parameters. Note that our approach is not afflicted by
above considerations, unless Equation (18) is specifically demanded. In the numerical
example above, neither (i) nor (ii) were applicable. Finding a variable transformation
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in order to fulfill (i) or numerical construction of orthonormal basis functions can be
difficult, and particularly inconvenient if sophisticated priors p

(
a | I) are being used,

e.g., Jeffreys’ generalized prior. An interesting alternative would be to model the input
dependencies with vine copulas [21] in order to overcome the limitations of PCE addressed
here. Unfortunately, no obvious vine copula was found for the example presented here.

Gaussian Process Regression would correspond to a change in the prior for z(x) in
Equation (6) as follows:

p
(
z(x) | C, a, θ, Ĩ

)
= N

(
g(a | c(x))

∣∣∣K(θ)) . (19)

where N denotes a normal distribution, and K is the prior’s covariance matrix and defined
by the parametrized covariance function k, [K]ij = k(a(i), a(j) | θ). This in turn would
change (Zs − MsC)T(Zs − MsC) → (Zs − MsC)TK−1(Zs − MsC) in Equation (9). By again
completing the square and following the same procedure, the corresponding results for
mean Equation (12a), variance Equation (12b), and evidence Equation (13) are then retained
by a simple substitution of

Hs → H̃s , H̃s = MT
s K−1

s Ms ,

χ2
min → χ̃2

min , χ̃2
min = tr

{
ZT

s (K
−1
s − K−1

s Ms H̃s MT
s K−1

s )Zs

}
,

where [Ks]ij = k(a(i)
s , a(j)

s | θ) is the likelihood’s covariance matrix evaluated at As for
the data set Zs at given θ. Equations (14) and (15) would preserve their form with
the substitution

Φν(a)〈C〉a → Φν(a)〈C〉a,θ + KT
∗ K−1

s Ms〈C〉a,θ ,

〈ΔCνxΔCν′x′ 〉a → 〈ΔCνxΔCν′x′ 〉a,θ

(
K − KT

∗ K−1
s K∗

)
,

where the subscript θ acknowledges that the right-hand side now depends on θ, and
[K∗]ij = k(a(i), a(j)

s | θ) is the covariance between the training set As and the ’test set’,
i.e., the integration variable a. Note that the additionally introduced hyperparameters θ
would require the choice of a prior for θ and marginalization wrt θ in Equation (7), and
subsequently also Equations (12)–(15).

We now discuss the implications of Ĩ in contrast to the original background infor-
mation I . I contains, most importantly, that the observable z is uniquely determined
by the simulation for a given set of input parameters a. A prerequisite here was that
the simulation is converged. For example, for finite element simulations, this would be
a given mesh-converged spatial discretization. The proposition Ĩ additionally assumes
Equations (3) and (6), so that it can be used to replace Equation (2) by Equation (4). For-
mally, this means, to get from Equations (2)–(4), we replace p(z | a, I) → p(z | a, c, Ĩ),
where p(z | a, I) = δ(z − z(a)), p(z | a, c, Ĩ) = δ(z − zsur(a)) = δ(z − g(a | c)). For
example, Ĩ contains in comparison to I the additional assumption that we can use the
value for z as predicted/approximated by the surrogate model. It also means that we
introduce additional, artificial, and usually unknown regression parameters c that need
to be marginalized over. The additional uncertainty introduced by this approximation
(i.e., the surrogate assumption) is encoded in p(c|Dsim, Ĩ), and is correctly incorporated
into the simulation observable uncertainties in Equation (15). What is important here
is that p(z | dexp, Dsim, Ĩ) �= p(z | dexp,���Dsim, I) in general (the latter is computation-
ally infeasible), but p(z | dexp, Dsim, Ĩ) ≈ p(z | dexp, Dsim, I) if Equation (3) holds and
p(C | Dsim) ≈ δ(C − Ĉ), i.e., if the surrogate is indeed a good approximation and the pos-
terior for the surrogate parameters is sharply peaked at Ĉ. Very often, this posterior is not
sharply peaked; then, we can just gather more data until it is, or, if that is not possible, we
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can at least avoid overconfidence induced by neglecting these uncertainties. A numerical
example of where this is the case has been demonstrated above.

We have modeled spatial correlations by introducing a location index x, and assumed
that the expansion coefficients at different sites, c(x) and c(x′), are conditionally independent.
This assumption is reasonable, in that the expansion coefficients are arbitrary mathematical
constructs and no physically motivated model for their correlation is known. The spatial
correlation, however, is retained in z(x), as was originally intended. More general models
for spatial correlations can easily be implemented by substitution of δxx′ with a spatial
covariance matrix in Equation (12b). Note that this would require an additional marginal-
ization wrt the (typically nonlinear) hyperparameters of the spatial covariance matrix.
By introducing a compound index x̃ = (x, t) and substituting x → x̃, we find a simple
generalization to spatio-temporal correlations. This is equivalent to re-ordering spatial and
temporal indices into a single sequence. While this procedure is convenient and requires
only minor changes in the numerical implementation, it implicitly assumes conditional
independence of spatial and temporal correlations. Analogous to above, general temporal
correlations can be modeled by a substitution of δx̃x̃′ in Equation (12b) with a temporal
covariance matrix, again requiring an additional marginalization wrt the latter’s hyperpa-
rameters.

5. Conclusions

We presented a Bayesian analysis of surrogate models and its associated uncertainty
propagation problem in the context of uncertainty quantification of computer simulations.
The assumptions were a generalized linear surrogate model (linear in its parameters, not
the variable) and a Gaussian likelihood with unknown variance. Additionally, spatial and
temporal correlations have been discussed. The result suggests a measure of trustwor-
thiness of the surrogate by quantifying the ratio of the surrogate uncertainty to the total
uncertainty, in contrast to commonly used heuristic diagnostics. The main result, however,
is a rather simple rule to include surrogate uncertainties in the sought-for uncertainties
of the simulation output. This is useful particularly for problems where the surrogate’s
trustworthiness is doubtful and cannot be improved. The connections to Polynomial Chaos
Expansions and Gaussian Process Regression have been discussed. A numerical example
demonstrated that simulation uncertainties can be significantly underestimated if surrogate
uncertainties are neglected.
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Appendix A. Mathematical Proofs

Here, we want to determine norm, mean, and covariance of the marginalized Gaussian
(Student-t distribution) in Equation (11), which is

p
(
C | Zs, As

)
=

1
Z
(
χ2)− Nsx

2 ,

χ2 = tr
{(

Zs − MsC
)T(Zs − MsC

)}
. (A1)
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In order to perform the integration, we first complete the square to get a quadratic form in
C, which can then be integrated analytically, i.e., we bring the misfit χ2 into a form that
elucidates the C-dependence

χ2 = χ2
min + tr

{(
C − Ĉ

)T Hs
(
C − Ĉ

)}
, Hs = MT

s Ms ,

χ2
min = tr

{
ZT

s
(
11 − Ms H−1

s MT
s
)
Zs

}
, Ĉ = H−1

s MT
s Zs .

Now, the first moment is easily obtained. Along with the variable transformation under
the integral

C → Ĉ + X (A2)

we obtain

〈C〉 = 1
Z

∫
dVC C

(
tr
{
(C − Ĉ)T Hs(C − Ĉ)

}
+ χ2

min

)− Nsx
2

= Ĉ +
1
Z

∫
dVX X

(
XT HsX + χ2

min

)− Nsx
2

︸ ︷︷ ︸
=0

. (A3)

where we have used the symmetry properties of the likelihood. Next, we transform the
expression for normalization based on Equation (A2)

ZNsx =
∫

dVX

(
tr
{

XT HsX
}
+ χ2

min

)− Nsx
2

.

Now, we combine and reorder the double indices (ν, x) into a single index l, which turns the
matrix X of dimension Np × Nx into a vector x of dimension Npx = Np · Nx and the matrix
H of dimension Np × Np into a new block matrix H of dimension Npx × Nsx such that

[H]ll′ = [Hs]ν,ν′ δxx′ . (A4)

In this representation, we have

ZNsx =
∫

dVx

(
xT Hx + χ2

min

)− Nsx
2

= |H|− 1
2

∫
dVy

(
yTy + χ2

min

)− Nsx
2

, (A5)

where we substituted x → H− 1
2 y. Next, we introduce hyper-spherical coordinates, which

leads to

ZNsx = ΩNpx |H|− 1
2

∫ ∞

0

dρ

ρ
ρNpx (ρ2 + χ2

min)
− Nsx

2 ,

where ΩNpx is the solid angle in Npx dimensions. Finally, based on the substitution ρ =

t ·
√

χ2
min, we recover an identity of the Beta-function, and we obtain

ZNsx = ΩNpx |H|− 1
2
(
χ2

min
)− Nsx−Npx

2
Γ(Npx

2 )Γ(Nsx−Npx
2 )

Γ(Nsx
2 )

. (A6)
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This result is valid only for Nsx > Npx, which is fulfilled in the present application. For
future use, we rewrite this as

ZNsx = Z(Nsx−2) ·
(
χ2

min
)−1 · Nsx − Npx − 2

Nsx − 2
. (A7)

Finally, we calculate the covariance, based also on the compound index l = (ν, x), and by
using the variable transformation in Equation (A2):

〈ΔClΔCl′ 〉 =
1

ZNsx

∫
dVx xl xl′

(
xT Hx + χ2

min

)− Nsx
2

,

= − 2
Nsx − 2

· 1
ZNsx

· ∂

∂H l,l′

∫
dVx

(
xT Hx + χ2

min

)− Nsx
2 +1

,

= − 2
Nsx − 2

χ2
min · (Nsx − 2)

Z(Nsx−2) · (Nsx − Npx − 2)
∂

∂H ll′
Z(Nsx−2) , (A8)

= − 2χ2
min

(Nsx − Npx − 2)
∂

∂H ll′
ln(Z(Nsx−2)) ,

= − 2χ2
min

(Nsx − Npx − 2)
∂

∂H ll′
ln(|H|− 1

2 )︸ ︷︷ ︸
=− 1

2

(
H−1

)
ll′

.

In the last step, we have used that H is a symmetric matrix. This is a very reasonable result
because, if the variance Δ2 in the Gaussian in Equation (10) would be known, then the
covariance is Δ2H−1. Consequently, the prefactor represents the Bayesian estimate for the
variance Δ2 based on the data. Now, we go back to the original meaning of the compound
index Equation (A4), i.e.,

(
H−1)

ll′ → (H−1
s )νν′δxx′ , and obtain the final result.

Appendix B. The Transformation Invariant Prior for the Surrogate Coefficients

Bayesian probability theory allows for rigorously and consistently incorporating any
prior knowledge we have about the experiment before taking a look at the data. This
knowledge shall be elicited here. Our inference must not depend on the exact parametriza-
tion. e.g., if we re-parametrize the surrogate, re-label, or re-order the surrogate parameters,
the surrogate still should describe the same simulation. This is reasonable because the
surrogate is a purely mathematical, auxiliary construct. This rescaling-invariance is ensured
by Jeffreys’ generalized prior and is given by the Riemann metric R (or the determinant of
the Fisher information matrix) [16]

p(C) =
1
Z
∣∣det(R)

∣∣1/2 with Rij =
∫

p
(
Zs | C

) ∂2

∂Ci∂Cj
ln
(

p
(
Zs | C

))
dVZs . (A9)

with multi-indices i, j = (ν, x). With the likelihood and the generalized surrogate model
defined in the manuscript, the result is

Rij ∝
Ns

∑
k=1

∂g(a(k)
s | C)

∂Ci

∂g(a(k)
s | C)

∂Cj

=
Ns

∑
k=1

Φi(a(k)
s )Φj(a(k)

s )

= const. (A10)

This prior is independent of C, i.e., a constant.
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Abstract: Dynamics of many classical physics systems are described in terms of Hamilton’s equations.
Commonly, initial conditions are only imperfectly known. The associated volume in phase space is
preserved over time due to the symplecticity of the Hamiltonian flow. Here we study the propagation
of uncertain initial conditions through dynamical systems using symplectic surrogate models of
Hamiltonian flow maps. This allows fast sensitivity analysis with respect to the distribution of
initial conditions and an estimation of local Lyapunov exponents (LLE) that give insight into local
predictability of a dynamical system. In Hamiltonian systems, LLEs permit a distinction between
regular and chaotic orbits. Combined with Bayesian methods we provide a statistical analysis of
local stability and sensitivity in phase space for Hamiltonian systems. The intended application is
the early classification of regular and chaotic orbits of fusion alpha particles in stellarator reactors.
The degree of stochastization during a given time period is used as an estimate for the probability
that orbits of a specific region in phase space are lost at the plasma boundary. Thus, the approach
offers a promising way to accelerate the computation of fusion alpha particle losses.

Keywords: Gaussian process regression; surrogate model; Lyapunov exponent; sensitivity analysis;
Hamiltonian systems

1. Introduction

Hamilton’s equations describe the dynamics of many classical physics systems such as
classical mechanics, plasma physics or electrodynamics. In most of these cases, chaos plays
an important role [1]. One fundamental question in analyzing these chaotic Hamiltonian
systems is the distinction between regular and chaotic regions in phase space. A commonly
used tool are Poincaré maps, which connect subsequent intersections of orbits with a
lower-dimensional subspace, called Poincaré section. For example, in a planetary system
one could record a section each time the planet has made a turn around the Sun. The
resulting pattern of intersection points on this subspace allow insight into the dynamics
of the underlying system: regular orbits stay bound to a closed hyper-surface and do not
leave the confinement volume, whereas chaotic orbits might spread over the whole phase
space. This is related to the breaking of KAM (Kolmogorov-Arnold-Moser) surfaces that
form barriers for motion in phase space [2]. The classification of regular versus chaotic
orbits is performed, e.g., via box-counting [3] or by calculating the spectrum of Lyapunov
exponents [4–6]. Lyapunov exponents measure the asymptotic average exponential rate of
divergence of nearby orbits in phase space over infinite time and are therefore invariants
of the dynamical system. When considering only finite time, the obtained local Lyapunov
exponents (LLEs) for a specific starting position depend on the position in phase space
and give insight into the local predictability of the dynamical system of interest [7–10].
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Poincaré maps are in most cases inefficient to compute as their computation involves
numerical integration of Hamilton’s equations even though only intersections with the
surface of interest are recorded. When using a surrogate model to interpolate the Poincaré
map, the symplectic structure of phase space arising from the description in terms of the
Hamiltonian description has to be preserved to obtain long-term stability and conservation
of invariants of motion, e.g., volume preservation. Additional information on Hamiltonian
systems and symplecticity can be found in [2,11]. Here, we use a structure-preserving
Gaussian process surrogate model (SympGPR) that interpolates directly between Poincaré
sections and thus avoids unnecessary computation while achieving similar accuracy as
standard numerical integration schemes [12].

In the present work, we investigate how the symplectic surrogate model [12] can be
used for early classification of chaotic versus regular trajectories based on the calculation
of LLEs. The latter are calculated using the Jacobian that is directly available from the
surrogate model [13]. As LLEs also depend on time, we study their distribution on
various time scales to estimate the needed number of mapping iterations. We combine the
orbit classification with a sensitivity analysis based on variance decomposition [14–16] to
evaluate the influence of uncertain initial conditions in different regions of phase space.
The analysis is carried out on the well-known standard map [17] that is well suited for
validation purposes as a closed form expression for the Poincaré maps is available. This,
however, does not influence the performance of the surrogate model that is applicable also
in cases where such a closed form doesn’t exist [12].

The intended application is the early classification of regular and chaotic orbits of
fusion alpha particles in stellarator reactors [3]. While regular particles can be expected to
remain confined indefinitely, only chaotic orbits have to be traced to the end. This offers a
promising way to accelerate loss computations for stellarator optimization.

2. Methods

2.1. Hamiltonian Systems

A f−dimensional system (with 2 f−dimensional phase space) described by its Hamil-
tonian H(q, p, t) depending on f generalized coordinates q and f generalized momenta p
satisfies Hamilton’s canonical equations of motion,

q̇(t) =
dq(t)

dt
= ∇pH(q(t), p(t)), ṗ(t) =

dp(t)
dt

= −∇qH(q(t), p(t)), (1)

which represent the time evolution as integral curves of the Hamiltonian vector field.
Here, we consider the standard map [17] that is a well-studied model to investigate

chaos in Hamiltonian systems. Each mapping step corresponds to one Poincaré map of a
periodically kicked rotator:

pn+1 = (pn + Ksin(qn)) mod 2π, qn+1 = (qn + pn+1) mod 2π, (2)

where K is the stochasticity parameter corresponding to the intensity of the perturbation.
The standard map is an area-preserving map with detJ = 1, where J is its Jacobian:

J =

( ∂qn+1
∂qn

∂qn+1
∂pn

∂pn+1
∂qn

∂pn+1
∂pn

)
=

(
1 + Kcos(qn) 1

Kcos(qn) 1

)
(3)

2.2. Symplectic Gaussian Process Emulation

A Gaussian process (GP) [18] is a collection of random variables, any finite number
of which have a joint Gaussian distribution. A GP is fully specified by its mean m(x) and
kernel or covariance function K(x, x′) and is denoted as

f (x) ∼ GP(m(x), K(x, x′)), (4)
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for input data points x ∈ Rd. Here, we allow vector-valued functions f (x) ∈ RD [19].
The covariance function is a positive semidefinite matrix-valued function, whose entries
(K(x, x′))ij express the covariance between the output dimensions i and j of f (x).

For regression, we rely on observed function values Y ∈ RD×N with entries y = f (x)+
ε. These observations may contain local Gaussian noise ε, i.e., the noise is independent at
different positions x but may be correlated between components y. The input variables are
aggregated in the d × N design matrix X, where N is the number of training data points.
The posterior distribution, after taking training data points into account, is still a GP with
updated mean F∗ ≡ E(F(X∗)) and covariance function allowing to make predictions for
test data X∗:

F∗ = K(X∗, X)(K(X, X) + Σn)
−1Y, (5)

cov(F∗) = K(X∗, X∗)− K(X∗, X)(K(X, X) + Σn)
−1K(X, X∗), (6)

where Σn ∈ RND×ND is the covariance matrix of the multivariate output noise for each
training data point. Here we use the shorthand notation K(X, X) for the block matrix
assembled over the output dimension D in addition to the number of input points as in a
single-output GP with a scalar covariance function k(x, x′) that expresses the covariance of
different input data points x and x′. The kernel parameters are estimated given the input
data by minimizing the negative log-likelihood [18].

To construct a GP emulator that interpolates symplectic maps for Hamiltonian systems,
symplectic Gaussian process regression (SympGPR) was presented in [12] where the
generating function F(q, P) and its gradients are interpolated using a multi-output GP
with derivative observations [20,21]. The generating function links old coordinates (q, p) =
(qn, pn) to new coordinates (Q, P) = (qn+1, pn+1) (e.g., after one iteration of the standard
map Equation (2)) via a canonical transformation such that the symplectic property of phase
space is preserved. Thus, input data points consist of pairs (q, P). Then, the covariance
matrix contains the Hessian of an original scalar covariance function k(q, P, q′, P′) as the
lower block matrix L(q, P, q′, P′) (denoted with the red box):

K(q, P, q′, P′) =

⎛
⎝ k ∂q′k ∂P′k

∂qk ∂qq′k ∂qP′k
∂Pk ∂Pq′k ∂PP′k

⎞
⎠. (7)

Using the algorithm for the (semi-)implicit symplectic GP map as presented in [12], once
the SympGPR model is trained and the covariance matrix calculated, the model is used to
predict subsequent time steps or Poincaré maps for arbitrary initial conditions.

For the estimation of the Jacobian (Equation (3)) from the SympGPR, the Hessian of the
generating function F(q, P) has to be inferred from the training data. Thus, the covariance
matrix is extended with a block matrix C containing third derivatives of k(q, P, q′, P′):

C =

(
∂q,q′ ,qk ∂q,P′ ,qk ∂P,q′ ,qk ∂P,P′ ,qk
∂q,q′ ,Pk ∂q,P′ ,Pk ∂P,q′ ,Pk ∂P,P′ ,Pk

)
. (8)

The mean of the posterior distribution of the desired Hessian of the generating function
F(q, P) is inferred via

∇2F = (∂2
qqF, ∂2

qPF, ∂2
PqF, ∂2

PPF)� = CL−1Y. (9)

As we have a dependence on mixed coordinates Q(q̄(q, p), P(q, p)) and P(Q(q, p), p̄(q, p)),
where we used q̄(q, p) = q and p̄(q, p) = p to correctly carry out the inner derivatives, the
needed elements for the Jacobian can be calculated employing the chain rule. The Jacobian
is then given as the solution of the well-determined linear set of equations:
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∂Q
∂q

=
∂Q
∂q̄

∂q̄
∂q

+
∂Q
∂P

∂P
∂q

,
∂Q
∂p

=
∂Q
∂q̄

∂q̄
∂p

+
∂Q
∂P

∂P
∂p

, (10)

∂P
∂q

=
∂P
∂Q

∂Q
∂q

+
∂P
∂ p̄

∂ p̄
∂q

,
∂P
∂p

=
∂P
∂Q

∂Q
∂p

+
∂P
∂ p̄

∂ p̄
∂p

, (11)

where we use the following correspondence to determine all factors of the SOEs:

(
∂Q
∂q̄

∂Q
∂P

∂ p̄
∂q̄

∂ p̄
∂P

)
=

(
∂q̄
∂Q

∂P
∂Q

∂q̄
∂ p̄

∂P
∂ p̄

)�

=

(
1 + ∂2F

∂q∂P − ∂2F
∂P∂P

− ∂2F
∂q∂q 1 + ∂2F

∂P∂q

)
. (12)

2.3. Sensitivity Analysis

Variance-based sensitivity analysis decomposes the variance of the model output
into portions associated with uncertainty in the model inputs or initial conditions [14,15].
Assuming independent input variables Xi, i = 1, ..., d, the functional analysis of variance
(ANOVA) allows a decomposition of the scalar model output Y from which the decomposi-
tion of the variance can be deduced:

V[Y] =
d

∑
i=1

Vi + ∑
1≤i<j≤d

Vij + ... + V1,2,...,d (13)

The first term describes the variation in variance only due to changes in single variables
Xi, whereas higher-order interactions are depicted in the contributions of the interaction
terms. From this, first-order Sobol’ indices Si are defined as the corresponding fraction of
the total variance, whereas total Sobol’ indices STi also take the influence of Xi interacting
with other input variables into account [14,15]:

Si =
Vi

Var(Y)
, STi =

EX∼i (VarXi (Y|X∼i)

Var(Y)
(14)

Several methods for efficiently calculating Sobol’ indices have been presented, e.g., MC
sampling [14,16] or direct estimation from surrogate models [22,23]. Here, we use the MC
sampling strategy presented in [16] using two sampling matrices A, B and a combination
of both A(i)

B , where all columns are from A except the i-th column which is from B:

SiVar(Y) =
1
N

N

∑
i=1

f (B)j( f (A(i)
B )j − f (A)j), STi Var(Y) =

1
2N

N

∑
i=1

( f (A)j − f (A(i)
B )j)

2, (15)

where f denotes the model to be evaluated.

2.4. Local Lyapunov Exponents

For a dynamical system in RD, D Lyapunov characteristic exponents λn give the expo-
nential separation of trajectories with initial conditions z(0) = (q(0), p(0)) of a dynamical
system with perturbation δz over time:

|δz(T)| = J (T)
z(T)δz(0) ≈ eTλ|δz(0)|, (16)

where J (T)
z(T) is a time-ordered product of Jacobians Jz(T−1)Jz(T−2)...Jz(1)Jz(0) [4]. The

Lyapunov exponents are then given as the logarithm of the eigenvalues of the positive and
symmetric matrix.

Λ = lim
T→∞

[J (T)�
z(T) J (T)

z(T)]
1/(2T), (17)

where � denotes the transpose of J (T)
z(T).

For a D-dimensional system, there exist D Lyapunov exponents λn giving the rate
of growth of a D-volume element with λ1 + ... + λD corresponding to the rate of growth
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of the determinant of the Jacobian det(J (T)
z(T)). From this follows that for a Hamiltonian

system with a symplectic (e.g., volume-preserving) phase space structure, Lyapunov
exponents exist in additive inverse pairs as the determinant of the Jacobian is constant,
λ1 + ... + λD = 0. In the dynamical system of the standard map with D = 2 considered
here, the Lyapunov exponents allow a distinction between regular and chaotic motion. If
the Lyapunov exponents λ1 = −λ2 > 0, neighboring orbits separate exponentially which
corresponds to a chaotic region. In contrast, when λ1 = −λ2 ≈ 0 the motion is regular [1].

As the product of Jacobians is ill-conditioned for large values of T, several algorithms
have been proposed to calculate the spectrum of Lyapunov exponents [13]. Here, we
determine local Lyapunov exponents (LLE) that determine the predictability of an orbit of
the system at a specific phase point for finite time. In contrast to global Lyapunov exponents
they depend on T and on the position in phase space z. We use recurrent Gram-Schmidt
orthonormalization procedure through QR decomposition [5,6,24], where we follow the
evolution of D initially orthonormal deviation vectors wn

0 . The Jacobian is decomposed
into Jz(0) = Q(1)R(1), where Q(1) is an orthogonal matrix and R(1) is an upper triangular
matrix yielding a new set of orthonormal vectors wi. At the next mapping iteration, the
matrix product Jz(1)Q(1) is again decomposed. This procedure is repeated T times to

arrive at J (T)
z(t) = Q(T)R(T)R(T−1)...R(0). The Lyapunov exponents are then estimated from

the diagonal elements of R(t)

λn =
1
T

T

∑
t=1

lnR(t)
nn . (18)

3. Results and Discussion

In the following we apply an implicit SympGPR model with a product kernel [12].
Due to the periodic topology of the standard map we use a periodic kernel function to
construct the covariance matrix in Equation (7) with periodicity 2π in q, whereas a squared
exponential kernel is used in P:

k(q, qi, P, Pi) = σ2
f exp

(
− sin2((q − qi)/2)

2l2
q

)
exp

(
− (P − Pi)

2

2l2
P

)
. (19)

Here σ2
f specifies the amplitude of the fit and is set in accordance with the observations

to 2 max(|Y|)2, where Y corresponds to the change in coordinates. The hyperparameters
lq, lP are set to their maximum likelihood value by minimizing the negative log-likelihood
given the input data using the L-BFGS-B routine implemented in Python [18]. The noise in
observations is set to σ2

n = 10−16. 30 initial data points are sampled from a Halton sequence
to ensure good coverage of the training region in the range [0, 2π]× [0, 2π] and Equation (2)
is evaluated once to obtain the corresponding final data points. Each pair of initial and
final conditions constitutes one sample of the training data set. Once the model is trained,
it is used to predict subsequent mapping steps for arbitrary initial conditions and to infer
the corresponding Jacobians for the calculation of the local Lyapunov exponents. Here,
we consider two test cases of the standard map with different values of the stochasticity
parameter K = 0.9 and K = 2.0 (Equation (2)). For each of the test cases, a surrogate model
is trained. While in the first case the last KAM surface is not yet broken and therefore the
region of stochasticity is still confined in phase space, in the latter case the chaotic region
covers a much larger portion of phase space. However, there still exist islands of stability
with regular orbits [2]. For K = 0.9 the mean squared error (MSE) for the training data is
1.4 × 10−6, whereas the test MSE after one mapping application is found to be 2.4 × 10−6.
A similar quality of the surrogate model is reached for K = 2.0, where the training MSE is
1.6 × 10−7 and the test MSE 2.4 × 10−7.
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3.1. Local Lyapunov Exponents and Orbit Classification

For the evaluation of the distribution of the local Lyapunov exponents with respect to
the number of mapping iterations T and phase space position z = (q, p), 1000 points are
sampled from each orbit under investigation. In the following, we only consider the maxi-
mum local Lyapunov exponent as it determines the predictability of the system. For each
of the 1000 points, the LLEs are calculated using Equation (18), where the needed Jacobians
are given by the surrogate model by evaluating Equation (9) and solving Equation (11).

Figure 1 shows the distributions for K = 2.0, T = 50, T = 100 and T = 1000 for two
different initial conditions resulting in a regular and a chaotic orbit. In the regular case the
distribution exhibits a sharp peak and with increasing T moves closer to 0. This bias due to
the finite number of mapping iterations decreases with O(1/T) as shown in Figure 2 [25].
For the chaotic orbit, the distribution looks smooth and its median is clearly >0 as expected.
For a smaller value of K = 0.9 the dynamics in phase space exhibit larger variety with
regular, chaotic and also weakly chaotic orbits that remain confined in a small stochastic
layer around hyperbolic points. Hence, the transition between regular, weakly chaotic and
chaotic orbits is continuous due to the larger variety in phase space. For fewer mapping
iterations, possible values of λ are overlapping, thus preventing a clear distinction between
confined chaotic and chaotic orbits.

(a) (b)
Figure 1. Distribution of local Lyapunov exponents for a (a) regular orbit (q, p) = (1.96, 4.91) and
(b) chaotic orbit (q, p) = (0.39, 2.85) in the standard map with K = 2.0

(a) (b)
Figure 2. Rate of convergence of the block bias due to finite number of mapping iterations for (a)
K = 2.0 with a regular orbit (q, p) = (1.96, 4.91) (diamond) and a chaotic orbit (q, p) = (0.39, 2.85)
(x) and (b) K = 0.9 with a regular orbit (q, p) = (1.76, 0.33) (diamond), a confined chaotic orbit
(q, p) = (0.02, 2.54) (circle) and a chaotic orbit (q, p) = (0.2, 5.6) (x). The graphs show λ̃T , the
median of λT for each T, with λ̃T = λ + c/T fitted by linear regression of Tλ̃T on T. The gray areas
correspond to the standard deviation for 1000 test points.

When considering the whole phase space with 200 orbits with initial conditions
sampled from a Halton sequence in the range [0, π]× [0, 2π], already T = 50 mapping
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iterations provide insight in the predictability of the standard map (Figure 3). If for a region
in phase space the obtained LLE is positive, the predictability in this region is restricted
as the instability there is relatively large. If, however, the LLE is close to zero, we can
conclude that this region in phase space is governed by regular motion and is therefore
highly predictable. For K = 2.0 the orbits constituting the chaotic sea have large positive
LLEs, whereas islands of stability built by regular orbits show LLEs close to 0. A similar
behavior can be observed for K = 0.9, where again regions around stable elliptic points
feature λ ≈ 0 while stochastic regions exhibit a varying range of LLEs in accordance to
Figure 2.

Based on the estimation of the LLEs, a Gaussian Bayesian classifier [26] is used
to determine the probability of an orbit being regular, where we assume that LLEs are
normally distributed in each class. First, the classifier is trained on LLEs resulting from
200 different initial conditions for T mapping iterations with the corresponding class labels
resulting from the chosen reference being the generalized alignment index (GALI) [27].
Then, 104 test orbits are sampled from a regular grid in the range [0, π] × [0, 2π] with
Δq = Δp = 2π/10, their LLE is calculated for T mapping iterations and the orbits are then
classified. The results for K = 0.9 and K = 2.0 with T = 50 are shown in Figure 4, where
the color map indicates the probability that the test orbit is regular. While for K = 2.0
the classifier provides a very clear distinction between regular and chaotic regions, the
distinction between confined chaotic and regular orbits for K = 0.9 is less clear. With
increasing number of mapping iterations, the number of misclassifications reduces as
depicted in Figure 5. If the predicted probability that an orbit belongs to a certain class
is lower than 70%, the prediction is not accepted and the orbit is marked as misclassified.
With K = 0.9, the percentage of misclassified orbits does not drop below approximately
10%, because the transition between regular and chaotic motion is continuous.

(a) (b)
Figure 3. Local Lyapunov exponents in phase space of the standard map calculated with T = 50
mapping iterations for (a) K = 2.0, (b) K = 0.9 .

(a) (b)
Figure 4. Orbit classification in standard map, (a) K = 2.0, (b) K = 0.9 for T = 50. The color map
indicates the probability that the orbit is regular.
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(a) (b)
Figure 5. Percentage of misclassified orbits using a Bayesian classifier trained with 200 orbits for (a)
K = 2.0 and (b) K = 0.9. 100 test orbits on an equally spaced grid in the range of [0, π]× [0, 2π] are
classified as regular or chaotic depending on their LLE.

3.2. Sensitivity Analysis

The total Sobol’ indices are calculated for the outputs from the symplectic surrogate
model (Q, P) using Equation (15) with N = 2000 uniformly distributed random points
within a box of size [10−3 × 10−3] for each of the T = 100 mapping iterations as we are
interested in the temporal evolution of the indices. For the standard map at K = 0.9 with
d = 2 input and D = 2 output dimensions, 4 total Sobol’ indices are obtained: SQ

q and SP
q

denoting the influence of q and SQ
p and SP

p marking the influence of p on the output. We
obtain good agreement with an MSE in the order of 10−6 between the indices obtained by
the surrogate model and those using reference data.

As shown in Figure 6 for three different initial conditions for K = 0.9 depending on
the orbit type, either chaotic or regular, the sensitivity indices behave differently. In case of
a regular orbit close to a fixed point, Si

j are oscillating, indicating that both input variables
have similar influence on average. Getting further from the fixed point, closer to the border
of stability, the influence of q gets bigger. This, however, is in contrast to the behavior in
the chaotic case, where initially the variance in p has larger influence on the model output.
However, when observing the indices over longer periods of time, both variables have
similar influence. In Movie S01 in the supplemental material, the time evolution of all four
total Sobol’ indices obtained for the standard map are shown in phase space. Each frame is
averaged over 10 subsequent mapping iterations. One snapshot is shown in Figure 7. The
observation of the whole phase space sustains the findings in Figure 6.

Figure 6. Total Sobol’ indices as a function of time for three orbits of the standard map with K = 0.9—
upper: chaotic orbit (q, p) = (0.2, 5.6), middle: regular orbit (q, p) = (1.76, 0.33), lower: regular orbit
very close to fixed point (q, p) = (π, 0.1).
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Figure 7. Total Sobol’ indices (Equation (15)) for the standard map with K = 0.9 averaged from
t = 20 to t = 30.

4. Conclusions

We presented an approach for orbit classification in Hamiltonian systems based on
a structure preserving surrogate model combined with early classification based on local
Lyapunov exponents directly available from the surrogate model. The approach was
tested on two cases of the standard map. Depending on the perturbation strength, we
either see a continuous transition from regular to chaotic orbits for K = 0.9 or a sharp
separation between those two classes for higher perturbation strengths. This also impacts
the classification results obtained from a Bayesian classifier. The presented method is
applicable to chaotic Hamiltonian systems and is especially useful when a closed form
expression for Poincaré maps is not available. Also, the accompanying sensitivity analysis
provides valuable insight: in transition regions between regular and chaotic motion the
Sobol’ indices for time-series can be used to analyze the influence of input variables.
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Abstract: Why quantum? Why spacetime? We find that the key idea underlying both is uncertainty. In
a world lacking probes of unlimited delicacy, our knowledge of quantities is necessarily accompanied
by uncertainty. Consequently, physics requires a calculus of number pairs and not only scalars
for quantity alone. Basic symmetries of shuffling and sequencing dictate that pairs obey ordinary
component-wise addition, but they can have three different multiplication rules. We call those rules
A, B and C. “A” shows that pairs behave as complex numbers, which is why quantum theory is complex.
However, consistency with the ordinary scalar rules of probability shows that the fundamental object
is not a particle on its Hilbert sphere but a stream represented by a Gaussian distribution. “B” is then
applied to pairs of complex numbers (qubits) and produces the Pauli matrices for which its operation
defines the space of four vectors. “C” then allows integration of what can then be recognised as
energy-momentum into time and space. The picture is entirely consistent. Spacetime is a construct of
quantum and not a container for it.

Keywords: quantum; spacetime; uncertainty; symmetry

1. Strategy

Simplicity yields generality, and generality is power. There are deep mysteries in
physics, such as why space has three dimensions and why quantum formalism is complex.
Inquiry at such depth demands sparse assumptions of compelling generality. We aim
to leave no room for plausible doubt; thus, we allow no delicate assumptions (such as
continuity, perhaps) which could plausibly be denied. We paint with a broad brush,
aiming to mirror simplicity of ideas with simplicity of presentation. Our aim is to expose
the inevitable language of physics in a form accessible to neophyte students as well as
experienced professionals. This is only a beginning, and we do not proceed to discuss the
physical laws that form content of the language.

In attempting to understand the world, we seem forced to think of it in terms of
adequately isolated parts with adequately separable properties. To obtain generality,
we hypothecate symmetries such that laws applying to one part will apply to another.
Otherwise, without consistent rules, we will find no generalities, and our quest will fail.
Symmetries are our only hope. If the world is to be comprehended at all, this is the path
we should follow. What, if anything, the symmetries apply to will only be apparent later
when we try to match our intellectual constructions to sensory impressions of the world.

2. Mathematics

We first suppose a “with” operator that links two parts (”stuff”) to make compound
stuff. Technically, this operator is deemed to possess closure: stuff -with- stuff = stuff.
Furthermore, since we have closure, we can continue adding other stuff to produce yet
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more stuff. For this to be fully useful, we suppose that we can shuffle stuff around without
it making any difference. Formally, shuffling is associative commutativity.

A -with- (B -with- C) = (A -with- B) -with- C associative
A -with- B = B -with- A commutativity

(1)

If our stuff has only one property of interest, it is not hard to show that the “with”
operator can without loss of generality be taken to be standard arithmetical addition [1–4].
Any other representation is isomorphic. In order to model an arbitrarily large world, we
suppose that combination can be conducted indefinitely without repeat: X -with- Y �= X
unless Y is null. Otherwise, we would obtain the wrap around for integers limited to finite
storage. This is why stuff adds up [5].

a + (b + c) = (a + b) + c associative
a + b = b + a commutativity

}
(sum rule) (2)

It is not difficult: Children understand it as they learn to count. The wide utility of
addition mirrors the ubiquity of symmetry under shuffling. There are many applications,
but we might think of shuffling as a parallel operation which could take place in some sort
of proto-space.

Now, we will want “+” to continue to work regardless of who supplies the stuff or, for
that matter, who receives it; thus, we next suppose a “then” operator that transfers stuff,
possibly with modification, as in A -then- B. This operator is also supposed to possess
closure: A -then- B -then- is itself a transfer C -then- so that suppliers can be chained, and
as before we suppose that chaining can be performed indefinitely. We might think of -then-
as a series operation that could take place in some sort of proto-time.

For -with- to be additive regardless of suppliers or receivers, we need -then- to
be distributive.

A -then- (B -with- C) = (A -then- B) -with- (A -then- C) left distributive
(A -with- B) -then- C = (A -then- C) -with- (B -then- C) right distributive

(3)

With only one property of interest in play, the representation is merely scalar. The
only freedom allowed within the sum-rule convention is scaling; thus, the representation
“·” of -then- has to be standard arithmetical multiplication, possibly scaled by some
constant γ [3,4]:

a · b = γab (product rule) (4)

which is most commonly set by convention to one. Again, this is not difficult: children
learn it informally as they are taught multiplication, and they learn γ with percentages.

Note that we are building arithmetic and not Boolean calculus. Our “then” describes
sequencing and is distributive over “with” but not the other way around. We point out
that only with standard arithmetic in place can we build the sophisticated mathematics,
which gives us quantified science. This is why mathematics is so effective—we have
designed it to obey the fundamental symmetries which are required for our generalisations.
Moreover, we need the symmetries, for denial would remove our mathematics and render
us powerless. How could we justify Hilbert spaces if we cannot even add up?

3. Physics

Physics is more subtle, for arbitrary precision is not available with finite probes
(Figure 1, left).
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Figure 1. (Left) Uncertainty: probe and fragile target. (Right) Measurement: delicate probe with target.

This means that any particular quantity is necessarily associated with an uncertainty.
Hence, a minimal description (and anything more would lack rationale and be mathe-
matically redundant) requires a pair of numbers to quantify a property. We do not mean
“μ ± σ,” which is merely crude shorthand for a distribution Pr(x) over the available values
x—in which those numbers too would be uncertain, resulting in indefinite regress. The
fundamentally irreducible pair-wise connection is simpler and more intimate than that.
Uncertainty becomes part of the very language of physics and is impossible to remove.

To define the connections analogous to scalar addition and multiplication, we start
by imposing the same ubiquitous symmetries as before. Associative commutativity yields
component-wise addition for -with- :(

a1

a2

)
+

(
b1

b2

)
=

(
a1 + b1

a2 + b2

)
(5)

and distributivity yields bilinear multiplication for -then- :(
a1

a2

)
·
(

b1

b2

)
=

(
γ1a1b1 + γ2a1b2 + γ3a2b1 + γ4a2b2

γ5a1b1 + γ6a1b2 + γ7a2b1 + γ8a2b2

)
(6)

but now with eight apparently arbitrary coefficients γ and not only a single removable
scale factor. It is true that we have four degrees of freedom to choose coordinates, but that
still leaves four of the γ’s free so that multiplication is not yet adequately defined. This
extra subtlety of physics requires us to make the distributivity associative, meaning that the
effect of chaining does not depend on how the factors are grouped into compounds.

a · (b · c) = (a · b) · c associative (7)

In one dimension, associativity was automatically an emergent property of multiplica-
tion, but we need to impose it in two dimensions. Associative multiplication of pairs yields
quadratic equations for the γ’s for which its multiple solutions A,B,C,D,E and F enable the
rich framework of physics. In summary, the following is the case.

Quantifiable physics =⇒ quantity-&-uncertainty pairs
Associative commutativity (shuffling) =⇒ component-wise sum rule (+)
Associative distributivity (sequencing) =⇒ product rules A,B,C,D,E,F ( · )

(8)

Explicitly, the six product rules are the following [6–8].

(
a1

a2

)
·
(

b1

b2

)
=(

a1b1−a2b2

a1b2+a2b1

)
︸ ︷︷ ︸

A

or
(

a1b1+a2b2

a1b2+a2b1

)
︸ ︷︷ ︸

B

or
(

a1b1

a1b2+a2b1

)
︸ ︷︷ ︸

C

or a1

(
b1

b2

)
︸ ︷︷ ︸

D

or
(

a1

a2

)
b1︸ ︷︷ ︸

E

or
(

a1b1

0

)
︸ ︷︷ ︸

F

(9)
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The first three, A,B and C, are pair-pair products, the next two, D and E, are degenerate
scalar-pair products, and the last F is ordinary scalar–scalar multiplication appearing as
the doubly degenerate case.

4. Product Rule F

It was inevitable that two-dimensional multiplication would include one-dimensional
scalar multiplication as a special case, and what our derivation demonstrates is that there is
necessary consistency between one and two dimensions. Both follow from the same basic
symmetries of shuffling and sequencing. In one dimension, the scalar sum and product
rules are those of probability, observed from this viewpoint as part of an intellectual
structure common to both mathematics and physics.

Whether quantum or classical, physics makes predictions expressed as likelihoods
Pr(outcome | setup), assuming what we think we know about the setup, expressed as
the prior. Bayesian inference then uses actual outcomes to refine the predictions (the
posterior) and assess the predictive quality of our assumptions (the evidence). Probability
and quantum theory (which is basic physics) share a common foundation, and quantum
behaviour fits seamlessly into Bayesian analysis no differently to anything else. There can
be no quantum weirdness in this approach. It is all only ordinary inference.

Note our bottom-up strategy. Our assumptions refer to basic symmetries of only two
or three items at a time. We start with 1 + 1 = 2 items and build up from there. This is
opposite to approaches of superficially greater sophistication which specify top-down from
infinity ∑∞

1 (·). That strategy is deliberate. Infinity and the continuum involve delicate
limits that might not hold in all circumstances. We think it perversely fragile to traverse
delicate analysis in order to return, ultimately, to discrete predictions which never needed
the delicacy in the first place.

5. Product Rule A

Product rule A is complex multiplication, which we can write in operator form as
follows.

a · =

(
a1 −a2
a2 a1

)
= reiθ (10)

The condition r = 1 selects operators which under repeated application (a · )n cause
neither divergence towards infinity (r > 1) nor collapse towards zero (r < 1). Thus,
r = 1 defines unit quantity. Knowledge of quantity is invariant under such unit-modulus
operations, which add constants to the phase of the operand while leaving its modulus
unchanged. Correspondingly, our knowledge Pr(φ) of the phase of an operand is invariant
to offset, obeying Pr(φ) = Pr(φ + θ) for any θ, indicating uniformity.

Pr(φ) =
1

2π
= uniform over φ ∈ [0, 2π) (11)

Later, it will be observed that neither of the other pair–pair product rules can support
a proper prior distribution, and this is why quantum theory uses complex numbers. It is the only
way of enabling consistency with probability. Uncertainty being identified with phase, the
modulus becomes associated with quantity, and the unit modulus represents unit quantity.

Incidentally, phase has to be a continuous variable. If it was not, any gap could be
filled in by adding complex numbers from either side: one from the upper boundary and
one from the lower in order to obtain a sum with intermediate phase. Whilst absolute phase
of any newly introduced quantity is unknown (and uniformly distributed), relative phase is
the critical ingredient that distinguishes representation of quantity-with-uncertainty from
representation of quantity alone. Relative phase manifests as interference.

6. Born Rule

When we combine objects, the scalar sum rule demands that we add quantity. That
is the definition: quantity is what adds up. So what scalar property of complex numbers

104



Phys. Sci. Forum 2021, 3, 9

could be additive? Complex moduli do not add up, either directly |a + b| �= |a|+ |b| or
through any function f (|a + b|) �= f (|a|) + f (|b|). Phase differences interfere and appear
to force an inconsistency with scalar addition. However, we do not know the phases
of independent objects; thus, we do not actually know what the interference should be.
Fortunately, the rules of probability instruct us to average (“marginalise”) over what we
do not know in order to arrive at the reproducible behaviour that we seek. Moreover, we
can attain consistency on average, 〈 f (|a + b|) 〉 = 〈 f (|a|) 〉+ 〈 f (|b|) 〉, provided we use
f (x) = x2. That modulus-squared form of the following:〈 ∣∣ aeiα + beiβ ∣∣2〉

α,β
=
〈 ∣∣ aeiα ∣∣2〉

α
+
〈 ∣∣ beiβ ∣∣2〉

β
= |a|2 + |b|2 (12)

is forced upon us and yields a general additivity that holds for any number of components.
The average-modulus-squared relationship is the archetype of the Born rule of quantum
theory [9]. By updating our nomenclature of complex numbers to the more traditional ψ,
we have additive scalar quantification 〈 |ψ|2〉, which we interpret as follows.

Q =
〈
|ψ|2

〉
= rate of supply of ψ = intensity. (13)

This is how uncertainty manifests in the formalism. The observably additive intensity
emitted by sources and observed by receivers is a modulus-squared average. Averaging
can be performed artificially by picturing an ensemble of possibilities, as expressed either
algebraically with a formula for Pr(·) or arithmetically as Monte Carlo samples. In the
laboratory, averaging is performed by repetition. Thus, the fundamental object of inquiry is a
stream and not, as commonly assumed, a particle. A particle is less fundamental because it
carries the extra information that a detector had fired. Streams add up. Particles only add
up if they are independent because otherwise phase difference is liable to cause interference
so that 1 -with- 1 could become anything from 0 to 4.

Observing Q yields information about ψ partially because the phase remains unknown,
and the observation is only an average. The probability distribution for ψ under this
quadratic constraint Q is assigned by maximum entropy as the Gaussian:

Pr(ψ | Q) =
exp(−|ψ|2/Q)

πQ
(14)

just as standard in classical inference and signal processing.
The foundations of quantum theory begin to become apparent, but so far all we have

quantified is existence. We need more. We need properties.

7. Product Rule B

Product rule B is hyperbolic (or “split-complex”) multiplication, written in operator
form as follows.

a · =

(
a1 a2
a2 a1

)
with r =

√|det(a · )| (15)

The condition r = 1 selects operators which under repeated application (a · )n cause
neither divergence towards infinity (r > 1) nor collapse towards zero (r < 1). Thus,
r = 1 defines unit quantity. Instead of complex phase arctan(a2/a1), we have pseudo-
phase φ = arctanh(a2/a1). Offsets of φ leave r unchanged, but the range is unbounded
φ ∈ (−∞, ∞). Hence, as anticipated, we could not use φ to express uncertainty because the
corresponding uniform prior would be improper. Rule B does not admit some alternative
representation of quantity and uncertainty.

Instead, we upgrade our inquiry to binary this-or-that properties, each of which can
exist or not and is represented by a quantity and uncertainty pair. We call the binaries of
the following:

ψ =

(
ψ↑
ψ↓

)
=

(
ψ0 + iψ1

ψ2 + iψ3

)
(16)
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qubits. The detection of 〈|ψ↑|2〉 by a ↑-detector would signify the supply of ↑ and similarly
for ↓ so that 〈|ψ↑|2 + |ψ↓|2〉 would signify ↑-or-↓ presence of qubits with either property.

Shuffling and sequencing are still to be obeyed, and the ABCDEF rules still apply in
the complex field. So far, we are invoking rules A and B. For the sake of simplicity, we
restrict attention to unit operators and write them in generator form. The generator form
of the following:

a · = exp(φG) = lim
n→∞

(
1 +

G
n

)nφ

(17)

allows us to separate the (complex) magnitude φ of a multiplication (a ·) from its structure
G. From (9), the unit operators for A and B are as follows:(

cos φ − sin φ
sin φ cos φ

)
= exp(φA) where A =

(
0 −1
1 0

)
(

cosh φ sinh φ
sinh φ cosh φ

)
= exp(φB) where B =

(
0 1
1 0

) (18)

where we recognise the Hermitian Pauli matrices:

σ0 =
( 1 0

0 1︸ ︷︷ ︸
1

)
, σx =

( 0 1
1 0︸ ︷︷ ︸

B

)
, −σy =

( 0 −i
i 0︸ ︷︷ ︸

iA

)
, σz =

( 1 0
0 −1︸ ︷︷ ︸

BA

)
(19)

that mix trigonometric and hyperbolic rotations in complex context.

7.1. Quantification

For quantification, we still have the Born rule, initially as individual averages of |ψ↑|2
and |ψ↓|2, but quickly promoted to 〈ψ†H ψ〉 for any Hermitian H. Specifically, the Pauli
matrices yield scalar observables.

p0 = 〈ψ†σ0 ψ〉 = 〈ψ2
0 + ψ2

1 + ψ2
2 + ψ2

3〉
px = 〈ψ†σx ψ〉 = 2〈ψ0ψ2 + ψ1ψ3〉
py = 〈ψ†σy ψ〉 = 2〈ψ0ψ3 − ψ1ψ2〉
pz = 〈ψ†σz ψ〉 = 〈ψ2

0 + ψ2
1 − ψ2

2 − ψ2
3〉

(20)

Of these, p0 observes qubits as a whole. Given a covariance matrix ρ = 〈ψ ψ†〉 derived
from such observations (which in practice would often include statistical uncertainty too),
the maximum entropy assignment of probability in any dimension is the Gaussian.

Pr(ψ | ρ) =
exp(−ψ†ρ−1ψ)

det(πρ)
(21)

This distribution of ψ can be used to predict observable quantities in the usual manner
that is no differently from any other application of probability. Knowing what a system is
enables us to predict how it will behave, whether that is probabilistic or definitive.

It is clear from (21) that initial coordinates could be replaced by any unitary combination.

Pr(ψ | ρ) =
exp(−(Uψ)†(UρU†)−1(Uψ))

det(πρ)
, (U†U = 1) (22)

Hence, there is no observational test of whether ψ or Uψ is the fundamental represen-
tation; thus, our physics needs to be invariant under unitary transformation. This gives the
complex representations of quantum theory flexibility beyond that accessible to classical
scalars for which quantity is restricted to positive values.
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7.2. Quantisation

We become aware of quantisation when a probe initialised in a fragile metastable state
is brought to the target stream (Figure 1(right)). If the target triggers effectively irreversible
descent of the probe into a disordered state (cleverly engineered to be a macroscopic pointer
angle or suchlike), then that becomes available as an essentially permanent macroscopic
bit of information signifying that something (a quantum) had been present in the target
stream at that time. It is from this point that the experimenter may in person or by proxy
become aware of the digital event and incorporate it into probabilistic modelling.

Assuming that the interaction had been engineered to preserve the identities of target
and probe, then the something (the quantum) could then be intercepted from the ongo-
ing stream and preserved for later use. Its total modulus would then be known (and
conventionally assigned as 1) so that its “wave function” ψ would be represented by the
distribution:

Pr(ψ) ∝ δ(ψ†ψ − 1) (23)

with known modulus and unknown phase. With the wave function ψ thereby normalised
and confined to the Hilbert sphere ψ†ψ = 1, the covariance ρ is known as the density matrix.
However, it may be noted that such confinement damages the smooth elegance of the
Gaussian analysis of streams.

This is the source of entanglement, contextuality and such quintessentially quantum
phenomena. It is simply Bayesian analysis in the unfamiliar context of complex numbers
(as suggested by [10]) and in indirect modulus-squared observation, usually written in the
Dirac bracket notation with ψ = |ψ〉 and ψ† = 〈ψ|, that was developed for physics [11,12]
before the Bayesian paradigm became pre-eminent in inference.

For example, if pz were observed equal to p0, then the definitions (20) would force
ψ to be purely ψ↑, an eigenvector of σz (with unknown phase) with covariance ρ =
ψ↑ ψ †

↑ . Subsequent prediction of ψ with (21) would ensure that pz remained equal to
p0. Measurements of px, on the other hand, would average to zero upon repetition and
restriction to the Hilbert sphere (23) of an individual quantum would force individual
outcomes to take either one of the eigenvectors of σx at random, incidentally destroying
the memory of the earlier pz. We see that “wave-function collapse” is just the incorporation
of new data into ordinary Bayesian inference on the Hilbert sphere.

7.3. Transformations

The Pauli matrices generate the 6-parameter Lorentz group of unit operators.

exp(φxσx + φyσy + φzσz) with complex coefficients φ = − 1
2 (ξ + iη) (24)

On using ηz only, the Pauli observables transform as follows:⎛
⎜⎜⎝

p′0
p′x
p′y
p′z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 cos η − sin η 0
0 sin η cos η 0
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

p0
px
py
pz

⎞
⎟⎟⎠ (25)

while on using ξz only, they transform as follows.⎛
⎜⎜⎝

p′0
p′x
p′y
p′z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cosh ξ 0 0 − sinh ξ
0 1 0 0
0 0 1 0

− sinh ξ 0 0 cosh ξ

⎞
⎟⎟⎠
⎛
⎜⎜⎝

p0
px
py
pz

⎞
⎟⎟⎠ (26)

In each case, we have the following:

p2
0 − p2

x − p2
y − p2

z = m2 > 0 is invariant (27)
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and the axis could have been in any (x, y, z) direction. We recognise the rotation and boost
behaviour of 4-momentum, but the identification would be premature because we do not
yet have spacetime.

8. Product Rule C

Product rule C in operator form is as follows.

a · =

(
a1 0
a2 a1

)
(28)

As before, r =
√|det(a · )| = 1 defines unit quantity. Instead of complex phase

arctan(a2/a1), we have pseudo-phase t = a2/a1. Offsets of t leave r unchanged, but the
range is unbounded t ∈ (−∞, ∞). Hence, as anticipated, we could not use t to express
uncertainty because the uniform prior would be improper. The only choice really was
rule A.

Unit operations now take the following form.(
1 0
t 1

)
= exp(tC) where C =

(
0 0
1 0

)
(29)

This acts as an integrator: (
1 0
t 1

)(
u
U

)
=

(
u

U + ut

)
(30)

so that U is the integral of u with dU = u dt. Note that C operates in the real domain. It is
not Hermitian, so it applies to scalar operands and not to complex entities such as ψ, and
its coefficient t will be real. Rule C meaningfully applies to (real-valued) phase, rephasing
ψ to ψe−iθ (the minus sign is conventional).

Take a qubit ψ with invariant m. Define dτ through dθ = m dτ by using m as a clock.
Under Pauli, we have observed that m transforms as the 4-vector (p0, px, py, pz), which is
covariant by convention. Phase θ is a 2π-periodic scalar that cannot be rescaled because its
2π-periodicity represents interference—the distinguishing observational feature of quantum
theory. Hence, dτ must transform as a contravariant 4-vector (dt, dx, dy, dz) with invariant
of the following:

(dτ)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2 (31)

obeying the following:

dθ = (p0dt − pxdx − pydy − pzdz)/h̄ (32)

where the arbitrary constant h̄ (which is best set to one) defines our units of t and x relative
to m and p. With ψ being rephased by e−iθ , the Schrödinger equations of the following:

ih̄
∂ψ

∂t
= p0ψ , ih̄

∂ψ

∂x
= −pxψ , ih̄

∂ψ

∂y
= −pyψ , ih̄

∂ψ

∂z
= −pzψ . (33)

are immediate.
All that remains is to recognise the symbols of the following.

θ action
m rest mass τ proper time
p0 energy t time

(px, py, pz) momentum p (x, y, z) location x
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Moreover, we must identify the Lorentz coefficients φ = − 1
2 (ξ + iη) within Minkowski

spacetime.
v velocity dx/dt

cosh ξ Lorentz factor (1 − v2)−1/2

η rotation angle

8.1. Viewpoint

Traditionally, energy and momentum are obtained from the Schrödinger equations as
differentials with respect to time and space. With ABC, it is the other way round—time
and space emerge from quantum theory as integrals of energy and momentum.

(p0, px, py, pz)
ABC−−−−−−−−−⇀↽−−−−−−−−−

traditional
(t, x, y, z)

Spacetime is a construct of quantum, not a container for it.

The ABC derivation dictates why space has three dimensions—and that is the right
way round. Space and time are measured by theodolites and clocks, and observations are
at root quantum in nature.

We have now developed a unified foundation based on the necessary incorporation of
uncertainty with quantity.

Associative commutativity
Associative distributivity

⎧⎪⎪⎨
⎪⎪⎩

A
=====⇒ Probability

AB
=====⇒ Probability & Quantum

ABC
=====⇒ Probability & Quantum & Spacetime

Further development would include formalising qubit–qubit interactions (two Pauli
matrices) by using the Dirac equation and continuing to quantum field theory. That would
allow theoretical demonstration of idealised measurement probes and of how observation
can be used both to predict future evolution and to retrodict past behaviour. However, since
ABC recovers the standard equations, new insight would not be immediately expected.

9. Speculations

With a consistent formulation based on so few and general assumptions, it seems
almost inconceivable that inconsistency could arise in future developments. Would a user
wish to deny uncertainty, or shuffling, or sequencing?

However, there is more to be conducted. Although spacetime has been constructed
with a locally Minkowski metric, inheriting continuity from complex phase, ABC does not
require the manifold to be flat. We should presumably expect that curvature will follow
physical matter as general relativity indicates. Yet gravitational singularities appear to be
inconsistent with the required reversibility of quantum formalism.

One may ask for the source of that reversibility, for it is at least superficially plausible
that dropping an object into a black hole is not a reversible process—at least not on a
timescale of interest to the experimenter. Since it appears that the fundamental object is
not a particle on its Hilbert sphere but a stream represented by a Gaussian distribution, it
seems that there is scope for revisiting this question from a revised viewpoint.

Traditional developments of quantum theory and of geometry have accepted the
notion of a division algebra [13,14] in which every operation is presumed to have an
inverse. However, that may not be true. ABC does not need to assume inverses. They
might fail in extreme situations. Assuming division algebras may have been an assumption
too far.

One may also speculate on the roles of the unused product rules D and E. Traditionally,
these scalar-vector product rules are imposed as part of the axiomatic structure of a vector
space. Users are just expected to accept them on the basis of initial plausibility, familiarity
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and submission to conventional authority. However, ABC did not need to assume them. In
the two-parameter quantity and uncertainty space, D and E appear as additional candidate
rules. Each of A, B, C, and F had critically important roles. Why would D and E not have
critically important roles too?

Inquiry at this depth does not throw up results that we should casually discard. Rules
D and E suggest (demand?) the existence of scalar stuff different from the pair-valued stuff
of our original inquiry. We might only be able to interact with it through the curvature of
space, in other words gravity. Is this dark matter? Might we have predicted this possibility
ahead of time if we had thought this through 50 years ago?
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Abstract: We derive a weakly informative prior for a set of ordered resonance frequencies from
Jaynes’ principle of maximum entropy. The prior facilitates model selection problems in which both
the number and the values of the resonance frequencies are unknown. It encodes a weakly inductive
bias, provides a reasonable density everywhere, is easily parametrizable, and is easy to sample. We
hope that this prior can enable the use of robust evidence-based methods for a new class of problems,
even in the presence of multiplets of arbitrary order.

Keywords: weakly uninformative prior; resonance frequency; model selection; maximum entropy

1. Introduction

An important problem in the natural sciences is the accurate measurement of reso-
nance frequencies. The problem can be formalized by the following probabilistic model:

p(D, x|I) = p(D|x)p(x|I) ≡ L(x)π(x), (1)

where D is the data, x = {xk}K
k=1 are the K resonance frequencies of interest, and I is

the prior information about x. As an example instance of (1), we refer to the vocal tract
resonance (VTR) problem discussed in Section 5 for which D is audio recorded from
the mouth of a speaker; x are a set of K VTR frequencies, and the underlying model
is a sinusoidal regression model. Any realistic problem will include additional model
parameters θ, but these have been silently ignored by formally integrating them out of (1),
i.e., p(D, x|I) =

∫
dθ p(D, x, θ|I).

In this paper, we assume that the likelihood L(x) ≡ p(D|x) is given, and our task is
to choose an uninformative prior π(x) ≡ p(x|I) from limited prior information I. A conflict
arises, however:

The uninformative priors π most commonly chosen to express limited
prior information I are, in practice, often precluded by that same I. (2)

The goal of this paper is to describe this conflict (2) and to show how it can be resolved by
adopting a specific choice for π. This allows robust inference of the number of resonances
K in the important case of such limited prior information I, which in turn enables accu-
rate measurement of the resonance frequencies x with standard methods such as nested
sampling [1] or reversible jump MCMC [2].

2. Notation

The symbol π is intended to convey a vague notion of a generally uninformative or
weakly informative prior. Definite choices for π are indicated with the subscript i:

πi(x) ≡ p(x|βi, Ii), (i = 1, 2, 3), (3)
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where βi is a placeholder for the hyperparameter specific to πi. Note that in the plots
below and for the experiments in Section 5, the values of the βi are always set according to
Table 1.

Table 1. The values of the hyperparameters βi used throughout the paper. All quantities are given in units of Hz.

k → 0 1 2 3 4 5 6 7 8 9 10

a = {ak} 200 600 1400 2900 3500
b = {bk} 1100 3500 4000 4500 5500

x0 = {xk} 200 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

other x0 = 200 xmax = 5500

Each πi uniquely determines a number of important high-level quantities since the
likelihood L(x) and data D are assumed to be given. These quantities are the evidence for
the model with K resonances:

Zi(K) =
∫

dKxL(x)πi(x), (4)

the posterior:

Pi(x) =
L(x)πi(x)

Zi(K)
, (5)

and the information:

Hi(K) =
∫

dKx Pi(x) log
Pi(x)
πi(x)

, (6)

which measures the amount of information obtained by updating from prior πi to posterior
Pi, i.e., Hi(K) ≡ DKL(Pi|πi), where DKL is the Kullback–Leibler divergence.

3. Conflict

The uninformative priors π referenced in (2) are of the independent and identically
distributed type:

π(x) =
K

∏
k=1

g(xk|β), (7)

where g(x|β) is any wide distribution with hyperparameters β. A typical choice for g is the
uniform distribution over the full frequency bandwidth; other examples include diffuse
Gaussians or Jeffreys priors [3–9].

Second, the limited prior information I in (2) about K implies that the problem will in-
volve model selection, since each value of K implicitly corresponds to a different model for
the data. It is, thus, necessary to evaluate and compare evidence Z(K) =

∫
dKxL(x)π(x)

for each plausible K.
The conflict between these two elements is due to the label switching problem, which

is a well-known issue in mixture modeling, e.g., [10]. The likelihood functions L(x) used
in models parametrized by resonance frequencies are typically invariant to switching the
label k; i.e., the index k of the frequency xk has no distinguishable meaning in the model
underlying the data. The posterior P(x) ∝ L(x)π(x) will inherit this exchange symmetry
if the prior is of type (7). Thus, if the model parameters x are well determined by the data
D, the posterior landscape will consist of one primary mode, which is defined as a mode
living in the ordered region:

RK(x0) = {x|x0 ≤ x1 ≤ x2 ≤ · · · ≤ xK} with x0 > 0, (8)

and (K! − 1) induced modes, which are identical to the primary mode up to a permutation
of the labels k and, thus, live outside of the region RK(x0). The trouble is that correctly
taking into account these induced modes during the evaluation of Z(K) requires a surpris-
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ing amount of extra work in addition to tuning the MCMC method of choice, and that is
the label switching problem in our setting. In fact, there is currently no widely accepted
solution for the label switching problem in the context of mixture models either [11,12].
This is, then, how in (2) uninformative priors π are “precluded” by the limited information
I: the latter implies model selection, which in turn implies evaluating Z(K), which is
hampered by the label switching problem due to the exchange symmetry of the former.
Therefore, it seems better to try to avoid it by encoding our preference for primary modes
directly into the prior. This results in abandoning the uninformative prior π in favor of the
weakly informative prior π3, which is proposed in Section 4 as a solution to the conflict.

We use the VTR problem to briefly illustrate the label switching problem in Figure 1.
The likelihood L(x) is described implicitly in Section 5 and is invariant to switching the
labels k because the underlying model function (23) of the regression model is essentially
a sum of sinusoids, one for each xk. As frequencies can be profitably thought of as scale
variables ([13], Appendix A), the uninformative prior (7) is represented by

π1(x) ≡ p(x|x0, xmax, I1) =
K

∏
k=1

h(xk|x0, xmax), (9)

where β1 ≡ (x0, xmax) are a common lower and upper bound, and

h(x|a, b) =

{ 1
log(b/a)

1
x if a ≤ x ≤ b

0 otherwise
with

a > 0

b < ∞
(10)

is the Jeffreys prior, the conventional uninformative prior for a scale variable [although
any prior of the form (7) that is sufficiently uninformative would yield essentially the
same results.] We have visualized the posterior landscape P1(x) in Figure 1 by using the
pairwise marginal posteriors P1(xk, x�) plotted in blue. Note the exchange symmetry of P1,
which manifests as an (imperfect) reflection symmetry around the dotted diagonal xk = x�
bordering the ordered region R3(x0). The primary mode can be identified by the black
dot; all other modes are induced modes. Integrating all K! modes to obtain Z(K) quickly
becomes intractable for Z � 4.
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Figure 1. The exchange symmetry of the posterior P1(x) for a well-determined instance of the VTR problem from Section 5
with K := 3. The pairwise marginal posteriors P1(xk, x�) are shown using the isocontours of kernel density approximations
calculated from posterior samples of x. For each panel, the diagonal xk = x� is plotted as a dotted line, and the ordered
region R3(x0) is shaded in grey. The black dot marks the mean of the primary mode for this problem.
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A Simple Way Out?

A simple method out of the conflict is to break the exchange symmetry by assuming
specialized bounds for each xk:

π2(x) ≡ p(x|a, b, I2) =
K

∏
k=1

h(xk|ak, bk), (11)

where β2 ≡ (a, b) with a = {ak}K
k=1 and b = {bk}K

k=1 being hyperparameters specifying
the individual bounds. However, in order to enable the model to detect doublets (a resolved
pair of two close frequencies such as the primary mode in the leftmost panel in Figure 1), it
is necessary to assign overlapping bounds in (a, b), presumably by using some heuristic.
The necessary degree of overlap increases as the detection of higher order multiplets such
as triplets (which can and do occur) is desired, but the more overlap in (a, b), the more
the label switching problem returns. Despite this issue, there will be cases where we have
sufficient prior information I to set the (a, b) hyperparameters without too much trouble;
the VTR problem is such a case for which the overlapping values of (a, b) up to K = 5 are
given in Table 1.

4. Solution

Our solution to the conflict (2) is a chain of K coupled Pareto distributions:

π3(x) ≡ p(x|x0, I3) =
K

∏
k=1

Pareto(xk|xk−1, λk) (12)

where

Pareto(x|x∗, λ) =

{
λxλ∗
xλ+1 if x ≥ x∗

0 otherwise
with

x∗ > 0

λ > 0,
(13)

and the hyperparameter β3 ≡ x0 is defined as

x0 ≡ (x0, x), x0 := x0, x = {xk}K
k=1, λk =

xk
xk − xk−1

. (14)

From Figure 2, it can be seen that π3 encodes weakly informative knowledge about
K ordered frequencies: (12) and (13) together imply that π3(x) is defined only for x ∈
RK(x0), while nonzero only for x ∈ RK(x0). In other words, its support is precisely the
ordered region RK(x0), which solves the label switching problem underlying the conflict
automatically, as the exchange symmetry of π is broken. This is illustrated in Figure 2,
where P3 contracts to a single primary mode, which is just what we would like.

The K + 1 hyperparameters x0 in (14) are a common lower bound x0 plus K expected
values of the resonance frequencies x. While the former is generally easily determined, the
latter may seem difficult to set given the premise of this paper that we dispose only of
limited prior information I. Why do we claim that π3 is only weakly informative if it is
parametrized by the expected values of the very things it is supposed to be only weakly
informative about? The answer is that for any reasonable amount of data, inference based
on π3 is completely insensitive to the exact values of x. Therefore, any reasonable guess
for x0 will suffice in practice. For example, for the VTR problem, we simply applied a
heuristic where we take xk = k × 500 Hz (see Table 1). This insensitivity is due to the
maximum entropy status of π3 and indicates the weak inductive bias it entails. On a more
prosaic level, the heavy tails of the Pareto distributions in (12) ensure that the prior will be
eventually overwhelmed by the data no matter how a priori improbable the true value of x
is. More prosaic still, in Section 5.1 below we show quantitatively that for the VTR problem
π3 is about as (un)informative as π2.
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Figure 2. Contraction of prior (π3) to posterior (P3) for the application of π3 to the VTR problem used in Figure 1. The
pairwise marginal prior π3(xk, x�) is obtained by integrating out the third frequency; for example, π3(x1, x2) =

∫
dx3 π3(x).

Unlike P1 in Figure 1, P3 exhibits only a single mode that coincides with the primary mode as marked by the black dot.

4.1. Derivation of π3

Our ansatz consists of interpreting the x as a set of K ordered scale variables that are
bounded from below by x0. Starting from (9) and not bothering with the bounds (a, b), we
obtain the improper pdf

m(x) ∝

{
∏K

k=1
1
xk

x ∈ RK(x0)

0 otherwise.
(15)

We can simplify (15) using the one-to-one transformation x ↔ u defined as

x → u : uk = log
xk

xk−1
(k = 1, 2, . . . , K)

u → x : xk = x0 exp
k

∑
κ=1

uκ (k = 1, 2, . . . , K)
(16)

which yields (with abuse of notation for brevity)

m(u) ∝

{
1 u ≥ 0

0 otherwise.
(17)

Since model selection requires proper priors, we need to normalize m(u) by adding
extra information (i.e., constraints) to it; we propose to simply fix the K first moments
〈u〉 = {〈uk〉}K

k=1. This will yield the Pareto chain prior π3(u) directly, expressed in u space
rather than x space. The expression for π3(u) is found by minimizing the Kullback–Leibler
divergence [14]

DKL(π3|m) =
∫

dKu π3(u) log
π3(u)
m(u)

, subject to 〈u〉 ≡
∫

dKu uπ3(u) = u, (18)

where u = {uk}K
k=1 are the supplied first moments. This variational problem is equivalent

to finding π3(u) by means of Jaynes’ principle of maximum entropy with m(u) serving as
the invariant measure [15]. Since the exponential distribution Exp(x|λ) is the maximum
entropy distribution for a random variable x ≥ 0 with a fixed first moment 〈x〉 = 1/λ, the
solution to (18) is

π3(u) =
K

∏
k=1

Exp(uk|λk), (19)
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where the rate hyperparameters λk = 1/uk and

Exp(x|λ) =
{

λ exp{−λx} if x ≥ 0

0 otherwise
with λ > 0. (20)

Transforming (19) to x space using (16) finally yields (12), but we still need to express
λk in terms of x—we might find it hard to pick reasonable values of uk = log xk/xk−1 from
limited prior information I. For this, we will need the identity

〈xk〉 ≡
∫

dKx xkπ3(x) =
λk

λk − 1
〈xk−1〉 (k = 1, 2, . . . , K). (21)

Constraining 〈xk〉 = xk and solving for λk, we obtain λk = xk/(xk − xk−1), in agreement
with (14). Note that the existence of the first marginal moments 〈xk〉 requires that λk > 1.

4.2. Sampling from π3

Sampling from π3 is trivial because of the independence of the uk in u space (19). To
produce a sample x′ ∼ π3(x) given the hyperparameter x0, compute the corresponding
rate parameters {λk}K

k=1 from (14), and use them in (19) to obtain a sample u′ ∼ π3(u).
The desired x′ is then obtained from u′ using the transformation (16).

5. Application: The VTR Problem

We now present a relatively simple but realistic instance of the problem of measuring
resonance frequencies, which will allow us to illustrate the above ideas. The VTR problem
consists of measuring human vocal tract resonance (VTR) frequencies x for each of five rep-
resentative vowel sounds taken from the CMU ARCTIC database [16]. The VTR frequencies
x describe the vocal tract transfer function T(x) and are fundamental quantities in acoustic
phonetics [17]. The five vowel sounds are recorded utterances of the first vowel in the
words W = {shore, that, you, little, until}. In order to achieve high-quality VTR frequency
estimates x̂, only the quasi-periodic steady-state part of the vowel sound is considered for
the measurement. The data D, thus, consists of a string of highly correlated pitch periods.
See Figure 3 for an illustration of these concepts.
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Figure 3. The VTR problem for the case (D := until, K := 10). Left panel: The data D, i.e., the quasi-periodic steady-state
part, consist of 3 highly correlated pitch periods. Right panel: Inferred VTR frequency estimates {x̂k}K

k=1 for K := 10
at 3 sigma. They describe the power spectral density of the vocal tract transfer function |T(x)|2, represented here by
25 posterior samples and compared to the Fast Fourier Transform (FFT) of D. All x̂k are well resolved, and most have error
bars too small to be seen on this scale.

The measurement itself is formalized as inference using the probabilistic model (1).
The model assumed to underlie the data is the sinusoidal regression model introduced
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in [18]; due to limited space, we only describe it implicitly. The sinusoidal regression model
assumes that each pitch period d ∈ D can be modeled as

dt = f (t; A, α, x) + σet where et ∼ N (0, 1), (t = 1, 2, . . . , T), (22)

where d = {dt}T
t=1 is a time series consisting of T samples. The model function

f (t; A, α, x) =
K

∑
k=1

[Ak cos(xkt) + AK+k sin(xkt)] exp{−αkt}+
L

∑
�=1

A2K+�t�−1 (23)

consists of a sinusoidal part (first ∑) and a polynomial trend correction (second ∑). Note
the additional model parameters θ = {A, α, σ, L}. Formally, given the prior p(θ) ([18],
Section 2.2), the marginal likelihood L(x) is then obtained as L(x) =

∫
dθL(x, θ)p(θ),

where the complete likelihood L(x, θ) is implicitly given by (22) and (23). Practically, we
just marginalize out θ from samples obtained from the complete problem p(D, x, θ|I).

For inference, the computational method of choice is nested sampling [1] using the
dynesty library [19–23], which scales roughly as O(K2) [24]. Since the VTR problem is
quite simple (Hi(K) ∼ 30 nats), we only perform single nested sampling runs and take the
obtained log Zi(K) and Hi(K) as point estimates. Full details on the experiments and data
are available at https://github.com/mvsoom/frequency-prior.

5.1. Experiment I: Comparing π2 and π3

In Experiment I, we perform a high-level comparison between π2 and π3 in terms of
evidence (4) and information (6). The values of the hyperparameters used in the experiment
are listed in Table 1. We did not include π1 in this comparison as the label switching
problem prevented convergence of nested sampling runs for K ≥ 4. The (a, b) bounds for
π2 were based on loosely interpreting the VTRs as formants and consulting formant tables
from standard works [25–30]. These allowed us to compile bounds up until the fifth formant
such that Kmax = 5. For π3, we simply applied a heuristic where we take xk = k × 500 Hz.
We selected x0 empirically (although a theoretical approach is also possible [31]), and xmax
was set to the Nyquist frequency. The role of xmax is to truncate π3 in order to avoid aliasing
effects, since the support of π3(xi) is unbounded from above. We implemented this by
using the following likelihood function in the nested sampling program:

L′(x) =

{
L(x) if xk ≤ xmax for all (k = 1, 2, . . . , K)

0 otherwise.
(24)

First, we compare the influence of π2 and π3 on model selection. Given D ∈ W, the
posterior probability of the number of resonances K is given by the following.

pi(K) =
Zi(K)

∑K′ Zi(K′)
(K = 1, 2, . . . , Kmax). (25)

The results in the top row of Figure 4a are striking: while p2(K) shows individual prefer-
ences based on D, p3(K) prefers K = Kmax unequivocally.
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Figure 4. (a) Model selection in Experiment I (top row) and Experiment II (bottom row). (b) In Experiment I, π2 and π3

are compared in terms of evidence [log Zi(K)] and uninformativeness [Hi(K)] for each (D, K). The arrows point from π2 to
π3 and are color-coded by the value of K. For small values of K, the arrow lengths are too small to be visible on this scale.

Second, in Figure 4b, we compare π2 and π3 directly in terms of differences in evidence
[log Zi(K)] and uninformativeness [Hi(K)] for each combination (D, K).

Arrows pointing eastward indicate Z3(K) > Z2(K). The π3 prior dominates the π2
prior in terms of evidence, for almost all values of K, indicating that π3 places its mass in
regions of higher likelihood or, equivalently, that the data were much more probable under
π3 than π2. This implies that the hint of π3 at more structure beyond K > Kmax should be
taken serious–we investigate this in Section 5.2.

Arrows pointing northward indicate H3(K) > H2(K), i.e., π3 is less informative than
π2, since more information is gained by updating from π3 to P3 than from π2 to P2. It is
observed that π2 and π3 are roughly comparable in terms of (un)informativeness.

5.2. Experiment II: ‘Free’ Analysis

We now freely look for more structure in the data by letting K vary up until Kmax = 10.
This goes beyond the capacities of π1 (because of the label switching problem) and π2
(because no data are available to set the (a, b) bounds). Thus, the great advantage of π3
is that we can use a simple heuristic to set x0 and let the model perform the discovering
without worrying about convergence issues or the obtained evidence values. The bottom
row in Figure 4a shows that model selection for the VTR problem is well-defined, with
the most probable values of K ≤ 10, except for D = until. That case is investigated in
Figure 3, where the need for more VTRs (higher K) is apparent from the unmodeled broad
peak centered at around 3000 Hz in the FFT power spectrum (right panel). Incidentally,
this spectrum also shows that spectral peaks are often resolved into more than one VTR,
which underlines the importance of using a prior that enables trouble-free handling of
multiplets of arbitrary order. A final observation from the spectrum is the fact that the
inferred x̂k differs substantially from the supplied values in x (Table 1), which hints at the
weak inductive bias underlying π3.

6. Discussion

It is only when the information in the prior is comparable to the information
in the data that the prior probability can make any real difference in parameter
estimation problems or in model selection problems ([32], p. 9).

Although the weakly informative prior for resonance frequencies π3 is meant to
be overwhelmed, its practical advantage (i.e., solving the label switching problem) will
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nonetheless persist, making a real difference in model selection problems even when “the
information in the prior” is much smaller than “the information in the data”. In this sense,
π3 is quite unlike the prior referenced in the above quote. Since it will be overwhelmed,
all it has to do is provide a reasonable density everywhere (which it does), be easily
parametrizable (which it is), and be easy to sample from (which it is).

Thus, we hope that this prior can enable the use of robust evidence-based methods
for a new class of problems, even in the presence of multiplets of arbitrary order. The
prior is compatible with off-the-shelf exploration algorithms and solves the label switching
problem without any special tuning or post processing. It would be interesting to compare
it to other approaches, e.g., [33], especially in terms of exploration efficiency. It is valid
for any collection of scale variables that is intrinsically ordered, of which frequencies and
wavelengths seem to be the most natural examples. Some examples of recent work where
the prior could be applied directly are:

• Nuclear magnetic resonance (NMR) spectroscopy [34];
• Resonant ultrasound spectroscopy (a standard method in material science) [35];
• In the analysis of atomic spectra [36], such as X-ray diffraction [37];
• Accurate modeling of instrument noise (in this case LIGO/Virgo noise) [38];
• Model-based Bayesian analysis in acoustics [39].
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Abstract: The classical Density Functional Theory (DFT) is introduced as an application of entropic
inference for inhomogeneous fluids in thermal equilibrium. It is shown that entropic inference
reproduces the variational principle of DFT when information about the expected density of particles
is imposed. This process introduces a family of trial density-parametrized probability distributions
and, consequently, a trial entropy from which the preferred one is found using the method of
Maximum Entropy (MaxEnt). As an application, the DFT model for slowly varying density is
provided, and its approximation scheme is discussed.

Keywords: entropic inference; relative entropy; density functional theory; contact geometry; optimal
approximations

1. Introduction

The Density Functional Theory was first developed in the context of quantum me-
chanics and only later extended to the classical regime. The theory was first introduced
by Kohn and Hohenberg (1964) [1] as a computational tool to calculate the spatial den-
sity of an electron gas in the presence of an external potential at zero temperature. Soon
afterwards, Mermin provided the extension to finite temperatures [2]. Ebner, Saam, and
Stroud (1976) [3] applied the idea to simple classical fluids, and Evans (1979) provided a
systematic formulation in his classic paper [4]: “The nature of the liquid–vapour interface
and other topics in the statistical mechanics of non-uniform, classical fluids”.

The majority of physicists and chemists today are aware of the quantum DFT and the
Kohn–Sham model [5], while fewer are familiar with the classical DFT; a historical review
of quantum DFT and its vast variety of applications is found in [6,7]. The classical DFT,
similarly, is a “formalism designed to tackle the statistical mechanics of inhomogeneous
fluids” [8], which has been used to investigate a wide variety of equilibrium phenomena,
including surface tension, adsorption, wetting, fluids in porous materials, and the chemical
physics of solvation.

Just as the Thomas–Fermi–Dirac theory is usually regarded as a precursor of quantum
DFT, van der Waals’ thermodynamic theory of capillarity under the hypothesis of a contin-
uous variation of density [9] can be regarded as the earliest work on classical DFT without
a fundamental proof of existence for such a variational principle.

“The long-term legacy of DFT depends largely on the continued value of the DFT
computer programs that practitioners use daily” [6]. The algorithms behind the com-
puter programs, all starting from an original Hartree–Fock method to solve the N-particle
Schrödinger equation, have evolved with many approximations and extensions imple-
mented over time by a series of individuals; although the algorithms produce accurate
results, they do not mention the HK variational principle. Without the variational principle,
the computer codes are suspected of being ad hoc or intuitively motivated without a solid
theoretical foundation; therefore, the DFT variational principle not only scientifically justi-
fies the DFT algorithms, but it also provides us with a basis to understand the repeatedly
modified algorithms behind the codes.
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In this work, we derive the classical DFT as an application of the method of maximum
entropy [10–14]. This integrates the classical DFT with other formalisms of classical statisti-
cal mechanics (canonical, grand canonical, etc.) as an application of information theory.
Our approach not only enables one to understand the theory from the Bayesian point of
view, but also provides a framework to construct equilibrium theories on the foundation of
MaxEnt. We emphasize that our goal is not derive an alternative to DFT. Our goal is purely
conceptual. We wish to find a new justification or derivation of DFT that makes it explicit
how DFT fits within the MaxEnt approach to statistical mechanics. The advantage of such
an understanding is the potential for future applications that are outside the reach of the
current version of DFT.

In Section 2, we briefly review entropic inference as an inference tool that updates
probabilities as degrees of rational belief in response to new information. Then, we show
that any entropy maximization produces a contact structure that is invariant under the
Legendre Transformations; this enables us to take advantage of these transformations for
maximized entropy functions (functionals here) found from constraints other than those of
thermal equilibrium, as well as thermodynamic potentials.

In Section 3, we briefly review the method of relative entropy for optimal approxi-
mation of probabilities, which allows us to derive and then generalize the Bogolyubov
variational principle. Then, we apply it for the special case wherein the trial family of
probabilities are parametrized by the density function n(x).

In Section 4, the Density Functional formalism is introduced as an extension of the
existing ensemble formalisms of statistical mechanics (canonical, grand canonical, etc.), and
we show that the core DFT theorem is an immediate consequence of MaxEnt; we prove that
in the presence of an external potential v(x), there exists a trial density functional entropy
Sv(E; n] maximized at the equilibrium density. We also prove that this entropy maximiza-
tion is equivalent to minimization of a density functional potential Ω(β; n] given by

Ωv(β; n] =
∫

d3xv(x)n(x) + F(β; n] (1)

where F(β; n] is independent of v(x). This formulation achieves two objectives. (i) It
shows that the density functional variational principle is an application of MaxEnt for
non-uniform fluids at equilibrium, and therefore, varying the density n(x) in Sv(E; n] does

not imply that the functional represents entropy of any non-equilibrium system. This trial
entropy, although very useful, is just a mathematical construct that allows us to incorporate
constraints that are related to one another by definition. (ii) By this approach, we show that
the Bayesian interpretation of probability liberates the fundamental theorem of the DFT
from an imaginary grand-canonical ensemble, i.e., the thermodynamic chemical potential
is appropriately defined without the need to define microstates for varying numbers of
particles.

Finally, in Section 5, as an illustration, we discuss the already well-known example
of a slowly varying inhomogeneous fluid. We show that our entropic DFT allows us to
reproduce the gradient approximation results derived by Evans [4]. There are two different
approximations involved: (i) rewriting the non-uniform direct correlation function in
terms of the uniform one and (ii) the use of linear response theory to evaluate the Fourier
transform of direct correlation functions. The former assumes that the density is uniform
inside each volume element, and the latter assumes that in of densities for neighboring
volume elements is small compared to their average.

2. Entropic Inference

A discussion of the method of maximum entropy as a tool for inference is found
in [14]. Given a prior Probability Distribution Function (PDF) Q(X), we want to find the
posterior PDF P(X) subject to constraints on expected values of functions of X.
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Formally, we need to maximize the relative entropy

Sr[P|Q] ≡ −∑
X
(PlogP − PlogQ) , (2)

under constraints Ai = ∑X P(X)Âi(X) and 1 = ∑X P(X), where Ais are real numbers, Âis
are real-valued functions on the space of X, and 1 ≤ i ≤ m for m number of constraints.

The maximization process yields the posterior probability

P(X) = Q(X)
1
Z

e−∑i αi Âi(X) , where Z = ∑
X

Q(X)e−∑i αi Âi(X) , (3)

and αis are Lagrange multipliers associated with Ais.
Consequently, the maximized entropy is

S = ∑
i

αi Ai + logZ . (4)

Now we can show that the above entropy readily produces a contact structure, we can
calculate the complete differential of Equation (4) to define the vanishing one-form ωcl as

ωcl ≡ dS − ∑
i

αidAi = 0 . (5)

Therefore, any classical entropy maximization with m constraints produces a contact
structure {T, ωcl} in which manifold T has 2m + 1 coordinates {q0, q1, . . . qm, p1, . . . , pm}.

The physically relevant manifold M is an m-dimensional sub-manifold of T on which
ωcl vanishes; i.e., M is determined by 1 + m equations:

q0 ≡ S({Ai}) , pi ≡ αi =
∂S
∂Ai

. (6)

The Legendre Transformations, which are defined as

q0 −→ q0 −
l

∑
j=1

pjqj , (7)

qi −→ pi , pi −→ −qi , for 1 ≤ i ≤ l ,

are coordinate transformations on space T under which ωcl is conserved. It has been
shown [15,16] that the laws of thermodynamics produce a contact structure conforming to
the above prescription. Here, we are emphasizing that the contact structure is an immediate
consequence of MaxEnt, and therefore, it can be utilized in applications of information
theory beyond thermodynamics.

3. MaxEnt and Optimal Approximation of Probabilities

The posterior PDF found from entropic inference is usually too complicated to be
used for practical purposes. A common solution is to approximate the posterior PDF with
a more tractable family of PDFs {pθ} [17]. Given the exact probability p0, the preferred
member of tractable family pθ∗ is found by maximizing the entropy of pθ relative to p0:

δSr[pθ |p0]

δθ

∣∣∣
θ=θ∗

= 0 . (8)

The density functional formalism is a systematic method in which the family of trial
probabilities is parametrized by the density of particles; in Section 4, we shall use the
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method of maximum entropy to determine the family of trial distributions parametrized
by n(x), pθ ≡ pn. So, we can rewrite Equation (8) as

δ

δn(x′)

[
Sr[pn|p0] + αeq[N −

∫
d3xn(x)]

]
n(x)=neq(x)

= 0 . (9)

We will see that the canonical distribution itself is a member of the trial family;
therefore, in this case, the exact solution to Equation (9) is p0 itself:

pn

∣∣∣
n(x)=neq(x)

= p0 . (10)

4. Density Functional Formalism

An equilibrium formalism of statistical mechanics is a relative entropy maximization
process consisting of three crucial elements: (i) One must choose the microstates that
describe the system of inference. (ii) The prior is chosen to be uniform. (iii) One must select
the constraints that represent the information that is relevant to the problem at hand.

In the density ensemble, microstates of the system are given as positions and momenta
of all N particles of the same kind, given the uniform prior probability distribution

Q({�x1, . . . ,�xN ;�p1, . . . ,�pN}) = constant. (11)

Keeping in mind that we are looking for thermal properties of inhomogeneous

fluids, it is natural to choose the density of particles n(x) as a computational constraint
and the expected energy E as a thermodynamic constraint, in which n(x) represents the
inhomogeneity and E defines the thermal equilibrium.

Note that all constraints (computational, thermal, etc.) in the framework can be
incorporated as inferential constraints and can be imposed as prescribed in Section 2.

The density constraint holds for every point in space; therefore, we have 1 + 1 +R3

constraints—one for normalization, one for total energy, and one for density of particles at
each point in space; thus, we have to maximize the relative entropy

Sr[P|Q] = − 1
N!

∫
d3N xd3N p(PlogP − PlogQ) ≡ −Trc(PlogP − PlogQ), (12)

subject to constraints

1 =〈1〉, E = 〈Ĥv〉, (13a)

n(x) =〈n̂x〉 where
∫

d3xn(x) = N, (13b)

where 〈.〉 ≡ 1
N!

∫
(.)Pd3N xd3N p. The classical Hamiltonian operator Ĥ and the particle

density operator n̂x are given as

Ĥv ≡
N

∑
i=1

v(xi) + K̂(p1, . . . , pN) + Û(x1, . . . , xN), (14)

n̂x≡
N

∑
i

δ(x − xi). (15)

The density n(x) is not an arbitrary function; it is constrained by a fixed total number
of particles, ∫

d3xn(x) = N. (16)
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Maximizing (12) subject to (13) gives the posterior probability P(x1, . . . , xN ; p1, . . . , pN) as

P =
1

Zv
e−βĤv−

∫
d3xα(x)n̂x under condition

∫
d3xn(x) = N. (17)

where α(x) and β are Lagrange multipliers.
The Lagrange multiplier function α(x) is implicitely determined by

δlogZv

δα(x)
= −n(x) (18)

and by Equation (16)

−
∫

d3x
δlogZv

δα(x)
= N . (19)

Substituting the trial probabilities from (17) into (12) gives the trial entropy Sv(E;n] as

Sv(E; n] = βE +
∫

d3xα(x)n(x) + logZv, (20)

where Zv(β; α] is the trial partition function defined as

Zv(β; α] = Trce−βĤv−
∫

d3xα(x)n̂x . (21)

The equilibrium density neq(x) is that which maximizes Sv(E;n] subject to
∫

d3xn(x) =
N:

δ

δn(x′)

[
Sv(E; n] + αeq[N −

∫
d3xn(x)]

]
= 0 for fixed E. (22)

Next, perform a Legendre transformation and define the Massieu functional S̃v(β, n] as

S̃v ≡ Sv − βE, (23)

so that we can rewrite Equation (22) as

δ

δn(x′)

[
S̃v(β; n]− αeq

∫
d3xn(x)

]
= 0 for fixed β . (24)

Combine (20), (23), and (24) and use the variational derivative identity δn(x)
δn(x′) = δ(x − x′)

to find ∫
d3x

[
δlogZv(β; α]

δα(x)
+ n(x)

]
δα(x)
δn(x′)

= αeq − α(x′). (25)

The LHS of equation (25) vanishes by (16), and therefore, the RHS must vanish for an
arbitrary n(x), which implies that

α(x) = αeq , and
δlogZv

δα(x)

∣∣∣
αeq

= −neq(x) . (26)

Substituting (26) into (17) yields the equilibrium probability distribution

P∗(x1, . . . , xN ; p1, . . . , pN) =
1

Z∗
v

e−βĤv−αeq
∫

d3xn̂x =
1

Z∗
v

e−βĤv−αeq N (27)

where Z∗
v (β, αeq) = Trce−βĤv−αeq N .

From the inferential point of view, the variational principle for the grand potential

and the equilibrium density [4] is proved at this point; we showed that for an arbitrary
classical Hamiltonian Ĥv, there exists a trial entropy Sv(E; n(x)] defined by Equation (20),
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which assumes its maximum at fixed energy and varying n(x) under the condition∫
d3xn(x) = N at the equilibrium density and gives the posterior PDF (Equation (27))

equal to that of the canonical distribution.
The massieu function S̃v(β; n(x)] from Equation (23) defines the density functional

potential Ωv(β; n(x)] by

Ωv(β; n] ≡ −S̃v(β; n]
β

= −
∫

d3x
α(x)

β
n(x)− 1

β
logZv(β; α] , (28)

so that the maximization of Sv(E; n] (20) in the vicinity of the equilibrium is equivalent to
the minimization of Ωv(β; n(x)] (28) around the same equilibrium point

δ

δn(x′)

[
Ωv(β; n] +

αeq

β

∫
d3xn(x)

]
= 0 . (29)

After we find Ωv, we just need to recall that α(x) = −β δΩv
δn(x) and substitute in

Equation (26) to recover the “core integro-differential equation” [4] of the DFT as

∇
( δΩ(β; n]

δn(x)

)
eq
= 0 (30)

which implies that
Ωv;eq ≤ Ωv(β; n], (31)

where
Ωv,eq(β; n] = −αeq

β

∫
d3xn(x)− 1

β
logZ∗

v (β, αeq). (32)

From Equation (28), it is clear that

Ωv(β; n] =
∫

d3xv(x)n(x) + 〈K̂ + Û〉 − Sv(E; n]
β

. (33)

It is convenient to define the intrinsic density functional potential Fv as

Fv(β; n] ≡ 〈K̂ + Û〉 − Sv

β
(34)

to have
Ωv(β; n] =

∫
v(x)n(x) + Fv(β; n] . (35)

Now we are ready to restate the fundamental theorem of the classical DFT:

Theorem 1. The intrinsic functional potential Fv is a functional of density n(x) and is independent
of the external potential:

δFv(β; n]
δv(x′)

= 0 for fixed β and n(x). (36)

Proof. The crucial observation behind the DFT formalism is that P and Zv depend on
the external potential v(x) and the Lagrange multipliers α(x) only through the particular
combination ᾱ(x) ≡ βv(x) + α(x). Substitute Equation (20) into (34) to get

βFv(β; n] = logZ(β; ᾱ] +
∫

d3xᾱ(x)n(x), (37)
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where Z(β; ᾱ] = Zv(β; α] = Trce−β(K̂+Û)−
∫

d3xᾱ(x)n̂x . The functional derivative of βFv at
fixed n(x) and β is

δ(βFv(β; n])
δv(x′)

∣∣∣
β,n(x)

=
∫

d3x′′
δ

δᾱ(x′′)

[
logZ(β; ᾱ] +

∫
d3xᾱ(x)n(x)

] δᾱ(x′′)
δv(x′)

∣∣∣
β,n(x)

. (38)

Since n(x′) = − δlogZ(β;ᾱ]
δᾱ(x′) , keeping n(x) fixed is achieved by keeping ᾱ(x) fixed:

δᾱ(x′′)
δv(x′)

∣∣∣
β,n(x)

=
δᾱ(x′′)
δv(x′)

∣∣∣
β,ᾱ(x)

= 0 , (39)

so that
δFv(β, n]

δv(x′)

∣∣∣
β,n(x)

= 0 , (40)

which concludes the proof; thus, we can write down the intrinsic potential as

F(β, n(x)] = Fv(β, n(x)] . (41)

Remark 1. Note that since a change in the external potential v(x) can be compensated by a suitable
change in the multiplier α(x) in such a way as to keep ᾱ(x) fixed, such changes in v(x) will have
no effect on n(x). Therefore, keeping n(x) fixed on the left-hand side of (37) means that ᾱ(x) on the
right side is fixed too.

Now, we can substitute Equation (35) into (29) and define the chemical potential

μ ≡ −αeq

β
, (42)

to have
δ

δn(x′)

[ ∫
d3xv(x)n(x) + F(β; n]− μ

∫
d3xn(x)

]
n(x)=neq(x)

= 0 . (43)

We can also substitute (35) into (30) to find

v(x) +
δF

δn(x)

∣∣∣
eq
= μ, (44)

which allows us to define and interpret μin(x; n] ≡ δF
δn(x) as the intrinsic chemical po-

tential of the system. To proceed further, we also split F into that of ideal gas plus the
interaction part as

F(β; n] = Fid(β; n]− φ(β; n]. (45)

Differentiating with δ
δn(x) gives

βμin(x; n] = log(λ3n(x))− c(x; n] , (46)

where, for a monatomic gas, λ =
(

2πh̄2

m

)1/2
. The additional one-body potential

c(x; n] = δφ
δn(x) is related to the Ornstein–Zernike direct correlation function of non-uniform

fluid [18–20] by

c(2)(x, x′; n] ≡ δc(x; n]
δn(x′)

=
δ2φ(β; n]

δn(x)δn(x′)
. (47)
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5. Slowly Varying Density and Gradient Expansion

We have proved that the solution to Equation (43) is the equilibrium density. However,
the functional F(β; n] needs to be approximated because the direct calculation of F involves
calculating the canonical partition function, the task that we have been avoiding to begin
with. Therefore, different models of the DFT may vary in their approach to guessing F(β; n].
Now assume that we are interested in a monatomic fluid with a slowly varying external
potential. In our language, it means that we use the approximation

∫
d3x ≡ ∑(Δx)3, where

Δx is much longer than the density correlation length, and the change in density in each
volume element is small compared to the average density. This allows us to interpret each
volume element (Δx)3 as a fluid at grand canonical equilibrium with the rest of the fluid as
its thermal and particle bath.

Similarly to [4], we expand F(β; n] as

F(β; n] =
∫

d3x
[

f0(n(x)) + f2(n(x))|∇n(x)|2 +O(∇4n(x))
]

. (48)

Differentiating with respect to n(x), we have

μin(x; n] =
δF

δn(x)
= f ′0(n(x))− f ′2(n(x))|∇n(x)|2 − 2 f2(n(x))∇2n(x). (49)

In the absence of an external potential, v(x) = 0, the second and the third terms in the
RHS of (49) vanish, and from Equation (44), μin = μ; therefore, we have

f ′0(n) = μ(n(x)), (50)

where μ(n(x)) is the chemical potential of a uniform fluid with density n = n(x). On the
other hand, with the assumption that each volume element behaves as if it is in grand
canonical ensemble for itself under influence of both external potential and additional
one-body interaction c(x; n], we know that the second derivative of F is related to Ornstein–
Zernike theory by

β
δ2F

δn(x)δn(x′)
=

δ(x − x′)
n(x)

− c(2)(x, x′; n] . (51)

Therefore we have a Taylor expansion of F around the uniform density as

F[n(x)] =F[n] +
∫

d3x
[ δF

δn(x)

]
neq(x)

ñ(x) (52)

+
1

2β

∫ ∫
d3xd3x′

[ δ(x − x′)
n(x)

− c(2)(|x − x′|; n]
]

neq(x)
ñ(x)ñ(x′) + . . . ,

where ñ(x) ≡ n(x)− n, and c(2)(|x − x′|; n] is the direct correlation function of a uniform
fluid with density n = n(x). The Fourier transform of the second integral in (52) gives

1
2β

∫ ∫
d3xd3x′

[ δ(x − x′)
n(x)

− c(2)(|x − x′|; n]
]

neq(x)
ñ(x)ñ(x′) (53)

=
−1

2βV ∑
q

(
c(2)(q; n]− 1

n(q)

)
ñ(q)ñ(−q) ,

and comparing with (48) yields

f ′′0 (n) =
−1
β

(a(n)− 1
n
) , f2(n) =

−b(n)
2β

, (54)
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where the functions a(n) and b(n) are defined as coefficients of the Fourier transform of
the Ornstein–Zernike direct correlation function by c2(q; n] = a(n(q)) + b(n(q))q2 + . . . .
b(n) is evaluated with linear response theory to find that

f2(n(x)) =
1

12β

∫
d3x′|x − x′|2c(2)(|x − x′|; n]. (55)

We can substitute Equations (55) and (50) into (49) and use the equilibrium identity
∇μ = 0 to find the integro-differential equation

∇
[

v(x) + μ(n(x))− f ′2(n(x))|∇n(x)|2 − 2 f2(n(x))∇2n(x)

]
n(x)=neq(x)

= 0, (56)

which determines the equilibrium density n̂eq(x) in the presence of external potential v(x)
given the Ornstein–Zernike direct correlation function of uniform fluid c(2)[n(x), |x − x′|].

6. Conclusions

We have shown that the variational principle of classical DFT is a special case of
applying the method of maximum entropy to construct optimal approximations in terms
of the variables that capture the relevant physical information, namely, the particle density
n(x). It is worth emphasizing once again: In this paper, we have pursued the purely
conceptual goal of finding how the DFT fits within the MaxEnt approach to statistical
mechanics. The advantage of achieving such an insight is the potential for future appli-
cations that lie outside the reach of the current versions of DFT. As an illustration, we
have discussed the already well-known example of a slowly varying inhomogeneous fluid.
Future research can be pursued in three different directions: (i) To show that the method of
maximum entropy can also be used to derive the quantum version of DFT, (ii) to approach
the Dynamic DFT [21], generalizing the idea to non-equilibrium systems by following the
theory of maximum caliber [22], and (iii) to revisit the objective of Section 5 and construct
weighted DFTs [23,24] by using the method of maximum entropy.
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