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Preface to ”Energy Harvesting and Energy Storage

Systems”

Energy harvesting or the process of acquiring energy from the surrounding environment has

been a continuous human endeavor throughout history. The research and development on energy

harvesting and energy storage methodology are growing very rapidly. Hence, it is necessary to

summarize recent advances in energy harvesting and energy storage systems. This book covers

various aspects of optimization algorithms, evaluations of wind energy turbines, electrostatic

vibration energy transducers, battery management systems, thermoelectric generators, distribution

networks, issues of renewable energy micro-grid interfacing, fuzzy-logic-controller-based direct

power controls, parameter estimations of fuel cells, and ultra-low-power supercapacitors. This book

is beneficial for young researchers (Bachelor, Masters, and Doctoral students), who are new to this

area. We would like to take this opportunity to thank all of the authors for their excellent efforts, as

well as the reviewers for their insightful remarks and suggestions.

Shailendra Rajput, Moshe Averbukh, and Noel Rodriguez

Editors
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Energy Harvesting and Energy Storage Systems

Shailendra Rajput 1,2,* , Moshe Averbukh 1 and Noel Rodriguez 3

1 Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel; mosheav@ariel.ac.il
2 Department of Physics, University Centre for Research & Development, Chandigarh University,

Mohali 140431, India
3 Department of Electronics and Computer Technology, University of Granada, 18011 Granada, Spain;

noel@ugr.es
* Correspondence: shailendrara@ariel.ac.il

Sustainable development systems are based on three pillars: economic development,
environmental stewardship, and social equity. One of the guiding principles for finding
the balance between these pillars is to limit the use of non-renewable energy sources.
A promising method to resolve this challenge is harvesting energy from the ambient
environment and converting it into electrical power. The contemporary development of
novel energy generation technologies, such as solar, wind, and thermal energy, is in high
demand to facilitate the replacement of fossil fuel energy resources with cleaner renewable
sources. Energy harvesting systems have emerged as a prominent research area, and have
continued to develop at a rapid pace.

Modern technologies, including portable electronic devices, electrical transportation,
communication systems, and smart medical equipment, need efficient energy storage sys-
tems. Electrical energy storage devices are also used for smart grid control, grid stability,
and peak-power saving, as well as for frequency and voltage regulation. Electricity gener-
ated from renewable sources (e.g., solar power and wind energy) cannot always deliver an
immediate response to demand because of fluctuating power supplies. Hence, preserving
the harvested electrical energy for future requirements has been suggested. The present
status of electrical energy storage technologies is far from the necessary demands.

In this Special Issue, thirteen papers are published, covering various aspects of opti-
mization algorithms, evaluations of wind energy turbines, electrostatic vibration energy
transducers, battery management systems, thermoelectric generators, distribution net-
works, issues of renewable energy micro-grid interfacing, fuzzy-logic-controller-based
direct power controls, parameter estimations of fuel cells, and ultra-low-power supercapac-
itors.

Sharma et al. [1] proposed a hybrid version of the whale optimization algorithm
(WOA) and particle swarm optimization (PSO) algorithm (WOAPSO) for the parameter
optimization of PV cells. The exploitation ability of PSO with adaptive weight function
was exploited in the pipeline mode with a WOA to enhance the ability and convergence
speed of the basic PSO. The performance of the proposed hybrid algorithm was compared
with six different optimization algorithms in terms of the root mean square error and rate
of convergence. The simulation result showed that the proposed hybrid algorithm not
only produced optimized parameters at different irradiation levels, but also estimated the
minimum root mean square error, even at a low level of irradiation.

The tunicate swarm algorithm (TSA) was employed to estimate the Photowatt-PWP201
PV panel module parameters under standard temperature conditions [2]. It was concluded
that the TSA is an effective and robust technique to estimate the unknown optimized
parameters of the solar PV module model under standard operating conditions. The
simulation results were compared with four different pre-existing optimization algorithms:
the gravitational search algorithm (GSA); a hybrid of the particle swarm optimization and
gravitational search algorithm (PSOGSA); the sine cosine algorithm (SCA); and the whale
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optimization algorithm (WOA). The comparison of results broadly demonstrated that the
TSA outperforms the existing optimization algorithms in terms of the root mean square
error (RMSE) and convergence rate.

Greenberg et al. [3] evaluated wind energy turbines using the volatility of wind and
price. In their study, the real options analysis approach for the valuation of wind energy
turbines was applied. It was hypothesized that the real options analysis (ROA) method is
better than the alternative due to the nature of wind energy production uncertainties.

Ishida and Tanzawa proposed an integrated AC–DC converter in 1 V CMOS for
electrostatic vibration energy transducer with an open circuit voltage of 10 V [4]. The
proposed AC–DC converter did not require external components for rectification and
power conversion. It can be integrated in the same IoT chip with a small overhead area
of 0.1 mm2. This converter can provide a better option for electrostatic energy harvesting
where the cost is the highest priority.

Koketsu and Tanzawa designed a charge pump circuit and system with input impedance
modulation for a flexible-type thermoelectric generator with high-output impedance [5].
The circuit system was also measured with a flexible-type TEG and a thermal source. The
system converted thermal energy into power to 30 µW at 2.5 V. By adding a full-bridge
rectifier between the energy transducer and the proposed converter, the control circuit could
work even with other energy transducers such as piezoelectric or electrostatic vibration
energy transducers with an AC equivalent voltage source and high-output impedance.

Lee et al. [6] proposed a battery efficiency calculation formula to manage battery states.
The proposed battery efficiency calculation formula used the charging time, charging
current, and battery capacity. An algorithm that can accurately determine the battery state
was proposed by applying the proposed state of charge (SoC) and state of health (SoH)
calculations. To reduce the initial error of the Coulomb counting method (CCM), the SoC
could be calculated accurately by applying the battery efficiency to the open circuit voltage
(OCV). During the charging and discharging process, the internal resistance of a battery
increases and the constant current (CC) charging time decreases. The SoH can be predicted
from the CC charging time of the battery and the battery efficiency, as proposed in this
paper. Furthermore, a safe system was implemented during charging and discharging by
applying a fault diagnosis algorithm to reduce the efficiency of the battery. The validity of
the proposed BMS algorithm was demonstrated by applying it in a 3 kW ESS.

An ultra-low-power CMOS supercapacitor storage unit for energy harvesting appli-
cations was presented by Gogolou et al. [7]. The ultra-low current consumption of only
432 nA at 2.3 V proves that the proposed storage unit is ideal for energy harvesting systems,
even for cases with a small input power range. Furthermore, extra modes can be added to
the topology with the usage of external controls, expanding the operational capabilities of
the proposed unit. For instance, the control of an additional charging unit for the backup
battery is a highly beneficial mode that will be added in future studies.

Satish et al. [8] proposed a novel three-phase harmonic power flow algorithm for
unbalanced radial distribution networks in the presence of D-STATCOM devices. This
method used the basic concepts of circuit theory, which can easily be understood. In this
study, the linear loads were modeled as a series combination of resistance and reactance,
and non-linear loads were modeled as constant current sources, with the magnitude and
angle obtained from the current spectra. The harmonic current injections from the D-
STATCOM were assumed to be zero. The proposed FPFA and HPFA were tested on the
IEEE-13 bus URDN, and the results were found to be in accordance with the literature. Test
studies were carried on the IEEE−13 bus and IEEE−34 bus URDN, and the results of the
case studies showed that there was an improvement in the fundamental voltage profile, a
reduction in the fundamental and harmonic power loss, and a reduction in THD% with the
integration of D-STATCOM devices.

Sharma et al. [9] introduced a novel opposition-based arithmetic optimization algo-
rithm (OBAOA) for identifying the unspecified parameters of PEM fuel cells. The proposed
algorithm was tested using ten benchmark test functions (seven unimodal and three mul-
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timodal). Furthermore, the convergence graph, as well as the I-V and P-V characteristic
curves, supported the precision of the anticipated algorithm. The proposed OBAOA tech-
nique was easy to implement, with low computational complexity. The performance of the
proposed algorithm was verified using the Friedman ranking test. The proposed formula-
tion will pique the attention of both researchers and practitioners in the fuel cell community,
due to its capacity to solve problems effectively.

Ahmad et al. [10] proposed a fuzzy logic controller (FLC)-based direct power control
(DPC) method for photovoltaic (PV) cells, which was modelled by modulating microgrids’
point of common coupling (PCC) voltage. They also introduced a modified grid synchro-
nization method through the direct power calculation of PCC voltage and current, instead
of using a conventional phase-locked loop (PLL) system.

Singh et al. [11] employed the sooty tern optimization (STO) algorithm for the param-
eter extraction of solar modules. They implemented the STO algorithm with a single-diode
model on an R.T.C France solar panel and an SS2018 polycrystalline PV module. It was
concluded that the STO is an efficient and reliable technique for estimating the unknown
optimum parameters of a solar PV module model under typical operating conditions.

El-Ela et al. [12] discussed the economic and environmental issues of renewable energy
micro-grid interfacing. The stochastic behavior of renewable resources increases the need
to determine the optimum operation of microgrids. The optimal operation of a typical
microgrid aims to simultaneously minimize the operational costs and the accompanying
emission pollutants over a daily scheduling horizon.

Ammar et al. [13] reviewed energy-harvesting-driven edge devices using task-offloading
approaches. This paper includes a literature review of state-of-the-art joint energy-harvesting
and task-offloading approaches in fog edge computing systems, research efforts on task
offloading in fog edge computing, and the design of patient-centered care systems. The
authors investigated energy-harvesting technologies and energy-storage strategies for
IoMT devices.

We would like to take this opportunity to appreciate and thank all authors for their
outstanding contributions, and the reviewers for their fruitful comments and feedback. We
are thankful to the Editorial Board of the Electronics journal for the opportunity to edit this
Special Issue. Special appreciation should also be given to the Editorial Office staff for their
hard and precise work in maintaining a rigorous peer-review schedule and ensuring the
timely publication of this Special Issue.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The limitedness of the nonrenewable local energy resources in Israel, even in the back-
ground of the later gas fields’ findings, continues to force the state to devote various efforts towards
‘green’ energy development. These efforts include installations, both for the solar and for wind energy,
thus improving the diversity of energy sources. While the standard discounted cash flow (DCF)
method using the net present value (NPV) criterion is extensively adopted to evaluate investments,
the standard DCF method is inappropriate for the rapidly changing investment climate and for
the managerial flexibility in investment decisions. In recent years, the real options analysis (ROA)
technique has been widely applied in many studies for the valuation of renewable energy investment
projects. Taking into account the above background, we apply, in this study, the real options analysis
approach for the valuation of wind energy turbines and apply it to the analysis of wind energy
economic potential in Israel, which is the context of our work. We hypothesize that due to nature of
wind energy production uncertainties, the ROA method is better than the alternative. The novelty
of this paper includes the following: real world wind statistics of the Merom Golan site in Israel
(velocity 3.73 m/s, with a standard deviation of 2.03 m/s), a realistic power generation estimation
(power generation of 1205.84 kW with a standard deviation of about 0.5% in annual value which is
worth about 1.3 M$ per annum), and an economic model to evaluate the profitability of such a project.
We thus discuss the existing challenges of diversifying renewable energy sources in Israel by adding
wind installations. Our motivation is to introduce a method which will allow investors and officials to
take into account uncertainties when deciding in investing in such wind installations. The outcomes
of the paper, which are obtained using the method of Weibull statistics and the Black–Scholes ROA
technique, include the result that market price volatility adds to the uncertainties much more than
any wind fluctuations, provided that the analysis is integrated over a long enough time.

Keywords: wind energy; renewable resources; Black–Scholes model

1. Introduction

Even during prolonged global economic crisis, the worldwide wind power ascent
continues. The world’s wind power capacity, according to the Global Wind Energy Council
(GWEC) report, added 39.1 GW in 2010, growing by 24% during the year, 40.6 GW in
2011, growing by 20.5% per year, and 44.8 GW in 2012 (18.8% growth during the year: 78%
growth in the last three years). Thus, the total installations at the end of 2012 provide up
to 282.6 GW. A huge part of this power was produced in China—first place globally, with
75.3 GW, or 26.7% of the world product (about 30% of the world year’s additions), the and
USA—60.0 GW, or 21.2% of the world product, while Germany, Spain, and India (3rd–5th
places) produced 25.7% together [1].
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Wind energy is now a significant participant in the world’s energy market. The
2012 global wind power market grew by more than 10% compared to 2011, representing
investments of about 56 billion €. The main markets of wind energy are situated in Asia,
North America, and Europe, each of which installs 13–15 GW of new capacity each year.
About half a million people are now employed, corresponding to the European Wind
Energy Association (EWEA) publication, by the wind industry around the world [2].

Considering the growing Israeli energy market, even nowadays, when plentiful
sources of traditional nonrenewable energy such as the vast gas fields that were found in
the Mediterranean Sea off the coast of Israel, Tamar (Tamar gas field [3]), and Leviathan
(Leviathan gas field [4]), with the estimated quantity of 356 and 450 billion cubic meters,
respectively, the possibility of their exhaustion still forces the state, as other numerous
political entities, to devote significant efforts towards ‘green’ energy research and devel-
opment. This is also important from the point of view of reducing carbon emission and
global warming. These efforts are undertaken primarily for developing solar energy, but
also recently for wind energy facilities. Yet, the wind power amount produced in Israel
is rather small compared to the continuously growing global market; however, the recent
steps undertaken by the state are destined to make the situation better.

Israel currently operates a wind farm in Asanyia mountain in the Golan Heights with
an installed capacity of 6 MW (10 turbines reaching a height 50 m (blades included), each
with a power capacity of 600 kW), this is the typical consumption of about five thousand
families. The duty cycle of the wind farm reaches 97%, and electricity production is worth
1 million US$ a year. Indeed, the wind energy potential of Israel is rather restricted due to
moderate or poor wind velocities in most areas and the restricted number of areas with
high average wind speed. In many areas worthy of wind energy development, one is
encountered by the opposition of green groups on landscape conservation grounds and
the influence of the facility on local and migrating birds. Nevertheless, satisfying the Israel
Ministry of Environmental Protection (IMEP) directions, the state of Israel continues efforts
towards the development of additional farms with a 50 MW capacity [5].

As it is emphasized in a document issued by the Israeli Parliament (Knesset), a
better estimate, based on the wind turbines’ technical development, gives a value of more
than 500 MW for the Israeli potential wind energy potential capacity [6]. One of the
prospective areas for the development of efficient wind technology, considering its climatic
characteristics, is the region of Ariel city in Samaria [7], the current research, however, is
devoted to another region [8].

While the generic discounted cash flow (DCF) approach using the net present value
(NPV) criterion is generally adopted to evaluate investments, the DCF method is inap-
propriate for a rapidly changing investment situation (Dixit and Pindyck [9]; Herath and
Park [10]; Lee and Shih [11]) and does not consider managerial flexibility in investment
decisions (Hayes and Abernathy [12]; Hayes and Garvin [13]; Trigeorgis and Mason [14];
Trigeorgis [15]). In the current study, we consider a two-stage approach—one turbine at the
first stage and a field of 50 at the second stage, along with the possibility to withdraw at the
second stage. Hence, the scenario is a one in which managerial flexibility can be practiced.

Currently, the real option analysis method is widely applied in many studies for the
valuation of renewable energy investment projects, for example, Lee and Shih [11] and
Kumbaroğlu, Madlener, and Demirel [16]. See also Boomsma, Meade, and Fleten [17]
and Menegaki [18]. We thus apply in this paper the real options analysis method for
the evaluation of the economic value of wind energy turbines in a specific location. In
particular, we analyze the value of the investment opportunities that add value to the
investment due to managerial flexibility (in the case of energy market price drop, one
may abandon the investment). It is worth mentioning that the option valuation method
has become more sophisticated by using approaches such as the binomial lattice, the
mean reverting jump-diffusion method, and stochastic volatility model. It is also used
for other types of hazards such as technological risks (Deng [18]; Menegaki [19]; Siddiqui,
Marnay, and Wiser [20]), which may include a change in the wind regime, in our case, or
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power output reduction of the turbine. See also Davis and Owens [21] and Baringo and
Conejo [22].

The reasons for the current study are as follows, we are interested in estimating the
profitability of a Merom Golan wind facility. For this:

(1) We calculate the revenue from Merom Golan due to electric energy production.
(2) We show that, taking into account the annual energy production, fluctuations are

rather small; this is contrasted with rather large fluctuations when one considers the
data over a daily basis.

(3) This is then integrated into two economic models; one is the standard discounted
cash flow and the other is the real options analysis.

(4) We finally show that, because of energy price volatility and despite small technical
fluctuations, the correct estimation of the investment is given by the real options
analysis, which takes into account the ability of the investors to abort their investment
after the first stage.

The main purpose of this paper is to study the effect of energy value fluctuations on
the assessment of the profitability of wind turbine facilities using the real option analysis
method. The economic output of a wind turbine installation is a function of its electric
energy output [23–25] and the value of market energy. The electric energy output is a
function of the turbine used and wind speed statistics. The turbine used can be chosen to
have an optimal cut-in velocity (the wind speed level at which the turbine starts to generate
electricity), and the cut-out velocity (the speed level at which the facility hits its alternator
limit and stops producing more power output following increases in wind velocity) [26].
For a more technical discussion, we refer the reader to the results of our previous studies on
wind power production, devoted to the technological appropriateness and environmental
relevance issues [7,27]. See also [28,29]. While the total annual energy output of the
turbine facility can be known to a high certainty, the market prices of energy may vary
indeterminately, and thus should be considered as the most serious investment risk. To
evaluate the financial risk correctly, we suggest employing the real option analysis method,
which is the subject of the current study. In a wider sense, our manuscript contributes to
the risk analysis of Grossman, which is the way a “decentralized economy allocates risk
and investment resources when information is dispersed” [30] (p. 773).

In this paper, we shall describe the various sources of the uncertainties in determining
the economic value of a wind installation. Both in terms of technical parameters, such as
wind velocity change, and the effect on the power output of the turbine. Additionally, in
terms of the market value of the power generated, which is dependent on the value of
competing power generation methods. We then combine the uncertainties to produce the
economic value of the installation using the real option analysis evaluation techniques. On
comparing the different sources of uncertainty, we show that the uncertainty in the market
value of electric power significantly dominates the technical uncertainties.

The structure of the paper is as follows: in the “Materials and Methods” section
we describe the methods of this work, which are the Weibull statistics of wind and the
Black–Scholes analysis of the real option technique. In the “Results” section we describe the
Weibull fit for the site of installation, deriving the relevant parameters; we also introduce
the economic model in terms of its parameters and emphasize the difference between
the DCF and ROA methods for evaluation. Next, in the “Discussion” section, we esti-
mate the power production and power uncertainty for different turbines and compare
this with the economic uncertainty of energy prices, determining that the latter is much
larger. Finally, in the “Conclusion” section, we summarize our conclusions underlining
the dominance of market price fluctuations over technical fluctuations and the benefit of
using the ROA method over the DCF method for a better economic evaluation of the wind
energy facility expedience.
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2. Materials and Methods

In this study we concentrated on the wind speed distribution in the Golan heights
area, using the information available from the meteorological service of the Israel Ministry
of Transport [31], gathered by the Merom Golan meteorological station, one of the 84 Israeli
meteorological facilities, which is situated at the relevant area [32], for the year 2014. The
file used includes 52,066 data points gathered during the specified period. This includes
sample values of the wind speed, one observation for every 10 min or 144 values per day
(except for some non-significant missing values) [33]. We describe the data analytically
using the Weibull probability density function (PDF). This is commonly accepted as the
most appropriate function describing the wind speed statistical frequencies at a given
location in most world locations. These data are essential for the planning of the wind
turbine optimal choice [7].

The Weibull PDF is determined, in addition to a random variable X, representing
here the wind speed, by two parameters, which are location dependent. They are a shape
parameter k (dimensionless) and a scale parameter λ (m/s for the wind speed), which,
together, determine the following PDF form:

f (x; λ, k) =

{

k
λ

(

x
λ

)k−1
e−( x

λ )
k

, x ≥ 0
0, x = 0

Both PDF parameters are important for choosing the best location for the appropriate
wind turbine, which imply the wind farm’s economic value [34].

The wind velocity determines the electric power output. We will evaluate the power
output based on wind statistics and turbine characteristics in the results section. As the
electric power is sold to the users, the remaining question in evaluating the value of the
installation is how much money the user will pay for their power consumption, in other
words, “what is the market value of the power?”, which reflects on the economic value of
the installation. In the following, we describe the methods used for such evaluation.

While the generic discounted cash flow (DCF) approach using the net present value
(NPV) criterion is generally adopted to evaluate investments, the DCF method is inappro-
priate for a rapidly changing investment situation (Dixit and Pindyck [20]; Herath and
Park [21]; Lee and Shih [11]) and does not consider managerial flexibility in investment
decisions (Hayes and Abernathy [23]; Hayes and Garvin [24]; Trigeorgis and Mason [25];
Trigeorgis [26]). In the current study, we consider a two-stage approach—one turbine at
the 1st stage and a field of 50 at the 2nd stage; along with the possibility to withdraw at the
2nd stage. Hence, the scenario is a one in which managerial flexibility can be practiced.

Currently, the real option analysis method is widely applied in many studies for the
valuation of renewable energy investment projects, for example Lee and Shih [11] and
Kumbaroğlu, Madlener, and Demirel [27]. See also Boomsma, Meade, and Fleten [28]
and Menegaki [29]. We thus apply in this paper the real options analysis method for
the evaluation of the economic value of wind energy turbines in a specific location. In
particular, we analyze the value of the investment opportunities that add value to the
investment due to managerial flexibility (in the case of energy market price drop, one
may abandon the investment). It is worth mentioning that the option valuation method
has become more sophisticated by using approaches such as the binomial lattice, the
mean reverting jump-diffusion method, and stochastic volatility model. It is also used
for other types of hazards such as technological risks (Deng [30], Menegaki [29], Siddiqui,
Marnay, and Wiser [31]), which may include a change in the wind regime, in our case, or
power output reduction of the turbine. See also Davis and Owens [32] and Baringo and
Conejo [33].

However, we decided to adopt the basic Black–Scholes equation of a financial mar-
ket [35] because we were focused on the underestimated value of the option to abort the
investment in an environment where it is not possible to foresee the standard deviation
using numerical tools.
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In this study, we analyzed the possibility of installing additional turbines in the
Asanyia mountain in the Golan Heights in order to extract profit from wind-generated
power. We have partly based our study on the known results of wind turbine construction
and use in Israel [36], while part of the numbers presented here are rather rough estimates.
The decision to construct a field, which is a collection of many turbines, can be divided into
two stages: in the 1st stage we build one unit. After building and operating this single unit
for few years and gaining confidence in the technical and financial output, the 2nd stage,
regarding the decision of building the entire turbine field, is made, based on electricity
price at this stage as well as the future predicted energy evaluation.

We evaluate the uncertainty over future electricity market price as an economic value
of an underlying asset of a real option using the Black–Scholes equation [35]:

C = S0 N(d1)− K e−rT N(d2)

where
d1 =

ln(S0/K) + (r + σ2/2)T

σ
√

T
,

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√

T
= d1 − σ

√
T.

We use the following notations: C is the call option value, S0 is the market price
of the underlying asset, K is the exercise price, r is the annual risk-free return, T is the
duration of the period (the number of years) till exercising the real option (constructing
the entire turbine field), and σ is the annualized standard deviation (StD) of the return
of the underlying asset. N is the symbol of the Gaussian cumulative probability density
function (CDF).

3. Results

3.1. Wind Energy Statistics

Several various methods exist for fitting the observed data of the given location [37]
to the PDF. We used the method of the maximum likelihood estimators for PDF fitting [38].
The corresponding Weibull PDF for the wind speed distribution at the Merom Golan site,
together with their distribution histogram, is shown below at Figure 1. (The authors are
willing to share their data set in Excel format with those who wish to replicate the results
of this research).

The figure demonstrates visually that low and moderate winds are widespread, with
a tight condensation at the primary segment, which means that storms are just rare. It
should be noticed that the distribution approximation by a Weibull PDF in this case is not
perfect, although we could nevertheless obtain the wind principal statistical parameters
approximately based on it.

Estimated annual parameters of the wind Weibull distribution were found to be
k = 1.7228 and λ = 4.1206 m/s. In addition, we calculated (excess) kurtosis (a measure of
the PDF sharpness) to be 2.1757, and skewness (a measure of the PDF asymmetry) as 0.0574,
which were calculated to demonstrate the specific type of the Weibull PDF.

The main meaningful statistical parameter for the planning of the wind turbine
installation, the speed mean, was obtained at 3.73 m/s, with standard deviation of 2.03 m/s,
during the given period, with a positive right-skewed tail. This finding, in accordance with
the Israeli Cooperative for Renewable Energy conclusions [39], indicates the possibility of
wind energy exploitation in the investigated region.
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Figure 1. The Weibull PDF diagram for the Merom Golan wind speed distribution (on top of the distribution histogram).

3.2. Economical Model

All the used figures were elaborated in accordance with a proposed scenario as in
Table 1 below, where the real figures can be introduced according to the data of each project
(all prices are given in millions of US$):

Table 1. Input data for the Black–Scholes option value calculation.

Data for the Black–Scholes Option Value

Cost of the first stage’s one turbine building 50
Annual turbine’s profit in the second stage 0.2

Present value of 50 turbines’ profit over 20 years = stock price now (S0) 114.7
Cost of the second stage for each turbine construction 1.2
Number of turbines in the second stage (entire field) 50

Cost of the second stage’s 50 turbines = exercise price of option (K) 60
Number of periods to exercise in years (T) 2

Compounded risk-free interest rate (r) 0.02
Standard deviation of prices of energy or electricity (annualized σ) 0.031

We apply here the technique of real option valuation, as illustrated in Brealey et al. [40]
(p. 584), where we have replaced:

(1) The stock price with the current value of the field, S0 = 114.7 million $US, which is the
present value of 20 years of future operation with an annual profit of 0.2 million $US
per turbine for a field of 50 turbines, discounted with 6% annual cost of capital;

(2) The number of periods to exercise in years (T), with the number of years between the
confirmation of the first stage (one unit) to the decision on the second stage (the field).

We have therefore calculated, at first, the call value, based on the annual StD estimation
of 0.031, as 57.05 million $US. This StD estimation of 0.031 is based on the data of the Electric
Power Monthly report of the U.S. Energy Information Administration (EIA), Table 5.3
“Average Retail Price of Electricity to Ultimate Customers” [41].

Our assumption of the first unit’s building cost is equal, as mentioned above, to 50 mil-
lion $US, where such high expenses of the first turbine’s launching include, among others,
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research and development to adapt the turbine to the specific area under consideration and
the cost of connecting it to the power grid, subtracted by the profit from operation.

We stress that the current work is based on assumed values, and, in this sense, it is an
exercise in applying the real option technique. Future work will depend on a more realistic
estimation of both the investment costs in infrastructure and current energy prices.

Hence, the results indicate that the investment in the first turbine stage is warranted,
and the fact that there is the option to follow-on adds significant value to the investment. It
follows that the net profit of the first stage is 57.05 − 50 = 7.05 million $US for the standard
deviation value of 0.031, according to the following data of Table 2 (in a column for the
case of StD = 0.031), which includes the intermediate values and the option to follow-on:

Table 2. Intermediate and output data for the Black–Scholes option value.

Intermediate and Output Data for Two Assumptions on StD

StD 0.031 0.40
σ
√

T 0.0438 0.5657
d1 15.7146 1.4990
d2 15.6707 0.9333

Delta N(d1) Normal CDF 0.5123 0.9331
Value of the Call Option to Follow-On 57.05 59.48

For comparison with a scenario lacking an option to abandon, the project value is
estimated as the present discounted value of a difference between (i.e., the earnings from)
the future cash flow raised from the second stage realization subtracted by the second stage
building cost, which is subtracted additionally by the first stage building cost.

Applying to our numerical example, this yields just the negative benefit, meaning
merely loss, of the (114.7 − 60)/1.062 − 50 = −1.3 million $US.

However, using StD of 0.031 yields a profit of 7.05 million $US, as was calculated
above. This is so because one can make a choice to abandon the project while it is still
underway. This is the economic meaning of the real option.

4. Discussion

It is difficult to determine the direction and intensity of energy prices in the future.
For example, the U.S. Energy Information Administration in its “Independent Statistics &
Analysis” publication, “The Availability and Price of Petroleum and Petroleum Products
Produced in Countries other than Iran” in its May–June 2015 update states the following:

“The uncertainty on both the supply and demand side of the market could result in
large future price movements [underlined by the authors]. The possible lifting of sanctions
on Iran could move additional supply on to the world market and reduce prices, while
an unexpected supply disruption at a time of low surplus production capacity may push
prices higher. Meanwhile, if a slowdown in global economic activity from current levels
occurred, it would reduce demand and result in higher-than-expected inventory builds,
moving prices lower” [42]. This can be seen from the graph from the same source in
Figure 2, where the spread between production and consumption has been widening since
July 2014.

In addition to the world energy price uncertainty, in Israel, there are at least four other
sources for price uncertainty:

(a) the possibility of military conflict;
(b) the discovery of gas on Israel’s shore;
(c) the adoption of gas by the industry; for example, Foenicia—a glass manufacturer

that was recently close to bankruptcy due to lack of gas turned to become prof-
itable [43]; and

(d) the discovery of oil in the Golan Heights [44].
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Figure 2. Global petroleum and other liquids production, consumption and inventory net with-
drawals, January 2012–June 2015 [20].

While it is still difficult with all these sources of uncertainty to determine the direction
and intensity of the change of energy price, we must consider, thus, the possibility of high
volatility in price. To this end, we will consider hereafter the possibility of high volatility
taken to be StD = 40% per annum.

Calculating the call value based on the annual StD estimation of 0.4 yields 59.48 million
$US (compared to 57.05 million $US based on StD of 0.031). It follows that the net profit of
the first stage increased to 59.48 − 50 = 9.48 million $US (see Table 2, a column for the case
of StD = 0.40). It would be worth noticing here that the main statistical parameters of the
wind speed in the Merom Golan area, the mean and the StD, are observed with a tendency
towards stability, without any significant divergence over the period of the last few years,
2009–2014, as it follows from the calculated data in Table 3:

Table 3. Wind speed mean and StD at Merom Golan for the last period.

Year 2009 2010 2011 2012 2013 2014

Speed mean (m/s) 3.89 3.69 3.63 3.70 3.80 3.62
StD (m/s) 2.10 2.12 2.00 2.03 2.05 1.99

Number of Samples 2919 2920 2920 9774 2896 2898
StD/

√
n (m/s) 0.039 0.039 0.037 0.021 0.038 0.037

The expectation value of an annual average is the same as the expectation value for
one sample, but the standard deviation of the annual average is equal to the standard
deviation of one sample divided by the square root of the annual number of samples (see
Appendix A for a mathematical justification). Thus, the standard deviation of the annual
average of wind speed is between 0.6–1.1%, and can be further reduced by more sampling.
A six year average based on 24,327 samples will be 3.72 m/s, with only 0.4% standard
deviation. The power curves of available turbines are described in [45], from which three
examples are analyzed in this paper and are depicted in Figure 3.
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Figure 3. Power curves of wind turbines [45]. The dashed thick curve is the power curve of Enercon’s
model E101/3000 turbine, the thick line is the power curve of AWE’s model 54–900 turbine, and the
dashed curve is the power curve of EWT’s model Directwind 52/750 turbine.

The wind speeds described in Table 3 are for a height of 10 m, for different heights,
we apply the velocity to height connection [46]:

v(h) = v10

(

h

10

)a

in which v(h) is the velocity at height h, v10 is the velocity at a height of 10 m, and a is
Hellmann’s exponent, which, for a neutral air above human inhabited areas, is about 0.34.
Among the turbines analyzed, the largest is Enercon’s model E101/3000 turbine with a
radius of 50.5 m. Hence, we will assume from now on that the hub of the turbine is 60 m.
Table 4 will summarize the area and radii of the turbines under study:

Table 4. Wind turbine geometric parameters.

Turbine Enercon’s E101/3000 AWE’s 54–900
EWT’s Directwind

52/750

Area (m2) 8012 2290 2083
Radius (m) 50.5 27 25.75

For this height, we obtain a six year speed average of 6.84 m/s. The eleven year
average of the power and the standard deviation obtained for each turbine are depicted in
Table 5, the total number of samples in this analysis was 31,292 based on the wind data
from Merom Golan.
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Table 5. Wind turbine power for eleven years of data acquisition.

Turbine Enercon’s E101/3000 AWE’s 54–900
EWT’s Directwind

52/750

Average Power (kW) 1205.84 325.84 289.70
Power StD (kW) 1125.94 309.10 264.99

Power StD/
√

n (kW) 6.36 1.75 1.50
%(StD/

√
n)/Average 0.52 0.54 0.52

Annual Revenue (SH) 5,133,695 1,387,218 1,233,357
Annual Revenue ($) 1,327,909 358,825 319,027

The standard deviation of average power for all turbines investigated is much lower
than the standard deviations of energy price appearing in Table 2. Hence, a long-term
project can ignore the risks connected with the standard deviation of wind speed. A formal
proof for this decisive circumstance is given in Appendix B.

This circumstance determines the fact of non-relevancy of the speed variance over a
prolonged period of time for the wind turbine economic value; this should be compared to
the significance of the energy prices for the turbine economic value.

Table 5 also contains the annual economic value of the turbine based on the current
price of energy for consumers in Israel, which is 0.486 SH for kW hour on 11 September,
2015, the exchange rate for the same date is 3.866 SH for one US$. We assume that
the turbine owner will need to pay for transmission and distribution, hence the more
conservative estimate of an annual profit of 0.2 million $US per turbine quoted in the
previous section. In practice, the price is determined by governmental authorities who
strike a balance between the interest of other producers, the cost of transmission and
distribution, and the public interest in clean energy.

We previously concluded that the advantage of using ROA over DCF is most signif-
icant when the market prices are volatile, and less so when the energy prices are stable.
However, the change in wind speed is a small fraction of the value of the wind installa-
tion volatility, and this alone cannot justify the use of the ROA method. However, the
fluctuations of the market energy prices is reason enough.

5. Conclusions

Traditional calculation for an uncertain cash flow applies just to the expected values
of the cash flow from the project without the possibility of abandoning the project. Given
our empirical assumptions, this yields a loss of 1.3 million $US instead of profit, meaning
the project becomes not worthwhile.

Nevertheless, applying the real option analysis, which reveals the value of the option
to abandon the second stage running as well, we turn the project to just become profitable
and worthwhile. The value of the real option increases depending on the volatility to be
either 57.05 million $US or 59.50 million $US, depending on future volatility, and the profit
is either 7.05 million $US or 9.48 million $US, respectively.

Finally, for civil engineering projects with volatility in input and mainly in output
prices, it is important to consider the option to abandon the project from the beginning, as
this option may turn the project to be profitable.

We underline that, for wind installations, the main volatility is due to energy market
prices and less because of wind speed uncertainties, which average out on an annual
time scale.

To conclude, we underline that our work contains the following innovative elements,
which were not published before:

1. Weibull statistics of the wind in Merom Golan based on data gathered for several
years was obtained, thus deriving the relevant parameters needed for our work.

2. Using the empiric wind data and power curves of commercial wind turbines to choose
the best wind turbine for the Merom Golan site.
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3. Using the above data, we calculated the revenue from Merom Golan due to electric
energy production.

4. It was shown that, taking into account the annual energy production, fluctuations are
rather small; this is contrasted with rather large fluctuations when one considers the
data over a daily basis.

5. This was integrated into two economic models; one is the standard discounted cash
flow and the other is the real options analysis. We have shown that, because of energy
price volatility and despite small technical fluctuations, the correct estimation of the
investment is given by the real options analysis, which takes into account the ability
of the investors to abort their investment after the first stage.

We thus make the following policy recommendation, which is particularly relevant
in the current era of high energy price fluctuations (for example on 15 April 2020, the US
WTI Crude was 19.87 US$, today (20 February 2021) it is 59.24 $. This is more than 40%
difference, which is discussed in the current work). We recommend investors and policy
makers to use real options analysis rather than standard discounted cash flow, and take
advantage of the ability to abort an unprofitable endeavor.

Future directions in this research area include the analysis of real economic parameters
that are not just rough estimates, and the use of more accurate analysis using approaches
such as the binomial lattice, the mean reverting jump-diffusion method, and the stochastic
volatility model.
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Appendix A

Consider a random process X(t), which is sampled at times ti, each sample Xi = X(ti)
is a random variable. We will assume that the process is stationary in the sense that each
random variable has the same expectation value:

E[Xi] = E
[

Xj

]

= X ∀ i, j (A1)

and standard deviation:
σxi

= σxj
= σx ∀ i, j (A2)

We will also assume that the random variables are independent. Thus the covariance
satisfies Cxixj

= 0 , ∀ i 6= j. Let us now average n samples as:

Xa =
1
n

n

∑
i=1

Xi. (A3)

This implies that the expectation value of the average will be the same as that of
the samples:

E[Xa] = E

[

1
n

n

∑
i=1

Xi

]

=
1
n

n

∑
i=1

E[Xi] =
1
n

n

∑
i=1

X = X (A4)
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However, the standard deviation of Xa will be much smaller, since:

σ2
Xa

= E
[

(Xa − Xa)
2
]

= 1
n2 E

[

n

∑
i,j
(Xi − Xi)(Xj − Xj)

]

= 1
n2

n

∑
i,j

Cxixj
= 1

n2

n

∑
i

Cxixi
= 1

n2

n

∑
i

σ2
Xi

= 1
n2

n

∑
i

σ2
X =

σ2
X
n

(A5)

Hence:
σXa =

σX√
n

. (A6)

Additionally, for a large amount of samples:

lim
n→∞

σXa = lim
n→∞

σX√
n
= 0. (A7)

Appendix B

The revenue R is the product of En, the energy produced, and C, the price of energy.
For a small amount of energy dEn, dR is equal to:

dR = C dEn (A8)

The gain G is defined as the revenue per unit time:

G =
dR

dt
= C

dEn

dt
= CP (A9)

in which P = dEn
dt is the power. Thus the expectation of the gain is the correlation of the

price and the power.
E[G] = E[CP] = RCP. (A10)

Since the price is a random process, which is largely independent of the power and is
dependent, among other things, on the price of other energy sources and administrative
decisions, we will assume that C and P are independent random variables, hence:

E[G] = C ·P (A11)

in which E[C] = C is the average price and E[P] = P is the power average. The variance of
the gain, as its standard deviation square, is thus:

σG
2 = E

[

G2
]

− G
2
= E

[

C2P2
]

− C
2
P

2
= E

[

C2]E[P2
]

− C
2
P

2
(A12)

However, since
E
[

C2
]

= σC
2 + C

2
, E
[

P2
]

= σP
2 + P

2
(A13)

it follows that:

σG
2 =

(

σC
2 + C

2
)(

σP
2 + P

2
)

− C
2
P

2
= σC

2σP
2 + C

2
σP

2 + P
2
σC

2 (A14)

Hence:
σG

2

G
2 =

σC
2

C
2 +

σP
2

P
2

(

1 +
σC

2

C
2

)

(A15)

Thus, if σP
2

P
2 ≪ σC

2

C
2 , and since necessarily σC

2

C
2 < 1, we can write:

σG
2

G
2
∼= σC

2

C
2 . (A16)
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However, notice that power fluctuations are not small, it is only the power average
fluctuations over many samples that are small (see Appendix A), hence a more sophisticated
approach is needed. We notice that the typical time for the change of power is much shorter
than the typical time for the change of price. For example, we can assume that price changes
once a month while power is sampled every ten min. We define ∆T as a duration for which
the price remains constant. Next, we calculate the revenue for the total duration T:

RT =
∫ RT

0
dR =

∫ T

0
CPdt (A17)

We now divide the duration T to the subduration of intervals ∆T, and integrate R as
follows:

RT =
N

∑
n=1

∫ Tn

Tn−1

CPdt (A18)

In the above, Tn − Tn−1 = ∆T, and T0 = 0, TN = T. Since C is constant for ∆T
intervals, we can write:

RT =
N

∑
n=1

Cn

∫ Tn

Tn−1

Pdt (A19)

Let us further divide the duration ∆T into subdurations ∆t = ∆T
M , in which M is a

large enough number; we may now write:

∫ Tn

Tn−1

Pdt =
M

∑
i=1

∫ Tni

Tni−1

Pdt (A20)

In the above, Tni − Tni−1 = ∆t, and Tn0 = Tn−1, TnM = Tn. If M is large enough, we
may write approximately:

∫ Tn

Tn−1

Pdt ∼=
M

∑
i=1

∆tPni =
∆T

M

M

∑
i=1

Pni = ∆TPna. (A21)

where Pna is an average in the sense of (A3), hence the fluctuations of Pna are small enough.
The total revenue is therefore:

RT = ∆T
N

∑
n=1

CnPna = ∆T
N

∑
n=1

Gna (A22)

Thus the revenue is proportional to the sum of the average gains Gna, which, according
to Equations (A14) and (A15), have fluctuations that are a result of the dominant price
fluctuations and the negligible power fluctuations.
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Abstract: This paper presents a study on the technical, economic, and environmental aspects of
renewable energy resources-based distributed generation units (DGs). These units are connected
to the medium-voltage network to create a new structure called a microgrid (MG). Renewable
energies, especially wind and solar, are the most important generation units among DGs. The
stochastic behavior of renewable resources increases the need to find the optimum operation of
the MG. The optimal operation of a typical MG aims to simultaneously minimize the operational
costs and the accompanied emission pollutants over a daily scheduling horizon. Several renewable
DGs are investigated in the MG, consisting of biomass generators (BGs), wind turbines (WTs), and
photovoltaics (PV). For the proposed operating strategy of the MG, a recent equilibrium optimization
(EO) technique is developed and is inspired by the mass balance models for a control volume that
are used to estimate their dynamic and equilibrium states. The uncertainties of wind speed and
solar irradiation are considered via the Weibull and Beta-probability density functions (PDF) with
different states of mean and standard deviation for each hour, respectively. Based on the developed
EO, the hourly output powers of the PV, WT, and BGs are optimized, as are the associated power
factors of the BGs. The proposed MG operating strategy based on the developed EO is tested
on the IEEE 33-bus system and the practical large-scale 141-bus system of AES-Venezuela in the
metropolitan area of Caracas. The simulation results demonstrate the significant benefits of the
optimal operation of a typical MG using the developed EO by minimizing the operational costs and
emissions while preserving the penetration level of the DGs by 60%. Additionally, the voltage profile
of the MG operation for each hour is highly enhanced where the minimum voltage at each hour is
corrected within the permissible limit of [0.95–1.05] Pu. Moreover, the active power losses per hour
are greatly reduced.

Keywords: distributed generation; microgrid; equilibrium optimization technique; wind turbines;
photovoltaics; biomass generators

1. Introduction

Due to the continuous increase in power demand and rapid depletion of fossil fuels,
researchers all over the world have no other option but to look for alternative energy sources
by utilizing small-scale distributed power generation (DG) and energy storage systems
(ESS) [1]. However, due to the inherent intermittency and volatility of renewable energy
sources (RESs), its large-scale integration into the power system will increase the regulation
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burden and affect the security operation of the main grid. The microgrid is defined as small-
scale controllable electrical distribution systems, which have the important advantage of
operating either islanded or interconnected to the main grid. Microgrids (MGs) are usually
composed of Distributed Energy Resources (DERs), ESSs, and controllable loads [2]. The
DERs are based on conventional resources, such as diesel generators and RESs such as
photovoltaics (PV) and wind turbines (WT) [3–6]. There are two modes of operation for
MGs. In a grid-connected operation, the MGs draw/supply power from/to the grid based
on load and generation conditions with regard to the market prices. On the other hand, it
will be disconnected from the grid to provide electricity to associated critical loads in the
event of faults [7].

In the first mode of operation, the MGs should be operated economically and reliably,
where a supervisory control and data acquisition (SCADA) system is activated to monitor,
control, and dispatch all DERs to guarantee the economic and secure operation of the
MGs. For this targeted operation of the MGs, various conventional and artificial intelligent
programming techniques were applied for dispatching the DERs [8]. In [9–12], the operation
of distribution systems was optimally controlled via DERs commitment, Capacitor Banks
(CBs) switching, SVC, and reconfiguration using the jellyfish search algorithm and manta
ray foraging optimization algorithm, respectively. In both studies, the wasted energy of
power losses was minimized considering the daily load variations, but the uncertainties
of the DERs were not taken into account. In [13], the optimal operation and energy
management method for a hybrid MG including photovoltaics, wind turbines, a pump
as a turbine system, and a diesel generator was introduced, with a study on day-ahead
scheduling. The optimal energy management minimizes the fuel cost of diesel generators,
the daily operating cost, as well as the balance between the generation and load for both
warm and cold days using an imperialist competitive algorithm. In [14], a hybrid ant
lion optimization with a bat algorithm was utilized for the power management of the
MG considering a droop controller strategy. The main target of this droop controller was
stabilized by the MG by minimizing the errors of real and reactive power under a power
shortage and power maximum. In [15], an optimal energy scheduling mechanism was
presented in multi-MGs in order to minimize the total operational costs of their committed
DERs. This study provided different DERs types and their associated uncertainties in a
multi-MG system, but the linked lines and their losses were completely ignored. In [16],
a Tabu search algorithm was applied for the design of the MG system components with
minimum investment, operation, and emission costs. This study utilized the Monte Carlo
simulation to deal with the uncertainties due to load forecasting and the random outages
of the units. However, the uncertainties due to the intermittent sources of WTs and PVs
were not taken into consideration where their outputs were directly evaluated from the
daily wind velocity and solar irradiance, respectively. In [17], particle swarm optimization
(PSO) was dedicated to minimize the MG operational costs considering the variations in
loadings, DGs, and requirements of stable grid operational constraints.

Despite that, only the fuel costs of the committed DGs were handled where the
quadratic cost models were utilized for the fuel cells and the micro turbines. In [18], a manta
ray foraging optimizer was developed to optimally solve the economic dispatch problem
with wind power inclusion considering the valve point effects of the generators, while the
wind power effects were ignored in [19,20]. However, the environmental impacts of this
operation were not considered. In [21], an artificial ecosystem-based optimizer was applied
considering the demand side management for minimizing the techno-economic evaluations
of hybrid energy systems. In [22], an optimal operational strategy was presented for MGs
including hydrogen storage to integrate RESs and decrease the emissions. In [23], in off-grid
MG simulation and tests, an adaptable energy management strategy relying on a mixed
energy systems has been provided to preserve the stable operating condition of the off-grid
MG and lengthen the lifetime of batteries.

In [24], a harmony search algorithm was combined with differential evolution for the
optimal operation of MGs. Added to that, an optimal operation of MGs was considered
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with WTs, PVs, battery energy storage (BES) systems, electric vehicles (EVs), and demand
response for minimizing the total operating costs [25]. In this study, Sparse Nonlinear
OPTimizer (SNOPT) solver was utilized using Generalized Algebraic Modeling Systems
(GAMS) software. In both studies [24,25], the outputs of WTs and PVs were directly
evaluated from the hourly wind velocity and solar irradiance, respectively. Therefore,
the uncertainties due to the intermittent sources require an effective handling procedure.
In [26,27] a moth flame optimization algorithm was employed for the optimal operation of
a hybrid energy system including WTs, PVs, gas turbines, and energy storage.

In [28], an optimal MG operation strategy was presented to minimize the fuel costs
and the produced emissions. In this study, the DER uncertainties were considered via the
probability distributions and confidence. However, the application was limited to a very
small number of sources where linear programming and quadratic programming (QP)
were utilized as solvers. In [29], RES was allocated and optimized in a distribution system
using Mixed Integer-Linear Programming (MILP) and was solved by FICO® XPRESS
optimization software. In [30], the Energy Storage (ES) and RES were integrated using
MILPmethod.

Recently, a new effective optimization algorithm of Equilibrium optimizer (EO) was
presented [31]. EO provides strong exploratory and exploitative search mechanisms to
adjust solutions at random, assisting in local minima avoidance in the optimization process,
which is a common drawback of many optimization algorithms [31]. EO was efficiently
used for solving the optimal power flow (OPF) problem in the AC power systems [32] and
hybrid AC/DC power grids [33]. In [34,35], EO was utilized for handling the economic
and the combined economic environmental dispatch problems, respectively, considering
the power constraints, effects of the valve point, transmission losses, and ramp rate limits.
In [36], an adaptive EO was developed for an optimal allocation procedure of biomass
DGs to enhance the performance of the distribution systems and to reduce the related
environmental emissions. In [37], EO was used to deal with the energy management
optimization (EMO) in the MG considering the variations of WTs, PVs, and load demand
for cost minimization and voltage magnitude improvements. In [38], an improved EO
integrated for with optimal allocation of multiple PV units with batteries has been described.
In [39], EO was utilized for the EMO considering the energy storage devices and the
emissions from the associated DERs. In [40], EO was employed for estimating the undefined
parameters for the lithium-ion batteries. In [41], EO was employed for identifying the
prediction of oil breakdown voltage considering the barrier impact.

In this paper, an optimal operating strategy based on EO is developed for the techno-
economic and environmental optimization scheme for MGs with multiple RESs. For this
target, two objective functions are represented for minimizing the generation costs and
minimizing the emissions of environmental pollution caused by them. The proposed
algorithm is tested on two systems in order to verify its effectiveness and efficiency. The
two systems are IEEE 33-bus and a practical large-scale 141-bus system of AES-Venezuela
in the metropolitan area of Caracas. Added to that, EO is compared with other recent
algorithms of DE and RAO algorithms. The main contributions of this paper can be
summarized as follows:

• Proposing an operational optimization problem of MG incorporating PV, WT, and BG
with consideration of the uncertainties of PV and wind as RESs.

• Simultaneously minimizing the operational costs and the accompanied pollutants.
• Hourly load variations over a 24-h scheduling horizon are handled.
• EO technique is employed with higher performance compared to DE and RAO.
• The validity of the proposed methodology is validated on a large-scale 141-bus real

distribution system.

Four additional rest sections of the current paper are organized thusly: Section 2 shows
the mathematical formulation of the MG operation. The EO algorithm is developed in
Section 3. Section 4 reveals the simulation results on the two small and large scale tested
distribution systems. Section 5 concludes the paper findings.
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2. Problem Formulation

DGs based on renewable energies are the main technologies that greatly affect the
operation of the MG units. Because of their stochastic nature, optimal MG operation has to
effectively handle their types and associated uncertainties in hourly basis. In this section,
an optimization scheme is presented for the techno-economic and environmental operation
of MGs that are established with several DGs based on renewable energies, including
PV/WT/BG considering hourly variable load demand.

2.1. Types of DGs

Four types of the DG resources are classified based on their ability to deliver active
and reactive powers [42–44]. In the first type, the DG units supply active power only. In
Type-2, the DG units provide reactive power only. The DG units in Type 3 inject real and
reactive power. The 4th type of DG units injects the active power and consumes reactive
power. In this work, the WT model is considered Type-4. The related reactive power to be
consumed by these units is obtained by [45].

QDG,i =
(

0.05 + 0.04P2
DG,i

)

(1)

where PDG,i and QDG,i are the active and reactive powers of the DG unit i, respectively.

2.2. Modeling of Renewable Energy Sources

2.2.1. Photovoltaic DGs

The small-scale PV DGs are the most common renewable sources in the MGs. PV mod-
ules are usually modeled using single, double, and triple diode-equivalent circuits [46,47].
Unfortunately, the produced power is intermittent and varied in each hour with high
uncertainty levels due to their dependency on the solar irradiances. Therefore, they should
be treated with an effective way for each hour where the uncertainty of solar irradiance
is modeled by the Beta Probability Density Function (PDF). Consequently, in each hour,
different states of the solar irradiance are considered to generate its Beta-PDF. For each
state of solar irradiance s, the output power from the PV module, Ppv0(s), can be expressed
as follows [48,49]:

FF =
VMPP × IMPP

VOC × ISC
(2)

where
Ppv0(s) = N × FF × Vy × Iy (3)

Vy = VOC − Kv × Tcy (4)

Iy = s
[

Isc + Ki × (Tcy − 25)
]

(5)

Tcy = TA + s (
NOT − 20

0.8
) (6)

fb(s) =

{

Γ(α+β)
Γ(α) Γ(β)

s(α−1) (1 − s)(β−1) 0 ≤ s ≤ 1, α, β ≥ 0

0 otherwise

}

(7)

β = (1 − µ)

(

µ (1 + µ)

σ2 −1
)

(8)

α =
µ × β

1 − µ
(9)

ρ(s) =

s2
∫

s1

fb(s) ds (10)
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Ppv(t) =

1
∫

0

Ppv0 (s)ρ(s)ds (11)

where N is the module number; s is the solar irradiance kW/m2; Ki and Kv are current and
voltage temperature coefficients (A/◦C and V/◦C), respectively; Tcy and TA are cell and
ambient temperatures (◦C), respectively; NOT is the nominal operating temperature of the
cell in ◦C; FF is the fill factor; Voc and Isc are the open circuit voltage (V) and short circuit
current (A), respectively; VMPP and IMPP are the voltage and current at the maximum power
point, respectively; fb(s) is the Beta-PDF of s; α and β are the parameters of the Beta-PDF; µ

and σ are the mean and standard deviation of the random variable s, respectively; s1 and s2
are the solar irradiance limits of state (s); and ρ(s) is the probability of the solar irradiance
state (s) during any specific hour.

Figure 1 describes in detail the calculation of the total average power at each hour
including the uncertainties of solar irradiance. As shown, the related uncertainties are
modeled using Beta-PDF where the day is split into 24-h periods, each of which is 1 hr.
From the collected historical data, the mean and standard deviation of the hourly solar
irradiance of the day is estimated. For each hour, different states of the solar irradiance
among the Beta-PDF with equal steps are taken. In this study, each hour has 20 states for
solar irradiance with a step of 0.05 kW/m2. Accordingly, the PV output power is obtained
for each state using Equation (3). Besides, the probability of the solar irradiance state (s) is
estimated using Equation (10). Thus, the average output power of the PV module at any
specific hour can be obtained using Equation (11) [48]. This study considers that a PV unit
is associated with the type of converter that can deliver active power only (i.e., unity power
factor) as the standard IEEE 1547 [50].









σ
μμμβ

μ
βμα

ρ 

ρ

α β
σ

ρ

 

Figure 1. Evaluation of PV output power considering the uncertainties in solar irradiance.

2.2.2. Wind Turbine DGs

The WT-DGs are renewable sources, as well, where their produced powers are inter-
mittent and varied in each hour with high uncertainty levels due to the dependency on
wind speed. Generally, the power output from WT is calculated as Equation (12) [51]:
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PW(v) =



















0 0 ≤ v ≤ vci

Pr ×
(

v−vci
vr−vci

)

vci ≤ v ≤ vr

Pr vr ≤ v ≤ vco

0 v ≥ vco



















(12)

where vco and vci are the cut-out and cut-in wind speeds of Wind Turbines (WT), respec-
tively; v is the average wind speed of the hour; vr is nominal operating wind speed of WT;
and Pr is the maximum power generated by the WT.

For the WT-DGs, the uncertainty of wind speed is modeled by the Weibull-PDF. The
Weibull-PDF f (v) is formulated as in Equations (13)–(15) [52,53]:

f (v) =
K

C

( v

C

)K−1
exp

(−v

C

)K

(13)

K =

(

σ

vm

)−1.086

(14)

C =
vm

Γ
(

1 + 1
k

) (15)

where K and C are the shape and scale indexes of the Weibull-PDF; vm is the mean wind
speed; and σ is the standard deviation.

Based on that, in each hour, different states of the wind speeds are generated. Ac-
cordingly, the output power of the WT-DG is obtained for each state using Equation (12).
Besides, the probability of the wind speed for each state is estimated using Equation (16).

ρ(v) =

vw2
∫

vw1

f (v)dv (16)

where ρ(v) is the probability of wind speed in each state whereas vw1 and vw2 are the
regarding limits of the wind speed.

Thus, the average output power of the WT-DG for each hour is calculated using
Equation (17) [48].

Pw(t) =

25
∫

1

Pw(v)ρ(v)dv (17)

Figure 2 describes in detail the calculation of the total average power at each hour
including the uncertainties of wind speed, where each hour has 20 states for wind speed
with a step of 5% of the maximum wind speed.

2.2.3. Biomass DGs

The biomass generators (BGs) are firm generation DGs. The resulted BGs power is
constant with no associated uncertainties in its rated value. The BG active and reactive
powers at bus i can be expressed as in [36]:

QBG,i = ai × PBG,i (18)

ai = ±tan (cos−1(PFBG,i)) (19)

where QBG,i and PBG,i are the reactive and active powers associated with BG unit i, respec-
tively. PFBG,i refers to the lag/lead operating biomass power factor, and ai takes positive or
negative signs for the BG when supplying and consuming reactive powers, respectively.
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[

Figure 2. Evaluation of WT output power considering the uncertainties in wind speed.

2.3. Techno-Economic and Environmental Optimization Scheme of MGs

The optimal operation of a typical MG is investigated to reduce the economical opera-
tional costs and the accompanied pollutants simultaneously over a 24-h scheduling horizon.

2.3.1. Objective Function

Nowadays, the environmental emission reduction comes with great importance in
order to reduce emission levels [54]. In this work, the goal is to optimize two conflicting
cost functions simultaneously, which are the operating cost and the emissions of the WT,
PV, BG, and grid. The objective function is modeled as follows:

Min
[

OCt(PBDG, Pw, Ppv, Pgrid) + H. Et (PBDG, Pw, Ppv, Pgrid)
]

(20)

where OCt and Et are the total operational and emission costs in the MG for each hour (t),
which are functions of the output powers of the renewable sources and grid; PBG is the
output of BGs; Pw is the scheduled output of WT units; Ppv is the scheduled output of PV
units; Pgrid is the grid output power; and H is the price penalty factor ($/Ton Co2). The
price penalty factor was used [55], which is the ratio between the maximum fuel cost and
the maximum emission of the associated generator

The total operational cost function is expressed in Equation (21) as

OCt =
Nw

∑
i=1

Cpw,i,t +
Npv

∑
i=1

Cpv,i,t + CBG

NBG

∑
i=1

PBG,i,t + CgridPgrid,t (21)

The total emission cost function can be expressed in Equation (22) as follows:

Et = Ew

Nw

∑
i=1

Pw,i,t + Epv

Npv

∑
i=1

Ppv,i,t + EBG

NBG

∑
i=1

PBG,i,t + EgridPgrid,t (22)
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where Nw is the number of WT units; Npv is the number of PV units; NBG is the number
of BG units; Cpw is the operational costs of WT ($); Cpv is the operational costs of PV units
($); CBG is the cost coefficients of the operation and maintenance of BG; Cgrid is the cost
coefficients related to grid; and Ew, Epv, EBG, and Egrid are the emission coefficients related
to WT, PV, BG, and the grid, respectively.

2.3.2. Operational Costs

First, for the WT-DGs, the operational cost is the summation of two parts. The first
part refers to the cost of the actual output power of the WT. The second part is the penalty
cost of unavailable wind output power that refers to the deviation between the available
and scheduled wind powers. At time t, the total operational costs of each WT (i) can be
represented, as in [56], as

Cpw,i,t =

{

cwPw,i,t + cpw(Pwav,i,t − Pw,i,t), i f Pw,i,t < Pwav,i,t
cwPw,i,t + crw(Pw,i,t−Pwav,i,t), i f Pw,i,t > Pwav,i,t

(23)

where Cpw,i,t is the total operating cost of the wind, cw is the operational cost of the wind
output ($/kW), cpw is the penalty costs for under-estimation power of the WT ($/kW),
Pwav,i,t is the available ith WT power at time t (kW), and crw is the reserve cost for over-
estimation wind turbine power ($/kW).

Second, for the PV units, the operational costs for each unit (i) at each time (t) are
described as in [56]:

Cpv,i,t =

{

cpvPv,i,t + cppv(Ppv_av,i,t − Ppv,i,t), i f Ppv,i,t < Ppv_av,i,t
cpvPv,i,t + crpv(Ppv,i,t−Ppv_av,i,t), i f Ppv,i,t > Ppv_av,i,t

(24)

where Cpv,i,t is the total operating cost of the PV, cpv is the operational cost of the PV units
($/kW), cppv and crpv are, respectively, the penalty costs for under-estimation and over-
estimated powers ($/kW), and Ppv_av,i,t is the available power that can be produced (kW).

The first parts of Equations (23) and (24) represent the cost based on the actual PV and
WT generation power, while the second part represents the costs due to under-estimation
or over-estimation. The under-estimation costs are related to penalties due to the generated
PV, and WT output power is less than the scheduled one, whereas the over-estimation
costs are related to the reserve costs in case the scheduled output power is greater than the
available generated power for both PV and WT.

2.4. Constraints

For the optimal operating strategy in MGs, different equality and inequality constraints
have to be maintained as presented in Equations (25)–(31). Equations (25) and (26) represent
the active and reactive power balance constraints mentioned as Ps and Qs that are the
supplied active and reactive power by the main feeder and the active and reactive power
losses denoted by PTloss and QTloss in the MG, respectively [57,58]. Equations (27)–(29)
present the allowable limits of the output powers of different RERs. Equation (30) represents
the output power for BG; PV and WT units must follow their operating limits. The power
factor (PF) limits for each BG are maintained as in [59]. The bus voltage (V) limits should be
in the range of [0.95–1.05] for each bus j [59], as presented in Equation (31). Equation (32)
preserves the thermal capacity of the branches below their maximum thermal capacity
for each branch [60,61]. Equation (33) gives the penetration bounds of the total renewable
sources capacity in the system (KP) as [62,63]:

(

Ps +
NBG

∑
n=1

PBG,n +
Nw

∑
n=1

Pw,n +
Npv

∑
n=1

Ppv,n

)

t

= (PTloss + Pload)t t = 1, 2, . . . . . . 24 (25)
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(

Qs +
NBG

∑
n=1

QBG,n +
Nw

∑
n=1

Qw,n

)

t

= (QTloss + Qload)t t = 1, 2, . . . . . . 24 (26)

0≤ PBG,i,t ≤ PBG,max i = 1, 2, . . . . . . NBG, t = 1, 2, . . . . . . 24 (27)

0≤ Ppv,i,t ≤ Ppv,max i = 1, 2, . . . . . . Npv, t = 1, 2, . . . . . . 24 (28)

0≤ Pw,i,t ≤ Pw,max i = 1, 2, . . . . . . Nw, t = 1, 2, . . . . . . 24 (29)

PFBG,min ≤ PFBG,i,t ≤ PFBG,max i = 1, 2, . . . . . . NBG, t = 1, 2, . . . . . . 24 (30)

Vj,min ≤ Vj,t ≤ Vj,max j = 1, 2, . . . . . . nbus, t = 1, 2, . . . . . . 24 (31)

Ibr,t ≤ Ibr,max br = 1, 2, . . . . . . nbr, t = 1, 2, . . . . . . 24 (32)
{

NBG

∑
i=1

PBG,i +
Nw

∑
i=1

Pw,i +
Npv

∑
i=1

Ppv,i

}

t

≤ KP

{

nbus

∑
n=1

Pload,n

}

t

, t = 1, 2, . . . . . . 24 (33)

3. Equilibrium Optimization for Optimal Operation Strategy in MGs

EO Algorithm

The dynamic balance of mass on the control volume is a key source of inspiration for
the EO technique. The following three steps can be used to explain its mathematical model:

Step 1: Initialization: In the starting of the optimization process, the EO randomly gen-
erates the population. The initial concentrations are calculated using uniform random initial-
ization based on the particle number, population, and dimensions, as in Equation (34) [64]:

Ci,initial = Ci,min + randi(Ci,max − Ci,min), i = 1, 2, . . . . . . Ni (34)

where Ci,initial refers to the initial vector for each particle (i), Ci,min and Ci,max are the lower
and upper bounds of the control variables, randi refers to a random distributed vector in
[0,1], and Ni is the number of particles.

In this step, the fitness of the initialized particles is estimated, and the best scores are
used to find the nominee solutions.

Step 2: Equilibrium pool and candidates: In this step, the EO finds the particle’s
equilibrium state. The algorithm reaches a near-optimal solution at its equilibrium state.
It assigns the best four particles in the population at equilibrium candidates and the fifth
one containing the average of the previous best four particles. The pool of equilibrium
(Ceq, pool) that helps the EO features in their exploitation and exploration operations is
expressed by these five equilibrium candidates.

Step 3: Updating the concentration: The evaluation process for updating each concen-
tration vector (C) is carried out as

→
C =

−→
Ceq + (

→
C −

−→
Ceq )

→
F +

→
G

λ
→
V
(1 −

→
F ) (35)

where Ceq is a randomly generated vector (Ceq, pool) from the pool of equilibrium; λ is a
random vector [0,1]; G is the generation rate; V stands for the volume unit, which is equal
to one [31]; and F is an exponential term that helps the EO algorithm in achieving a balance
between the exploration and extraction phases. It can be determined as follows:

→
F = e−

→
λ (t−to) (36)

where t0 is the initial start time, and the time (t) depends on the number of iterations (Iter)
as follows:

t =

[

1 − Iter

Max_iter

][a2 ∗ Iter/Max_iter]

(37)
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where Iter and Max_iter are the initial and maximum iteration numbers, respectively; and
a2 is a constant value equal to 1 that is used to monitor exploitation potential [31]. The
following formula can be considered to boost the developed technique’s exploration and
exploitation abilities.

→
to =

1
→
λ

ln
[

−a1sign(
→
r − 0.5)(1 − e−

→
λ t)

]

+ t (38)

where a1 is a constant value of 2 that is used to control exploration ability [31], r is a random
vector in the range of 0 to 1, and the term (sign (r − 0.5)) affects exploration and exploitation
directions. The generation rate (G) is calculated as follows:

→
G =

−→
Gcp

(−→
Ceq −

→
λ
→
C

)→
F (39)

−→
Gcp =

{

0.5r1 r2 ≥ Gp

0 r2 ≤ Gp

}

(40)

where Gcp is the control parameter of the generation rate that is used to update the EO
technique, GP is the generation probability that equals 0.5 [31], and r1 and r2 are random
numbers in the range [0,1]. Figure 3 shows the EO based optimal operation procedure of
MG in the tested distribution systems.

 

Figure 3. Flowchart of the optimal proposed operation procedure of MG.
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4. Simulation Results

The EO is applied to determine the optimal operation of MG to achieve technical and
economic benefits with respecting the associated operational and emission costs for two
distribution systems. For the optimal operation, the control variables are the active power
resulted from different RERs, including BGs, wind, and PV, and the power factor of BGs.

4.1. Test Systems

Two test systems are considered to apply the proposed operation strategy. The 1st
test system is the 12.66 kV IEEE 33-bus distribution system. It contains 33-node and 32
branches whilst its total active and reactive demand is 3715 kW + 2300 kVAr [65]. Figure 4
displays the first MG configuration where this system includes 1.1 MW-WT connected at
bus 3, and five PV generators with ratings of 20, 25, 30, 40, and 50 kW are connected at
buses 13, 17, 20, 27, and 33, respectively. In addition to that, four BGs with ratings of 400,
500, 700, and 1000 kVA are installed at buses 15, 25, 9, and 31, respectively [36].

 

Figure 4. First MG configuration.

The 12.47 kV AES-Venezuela in the metropolitan area of Caracas that is modeled
by 141-node is considered the large-scale test system. The total peak load is 12.19 MW +
6.2894 MVAR [66,67]. Figure 5 displays the second MG configuration where the 141-bus
system is modified to include one WT with a capacity of 3 MW connected at bus 50, and
five PV generators with ratings of 40, 50, 60, 80, and 100 kW are connected at buses 60,
70, 80, 90, and 100, respectively. Added to that, four BGs with ratings of 650, 2500, 3500,
and 2000 kVA are installed at buses 109, 16, 78, and 63, respectively [36]. For both studied
systems, the load profile is taken into consideration where Figure 6 describes this hourly
loading as a percentage of the peak load [68].
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Figure 5. Second MG configuration.

 

 
 

][

Figure 6. Daily load demand profile.

Also, the maximum iterations number equals 400 for the tested systems. The particles
number is considered to be 50 for IEEE 33-bus and 100 for the large scale 141-bus system.
The numbers of iterations and particles are considered the same for all competitive algo-
rithms for a fair assessment of their performance. Additionally, the allowable number of
the RERs units, BGs, wind, and PV are assumed as 4, 1, and 5, respectively. The maximum
penetration level is limited by 60% of the load demand [69].Table 1 shows the data of
operational costs and the emission for the shared energy sources in the microgrid.

Table 1. Operational costs as well as emissions of the renewable sources and the grid.

Energy Source CO2 Emission (Ton Co2/MWh) Operational Costs ($/MWh)

BG EBG = 0.733 [36] cBG = 46 [36]

Grid Egrid = 0.91 [36] cgrid = 76 [36]

PV Epv = 0.045 [70] cpv = 6 [71]

WT Ew = 0.016 [72] cw = 7 [71]

Price penalty factor H = 10 $/Ton Co2 [73]
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4.2. Cases Studied

In this paper, three different cases studied are performed for each system, and these
cases are described as follows:

Case 1: this is considered the basic system condition without adding DGs units.
Case 2: in this case, the MG is operated without considering the optimal control

settings of BGs, WT, and PV with daily load variations.
Case 3: this case develops the optimal operation of the MG with optimal control

settings by using the EO algorithm for BGs, WT, and PV, simultaneously with considering
the daily load variations.

4.3. Simulation Results of 33-Bus Test System

4.3.1. Case 1: Without DGs

In the first case, the hourly load flow is carried out at each loading hour of the 33-bus
system without DGs installations. At the peak loading (hour 12) and without DGs units, the
initial power losses equal 211.2 kW. Bus 18 has a minimum voltage that equals 0.9038 p.u.
as in [65].

4.3.2. Case 2: MG without Optimal Control on BGs, Wind, and PV with Daily
Load Variation

In the second case, MG is operated without optimal control on DGs whereas the WTs
and PVs generate its available power, and the BGs generate its full capacity at a unity
power factor. For the small-scale PV DGs, the Beta-PDF is used to model the uncertainty of
the solar irradiance and the evaluation of PV output power is performed as described in
Figure 1 considering the uncertainties in solar irradiance. From the collected historical data,
the mean and standard deviations of the hourly solar irradiance of the day are estimated.
Based on that, the Beta-PDF is generated for each hour. Consequently, 20 different states of
solar irradiance among the Beta-PDF are taken with equal step sizes of 0.05 kW/m2 for each
hour. Figure 7 displays their produced powers from each PV source at each hour. There
is no power output to be generated from the PV sources in the first and last five hours in
the morning and evening since there are no solar irradiances at these hours. Additionally,
the highest output of each PV source occurred at 12 pm, with 55.2, 55.3%, 55.4%, 55.2%
and 55.3% from their installed capacities for the PV sources at buses 13, 17, 20, 27, and 33,
respectively.

 

Figure 7. Scheduled output power from each PV at each hour for the first MG.

For the WT-DGs, the Weibull-PDF is used to model the uncertainty of the wind speed
and the evaluation of WT output power, considering that the uncertainties in wind speed is
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performed as described in Figure 2. For each hour, the mean and standard deviations of the
hourly wind speed of the day are estimated, and the associated Weibull-PDF is generated.
Similarly, 20 states of the wind speed, for each hour, are considered where the step is
1.25 m/s. Figure 8 displays the hourly active and reactive powers that are produced from
the WT source at bus 3. The type 4 distributed generation, WT-DG, is used in this study to
deliver the active power and to consume reactive power using the induction generators at
a fixed speed. At hour 18, the WT-DG produces the highest active power with 692.1 kW
and consumes the highest reactive power with 69.16 kVAr. Thus, it is operated with 62.92%
from its full capacity. At hour 7, the WT-DG is operated with 36.53% from its full capacity,
where it produces the least active power with 401.8 kW and consumes the least reactive
power with 56.45 kVAr.

 

Figure 8. Scheduled active and reactive power from wind at each hour for the first MG system.

On the other side, the BGs are operated at full capacity without optimal control. By
running the load flow algorithm for these hourly circumstances, Figure 9 shows the total
active power of each type of DG and the summation of loads and the hourly power losses.
Then, Figure 9 concludes the following findings:

• During nine hours (1–8 and 24), the sign of the grid power is negative. At these hours,
the DGs generated power in the MG is greater than the loads and the MG power
losses so that the excess power is back to the grid bus. Consequently, there is surplus
active power to be generated from the DGs in the MG and injected to the grid bus.
The maximum extra power is reached at hour 4 with 913.438 kW, whilst the minimum
surplus power is reached at hour 8 with 191.873 kW.

• During the other 15 h, the MG absorbs active power from the grid bus. The maximum
absorbed power is reached at hour 14 with 655.4086 kW, whilst the minimum absorbed
power is reached at hour 23 with 160.7345 kW.

 

 

 

− − −

Figure 9. Results of the first MG operation without optimal control.
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4.3.3. Case 3: MG with Optimal Control on BGs, WT, and PV Simultaneously with Daily
Load Variation

In the third case, the EO algorithm is applied to operate the economical solution of MG
considering the emission concerns by simultaneously minimizing the hourly operational
costs and the accompanied pollutants. Added to that, the assessment of EO performance is
carried out compared with other optimization algorithms such as DE [74] and RAO [75]
techniques at different hours. The convergence comparisons between the developed EO,
DE, and RAO algorithms at hours 6 and 12 are described in Figure 10 where the associated
outcomes of them are tabulated in Tables 2 and 3 at hours 6 and 12, respectively. At
hour 6 (Table 2), the developed EO achieves the minimum objective function of $124.4644,
whereas DE and RAO algorithms acquire objective functions of $127.5425 and $124.6005,
respectively. Similarly, at hour 12 (Table 3), the developed EO achieves the minimum
objective function of $224.2039, whereas the DE and RAO algorithms acquire objective
functions of $234.7754 and $224.2165, respectively.

  

(a) At hour 6 (b) At hour 12 

 
 

 

 

 

Figure 10. Convergence curves of EO, DE and RAO for the first MG at hours 6 and 12, respectively.

Table 2. Optimal operations of MG at hour 6 using EO, DE, and RAO algorithms.

EO DE RAO

Pw (kW) 423.1 423.1 423.1

Qw (kVAR) −57.1605 * −57.1605 * −57.1605 *

Ppv (kW) 0.2696, 0.3378, 0.4059, 0.5392, 0.6755 0.2697, 0.3379, 0.4058, 0.5392, 0.6755 0.2696, 0.3378, 0.4059, 0.5392, 0.6755

kW PBG (Power factor) 304.0531 (0.8508), 0.043 (0.8514),
70.7528 (0.9895), 492.6431 (0.925)

391.616 (0.9878), 330.0176 (0.8794),
83.1291 (0.85), 55.6774 (0.9869)

315.214 (0.9889), 213.145 (0.8535),
1.449 (0.8521), 337.6556 (0.8501)

Pgrid (kW) 879.0094 888.9166 879.1928

Pu Vmin (bus) 0.9761(18) 0.9795(33) 0.9796(33)

PTloss (kW) 17.1294 19.9847 17.2843

CBG ($) 39.9046 39.5802 39.9033

Cw ($) 2.9619 3.2674 3.0122

CPV ($) 0.0197 2.3282 0.0915

Cgrid ($) 66.8047 67.5577 66.8187

EBG ($) 6.7057 6.6512 6.7055

Egrid ($) 7.999 8.0891 8.0007

Epv ($) 0.001 0.001 0.001

Ew ($) 0.0677 0.0677 0.0677

OCt ($) 109.691 112.7335 110

Et ($) 14.7734 14.809 14.7748

Objective function ($) 124.4644 127.5425 124.6005

* negative sign means that wind consumes reactive power.
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Table 3. Optimal operation of MG at hour 12 using EO, DE, and RAO algorithms.

EO DE RAO

Pw (kW) 437.4 437.4002 437.4

Qw (kVAR) −57.6528 * −57.6528 * −57.6528 *

Ppv (kW) 11.0451, 13.8367, 16.6283,
22.0901, 27.6733

11.0452, 13.8367, 16.6281,
22.09, 27.6733

11.0451, 13.8367, 16.6283,
22.0901, 27.6733

kW PBG (Power factor) 853.2986 (0.8537), 243.3503 (0.8663),
17.8781 (0.8866), 585.7994 (0.85)

853.9887(0.9),
400.0 (1),

347.2767 (0.85),

848.6954 (0.8505), 312.6636 (0.8506),
126.229 (0.85), 410.301 (0.85)

Pgrid (kW) 1520 1640 1517.6

Pu Vmin (bus) 0.9787 (18) 0.9533 (18) 0.9774 (18)

PTloss (kW) 31.3311 57.7494 29.1443

CBG ($) 78.215 73.6582 78.1029

CW ($) 3.0618 4.7979 3.143

CPV ($) 0.5477 4.0274 0.5887

Cgrid ($) 115.3172 124.8536 115.3362

EBG ($) 13.1435 12.3778 13.1247

Egrid ($) 13.8077 14.9496 13.81

Epv ($) 0.0411 0.0411 0.0411

Ew ($) 0.07 0.07 0.07

OCt ($) 197.1416 207.337 197.1708

Et ($) 27.0623 27.4384 27.0457

Objective function ($) 224.2039 234.7754 224.2165

* negative sign means that wind consumes reactive power.

Based on the developed EO, the output powers of the PV, WT, and BGs are optimized
besides the associated power factors of the BGs. Figure 11a shows the percentage apparent
power of the BGs at buses 15, 25, 9, and 31 for each hour, whereas Figure 11b displays the
hourly optimized value of the power factor. From Figure 11a,b:

• The first BG at bus 31 is operating within range [40:100] % of its capacity to inject
apparent power demand to the MG during the day. Similarly, the second BG at bus 15
is operating within range [60:100] % of its capacity during the day excluding hour 6.

• Both BG1 and BG2 at buses 31 and 15 are approximately operating at a power factor
of 0.85, which has the minimum power factor to be considered, and so their injected
reactive power is directly proportional to their scheduled output power.

• Both BG3 and BG4 at buses 25 and 9 produce very small apparent power at the first
five hours, respectively, which has the smallest loadings. Then, their output powers
increase through the loading increases, whereas BG3 at bus 25 is operating with 100%
of its capacity at hour 6. Added to that, BG4 at bus 9 is operating with 100% of its
capacity at hours 12, 14, 17, and 18.

• BG3 at bus 25 is operating at a varied power factor through the day. BG4 at bus 9
is operating at a varied power factor at the first nine hours with low loading values,
whilst its power factor is nearly fixed at 0.85 for the next hours.
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(a) Percentage apparent power  

 
(b) Power factor 

Figure 11. Hourly Percentage apparent power and power factor for each BG for the first MG system.

To study the hourly power balance operation of the MG, Figure 12 illustrates the total
active power for each type of DG and the summation of loads and hourly power losses.
This figure leads to the following findings:

• The total generation equals to the loads and power losses at each hour, where the sum-
mations of the output powers from the BGs are varied, which is optimally controlled
by the developed EO algorithm at each hour.

• The developed EO algorithm optimizes the output powers from WT and PV sources
at their available outputs to make use of their environmentally friendly characteristics.

• During the day, there are no excess powers in the MG back to the grid bus. The MG
was supplied with the active power from the grid bus. The maximum supplied power
is achieved at hour 12 with 1520 kW, whilst the minimum supplied power is reached
at hour 5 with 843.97 kW.

• As a result, the supplied power represents 40.58% and 40.34% referred to the loading
and power losses at hours 12 and 5, respectively. Therefore, the total produces power
from the DGs with 59.42% and 59.66% referred to the loading and power losses at
hours 12 and 5, respectively.

• Nevertheless, the penetration of the total DGs power production in the MG does not
exceed the penetration limit of 60%.

To assess the voltage quality of the MG operation for each hour, Figure 13 displays the
minimum voltage at each hour for the three cases studied. It is shown that the minimum
voltage is corrected in cases 2 and 3 where, when the voltages at all hours are below the
permissible limit of 0.95 Pu in the case (case 1), the highest minimum voltage occurs at bus
18 at hour 5, whereas the least minimum voltage occurs at the same bus at hour 15. At both
hours, the voltage profiles at all MG buses are described in Figure 14. The voltage profile
at each bus is improved at light loading at hour 5. At this loading hour, the minimum
voltage at bus 18 is corrected from 0.9495 to 0.9877 Pu, which exceeds the minimum limit
of 0.95 Pu in case 3; consequently, this improvement represents 4.02%. Additionally, the
voltage profile at each bus is improved at peak loading at hour 15, where the minimum
voltage at bus 18 is improved with 7.822% and corrects the voltage from 0.9038 to 0.9745 Pu,
which exceeds the minimum limit of 0.95 Pu in case 3.
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Figure 12. Results of the optimal operation of the first MG.

 

Figure 13. Minimum voltage at each hour for different cases studied of the first MG.

 
(a) At hour 5 

 
(b) At hour 15 

Figure 14. Voltage profile for the first MG at light and peak loading at hours 5 and 15, respectively.
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In addition, Figure 15 shows the hourly active power losses for the three cases that are
greatly reduced from case 1 to cases 2 and 3, whereas the optimal operating strategy based
on the developed EO algorithm in case 3 provides the minimum power losses at each hour
through the day. Compared to case 1, the percentages of the reduction in power losses
that are achieved by case 3 reach 81.9, 79.6, 73.7, 80.6, 80.9, 74.2, 71.8, 75.5, 84.9, 83.7, 85.3,
85.2, 85.5, 85.2, 84.2, 84.8, 82.1, 81.1, 82.4, 83.1, 83.7, 84.5, 84.3, and 79.8% for hours 1–24,
respectively. Compared to case 2, the percentages of the reduction in power losses that are
achieved by case 3 reach 41.9, 48.5, 48.6, 61.7, 61.8, 48.6, 31.6, 19.5, 22.3, 18.7, 19.7, 19.4, 19.9,
19.4, 18.3, 19.4, 16.7, 15.7, 17.6, 20.3, 19.1, 19.7, 21.3, and 27.6% for hours 1–24, respectively.

 

Figure 15. Active power losses at each hour for different cases for the first MG.

Additionally, the hourly operational costs and the associated emissions of the dis-
tributed energy sources in the MG for the cases studied are depicted in Figure 16. As shown,
the operational costs and the associated emissions in the MG at each hour are greatly re-
duced from case 1 to cases 2 and 3. Despite that case 2 provides the least operational costs
and the emissions in the MG in comparison to case 3, the penetration limit of the total
output of the DGs in the MG exceeds the limits of the 60% penetration ratio, as detailed in
Figure 9. In Figure 9, the penetration level in case 2 exceeds 100% at nine hours, where it
reaches 129.96, 136.83, 143.25, 146.15, 145.67, 140.93, 126.89, 108.86, and 117.60% at hours
1–8 and 24, respectively.

 
(a) MG operational costs  

 
(b) MG emissions 

Figure 16. Hourly optimal operational costs and the associated emissions in the MG for the first MG.
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4.4. Simulation Results of a Large-Scale 141-Bus Test System

In this subsection, the proposed solution methodology is applied on a large-scale
141-bus system. Three cases studied are investigated. The system’s initial power loss
(without DGs) was 603.821 kW, where bus 87 has the minimum voltage that is 0.9294 Pu. In
the 2nd case, the resulted uncertainties of the solar irradiance and wind speed are modeled
by Beta-PDF and Weibull-PDF for the PV and WT sources, respectively. Therefore, the PV
output power is evaluated at buses 60, 70, 80, 90, and 100. The active and reactive powers
are hourly produced from the WT source at bus 50, as displayed in Figure 17.

 
(a) PV source  

 
(b) WT source 

Figure 17. Hourly produced active and reactive power from PV and WT sources for the second MG.

On the other side, the BGs are operated at their full capacity without optimal control.
By running the load flow algorithm for these hourly circumstances, Figure 18 shows the
total active power of each type of DG and the summation of loads and losses at each hour.
During 9 h (1–8 and 24), there is surplus active power to be generated from the DGs in the
MG and injected to the grid bus, where the generated power from the DGs in the MG is
greater than the loads and the power losses so that the excess power is back to the grid bus.
In the other 15 h, the MG absorbs active power from the grid bus.

 

Figure 18. Results of the second MG operation without optimal control.

In the third case, the developed EO algorithm is applied to optimally operate the MG
in order to minimize the operational costs and the accompanied pollutants simultaneously
over a 24-h scheduling horizon. Based on the developed EO, the output powers of the PV,
WT, and BGs are optimized besides the associated power factors of the BGs. Figure 19a
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shows the percentage apparent power of the BGs at buses 109, 16, 78, and 63 for each hour,
whereas Figure 19b displays the hourly optimized value of the power factor.

(a) Percentage of scheduled apparent power referred to its capacity, 

 
(b) Power factor. 

Figure 19. Hourly apparent power and power factor of each BG for case 3 for the second MG.

To describe the power balance operation of the MG for each hour, Figure 20 illustrates
the total active power of each type of DG and the summation of loads and power losses at
each hour. At each hour, the generated grid power is always higher than 40% of summation
loads and power losses whereas the penetration level of 60% is preserved by means of the
developed EO algorithm.

 

Figure 20. Results of the optimal operation for the second MG.

For each hour, Figure 21 displays the minimum voltage for the three-cases studied.
For hours 8–23, the minimum voltages are corrected in cases 2 and 3. In addition, in cases
2 and 3, the minimum voltages at all hours are above the permissible limit of 0.95 Pu. In
the initial case (case 1), the highest minimum voltage occurs at bus 87 at hour 5, whereas
the least minimum voltage occurs at the same bus at hour 15. At both hours, the voltage
profile at all MG buses is described in Figure 22. However, the voltage profile at each bus is
improved at light loading at hour 5. At this loading hour, bus 87 has the minimum voltage
level in case 3. It is declined from 0.9616 to 0.9914 Pu. Additionally, the voltage profile at
each bus is corrected at peak loading at hour 15, where the bus 87 has the minimum voltage
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level in case 3 that is declined from 0.9294 to 0.9772 Pu which exceeds the minimum limit
of 0.95 Pu; consequently, this improvement represents 5.14%.

 

Figure 21. Minimum voltage profiles for different cases studied at each hour for the second MG.

 
(a) At hour 5. 

 
(b) At hour 15. 

Figure 22. Bus voltage profiles for different cases studied at hours 5 and 15 for the second MG.

Moreover, the active power losses at each hour for the three cases studied are depicted
in Figure 23. The power losses at each hour are greatly reduced from case 1 to cases 2 and
3, whereas the optimal operating strategy based on the developed EO algorithm in case 3
provides the minimum power losses at each hour through the day. Compared to case 1, the
percentages of the reduction in power losses that are achieved by case 3 reached 78.9, 67.3,
58.0, 70.0, 77.1, 64.8, 49.5, 72.5, 79.9, 84.1, 80.2, 79.3, 80.6, 80.4, 73.8, 80.7, 79.9, 75.6, 73.4, 77.7,
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80.4, 80.9, 77.2, and 71.3% for hours 1–24, respectively. Compared to case 2, the percentages
of the reduction in power losses that are achieved by case 3 reached 66.7, 54.9, 48.3, 65.3,
73.2, 54.2, 13.3, 32.4, 38.9, 46.7, 32.0, 28.0, 32.8, 32.2, 11.9, 37.7, 38.5, 27.0, 23.7, 34.9, 41.9, 41.5,
34.1, and 42.6% for hours 1–24, respectively.

 

Figure 23. Active power losses for different cases studied at each hour for the second MG.

Additionally, the operational costs and the associated emissions of the distributed
energy sources in the MG at each hour for the three cases studied are depicted in Figure 24.
However, the operational costs and the associated emissions in the MG at each hour are
greatly reduced from case 1 to cases 3 and 2. Despite case 2 providing the least operational
costs and the emissions in the MG in comparison to case 3, the penetration limit of the total
output of the DGs in the MG exceeds the limits of the 60% penetration ratio, as described
by Figure 18.

 
(a) MG operational costs 

 
(b) MG emissions 

Figure 24. Hourly optimal operational costs and the associated emissions in the second MG.
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5. Conclusions

• The optimal operating strategy based on the developed equilibrium optimization (EO)
technique has been presented and is proposed in order to minimize the operational
costs and the accompanied pollutants simultaneously over a 24-h scheduling horizon.

• Several renewable DGs have been investigated in the understudy MG, consisting of
biomass generators (BG), wind turbines (WTs), and photovoltaics (PV).

• The uncertainties of wind speed and solar irradiation have been considered via Weibull
and Beta-PDF with different states of mean and standard deviation at each hour,
respectively.

• The developed EO methodology has been tested on the IEEE 33-bus system and the
practical large-scale 141-bus system of AES-Venezuela in the metropolitan area of
Caracas to verify its effectiveness and efficiency.

• Added to that, the optimal operation of MG using the developed EO has been com-
pared with other recent algorithms of DE and RAO algorithms.

• Based on the developed EO, the hourly output powers of the PV, WTs, and BGs are
optimized, as are the associated power factors of the BGs.

• Significant benefits of the optimal operation of a typical MG using the developed EO
have been demonstrated by minimizing the operational costs and emissions while
preserving the penetration level of the DGs by 60%.

• The voltage profiles of the MG operation for every hour have been greatly improved,
with the minimum voltage adjusted within the permitted limit of [0.95–1.05] p.u.

• The active power losses per hour have been significantly decreased.

Author Contributions: Data curation, N.A.N.; Formal analysis, S.M.A., N.A.N. and A.M.S. (Abdullah
M. Shaheen); Funding acquisition, A.M.S. (Adel M Sharaf); Investigation, N.A.N.; Methodology,
R.A.E.-S., N.A.N. and A.M.S. (Abdullah M. Shaheen); Project administration, S.M.A.; Resources,
R.A.E.-S. and S.M.A.; Software, N.A.N. and A.M.S. (Abdullah M. Shaheen); Supervision, A.A.A.E.-
E. and S.M.A.; Validation, A.A.A.E.-E. and R.A.E.-S.; Writing—review and editing, A.A.A.E.-E.,
R.A.E.-S. and A.M.S. (Adel M Sharaf). All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study did not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shahooei, Z.; Martin, L.; Nehrir, H.; Bahramipanah, M. A Novel Agent-Based Power Management Scheme for Smart Multiple-
Microgrid Distribution Systems. Energies 2022, 15, 1774. [CrossRef]

2. Konneh, K.V.; Adewuyi, O.B.; Lotfy, M.E.; Sun, Y.; Senjyu, T. Application Strategies of Model Predictive Control for the Design
and Operations of Renewable Energy-Based Microgrid: A Survey. Electronics 2022, 11, 554. [CrossRef]

3. Guoping, Z.; Weijun, W.; Longbo, M. An Overview of Microgrid Planning and Design Method. In Proceedings of the 2018 IEEE
3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14
October 2018; pp. 326–329. [CrossRef]

4. Su, W.; Wang, J. Energy Management Systems in Microgrid Operations. Electr. J. 2012, 25, 8. [CrossRef]
5. Shaheen, A.M.; Elattar, E.E.; El-Sehiemy, R.A.; Elsayed, A.M. An Improved Sunflower Optimization Algorithm-Based Monte

Carlo Simulation for Efficiency Improvement of Radial Distribution Systems Considering Wind Power Uncertainty. IEEE Access

2020, 9, 2332–2344. [CrossRef]
6. Bayoumi, A.S.; El-Sehiemy, R.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Assessment of an Improved Three-Diode against

Modified Two-Diode Patterns of MCS Solar Cells Associated with Soft Parameter Estimation Paradigms. Appl. Sci. 2021, 11, 1055.
[CrossRef]

7. Sood, V.K.; Ali, M.Y.; Khan, F. Energy Management System of a Microgrid Using Particle Swarm Optimization (PSO) and
Communication System. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2020; p. 625.

44



Electronics 2022, 11, 815

8. Vera, Y.E.G.; Dufo-López, R.; Bernal-Agustín, J.L. Energy Management in Microgrids with Renewable Energy Sources: A
Literature Review. Appl. Sci. 2019, 9, 3854. [CrossRef]

9. Shaheen, A.M.; Elsayed, A.M.; Ginidi, A.R.; Elattar, E.E.; El-Sehiemy, R.A. Effective Automation of Distribution Systems with
Joint Integration of DGs/ SVCs Considering Reconfiguration Capability by Jellyfish Search Algorithm. IEEE Access 2021, 9,
92053–92069. [CrossRef]

10. Shaheen, A.M.; Elsayed, A.M.; El-Sehiemy, R.A.; Ginidi, A.R.; Elattar, E. Optimal management of static volt-ampere-reactive
devices and distributed generations with reconfiguration capability in active distribution networks. Int. Trans. Electr. Energy Syst.

2021, 31, e13126. [CrossRef]
11. Elattar, E.E.; Shaheen, A.M.; El-Sayed, A.M.; El-Sehiemy, R.A.; Ginidi, A.R. Optimal Operation of Automated Distribution

Networks Based-MRFO Algorithm. IEEE Access 2021, 9, 19586–19601. [CrossRef]
12. Shaheen, A.M.; El-Sehiemy, R.A. Optimal allocation of capacitor devices on MV distribution networks using crow search

algorithm. CIRED Open Access Proc. J. 2017, 2017, 2453–2457. [CrossRef]
13. Bidgoli, M.A.; Payravi, A.R.; Ahmadian, A.; Yang, W. Optimal day-ahead scheduling of autonomous operation for the hybrid

micro-grid including PV, WT, diesel generator, and pump as turbine system. J. Ambient Intell. Humaniz. Comput. 2021, 12, 961–977.
[CrossRef]

14. Sridhar, N.; Kowsalya, M. Enhancement of power management in micro grid system using adaptive ALO technique. J. Ambient

Intell. Humaniz. Comput. 2021, 12, 2163–2182. [CrossRef]
15. Funde, N.; Dhabu, M.; Deshpande, P. CLOES: Cross-layer optimal energy scheduling mechanism in a smart distributed multi-

microgrid system. J. Ambient Intell. Humaniz. Comput. 2020, 11, 4765–4783. [CrossRef]
16. Hosseinnia, H.; Nazarpour, D.; Talavat, V. Multi-objective optimization framework for optimal planning of the microgrid (MG)

under employing demand response program (DRP). J. Ambient Intell. Humaniz. Comput. 2018, 10, 2709–2730. [CrossRef]
17. Maulik, A.; Das, D. Optimal operation of microgrid using four different optimization techniques. Sustain. Energy Technol. Assess.

2017, 21, 100–120. [CrossRef]
18. Shaheen, A.M.; Ginidi, A.R.; El-Sehiemy, R.A.; Elattar, E.E. Optimal economic power and heat dispatch in Cogeneration Systems

including wind power. Energy 2021, 225, 120263. [CrossRef]
19. Ginidi, A.; Elsayed, A.; Shaheen, A.; Elattar, E.; El-Sehiemy, R. An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm

for Combined Heat and Power Economic Dispatch in Electrical Grids. Mathematics 2021, 9, 2053. [CrossRef]
20. El-Sehiemy, R.; Elsayed, A.; Shaheen, A.; Elattar, E.; Ginidi, A. Scheduling of Generation Stations, OLTC Substation Transformers

and VAR Sources for Sustainable Power System Operation Using SNS Optimizer. Sustainability 2021, 13, 11947. [CrossRef]
21. Omotoso, H.O.; Al-Shaalan, A.M.; Farh, H.M.H.; Al-Shamma’a, A.A. Techno-Economic Evaluation of Hybrid Energy Systems

Using Artificial Ecosystem-Based Optimization with Demand Side Management. Electronics 2022, 11, 204. [CrossRef]
22. Zhu, Z.; Weng, Z.; Zheng, H. Optimal Operation of a Microgrid with Hydrogen Storage Based on Deep Reinforcement Learning.

Electronics 2022, 11, 196. [CrossRef]
23. Wu, X.; Li, S.; Gan, S.; Hou, C. An Adaptive Energy Optimization Method of Hybrid Battery-Supercapacitor Storage System for

Uncertain Demand. Energies 2022, 15, 1765. [CrossRef]
24. Reddy, S.S.; Park, J.Y.; Jung, C.M. Optimal operation of microgrid using hybrid differential evolution and harmony search

algorithm. Front. Energy 2016, 10, 355–362. [CrossRef]
25. Reddy, S.S. Optimal Operation of Microgrid considering Renewable Energy Sources, Electric Vehicles and Demand Response. In

Proceedings of the 1st International Conference on Sustainable Energy and Future Electric Transportation (SeFet 2019), Hyderabad,
India, 14–16 February 2019; EDP Sciences: Les Ulis, France, 2019; Volume 7, p. 01007.

26. Wang, Y.; Li, F.; Yu, H.; Wang, Y.; Qi, C.; Yang, J.; Song, F. Optimal operation of microgrid with multi-energy complementary
based on moth flame optimization algorithm. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 42, 785–806. [CrossRef]

27. Elsakaan, A.A.; El-Sehiemy, R.A.; Kaddah, S.S.; Elsaid, M.I. Optimal economic–emission power scheduling of RERs in MGs with
uncertainty. IET Gener. Transm. Distrib. 2020, 14, 37–52. [CrossRef]

28. Balasubramaniam, K.; Hadidi, R.; Makram, E. Optimal operation of microgrids under conditions of uncertainty. In Proceedings
of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [CrossRef]

29. Andrychowicz, M. Optimization of distribution systems by using RES allocation and grid development. In Proceedings of the
15th International Conference of European Energy Market, Łodź, Poland, 27–29 June 2018.
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Abstract: Energy limitations remain a key concern in the development of Internet of Medical Things
(IoMT) devices since most of them have limited energy sources, mainly from batteries. Therefore,
providing a sustainable and autonomous power supply is essential as it allows continuous energy
sensing, flexible positioning, less human intervention, and easy maintenance. In the last few years,
extensive investigations have been conducted to develop energy-autonomous systems for the IoMT
by implementing energy-harvesting (EH) technologies as a feasible and economically practical
alternative to batteries. To this end, various EH-solutions have been developed for wearables to
enhance power extraction efficiency, such as integrating resonant energy extraction circuits such as
SSHI, S-SSHI, and P-SSHI connected to common energy-storage units to maintain a stable output
for charge loads. These circuits enable an increase in the harvested power by 174% compared to
the SEH circuit. Although IoMT devices are becoming increasingly powerful and more affordable,
some tasks, such as machine-learning algorithms, still require intensive computational resources,
leading to higher energy consumption. Offloading computing-intensive tasks from resource-limited
user devices to resource-rich fog or cloud layers can effectively address these issues and manage
energy consumption. Reinforcement learning, in particular, employs the Q-algorithm, which is
an efficient technique for hardware implementation, as well as offloading tasks from wearables to
edge devices. For example, the lowest reported power consumption using FPGA technology is
37 mW. Furthermore, the communication cost from wearables to fog devices should not offset the
energy savings gained from task migration. This paper provides a comprehensive review of joint
energy-harvesting technologies and computation-offloading strategies for the IoMT. Moreover, power
supply strategies for wearables, energy-storage techniques, and hardware implementation of the task
migration were provided.

Keywords: energy harvesting; IoMT devices; energy autonomous; wearables; energy-storage; energy
management; fog edge computing; task offloading; deep learning; reinforced learning; IoMT

1. Introduction

With the spread of Internet of Medical Things (IoMT) applications, more intelligent
services are presently emerging in the healthcare and medical areas, such as remote patient
monitoring [1,2], telemedicine [3], biometrics scanners [4] and vital signs monitoring [5,6].
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In general, the IoMT comprises different and heterogeneous smart devices, such as wear-
ables, wireless sensors, and medical monitors, which can be applied to the human body,
at home or in hospitals to provide better and more efficient remote monitoring. By com-
bining information technology with medical information, wearable devices can perform
better monitoring of medical and healthcare applications, resulting in reduced complexity
and enhanced efficiency. With the use of the IoMT, physicians and healthcare responsible
are also able to access different and real-time medical databases, which ensures a better
understanding and identification of their patients’ health issues.

The IoMT presents an application of the Internet of Things (IoT) in the field of medical
and healthcare. The IoT comprises physical network devices equipped with sensors,
software, and network connections that facilitate data collection and transmission. It can
integrate cloud services and fog centers, where complex and efficient data processing
is carried out with high processing capabilities. Considering the basic concepts of the
IoT, the general layer architecture of IoMT is illustrated in Figure 1. It comprises four
main layers, namely the sensing layer, the edge layer, the fog layer and the cloud layer.
In the sensing layer, the wireless sensors and medical devices are installed along with
different actuators. They are responsible for sensing medical and physiological information,
and executing specific controlling and monitoring requests such as laser positioning and
equipment maintenance. The raw data collected from the end devices are collected and
transmitted to the edge devices, where data processing, reduction and analysis are carried
out. Devices with edge computing processors provide improved security while operating
at a low power level. Within the fog layer, local area networks are installed, where the
data are transmitted from endpoints to a gateway, where it is then transmitted to sources
for processing and return transmission. By the end, data are transmitted to the cloud
layer, which can access several IoT devices at the same time. It permits real-time and
continuous data processing with higher computational capabilities. However, even though
wearable devices are becoming more powerful and affordable, machine-learning-based
tasks that typically require more computation resources may overload them with higher
data communications and, therefore, higher energy consumption.

Figure 1. General layers architecture of IoMT system.

Therefore, it becomes imperative to offload some tasks from resource-constrained
edge devices to co-located edge devices, such as the fog. Applications that require intensive
computation resources are often offloaded to cloud servers to be processed, which improves
IoT device capabilities. Cloud computing, by contrast, may cause high latency response
times, privacy and security issues. As a solution, some studies proposed to offload tasks
to a Mobile Edge Computing (MEC) server via edge devices that can be placed near
end devices and process some computational capacity. Thus, transmission latencies are
reduced, and reliability and security are enhanced. Even though computation offloading
over fog edge computing or MEC has reduced the energy consumption of IoMT devices to
a certain degree, their energy limitations remain a key concern. However, most devices are
powered by batteries, which limits their energy resources and operating times. Similarly,
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computation performance may be affected if not enough battery energy is available for
task transmission. A larger battery or more frequent recharging can address this problem.
In contrast, the small size of IoMT devices makes it difficult to equip them with larger
batteries or to recharge their batteries frequently. To address these challenges, energy-
harvesting technologies have been identified as promising techniques to increase battery
life and achieve energy-autonomous systems. Figure 2 shows the general architecture of
an IoMT system with the integration of EH-supplied systems and considering the task-
offloading aspect. The IoMT system includes various types of sensors used, most likely
activity sensors (presented in red circles in Figure 2), physiological sensors (presented in
green circles in Figure 2). Sensor are placed over the human body within a network, where
each sensor is responsible for monitoring certain physical information. The sensor data
are gathered in the base station to be transmitted to the next IoT layer, which can be either
an access point, a gateway or a mobile device. Later, the collected data are transported to
the fog layer and then the cloud. Communication can be established between different
installed devices over the different layers. During the communication, information related
to the actual status of the corresponding devices, such as the residual energy level, neighbor
list and reception acknowledgement could be shared. This information care is used later to
decide upon the most appropriate device for task offloading. Offloading involves sharing
details about which device will be best suited to execute the current task, the type of task
that will be executed, and how it will be executed. Task offloading can occur at different
levels of the IoMT system, such as from the WBAN to the gateway and from the gateway
to the fog, to the cloud.

Figure 2. General architecture of an IoMT system based on energy harvesting and with consideration
of task offloading.

Within the framework of IoT for medical applications, continuous data transmission
takes place over the different layers of the network. Therefore, different sensor and commu-
nication technologies are used for sensing and transmitting data in real time, enabling fast
calculations and optimal decision-making. It is crucial to satisfy the trade-off between the
energy consumption, computational capability and data transmission for a real-time and
accurate operation. Several schemes for energy efficiency and management are required to
respond to these challenges. In general they can be classified into four main categories:
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• Resources allocation ensures a better allocation and management of the available
resources, mainly radio and energy resources.

• Energy harvesting and transfer provide a sustainable energy supply, which are har-
vested from ambient resources. In the case of wearable systems, the energy can even
be harvested from the human activities, such as breathing and movement.

• Hardware systems are explored during the development and design of wireless nodes
and devices with consideration of the minimum energy consumption.

• Network installation enables the definition of appropriate infrastructures that maxi-
mize energy efficiency and ensure the data transmission and computational capabilities.

In this direction, it is important to investigate energy-efficient solutions for IoMT
system, where intensive tasks and data processing are realized in a strict execution time.
In particular, the communication and data transmissions need more attention, especially
in the case of limited energy sources and computation capabilities. In this direction,
investigations into energy-harvesting solutions along with task-offloading concepts present
a promising solution to deal with excessive demands for a stable communication and data
transmission. The contributions of this paper are:

• We provide a literature review of the state-of-the-art joint energy-harvesting and
task-offloading approaches in fog edge computing systems.

• We compare the state-of-the-art related surveys based on specific key features.
• We investigate energy-harvesting technologies and energy-storage strategies for

IoMT devices.
• We survey recent research efforts on task offloading in fog edge computing and related

design considerations.
• We review existing approaches for the design of patient-centered care system.

The paper is organized as follows. Section 2 surveys research efforts related to joint en-
ergy harvesting and task-offloading approaches in fog edge computing systems. Section 3
presents the task-offloading approaches for fog edge computing, and deep-reinforcement
learning-based algorithms. Section 4 highlights the related design considerations and
challenges for EH driven task offloading. Section 5 reviews possibilities of energy sup-
ply, energy-storage strategies and recent trends in energy harvesting. Section 6 presents
requirements for patient-centered care system. Finally, Section 7 concludes the paper.

2. Related Works

Recently, task offloading in fog edge computing systems has gained considerable
attention due to the increasing development of IoMT devices. In [7], the authors developed
a deep-learning-based, Internet of Medical Things-enabled edge computing framework
for tackling COVID-19. It detects various COVID-19 symptoms and generates reports
and alerts for medical decision support. Results indicate that the system can be used to
effectively manage in-home health during a pandemic. Nevertheless, improvements to
the system accuracy were needed as well as implementations with real subjects. In [8]
a joint optimization framework was also proposed for IoT fog computing to achieve
optimal resource allocation. The results show that the proposed framework enhanced the
performance of IoT-based network systems. In [9] authors investigated delay-sensitive
task offloading in edge-enabled healthcare services. A priority-aware service provisioning
was proposed, allowing edge server computing resources to handle hard-deadline tasks
earlier than soft-deadline tasks which have a lower priority and can tolerate longer delays
over hard-deadline tasks. In contrast, the authors plan to examine how hard-deadline
tasks can be placed in remote healthcare applications where ensuring high reliability is a
crucial requirement.

When focusing on the increasing number of tasks that require high computational ca-
pability and consequently more energy, mobile devices need effective mechanisms to figure
out which tasks to perform locally and which to migrate to the cloud. The authors in [10]
discussed different computational offloading techniques. They consider the offloading
either to a fog node or a cloud. They both have their trade-offs. The cloud, as an example,
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is rich in terms of resources, but offloading computational tasks to cloud servers can lead
to security and privacy issues and it is also far away from mobile nodes. In contrast, fog is
nearby but has limited resources. Hence, offloading to a cloud or fog consumes different
amounts of energy and increases computation performance. In this context, the authors
proposed an energy consumption-oriented algorithm to reduce energy consumption when
offloading tasks. Initially, they compute the consumed energy when offloading the task to
the fog compared to the cloud. Afterwards, they evaluated which entity would be preferred
for the task based on the computation requirements. Based on these factors, the task is then
offloaded to the desired entity.

Energy harvesting is a promising technology for converting ambient (solar, wind, etc.)
and human energy (motion, breath) into electrical power, enabling communication systems
to achieve energy-autonomous and efficient communications. In [11] the joint offloading
and resource allocation issues in energy harvesting small cell networks is addressed to
maximize the number of tasks performed by edge servers while reducing their energy and
delay costs. In [12], the authors proposed a deep-reinforcement-learning-based framework
for online offloading to reduce the computational complexity in large EH-driven networks.
The proposed algorithm can successfully improve offloading behavior by implementing
a deep neural network that learns binary offloading decisions based on past offloading
experiences. In contrast, a distributed implementation of the proposed algorithm is still
needed to enable the users to make offloading decisions in a distributed manner via a learn-
ing process. Similarly, a reinforcement-learning-based privacy-aware offloading scheme
for a healthcare IoT device supplied by energy harvesting was proposed in [13]. The of-
floading policy applied on the edge device can be determined by considering the privacy
level, energy consumption, and computation latency at each time slot. In [14], the authors
investigated computation offloading and resource allocation issues with multiple energy
harvesting supplied mobiles. All mobile devices initially harvest energy from RF signals
and then use it to perform their own tasks locally or offload them to a MEC server. Some
other offloading schemes can also achieve self-sustaining operations. In [15], for instance,
the state-of-the-art of methodologies for task offloading in MEC and wireless power transfer
to end nodes were recently described. The authors demonstrated the effective use of the
Wireless Power Transfer (WPT) technique to charge end mobile phones which have gained
more popularity in MEC. However, the increasing demand for computing resources may
degrade the performance of MEC. Accordingly, they highlighted the influence of making
decisions between task-offloading implementations and offloading locations on the power
consumption of MEC devices.

Energy-efficient appliances have become prevalent in various fields and industries,
including health care. Therefore, energy management is an effective technique for evalu-
ating the energy efficiency of different devices. By contrast, the surveyed contributions
lack discussions of joint energy-harvesting technologies, fog edge computing, and energy
management techniques which are vital for IoMT devices.

Table 1 compares the state-of-the-art-related surveys based on specific key features.

Table 1. Comparison between state-of-the-art surveys.

Reference Fog Edge Computing Task Offloading Energy Harvesting Energy Storage

[16–18] X - - -

[19,20] X X - -

This work X X X X

3. Principles of Task Offloading

3.1. Pre-IoT Age

Task or computation-offloading theory emerged to respond with the need to speed
up task processing in hardware. Task migration in a distributed system aims at balancing
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the load among available processors without a drastic increase in the communication
overhead [21,22]. Two classes of algorithms have been devised: static and dynamic. Com-
munication protocol plays a pivotal role in balancing the load among processors. Three
types of control models have been articulated for load balancing: centralized, distributed,
and hybrid [23].

In a multicore/multiprocessor system, task offloading has been used to speed up the
execution of multitasks, given a process P1 that can be decomposed into n independent
processes, P1, n and M cores. Each process k requires an execution time tk,m on the mth
core, such that m ∈ {1, . . . , M} and k ∈ {1, . . . , n} (see Appendix A). The energy dissipated
by the mth core to run the kth process is Ek,m. The task offloading seeks an offloading
algorithm that assigns tasks such that the execution time is met at the lowest possible
energy consumption, i.e., the offloading should solve the following optimization problem.

min
M

∑
m=1

n

∑
i=1

δi,mEi,m

s.t.
n

∑
k=1

tk,m ≤ t, ,

n ≤ M

(1)

where δi,m

{

1 if Pi runs on processor m
0 else

.

The authors of [24] devised an offloading strategy that moves the computationally
demanding task from CPU to GPU. They further demonstrated this strategy by considering
the implementation of a signature-matching intrusion detection system. This approach has
been generalized to cover the multicore architecture with and without accelerators.

Offloading can be used to balance the load among cores or processors in a multiproces-
sor system. This is often regarded as task migration that aims at moving the task execution
from one core/processor using a given performance metric: power consumption, thermal
energy, and dark silicon [25]. Communication-driven task migration attempts to migrate
tasks to adjacent cores.

3.2. Post IoT Age

The Internet of Things, IoT, is the new trend in connectivity spawned from progress
in sensors, embedded systems, and communication technologies. It is a three-tier archi-
tecture that is composed of a perception/sensors layer, connectivity layer, and application
layer [26].

Mobile edge computing, MEC, is a new frontier in computing technologies. Multi-
tude factors have contributed to the emergence of edge computing. Traditionally, cloud
computing has been the dominant technology for the storage and processing of big data.
Conventional task-offloading techniques have been proposed to migrate computationally in-
tensive tasks/applications to cloud servers for processing. The offloading decision is aimed
at either reducing end-user power consumption or increasing system performance [27].
However, the offloading strategies devised for cloud computing are not adequate in today’s
technologies for the following reasons: (1) Cloud servers cannot sustain the real-time
processing of critical tasks, (2) the growing need for data protection and privacy, (3) the
exponential increase in the number of IoT devices, and (4) the rising concern of the power
consumption of data centers [28]. It has been reported that in the US, data centers consume
up to 2.2% of all utility power [29]. According to the International Energy Agency (IEA),
nearly 1% of global energy is consumed by data centers (roughly 250 TWh).

Edge computing, EC, addresses the shortcomings of cloud computing by bringing
cloud-like services and operations close to the user. Task-offloading techniques have
also been developed for edge computing. Fog computing is a term coined by CISCO
and emerged after edge computing [30,31]. Fog-computing architecture, as illustrated in
Figure 3, is composed of IoT end devices, fog devices that can perform processing and
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storage (such as micro cloudlet and gateways), and cloud layer (typically data centers and
cloud servers) [32,33].

Figure 3. Offloading strategies using fog-computing paradigm. The fog layer is composed of cloudlets
(small-scale data centers),and storage (fog servers). The cloud layer houses data centers and servers.

In the realm of the fog-computing paradigm, task offloading has become a hierarchical
approach in which an offloading algorithm can execute the task locally using a specialized
core, or nearby on an edge device, or remotely on fog or cloud nodes.

Task migration to near or far end nodes needs to account for the cost of the communi-
cation protocol: power and delay. In the context of fog computing, the offloading algorithm
needs to solve the following optimization algorithm.

min
M

∑
m=1

n

∑
i=1

δi,m(Ei,m + ECi,m)

s.t.
n

∑
k=1

(tk,m + τk,m) ≤ t, ,

n ≤ M

(2)

where ECi,m is the energy consumed to transmit data of task Pi to processor m, and τk,m is
the latency to transmit task data to the processor m. Those parameters depend on the type
of the communication protocol as well as the load of the remote processor that will execute
the task.

3.3. Offloading Algorithms

The offloading algorithms aim to find a suitable processor (locally or remotely) to
execute a task given a certain constraint. In wearables, offloading can be done at two stages:
from wearables to edge devices or from edge device to fog/cloud devices [34]. The of-
floading device keeps on checking the estimated available power and compares it with
the forested power demands. The offloading algorithms are invoked whenever the power
demands exceed the available power (harvested and stored) and the energy consumed
by the communication unit is less than the energy consumed by task processing. This
concept is illustrated in Figure 4. Offloading can be combined with advanced techniques
for power management such as sleep, dynamic voltage and frequency scaling (DVFS),
and approximated computing [35].
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Figure 4. Principles of energy-aware offloading algorithm.

3.3.1. Algorithm Classification

Numerous offloading algorithms for fog computing have recently been proposed.
Those algorithms belong to two categories: learning and non-learning. Table 2 summarizes
the types of offloading algorithms proposed recently.

Table 2. Recently proposed offloading algorithm.

Reference Algorithm Type Optimization Problem Objective

[36] Heuristic Approximation algorithm
Reduce energy consumption of

wearables

[37] Heuristic
Mixed-integer nonlinear

programming
Joint scheduling and

offloading

[38]
Coalition game

theory
merge and split

maxi- mize the total numbers
of computed bits

[39] Evolutionary genetic algorithm
joint optimization of load

balance and propagation delay

[40] Deterministic Iterative balance relays energy

[41]
Reinforcement

learning

decentralized partially
observable Markov

decision process

Maximizing IoT utility and
satisfying delay requirements

[42]
Reinforcement

learning
Deep Deterministic Policy

Gradient
Maximizing task completion

rate and reducing task latency

[43,44]
Reinforcement

learning
Q-deep learning Reduce computation latency

3.3.2. Deep-Reinforcement Learning

In recent years, much attention has been given to deep-reinforcement learning (DRL)
in task offloading. Reinforcement learning, RL, is a branch of artificial intelligence in
which an agent interacts with the environment and learns using two functions: reward
and punishment. Punishment is a negative reward. In RL, the learning cycle is not based
on a training dataset; instead, the agent interacts with the environments with no prior
knowledge and obtains immediate feedback based on its performance. The environment is
modeled as a Markovian Decision Process (MDP). In RL an experience is defined as the
triple (st, at, rt), where st, at, and rt are, respectively the state, action and reward at the time
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t. The agent determines the action based on a policy, π(s). Q-learning algorithm is an
offline policy that estimates π(s) with guaranteed convergence. The mapping between the
policy and the state at a given time t is given by (3) [45]

Q(st, at) = Q(st, at) + α(rt + γ max
a

Q(st+1, at)− Q(st, at)), (3)

where α is the learning rate, and γ is the discount rate. In RL, the agent tends to maximize
the rewards. This concept is illustrated in Figure 5.

Figure 5. Principles of DRL.

Offloading algorithms-based Q-Learning has been devised in many published reports
such [11,43,44,46–48].

In [46], the authors devised a dynamic computation-offloading strategy for an MEC
system using Markov decision process theory. The authors considered IoT devices with
energy-harvesting techniques. The optimal offloading is achieved using a low-complex
after-state learning method.

The problem of task offloading in the context of MEC has been formulated in [47] as
a constrained Markov decision process (CMDP). The authors applied Lagrangian primal-
dual optimization and devised a deep-reinforcement learning algorithm to solve the re-
laxed CMDP.

Dynamic computational offloading for MEC systems with EH-enabled IoT devices
considering multiple offloading servers has been studied and solved in [48]. The authors
elaborated an offloading algorithm using deep Q-learning techniques.

Hardware implementation of the Q-learning algorithm received scant attention. Most
of the reported implementation focuses on designing an accelerator using FPGA technology.
The lowest power consumption has been reported to be 37 mW for a Q-matrix of dimensions
eight states and four policies [49].

The work of [41] considered task offloading with energy harvesting for an IoT MEC
system. The offloading problem has been formulated as a decentralized partially observable
Markov decision process. They further reduced the computational complexity by searching
for an approximated solution using an RL decentralized offloading algorithm. The results,
obtained using Matlab simulations, showed that the proposed reduces both average delay
and average energy consumption.

To this end, it is crucial to identify the power consumption during different activities
of the end devices, in particular data processing, data transmission and communication.
In the following section, specific design considerations for task offloading are presented,
which may influence the power consumption and the latency of the software and hard-
ware components of the IoMT systems. The main focus is attributed to the choice of the
communication protocols for IoT devices with consideration of the energy consumption.

4. Design Considerations for the Task Offloading

With respect to the general architecture of IoMT, Wireless Body Area Networks
(WBANs) [38,50,51] are installed where various types of sensors are used, most likely
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activity sensors (e.g., accelerometer), physiological sensors (e.g., heart rate, ECG and body
temperature) and environmental sensors (e.g., humidity and air pressure) (see Figure 1).
Various types of applications are recognized with enhanced sensing and communication ca-
pability, such as biomedical and wearable solutions for health monitoring, human activities
control, organ implantation monitoring and remote surgical interventions. These appli-
cations require a high data rate, low latency and high quality of services (QoS) [39,40,52],
in order to ensure precise, real-time and secure medical applications. With the integration
of the IoMT, it is more challenging to identify the most appropriate strategy that enables
efficient handling of the intensive and continuous requests from the installed wireless
devices on the human body promptly. Moreover, wireless sensor nodes are battery pow-
ered, where the lifetime of the battery is directly dependent of the number of executed
tasks along the process. Due to this, it is important to increase the computation capacity
of battery-powered devices when performing intensive computing tasks while ensuring
real-time intervention and data transmission. In this context, the choice of suitable data
transmission and communication protocols has a strong influence on the evaluation of
the task-offloading algorithm in terms of processing time, energy consumption and com-
putation. In the following, an overview of the most common communication protocols
is provided.

4.1. Communication Protocols

The general architecture of IoMT is reported in Figure 1. The provided architecture is
composed of three main layers: (1) the things/devices layer, where the WBAN is installed,
along with the gateway devices, (2) the fog layer, and (3) the cloud layer [53,54]. Different
communication technologies can be identified within each layer, which enable transmission
of the data from the end devices to the end user.

In the first layer, different sensor nodes are installed on the body, which build the
WBAN. Sensor nodes can be implantable, wearable or mobile, placed for example in
the hand of the patient. In this type of network the communication between sensors
is carried out within a short range of 2 to 3 m. These devices, basically, require small
power sources with respect to the safety and security of the user. Therefore, with respect
to the low power specification and small communication range, the standard Industrial
Scientific and Medical (ISM) band is sufficient to cover the installed nodes [55,56]. Various
communication technologies are supported in the ISM band, such as ZigBee, Bluetooth
and Wi-Fi. Moreover, alternative communication technology is introduced such as the
Intra-Body Communication (IBC) technology [57,58]. Through IBC, the human body is
used as a transmission medium, enabling power-saving, and thus improving the robustness
and security of communications. Due to these advantages, IBC has been included as a third
physical layer in the IEEE 802.15.6 standard for wireless body area networks designated as
Human Body Communication (HBC) [59]. A central device, refereed also as base station, is
responsible for collecting sensor data and forwarding them to the next communication layer.
Accordingly, intermediate devices are installed as a bridge between the small interconnected
WBAN and the exterior local network, namely the Wireless Local Area Network (WLAN).
In this case, local gateways are used such as mobile devices, access points or simple mid-
layer gateways. Typically, they provide a bridge between the IoT edge devices and the fog
and cloud servers. They enable the passing of data from the discrete sensor network to the
other cloud and application layers. On one side, common communication technologies
can be initiated between the WBAN’ nodes and the intermediate gateways, such as the
Wi-Fi and Bluetooth. In the other side, communication with the fog and cloud server
can be realized through 5G, Wi-Fi or GPR [60,61]. To this end, data communication and
storage are carried out over this layer, whereas in the IoT layer, installed wireless devices
are periodically transmitting information. Sensor devices remain awake for a specific time
frame from time to time to transmit the required information.

Within the second layer, local servers and gateway devices for the fog network are
placed. These devices enable the processing of the collected data. Excessive and complex
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processing and data-mining algorithms can be carried out at this stage. Later, the collected
data are redirected to the cloud layer for further processing. In the case of the cloud or
fog layer, more powerful and long-range protocols are required, namely the LoRaWAN,
Sigfox, NB-IoT and LTW-M [62], which ensure a better coverage range with a minimum
of 1 km in urban deployment and 10 km in rural deployment. Moreover, the fog layer
is in connection with healthcare experts responsible, which permits a reduction to the
time delay of the interpretation and execution of specific tasks and decisions. In the third
layer, powerful data storage and computation resources are installed. In this instance data
analysis, decision-making and urgent intervention can be recognized. In addition, the cloud
layer permits the incorporation of various and heterogeneous healthcare systems, which
enables a real-time and continuous access to the current patient, equipment and planned
tasks supervision and monitoring. Basically, this layer consists of cloud-based resources
that will store the data generated by the medical infrastructure and be used to perform
analytical work as needed in the future [54]. An overview of the common communication
technologies used in WBANs is presented in Table 3 [63,64].

Table 3. Comparison between communication technologies used in the WBANs.

Criteria Range in m Data Rate Frequency Standard Energy Consumption

Bluetooth [65,66] <10 1–3 Mbits/s 2.4 GHz IEEE 802.15.1- <30 mA

NFC [67] 0.1 424 Kbit/s 13.56 MHz ISO/IEC 1800-3 <15 mA

RFID [68,69] <12 100 Mbit/s LF: 125–135 KHz, ISO/IEC 1800 -
HF: 13.56 MHz,
UHF: 868–930 MHz,
Microwave 2.45, 5.8 GHz,

BLE [66] 10–300 125 Mbit/s 2.4 GHz IEE 802.15.1 <15 mA, 10–100 mW

ZigBee [66,70] 10–500 250 Kbit/s 2.4 GHz IEEE 802.15.4 <16 mA, 10–100 mW

Wi-Fi [64,70] 100 11 Mbit/s 2.4, 5 GHz IEEE 802.11 a/b/g -

LoRaWAN [71,72] ∼5 in urban 56 bits/s UL 868, 434, 915 MHz LPWAN Sleep: 7.66 µA to 34 mA
20 in rural 296 bits/s DL Tx: 133 mA

Rx: 16.3 mA

Sigfox [73,74] ∼10 km in urban 100 bits/s UL 868, 434, 915 MHz LPWAN, UNB Sleep: ∼1 µA, Tx: 49 mA
∼40 km in rural 60 bits/s DL Rx: 19 mA

NB-IoT [75–77] ∼1 km in urban 220 Kbits/s Licensed LTE LPWAN Sleep: 13 mW
∼10 km in rural Tx: 716 mW, Rx: 21 mW

4.2. Energy Consumption of Wireless Nodes

Typically, in the task-offloading paradigm, computing tasks are created by end devices
(e.g., wireless sensor nodes, central devices). Therefore, the energy requirement at the level
of the wireless node, as well as the network, are emphasized. Therefore, characterizing the
energy consumption of the end device is crucial to create a balance between the energy
requirement, demands and consumption. Essentially, the wireless sensor node is composed
of four main units: energy management unit, communication unit, data processing unit
and sensing unit. The energy management unit is responsible for converting the energy
retrieved from either the battery or the energy-harvesting circuit into a suitable energy
level, which can be used to supply the electronics of the node. Using energy harvesting
helps to reduce the dependency on the battery power by extending the lifetime of the
node itself [78]. The communication unit contains the radio transceiver module used
for wireless communication. The processing unit is the core of the node, where all data
processing and node activity is carried out. The last unit contains the embedded sensors,
which can be either passive or active and are responsible for the sensing and actuating
tasks. Basically, the effective lifetime of the node is dependent on the available, residual
energy and the required amount of energy to successfully carry out the assigned task.
Consequently, the total energy consumption is deducted in relation to the energy supply
and energy consumption during data processing and communication. Considering the
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energy provided by the harvesting module and the module consumption, the effective
residual energy at a time instance t is estimated in accordance with the consumed, harvested
and residual energy amounts of the previous time instance.

ERes(t) = ERes(t − 1)− ECons + EHarv (4)

ERes(t), ERes(t − 1), ECons and EHarv are the residual energy of the node at a time instance t,
the residual energy at a time instance (t − 1), energy consumption and the energy of the
harvesting module, respectively (see Appendix A).

The general definition of the energy consumption within a sensor node is presented in
Equation (5).

ECons = ETransceiver + ESystem + ESensing (5)

where ETransceiver, ESystem and ESensing are the energy consumed during the reception and
transmission of data packet, energy consumed within the coding and decoding activities
and the energy consumed during sensing activities, respectively.

With respect to the standard energy consumption model, the ETransceiver is presented
based on the transmitter and receiver electronic definition as presented in Equations (7) and (9).
The total energy consumption, within the radio module during data transmission, becomes:

ECons = ERx + ETx + ESystem + ESensing (6)

The energy of transmission and reception are dependent on the number of transmitted
data bits over a distance d, where Eelec is the electrical energy of the circuitry needed to
transmit or to receive a l bit data packet. d is the distance between the receiver and transmitter.

ETx =

{

Eelec × l + E f s × l × d2, d ≤ dT

Eelec × l + Eamp × l × d4, d > dT
(7)

The distance between both transmitter and receiver is dependent on the medium access
and therefore, it is defined based on ǫ f and ǫamp, which present the energy consumption
factor for free space and for the multipath radio models, respectively. The threshold
distance dT is defined as:

dT =

√

ǫ f s

ǫamp
(8)

The energy consumption during the reception is defined based on the number of
communicated bits l, which is defined in Equation (9). The list of the used parameters with
their typical values is illustrated in Appendix A.

ERx (l) = Eelec × l (9)

Eventually, the effective energy consumption of a wireless node depends strongly
on how often it sends and receives data packets, and processes sensor information.

Task offloading offers a promising solution to reduce the workload on the installed
devices, by adopting specific algorithms where the task realization is offloaded to devices
with efficient energy sources and computation capabilities. In the context of WBANs and
wearable solutions, intensive computing is mitigated from the wireless sensor to the edge
and from the cloud to the fog. It presents an efficient solution to manage the intensive
communication and computation in a limited energy source environment. Moreover,
by adopting an energy-harvesting solution, the energy of the system can be kept available
to carry out the assigned tasks in real time and continuously, which remains challenging for
different applications, such as in the case of real-time and continuous pulse monitoring [79],
motion tracking [80], exoskeleton manipulation [81] and the maintenance and monitoring
of implantable devices [82]. To this end, providing continuous and efficient power supply
to wearable and implantable devices presents a highly addressed challenge in recent
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research [83–85]. As part of this, integrating energy-harvesting technologies with task-
offloading approaches allows end devices to endure for a long time to support long-term
task processing [86–88].

5. Power Supply for Wearables with Task Offloading Capabilities

Task-offloading approaches can be efficiently combined with energy harvesting to
address the issue of insufficient battery capacity and limited computation resources in
IoMT devices and consequently increase the operating time of wearable devices. This is
referred to as joint energy harvesting and task offloading. Using this technology, users
can extract energy, convert it into useful energy, store it in the appropriate energy-storage
device, and use that energy to perform the corresponding local computing and offloading
tasks [15,89–91].

As depicted in Figure 4, the offloading algorithm reacts based on two estimations:
The energy harvested/stored and the energy demands. Energy harvesting from ambient
sources is considered a promising solution that can be used to provide power supply for
IoMT devices and thus replace batteries. The most commonly used harvesters for the
supply of wearable devices are piezoelectric harvesters, thermoelectric generators, RF
harvesters, and solar cells. Table 4 illustrates the amount of power that can be harnessed
from different sources, along with some advantages and limitations associated with each.

Ambient light presents the highest power density among other sources, with the
possibility of harvesting indoor and outdoor. However, it has limited application due to its
restricted availability.

Table 4. Available power from different energy sources (literature survey).

Energy Source Harvested Power Advantages Disadvantages

Mechanical energy

Human (motion) 4 µW/cm2
High power

density
Depending on the
source propertiesIndustry (vibrations) 100 µW/cm2

Thermal energy

Human (heat) 25 µW/cm2
Widely

available
Limitation of

power densityIndustry 1–10 mW/cm2

Ambient light

Indoor 10 µW/cm2
High power

density Intermittent
Outdoor 10 mW/cm2

Radio frequency

GSM 0.1 µW/cm2
Widely

available

Power dependent on
distance between

RF source-harvesterWi-Fi 0.001 mW/cm2

5.1. Thermoelectric Generators

Energy can be derived from heat using thermoelectric generators (TEGs) based on the
thermoelectric effect. It is also known as the Seebeck effect, according to which electricity is
generated by the temperature gradient between two conductors. A TEG can be attached to
the body to convert the temperature difference between a body skin and the surrounding
environment into voltage. This concept was launched in 1999, where the first wristwatch
supplied by body heat was invented [92]. TEGs can be used as an efficient power supply
for wearable devices when the human body and the surrounding environment have a
temperature difference of 5 to 10 degrees.

The electric potential of a TEG is expressed by Equation (10)

VTEG = S · ∆T (10)
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where S is the Seebeck coefficient of the material used and (∆T) is the temperature difference
across the TEG.

A thermally powered wearable device that incorporates an accelerometer to sense falls
was developed in [93]. In this application, the device generated 520 µW of output power
at 15 ◦C, which charged a capacitor and a power management unit, included to link the
thermal source and a sensor node.

An in-depth analysis of thermoelectric generation technology was recently presented
in [94], illustrating the working principles of TEGs and their applications. Nevertheless,
the development of thermoelectric materials with acceptable power factors remains a major
challenge, for which various techniques have been investigated to achieve better efficiencies.

5.2. Kinetic Energy Harveters

In contrast to solar or thermal energy, a kinetic energy source is not dependent on
location or time. Kinetic harvesters are based on the extraction of vibration or motion and
the conversion of the mechanical energy into electrical power through one or a combination
of different transduction mechanisms. The most common ones are piezoelectric, electro-
magnetic, electrostatic, and triboelectric. These harvesters are classified related to their
transduction mechanisms. Unlike other means of transduction, piezoelectric harvesters
directly convert human motion changes into electrical signals without any requirements
for further external input. Piezoelectric (PE) harvesters operate through the piezoelectric
effect. When a force is applied to a PE element, a mechanical strain is developed, causing
the material to exhibit changes in its polarization, causing the accumulation of electrical
charges across the piezoelectric material. The changes in charge distribution produce an
electric field depending on the applied force, frequency of oscillation, and geometry of
the harvester.

Electromagnetic kinetic energy harvesters operate based on Faraday’s law induction
which states that once a conductor moves through an electric field, a current is induced.
A system of springs, magnets and coils are used in electromagnet energy-harvesting sys-
tems. Coil number and magnetic mass are the main determinants of the output power
of these energy harvesters. Therefore, reducing their size, weight and complexity is chal-
lenging. As example, the authors of [95] demonstrated the effectiveness of a frequency-
converted electromagnetic harvester which extracts energy mainly from human limb
motion. A power density of 0.33 mW/cm3 was achieved in this work using low-frequency
human vibration to power wearable devices at extremely low frequencies.

5.3. Flexible Piezoelectric Generators

The body is an excellent source of significant amounts of mechanical energy which
can be produced from several biological processes, including walking, heartbeat, breathing
and muscle movements. Thanks to their high flexibility, piezoelectric nanogenerators
(PENGs) can convert this mechanical stress into electrical charges through nanostructured
piezoelectric materials when stretched, pressed or flexed. In addition, this technology can
potentially be integrated with other energy-harvesting mechanisms, resulting in hybrid
energy-harvesting solutions. The simple architecture of PENGs makes them attractive
and considered to be the most promising energy harvesters for wearable devices and mi-
crosystems. The materials used in piezoelectricity are diverse, including crystals, ceramics,
and polymers. The converter needs to be attached to a part of the body subjected to strong
compressive stress to maximize the piezoelectric effect. PENGs can provide enough power
to supply devices with power consumption ranging from microwatts to milliwatts, which
best fits the wearable sensor range as seen in Table 5 where the energy consumption of
typical wearable sensors is presented.
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Table 5. Energy consumption of typical medical sensors.

Wearable Sensors
Voltage
Range

Power
Consumption

Description

Optical heart rate sensors
- BH1790GLC optical heart
rate sensor [96]

1.7–3.6 V 720 µW
Measures the pulse waves
that occur when the heart
pumps blood.

Blood pressure sensors
- Capacitive tactile sensor [97] 1.8–3.3 V 1.2–4.6 mW

Measures the pressure
exerted by the circulating
blood on the walls of blood
vessels.

Glucometers
- Implantable RFID glucose
monitoring sensor [98]

1.0 V–1.2 V 50 µW
Measures the average
blood glucose concentration.

Pulse oximeter sensors
-MAX30102 pulse oximetry [99] 1.8 V–3.3 V <1 mW

It attaches to a body part,
most commonly to a finger
to measure the oxygen
saturation level of the
circulating arterial blood.

Flexible Piezoelectric generators can be modeled as sinusoidal current sources IP in
parallel with parasitic capacitances CP and internal resistances RP when excited by sinu-
soidal vibrations at their resonant frequencies. Since the piezoelectric transducer can deliver
an alternating irregular AC current rather than direct current (DC), an electronic interface
is essential to enable voltage compatibility between the piezoelectric element and the load.
The electronic interface greatly influences the energy-harvesting effectiveness [100], which
has driven a variety of research efforts to develop PENG-compatible energy management
interfaces [101]. Implementing these circuits is mostly intended to allow the user to use
irregular AC power harnessed by piezoelectric transducers (PTs) to supply loads such as
wearable sensors. The rectification stage of PEH systems is usually coupled with a DC-DC
converter [100] to scale the rectified voltage to match the application’s requirements.

One limitation of the classic AC-DC energy-harvesting circuits when implemented
with PEts is that negative output power is produced because the output current and
voltage could not keep the same phase, leading to a loss of an amount of the harvested
energy. P-SSHI and S-SSHI have been proposed to overcome this limitation. The main
difference between the circuits is how we connect the switch S and the inductor L, either in
series, so we are talking about SSHI or in parallel to deal with P-SSHI. When the vibration
occurs, the switch S remains open, allowing the current to flow through the circuit to the
storage element Cr. If the piezoelectric element’s voltage drops below a certain threshold,
the switch S will automatically close, inverting the voltage across the PE element and
therefore stopping current flow. This means that the switch is kept closed until a full
inversion of the PEt’s voltage has been achieved. Nevertheless, this voltage inversion
causes an electrical damping that opposes the mechanical vibrations on the piezoelectric
material. This effect is known as Synchronized Switch Damping (SSD). It can significantly
affect the overall conversion efficiency, and it is consequently the main limitation of both P-
SSHI and S-SSHI circuits. Figures 6 and 7 display the P-SSHI and S-SSHI energy-harvesting
interfaces, respectively.

63



Electronics 2022, 11, 383

Figure 6. Schematic of P-SSHI energy extraction interface.

Figure 7. Schematic of S-SSHI energy extraction interface.

SECE circuit, displayed in Figure 8, mainly prevents the SSD effect, which is the main
limitation of P-SSHI and S-SSHI circuits. This effect is caused by the direct connection
between the output load and the piezoelectric transducer during the hole vibration phase.
When the PEH generates the voltage, the switch S will be closed, and the energy will be
stored in the inductor L as seen in the figure.

Figure 8. Schematic of SECE energy extraction interface when the switch S is closed.

When the vibration stops, the voltage across the piezoelectric element falls to zero,
and the switch S will open immediately. Consequently, the energy accumulated in the
inductor will be directly transferred to the storage capacitor and the load. One limitation
for this interface is the complexity when compared to the simple architecture and switching
strategy that characterize SSHI circuits.

The control of the integrated switches was a common limitation for the reviewed
interfaces, so several researchers were focusing on developing self-powered resonant
energy-harvesting circuits. In [102], authors demonstrated an optimized self-powered P-
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SSHI circuit that can automatically switch once the voltage exceeds its maximum threshold.
In addition, this technology can potentially be integrated with other energy-harvesting
mechanisms, resulting in hybrid harvesting solutions [103].

5.4. Energy-Storage Techniques

Using energy harvesting to achieve battery-free operation has gained high interest.
However, any interruption in the energy-harvesting source will affect the wearable de-
vice’s operation. Therefore, an energy-storage mechanism is still required to maintain a
smooth power supply for charge loads and serve as a backup whenever the energy source
is unavailable.

The harnessed energy can be stored before being supplied to the MCU, or the power
can be delivered directly. The decision of whether implementing a storage element in a
wearable device considers different factors:

• Placement of the device: implant or outside.
• Energy source: type
• Requirements of the application: either it needs a sustainable supply for the wearable

device or a non-critical usage.

Batteries and super capacitors are the two main solutions for energy storage. Energy
storage for wearable devices must comply with several requirements. First, the storage
element needs to be rechargeable to avoid frequent battery replacements, which can be
inconvenient in several cases. In pacemakers, as an example, surgery needs to be per-
formed every eight years to replace their lithium batteries [104]. As a second requirement,
the storage device needs to be capable of supporting long-term application with minimal
impact on battery parameters.

The following Table 6 compares two storage mechanisms, batteries and capacitors.

Table 6. Comparison between different storage techniques for energy harvesters in IoMT devices

Comparison Conventional Batteries Supercapacitors

Storage mechanism Chemical Physical
Energy storage High Limited
Recharging cycles 100 s Millions
Charging time Hours Sec-minutes
Impedance Low-high Low
Physical size Large Medium
Capacity 0.3–2500 mAH 10–100 µAH

They differ mostly in the number of charging cycles since capacitors can reach millions
of cycles. In addition, capacitors require only a few seconds for charging, so the charging
time is very fast compared to batteries. In contrast, supercapacitors cannot be used in AC
and high frequency circuits and have lower capacity than batteries, but this can satisfy the
requirements of some low-power applications. One more limitation for using batteries as a
storage element is that the battery is susceptible to leakage, leading to chemical poisoning,
especially when used in implants. Batteries can leak chemicals when overcharged or
heated (above 60 ◦C). This can lead to chemical burns risking human beings. Due to their
advantages over batteries, super capacitors are a promising alternative to store energy. In a
super capacitor, thin dielectric layers and electrodes hold power at the electrode–electrolyte
interface to be accessed when needed. Thanks to their high pulse power capacity, they can
also handle small power surges. Super capacitors’ excellent cycle lifetime also makes them
ideally suited to act as energy-storage components in energy-harvesting-based sustainable
power systems.

5.5. Recent Energy-Harvesting Solutions for Wearables

The human body can be a versatile source of energy harvesting [105,106]. Energy can
be harvested from everyday activities, such as breathing, arm motion, walking, running,
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or pedaling, without performing a specific workout. The body can produce mechanical
energy through various body zones movements, such as the elbow, the knee, the ankle
or the heels. The performance of three vibrating generators was studied in [107] at nine
different body locations for a person walking on a treadmill. The results indicate that the
energy generated at lower-body locations (hip, knee, and ankle) is four times greater than
the energy generated at upper-body locations. Additionally, body heat offers promising
possibilities for supplying wearable systems. Based on the Seeback effect, a flexible TEG
generated 4.95 mW of body heat and was used for a wearable multi-sensing bracelet [108].
A energy-autonomous, multi-sensing bracelet can operate under varying conditions, in-
cluding human motion. The amount of energy in such systems is highly dependent on
the temperature difference between the human body and the ambient environment [109].
Several studies have shown that physiological activities, such as blood pressure, heart
motion and breathing, can regularly provide wearable devices with energy supply. In [110],
cardiac contractions are used to supply low-powered pacemakers. When powered by a
constant heartbeat of 90 bpm, the harvester can deliver 11.1 j of electrical energy. Because of
the small size and weight requirement, energy extraction from the human body is much
more complicated than energy harvesting from machines [111]. The available power is
often weak and difficult to use, such as human kinetic energy, which typically has a low
frequency and a low amplitude.

Recently, thermoelectric nanogenerators (TENGs) were demonstrated as a conven-
tional technique for rehabilitation in [112]. As an exercise gaming device, a wearable
TENG-based rehabilitation device (Rehab-TENG) was developed. The device was used to
control a game on a laptop by flexing and extending the arm. It is an effective way of testing
the motor function of an impaired arm. Rehab-TENG is also used as an energy harvester in
an exercise system where the patient moves an impaired arm to store energy in a capacitor.
It is possible to assess the level of deficiency by measuring the charging rate of the storage
element, which consequently enhances patients’ motivation for exercising more repetitive
movements of the impaired body zone. This, in turn, speeds up recovery. Furthermore,
the authors suggested using the Rehab-TENG device as an autonomous home exercise and
monitoring system, which is particularly relevant during pandemics, therefore reducing
the necessity for hospital visits for rehabilitation.

An emerging trend in energy-harvesting technologies for IoMT is developing bio-
compatible wearable harvesters, such as textiles, footwear, or watches, which are energy-
autonomous, lightweight, flexible, and have more computational resources for better
performance. Consequently, various energy-saving approaches were proposed to mitigate
the problem of excessive energy demands during the operation of devices. Task offloading
is a promising and effective technique that extends the operating time of wearables by
migrating the energy intensive task to edge device. Task-offloading algorithms attempts
to solve an optimization problem by looking for a suitable remote processor to perform
the offloading, taking into consideration the overheads caused by the communication link
(energy and latency). Real-time implementation of task offloading for wearables is still in
its infancy.

6. Value-Based Healthcare System and Personalized Healthcare

The legacy health care system is staff-centric. Driven by the need to transform the
healthcare system to be patient- and personnel-centric, numerous governments have pro-
posed a transformation strategy. For instance, in Saudi Arabia, the government has identi-
fied eight challenges that the current health care system should cope with. Those challenges
are: (1) the continued growth and aging of the population, (2) the prevalence of avoid-
able injuries and non-communicable diseases beyond the international standard, (3) the
inadequacy and inconsistency of primary care, (4) wide-scale disparity in the quality of
care, (5) a significant deficiency in value and quality, (6) the system is resource-, staff-,
and institution-centric, (7) insufficient use of digital integrated systems, and (8) the growing
need to decrease government spending in health care systems [113].
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The value-based healthcare system is a new framework adopted by many governments
to improve healthcare services and user experience through the improvement of patient
healthcare outcomes at the lowest possible cost, i.e., the value is determined as the ratio
of outcomes to cost [114]. Preventive medicine and early intervention lowers the cost
associated with the hospitalization of patients. Healthcare 4.0, a new paradigm shift in
the health industry, has transformed healthcare from an institution-centered to a patient-
centered system [115].

Wearables are cornerstone technologies in Healthcare 4.0. The design of patient-
centered care mandates the inclusion of the user requirements to identify functional and
non-functional requirements [35]. Surveys, focus groups, and interviews are common
ways to capture user requirements. In [116], the authors devised a cost-efficient system
for the monitoring of the sedentary level of senior citizens. The system requirements and
guidelines have been gathered from a literature review. The system is then evaluated using
a mixed approach: focus group, interview, and observations. The system is refined through
the feedback provided by the end-user. The authors reported that: (1) the majority of the
respondents are interested in receiving a feedback on the level of their physical activity at
the end of the day, (2) nearly 58% of participants showed interest in a system that integrates
games with physical activity, and (3) virtually 83% of the participants showed interest in
profiling their daily activities and receiving alerts when their physical activities are low.

The user requirements for the wearables targeting Chinese seniors are the focus of the work
described in [117]. Those requirements have been classified under the following three categories:
healthcare requirements, privacy and security requirements, and commodity requirements.

7. Conclusions

Wearable devices are the heart of IoMT. Energy-harvesting techniques can achieve
energy-autonomous wearable devices. However, handling tasks that require intensive
computing resources limits their performance. To overcome these limitations, energy-aware
task-offloading approaches were proposed to reduce the device energy consumption and
improve computation resources. This paper surveys recent works on joint task offloading
and energy-harvesting techniques in the IoMT. In addition, possibilities of power supply
for medical sensors and energy-storage strategies are investigated.

Joint task offloading and energy harvesting is still an active area of research. The of-
floading is meaningful at two possible levels: from wearables (IoT end device) to edge
devices (IoT high-end or middle-end device), or from edge devices to fog nodes. An
off-policy-based reinforcement learning algorithm has been often proposed in the literature.
Nevertheless, its hardware implementation has received scant attention.

Future work will focus on the efficient hardware implementation of joint energy
harvesting and reinforcement learning-based task offloading for wearable devices. Never-
theless, privacy and security might affect the offloading strategy when applied to wearables;
this topic was not considered in this study.
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Abbreviations

EH Energy Harvesting
SSHI Synchronized Switch Harvesting on Inductor
P-SSHI Parallel Synchronized Switch Harvesting on Inductor
S-SSHI Serial Synchronized Switch Harvesting on Inductor
SECE Synchronized Electrical Charge Extraction
SEH Standard Energy Harvesting (Bridge rectifier)
SSD Synchronized Switch Damping
EWMA Exponentially Weighted Moving Average
HBC Human Body Communication
IoT Internet of Things
IoMT Internet of Medical Things
MCU Micro-Controller Unit
MEC Mobile Edge Computing
QoS Quality of Service
WBANs Wireless Body Area Networks
WSNs Wireless Sensor Networks
PENGs Piezoelectric nanogenerators
PEH Piezoelectric energy harvesting
FPEGs Flexible Piezoelectric Generators
PEt Piezoelectric transducer
TEG Thermoelectric Generator

Appendix A

Table A1. List of parameters with their typical values.

Parameter Explanation Typical Value/Range Unit

ERes(t) Residual energy at a time instance t NA J

ERes(t − 1) Residual energy at a time instance
(t − 1) NA J

ECons Energy consumption NA J

EHarv Energy of the harvesting module NA J

ETransceiver Consumed energy of transmission NA J

ESystem
Consumed energy of coding and

decoding NA J

ESensing Consumed energy of the sensing NA J

ERx Consumed energy of the reception NA J

ETx

Consumed energy of the
transmission NA J

Eelec Electrical energy of the circuitry Based on initial assumption (e.g., 50 nJ) J

d
Distance between transmitter and

receiver Related to the realized scenario m

dT
Threshold distance between

transmitter and receiver 1 m m

l Size of the data packet Depends on the ADC of the processor bits

ǫ f
Energy consumption factor for free

space Depends on the pJ/bit/m2

ǫamp
Energy consumption factor for

multipath radio models propagation loss pJ/bit/m4

M Number of cores 8 -

n Number of tasks maximum value is 6 -

α the learning rate 10−4 -

γ the discount rate 0.85 -
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58. Čuljak, I.; Lučev Vasić, Ž.; Mihaldinec, H.; Džapo, H. Wireless Body Sensor Communication Systems Based on UWB and IBC
Technologies: State-of-the-Art and Open Challenges. Sensors 2020, 20, 3587. [CrossRef] [PubMed]

59. Álvarez-Botero, G.A.; Hernández-Gómez, Y.K.; Telléz, C.E.; Coronel, J.F. Human body communication: Channel characterization
issues. IEEE Instrum. Meas. Mag. 2019, 22, 48–53. [CrossRef]

60. Windha M.V.; Iskandar; Hendrawan; Arifianto, M.S. Wireless Sensor Network on 5G Network. In Proceedings of the 2018 4th
International Conference on Wireless and Telematics (ICWT), Bali, Indonesia, 12–13 July 2018; pp. 1–5. [CrossRef]

61. Papadopoulos, G.Z.; Kritsis, K.; Gallais, A.; Chatzimisios, P.; Noel, T. Performance evaluation methods in ad hoc and wireless
sensor networks: A literature study. IEEE Commun. Mag. 2016, 54, 122–128. [CrossRef]

62. Aldahdouh, K.A.; Darabkh, K.A.; Al-Sit, W. A survey of 5G emerging wireless technologies featuring LoRaWAN, Sigfox, NB-IoT
and LTE-M. In Proceedings of the 2019 International Conference on Wireless Communications Signal Processing and Networking
(WiSPNET), Chennai, India, 21–23 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 561–566.

63. Arefin, M.T.; Ali, M.H.; Haque, A.F. Wireless body area network: An overview and various applications. J. Comput. Commun.

2017, 5, 53–64. [CrossRef]
64. Vallejos de Schatz, C.H.; Medeiros, H.P.; Schneider, F.K.; Abatti, P.J. Wireless medical sensor networks: Design requirements and

enabling technologies. Telemed. E-Health 2012, 18, 394–399. [CrossRef]
65. Reich, O.; Hübner, E.; Ghita, B.; Wagner, M.; Schäfer, J. Performance Evaluation of Bluetooth in a Wireless Body Area Network for

Practical Applications. In Proceedings of the 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM),
Hangzhou, China, 8–11 June 2020; pp. 1–5. [CrossRef]

66. Georgakakis, E.; Nikolidakis, S.A.; Vergados, D.D.; Douligeris, C. An analysis of bluetooth, zigbee and bluetooth low energy
and their use in wbans. In International Conference on Wireless Mobile Communication and Healthcare; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 168–175.

67. Coskun, V.; Ozdenizci, B.; Ok, K. A survey on near field communication (NFC) technology. Wirel. Pers. Commun. 2013,
71, 2259–2294. [CrossRef]

68. Bouhassoune, I.; Saadane, R.; Chehri, A. Wireless Body Area Network Based on RFID System for Healthcare Monitoring: Progress
and Architectures. In Proceedings of the 2019 15th International Conference on Signal-Image Technology Internet-Based Systems
(SITIS), Sorrento, Italy, 26–29 November 2019; pp. 416–421. [CrossRef]

69. Liu, H.; Bolic, M.; Nayak, A.; Stojmenovi, I. Integration of RFID and wireless sensor networks. In Encyclopedia on Ad Hoc

and Ubiquitous Computing: Theory and Design of Wireless Ad Hoc, Sensor, and Mesh Networks; World Scientific: Singapore, 2010;
pp. 319–347.

70. Tang, M.; Jin, Y.; Yao, L. WiFi-ZigBee Coexistence Based on Collision Avoidance for Wireless Body Area Network. In Proceedings
of the 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM), Chengdu, China, 10–11
August 2017; pp. 245–250. [CrossRef]

71. Casals, L.; Mir, B.; Vidal, R.; Gomez, C. Modeling the energy performance of LoRaWAN. Sensors 2017, 17, 2364. [CrossRef]
72. Haxhibeqiri, J.; Van den Abeele, F.; Moerman, I.; Hoebeke, J. LoRa scalability: A simulation model based on interference

measurements. Sensors 2017, 17, 1193. [CrossRef]
73. Gomez, C.; Veras, J.C.; Vidal, R.; Casals, L.; Paradells, J. A sigfox energy consumption model. Sensors 2019, 19, 681. [CrossRef]
74. Lavric, A.; Petrariu, A.I.; Popa, V. Long Range SigFox Communication Protocol Scalability Analysis Under Large-Scale, High-

Density Conditions. IEEE Access 2019, 7, 35816–35825. [CrossRef]
75. Lauridsen, M.; Krigslund, R.; Rohr, M.; Madueno, G. An empirical NB-IoT power consumption model for battery lifetime

estimation. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 1–5.

76. Migabo, E.M.; Djouani, K.D.; Kurien, A.M. The Narrowband Internet of Things (NB-IoT) Resources Management Performance
State of Art, Challenges, and Opportunities. IEEE Access 2020, 8, 97658–97675. [CrossRef]

77. Díaz Zayas, A.; Rivas Tocado, F.J.; Rodríguez, P. Evolution and Testing of NB-IoT Solutions. Appl. Sci. 2020, 10, 7903. [CrossRef]
78. Tan, Y.K.; Panda, S.K. Review of Energy Harvesting Technologies for Sustainable WSN. Sustain. Wirel. Sens. Netw. 2010, 15–43.

[CrossRef]
79. Park, D.Y.; Joe, D.J.; Kim, D.H.; Park, H.; Han, J.H.; Jeong, C.K.; Park, H.; Park, J.G.; Joung, B.; Lee, K.J. Self-powered real-time

arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 2017, 29, 1702308. [CrossRef] [PubMed]

71



Electronics 2022, 11, 383

80. Zeng, Y.; Xiang, H.; Zheng, N.; Cao, X.; Wang, N.; Wang, Z.L. Flexible triboelectric nanogenerator for human motion tracking and
gesture recognition. Nano Energy 2022, 91, 106601. [CrossRef]

81. Zhu, M.; Sun, Z.; Chen, T.; Lee, C. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple
degree of freedom sensory system. Nat. Commun. 2021, 12, 2692. [CrossRef]

82. Bian, S.; Zhu, B.; Rong, G.; Sawan, M. Towards wearable and implantable continuous drug monitoring: A review. J. Pharm. Anal.

2021, 11, 1–14. [CrossRef]
83. Zou, Y.; Bo, L.; Li, Z. Recent progress in human body energy harvesting for smart bioelectronic system. Fundam. Res. 2021,

1, 364–382. [CrossRef]
84. Liu, L.; Guo, X.; Liu, W.; Lee, C. Recent Progress in the Energy Harvesting Technology—From Self-Powered Sensors to

Self-Sustained IoT, and New Applications. Nanomaterials 2021, 11, 2975. [CrossRef]
85. Jiang, D.; Shi, B.; Ouyang, H.; Fan, Y.; Wang, Z.L.; Li, Z. Emerging implantable energy harvesters and self-powered implantable

medical electronics. ACS Nano 2020, 14, 6436–6448. [CrossRef] [PubMed]
86. Zhao, Y.; Luo, X. Task Offloading Policy for Nodes with Energy Harvesting Capabilities. In Proceedings of the 2019 IEEE 90th

Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [CrossRef]
87. Zhang, Y.; He, J.; Guo, S. Energy-Efficient Dynamic Task Offloading for Energy Harvesting Mobile Cloud Computing. In

Proceedings of the 2018 IEEE International Conference on Networking, Architecture and Storage (NAS), Chongqing, China, 11–14
October 2018; pp. 1–4. [CrossRef]

88. Guo, M.; Li, Q.; Peng, Z.; Liu, X.; Cui, D. Energy harvesting computation offloading game towards minimizing delay for mobile
edge computing. Comput. Netw. 2021, 204, 108678. [CrossRef]

89. Sun, Y.; Song, C.; Yu, S.; Liu, Y.; Pan, H.; Zeng, P. Energy-Efficient Task Offloading Based on Differential Evolution in Edge
Computing System with Energy Harvesting. IEEE Access 2021, 9, 16383–16391. [CrossRef]

90. Min, M.; Xiao, L.; Chen, Y.; Cheng, P.; Wu, D.; Zhuang, W. Learning-based computation offloading for IoT devices with energy
harvesting. IEEE Trans. Veh. Technol. 2019, 68, 1930–1941. [CrossRef]

91. Khan, P.W.; Abbas, K.; Shaiba, H.; Muthanna, A.; Abuarqoub, A.; Khayyat, M. Energy efficient computation offloading mechanism
in multi-server mobile edge computing—An integer linear optimization approach. Electronics 2020, 9, 1010. [CrossRef]

92. Kawata, M.; Takakura, A. Thermoelectrically Powered Wrist Watch. US Patent 5,889,735, 30 March 1999.
93. Hoang, D.C.; Tan, Y.K.; Chng, H.B.; Panda, S.K. Thermal energy harvesting from human warmth for wireless body area network

in medical healthcare system. In Proceedings of the 2009 International conference on power electronics and drive systems (PEDS),
Taipei, Taiwan, 2–5 November 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1277–1282.
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Abstract: Parameter extraction of the photovoltaic cell is a highly nonlinear complex optimization
problem. This article proposes a new hybrid version of whale optimization and particle swarm
optimization algorithm to optimize the photovoltaic cell parameters. The exploitation ability of
particle swarm optimization with adaptive weight function is implemented in the pipeline mode
with a whale optimization algorithm to improve its exploitation capability and convergence speed.
The performance of the proposed hybrid algorithm is compared with six different optimization
algorithms in terms of root mean square error and rate of convergence. The simulation result shows
that the proposed hybrid algorithm produces not only optimized parameters at different irradiation
levels (i.e., 1000 W/m2, 870 W/m2, 720 W/m2, and 630 W/m2) but also estimates minimum root
mean square error even at a low level of irradiations. Furthermore, the statistical analysis validates
that the average accuracy and robustness of the proposed algorithm are better than other algorithms.
The best values of root mean square error generated by the proposed algorithm are 7.1700× 10−4 and
9.8412× 10−4 for single-diode and double-diode models. It is observed that the estimated parameters
based on the optimization process are highly consistent with the experimental data.

Keywords: photovoltaic; parameter extraction; single-diode model; double-diode model; swarm
intelligence

1. Introduction

The depletion of fossil fuel resources and resulting environmental impact due to their
usages embarks the need for alternate energy resources [1]. Solar energy is one of the
most promising alternative sources for fossil fuel. The free access to the energy of sunlight
can be extracted employing the photovoltaic (PV) panels. The rapid adoption of solar
energy by the domestic and industrial sector makes it a vital source to be explored [2].
Despite the very low operational and maintenance cost, there are various limitations for
efficient energy generation. An enormous amount of research has been performed and
carried out to better the power output from the PV panels [3,4]. The major limitation in the
execution and implementation of the solar PV power plants is the very high capital cost
for installation [5]. PV cells are having nonlinear current-voltage (I-V) and power-voltage
(P-V) characteristics curves with some operational limitations [6]. This non-linearity makes
it difficult for any probability and approximation to increase efficiency. Every PV panel
can operate at maximum efficiency, as defined by the manufacturer, only if the practical
parameters (voltage-current) are somewhat close to or coinciding with the maximum
power point (MPP). The real behaviour of PV panels rather different from the optimal
conditions, due to the non-linearity of I-V characteristics of solar cells makes it essential to
determine the MPP in each moment. It could be done through simulation techniques for
better operational efficiency [7]. This technology is ensured by the model of the equivalent
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circuit having several inherent parameters. However, the parameters provided by the PV
panel manufacturer don’t specify the model parameters. The given information states the
open-circuit voltage (Voc), short circuit current (Isc), and current at maximum power point
(Impp) under standard test conditions (i.e., 1000 W/m2, 25 ◦C). The practical parameters
vary at every instant with a change in weather conditions. The aging effects of PV also
alter the parameters of the equivalent circuit [3,8,9].

The core unit of the PV system is a solar cell, and it is of utmost priority to extract the
parameters for a close analysis of the PV panel performance around its MPP. The simulation
study of cells combined all together give the performance analysis of entire PV panels [8,10].
The equivalent circuit for the single- and double-diode model for parameter extraction
is the recent and most widely used approach. The method of parameter extraction can
be bifurcated into two major categories: analytical and optimization methods [11–15].
Although the analytical methods are the simplest and yields result quickly, but it misses
the accuracy under normal day conditions with variable lighting. The deterministic ways
of parameter extraction such as Newton-Raphson, nonlinear least square, Lambert W-
functions [16], iterative curve fitting [17], conductivity method [18] and the Levenberg-
Marquardt algorithm [19] have many boundaries such as continuity, differentiability,
and convexity related to objective functions. The boundary conditions further impose
limitations on the usage of the above analytical methods, as they obtain local minima when
dealing with multi-modal problems. Thus, analytical methods are not suitable to extract
the parameters.

To get more accurate and precise parameters from nonlinear implicit equations with
high accuracy, evolutionary algorithms [20] were proposed. The bio-related algorithms are
more accurate and powerful optimization algorithms to simplify nonlinear transcendental
equations as it doesn’t include complex mathematics. Although, researchers have devel-
oped number of metaheuristic algorithm but there is no algorithm that provides optimal
solution to all sets of problems which has also been proven by No free lunch theorem. This
has motivated researchers to design new algorithms to efficiently solve complex science
and engineering problems. A gradient-based optimizer (GBO) [20] inspired from the
gradient-based Newton’s method, Harris-Hawk optimizer (HHO) [21] inspired from coop-
erative behavior and chasing style of the Harris Hawks Heap-based optimizer (HBO) [22]
inspired from corporate rank hierarchy and slime mould algorithm (SMA) [23] inspired
from diffusion and foraging conduct of slime mould are some of the recently developed
metaheuristic algorithms. Some of the recent optimization algorithms used for parameter
extraction are the genetic algorithm (GA) [24], differential evolution (DE) [25], simulated
annealing (SA) [26], pattern search (PS) [27], harmony search (HS) [28], cuckoo search
(CS) [29], flower pollination algorithm [30], bacterial foraging optimization (BFO) [31], bird
mating [32], and artificial bee swarm optimization (ABSO) [33]. The proposed algorithms
suffer from the problem of premature convergence. The primary disadvantage of GA is
that it involves wide parameter optimization search space which makes the system quite
complicated and slow. The problem of large search space was overcome by implementing
PSO. However, it imposed the problem of the randomly chosen initial parameter value.
The value exchange in SA between the cooling timetable and the original temperature
makes it less popular. There is a likelihood that PSO will choose an incorrect pattern,
leading to premature convergence or no convergence. PSO with reverse barrier restriction
for series resistance (Rs), shunt resistance (Rsh), and diode ideality factor (a) is suggested
for fast and coherent convergence of optimization issue to global optima, considering
the temperature impact to reduce the modeling errors in differential evolution [31–35].
Although the BFO technique offers excellent outcomes but involving too many param-
eters that have complicated the scheme and imposed a computational strain. Authors
in [36], implemented improved teaching-learning based optimization (ITLBO), where a
good trade-off is established between the exploration and exploitation by eliminating the
worst learner. This increases the global search ability of the population in a defined search
space. A hybridization approach is carried out by the researchers in [34] for parameter
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extraction of solar PV cell. In this approach, the hybridization of two algorithms are imple-
mented, the firefly and pattern search. The exploration phase is completed by the firefly
algorithm during the first half iteration and then the pattern search algorithm takes control
of the population for the exploitation phase. A new opposition-based learning approach is
incorporated with whale optimization and shuffled complex evolutionary algorithm for
optimization of solar cell parameters [35,36]. This approach is tested on unimodal as well
as on multimodal benchmark functions and simulation results clearly show the robustness
of the algorithms.

The whale optimization algorithm (WOA) [37] and particle swarm optimization
(PSO) [38] are the two most prominent used metaheuristics techniques as available in the
literature. However, they differ from each other in the search mechanism for the best
solution in a defined search space. WOA mimics the social behaviour of humpback whales
while PSO mimics the searching behaviour of the birds in a group. It is shown by many
previous research studies that WOA is good at exploring [39] the search space but suffers
from a slow convergence rate due to low exploitation ability while PSO don’t have good
capability in exploring [40] the search space but have good local search capability. the
convergence speed of the algorithm. In [41], the author proposed a chaotic WOA (CWOA)
to improve maps utilized their dynamic behavior to prevent an optimization algorithm to
trap in local optima and improves its global search capability. In [42], the author proposed
Levy flight trajectory based WOA (LWOA) to improve the accuracy and convergence speed
of the algorithm. Levy flight allowed for the algorithm to get rid of local optima and
prevents premature convergence.

There are certain complex and non-convex optimization problems that are not solved
by continuous metaheuristic therefore, in [43], the author proposed binary WOA (BWOA).
In [44], the author proposed a modified WOA that includes whale memory and new
random search agent to enhance the exploitation capability of the algorithm. In [45], the
author improved the exploration capability of WOA and proposed three modified WOA
which are based on opposition-based learning, exponentially decreasing parameters, and
re-initialization of the worst particles. The hybridization of metaheuristic algorithms is
another approach to improve the exploration and exploitation capability of population
based stochastic algorithm. Furthermore, researchers have proposed hybrid approach
grey wolf optimization (HAGWO) [46], WOA-CBO (colliding bodies optimization) [47],
memetic-WOA (MWOA) [48], WOA-SA (simulated annealing) [39], WOA-MFO (moth
flame optimization) [49], Sine-Cosine (SC-WOA) [50], WOA-PS (Pattern Search) [51], and
Brain Storm (BS-WOA) [52–54] to improve the global and local search capability of WOA.

According to the literature survey, WOAPSO has not yet been implemented for the
parameter extraction of the solar cell (and it cannot be used to establish a PV parameter
estimation technique that can overcome all existing techniques). Therefore, this research
paper aims to anticipate a new parameter estimation algorithm for solar cell/module. The
novelty of the proposed study is that the exploitation capability of WOA is significantly
improved by incorporating the exploitation capability of PSO with adaptive weight in
sequential mode. As a result, equivalent circuit parameters converge equally good to the
true values with minimum error. The proposed WOAPSO algorithm’s performance is
measured based on convergence analysis, robustness, reliability, and statistical analysis for
three PV models at diverse operating conditions.

The manuscript is organized as follows: the problem formulation and mathemati-
cal model for solar PV cell/module are presented in Section 2. Section 3 gives a brief
introduction of the WOA, PSO, and proposed WOAPSO algorithm and discussed its im-
plementation to estimate the optimized value of unknown parameters of a single-diode,
double-diode, and PV module model. In Section 4, the simulation results of the WOAPSO
algorithm are discussed and compared with pre-existing metaheuristic algorithms. Finally,
Section 5 provides a conclusive remark to summarize the paper.
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2. Methodology

In this section, the equivalent circuits of a photovoltaic solar cell are formulated using
a single-diode and double-diode models. These equivalent circuit models are used to
describe the current-voltage characteristics of a solar cell.

2.1. PV Panel Model

The equivalent circuit of PV panel module is shown in Figure 1. The relation between
current and voltage at output terminal for the PV panel module is expressed as:

Il/Np = Ip − ISD

[

exp

(

q
(

Vl/Ns + Rs Il/Np

)

a1kBT

)

− 1

]

− Vl/Ns + Rs Il/Np

Rsh
(1)

where Ns and Np represents the number of solar cells connected in series and parallel
respectively. It is clearly depicted from Figure 1 that only five parameters (Ip, ISD, a1, Rs

and Rsh) are needed to be estimated for minimum value of the RMSE.

Figure 1. Equivalent circuit of PV panel module model.

2.2. Objective Function

The key purpose of this work is to optimize the unknown parameters for both the
models (SDM and DDM) and to reduce the error between experimental and estimated data.
The objective function for error used here is same as the authors have used previously in
as:

RMSE =

√

√

√

√

1
k

k

∑
N=1

f (Vl , Il , X) (2)

where Vl and Il are the measured voltage and current of PV module. The parameter ‘k’
stands for the number of experimental data set. The best solution found by WOAPSO is
represented by a vector X. For the single-diode model:

{

fsingle(Vl , Il , X) = Ip − ISD

[

exp
(

q(Vl+Il Rs)
a1kBT

)

− 1
]

− Vl+Il Rs
Rsh

− Il
(

X = Ip, ISD, a1, Rs, Rsh

)
(3)

For the double-diode model:














fdouble(Vl , Il , X) = Ip − ISD1

[

exp
(

q(Vl+Il Rs)
a1kBT

)

− 1
]

−ISD2

[

exp
(

q(Vl+Il Rs)
a2kBT

)

− 1
]

− Vl+Il Rs
Rsh

− Il
(

X = Ip, ISD1, ISD2, a1, a2, Rs, Rsh

)

(4)
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For the PV panel module model:






















fsingle(Vl , Il , X) = Ip − ISD

[

exp

(

q
(

Vl
Ns

+
Rs Il
Np

)

a1kBT

)

− 1

]

−Vl /Ns+Rs Il/Np

Rsh
− Il/Np

(

X = Ip, ISD, a1, Rs, Rsh

)

(5)

2.3. Hybrid Algorithm

The hybridization of the metaheuristic algorithm plays a vital role in improving their
performance. The fundamental principle of hybridization is to blend the best features
of two or more metaheuristic algorithms to improve search capability, accuracy, and
convergence speed of an individual algorithm. A hybrid algorithm is also known as a
memetic algorithm. In the last few years, researchers have proposed different strategies
for hybridizing metaheuristic algorithms. The three most explored methodologies of
hybridization are multi-stage, sequential and parallel.

In the multi-stage methodology, one of the algorithms globally explores the search
space and the second algorithm locally discovers the optimal solution. In sequential search,
both the algorithms run sequentially and find the optimal solution in the search space. In
the parallel mode, both the algorithms run parallel on the same population of the defined
problem.

2.3.1. Particle Swarm Optimization (PSO)

Particle swarm optimization is a nature inspired stochastic optimization technique
proposed by J. Kennedy and R. C. Eberhard in 1995. It is a population-based computation-
ally inexpensive technique that is inspired by the social behaviour of fish schooling and
bird flocking. The methodology of the algorithm is that the swarm of particles fly in the
search space and finds the optimal solution by updating their own best solution and the
best solution obtained by the swarms. The swarm is randomly initialized as particles in
N-dimensional search space with position xi and velocity vi. The position of the particles
represents the probable solution, and the velocity represents the rate of change of position
of the particle concerning the current position. The particles change their positions with
respect to the positions of the best particle. The velocity update equations are given by:

vd
i (t + 1) = w × vd

i (t) + c1 × r1 ×
(

pbestd
i (t)− xd

i (t)
)

+ c2 × r2 ×
(

gbestd − xd
i

)

(6)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (7)

where vd
i (t) and xd

i (t) represents the velocity and position of ith particle in dth dimension
at tth iteration, vd

i (t + 1) and xd
i (t + 1) is the velocity and position of the ith particle in dth

dimension at (t + 1)th iteration. pbestd
i represents the current best position of the particles

and gbestd represents the best position among all the particles in dth dimension, c1 and c2
are the acceleration parameter, r1 and r2 are the random number in the range [0, 1] and w is
the inertial weight vector which maintains balance between exploration and exploitation.

2.3.2. Whale Optimization Algorithm (WOA)

The whale optimization algorithm is a population-based optimization algorithm that
mimics the social behaviour of humpback whales and was proposed by Mirjalili and
Lewis in 2016. Humpback whales are long in size and have an interesting food searching
capability: they attack their prey (krill and small fishes) by a bubble-net hunting strategy.
WOA is inspired by this hunting behaviour, and works in three phases. First, it searches for
prey then encircles the prey and lastly, attacks the prey. Humpback whales swim around
the prey either following a shrinking path or through a spiral movement. A probability
factor p assumed to be 50% simultaneously choose either of the two movements.
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Shrinking Movement

Initially in the exploration phase, humpback whales search around a prey chosen
randomly in the search space with the following mathematical model:

→
D =

∣

∣

∣

∣

→
C ×

→
Xrand −

→
X

∣

∣

∣

∣

(8)

→
X(t + 1) =

→
Xrand −

→
A ×

→
D (9)

where t is the current iteration and (t + 1)th is the next iteration,
→
Xrand is the random

position of the prey,
→
A and

→
C are the coefficient vectors and is defined as:

→
A = 2

→
a
→
r −→

a (10)

→
C = 2 ×→

r (11)

where
→
a is decreased from 2 to 0 over the course of iterations and

→
r is the random number

in the range [0, 1]. In the exploitation phase the position of whales are updated based on

the position of the best search prey
→
X∗. Mathematically it is defined as:

→
D =

∣

∣

∣

∣

→
C ×

→
X∗ −

→
X

∣

∣

∣

∣

(12)

→
X(t + 1) =

→
X∗ −

→
A ×

→
D (13)

Spiral Movement

In the spiral movement of the humpback whale, first the distance is evaluated between
the whale located at (X, Y) and best search prey located at (X*, Y*). Once the distance
is evaluated then the helix-shaped movement of whale around the prey is defined with
following mathematical equation:

→
X(t + 1) =

→
D′·ebl · cos(2πl) +

→
X∗(t) (14)

where
→
D′ = |

→
X∗(t)−

→
X(t)| is the distance between the whale and best searched prey, b

is the constant which maintains the shape of the logarithmic spiral and l is the random
number defined in the range [–1, 1].

In WOA, coefficient vector ‘A’ maintains the balance in exploration and exploitation,
when the value of p < 0.5 and A > 1 then the positions are updated by Equations (9) and
(13) while when p < 0.5 and A < 1 the positions are updated by Equations (13) and (14) and
when the p ≥ 0.5 then the positions are updated using Equation (14).

2.3.3. Hybrid WOAPSO Algorithm

In this section, the principle of the proposed hybrid WOAPSO algorithm is briefly
addressed. In general, the performance of any optimization technique while solving any
NLP problem is affected by premature convergence and slow rate of convergence. Some
algorithms better explore the search space and have a slow convergence rate while some
algorithms less diversely explore the search space and did not find the optimal solution.
Maintaining the balance between exploration and exploitation is a critical issue in any
optimization algorithm. WOA has good exploration capability but exploitation depends
on evaluating the distance between the whale and the best position of the prey, and if the
distance is large then it takes more time to converge. While PSO has fast rate of convergence
but it is prone to premature convergence due to weakness in global search capability. Since
in PSO, if the global best solution gets trapped in local optima, then the rest of the particles
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do not explore the search space and follow the global best solution, and become trapped
in local optima. Therefore, it can be concluded that WOA is good at exploring the search
space, but suffers from a slow convergence rate while PSO doesn’t have good capability in
exploring the search space but have good local search capability. The aim of the proposed
hybrid algorithm is to enhance the exploitation capability of WOA by embedding the
PSO algorithm to find an optimal solution around the region explored by WOA. The
proposed approach is mixed, co-evolutionary in which PSO is used as a component of
WOA and thus the hybrid approach utilizes the strength of both the algorithms to avoid
the premature convergence and local optima. Figure 2 depicts the process flow chart of the
proposed algorithm. The mathematical model of the proposed algorithm is illustrated in
the following steps:

Step 1: Initialize the random population of search agents with position and velocity
defined as:

Xi =
(

x1
i , . . . . . . . . . . . . .xd

i , . . . . . . . . . .xn
i

)

, f or i = 1, 2, . . . . . . . . . . . . .N (15)

Vi =
(

v1
i , . . . . . . . . . . . . .vd

i , . . . . . . . . . .vn
i

)

, f or i = 1, 2, . . . . . . . . . . . . .N (16)

Step 2: Calculate the fitness of each search agent. If the problem is the minimization prob-

lem, then
→
X∗ is the position corresponding to the minimum fitness and for maximization

problem
→
X∗ is the position corresponding to the maximum fitness.

→
X∗ is the best search

agent.
Step 3: Update the constant parameters A, C, using Equations (10) and (11) and l lying
between [–1, 1] and p is the probability between 0 and 1.
Step 4: If p < 0.5 and |A|≥1, then select the random position of search agent (X*) in search
space and update the position of search agent using Equations (9) and (13).

Else if p < 0.5 and |A|<1, then update the position of search agent using Equations
(13) and (14).

Else p > 0.5, then update the position of search agent using Equation (14).

Step 5: Update the velocity of search agent based on the best position of search agent (X*)
in the search space using the following equation:

vd
i (t + 1) = w × vd

i (t) + c1 × r1 ×
(

X∗ − xd
i (t)

)

(17)

Step 6: Update the position of the particles using Equation (17).
Step 7: Go to step 3 until the termination criteria is met. The algorithm terminates when
either maximum number of iterations or minimum error criteria is attained.
Step 8: In the last iteration the returned value of

→
X∗ represents the global minimum and

the position corresponding to it represents the solution of the problem.

2.3.4. Implementation of WOAPSO for Parameter Extraction
Single-Diode Model

Initialize the population of search agents of fifth order dimension in the search space.
The fifth order dimension represents the photovoltaic current (Ip), series resistance (Rs),
shunt resistance (Rsh), diode saturation current (ISD) and diode ideality factor (a1). The
range of these parameters are [0–1, 0.001–0.5, 0–100, 0.01–0.5, 1–2].

Regulate the fitness of all agents in the search space using Equation (3).
Update the position of the agents at every iteration using WOAPSO. The algorithm

is designed to work in the minimization mode thus the location of particles that acquire
minimum cost represents the optimized parameters of SDM with minimum RMSE.
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Figure 2. Flowchart of proposed hybrid version of whale optimization and particle swarm optimization WOAPSO
algorithm.

Double-Diode Model

Initialize population of search agents of seventh-order dimension in the search space.
The seventh-order dimension represents the photovoltaic current (Ip), series resistance (Rs),
shunt resistance (Rsh), diode saturation currents (ISD, ISD1), and diode ideality factor (a1,
a2). The range of these parameters are [0–1, 0.001–0.5, 0–100, 0.01–0.5, 0.01–0.5, 1–2, 1–2].

Regulate the fitness of all agents in the search space using Equation (4).
Update the position of all agents at every iteration using WOAPSO. The algorithm

is designed to work in the minimization mode. Thus, the location of particles having
minimum cost represents the parameters of the double-diode model with minimum RMSE.

3. Results

In this section, the feasibility of the proposed new hybrid WOAPSO was tested and
evaluated using mainly two types of PV devices: one PV cell (R.T.C France solar cell) and
one PV module (SS2018P) at different solar irradiation. As a result, the retrieved PV cell
and module parameters were monitored and used to create simulated I-V data for each
device type. The accuracy and reliability of the WOAPSO were assessed by comparing the
techniques published in the literature with the existing art. The efficiency of the proposed
method is evaluated based on distinct empirical tools such as the individual absolute error
(IAE), the relative error (RE), the precision of the curve fitting, and the global minimum
convergence patterns. The experimental values of current and voltage are taken from [55]
by using R.T.C France solar cell at standard temperature condition i.e., 1000 W/m2 at
33 ◦C. The SS2018P PV module is composed of 36 polycrystalline cells connected in series
and generate the I-V data under different irradiance levels i.e., 1000 W/m2, 870 W/m2,
720 W/m2 and 630 W/m2. The data collection consists of a total of 20 I-V measurements
for solar cell and 27 for PV module. The values of current and voltage for solar PV module
(SS2018P) are measured across variable resistive load (0.1–250 Ω, 2 A). The measured value
of voltage and current at different irradiance level is presented in supplementary materials.
For a reasonable comparison, the search ranges (i.e., upper and lower bound) for each
parameter are tabulated in Table 1, which are the same as those being used by investigators
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in [27]. The proposed WOAPSO algorithm is implemented on MATLAB 2018a platform
with Intel ® core ™ i7-HQ CPU, 2.4 GHz, 16 GB RAM Laptop. In order to conduct the
experiment, the sample size, and the estimated number of objective function evaluations
are set at 30 and 50,000, respectively. Furthermore, a minimum of 30 separate runs are
carried out to prevent the contingency.

Table 1. Range of parameters for SDM, DDM and PV Module.

Parameter
SDM/DDM SS2018P PV Module

Lower Bound Upper Bound Lower Bound Upper Bound

Ip (A) 0 1 0 10
Isd, Isd1 (µA) 0.01 0.5 0 50

Rs (Ω) 0.001 0.5 0.001 2
Rsh (Ω) 0 100 0 2000
a, a1, a2 1 2 0 100

3.1. Parameter Estimation of Single-Diode Model Using WOAPSO

Only five parameters (Ip, Isd, a, Rs, Rsh) are required to be estimated for a single-diode
model. Table 2 signifies the values of parameters optimized by WOAPSO and RMSE for
the comparison. The WOAPSO algorithm provides the lowest RMSE of 7.1700 × 10−4

than others (Table 2 and Table S2). Here RMSE values are acquired as the index for the
evaluation of results with previously existing algorithms implemented by the researchers.

Table 2. Comparison of WOAPSO with different parameter estimation methods for SDM.

Algorithms Iph (A) ± SD Isd (µA) ± SD Rs (Ω) ± SD Rsh (Ω) ± SD a ± SD RMSE

GSA 0.7607 ± 0.0053 0.05 ± 0.0265 0.0339 ± 0.0076 63.7784 ± 4.304 1.5486 ± 0.0042 1.2012 × 10−3

SCA 0.7595 ± 0.0209 0.002 ± 0.034 0.0519 ± 0.0229 90.0685 ± 4.517 1.2641 ± 0.140 1.9123 × 10−3

GWO 0.7695 ± 0.0038 1 ± 0.193 0.0269 ± 0.0037 47.9136 ± 16.872 1.6232 ± 0.0311 9.4095 × 10−4

PSO 0.7383 ± 0.023 1 ± 0.023 0.0501 ± 0.0053 25.1251 ± 3.213 1.6605 ± 0.024 1.4320 × 10−3

WOA 0.7573 ± 0.0019 0.016 ± 0.0056 0.053 ± 0.0028 58.5839 ± 0.354 1.2476 ± 0.0043 9.9529 × 10−4

PSOGSA 0.7677 ± 0.0071 0.01 ± 0.006 0.0522 ± 0.0066 18.4587 ± 37.62 1.218 ± 0.0349 1.2400 × 10−3

WOAPSO 0.7597 ± 0.0012 0.499 ± 0.004 0.0342 ± 0.0007 83.0131 ± 0.027 1.5483 ± 0.001 7.1700 × 10−4

The characteristics curve of current-voltage and power-voltage for a single-diode
model is redrawn based on the best optimized parameters obtained by implementing
the WOAPSO algorithm and depicted in Figure 3. It is observed that the calculated data
obtained by the WOAPSO is very effectively in keeping with the experimental data set,
under S.T.C (i.e., 1000 w/m2 and 33 ◦C), all over the voltage range. The error relating the
measurement results for each of 20 pair points is determined by IAE and RE, which is
calculated by using Equations (18) and (19), respectively.

IAE = |Imeasured − Isimulated| (18)

RE = (Imeasured − Isimulated)/Imeasured (19)
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Figure 3. I-V and P-V characteristics curve for estimated and experimental values for single-diode
model of R.T.C France solar cell.

3.2. WOAPSO for Parameter Estimation of Double-Diode Model

In the case of DDM, the seven parameters (Ip, Isd, Isd1, a1, a2, Rs, Rsh) are required to
be optimized. The values of optimized parameters and minimum of RMSE are presented
in Table 3. The characteristics curve in terms of current-voltage and power-voltage for the
double-diode model is redrawn based on the best optimized parameters (Figure 4). It can
be observed that the estimated data based on optimized parameters are in keeping with
the experimental data set.

Table 3. Comparison of WOAPSO with different parameter estimation methods for DDM.

Algorithms
Iph (A) ±

SD
Isd1 (µA) ±

SD
Isd2 (µA) ±

SD
Rs (Ω) ±

SD
Rsh (Ω) ±

SD
a1 ± SD a2 ± SD RMSE

GSA
0.7641 ±

0.0079
0.05 ±
0.177

0.001 ±
0.1191

0.0344 ±
0.0091

37.780 ±
1.21

1.9943 ±
0.1756

1.5492 ±
0.1076 2.03 × 10−3

SCA
0.7623 ±

0.0097
0.0012 ±

0.059
0.001 ±

0.046
0.0595 ±

0.0067
52.4903 ±

24.02
2 ± 0.3030

1.2197 ±
0.2088 3.18 × 10−3

GWO
0.7609 ±

0.0026
0.3156 ±

0.0052
0.0001 ±

0.008
0.0323 ±

0.0015
65.6799 ±

6.5859
1.9426 ±

0.0625
1.5312 ±

0.0272 1.60 × 10−3

PSO
0.7676 ±

0.0016
0.0216 ±

0.027
0.0947 ±

0.234
0.0335 ±

0.012
54.9501 ±

5.4630
1.4606 ±

0.203
1.8363 ±

0.0137 2.90 × 10−3

WOA
0.76354 ±

0.0019
0.169 ±
0.0017

0.163 ±
0.0011

0.0410 ±
0.0022

35.7342 ±
0.7539

2 ± 0.034
1.4420 ±

0.0036 4.30 × 10−3

PSOGSA
0.7611 ±

0.0041
0.432 ±
0.0171

0.01 ±
0.0021

0.0347 ±
0.0042

61.72 ±
18.7135

1.9 ±
0.0183

1.5489 ±
0.0144 1.48 × 10−1

WOAPSO
0.7601 ±

0.0007
0.5 ±
0.0020

0.5 ±
0.0027

0.0311 ±
0.0005

100 ±
0.4345

1.5755 ±
0.0043

1.7314 ±
0.0015

9.8412 ×
10−4
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Figure 4. I-V and P-V characteristics curve for estimated and experimental values for double-diode
model of R.T.C France solar cell.

3.3. WOAPSO for Parameter Estimation of SS2018P PV Module

In order to further evaluate the efficiency of the proposed WOAPSO algorithm, pa-
rameters for SS2018P PV module were also estimated at different level of irradiance by
utilizing the SDM model. The optimal value of five parameters (Ip, Isd, a, Rs, Rsh) for
SDM of solar PV module at distinct levels of irradiance and constant temperature of 25 ◦C
is presented in Table 4 and Tables S7–S9. The characteristics curve of current-voltage
and power-voltage for solar PV module is redrawn based on best optimized parameters
obtained by implementing the WOAPSO algorithm at a different level of irradiance, i.e.,
1000 W/m2, 870 W/m2, 720 W/m2, and 630 W/m2 and is depicted in Figure 5. It is found
that the calculated data obtained by the WOAPSO is very effectively in keeping with the
experimental data set. The curve of IAE between experimental and estimated values at
1000 W/m2, 870 W/m2, 720 W/m2, and 630 W/m2, is shown in Figure 6.

Table 4. Comparison of proposed WOAPSO with different parameter estimation methods for SS2018P PV module
(1000 W/m2).

Parameters
Algorithms

GSA SCA GWO PSO WOA PSOGSA WOAPSO

Iph (A) 1.0959 ± 0.0037 1.1742 ± 0.011 1 ± 0.024 1.1796 ± 1.009 1.181 ± 0.0103 1.168 ± 0.053 1.1707 ± 0.0025
Isd (µA) 0.001 ± 0.2246 0.0092 ± 0.388 0.001 ± 0.0759 0.001 ± 0.707 0.019 ± 1.034 0.001 ± 1.358 0.0074 ± 0.0348
Rs (Ω) 0.001 ± 0.0253 0.0011 ± 0.0187 0.001 ± 0.0022 0.0022 ± 0.583 0.0024 ± 0.007 0.0075 ± 0.0342 0.2 ± 0.0017

Rsh (Ω) 455.5284 ± 13.67 139.676 ±
19.5323 100 ± 0.842 1308.079 ±

2.466 18.166 ± 10.71 2000 ± 4.63 177.219 ± 0.026

a 53.5976 ± 0.2493 1.4147 ± 1.021 1.2628 ± 0.0399 1.2429 ± 0.252 1.289 ± 0.6784 1.246 ± 0.24 1.3939 ± 0.0068
RMSE 1.68 × 10−1 1.51 × 10−3 1.59 × 10−1 5.13 × 10−3 7.82 × 10−4 3.22 × 10−3 7.6714 × 10−4

CPU time (s) 17 12.45 9.3 10 7.56 13.17 7.81
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(a) 

(b) 

Figure 5. Characteristics curve of simulated and experimental values at different level of irradiance
(a) I-V curve and (b) P-V curve for single-diode model of SS2018P PV module. Symbols represent the
estimated data while the solid lines represent the measured data.
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Figure 6. Internal absolute error between measured and simulated current for single-diode model of SS2018P PV module at
different level of irradiance.

3.4. Convergence Analysis

To analyze the computational competence of WOAPSO, the convergence curves of
the single-diode model, double-diode model, and PV module is presented in Figure 7. It is
depicted that the proposed WOAPSO algorithm outperforms the GSA, SCA, GWO, PSO,
WOA, PSOGSA algorithms in terms of convergence speed and generates a precise solution
for the identical number of function evaluations (i.e., 50,000).

 

(a) 

Figure 7. Cont.
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(b) 

 

(c) 

Figure 7. Convergence curve of WOAPSO and other six algorithms for (a) single-diode model (b)
double-diode model of R.T.C France solar cell and (c) single-diode model of SS2018P PV module.

3.5. Robustness and Statistical Analysis

This section presents statistical evaluation based on mean, minimum, maximum, and
standard deviation of RMSE for all previously implemented methods, and a comparison
with respect to precision and consistency of the distinct algorithms in a total of thirty runs
and depicted in Table 5. The mean of RMSE is calculated to evaluate the precision of
algorithms, and the standard deviation is calculated to evaluate the consistency of the
parameter estimation methods.
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Table 5. Statistical results of RMSE of different algorithms for all three models.

Model Algorithm
RMSE

Min Mean Max SD

Single-diode
model

GSA 1.2012× 10−3 5.4701× 10−3 2.4211× 10−1 1.3129× 10−3

SCA 1.9123× 10−3 9.6515× 10−3 2.1642× 10−1 9.4066× 10−3

GWO 9.4095× 10−4 1.0441× 10−3 1.3506× 10−3 1.4050× 10−5

PSO 1.4320× 10−3 1.2534× 10−3 1.4074× 10−3 1.1520× 10−4

WOA 9.9529× 10−4 9.2032× 10−4 7.1240× 10−3 9.0250× 10−3

PSOGSA 1.2400× 10−3 1.7660× 10−3 5.2460× 10−3 1.9880× 10−3

WOAPSO 7.1701× 10−4 7.8030× 10−4 1.3436× 10−3 2.4290× 10−6

Double-
diode
model

GSA 2.0330× 10−3 4.7041× 10−3 2.6058× 10−1 1.5796× 10−3

SCA 3.1800× 10−3 1.7932× 10−3 1.2470× 10−1 7.7256× 10−2

GWO 1.6000× 10−3 2.6901× 10−3 8.2830× 10−2 2.6995× 10−3

PSO 2.9000× 10−3 4.9713× 10−3 3.3402× 10−2 3.5833× 10−2

WOA 4.3000× 10−3 5.2967× 10−3 1.8698× 10−2 3.9481× 10−3

PSOGSA 1.4812× 10−1 1.4833× 10−1 1.4732× 10−1 1.0977× 10−2

WOAPSO 9.8412× 10−4 1.2481× 10−3 1.9312× 10−3 1.0581× 10−3

SS2018P
module
model

GSA 1.6877× 10−1 1.9462× 10−1 2.0011× 10−1 4.4500× 10−3

SCA 1.5149× 10−3 5.2657× 10−3 2.0345× 10−1 1.0058× 10−2

GWO 1.5938× 10−1 1.5940× 10−1 5.2494× 10−1 1.6793× 10−2

PSO 5.1329× 10−2 1.2512× 10−2 2.6323× 10−1 1.9334× 10−2

WOA 7.8164× 10−4 1.8268× 10−3 2.1078× 10−2 1.3639× 10−3

PSOGSA 3.2258× 10−3 3.9510× 10−3 2.2333× 10−1 4.0336× 10−3

WOAPSO 7.6714× 10−4 7.4601× 10−4 7.5388× 10−4 7.4516× 10−5

The statistical results presented in Table 5 indicate that WOAPSO is the most accurate
and reliable parameter optimization technique. As shown in Table 6, based on the Friedman
ranking test result, the best ranking is obtained by the WOAPSO, followed by WOA, GWO,
GSA, PSOGSA, SCA, and PSO. Also, Figure 8 shows the distribution of results (i.e., RMSE)
obtained from the distinct algorithms in 30 runs in the form of a boxplot graph for the SDM,
DDM, and PV module. It can be anticipated from Figure 8 that the proposed WOAPSO
algorithm delivers the best results in terms of accuracy and reliability compared to the
other six algorithms.

Table 6. Ranking of the proposed WOAPSO and other compared algorithms on three PV models
according to the Friedman test.

Algorithms Friedman Ranking Final Ranking

GSA 3.9 4
SCA 5.91 6

GWO 3.36 3
PSO 6.53 7

WOA 2.05 2
PSOGSA 5.22 5
WOAPSO 1 1
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(a) 

 

(b) 

Figure 8. Cont.
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(c) 

7.1700 × 10−4

9.8412 × 10−4 9.8249 × 10−49.8360 × 10−4 9.8293 × 10−4 9.8317 × 10−4

Figure 8. Boxplot graph of best RMSE in 30 runs for (a) single diose model (b) double-diode model
(c) polycrystalline SS2018P PV module.

4. Discussion

To evaluate the reliability of the WOAPSO, the proposed hybrid algorithm is compared
with six well established metaheuristics algorithms, i.e., GSA [56], SCA [57], GWO [58],
PSO [59], WOA [37], PSOGSA [60] as well as other algorithms existing in the literature. It
is observed that the estimated parameters based on the optimization process are highly
consistent with the experimental data for SDM, DDM, and SS2018P PV module.

For SDM, the hybrid WOAPSO algorithm generates the lowest RMSE values
(7.1700 × 10−4) compared to the GSA, SCA, GWO, PSO, and WOA, PSOGSA algorithms
(Table 2). The RMSE of the proposed WOAPSO algorithm is also compared with previously
studied algorithms (Table S2). It is noted that the hybrid WOAPSO algorithm provides
the lowest RMSE values than that of others. Table S3 represents the absolute IAE for SDM
analysis. The magnitude of IAE for different observations is less than 0.0018 (Table S3),
which indicates that the parameters optimized by the WOAPSO are very precise.

In the case of DDM analysis, the MLBSA, EHHO, IJAYA, and GOTLBO algorithms
produce the best value of RMSE (Table S4). However, WOAPSO generates the third-best
value of RMSE (9.8412 × 10−4), which is very close to MLBSA (9.8249 × 10−4), EHHO
(9.8360 × 10−4), IJAYA (9.8293 × 10−4), and GOTLBO (9.8317 × 10−4). However, the com-
putational cost in terms of function evaluation is 1/3 of MLBSA, EHHO, IJAYA, and
GOTLBO. Moreover, WOAPSO shows superiority over other algorithms in terms of RMSE
(Table 3). For DDM, the magnitude of IAE for different observations is depicted in Table S5.
It is noticed that the IAE values are less than 0.0097, which demonstrates the accuracy of
optimized parameters produced by WOAPSO.

For the SS2018P PV module, the hybrid WOAPSO algorithm produces the lowest
RMSE values compared to the GSA, SCA, GWO, PSO, WOA, and PSOGSA algorithms.
The IAE magnitudes for different observations (at 1000 W/m2) are less than 0.0018 (Table
S6). More importantly, the computational time for WOAPSO is less than other algorithms
(Table 4). The average execution time of each algorithm on the three PV models is calculated
and illustrated in Figure 9. The WOAPSO algorithm requires less time (about 26.1 s)
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than GWO, PSO, SCA, WOA, and PSOGSA, while GSA has the worst execution time of
approximately 52 s.
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Figure 9. Comparison of the execution time.

Furthermore, the Friedman ranking test is also performed for all algorithms and
depicted in Table 6. Table 6 shows that the proposed WOAPSO algorithm significantly
outperforms the GSA, SCA, GWO, PSO, WOA, PSOGSA algorithms for all three models,
i.e., single-diode, double-diode, and PV module models.

5. Conclusions

In this study, the hybridization of whale optimization and particle swarm optimization
algorithm (WOAPSO) is anticipated. The exploitation ability of PSO is only implemented
in pipeline mode when WOA stops to improve the best-found solution. The collaboration
of both metaheuristic algorithms can establish an effective balance between exploitation
and exploration ability. The proposed technique is further used to estimate the parameter
of three PV cell models, i.e., single-diode, double-diode, and SS108P PV panel module
model at different operating conditions. It should be noted that this suggested technique is,
for the first time, intended to track the estimation of parameters for photovoltaic models
reliably. The major conclusions are classified as follows:

• The proposed WOAPSO is relatively accurate and reliable at delivering the solution
in terms of RMSE as compared with other algorithms such as GSA, SCA, GWO, PSO,
WOA, PSOGSA, and existing algorithms in the literature.

• The I-V and P-V characteristic curves and IAE results indicate that WOAPSO can
generate the optimized value of estimated parameters for all the models of solar PV
cell as compared with other algorithms.

• The statistical analysis clearly depicts the robustness of the proposed WOAPSO tech-
nique on parameter estimation problem at different operating conditions.

• The convergence curves demonstrate that the best values of estimated parameters are
obtained by WOAPSO, and RMSE is 7.1700 × 10−4 and 9.8412 × 10−4 in the case of
single- and double-diode respectively.

• At different irradiation levels (i.e., 1000 W/m2, 870 W/m2, 720 W/m2, and 630 W/m2),
the proposed WOAPSO algorithm is best in producing optimized parameters (Ip, Isd, a,
Rs, Rsh) and minimum value of RMSE for PV module even at a low level of irradiation
(630 W/m2).

The proposed WOAPSO algorithm has limitation for DDM analysis. The RMSE
value (9.8412 × 10−4) of WOAPSO algorithm is lower than that of recently developed
metaheuristics algorithms (MLBSA, EHHO, IJAYA, and GOTLBO algorithms).
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The WOAPSO is an efficient and robust technique to estimate the unknown optimized
parameters of the solar PV model at different operating conditions. For future study,
the implementation of proposed WOAPSO to solve the other problems related to energy
optimization such as economic load dispatch, energy scheduling and optimization of PV
array configuration may also be interesting for scientists and research scholars.
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Abbreviations

The following abbreviations and nomenclature are used in this manuscript:
Ip Photo Diode Current
Isd Reverse Saturation Current
Rs Series Resistance
Rsh Shunt Resistance
a Diode Ideality Factor
RMSE Root Mean Square Error
PV Photo Voltaic
I-V Current-Voltage
P-V Power-Voltage
MPP Maximum Power Tracking
Voc Open Circuit Voltage
Impp Maximum Power Point Current
Isc Short Circuit Current
GBO Gradient Based Optimizer
HHO Harris-Hawk optimizer
HBO Heap-Based Optimizer
SMA Slime Mould Algorithm
GA Genetic Algorithm
DE Differential Evaluation
SA Simulating Annealing
PS Pattern Search
HS Harmony Search
CS Cooku Search
FPA Flower Pollination Algorithm
BFO Bacterial Foraging Algorithm
BM Bird Mating
ABSO Artificial Bee Swarm Optimization
PSO Particle Swarm Optimization
ITLBO Improved Teaching-Learning Based Optimization
WOA Whale Optimization Algorithm
CWOA Chaotic Whale Optimization Algorithm

93



Electronics 2021, 10, 312

LWOA Levy flight trajectory based WOA
BWOA Binary Whale Optimization Algorithm
HAGWO Hybrid Approach Grey Wolf Optimization
WOA-CBO Whale Optimization Algorithm Colliding Bodies Optimization
MWOA Memetic Whale Optimization Algorithm
WOA-SA Whale Optimization Algorithm-Simulated Annealing
WOA-MFO Whale Optimization Algorithm-Moth Flame Optimization
SC-WOA Sine-Cosine Whale Optimization Algorithm
WOA-PS Whale Optimization Algorithm- Pattern Search
BS-WOA Brainstorm- Whale Optimization Algorithm
SDM Single-diode Model
DDM Double-diode Model
IAE Internal Absolute Error
RE Relative Error
GSA Gravitational Search Algorithm
SCA Sine Cosine Algorithm
GWO Grey Wolf Optimization
PSOGSA Particle Swarm Optimization Gravitational Search Algorithm
MLBSA Multiple Learning Backtracking Search Algorithm
EHHO Enriched Harris Hawks Optimization
IJAYA Improved Jaya Algorithm
GOTLBO Generalized Opposition-Based Teaching Learning Based Optimization

References

1. Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain.

Energy Rev. 2011, 15, 1513–1524. [CrossRef]
2. Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy

transformation. Energy Strategy Rev. 2019, 24, 38–50. [CrossRef]
3. Rajput, S.; Averbukh, M.; Yahalom, A.; Minav, T. An Approval of MPPT Based on PV Cell’s Simplified Equivalent Circuit During

Fast-Shading Conditions. Electronics 2019, 8, 1060. [CrossRef]
4. Jordehi, A.R. Parameter estimation of solar photovoltaic (PV) cells: A review. Renew. Sustain. Energy Rev. 2016, 61, 354–371.

[CrossRef]
5. Aryanpur, V.; Atabaki, M.S.; Marzband, M.; Siano, P.; Ghayoumi, K. An overview of energy planning in Iran and transition

pathways towards sustainable electricity supply sector. Renew. Sustain. Energy Rev. 2019, 112, 58–74. [CrossRef]
6. Armghan, H.; Ahmad, I.; Armghan, A.; Khan, S.; Arsalan, M. Backstepping based nonlinear control for maximum power point

tracking in photovoltaic system. Sol. Energy 2018, 159, 134–141.
7. Ram, J.P.; Manghani, H.; Pillai, D.S.; Babu, T.S.; Miyatake, M.; Rajasekar, N. Analysis on solar PV emulators: A review. Renew.

Sustain. Energy Rev. 2018, 81, 149–160. [CrossRef]
8. Youssef, A.; El-Telbany, M.; Zekry, A. The role of artificial intelligence in photovoltaic systems design and control: A review.

Renew. Sustain. Energy Rev. 2017, 78, 72–79. [CrossRef]
9. Gomes, R.C.M.; Vitorino, M.A.; de Rossiter Corrêa, M.B.; Fernandes, D.A.; Wang, R. Shuffled complex evolution on photovoltaic

parameter extraction: A comparative analysis. IEEE Trans. Sustain. Energy 2016, 8, 805–815. [CrossRef]
10. Chin, V.J.; Salam, Z.; Ishaque, K. Cell modelling and model parameters estimation techniques for photovoltaic simulator

application: A review. Appl. Energy 2015, 154, 500–519. [CrossRef]
11. Brano, V.L.; Ciulla, G. An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only

reference data. Appl. Energy 2013, 111, 894–903. [CrossRef]
12. Louzazni, M. An analytical mathematical modeling to extract the parameters of solar cell from implicit equation to explicit form.

Appl. Sol. Energy 2015, 51, 165–171. [CrossRef]
13. Batzelis, E.I.; Papathanassiou, S.A. A method for the analytical extraction of the single-diode PV model parameters. IEEE Trans

Sustain. Energy 2015, 7, 504–512. [CrossRef]
14. Khan, F.; Baek, S.H.; Kim, J.H. Wide range temperature dependence of analytical photovoltaic cell parameters for silicon solar

cells under high illumination conditions. Appl. Energy 2016, 183, 715–724. [CrossRef]
15. Tao, Y.; Bai, J.; Pachauri, R.K.; Sharma, A. Parameter extraction of photovoltaic modules using a heuristic iterative algorithm.

Energy Convers. Manag. 2020, 224, 113386. [CrossRef]
16. Gao, X.; Cui, Y.; Hu, J.; Xu, G.; Yu, Y. Lambert W-function based exact representation for double diode model of solar cells:

Comparison on fitness and parameter extraction. Energy Convers. Manag. 2016, 127, 443–460. [CrossRef]
17. Villalva, M.G.; Gazoli, J.R.; Ruppert Filho, E. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE

Trans. Power Electron. 2009, 24, 1198–1208. [CrossRef]

94



Electronics 2021, 10, 312

18. Chegaar, M.; Ouennoughi, Z.; Hoffmann, A. A new method for evaluating illuminated solar cell parameters. Solid-State Electron.

2001, 45, 293–296. [CrossRef]
19. Abdallah, R.; Natsheh, E.; Juaidi, A.; Samara, S.; Manzano-Agugliaro, F. A Multi-Level World Comprehensive Neural Network

Model for Maximum Annual Solar Irradiation on a Flat Surface. Energies 2020, 13, 6422. [CrossRef]
20. Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based optimizer: A new Metaheuristic optimization algorithm. Inf. Sci.

2020, 540, 131–159. [CrossRef]
21. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
22. Askari, Q.; Saeed, M.; Younas, I. Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst.

Appl. 2020, 161, 113702. [CrossRef]
23. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future

Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]
24. Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I. Characterization of PV panel and global optimization of its model parameters

using genetic algorithm. Energy Convers. Manag 2013, 73, 10–25. [CrossRef]
25. Ishaque, K.; Salam, Z.; Mekhilef, S.; Shamsudin, A. Parameter extraction of solar photovoltaic modules using penalty-based

differential evolution. Appl. Energy 2012, 99, 297–308. [CrossRef]
26. El-Naggar, K.M.; AlRashidi, M.R.; AlHajri, M.F.; Al-Othman, A.K. Simulated annealing algorithm for photovoltaic parameters

identification. Sol. Energy 2012, 86, 266–274. [CrossRef]
27. AlHajri, M.F.; El-Naggar, K.M.; AlRashidi, M.R.; Al-Othman, A.K. Optimal extraction of solar cell parameters using pattern

search. Renew. Energy 2012, 44, 238–245. [CrossRef]
28. Askarzadeh, A.; Rezazadeh, A. Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy

2012, 86, 3241–3249. [CrossRef]
29. Ma, J.; Ting, T.O.; Man, K.L.; Zhang, N.; Guan, S.U.; Wong, P.W. Parameter estimation of photovoltaic models via cuckoo search. J.

Appl. Math. 2013, 2013, 1–8. [CrossRef]
30. Yousri, D.; Babu, T.S.; Allam, D.; Ramachandaramurthy, V.K.; Beshr, E.; Eteiba, M.B. Fractional Chaos Maps with Flower

Pollination Algorithm for Partial Shading Mitigation of Photovoltaic Systems. Energies 2019, 12, 3548. [CrossRef]
31. Subudhi, B.; Pradhan, R. Bacterial foraging optimization approach to parameter extraction of a photovoltaic module. IEEE Trans.

Sustain. Energy 2017, 9, 381–389. [CrossRef]
32. Askarzadeh, A.; Rezazadeh, A. Extraction of maximum power point in solar cells using bird mating optimizer-based parameters

identification approach. Sol. Energy 2013, 90, 123–133. [CrossRef]
33. Askarzadeh, A.; Rezazadeh, A. Artificial bee swarm optimization algorithm for parameters identification of solar cell models.

Appl. Energy 2013, 102, 943–949. [CrossRef]
34. Beigi, A.M.; Maroosi, A. Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms.

Sol. Energy 2018, 171, 435–446. [CrossRef]
35. Abd Elaziz, M.; Oliva, D. Parameter estimation of solar cells diode models by an improved opposition-based whale optimization

algorithm. Energy Convers. Manag 2018, 171, 1843–1859. [CrossRef]
36. Chen, Y.; Chen, Z.; Wu, L.; Long, C.; Lin, P.; Cheng, S. Parameter extraction of PV models using an enhanced shuffled complex

evolution algorithm improved by opposition-based learning. Energy Procedia 2019, 158, 991–997. [CrossRef]
37. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51. [CrossRef]
38. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on

Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995.
39. Mafarja, M.M.; Mirjalili, S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing

2017, 260, 302–312. [CrossRef]
40. Laskar, N.M.; Guha, K.; Chatterjee, I.; Chanda, S.; Baishnab, K.L.; Paul, P.K. HWPSO: A new hybrid whale-particle swarm

optimization algorithm and its application in electronic design optimization problems. Appl. Intell. 2019, 49, 265–291. [CrossRef]
41. Kaur, G.; Arora, S. Chaotic whale optimization algorithm. J. Comput. Des. Eng. 2018, 5, 275–284. [CrossRef]
42. Ling, Y.; Zhou, Y.; Luo, Q. Lévy flight trajectory-based whale optimization algorithm for global optimization. IEEE Access 2017, 5,

6168–6186. [CrossRef]
43. Reddy, K.S.; Panwar, L.; Panigrahi, B.K.; Kumar, R. Binary whale optimization algorithm: A new metaheuristic approach for

profit-based unit commitment problems in competitive electricity markets. Eng. Optim. 2019, 51, 369–389. [CrossRef]
44. Pandey, H.M. A Modified Whale Optimization Algorithm with Multi-Objective Criteria for Optimal Robot Path Planning.

Available online: http://www.datascience.manchester.ac.uk/media/1669/a-modified-whale-optimization-algorithm-with-
multi-objective-criteria-for-optimal-robot-path-planning.pdf (accessed on 26 January 2021).

45. Salgotra, R.; Singh, U.; Saha, S. On some improved versions of whale optimization algorithm. Arab. J. Sci. Eng. 2019, 44, 9653–9691.
[CrossRef]

46. Singh, N.; Hachimi, H. A new hybrid whale optimizer algorithm with mean strategy of grey wolf optimizer for global optimization.
Math. Comput. Appl. 2018, 23, 14. [CrossRef]

47. Kaveh, A.; Rastegar Moghaddam, M. A hybrid WOA-CBO algorithm for construction site layout planning problem. Sci. Iran.

2018, 25, 1094. [CrossRef]

95



Electronics 2021, 10, 312

48. Xu, Z.; Yu, Y.; Yachi, H.; Ji, J.; Todo, Y.; Gao, S. A novel memetic whale optimization algorithm for optimization. In International

Conference on Swarm Intelligence; Springer: Cham, Switzerland, 2018; pp. 384–396.
49. Abd El Aziz, M.; Ewees, A.A.; Hassanien, A.E. Whale optimization algorithm and moth-flame optimization for multilevel

thresholding image segmentation. Expert Syst. Appl. 2017, 83, 242–256. [CrossRef]
50. Khalilpourazari, S.; Khalilpourazary, S. SCWOA: An efficient hybrid algorithm for parameter optimization of multi-pass milling

process. J. Ind. Prod. Eng. 2018, 35, 135–147. [CrossRef]
51. Bentouati, B.; Chaib, L.; Chettih, S. A hybrid whale algorithm and pattern search technique for optimal power flow problem.

In Proceedings of the 8th International Conference on Modelling, Identification and Control (ICMIC), Algiers, Algeria, 15–
17 November 2016; pp. 1048–1053.

52. Revathi, S.T.; Ramaraj, N.; Chithra, S. Brainstorm-based Whale Optimization Algorithm for privacy-protected data publishing in
cloud computing. Clust. Comput. 2019, 22, 3521–3530. [CrossRef]

53. Kang, T.; Yao, J.; Jin, M.; Yang, S.; Duong, T. A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic
(PV) Models. Energies 2018, 11, 1060. [CrossRef]

54. Sheng, H.; Li, C.; Wang, H.; Yan, Z.; Xiong, Y.; Cao, Z.; Kuang, Q. Parameters Extraction of Photovoltaic Models Using an
Improved Moth-Flame Optimization. Energies 2019, 12, 3527. [CrossRef]

55. Easwarakhanthan, T.; Bottin, J.; Bouhouch, I.; Boutrit, C. Nonlinear minimization algorithm for determining the solar cell
parameters with microcomputers. Int. J. Sol. Energy 1986, 4, 1–12. [CrossRef]

56. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232. [CrossRef]
57. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
58. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
59. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks

(ICNN’95), Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
60. Mirjalili, S. Hybrid Particle Swarm Optimization and Gravitational Search Algorithm for Multilayer Perceptron Learning. Ph.D.

Thesis, Universiti Teknologi Malaysia, Johor, Malaysia, 2011.

96



electronics

Article

Parameter Extraction of Photovoltaic Module Using Tunicate
Swarm Algorithm

Abhishek Sharma 1, Ankit Dasgotra 1 , Sunil Kumar Tiwari 1, Abhinav Sharma 2, Vibhu Jately 3,*

and Brian Azzopardi 3

Citation: Sharma, A.; Dasgotra, A.;

Tiwari, S.K.; Sharma, A.; Jately, V.;

Azzopardi, B. Parameter Extraction of

Photovoltaic Module Using Tunicate

Swarm Algorithm. Electronics 2021,

10, 878. https://doi.org/10.3390/

electronics10080878

Academic Editor: Edris Pouresmaeil

Received: 3 March 2021

Accepted: 2 April 2021

Published: 7 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research and Development Department, University of Petroleum and Energy Studies,
Dehradun 248007, India; abhishek15491@gmail.com (A.S.); dasgotraa@gmail.com (A.D.);
suniltiwari.me.utu@gmail.com (S.K.T.)

2 Department of Electrical and Electronics Engineering, School of Engineering, University of Petroleum and
Energy Studies, Dehradun 248007, India; abhinav.sharma@ddn.upes.ac.in

3 MCAST Energy Research Group, Institute of Engineering and Transport, Malta College of Arts,
Science and Technology, Paola PLA9032, Malta; brian.azzopardi@mcast.edu.mt

* Correspondence: vibhu.jately@mcast.edu.mt

Abstract: In the renewable energy sector, the extraction of parameters for solar photovoltaic (PV)
cells is a widely studied area of research. Parameter extraction is a non-linear complex optimization
problem for solar PV cells. In this research work, the authors have implemented the Tunicate swarm
algorithm (TSA) to estimate the optimized value of the unknown parameters of a PV cell/module
under standard temperature conditions. The simulation results have been compared with four
different, pre-existing optimization algorithms: gravitational search algorithm (GSA), a hybrid of
particle swarm optimization and gravitational search algorithm (PSOGSA), sine cosine (SCA), and
whale optimization (WOA). The comparison of results broadly demonstrates that the TSA algorithm
outperforms the existing optimization algorithms in terms of root mean square error (RMSE) and
convergence rate. Furthermore, the statistical results confirm that the TSA algorithm is a better
algorithm in terms of average robustness and precision. The Friedman ranking test is also carried out
to demonstrate the competency and reliability of the implemented approach.

Keywords: photovoltaic; TSA; parameter extraction; single-diode model; double-diode model;
swarm intelligence

1. Introduction

Solar energy is emerged as a potential renewable source of energy. For the eighth year
in a row, solar power has received the greatest proportion of groundbreaking investment
opportunities in renewable energy sources. Because of the high investment cost of PV-
generating installations, it is necessary to estimate the behavior of the PV-system from the
designing phase to assure efficient utilization of solar energy in electricity generation [1,2].
Solar energy is also reflected as an extremely capable renewable resource owing to its usage
and non-polluting nature [1–3]. Moreover, its modularity and scalability have added to
its extensive acceptance in power systems through different photovoltaic (PV) configura-
tions [4]. For simulating, controlling, and evaluating the photovoltaic systems, modeling
of the solar-cell installation must be done. Whenever photovoltaics start operating, the
solar-cell parameters could be utilized for accounting for the detectability and analysis [3].
However, the practical aspect is that photovoltaic devices are majorly bare compared to sev-
eral outer atmospheric belongings, and its photovoltaic arrays do not last always efficiently
which will harm the production of sun-based devices [4]. Accordingly, this is a critical
estimation of the practical performance of photovoltaic arrays in the process to achieve,
enhance, and simulate these types of systems/devices. With this aim, we frequently use a
reliable prototype to measure current and voltage files [5].
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The importance of photovoltaics is estimated to be a major stimulating topic by scien-
tists/researchers and firms to progress energy adaption and reduce costs [6–8]. To boost
the systematic performance of photovoltaics, modeling the photovoltaic cells and their
segments is a crucial part. The non-linear dimensions and sporadic nature of meteorologic
static make it difficult to identify cell constraints [9]. Furthermore, the production firms
require assurance of the performance of photovoltaic units for approx. twenty-five years;
photovoltaic arrangements are dependent on location and unavoidably undergo degrada-
tion, along with possible occurrences of electrical faults. So, we can considerably work on
a systematic model that predicts the practical behavior of the photovoltaic cell in possible
working conditions [10].

Generally, PV systems are vulnerable to outside atmospheric aspects such as tem-
perature and irradiance, which affect the effectiveness of solar energy [11]. Thus, it is
essential to generate current–voltage modeling setups for enhancing and controlling PV
arrangements [12]. Generally, single, double, and triple diode models are majorly used
for photovoltaic cells [13–15], and are extensively used to specify the current–voltage
connections. Parameters of the photovoltaics help to determine the accurateness and
dependability of the models. However, due to unbalanced operational cases, such as faults
and aging, the models’ parameters are not accessible. Therefore, the development of an
active methodology to accurately extract these parameters turn out to be critical. The single
diode model (SDM) is majorly used in the approximation of these constraints because
of ease and acceptance. The double diode model (DDM) is expected to be as accurate
as SDM, especially in lower solar irradiance; nevertheless, it desires to exist for a long
consuming time [16–20]. To get more accurate and precise parameters from nonlinear
implicit equations with high accuracy, evolutionary algorithms [21–31] were proposed.
The bio-related algorithms are more accurate and powerful optimization algorithms for
simplifying nonlinear transcendental equations, as they do not include complex mathe-
matics. In the proposed work, TSA is implemented for the parameter extraction of the
solar cell/module, and the results clearly show the superiority of the TSA over particle
swarm optimization (PSO). The reason for this is that PSO has the problem of getting
stuck in the local optima solution due to poor exploration capabilities for searching for the
optimal solution in the search space, while the searching mechanism of TSA provides a
good trade-off between exploration and exploitation capabilities [18]. Hence, TSA provides
a more optimal solution as compared with PSO and other existing algorithms.

In this manuscript, we have discussed, initially, the problem formulation followed by
a mathematical model for solar PV cell/module, as presented in Section 2. In Section 3,
a brief introduction of the TSA algorithm is discussed and is implemented to estimate
the optimized value of the unknown parameters of a PV module model. In Section 4,
the simulation results of the TSA algorithm are discussed and compared with those of
pre-existing metaheuristic algorithms. Section 5 entails the discussion and finally, the
manuscript is concluded in Section 6.

2. Problem Statement

In a photovoltaic solar cell, the parallel circuits are formulated using single-diode and
double-diode models. In the solar cell, the correlation between the current and voltage is
represented using equivalent circuit models.

2.1. Photovoltaic Panel Module Model

The equivalent circuit of PV panel module is shown in Figure 1. The relation between
the current and voltage at the output terminal for the PV panel module is expressed as:

Il/Np = Ip − ISD

[

exp

(

q
(

Vl/Ns + Rs Il/Np

)

akBT

)

− 1

]

− Vl/Ns + Rs Il/Np

Rsh
(1)

98



Electronics 2021, 10, 878

where Ns and Np represent the number of solar cells connected in series and parallel,
respectively. Il stands for cell current in the output, Ip represents the photogenerated
current, ISD stands for the reverse saturation current. Vl , a, Rs, kB, T and q are the cell
output voltage, diode ideality constant, series resistance, Boltzmann constant (1.381 ×
10−23 J/K), junction temperature (◦K), and electron charge (1.602 × 10−19 C), respectively.
It is depicted in Figure 1 that only five parameters (Ip, ISD, a, Rs and Rsh) are needed to be
estimated for the minimum value of RMSE.

𝐼௟/𝑁௣ = 𝐼௣ − 𝐼ௌ஽ ቈ𝑒𝑥𝑝 ቆ𝑞൫𝑉௟/𝑁௦ + 𝑅௦𝐼௟/𝑁௣൯𝑎𝑘஻𝑇 ቇ − 1቉ − 𝑉௟/𝑁௦ + 𝑅௦𝐼௟/𝑁௣𝑅௦௛𝑁௦ 𝑁௣ 𝐼𝑙 𝐼௣𝐼ௌ஽ 𝑉௟ 𝑎 𝑅௦ 𝑘஻ 𝑞
−

−𝐼௣ 𝐼ௌ஽  𝑅௦ 𝑅௦௛
.

.

+

-

Id Ish

Rs

Il

             Rsh

   
   

   
 

Ip

     Vl
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Figure 1. Single diode model of photovoltaic panel module.

2.2. Objective Function

The key deliverables in this work are the optimization of unknown specifications for
both SDM and DDM models to reduce the error between the experimental and estimated
data. The objective function for error used here is the same as the one that authors have
used previously in [23–25]:

RMSE =

√

√

√

√

1
k

k

∑
N=1

f (Vl , Il , ) (2)

where Vl and Il are the measured voltage and current of the PV module. The parameter k
stands for the number of experimental data sets. The best solution found by the TSA is
represented by a vector X.

For the PV panel module model,







fsingle(Vl , Il , X) = Ip − ISD

[

exp

(

q
(

Vl
Ns

+
Rs Il
Np

)

a1kBT

)

− 1

]

−
Vl
Ns

+
Rs Il
Np

Rsh
− Il

Np

(

X = Ip, ISD, a, Rs, Rsh

)






(3)

3. Tunicate Swarm Algorithm

In [6], authors have proposed a new metaheuristic algorithm known as the Tunicate
swarm algorithm. These are visible from a few meters’ distance and create a pale blue–
green bioluminescent light which is intense in nature. These are cylindrically shaped and
must open at one end only when they grow to the size of a few millimeters. Each tunic
consists of growing a gelatinous tunic which helps to join all individuals. These tunicates
are opened at one end only, and they grow up to a few millimeters in size. In every tunicate,
a gelatinous tunic grows, which helps all the individuals to join. Each tunicate, through
atrial syphons, generates jet propulsion from its opening by receiving water from the
adjacent sea. To understand the actions of jet propulsion using the mathematical model,
the tunicate should fulfill three conditions: prevent collisions between candidate solutions,
step more toward the location of the best solution, and stick close to the best solution.
Figure 2 depicts the process flow chart of TSA for parameter extraction.
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Figure 2. Process flow diagram of the Tunicate swarm algorithm (TSA).

3.1. Prevent Collisions between Candidate Solutions

We initialize the parameters
→
A (constant), gravity force (

→
G), water flow advection in

the deep ocean (
→
F ), social force

→
M and the maximum number of iterations:

→
A =

→
G
→
M

(4)

→
G = c2 + c3 −

→
F (5)

→
F = 2 × c1 (6)

M = ⌊Pmin + c1 × Pmax − Pmin⌋ (7)

where, c1, c2, c3 are random numbers in the range [0,1], and Pmin and Pmax are considered
as 1 and 4, respectively.

3.2. Step More toward the Location of the Best Solution

The search agents are moved in the direction of the finest neighbors after successfully
preventing a conflict with the neighbors:

→
PD =

∣

∣

∣

∣

→
FS − rand ×

→
P p(x)

∣

∣

∣

∣

(8)

where
→

PD is the total distance between the search agent and food source, rand is the random

number in the range [0,1], x indicates the current iteration,
→
FS indicates the position of the

food source, and
→
P p(x) is the position of the tunicates.

3.3. Stick Close to the Best Solution

The search agent could even establish its position as the leading search agent.

→
P p(x) =







→
FS +

→
A ×

→
PD, i f rand ≥ 0.5

→
FS −

→
A ×

→
PD, i f rand < 0.5

(9)
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The position of all the tunicates is updated with respect to the position of the first two
tunicates as follows:

→
P p(x + 1) =

→
P p(x) +

→
P p(x + 1)

2 + c1
(10)

where
→
P p(x + 1) represents the updated position of the tunicates.

3.4. Implementation of TSA for Parameter Extraction

Step 1. Initialize the population of search agents of the fifth order dimension in the
search space. The fifth order dimension represents the photovoltaic current (Ip), series
resistance (Rs), shunt resistance (Rsh), diode saturation current (ISD), and diode ideality
factor (a). The range of these parameters are [0–10, 0.001–2, 0–2000, 0–50, 0–100].

Step 2. Regulate the fitness of all agents in the search space using Equation (2).
Step 3. Update the position of the agents at every iteration using TSA. The algorithm is

designed to work in the minimization mode; thus, the location of the particles that acquire
minimum costs represents the optimized parameters of SDM with minimum RMSE.

4. Results and Discussion

We analyzed the feasibility of the TSA algorithm and evaluated it using mainly one
polycrystalline PV module (Photowatt-PWP201) under standard temperature conditions
(i.e., 1000 W/m2 at 30 ◦C). As a result, the retrieved PV module parameters were monitored
and used to create simulated I-V data. The reliability of the WOAPSO is evaluated and
compared with six metaheuristics algorithms, i.e., GSA [7], SCA [8], GWO [9], PSO [10],
WOA [11], PSOGSA [12], as well as other algorithms existing in the literature. For the
experiment, the sample size and the objective function evaluations are set between 30 and
50,000, respectively. Furthermore, a minimum of 30 separate runs are carried out to prevent
contingency.

The efficiency of the proposed method is evaluated based on distinct empirical tools
such as the internal absolute error (IAE), the Relative Error (RE), the precision of the curve
fitting, and the global minimum convergence patterns. The experimental values of current
and voltage are taken from [13] by using Photowatt-PWP201 (Photowatt, Bourgoin-Jallieu,
France). The Photowatt-PWP201 PV module is composed of 36 polycrystalline cells ar-
ranged in a series to generate current-voltage data under standard temperature conditions.
The data collection consists of a total of 23 for the PV module. For a reasonable comparison,
the search ranges (i.e., upper and lower bound) for each parameter are tabulated in Table 1,
which are the same as those being used by investigators in [13–15]. The TSA algorithm is
implemented on the MATLAB 2018a (MathWorks, Mexico) platform with Intel ® core ™
i7-HQ CPU, 2.4 GHz, 16 GB RAM laptop.

Table 1. Range of parameters for solar photovoltaic (PV) module.

Parameters Photowatt-PWP201 PV Module

Lower Bound Upper Bound

Ip (A) 0 10
Isd (µA) 0 50
Rs (Ω) 0.001 2
Rsh (Ω) 0 2000

a 0 100

4.1. TSA for Parameter Extraction of Photowatt-PWP201 PV Module

This section discusses the evaluation efficiency of the TSA algorithm. Parameters of
the Photowatt-PWP201 PV module were estimated under standard temperature conditions
by utilizing the SDM model. The optimal values of the five parameters (Ip, Isd, a, Rs, Rsh) for
SDM of the solar PV module are presented in Table 2. The characteristics curves of current-
voltage (I-V) and power-voltage (P-V) are redrawn by implementing the TSA algorithm
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under optimized parameters. Figure 3 demonstrates the estimated and experimental I-V
and P-V characteristics curves. It can be observed that the estimated parameters show good
agreement with the measured ones, which proves the efficient performance of the TSA.

Table 2. Comparison of TSA with other parameter estimation methods for Photowatt-PWP201
PV Module.

Algorithms Iph (A) Rs (Ω) Rsh (Ω) Isd (µA) a RMSE

WOAPSO [18] 1.5032 0.0213 668.27 0.024 1.502 8.86 × 10−4

GSA 0.0278 2 1201.097 0.050 58.4588 8.80 × 10−3

PSOGSA 0.0218 0.6430 1100.437 0.01 79.7893 7.156 × 10−3

SCA 1.0063 0.0496 1107.399 0.039 1.0532 1.28 × 10−2

WOA 0.0264 0.0113 588.5011 0.0424 1.4496 9.54 × 10−4

TSA 0.0261 0.0017 2000 0.053 1.4727 5.06 × 10−4
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Figure 3. Current-Voltage (I-V) and Power-Voltage (P-V) characteristics curve for estimated and
experimental values for single-diode model of Photowatt-PWP201 PV Module. Symbols represent
measured data, and optimized data are represented by solid lines.

Table 3 represents the Internal absolute error (IAE) between the estimated and experi-
mental data sets. Every determined value of IAE (at 1000 W/m2 and 30 ◦C) is less than
0.0195, which indicates that the parameters optimized by the TSA are very precise. The
error relating to the measurement results for each of the 23 pair points is determined by
the IAE and Relative Error (RE). The IAE and RE values are calculated using Equations (11)
and (12). The curve of IAE and RE between experimental and estimated values is shown in
Figure 4.

IAE = |Imeasured − Isimulated| (11)

RE =
(Imeasured − Isimulated)

Imeasured
(12)
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Table 3. The calculated current and absolute error results of TSA (Tunicate swarm algorithm) for solar PV (Photovoltaic)
module.

Observations VL (V) IL (A) Isim (A) IAE (A) Pmeasured (W) Psimulted (W) IAE (W)

1 0.1246 1.0345 1.0335 0.001 0.1288 0.1256 0.0032
2 0.1248 1.0315 1.0335 0.002 0.1287 0.1226 0.0061
3 1.8093 1.03 1.0335 0.0035 1.8635 1.8765 0.013
4 3.3511 1.026 1.0234 0.0026 3.4382 3.4354 0.0028
5 4.7622 1.022 1.0234 0.0014 4.8669 4.8766 0.0097
6 6.0538 1.018 1.019 0.001 6.1627 6.1456 0.0171
7 7.2364 1.0155 1.0142 0.0013 7.3485 7.3256 0.0229
8 8.3189 1.014 1.011 0.003 8.4353 8.4453 0.01
9 9.3097 1.01 1.002 0.008 9.4027 9.4124 0.0097
10 10.2163 1.0035 1.023 0.0195 10.252 10.245 0.007
11 11.0449 0.988 0.985 0.003 10.9123 10.9234 0.0111
12 11.8018 0.963 0.967 0.004 11.3651 11.3554 0.0097
13 12.4929 0.9255 0.918 0.0075 11.5621 11.5722 0.0101
14 13.1231 0.8725 0.883 0.0105 11.4499 11.445 0.0049
15 13.6983 0.8075 0.8173 0.0098 11.0613 11.0521 0.0092
16 14.2221 0.7265 0.7324 0.0059 10.3323 10.321 0.0113
17 14.6995 0.6345 0.633 0.0015 9.3268 9.313 0.0138
18 15.1346 0.5345 0.535 0.0005 8.0894 8.0754 0.014
19 15.5311 0.4275 0.4356 0.0081 6.6395 6.6367 0.0028
20 15.8929 0.3185 0.3256 0.0071 5.0618 5.0524 0.0094
21 16.2229 0.2085 0.2145 0.006 3.3824 3.3724 0.01
22 16.5241 0.101 0.111 0.01 1.6689 1.6564 0.0125
23 16.7987 0.008 0.006 0.002 0.1343 0.1347 0.0004

Sum of IAE 0.0594 0.0927

IAE = |𝐼௠௘௔௦௨௥௘ௗ − 𝐼௦௜௠௨௟௔௧௘ௗ|RE = (𝐼௠௘௔௦௨௥௘ௗ − 𝐼௦௜௠௨௟௔௧௘ௗ)𝐼௠௘௔௦௨௥௘ௗ
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Figure 4. (a) Internal absolute error and (b) relative error curve between measured and estimated
current for Photowatt-PWP201 PV Module.
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4.2. Convergence Analysis

The convergence analysis was performed to examine the computational competence
of the TSA. The convergence curves of the solar PV module are presented in Figure 5. It
is depicted in Figure 5 that the TSA algorithm outperforms the GSA, PSOGSA, SCA, and
WOA algorithms in terms of convergence speed and generates a precise solution for the
identical number of function evaluations (i.e., 50,000).

Figure 5. Convergence curve of TSA (Tunicate swarm algorithm) and the other four algorithms for
single-diode model of Photowatt-PWP201 PV (Photovoltaic) Module.

4.3. Robustness and Statistics Analysis

This section presents the statistical evaluation based on mean, minimum, maximum,
and standard deviation of the RMSE for all previously implemented methods and com-
parison concerning precision and consistency of the distinct algorithms in a total of thirty
runs, as depicted in Table 4. The mean of the RMSE is calculated to evaluate the precision
of the algorithms, and the standard deviation is calculated to evaluate the consistency of
the parameter estimation methods.

Table 4. Statistical results of the root mean square error (RMSE) of different algorithms for Photowatt-
PWP201 PV Modules.

Photowatt-PWP201
Module Model

Algorithm
RMSE

Min Mean Max SD

GSA 8.80 × 10−3 2.65 × 10−1 2.08 × 10−1 5.85 × 10−3

PSOGSA 7.156 × 10−3 6.47 × 10-3 2.83 × 10−1 1.81 × 10−2

SCA 1.28 × 10−2 2.26 × 10-1 6.35 × 10−1 1.78 × 10−2

WOA 9.54 × 10−4 2.35 ×10-2 2.63 × 10−1 2.83 × 10−2

TSA 5.06 × 10−4 1.45 × 10-3 2.34 × 10−2 1.25 × 10−3

In Table 4, it is depicted that the proposed TSA algorithm significantly outperforms the
GSA, PSOGSA, SCA, and WOA algorithms for the solar PV module model. The statistical
results presented in Table 4 indicate that TSA is the most accurate and reliable parameter
optimization technique.
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5. Discussion

The TSA algorithm is successfully developed and implemented for parameter ex-
traction of the polycrystalline Photowatt-PWP201 PV module. The I-V and P-V curves
obtained by the optimization process show excellent accord with the measured data. The
IAE values (both current and power) validate the exactness of the optimized parameters.
The statistical evaluation confirms that the standard deviation is very small, which con-
firms that the TSA is an accurate and useful parameter estimation technique. The average
execution time of every algorithm on the Photowatt-PWP201 PV module is established
and introduced in Figure 6. Compared to GSA, PSOGSA, SCA, and WOA, TSA requires a
much lower time of about 11 s, while PSOGSA has the worst execution time of about 40 s.
The Friedman ranking test results are shown in Figure 7. The best ranking is obtained by
the TSA, followed by SCA, WOA, GSA, and PSOGSA.
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Figure 6. Comparison of the execution time of different metaheuristic algorithms.

4.2

5.12

2.34

3.03

1

GSA PSOGSA SCA WOA TSA
0

1

2

3

4

5

6

F
ri

ed
m

an
 r

an
k

in
g

Algorithms

 

 

 

 × −

 

Figure 7. Ranking of TSA (Tunicate swarm algorithm) and other compared algorithms on Photowatt-
PWP201 PV panel module according to the Friedman test.

6. Conclusions

In this research investigation, TSA was employed to estimate the Photowatt-PWP201
PV panel module parameters under standard temperature conditions. It should be noted
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the TSA technique is, for the first time, intended to reliably track the estimation of param-
eters for photovoltaic models. The observations based on the experimental findings are
defined as follows:

• TSA is relatively accurate and reliable at delivering the solution in terms of the RMSE
compared with other algorithms such as GSA, PSOGSA, SCA, and WOA.

• The I-V and P-V characteristic curves and IAE results indicate that TSA can generate
the optimized value of the estimated parameters for all the solar PV cell models
compared with other algorithms.

• The statistical analysis depicts the robustness of the TSA technique in parameter
estimation problems under standard operating conditions.

• The convergence curves demonstrate that the TSA obtains the best estimated parame-
ters in terms of RMSE (5.06 × 10−4).

• From the above discussion, it can be concluded that the TSA is an effective and robust
technique to estimate the unknown optimized parameters of the solar PV module
model under standard operating conditions.
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Abbreviations and Symbols

The following abbreviations and nomenclature are used in this manuscript:
Ip Photo Diode Current
Isd Reverse Saturation Current
Rs Series Resistance
Rsh Shunt Resistance
A Diode Ideality Factor
RMSE Root Mean Square Error
PV Photovoltaic
I-V Current-Voltage
P-V Power-Voltage
MPPT Maximum Power Point Tracking
Voc Open Circuit Voltage
Impp Maximum Power Point Current
Isc Short Circuit Current
PSO Particle Swarm Optimization
WOA Whale Optimization Algorithm
SDM Single diode Model
DDM Double diode Model
IAE Internal Absolute Error
RE Relative Error
GSA Gravitational Search Algorithm
SCA Sine Cosine Algorithm
PSOGSA Particle Swarm Optimization Gravitational Search Algorithm
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Abstract: Photovoltaic module parameter estimation is a critical step in observing, analyzing, and
optimizing the efficiency of solar power systems. To find the best value for unknown parameters,
an efficient optimization strategy is required. This paper presents the implementation of the sooty
tern optimization (STO) algorithm for parameter assessment of a solar cell/module. The simulation
findings were compared to four pre-existing optimization algorithms: sine cosine (SCA) algorithm,
gravitational search algorithm (GSA), hybrid particle swarm optimization and gravitational search
algorithm (PSOGSA), and whale optimization (WOA). The convergence rate and root mean square
error evaluations show that the STO method surpasses the other studied optimization techniques.
Additionally, the statistical results show that the STO method is superior in average resilience and
accuracy. The superior performance and reliability of the STO method are further validated by the
Friedman ranking test.

Keywords: parameter identification; sooty tern optimization; energy harvesting; arithmetic optimization

1. Introduction

Recently, clean energy usage has increased significantly as demand for all other fuels
declined because of environmental concerns. As a result„ the scientific community made
substantial efforts to harvest energy from different ambient sources [1–5]. Solar energy
harvesting has become the most ideal option since it surpasses all traditional nonrenewable
and renewable resources [6]. As a result, the worldwide solar electricity sector is expanding
significantly, with a current value of more than $10 billion each year [6–8].

Solar energy is converted into electrical energy by employing photovoltaic (PV) pan-
els [9]. Numerous PV panels are linked together in serial and/or parallel arrangements to
create bulky solar energy plants equipped with maximum power point tracking (MPPT)
systems to increase power generation. The primary goal of MPPT systems is to regulate the
parameters of the PV system to generate optimum power [9]. The rapid deviation of electri-
cal energy production is a well-known property of solar plants [9]. Many solar facilities
are linked to local grids, and their operation at the same time as the grids causes voltage
instability in distribution lines [10]. Hence, stable and maximized power generation from
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solar plants is an essential requirement of the green energy movement. To obtain maximum
power density, both theoretical and experimental studies were performed to optimize the
parameters of PV panels [4,11–13]. Single, double, and triple diode models of PV cells are
widely employed to identify the current-voltage parameters [14–16]. These parameters are
helpful for determining the accuracy and steadiness of the models. However, parameter
assessment is not an easy task because of unbalanced operational cases such as faults and
ageing. In most cases, the single diode model is employed because of ease and acceptance.
On the other hand, the double diode model is anticipated to be more than the three-diode
model accurate in case of lower solar irradiance.

Different types of algorithms were proposed and studied to get more accurate and
precise parameters from nonlinear implicit equations with high accuracy [17–33]. The
merits and demerits of these algorithms are categorized because of the trade-off between
exploration and exploitation capabilities [17]. Some became caught in local optima solu-
tions because of a lack of exploration capabilities for finding an optimal solution in the
search space. Heuristic and deterministic are the two main groups of algorithms. Heuristic
algorithms contain particle swarm optimization (PSO) [18], cuckoo search algorithm [19],
harmony search [20], cat swarm optimization (CSO) [21], differential evolution (DE) [22],
artificial bee colony [23], chaos CPSO [24], simulated annealing [25], biogeography-based
optimization algorithm with mutation strategies [26], genetic algorithms [27], improved
adaptive differential evolution [28], pattern search [29], generalized opposition-based
teaching-learning-based optimization [30], and Nelder–Mead modified PSO [31]. The
Lambert W-functions [32], least squares [33], iterative curve-fitting methods [34], conduc-
tivity method [35], Levenberg–Marquardt algorithm [36], Newton–Raphson, and nonlinear
least square are categorized as deterministic algorithms. The applicability of deterministic
algorithms is restricted because of continuity, differentiability, and convexity related to
objective functions. These algorithms are likewise sensitive to the starting solution and
settle at local optima in most cases. Because they do not include difficult mathematics,
biorelated algorithms are more realistic and robust optimization methods for simplifying
complex transcendental equations.

The sooty tern optimization (STO) algorithm mimics the attack and migration behavior
of sooty terns (birds of tropical oceans). This algorithm provides a good balance between
exploration and exploitation strategy and thus reaches optimal solution without getting
trapped in a local solution. These benefits allow researchers to apply the STO for parameter
extraction of a solar module. The key purposes of this research investigation are as follows:

• To first present the experimental results that verify the performance of the STO in
handling the parameter extraction problem of the solar module.

• To use two test cases—R.T.C France solar cell and SS2018P polycrystalline PV module—
to evaluate the effectiveness of the STO and compare it with other metaheuristic
algorithms.

• To use the experimental results to comprehensively confirm that STO is competitive
compared to other existing methods in literature.

This study utilizes the STO algorithm for the parameter assessment of PV cells/modules.
Initially, the mathematical model for PV cell/module and problem formulation is discussed.
At the second stage, the STO algorithm is briefly introduced and used to assess the optimal
magnitude of undetermined parameters. Next, the output results are examined with a
measured dataset, and the algorithm is compared to pre-existing metaheuristic algorithms.
Section 5 contains the discussion and conclusion of manuscript.
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2. Problem Formulation and Methodology

2.1. Mathematical Modeling of Solar Panels

Figure 1 depicts the PV panel’s comparable circuit model. At the output terminal, the
correlation between voltage (Vl) and current (Il) is expressed as:

Il = Ip − Isd

[

exp

(

q
(

Vl/Ns + Rs Il/Np

)

a kBT

)

− 1

]

− Vl/Ns + Rs Il/Np

Rsh
(1)

where Np and Ns denote the count of solar cells interconnected in parallel and series
combinations. The kB is the Boltzmann constant (1.3806 × 10−23 m2kgK−1s−2), T is the
cell/module temperature, q is elementary charge, Ip is photovoltaic current, Isd is diode
saturation current, Rs series resistance, Rsh shunt resistance, and a is the module quality
factor. Only five parameters (Ip, Isd, a, Rs, Rsh) are required to calculate the minimum value
of root mean square error (RMSE).

𝑉௟ 𝐼௟
𝐼௟ = 𝐼௣ − 𝐼௦ௗ ቈ𝑒𝑥𝑝 ቆ𝑞൫𝑉௟/𝑁௦ + 𝑅௦𝐼௟/𝑁௣൯𝑎 𝑘஻𝑇 ቇ − 1቉ − 𝑉௟/𝑁௦ + 𝑅௦𝐼௟/𝑁௣𝑅௦௛𝑁௣ 𝑁௦ 𝑘஻ − − − 𝑇𝑞 𝐼௣ 𝐼௦ௗ𝑅௦ 𝑅௦௛ 𝑎𝐼௣ 𝐼௦ௗ 𝑎 𝑅௦ 𝑅௦௛

𝐼௣ 𝐼௦ௗ 𝑎 𝑅௦ 𝑅௦௛

RMSE = ඩ1𝑘 ෍ 𝑓ሺ𝑉௟ , 𝐼௟ , 𝑋ሻଶ௞
ேୀଵ𝑉௟ 𝐼௟ 𝑘𝑋

⎝⎜
⎛𝑓௦௜௡௚௟௘ሺ𝑉௟ , 𝐼௟ , 𝑋ሻ =  𝐼௣ − 𝐼௦ௗ ൦𝑒𝑥𝑝 ൮𝑞 ൬ 𝑉௟𝑁௦ + 𝑅௦𝐼௟𝑁௣ ൰𝑎ଵ𝑘஻𝑇 ൲ − 1൪ − 𝑉௟𝑁௦ + 𝑅௦𝐼௟𝑁௣𝑅௦௛ − 𝐼௟𝑁௣ 
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⎞

Figure 1. PV panel module equivalent circuit.

2.2. Objective Function

The main objective of the presented study is to lessen the variance among experimen-
tal and estimated data by optimizing unknown parameters for the single-diode model.
Unknown parameters (Ip, Isd, a, Rs, Rsh) are employed as decision variables during the
optimization process. The accumulative squared variation between calculated and ob-
served data is applied as an objective function. The error objective function is denoted as
follows [37,38]:

RMSE =

√

√

√

√

1
k

k

∑
N=1

f (Vl , Il , X)2 (2)

where Vl and Il denote the observed value of voltage and current of the PV module. The
range of experimental datasets is specified by the parameter ‘k’ and the algorithm’s best
answer is indicated by a vector X. In the case of the PV panel module:







fsingle(Vl , Il , X) = Ip − Isd

[

exp

(

q
(

Vl
Ns

+
Rs Il
Np

)

a1kBT

)

− 1

]

−
Vl
Ns

+
Rs Il
Np

Rsh
− Il

Np

(

X = Ip, Isd, a, Rs, Rsh

)






(3)

3. Sooty Tern Optimization

The sooty tern optimization (STO) algorithm was proposed in 2019 [39,40]. The
algorithm is inspired by the attacking behavior of sooty tern birds. Generally, sooty terns
live in groups. They employ their intelligence to locate and attack a target. The most
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notable characteristics of sooty terns are their migrating and assaulting behaviors. The
following provide insights into sooty tern birds:

• Sooty terns travel in groups during migration. To avoid collisions, the initial positions
of sooty terns are different.

• In a group, sooty terns with low fitness levels can nevertheless travel the same distance
that the fittest among them can.

• Sooty terns with low fitness can upgrade their preliminary locations on the basis of
the fittest sooty tern.

3.1. Migration Behavior

A sooty tern must meet three requirements during a migration:
Collision avoidance: SA is used to compute a new search agent location to avoid

collisions with its neighborhood search agents (i.e., sooty terns).

→
Cst = sA·

→
P st(z) (4)

where
→
Cst denotes the position of a sooty tern that does not collide with other terns.

→
P st

represents the current location of the sooty tern. z signifies the current iteration, and sA

denotes the migration of a sooty tern in the solution space.
Converge in the direction of best neighbor: Following collision evasion, the search

agents converge in the path of the finest neighbor.

→
Mst = CB·

→
P st(z)

(→
Pbst(z)−

→
P st(z)

)

(5)

where
→
Mst denotes a different position of a search agent (i.e., sooty tern).

→
Pbst(z) shows the

best location of a search agent, and CB signifies the random variable and can be computed
as follows:

CB = 0.5 Rand (6)

where Rand represents any arbitrary number in the range of 0 and 1.
Updating corresponding to best search agent: Finally, the sooty tern can revise its

location in relation to the best search agent.

→
Dst =

→
Cst +

→
Mst (7)

where
→
Dst signifies the difference between the search agent and the best fittest search agent.

3.2. Attacking Behavior

Sooty terns can modify their speed and attack angle during migration. They gain
altitude by flapping their wings. They produce spherical behavior in the air while attacking
prey, which is explained below.

x′ = Radius sin(i) (8)

y′ = Radius cos(i) (9)

z′ = Radiusi (10)

r = uekv (11)

where, Radius denotes the radius of each spiral turn, i signifies the value in the range of
[0 ≤ k ≤ 2π], and the u and v are the constant values.

3.3. Execution Steps of STO for Parameter Estimation

Figure 2 illustrates the flowchart of the STO algorithm for optimized parameter esti-
mation of a solar cell/module. The algorithm works as follows:
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• Step 1. In the search space, begin the population of search agents of the fifth order di-
mension. The photovoltaic current (Ip), diode saturation current (Isd), series resistance
(Rs), shunt resistance (Rsh), and diode ideality factor are all represented by the fifth
order dimension (a).

• Step 2. In the search space, control the fitness of all agents using Equation (2).
• Step 3. At each iteration, the STO is employed to adjust the position of the agents.

Because the algorithm is intended to function in the minimization mode, the location of
the particles with the least cost suggests the best SDM parameters with the minimum
RMSE.

 𝐼௣ 𝐼௦ௗ𝑅௦ 𝑅௦௛𝑎
 
 

 

𝑊/𝑚ଶ ℃

Figure 2. Process flowchart of STO algorithm for parameter estimation of PV cell/module.

4. Results and Discussion

In this section, we examine the validity of the STO algorithm and describe how we
tested it under standard temperature conditions (1000 W/m2 at 25 ◦C) utilizing primarily
one R.T.C France solar cell and polycrystalline PV module (SS2018P). The extracted PV
module characteristics were tracked and employed to generate simulated I-V and P-V
data sets. The dependability of the STO algorithm was examined and compared to four
metaheuristic algorithms: GSA [41], SCA [42], GWO [43], and WOA [44]. The size of
the sample and the objective function evaluations for the experiment were fixed to 30
and 50,000, respectively. In addition, at least 30 independent runs were performed to
avoid duplication.

The effectiveness of the proposed method was evaluated using several empirical
constraints, e.g., internal absolute error (IAE), correctness of the curve-fitting, and global
minimum convergence rates. The current and voltage data for the R.T.C France solar
cell [45] and the SS2018P polycrystalline PV module [38] were collected experimentally.
In the SS2018P PV module, 36 polycrystalline cells were connected serially [38]. Table 1
tabulates the exploration ranges for every parameter (i.e., upper and lower bounds). These
ranges were utilized by investigators in this study. The STO algorithm [46] was simulated
on a MATLAB 2018a (MathWorks, Mexico, DF, Mexico) platform with an Intel ® core TM
i5-HQ CPU running at turbo frequency of 4.8 GHz and 8 GB of RAM.
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Table 1. The parameter range for SDM of a solar cell and a PV module.

Parameters
R.T.C France Solar Cell SS2018P PV Module

Lower Bound Upper Bound Lower Bound Upper Bound

Ip(A) 0 1 0 10
Rs(Ω) 0.01 0.5 0.01 2
Rsh(Ω) 0.001 100 0.001 2000
Isd(µA) 0 0.5 0 50

a 1 2 1 100

4.1. Parameter Extraction of the R.T.C France Solar Cell

For a single-diode model, five parameters (Ip, Isd, a, Rs, Rsh) must be estimated. The
values of simulated current and power with their IAE are charted in Table 2. Table 3
shows the values of the STO-optimized parameters and RMSE for comparison. The STO
algorithm has the lowest RMSE of 8.6106 × 10−4 when compared to other algorithms. In
this case, RMSE values are obtained as an index for evaluating results with previously
constructed techniques by the researchers. Figure 3 depicts a redrawn current-voltage
(I-V) and power-voltage (P-V) characteristics curve for a single-diode model based on the
optimum optimized parameters achieved by executing the STO method. The computed
data generated by the STO was found to be very close to the experimental data set across
the whole voltage range.

Table 2. The calculated current and absolute error results of the STO for SDM of the R.T.C France
solar cell.

Observations Vl(V) Il (A) Isimulated (A) IAE (A)
Pmeasured

(W)
Psimulated

(W)
IAE (W)

1 0.0057 0.7605 0.7817 0.0212 0.0043 0.0044 0.0001
2 0.0646 0.7600 0.7764 0.0164 0.0490 0.0501 0.0010
3 0.1185 0.7590 0.7714 0.0124 0.0899 0.0914 0.0014
4 0.1678 0.7570 0.7669 0.0099 0.1270 0.1287 0.0016
5 0.2132 0.7570 0.7627 0.0057 0.1613 0.1626 0.0012
6 0.2545 0.7555 0.7588 0.0033 0.1922 0.1931 0.0008
7 0.2924 0.7540 0.754 0.0007 0.2204 0.2206 0.0002
8 0.3269 0.7505 0.7501 0.0003 0.2453 0.245 0.0001
9 0.3585 0.7465 0.7441 0.0023 0.2676 0.2667 0.0008
10 0.3873 0.7385 0.7351 0.0033 0.2860 0.2847 0.0012
11 0.4137 0.7280 0.7208 0.0071 0.3011 0.2982 0.0029
12 0.4373 0.7065 0.6987 0.0077 0.3089 0.3055 0.0034
13 0.459 0.6755 0.6648 0.0106 0.3100 0.3051 0.0049
14 0.4784 0.6320 0.6173 0.0146 0.3023 0.2953 0.0070
15 0.496 0.5730 0.5544 0.0185 0.2842 0.2750 0.0091
16 0.5119 0.4990 0.4772 0.0217 0.2554 0.2443 0.0111
17 0.5265 0.4130 0.3857 0.0272 0.2174 0.2030 0.0143
18 0.5398 0.3165 0.2945 0.0219 0.1708 0.1590 0.0118
19 0.5521 0.2120 0.1728 0.0391 0.1170 0.0954 0.0215
20 0.5633 0.1035 0.0582 0.0452 0.0583 0.0328 0.0254

Sum of IAE 0.2891

4.2. Parameter Extraction of the SS2018P PV Module

To properly assess the efficacy of the STO algorithm, parameters for the SS2018P PV
module were computed at 1000 W/m2 and 25 °C, using the SDM model. The values of
simulated current and power with their IAE are tabulated in Table 4. Table 5 shows the
optimized value of all five parameters (Ip, Isd, a, Rs, Rsh) for SDM of the PV module at
standard temperature condition. Figure 4 depicts a redrawn I-V and P-V characteristics
curve for a single-diode model based on the optimum optimized parameters achieved by
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executing the STO method. It was observed that the simulated data provided by the STO
was extremely closely related to the experimental data set.

Table 3. Comparison between the STO and other algorithms for parameter estimation techniques for
R.T.C France solar cell.

Algorithms Ip(A) Rs(Ω) Rsh(Ω) Isd(µA) a RMSE

STO 0.7850 0.0394 10.9985 0.1770 1.4474 8.6106 × 10−4

GSA [41] 0.7607 0.0339 63.7784 0.0500 1.5486 1.2012 × 10−3

SCA [42] 0.7595 0.0519 90.0685 0.002 1.2641 1.9123 × 10−3

GWO [43] 0.7695 0.0269 47.9136 1 1.6232 9.4095 × 10−4

WOA [44] 0.7573 0.053 58.5839 0.016 1.2476 9.9529 × 10−4

℃𝐼௣ 𝐼௦ௗ 𝑎 𝑅௦ 𝑅௦௛

𝑽𝒍 𝑰𝒍 𝑰𝐬𝐢𝐦𝐮𝐥𝐚𝐭𝐞𝐝 𝑷𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐝 𝑷𝐬𝐢𝐦𝐮𝐥𝐚𝐭𝐞𝐝
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Figure 3. The simulated and experimental I-V and P-V characteristics curves for the single-diode
model of the R.T.C France solar cell. Symbols indicate measured data, while solid lines indicate
optimized data.

4.3. Convergence Analysis

Figures 5 and 6 depict the convergence curves of the R.T.C France solar cell and the
SSS2018 polycrystalline PV cell for examining the computational competency of the STO.
The convergence rate analysis shows that the STO algorithm is more accurate than the GSA,
SCA, GWO, and WOA algorithms. Thus, the STO algorithm produces a realistic answer for
the same amount of evaluation functions (i.e., 50,000).

4.4. Statistical and Robustness Analysis

This subsection offers statistical assessments of the mean, minimum, maximum, and
standard deviation (SD) of RMSE for all recently created strategies. The accuracy and
reliability comparison of the various algorithms in 30 runs is summarized in Table 6. The
RMSE mean and standard deviation were calculated to investigate the durability of the
parameter estimation algorithms. According to the statistical data presented in Table 6, the
STO is found to be the most precise and trustworthy parameter optimization technique.

115



Electronics 2022, 11, 564

Table 4. The simulated current and absolute error results of the STO for SDM of the SS2018 PV
module.

Observations Vl(V) Il(A) Isimulated (A) IAE (A)
Pmeasured

(W)
Psimulated

(W)
IAE (W)

1 0.0844 1.1698 1.2096 0.0397 0.0988 0.1021 0.00336
2 0.2558 1.1697 1.2088 0.0390 0.2993 0.3093 0.0100
3 0.5550 1.1697 1.2075 0.0377 0.6492 0.6702 0.0210
4 1.0896 1.1697 1.2051 0.0353 1.2745 1.3131 0.0386
5 2.1529 1.1697 1.2003 0.0306 2.5183 2.5843 0.0659
6 2.8780 1.1697 1.1971 0.0273 3.3666 3.4454 0.0788
7 3.8696 1.1697 1.1926 0.0229 4.5265 4.6153 0.0888
8 4.5833 1.1697 1.1895 0.0197 5.3613 5.4518 0.0906
9 5.5482 1.1697 1.1851 0.0154 6.4901 6.5757 0.0856
10 6.2780 1.1697 1.1819 0.0121 7.3436 7.4201 0.0765
11 7.2243 1.1697 1.1776 0.0079 8.4505 8.5079 0.0574
12 8.0501 1.1697 1.1739 0.0042 9.4164 9.4506 0.0342
13 8.7878 1.1696 1.1706 0.0009 10.2789 10.2874 0.00852
14 9.7689 1.1696 1.1662 0.0034 11.4259 11.3926 0.0333
15 10.5181 1.1695 1.1627 0.0067 12.3009 12.2302 0.0707
16 11.3167 1.1692 1.1590 0.0102 13.2324 13.1166 0.11160
17 12.1901 1.1688 1.1548 0.0140 14.2485 14.0774 0.1710
18 12.9947 1.1680 1.1506 0.0174 15.1790 14.9522 0.227
19 13.9457 1.1663 1.1449 0.0213 16.2656 15.9678 0.2980
20 14.6556 1.1638 1.1398 0.0240 17.0574 16.7051 0.3520
21 15.5347 1.1583 1.1312 0.0270 17.9941 17.5742 0.4200
22 16.4330 1.1471 1.1177 0.0294 18.8509 18.3673 0.4840
23 17.1324 1.1312 1.1007 0.0305 19.3812 18.8578 0.5230
24 18.0801 1.0907 1.0600 0.0306 19.7206 19.1662 0.5540
25 18.8065 1.0325 1.0033 0.0291 19.4190 18.8700 0.5490
26 19.7423 0.8906 0.8658 0.0248 17.5832 17.0933 0.4900
27 20.5628 0.6493 0.6315 0.0178 13.3533 12.9868 0.3660
28 21.3013 0.2582 0.2516 0.0065 5.5007 5.3614 0.1390

Sum of IAE 0.5840

Table 5. Comparison of the STO with other parameter estimation methods for the SS2018 PV module.

Algorithms Ip(A) Rs(Ω) Rsh(Ω) Isd(µA) a RMSE

STO 1.1276 2 2000 0.5000 89.85 6.19 × 10−5

GSA [41] 1.0959 0.001 455.528 0.0010 53.59 1.68 × 10−1

SCA [42] 1.1742 0.0011 139.676 0.0092 1.415 1.51 × 10−3

GWO [43] 1 0.001 100 0.0010 1.263 1.59 × 10−1

WOA [44] 1.1810 0.0024 18.166 0.0190 1.289 7.82 × 10−4

In addition to the conventional statistical analysis, we also applied the Friedman rank
test [47] to determine the relevance of the presented study. It is a nonparametric test which
is employed to decide the rank of algorithms for the analysis of PV modules; lower the
rank, better the algorithm. Table 7 illustrates the Friedman ranking test results of different
algorithms. The Friedman ranking test results show that the STO has the highest ranking
compared to WOA, SCA, GWO and GSA. In the Friedman test, the null hypothesis H0
(p-value > 5%) suggests that there are no noteworthy alterations among the compared
algorithms. For all 30 runs, the contrary hypothesis H1 indicates a significant difference
between the compared methods. Each algorithm is ranked in this test depending on its
efficiency.
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Figure 4. I-V and P-V characteristics curves for anticipated and experimental values for the SS2018
PV module. Symbols indicate measured data, while solid lines indicate optimized data.
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Figure 5. Convergence plot for the RTC France solar cell.
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Figure 6. Convergence plot for the SS2018 PV module.

Table 6. Statistical RMSE results for various techniques for the R.T.C France solar cell and the SS2018
PV module.

Algorithm
RMSE

Minimum Mean Maximum SD

R.T.C France Solar
Cell

STO 8.6106 × 10−4 9.4761 × 10−4 2.6964 × 10−2 1.0836 × 10−5

GSA [41] 1.2012 × 10−3 5.4701 × 10−3 2.4211 × 10−1 1.3129 × 10−3

SCA [42] 1.9123 × 10−3 9.6515 × 10−3 2.1642 × 10−1 9.4066 × 10−3

GWO [43] 9.4095 × 10−4 1.0441 × 10−3 1.3506 × 10−3 1.4050 × 10−5

WOA [44] 9.9529 × 10−4 9.2032 × 10−4 7.1240 × 10−3 9.0250 × 10−3

SS2018 PV Module

STO 6.1900 × 10−5 5.2500 × 10−4 3.0407 × 10−2 2.3643 × 10−5

GSA [41] 1.6800 × 10−1 1.9462 × 10−1 2.0011 × 10−1 4.4500 × 10−3

SCA [42] 1.5100 × 10−3 5.2657 × 10−3 2.0345 × 10−1 1.0058 × 10−2

GWO [43] 1.5900 × 10−1 1.5940 × 10−1 5.2494 × 10−1 1.6793 × 10−2

WOA [44] 7.8200 × 10−4 1.8268 × 10−3 2.1078 × 10−2 1.3639 × 10−3

Table 7. Friedman ranking of different algorithms for all modules.

Algorithm Friedman Ranking Final Ranking

STO 1 1
GSA [41] 5.12 5
SCA [42] 3.01 3

GWO [43] 4.29 4
WOA [44] 2.03 2

5. Conclusions

In this study, the STO algorithm was employed to assess the parameters of the R.T.C
France solar panel and the SS2018 polycrystalline PV module at typical temperature condi-
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tions. The single-diode model theory was considered for parameter estimation. We also
want to point out that the STO method was being used for the parameter estimation of PV
models for the first time. The main observations of this study are as follows:

• The RMSE values confirm that the STO is generally more accurate and trustworthy to
generate the best optimized parameters than GSA, SCA, GWO, and WOA.

• The IV and PV characteristic curves as well as IAE results show that the STO can
successfully optimize the parameters for different types of PV cells.

• The statistical study illustrates the robustness of the implemented STO technique on
the parameter estimation problem in standard operational conditions.

• The convergence curve confirms that the STO obtains the best values of estimated
parameters in terms of RMSE of 8.6106 × 10−4 and 6.19 × 10−5 for solar cells and PV
modules respectively.

According to the preceding discussion, the STO is an efficient and reliable technique
for estimating the unknown optimum parameters of a solar PV module model under typical
operating conditions.
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Abstract: A voltage source inverter (VSI) is the key component of grid-tied AC Microgrid (MG)
which requires a fast response, and stable, robust controllers to ensure efficient operation. In this
paper, a fuzzy logic controller (FLC)-based direct power control (DPC) method for photovoltaic
(PV) VSI was proposed, which was modelled by modulating MG’s point of common coupling (PCC)
voltage. This paper also introduces a modified grid synchronization method through the direct
power calculation of PCC voltage and current, instead of using a conventional phase-locked loop
(PLL) system. FLC is used to minimize the errors between the calculated and reference powers
to generate the required control signals for the VSI through sinusoidal pulse width modulation
(SPWM). The proposed FLC-based DPC (FLDPC) method has shown better tracking performance
with less computational time, compared with the conventional MG power control methods, due
to the elimination of PLL and the use of a single power control loop. In addition, due to the use
of FLC, the proposed FLDPC exhibited negligible steady-state oscillations in the output power of
MG’s PV-VSI. The proposed FLDPC method performance was validated by conducting real-time
simulations through real time digital simulator (RTDS). The results have demonstrated that the
proposed FLDPC method has a better reference power tracking time of 0.03 s along with reduction in
power ripples and less current total harmonic distortion (THD) of 1.59%.

Keywords: microgrid; PLL; RTDS; direct power control; fuzzy logic; voltage source inverter

1. Introduction

Fossil fuel resources are frequently used to generate power in conventional power
systems, which outcomes in the hasty diminution of fossil fuel, as well as augmented envi-
ronmental pollution. Renewable energy has arisen as an alternate solution to overcome the
environmental and fossil fuel scarcity issues around the world. As a result, modern power
systems have undergone vast changes and up-gradation to accommodate renewable energy
sources in the power system network. The microgrid (MG) is one of such revolutions,
integrating dispatchable and non-dispatchable distributed generation (DG) units through
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power electronics devices to power system networks, and providing uninterruptible power
to communities [1,2]. MG possesses benefits like low capital cost, a low payback period,
and high reliability; however, regarding their operation, there are still numerous technical
challenges, including the flexible control of power flow between the utility grid and MG
during grid-tied mode, and voltage magnitude and frequency control during islanding
operation [3]. In this study, the control strategy that governs the smooth flow of real and
reactive power between the MG and the utility grid for efficient operation of grid-tied
AC-MG, with multiple DGs, is considered.

Grid-tied voltage source inverters (VSI) are one of the key devices of a MG, which
interconnect the DG units of the MG with the main grid, and regulate power flow between
them by adopting appropriate power control methods. It has become very important for
grid-tied VSI to ensure high power quality and stability, as the penetration level of MG
renewable energy resources in modern power grids is increased. The power controllers
allow the MG system to attain a fast response and a small steady state rate of error, and
to maintain stability during drastic changes [4]. A rotating synchronous reference frame-
based trajectory current control scheme is the commonly used strategy to control the output
power of a grid-tied VSI. In this scheme, by regulating dq axes currents separately, real
and reactive powers are controlled where the decoupling-term-based linear proportional
integral (PI) controller can be applied indirectly [4].

To ensure better efficiency, reliability and safety of VSIs used in grid-tied MGs, in the
literature based on dq current control schemes (CCSs), various real and reactive power
control methods have been proposed. Worku et al. proposed a power control strategy for
photovoltaic (PV) and battery storage-based AC-MGs, based on decoupled dq CCS [5].
A rigid power controller was proposed by Safa et al. for a grid-connected VSI, to im-
prove AC-MG power quality [6]. A new power control method, based on the artificial
neural network (ANN) to control the power quality of PV-incorporated AC-MGs, was
presented by Kaushal et al. [7]. For controlling the VSI of a grid-tied AC-MG, Smadi et al.
proposed a compact control strategy based on dq CCS [8]. By cascading the voltage and
current controller, a new power control scheme was proposed by Lou et al. for an AC-
MG VSI [9]. A power control strategy, based on a sliding mode-integrated dq CCS, was
proposed by Abadlia et al. for a hybrid grid-tied PV/hydrogen system [10]. Based on
an instantaneous self-tuning technique, another power control scheme was designed by
Feng et al. for a grid-tied MG [11]. Adhikari et al., for a maximum power point tracking
(MPPT) system-integrated hybrid PV/battery system, proposed a coordinated power con-
trol strategy [12]. A coupled harmonic compensation and voltage support method was
developed by Mousavi et al., for DG-interfaced VSIs in grid-tied AC-MGs [13]. To regulate
the power flow between grid and PV/battery hybrid systems, Go et al. proposed a power
control strategy for VSI [14]. A power control and management system for a grid-tied MG
was developed by Sedaghati to ensure the optimum operation of MG [15]. For controlling
the output power of grid-tied PV-VSI in AC-MGs, a voltage-oriented power coordina-
tion strategy was proposed by Tang et al. [16]. A dq axes CCS synchronous reference
frame-based power control method was proposed by Ahmad et al. for grid-connected
AC-MG’s VSIs [17].

Since in the aforementioned methods, Park’s transformation has been used during
abc to dq transformation, there is a need for phase angle extraction from grid voltages
to ensure dq axes currents and grid voltages are in phase with each other [18]. Phase-
locked loop (PLL) systems are commonly used for the extraction of grid voltage phase
angles, based on arctangent functions [19]. However, the problems with the use of PLL
systems are their adverse impact on VSIs’ small-signal stability, along with the slowdown
of the transient response of the power system parameters, causing high ripples in real
and reactive power [20]. Moreover, at low frequencies PLL initiates negative resistance,
which deteriorates VSIs stability [21]. PLL also introduces dynamic coupling in VSIs [22].
Furthermore, the power system’s dynamic performance is also jeopardized, due to the
adoption of low-bandwidth PLLs for improving VSIs’ stability and robustness. Another
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issue associated with all these controllers is the consideration of two control loops, namely
the outer power and inner current control loops, when designing the power control scheme.
Due to the presence of two control loops, the computation burden increases. Furthermore,
the performances of the above-mentioned control methods are greatly influenced by the
accurate tuning of PI controller gains, the conditions of grid voltage, and the comprehen-
siveness of the current decoupling [23]. In addition, PI controllers cannot eliminate steady
state error for sinusoidal signals, and they cannot handle power system non-linearity effi-
ciently. Moreover, due to the existence of multivariable parameters, during dynamic-load
variations PI controllers have a poorer performance [24].

In some studies, fuzzy logic controller (FLC)-based control methods have been pro-
posed for VSIs operating in grid-tied or autonomous modes for DG applications. Hasanien
et al. proposed an FLC-based control method to maintain the output voltage of VSI for
the islanded DG system during load variability and weather uncertainties [24]. A type-2
FLC-based control method was developed by Heydari et al. for VSIs of autonomous naval
shipboard microgrids, to damp the steady-state deviations of voltage and frequency [25].
However, in [24,25], FLC controllers were used to control the output voltage and frequency
of VSIs during an islanded operation. Thao et al. developed a power control method by
combining feedback linearization and FLC, to reduce the fluctuations in the VSI’s output
active and reactive powers at the steady state, for a grid-tied PV system [26]. Another
FLC-based power control method was proposed by Omar et al. to control the output power
of grid-connected PV-VSI [27]. Jamma et al. proposed an FLC and ANN combined DPC
for controlling the VSI output power of a grid-tied PV system [28]. For a grid-tied PV
system VSI, a control method based on FLC and the Levenberg–Marquardt optimization
method was proposed by Islam et.al. [29]. Shadoul et.al. proposed an adaptive FLC-based
control method for grid-tied PV-VSIs [30]. FLC-based active and reactive power control
was proposed by Tahri et al. for a grid-tied PV system’s neutral-point-clamped VSI [31].
Teekaraman et al. developed an FLC-based current control method for a grid-tied Z-source
VSI [32]. In all these studies [26–32], even though FLC was considered when designing the
feedback controller, all the control methods were based on dq CCS where Park Transfor-
mation was used for abc to dq transformation, and PLL was implemented to extract the
voltage angle. As mentioned earlier, due to the use of the PLL system, the control methods
performance deteriorated, and most of the control methods consisted of two control loops.
As a result, undesirable ripples were observed in the VSI output powers, and controllers
took a longer time to track the reference powers. Furthermore, the performance of all these
controllers were validated only for grid-tied PV systems, which are not connected to MGs.

To overcome the issue of double control loops, direct power control (DPC) method was
introduced for VSI, where the inner current control loop was omitted. A control method for
VSI based on a DPC, to control the output power, was introduced by Gui et al. [33,34]. How-
ever, due to the use of the variable switch frequency in this method, undesirable harmonics
occurred, which hampered the suitable design of the line filter. The DPC method based
on the sliding mode and model predictive controllers were introduced by Gui et al. [35]
and Choi et al. [36], respectively, to improve the fast tracking of power references and
DPC method robustness. Though power tracking performance was improved, undesirable
ripples still existed in real and reactive power, and their performances were not validated
for MG applications.

In this paper, to address the problems associated with the previous power controllers
of PV-VSI, an FLC-based DPC (FLDPC) method is proposed for AC-MG’s photovoltaic (PV)
VSI, through modulating MG’s point of common coupling (PCC) voltage. The advantages
of FLC over conventional PI controllers, is that their design is independent of power
system mathematical modelling, and can therefore deal with power system non-linearities
effectively, and can easily adopt the dynamic load variation of a power system [24]. For grid-
synchronization, instead of using a PLL system, in this study, the direct power calculation
of PCC voltage and current grid-synchronization takes place. The proposed FL-DPC
method also consists of a feedforward decoupled control, and a feedback FLC method
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including the non-linear voltage modulated control. Since the proposed controller excludes
Park transformation and PLL, it exhibits a faster and more transient dynamic performance,
compared with conventional PLL-PI-integrated CCS-based power control methods. In
addition, due to the use of FLC and the elimination of PLL, the steady state oscillation in
VSI output power reduced substantially, and the reference power tracking speed became
faster. Furthermore, the computational burden was also reduced, since the proposed
FLDPC had only a single power control loop, which regulated the instantaneous real and
reactive power flow, directly. Moreover, the presence of the feedforward decoupled control
eliminated the coupling terms presented in the new control inputs from the nonlinear
PCC voltage modulation (PVM), and finally, two individual dynamics of the second order
error signals of the real and reactive were obtained, using a feedback FLC strategy. For
controlling the bus voltage and frequency of the MG during islanded mode of operation, a
V-f control strategy was adopted [37].

The main contribution of this paper is unlike conventional CCS-based VSI; the PV-VSI
is modelled based on DPC and PVM theory (PVMT) to control the real and reactive power
flow between the AC-MG and the utility grid. The detailed mathematical modelling of
the grid synchronization technique, based on the direct power calculation of PCC voltage
and current was conducted. The modelling of the FLDPC strategy for PV-VSI, along with
feedforward decoupled control is also depicted extensively. Real-time simulations were
carried out using a real-time digital simulator (RTDS) for different references of real and
reactive power, to test the proposed FLDPC method’s performance. Considering real-world
scenarios, the performance of the proposed controller was verified by changing the PV
generation and load demand simultaneously, during both MG’s grid-tied and islanded
modes of operation. Finally, to demonstrate the pre-eminence of the proposed FLDPC
controller, real-time simulations of different conventional grid-tied MG power control
methods were conducted, and their performances were compared with the proposed
controller for various parameters of steady-state power oscillations, refence power tracking
time and total harmonic distortions (THD) of VSI’s output current and voltage.

The organization of the rest of the paper is as follows: in Section 2, the modelling of
AC-MG’s different components are presented. In Section 3, the mathematical modelling
of the DPC and PVMT-based VSI are presented. Section 4 presents the proposed FLDPC
method’s design strategy. Section 5 presents the results obtained through the real-time
simulations, along with a detailed discussion and comparative study. Finally, a conclusion
of this study is presented in Section 6.

2. Configuration of AC Microgrid Testbed

The grid-tied AC-MG testbed used in this study consisted of a PV system, a battery
storage, a diesel generator and two types of load (critical and non-critical) which is rep-
resented in Figure 1. The modelling of the MG was conducted in an RSCAD platform,
using modules of different components available in the RSCAD library. In Appendix A
Table A1, the specifications of all the components used in the MG are depicted, which were
obtained from [38]. As shown in Figure 1, two VSIs are used to connect the PV and battery
storage systems with the AC bus, and the AC-MG was integrated with the grid through a
3-ph transformer.
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Figure 1. Schematic of Modelled Grid-tied AC Microgrid.

2.1. Photovoltaic (PV) System

The 0.1 MW-rated PV system used in this study, and the parameters of the system, are
depicted in Table A1. To control the output of the PV-VSI, a PVMT-based FLDPC strategy
was developed, which is described in Sections 3 and 4.

The relationship between the PV system’s current and voltage can be represented
as follows:

IPV = Iph − ID − Ish = Iph − I0[exp
q

AKT(VPV + IPV Rs)
− 1]− VPV + IPV Rs

Rsh
(1)

where cell output voltage is VPV, cell output current is IPV, diode current is ID, photocurrent
is Iph, reverse saturation current is I0, electron charge is q, shunt resistance current is Ish,
temperature of cell is T, shunt resistance Rsh, series resistance Rs and quality factor is A.

A modified incremental conductance algorithm-based MPPT controller [39] is imple-
mented to extract maximum power from the PV system. By using (2), the maximum power
can be determined:

Ppv(t) = ηpv Ac I(t)(1 − 0.005(T0(t)− 25)) (2)

where cell array area is Ac, PV system efficiency is ηpv, solar irradiation is I and ambient
temperature is T0.

2.2. Battery Storage System (BSS)

In this study, the battery storage system (BSS) is comprised of strings of lithium-ion
battery, a bidirectional DC-AC VSI, and a bidirectional DC-DC buck-boost converter. A
control technique proposed in [5] was employed in this study to control the battery VSI.
The size of the battery was chosen based on the critical load demand, so that in the case
of any contingency the battery was able to provide back up. In charging mode, battery
charged either by PV (power generation of PV is more than demand) or via the grid in
grid-tied mode. In contrast, the battery operated in discharge mode when the MG was
islanded, or the generation of PV was less than its capacity in grid-tied mode.

The crucial parameters of the battery are terminal voltage and SOC, which can be
calculated based on (3) and (4) [40]:

Vbat = ibatRbat + Voc + VeeB
∫

ibatdt − k
Ah

Ah +
∫

ibatdt
(3)

SOC =

(

1 +

∫

ibatdt

Ah

)

∗ 100 (4)
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where open circuit voltage is Voc, terminal voltage of the battery is Vbat, battery internal
resistance is Rbat, battery current is ibat, exponential voltage is Ve, polarization voltage is k
and B is the exponential capacity.

2.3. Diesel Generator

In this study, a diesel generator was used to provide backup supply to the MG when
the grid fails. It comprised a diesel engine, a synchronous machine, and for regulating
the machine’s speed and frequency, an excitation system-driven speed governor. The
modelling of the three different parts of the diesel generator was adopted from [41]. The
dynamics of each diesel generator components can be given by (5) and (8).

The governor control system transfer function:

Hc =
K1(T3s + 1)

(T1T2s2 + T1s + 1)
(5)

where, Hc is the transfer functions of governor control system, K1 is the transfer function
constants, and T1 to T3 are the time constants.

Actuator Transfer function:

Ha =
(T4s + 1)

s(T5s + 1)(T6s + 1)
(6)

where Ha is the transfer functions actuator, and T4 to T6 are the time constants.
Diesel engine transfer function:

Heng = e−TDs (7)

where governor control system transfer functions is Heng is and TD is the time constant.
Excitation system transfer function:

He =
1

(Tes + Ke)
(8)

where transfer function constant is Ke, exciter transfer function is He and time constant
is Te.

2.4. Grid

By using (3), the power absorbed or supplied by the grid can be calculated [40]:

Pg(t) = Pl(t) + ∑(Ppv(t), Pb(t)) (9)

where grid supplied/absorbed is Pg, load power is Pl, battery power is Pb, and PV power
is Ppv.

2.5. Load

To verify the performance of the proposed PLL-less FLDPC method, two types of load
were considered in this study, namely, critical and non-critical load. The load values were
chosen based on the MG generation capacity, which changed with respect to time.

3. DPC and PVMT-Based PV-VSI Modelling

In this section, the mathematical modelling of PV-VSI based on DPC and PVMT is
presented. L-filters were used at the output of PV-VSI to reduce the harmonics in current
and voltage. In Figure 2a,b, the schematics of the dq CCS-based control method with PLL
and the proposed PVMT-based FLDPC method without PLL are presented respectively.

128



Electronics 2021, 10, 3095

DC Link
Vdc

PLLabc
dq

abc
dq

dv qv

av bv cv

θ
di qi

ai bi ci

PI

di

refdi
PI

idv
L

Lω qi

dv

du

abc
dq

SPWM

PI
refqi

PI
iqv

L

Lω

qu
qidi

, ,a b cu

θ

L

L

L

R

R

R

VSI

θ

di
e

di
e

qi
e

pe

qe

refP

P

refQ

Q

GRIDTransformer

 
(a) 

DC Link
Vdc

abc αβ 

SPWM

, ,a b cu

L

L

L

R

R

R

VSI GRID

abc αβ 

abc αβ 

Equation 
24

uα uβ

L

Lω

Lω

L

2/3 2/3

2/3

2/3 2/3

2/3

P Q

Q

QP

P
R

R

Pv

Qv

Pu

Qu

FLC
Real 

power 

du

dt

refP

P

refQ

Q

refP
•

refQ
•

du

dt

FLC
Reactive 
power 

du

dt

QF

PF

pai pbi pci pcvpbvpav

2 2
pcc p pV V Vα β= +

pi α pi β gvβgvα

pccV

2
pccV

( )

( )

3
2
3
2

p p p p

p p p p

P i v i v

Q i v i v

α α β β

β α α β

= +

= − +

Qe

Synchronization 
Method

FLDPC Method

pe

Feed-forward controller

Transformer

 
(b) 

Figure 2. Power controllers for grid-tied AC-MG’s PV-VSI, based on (a) PLL-PI-integrated dq CCS and (b) the proposed
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The dynamic realtionships between VSI’s output voltages, currents and PCC voltages
can be represented using (10):

L
dipa

dt = −vpa + ua − Ripa

L
dipb

dt = −vbg + ub − Ripb

L
dipc

dt = −vcg + uc − Ripc

(10)

where, vpabc, ipabc, and uabc are PCC voltages, VSI output currents and voltages, respectively.
R and L are the resistance and inductance of filter, respectively.

The stationary reference frame of the equations presented in (10) can be transformed
to (11) using Clarke’s transformation:

L
dipα

dt = uα − vpα − Ripα

L
dipβ

dt = uβ − vpβ − Ripβ
(11)

where PCC voltages are uαβ, and VSI currents and voltages are ipαβ and vpαβ, respectively,
in α–β frame.

The stationary reference frame representation of instant reactive and real power flow
between the utility grid and VSI can be presented as (12):

P = 3
2

(

ipαvpα + ipβvpβ

)

Q = 3
2

(

−ipβvpα + ipαvpβ

) (12)

where instant real and reactive powers supplied/injected by the grid are P and Q, respectively.
By differentiating (12), P and Q dynamic equations can be obtained as follows:

dP
dt = 3

2

(

vpα
diα
dt + ipα

dvpα

dt + vpβ
dipβ

dt + ipβ
dvpβ

dt

)

dQ
dt = 3

2

(

−vpα
dipβ

dt − ipβ
dvpα

dt + vpβ
dipα

dt + iα
dvpβ

dt

) (13)

For simplifying the dynamics of P and Q in the balanced grid condition, the relation-
ship of the PCC α–β voltage can be obtained as given in (14):

vpα = Vpcc cos(ωt)

vpβ = Vpcc sin(ωt) (14)

where:
Vpcc =

√

vpα
2 + vpβ

2

ω = 2 ∏ f
(15)

where PCC voltage amplitude is Vpcc, angular frequency is ω and grid voltage frequency is f.
The dynamic equations of PCC voltages are obtained as (16) by differentiating (14).

dvpα

dt = −ωVpcc sin(ωt) = −vpβω

dvpβ

dt = ωVpcc cos(ωt) = vpαω
(16)

By substituting (10) and (16) in (13), the dynamic expression of real and reactive
powers can be obtained as (17):
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dp
dt = 3

2L

(

−Vpcc
2 + uαvpα + uβvpβ

)

− ωq − p R
L

dq
dt = 3

2L

(

−uβvpα + uαvpβ

)

− ωq − q R
L

(17)

where, dynamic real and reactive power control inputs and outputs are (p and q) and (uα

and uβ), respectively.
Since both the control inputs in (17) are coupled in P and Q states, by using voltage

modulation theory [34], the dynamics of (17) can be simplified as (18) to define new voltage
modulated control inputs:

uP := uαvpα + uβvpβ

uQ := uβvpα − uαvpβ
(18)

where the new control inputs are uP and uQ, and they are transformed into DC components
as they satisfy (19):

[

uP

uQ

]

= Vpcc

[

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

][

uα

uβ

]

= Vpcc

[

ud

uq

]

(19)

where ud and uq are the d-q frame VSI voltages. Though the proposed method has no PLL
system, the system is still presented in dq axis frame.

The dynamic expression of real and reactive powers presented in (17) can be expressed
as (20), by substituting the control inputs of (17) with the new control inputs (uP and uQ).

dP
dt = 3

2L

(

−Vpcc
2 + uP

)

− ωQ − P R
L

dQ
dt = 3

2L uQ − ωQ − P R
L

(20)

4. Controller Design

4.1. FLC-based Direct Power Control

In this section, for the new PVMT and DPC-based VSI model presented in (20), a
robust and simple controller consisting of feedforward and feedback control structure is
designed. In Figure 2, the FLDPC method’s schematic for the PV-VSI is depicted. In this
control, the power (real and reactive) references are tracked by controlling their actual
value using FLC.

The real and reactive power errors can be obtained using (21):

eP := Pre f − P

eQ := Qre f − Q (21)

where active and reactive power references are represented by Pref and Qref, respectively,
and real and reactive power errors are eP and eQ, respectively.

As shown in Figure 2, for obtaining zero steady state error, two error signals (eP

and eQ) and their rate of change (P-error_rate and Q-error_rate) are given as inputs to two
FLCs. The outputs of FLCs provided the control inputs FP and FQ for the feed-forward
controllers. Due to non-availability of the FLC block in the RSCAD library, FLC is built in
RSCAD software by writing codes using ANSI language in C-builder. Each FLC consisted
of two inputs and one output, as depicted in Figure 2. The two inputs were the error
and error-rates of power for each FLC. The membership functions of inputs and outputs
were named identical for both real and reactive power. The variables representing error
were NM (negative medium), ZV (zero value), and PM (positive medium). Similarly,
error-rate variables were NM1 (negative medium 1), ZV1 (zero value 1), and PM1 (positive
medium 1). The variables of output were BNE (big negative error), NME (negative medium
error), ZE (zero error) and PME (positive medium error). In Figures 3 and 4, the real and
reactive power FLCs’ membership functions for error, error-rate and outputs are shown.
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To ensure smooth control by FLC, triangular-based membership functions were considered
in this study.
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Figure 3. Membership functions of (a) P-error (eP), (b) error_rate of P (deP/dt) and (c) output of
FLC (FP).
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Figure 4. Membership functions of (a) Q-error (eQ), (b) error_rate of Q (deQ/dt) and (c) output of
FLC (FQ).

An important part in the design of FLC is choosing the scaling factors of input
and output membership functions optimally. This can be obtained by implementing
optimization techniques to minimize the deviation between inverter output powers and
the reference powers. In this study, a black-box optimization technique known as the
nonlinear Simplex method of Nelder and Mead is adopted for obtaining the optimal scaling
factors of input and out membership functions [42]. The reason for choosing the black-box
optimization technique is that it can be easily used in conjunction with time-domain or
real-time simulation tools [24]. The process of black-box optimization entails the successive
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evaluation of the objective function for the different sets of parameters for the membership
functions. In this process, the real-time simulation program, i.e., RSCAD/RTDS, is used
to evaluate the value of the objective function. First, an initial set of parameters was used
to initialize the real-time simulation in RTDS, and the value of the objective function was
numerically evaluated. Then, based on the optimization algorithm and the value of the
objective function, a new set of parameters were obtained, and the process was repeated
until an optimal set of parameters is determined.

To assign the input and output control, fuzzy rules were formed based on IF-THEN
rules, which are summarized in Table 1. The rules were decided depending on the coopera-
tion between the estimated error and complexity of FLC. In this paper, defuzzification was
carried out by using the Sugeno-type weighted average method [43] to produce the real
crisp output of FP and FQ.

Table 1. Rule table for FLCs of real and reactive power.

ERROR RATE
Membership Functions

NM1 ZV1 PM1

NM NME NME ZE
ZV NME ZE PME

E
R

R
O

R

PM ZE PME PME

4.2. Feed-Forward Controller

Due to the presence of coupling terms in the new MIMO system (20), and in this study,
to eliminate the coupling terms, a feed-forward controller was designed, as expressed
in (22):

uP = 2
3 LvP + 2

3 LωQ + 2
3 RP + Vpcc

2

uQ = − 2
3 LvQ − 2

3 RQ + 2
3 LωP (22)

where feedback controller inputs are vP and vQ and can be calculated using (23):

vP = FP +
•

Pre f

vQ = FQ +
•

Qre f

(23)

where Fp and FQ are the de-fuzzified output of the real and reactive power FLCs.
Finally, the genuine control inputs uα and uβ were obtained using (24).

uα =
−uQvpβ+uPvpα

Vpcc
2

uβ =
uPvpβ+uQvpα

Vpcc
2

(24)

These two control inputs using αβ-abc transformation were converted to 3-ph control
signals, which were used to generate the control signals for the VSI switches using sinu-
soidal pulse width modulation (SPWM). SPWM was chosen in this study because the har-
monics of lower and higher order can be reduced or eliminated easily using this technique.

4.3. Control of DC-Link Voltage

In Figure 5, the DC-link voltage controller is depicted, which aims to maintain a
constant DC-link voltage during any disturbances or instabilities.

133



Electronics 2021, 10, 3095

22 2 2
3 3 3

2 2 2
3 3 3

α β

2

2

αβ

PI x

Vdc

Vdc
* Idcref
x
2

x
2

Pref

 

2 2*
_

2 22 2* *
, ,

0
  

Figure 5. Schematic of controller of DC-link voltage.

The DC-link voltage error can be given by:

Vdc_error = (Vdc
∗)2 − (Vdc)

2 (25)

where, Vdc
* is the reference of Vdc.

To generate the DC current reference Idcref, this error signal was sent to the PI controller
to the ensure DC bus voltage constant value. The DC current reference Idcref is given by:

Idcre f = Kp,dc

(

(Vdc
∗)2 − (Vdc)

2
)

+ Ki,dc

t
∫

0

(

(Vdc
∗)2 − (Vdc)

2
)

dt (26)

where, Kp,dc and Ki,dc are the PI controller gains. In Appendix A Table A2, the PI controller
gain values for DC-link voltage controller are presented.

5. Results

The real-time simulation results obtained through the implementation of the proposed
PLL-less PVMT-based FLDPC method for PV-VSI of grid-tied MG are presented in this
section. The real-time simulations were carried out on RTDS, and the laboratory setup to
validate the performance of the proposed power controller is shown in Figure 6.

 

Figure 6. Laboratory setup of the proposed controller in AC MG with RTDS.

Two case studies were conducted in this study to validate the performance of the
proposed power controller. For the first case study, the steady-state and transient response
of the proposed controller for PV-VSI was validated by changing both real and reactive
power references, and by changing only real power references. The results were com-
pared with those of the conventional PLL-PI-integrated dq CCS-based control method,
proposed in [6]. For the second case study, load demand and solar irradiation were var-
ied to test the proposed controller performance during MG’s different operating modes.
Finally, a comparative study was conducted to prove the preeminence of the proposed
FLDPC method.
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5.1. Case 1: Change of Both Real and Reactive Power References

This section presents the results related to the power tracking performance of the
proposed FLDPC method, and subsequently compares its performance with the PLL-PI-
integrated dq CCS-based control method for both real and reactive power reference change.

5.1.1. Tracking Performance Analysis of the Proposed Controller

The results obtained for both the controllers tracking performance analysis are de-
picted in Figures 7 and 8. To test the tracking performance of the controller’s real power,
references were varied between 0 MW and 0.1 MW (PV output is non-linear), whereas
reactive power references were changed between 0 MVar and 0.02 MVar, respectively.

Figure 7. Real power tracking performance of (a) FLDPC method and (b) dq CCS-based power controller with PLL.

From Figure 7a, it is seen that, initially, real power reference was set to 0 MW, which
was increased from 0 MW to 0.05 MW after 1 s. Then, it was set to 0.1 MW between
2.97 and 4.969 s, and the final reference was set to 0 MW again, between 4.97 and 7 s. For
all the real power references, it was observed that the PV-VSI output real power, controlled
by the proposed PVMT-based FLDPC, was tracking the real power references accurately.
On the other hand, though from Figure 7b it seems that the conventional dq CCS-based
power controller also tracked the reference powers, from the zoomed portion it is clear to
see that the tracking speed of the proposed PLL-less PVMT-based FLDPC method is 0.03 s.
This was 0.19 s faster than that of the conventional dq CCS-based power control method,
whose real power reference tracking speed was 0.22 s. For reactive power, the reference
power was kept to 0 MVar, initially, which increased to 0.01 MVar and 0.02 MVar at 1 s
and 3 s, respectively. Finally, at 1 s reference reactive power decreased to 0 MVar. It can
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be observed from Figure 8a that the VSI output reactive power controlled by the PVMT-
based FLDPC method was following the reference reactive power accurately at different
time intervals. In addition, the proposed PVMT-based FLDPC showed better tracking
performance than that of CCS-based power controller, though the conventional CCS-based
controller was able to track the reference reactive power, as shown in Figure 8b. According
to the zoomed portion of Figure 8a,b, the time taken to reach a steady-state of reactive
power by the proposed PVMT-based FLDPC was 0.03 s, where the conventional CCS-based
power controller tracked it at 0.23 s. This was 0.20 s slower than the proposed controller.

 

Figure 8. Reactive power tracking performance of (a) FLDPC method and (b) dq CCS based power controller with PLL.

5.1.2. Proposed Controller Steady-State Performance Analysis

In this section, the steady-state performance of the proposed PVMT-based FLDPC
method is validated. From the results shown in Figures 9 and 10, it is clear that due to the
use of the proposed PVMT-based FLDPC method, the ripples at VSI output power were
significantly reduced. The time range considered for viewing the ripples in VSI output real
and reactive power was 2.88–5 s. From Figure 9a, it can be observed that for the proposed
PVMT-based FLDPC, very low ripple existed in the VSI real power output. However, a
higher ripple was observed in the VSI real power output for the conventional PLL-based
power controller, which ranged between 0.0984 and 0.1006 MW. Real power also did not
follow the reference accurately, as seen from Figure 9b. For reactive power, it can be seen
from Figure 10b that the ripple was very high for the conventional CCS-based power
controller and it ranged from 0.019 to 0.0208 MVar. On the other hand, for the proposed
PVMT-based FLDPC method, reactive power also had very low power ripple, as shown in
Figure 10a.
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(a) (b) 

Figure 9. Real power steady-state performance of (a) FLDPC and (b) dq CCS-based power control
method with PLL.

  

(a) (b) 

Figure 10. Reactive power steady-state performance of (a) FLDPC and (b) dq CCS-based power
control method with PLL.

In Figures 11 and 12, the waveforms of the PV-VSI’s output current and voltage are
presented for both the controllers. From Figures 11a and 12a, it can be seen that for PLL-less
PVMT-based FLDPC, the PV-VSI output voltage and current were sinusoidal in shape, and
had negligible noises. In comparison, even though the PV-VSI output voltage and current
for PLL-integrated CCS-based power controller were sinusoidal in shape, large distortion
was observed, as shown in Figures 11b and 12b.

Further from Figure 13, it was observed that for both the controllers, the THD of the
PV-VSI currents was less than 5%, which is in line with the IEC standard [44]; however,
the current THD (4.967%) obtained by the PLL-CCS-based power control method was
very high, compared with the PVMT-based FLDPC method’s current THD (1.59%). As
a result, oscillations in PV-VSI output power and current during steady-state were very
low for PLL-less PVMT-based FLDPC, compared with the power control method based on
PLL-integrated dq CCS.
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Figure 11. PV-VSI output voltage for (a) FLDPC method and (b) dq CCS-based power controller with PLL.

 

Figure 12. PV-VSI output current for (a) FLDPC method and (b) dq CCS-based power controller with PLL.
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Figure 13. VSI output current THD for FLDPC and dq CCS-based power control method.

5.2. Case 2: Proposed Controllers Performance Analysis in Grid-Tied AC MG Application

It was essential to analyze the performance of the proposed PVMT-based FLDPC in
grid-tied AC-MGs, to ensure that the controller was performing well in MG’s different
operating modes. In addition, the controller should be capable of operating in different
real-world conditions such as varying load, and solar irradiation in MG. To verify these
features in this section, the performance of the proposed PVMT-based FLDPC method was
validated by varying both solar irradiation and load demand. Finally, a comparison is
presented at the end of this section, to prove the superiority of the proposed FLDPC method
over conventional MG power control methods for grid-tied VSIs. The results obtained after
implementing the proposed controller for active power flow between different sources and
loads are depicted in Figure 14 and Table 2. To regulate the power flow between different
sources and load, a power management algorithm was adopted from [17].

−

−

Figure 14. Active power flow from different power sources to loads.

The initial values of solar irradiation and varying load were set to 1000 W/m2 and
0.14 MW (critical 0.02 MW + non-critical 0.12 MW, respectively). In between 0 and 2 s,
PV was generating full power of 0.1 MW, which fulfilled 0.1 MW of the total load, and
the remaining 0.04 MW demand was supplied by grid. At this period, the power from
battery and diesel generator were nil. The solar irradiation was dropped to 850 W/m2

between 2 and 4 s and, in contrast, load demand was increased to 0.15 MW. During this
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period, PV provided a maximum of 0.078 MW power support to the load. Since PV power
went down from the nominal value, the battery came into operation. In this case, the
battery and grid supplied 0.025 MW and 0.047 MW power to fulfil the rest of the load
demand. From 4 to 6 s, solar irradiation and load demand reduced to 700 W/m2 and
0.115 MW, respectively. This situation compelled the grid to supply power of 0.024 MW to
the load, since PV (0.066 MW) and battery (0.025 MW) together can support a maximum of
0.091 MW power. During 6–8 s, load demand decreased (0.089 MW) and solar irradiation
increased (1000 W/m2). Since the total load demand (0.089 MW) was less than the PV
generation (0.1 MW), the remaining power (0.011 MW) from MG was delivered towards
grid, and power from battery became zero. At 8 s, solar irradiation level reached 800 W/m2

and the PV system generated a power of 0.074 MW. During 8–10 s, the load demand was
0.068 MW, which was supplied by the PV system fully, and remaining power (0.006 MW)
of MG was supplied to the grid. For this period, power obtained from battery was nil and
from 0 to 10 s, since MG was operating in grid-tied mode; therefore, the diesel generator did
not provide any power support. The MG started operating in islanded mode at 10 s when
the grid disconnected from the MG. During islanding, according to the power management
algorithm, if PV and battery cannot fulfill the load demand, then the diesel generator will
be activated. From 10 to 12 s, the generation of the PV system was 0.085 MW while the load
demand was higher than the PV generation, i.e., 0.097 MW. As the battery had enough
power (0.012 MW) to fulfil the remaining load demand, the diesel generator remained
inactive during this duration. After 12 s, solar irradiation was reduced to 800 W/m2

and load demand increased to 0.13 MW. During 12–14 s, the total generation (0.096 MW)
from solar and battery (0.071 MW + 0.025 MW) was not sufficient to support the load
demand. As a result, diesel generation turned on and supplied 0.034 MW power to fulfil
the remaining load demand. Lastly, between 14 and 16 s, the PV generation further reduced
to 0.056 MW. However, load demand did not reduce much (0.122 MW), which compelled
the diesel generator to continue the power supply as PV, and the battery could not fulfill
the total load demand.

Table 2. Summary of active power flow from different power sources to loads.

Duration
(s)

Variables Demand Generation

Solar Irradiaion
(W/m2)

Total Load
(MW)

Critical Load, PLc

(MW)
Non-Critical Load, PLnc

(MW)
Grid, Pgr

(MW)
Solar, Ppv

(MW)
Diesel Genrator, Pdg

(MW)
Battery, Pb

(MW)

0–2 1000 0.14
0.02 0.12 0.04 0.1 0 0

Total = 0.14 Total = 0.14

2–4 850 0.15
0.015 0.135 0.047 0.078 0 0.025

Total = 0.15 Total = 0.15

4–6 700 0.115
0.015 0.1 0.024 0.066 0 0.025

Total = 0.115 Total = 0.115

6–8 1000 0.089
0.009 0.08 −0.011 0.1 0 0

Total = 0.089 Total = 0.089

8–10 800 0.068
0.008 0.06 −0.006 0.074 0 0

Total = 0.068 Total = 0.068

10–12 900 0.097
0.007 0.09 0 0.085 0 0.012

Total = 0.097 Total = 0.097

12–14 750 0.13
0.01 0.12 0 0.071 0.034 0.025

Total = 0.13 Total = 0.13

14–16 600 0.122
0.012 0.11 0 0.056 0.041 0.025

Total = 0.122 Total = 0.122

In Figures 15 and 16, the output power, current and voltages of PV and battery VSIs
are presented. Figure 15a shows that through the PV-VSI, the amount of delivered power
was almost same as the power supplied by the PV with low ripple. In addition, the PV-VSI
output current also had less distortion, as shown in Figure 15b, because the PVMT-based
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FLDPC was implemented to control the PV-VSI. Similarly, from Figure 15c, it can be
observed that the PV-VSI output voltage also had a pure sine wave shape, and negligible
ripple. On the other hand, due to the use of PLL-integrated CCS-based controller battery
VSI output power, current and voltage had high steady-state oscillations and distortions,
which are presented in Figure 16a–c, respectively.

 

Figure 15. AC MG’s PV-VSI output (a) power, (b) current and (c) voltage during solar irradiation and load changes.

The THD of PV and battery VSIs’ output currents and voltages are depicted in
Figure 17a–c, respectively. From the figures, it can be seen that the THD of PV-VSI output
current was only 1.585%, whereas battery VSI output current THD was 4.718%, which was
higher compared with PV-VSI current THD. In the case of voltages, battery VSI output
voltage THD (2.592%) was higher than the PV-VSI output voltage THD (1.44%). The THDs
were measured by considering three cycles (5.95–6 s) of current and voltage waveforms,
as shown in the zoomed portion of Figure 15b,c and Figure 16b,c. Finally, in Figure 18a–c,
grid power, current and voltage are presented, respectively. From the figures, it is clear that
the power delivered or absorbed by the grid was according to the MG’s requirement, and
there were negligible ripples observed in the power. Furthermore, the shape of grid current
and voltage were sinusoidal, which maintained 60 Hz frequency and had no distortions.
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Figure 16. AC-MG’s battery VSI output (a) power, (b) current and (c) voltage during solar irradiation and load changes.
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Figure 17. THD of (a) PV-VSI output current and (b) battery VSI output current and (c) PV and battery VSIs output voltage.
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Figure 18. Grid (a) power, (b) current and (c) voltage during solar irradiation and load changes.

5.3. Comparison of the Proposed PVMT-Based FLDPC with Other MG Power Controllers

In this section, a comparative study is conducted between the proposed PLL-less
PVMT-based FLDPC method and other grid-tied MG power control methods from [5–7,9,11].
The controllers were modelled in RSCAD, and their performances were tested by imple-
menting them for controlling PV-VSI, as shown in Figure 1. The results were obtained by
conducting real-time simulations in RTDS, and to make a fair comparison during simula-
tions, all the parameters of MG were set similarly. The results of the comparative study are
presented in Table 3 which shows that the proposed PVMT-based FLDPC method exhibited
better performance than the other MG power control methods.

All the results are presented for the period of 1–2 s, when AC-MG was operating
in grid-tied mode. For instance, the reference power tracking time of the proposed DPC
controller was 0.20 s, 0.195 s, 0.185 s, 0.12 s, 0.14 s and 0.19 s faster than the controllers
proposed in [5–7,9,11], respectively. Moreover, the PV-VSI output current THD was ob-
served as 1.585%, approximately in the range of 2.264% to 3.289% lesser compared with the
controllers in [5–7,9,11]. Furthermore, the power ripple in the output of PV-VSI controller
by the proposed FLDPC was very low compared with the ripples that existed in the output
power of PV-VSIs regulated by the controllers proposed in [5–7,9,11].
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Table 3. Comparative analysis of the proposed PVMT-based FLDPC with other MG power controllers.

#
MG Power
Controller

PLL System
Presence

Active Power
Ripples Range

Reference Power
Tacking Time (s)

THD of VSI
Output Voltage (%)

THD of VSI
Output Current (%)

1
Proposed

PVMT-based
FLDPC

No
Very small

(0.09999–0.10 MW)
0.03 1.44 1.585

2 Ref [5] Yes
Large

(0.0983–0.101 MW)
0.23 3.91 4.975

3 Ref [6] Yes
Large

(0.098–0.102 MW)
0.225 3.85 4.967

4 Ref [7] Yes
Large

(0.0985–0.1009 MW)
0.215 3.83 4.87

5 Ref [9] Yes
Medium

(0.0994–0.1003 MW)
0.15 2.59 3.95

6 Ref [11] Yes
Large

(0.0986–0.1009 MW)
0.22 3.80 4.76

7 Ref [27] Yes
Medium

(0.0993–0.1004 MW)
0.14 2.55 3.92

6. Discussion

From the real-time simulation results, it can be realized that the proposed PLL-less
PVMT-based FLDPC method is capable of controlling the real and reactive power, ir-
respective of the load variability and solar irradiation variations. For different power
references, it was observed that the PV-VSI output real power controlled by the proposed
PVMT-based FLDPC was tracking the reference real and reactive powers accurately. On
the other hand, though the conventional dq CCS-based power controller was also tracking
the reference powers, the tracking speed of the proposed PLL-less PVMT-based FLDPC
method was found to be faster than that of the conventional dq CCS-based power control
method, because the proposed power control method PLL system and park transformation
was omitted and the PCC voltage modulated the DPC method. Moreover, in the feed-
back controller, FLC was applied to minimize the errors between the reference powers
and VSI output power, to ensure PV-VSI output powers were following the reference
powers accurately.

Similar to the tracking performance the proposed PLL-less PVMT-based FLDPC
method exhibited excellent performance during a steady-state. The proposed PVMT-based
FLDPC overcame the steady-state oscillations issue, due to acquirement of an exponentially
stable decoupled linear time invariant error dynamic by the proposed controller. It was
observed that for the proposed PVMT-based FLDPC, there was very low ripple in the VSI
real and reactive power output. However, there was higher ripple observed in the VSI
power outputs for the conventional PLL-based power controller, and powers were also not
following the reference accurately.

From the results presented in Table 2, it can be seen that the proposed controller
also performed as outstanding while transferring power among different sources of MG,
grid and load during MG’s grid-tied, and islanding operating modes. From the real time
simulation results, it was observed that during grid-tied mode the proposed PVMT-DPC
method performed excellently by maintaining the required power flow between the MG
and grid, as the PV system was capable of providing the power according to the solar
irradiation changes. In addition, during the transition from grid-connected to islanded
mode, the proposed PVMT-DPC method also showed a robust performance. Finally, from
the comparison results presented in Table 3, it was observed that the proposed PLL-less
PVMT-based FLDPC method integrated PV-VSI showed a better performance during both
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the transient-state and the steady-state compared with the conventional power controller-
integrated PV-VSIs connected to AC-MGs.

7. Conclusions

In this paper, a FLDPC scheme based on PVMT for a grid-tied MG’s PV-VSI was
introduced. The performance of the proposed power controller was validated by con-
ducting real-time simulations using RTDS for two cases varying in both real and reactive
power references, and in AC-MGs different operating modes. For case-1, the tracking and
steady-state performance of the proposed FLDPC for a grid-tied PV-VSI was validated
by changing real and reactive power references. On the other hand, for case-2 the perfor-
mance of the proposed controller was validated for AC-MG’s PV-VSI by varying the solar
irradiation and load demand.

For case-1, real-time simulation results show that the proposed FLDPC method was
able to track both real and reactive power to their reference powers accurately and quickly.
The reference power tracking time required by the proposed FLDPC method for both real
and reactive power was only 0.03 s, whereas the conventional PLL-integrated dq CCS-
based power controller took 0.23 s, which was 0.20 s slower than the proposed controller.
The proposed controller during steady-state also demonstrated outstanding performance
as the ripples in the PV-VSI output power significantly reduced, and the THD of VSI
output current achieved was 1.59%, which was well below the 5% set by the IEC standard.
On the contrary, for a conventional PLL-integrated dq CCS-based power controller, the
THD of VSI output current obtained was very high (4.975%) compared with the proposed
FLDPC method.

Furthermore, for case-2, in MG application (grid-tied, and islanded operating modes),
the proposed FLDPC method of PV-VSI showed an outstanding performance during the
variation of solar irradiance and load. From the real-time simulation results, it was observed
that during the grid-tied mode the proposed PVMT-based FLDPC method has performed
excellently, by maintaining the required power flow between the MG and grid. Finally,
a comparative study was conducted to prove the superiority of the proposed FLDPC
method, with respect to other grid-tied MG power control methods. It was observed that
the proposed FLDPC method outperformed all the other controllers, having a PI-based
feedback controller and PLL-based synchronization methods, along with two control loops
for parameters such as power ripples, THD and reference power tracking time.

In this work, the performance of the proposed FLDPC method was validated on
AC-MG, which was connected to a healthy utility grid. In future, the performance of the
FLDPC will also be validated for distorted grid conditions. Furthermore, for the grid
re-synchronization process, the performance of the proposed FLDPC method was not
validated. This will be conducted in the future.
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Nomenclature

VSI Voltage source inverter
MG Microgrid
PLL Phase locked loop
DPC Direct power control
FLC Fuzzy logic controller
RTDS Real time digital simulator
CCS Current control scheme
PI Proportional Integral
SOC State of Charge
PVM PCC voltage modulation
FLDPC Fuzzy logic direct power control
PV Photovoltaic
MPPT Maximum power point tracker
BSS Battery storage system
THD Total harmonic distortion
SPWM Sinusoidal pulse width modulation
MI Modulation index
PCC Point of common coupling
PVMT PCC voltage modulation theory
ANN Artificial neural network

Appendix A

Table A1. Parameters of AC MG components [38].

Parameters Value

PV System (0.1 MW)

PV modules connected in series 28

PV modules connected in parallel 68

Solar irradiation reference value 1000 W/m2

Voltage at maximum power 17.3 V

Voltage at open circuit 21.5 V

Current at maximum power 3.05 A

PV module Temperature 25 ◦C

Current during short circuit (Isc) 3.33 A

Battery Storage (25 kWh)

Nominal voltage per cell 3.6 V

Initial SOC of each cell 90%

Capacity of each cell 0.85 AH

State of charge (SOC) of battery Greater than 60%

Cells connected in parallel 290

Cells connected in series 135

Diesel Generator (0.15 MVA)

Machine power rating 0.15 MVA

Line to line voltage 0.48 kV
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Table A1. Cont.

Parameters Value

Grid

Transformer primary/secondary voltage 0.48 kV/13.2 kV

Grid Voltage 13.2 kV

Frequency 60 Hz

Load

Non-critical load 0.05–0.14 MW

Critical Load 0.005–0.015 MW

PV-VSI

Voltage at DC link 975 V

PV-VSI switching frequency 2 kHz

DC-link capacitor 500 µF

Ra,b,c 0.1 Ω

La,b,c 5 mH

Battery VSI

Voltage at DC link 975 V

PV-VSI switching frequency 2 kHz

DC-link capacitor 450 µF

Ra,b,c 0.01 Ω

La,b,c 5.5 mH

DC-DC Buck-Boost Converter (Battery Storage)

Switching frequency 20 kHz

Capacitance 74 µF

Inductance 6 mH

DC-DC Boost Converter (PV System)

Switching frequency 20 kHz

Capacitance 85 µF

Inductance 8 mH

Table A2. Values of PI controller coefficients for DC-link control.

Coefficients Value

K i, dc 0.015

K p, dc 10
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Abstract: Due to the rapid advancement in power electronic devices in recent years, there is a
fast growth of non-linear loads in distribution networks (DNs). These non-linear loads can cause
harmonic pollution in the networks. The harmonic pollution is low, and the resonance problem
is absent in distribution static synchronous compensators (D-STATCOM), which is the not case in
traditional compensating devices such as capacitors. The power quality issue can be enhanced in DNs
with the interfacing of D-STATCOM devices. A novel three-phase harmonic power flow algorithm
(HPFA) for unbalanced radial distribution networks (URDN) with the existence of linear and non-
linear loads and the integration of a D-STATCOM device is presented in this paper. The bus number
matrix (BNM) and branch number matrix (BRNM) are developed in this paper by exploiting the radial
topology in DNs. These matrices make the development of HPFA simple. Without D-STATCOM
integration, the accuracy of the fundamental power flow solution and harmonic power flow solution
are tested on IEEE−13 bus URDN, and the results are found to be precise with the existing work.
Test studies are conducted on the IEEE−13 bus and the IEEE−34 bus URDN with interfacing D-
STATCOM devices, and the results show that the fundamental r.m.s voltage profile is improved and
the fundamental harmonic power loss and total harmonic distortion (THD) are reduced.

Keywords: unbalanced distribution networks; linear loads; non-linear loads; total harmonic distor-
tion; harmonic power flow

1. Introduction

In terms of harmonics, the loads are classified into two types, linear loads and non-
linear loads. A linear load [1] is one which, when supplied by an AC source at fundamental
frequency, can produce only fundamental AC currents. Non-linear loads, however, gener-
ate harmonic currents. The use of non-linear loads can inject harmonic currents into URDN.
These harmonic injections can cause overheating of the equipment, insulation stress on
winding in electric machines, added power loss in the equipment, and interference with the
communication. Therefore, HPFAs are essential for finding the harmonic distortion level
on URDN. In [2], based on current injection, graph theory, and the sparse matrix technique,
a three-phase HPFA is proposed. The authors of [3] utilized the decoupled harmonic
power flow (DHPF) algorithm to present the results of harmonic power flow calculations.
In [4,5], a forward/backward-based HPFA for DN is proposed that considered the special
topology of radial distribution networks (RDN). The authors of [6] developed an iterative
time-dependent, computer-aided HPFA by combining the time-dependent cross-coupled
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harmonic model. To obtain this model, large data are received from the practical DNs.
Tracing THD in secondary RDN with photovoltaic uncertainties by multiphase HPFA is
discussed in [7]. The authors of [8] propose a new combined analytical technique (CAT)
for HPFA in the presence of correlated input uncertainties from photovoltaic (PV) systems
in RDN. In [9], static capacitors are allocated in shunt along RDN using a Cuckoo search
optimization method. For allocating and sizing of capacitors optimally, a flower pollination
algorithm is proposed in [10].In [11,12], a novel three-phase power flow algorithm for
URDN with multiple integrations of distributed generations (DGs) and a D-STATCOM
device is presented. In [13], an electrical energy management in unbalanced distribution
networks using virtual power plant concept is presented. In [14], an efficient multi-objective
optimization approach based on the supervised big bang–big crunch method for the op-
timal planning of a dispatchable distributed generator is presented. This approach aims
to enhance the system performance indices by the optimal sizing and placement of dis-
tributed generators connected to balanced/unbalanced distribution networks. The optimal
planning of distributed generators in unbalanced distribution networks using a modified
firefly method is presented in [15].

The authors of [16] examine the utilization of D-STATCOM without a capacitor to
compensate for power quality in DNs. The optimal D-STATCOM allocation in DNs is
discussed in [17,18]. In [19], an optimal algorithm to control a three-phase D-STATCOM
is proposed. This algorithm can give harmonic compensation as well as reactive power
compensation in linear and non-linear loads, which are connected in three-phase. In [20],
for minimizing the total real power loss in DNs with the interfacing of DGs, plug-in-
hybrid electric vehicles (PHEVs), and D-STATCOM, a genetic algorithm is proposed. A
control technique is developed in [21] for D-STATCOM for extracting the fundamental
weight components from non-sinusoidal load currents to produce grid reference currents.
For harmonics elimination, the injection of reactive power and balancing of load, this D-
STATCOM is developed. The D-STATCOM’s performance is examined in different working
modes. The combination of two problems such as the reconfiguration and interfacing of
D-STATCOM can be solved by using the grey wolf optimization (GWO) method proposed
in [22].

The proposed power flow algorithm (PFA) can give both fundamental and harmonic
solutions. The solution of the fundamental power flow algorithm (FPFA) discussed in this
paper is used in modelling the linear and non-linear loads for HPFA. The BNM and BRNM
developed in this paper make the implementation of the PFA simple. The bus numbers
and branch numbers of newly created sections of RDN are stored in BNM and BRNM,
respectively. This paper is arranged in the following order. The network components’
modelling is addressed in Section 2. The algorithm to develop BNM and BRNM is discussed
in Section 3. In Section 4, the three-phase HPFA with the integration of the D-STATCOM
device is discussed. Section 5 presents the test studies and discussions on the IEEE−13 bus
and IEEE−34 bus URDN. Section 6 discusses the concluding remarks.

2. Network Components and Their Modeling

The URDN includes the main components such as lines, three-phase transform-
ers, three-phase capacitor banks, and loads. These components are briefly modeled in
this section.

2.1. Overhead or Underground Distribution Lines

With the Carson’s equations presented in [23], the primitive impedance matrices
for three-phase overhead and underground lines can be formed. For a grounded neural
system, these matrices are reduced to phase impedance matrices of 3 × 3 size using Kron
reduction. Figure 1 shows the three-phase distribution line model, and its shunt admittance
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is neglected due to its small effect. The phase impedance matrix for the line section ‘jk’ is
given in Equation (1).

[Zabc]jk =





Zaa Zab Zac
Zba Zbb Zbc
Zca Zcb Zcc





jk

(1)

Figure 1. A sample three-phase distribution line.

From Figure 1, the relationship between the phase voltage matrices of bus-j and bus-k
is given in Equation (2):





Va
Vb
Vc





k

=





Va
Vb
Vc





j

−





Zaa Zab Zac
Zba Zbb Zbc
Zca Zcb Zcc





jk

·





Ia
Ib
Ic





jk

(2)

The reactance of line is regarded as proportionate to the harmonic order for HPFA.
For h-order harmonic frequency, the self-impedance of phase ‘a’ is given in Equation (3),

(Zaa)
h = Raa + j · h · Xaa (3)

2.2. Loads

The phase current matrix and line current matrix serving the different types of three-
phase loads are outlined in Table 1. Detailed discussion on Table 1 is provided in [23].

2.2.1. Linear Loads

These loads produce only fundamental sinusoidal response upon supplied by sinu-
soidal source. The liner loads can be modelled in several ways [1]. Each model will show a
different impact on harmonic analysis. The impedance modelling of these loads is taken as
series combination of R and X.

2.2.2. Non-Linear Loads

With the harmonic spectrum of non-linear loads and their load current obtained from
the fundamental power flow, these loads are modelled as constant current sources [24].
The magnitude of the current source is obtained with Equation (4), and its phase angle is
obtained with Equation (5):

Ih = Irated
Ih_spectrum

I1_spectrum
(4)

The phase angle of the current source is obtained as:

θh = θh_spectrum + h
(

θ1 − θh_spetrum

)

(5)

where:
θ1 : Phase angle of the rated current at fundamental frequency;
θh_spectrum : Phase angle of the harmonic source current spectrum.
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Table 1. Load modelling.

Wye Connection Delta Connection

Phase voltage matrix and specified
load matrix at bus.





|Van|∠δa
|Vbn|∠δb
|Vcn|∠δc



,





|Sa|∠θa
|Sb|∠θb
|Sc|∠θc









|Vab|∠δab
|Vbc|∠δbc
|Vca|∠δca



,





|Sab|∠θab
|Sbc|∠θbc
|Sca|∠θca





Phase current matrix serving constant
power load





ILa
ILb
ILc



 =











(

Sa
Van

)∗

(

Sb
Vbn

)∗

(

Sc
Vcn

)∗















ILab
ILbc
ILca



 =











(

Sab
Vab

)∗

(

Sbc
Vbc

)∗

(

Sca
Vca

)∗











Phase current matrix serving the
constant impedance load





ZLa
ZLb
ZLc



 =











|Van |2
S∗a

|Vbn |2
S∗b

|Vcn |2
S∗c















ILa
ILb
ILc



 =







Van
ZLa
Vbn
ZLb
Vcn
ZLc











ZLab
ZLbc
ZLca



 =











|Vab |2
S∗ab

|Vbc |2
S∗bc

|Vca |2
S∗ca















ILab
ILbc
ILca



 =







Vab
ZLab
Vbc

ZLbc
Vca

ZLca







Phase current matrix serving the
constant current load





ILa
ILb
ILc



 =





|ILa|∠(δa − θa)
|ILb|∠(δb − θb)
|ILc|∠(δc − θc)









ILab
ILbc
ILca



 =





|ILab|∠(δab − θab)
|ILbc|∠(δbc − θbc)
|ILca|∠(δca − θca)





Line current matrix entering the load





ILa
ILb
ILc









ILa
ILb
ILc



 =





1 0 −1
−1 1 0
0 −1 1



 ·





ILab
ILbc
ILca





Distributed Loads Create a duplicate node at a distance of one-fourth the length from the sending end and connect a
two-third of lode. At the receiving end one-third of load is connected.

2.3. Capacitor Banks

Modelling of the capacitor banks is presented in Table 2.

Table 2. Capacitor banks modeling.

Wye Connected Delta Connected

Phase voltage matrix and specified
reactive power matrix at bus.





|Van|∠θa
|Vbn|∠θb
|Vcn|∠θc



,





Qa
Qb
Qc









|Vab|∠θab
|Vbc|∠θbc
|Vca|∠θca



,





Qab
Qbc
Qca





Phase current matrix serving the
capacitor bank

[Babc] =











Qa

|Va|2
Qb

|Vb|2
Qc

|Vc|2















ICa
ICb
ICc



 =





j · Ba · Van
j · Bb · Vbn
j · Bc · Vcn





[Babc] =











Qab

|Vab|2
Qbc

|Vbc|2
Qca

|Vca|2















ICab
ICbc
ICca



 =





j · Bab · Vab
j · Bbc · Vbc
j · Bca · Vca





Line current matrix serving the
capacitor bank





ICa
ICb
ICc









ICa
ICb
ICc



 =





1 0 −1
−1 1 0
0 −1 1



 ·





ICab
ICbc
ICca





For HPFA, the capacitive susceptance (B) is to be multiplied with ‘h’ for ‘h’ order
frequency.

2.4. Tree-Phase Transformer

The fundamental voltage and current relationships between the primary and sec-
ondary sides for different transformer connections are presented in [25]. The modelling of
the three-phase transformers for HPFA is given in [24,26].
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2.5. D-STATCOM

The D-STATCOM is commonly regarded as a shunt compensator which supplies
reactive power in PFAs. The voltage magnitude at the D-STATCOM bus can be controlled
by adjusting the reactive power injection of D-STATCOM.

The interface of the D-STATCOM at ith bus shown in Figure 2a, and its traditional
modelling for PFAs is shown in Figure 2b. The specified reactive power of the load is
combined with the reactive power output of D-STATCOM, so that reactive power varies
as magnitude of Vi varies. This is absolutely a PV bus modelling with the real power
output of the D-STATCOM set to zero [27,28]. The hypothesis in this model is that losses in
the D-STATCOM and its connection are ignored. The D-STATCOMs have low harmonic
content, so the harmonic current injected by the D-STATCOM is considered as zero for
HPFA.

Figure 2. (a) D-STATCOM interface at ith bus 2 (b) Traditional modelling of D-STATCOM as PV bus.

3. Algorithm for Developing BNM and BRNM

The performance of the HPFA of URDN is enhanced by the systematic numbering of
buses and branches. From [29], the numbering scheme to buses and branches is taken. The
following steps are to be followed to write a Software Code in order to split the URDN into
different sections, as shown in Figure 3.
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Figure 3. Divided sections for sample distribution network.

1. From the distribution network shown in Figure 3, form Table 3.

Table 3. Branch numbering of distribution network in Figure 2.

Branch Number(BN) Sending Bus(SE) Receiving Bus(RE)

1 1 2
2 2 3
3 3 4
4 4 5
5 5 6
6 6 7
7 7 8
8 8 9
9 9 10
10 10 11
11 3 12
12 12 13
13 13 14
14 14 15
15 15 16
16 6 17
17 17 18
18 18 19
19 19 20
20 20 21
21 18 22
22 22 23

2. Start with BN = 1.Read the RE of BN, i.e., 2. Then, check how many times this 2
appears in the SE row. Inthe above table, it appears one time. That means bus 2 is the
sending end for only one branch. Fill these RE 2 and BN 1 in two different matrices
(BNM and BRNM) as the first row and first column elements. Then, increase the
column number by one.

3. Increase the BN (i.e., BN = 2), and read the RE of BN, i.e., 3. Then, as in step 1, check
for the appearance of 3 in SE row. The bus 3 appears two times. That means that,
from the bus 3, two branches are leaving. Then, fill these RE 3 and BN 2 into the same
variables as the first row and present the column elements. Name this row elements
as section-I. Now increase the row number by one and set the column number to one.
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4. Similarly, increase the BN, and read the RE of BN. Then, check for the appearance
of this RE in the SE row. If it appears one time, then fill these RE and BN values
as the present row and present column elements of the variables BNM and BRNM.
Then increase the column number by one and repeat step 4. If it does not appears
or appears more than one time in the SE row, then fill the corresponding RE and
BN values as present row and present column elements. Then identify this row as a
section. Then increase the row number by one and set the column number to one and
repeat the step 4.

The above steps are repeated until the BN value reaches the last branch number. At
the end, the BNM and BRNM are obtained as follows:

4. Three-Phase HPFA with Non-Linear Loads and D-STATCOM Devices

For modeling the linear and non-linear loads for HPFA, the fundamental power
flow solution is required. Hence, the algorithm consists of two parts. PartA illustrates
the iterative procedure for FPFA with the D-STATCOM device and PartB illustrates the
iterative procedure for HPFA with linear loads, non-linear loads, and D-STATCOM devices.

After developing the BNM and BRNM for the URDN, the iterative procedure is
explained with the following steps.

PartA: FPFA with D-STATCOM

1. The voltages at all busses are assigned as substation bus voltage.





Va
Vb
Vc



 =





1∠0o

1∠− 120o

1∠120o



 (8)

2. Find the line current matrix serving the load at all buses.
3. Start with collecting line current matrix at bus−23 (the tail bus in section-VII in BNM),

and thereby find the line current matrix for branch−22 (the tail branch in section-VII
in BRNM). Then, continue to the bus−22 and branch−21 to find the line current
matrix at the bus and line current matrix in branch, respectively. From Figure 4, the
following equations are obtained by applying the KCL at every bus:

[Iabc]k = [ILabc]k + [Ishabc]k + [ICabc]k (9)
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[Iabc]jk = [Iabc]k (10)

[Iabc]j = [Iabc]jk + [ILabc]j + [Ishabc]j + [ICabc]j (11)

[Iabc]ij = [Iabc]j (12)

[Iabc]i = [Iabc]ij (13)

where:
[Iabc]k : Line current matrix at bus-k;
[ILabc]jk : Line current in branch-jk;
[ILabc]k : Load current matrix at bus-k;
[Ishabc]k : Line current matrix drawn by shunt admittance at bus-k;
[ICabc]k : Line current matrix drawn by capacitor bank at bus-k, if any.

4. Now go to section-VI and repeat procedure as in step 5 to find the line current matrix
at the head bus and line current matrix for head branch. Similarly, proceed up to
section-I and find the line current matrix up to bus−1 and line current matrix up to
branch−1.

5. Now start with head bus in section-I and continue to the tail bus in section-I by finding
the phase voltage matrix at all buses with Equation (2). Then, go to the next section
and repeat the same procedure.

6. Steps 4 to 6 are to be repeated until the convergence criterion as given in Equation (14)
is satisfied:

∣

∣

∣[Vabc]
r
i − [Vabc]

r−1
i

∣

∣

∣ ≤ [εabc] (14)

where ‘r’ is the iteration number.
7. D-STATCOM location is selected and model as PV bus for the outside γthiteration.
8. The mismatches in voltages at D-STATCOM buses are obtained with Equation (13):





∆Va
∆Vb
∆Vc





γ

=

∣

∣

∣

∣

∣

∣

Vsp
a

Vsp
b

Vsp
c

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

Vcal
a

Vcal
b

Vcal
c

∣

∣

∣

∣

∣

∣

γ

(15)

[∆Vabc]
γ ≤ [εabc] (16)

where [∆V]γ is the mismatch matrix for the voltage and its size is 3 · n × 1, and ‘n’ is
the total number of PV buses.

9. If the Equation (16) is not satisfied, then the incremental current injection matrix at
D-STATCOM bus is calculated with Equation (17) to maintain the specified voltages:

[∆I]γ = [ZPV]
−1 · [∆V]γ (17)

where [ZPV] is the sensitivity matrix for the PV bus with its size 3 · n × 3 · n. The
formation of this matrix is presented in [30].

10. The incremental reactive current injection matrix at D-STATCOM bus is obtained with
Equation (18):





∆ID,a
∆ID,b
∆ID,c





γ

j

=





|∆Ia| ·
(

cos
(

900 + δv,a
)

+ j ∗ sin
(

900 + δv,a
))

|∆Ib| ·
(

cos
(

900 + δv,b
)

+ j ∗ sin
(

900 + δv,b
))

|∆Ic| ·
(

cos
(

900 + δv,c
)

+ j ∗ sin
(

900 + δv,c
))





γ

j

(18)

11. In Figure 5, by applying the KCL at bus-j, the line current matrix in branch-ij is
obtained as:





Ia
Ib
Ic





γ

ij

=





ILa
ILb
ILc





γ

j

−





∆ID,a
∆ID,b
∆ID,c





γ

j

(19)
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With [Vabc]
γ
j and [Iabc]

γ
ij , the reactive power flow in the line [Qabc]

γ
ij is evaluated. Then,

the incremental reactive current injection matrix is obtained with Equation (20):





∆QD,a
∆QD,b
∆QD,c





γ

j

=





QLa
QLb
QLc





γ

j

−





Qa
Qb
Qc





γ

ij

(20)

The reactive power generation matrix needed at D-STATCOM bus-j is obtained with
Equation (21):





QD,a
QD,b
QD,c





γ

j

=





QD,a
QD,b
QD,c





γ−1

j

+





∆QD,a
∆QD,b
∆QD,c





γ

j

(21)

12. If the D-STATCOM device is able to generate limited reactive power, then find the
total reactive power generation of D-STATCOM device with Equation (22). The total
reactive power generation of D-STATCOM is now compared with the maximum
and minimum limits of reactive power generation of D-STATCOM device limits.
Equation (22) is calculated as follows:

(QD)
γ
j =

(

QD,a
)γ

j +
(

QD,b
)γ

j +
(

QD,c
)γ

j (22)

If Qj,min ≤ (QD)
γ
j ≤ Qj,max

Then set complex power generation is as in Equation (21)
If (QD)

γ
j ≤ Qj,min

Then set (QD)
γ
j = Qj,min and

(

QD,a
)γ

j =
(

QD,b
)γ

j =
(

QD,c
)γ

j = Qj,min/3

If (QD)
γ
j ≥ Qj,max

Then set (QD)
γ
j = Qj,max and

(

QD,a
)γ

j =
(

QD,b
)γ

j =
(

QD,c
)γ

j = Qj,max/3

13. Now, find the complex power generation matrix at D-STATCM bus with Equation (23):





SD,a
SD,b
SD,c





γ

j

=





PD,a
PD,b
PD,c





j

+ j ·





QD,a
QD,b
QD,c





γ

j

(23)

where [PD,abc]j is the specified real power generation matrix of the D-STATCOM
device and its value is set to zero.

14. The line current matrix injected by the D-STATCOM is obtained with the complex
power generation matrix obtained in Equation (23) and bus voltage matrix as:

[ID,abc]
γ
j =





(SD,a/Va)
∗

(SD,b/Vb)
∗

(SD,c/Vc)
∗





γ

j

(24)

15. Using the current injection matrix at the D-STATCOM buses, repeat from step 7 by
setting γ = γ+1.

16. If Equation (16) is satisfied at all D-STATCOM buses, then stop the FPFA algorithm.
17. With the complex power loss in branch-ij in Equation (25), find the total power loss in

the network by summing up the losses in all branches:





SLossa
SLossb
SLossc





ij

=







(Va)i · (Ia)
∗
ij

(Vb)i · (Ib)
∗
ij

(Vc)i · (Ic)
∗
ij






−







(Va)j · (Ia)
∗
ji

(Vb)j · (Ib)
∗
ji

(Vc)j · (Ic)
∗
ji






(25)
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PartB: HPFA with non-linear loads and D-STATCOM device.

18. With the converged bus voltages and specified load, the impedances of the linear
loads are calculated for the harmonic order-h of interest.

19. Find the harmonic current injection matrix for the non-linear loads for the selected
h-order harmonic of interest. The harmonic current injection matrix of D-STATCOM
is taken as zero.

20. The harmonic voltage at the substation bus is taken as zero since the supply voltage
is assumed to bea pure sinusoidal voltage waveform.

21. The harmonic voltages at all other buses for the first iteration are assumed to be zeros
as that of the substation bus:





Va
Vb
Vc





h

=





0
0
0



 (26)

22. Find the net harmonic current matrix at all the buses with the harmonic current matrix
drawn by the linear loads and the harmonic current injection matrix of non-linear
loads and the D-STATCOM device. The current matrix drawn by the linear loads
at all the buses is zero for the first iteration as the harmonic voltage at all the buses
is zero for the first iteration. This is illustrated with the sample section as shown in
Figure 6. The net harmonic current matrix at bus-j is given by Equation (27), and the
harmonic current matrix in branch-ij is given by Equation (28):

[Iabc]
h
j = −[ISabc]

h
j − [IDabc]

h
j + [ILabc]

h
j (27)

[Iabc]
h
ij = [Iabc]

h
j (28)

where:
[Iabc]

h
j : Harmonic current matrix at bus-j for harmonic order-h;

[Iabc]
h
ij : Harmonic current matrix in branch-ij for harmonic order-h;

[ILabc]
h
j : Harmonic current matrix drawn by linear load at bus-j for harmonic

order-h;
[ISabc]

h
j : Harmonic current injection matrix by non-linear load at bus-j for

harmonic order-h;
[IDabc]

h
j : Harmonic current injection matrix by D-STATCOM device at bus-j for

harmonic order-h.
Likewise, the harmonic currents in all branches are to be obtained by moving up

to the substation as explained in step 3 to step 4 in PartA for FPFA.

23. Then, start finding the harmonic voltages at all buses downstream from the substation
bus with Equation (29) as explained in step 5 in PartA:





Va
Vb
Vc





h

j

=





Va
Vb
Vc





h

i

−





Zaa Zab Zac
Zba Zbb Zbc
Zca Zcb Zcc





h

ij

·





Ia
Ib
Ic





h

ij

(29)

24. Repeat the steps 22 to 23 until the magnitude mismatch of harmonic voltages of
h-order at all the busses is within the tolerance limit.

25. Find the harmonic power loss in all branches using Equation (30). Then find the
total harmonic power loss in the network for the selected harmonic order-h using
Equation (31):
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



SLossa
SLossb
SLossc





h

ij

=







(Va)i · (Ia)
∗
ij

(Vb)i · (Ib)
∗
ij

(Vc)i · (Ic)
∗
ij







h

−







(Va)j · (Ia)
∗
ji

(Vb)j · (Ib)
∗
ji

(Vc)j · (Ic)
∗
ji







h

(30)

[TS_lossabc]
h =

Nbr

∑
br=1

[

[SLossabc]
h
br

]

(31)

26. Likewise, repeat the steps from 10 to 16 for all the harmonics of selected harmonic
orders (h = 3, 5, 7, 9, 11, 13, and 15).

27. Find the total harmonic loss of the network using Equation (32):

[Total_loss] =
hm

∑
h=ho

Nbr

∑
br=1

[

[SLossabc]
h
br

]

(32)

28. The total r.m.s voltage at bus-i, say, phase ‘a’, is calculated as:

(Va)i =

√

√

√

√

∣

∣

∣(Va)
1
i

∣

∣

∣

2
+

hm

∑
h=ho

∣

∣

∣(Va)
h
i

∣

∣

∣

2
(33)

29. The total harmonic distortion at every bus is calculated using Equation (34):

(THD)a
i =

√

hm
∑

h=ho

∣

∣

∣(Va)
h
i

∣

∣

∣

2

∣

∣

∣(Va)
1
i

∣

∣

∣

(34)

where: ho : Minimum harmonic order;
hm : Maximum harmonic order;
br : Branch number;
Nbr : Total number of branches.

Figure 4. A simple URDN three busses.
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Figure 5. A simple URDN with two buses with D-STATCOM placed at bus-j.

Figure 6. Sample section of two buses for HPFA.

5. Results and Discussions

5.1. IEEE−13 Bus URDN

5.1.1. Fundamental Power Flow Solution for Accuracy Test

The proposed three-phase FPFA is examined on IEEE−13 bus unbalanced test feeder
without interfacing of D-STATCOM device. Figure 7 shows the IEEE−13 bus feeder and
its data is collected from [31]. 5000 kVA and 4.16 kV are the chosen base values for this
network. The FPFA is taken 5 iterations for its convergence with tolerance for convergence
is 10−4. The comparison of obtained power flow solution with IEEE solution and errors
in voltage magnitudes and phase angles at every bus are presented in Table 4. Table 5
presents the comparison of obtained power loss with the IEEE losses. Insignificant values
of maximum errors of 0.0005 p.u and 0.010o for voltage magnitudes and phase angles are
observed in Table 6. So that, in terms of accuracy the test results are consistent with IEEE
results.
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Figure 7. IEEE 13 Bus URDN.

Table 4. Fundamental voltage solution for IEEE−13 bus URDN.

Bus Phase Obtained Solution IEEE Solution [31] Error in Voltage Mag. Error in Voltage Ang.

650
a 1 ∠ 0o 1 ∠ 0o 0.0000 0.00
b 1 ∠ −120o 1 ∠ −120o 0.0000 0.00
c 1 ∠ 120o 1 ∠ 120o 0.0000 0.00

RG
a 1.0625 ∠ 0o 1.0625 ∠ 0o 0.0000 0.00
b 1.0500 ∠ −120o 1.0500 ∠ −120o 0.0000 0.00
c 1.0687 ∠ 120o 1.0687 ∠ 120o 0.0000 0.00

632
a 1.0210 ∠ −2.49o 1.0210 ∠ −2.49o 0.0000 0.00
b 1.0420 ∠ −121.72o 1.0420 ∠ −121.72o 0.0000 0.00
c 1.0175 ∠ 117.83o 1.0170 ∠ 117.83o −0.0005 0.00

671
a 0.9900 ∠ −5.30o 0.9900 ∠ −5.30o 0.0000 0.00
b 1.0529 ∠ −122.34o 1.0529 ∠ −122.34o 0.0000 0.00
c 0.977 ∠ 116.03o 0.9778 ∠ 116.02o 0.0001 −0.01

680
a 0.9900 ∠ −5.30o 0.9900 ∠ −5.30o 0.0000 0.00
b 1.0529 ∠−122.34o 1.0529 ∠ −122.34o 0.0000 0.00
c 0.9778 ∠ 116.03o 0.977 ∠ 116.02o 0.0001 −0.01

633
a 1.0180 ∠ −2.55o 1.0180 ∠ −2.56o 0.0000 0.01
b 1.0401 ∠ −121.77o 1.0401 ∠ −121.77o 0.0000 0.00
c 1.0148 ∠ 117.82o 1.0148 ∠ 117.82o 0.0000 0.00

634
a 0.9940 ∠ −3.23o 0.9940 ∠ −3.23o 0.0000 0.00
b 1.0218 ∠ −122.22o 1.0218 ∠ −122.22o 0.0000 0.00
c 0.9960 ∠ 117.35o 0.9960 ∠ 117.34o 0.0000 −0.01

645
b 1.0328 ∠ −121.90o 1.0329 ∠ −121.90o 0.0001 0.00
c 1.0155 ∠ 117.86o 1.0155 ∠ 117.86o 0.0001 0.00

646
b 1.0311 ∠ −121.98o 1.0311 ∠ −121.98o 0.0000 0.00
c 1.0134 ∠ 117.90o 1.0134 ∠ 117.90o 0.0000 0.01

692
a 0.9900 ∠ −5.30o 0.9900 ∠ −5.31o 0.0000 0.01
b 1.0529 ∠ −122.34o 1.0529 ∠ −122.34o 0.0000 0.00
c 0.9778 ∠ 116.03o 0.9777 ∠ 116.02o −0.0001 −0.01

675
a 0.9835 ∠ −5.55o 0.9835 ∠ −5.56o 0.0000 0.01
b 1.0553 ∠ −122.52o 1.0553 ∠ −122.52o 0.0000 0.00
c 0.9759 ∠ 116.04o 0.9758 ∠ 116.03o −0.0001 −0.01

684
a 0.9881 ∠ −5.32o 0.9881 ∠ −5.32o 0.0000 0.00
c 0.9758 ∠ 115.92o 0.9758 ∠ 115.92o 0.0000 0.00

611 c 0.9738 ∠ 115.78o 0.9738 ∠ 115.78o 0.0000 0.00
652 a 0.9825 ∠ −5.24o 0.9825 ∠ −5.25o 0.0000 0.01
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Table 5. Power loss in IEEE−13 bus URDN.

Phase

Obtained Power Loss IEEE Loss [31]

Active
(kW)

Reactive
(kVAR)

Active
(kW)

Reactive
(kVAR)

a 39.13 152.62 39.11 152.59
b −4.74 42.27 −4.70 42.22
c 76.59 129.69 76.65 129.85

Total 110.98 324.57 111.13 324.66

Table 6. Power loss in IEEE−13 bus URDN.

Harmonic Order
Harmonic Power Loss

APL (kW) RPL (kVAR)

3 0.7958 6.5165
5 0.0856 1.1483
7 0.0072 0.1183
9 0.0043 0.0902
11 0.0008 0.0164
13 0.0008 0.0226
15 0.0010 0.0340

Total harmonic loss 0.8983 7.9464
Fundamental loss 147.33 433.54
Total power loss 148.23 441.49

5.1.2. Fundamental and Harmonic Power Flow Solutions without D-STATCOM

The regulator between buses 650 and 632 is removed and the capacitor banks at bus
675 and 611 are removed from the network. The data for the harmonic load composition
and current spectra of harmonic loads aretaken from [32]. The convergence tolerance is
taken as 10−4. Table 6 presents the harmonic power losses and total power loss of the
network including fundamental and harmonic loss. The harmonic voltage solutions for
the selected range of harmonics of order 3, 5, 7, 9, 11, 13, and 15 are presented in Table 7.
Table 8 presents the fundamental r.m.s profile, the total harmonic voltage profile, and the
THD %. It is observed from Table 8 that the maximum THD % on the network is 5.2263
at bus−611 for c-phase, and in [2], it was reported that the maximum THD % at bus−611
is 5.23. Therefore, the results of the proposed HPFA are almost matches the literature in
terms of accuracy. To see the impact of the D-STATCOM on the fundamental r.m.s voltage
profile, the total r.m.s voltage profile, the fundamental and harmonic power loss, and the
THD %, the results of this case study are taken as benchmarks.

5.1.3. IEEE−13 Bus URDN with D-STATCOM

In this case, a three-phase D-STATCOM is integrated at bus 680. The D-STATCOM is
modelled as a PV model with its real power generation set to zero and the lower limit and
upper limit for the three-phase reactive power generation are 100 kVAR and 1000 kVAR,
respectively. The phase voltages specified at this bus are 1 p.u. Table 8 presents the
harmonic power loss and total power loss (including fundamental and harmonic power
loss). In comparison with Table 6, it is observed that the integration of the D-STATCOM into
the network reduces both the fundamental and harmonic power losses, thereby the total
power loss in the network is also reduced. Table 9 presents the fundamental r.m.s voltage
profile, the total r.m.s voltage profile, and the THD %.In comparison with Table 7, it is
observed that there is an improvement in fundamental r.m.s voltage profile. The minimum
fundamental r.m.s voltage in the network without D-STATCOM is 0.8651 p.uat bus−611
for c-phase, whereas its value is 0.8763 p.u at bus−611 for c-phase with integration of
D-STATCOM. The maximum THD % in the network is reduced from 5.2263 to 5.1133
with integration of D-STATCOM. Figure 8 shows the comparison of THD % with and
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without integration of D-STATCOM. Figure 9 presents the comparison of fundamental
r.m.s voltages on the network for the two case studies.

Table 7. Fundamental r.m.s voltage, total r.m.s voltages, and THD % in IEEE−13 bus URDN.

Bus Phase S. No Fundamental r.m.s Voltage Total r.m.s Voltage THD %

650
a 1 1 ∠ 0o 1 0
b 2 1 ∠ −120o 1 0
c 3 1 ∠ 120o 1 0

632
a 4 0.9498 ∠ −2.7462o 0.9500 1.9173
b 5 0.9839 ∠ −121.6817o 0.9839 0.4974
c 6 0.9300 ∠ 117.8000o 0.9302 2.2737

671
a 7 0.9109 ∠ −5.8987o 0.9117 4.0623
b 8 0.9875 ∠ −122.2091o 0.9875 1.0363
c 9 0.8717 ∠ 115.9500o 0.8728 4.9409

680
a 10 0.9109 ∠ −5.8987o 0.9117 4.0623
b 11 0.9875 ∠ −122.2091o 0.9875 1.0363
c 12 0.8717 ∠ 115.9500o 0.8728 4.9409

633
a 13 0.9466 ∠ −2.8223o 0.9468 1.9098
b 14 0.9819 ∠ −121.7315o 0.9819 0.4919
c 15 0.9271 ∠ 117.7946o 0.9273 2.2648

634
a 16 0.9207 ∠ −3.6073o 0.9209 1.8801
b 17 0.9624 ∠ −122.2445o 0.9624 0.4873
c 18 0.9064 ∠ 117.2178o 0.9066 2.2406

645
b 19 0.9745 ∠ −121.8646o 0.9745 0.4991
c 20 0.9283 ∠ 117.8225o 0.9286 2.2769

646
b 21 0.9729 ∠ −121.9382o 0.9729 0.5000
c 22 0.9264 ∠ 117.8696o 0.9267 2.2815

692
a 23 0.9109 ∠ −5.8987o 0.9117 4.0623
b 24 0.9875 ∠ −122.2091o 0.9875 1.0363
c 25 0.8717 ∠ 115.9500o 0.8728 4.9409

675
a 26 0.9025 ∠ −6.0795o 0.9034 4.3128
b 27 0.9887 ∠ −122.3037o 0.9887 1.0491
c 28 0.8678 ∠ 116.0660o 0.8689 5.0687

684
a 29 0.9093 ∠ −5.9502o 0.9100 4.0765
c 30 0.8684 ∠ 115.9163o 0.8695 5.0741

611 c 31 0.8651 ∠ 115.8365o 0.8663 5.2263
652 a 32 0.9041 ∠ −5.8755o 0.9049 4.0900

Table 8. Fundamental and Harmonic power loss for IEEE−13 URDN with D-STATCOM.

Harmonic Order

Harmonic Power Loss

Active
(kW)

Reactive
(kVAR)

3 0.7836 6.3935
5 0.0841 1.1282
7 0.0071 0.1168
9 0.0043 0.0886
11 0.0008 0.0160
13 0.0008 0.0223
15 0.0009 0.0336

Total harmonic loss 0.8816 7.7991
Fundamental Loss 135.34 396.63
Total power loss 136.22 404.43
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Table 9. Fundamental r.m.s voltages, total r.m.s voltages, and THD % in IEEE−13 bus URDN with
D-STATCOM.

Bus Phase Fundamental r.m.s Voltage
Total r.m.s

Voltage in p.u
THD %

650
a 1.0000∠0o 1 0
b 1.0000∠−120o 1 0
c 1.0000∠120o 1 0

632
a 0.9545∠−2.8433o 0.9547 1.8920
b 0.9883∠−121.7039o 0.9883 0.4923
c 0.9355∠117.6975o 0.9357 2.2404

671
a 0.9204∠−6.0689o 0.9211 3.9865
b 0.9961∠−122.2496o 0.9962 1.0211
c 0.8829∠115.7512o 0.8839 4.8346

680
a 0.9227∠−6.1274o 0.9234 3.9764
b 0.9983∠−122.2605o 0.9983 1.0189
c 0.8855∠115.6856o 0.8865 4.8205

633
a 0.9512∠−2.9186o 0.9514 1.8846
b 0.9863∠−121.7535o 0.9863 0.4869
c 0.9326∠117.6923o 0.9329 2.2317

634
a 0.9255∠−3.6957o 0.9256 1.8556
b 0.9669∠−122.2618o 0.9669 0.4823
c 0.9121∠117.1225o 0.9123 2.2082

645
b 0.9789∠−121.8864o 0.9789 0.4940
c 0.9338∠117.7205o 0.9341 2.2436

646
b 0.9773∠−121.9600o 0.9773 0.4948
c 0.9319∠117.7674o 0.9322 2.2482

692
a 0.9204∠−6.0689o 0.9211 3.9865
b 0.9961∠−122.2496o 0.9962 1.0211
c 0.8829∠115.7512o 0.8839 4.8346

675
a 0.9121∠−6.2456o 0.9129 4.2312
b 0.9973∠−122.3429o 0.9973 1.0335
c 0.8790∠115.8645o 0.8801 4.9586

684
a 0.9187∠−6.1203o 0.9194 4.0007
c 0.8796∠115.7184o 0.8807 4.9647

611 c 0.8763∠115.6396o 0.8775 5.1133
652 a 0.9135∠−6.0456o 0.9142 4.0140
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Figure 8. Comparison of THD % for case studies on IEEE−13 URDN.
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Figure 9. Comparison of fundamental r.m.svoltages for case studies on IEEE−13 URDN.

5.2. IEEE−34 Bus URDN

The date for the IEEE−34 bus URDN is taken from [31]. The base values selected for
the system are 2500 kVA and 24.9 kV. The load composition at spot loads for harmonic
analysis is presented in Table 10. The data for the current spectra of harmonic loads
aretaken from [32]. The convergence tolerance for both fundamental and harmonic power
flows is 10−4. The case studies on the network are presented in Table 11. The rating and
location of the D-STATCOM device for Case2 is presented in Table 11. Table 12 presents
the fundamental r.m.s voltage profile, the total r.m.s voltage profile, and the THD % for
Case1. The test results of Case1 are used as a benchmark to see the fundamental and
harmonic impacts of D-STATCOM on the network. The summary of results for the case
studies is presented in Table 13. In Case2, which has integrations of two D-STATCOM
devices, the maximum THD% is observed to be 5.2567 which is less than in Case 1. The
number of phases effected with a THD% more than fiveis reduced from fourto twofrom
Case 1 to Case 2. From Case 1 to Case 2, it is found that the minimum fundamental voltage
on the network is improved from 0.7641 p.u to 0.8137 p.u at bus 890 for the a-phase.The
fundamental power loss and the total power loss including harmonic loss of the network
reduced in Case 2 in comparison with Case 1. Figure 10 shows the comparison of THD %
with and without the integration of the D-STATCOM. Figure 11 shows the comparison of
the fundamental r.m.s voltages on the network for the two case studies.

Table 10. Load composition of spot loads in IEEE−34 bus URDN.

Bus No.

Load Composition

Non-Linear Loads
Linear
LoadsFluorescent

Light Banks
Adjustable

Speed Drives
Composite

Residential Loads

830 None None 80% 20%
844 30% 30% 30% 10%
848 30% 30% 30% 10%
890 30% None 60% 10%
860 30% 30% 30% 10%
840 30% 30% 30% 10%
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Table 11. Case studies on IEEE−34 bus URDN.

Case Study Description

Case 1
(Without D-STATCOM)

• Voltage regulator is taken off between bus−614 and
bus−650 and bus−852 and bus−832.

• Capacitor banks are taken off at bus−844 and bus−848.
• Load composition of spot loads as in Table 9

Case 2
(With D-STATCOM)

• Three-phase D-STATCOM placed at bus 890 is modeled
as PV bus with P = 0 and three-phase reactive power
limits: 100 ≤ Q ≤ 500 kVAR.

• Three-phase D-STATCOM placed at bus 650 is modeled
as PV bus with P = 0 and three-phase reactive power
limits: 100 ≤ Q ≤ 500 kVAR.

Table 12. Fundamental r.m.s voltages, total r.m.s voltages, and THD % in the IEEE−34 bus URDN for Case 1.

Bus No. S. No. Ph.
Total r.m.s

Voltages in p.u
THD % Bus No S. No. Ph.

Total r.m.sVoltages in
p.u

THD %

800
1 a 1 0 46 a 0.8169 4.8628
2 b 1 0 834 47 b 0.8531 4.0835
3 c 1 0 48 c 0.8570 4.5399

802
4 a 0.9972 0.0541 49 a 0.8168 4.8691
5 b 0.9980 0.0481 842 50 b 0.8530 4.0888
6 c 0.9981 0.0531 51 c 0.8569 4.5458

806
7 a 0.9953 0.0908 52 a 0.8164 4.8990
8 b 0.9967 0.0808 844 53 b 0.8524 4.1147
9 c 0.9969 0.0891 54 c 0.8565 4.5742

808
10 a 0.9605 0.7955 55 a 0.8162 4.9094
11 b 0.9745 0.6983 846 56 b 0.8519 4.1261
12 c 0.9742 0.7706 57 c 0.8562 4.5841

812
13 a 0.9200 1.6825 58 a 0.8162 4.9109
14 b 0.9488 1.4531 848 59 b 0.8518 4.1276
15 c 0.9479 1.6045 60 c 0.8562 4.5855

814
16 a 0.8880 2.4435 810 61 b 0.9975 0.0562
17 b 0.9284 2.0813 818 62 a 0.8869 2.4466
18 c 0.9271 2.2994 820 63 a 0.8599 2.5235

850
19 a 0.8880 2.4438 822 64 a 0.8564 2.5339
20 b 0.9284 2.0815 826 65 b 0.9169 2.3333
21 c 0.9271 2.2997 856 66 b 0.8954 2.8693

816
22 a 0.8877 2.4526 67 a 0.7875 5.5150
23 b 0.9281 2.0888 888 68 b 0.8248 4.8565
24 c 0.9268 2.3079 69 c 0.8275 5.1312

824
25 a 0.8778 2.7468 70 a 0.7853 5.5791
26 b 0.9171 2.3328 890 71 b 0.8228 4.9085
27 c 0.9173 2.5798 72 c 0.8252 5.1873

828
28 a 0.8769 2.7713 864 73 a 0.8203 4.7018
29 b 0.9162 2.3529

860
74 a 0.8164 4.8734

30 c 0.9165 2.6025 75 b 0.8526 4.0921

830
31 a 0.8574 3.3823 76 c 0.8566 4.5493
32 b 0.8961 2.8557 77 a 0.8162 4.8779
33 c 0.8974 3.1673 836 78 b 0.8522 4.0967

854
34 a 0.8569 3.3981 79 c 0.8565 4.5531
35 b 0.8956 2.8688 80 a 0.8162 4.8790
36 c 0.8969 3.1820 840 81 b 0.8522 4.0976

852
37 a 0.8233 4.5667 82 c 0.8564 4.5542
38 b 0.8603 3.8340 83 a 0.8162 4.8779
39 c 0.8634 4.2626 862 84 b 0.8522 4.0968

832
40 a 0.8233 4.5671 85 c 0.8565 4.5530
41 b 0.8603 3.8342 838 86 b 0.8520 4.0977
42 c 0.8634 4.2629

—
858

43 a 0.8203 4.7018
44 b 0.8570 3.9475
45 c 0.8604 4.3890

168



Electronics 2021, 10, 2663

Table 13. Summary of results for the case studies on IEEE−34 bus URDN.

Case Study
Min.

Fundamental
Voltage, p.u

Min. Total
r.m.sVoltage, p.u

Max. THD%
No. of Phases of

Buses (THD > 5%)

Case 1
0.7841 at bus−890,

a-phase
0.7853 at bus−890,

a-phase

5.5791 at
bus−890,
a-phase

4

Case 2
0.8137 at bus−890,

a-phase
0.8148 at bus−890,

a-phase

5.2567 at
bus−890,
a-phase

2

Case study Total fundamental power loss
Total power loss including total

harmonic loss
Active (kW) Reactive (kVAR) Active (kW) Reactive (kVAR)

Case 1 260.89 180.49 264.56 188.15
Case 2 227.69 155.82 231.23 163.21

Figure 10. Comparison of THD% for case studies on IEEE−34 URDN.

Figure 11. Comparison of fundamental r.m.svoltages for case studies on IEEE−34 URDN.

6. Conclusions

This paper proposes new three-phase PFAs for URDN with the presence of linear and
non-linear loads and D-STATCOM devices. These PFAs can give both fundamental and
harmonic power flow solutions with/without the presence of D-STATCOM devices. The
developed BNM and BRNM make both the FPFA and HPFA simple. These matrices are
developed by exploiting the radial topology in distribution networks. This method uses the
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basic concepts of circuit theory, and they can be easily understood. In this paper, the linear
loads are modeled as a series combination of resistance and reactance, and non-linear loads
are modeled as constant current sources with its magnitude and angle obtained from the
current spectra. The harmonic current injections from the D-STATCOM are assumed as zero.
The proposed FPFA and HPFA are tested on the IEEE−13 bus URDN, and the results are
found to be accurate with the literature. The test studies are carried on the IEEE−13 bus and
IEEE−34 bus URDN, and the results of the case studies show thatthere is an improvement
in the fundamental voltage profile, a reduction in the fundamental and harmonic power
loss, and a reduction in THD% with the integration of D-STATCOM devices.
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Abstract: The model-identification and parameter extraction are a well-defined method for modeling
and development purposes of a proton exchange membrane fuel cell (PEMFC) to improve the
performance. This paper introduces a novel opposition-based arithmetic optimization algorithm
(OBAOA) for identifying the unspecified parameters of PEMFCs. The cost function is defined as
the sum of the square deviations between the experimentally measured values and the optimal
achieved values from the algorithm. Ballard Mark V PEM fuel cell is employed and analyzed to
demonstrate the capability of the proposed algorithm. To demonstrate system efficiency, simulation
results are compared to those of other optimizers under the same conditions. Furthermore, the
proposed algorithm is validated through benchmark functions. The final results revealed that the
proposed opposition-based arithmetic optimization algorithm can accurately retrieve the parameters
of a PEMFC model.

Keywords: proton exchange membrane fuel cell; parameter identification; optimization; energy
storage; arithmetic optimization

1. Introduction

The demand for clean energy has kept increasing in recent years due to global warming
and depleting oil reserves [1,2]. Fuel cells have drawn significant attention in recent years
due to high efficiency and no emission of greenhouse gases. In recent years, fuel cell
research has grown significantly due to possible applications such as stationary power
generation and automotive applications [3]. PEMFCs have particularly drawn attention for
transport applications. It has many advantages such as low operating temperature, short
start-up and shut-down time, high efficiency, no waste is generated as the by-product is
water [4,5]. Due to compact size, low operating temperature, and quick start-up time makes
PEMFCs a reliable candidate for medium power applications like smart grid, micro gird,
and power electronic devices [6]. The fuel cell has three main components: anode, cathode,
and electrolyte. Both anode and cathode contain a layer of catalyst, which is separated by
an electrolyte membrane to perform the redox reaction. However, the voltage (1.0 V) and
current density (500–1000 mA/cm2) delivered by a single cell is too low for any practical
application, so a number of stacks are connected in series to deliver sufficient power for
practical application. The performance of a fuel cell depends on multiple parameters
such as operating temperature, inlet pressure of fuel and reactant, and conductivity of
the membrane. In order to utilize fuel cell for wide range of application evaluation of
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performance under various operating conditions is necessary. Moreover, development of a
mathematical model to simulate the dynamic variation in operating conditions and fuel
cell performance is necessary for its integration in smart grid/microgrid [7].

Both theoretical and experimental studies have been performed to optimize the fac-
tors affecting performance such as pressure, temperature, flow rate of fuel and oxidant,
reaction kinetics, and membrane thickness to get the maximum power density from fuel
cell [8]. As the fuel cell performance depends on multiple interdependent factors, which
makes it really difficult to develop a mathematical model to evaluate the multivariable,
complex, and interrelated parameters affecting the fuel cell performance [9]. In recent years,
remarkable research and development has been performed to get a better understand-
ing of the function of PEMFC characteristics via mathematical modeling. The modeling
achieves great significance in the outlook of simulation, design, exploration, and progress
of high-efficiency fuel cell systems [10–12]. A reliable model facilitates monitoring of fuel
cell behavior for process monitoring and designing a suitable power conditioning unit for
various power applications. The development of a precise parameter estimation method
using the experimental data is a pre-requisite to develop a mathematical model of fuel
cell and design an appropriate power control algorithm [13]. Two different approaches
have been utilized to develop a mathematical model of the fuel cell systems. In the first
approach, a mechanistic model is built to simulate the heat, mass transfer, reaction kinetics,
membrane conductivity, and crossover of reactants through the electrolyte membrane
encountered in fuel cells [14,15]. In this approach, a three-dimensional multiphase model
of fuel cell system is developed, in which the gas and liquid two-phase flow in channel and
porous electrodes are investigated in detail. This approach of precise estimation of model
parameters is hindered by the nonlinear and complex relations of the electrochemical
equations. In the second approach, a mathematical model is developed on the basis of
empirical or semi-empirical equations, which are utilized to predict the effect of different
input parameters on the voltage–current characteristics of the fuel cell, without examining
the physical and electrochemical phenomena taking place in fuel cell system [16]. The
electrical equivalent models of fuel cell are mainly divided into static and dynamic models.
The static models depends on steady-state operation of fuel cell based on polarization
curve [17,18] and the dynamic models rely on characteristics of electrical terminal rep-
resented by a set of passive elements [19,20]. Although mechanistic models have been
developed to evaluate the optimum parameters to get the maximum output from the fuel
cell system, the actual performance of fuel cell observed in experimental studies is not
precisely the same as observed in theoretical studies, irrespective of models, because of
assumptions and approximations are made in modelling [21]. In order to develop the
precision of the models and make it reflect the actual fuel-cell performance, it is essential to
improve the parameters of the models. However, a little effort has been put forward in the
area of parameters optimization.

Generally, the statistics contained in any PEMFC datasheet are insufficient to deter-
mine the effective set of parameters. However, if the precise parameters are not specified,
there are significant variations between the data obtained from the model and that listed in
the manufacturer’s datasheet. PEMFC parameter identification can be approached as an
optimization challenge, and a variety of meta-heuristic techniques can be implemented
to find the best solution. Over the last ten years, various meta-heuristic optimization
techniques have been applied to address the issue of PEMFC parameter estimation, which
utilizes two important search strategies: (a) exploration/diversification and (b) exploita-
tion/intensification [22,23]. The first method explores the search space globally, which
avoids local optima and resolving local optima entrapment, whereas the second method
explores the nearby promising solutions to improve their quality locally [24]. A proper
balance between these two strategies is required to get the optimum performance. The
classification of meta-heuristics method is based in the evolutionary algorithms, swarm
intelligence algorithms, physics-based methods, and human-based methods. However,
there is no single optimized algorithm, which can solve all optimization problems. Most
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of the researchers either modify an existing algorithm or propose a new algorithm to get
better result [25]. Different meta-heuristic algorithms have been utilized for parameter
optimization of PEMFCs such as particle swarm optimization (PSO) [26], genetic algorithm
(GA) [27], artificial neural network (ANN) [28], differential evolution (DE) [29], artifi-
cial immune system (AIS) [30], artificial bee colony (ABC) [31], bird mating optimization
(BMO) [32], biography-based optimization (BMO) [33], seeker optimization algorithm
(SOA) [34], backtracking search algorithm (BSA) [35], improved teaching learning-based
optimization (ITLBO) [36]. Slime mold algorithm (SMA) [37], moth-flame optimization
(MFO) [38], Archimedes optimization algorithm [39], Jellyfish search algorithm (JSA) [40],
bonobo optimizer [41], and hybrid GWO algorithm [42] have been implemented to identify
the unknown parameters of PEMFC. In this article, the authors have proposed an improved
opposition-based arithmetic optimization algorithm for parameter extraction of PEMFC.
To the best of the authors’ knowledge, arithmetic optimization algorithm (AOA) has not
been explored in this field, therefore, in this article authors have examined the performance
of improved AOA for parameter extraction of fuel cells.

The main contribution of this research paper is as follows:

• An improved arithmetic optimization algorithm (AOA) algorithm is formulated that
employs the opposition-based learning method for population initialization, prevent-
ing the accumulation of too many solutions in one location and resulting in a more
efficient global search.

• The performance of the proposed algorithm is evaluated on ten benchmark functions
and experimental results clearly depicts that the OBAOA is very efficient and accurate.

• The performance of proposed OBAOA algorithm is further accessed for parameter
extraction of Ballard Mark V PEFMC.

The manuscript is organized as follows: Section 2 describes the theoretical and math-
ematical model of the PEMFC, Section 3 includes the formulation of OAOA technique.
Section 4 discusses the results and findings. Finally, Section 5 provides the overall conclu-
sive remarks of the proposed study.

2. Theory and Modeling of Proton Exchange Membrane Fuel Cell

There are three main components of a fuel cell: anode, cathode, and electrolyte. The fuel
oxidation and oxygen reduction take place at anode and cathode, respectively. An electrolyte
membrane separates the anode and cathode and allows conduction of protons to complete
the electric circuit. The oxidation and reduction reaction are shown by Equations (1) and (2),
respectively. The overall reaction is represented by Equation (3) [43,44].

Oxidation: 2H2 → 4H+ + 4e− (1)

Reduction: O2 + 4H+ + 4e− → 2H2O (2)

Complete reaction: 2H2 + O2 → 2H2O (3)

At open circuit potential the cell voltage can be expressed by Equation (4):

VOCV
Cell = Er

O2/H2O − Er
H2/H+ (4)

At standard conditions (1.0 atm pressure and 25 ◦C), the fuel cell open circuit voltage
(OCV) should be 1.229 V. However, the measured OCV at room temperature is around
1.0 V, due to the losses associated with the fuel cell. The cell voltage (Vcell) is expressed by
Equation (5) when the current (Icell) is drawn from the cell.

Vcell = ENernst − Vactivation − Vconcentration − Vohmic (5)

ENernst = 1.229 – 0.85 × 10−4(T – 298.15) + 4.3085 × 10−5T
[

ln
(

PH2

)

+ 0.5 ln
(

PO2

)]

(6)
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The activation overpotential of anode and cathode can be expressed as:

Vactivation = −
[

ξ1 + ξ2 + ξ3 × T × ln
(

CO2

)

+ ξ4 ln(i)
]

(7)

where Vactivation is the voltage drop due to the activation of redox processing the anode and
cathode. The ξn represents the parametric coefficients for each cell model, whose values are
defined based on theoretical equations with kinetic, thermodynamic, and electrochemical
foundations (Mann et al., 2000). The oxygen concentration at the catalyst layer of the
cathode (CO2 , mol/cm3) is given by:

CO2 =
PO2

5.08 × 106 × e
498
T

(8)

The mass transport affects the concentrations of hydrogen and oxygen at the anode
and cathode, which affects the partial pressures of gases. The change in partial pressure of
fuel and reductant rely on the electrical current and on the physical features of the system.
The voltage drop due to concentration polarization is represented as:

Vconcentration = −b ln

(

1 − i

imax

)

(9)

where b is a parametric coefficient (V) that depends on the cell and its operation state, and
i represents the actual current density of the cell (A/cm2).

The ohmic drop (VOhmic) in Equation (5) is represented as:

VOhmic = i (RM + Rc) (10)

RM = ρM
l

A
(11)

where RM is the resistance to the transfer of protons through the membrane (Ω), Rc is the
charge transfer resistance, ρM is the specific resistivity of the membrane for the electron
flow (Ω-m), A is the active area of the cell (cm2) and l is the thickness of the membrane,
which separate electrodes. The following numerical expression for the resistivity of the
Nafion membrane is used:

ρM =

181.6 ×
[

1 + 0.03
(

iFC
A

)

+ 0.062
(

T
303

)2( iFC
A

)2.5
]

[

λ − 0.634 − 3
(

iFA
A

)

exp
(

4.18
(

T−303
T

))] (12)

where 181.6/(λ − 0.634) is the specific resistivity (Ω-cm) at OCV at 30 ◦C, the exponential
term in the denominator is the temperature factor correction if the cell is operating at
different temperature. The parameter λ is an adjustable parameter with a maximum value
of 24. This parameter is influenced by the preparation procedure of the membrane and is a
function of relative humidity and stoichiometry relation of the anode gas.

If ‘n’ number of stacks are combined then the cell voltage is defined as:

Vcell = n × (ENernst − Vactivation − Vconcentration − Vohmic) (13)

At a given temperature (T), the partial pressure of fuel (PH2 ) and oxidant (PO2 ) is given
by following equations:

PH2 =
0.79
0.21

PO2 (14)

PO2 = Pc − RHcP∗
H2O − PN2 exp

(

0.291 i
A

T0.832

)

(15)
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If H2 and O2 are used as reactant then the partial pressure of oxygen and hydrogen is
given as:

PO2 = RHcP∗
H2O



















exp
(

4.192( i
A )

T1.334

)

(

RHcP∗
H2O

)

Pc









−1

− 1











(16)

PH2 = RHaP∗
H2O



















exp
(

1.635( i
A )

T1.334

)

(

RHaP∗
H2O

)

Pa









−1

− 1











(17)

where RHc and RHa are relative humidity at the cathode and anode, respectively. Pc and
Pa are the inlet pressure at cathode and anode, respectively. The PN2 is partial pressure of
nitrogen at the cathode. The P∗

H2O is saturated vapor pressure (atm), which is calculated as:

log10

(

P∗
H2O

)

= 2.95 × 10−2(T – 273.15) – 9.18 × 10−5(T – 273.15)2 + 1.44 × 10−7(T – 273.15)3 – 2.18 (18)

Formulation of Objective Function

In this research work, sum of squared error (SSE) is adopted as an optimization
function (OF) for the identification of unknown parameters (ζ1, ζ2, ζ3, ζ4, λ, Rc, and b)
of PEMFC, which is generally used by the authors in the existing literature [45–47]. The
objective function is defined as follows:

OF = Minimize(SSE) = Minimize

(

N

∑
i=1

[Vmeasured(i)− Vestimated(i)]
2

)

(19)

where N represents the number of measured values, i denotes the number of iterations,
Vmeasured denotes the measured voltage while Vestimated denotes the estimated value of
voltage for PEMFC.

3. Optimization Method

3.1. Conventional Arithmetic Optimization Algorithm

Arithmetic optimization algorithm (AOA) is a stochastic population-based metaheuris-
tic optimization algorithm proposed by Abualigah et al. [48] in the year 2021. The algorithm
is motivated by the distribution behavior of four key arithmetic operators in the field of
mathematics, which includes addition, subtraction, multiplication, and division. In the area
of science and engineering, there are complex, non-convex, and high dimension problems,
which are difficult to solve using conventional gradient-based optimization algorithms.
Metaheuristic is a high-level search algorithm that easily finds the optimal solution for
diverse problems without getting stuck in local optimal solution. These algorithms first
create a random solution in the search space and iteratively discovers the solution through
different search strategies. The phenomenon of how these algorithms update its solution is
defined by mathematical behavior of algorithms. Based on these mathematical-concepts,
these algorithms are classified as evolutionary, swarm, physics-based, and human-based
algorithms. Genetic algorithm (GA), particle swarm optimization (PSO), gravitational
search algorithm (GSA), whale optimization algorithm (WOA), and grey wolf optimization
(GWO) are some of the metaheuristic algorithms that have efficiently solved non-linear
and high-computational engineering design problems. Exploration and exploitation are
other unique characteristics that define the functionality of these algorithms. Exploration is
defined as the global search capability of the algorithm, while exploitation is defined as
the capability of algorithm to explore the nearby promising regions. The efficiency of a
metaheuristic algorithm depends on how efficiently the algorithm maintains the balance
between exploration and exploitation. AOA uses high and low dispersion nature of arith-
metic operators to creates this balance. Multiplication and division operators have high
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distributed values, therefore these operators are used in the exploration phase to discover
the optimal solution in a diverse region of search space with the following equations:

xi,j(CIter + 1) =
{

best
(

xj

)

÷ (MOP + ǫ)×
((

UBj − LBj

)

× µ + LBj

)

, r2 < 0.5
best

(

xj

)

× MOP ×
((

UBj − LBj

)

× µ + LBj

)

, otherwise
(20)

where xi,j represents the jth position of the ith solution, best
(

xj

)

is the jth position of the
best obtained solution, UBj and LBj are the upper and the lower bound of the jth position,
ǫ is a constant parameter, µ is the control parameter that regulates the search process, and
r2 is the random number in the range [0, 1]. The MOP is math optimizer probability and
defined as:

MOP(CIter) = 1 − (CIter)
1/α

(MIter)
1/α

(21)

where CIter represents the current iteration, MIter represents the maximum number of
iterations, and α is the constant parameter.

Subtraction and multiplication operators have low distributed values, therefore, these
operators easily find the optimal solution in the areas that were discovered in the ex-
ploration phase. These exploitation operators iteratively reach the solution with the
following equations :

xi,j(CIter + 1) =
{

best
(

xj

)

− (MOP + ǫ)×
((

UBj − LBj

)

× µ + LBj

)

, r3 < 0.5
best

(

xj

)

+ MOP ×
((

UBj − LBj

)

× µ + LBj

)

, otherwise
(22)

where r3 is the random number defined in range [0, 1].
The exploration and exploitation phases are balanced by Math Optimizer accelerated

(MOA) function, which is defined as:

MOA(CIter) = Min + CIter ×
(

Max − Min

MIter

)

(23)

where min and max represent the minimum and the maximum value of the accelerated
function. Exploration phase is executed when the value of r1, which is a random number
in range [0, 1] is greater than MOA, otherwise the exploitation phase is executed.

3.2. Opposition-Based Learning

In 2005, Tizhoosh et al. introduced the phenomenon of opposition-based learning
(OBL) [49]. The basic principle of OBL is that it imitates the opposite relationship among
agents. Over the last few years, artificial intelligence field has experienced tremendous
growth and researchers are exploring and building innovative algorithms so as to enhance
the performance of existing algorithms. OBL is one of the novel concepts that finds
application in metaheuristic [50] and other artificial intelligence algorithms. OBL considers
agents and their opposite counterpart in order to better explore the search space and find
global optimal solution. Figure 1 shows the mechanism of OBL. The fundamental concept
of OBL is outlined as follows:

Let N be a real number in the search space [kL, kU], then its opposite counterpart is
defined as follows: →

N = kL + kU − N (24)

In the higher dimensional space, the N is expressed as:
Nk = [Nk1

, Nk2
, . . . , Nkt

] and defined in the search space [kLt, kUt],
where t = 1, 2, 3, . . . , n. Then, the opposite points are defined as:

→
Nk = kLt + kUt −

[→
Nk1,

→
Nk2, . . . . . . . . . . . . . . . . . .

→
Nkt

]

(25)
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𝑁⃗⃗ = 𝑘𝐿 + 𝑘𝑈 − 𝑁𝑁𝑁𝑘 = 𝑁𝑘1 𝑁𝑘2 … 𝑁𝑘𝑡 𝑘𝐿𝑡 𝑘𝑈𝑡𝑡 =1, 2, 3, … 𝑁⃗⃗ 𝑘 = 𝑘𝐿𝑡 + 𝑘𝑈𝑡 − [𝑁⃗⃗ 𝑘1, 𝑁⃗⃗ 𝑘2, ……………… 𝑁⃗⃗ 𝑘𝑡]

𝑋 = [𝑝1,1 𝑝1,2 … … 𝑝1,𝑑𝑝2,1 𝑝2,2 … … 𝑝2,𝑑𝑝𝑛,1 𝑝𝑛,2 … … 𝑝𝑛,𝑑]𝑛 𝑑
(Initialize the constant parameters): Initialize the parameters α, μ ฀

New 
Population

Initial 
Population

Opposite 
Population

0 1 2 33 2 1

X

0

1

2

3

1

2

3

Y

Figure 1. Illustration of opposition-based learning mechanism [2].

3.3. Proposed Algorithm

This section outlines the proposed opposition-based arithmetic optimization algorithm
(OBAOA). In the field of optimization, local optima avoidance capability and convergence
rate are two critical parameters, which define the performance of the algorithm. Most of the
metaheuristic algorithms quickly converges and avoids local optimal solution. However,
some algorithms fail to explore entire search space and get trapped in local optimal solution.
In this area, researchers are exploring new ways such as modification of existing algorithm,
hybridization of two or more algorithms to overcome these limitations.

AOA also has poor exploration capability and did not discover a global optimal solu-
tion and have slow rate of convergence. Thus, in this article, authors have enhanced the
performance of AOA by incorporating the opposition mechanism and have proposed oppo-
sition OBAOA. OBL mechanism allows the algorithm to discover global optimal solution
and improve convergence rate and thereby boost exploration capability of the algorithm.
In OBAOA, the opposition-based principle is first incorporated in the initialization phase
and later in the operational phase. The flow chart of OBAOA is shown in Figure 2 and the
mathematical model is outlined as follows:

Step 1 Initialization: Generate the random candidate solution in the defined space as:

X =





p1,1 p1,2 . . . . . . p1,d
p2,1 p2,2 . . . . . . p2,d
pn,1 pn,2 . . . . . . pn,d



 (26)

where n is the number of solution and d is the dimension.

Step 2 Opposition Based Learning: Generate the opposite solution in the search space
using Equation (25);

Step 3 (Initialize the constant parameters): Initialize the parameters α, µ and ǫ;
Step 4 (Fitness evaluation): Evaluate the fitness of opposite candidate solution;
Step 5 (Ranking): Sort the fitness and determine the best solution;
Step 6 (Evaluate constant and time varying parameters): Use Equations (21) and (23) to

estimate the MOA function and MOP and generate random numbers r1, r2, r3 in
the range [0, 1];

Step 7 (AOA candidate solution position updating mechanism):
if r1 > MOA;
update position of each candidate solution using the following mechanism.

Implement exploration phase:

if r1 > 0.5;
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update the position using multiplication model of Equation (20).
Else;
update the position using division model of Equation (20).
Else;

Implement exploitation phase:

if r3 > 0.5;
update the position using addition model of Equation (22).
Else;
update the position using subtraction model of Equation (22).

Step 8 (Monitor the positions of each candidate solution): Determine the opposite candi-
date solution that moves beyond the search space and reinitialize their position
within the boundaries;

Step 9 (Termination criteria): If minimum error or maximum number of iterations is
accomplished the algorithm ends. Otherwise repeat Steps (5) to (8);

Step 10 (Final result): The position of best candidate solution represents the global optimal solution.

𝑟1 𝑟2 𝑟3
𝑟1 >
𝑟1 >

𝑟3 >

Start

Initialize the random candidate solution position in the search space

Initialize the constant parameters α,  
Evaluate the fitness and find the best solution

Estimate MOA function, MOP and generate random numbers r1, r2, r3

if r1>MOA if r2>0.5 
Update the opposite position 

using multiplication model

Update the opposite position 

using Division model

if r3>0.5 
Update the opposite position 

using addition model

Update the opposite position 

using subtraction model

Reinitialize the position of each candidate solution that go beyond the search space

Termination Criteria 

Achieved

Stop

YesNo

YesYesYes

No No

No

Position of best solution 

represent global optimal 

solution

Generate the opposite solution position

Figure 2. Flow chart of opposition-based arithmetic optimization algorithm.

4. Results and Discussion

In this section, a benchmark test research approach was used to evaluate the proposed
algorithm in the case of parameter identification for PEMFC. Table 1 displays the ten
benchmark test functions, one to seven of which are unimodal and the remaining functions
are multimodal. Some well-known meta-heuristic algorithms, such as ant lion optimizer
(ALO) [51], dragonfly algorithm (DA) [52], grasshopper optimization algorithm (GOA) [53],
and multiverse optimization (MVO) [54] are especially compared to assess the precision
and efficiency of the suggested algorithm. The statistical outcomes of benchmark test
functions are shown in Table 2. In this research paper, the benchmark functions are denoted
by the letter “F” accompanied by a number (e.g., F1).
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According to Table 2, the proposed algorithm has the least mean and standard devi-
ation (SD) values except for the F6. In the case of F6, ALO generates the best optimized
value. Based on the benchmark test function, it is asserted that the proposed algorithm
outperforms and outperforms the other compared algorithms in terms of effectiveness
and precision.

Table 1. Benchmark functions.

ID Mathematical Expression Dim Lower Upper Type

F1 f1(x) = ∑
n
i=1 x2 30 −100 100 Unimodal

F2 f2(x) = ∑
n
i=1|xi|+ ∏

n
i=1|x| 30 −10 10 Unimodal

F3 f3(x) = ∑
n
i=1

(

∑
i
j−1 xj

)

30 −100 100 Unimodal

F4 f4(x) = maxi[|x|, 1 ≤ i ≤ n] 30 −100 100 Unimodal

F5 ∑
n−1
i=1

[

100(xi+1 − x2
i )

2
+ (xi − 1)2

]

30 −30 30 Unimodal

F6 ∑
n
i=1(|xi + 0.5|)2 30 −100 100 Unimodal

F7 ∑
n
i=1 ix4

i + random[0, 1] 30 −1.28 1.28 Unimodal

F8 ∑
n
i=1 −xi sin

(

√

|xi|
)

30 −500 500 Multimodal

F9 ∑
n
i=1
[

x2
i − 10 cos(2πxi) + 10

]

.n 30 −5.12 5.12 Multimodal

F10
−20 exp

(

−0.2
√

1
n ∑

n
i=1 x2

i

)

−

exp
(

1
n ∑
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Table 2. Statistical results of benchmark test functions.

Algorithms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

OBAOA
MEAN 1.54 × 10−122 0 4.05 × 10−112 3.81 × 10−125 2.88 × 10−17 6.8817 × 10−2 7.17 × 10−16 −1.4632 × 104 6 × 10−51 5.33 × 10−43

SD 3.0876 × 10−32 0 1.099 × 10−18 0 2.71 × 10−3 5.4317 × 10−3 1.15 × 10−4 3.0044 × 10−2 1.63 × 10−4 1.82 × 10−11

ALO
MEAN 9.06 × 10−10 1.56 × 10−5 8.02 × 10−5 3.36 × 10−5 5.8065 × 10−3 4.3 × 10−9 4.7488 × 10−2 −2.1542 × 102 1.9899 × 10−3 1.63 × 10−5

SD 7.9531 × 10−5 2.33 × 10−2 4.4256 × 10−4 2.647 × 10−3 4.1108 × 10−2 2.0335 × 10−3 7.6 × 10−1 2.1278 × 103 2.5977 × 10−1 2.001 × 10−2

DA
MEAN 1.2477 × 10−2 5.789 × 10−1 5.137 × 10−2 2.6485 × 10−3 1.5026 × 10−3 1.115 × 10−2 8.381 × 10−3 −2.3522 × 103 1.8527 × 10−1 2.0353 × 10−3

SD 1.485 × 10−1 4.5855 × 10−2 3.1780 × 10−1 9.9573 × 10−2 2.2829 × 10−2 8.8613 × 10−1 2.6488 × 10−1 2.211 × 101 4.2195 × 10−2 6.7603 × 10−2

GOA
MEAN 7.64 × 10−1 2.2149 × 10−2 3.71 × 10−8 1.38 × 10−5 4.5656 × 10−3 1.43 × 10−9 8.905 × 10−3 −3.0710 × 104 3.7095 × 10−3 1.6462 × 10−2

SD 5.2897 × 10−6 2.8652 × 10−1 4.5226 × 10−3 3.6148 × 10−3 4.132 × 10−2 3.9632 × 10−1 1.12 × 10−2 1.3627 × 102 5.2491 × 10−2 2.0027 × 10−1

MVO
MEAN 4.279 × 10−3 1.1512 × 10−2 1.7761 × 10−2 2.7901 × 10−2 2.8803 × 10−3 9.359 × 10−3 1.664 × 10−3 −3.0448 × 101 6.9657 × 10−2 2.245 × 10−2

SD 9.591 × 10−2 3.173 × 10−1 1.622 × 10−1 6.75 × 10−1 4.325 × 10−1 9.839 × 101 2.0981 × 10−1 2.301 × 101 1.0753 × 101 2.62 × 100

To further validate the effectiveness of the proposed OBAOA algorithm, the practical
case of Ballard Mark V PEMFC is considered. The experimental values of voltage and
current are taken from [55,56]. The operating condition and technical specification of
Ballard Mark V PEMFC is illustrated in Table 3. Table 4 depicts the lower and upper search
bounds for the parameters similar to the other authors [57,58]. The simulation results are
compared with the other optimization methods existing in the literature review. Moreover,
to show the competence of OBAOA algorithm, four pre-existing algorithms: AOA [48],
PSO [59], gravitational search algorithm (GSA) [60], and acquilla optimizer (AO) [61]
are employed. For a reasonable comparative evaluation, the number of population and
iterations are set at 30 and 1000, respectively. All simulations were run on a PC with an
Intel (R) Core i5- CPU M370@2.4 GHz 8 GB and the MATLAB R2018b software.
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Table 3. Technical specification and operating condition of PEMFC.

Parameters Ballard Mark V

Number of cells 35
A [cm2] 50.6
l [µm] 178

Jmax [A/cm2] 1.5
PH2 [bar] 1
Po2 [bar] 1

Power [W] 1000
T [K] 343.15

Table 4. Lower and upper bounds of parameters for PEMFC.

Parameters Upper Bound Lower Bound

ζ1 −0.08532 −1.1997
ζ2 × 10−3 6.00 0.8
ζ3 × 10−5 9.80 3.60
ζ4 × 10−4 −0.954 −2.60

λ 24.00 10.00
RC × 10−4 8.00 1

b 0.5 0.0136

4.1. Parameter Optimization of BALLARD MARK V PEMFC

Table 5 demonstrates the optimized value of all parameters by implementing the
OBAOA algorithm. The number of cells connected in series in the Ballard Mark V model
is 35, and the membrane thickness is 178 µm. It is clearly depicted in Table 3 that the
proposed OBAOA method is able to produce the least SSE of 9.03 × 10−4 in comparison to
other optimization methods. Here, SSE is taken for performance evaluation, which is same
as considered by the other authors [58,62].

Table 5. Optimized value of parameters for Ballard Mark V PEM fuel cell.

Parameter/
Algorithm

ζ1 ζ2 ζ3 ζ4 λ RC b SSE Time (s)

OBAOA −1.245 1.539 × 10−3 9.45 × 10−5 −1.84 × 10−4 11.315 6.03 × 10−4 0.0490 9.03 × 10−4 3.20
AOA −1.784 3.415 × 10−3 5.13 × 10−5 −1.058 × 10−5 14.711 6.316 × 10−4 0.0856 2.16 × 10−3 11.40
PSO −1.917 4.338 × 10−3 7.19 × 10−5 −1.602 × 10−5 16.285 2.285 × 10−4 0.4635 1.489 × 10−3 15.70
GSA −1.044 8.545 × 10−3 3.60 × 10−5 −9.54 × 10−5 18.345 1 × 10−4 0.0136 1.665 × 102 12.34
AO −1.419 2.116 × 10−3 3.62 × 10−5 −2.391 × 10−5 22.558 7.793 × 10−4 0.4301 1.985 × 102 14.67

IFSO [63] −1.120 3.57 × 10−3 8.01 × 10−5 −15.94 × 10−5 22 1 × 10−4 0.015 0.784 3.80
CGOA [64] −2.120 3.8 × 10−3 7.19 × 10−5 −17.03 × 10−5 23 1 × 10−4 0.042 2.613 5.61
MRFO [65] −1.090 3.82 × 10−3 7.73 × 10−5 −16.28 × 10−5 23 1 × 10−4 1.36 0.85 6.19

FSO [66] −0.950 3.36 × 10−3 7.42 × 10−5 −15.83 × 10−5 22 1 × 10−4 0.029 0.952 6.13
HGWO [57] −0.974 3.451 × 10−3 8.38 × 10−5 −1.129 × 10−4 21.70 8 × 10−4 0.0136 2.369 × 10−3 -

Furthermore, as depicted in Table 6, the minimum and maximum value of internal
absolute error (IAE) between experimental and simulated values is 0.0003 and 0.0139,
respectively. The characteristics curve of current-voltage and power-voltage for Ballard
Mark V PEMFC is redrawn and presented in Figure 3, based on best-optimized parameters
obtained by executing the OBAOA algorithm. This implies that the presented OBAOA
technique outperforms other methods.

4.2. Convergence Analysis

Figure 4 describes the convergence curve for the Ballard Mark V PEMFC to evaluate
the computational capability of the OBAOA technique. Figure 4 shows that the developed
OBAOA algorithm significantly outperformed the AOA, PSO, GSA, and AO algorithms
in terms of convergence speed and produces a realistic solution for the same number of
function evaluations (i.e., 1000).
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Table 6. Estimated values of voltage and power for Ballard Mark V PEMFC.

Imeasured (A) Vmeasured (V) Vestimated (V) Absolute Error Pmeasured (W) Pestimated (W) Absolute Error

5.4 0.92 0.9067 0.0132 4.968 4.8965 0.0714
10.8 0.88 0.8782 0.0017 9.504 9.4846 0.0193
16.2 0.85 0.8496 0.0003 13.77 13.7641 0.0058
21.6 0.82 0.8210 0.0010 17.712 17.7352 0.0232
27 0.79 0.7925 0.0025 21.33 21.3977 0.0677

32.4 0.77 0.7639 0.0060 24.948 24.7517 0.1962
37.8 0.74 0.7353 0.0046 27.972 27.7973 0.1746
43.2 0.72 0.7068 0.0131 31.104 30.5343 0.5696
48.6 0.69 0.6782 0.0117 33.534 32.9628 0.5711
54 0.66 0.6496 0.0103 35.64 35.0829 0.5570

59.4 0.62 0.6211 0.0011 36.828 36.8944 0.0664
64.8 0.6 0.5925 0.0074 38.88 38.3974 0.4825
70.2 0.55 0.5639 0.0139 38.61 39.5919 0.9819

Sum of AE 8.68 × 10−2

− − − − − − −

−

  

10 20 30 40 50 60 70

0

10

20

30

40
P

o
w

er
 (

W
)

Current (A)

 Measured

 Estimated

Figure 3. Evaluation between the experimental and the simulated data produced by OBAOA technique for Ballard Mark
V PEMFC.
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Figure 4. Convergence graph of different algorithms for Ballard Mark V fuel cell.
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The minimum value of SSE is produced by OBAOA. The values of SSE are 9.03 × 10−4,
2.16 × 10−3, 1.489 × 10−3, 1.665 × 102, and 1.985 × 102, respectively for OBAOA, AOA,
PSO, GSA, and AO.

4.3. Statistical and Robustness Analysis

This section provides the statistical evaluations based on mean, minimum, maximum,
and standard deviation in terms of SSE for all earlier suggested methodologies, as well as a
comparison with the accuracy and robustness of the various algorithms in a total of thirty
runs, as shown in Table 7. The mean of the SSE is calculated to evaluate the algorithms’
accuracy, and the standard deviation is calculated to evaluate the dependability of the
implemented parameter estimation technique.

Table 7. Statistical results of Ballard Mark V Fuel cell.

Algorithms Minimum Maximum Average SD

OBAOA 9.030 × 10−4 2.274 × 102 1.694 × 10−3 2.054 × 10−5

AOA 2.166 × 10−3 2.403 × 102 1.957 × 10−2 3.185 × 10−3

PSO 1.489 × 10−3 3.357 × 101 1.818 × 10−2 1.101 × 10−3

GSA 1.665 × 102 5.767 × 102 1.675 × 10−1 1.506 × 10−2

AO 1.985 × 102 1.985 × 101 1.983 × 10−2 2.116 × 10−3

The statistical analysis outcomes reveal that the developed OBAOA is the most
accurate and efficient technique for parameter estimation because it has a very low
standard deviation.

The Friedman rank test [67] is applied to determine the relevance of the data in
addition to the conventional statistical analysis, i.e., best, mean, worst, and standard
deviation. Furthermore, for each analyzed PV module, this non-parametric test is used to
rank the algorithms. The null hypothesis H0 (p-value > 5%) in the Friedman test suggests
no notable change between the compared algorithms. The opposite hypothesis H1 signifies
a notable difference between the compared algorithms for all 30 runs. In this test, each
algorithm is given a rank based on its performance. Small ranks determine the best
algorithms. Table 8 displays the Friedman rank test results at a 95% confidence level.
According to Table 8, the OBAOA has the first rank based on the Friedman ranking test
results, followed by PSO, AOA, GSA, and AO.

Table 8. Friedman ranking test for Ballard Mark V PEMFC.

Algorithms Friedman Ranking

OBAOA 1
AOA 3
PSOF 2
GSA 4
AO 5

5. Conclusions

The OBAOA algorithm is proposed in this paper to recognize the complicated param-
eters of the PEMFC model. In the present work, the practical reading of Ballard Mark V
PEMFC is considered for the identification of seven unknown parameters (ζ1, ζ2, ζ3, ζ4, λ,
Rc, and b). Based on the results obtained, the findings are as follows.

• An enhanced version of OBAOA is introduced by incorporating the opposition-based
learning mechanism.

• SSE is taken as an objective function for the optimization of parameters.
• The proposed algorithm is tested using ten benchmark test functions (seven unimodal

and three multimodal). Furthermore, the convergence graph as well as the I-V and
P-V characteristics curves support the precision of the anticipated algorithm.
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• The proposed OBAOA technique is easy to implement with low computational complexity.
• The SSE value is minimum (9.03 × 10−4) compared to standard AOA and other

predefined algorithms with least computational time i.e., 3.20 s.
• Friedman ranking test is carried out, which clearly depicts that the OBAOA algorithm

outperforms the other compared algorithms.

It is also worth noting that the proposed formulation will pique the attention of
the fuel cell community, both researchers and practitioners, due to its capacity to solve
problems effectively.

Author Contributions: Conceptualization: A.S. (Abhishek Sharma), A.S. (Abhinav Sharma) and S.R.;
Methodology and formal analysis: A.S. (Abhishek Sharma), R.A.K. and D.K.; Investigation, A.S.
(Abhishek Sharma), R.A.K. and S.R.; Writing—original draft preparation, A.S. (Abhishek Sharma),
D.K. and R.A.K.; Writing—review and editing, A.S. (Abhinav Sharma) and S.R.; Supervision, A.S.
(Abhinav Sharma) and S.R.; Fund acquisition: S.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Goldemberg, J. The promise of clean energy. Energy Policy 2006, 34, 2185–2190. [CrossRef]
2. Sharma, A.; Sharma, A.; Dasgotra, A.; Jately, V.; Ram, M.; Rajput, S.; Averbukh, M.; Azzopardi, B. Opposition-Based Tunicate

Swarm Algorithm for Parameter Optimization of Solar Cells. IEEE Access 2021, 9, 125590–125602. [CrossRef]
3. Rajashekara, K. Hybrid fuel-cell strategies for clean power generation. IEEE Trans. Ind. Appl. 2005, 41, 682–689. [CrossRef]
4. Mekhilef, S.; Saidur, R.; Safari, A. Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 2012, 16,

981–989. [CrossRef]
5. Sharaf, O.Z.; Orhan, M.F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sustain. Energy Rev. 2014,

32, 810–853. [CrossRef]
6. Bankupalli, P.T.; Ghosh, S.; Kumar, L.; Samanta, S. A noniterative approach for maximum power extraction from PEM fuel

cellusing resistance estimation. Energy Convers. Manag. 2019, 187, 567–577. [CrossRef]
7. Priya, K.; Satishkumar, K.; Rajasekhar, N. A comprehensive review on parame-ter estimation techniques for Proton Exchange

Membrane fuel cell modelling. Renew. Sustain. Energy Rev. 2018, 93, 121–144. [CrossRef]
8. Seo, M.H.; Choi, S.M.; Lim, E.J.; Kwon, I.H.; Seo, J.K.; Noh, S.H.; Kim, W.B.; Han, B. Toward New Fuel Cell Support Materials: A

Theoretical and Experimental Study of Nitrogen-Doped Graphene. ChemSusChem 2014, 7, 2609–2620. [CrossRef]
9. Friede, W.; Raël, S.; Davat, B. Mathematical model and characterization of the transient behavior of a PEM fuel cell. IEEE Trans.

Power Electron. 2004, 19, 1234–1241. [CrossRef]
10. Tremblay, O.; Dessaint, L.-A. A generic fuel cell model for the simulation of fuel cell vehicles. In Proceedings of the 2009 IEEE

Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–10 September 2009.
11. Ahmadi, P.; Kjeang, E. Realistic simulation of fuel economy and life cycle metrics for hydrogen fuel cell vehicles. Int. J. Energy Res.

2017, 41, 714–727. [CrossRef]
12. Spiegel, C. PEM Fuel Cell Modeling and Simulation Using MATLAB; Elsevier: Amsterdam, The Netherlands, 2011.
13. Bankupalli, P.T.; Ghosh, S.; Sahu, L.K.; Dwivedi, A.K. Parameter estimation of PEM fuel cell electrical equivalent model

using hybrid optimization. In Proceedings of the 8th International Conference on Power Systems (ICPS), Jaipur, India,
20–22 December 2019; pp. 1–6.

14. Amphlett, J.C.; Baumert, R.M.; Mann, R.F.; Peppley, B.A.; Roberge, P.R.; Harris, T.J. Performance modeling of the Ballard Mark IV
solid polymer electrolyte fuel cell: I. Mechanistic model development. J. Electrochem. Soc. 1995, 142, 1. [CrossRef]

15. Ariza, H.E.; Correcher, A.; Sánchez, C.; Pérez-Navarro, Á.; García, E. Thermal and Electrical Parameter Identification of a Proton
Exchange Membrane Fuel Cell Using Genetic Algorithm. Energies 2018, 11, 2099. [CrossRef]

16. Hu, M.; Gu, A.; Wang, M.; Zhu, X.; Yu, L. Three dimensional, two phase flow mathematical model for PEM fuel cell: Part I. Model
development. Energy Convers. Manag. 2004, 45, 1861–1882. [CrossRef]

17. Mzoughi, D.; Allagui, H.; Bouaicha, A.; Mami, A. Modeling and testing of a 1.2-kW Nexa fuel cell using bond graph methodology.
IEEJ Trans. Electr. Electron. Eng. 2015, 10, 527–538. [CrossRef]

185



Electronics 2021, 10, 2834

18. Haji, S. Analytical modeling of PEM fuel cell i–V curve. Renew. Energy 2011, 36, 451–458. [CrossRef]
19. Wang, C.; Nehrir, M.; Shaw, S.R. Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits. IEEE Trans.

Energy Convers. 2005, 20, 442–451. [CrossRef]
20. Sharma, A.; Sharma, A.; Averbukh, M.; Jately, V.; Azzopardi, B. An Effective Method for Parameter Estimation of a Solar Cell.

Electronics 2021, 10, 312. [CrossRef]
21. Abdin, Z.; Webb, C.; Gray, E. PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters. Energy 2016,

116, 1131–1144. [CrossRef]
22. Abualigah, L.; Diabat, A. A comprehensive survey of the Grasshopper optimization algorithm: Results, variants, and applications.

Neural Comput. Appl. 2020, 32, 15533–15556. [CrossRef]
23. Abualigah, L.; Diabat, A.; Geem, Z.W. A Comprehensive Survey of the Harmony Search Algorithm in Clustering Applications.

Appl. Sci. 2020, 10, 3827. [CrossRef]
24. Abualigah, L. Group search optimizer: A nature-inspired meta-heuristic optimization algorithm with its results, variants, and

applications. Neural Comput. Appl. 2021, 33, 2949–2972. [CrossRef]
25. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods

Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]
26. Ye, M.; Wang, X.; Xu, Y. Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization.

Int. J. Hydrog. Energy 2009, 34, 981–989. [CrossRef]
27. Priya, K.; Babu, T.S.; Balasubramanian, K.; Kumar, K.S.; Rajasekar, N. A novel approach for fuel cell parameter estimation using

simple Genetic Algorithm. Sustain. Energy Technol. Assess. 2015, 12, 46–52. [CrossRef]
28. Razbani, O.; Assadi, M. Artificial neural network model of a short stack solid oxide fuel cell based on experimental data. J. Power

Sources 2014, 246, 581–586. [CrossRef]
29. Gong, W.; Cai, Z. Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution. Eng.

Appl. Artif. Intell. 2014, 27, 28–40. [CrossRef]
30. Askarzadeh, A.; Rezazadeh, A. Artificial immune system-based parameter extraction of proton exchange membrane fuel cell. Int.

J. Electr. Power Energy Syst. 2011, 33, 933–938. [CrossRef]
31. Zhang, W.; Wang, N.; Yang, S. Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel

cell. Int. J. Hydrog. Energy 2013, 38, 5796–5806. [CrossRef]
32. Askarzadeh, A. Parameter estimation of fuel cell polarization curve using BMO algorithm. Int. J. Hydrog. Energy 2013, 38,

15405–15413. [CrossRef]
33. Niu, Q.; Zhang, L.; Li, K. A biogeography-based optimization algorithm with mutation strategies for model parameter estimation

of solar and fuel cells. Energy Convers. Manag. 2014, 86, 1173–1185. [CrossRef]
34. Dai, C.; Chen, W.; Song, Y.; Zhu, Y. Seeker optimization algorithm: A novel stochastic search algorithm for global numerical

optimization. J. Syst. Eng. Electron. 2010, 21, 300–311. [CrossRef]
35. Askarzadeh, A.; dos Santos Coelho, L. A backtracking search algorithm combined with Burger’s chaotic map for parameter

estimation of PEMFC electrochemical model. Int. J. Hydrog. Energy 2014, 39, 11165–11174. [CrossRef]
36. Niu, Q.; Zhang, H.; Li, K. An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell

models. Int. J. Hydrog. Energy 2014, 39, 3837–3854. [CrossRef]
37. Gupta, J.; Nijhawan, P.; Ganguli, S. Optimal parameter estimation of PEM fuel cell using slime mould algorithm. Int. J. Energy

Res. 2021, 45, 14732–14744. [CrossRef]
38. Messaoud, R.B.; Midouni, A.; Hajji, S. PEM fuel cell model parameters extraction based on moth-flame optimization. Chem. Eng.

Sci. 2021, 229, 116100. [CrossRef]
39. Houssein, E.H.; Helmy, B.E.; Rezk, H.; Nassef, A.M. An enhanced Archimedes optimization algorithm based on Local escaping

operator and Orthogonal learning for PEM fuel cell parameter identification. Eng. Appl. Artif. Intell. 2021, 103, 104309. [CrossRef]
40. Gouda, E.A.; Kotb, M.F.; El-Fergany, A.A. Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models:

Steady-state performance and analysis. Energy 2021, 221, 119836. [CrossRef]
41. Sultan, H.M.; Menesy, A.S.; Kamel, S.; Tostado-Véliz, M.; Jurado, F. Parameter identification of proton exchange membrane

fuel cell stacks using bonobo optimizer. In Proceedings of the 2020 IEEE International Conference on Environment and
Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain,
9–12 June 2020; pp. 1–7.

42. Miao, D.; Chen, W.; Zhao, W.; Demsas, T. Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization
method. Energy 2020, 193, 116616. [CrossRef]

43. O’Hayre, R.; Cha, S.-W.; Colella, W.; Prinz, F.B. Fuel Cell Fundamentals; John Wiley & Sons: Hoboken, NJ, USA, 2016.
44. Steele, B.C.; Heinzel, A. Materials for fuel-cell technologies. In Materials for Sustainable Energy: A Collection of Peer-Reviewed

Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, 2011; pp. 224–231.
45. Rajasekar, N.; Jacob, B.; Balasubramanian, K.; Priya, K.; Sangeetha, K.; Babu, T.S. Comparative study of PEM fuel cell parameter

extraction using Genetic Algorithm. Ain Shams Eng. J. 2015, 6, 1187–1194. [CrossRef]
46. Ali, M.; El-Hameed, M.; Farahat, M. Effective parameters’ identification for polymer electrolyte membrane fuel cell models using

grey wolf optimizer. Renew. Energy 2017, 111, 455–462. [CrossRef]

186



Electronics 2021, 10, 2834

47. El-Fergany, A.A. Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET

Renew. Power Gener. 2018, 12, 9–17. [CrossRef]
48. David, R.C.; Precup, R.E.; Petriu, E.M.; Rădac, M.B.; Preitl, S. Gravitational search algorithm-based design of fuzzy control

systems with a reduced parametric sensitivity. Inf. Sci. 2013, 247, 154–173. [CrossRef]
49. Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International Conference

on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005.

50. Mahdavi, S.; Rahnamayan, S.; Deb, K. Opposition based learning: A literature review. Swarm Evol. Comput. 2018, 39, 1–23.
[CrossRef]

51. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
52. Meraihi, Y.; Ramdane-Cherif, A.; Acheli, D.; Mahseur, M. Dragonfly algorithm: A comprehensive review and applications. Neural

Comput. Appl. 2020, 32, 16625–16646. [CrossRef]
53. Mirjalili, S.Z.; Mirjalili, S.; Saremi, S.; Faris, H.; Aljarah, I. Grasshopper optimization algorithm for multi-objective optimization

problems. Appl. Intell. 2018, 48, 805–820. [CrossRef]
54. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural

Comput. Appl. 2016, 27, 495–513. [CrossRef]
55. Correa, J.; Farret, F.A.; Canha, L.; Simoes, M. An Electrochemical-Based Fuel-Cell Model Suitable for Electrical Engineering

Automation Approach. IEEE Trans. Ind. Electron. 2004, 51, 1103–1112. [CrossRef]
56. Amphlett, J.; Baumert, R.; Mann, R.; Peppley, B.; Roberge, P.; Rodrigues, A. Parametric modelling of the performance of a 5-kW

proton-exchange membrane fuel cell stack. J. Power Sources 1994, 49, 349–356. [CrossRef]
57. Nelwamondo, F.V.; Golding, D.; Marwala, T. A dynamic programming approach to missing data estimation using neural

networks. Inf. Sci. 2013, 237, 49–58. [CrossRef]
58. Balasubramanian, K.; Jacob, B.; Priya, K.; Sangeetha, K.; Rajasekar, N.; Babu, T.S. Critical evaluation of genetic algorithm-based

fuel cell parameter extraction. Energy Procedia 2015, 75, 1975–1982. [CrossRef]
59. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the Proceedings of ICNN’95-International Conference on

Neural Networks, Perth, WA, Australia, 27 November–1 December 1995.
60. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
61. Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic

optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
62. Rezk, H.; Ferahtia, S.; Djeroui, A.; Chouder, A.; Houari, A.; Machmoum, M.; Abdelkareem, M.A. Optimal parameter estimation

strategy of PEM fuel cell using gradient-based optimizer. Energy 2022, 239, 122096. [CrossRef]
63. Qin, F.; Liu, P.; Niu, H.; Song, H.; Yousefi, N. Parameter estimation of PEMFC based on Improved Fluid Search Optimization

Algorithm. Energy Rep. 2020, 6, 1224–1232. [CrossRef]
64. Arora, S.; Anand, P. Chaotic grasshopper optimization algorithm for global optimization. Neural Comput. Appl. 2019, 31,

4385–4405. [CrossRef]
65. Selem, S.I.; Hasanien, H.M.; El-Fergany, A.A. Parameters extraction of PEMFC’s model using manta rays foraging optimizer. Int.

J. Energy Res. 2020, 44, 4629–4640. [CrossRef]
66. Leng, H.; Li, X.; Zhu, J.; Tang, H.; Zhang, Z.; Ghadimi, N. A new wind power prediction method based on ridgelet transforms,

hybrid feature selection and closed-loop forecasting. Adv. Eng. Inform. 2018, 36, 20–30. [CrossRef]
67. Digalakis, J.G.; Margaritis, K.G. An Experimental Study of Benchmarking Functions for Genetic Algorithms. Int. J. Comput. Math.

2002, 79, 403–416. [CrossRef]

187





electronics

Article

Design of a Charge Pump Circuit and System with Input
Impedance Modulation for a Flexible-Type Thermoelectric
Generator with High-Output Impedance

Kazuma Koketsu and Toru Tanzawa *

Citation: Koketsu, K.; Tanzawa, T.

Design of a Charge Pump Circuit and

System with Input Impedance

Modulation for a Flexible-Type

Thermoelectric Generator with

High-Output Impedance. Electronics

2021, 10, 1212. https://doi.org/

10.3390/electronics10101212

Academic Editors: Shailendra Rajput,

Moshe Averbukh and

Noel Rodriguez

Received: 2 April 2021

Accepted: 13 May 2021

Published: 19 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan;
kohketsu.kazuma.15@shizuoka.ac.jp
* Correspondence: toru.tanzawa@shizuoka.ac.jp

Abstract: This paper describes a charge pump system for a flexible thermoelectric generator (TEG).
Even though the TEG has high-output impedance, the system controls the input voltage to keep
it higher than the minimum operating voltage by modulating the input impedance of the charge
pump using two-phase operation with low- and high-input impedance modes. The average input
impedance can be matched with the output impedance of the TEG. How the system can be designed
is also described in detail. A design demonstration was performed for the TEG with 400 Ω. The
fabricated system was also measured with a flexible-type TEG based on carbon nanotubes. Even
with an output impedance of 1.4 kΩ, the system converted thermal energy into electric power of
30 µW at 2.5 V to the following sensor ICs.

Keywords: charge pump; energy harvesting; thermoelectric; IoT

1. Introduction

The Internet of Things (IoT) currently is attracting researchers’ attention, which is a
system for the interaction of information from things such as sensing edge devices to the
cloud and servers via the Internet and vice versa [1]. The maintenance costs to replace
batteries can be a large portion of the costs of edge devices. Therefore, it is expected
that sensing devices should be battery free based on the energy transducer generating
electric power from environmental energy such as sunlight and vibration kinetic energy.
A thermoelectric generator (TEG) extracts power from a temperature gradient. The open-
circuit voltage VOC of the TEG increases in proportion to the temperature difference
between hot and cold heat sources [2]. Bulk-type TEGs [3] have a low output impedance
(RTEG) of the order of Ω and are in production together with boost converters. Flexible-type
thin film TEGs [4] are expected to have various applications because they can be placed
on curved surfaces. A drawback of the flexible-type TEG is the high-output impedance
of the order of 10–100 Ω, especially in the case of a small form-factor. Even worse, a
low-cost small form-factor TEG generates VOC as low as a few hundred mV. To operate
sensor ICs, boost converters are required [5–7]. In this research, the design of boost charge
pump circuits (CPs) is proposed for a flexible-type TEG with high-output impedance, as
illustrated in Figure 1. Such a system is used for heat pipes [8] and wrist watches [9].

To design systems with TEGs and integrated CPs, the circuit area and power con-
version efficiency (PCE) are key figures of merit. Table 1 summarizes the key features of
existing designs and this work. In [10], the design of low-voltage CPs was developed to
strike a balance between the circuit area and power efficiency under the conditions of a
given output voltage and current. In this design, CPs are driven by voltage sources with
zero impedance, while TEGs have a finite output impedance. In [11], both TEGs and CPs
were optimally designed to minimize their areas when CPs were driven by TEGs. However,
design constraints such as temperature differences and the number of TEG units connected
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in parallel and in series were not taken into consideration. A design methodology was
proposed when VOC and RTEG were given in [12,13]. In [12], an optimum design was
provided to determine the dimensions of switching devices and the clock frequency to
maximize the output power of the CP when the number of stages N and stage capacitors C
of the CP and the VOC and RTEG of TEG were given. However, the output voltage of the
CP was not given, whereas the input voltage of the load circuit must be controlled with a
specific voltage. In [13], how the input voltage of the CP or the output voltage of the TEG is
determined theoretically was discussed when the circuit area of the CP was minimized or,
in other words, when the output power of the CP was maximized with a given CP circuit
area to generate a target output current at a specific output voltage, as shown in Figure 2a,
which is the same target design of this work. However, the minimum operation voltage of
circuits was not considered in [13], but it was assumed that the input voltage of the CP can
be set at any voltage. Furthermore, no control circuit was disclosed to control the input
voltage of the CP in [13]. In this work, the minimum operating voltage of the circuits was
taken into consideration in the design, as shown in Figure 2b. This can be a key design
point especially for TEGs with a high-output impedance, which have a potentially large IR
drop at VDD.

Figure 1. Block diagram of the energy harvesting system based on the TEG and CP.

Table 1. Comparison of the key features of this work with existing designs.

Optimum Design Target Given Design Parameters Parameter to Be Optimized
Parameters to

Be Determined

Tokuda [10] CP VPP, IPP, VDD, f
Area of the CP to

be minimized and the PCE
to be maximized

N, C

Koketsu [11]

TEG + CP

VPP, IPP, f
Area of the TEG and CP to

be minimized
VOC, RTEG, N, C

Lu [12] VOC, RTEG, N, C PPP to be maximized W, f

Tanzawa [13] VOC, RTEG, VPP, f
IPP @ VPP to be maximized N, C

This work VOC, RTEG, VPP, f , VDD
MIN

This paper is an extended version of a conference paper [14] to describe its details. A
control circuit to operate the CP was proposed to meet the demand that the output current
be generated as high as the target current at a specific voltage while the input voltage of
the CP is controlled at a voltage higher than the minimum operating voltage. The designs
of the CP system and building blocks are presented in Sections 2.1 and 2.2, respectively, to
discuss how the circuits can be optimally designed. The entire system was fabricated in
65 nm CMOS. Experimental results are shown in Section 2.3, and Section 3 gives a summary
of this work.
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Figure 2. Operating points of [8] (a) and of this work (b).

2. Circuit Design

2.1. System Design

Figure 3 illustrates the proposed CP system to extract power from the TEG with
high-output impedance and to drive the following sensor ICs. Table 2 shows the condition
to resume or suspend CP operation. A detector DETi monitors VDD and outputs ENi. A
detector DETo monitors VPP and outputs ENo. Only when both signals become high, an
oscillator OSC outputs a clock to drive the CP. Otherwise, the OSC stops working to not
drive the CP. The third detector DETpp generates a signal VPP_OK to let the sensor ICs
know the supply voltage is sufficiently high to work.

Figure 3. Building blocks of the proposed CP circuit system.

Table 2. Operation condition of the main CP against VDD and VPP.

VPP < VPPT VPP > VPPT

VDD > VDDT Resume Suspend
VDD < VDDT Suspend Suspend

Figure 4 shows two operation phases in steady state. In Phase (a), the CP inputs the
current mainly from CDD. Even though RTEG is much larger than the input impedance of
CP, VDD can be controlled to be higher than VDD_MIN. Phase (a) starts with EN high when
VPP hits VPPM = VPPT, where VPPM and VPPT are the minimum voltage of VPP and the
target voltage of VPP, respectively. VPP increases while VDD decreases due to CP operation.
EN goes low when (1) ENo goes low or (2) ENi goes low. In the case of (1), the ripple △VPP

is determined by the loop response from the output node of the CP to EN. VDDM must be
higher than VDDT. In the case of (2), VDDM is equal to VDDT. In Phase (b), VDD increases
with the charging current from the TEG, while VPP decreases with the discharging load
current. The input impedance of the CP becomes very large because the main charge pump
CP is suspended with EN low, even though a small amount of current flows into small
building blocks such as LV-CP. Thus, even though the TEG has high-output impedance, the
system controls the input voltage to keep it higher than the minimum operating voltage by
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modulating the input impedance of the charge pump using two-phase operation with low-
and high-input impedance modes. The average input impedance can be matched with
the output impedance of the TEG. On the other hand, such an operation is not required
when the output impedance of TEGs such as the bulk-type is much lower than the input
impedance of the CP in operation. The operating point approaches VOC, but the system
can work as long as VOC is higher than the minimum operating voltage.

Figure 4. Two phases of the circuit operation. (a) Low and (b) high input impedance modes

The following equations hold among TON, TOFF, ∆VPP and ∆VDD, where it is as-
sumed that IPP and IDD are the steady-state currents and can be treated as constant when
∆VPP << VPP, ∆VDD << VDD, and ITEG << IDD.

TON =
CDD ∆VDD

IDD
=

CPP ∆VPP

IPP − ILOAD
(1)

TOFF = RTEGCDD ln
VOC − VDDM

VOC − VDDM − ∆VDD
=

CPP ∆VPP

ILOAD
(2)

IPP and ILOAD are related as Equation (3).

ILOAD =
TON

T
IPP (3)

When one can regard ITEG as constant in the case of ∆VDD << VDD, IDD and ITEG are
related as Equation (4).

ITEG =
TON

T
IDD (4)

2.2. Building Blocks’ Design

B1: Main charge pump
The given design parameters are the minimum open-circuit voltage of the TEG

(VOCMIN), RTEG, VPPT. The number of stages N was designed to maximize IPP at VPPT when
the circuit area is given. Based on [15], N is given by Equation (5).

N = [1.7 × NMIN ] =

[

1.7 × VPP − VDD + VEFF
TH

VDD/(1 + αT)− VEFF
TH

]

, (5)
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where [x] indicates the floor function of x, NMIN is the minimum number of stages to barely
generate VPP, and VEFF

TH is an effective threshold voltage of switching transistors, which
were called ultra-low power diodes in [16]. The capacitance of each stage capacitor C is
related with IPP and IDD as Equations (6) and (7), where the clock frequency f is determined
to maximize IPP.

IPP =
f C(1 + αT)

N

[(

N

1 + αT
+ 1
)

VDD − (N + 1)VEFF
TH − VPP

]

, (6)

IDD =

(

N

1 + αT
+ 1
)

IPP +

(

αT

1 + αT
+ αB

)

f NCVDD + ICTRL, (7)

where αT and αB are the ratios of the top (CTOP) and bottom plate parasitic capacitance
(CBTM) to C, CTOP/C and CBTM/C, respectively. Note that CBTM includes the parasitic
capacitance of an oscillator to drive the main CP. ICTRL is the input current for the control
circuits, which was assumed to be βIDD using the design parameter β (<1) in this paper
because the auxiliary circuits assumed in this paper as shown later steadily ran regardless
of TON. IDD is also given by Equation (8) at the extreme case of TON = T and TOFF = 0.

IDD =
VOC − VDD

RTEG
(8)

From Equations (6)–(8), the minimum C needs to meet Equation (9).

C =
(1 − β)N(VOC − VDD)

f RTEG

[

(N + 1 + αT)
{(

N
1+αT

+ 1
)

VDD − (N + 1)VEFF
TH − VPP

}

+
(

αT
1+αT

+ αB

)

N2VDD

] (9)

To have a duty ratio of TON/T smaller than a factor of γ, the C to be designed must be
increased by a factor of 1/γ.

The parameters shown in Table 3 were used for design demonstration. VDDMIN was
mainly determined by the technology used to design, e.g., the availability of low-Vt CMOS
and circuits used in the system. As will be shown later, it was limited by an oscillator
to generate a clock with 10 MHz. Such a moderate frequency was required to have a
sufficiently small circuit system built in the same sensor ICs. From Equations (5) and (9), N
and C were calculated to be 19 and 4.8 pF at VDDT = 0.5 V, respectively. Figure 5 shows PPP

and CP area NC/γ as a function of VDD.

Table 3. Design parameters used in this work.

VDDMIN VDDT VTH
EFF VPPT RTEG VOCMIN f αT αB β γ

0.45 V 0.5 V 0.25 V 2.5 V 400 Ω 0.6 V 10 MHz 0.1 0.2 0.2 0.33

Figure 5. (a) PPP vs. VDD; (b) CP area NC/γ vs. VDD.

B2: Auxiliary circuits
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As illustrated in Figure 3, the detectors compare VDD and VPP with a reference voltage
VREF generated by bandgap reference BGR [17]. To provide a supply voltage V1V~1 V to
the BGR, another small CP (LV-CP) was implemented. The LV-CP is operated in open loop
not to affect the VDDMIN of the system. A dedicated oscillator starts running without any
input signal other than VDD. When LV-CP converts power to the output terminal and V1V
reaches about 1 V, a clamping circuit CLAMP with NMOSFETs connected in series with
the output terminal clamps the output voltage. V1V is also used as the supply voltage of all
the logic gates and the detectors. Figure 6 shows a simulated result of the BGR. VREF is
saturated when V1V > 0.8 V.

Figure 6. VREF vs. VDD.

2.3. Experimental Results

The system was designed in 65 nm low-Vt CMOS technology, as shown in Figure 7.
The entire area was 0.28 µm2. The CPs had an N of 20 and a C of 15 pF. The LV-CP had an N
of six and a C of 3 pF to generate the supply current of 10 µA at 1 V, which was sufficiently
high for the following circuits while keeping γ < 0.2.

Figure 7. Die photo.

The input terminal was connected to an equivalent circuit of the TEG with VOC and
RTEG. A CDD of 300 nF and a CPP of 1 nF were connected to the input and output terminals
of the CP system, respectively. Since the system did not work at a VOC of 0.6 V probably
because the VTH of MOSFETs was close to the slow corner while the simulation was
performed at the typical corner, the experiments were performed at VOC of 0.8 V. Figure 8
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shows IPP, IDD, VDD, and PPP as a function of VPP where VPP was varied by varying the
load resistance. All the simulations were performed with the slow-corner model. The
measured results were matched with the simulated ones with an error of about 10%. VPP

was regulated at 2.5 V when IPP was 25 µA or lower. The average VDD was 0.6 V or higher
when VPP was regulated.

Figure 8. (a) IPP, (b) IDD, (c) VDD, and (d) PPP as a function of VPP.

To see the dynamic response of VPP and VDD against VOC, VOC was made to go up
and down between 0.5 V and 1 V in 200 µs, as shown in Figure 9. A signal EN was also
monitored using a buffer whose supply voltage was V1V. In the period T1, because VDD

was lower than VDDT, EN stayed low. In the period T2, because VDD was higher than VDDT,
but VPP was lower than VPPT, EN stayed high. Once VPP reached VPPT, in the period T3,
the system stayed in the steady state where the TON/TOFF operation was repeated to keep
VPP and VDD at VPPT and VDDT, respectively.

Figure 9. Dynamic behavior of VPP and VDD against VOC.
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The system was also tested with the TEG using a thermal source, as shown in Figure 10.
The TEG was based on carbon nanotubes [18]. The TEG module was built to fit with a
pipe, which flowed hot liquid or gas. Because the TEG module had an RTEG of 1.4 kΩ, VOC

needed to be set at a higher voltage of 1.1 V with a temperature difference of 66 K to enable
the fabricated converter system to be functional, as shown in Figure 11.

Figure 10. The TEG module (a) and experimental setup with the TEG (b).

Figure 11. VOC vs. ∆T (a) and IDD vs. VDD at ∆T of 66 K (b).

Figure 12 shows IPP, IDD, VDD, PPP, ηSYS, and ηCP as a function of VPP. ηSYS and ηCP

are defined by (VPP ×IPP)/(VOC×IDD) and (VPP×IPP)/(VDD×IDD), respectively. The VPP

regulation point was different by 0.3 V between measured and simulated, but the electric
values except for it were in good agreement. It was confirmed that the converter system
with the TEG module under the experimental condition could supply power of 30 µW at
2.5 V to the following sensor ICs. The overall power conversion efficiency ηSYS was hit at
about 7% against a theoretical limit with no loss of 50%. The power conversion efficiency
of the converter system ηCP was 15% when VDD was 0.55 V at VPP of 2.5 V, i.e., a voltage
ratio (VPP/VDD) of 4.5. For comparison, ηCP of 20%, 32%, and 45% was realized with a
VDD of 0.1 V, 0.2 V, and 0.3 V at a VPP of 0.5 V, respectively, in [10]. Thus, the ηCP of the
proposed converter system was a little lower than that of [10] at the voltage ratio of 4.5.
The design optimization may need to be improved to increase power conversion efficiency
by including the TEG electrical parameters in the design parameters.

196



Electronics 2021, 10, 1212

Figure 12. (a) IPP, (b) IDD, (c) VDD, (d) PPP, (e) ηSYS, and (f) ηCP as a function of VPP.

3. Conclusions

A charge pump circuit system was presented for energy harvesting based on a flexible-
type thermoelectric generator with high-output impedance. Even though the charge
pump was operated with a highly resistive TEG, the input voltage could be controlled
at a voltage higher than VDDMIN by modulating the input impedance of the CP using
two-phase operation with low- and high-input impedance modes. The average input
impedance could be matched with the output impedance of TEG. The design methodology
was proposed to determine the N and C of the main charge pump when VOC, RTEG, VPP,
f, and VDD

MIN were given. The system was fabricated in 65 nm CMOS to demonstrate
the functionality of the system with the TEG. Using an equivalent circuit for the TEG,
the system was validated with a VOC of 0.8 V and an RTEG of 400 Ω. VPP regulation was
successfully observed. The circuit system was also measured with a flexible-type TEG and
a thermal source. The system converted thermal energy into power to 30 µW at 2.5 V. By
adding a full-bridge rectifier between the energy transducer and the proposed converter,
the control circuit would be able to work even with other energy transducers such as
piezoelectric or electrostatic vibration energy transducers with an AC equivalent voltage
source and high-output impedance.
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Nomenclature

C Capacitance per stage
CDD Capacitor connected to VDD

CPP Capacitor connected to VPP

f Clock frequency
ICP Input current of CP
ICTRL Input current of control circuits
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IDD Operating current of the TEG and CP
ILOAD Load current of the CP
ITEG Output current of the TEG
N Stage number of the CP
PDD Input power of the CP
PPP Output power of the CP
PTEG Generated power of the TEG
αT Ratio of top plate capacitance to C

αB Ratio of bottom plate capacitance to C

RTEG Output impedance of the TEG
T Operation period, TON + TOFF

TOFF Suspended period
TON Resumed period
VDD Input voltage of the CP
VDDT Target input voltage of the CP to be controlled
VDDM Minimum VDD in operation
∆VDD Ripple in VDD

VPP Output voltage of the CP
VPPT Target output voltage of the CP to be controlled
VPPM Minimum VPP in operation
∆VPP Ripple in VPP

β Ratio of ICTRL to IDD

γ Operation duty; TON/T
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Abstract: This paper proposes an AC-DC converter for electrostatic vibration energy harvesting. The
converter is composed of a CMOS full bridge rectifier and a CMOS shunt regulator. Even with 1 V
CMOS, the open circuit voltage of the energy transducer can be as high as 10 V and beyond. Bandgap
reference (BGR) inputs a regulated voltage, which is controlled by the output voltage of the BGR.
Built-in power-on reset is introduced, which can minimize the silicon area and power to function
normally found upon start-up. The AC-DC converter was fabricated with a 65 nm low-Vt 1 V CMOS
with 0.081 mm2. 1 V regulation was measured successfully at 20–70 ◦C with a power conversion
efficiency of 43%.

Keywords: AC-DC converter; shunt regulator; full bridge rectifier; electrostatic vibration energy
harvesting; fully integrated; IoT

1. Introduction

Energy harvesting (EH) is technology for harvesting power for IoT edge devices
from environmental energy using energy transducers [1]. Eliminating the replacement
of batteries based on EH can reduce the total cost of IoT devices. Electrostatic energy
transducers (ES-ETs) can convert vibration energy into electronic power [2,3]. Due to the
high output impedance of 1 MΩ or larger, open circuit voltages have to go beyond 10 V to
generate power of 10 µW or larger. In [4], a battery charger is proposed using two variable
capacitors based on ES-ETs. Capacitance varies with vibration, resulting in variable voltage
at the capacitor node. Two capacitors vary out of phase. Thus, the diode connected with
those two capacitors flows current from one to the other. The latter capacitor is connected
to the battery via another diode. As a result, with sufficient amplitude in the voltage at the
capacitor node, the battery can be charged with vibration energy. Another power converter
is proposed in [5,6] based on a full bridge rectifier (FBR) followed by a DC-DC buck
converter, as shown in Figure 1a. An HV rectifier is composed of four diodes for converting
the AC power of ES-ETs into DC power to the converter. As the DC voltage is much higher
than the maximum voltage acceptable to sensor CMOS ICs, power management circuits
(PMC) in DC/DC converters need to be fabricated using a BCD process, which provides
an HV CMOS operating even at high voltages of 10 V or higher. Buck converters require
external components such as inductors, capacitors, and resistor (LCRs) to convert the DC
input voltage of an order of 10 V into an output voltage of an order of 1 V. The priority in
design was power conversion efficiency at a power of 1 mW rather than the cost and form
factor. What if the priority should be the cost and form factor? In this work, we focus on
the full integration of a converter into the same chip for a sensor/RF, as shown in Figure 1b.
Section 2 discusses key design features. Power-on-reset (POR) is a critical block to starting
up the operation. A built-in POR with no additional power is proposed. The circuit was
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fabricated in 65 nm low-Vt CMOS. Experimental results are shown in Section 3. Section 4
compares the circuit features of the proposed circuit with previously reported converters.

 
Figure 1. IoT edge device with an ES-ET and (a) a buck converter with FBR and PMC in a BCD process [6] or (b) a proposed
shunt regulator integrated into an IoT chip.

2. Circuit Design

2.1. System Design

Figure 2 illustrates a proposed fully integrated AC-DC converter. A cross-coupled
CMOS bridge circuit [7] is used in a full bridge rectifier (FBR). An additional diode-
connected NMOS (ND) is needed in order to not flow reverse current when the voltages
at IN1 and IN2 become lower than the regulated output voltage VDD. An active diode [8]
can be placed in parallel with ND to reduce the voltage drop. In this design, low power
is prioritized. An active diode requires an opamp, which consumes power. Bandgap
reference (BGR) operates with VDD, which is controlled by the output voltage VREF.

 

Figure 2. AC-DC converter for an ES-EH proposed in this work.
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2.2. Power Comversion Efficiency

Figure 3 is used to estimate the power conversion efficiency (PCE). When the voltage
drop at a rectifier is sufficiently low in comparison with the amplitude of the voltage source
(VA) and the DC output (VDD), an average output power can be estimated by (1) in a steady
state. The maximum available power PAV, which is defined by the output power when the
load resistance is as large as the output impedance of the transducer |ZS|, is given by (2).
Then, PCE is calculated by (3). Figure 4 shows η vs. VDD at VA = 10 V, 30 V, 60 V, and 100 V.
When VDD is controlled to be 1 V, η decreases as VA (>10 V) increases, which is the weakest
point for the proposed circuit. Lower VA, or, in other words, lower output impedance, is
preferred for an electrostatic energy transducer.
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Figure 3. Circuit model for estimating the power conversion efficiency. (a) Circuit model; (b) volt-
age waveform.
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2.3. Bandgap Reference (BGR)

As the target VDD is 1 V, a current-mode bandgap reference (BGR) [9] was selected in
this work. Using low-Vt CMOS, the reference voltage VREF is stable at 0.8 V and higher, as
shown in Figure 5a. Operation current IDD, including a current generator, is about 200 nA
at VDD = 1 V, as shown in Figure 5b. The detector (DET) controls VDD to be 2X VREF with
R0 = R1 (see Figure 2). Table 1 summarizes the simulated results of the AC-DC converter at
corner conditions.

 

℃

℃

℃

Figure 5. (a) Simulated VREF vs. VDD and (b) IDD vs. VDD.

Table 1. Simulation result of VDD at corner conditions.

VDD[V] FF TT SS

0 ◦C 1.0 1.0 1.0
27 ◦C 1.0 1.0 1.0
70 ◦C 0.90 1.0 1.0

2.4. Built-In Power-On Reset (POR)

After the transducer starts generating power, VDD is gradually increased from 0 V.
Every building block has its own minimum operating VDD. If pull-down (PD) is enabled
below the minimum VDD, the system is latched in that state and therefore VDD should no
longer be increased. Power-on reset (POR) aims to remove such misbehavior. Additional
low-power POR requires more silicon area and more power. As a result, we simply added
a blocking PMOS (PPD), which has a standard threshold voltage in the pull-down path, as
shown in Figure 2. As shown in Figure 6a, while VDD is low, VREF can be also lower than
VDD/2 because of the misbehavior of the OPAMPs. In that case, the gate voltage VG of the
pull-down NMOS (NPD) stays high. Even in such a case, PPD disconnects the path from
VDD to ground. The necessary condition for normal operation is that PPD starts conducting
after VREF > VDD/2. Figure 6b shows the simulated waveform of the entire system to verify
the normal operation during power-up.

2.5. Decoupling Capacitor

To stabilize VDD even with AC input, a decoupling capacitor CVDD needs to be placed.
When a maximum output current of 10 µA at AC power frequency of 100 Hz is needed,
the capacitance of CVDD is required to be 10 µA X 5 ms/10 mV~5 µF for a ripple in VDD
of 10 mV. The entire AC-DC converter is simulated in AC mode, as well as with different
capacitance values of CVDD, as shown in Figure 7. The system can be stable with CVDD of
20 nF or larger.

204



Electronics 2021, 10, 1185

μ
μ μ

Figure 6. (a) Idea of a built-in POR and (b) the simulated waveform.

 

 

Ω
μ μ

Figure 7. Bode plots with CVDD varied. (a) Gain vs. freq.; (b) Phase vs. freq.
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3. Experiments

The proposed AC-DC converter was designed and fabricated in 65 nm low-Vt CMOS,
as shown in Figure 8. The majority block was BGR in terms of area. The entire area was
0.081 mm2, which is so small that it can be integrated into the same IoT IC chip. The pulse
generator available at the lab only generated an AC peak of 10 V. As a result, the AC-DC
converter was measured with a 100 kΩ resistor connected with the AC voltage source to
an input power larger than 10 µW. A 6 µF capacitor was connected with VDD.
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Figure 8. (a) Layout of the AC-DC converter and (b) a die photo.

Figure 9a shows IDD vs. VDD by varying the load resistance RL. The AC-DC converter
regulates VDD at 1 V with 10 µA or below. Figure 9b shows the measured waveform at
different temperatures. The voltage source starts at 0.1 s with an amplitude of 10 V at
100 Hz. The converter charges up the load capacitance CVDD for 0.25 s until VDD reaches
about 1 V. The measured average and ripple of VDD are summarized in Table 2.
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Figure 9. Measured IDD vs. VDD (a) and waveform (b).
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Table 2. Measured VDD vs. temperature.

Temp. VDD

0 ◦C 1.00 V ± 20 mV
27 ◦C 1.05 V ± 30 mV
70 ◦C 1.05 V ± 22 mV

To verify the effect of the built-in POR, measurements were also performed by con-
necting the source and drain of PPD. As shown by “VDD without PMOS” in Figure 10, VDD
was stuck at the ground level.
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Figure 10. Measured waveform with and without PPD.

4. Discussions

4.1. Comparison with Previously Reported Converters

Circuit features are compared in Table 3. In [6], the AC-DC converter was composed
of FBR and a buck DC-DC converter. To allow for a high voltage input of 60 V at the peak,
a BCD process was used, which provided 60 V transistors. Discrete diodes for FBR were
required in addition to a converter chip. A high power efficiency of 85% was realized by
the buck converter. In [10], another AC-DC converter was presented, which was composed
of capacitor divider, switched capacitor converter, and FBR to convert power from 120 V
mains. Wiring capacitors were used to manage a high voltage of 168 V without adding extra
process steps or devices. As capacitance density was quite low, the converter size needed
to be as large as 9.8 mm2. In [11], another AC-DC converter was proposed to generate a
standard CMOS-compatible voltage of 2 V from the magnetostrictive energy harvester
(MS-EH) with a peak open circuit voltage of 0.5 V. Due to the on-chip oscillator running at
5 MHz to drive a charge pump circuit (CP), the control circuit consumed power of 18 µW.
In [12], a DC-DC charge pump was developed for piezo-electric energy harvesting. The
voltage conversion ratio was varied for energy efficient power conversion according to
VA. Area per maximum output power was realized with 3.1 [mm2/mW]. On the other
hand, a shunt regulator was used instead of the buck converter in this work at the cost
of a reduction in PCE. However, when the transducer can generate sufficient power for
the IoT chip even with the AC-DC converter with 43% PCE, it can be integrated into
the same IoT chip without additional discrete components and the buck converter chip.
Area per maximum output power was realized with 8.1 [mm2/mW] in measurement and
0.81 [mm2/mW] in simulation under the conditions of RS = 100 kΩ, RL = 10 kΩ, and
VA = 30 V.
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Table 3. Comparison table with previously reported converters.

Stanzione [6] De Pelecijn [10] Kawauchi [11] Chen [12] This Work

Energy source ES-EH AC mains MR-EH PZ-EH ES-EH
Voltage conversion:

Up or Down?
Down Down Up Up/Down Down

Architecture FBR and Buck
Cap-div, SC, and

FBR
FBR and AC-DC

CP
FBR and DC-DC

CP
FBR and Shunt

External
components

FBR (4
diodes)/LCR

(1L,1C,2R)
None (except for CVDD)

CMOS
0.25 µm 60 V BCD

and 3 V CMOS
0.35 µm 12 V
HV-CMOS

65 nm 1 V low-Vt
CMOS

0.18 µm CMOS
65 nm 1 V low-Vt

CMOS
VDD regulation N. A. N. A. No regulation N. A. ±5%
Control power 500 nW 50 nW 18 µW 4 µW (*1) 700 nW

Maximum input
peak voltage

60 V 168 V 1 V N. A.
10 V (measured),

100 V (potentially)
Input power 1 µW–1 mW 20 µW 22 µW N.A. 1 µW–100 µW

Output power 1 µW–1 mW 20 µW 4 µW 0.5–64 µW 1 µW–100 µW
Power conversion

efficiency
85% 81% 23% 72% (*1) 43%

Die/circuit area BCD (3 mm2) and
CMOS (N.A.)

9.8 mm2 0.11 mm2 0.2 mm2 0.081 mm2

Area [mm2]/Max.
output power

[mW]
4.6 612.5 27.5 3.1

8.1 (meas.),
0.81 (sim.) (*2)

(*1) The data were taken from the condition of VOUT = 2 V and VA = 3 V. (*2) The data were simulated under the conditions of RS = 100 kΩ,
RL = 10 kΩ, and VA = 30 V.

4.2. Limination of the Proposed Converter on VA and RS of ES-EH

To see which electrical parameters of ES-EH allowed the converter to output a regu-
lated voltage of 1 V, SPICE simulation was performed with various amplitude voltages VA
and output resistances RS of ES-EH under the condition of a load resistance of 1 MΩ, as
shown in Figure 11. The middle area in blue shows that VDD is regulated between 0.95 V
and 1.0 V. ES-EH with too high Rs inputs insufficient power into the regulator against the
output power, whereas ES-EH with too low Rs injects too much power so that the PD path
cannot pull down to the target regulation point. The lower bound on Rs can be reduced
with a larger PD size.
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ΩFigure 11. Simulated VDD with different VA and RS under a load resistance of 1 MΩ in (a) 3D and
(b) top view plots.
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5. Conclusions

This paper proposed an AC-DC converter which does not require external components
for rectification and power conversion. It can be integrated in the same IoT chip with a
small overhead area of 0.1 mm2. This converter can provide a better option for electrostatic
energy harvesting where the cost is the highest priority.
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Abstract: Aging increases the internal resistance of a battery and reduces its capacity; therefore,
energy storage systems (ESSs) require a battery management system (BMS) algorithm that can
manage the state of the battery. This paper proposes a battery efficiency calculation formula to
manage the battery state. The proposed battery efficiency calculation formula uses the charging time,
charging current, and battery capacity. An algorithm that can accurately determine the battery state
is proposed by applying the proposed state of charge (SoC) and state of health (SoH) calculations.
To reduce the initial error of the Coulomb counting method (CCM), the SoC can be calculated
accurately by applying the battery efficiency to the open circuit voltage (OCV). During the charging
and discharging process, the internal resistance of a battery increase and the constant current (CC)
charging time decrease. The SoH can be predicted from the CC charging time of the battery and
the battery efficiency, as proposed in this paper. Furthermore, a safe system is implemented during
charging and discharging by applying a fault diagnosis algorithm to reduce the battery efficiency.
The validity of the proposed BMS algorithm is demonstrated by applying it in a 3-kW ESS.

Keywords: energy storage system (ESS); battery management system (BMS); battery efficiency; state
of charge (SoC); state of health (SoH)

1. Introduction

Energy storage systems (ESSs) store electricity when surplus electricity is generated
or electricity rates are low and supply the stored electricity to the unit when electricity is in
high demand or prices are high; therefore, for the efficient operation of power facilities, the
development of an energy management system (EMS) algorithm is imperative.

Battery characteristics [1–3] and the sizing of ESSs have been extensively investi-
gated [4–6] because the battery accounts for most of the budget when designing ESSs;
therefore, battery selection and management are important, as the aging problems caused
by inappropriate battery management costs account for a large part of the replacement
budget.

Many ESSs use lithium-ion batteries, since they offer a high energy density and high
efficiency [7,8]; however, it is crucial to identify the charging state of batteries because
there is a risk of fire during charge-discharge cycles and because there is a need to predict
the state of health (SoH) and state of charge (SoC) for battery state management [9]. The
ESS consists of cells in series-parallel [10,11] with a large capacity. To solve the safety
problems related to fires and explosions [12], a system that manages the battery status is
required [13].

The purpose of a battery management system (BMS) is to manage the battery [14,15].
To improve the reliability and safety of the battery [16,17], many BMS functions are being
developed [18]. The functions of BMS can be classified as real-time monitoring, calculation
and prediction, protection, and optimization. The battery voltage, current, temperature, SoC,
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SoH, and other factors can be confirmed via monitoring [19–21]. In addition, the SoC, SoH,
and internal impedance can be calculated and predicted [19,22–25]. The protection process
limits overcurrent, overvoltage, and overheating and performs fault diagnosis [26–29]. The
optimization process maintains the optimal state of charge of a battery by considering the
amount of charge between cells [30–32]. As the cycle of a battery increases, the battery ages
and its state changes [33]; therefore, to manage a battery, it is necessary to improve the
performance of BMSs. The performance of a BMS varies according to the estimation accuracy
of the SoC and SoH, indicators of the battery state [10,34,35].

Charge-discharge cycles, temperature, overcharge and overdischarge, and increased
internal resistance cause batteries to age, which reduces their capacity. The calculation of
battery efficiency can be performed based on the current and SoC [36], via aging analy-
sis based on charge-discharge capacities [37], or via charging-discharging power differ-
ences [38,39]; however, it is difficult to accurately estimate the battery state using this
approach, as it does not consider the internal resistance changes arising from the aging
phenomenon.

Since the internal resistance increases along with the aging phenomenon of the battery,
it should be estimated during the operation, therefore, a battery efficiency estimation
method is proposed in this paper. The efficiency of the battery is obtained based on the
charging and discharging power losses. Since the internal resistance varies according to
the battery efficiency, the battery states can be identified using this variation of internal
resistance.

A battery efficiency calculation formula is used to predict the SoC and SoH of the
battery. The conventional methods used for estimating battery SoC for BMS performance
improvements include deep neural network-based methods for error rating reduction [40],
extended Kalman filter (EKF)-based methods with the Thevenin model [41], particle swarm
optimization (PSO) [42], and hysteresis voltage of the open circuit voltage (OCV) [43].
Additionally, SoC and internal resistance estimation methods based on an unscented
Kalman filter (UKF) with analysis of model parameters [44] and estimation based on the
adaptive cubature Kalman filter (ACKF) with neural networks are proposed in [45]. In
addition, there are other related studies on SoC estimation, such as equivalent circuit model
(ECM)-based estimation with noise compensation [46], OCV error compensation based on
DNN [47], the open circuit voltage–charge amount (OCV-Q) curve fitting method using a
convolutional neural network (CNN) [48], the event-driven Coulomb counting method
(CCM) algorithm for unbalanced SoCs [49], and CCM based on modified parameters [50];
however, DNN- and KF-based methods require high computational power and an addi-
tional learning process. The OCV and CCM are primarily used to indicate the charging
state of a battery [51,52]; however, because OCV is used when the internal battery state
is stabilized, it is not sufficiently stable for a nonlinear battery [9]. Furthermore, because
another CCM calculates the SoC by accumulating the charge current, the CCM has the
disadvantage of increasing the SoC if an error occurs in the initial current measurement
value [53].

In this paper, an SoC estimation method combining OCV with CCM is proposed to
improve upon the drawbacks of both OCV and CCM. This estimation algorithm does not
require excessive computational power and can improve the estimation accuracy. The
proposed algorithm uses the OCV equation with the internal resistance and efficiency of
the battery. Additionally, the equation can calculate the charge-discharge of the battery by
accurately considering the initial value of the CCM by applying OCV while considering
the state of the battery.

Based on the battery efficiency formula, a formula that predicts the SoH of a battery
based on the charging time required to safely operate the battery is also applied to the BMS
algorithm to improve the reliability.

Research related to SoH estimation to improve BMS performance includes the multi-
layer perceptron (MLP)-based method [54], the self-adaptive weight particle swarm opti-
mization (SWPSO)-based estimation method using a dynamic recurrent neural network
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(DRNN) with the ability to conduct dynamic mapping [55], and the XGBoost-based estima-
tion method [56]. Additionally, a state estimation method combining the battery model
with a data-based method [57] and a voltage–power-curve-based estimation method [58]
has been researched. In [59], a more accurate SoH estimation method was proposed by
considering the charging time of the battery, although it did not consider the internal
resistance variation and showed estimation error; however, as the SoH estimated with-
out considering the internal resistance is incorrect, some researchers have considered it a
constant value [60,61]. Although the SoH is also predicted based on its constant current
(CC) charging time [62–64], the internal resistance and temperature [65] of a battery are
considered when a system is operated for a long time, while the accurate characteristics of
a battery cannot be numerically represented; however, this research used the battery effi-
ciency equation, allowing for a more accurate estimation of the battery state by numerically
defining the capacity reduction and the internal resistance of a battery.

The BMS measures the battery’s initial SoH and stores the value. The BMS stores the
current SoH by comparing the current values with the initial SoH based on the changing
values as the battery is used. According to the battery status, the temperature of the
battery arises and internal resistance increases along with it. Because of the increase in
the internal resistance, the SoH of a battery decreases and it takes less time to charge-
discharge the battery; therefore, the CC time period decreases. Based on this time period
difference among the charge-discharge cycles, the SoH estimation method is proposed in
this paper. The proposed SoH estimation method uses the integral value of the CC time
period difference among the charge-discharge cycles for more accurate SoH estimation. In
this paper, the battery efficiency equation is used to predict the SoH of a battery considering
the decrease in the CC charging time of the SoH due to the increase in the internal resistance
of the battery and the fact that the capacity of a battery decreases when it heats up.

An algorithm for predicting battery-related system safety and accurate SoC and SoH
by determining a battery fault using the battery efficiency equation is proposed.

The literature on the fault diagnosis of batteries shows that the estimated SoH method
is typically used. Many studies on battery fault diagnosis have focused on SoH estimation,
since it is a major part of fault diagnosis. For example, in [66], the fault diagnosis method
is based on the estimated SoH using the surface temperature of the battery, while fault
detection is performed using the SoH estimated based on a multilayer neural network
(MNN) in [67].

In this paper, a novel fault diagnosis algorithm that detects the fault state based on the
SoH and the efficiency of the battery is proposed for more accurate fault detection. With
the proposed method, the battery can be managed more safely because battery faults can
be detected beforehand, since the battery efficiency plummets in the fault state before the
SoH reaches its fault range.

In this study, we implement the SoC calculation combined with the OCV and CCM,
SoH based on the charging time, as well as a fault diagnosis algorithm in a 3 kW ESS.
Furthermore, the validity of the proposed BMS algorithm is investigated.

2. Battery Efficiency for Predicting Battery State

Figure 1 illustrates the factors affecting the performance of a battery.
As the number of charge-discharge cycles increases, a chemical reaction occurs in the

battery, causing aging, which reduces the SoH of the battery. Aging increases the internal
resistance of a battery and decreases its charge-discharge capacity. As the capacity of a
battery decreases, its charge voltage reaches the maximum value.

Identifying the occurrence of aging during the charge-discharge operation of a battery
requires determination of the magnitude by which its capacity decreases by calculating its
internal resistance or efficiency.

Although accurate modeling of a battery is required to understand its state, it is diffi-
cult to perform accurate modeling because of the nonlinear characteristics. Furthermore,
given the various factors for batteries, the system costs increase because the roles of the
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BMS managing the battery vary and the number of computations increases. This paper
proposes a battery efficiency calculation formula that considers the internal resistance,
which significantly affects the performance of a battery, as well as a system that considers
the nonlinear characteristics.

Figure 1. Factors affecting the state of a battery.

Figure 2 shows an ESS system, in which the proposed algorithm was implemented.
The ESS consisted of a battery system and a power conversion system (PCS). The battery
system consisted of a battery and a BMS. The ac-dc of the PCS comprised a two-level
converter that was easy to control with high efficiency, while the dc-dc comprised a full-
bridge converter [68].

Figure 2. Proposed ESS configuration diagram.

Figure 3 illustrates the BMS configuration of the battery system. The BMS received
data regarding the battery voltage, current, and temperature and predicted the SoC and
SoH. Furthermore, the data were transmitted using controller area network (CAN) com-
munication. When any abnormalities occurred in the battery voltage, current, or state,
the charge-discharge state of the battery was cut off to protect it. Furthermore, the BMS
provided a protection function to secure the battery safety when an abnormality in the
battery temperature occurred [69]. By applying the proposed algorithm, the BMS sensed
the battery voltage, current, and temperature; accumulated data; calculated the battery
efficiency; and predicted the SoC and SoH. In addition, battery’s efficiency protected it in
from faults.
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Figure 3. Proposed BMS configuration diagram.

3. ESS Considering Battery Efficiency

Figure 4 illustrates the proposed EMS algorithm and shows a day-ahead EMS algo-
rithm based on the proposed battery management algorithm.

Figure 4. EMS charge-discharge algorithm according to time.

The ESS supported the grid by discharging during the daytime (when there are many
power users) and charging at night. During the charge-discharge process, the proposed
algorithm could sense the battery state through CAN communication using the BMS
algorithm and proceeded with charging. If the SoC of the ESS battery was below 80%, the
battery was charged, while if it was above 80%, charging was terminated. The minimum
and maximum values of the battery SoC could be redefined by the user, and this paper
defines the operational SoC as that defined between 20% and 80%. After charging, if the
power required by the grid increased, the ESS proceeded with discharging. Furthermore,
the ESS used an algorithm that terminated the discharging of the battery when the SoC
dropped below 20%.

The EMS algorithm is an algorithm for the charge-discharge process of a battery, which
ensures high safety when connected with the BMS. The paper did not separately consider
the system fault diagnosis performed by the EMS because the EMS algorithm was proposed
considering the battery state; however, further studies are necessary to investigate the fault
diagnosis and response in EMS, which are critical factors affecting the charge-discharge
process required for the grid.
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3.1. Proposed BMS Algorithm

The ESS, which charges and discharges energy from a battery, is directly affected by
battery performance; thus, a BMS that manages and protects the battery and communicates
with the outside is critical.

One of the problems in nonlinear batteries is that their internal characteristics change
based on the number of charge-discharge cycles; thus, the primary goal of a BMS is to
accurately follow these changes.

This paper proposes a method to improve battery safety and performance based on
the reduction in its efficiency (which occurs during battery use), derive a battery efficiency
equation, and apply it to calculate and predict the SoC and SoH of the battery. Furthermore,
based on the battery efficiency calculation, this paper proposes an algorithm for terminating
the use of the battery and diagnosing faults.

Figure 5 illustrates the proposed BMS algorithm. The proposed BMS algorithm can
sense the battery voltage, current, and temperature and calculate its efficiency. When the
efficiency of a battery is calculated, its charge-discharge current is measured to determine
whether the ESS is in the charge-discharge state. When the ESS is charged or discharged,
the SoC is calculated using the combination of the OCV and CCM.

Figure 5. BMS algorithm that considers the battery efficiency.

When the ESS is not in the charge-discharge state, the SoC of the battery is reset to
increase the accuracy of the initial value of the SoC.

At the end of the charging and discharging operation of the battery, the charging
power Pcharging or discharging power Pdischarging is measured to estimate battery loss and
internal resistance for the next cycle. As a day-ahead EMS was used in this paper, one cycle
represents a day of operation; therefore, the internal resistance of the battery was estimated
based on the difference between the charging and discharging energies for a day.
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After the charge-discharge process, the SoH, to which the battery efficiency was
applied, was calculated and predicted to improve the battery safety and performance.

Battery Efficiency

Battery efficiency can be used as an indicator of the current usage time compared to
the initial time. A battery efficiency equation was proposed to express the relationship
between the capacity and voltage of the battery model. Because the internal resistance of
a battery affects the battery output, the battery’s internal resistance must be accurately
calculated.

The internal resistance of a battery is the key indicator of its state. The internal
resistance of a battery increases with an increase in the heat generated during the charge-
discharge of the battery.

Figure 6 illustrates the current capacity of the ESS with aging.

Figure 6. The current capacity of a battery during aging.

As the battery aged, its internal resistance increased and the current capacity decreased,
which significantly affected the performance of the ESS when the capacity was large.
Furthermore, the use of a battery with reduced performance causes overcharging and
overdischarging, which limits battery safety.

The current battery capacity is the amount of current that a fully charged battery can
discharge for one hour. Compared to a battery in the birth of life (BOL) state, an aging
battery, upon discharge, reaches the terminal voltage limit faster because of its reduced
current capacity.

The efficiency of a battery decreases when it is used. As a battery shows the maximum
efficiency at the initial state, its efficiency can only decrease when it is in operation.

Equation (1) defines the efficiency of a battery. The efficiency of a battery ηbat can be
expressed by subtracting the battery loss ηloss from the initial battery efficiency, 100%.

As the decrease in the efficiency can be expressed as the increase in the internal
resistance, ηloss can be calculated based on the charging and discharging powers, as shown
in Equation (2).

Ibat is the charge-discharge current, R is the battery’s internal resistance, and Vbat is
the battery voltage.

ηbat = 100 − ηloss (1)

ηloss =
I2
bat × R

Vbat × Ibat
(2)

In this case, the charge-discharge current of the battery can be represented by Equa-
tion (3).

During the charge-discharge of a battery, the current can be calculated as the amount
of charge (battery capacity) and the C-rates at which the battery has been charged or
discharged over time. Qbat is the battery capacity, while t is the charge-discharge time of
the battery. Equation (3) uses the electric charge equation.

Equations (2) and (3) give the total loss in battery efficiency, as represented in Equa-
tion (4). Using Equation (4), the battery loss equation, as well as Equation (1), the battery
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efficiency can be calculated. Equation (4) can be used to determine the internal resistance
of a battery. Equation (5) gives the internal resistance of the battery. In this paper, as the
charge-discharge process progressed, the battery efficiency decreased.

Ibat =
Qbat

t
(3)

ηloss =

(

Qbat
t

)

× R

Vbat
(4)

R =
ηloss × Vbat × t

Qbat
(5)

3.2. Improved SoC and SoH Prediction Method

A battery protection system monitors the battery state and prevents it from overcharg-
ing and overdischarging, improving its safety and performance. The performance of a BMS
is evaluated based on how accurately it predicts the SoC and SoH of the battery [34].

CCM is used to track the SoC with the value calculated by integrating the current
during the charge-discharge of the battery to the initial value of the SoC; however, because
the current is accumulated to the initial value of the CCM, errors are accumulated if the
precise initial value is unknown [70,71]. Because errors gradually increase, the paper
propose following the SoC with an improved method combining the OCV and CCM to
improve the initial value.

Equation (6) expresses the voltage calculated using the open circuit voltage formula of
the battery through Equation (5). The battery state can be more accurately predicted using
the internal resistance obtained through Equation (5) and the OCV of the battery.

The final CCM is depicted in Equation (7). The accuracy of the prediction of the
battery state can be improved by applying the internal resistance value derived from the
battery efficiency equation to the conventional CCM. SoC(t) is the SoC at time t, SoC(t−1)
is the initial SoC, Cn is the battery capacity, and Vocv is the battery voltage in the open
state [72,73].

SoC(t − 1) = Vocv +

(

Ibat ×
ηloss × Vbat × t

Qbat

)

(6)

SoC(t) = SoC(t − 1) +
∫ t

0

I(t)

Cn
dt (7)

SoH, which is an indicator of the battery life time, is essential for managing the battery
charge-discharge process. Various models for predicting SoH have been proposed to
improve the battery safety and performance. The standard method predicts the life time of
a battery by analyzing it according to the chemical principle of the battery and through
mathematical or physical modeling [74–76]; however, these methods do not consider the
internal resistance of a battery, which significantly affects its life time.

Figure 7 illustrates the constant current–constant voltage (CC–CV) charging curve of
a battery.

Figure 7. Voltage and SoH of a battery during charging.
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A battery is typically charged through the CC–CV [77]. Whenever the battery is
charged, its CC charging time decreases, while the CV charging time increases. As the bat-
tery charging proceeds, the battery temperature increases and internal resistance increases,
resulting in a decrease in its SoH.

Figure 8 shows the discharge characteristics of a battery.

Figure 8. Voltage and SoH of a battery during discharging.

As in the charging cycle, the time to reach the cut-off voltage is also reduced during
charging because the SoH decreases as the temperature and internal resistance of the
battery increase, as shown in the charging curve.

This paper considered the internal resistance of a battery, which significantly affects
the SoH, to propose a method for predicting the battery SoH based on the charging time
after the charge-discharge process. Although previous studies [62,64] did not accurately
predict the internal resistance value, they numerically derived and applied the internal
resistance value based on the battery efficiency.

To calculate a battery’s SoH, the equation should be rearranged by t using the SoC
derived from Equations (6) and (7) after the SoC charge-discharge process, resulting
in Equation (8). By applying the internal resistance equation derived from the battery
efficiency equation, the charge-discharge time is compared based on the charge-discharge
cycle of the battery. Here, tafter is the time after the charge-discharge process, which can
be used to predict the battery SoH using the battery characteristics by comparing the
values after the charge-discharge process (Equations (8) and (9)). SoHafter is the SoH of
the battery compared to the time after charging and discharging. The SoH of the battery
can be predicted using the charge-discharge time of the battery. Here, tbefore is the battery
charge-discharge time before tafter.

ta f ter =
Cn × (SoC(t)− Vocv − ηloss × Vbat)

Ibat
(8)

SoHa f ter =
ta f ter

tbe f ore
× 100% (9)

3.3. Method Used to Diagnose Battery Fault

Figure 9 illustrates the proposed battery fault diagnosis algorithm.
The fault diagnosis algorithm considers two situations. After the battery information

is sensed through the BMS and the battery efficiency is evaluated regarding whether the
value corresponds to the over range, charging proceeds. If the battery efficiency is not
higher than the over range, the charge-discharge process is performed; however, if the
battery efficiency is higher than the over range and the battery SoH is 40% or less, the
charge-discharge process is terminated.

This over range value changes depending on the battery state, battery type, and other
factors, and this value should be set before the operation. In this paper, the fault state was
set when the efficiency was below 80% and the SoH was below 40%.
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Although the battery’s charge-discharge SoC is used correctly at 0–100% for the ESS,
in this paper, the SoC was charged at 20–80%, the optimal operation region for lithium-ion
batteries from a safety viewpoint. Furthermore, the SoH was subjected to charge-discharge
cycles up to the maximum region of the battery. Charging was terminated based on the
experimental requirements and safety considerations—when the SoH reached 40% or
less—to confirm the disposal of the battery through a signal.

Figure 9. Proposed fault diagnosis algorithm.

The BMS senses the final output values of Equations (1) and (9), then a charge-
discharge termination signal is transmitted through CAN communication if the value is
within the over range. The paper predicted the correct battery state through BMS and
diagnosed the fault using the proposed method during the charge-discharge process to
propose a BMS algorithm for an ESS that uses a large battery capacity.

4. Experiments to Verify the Proposed Algorithm

A 3-kW ESS was implemented to verify the BMS algorithm of the ESS considering the
battery efficiency.

The BMS algorithm proposed in this paper was applied to the ESS and the battery
efficiency was tested during the charge-discharge process by charging several battery
modules.

The internal resistance calculated from the battery efficiency was applied to the SoC.
Then, the OCV, CCM, and proposed algorithm were compared and the SoC was confirmed
in the case of a battery fault. The charge-discharge cycle was performed by converting the
SoC calculated from the internal resistance of the battery into the charging-discharging
time. Furthermore, the termination of the charge-discharge cycle was confirmed through
the connection between the ESS and BMS in the case of a fault. In the additional part of the
algorithm, the total efficiency of the ESS was further confirmed to verify its validity.

Figure 10 illustrates the ESS experiment hardware used in this paper, while Table 1
lists the experiment parameters. The PCS of the ESS consists of a two-level inverter, a full
bridge converter, and a master controller. The output side comprised three lithium-ion
battery modules (1 module: 24 cells × 4.2 V) and a BMS. The experiment was conducted
using an oscilloscope and a laptop computer to confirm the operation.
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Figure 10. ESS hardware configuration for the application of the proposed algorithm.

Table 1. ESS experimental parameters for the application of the proposed algorithm.

Parameter Symbols Values Units

Rated power PESS 3 kW
Input voltage Vac_in 220 Vac

DC link voltage Vdc_link 400 V
Output voltage Vdc_out 96 V
Output Current Idc_out 30 A

Switching frequency facdc 40 kHz
Switching frequency fdcdc 100 kHz

For the battery efficiency experiment, battery efficiency was confirmed by the charge-
discharge of a faulty battery module and a normal battery module.

The profiling of the battery was carried out in four steps. The data were confirmed in
the order of (1) securing the charge-discharge data, (2) deriving an equation through curve
fitting, (3) performing the charge-discharge cycle, and (4) extracting the target data from
the implemented correlation equation.

An experiment battery was proposed to verify the battery efficiency by configuring
the battery with three modules and assigning modules 1 and 2 as the normal batteries and
module 3 as the battery subjected to repeated charge-discharge cycles.

Figure 11 illustrates the efficiency graph of the battery module.
During battery charging, the difference in the final internal resistance values of the

battery was confirmed, as depicted in Figure 11. If a specific range was set during the
charge-discharge cycle for testing, the change in the state of the battery caused by aging
was detected.

The battery efficiency test revealed a significant change in the efficiency of the battery
after investigating the changes in the efficiency of the faulty or abnormal batteries that
occurred during the charge-discharge cycle of the ESS and those of the normal battery. The
difference between the efficiencies of the faulty (aged) and normal batteries was 38.4%.
The results suggest that the battery efficiency of the proposed algorithm could be applied
for predicting the SoC and SoH, which requires improved accuracy, while the change in
the internal resistance (which has the greatest impact on the battery state) could also be
applied to increase the accuracy of the battery state prediction.
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Figure 11. Battery efficiency difference profile graph according to battery power.

Figure 12 and Table 2 illustrate the SoC profile of the battery to which the proposed
battery efficiency equation was applied.

Figure 12. SoC comparison profile graph.

Table 2. SoC profile of the batteries according to the algorithm.

Algorithm 0 s 1080 s 2160 s 3240 s 4320 s 5400 s 6480 s 7560 s 8460 s 9720 s 10,800 s

OCV 20.3% 30.1% 32.1% 31.5% 43.5% 49.1% 54.1% 60.8% 77.3% 72.1% 80%
CCM 20.3% 25.3% 30.1% 35.8% 40.3% 46.3% 57.2% 64.2% 70.8% 78.2% 80%

Proposed 20.2% 25.1% 30.6% 36.1% 40.7% 46.8% 58.2% 65.1% 70.9% 80.3% 80%

All three normal battery modules were discharged up to 20% and charged up to 80%
of the maximum SoC.

By applying the battery efficiency, the OCV, CCM, and proposed SoC algorithm could
be compared.

The SoC profile was confirmed using the proposed algorithm.
To confirm the SoC calculation, the OCV and CCM were compared with the proposed

SoC calculation algorithm. The CCM was charged after accurately determining the initial
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value. The OCV could not accurately determine the SoC during charging. The CCM and
proposed SoC operation seemed to accurately calculate the SoC; however, when using the
actual CCM, the user could not directly and accurately set the initial value. As such, using
the algorithm proposed in this paper, the SoC can be determined more accurately.

Figure 13 illustrates the SoH profile to which the proposed algorithm was applied,
while Table 3 presents the CC termination time based on the battery state.

Figure 13. SoH profile with CC charging time, to which the battery efficiency was applied.

Table 3. SoH table for three battery modules to which the battery efficiency was applied.

Parameter
Charging Time

(Before)
Charging Time

(After)
∆SoC

Module 1 10,740 s 10,610 s 0.02%
Module 2 10,760 s 10,700 s 0.01%
Module 3 10,740 s 7430 s 31%

50 cycles were charged and discharged at 0.3 C-rate, and CC charging time was
compared in the 51st cycle.

The battery was charged by applying the internal resistance to which the battery
efficiency was applied. The results demonstrated that the CC charging time of the module
decreased when the battery failed or had other problems.

Equation (10), which compared the SoH profiles obtained using the three methods
investigated, confirmed that the SoH prediction was possible based on the CC termination
time of the battery. The ∆SoH is the amount of change between SoHbefore and SoHafter, while
SoHbefore is the SOH before SoHafter.

∆SoH =

(

1 −
SoHa f ter

SoHbe f ore

)

× 100 (10)

It is difficult to accurately diagnose faulty batteries based on environmental changes,
such as battery aging. Because the characteristics of the battery vary when a cell comprises
modules, the internal resistance and capacity deviation occurs, causing overdischarge; thus,
because the safety and energy efficiency of the battery system is significantly reduced, in
this paper we diagnosed the battery state using two methods, whereby faulty batteries
were diagnosed based on when the (1) battery efficiency and (2) SoH battery efficiency
were reached.

Figure 14a shows the charging voltage and current waveform at the time of a fault
signal, while Figure 14b is the discharge voltage and current waveform at the time of a
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fault signal. Figure 14 illustrates the fault signals when the battery efficiency is reduced
and the SoH is 40% or less. If a fault is detected, the charge–discharge cycle of the battery is
terminated with the general purpose input output (GPIO) signal, which cuts off the battery
MC through the BMS. The main controller then terminates the pulse width modulation
signal, causing the ESS to enter into a stop state.

Figure 14. Waveforms for battery fault diagnosis: (a) charging voltage and charging current waveform; (b) discharging
voltage and discharging current waveform.
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Figure 15 illustrates the efficiency waveform of the ESS when the system was imple-
mented by applying the proposed algorithms.

Figure 15. ESS efficiency waveform when the proposed algorithm was implemented.

The efficiency of ESS is caused by the decrease in the difference between the power
consumed by charging and the power generated by discharging; therefore, the operating
cost for using the battery increases. Efficiency was measured when applying the proposed
EMS and BMS algorithms. When the algorithm proposed in this paper was applied, the
maximum efficiency was 97.57%.

This paper proposes a BMS algorithm for an ESS. To apply the BMS algorithm to
the ESS, the experiment was conducted by deriving the internal resistance of the battery
from its efficiency. Moreover, the increase in battery state accuracy was verified through
experiments by applying the battery efficiency to the SoC with the OCV and CCM and the
SoH considering the charging time. Furthermore, increased safety through the diagnosis of
faulty batteries was verified through experiments.

5. Conclusions

In this paper we proposed a BMS algorithm that considers battery efficiency. The
algorithm was applied to an ESS to improve the battery safety and performance. The
algorithm proposed in this paper was divided into three parts.

First, the efficiency of the battery was used to estimate the state of the battery. The in-
ternal resistance of the battery was estimated based on the difference between the charging
and discharging power to obtain the value of the variable internal resistance. The variation
in the internal resistance was confirmed by the experimental results, which showed the
increase in the charging-discharging power difference during the battery’s operation.

Second, the SoC and SoH estimation methods were proposed. For SoC estimation, the
method of combining OCV and CCM with the estimated battery states was proposed to
compensate for both low initial estimation accuracies of CCM and incorrect estimation of
OCV. An SoH estimation algorithm based on the charging time was also proposed. This
proposal was based on the fact that an increase in the temperature of a battery results in an
increase in its internal resistance and a decrease in the CC charging time. This charging time
decrement according to the internal resistance variation was confirmed in the experiment.
Based on the estimated SoH, the battery lifespan estimation method, which observes the
charging-discharging SoH difference for a long period of time, was proposed. Additionally,
the proposed method is more flexible than conventional methods, since it does not require
any additional analysis of different kinds of battery cells for SoH estimation.
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Third, this paper proposed a battery fault diagnosis algorithm that aims to improve
battery safety. Using this method, faults are diagnosed through efficiency and SoH, and
this fault diagnosis algorithm was validated through experiments.

In conclusion, accurate SoC and SoH estimations were proposed by applying battery
efficiency to the estimation process. The estimated SoC and SoH were used to improve not
only the performance of BMS but also the battery safety via a fault diagnosis algorithm
with accurate SoH estimation.
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Abstract: This work presents an ultra-low-power CMOS supercapacitor storage unit suitable for a
plethora of low-power autonomous applications. The proposed unit exploits the unregulated voltage
output of harvesting circuits (i.e., DC-DC converters) and redirects the power to the storage elements
and the working loads. Being able to adapt to the input energy conditions and the connected loads’
supply demands offers extended survival to the system with the self-startup operation and voltage
regulation. A low-complexity control unit is implemented which is composed of power switches,
comparators and logic gates and is able to supervise two supercapacitors, a small and a larger one, as
well as a backup battery. Two separate power outputs are offered for external load connection which
can be controlled by a separate unit (e.g., microcontroller). Furthermore, user-controlled parameters
such as charging and discharging supercapacitor voltage thresholds, provide increased versatility to
the system. The storage unit was designed and fabricated in a 0.18 um standard CMOS process and
operates with ultra-low current consumption of 432 nA at 2.3 V. The experimental results validate
the proper operation of the overall structure.

Keywords: energy harvesting; on-chip integration; power management; supercapacitor; storage unit

1. Introduction

With the emergence of the Internet of Things (IoT) concept, the number of intercon-
nected devices is rapidly growing. An issue that arises is the power autonomy of the
nodes. Often, the energy harvesting concept is adopted [1]. The main idea is that ambient
energy is harnessed and converted to electrical energy in order to power up the connected
electrical loads. The most used environmental sources are light, heat, RF energy and
mechanical stresses, exploited by piezoelectric or triboelectric devices [2–7]. Considering
that an autonomous system should be functional, even in periods of input energy absence,
the integration of an energy storage unit is crucial.

The type of the comprised storage medium should be carefully considered. Batteries
offer very high storage capacitance (high energy density) but low power density, elevated
cost and limited charge/discharge cycles. On the other hand, supercapacitors have nu-
merous benefits, such as high-power density and long lifetime, with low degradation
between charging cycles, however, they present lower storage capacitance [8]. Hybrid
energy storage solutions, which exploit the benefits of both types of storage devices, have
been proposed [9]. The most common approach relies on a battery for long-term energy
storage, combined with a supercapacitor element, connected to the power output. This
way a storage scheme is created, which presents all the advantages of the battery and also
high-power density for short periods of time. Such circuits find use in multiple applica-
tions, such as healthcare assistive tools [10], DC microgrids deployment [11] and electric
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vehicles [12]. A similar approach employs a battery at the power output and makes use of
a bidirectional voltage converter and a supercapacitor to increase the power density of the
energy storage unit. This concept is often adopted in energy harvesting applications for
autonomous nodes [13–15]. However, the above works are discrete and bulky solutions.
Since today’s world demands miniature implementations for portable devices, on-chip
integration becomes imperative.

Based on the energy availability conditions (continuous or interrupted) the integration
of a battery can be omitted. In the case of continuous energy flow, a battery-less scheme can
be used. A relative work is a four-supercapacitor CMOS storage bank, which offers high
energy utilization [16]. In case of interrupted energy flow, the supercapacitors are not able
to provide long-term storage, and a battery should be used. However, the simultaneous
integration of a supercapacitor, along with the necessary control circuit, besides increasing
the output power density, can also significantly extend the life expectancy of the battery,
minimizing its charge/discharge cycles. Such an approach is presented in [17] where the
proposed unit utilizes additional switching voltage conversion circuits (i.e., charge pumps)
for the battery charging and discharging operations, which offer high power conversion
efficiency but present limited working power range and increase the volume of the system.

In this work, a novel ultra-low-power integrated storage unit is proposed, suitable
for a plethora of energy harvesting autonomous applications (Figure 1). This design is
an improved and more versatile version of previous work [18] and presents experimental
results. It can be connected to the output of various energy harvesting circuit types (DC-DC
converters, charge pumps, etc.) and transfer the harvested energy to the storage media,
providing regulated voltage supply to the internal control units of the harvesting circuit
and the output loads (e.g., low-power sensors).

Figure 1. Block diagram of an energy harvesting system.

The proposed unit achieves minimization of the internal power consumption, deploy-
ment area and design complexity. The main storage element is a supercapacitor of small
value, while a second larger supercapacitor can be used to provide energy to high-power
modules. Depending on the energy availability conditions (continuous or interrupted),
a backup battery can be used to avoid the energy starvation of the system during time
periods of low input energy. Any type of battery can be used, depending on the use case
application. Due to technology restrictions of the proposed unit, its maximum voltage
must not exceed 3.6 V. For example, in Section 5.1, two 1.2 V Ni-MH AAA batteries are
used to validate the unit’s operation.

The proposed unit provides self-startup operation and sub-µW consumption, highly
desired properties that contribute to high energy utilization and power autonomy of
the applied harvesting system. Furthermore, it presents enhanced adaptability since it
can be integrated into a wide range of energy harvesting systems, considering that the
control parameters (supercapacitor thresholds, produced supply voltage) can be modified
by the user. Moreover, significant versatility is offered, since external control, e.g., a
microcontroller unit, can be added to the topology.

This paper is organized as follows. Section 2 presents the proposed supercapacitor
storage unit and its operational principle. Section 3 describes the control logic of the unit.
Sections 4 and 5 show the simulated and experimental results, respectively. Section 6
discusses the utilization of the storage unit in wireless sensor nodes (WSN) applications.
Finally, Section 7 concludes this paper.
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2. Proposed Topology and Operational Principle

The proposed storage unit is comprised of two supercapacitors, a small (SCsmall), a
larger one (SCbig) and a backup battery (Figure 2). The small supercapacitor is mandatory
since it is the main storage element that provides power to the control unit. The large
supercapacitor and the battery elements are considered optional and their integration on
the unit depends on the needs of each specific application.

Figure 2. The topology of the proposed energy storage unit.

Specifically, SCsmall provides a regulated supply voltage with a 50 mV voltage ripple
for the internal control circuits of the energy harvesting system and power output for
connection of external loads (e.g., sensors, processing units, low-range RF modules). The
50 mV voltage ripple is selected to minimize the switching frequency — hence the power
consumption — and at the same time, it is considered safe for most load types. SCbig
offers an extra unregulated output to the system, for more power demanding loads (e.g.,
wide-range RF modules, GSM modules), since many off-the-shelf components operate in a
wide supply voltage range. The voltage window of this output can be adjusted by the user
regarding the specifications of the connected module, with a minimum window of 200 mV.
To ensure the extended survival of systems that their continuous operation is critical a
backup battery can be connected to the unit. Finally, a bleeder resistor is used to protect
the system from excess input energy, which is activated whenever the supercapacitor(s) are
fully charged.

The flowchart depicted in Figure 3 summarizes the operational principle of the unit
which is described as follows:

Self-Startup: PMOS switches are used to control the charging of the supercapacitors
(i.e., switches S1, S2 in Figure 2). Initially, all control signals are at zero potential since
the control unit is inactive. Thus, the PMOS switches are ON, and energy is provided to
both supercapacitors. As soon as the small supercapacitor voltage (VSCsmall) reaches a
sufficient level, the control unit is activated, monitoring the charging of the supercapacitors.

Charging: Initially, the SCsmall supercapacitor starts to charge through switch S1.
Meanwhile, SCbig remains disconnected as the main objective is the power-up of the
system. The charging process continues until VSCsmall reaches a maximum threshold
(Vmax1). At this state, SCbig begins to charge. The charging of SCbig continues until its
voltage level reaches a high threshold value (Vmax2), but only if VSCsmall remains within
a small voltage window (i.e., ∆V1 = Vmax1 − Vmin1 = 50 mV). This way, SCsmall has
always charging priority and supply voltage regulation is achieved for the system internal
control unit.
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Figure 3. A flowchart of the proposed system operational logic.

Loads Connection: Two power outputs are available for load connection. A light load
can be connected to SCsmall through the switch S1_load. Granted that VSCsmall is above
Vmin1, the load supply can be enabled. Power demanding modules can be connected
to SCbig. If VSCbig is higher than a lower threshold (Vmin2), the load can be supplied
through switch S2_load.

Preservation: In the worst-case scenario, where input energy is not available, a backup
battery can provide energy to SCsmall in order to sustain the operation of the system. If
needed, the unit can be configured to provide energy to SCbig as well. The battery support
is triggered if the supercapacitor’s voltage level drops below the predefined thresholds,
Vlow1 and Vlow2, respectively. These thresholds are set lower than Vmin1 and Vmin2,
to avoid unnecessary battery activation and the external loads enabling during energy
starvation periods. The charging priority feature is also applied here.

Protection: When the supercapacitors are fully charged, a bleeder resistor is connected
to the input in order to dump any excess input energy and protect the system from
overvoltage stresses.

External control: The charging and discharging thresholds for the supercapacitors
are externally selected using resistor dividers. Large value resistor networks should be
utilized, for ultra-low power consumption. Alternatively, digital-to-analog converters can
be used along with a microcontroller unit (MCU), to dynamically change the thresholds, or
even deactivate unnecessary modes by monitoring the available energy and voltage level
at the input. Finally, the load outputs can be enabled or disabled by the MCU, through the
en1 and en2 pins.

The selection of the supercapacitors values should be based on the needs of each
specific application and be decided according to the available input energy and the load’s
demands. For instance, if long starvation periods are expected, large supercapacitors should
be used, which may increase the required start-up time but will secure the extended survival
of the system. Generally, demanding loads that can draw large instant currents during
activation (e.g., wide-range RF transmitters) should be connected to SCbig. For SCsmall, a
relatively low capacitance is recommended, as it provides fast startup to the system. Finally,
for ultra-low-power systems the leakage current of the selected supercapacitors should be
considered.

In the proposed design the maximum input current is set to 500 mA and the maximum
output current is set to 100 mA. The working voltage thresholds of both supercapacitors
can be set anywhere between 1.2 V and 3.6 V.
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3. Implementation of the Control Unit

The control circuit of the proposed storage unit, composed of comparators, logic
gates and power switches, is depicted in Figure 4. The power switches are implemented
with 10,000 um/0.30 um 3.3 V PMOS transistors, which present low on-resistance and
sufficient response time. The power switch’s length is set to a minimum in order to present
a small layout area. A bulk regulation circuit is added on S1 and S2 switches to prevent
supercapacitors from discharging towards the input. To supervise the voltage levels of
the storage media, low-power comparators are designed, utilizing resistive MOSFETs and
nA bias current (Figure 4). The topology of the used comparator [19] creates a hysteresis
window (∆V) which can be implemented by adjusting the cross-coupled (M5, M6) and
diode-connected (M3, M4) transistors aspect ratio as follows:

∆V = ±
1 −

√

(W/L)5,6/(W/L)3,4
√

1 + (W/L)5,6/(W/L)3,4

Vovdi f f pair
(1)

where W is the width of each transistor, L is the length of each transistor and Vovdiffpair is
the overdrive voltage of the differential pair of the comparator. Thus, by properly selecting
the values of the transistors’ widths, the desired hysteresis window can be achieved.
Specifically:

Figure 4. Control logic and comparator design.

For SCsmall, a comparator with a 50 mV hysteresis window (comp1) is designed. It
controls the charging and discharging mode of the supercapacitor through switches S1 and
S1_load respectively. This small hysteresis window provides regulated supply voltage for
the internal circuits of the harvesting system, with low voltage ripple as well as protection
from excessive switching. Additionally, pin en1 is available for external control of the load
connection via the S1_load switch (Vout1).

The SCbig charging mode is also supervised by a 50 mV hysteresis window comparator
(comp2). Additionally, a 200 mV hysteresis window comparator (comp3) controls the SCbig
discharging, via the output switch, S2_load. Since two different comparators are used
for the charging and discharging mode of SCbig, the output voltage window (Vout2) can
be adjusted to the load needs, with a minimum ∆V2 of 200 mV. For a 5 F capacitor and
100 mA load current the frequency of the voltage ripple is extremely low (<1 mHz). This
supply voltage ripple is acceptable for many off-the-shelf components (e.g., MSP430i204x
MCU, etc.). As external control is offered (pins en1 and en2), the supply of the loads can be
enabled or disabled as needed. Otherwise, the enable pins can be tied to low (inactive) or
high (active) potential.

Two additional comparators (comp4 and comp5), monitor VSCsmall and VSCbig
voltage levels and activate the battery support if one or both supercapacitors are critically
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discharged. The S4 switch closes, and the battery provides energy to the supercapacitor in
need. The bleeder mode (switch S3) is triggered only in case that both supercapacitors are
fully charged.

The combination of the comparators signals along with the external enable signals, is
implemented with digital logic circuits (NAND, AND, NOT gates) which are also custom-
designed with resistive transistors, to further decrease the power consumption of the
control unit.

The voltage thresholds are determined by external voltage divider networks (Figure 4),
with multiple voltage tapping points. A fraction of VSCsmall or VSCbig is compared with
a stable voltage reference. Since bandgap voltage references are too power-demanding
for low-power applications, a 1.08 V voltage reference circuit was implemented, which is
based on the circuit presented in [20], with pW power consumption.

4. Simulation Results

In order to verify the operation of the proposed storage unit, simulations were carried
out via the Cadence Virtuoso suite. The input voltage of the storage unit was set to 2.4 V,
emulating the output voltage of a harvesting circuit, i.e., a step-up DC-DC converter. The
charging and discharging voltage thresholds of the supercapacitors were set as follows:

Vmax1 = 2.3 V Vmin1 = 2.25 V Vlow1 = 2.15 V
Vmax2 = 2.3 V Vmin2 = 1.8 V Vlow2 = 1.6 V

(2)

The voltage levels in (2) were implemented with voltage dividers, each with a total re-
sistance of 82 MΩ. An AVX BZ015A104Z_B Bestcap supercapacitor of 100 mF was selected
as SCsmall and an SCMT22C505PRBA0 supercapacitor of 5 F as SCbig. To extract realistic
results, ESR and leakage resistors were added to the schematic models, according to the
supercapacitors datasheets. Figure 5 shows the charging mode when both supercapacitors
are fully empty. At startup, a 350 mV early-state charging phase is observed for SCbig,
due to the insufficient power supply of the control unit. The duration of this phenomenon
depends on the available input power as well as the selected supercapacitors values and
their leakage current. For the components under consideration, the charging of SCbig stops
after approximately 100 ms.

Figure 5. Supercapacitors charging mode and startup (inset).

The supply of the output loads is depicted in Figure 6a,b. A 100 Ω resistor is con-
nected to Vout1 and a 22 Ω resistor to Vout2, drawing approximately 20 mA and 100 mA,
respectively. As shown, the loads are connected when the voltage levels of the superca-
pacitors exceed the minimum thresholds. Figure 7a presents the activation of the bleeder
resistor. Figure 7b shows the battery support mode. The battery input voltage is set to 2.5 V,
providing energy to the critically discharged supercapacitors, with the defined charging
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priority. The SCsmall is recharged to the higher desired voltage (i.e., 2.3 V) to provide
proper operation to the internal control circuits, while SCbig voltage is maintained to the
minimum threshold (i.e., 1.6 V) to avoid unnecessary usage of the backup battery.

Figure 6. Connection of the external loads according to the predefined voltage thresholds of the supercapacitors. The output
loads are disconnected in low-input energy conditions to preserve the operation of the system. (a) SCsmall voltage level
and Vout1 load output. (b) SCbig voltage and Vout2 load output.

Figure 7. (a) Bleeder mode activation. The bleeder mode is activated only when both supercapacitors are fully charged. (b)
Battery energy support. Initially, the battery charges both supercapacitors. SCbig charging stops when its voltage reaches
the lower voltage threshold (1.6 V). SCsmall is charged to its high threshold (2.3 V).

The simulated total current consumption of the storage unit is 374 nA at 2.3 V. The
voltage dividers of the comparators consume 56 nA (28 nA each) and the integrated control
circuit draws 318 nA.

5. Experimental Results

The proposed self-adaptive storage scheme was implemented in a 0.18 um standard
CMOS process. The physical design and the chip die are shown in Figure 8. The control
unit layout occupies a low die area of 125 um × 50 um.
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Figure 8. Physical design of the unit and the fabricated die.

5.1. Laboratory Measurements

To test the fabricated design, laboratory measurements were carried out using a digital
oscilloscope (RIGOL DS1052E), as depicted in Figures 9–11. Voltage dividers with a total
resistance of 82 MΩ were utilized for the thresholds of the comparators, according to
Equation (2). Additionally, the AVX supercapacitors mentioned in Section 4 were used. A
voltage source unit provides 2.4 V to the storage scheme input.

Figure 9 demonstrates the supercapacitors charging mode. Initially, SCsmall begins
to charge and only when it is fully charged at the voltage of 2.3 V determined from the
thresholds of the comparators, SCbig is connected at the input. As shown, the early-state
charging of SCbig stops at about 50 mV, lower than the simulation result, and the overall
charging duration is longer. These phenomena are due to the charging path resistance (i.e.,
chip pins and breadboard PCB resistance), which reduces the charging current. The peak
current drawn is 2.1 A in the simulation, while its experimentally measured value is 0.45 A.

Figure 9. Oscilloscope view of SCsmall (CH1) and SCbig (CH2) voltage signals during charging
and startup (inset), following the predefined charging priority feature. The SCbig supercapacitor is
connected to the input only when SCsmall is fully charged at 2.3 V.
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Figure 10. Oscilloscope view of (a) SCsmall voltage (CH1) and Vout1 (CH2) load output. (b) SCbig voltage (CH1) and
Vout2 (CH2) load output. The output loads are disconnected in low-input energy conditions to preserve the operation of the
system.

Figure 11. (a) SCsmall voltage (CH1), SCbig voltage (CH2) and bleeder output (CH3) during bleeder mode activation.
(b) SCsmall voltage (CH1), SCbig voltage (CH2) and battery input (CH3) during battery energy support.

The load’s connection modes are depicted in Figure 10a,b. A 100 Ω resistor is con-
nected to Vout1 and a 22 Ω resistor to Vout2, similarly to the simulation setup. The loads
draw energy from the supercapacitors, as long as the voltage levels do not fall below the
predetermined minimum thresholds. Figure 11a presents the bleeder activation, drawing
the excess energy. Figure 11b curves are obtained without input power supply. The su-
percapacitors are discharged, and two 1.2 V Ni-MH AAA batteries, connected in series
(measured at 2.5 V), provide power to the system.

The measured current consumption of the integrated control unit is 376 nA at 2.3 V.
Combined with the two 82 MΩ voltage dividers consumption, the total current consump-
tion of the proposed unit is 432 nA at 2.3 V.

In Table 1, this work is compared with other state-of-the-art implementations. As
shown, the proposed design offers many advantages such as low-complexity, small size in-
tegrated solution, ultra-low-power consumption and wide voltage and current range. Thus,
this design is suitable for a wide variety of autonomous energy harvesting applications.
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Table 1. State-of-the-art storage units implementations.

Ref No.
Target

Application
Topology Technology/Area

Voltage Convert-
ers/Inductors/Super
capacitors/Battery

Voltage
Range/Maximum

Current

Power Con-
sumption

[10]
Electric

powered
wheelchair

Battery, voltage
converter,

supercapacitor
Discrete 2/3/Array/Yes 60 V/100 A mW 1

[11] DC Microgrid
Battery, voltage

converter,
supercapacitor

Discrete 1/2/Array/Yes 50 V/3 A n/a

[13]

Energy
harvesting,

wireless sensor
node

Supercapacitor,
bidirectional

converter,
battery

Discrete 1/1/1/Yes 7–12 V/1.25 A mW 1

[14]

Energy
harvesting,

wireless sensor
node

Supercapacitor,
bidirectional

converter,
battery

Discrete 1/1/1/Yes 3.3 V/1.51 A mW 1

[15]

Energy
harvesting,

wireless sensor
node

Battery, voltage
converter,

supercapacitor
Discrete 1/2/1/Yes 3.3 V/151 mA uW 1

[16]

Energy
harvesting,

wireless sensor
node

Four
supercapacitor
reconfigurable

power bank

0.35 um/n/a 0/0/4/No 2.6–5.5 V/50 mA 185 uW

[17]

Energy
harvesting,

wireless sensor
node

Supercapacitor
(main), battery
and converter
(secondary)

65 nm/
0.48 mm2 2/0/1/Yes 0.45 V/300 mA uW 1

This
work

Energy
harvesting,

wireless sensor
node

Up to two su-
percapacitors,

optional battery

0.18 um/
0.19 mm2 0/0/2/Optional 1.2V–3.6 V/100 mA 0.99 uW

1 Actual value not available.

5.2. Energy Harvesting

The storage unit was also tested during the energy harvesting operation. A BQ25504
energy harvesting IC combined with an 80 mm × 72 mm PV cell were utilized, harnessing
energy at office lighting conditions (approximately 600 Lux of light intensity). The measure-
ment setup is depicted in Figure 12. As this is a low power demanding use case scenario,
the values of SCsmall and SCbig were set at 1 mF and 4.4 mF (two 2.2 mF capacitors
connected in parallel) respectively.

Figure 13 presents the charging phase of the storage unit, with zero initial stored
energy in the two supercapacitors. Since the available current is about 100 uA, the charging
of the small supercapacitor requires about 30 s.

As stated, the supercapacitor’s values should be properly selected, according to the
power supply requirements of the target system. For this test case, smaller capacitors
can reduce the charging time duration, at the expense of extended energy autonomy or
connection of demanding external loads.
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Figure 12. Experimental setup for testing the storage unit in indoor light energy harvesting condi-
tions.

Figure 13. SCsmall (CH1) and SCbig (CH2) charging via BQ25504.

The proposed unit was also tested with a piezoelectric transducer providing power at
the input. Figure 14 depicts the measurement setup. A V25W PZT transducer from MIDE
is used to convert the vibrations to electrical energy and a vibrating speaker is used to
trigger the piezoelectric transducer. A mass of 1.9 g. is fixed on the tip of the transducer, to
further increase the power offered to the storage unit. A rectifier comprised of four Schottky
diodes is connected between the output of the PZT element and the proposed storage
unit. The vibrations frequency is set at 25 Hz and the open circuit peak-to-peak voltage
is measured at 20 V. The observed mechanical displacement of the tip of the transducer
was observed at 1 cm peak-to-peak. The values of SCsmall and SCbig were set at 1 mF and
4.4 mF respectively, and also, loads of 100 Ω are connected at the supercapacitors outputs.
Finally, Figure 15 presents the charging phase of the two supercapacitors.
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Figure 14. Experimental setup for testing the storage unit with mechanical vibrations harvesting.

Figure 15. SCsmall (CH1) and SCbig (CH2) charging phase from the piezoelectric transducer.

6. Future Work and Discussion

The proposed storage unit is suitable for energy-harvesting-based, wireless sensor
node (WSN) applications. The unit can autonomously supervise the charging and dis-
charging of two supercapacitors (SCsmall, SCbig) and a backup battery, exploiting the
energy provided by a harvester module. It can be combined with any type of energy
harvesting module, such as photovoltaic, triboelectric, piezoelectric, or thermoelectric
micro/nano-generators. Depending on the used harvester, a step-up/down converter
and/or an AC-DC rectifier might be required (e.g., BQ25504 in case of the small photo-
voltaic panel or thermoelectric harvester). The proposed storage unit provides two separate
power outputs. The SCsmall output, which provides a regulated output voltage (50 mV
ripple) has the highest charging priority. Thus, it is considered as the main power output
of the unit and should be used for the primary system circuits. Additionally, the SCbig
output, provides an unregulated output voltage, however within an adjustable voltage
window, with a minimum ∆V of 200 mV. This output has low charging priority and should
be used for the secondary circuits of the system. This way extended operation is achieved
for the primary system circuits, and additionally, the idle consumption of the secondary
ones is eliminated. For embedding an RF transceiver module, an MCU, as well as the
required sensors, and in case that real-time acquiring of the sensor data is not mandatory,
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the SCsmall output can be used for the MCU supply and the sensors supply (for local
data logging) and the SCbig output can be used for the power demanding RF transceiver
module (so the transmission of the data will take place during energy-rich periods of time).

In the case of continuous energy availability (e.g., continuous vibrations), a battery
is not required and can be omitted. However, to ensure undisrupted operation a backup
non-rechargeable battery can be added. For ultra-low-power WSN systems and sparse
energy starvation periods, a multiyear duration is expected from a coin-size battery cell
(e.g., cr2032 3V 230 mah). In case of discontinuous energy availability conditions and for
a scenario that the undisrupted operation of the supported system is crucial, the use of a
battery is mandatory. Depending on the use-case application and the power requirements,
the use of a separate external battery charger module should also be considered. Finally,
in systems embedding an MCU, the direct power supply of the MCU from the SCsmall
is possible. This way the MCU supply has the highest priority and the longest possible
power autonomy. A future work WSN approach is shown in Figure 16.

Figure 16. Future work WSN topology.

In the WSN shown in Figure 16, an indoor light harvester based on the BQ25504 IC
was used. Additionally, an ultra-low-power MCU (e.g., MSP430FR5969 consuming 20 nA
in deep sleep mode and 250 nA with calendar and timekeeping ON) is directly supplied by
the small supercapacitor. Since continuous energy availability is not expected and an MCU
is used, a rechargeable battery and a battery charger are added to the topology. The MCU
is measuring the voltage levels of the two supercapacitors and the battery, in order to select
a preferable power plan that matches the available energy. For example, only calendar
and timekeeping during very-low energy levels, sensor reading during low energy levels,
data transmission during high energy levels and battery charging during very-high-energy
levels. The MCU is also controlling all the peripheral modules (sensors, RF transceiver and
battery charger), as well as the load control signals (en1, en2) of the proposed storage unit.

7. Conclusions

In this work, an ultra-low-power supercapacitor-based storage unit with an integrated
control scheme was presented, offering flexibility to the applied energy harvesting system.
The ultra-low current consumption of only 432 nA at 2.3 V proves the proposed storage
unit ideal for energy harvesting systems, even for cases of a few µW input power range.
Furthermore, extra modes can be added to the topology with the usage of external control
(e.g., an MCU), expanding the operational capabilities of the proposed unit. For instance,
the control of an additional charging unit for the backup battery is a highly beneficial mode
that will be added in future work.
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