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Abstract: The respiratory rate (RR) is a vital physiological parameter in prediagnosis and daily

monitoring. It can be obtained indirectly from Electrocardiogram (ECG) signals using ECG-derived

respiration (EDR) techniques. As part of the study in designing an early cardiac screening system,

this work aimed to study whether the accuracy of ECG derived RR depends on the auscultation sites.

Experiments were conducted on 12 healthy subjects to obtain simultaneous ECG (at auscultation sites

and Lead I as reference) and respiration signals from a microphone close to the nostril. Four EDR

algorithms were tested on the data to estimate RR in both the time and frequency domain. Results re-

veal that: (1) The location of the ECG electrodes between auscultation sites does not impact the

estimation of RR, (2) baseline wander and amplitude modulation algorithms outperformed the fre-

quency modulation and band-pass filter algorithms, (3) using frequency domain features to estimate

RR can provide more accurate RR except when using the band-pass filter algorithm. These results

pave the way for ECG-based RR estimation in miniaturised integrated cardiac screening device.

Keywords: respiratory rate (RR); Electrocardiogram (ECG); ECG derived respiration (EDR); auscul-

tation sites

1. Introduction

Respiratory rate (RR) is the physiological indicator of breaths per minute, which is
commonly used as an early warning sign in disease detection. The normal RR of a healthy
adult at rest is between 12–16 bpm [1]. Compared with adults, children’s RR is higher.
For an infant, it ranges from 30–60 bpm, and with growth, the RR will gradually reach
the adult level [2]. The resting RR of older people may slightly increase. For the healthy
independent seniors, it is 12–20 bpm, and those who need long-term care will reach
16–25 bpm [3]. Generally, a resting RR outside of these ranges may indicate a potential
disease. An increased RR (tachypnea) may suggest fever, dehydration, asthma, chronic
obstructive pulmonary disease, heart disease, etc. [4]. A low RR (bradypnea) may reveal
the use of narcotics, alcohol intake, abnormal body metabolism, sleep apnoea, etc. In critical
care (or intensive care, ICU), RR is also a vital parameter in the monitoring of respiratory
failure. It could be measured by the gas exchange using a ventilator, capnography monitors,
or spirometry devices, and chest electrical activities using electrical impedance tomography
(EIT), inductance plethysmography, or impedance pneumography [5,6].

The current measurement of RR outside of the critical care still relies on manually
counting the chest undulations in one minute by the medical staff [7]. Although this practice
is easy to conduct without using extra medical devices, it has some drawbacks such as
low accuracy. Subject’s awareness, poor visibility of a breath, and other interruptions
will greatly affect the measurement. Besides, in practice, the manual counting is not
completed in one full minute by the medical staff due to the heavy workloads. They usually
multiply the 30 s or 15 s measurement by 2 or 4 to assess the RR, which will lead to
further inaccuracies [8]; (2) it is labour-consuming, as the medical staff can only conduct the

1



Sensors 2021, 21, 78

measurement on one patient at one time; (3) the measurement is not continuous. As an early
sign of physical deterioration, real-time and continuous monitoring can help alert the staff
to emergencies, such as heart failure, shock, diabetic coma, etc. However, the intermittent
measurement cannot provide such information timely, so the RR is always underutilized.
External devices to automate the RR measurement can remedy the deficiencies associated
with manual counting to a certain extent. Despite this, there are still respective limitations
to each method. For the gas exchange-based techniques, they are accurate methods to
reflect the respiratory condition, but have no portability, which requires the patients
breathing in the external tube of the devices. So, these techniques are generally only
available in critical care [9]. The bioimpedance-based techniques such as impedance
pneumography can measure the electrical activities on the chest during inhalation and
exhalation. However, it requires the patients to wear a tight chest strap, which may cause
discomfort [10]. Additionally, patient movement, bad contact, and obstruction of breath
will cause inaccurate measurements. Acoustic sensors are also used in the measurement
of RR, however, their performance will be affected by the environmental noise and skin
friction [11]. Therefore, wearable devices for automatic RR measurement are in great
need to effectively monitor the breath in real-time and detect the first sign of physical
deterioration promptly.

Extracting respiratory signals from the Electrocardiogram (ECG) signals is a potential
surrogate measurement of RR. In recent years, ECG devices are becoming miniaturised,
and sensors have been integrated with sport bands, smartwatches, and other portable
monitors. This provides the feasibility and potentiality to design wearable ECG-based RR
measurement devices. The first study on respiration-induced ECG variation was proposed
by Einthoven et al. [12]. Flaherty and Riekkinen further analysed the respiration influence
on children and cardiac patients by isopotential surface-mapping and vectorcardiography
(VCG) [13,14]. Nowadays, it is well known that respiration-induced ECG variations are
caused by (1) Respiratory Sinus Arrhythmia (RSA) that refers to the cyclic variation that the
heart rate accelerates during inhalation and decelerates during exhalation [15]. It can be
reflected in the ECG signals as the frequency modulation (FM) of the R-R interval between
the R peaks as shown in Figure 1a. (2) Respiration-induced electrical axis rotation. During
the inspiration, the filling of the lungs stretches the heart apex towards the abdomen, and in
expiration, the emptying of the lungs compresses the heart towards the breast. Due to the
displacement of the heart, the electric cardiac vector will change during respiration [16].
In the ECG signal, this process can be indicated as amplitude modulation (AM) of the R
peaks as shown in Figure 1b. (3) Baseline Wander (BW) is the artefact caused by body
movement, including breathing. The expansion and contraction of the thoracic cavity due
to respiration will cause a slow and undulating baseline in the ECG signals as depicted in
Figure 1c [17].

Figure 1. (a) Respiratory Sinus Arrhythmia (RSA) induced frequency modulation (FM). (b) Elec-
trical axis rotation caused amplitude modulation (AM). (c) Baseline wander (BW) caused by
chest movement.

Several techniques to extract respiratory signals from the ECG, the so-called ECG-
derived respiration (EDR), have been proposed according to the respiration-induced ECG
variation mentioned above. Some techniques are based on multi-leads ECG signals [16–20],
while others attempt to extract respiratory information from one-lead ECG [21–26],
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as well as direct band-pass filtering (BP) of the ECG within the respiratory frequency
band [17,26,27]. For the multi-leads EDR techniques, they mainly use the rotation angles
of VCG from multiple ECG leads, while the one-lead EDR methods focus on the features
related to the QRS complex, such as amplitude, interval, area, slopes, etc. There is no
consensus on which is better in the performance; however, for a wearable device, one-lead
ECG has the advantage in the system complexity and size. As part of our long-term project
to design an integrated device for early cardiac screening, the final aim is to propose a
small integrated device (around 8 cm2) that can provide multiple physiological parameters
including heart sound, ECG, and RR. The device will measure the ECG locally with heart
sound rather than at different body parts. In our previous study, we did experiments to
analyse the time property between ECG and heart sound when the ECG is captured at
different auscultation sites [28]. Additionally, it indicates that the location of the ECG will
cause the morphological variation of its signal, which may affect the obtainment of the
EDR signal, therefore an important motivation of this study is to further analyse if these
ECG variations will affect the performance of the EDR algorithms under this condition.

The aim of this study is threefold: (1) To investigate if the location of the electrodes at
auscultation sites will affect the EDR algorithm accuracy; (2) to compare the performance of
one-lead EDR algorithms based on the mentioned respiration-induced ECG variation; (3) to
compare time-domain and frequency-domain features for RR estimation. All the findings
will contribute to providing more accurate RRs for the integrated cardiac screening device.

2. Methodology

2.1. Subjects

The experiments were conducted on 12 healthy human subjects (8 male/4 female,
age range 21–29 years, mean 25.9 years) with no history of heart diseases or respiratory
issues. The procedures were approved by the King’s College Research Ethics Committee
(Approval No.: LRS-18/19-10673). Subjects gave written informed consent before the
experimental procedures.

2.2. Experimental Setup

The standard Lead I ECG (as reference ECG), auscultation site ECG (captured at
auscultation site A, P, T, M with 10 cm inter-electrode distance), and respiratory signals
were recorded simultaneously during the experiment. A simple block diagram of the exper-
imental setup is shown in Figure 2. The sensors for ECG signals were solid gel electrodes
(Ambu WS, size: 36 × 40 mm, Medico Electrodes International LTD., Uttar Pradesh, India),
and the respiratory signal was captured by a small microphone (developed at the Centre for
Robotics Research (CORE) at Kings College London, UK) placed under the subject’s nose.
The recording used the commercial acquisition system (iWorx, model RA834, iWorx Sys-
tems Inc, Dover, NH, USA) and ECG devices (iWire-BIO4, iWorx Systems Inc, Dover, New
Hampshire, US). The sampling frequency was 1 kHz and the analog filter for the ECG was
0.05–40 Hz [29].

During the experiment, subjects should keep supine and remain calm. Besides, sub-
jects were required not to make sound from the larynx to ensure the sound captured
was only respiration. The Lead I ECG and different auscultation site ECG signals were
measured in pairs together with the respiratory signals. The duration of each recording
group was three minutes, and two minutes break was given between different auscultation
site trials.
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Figure 2. Block diagram of the recording setup: Red dots are Lead I Electrocardiogram (ECG) as
a reference, green dots are auscultation site ECG. The grey dot is the microphone for respiration
recording. iWire BIO4 is for ECG recording. All the data is transferred to the computer for processing
through iWorx RA 834.

2.3. Signal Processing

In this study, EDR signals were obtained using BW, AM, FM, and BP algorithms
from the reference (Lead I) and auscultation sites ECG signals, respectively. The RRs were
estimated from the EDR signals using time and frequency domain features as detailed
later. The performance of the algorithms and the effect of the locations were analysed by
comparing it with the measured respiratory rate. The processing was conducted in the
Matlab® R2018b environment, and the statistical analysis was performed using IBM® SPSS
version 26.

2.3.1. Signal Filtering

The captured ECG signals and respiration sounds were filtered first to remove the
unwanted artifacts and noise. For the ECG, a zero-phase 3rd-order Butterworth high-
pass filter at 0.1 Hz was used to eliminate the large artifacts which were not related to
respiration [30]. For the respiration sound, a 3rd-order Butterworth band-pass filtered
(0.1–0.5 Hz) was used to smooth the waveform.

2.3.2. EDR Signals Extraction

In AM, BW, and FM algorithms, R-peak detection was a vital step, as all the features
to be captured were related to R peaks. In this study, the Pan–Tompkins algorithm was
used to detect R-peaks in the ECG signals [31].

1. AM algorithm: The amplitude changes due to the respiration in the ECG signals was
obtained by connecting the captured R-peaks.

2. BW algorithm: Based on the R-peaks, Q points were found using the gradient descent
method. Then, the baseline wander could be generated by connecting the middle
points between R-peaks and Q points [32].

3. FM algorithm: The intervals between the R peaks were calculated. The resulting
signal was the frequency modulation caused by respiratory sinus arrhythmia.

Afterward, all the signals generated by the algorithms above were interpolated to the
same sample size of its raw ECG signals to increase the resolution.

4. BP algorithm: A band-pass filter (0.1–0.5 Hz) was used to capture the EDR signals.
Although the normal RR for a healthy adult ranges between 0.2–0.35 Hz at rest,
in our processing, we appropriately expanded the range to enable it to respond to
special situations, such as the subjects’ occasional deep or rapid breaths. Besides,
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a wider band can help to further analyse the frequency components when there are
no dominant peaks.

Representative derived respiration signals by the methods above are shown in Figure 3.

 

 

 

Figure 3. A representative derived respiration signals from auscultation site ECG and reference
respiration signal.

2.3.3. Respiratory Rate Estimation

The reference RRs were obtained from the filtered respiration sound recorded using
a nostril microphone. It was manually counted in the waveform to ensure accuracy.
The estimated RRs from EDR signals were calculated by automatically counting in the
time domain and using the median frequency (between 0.1–0.5 Hz), respectively. For the
counting method, a moving average filter (window length: 50 ms) was used first to smooth
the EDR signals and eliminate sub-peaks. Then, peak detection with the threshold of the
signal mean value provided the estimated RR. The median frequency was chosen according
to our previous study, which was proven to be the best feature in the frequency domain to
estimate RR from EDR signals [27].

2.4. Statistical Analysis

The mean absolute errors (MAE) between the EDR-based estimated RR and reference
RRs was used as the performance measure provided as mean ± standard error (SE). A three-
way repeated-measures analysis of variance (ANOVA) was used to compare MAE. Factors
were the features (counting and median frequency), EDR algorithms (AM, BW, FM, BP),
and ECG locations (A, P, T, M, Lead I). A P-value of less than 0.05 was considered significant.
Data were log-transformed to obey normality and variance homogeneity was satisfied.

3. Results

3.1. ECG Morphological Variation among the Auscultation Sites

Figure 4 shows a representative local ECG morphological variation compared with the
lead I ECG from one subject. From (a) to (d), it can be seen that the amplitude of the R-peak,
s-wave, and T-wave become larger from auscultation site A to M. Besides, it is also found
that the R-peak of the site A ECG is normally on the left-hand side of it on Lead I ECG,
which means the R-peak is advanced (approximately 10 ms by average). However, it will
shift to the right-hand side when measured at site M, which means its onset is delayed
(approximately 15 ms by average). Another phenomenon could also be observed that in
the site A ECG, there is a J-point elevation shown as grey dots in (e). This happened on
five subjects, and in 3 of them, the J point is even higher than the R-peak.

5
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Figure 4. The local ECG morphological variation compared with reference Lead I ECG.

3.2. Location Effect on EDR among the Auscultation Sites

Table 1 summarized the EDR MAE of each subject averaged across estimation tech-
niques and given per auscultation site. ANOVA results indicate that there is no statistical
difference between the five sites (p = 0.746), and there was no interaction between EDR
algorithms and sites (p = 0.516). All four EDR algorithms have quite close MAE between
each auscultation sites, including average MAE at A: 1.656 ± 0.351, P: 2.297 ± 0.476, T: 1.733
± 0.461, M: 1.467 ± 0.326, and reference ECG (Lead I): 1.834 ± 0.378 bpm. This indicates
that RR can be harvested using ECG anywhere on the chest with negligible location effect.
Figure 5 further visualized the location effect with different algorithms.

6
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Table 1. The ECG-derived respiration (EDR) mean absolute errors (MAE) of each subject for each
auscultation site and Lead 1 ECG signals, averaged across estimation techniques.

A P T M Lead I

Subject1 0.16 0.06 0.14 0.12 0.08
Subject2 2.27 3.74 1.77 0.86 2.00
Subject3 1.88 1.37 3.17 2.15 2.60
Subject4 0.50 1.69 0.54 0.82 0.83
Subject5 1.27 1.10 0.28 0.14 0.47
Subject6 5.79 4.61 6.91 3.23 5.45
Subject7 1.60 2.60 0.38 2.60 2.24
Subject8 2.54 5.41 3.16 3.47 2.24
Subject9 0.73 0.20 0.67 0.53 1.16

Subject10 0.36 1.62 1.69 1.25 1.11
Subject11 0.85 2.10 1.03 1.46 1.45
Subject12 1.93 3.06 1.07 0.99 2.39

Mean 1.66 2.30 1.73 1.47 1.83

 

Figure 5. The performance (MAE ± SE bpm) of the EDR algorithms on different auscultation sites
and Lead 1 ECG signals.

3.3. The Performance of the EDR Algorithms

After statistical analysis of the MAE on each subject with different EDR methods
shown in Table 2, there was a significant difference between the four EDR algorithms
(p < 0.001). The BW algorithm performed with MAE = 1.446 ± 0.181 bpm, closely followed
by the AM algorithm with 1.589 ± 0.1966 bpm. Post hoc analysis revealed no statistical
difference between BW and AM (p = 0.31), however, they were both significantly better
(p < 0.05) than BP (MAE of 2.656 ± 0.258) and FM (MAE of 3.855 ± 0.329 bpm).

Table 2. The EDR MAE of each subject on different EDR methods, averaged across auscultation sites.

BW AM FM BP

Subject1 1.61 1.92 5.86 1.93
Subject2 1.65 2.88 3.26 2.45
Subject3 1.33 1.82 2.04 0.47
Subject4 2.19 1.99 4.06 2.19
Subject5 0.91 0.92 1.54 2.93
Subject6 0.49 0.41 3.55 3.67
Subject7 0.34 0.66 0.73 0.86
Subject8 0.76 0.75 3.23 1.19
Subject9 3.98 3.54 11.93 6.75

Subject10 0.45 0.38 2.08 0.38
Subject11 1.81 2.02 3.36 3.59
Subject12 1.84 1.78 4.61 5.89

Mean 1.45 1.59 3.85 2.69
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3.4. Time vs. Frequency Domain

Deriving respiration rate using the median frequency (overall MAE 1.80 ± 0.223 bpm)
outperformed the counting method (overall MAE 2.98 ± 0.312 bpm) in the time domain
(p < 0.001) suggesting stability of the frequency domain, although a significant interaction
(p < 0.001) with the applied method was observed. From Figure 6, it can be seen that
the median frequency can provide a more accurate estimated RR on BW, AM, and FM
algorithms. However, counting in the time domain is more accurate for the BP algorithm.

 

Figure 6. The mean absolute error (MAE ± SE bpm) of the EDR rates between EDR algorithms and
estimation methods. Freq: Median frequency in the frequency domain, Count: Automatic counting
in the time domain.

4. Discussion

This study aimed at analysing the performance of one-lead EDR algorithms in aus-
cultation site ECG signals and EDR rate estimation in both time and frequency domain.
The results show:

Firstly, it is found that the location effect on the obtainment of EDR between ausculta-
tion site and Lead I ECG signals is negligible in our experimental data. The result revealed
that the ECG morphological variation between auscultation sites happened on the onset
and amplitude of the ECG components including the R-peak delayed from site A to M,
and the amplitude increase of R-peak, s-wave, and T-wave. These won’t directly affect
the EDR signals extraction, but it is worth noticing in cardiac researches. It is still unclear
on the occurrence of J-point elevation or RSR’ (An ECG finding in which there are two R
waves) in five subjects’ site A ECG signals. Normally they are pathological, but the subjects
were confirmed healthy with no heart conditions, and this can be normal for the age group.
The high J-point or double R-peaks may interfere with R-peak detection when the fake
R-peak is higher than the true one. In our study, the performance of the four chosen EDR
techniques was not affected, however, it may have an impact on the QRS area or slope
based EDR methods. In the study of Sakai, it indicated that the location of the electrodes
affected the quality of EDR signals and the more accurate RR estimation was obtained
when the electrodes were attached near the heart [22]. The best placement was a negative
electrode at the bucket-handle and a positive electrode at pump-handle movements of
the ribs. However, in our experiment, electrodes were placed at auscultation sites on
the upper chest, which were already close to the heart. Besides, as we want to design a
miniaturised device, the inter-electrode distance was fixed and short (10 cm). Therefore,
from the physiological mechanism, the locations in our study barely have an effect on
the respiratory sinus arrhythmia, and the effect on the respiration-induced electrical axis
rotation and chest undulation-induced baseline wander are minimal. This result verifies
that the location effect on RR estimation can be ignored in designing an integrated cardiac
screening device.
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Secondly, the BW and AM algorithms outperformed FM and BP algorithms. Although
BW has a slightly smaller MAE (1.446 ± 0.181 bpm) than AM (1.589 ± 0.1966 bpm),
the difference (p = 0.315) is not statistically significant in our experiment data, which cannot
confirm that the performance of BW is better than AM so far. This is in contrast with some
previous work. In Charlton’s study, it was shown that the BW performed better than AM
without statistical analysis [7]. The performance of FM and BP methods are in line with
previously reported MAE using the PhysioNet’s MIMIC-II database, while the results of
AM obtained in this study are similar to the MAE reported by Widjaja et al. [26] using their
experimental data. It seems like the experimental setting for the database had a significant
impact on the performance of EDR algorithms. Because our experiments were conducted
under ideal conditions where the subjects were required to lie down calmly without any
movement, the MAE was much lower than studies that have made use of the database.

For respiratory sinus arrhythmia induced FM, the magnitude of the oscillation varies
from individual to individual, so that the obtained EDR signal is not that conspicuous
sometimes [33]. For example, the FM waveform of 0–50 s is shown in Figure 3, the EDR
signal in that period is messy, thus it will dramatically affect the peak detection in the
time domain, causing inaccurate RR estimation. That should be the reason for FM’s
poor performance. For the BP algorithm, the choice of the frequency band is the current
limitation. Though the frequency band (0.1–0.5 Hz) used in this study is appropriately
extended, it is still not enough to capture RR from young children and stress tests. Besides,
the use of a simple band-pass filter cannot remove unwanted interferences completely.
The low-frequency component between 0.1–0.2 Hz, which is related to the baroreceptor
reflex (blood pressure is regulated by the baroreceptors through the autonomic nervous
system) and the high-frequency harmonic between 0.4–0.5 Hz will interfere with the RR
estimation in the frequency domain [34]. Therefore, an adaptive frequency band is essential
to improve the performance of using a band-pass filter.

Thirdly, the RR estimation in the frequency domain is found to be better than the time
domain for BW, AM, and FM [35]. This result is the opposite of Charlton’s result, which said
Fourier analysis was inferior to breath detection in the time domain [7]. As discussed
above, there are conditions where the EDR is not conspicuous enough, thus in the time
domain, it is hard to detect the corresponding respiration related peaks, while still possible
to capture it based on the power spectral density function. Besides, at the beginning and
end of the EDR signals, there may be incomplete breathing, this will lead to the error
for counting in the time domain. As there are not many breaths per minute, these errors
are considerable for the RR estimation. Using frequency features will reduce this error
moderately. However, it is also noticed that the performance of frequency estimation for
the band-pass filter is worse than counting in the time domain as there are mentioned
lower-frequency and higher-frequency components in the spectrum which weaken the
domination of the respiratory band. Therefore, further analysis of frequency components
is needed to improve accuracy when using the BP algorithm.

In this study, our research focused on the EDR of healthy adults at rest, and the
experimental conditions were ideal that the subjects kept supine and breathed evenly
without any movement. However, there are conditions of practical application that need to
be considered including EDR performance on irregular respiration, such as deep breath or
an increased respiration rate. Improvement still can be done to improve the RR estimation
accuracy. The current validation study has compared four algorithms of the existing
algorithms. More algorithms and fusion methods could be tested to improve the accuracy
for clinical use. Future studies will include RR estimation throughout monitoring via a
Holter-like monitor.

5. Conclusions

This study analysed the location effect on EDR algorithms’ performance between
auscultation sites and compared four EDR algorithms to estimate RRs in the time and
frequency domain. The results showed that, firstly, the location of the ECG electrodes
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between auscultation sites barely affects the estimation of RR. Secondly, the BW and AM
algorithms outperformed than FM and BP algorithms in generating the approximation
of the respiratory signal. Thirdly, RR estimation in the frequency domain is more reliable
except on BP algorithms. All the findings will contribute to building chest-based multi-
ple physiological parameter monitors and providing more accurate RR estimation using
EDR algorithms.
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Abstract: (1) Background: Acute acoustic (sound) stimulus prompts a state of defensive motivation
in which unconscious muscle responses are markedly enhanced in humans. The orbicularis oculi
(OO) of the eye is an easily accessed muscle common for acoustic startle reaction/response/reflex
(ASR) investigations and is the muscle of interest in this study. Although the ASR can provide
insights about numerous clinical conditions, existing methodologies (Electromyogram, EMG) limit
the usability of the method in real clinical conditions. (2) Objective: With EMG-free muscle recording
in mind, our primary aim was to identify and investigate potential correlations in the responses of
individual and cooperative OO muscles to various acoustic stimuli using a mobile and wire-free
system. Our secondary aim was to investigate potential altered responses to high and also relatively
low intensity acoustics at different frequencies in both sitting and standing positions through the use of
biaural sound induction and video diagnostic techniques and software. (3) Methods: This study used
a mobile-phone acoustic startle response monitoring system application to collect blink amplitude
and velocity data on healthy males, aged 18–28 community cohorts during (n = 30) in both sitting and
standing postures. The iPhone X application delivers specific sound parameters and detects blinking
responses to acoustic stimulus (in millisecond resolution) to study the responses of the blinking reflex
to acoustic sounds in standing and sitting positions by using multiple acoustic test sets of different
frequencies and amplitudes introduced as acute sound stimuli (<0.5 s). The single acoustic battery
of 15 pure-square wave sounds consisted of frequencies and amplitudes between 500, 1000, 2000,
3000, and 4000 Hz scales using 65, 90, and 105 dB (e.g., 3000 Hz_90 dB). (4) Results: Results show
that there was a synchronization of amplitude and velocity between both eyes to all acoustic startles.
Significant differences (p = 0.01) in blinking reaction time between sitting vs. standing at the high
intensity (105 dB) 500 Hz acoustic test set was discovered. Interestingly, a highly significant difference
(p < 0.001) in response times between test sets 500 Hz_105 dB and 4000 Hz_105 dB was identified.
(5) Conclusions: To our knowledge, this is the first mobile phone-based acoustic battery used to
detect and report significant ASR responses to specific frequencies and amplitudes of sound stimulus
with corresponding sitting and standing conditions. The results from this experiment indicate the
potential significance of using the specific frequency, amplitude, and postural conditions (as never
before identified) which can open new horizons for ASR to be used for diagnosis and monitoring in
numerous clinical and remote or isolated conditions.

Keywords: acoustic; startle; reaction; response; reflex; blink; mobile; sound
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1. Introduction

Dysfunctional mental health affects nearly 300 million people globally with the World Health
Organization defining mood and cognitive disorders as the largest contributors to human disability [1].
The burden of diseases revolving around mental health conditions is difficult to quantify given the
complexity of standards of care and recording capabilities from 2nd and 3rd world nations as well as
individual reporting/withholding. Information from Europe and the United States describe global
costs comprising medication, physician visits, as well as hospitalization and indirect costs such as
mortality, disability, and production losses accumulate to ~1.7 trillion USD [2]. Aside from these
strains, additional socio-economic impact falls on the effects generated from mental health fraud
and abuse. Condition masking, abuse of prescription medication as well as disability compensation
have influenced patient reporting and very well may continue to without more objective and precise
methods for accurate diagnosis.

The current means to examine mental health disorders are not as easily identifiable as symptoms,
for example, as physical asymmetry in stroke, but usually rely on the blend of patient history,
mental, and physical status examination, and laboratory and/or neuroimaging methods to detect
impairments [3–6]. However, diagnosis of mood disorders where resources are constrained may
solely rely on patient reporting and invite the feigning of symptoms [1]. Because of these limitations,
many leading authorities on psychiatric diagnosis such as Allen Francis, have cautioned health care
professionals about the diagnostic in-/deflation in both marginally symptomatic or healthy individuals
while using current self-reporting practices [3,7,8].

While combining structured interviews with patient records, and laboratory and imaging review
appears to produce more accurate primary and secondary diagnoses than routine clinical methods,
there is still significant controversy as to what is considered the gold standard towards psychiatric
diagnosis as well as what is the laboratory or neuroimaging test’s expected utility, or the difference
between benefit and cost [9].

The two major diagnostic manuals for mood disorders: The Diagnostic and Statistical
Manual of Mental Disorders Fifth Edition (DSM-V) and the International Classification of
Diseases provide classification systems for clinical identification which encourage self-reporting
and questionnaire-literary responses [3,10]. However, these systems are objectively flawed in that
their recommended methods (questionnaires) cannot control reporter/assessor bias. To assist with
authenticity, biologic and physiologic surrogates of neural states have involved anomalous stress
hormones, heart rate variability (HRV), blood pressure, and others have been employed to describe the
nervous, cognitive, and physiologic symptoms of mental health [3,8]. Bearing in mind the development
of more technological methods, the acoustic startle reflex (ASR) has also proved to be a promising
approach in quantifying mental health [11].

The ASR is an aversive response which is enhanced during a fear state and is diminished in a
pleasant emotional context [12]. The neuronal arcade responsible for the ASR comprises unconsciously
regulated brainstem and cerebral structures where diverse conditions have been found to alter both
response time as well as intensity of muscle reaction to sound [13–34]. To assess anomalous blink
latencies and amplitudes of the ASR, the prominent blinking muscle, the orbicularis oculi (OO), is easily
and commonly accessed using electromyogram (EMG) [34,35]. Using EMG involves specialized
training and equipment (wired sensors) and have not been found to be common psychiatric practice
even though “each psychiatrist has their own personal style” [3]. Although correlations of OO-ASR
responses have been examined between sitting and supine conditions in a post-traumatic stress disorder
population [15,23,36], sitting and standing postures were not found to be examined. Standing may
not always be a possibility for some participants and these conditions may also reflect differential
pathways to sound and reflex pathogenesis [31].
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With EMG-free muscle recording in mind, our primary aim was to identify and investigate
potential correlations in the responses of individual and cooperative OO muscles to various acoustic
stimuli using a mobile and wire-free system. Our secondary aim was to investigate potential altered
responses to high and also relatively low intensity acoustics at different frequencies in both sitting
and standing positions through the use of biaural sound induction and video diagnostic techniques
and software. Sitting and standing methods provide flexibility for the use of devices for people with
disabilities. These aims may then clarify the use of the ASR to researchers, medical care providers, and
scientists in using sounds and postures to differentiate populations, and/or subpopulate groups into
distinct neurophysiologies. We hypothesize that we may find significant details of sound amplitudes
and frequencies for use in future experimentation.

Purpose and Goals

The ASR has been investigated to a high degree using a number of tools [35]. However, an
EMG free wireless ASR tool or system has yet to be developed. Additionally, using such a system to
correspond responses of the left and right eye as well as a comparison between standing and sitting
postures to a range of acoustic test sets have yet to be investigated. Within these contexts, the purpose
of this pilot study was to develop acoustically repeatable parameters for use in ASR investigations and
to subsequently develop an acoustic response spectrum. The goals of this study was to develop an
inexpensive, mobile, and clinically relevant biomedical device through the use of an application (app)
to deliver a specific acoustic test set and monitor the ASR responses of the eye muscles responsible
for blinking.

The outcomes of the present study may provide a detailed profile of the startle reflex which has
various clinical and therapeutic significances.

2. Methods

2.1. Ethics and Environment

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Human Ethics Committee of the University of Otago (Project identification code
D18/407, 11.12.2018). ASR investigations were carried out in a testing environment <65 dB under
interior-overhead lighting, and the environment remained at a stable temperature (21 ◦C).

2.2. Recruitment

Thirty male subjects (Otago University volunteers) between the ages of 18 and 28 (mean 24,
standard deviation (SD) 3.7) were recruited and required ~15 min of ASR collection. With each
participant, the subject was briefed of the proceedings, signed the consent form, and was alternated to
either sitting (n = 15) or standing (n = 15) positions.

Inclusion criteria for the study required participants to be male, between the ages of 18 and 28,
and in good health. The exclusion criteria were (a) medical history of neurological disease, and (b),
having active stimulants and/or depressants in their system during testing time.
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2.3. Hardware and Software

2.3.1. Mobile Sensing Platform Architecture

Due to the novelty of this method and testing equipment, we had to design and cooperate
individual equipment and software in order to deliver pure and repeatable sound sets (variable in
frequency and amplitude) as well as collect the blinking responses of the participants. To perform these
tasks, the iPhone X and iPhone X insert earphones (Apple Incorporated, Cupertino, CA, USA) were
used as the hardware platforms to both deliver the acoustic battery and collect the blinking amplitude
(magnitude of the blink) and response time of each blinking reflex.

The Sound Stimulus App was created (in collaboration with CodeFluegel GmbH., Graz, Austria)
to integrate the acoustic test sets from Table 1 using audio files derived from (https://www.nch.com.au/
tonegen/index.html) into the 2018 iPhone X operating system (iOS11.4.1) and collect the ASR blinking
data. As acoustic outputs may differ between different phones, operation platforms, speakers, and
sound files, we utilized iPhone X insert earphones to limit possible cross compatibility limitations.

Table 1. ASR sound stimulus battery.

Test Set Frequency ~Decibels Delay to Startle (s) Volume Scales (Phone)

1 500 65 5 2
2 1000 90 6 10
3 500 105 8 12
4 500 90 5 7
5 1000 65 8 4
6 2000 65 7 3
7 4000 90 7 10
8 2000 90 7 8
9 4000 105 5 14
10 3000 105 1 12
11 4000 65 3 3
12 1000 105 7 14
13 3000 65 8 3
14 2000 105 4 12
15 3000 90 9 12

2.3.2. Application Overview

In order to collect blinking data, the Sound Stimulus App identified the eyes of an individual
and geometrically designated points along the eyelids to measure the movements between geometric
anchors (P1–6) against others across time. This method enabled the ability to draw parameters
describing the blink completeness as well as the reaction time of both eyes to each test set. The
app uses a data computing Dlib library and the included default face landmarking model file [37].
Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex
software in C++. This model provides 2D facial feature points when applied on a camera stream
containing a human face. In Figure 1, we removed unwanted feature points and maintained only the
eyes (6 points for each eye). The equation in Figure 1 provides an output for the eye size and hence
acts as a blink marker:
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Figure 1. Blink–reflex detection using eye aspect ratio (EAR) across time and the geometric anchors
(P1–6). The equation that provides an output for the eye size and hence acts as a blink marker based on
Soukupová and Čech (2016).

The idea and formula were based on the work by Soukupová and Čech (2016), who developed a
real-time algorithm to detect eye blinks in a video sequence from a standard camera [38]. We adapted
this tracking method and integrated sound stimuli details within the Apple iPhone iOS.

This algorithm calculates the distances between vertical and horizontal eye feature points
(one horizontal, two vertical lines) and computes the aspect ratio of acquired distances. The aspect
ratio is approximately constant while the eye is opened and rapidly falls when the eye blinks. This
change in EAR during a blink is used as the blink response amplitude.

2.3.3. ASR Sound Stimulus Battery

The use of this novel mobile ASR monitoring system enabled the introduction of a sound stimulus
battery (Table 1) of 15 pure acoustic sounds at delayed intensities using amplitudes of 65, 90, 105 dB and
frequency variables of 500, 1000, 2000, 3000 and 4000 Hz. Sound sets were relative to normal human
hearing ranges (1–20,000 Hz) introduced high- (4000 Hz) and low- (500 Hz) pitches/frequencies from
parameters adapted from previous studies [31,33,36]. The sound sets we developed included novel use
of the 3000 and 4000 Hz frequencies as well as the 65 dB amplitude to explore more diversified sound
ranges beyond those historically used in literature for ASR elicitation and muscle response monitoring.

To measure the dB output of our mobile ASR monitoring system, 500, 1000, 2000, 3000, and 4000 Hz
sounds were selected at 100% (Sound Stimulus App specific) volume for each test set delivery. The
side buttons on the iPhone X controls the volume of the speaker (volume scales) which we had to
manually select for each test set to deliver either 65, 90, or 105 dB.
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We used a Digitech professional sound level meter (SLM) and a sound level calibrator (Harman
International Industries, Salt Lake, UT, USA) to monitor the loudness of the testing environment as well
as authenticate the dB output from the insert earphones. To accomplish this, the SLM was configured
to record the highest dB output, set to “C” weighting (for checking the low-frequency content the
sound), and set to “Fast” for normal measurements (fast varying noise) sound recording prior to each
use. We obtained laboratory acoustic background noise using the SLM throughout a workday and
measured the highest dB readings in the laboratory with the door closed to be <65 dB with the SLM
placed 1 m from the door 1 m high.

2.4. Experimental Protocol

For both postures, the mobile device was placed at eye level on an adjustable tripod ~30 cm away
from the volunteer’s face for optimum ASR measurements (Figure 2).

 

 

Figure 2. Seated volunteer with Sound Stimulus App, iPhone X, insert earphones, and noise
reduction cups.

During this time, the app was set to record maximum frames per second (120 fps) for increased
data collection. The participant inserted the earphones and placed over the ears further insulating
(–28 dB) noise reduction cups (Work Force Maxi Muffs, Maxisafe, New South Wales, Australia) prior to
the stimulus delivery.

The variables: Hz, dB, delay, and volume scale for each test were manually inputted for each
delivery. Following input settings and initiation of the application, the camera begins recording.
After establishing these stimulus parameters, the volunteer was instructed to remain still, and look at
eye level with the iPhone X until the stimulus delivery and recordings were concluded.
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The sound stimulus battery encompasses a set specific order of acoustic signals which were
initially randomized to determine delay and sequence (Table 1). Each of the 15 acoustic test sets
(delivered as 100 ms square-wave sounds) were delivered biaurally to the ears of the participant
who reported as comfortable throughout the ~15 min of stimulus delivery and blink reflex collection.
The blinking amplitude and reaction time data from the total 30 tests were converted from the app
display (Figure 3) to our data tables for analysis.

 

 

Figure 3. Display of eyelid geodynamics across collection time (~10 s). Left eye (blue) and right eye
(red) response amplitudes and velocities. RT = Reaction time of blink reflex to acoustic stimuli, Green
line = ASR sound stimulus, Black line = Blink reflex.

3. Statistical Analysis

To determine the significance of these data, each recording was transferred from the Sound
Stimulus App to a laptop computer (2012 MacBook Pro, Apple Inc., Cupertino, CA, USA) and
underwent statistical analysis and cross platform data interpretation using MATLAB (The Mathworks
Inc., Natick, MA, USA), and Microsoft Office 365 computing (Microsoft Corp, Washington, DC, USA).
SPSS (IBM Corp, New York, NY, USA) was utilized for data management as well. Pairwise comparisons
using two tailed t-tests and a repeated measures one-way ANOVA for the responses for both left/right
eyes and sitting/standing with Bonferroni adjusted and Tukey post-hoc test were conducted.

4. Results

4.1. Eye Synchronization

The use of our mobile acoustic-startle reflex monitoring system (MARS) allowed the collection of
right and left eye responses for the acoustic battery (Table 1). The activity of the eyelid geometry from
the sound-initiation onset or previous blink allowed us the ability to differentiate between open alert
(yellow and green readings markers up to 6 s) and blink response or closed (Figure 1).

4.2. Blink Reaction Time and Response Amplitudes: Left and Right Eye, Sitting and Standing

Blink reaction times (RT) between both eyes showed no significant differences across the ASR
sound stimulus battery. Whereas quickest blink reflexes for the standing and sitting postures occurred
after 4000 Hz_105 dB and 4000 Hz_90 dB respectively (stand mean = 0.29 s, sit mean = 0.26 s;
SD = 0.05, 0.06). The slowest RT between postures were 500 Hz_105 dB for standing (mean = 0.62 s,
SD = 0.04), and 4000 Hz_65 dB for sitting (mean = 0.41 s; SD = 0.02). A comparison between sitting
and standing blink reaction time identified a significant difference (p < 0.05) between these two
postures post 500 Hz_105 dB stimuli (Figure 4). Additionally, left and right eye response amplitudes
showed no significant differences. Averages of blinking amplitude for both eyes to the acoustic
battery were significantly different (p = 0.01) between sitting and standing only with a stimulus
of 1000 Hz_65 dB (Figure 4).
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Figure 4. Radar plots showing the average response times (s) and amplitudes for left (L, blue) and
right (R, orange) eyes and sitting (red) and standing (green) position/postures for the multiple stimuli.
RT = Reaction time (s), RA = Blink response amplitude (given by change in EAR during blink).
* Statistically significant p < 0.05.

4.3. Response Times to Stimulus Parameters

Combined pairwise comparisons at the different frequencies showed significant differences
between the following test sets: 500 Hz_65 dB–500 Hz_105 dB, (p = 0.018); 4000_65 dB–4000 Hz_105 dB,
(p = 0.002) and a highly significant difference (p = 0.000022) between test sets 500 Hz_105 dB and
4000 Hz_105 dB with the faster response at 4000 Hz_105 dB (Figure 5).

 

Figure 5. Average response times at varying frequencies and intensities. Significant amplitude-specific
differences demonstrated within 500 Hz and 4000 Hz frequencies between 65 and 105 dB. Highly
significant frequency-specific differences between 500 and 4000 Hz were also identified from 105 dB
amplitudes. Statistically significant * p < 0.05, ** p < 0.001.
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Additionally, we concluded the following significant differences (p < 0.05) between frequencies
when analyzing the specific acoustic intensities of 65, 90 and 105 dB. At 65 dB: 500 Hz–1000 Hz and
1000 Hz–4000 Hz. At 90 dB: 500 Hz–4000 Hz and 1000 Hz–4000 Hz. At 105 dB: 500 Hz–2000 Hz,
500 Hz–3000 Hz, 500 Hz–4000 Hz, 1000 Hz–4000 Hz (Figures 6–8).

 

Figure 6. Average blink response times of sitting and standing to various frequencies at 65 dB.
Significant differences were found between 500 and 1000 Hz and 1000 and 4000 Hz. R2 = fit of the line
to the data, minimal trend in RT that can be explained by the frequency (R2 = 0.087). * Statistically
significant p < 0.05.

 

 
Figure 7. Average blink response times of sitting and standing to various frequencies at 90 dB.
Significant differences were found between 500 and 4000 Hz and 1000 and 4000 Hz Indication of
reduction in RT with increasing frequency, moderate linear trend (R2 = 0.680). * Statistically significant
p < 0.05.
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Figure 8. Average blink response times of sitting and standing to various frequencies at 105 dB.
Significant differences were found between 500 and 2000, 3000, and 4000 Hz and between 1000 and
4000 Hz. Indication of reduction in RT with increasing frequency, moderate to strong linear trend
(R2 = 0.797). * Statistically significant p < 0.05.

5. Discussion

Using unique and historically used ASR sound sets, we were able to cue the ASR networks
of healthy male participants and track the kinetics of the OO across time with a novel mobile
acoustic-startle reflex monitoring system. Individual test set responses between left and right eyes were
compared and showed no statistically significant differences between the reaction times or amplitudes
between the eyes to any of the test sets within the acoustic battery (Figure 3). However, significant
differences between the frequency response times and amplitudes after the delivery of specific sound
sets were discovered. Additionally, postural conditions were found to alter the ASR network from
unique acoustic stimuli.

In the standing and sitting analysis of the data, the 500 Hz_105 dB cued a faster blink reflex in the
sitting posture yet the 1000 Hz_65 dB sound-set cued a stronger response for amplitude for standing
(p < 0.05). These results were unexpected but may explain a sound set specific postural connectome in
the ASR network similar to that described by [39,40], where evidence of fMRI anatomical segregation
of auditory information relevant to recognition and localization is processed by distinct neuronal
populations. However, these postures have yet to be evaluated using any sound stimuli while using
fMRI. The combined overall quickest and slowest blink reflexes were identified at 4000 Hz_105 dB, and
500 Hz_105 dB respectively (Figure 5). These were both high- and low-pitched “loud” sounds which in
non-human primates describe an evolutionary context with alertness and our relations to these sounds
to the (potentially dangerous) environment [41,42]. Significant differences in blink reaction time and
amplitude were determined from comparing sitting and standing postures after the delivery of the
500 Hz_105 dB and 1000 Hz_65 dB test sets respectively (Figure 4). Because these results show blink
reaction time to be quicker at the 500 Hz_105 dB and a lower blink reflex amplitude at 1000 Hz_65 dB test
sets in the sitting condition, these stimuli may be specified to investigations in subjects unable to stand
or participants in unique environments (zero gravity or underwater environments) to address strength
of response (over/underreaction) and the speed of ASR network (hyper-/hypoarousal). Furthermore,
these sound sets may be expanded to additional frequency-decibel variants.
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Between both postures, pairwise comparisons for the different frequencies concluded
significant differences between the following test sets: 500 Hz_65 dB–500 Hz_105 dB (p = 0.01),
4000 Hz_65 dB–4000 Hz_105 dB (p = 0.02) and 500 Hz_105 dB-4000 Hz_105 dB (p = 0.000022).
These unique sound sets may shift attitudes towards testing toward the higher and lower frequency
(±4000 and 500 Hz) with different decibel ranges for future investigations, contrary to previous ASR
literature using 1000 and 2000 Hz frequencies for induction. The differences in reactions to these sounds
may be significant in terms of cueing the unconscious regions of reactive “survival” limbic, reticular,
and autonomic systems for investigating neuronal operating bands in both healthy and disordered
(hypo/hyperactive) states. Additionally, these unique sounds may establish further population-specific
common ranges of activity such as those identified in children with autism spectrum disorders where
hyperreactivity to weak acoustic stimuli and prolonged acoustic startle latency were found in a specific
age and condition (autism) cohort [32]. Using varying frequencies and sound intensities i.e., low
(500 Hz,65 dB) and high (4000 Hz, 105 dB) to test the ASR, may alter the level of pleasantness/arousal
of the sound, which in the past has been associated with emotional and affectional contexts and in
turn responses [43–46]. Due to these parameters causing either a very quick or slow blink reflex,
investigators may utilize these tones in populations associated with neurotone hyper-/hypoarousal
such as anxiety and depression [30,44], or may look at specific dysfunction (brain injury) in autonomic,
reticular, limbic, or other networks intrinsic to sound processing and reflex outputs [47,48].

We found additional significant differences (p< 0.05) at 65 dB: 500 Hz–1000 Hz and 1000 Hz–4000 Hz.
At 90 dB: 500 Hz–4000 Hz and 1000 Hz–4000 Hz. At 105 dB: 500 Hz–2000 Hz, 500 Hz–3000 Hz,
500 Hz–4000 Hz, and 1000 Hz–4000 Hz for our sound sets. These correlations are not yet understood
but may represent connectome-specific tonotopy thresholds or transitions between specific frequency
groups of stereocilia or ASR processes of deeper brain centers [48–50]. Nevertheless, using the ASR
to describe more neurophysiologic spectrums of arousing and depressing activity within a reflex
latency scale has applicability in defining neurological tone in patients/participants suffering from
central nervous system trauma (traumatic brain injury, stroke) and neurological degenerative disorders
(Alzheimer’s and Parkinson’s). For example, we know that we should see a normal range of blink,
amplitude, and eye synchronicity responses from a young healthy male, but, if he were to suffer a
concussion or brain injury, the ASR networks may display anomalous responses [51]. The ASR may be
delayed, accelerated, or show no reflex at all during the peri/post recovery period and, during this
time, the blink reflex and acoustic-processing networks may be conveniently monitored with a mobile
phone before/during/after clinical examination for functional abnormalities. Further investigations
incorporating the subject’s emotional state, arousal or attention, and comfort level may better correlate
more specific outputs within a psychiatric context. From our analyses, there is an indication that both
higher and lower frequencies with high sound amplitudes may be suitable for future studies in fields
of psychiatry, specifically, anxiety, depression, and post-traumatic stress disorder (PTSD).

In this study, we created a mobile acoustic startle response monitoring app and showed that the
app produced certain frequency-decibel sound sets in order to record the ASR for blink amplitude and
latency in healthy adults for sitting and standing postures. We were able to identify and investigate
potential correlations in the responses of individual and cooperative OO muscles to various acoustic
stimuli using a mobile and wire-free system. Additionally, we found that certain sound sets induced
contrasting reaction times in and between both postures and identified specific pure sounds for
future startle response investigations as well as established a baseline ASR spectrum of responses for
healthy adults. These healthy parameters may further be contrasted against future ASR spectrums for
disordered mood and/or neurological condition monitoring.

Additionally, our findings may also lend to the classification of and recording of neurodegenerative
and abnormal neurosystem conditions (such as paraplegia, cerebral palsy, or multiple sclerosis), using
unique sound sets where sitting or standing postures are altered or not always possible. The ability to
remotely and conveniently monitor for ASR-spectrum deviations and establish individual normative
ASR reaction time and intensity ambits may also amplify performance training/conditioning schemes
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or establish neurosystem measurement parameters for elite programs (Astronaut/Cosmonaut/Military
special operations/forces). The means of wire-free monitoring the state of the nervous system using
long established and rugged hardware (smart phone with protective case) opens horizons to remote
monitoring in extreme environments.

The results from this investigation indicate the potential significance of using specific frequency,
amplitude, and postural conditions in ASR studies in addition to diversifying the remote monitoring
capabilities of biometric devices from smart devices (iPhone). Utilizing sound parameters with posture
related responses while monitoring the acoustic startle reflex with a mobile phone may open new
horizons in ASR monitoring across a multitude of populations in order to identify biometric parameters
of healthy responses.

5.1. Limitations

This was a pilot study, hence the sample size (N) was relatively small; nevertheless, our
investigations were able to show usability and effectiveness in determining differences in responses to
acoustic battery and posture. Future studies will utilize a larger N. Although the acoustic batteries
used to induce the ASR were more diverse than those used in previous literature, time and resources
limited the use of additional frequency and amplitude investigational acoustic sets, notably the use of
more numerous higher or lower frequency sounds (>500 Hz and <3000 Hz). Age, sex, sleep schedule,
and emotional state have been shown to affect ASR to certain degrees: lower response magnitude in
aging, pre-pulse inhibition anomalies in sleep deprivation, and hyper/hypoaroused systems in emotion.
However, blink response latency to diverse acoustic stimuli in these states is largely undescribed.
While limitations of this study were considerations within these behavioral, mood, sleep, sex, and
stress hormone variables at the time of testing, our focus and resources remained on the ASR delivery
and capture system (MARS) with utility considerations of sitting and standing. As such, to reduce the
variability within this pilot study, we utilized a specific age and sex cohort.

5.2. Comparison with Prior Work

To the best our knowledge, we are the first group to produce a mobile phone based device for
ASR monitoring; hence, other direct comparisons to such systems were difficult to find in the literature.
In this context, limited comparisons with EMG based ASR studies [25–36] were made. The average blink
response times of the present study at 2000 Hz in standing and sitting were close to and corresponded
with literature utilizing similar intensities and frequencies (90–105 dB and 2000 Hz respectively) [11,31]
in the context of electromechanical delay, response latencies, response duration, late responses [11,31]
and also considering the EAR threshold based ASR methodology of the present study.

These ASR latencies have the potential to be used as a diagnostic or monitoring adjunct which uses
left and right eye responses to determine the presence or severity of brain injury victims [51]. Alternate
frequencies outside of 2000 Hz were not identified in scientific literature and are considered novel.

6. Conclusions

We found significant details in the responses of cooperative OO muscles to various acoustic
stimuli and identified altered responses to high and low intensity acoustics at different frequencies in
both sitting and standing postures. Results suggested substantial links between individual differences
in frequency, amplitude, sitting, and standing. However, further research is needed to disentangle the
specific nature of these associations to one another as well as identify arousal and comfort relationships
to specific frequency and amplitude acoustic test sets. To our knowledge, this is the first mobile
phone-based monitoring system used to detect and report significant ASR responses to a variety of
frequencies and amplitudes in sitting and standing postures. Therefore, it should be kept in mind that
further replications are needed to contrast the present techniques and results or address any other
potential topics. By visually recording through the use of a smart phone app, we demonstrated that it
can be possible to detect and monitor the ASR in healthy population through the use of a mobile device.
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This opens new horizons for the ASR to be used for diagnosis and monitoring in numerous clinical
conditions (e.g., stroke, traumatic brain injury, and mood disorders). The findings in the present study
suggest that MARS is a simple and mobile methodology used to study the links between acute acoustic
variables and their subsequent effects on the human blink response.
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Abstract: A state-of-the-art brain–computer interface (BCI) system includes brain signal acquisition,
noise removal, channel selection, feature extraction, classification, and an application interface.
In functional near-infrared spectroscopy-based BCI (fNIRS-BCI) channel selection may enhance
classification performance by identifying suitable brain regions that contain brain activity. In this
study, the z-score method for channel selection is proposed to improve fNIRS-BCI performance.
The proposed method uses cross-correlation to match the similarity between desired and recorded
brain activity signals, followed by forming a vector of each channel’s correlation coefficients’ maximum
values. After that, the z-score is calculated for each value of that vector. A channel is selected based on
a positive z-score value. The proposed method is applied to an open-access dataset containing mental
arithmetic (MA) and motor imagery (MI) tasks for twenty-nine subjects. The proposed method is
compared with the conventional t-value method and with no channel selected, i.e., using all channels.
The z-score method yielded significantly improved (p < 0.0167) classification accuracies of 87.2 ± 7.0%,
88.4 ± 6.2%, and 88.1 ± 6.9% for left motor imagery (LMI) vs. rest, right motor imagery (RMI) vs.
rest, and mental arithmetic (MA) vs. rest, respectively. The proposed method is also validated on
an open-access database of 17 subjects, containing right-hand finger tapping (RFT), left-hand finger
tapping (LFT), and dominant side foot tapping (FT) tasks.The study shows an enhanced performance
of the z-score method over the t-value method as an advancement in efforts to improve state-of-the-art
fNIRS-BCI systems’ performance.

Keywords: functional near-infrared spectroscopy; brain–computer interface; z-score method; channel
selection; region of interest; channel of interest

1. Introduction

Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique used to
measure blood oxygenation changes as brain activity to develop a brain–computer interface (BCI) [1].
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Among other noninvasive modalities used for BCIs like functional magnetic resonance imaging
(fMRI) and electroencephalography (EEG); applications of fNIRS are increasing steadily in the BCI
community [2–5]. fNIRS is a cheap, portable, and safe optical brain imaging technique used in
state-of-the-art BCI systems to control and drive external devices using brain signals [1,6]. fNIRS is also
used to analyse the brain at work and during complex everyday life situations [7–10]. fNIRS records
brain activity as cortical blood oxygenation changes using two or more wavelengths of near-infrared
lights ranging from 700 to 1000 nm. It measures the changes in oxy- and deoxy-hemoglobin (∆HbO

and ∆HbR) using the modified Beer–Lambert law [11,12]. The theoretical principles, advancements,
and practical fNIRS applications have previously been described in detail [2–4,13]. fNIRS systems
are portable, wearable, and overall user-friendly, making fNIRS a suitable choice for BCI. Recently,
fNIRS has demonstrated successful and promising results in several BCI applications [14–18] and
clinical applications [19,20] for brain imaging and brain signal acquisition purpose.

BCI systems have enhanced patients’ quality of life in clinics, hospitals, daily life activities, and at
work [21,22]. A state-of-the-art BCI system includes recording brain signal, noise reduction, channel
selection, extracting features, classification, and an application interface [2]. Initially, a suitable brain
imaging modality is used to record brain signals. In the second step, preprocessing is performed which
consists of detrending, removing physiological and instrumental noises, and cortical activity-based
channel selection. Different methods can be used to select brain activation channels. These methods
include the t-value method, baseline correction method, source analysis of brain activation, and others.
In the third step, appropriate features are extracted, followed by brain signals classification using
suitable machine learning algorithms. Finally, the control unit generates control commands using
discriminated brain signals to control external devices. Brain signals with high signal-to-noise ratio,
brain-activation-based channel selection, and suitable machine learning algorithms are essential
components of a state-of-the-art BCI system. Recent studies have been conducted to enhance fNIRS-BCI
systems’ performance by enhancing classification accuracy using different methods and techniques
at every stage of the BCI system [2,14,16,23]. The studies showed efforts to improve classification
accuracy by applying cortical-activity-based channel selection techniques, extracting novel features,
determining optimal features, and optimal feature-combinations for fNIRS-BCI [24–26].

In BCI, selecting channels of interest (COI) or a region of interest (ROI) has manifold objectives:
reducing processing time, reducing dimensionality, enhancing performance, and suitable brain region
identification containing low noise signals. The selection of appropriate channels in EEG-based BCI
has shown encouraging results [27]—Mainly filtering, wrapper, embedded, hybrid, and human-based
techniques have been used for the purpose [27]. The sequential floating forward selection (SFFS)
algorithm [28] and iterative relief based on distance from centre (IterRelCen) algorithm [29] were applied
for channel selection of motor imagery (MI) tasks for EEG-BCI. Likewise, Pearson’s correlation method
was used for channel selection of three different EEG datasets of MI tasks for EEG-BCI [3]. Li et al. [30]
implemented three different strategies for channel selection for stroke patients. Feng et al. [5] used
the CSP-rank channel selection methods along with multiband signal decomposition filtering for
selection of optimal channels. Similarly, an attention-based convolutional recurrent neural network
(ACRNN) was used to extract more discriminative features from EEG signals and improve the accuracy
of emotion recognition [31]. Jin et al. [32] applied the bi-spectrum-based channel selection algorithm on
MI tasks for EEG-BCI. For EEG-based BCI, cross-correlation [33], probabilistic mapping methods [34],
contrast-to-noise-ratio [35], and principal component analysis [36] have also been used for channel
selection and ROI identification.

However, for fNIRS-BCI, very few channel selection methods and techniques have been found
in the literature, which includes the t-value method [37–39], baseline correction method [40],
and hardware-based approach, i.e., bundled-optode method [41]. The t-value method is used
excessively by researchers for selecting ROI and COI. This statistical-based approach considers
only those channels that give a positive t-value (t > 0) or greater than the critical value (t > tcrt) and
p < 0.05, where the value of tcrt depends upon the degree of freedom (i.e., number of samples in
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the signal). The method includes a step-wise procedure of (a) generating a canonical hemodynamic
response function (cHRF) using 2-gamma functions [42] or 3-gamma functions [43], (b) convolving
cHRF with known stimulation interval (boxcar function) to get a modelled/desired hemodynamic
response function (dHRF), (c) applying iteratively reweighted least squares algorithm to estimate
parameters by using a general linear regression model with dHRF, and (d) final significance of the
hypothesis is calculated through these estimated parameters. If the estimated parameters are positive,
then specific stimulation is assumed active and vice versa. Sontosa et al. [44] described the method in
detail for finding out the most significant stimulation through t-values. However baseline correction
technique simply compares peak value of tasks with peak value of rest in brain signals. If peak value
of task is greater than the peak value of rest, the channel is selected. In this paper, we propose a novel
method, the z-score method that uses cross-correlation and z-scores for ROI/COI selection to enhance
the fNIRS-BCI system’s performance.

In the proposed methodology, conventional steps of data acquisition and reduction of noise are
followed. In the second step, brain-activation-based channel selection is performed. cHRF is calculated
using two-gamma functions, followed by dHRF estimation. Cross-correlation is applied to dHRF and
each channel of averaged trial. The max value of correlation coefficients is selected for each channel and
forms another vector of all channels’ max values. The z-score is calculated for the vector of max values.
If the z-score is greater than zero, then the channel is selected (z-score > 0). After that, features are
calculated, and classification is performed. The proposed methodology is applied to an open-access
dataset of left motor imagery (LMI), right motor imagery (RMI), and mental arithmetic (MA) in this
study. All channels and the t-value-method-selected channels are used for verification, following the
same classification steps. Results show that the classification accuracy achieved using the z-score
method is significantly higher (p < 0.0167; Bonferroni correction applied) than the t-value method and
by using all channels. For validation of the proposed method, it is also applied on another open-access
database of 17 subjects having RFT, LFT, and dominant side FT tasks. The results also show better
performance of the z-score method on the conventional t-value method, baseline correction method,
and by using all channels.

2. Materials and Methods

2.1. Subjects/Participants

An open-access dataset of fNIRS single-trial classification for LMI vs. rest, RMI vs. rest, and MA
vs. rest is used in this study [45]. The dataset contains brain signals of twenty-nine healthy subjects
with mean age of 28.5 ± 3.7 years. There were 14 males and 15 females and none of them had any
mental, neurological, or visual disorder. The experimental paradigm was explained in detail to subjects
before taking the written consent. The experiments were conducted following the latest Declaration of
Helsinki. The Ethics Committee approved this study for the Institute of Psychology and Ergonomics,
Technical University of Berlin (approval number: SH_01_20150330).

2.2. Experimental Paradigm/Protocol

In the literature, researchers used mental arithmetic, visual tasks, letter padding, word generation,
object rotation, motor imagery, motor execution, and music imagery as brain activities for data
acquisition for fNIRS-BCI [22,40,46–49]. In this study, motor imagery of left- and right-hand and
mental arithmetic were selected as the brain activities.

The subjects were seated on a comfortable chair facing a screen. They were asked to control their
body movements and stay still as much as possible during data acquisition. The experiment contained
three sessions of LMI, RMI, and MA tasks. Each session started with an initial rest of 60 s to set up
the baseline followed by 20 repetitions of the selected tasks with 60 s of final rest at the end of the
session. Each task started with 2 s of the visual introduction of the task. Then the subject was asked to
perform a task for 10 s followed by rest for a period of 15–17 s. A short beep (250 ms) was played at the
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start and end of each task. Task instructions were displayed on the screen. During the rest period,
the subjects were asked to relax—further details can be found in [45]. The experimental paradigm is
shown in Figure 1.

2.2.1. Motor Imagery (MI)

For MI tasks, subjects were asked to perform kinaesthetic MI, i.e., to imagine the opening and
closing of their hands as they were grabbing a ball. As all subjects were naive, visual instruction using a
black arrow pointing left or right side was displayed on screen for 2 s. A short beep sound was played
before the arrow disappeared, followed by a fixation cross during the task period. The subjects were
told to imagine opening and closing of the hand at a self-paced frequency of 1 Hz. Again, a short beep
sound was played with ‘STOP’ written and displayed on the screen to end the task period. The fixation
cross was also displayed on the screen during the rest period. This pattern was repeated twenty times
in a single session keeping a balanced count of 10 trials for each LMI and RMI.

2.2.2. Mental Arithmetic (MA)

For the MA task, subjects were instructed to perform the initial subtraction of a one-digit number
from a three-digit number, e.g., 384-8, by displaying it on the screen for 2 s. They were asked to
memorize the numbers shown on screen for subtraction. The screen changed to a black fixation cross
for the task period with a short beep sound. During the task period of 10 s, the subjects were instructed
to subtract the one-digit number from the result of the previous subtraction repeatedly. Followed by
a 15–17 s rest period, subjects were allowed to relax, and a black fixation cross was also displayed
on the screen. Just like the MI paradigm, task periods were ended by playing a short beep sound,
and “STOP” written and displayed on the screen. Likewise, the MI paradigm, initial, and final rest of
the 60 s, was included in the MA paradigm to set up a baseline.

 

Figure 1. Experimental paradigm for data acquisition. After the initial 60-s rest, a single trial consisted
of a 2-s visual instruction period, then 10 s left motor imagery (LMI), right motor imagery (RMI),
motor imagery (MI), and mental arithmetic (MA) tasks followed by a 15–17 s rest.

2.3. Experimental Setup/Optode Placement

Fourteen emitters and sixteen detectors were used to record fNIRS signals with separation of
3 cm [50,51], resulting in thirty-six physiological channels. Nine channels were placed at the frontal
cortex around Fp1, Fp2, and Fpz. Twelve channels were positioned at the motor cortex around C3
and C4 respectively. And three channels were placed at the visual cortex around Oz. Optodes were
arranged according to the 10–20 international system as shown in Figure 2.
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– ΔHbO ΔHbR.

[∆𝐻𝑏𝑂(𝑡)∆𝐻𝑏𝑅(𝑡)]  =  [𝜀𝐻𝑏𝑂(𝜆1) 𝜀𝐻𝑏𝑅(𝜆1)𝜀𝐻𝑏𝑂(𝜆2) 𝜀𝐻𝑏𝑅(𝜆2)]−1 [∆¥(𝑡, 𝜆1)∆¥(𝑡, 𝜆2)]𝑑 ×  𝑙𝜀𝐻𝑏𝑂(𝜆) 𝑎𝑛𝑑 𝜀𝐻𝑏𝑅(𝜆) ∆𝐻𝑏𝑂 and ∆𝐻𝑏𝑅 µ𝑀−1𝑐𝑚−1𝑑 𝑙𝛥¥(𝑡) λi  

∆𝐻𝑏𝑂 and ∆𝐻𝑏𝑅
– –Δ𝐻𝑏𝑂  

Figure 2. Optodes were placed at the frontal, motor, and visual cortex following the 10–20 international
system [45]. Green and red squares represent emitters and detectors, respectively. Fourteen emitters
and sixteen detectors were used to record functional near-infrared spectroscopy (fNIRS) signals with
separation of 3 cm, resulting in a total of thirty-six.

2.4. Signal Acquisition

fNIRS data were measured by NIRScout (NIRx GmbH, Berlin, Germany). Additionally, an opaque
cap was used over a stretchy fabric cap to block ambient light, and also firm contact was observed
between the optodes and scalp. The sampling frequency was set to 12.5 Hz. The brain imaging system
used two wavelengths, 760 and 850 nm. Following the literature [11], the modified Beer–Lambert law
(MBLL) was applied to convert brain signals recorded into ∆HbO and ∆HbR.

[

∆HbO(t)

∆HbR(t)

]

=

[

εHbO(λ1) εHbR(λ1)

εHbO(λ2) εHbR(λ2)

]−1
[

∆U=(t,λ1)
∆U=(t,λ2)

]

d× l
(1)

where εHbO(λ) and εHbR(λ) are extinction coefficients of ∆HbO and ∆HbR in µM−1cm−1 respectively,
d is the differential path-length factor in [mm], l is the distance between emitter and detector in [mm],
and ∆U = (t) is the absorbance difference of light source wavelength of λi (where i = 1,2).

2.5. Signal Processing

Various noises like instrumental, physiological, and experimental noises contained by acquired
hemodynamic signals had to be removed before feature extraction and classification [49]. Following the
instructions [45] about preprocessing, ∆HbO and ∆HbR data were band-pass filtered using a
fourth-order Butterworth filter with a passband of 0.03–0.15 Hz to remove physiological noises.
A Savitzky–Golay filter was applied for smoothing [2] in MATLAB® 2019b (The MathWorks, Inc.,
Natick, MA, USA). The averaged ∆HbO signals of all trials for channels 10, 12, and 22 for the MA, LMI,
and RMI tasks after noise removal are shown in Figure 3 for an example subject.

2.6. Channel Selection/Channel of Interest/Region of Interest

In conventional BCI systems, either all channels are used, or channels are selected based on brain
activation. In this study, the z-score method for COI/ROI is proposed and used for channel selection
based on brain activation. The researchers have used the t-value method excessively for this purpose;
therefore, it is included in the study. The conventional and proposed methodology is shown in Figure 4.
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 Δ𝐻𝑏𝑂Figure 3. Averaged ∆HbO of all trials of channels 10, 12, and 22 for tasks and rest of the MA, LMI,
and RMI.

 

–

value are selected. Alternatively, a threshold value of ‘ ’ (

the threshold value, where ‘k’ is the number of samples in an activity. The 

ℎ𝑗𝑖(𝑘) = 𝜙𝑗𝑖ℎ𝑀(𝑘) +  𝜓𝑗𝑖 . 1 +  𝜀𝑗𝑖ℎ𝑗𝑖(𝑘) 𝜖 𝑅𝑘 𝑋 1
in which ‘k’ is the number of samples in each stimulus, subscript ‘j’ denotes the stimulus number, 
and superscript ‘i’ represents the channel number.‘ 𝜙 ’ is the unknown coefficient to be estimated, 
the coefficient ‘ 𝜓 ’ is multiplied by column vectors of 1 𝜖 𝑅𝑘 𝑋 1𝜀 𝜖 𝑅𝑘 𝑋 1  
‘ 𝜙 ’ are estimated through ℎ𝑀(𝑘)𝜖 𝑅𝑘 𝑋 1ℎ𝑐(𝑘) 𝑠(𝑘) ℎ𝑐(𝑘)

ℎ𝑐(𝑘) = 𝐴 [𝑘𝛼1−1𝛽1𝛼1𝑒−𝛽1𝑘𝛤(𝛼1) − 𝑐 𝑘𝛼2−1𝛽2𝛼2𝑒−𝛽2𝑘𝛤(𝛼2)  ]
The parameter ‘A’ sets the amplitude, ‘α1′ and ‘α2′

respectively. In contrast, ‘β1′ & ‘β2′ set dispersions of the peak and undershoot respectively, ‘c’ is the 
ratio of the peak to the undershoot, and ‘Γ’ is the gamma distribution. ℎ𝑀(𝑘)

ℎ𝑀(𝑘) =  ∑ ℎ𝑐(𝑛)𝑠(𝑘 − 𝑛)𝑘
𝑛=1

Figure 4. Methodology of (a) conventional and (b) proposed brain–computer interface (BCI) system.

2.6.1. t-value Method

The t-value method is an estimation-based channel selection or COI or ROI approach in which
channels with a positive t-value are selected. Alternatively, a threshold value of ‘t’ (t > tcrt) can also
be set for the selection of active channels. In that case, the degree of freedom (k − 1) is used to
determine the threshold value, where ‘k’ is the number of samples in an activity. The t-value method
determines cortical activation through statistical estimation by fitting the linear regression model [44].
The estimation can be calculated by fitting dHRF, with measured hemodynamic response function
resulted from cortical activation. It can be formulated as given below:

hi
j(k) = φi

jhM(k) +ψi
j.1 + εi

j (2)

The term on the left side of the equation i.e., hi
j
(k) ∈ Rk×1 is the measured response function

in which ‘k’ is the number of samples in each stimulus, subscript ‘j’ denotes the stimulus number,
and superscript ‘i’ represents the channel number. ‘φ’ is the unknown coefficient to be estimated,
the coefficient ‘ψ’ is multiplied by column vectors of 1 ∈ Rk×1 for correction of baseline drift in the
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signal, and ε ∈ Rk×1 is the error term in the linear regression method. The unknown coefficients ‘φ’
are estimated through robustfit function in MATLAB®. hM(k) ∈ Rk×1 is calculated by convolution of
cHRF hc(k) with boxcar function s(k) hc(k) and can be modeled using two-gamma functions [42,43,52],
as shown below:

hc(k) = A













kα1−1βα1
1 e−β1k

Γ(α1)
− c

kα2−1βα2
2 e−β2k

Γ(α2)













(3)

The parameter ‘A’ sets the amplitude, ‘α1
′ and ‘α2

′ set the peak and undershoot delays, respectively.
In contrast, ‘β1

′ & ‘β2
′ set dispersions of the peak and undershoot respectively, ‘c’ is the ratio of the

peak to the undershoot, and ‘Γ’ is the gamma distribution. hM(k) can be calculated using the formula

hM(k) =
k
∑

n=1

hc(n)s(k− n) (4)

And the boxcar function is:

s(k) =

{

0, i f k ∈ rest

1, i f k ∈ task
(5)

The boxcar function is a unit step function having a value of ‘0’ for the rest period and ‘1’ for the
task period. After estimating the coefficient ‘φ’, its statistical significance is calculated by the ratio of
the estimated coefficient and its standard error (SE). The said statistical significance is also called as
‘t-value’. Its positive or threshold value greater than the critical value shows that the channel is active
or otherwise.

ti
j =

φi
j

SE
(

φi
j

) (6)

The above formula gives a t-value in i-th channel of j-th stimulus. In our case, active channels are
considered which have p-value less than 0.05 and a t-value greater than ‘tcrt’, which is 1.65 (degree of
freedom is 299, i.e., k − 1). This method was initially used to measure the statistical significance of
channel [44]. The step-by-step procedure of the t-value method is shown in Figure 5a.

2.6.2. z-Score Method

The z-score method uses cross-correlation as the mutual relationship between two signals and
measures the strength of the relationship among the acquired signal and dHRF. Cross-correlation matches
two signals temporally to find out the strength of similarity between each other, and mathematical
expression is given in the equation below

rxy(τ) =
∞
∑

−∞

x(t)y(t− τ) (7)

where τ is the time-lag between x(t) and y(t), and the value of rxy denotes the difference between
acquired signal x(t) and modelled signal y(t). This cross-correlation has been used earlier for finding
the relationship of the potential dominant channel with its adjacent channels by observing delay in
response between the channels [5]. In the current study, the dHRF signal is swept over the measured
signal, and the integral of its product is found at each discrete position ‘t’. The maximum value of
the integral product, i.e., the correlation coefficient, is selected for each channel showing the temporal
similarity between two signals at that time instant ‘τ’.

ri = max















k
∑

t=−k

hi(t)hi
M(t− τ)















(8)
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The average trial value of measured response is taken for each stimulus type (i.e., LMI, RMI,
and MA), and afterward, cross-correlation is calculated with dHRF. Maximum strength of similarity
occur when τ is selected for task vs. task intervals of measured and desired hemodynamic response
function to overlap, it is also the highest value of cross-correlation coefficient. If τ is selected for rest
vs. rest or rest vs. task or task vs. rest intervals of measured and desired hemodynamic response
function to overlap, it will give lower values of cross-correlation coefficient. And if τ is selected for
complete intervals i.e., calculate cross-correlation coefficient for complete time period, the highest
value remains the same, as shown in Figure 6a. The maximum value of correlation coefficient ‘r’ is
selected for each channel ‘i’, between measured hemodynamic response function h(t) ∈ Rk×1 and
dHRF hM(t) ∈ Rk×1, where ‘k’ is the number of samples in the signal. The vector ri contains maximum
values of cross-correlation coefficients for each channel. The magnitude of each maximum value varies
for each channel and forms a new range as shown in Figure 6b. The z-score measures the distance
of raw score from mean value i.e., how far from mean a data point is in population. In this study,
z-score represents the channel activation in the form of matching and strength of similarity based
on the value of the cross-correlation coefficient. A positive z-score represents higher strength and
similarity and a negative z-score shows lower strength and no matching. The z-scores of the channel
vary as the (max of) cross-correlation coefficient value varies with respect to task, as shown in Figure 6
for (c) LMI, (d) RMI, and (e) MA. Additionally, the z-score varies with subject. z-scores of vector
containing maximum values of cross-correlation coefficients for each channel are then calculated using
the formula.

zi =

(

ri − r
)

σr
(9)

where ‘r’ is the mean value of correlation coefficients and ‘σr’ is the standard deviation. Only those
channels are selected which have a positive z-score (i.e., z > 0). The step-by-step procedure of channel
selection using the z-score method is shown in Figure 5b.

Both the t-value method and z-score method are used to select cortical-activation-based channels.

𝑧𝑖 = (𝑟𝑖 −  �̅� )𝜎𝑟
Where ‘ �̅� ’ is the mean value of correlation coefficients and ‘ 𝜎𝑟  ’ is the standard deviation. Only 

  

Figure 5. Step-by-step procedure of (a) t-value and (b) z-score method.
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𝑧𝑖 = (𝑟𝑖 −  �̅� )𝜎𝑟
Where ‘ �̅� ’ is the mean value of correlation coefficients and ‘ 𝜎𝑟  ’ is the standard deviation. Only 

 

Figure 6. (a) Plot of cross-correlation coefficients of all channels for LMI for subject 28, (b) plot of ri;
vector containing maximum value of all channels for LMI for subject 28 and plot of z-score for (c) LMI,
(d) RMI, and (e) MA task of subject 28.

2.7. Feature Extraction

2.7.1. Statistical Features

In fNIRS-BCI, statistical measures such as peak, mean, variance, kurtosis, skewness, and slope are
extracted as features for classification [2,24,53–56]. However, mean and peak and mean, peak, and slope
were optimal two- and three-feature combinations to achieve enhanced classification accuracies for the
fNIRS-BCI system [57]. In this study, the mean, peak, and slope are used as features for the fNIRS-BCI
problem classification. All features are calculated for ∆HbO spatio-temporally. Spatio-temporal
features are calculated using a two-step procedure: (1) averaging all channels (spatial average) and (2)
aggregating using a statistic across each task window (temporal statistic).

Mean is calculated as:

Mean = µ =
1
n

k
∑

x=1

Bx (10)

where Bx is the input signal such as ∆HbO(t) and n is the total number of observations, aggregated by
mean function of MATLAB®.

The slope is aggregated using MATLAB® poly f it function, which fits the line to all input
data points.

The peak is the maximum value of the signal, calculated using max function of MATLAB®.

2.7.2. Normalization

Features are normalized by rescaling using the following equation:

Y′ =
Y −min(Y)

max(Y) −min(Y)
(11)

where Y′ is the normalized feature, and Y is the original feature values. This normalization has been
applied to all features before classification. The final feature-matrix calculated is of size 20 × 3 for
each task.
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2.8. Linear Discriminant Analysis (LDA)

The linear discriminant analysis draws a hyper-plane in feature space to discriminate between
classes. The hyper-plane is drawn based on minimizing the inter-class variance and maximizing
the distance between classes mean. The optimal projection matrix to maximize Fisher’s criterion is
formulated as

J(X) =
XTSBX

XTSWX
(12)

where SW is with-in class scatter matrix and SB is a between-class scatter matrix, defined as:

SW =
n
∑

i=1

∑

yk∈class i

(y− µi)(y− µi)
T (13)

SB =
n
∑

i=1

ki(µi − µ)(µi − µ)
T (14)

In the above equation µi denotes the sample mean of class i, and µ represents the total mean of
all samples, n is the total number of classes, ki designates the number of samples of class i, and k is
the total number of samples. The largest eigenvalues contained by optimal vector X is calculated by
Equation (12) as a generalized eigenvalue problem. To estimate classification performance leave-one-out
cross-validation (LOOCV) is used. The dataset is divided into training and testing sets, to ensure
separation of data for training and testing of classifier for each channel selection method and activity
used. Due to a limited number of samples i.e., twenty, LOOCV is applied. There is one sample for
testing and nineteen for training the classifier, repeated twenty times. In MATLAB® the following
functions were used; cvpartition for data partition in folds, classify for classification, and crossval for
cross-validation purposes.

3. Results

The analysis shows that both methods vary in channel selection and the total number of selected
channels for a specific task. The t-value method measures the activation as statistical significance of
signal of channel, while the z-score measures the activation as z-score of (max of) cross-correlation
coefficients with respect to all channels population. The activation map is drawn for both methods
using normalized t-values and z-scores. Figure 7 shows the cortical activation-map of the t-value and
z-score method for MA, LMI and, RMI tasks. The figure shows the difference in measuring cortical
activation by using both methods. It can be seen in Figure 7 that cortical activation does not occur
in all channels for a specific activity, and also not in all channels of the designated region. For MA
tasks the proposed method selected major channels from the prefrontal region (details can be found in
Supplementary files) and the visual cortex (instructions were displayed on screen), however some other
channels from the motor cortex also showed a positive z-score value. Similarly for LMI and RMI major
channels are selected from the motor and prefrontal cortex (details can be found in Supplementary files)
and the visual cortex (instructions were displayed on screen). The areas of activation found are similar
to designated areas of neural activity [55]. The selection of extra channels may be due to human error,
lack of concentration, multiple thinking during experiment, or induced neuronal activity. This also
varies with respect to activity and subject. In Figure 7, the spatial difference of identifying cortical
activation is found in both methods because of the fact that both methods apply different scientific
and mathematical principles. The t-value method uses statistical significance by GLM and the z-score
method applies signal matching through cross-correlation. A similar pattern of differences is found in
all subjects. The proposed method is used to select channels having cortical activity during particular
tasks. The number of chosen common channels between the t-value and z-score methods also varies
for a specific task. For the MA task, the range of the total number of selected channels using the z-score
method is 14–20 channels. The t-value method selected 6–36 channels, and the number of common
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channels between both methods varies from 2–20 channels. Similarly, for the LMI task, the chosen
z-score method channels range from 14–20 channels, while the t-value has a range of 2–24 channels,
and the number of common channels between both methods ranges from 1–20 channels. Likewise,
for the RMI task, z-score-method-nominated channels range from 16–21 channels, whereas the t-value
method selected 6–36 channels, and the amount of common channels ranges from 2–20. All three tasks
of MA, LMI, and RMI were analyzed for all twenty-nine subjects. A plot of total number of channels
selected by t-value, z-score method, and common channels for the MA, LMI, and RMI task is shown
in Figure 8a–c respectively. Details of channels selected using the t-value and z-score method are
available in Supplementary files for the MA, LMI, and RMI tasks, respectively.

After selecting channels, Spatio-temporal features of the mean, peak, and slope were extracted from
nominated channels’ data. In addition to the t-value method, all channel data were also used to compare
the results. The feature scatters plot of the t-value-method-selected channels, the z-score-method-chosen
channels, and all channels were drawn for each task. The feature scatter plot for MA, LMI, and RMI
tasks for subject 28 is shown in Figures 9–11, respectively.

channels’ data achieved classification accuracies of 

method, and all channels’ data for the 

value and all channels’ data are statistically 
tailed paired sample Student’s 

selected channels’ performance 

Figure 7. Activation map of t-value and z-score method for LMI, RMI, and MA tasks, for example
subject 28.

The average classification accuracy obtained using channels selected by the z-score method is
87.2 ± 7.0%, 88.4 ± 6.2%, 88.1 ± 6.9% for LMI vs. rest, RMI vs. rest, and MA vs. rest; respectively.
While the average classification accuracies yielded by using channels selected by the t-value
method are 74.5 ± 9.3%, 70.3 ± 14.2%, and 73.9 ± 12.2% for LMI vs. rest, RMI vs. rest, and MA
vs. rest; respectively. Likewise baseline-correction-technique-selected channels achieved classification
accuracies of 79.3 ± 10.7%, 78.4 ± 13.3%, and 79.1 ± 18.1% for LMI vs. rest, RMI vs. rest, and MA
vs. rest; respectively. However, all channels’ data achieved classification accuracies of 77.7 ± 8.9%,
75.0 ± 10.8%, and 77.5 ± 9.6% for LMI vs. rest, RMI vs. rest, and MA vs. rest; respectively. Table 1
shows the detailed subject-wise classification accuracies using the z-score method, t-value method,
and all channels’ data for the MA, LMI, and RMI tasks. Figure 12 shows the bar chart for obtained
accuracies using the z-score method, t-value method, and all channels for the MA, LMI, and RMI
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tasks. The better results obtained by the z-score method compared to conventional t-value and all
channels’ data are statistically verified by applying a two-tailed paired sample Student’s t-test. For two
comparisons, Bonferroni [58] correction was used to find the adjusted confidence interval level of
0.0167. Table 2 shows the p-values obtained for two comparisons for each task: the z-score method vs.
t-value method and the z-score method vs. all channels. It can be seen that the z-score-method-selected
channels’ performance is significantly better (p-value < 0. 0167) than the t-value method and all
channels for MA, LMI, and RMI fNIRS-BCI.

 

selected channels’ data, z
channels’ data, and all channels’ data for

selected channels’
channels’ data, and all channels’ data for LMI task

Figure 8. Total number of channels selected by t-value, z-score method, and common channels for
(a) MA, (b) RMI, and (c) RMI task.

 

selected channels’ data, z
channels’ data, and all channels’ data for

selected channels’
channels’ data, and all channels’ data for LMI task

Figure 9. Feature scatter plot of the t-value-method-selected channels’ data, z-score-method-selected
channels’ data, and all channels’ data for MA task.
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selected channels’ data, z

channels’ data, and all channels’ data for

selected channels’
channels’ data, and all channels’ data for LMI task

Figure 10. Feature scatter plot of the t-value-method-selected channels’ data, z-score-method-selected
channels’ data, and all channels’ data for LMI task.

 

selected channels’ data, z
channels’ data, and all channels’ data for RMI task

channels’ data for MA, LMI, and RMI tasks.

Figure 11. Feature scatter plot of the t-value-method-selected channels’ data, z-score-method-selected
channels’ data, and all channels’ data for RMI task.

 

Figure 12. Average classification accuracies for the z-score method, t-value method, and all channels’
data for MA, LMI, and RMI tasks.
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Table 1. Subject-wise classification accuracies by using the z-score method, t-value method, and all
channels’ data for MA, LMI, and RMI tasks.

MA LMI RMI

z-Score
Method

t-Value
Method

All
Channels

z-Score
Method

t-Value
Method

All
Channels

z-Score
Method

t-Value
Method

All
Channels

(%)

Sub 1 75 85 90 90 70 55 90 70 75
Sub 2 90 70 80 85 80 90 85 65 75
Sub 3 80 70 70 95 75 65 90 80 75
Sub 4 95 80 80 85 70 75 85 80 65
Sub 5 90 65 55 90 55 80 85 75 65
Sub 6 90 45 55 95 80 85 90 60 65
Sub 7 90 70 80 80 65 65 90 55 85
Sub 8 90 60 90 90 80 85 85 85 85
Sub 9 90 80 60 75 65 70 100 90 85
Sub 10 85 80 85 80 70 75 85 80 70
Sub 11 95 90 85 85 70 70 95 70 70
Sub 12 90 75 75 95 80 80 75 65 65
Sub 13 95 45 70 90 70 70 90 90 80
Sub 14 90 70 70 95 85 90 95 65 65
Sub 15 95 70 75 85 85 85 90 75 90
Sub 16 75 75 70 90 80 75 90 60 80
Sub 17 85 80 80 95 80 85 95 80 85
Sub 18 85 90 90 90 70 85 90 90 90
Sub 19 85 80 85 70 85 85 80 85 80
Sub 20 95 95 85 95 50 80 95 60 60
Sub 21 75 80 80 85 75 80 85 60 90
Sub 22 85 75 85 80 60 70 95 80 75
Sub 23 80 75 80 95 80 80 80 65 70
Sub 24 95 60 80 80 70 85 90 35 75
Sub 25 100 90 80 95 85 90 75 45 50
Sub 26 90 85 90 80 80 70 95 70 75
Sub 27 80 65 75 85 75 65 95 85 85
Sub 28 100 60 70 95 85 85 90 75 90
Sub 29 85 80 80 80 85 80 80 45 55
Average 88.1 74.0 77.6 87.2 74.5 77.8 88.4 70.3 75.0

Table 2. Statistical significance of the z-score method.

Bonferroni Correction Applied (p < 0. 0167)

LMI vs. Rest RMI vs. Rest MA vs. Rest

z-score method vs. t-value method 2.21 × 10−7 5.34 × 10−8 1.47 × 10−6

z-score method vs. all channels 3.50 × 10−5 3.54 × 10−7 1.37 × 10−5

4. Validation

The validation of proposed z-score method has also been performed on a publicly available
fNIRS dataset. Left- and right-hand finger tapping and dominant foot tapping tasks were included
in the dataset for 17 subjects [59]. Each of the aforementioned activities consists of 25 trial data.
Six conventional spatio-temporal features that include signal mean, peak, slope, skewness, kurtosis,
and variance of ∆HbO signal are extracted. LDA classifier is applied on the said extracted features for
a two-class fNIRS-BCI problem.

The average classification accuracies yielded by using the selected channels through the proposed
z-score-method-based selected channels are 72 ± 8%, 66 ± 9.8%, and 67.41 ± 9.5% for RFT, LFT, and FT
tasks respectively. In comparison, the t-value-method-based selected channels resulted in average
classification accuracies of 54.47 ± 10%, 54.12 ± 13.8%, and 56.24 ± 9.3% for RFT, LFT, and FT tasks
respectively. Nonetheless, average classification accuracies obtained for RFT, LFT, and FT tasks by
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selecting all channels remained 54.71 ± 10.3%, 54.47 ± 14.2%, and 54.12 ± 11.1% respectively. However,
the classification accuracies resulted using baseline-correction-selected channels for RFT, LFT, and FT
tasks were 52.82± 7.4%, 51.06± 9.5%, and 55.53± 12.2% respectively. The results achieved using z-score
method have significantly (p-value< 0.0167) better performance as compared to the results of the t-value
method, the baseline correction technique and using all channels for two-class fNIRS-BCI problem.

5. Discussion

In the present study, the authors proposed a new method of selecting cortical-activation-based
channels to increase fNIRS-BCI performance, especially in terms of classification accuracy and
COI/ROI. In the literature, recent studies have also focussed on enhancing classification accuracies
of fNIRS-BCI systems by optimal classification technique [60], optimal feature selection [24,54],
optimal feature-combination [57], general linear model [25], vector-based phase analysis [26,61,62],
t-value method [22,37,41,63], cross-correlation [33], and dominant channel selection [64]. Accurate and
reliable fNIRS-BCI performance may lead to producing applications in neurorobotics, rehabilitation,
clinical BCI for monitoring and analysis, and neuroergonomics [10,65–67].

In previous studies, bundled optode configurations have been used to precisely identify active
regions of the brain [41] in spatially resolved spectroscopy. Santosa et al. [44] first applied the
t-value method to select hemodynamic responses with positive t-values. Another study detected
ROI against different sound stimuli by placing optodes on both right and left hemispheres [63]. It is
worth mentioning here that different channels against different subjects and stimuli were obtained.
The baseline correction method was used in hybrid-BCI to select active channels by calculating and
comparing the maximum values during rest and corresponding task stages [40]. The cross-correlation
method was used to identify potentially dominant channels in both hemispheres for pain-related
cortical activations. First visual inspection was used to identify potential dominant channels followed
by calculating the delay of response—The adjacent active channels were selected [33]. In the present
study, a novel method for cortical-activity-based channel selection is proposed and validated for three
different brain activation fNIRS-BCIs. The results have shown improved classification performance as
compared to previous methods. The proposed method is compared to the conventional excessively
used t-value method and without channel selection using all channels’ data. The proposed method
uses cross-correlation to match and measure strength of similarity between dHRF and recorded brain
signals. Followed by forming a vector of each channel correlation coefficients’ max values, and the
z-score is aggregated for each value of that vector. On the basis of z-score value (z-score > 0) a channel
is selected. This study shows the improvement in classification accuracies of three activity-based
fNIRS-BCIs using the z-score method compared to the t-value method for channel selection and
without channel selection, i.e., using all channels’ data. The classification accuracies are improved from
77.7 ± 8.9% to 87.2 ± 7.0% for MA vs. rest, 77.6 ± 9.6% to 88.1 ± 7.0% for LMI vs. rest, and 75.0 ± 10.9%
to 88.4 ± 6.3% for RMI vs. rest. The channel selection results also verify that activation of channels is not
uniform among different subjects due to variation in brain sizes. Similarly, a specific task is associated
to a certain brain region—that is why identification of correct COI/ROI is extremely important.

The performance improvement may be since the z-score-method-selected channels represent
brain activity more informatively and specifically than using the t-value method. The t-value method
finds out the statistical significance by fitting the actual response to the estimated coefficients’ desired
response. The t-value is the ratio of weighting coefficients to its standard error, and its positive (t > 0)
or threshold value (t > tcrt and p-value < 0.05) decides whether the channel activity is significant or
not. The t-value method was first used by Santosa et al. to measure the statistical significance of a
channel [44]. Later studies used this method to select channels based on cortical activity in terms of a
channel’s statistical significance. However, the z-score method measures the strength of similarity as
cross-correlation coefficient between the desired response and measured response. The maximum value
of the cross-correlation coefficient represents the extent of similarity and matching between desired
and measured responses. Furthermore, the z-score value is the measure of distance from the mean
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value in a data, and a positive z-score value decides whether the raw score is at the right side of bell’s
curve within a population as the channel’s cortical activation. The proposed method selects a channel
from a designated region with respect to activity along with a few other channels. The extra channels
are selected show a positive z-score because of human error, which includes lack of concentration
towards the experiment, multiple thoughts during the experiment, and arbitrary neuronal activity.
Cortical-activity-based channels possess intrinsic brain activation information, which plays an essential
role in improving the fNIRS-BCI system’s classification accuracy. The z-score method can be used to
identify cortical-activity-based brain activation regions, subregions, and channels to analyze, perform,
and develop state-of-the-art fNIRS-BCI applications, including prosthetics, exoskeleton controls,
and communications with stroke or locked-in syndrome patients.

This study has few limitations, including the fact that it applies to a single activity at a time as
specific task is associated with a particular brain region. Furthermore, activation of subject-based
specific channels occurs due to different brain sizes. The z-score method selects major chunks of
channel from a designated region and a few other channels from other regions as well; this occurrence
was also found in the t-value method. Further improvement can be made to reduce the selection of
undesignated channels by only performing analysis on subregions. Moreover, the study includes only
an LDA-based classification model because of its low computational cost and high-speed performance.
LDA is a commonly used classifier for the fNIRS-BCI system [60]. Other machine learning algorithms
may also be used for analysis and may perform better [55].

6. Conclusions

The aim of this study was to improve classification accuracy for a fNIRS-BCI system by selecting
cortical-activity-based channels. The z-score method selects cortical-activity-based channels based on
cross-correlation coefficients and z-score value (z > 0). Average classification accuracies achieved for
MA vs. rest, LMI vs. rest, and RMI vs. rest by using the proposed method are significantly (p < 0.0167)
higher than the t-value method and without channel selection, i.e., using all channels for classification.
The results show enhanced performance for the proposed method over conventional methods as an
advancement in efforts to identify cortically active channels/regions and to improve the classification
performance of state-of-the-art fNIRS-BCI systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/23/6995/s1,
Table S1: Details of the selected channels using t-value and z-score method for MA, LMI and, RMI task.
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Abstract: Brain- and muscle-triggered exoskeletons have been proposed as a means for motor training
after a stroke. With the possibility of performing different movement types with an exoskeleton, it is
possible to introduce task variability in training. It is difficult to decode different movement types
simultaneously from brain activity, but it may be possible from residual muscle activity that many
patients have or quickly regain. This study investigates whether nine different motion classes of
the hand and forearm could be decoded from forearm EMG in 15 stroke patients. This study also
evaluates the test-retest reliability of a classical, but simple, classifier (linear discriminant analysis)
and advanced, but more computationally intensive, classifiers (autoencoders and convolutional
neural networks). Moreover, the association between the level of motor impairment and classification
accuracy was tested. Three channels of surface EMG were recorded during the following motion
classes: Hand Close, Hand Open, Wrist Extension, Wrist Flexion, Supination, Pronation, Lateral
Grasp, Pinch Grasp, and Rest. Six repetitions of each motion class were performed on two different
days. Hudgins time-domain features were extracted and classified using linear discriminant analysis
and autoencoders, and raw EMG was classified with convolutional neural networks. On average,
79 ± 12% and 80 ± 12% (autoencoders) of the movements were correctly classified for days 1 and 2,
respectively, with an intraclass correlation coefficient of 0.88. No association was found between the
level of motor impairment and classification accuracy (Spearman correlation: 0.24). It was shown
that nine motion classes could be decoded from residual EMG, with autoencoders being the best
classification approach, and that the results were reliable across days; this may have implications for
the development of EMG-controlled exoskeletons for training in the patient’s home.

Keywords: stroke; EMG; brain-computer interface; myoelectric control; pattern recognition

1. Introduction

A stroke is a cardiovascular disease affecting millions of people each year, where approximately
80% of the survivors are left with motor disabilities, such as paresis or paralysis [1,2]. Even after
rehabilitation, around 50% of the patients are left with disabilities such that they require assistance
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with some of their activities of daily living [3,4]. Since a stroke is heterogeneous, there is no effective
treatment that works for all [2]. There seems to be a consensus that principles of motor learning are
relevant to stroke recovery [5], and induction of neural plasticity, which is the underlying factor of
motor learning [6]. New patient-driven technologies have emerged where motor learning principles,
such as repetition and attention, are incorporated in training, examples of such technologies are
muscle- and brain-triggered exoskeletons or robots [7–10]. With the advances in the design and
production of exoskeletons and rehabilitation robots, it is possible to perform different motions,
which can be used to introduce task variability in training that can maximize the retention and
generalization of the relearned movements [5]. To use such devices, however, it is necessary to
detect the movement intention of various movement types to pair the motor commands with relevant
afferent feedback. In patients with paralysis and no detectable electromyography (EMG) activity,
it is necessary to use a Brain-Computer Interface where movement intentions are detected through
electroencephalography (EEG). It is possible to classify movement intentions from idle activity with
accuracies up to 80% in stroke patients [11,12], but the accuracies decrease when different movement
types are classified [11–13]. If EMG activity is preserved or regained [14], it is possible to classify
various movement types with high accuracy [15], even in patients with severe impairments [16,17].
It has been shown that neuroplasticity can be introduced using both EEG- and EMG-triggered electrical
stimulation for providing afferent feedback [18], but it may be advantageous to use EMG if different
movement types need to be classified. It has been shown in different studies that different movement
types can be classified from EMG activity from the muscles in the affected limb. These movements
include finger movements [14], various functional hand movements, such as open/close [15,19–22] and
grasps [23], wrist extension [16], elbow and shoulder movements [24], and reaching [25]. Some of the
techniques that have been used for decoding the attempted movements from the EMG are amplitude
thresholds of the EMG signal envelope and proportional control [14,20], and pattern recognition
approaches using, e.g., Hudgins time-domain features [15], autoregressive coefficients [22], empirical
mode decomposition [26], and wavelets [27]. The performance of the decoding algorithms spans a
wide range of 38–100%. Generally, the highest accuracies were associated with binary tasks, such as
detecting a movement versus no-movement, and the performance decreases when including more
motion classes. Some results have also shown how the classification accuracy is affected by the
severity of the stroke [21]. As outlined, several studies have investigated the possibility of decoding
attempted movements from stroke patients using surface EMG. These studies have primarily been
single-session studies; therefore, there is a need for reliability studies to see if the decoding results
are reproducible over time. Moreover, in previous work, EMG electrodes have been positioned for
each patient individually to account, e.g., for muscle weakness and spasticity [22], or several EMG
electrodes have been used to capture the activity from several muscles [15]. Therefore, the aim of this
study was to investigate if different hand and forearm movements can be classified using a simple
electrode setup placed on the same three muscles across heterogeneous stroke participants over two
different days using a simple pattern recognition (linear discriminant analysis) approach with a low
computational complexity which implements low-cost embedded systems. For comparison purposes,
the simple classification approach using linear discriminant analysis was compared to autoencoders
and convolutional neural networks that have been shown previously to improve the classification
performance [28], but are more computationally intensive. In addition, the reliability of the pattern
recognition approach was evaluated over two days. Besides the reliability analysis, it was investigated
if it was possible to use the EMG recorded on one day to classify the EMG on the other day. Lastly,
it was investigated if there was an association between the level of motor impairment and classification
accuracy. Such an association has been reported previously, but more evidence is important, especially
in a heterogeneous condition, such as a stroke.
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2. Materials and Methods

2.1. Participants

Sixteen stroke patients (one female; 53 ± 8 years old) were recruited for this study (see the
patient demographics in Table 1) from Railway General Hospital in Rawalpindi, Pakistan. One patient
dropped out during the data collection. All patients provided their informed consent prior to
participation. The procedures were approved by the local ethical committee (Riphah/RCRS/REC/00651).
All procedures were in accordance with the Declaration of Helsinki. The Fugl-Meyer Assessment was
performed to indicate the motor impairment of the patients, (motor score). The motor part of the
Fugl-Meyer Assessment consists of two scores (100 points in total), one for the upper (66 points) and
lower extremities (34 points). In this study, the score for the upper extremities is of interest. It covers the
functionality of shoulder, elbow, wrist, and finger movements, as well as grasping various objects [29].

Table 1. Patient demographics. Upper limb (UL), and lower limb (LL). The maximum score is 66 and
34 for UL and LL, respectively.

Patient Months Since Injury Affected Side Type of Injury
Fugl-Meyer

[UL/LL/Total]

1 24 Left Ischemic [55/22/77]
2 17 Right Ischemic [36/34/70]
3 18 Right Ischemic [23/28/51]
4 32 Left Ischemic [46/32/78]
5 36 Left Ischemic [26/18/44]
6 5 Right Ischemic [65/31/96]
7 38 Right Ischemic [17/22/39]
8 2 Left Ischemic [59/31/90]
9 38 Right Ischemic [55/30/85]

10 6 Left Ischemic [51/23/74]
11 3 Right Ischemic [56/24/80]
12 5 Left Hemorrhagic [44/20/64]
13 66 Right Hemorrhagic [28/18/46]
14 19 Left Ischemic [50/21/71]
15 70 Left Hemorrhagic [36/33/69]

2.2. Recordings—Surface EMG

Six surface EMG electrodes (Ambu Neuroline 720 surface electrodes, REF 72000-S/25, Ambu,
Ballerup, Denmark) were placed on the forearm on Extensor Carpi Radialis, Flexor Carpi Radialis,
and Flexor Carpi Ulnaris. Two electrodes were placed on each muscle two cm apart and used in a
bipolar configuration to obtain a single channel. The signals were referenced to a moist wristband.
The signals were amplified with a gain of 10,000 (OT Bioelettronica, Torino, Italy) and sampled with
2048 Hz.

2.3. Experimental Setup

The experiment consisted of two recording sessions performed on two different days. The same
experimental procedure was followed in both sessions. The recordings were performed in a seated
position. Initially, the EMG electrodes were placed on the forearm on the most affected side, and the
signal quality was checked (the electrode positions were marked on the forearm to ensure the same
placement of the electrodes on day two). The participants were instructed how to perform the motions,
and during the recording of the signals, they were visually cued (a picture of the specific motion
was shown). A digital trigger was sent to the amplifier to synchronize the visual cue with the EMG
recordings at the beginning of the recording. The following motion classes were performed: Hand
Close, Hand Open, Wrist Extension, Wrist Flexion, Supination, Pronation, Lateral Grasp, Pinch Grasp,
and Rest. Each motion class consisted of six repetitions of attempted movement, and the participant
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was asked to maintain the contraction for six seconds. Between each movement, there was a break of
six seconds. All repetitions of the motion class were completed before moving to the next motion class.
The order of motion classes was randomized.

2.4. Data Analysis

2.4.1. Pre-Processing and Feature Extraction

The EMG was bandpass filtered between 20–500 Hz, and a Notch filter from 48–52 Hz was applied
using a 2nd order Butterworth filter with zero phase shift. The onsets of the EMG activity were visually
inspected to avoid a potential delay between the cue and onset of the movements, such that the
movement onsets were correctly identified for further analysis. Each of the 6-s repetitions of the motion
class were extracted, and the first and last second were removed from the analysis, which resulted
in epochs of 4-s duration for each repetition of the motion class. Following the pre-processing,
four features were extracted: Mean absolute value, waveform length, zero crossing, and slope sign
changes [30]. The features were extracted from a 200-millisecond data window with no overlap to
obtain more data for classification [31]. The same analysis was performed on the data from the two
separate recording sessions. An example of the filtered and rectified EMG for each motion class is
shown in Figure 1.
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Figure 1. Rectified (only for visualization) and bandpass filtered surface EMG for the nine different
motion classes for a single repetition and a single participant. Hand Close (HC), Hand Open (HO),
Wrist Flexion (WF), Wrist Extension (WE), Supination (Sup), Pronation (Pro), Lateral Grasp (Lat),
and Pin (Pinch Grasp). Flexor (Fl.), Extensor (Ex.). Clear EMG activity can be seen for most motion
classes except the Lateral Grasp.

2.4.2. Classification

The classification was performed in two different ways: (1) Within-session calibration;
and (2) between-session calibration. For the within-session calibration, 80% of the data windows were
randomly selected for training, and 20% of the data windows were used for testing. The classifiers
were trained on data windows from each subject individually and on the same randomly selected data
windows to fairly compares classifiers. In the within-session calibration, the classifier was trained
and tested on the recordings from the same day. In the between-session calibration, the classifier was
trained on data from one day and tested on the other day. Moreover, confusion matrices were obtained.
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Three classifiers were tested, two of them used features as input, while the third used bandpass
filtered data windows as input. The features were classified using a linear discriminant analysis classifier
(LDA) and autoencoders (AE), and the filtered data windows were classified with a convolutional
neural network (CNN). The LDA is a linear classifier that can separate multiple classes using a
linear combination of the input features [32], while AE is an artificial neural network. In this study,
the default MATLAB implementation of the LDA was used where all classes have the same covariance
matrix. In the implementation of the LDA in this study, all motion classes were included leading
to a classification problem with nine classes. The AE network consisted of two layers, each with
hidden units of 12 (length of the feature vector) and a softmax layer. Optimized parameters from
previous work were used [33]. The 200-millisecond data windows of EMG were classified using a
CNN. The CNN consisted of an input layer (200-millisecond data window), four convolutional layers,
each with Relu and pooling layers, a fully connected layer, and a softmax layer. The architecture
of the network was optimized randomly, and the network was trained using Adam optimizer with
default values except for L2R (10 × 10−6) and initial learning rate (5 × 10−3) with a ‘piecewise’ learning
rate schedule having a drop rate factor of 0.1 and drop period of 4. Maxepochs were set to 20, and a
mini-batch size of 16 and 32 were used for within- and between-session analyses, respectively. All data
processing and analyses were performed in MATLAB 2020a (MathWorks®). The computational time
of the different classifiers was estimated on the training and test data. The classification was performed
on a computer with 8 GB RAM, a core i5 processor, and a 64-bit operating system.

2.5. Statistics

All statistical analyses were performed in IBM® SPSS®. The test-retest reliability of the
classification accuracies in the within- and between-session calibration was assessed using a two-way
mixed-effect model with absolute agreement. The test was repeated three times for LDA, AE, and CNN,
respectively. The mean classification accuracy was calculated across the two days for the within- and
between-session calibration, and a two-way repeated-measures analysis of variance (ANOVA) was
performed with “Calibration” (2 levels: Within-, and between-session calibration) and “Classifier”
as factors (3 levels: LDA, AE, and CNN). Six Friedman tests were performed (the assumption of
normality was violated) on the diagonal values in the confusion matrices (mean across the two
days) with “Motion Class” as the factor (9 levels: Hand Close, Hand Open, Wrist Extension, Wrist
Flexion, Supination, Pronation, Lateral Grasp, Pinch Grasp, and Rest) for the three classifiers in the
within- and between-session calibration. Significant tests were followed up with a posthoc test using
Bonferroni correction. Lastly, the Spearman correlation coefficient was calculated between the upper
limb Fugl-Meyer score and the average classification accuracy for the within-session calibration (mean
across the two days). Significant tests in all analyses were assumed when p < 0.05.

3. Results

The average classification accuracies across participants obtained in the within-session calibration
were approximately 70% for the LDA and CNN on both days, while 80% of the motions were correctly
classified with AE (see Figure 2). The average classification accuracies in the between-session calibration
were approximately 30% for day 1 and 2, respectively, with slightly lower accuracies for AE. The results
of the test-retest analysis are presented in Table 2. Good agreement was obtained for all classification
and calibration scenarios except for the CNN in the between-session calibration, where the moderate
agreement was obtained [34].
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Figure 2. Overall classification accuracy for all motion types. The results are presented as mean ±
standard deviation across participants. “Day12” indicates training on data from day 1 and testing on
data from day 2. “Day21” indicates training on data from day 2 and testing on data from day 1. LDA
(linear discriminant analysis), AE (autoencoders), and CNN (convolutional neural network).

Table 2. Intraclass correlation coefficients for the different calibration scenarios for the three classifiers.
The intraclass correlation coefficient and 95% confidence intervals are reported.

Within-Session Between-Session

Linear discriminant analysis 0.84 [0.54:0.95] 0.88 [0.63:0.96]
Autoencoders 0.88 [0.63:96] 0.87 [0.62:0.96]

Convolutional neural network 0.86 [0.58:0.95] 0.69 [0.06:0.90]

The mean classification accuracy was calculated across the two days, and a two-way
repeated-measures ANOVA revealed a significant interaction between Calibration and Classifier
(F(2,28) = 27.05; p < 0.001; η2 = 0.66). This was followed up with two one-way repeated-measures
ANOVA tests for the within- and between-session calibration. For the within-session calibration,
there was a significant difference between the classifiers (F(1.2,17.1) = 17.27; p < 0.001; η2 = 0.55), and the
posthoc analysis revealed higher classification accuracies for AE compared to the LDA and CNN.
For the between-session calibration, there was no difference between the classifiers (F(2,28) = 3.10;
p = 0.061; η2 = 0.18).

The confusion matrices (mean across the two days and across participants) for the within-session
and between-session calibration are shown in Tables 3–8, respectively. For the within-session calibration,
the highest numbers were on the diagonal for all motion classes, with Rest being the easiest to
discriminate (92–95%). The other motion classes were in the range of 55–83%. A significant difference
between the motion classes was found for the LDA (χ2

(8) = 44.13; p < 0.001), AE (χ2
(8) = 39.63; p < 0.001)

and CNN (χ2
(8) = 51.14; p < 0.001). For the LDA, the posthoc analyses revealed that Rest had

higher classification accuracies compared to the other classes except Wrist Extension and Hand Open.
Wrist Extension and Hand Open had higher classification accuracies than Lateral Grasp. For AE,
the classification accuracies for the Rest class were higher than Lateral Grasp, Supination, Pinch Grasp,
and Pronation. For CNN, Rest had higher classification accuracies compared to the other classes
except Wrist Extension and Wrist Flexion. Wrist Extension and Wrist Flexion had higher classification
accuracies than Lateral Grasp.
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Table 3. Confusion matrix based on within-session calibration (the mean across the two days have been
calculated) using linear discriminant analysis. All values are in percent and presented as the mean
across participants. HC (Hand Close), HO (Hand Open), WE (Wrist Extension), WF (Wrist Flexion),
Sup (Supination), Pro (Pronation), Lat (Lateral Grasp), and Pin (Pinch Grasp).

HC HO WF WE Sup Pro Lat Pin Rest

HC 72 5 2 2 4 2 10 4 2
HO 4 77 6 4 2 3 1 4 1
WF 4 9 71 4 3 4 4 3 1
WE 2 4 4 75 6 3 2 5 1
Sup 2 2 2 7 66 8 7 5 3
Pro 1 2 2 2 12 70 4 7 3
Lat 9 2 1 2 9 8 56 9 6
Pin 2 4 1 5 7 3 6 69 5
Rest 0 1 0 0 2 2 2 3 92

Table 4. Confusion matrix based on within-session calibration (the mean across the two days have been
calculated) using autoencoders. All values are in percent and presented as the mean across participants.
HC (Hand Close), HO (Hand Open), WE (Wrist Extension), WF (Wrist Flexion), Sup (Supination),
Pro (Pronation), Lat (Lateral Grasp), and Pin (Pinch Grasp).

HC HO WF WE Sup Pro Lat Pin Rest

HC 82 3 2 2 2 1 8 3 1
HO 3 83 5 2 2 2 2 2 0
WF 2 7 80 3 2 2 3 3 1
WE 1 4 4 79 5 2 2 3 0
Sup 2 2 2 7 73 7 6 3 2
Pro 1 2 2 3 9 76 3 6 2
Lat 7 1 4 2 4 6 70 7 2
Pin 2 2 2 3 4 3 6 77 3
Rest 0 0 1 0 1 1 2 2 94

Table 5. Confusion matrix based on within-session calibration (the mean across the two days have
been calculated) using a CNN. All values are in percent and presented as the mean across participants.
HC (Hand Close), HO (Hand Open), WE (Wrist Extension), WF (Wrist Flexion), Sup (Supination),
Pro (Pronation), Lat (Lateral Grasp), and Pin (Pinch Grasp).

HC HO WF WE Sup Pro Lat Pin Rest

HC 70 5 4 2 3 1 13 3 1
HO 5 69 8 4 5 4 2 3 0
WF 2 8 73 6 3 4 3 3 0
WE 1 4 4 76 4 4 4 5 1
Sup 2 4 3 7 61 9 6 8 2
Pro 1 3 3 4 11 68 4 7 2
Lat 13 3 4 2 6 6 55 10 4
Pin 2 4 2 5 7 7 6 68 2
Rest 0 0 0 0 0 2 2 2 95
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Table 6. Confusion matrix based on between-session calibration (the mean across the two days have
been calculated) using linear discriminant analysis. All values are in percent and presented as the mean
across participants. HC (Hand Close), HO (Hand Open), WE (Wrist Extension), WF (Wrist Flexion),
Sup (Supination), Pro (Pronation), Lat (Lateral Grasp), and Pin (Pinch Grasp).

HC HO WF WE Sup Pro Lat Pin Rest

HC 41 6 5 6 13 6 18 5 1
HO 16 30 13 6 14 7 9 7 1
WF 16 9 39 6 12 6 10 3 2
WE 15 7 6 42 7 3 10 10 2
Sup 17 9 10 4 21 10 17 11 3
Pro 12 6 7 4 15 23 12 15 7
Lat 35 8 4 5 14 7 17 6 5
Pin 19 8 7 6 15 12 6 24 6
Rest 13 0 4 1 14 9 5 11 43

Table 7. Confusion matrix based on between-session calibration (the mean across the two days
have been calculated) using autoencoders. All values are in percent and presented as the mean
across participants. HC (Hand Close), HO (Hand Open), WE (Wrist Extension), WF (Wrist Flexion),
Sup (Supination), Pro (Pronation), Lat (Lateral Grasp), and Pin (Pinch Grasp).

HC HO WF WE Sup Pro Lat Pin Rest

HC 29 9 16 6 8 7 22 6 1
HO 9 28 15 10 12 6 12 9 0
WF 16 9 40 8 13 7 6 3 1
WE 11 7 8 41 7 8 11 9 0
Sup 14 9 12 8 22 12 21 3 2
Pro 12 10 11 8 13 28 9 7 4
Lat 24 10 14 9 11 9 16 7 2
Pin 17 8 13 15 12 13 7 14 4
Rest 13 2 7 10 13 13 14 8 22

Table 8. Confusion matrix based on between-session calibration (the mean across the two days have
been calculated) using a CNN. All values are in percent and presented as the mean across participants.
HC (Hand Close), HO (Hand Open), WE (Wrist Extension), WF (Wrist Flexion), Sup (Supination),
Pro (Pronation), Lat (Lateral Grasp), and Pin (Pinch Grasp).

HC HO WF WE Sup Pro Lat Pin Rest

HC 30 8 19 5 14 4 14 7 1
HO 16 21 17 8 9 8 13 7 1
WF 8 11 49 7 10 4 8 3 2
WE 8 10 13 43 8 2 8 9 1
Sup 13 12 13 7 22 11 11 6 7
Pro 7 10 12 7 15 19 12 14 7
Lat 19 11 17 5 9 9 15 10 7
Pin 10 10 11 15 15 12 8 13 6
Rest 1 0 7 0 12 4 7 4 66

For the between-session calibration, the highest numbers were on the diagonal for most motion
classes except Lateral and Pinch Grasps. Rest was the motion class with the highest accuracies (22–66%).
The other motion classes were in the range of 13–43%. A significant difference between the motion
classes was found for the LDA (χ2

(8) = 23.02; p = 0.003), AE (χ2
(8) = 20.52; p = 0.009), and CNN

(χ2
(8) = 29.72; p < 0.001). For the LDA, the posthoc analyses revealed no difference between the classes,

which is due to the conservative nature of the Bonferroni correction. For AE, the classification accuracies
for the Wrist Extension and Wrist Flexion classes were higher than the Pinch Grasp. For CNN, Rest
had higher classification accuracies compared to the Lateral Grasp and Pinch Grasp. Wrist Extension
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had higher classification accuracies than the Pinch Grasp. There was a considerable standard deviation
across the participants (see Figure 2), which may be attributed to the amplitude differences between
movement and Rest for the different participants (see Figure 3).
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Figure 3. Rectified (only for visualization) and bandpass filtered surface EMG for the Hand Open
motion class for the subject with the highest (subject 4) and lowest (subject 7) classification accuracy.
The highest and lowest overall classification accuracies were 91% and 54% (classified with linear
discriminant analysis), respectively. The amplitude of the EMG for the motions performed by the best
subject is higher compared to the worst subject. Moreover, there is a smaller EMG amplitude for the
resting state between the movements for the best subject.

The Spearman correlation was calculated between the upper limb Fugl-Meyer score and the
classification accuracy across all motion classes for the within-session calibration. The results
are presented in Table 9. There was no association between the functional score and the
classification accuracies.

Table 9. Correlation analysis between the classification accuracies (mean across days) for the
within-session calibration and the functional score (upper limb Fugl-Meyer score).

Correlation Coefficients p-Value

Linear discriminant analysis 0.29 0.30
Autoencoders 0.24 0.38

Convolutional neural network 0.37 0.18

The results of the computational time are presented in Table 10. The LDA was the fastest classifier
to train, followed by the AE. For testing, the LDA and AE were faster than the CNN, but it only took
0.22 and 0.27 s to classify all test data with a CNN.
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Table 10. The computational time of the training and test data for within- and between-session
calibration. In the within-session scenario, the training data consisted of 828 data windows, and the
test data consisted of 198 test windows. For the between-session scenario, the training and test data
consisted of 1026 data windows.

Classifier Training (Seconds) Test (Seconds)

Linear discriminant analysis (within-session) 0.010 0.010
Autoencoders (within-session) 12.16 0.015

Convolutional neural network (within-session) 47.68 0.22
Linear discriminant analysis (between-session) 0.018 0.018

Autoencoders (between-session) 13.22 0.016
Convolutional neural network (between-session) 58.77 0.27

4. Discussion

The aim of this study was to decode attempted movements in stroke patients. Generally, it was
possible to decode nine different motion classes of the hand/forearm with accuracies of 79 ± 12% and
80 ± 12% for day 1 and 2, respectively (using AE). There was a strong intraclass correlation between
the classification accuracies, but there was no association between the classification accuracies and
the upper limb Fugl-Meyer score. The classification accuracies obtained with AE were significantly
higher than the LDA and CNN in the within-session calibration, but not significantly different for
between-session calibration.

The findings in this study are in agreement with other studies that have found that EMG of
attempted movements can be decoded from stroke patients with motor impairments [15–17,21,22,24].
Similar or slightly lower classification accuracies are obtained, although the studies differ in terms
of methodology. The number of channels in this study (three bipolar channels) is low compared
to other studies [15,26], which is likely to account for some of the differences in the classification
accuracies. Moreover, a generalized approach was used where the electrodes were placed on the same
three muscles on the contrary to other findings where electrodes have been positioned based on the
impairment of the individual patient [22]. By increasing the number of channels, it is possible to
record activity from more muscles; especially the chronic stroke patients may have developed coping
strategies to perform the movements using altered activation patterns. For the different grasp motions,
it would have been beneficial to place EMG electrodes closer to or on the hand. Different classifiers
were tested, and it was shown that the classification performance could be significantly improved
using AE, which is in agreement with previous findings [28]. It was also shown that classification
accuracies comparable to a LDA can be obtained for a CNN without the need for extracting features,
but this indicates that it may not be needed to use a CNN over LDA with features. Generally, Hudgins
time-domain features [15,22,24,27,30] have been used, but to improve the classification accuracies
further, other feature types could be added to the feature vector, such as spectral information, wavelets,
autoregressive coefficients, and entropy [15,27,35].

In future studies, the most optimal or general electrode setup and feature types could be
investigated, e.g., with and without constraints on computational power and energy consumption of
the system. For a low-end implementation, Raspberry Pi could be used, while a Parallella Baseline
System (PBS) could be used when more computational power is needed with a constraint of still
being energy efficient [36]. These approaches should be validated using online control and with
afferent feedback from an exoskeleton. Lastly, the impairment of the patients would probably affect the
classification accuracies as well. There was no association between the level of motor impairment and
classification accuracy in this study, although that was expected, as it has been shown previously that
classification accuracies decrease as a function of the severity of the injury [21]. The limited sample
size in this study could explain that no association was found between the classification accuracies and
motor impairment. Another explanation could be that the machine learning approach was able to
pick up movement patterns from participants with a low Fugl-Meyer score leading to reasonably high
classification accuracy, or that the Fugl-Meyer score not only reflects the tasks performed in this study,
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but also reflexes and shoulder and elbow movements. Participants that have reduced hand and wrist
movement may have functional reflexes and elbow and shoulder movements. Lastly, the movements
and assessment method in this study differed from those performed in Reference [21]. In Reference [21],
more functional hand movement tasks were performed, while more wrist movement tasks where
performed in the current study, which may be easier to perform for participants with a low Fugl-Meyer
score compared to functional hand movement tasks leading to higher classification accuracy, and hence,
a lower correlation coefficient. In addition, in Reference [21], they used the Stage of Hand component
of the Chedoke-McMaster Stroke Assessment scale, which may be more sensitive to hand movements
compared to the total upper limb Fugl-Meyer score. However, these are speculations that need to be
tested in a future study.

The motion class that was easiest to discriminate was the Rest condition, which was significantly
different from the other classes except Wrist Extension and Wrist Flexion in the within-session
calibration. This indicates that the patients did not suffer much from spasticity, which would
reduce the ability to discriminate between the motion classes and the usability of EMG to control an
exoskeleton/rehabilitation robot or functional electrical stimulation. However, a recent study has found
that spasticity can be reduced by utilizing a myoelectric computer interface [37]. The motion class
that was most difficult to discriminate was the Lateral Grasp. This is probably because it resembles
the motion class Hand Close, 7–13% of the data from the Lateral Grasp motion class was classified as
Hand Close. It has also been previously reported that the motions that resembled each other were
more difficult to classify [21]. In a rehabilitation scenario, the motion classes that are difficult to classify
could be performed in separate training sessions to improve the system performance. The test-retest
reliability of the classification of the motion classes was good for both within- and between-session
calibration, but the 95%-percent confidence intervals were wide. In addition, there was a large standard
deviation of the accuracies for the different participants. This could potentially be explained by various
factors, such as the patient’s level of fatigue or that, the recruitment patterns of some motion classes
differ slightly, and that the muscles from which the EMG was recorded were affected differently in
the participants. Moreover, the amplitude of the EMG is related to the force the muscles can produce
(see Figure 3). The classification accuracies may also be affected by the signal quality, which could
be reduced over time if the impedance of the electrodes changed, due to, for example, sweating.
The classification accuracies associated with the between-session calibration were significantly lower
compared to the within-session calibration. However, if more days were included, it could potentially
have improved the performance [28], but only 2–3 repetitions of each motion class are needed to
perform within-session calibration [31], so it would be possible to quickly calibrate the EMG decoder
each day. Another aspect that needs to be considered if an EMG-controlled exoskeleton/rehabilitation
robot can be used by the patients in their own homes is if they can place the recording electrodes
accurately on the muscles. An alternative is to use technology, such as the Thalmic Myo armband,
which is easy to don and doff. It utilizes several dry electrodes around the forearm, and the activity
from multiple muscles can be recorded. Previously it has been shown that comparable classification
accuracies can be obtained using such a setup compared to state-of-the-art wet electrodes and expensive
amplifiers [38].

5. Conclusions

In conclusion, it is possible to decode various motion classes of the hand and forearm in stroke
patients using both a simple setup with few electrodes and a simple pattern recognition approach and
a deep learning approach with and without feature extraction. These findings were consistent across
days where the test-retest reliability was good. No association was found between the classification
accuracies and the level of impairment. The Rest, Hand Open and Close, and Wrist Extension and
Flexion were the classes that were easiest to classify, and the Lateral Grasp was the most difficult to
classify. The best classification was obtained using AE. However, more patients with varying degrees
of impairment should be included in future studies to validate these findings. Moreover, other feature
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types and electrode setups (number and location) should be investigated as well to improve the
classification accuracy further. These approaches should be validated in online studies where afferent
feedback is provided from an exoskeleton or rehabilitation robot.
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Abstract: Rehabilitative mobility aids are being used extensively for physically impaired people.
Efforts are being made to develop human machine interfaces (HMIs), manipulating the biosignals to
better control the electromechanical mobility aids, especially the wheelchairs. Creating precise control
commands such as move forward, left, right, backward and stop, via biosignals, in an appropriate
HMI is the actual challenge, as the people with a high level of disability (quadriplegia and paralysis,
etc.) are unable to drive conventional wheelchairs. Therefore, a novel system driven by optical signals
addressing the needs of such a physically impaired population is introduced in this paper. The present
system is divided into two parts: the first part comprises of detection of eyeball movements together
with the processing of the optical signal, and the second part encompasses the mechanical assembly
module, i.e., control of the wheelchair through motor driving circuitry. A web camera is used to
capture real-time images. The processor used is Raspberry-Pi with Linux operating system. In order
to make the system more congenial and reliable, the voice-controlled mode is incorporated in the
wheelchair. To appraise the system’s performance, a basic wheelchair skill test (WST) is carried out.
Basic skills like movement on plain and rough surfaces in forward, reverse direction and turning
capability were analyzed for easier comparison with other existing wheelchair setups on the bases of
controlling mechanisms, compatibility, design models, and usability in diverse conditions. System
successfully operates with average response time of 3 s for eye and 3.4 s for voice control mode.

Keywords: human machine interface (HMI); rehabilitation; wheelchair; quadriplegia; Raspberry Pi;
image gradient; AMR voice; Open-CV; image processing
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1. Introduction

Significant strides made in the fields of rehabilitation, artificial intelligence (AI) (especially around
the implementation of complex algorithms for analysis and interpretation of human cognition),
and human machine interfaces (HMIs), have opened a new evolutionary pathway for the development
of smart mobility aids [1]. People who accidentally lose their lower limbs or suffer from conditions
such as quadriplegia or stroke, resulting in paralysis, and muscle stiffness are unable to make use
of conventional wheelchairs [2]. Researchers across the world are engaged in developing medical
devices/rehabilitation aids for physically challenged populations, such as quadriplegics, to enable them
to carry out their daily work without or with minimal assistance from caregivers and nurses, etc. [3].
They are thus increasing the self-esteem and functional capabilities of such patients with the ultimate
goal of improving the patients’ quality of life. Biosignals recorded through electroencephalography
(EEG), electromyography (EMG), and electrooculography (EOG), etc. [4,5], have been exploited by
researchers in developing smart, responsive and real-time rehabilitative control systems.

More recently, eye gesture control-based systems have gained significant attention due to the fact
that even in the most seriously physically challenged population, such as quadriplegics, eye movements
are still intact; the main operating mechanism of the eye-controlled based systems [6]. Therefore,
keeping in view this fact and the need to advance the adoption of independent mobile rehabilitation
technology, such as smart wheelchairs and walkers, a distinctive eyeball movement-based technique
for controlling a wheelchair is presented, leading to increased patient comfort.

The main purpose is to design an autonomous system that requires minimal manual assistance
and thereby provides wheelchair users with a sense of confidence, competence, and independence.
As such, the presented system should be easy to use for a paralyzed individual with a severe lower
limb disability. Additionally, the system also incorporated voice-controlled technology [7]. The system
is low-cost, easily manageable, scalable, and designed with the user’s comfort in mind.

Algorithms currently used for face detection and feature extraction in eye controlled systems
include Hough circle (feature extraction based approach used to detect circular objects in image
processing) [8] and active infrared illumination (uses IR sensors to detect the eye movement and emit
IR radiation ranging from 700–1000 nm in the electromagnetic spectrum) [9]. Although these methods
accurately localize eyeball position and are relatively simple compared to other existing techniques,
e.g., Haar cascade [10], they do have some drawbacks. For example, the Hough circle technique
(CHT), when applied to discrete images, demands a large storage capacity, as well as computing
power [11] and an active infrared illumination technique, which can cause irreversible damage to eyes,
resulting in the loss of efficiency of a working body organ, thus worsening the situation [12]. Moreover,
these algorithms sometimes fail during complex situations, for example, the low resolution of images
and low contrast conditions.

Although the use of biosignals, i.e., EEG (electroencephalogram) and EMG (electromyography) is
widely accepted to develop HMIs, for example, EMG based physiotherapy devices [13] and EEG based
diagnostic medical equipment [14], however, these systems come with wearable technology which is
not practical or comfortable in the case of mobility assistive mechanization. In EEG and EMG based
systems, a user also must be in contact with electrodes while using the device/wheelchair, thus making
the system cumbersome and uncomfortable. Further, electrodes (for EEG, EMG) are susceptible to a
range of issues. For example, signals may be contaminated by a variety of noises at the electrode–skin
interface, which can lead to contamination of the acquired biosignals [15,16]. The electrode issues
include (1) motion artifacts, which occur when a force impulse travels through muscle causing an
unwanted movement at the skin–electrode interface; (2) inherent noise in electrical components,
which cannot be completely removed; (3) ambient noise occurring due to electromagnetic radiation as
the human body is persistently exposed to this radiation; and (4) power line interference and other
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disruptions like baseline shifts (due to the excessive motion of cable, baseline shows a significant shift
from the actual position). All these noises attenuate the desired signal causing undesired results [17].

A variety of control techniques have been used for creating assistive HMIs. However, all these
systems had their own limitations in terms of operating efficiency. For example, head motion controlled
and hand gesture operated wheelchairs [18,19], both of these controlling modes (head and hand)
include the use of flex sensor and accelerometer. Sometimes a sensor’s efficiency is greatly affected
by environmental factors (temperature, dust and humidity). Once contaminated, this can cause
controllability issues. Moreover, an accelerometer has a fixed operating range limiting its application,
thus obstructing the way actual acceleration is read.

Although distinct eye motion-controlled wheelchairs were developed claiming to assist disabled
individuals, they are limited in their functioning capability and comfort level; as these systems eyeball
movements are processed using software, such as MATLAB, and computing devices (laptop, etc.) are
required to be carried all the time, which occupy substantial space, making the system cumbersome
and expensive [20,21].

Considering the limitations of existing systems discussed above, a system that tries to overcome
these limitations and ensures patient safety and comfort, as well as be scalable and highly functional,
is presented here. The operating system is installed in Raspberry Pi, and the language used for
processing the eyeball movements in real-time captured images is C++, using the Open computer
vision (Open CV) library [22]. As the introduced system is compact in design, it is relatively easy to
install in a wheelchair. Along with the eyeball control option, this system can also be controlled via
voice commands, increasing the system’s adaptability and usability.

2. System Model

Components of the system model and their interaction with each other are shown as a block
diagram (Figure 1). The webcam is fixed to a vertical pole precisely in front of the user’s eye, and this
webcam is connected to Raspberry Pi so that it can continuously capture images of the user’s eyeball
movement and respond. Raspberry Pi installed with Open CV has an image processing capability
and generates an actuation signal. Raspberry Pi is coupled with the motor driving circuitry, which is
responsible for directing the wheelchair according to a given command.

 

 

Figure 1. Block diagram of the system.
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For the voice control mode, an audio signal is fed to the Arduino via a Bluetooth module (HC-05
BT). Arduino is programmed to process these voice commands and generate the required drive signal.
Arduino is wired with a switching circuit (four-channel relay module) responsible for driving the
motors in the designated direction.

Figure 1 depicts the complete mechanical control mechanism of the system, including all the
major components, i.e., Raspberry Pi, webcam, power supply, microphone, Arduino, DC-motors,
motor driving circuitry, and Bluetooth device. The system works using real-time data acquisition,
with Raspberry Pi as the main controller used for eyeball tracking. Raspberry Pi is a low-cost
single-board embedded processor, which thus reduces the complexity of the system and is suitable
for real-time applications. In the present system, a distance of approximately 1–1.5 feet is maintained
between the user’s eye and the webcam. To keep the costs down, and for recognition accuracy and
processing speed, a 1080P webcam is used. Figure 2 describes the process flow of the eye control
mechanism. First, the webcam captures real-time images of the eyeball and then identifies whether the
eye is open or closed. If closed, then images are recaptured and analyzed again to identify the direction
of the eyeball. Once the eyeball direction is confirmed, the signal is processed, and an actuator signal is
generated, which is then fed to the motor driving circuitry of the wheelchair.

 

 
Figure 2. General process flow block diagram.

3. Methodology

Figure 3 illustrates the complete functional flow chart of the eye control system. The system
begins with capturing images through the webcam. After capturing a real-time image, the system
detects the face and then extracts eye images.

A complete flow chart is defined using state, condition, and decision boxes. State boxes are
denoted by rectangular shapes with round corners, decision boxes are diamond-shaped, and condition
boxes are rectangular with sharp corners. State boxes represent the status of the system (i.e., moving or
not), decision boxes describe direction (i.e., left, right or forward), and condition boxes give information
about the system’s working condition (i.e., face detection or driving the wheelchair).

Paths indicate the process flow. For example, after initialization, the system detects the face, and
then it checks whether the eye is open or closed, as shown in Figure 3. After this, the eye pupil’s
position is identified, i.e., whether the user is looking forward, left, or right. After the eyeball position
is identified, this image is processed. Raspberry Pi then generates an actuator signal, which is fed to a
switching circuit (relay) to drive the motors accordingly.
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∀

Figure 3. Functional flow chart of eye control system.

4. Algorithm

The most challenging task is to locate the eyeball movement. This task is accomplished using
the image gradient approach described below. As mentioned earlier, various other techniques have
been used to locate eyeballs. Although they provide accurate results and are used in commercially
available eye-tracking and face recognition systems, they are not easy or practical to use as they come
with head-mounted or wearable technology.

In the present system, a feature-based approach is applied that can accurately locate the eye
centers using a webcam, even in low-resolution videos and images [23]. A simple and easy approach
is applied, which defines the center of circular objects as the location where the intersection of multiple
image gradients occurs.

Eye Center Localization by Gradient Vectors

By considering a vector field comprising of image gradients, geometrically, the eyeball center can
be located. A fast iterative scheme is achieved by using a mathematical formula [23]. The formula
describes a relation between the conceivable center and all the image gradients directed towards it.

Suppose n is a possible center, and Gk is the gradient vector. If the position of this gradient
vector Gk is Xk then the direction of displacement vector Dk should be the same as gradient vector Gk

(Figure 4).
If the vector field of image gradients is used, then this vector field can be exploited by calculating

the dot products between displacement Dk and gradient vectors Gk, by using the (1). Center n of a
circular object in an image with pixel positions Xk, (where k ∈ {1, . . . . . . , N}) is measured by (1).

n =
1
N

N
∑

i=1

(Dk ˆT·Gk)
2 (1)

Dk =
xk − n

||xk − n||ˆ2
(2)
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∀ k: || Gk ||2 = 1 (3)

To get an equal weight for all the pixel positions, displacement vectors (Dk) are scaled to unit
length (2). Robustness to the linear variations in luminous conditions can also be improved by scaling
gradient vectors Gk to unit length (3).

Calculations can be simplified by considering only the gradient vectors (GK). Partial derivatives
are computed to get the image gradients (4).

Gk =
δP(xk, yk)

δXk
,
δP(xk, yk)

δYk
(4)

When gradients are computed, it is possible that images have extra structures, i.e., hairs, spectacles,
and eyebrows. These structures are responsible for gradients that do not possess the same direction
as image gradients of the eye. Due to these structures, eye center computation may become difficult.
To overcome this difficulty, the threshold is applied to the objective function. This threshold is based on
the maximum value, which eliminates all other remaining entities associated with the desired image
boundary. After this, a maximum of prevailing entities is computed, and its position is taken as the
eye center (Figure 5). This threshold does not have any negative impact on estimating the eye center.
In the present system, the threshold is taken as 85% (0.85) of the overall maximum.

 

 

𝐺 = 𝛿ሺ𝑥, 𝑦ሻ𝛿𝑋 , 𝛿ሺ𝑥, 𝑦ሻ𝛿𝑌

Figure 4. A contrived example is having a dark-colored circle against a light background, similar to an
iris and sclera. In (a) Dk (displacement vector) and Gk (gradient vector) do not have same direction but
in (b) the orientations are same.

 

𝐺 = 𝛿ሺ𝑥, 𝑦ሻ𝛿𝑋 , 𝛿ሺ𝑥, 𝑦ሻ𝛿𝑌

Figure 5. Eye core located (left) indicated with white mark in the presented system, using image
gradients symbolically directed towards the center (Right).

5. Eye Control Mode

During eye control mode, webcam captures the real-time images and sends them to Raspberry Pi,
Raspberry Pi processes them and generates an actuator signal. Raspberry Pi is further wired with a
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4-channel relay module (switching circuit) responsible for driving the two DC-motors, thus making an
efficient, reliable, and easily functional system.

In the present system, Raspberry Pi model 3B is used as the main controller. Its working resembles
a CPU. It has its own RAM, ROM, internet port, 36 connection pins, four supply pins, four USB
(universal serial bus) ports and one memory card holder up to 32 GB [24]. Raspberry Pi is Raspbian
supportive hardware. Raspbian runs on the Linux operating system. Processing to track eye is done in
Open CV 3.0 [17] (open computer vision) library. This library is commonly used for image processing.
Open CV is installed under a BSD license, which is free for both commercial and academic purposes.
Open CV has C++, C, and Java interfaces and is the most suitable platform for real-time applications.

Integrating Open CV, Linux operating system, and C++ language with hardware has improved
the present system’s constancy compared to other existing systems (mentioned earlier) and has
reduced processing latency. These features have also improved the system’s compatibility and level
of convenience for the user. Figure 6 shows the results of detecting the eye center for right, left
and forward commands, respectively. Through turning the wheelchair and then looking forward
will move it in reverse direction safely as this system has been designed for an extreme disability
(quadriplegic patient).

 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 6. Designed system’s results for eye control mode (a) right, (b) left, and (c) forward.
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6. Vocal Control Mode

For voice control mode on the wheelchair, the adaptive multi-rate AMR voice app is used with
four commands ON (for forwarding), left, right and stop. Arduino UNO is used as the main controller.
Other main components of voice control mode are microphone, HC-05 Bluetooth module, and AMR
voice recognition. The block diagram in Figure 7 depicts the functionality flow between all components
of voice control mode.

 

Figure 7. Block diagram for voice control mode.

For voice control, the microphone is connected with Arduino via the HC-05 Bluetooth module.
Arduino transfers actuator signal to motor driving circuitry, which is a four-channel relay module.
Two DC-motors are powered by two chargeable 12-V dry batteries (Figure 7).

7. Mechanical Assembly

The most important aspect during the mechanical assembly of the wheelchair is the proper
selection of frames. This is necessary for the successful installation of all essential components in the
wheelchair. During this phase, the patient’s comfort and compatibility are the top priorities. Moreover,
a wheelchair’s material must be resistant to corrosion for its long-lasting utilization, and its posture
should be such that the patient’s weight is evenly distributed to avoid pain and pressure sores [25].

In the present wheelchair design (Figures 8 and 9), all the required components (batteries,
motors, controllers and relays) are placed appropriately on a designated platform (length = 12 inches,
width = 9 inches, thickness = 5 inches) welded to the wheelchair underneath the seat. A low weight
frame is used so that a wheelchair can easily be propelled. Total weight of wheelchair is 17.35 kg
(frame = 14.5 kg, other components = 2.85 kg). Further, the camera is located in such a position so
that the user can easily gaze into the camera while remaining in the comfort zone, thus avoiding
any tiredness.

 

 

Figure 8. Wheelchair model with all essential components installed appropriately.
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Figure 9. Complete mechanical assembly of wheelchair.

Two 12-V permanent magnet DC-motors are used in this system with 95 W output power.
Further, the system is incorporated with two 12-V, rechargeable, lead-acid batteries for its appropriate
functioning. The gear ratio used was 1:20.

8. Basic Skills Performance Test for Wheelchair

Wheelchair technology is diverse in nature. Therefore, a basic wheelchair skill test (WST) was
carried out to analyze the system’s efficiency and response time. This testing approach has advantages
of being easy to manage, requires minimum testing equipment, is inexpensive, and has adequate
measurement properties to quantify the performance of wheelchair movements. Results of WST
can provide crucial data about the test subject’s performance. For example, whether the subjects
were able to accomplish the assigned movement task successfully up to the marked distance and the
corresponding response time of the system. Thus, the results of WST are representative of the range of
movement of the wheelchair that may be required to be performed regularly by the disabled.

The most suitable term used for an individual selected as the object of testing is ‘subject’ because
he/she may be a researcher, caretaker, user, or health care student. However, it is necessary that the test
subject meets the same criteria as specified for the wheelchair user. For example, he/she must remain
within the designated space and operate a wheelchair as will be operated by a disabled individual.

Therefore, in order to assess the mobility and working proficiency of the wheelchair, a simple test
was conducted. The main objective was to ensure and record a chair’s maneuverability, performance,
and user compatibility. Basic skills for which the presented setup of the wheelchair was tested included
(Table 1).

Table 1. Basic skills, the designed wheel chair is capable of.

Basic Attributes

Relief from pressure
Forward move

Backward move
Rollover soft surface

Stop
Turn while moving

Turn in place

9. Results

The data obtained from a basic WST-wheelchair skill test are represented graphically in (Figure 10).
The presented system was tested with 15 test subjects, in an age range of 20–30 years. All the testing
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subjects were healthy and were asked to drive the wheelchair via eye and voice control modes separately
through a fixed distance of 25 m. All participants operated the wheelchair up to the targeted distance
separately for each movement (forward, backward, rollover soft surface, turn left and right). The main
goal was to note the system’s response time for both optical and vocal commands, separately.

Moreover, the system’s other attributes, including mobility, rear and caster wheel motion, and
compatibility with the user, were also analyzed. Wheelchair processing times were noted with a
stopwatch and later compared graphically. The mean response times for each skill were computed.

All the test subjects successfully covered the 25-m distance without any intervention of
spotter/researcher. The system was positively responsive, with 99% of participants without any
false-positive results.

 

Figure 10. Cont.
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Figure 10. Graphical representation of a basic wheelchair skill test (WST). (a) Forward move on a plain
surface. (b) Backward move over the plain surface. (c) Turn in place. (d) Turn while moving (e) Rolling
over a soft surface.

Table 1 shows the system’s mean response time for each basic skill from 15 participants. It is
important to note that the participants had an age range of 20–30 years, disparate eye colors, weights,
and vocal pitches. The system was tested separately for both (eye and voice) operating modes, and there
was no significant difference between their operating proficiencies—the mean response time was
calculated for each movement for each mode (Table 2).

Table 2. System response for WST.

Attribute Mean Response Time

Forward move on a plain surface Eye = 2.53 s, voice =2.8 s
Reverse move over a plain surface Eye = 3.4 s, voice = 3.0 s

Turn in place Eye = 2.86 s, voice = 2.9 s
Turn while moving Eye = 2.78 s, voice = 2.89 s

Rolling over a soft surface (grass) Eye = 3.46 s, voice = 3.5 s

10. Discussions

The aim was to develop a wireless system to assist patients with significant disabilities
(stroke & quadriplegia). Thus, an eye and voice-controlled wheelchair system, which overcomes
almost all the issues encountered in previous HMIs, is presented here. The present system removes
the need to carry a personal computer or any wearable electrode band like EMG, hand and head
gesture-controlled systems [4–6,17]. Furthermore, there are no harmful side effects on human eyes,
as experience due to infrared accumulation system, which causes gradual but irreparable damage
to the eyes [13]. Thus, the presented system that is safer, quickly responsive, compact, convenient,
and user-friendly as compared to other existing wheelchair setups.
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Moreover, a small basic WST-wheelchair skill test was also carried out to demonstrate the
presented system’s working capability and quantify its response times. The presented system
successfully responds between 2.5–3.0 s on the plain surface; however, while moving on soft surface
response time was slightly higher as it is relatively difficult to propel the wheelchair on such surfaces
due to their high resistance and bumpy appearance (grass, dirt, carpet and dirt). Weight-relief is
an important property that is necessary to be considered while designing any rehabilitation device.
If such factors are ignored, it may take any body part under pressure causing pressure sores. In the
present system, this aspect was carefully considered while integrating the components. The camera
was adjusted such that the user does not need to put any extra effort into looking into the camera. Users
can easily drive the wheelchair via eye or voice command while remaining in a comfortable position,
thus avoiding potential tiredness. Overall, the designed system is proficient, feasible, comfortable,
and safe to use. However, the system is not without its limitations. Although the image processing
technique used has a relative superiority in processing, these techniques sometimes malfunction in the
dark due to variation in illumination. In the existing setup, a 12-V LED is incorporated to compensate
for this problem to some extent; however, in the near future, FPGA-field programmable gate array
systems may be used to improve the processing speed and make the system more synchronized with
environmental variations and user needs.

11. Conclusions

An eye and voice-controlled interface for a wheelchair to assist the mobility of physically impaired
people has been designed so that they may be able to perform their daily life activities without
additional support from a caregiver or healthcare professional.
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Abstract: Hypertension is an antecedent to cardiac disorders. According to the World Health

Organization (WHO), the number of people affected with hypertension will reach around 1.56 billion

by 2025. Early detection of hypertension is imperative to prevent the complications caused by

cardiac abnormalities. Hypertension usually possesses no apparent detectable symptoms; hence,

the control rate is significantly low. Computer-aided diagnosis based on machine learning and

signal analysis has recently been applied to identify biomarkers for the accurate prediction of

hypertension. This research proposes a new expert hypertension detection system (EHDS) from pulse

plethysmograph (PuPG) signals for the categorization of normal and hypertension. The PuPG signal

data set, including rich information of cardiac activity, was acquired from healthy and hypertensive

subjects. The raw PuPG signals were preprocessed through empirical mode decomposition (EMD)

by decomposing a signal into its constituent components. A combination of multi-domain features

was extracted from the preprocessed PuPG signal. The features exhibiting high discriminative

characteristics were selected and reduced through a proposed hybrid feature selection and reduction

(HFSR) scheme. Selected features were subjected to various classification methods in a comparative

fashion in which the best performance of 99.4% accuracy, 99.6% sensitivity, and 99.2% specificity

was achieved through weighted k-nearest neighbor (KNN-W). The performance of the proposed

EHDS was thoroughly assessed by tenfold cross-validation. The proposed EHDS achieved better

detection performance in comparison to other electrocardiogram (ECG) and photoplethysmograph

(PPG)-based methods.

Keywords: pulse plethysmograph; biomedical signal processing; feature extraction; machine learning;

feature selection and reduction; empirical mode decomposition; discrete wavelet transform; hypertension

1. Introduction

Hypertension, also known as high blood pressure, is one of the most common risk
factor for cardiovascular disease (CVD) [1]. It is a very common condition in which a large
amount of force from the blood pushes on the walls of the arteries leading towards heart
diseases [2]. The main risk factors for hypertension include age, genetics, gender, lack of
physical activity, bad diet practices, high cholesterol, excessive salt consumption, less in-
take of vegetables and fruit, smoking, obesity, family history, and other diseases such
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as kidney disease or diabetes [3]. According to the World Health Organization (WHO)
statistics, 1.13 million of the world population suffers from hypertension, and more men
are affected than women. One out of every four men suffers from high blood pressure
issues [3]. It is a silent killer that affects the most significant tissues of the human body [4].
Indeed, many people are not aware they have hypertension [5]. In the US, an estimated
13 million people are unaware of their condition [6], while in China, 59% of people with
hypertension are unaware of their condition [5]. In Pakistan, 18% of the adults are affected
by hypertension, and 33% of the adults above the age of 45 were affected according to the
National Health Survey Pakistan [7]. Prevalence rates of hypertension based on genetic
and ethnic variations ranges from about 29% for Asians, 45% for black men, and around
46.3% for women [8].

Table 1 describes a blood pressure ranges of normal and hypertension in terms of
systolic and diastolic pressures. Some of the common symptoms of hypertension in-
clude headaches, dizziness, migraine, lightheadedness, changes in vision, or fainting
episodes [9]. Hypertension serves as the first step towards CVDs, but the most chronic
effect of unchecked hypertension is stroke, which can lead to permanent paralysis of certain
body parts. Prolonged and undetected hypertension can be fatal; therefore, its detection in
the preliminary stages is crucial.

Table 1. Categorization of blood pressure.

Class Systolic (mmHg) Diastolic (mmHg)

Optimal Less than 120 Less than 80
Normal 120 to 129 80 to 84

High Normal 130 to 139 85 to 89
Hypertension More than or equal to 140 More than or equal to 90

Moreover, the world is currently suffering from the outbreak of a pandemic COVID-
19 caused by the coronavirus SARS-CoV-2. It was reported that there are some specific
comorbidities associated with a high risk of infection and increased severity of lung in-
jury. Most of the common comorbidities in COVID-19 patients are hypertension (30%),
cardiovascular disease (8%), and diabetes (19%) [10]. Therefore, it is not entirely surpris-
ing that the COVID-19 patients experiencing worst complications are hypertensive since
hypertension is most frequent in older people and these elderlies are particularly at risk
of being infected by a coronavirus [11]. Given the above information and statistics, it is
clear that we need a technique for recognizing hypertension as early as possible to avoid
significant damage to one’s body.

Various techniques including physiological signals such as electrocardiogram (ECG)
and photoplethymograph (PPG) are currently being used to detect hypertension. De-
tection of hypertension from PPG signals (MIMIC database) using continuous wavelet
transform (CWT) and the GoogLeNet deep learning model [12] achieved an F1 score of
92.55%. This work relies on a deep learning model so it requires high processing power,
large scale data sets, and more training time. The authors of [13] proposed a method based
on pulse arrival time (PAT) features extracted from PPG and ECG signals. The k-nearest
neighbor (KNN) classification method was employed to predict hypertension with an
F1 score of 94.84%. The research achieved acceptable results but missing consideration
of preprocessing the PPG signals as PPG suffers from motion artifacts and variation in
light intensity. Identification of hypertension [14] from heart rate variability (HRV) signals
yielded an accuracy of 85.47% using standard deviation of all NN intervals and multiple
instance learning (MIL). However, HRV feature extraction for long-term data requires
significant processing resources. A model [15] to detect hypertension obtained 93.33%
accuracy using Savitzky–Golay filtering (SGF), entropy features extracted from ECG, and a
support vector machine (SVM) classifier. The method achieved a considerable performance
on a comparatively small data set consisting of 48 participants.
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In [16], the authors proposed a hypertension detection framework based on five
principal components extracted from HRV signals to achieve the highest accuracy of
85.5% with quadratic discriminant analysis (QDA). Rajput et al. [17] proposed a scheme
to identify the low and high risk of hypertension. The scheme yielded classification
accuracy 100% using optimal orthogonal wavelet filter back (OWFB), log, and fractal
dimension features extracted from ECG. Despite promising results, this work suffers
from a data imbalance problem. The authors in [18] proposed a method to detect ECG
hypertensive signals using empirical mode decomposition (EMD) for preprocessing of the
signals, yielding an accuracy of 97.7% through the KNN classifier. The extracted features
were selected physically, making this process laborious. The method was only trained
on a small data set. A system to detect hypertension using morphological descriptors
derived from PPG with 92.31% accuracy is discussed in [19]. Identification of hypertension
patients from ballistocardiograms (BCG) is presented in [20]. The system achieved a mean
accuracy of 84.4% using class association rules (CAR) classifier and morphological features.
The BCG signals were collected from patients lying on a smart mattress which has a
limited availability.

Medical devices in hospitals can easily get affected by electromagnetic interference
(EMI) in a complex electromagnetic environment [21,22]. ECG signals are usually affected
by the EMI and preconditioning circuits. Changes in temperature and ambient lighting
conditions impact the PPG signal acquisition. PPG signal acquisition is exposed to motion
artifacts as well [23]. The frequency of the PPG signal is about 1–3 Hz [24], so it also
requires a high order filter for signal denoising. The motivation behind this research was
to investigate the feasibility of a new signal modality, i.e., pulse plethysmograph (PuPG).
In contrast to PPG that uses light to detect the volume of blood flow in the finger, the PuPG
senses the pressure changes in blood flow.

1.1. Main Contributions

In this research, novel PuPG signals were used to design the hypertension
detection system. The PuPG signal includes considerable cardiac health characteristic
information [25–27]. The PuPG signals are recently being used for emotions classifica-
tion [28] and biometric systems [29] as well. The main contributions of this work are listed
as follows:

• This is the first study that used PuPG-based signals for the detection of hypertension.
• To accurately detect the hypertension pattern, we extract a large number of multi-

domain features from preprocessed PuPG signals through discrete wavelet transform
(DWT) and EMD.

• To reduce the feature dimensions and redundancy while improving the discriminative
power of features, we proposed a hybrid feature selection and reduction (HFSR)
scheme.

• The proposed expert hypertension detection system (EHDS) comprises preprocessing
through EMD, followed by the feature extraction, kernel principal component analysis
(KPCA), and weighted k-nearest neighbor (KNN-W) classifier, achieved an accuracy
of 99.4%, sensitivity of 99.6%, and specificity of 99.4%.

The rest of this paper is structured as follows: Section 2 gives details about the materi-
als used in this study. Section 3 describes the details about the methods. Next, we present the
results in Sections 4 and 5 discuss the proposed method and its comparative analysis.
Section 6 concludes this research paper.

2. Materials

2.1. Data Acquisition

In this study, a portable pulse plethysmograph (PuPG) sensor PTN-104 (NISensors,
iWorx Systems Inc., Dover, UK) in combination with NI myDAQ (National Instruments
Corporation, Austin, TX, USA) was used for PuPG data acquisition. PTN-104 sensor
is attached to the index finger of the subject to convert pulse pressure into an electrical
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voltage signal. The real-time integral of its output signal produces the same volume pulse
signal as the expensive infrared PPG sensor. The PTN-104 is a rugged non-magnetic
accelerometer, which is made up of piezoelectric material. IX-myDAQ (National In-
struments Corporation, Austin, TX, USA) is a breakout board used for connecting the
PTN-104 sensor and myDAQ (National Instruments Corporation, Austin, TX, USA) for
data acquisition via mini DIN7 port. NI myDAQ is a low-cost data acquisition tool that
converts analog signals to digital format and allows the users to analyze real-time data
in NI LabVIEW software (National Instruments Corporation, Austin, TX, USA) on PC.
The sampling frequency was set to be 1 kHz for PuPG data acquisition.

It is very essential to highlight the difference between PPG and PuPG signals and
sensors. Both of them operate on completely different principles with different input
parameters. Table 2 presents a comparison between various properties of both sensors such
as input parameters, working principles, and the impact of noise on a signal acquisition.
Figure 1 illustrates the output signals acquired from both sensors. It was observed that
the PuPG signal carries more information as compared to the PPG signal since multiple
frequencies contribute towards the dicrotic notch for PuPG.

Table 2. Difference between PPG and PuPG data acquisition.

Type Photoplethysmograph (PPG) Sensor Pulse Plethysmograph (PuPG) Sensor

Input signal Optical signal Pressure changes

Phenomenon
Blood volumetric changes are detected
by measuring the amount of light
transmitted or reflected by the sensor.

Blood volumetric changes are detected by the
piezoelectric material of the sensor as pressure
changes when the blood volume changes.

Noise Impact

Light signal can be easily impacted by
any external light changes.

Piezoelectric material based sensors are normaly
temperature sensitive.

Dirty hand can distort the light
intensities.

Dirty hands or foreign material on hand or fingers
does not have significant impact.

(a) Photoplethysmograph signal (b) Pulse Plethysmograph signal

Figure 1. Visual comparison of Photoplethysmograph (PPG) and Pulse Plethysmograph (PuPG) signals.

2.2. Data Set Description

Raw PuPG signals were acquired from the subjects. The data acquisition was carried
out for developing a two-class data bank; one was hypertension and the other normal.
A total of 700 signals were collected from hypertension subjects and 709 signals from
normal subjects, with a timestamp of 10 s per signal and a sampling frequency of 1000 Hz.
Subjects were advised to keep calm and remain static during data acquisition activity.
Informed consent was obtained from all participants included in the research. Recording
activity was performed between breakfast and lunch time. None of the involved subjects
were smokers or diabetic. Table 3 shows the details of the subjects and the acquired
data for this study. Figure 2 shows a comparison of raw PuPG signals collected from a
normal subject and a subject suffering from hypertension. Sometimes acquired signals
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(both normal and hypertension) were affected by the circuit noise. The noise/power line
distortion incurred due the embedded electronics of data acquisition setup can be seen as a
sinusoidal oscillatory component (50 Hz) in the normal PuPG Hat of Figure 2.

Table 3. Summary of the self-collected PuPG data set.

Data Class Subjects Age Group Samples

Hypertension
Male: 29 Male: 40–76 700

Female: 27 Female: 39–59

Normal
Male: 35 Male: 21–63 709

Female: 30 Female: 20–59

Overall 121 20–76 1409

Figure 2. Raw PuPG signals of Normal and Hypertension classes.

3. Methods

3.1. Design of the Study

The proposed methodology in this research adopts the machine learning paradigm
shown in Figure 3. It consists of four main stages, namely (i) preprocessing; (ii) feature
extraction; (iii) hybrid feature selection and reduction, and (iv) classification. These stages
are separated through a dotted line in Figure 3. Each step is elaborated in detail in
forthcoming sections. This research adopts a comparative approach between two pattern
analysis frameworks, i.e., method I and method II. Method I is comprised of discrete
wavelet transform (DWT)-based preprocessing while method II adopts empirical mode
decomposition (EMD) for signal denoising. The rest of the framework for both methods
is the same. The feature values extracted, reduced feature vectors, and the performance
of the classifiers vary for both methods due to the difference in preprocessing methods.
All experiments were performed on MATLAB 2018a (The MathWorks, Inc., Natick, MA,
USA) running on a personal computer with Core i7 (Intel Corporation, Santa Clara, CA,
USA) processors and 32 GB RAM.
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Figure 3. Overall flow chart of the proposed design methodology for detection of hypertension
through pulse plethysmograph signals.

1. Preprocessing: It removes the irrelevant information and artifacts from the acquired
PuPG signal data of normal and hypertension classes. Method I employs discrete
wavelet transform (DWT) for signal denoising through frequency and mean relative
energy-based criteria. Method II adopts empirical mode decomposition (EMD) for
noise elimination through analysis of mean frequencies and energies of individual
signal components extracted from normal and hypertension classes.

2. Feature extraction: It extracts a combination of 102 features from preprocessed PuPG
through DWT and EMD separately. These include time, frequency, spectral, texture,
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and cepstral features. The difference between signal classes is best captured through
the extraction of a wide range of informative features.

3. Feature selection and reduction: This step eliminates features with redundant infor-
mation through a hybrid feature selection and reduction (HFSR) method that is a com-
bination of multiple feature ranking and transformation schemes. A high-dimensional
feature vector is reduced through a new strategy of the averaging outcome of seven
feature ranking methods, thus providing more reliable results. Next, we employed
kernel principal component analysis (KPCA) to further decrease the feature dimen-
sion and represent significant information in fewer parameters. Extracted features
in both method I and II are fed to the HFSR scheme to reduce the dimension of the
resultant feature vector.

4. Classification:The final feature vectors extracted in both methods I and II of hyperten-
sion and normal classes are fed to a range of different classifiers, i.e, support vector
machines (SVM), k-nearest neighbors (KNN), ensemble methods, decision trees (DT),
and logistic regression (LR). Classification performance of both methods is evaluated
through a baseline tenfold cross-validation strategy and compared with 5-, 15-, 20-,
and 25-fold cross-validation.

3.2. Preprocessing

The acquired PuPG data were contaminated with noise and artifacts and include
redundant information (Figure 2). These noise components needs to be eliminated for a
robust performance of the proposed system. Therefore, we employed DWT and EMD-based
preprocessing for signal denoising. Later on, we compared the preprocessing performance
of both methods.

3.2.1. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a widely applied approach in biomedical
signal processing applications [30–32]. DWT decomposes a signal into different resolutions
by using a combination of high-pass and low-pass filters. Figure 4 illustrates the complete
process of wavelet-based denoising [33] adopted in this research. Numerous filter coeffi-
cients have been developed for diverse types of signal analysis applications—for instance,
Daubechies, Symlets, and Coiflets coefficients, etc.

In this study, we employed the Symlet wavelet due to its similarity with the shape
of the PuPG signal under consideration [34,35]. Symlet wavelet yields the best results as
compared to others due to its resemblances with the morphological characteristics of the
PuPG signal.

Table 4 exhibits information about decomposition levels, frequency ranges, and mean
relative energies of normal and hypertension data classes of PuPG signals. It can be
observed that D1, D2, D3, and D4 signal components have high frequency range and
include low mean relative energies; therefore, these components were eliminated while
reconstructing a denoised signal. This is also endorsed by the fact that the PuPG signal has
a very low frequency (normally less than 60 Hz). Figure 5 provides a graphical illustration
of wavelet decomposition for normal and hypertension PuPG signals. Figure 6 presents
the denoised signal generated as a result of applying DWT. High frequency noise visible in
raw PuPG signal (Figure 2) is eliminated in the denoised version.
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Figure 4. Wavelet-based denoising.

Table 4. Comparison of mean relative energies and frequency ranges of various decomposition levels
for Normal and Hypertension classes.

Decomposition Levels Frequency Range (Hz)
Mean Relative Energy (%)

Normal Hypertension

D1 250–500 0.07% 0.59%
D2 122–256 0.09% 0.32%
D3 61.1–128 0.19% 0.35%
D4 30.6–63.9 0.46% 0.49%
D5 15.3–31.9 1.93% 3.10%
D6 7.65–16 14.77% 13.31%
D7 3.84–7.97 31.03% 21.49%
D8 1.94–3.99 29.11% 19.05%
D9 1.03–1.99 21.11% 26.77%
D10 0.594–0.958 0.16% 7.65%
A10 0–0.431 1.08% 6.88%
A4 0–31.2 99.19% 98.26%
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Figure 5. Wavelet decomposition of raw PuPG signals.
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Figure 6. Denoised version of PuPG signal for Normal and Hypertension through DWT.

3.2.2. Empirical Mode Decomposition

EMD is an adaptive method that derives fundamental functions directly from the
data [36]. EMD does not require any previously known value of the signal for its com-
putation. The principal task for computing EMD of a given signal is to empirically de-
termine the intrinsic oscillatory components through their particular time scales in a sig-
nal and subsequently disintegrate the signal into intrinsic mode functions (IMFs) [37].
Therefore, EMD provides remarkably better results for nonlinear and non-stationary
biomedical signals.

Selection criteria of IMF have to satisfy two conditions;

• In the entire signal, the total number of local extrema and zero crossings must be equal
to each other or differ by a maximum one.

• The average of the envelopes computed through local minima and local maxima must
be zero.

The systematic approach to disintegrate the signal into its IMFs is known as the
“sifting” process, explained in Figure 7.

The basic objective of applying EMD for preprocessing the PuPG signal was to decom-
pose the distorted signal into its constituent IMFs as depicted in Figure 8. Considering the
fact that some IMFs carry discriminative and characteristic information about various data
classes while others include redundant and noisy content, the determination of the proper
number of IMFs is a crucial step towards creating an effective signal denoising strategy.

It is perceived from Figure 8 and Table 5 that the first IMF includes mainly high-
frequency content. Table 5 provides mean frequency and energy information of each IMF
for normal and hypertension data classes of the PuPG signal. The first IMF also holds very
little mean relative energy components for both classes, i.e., 0.00% and 1.02% for normal
and hypertension classes, respectively. Therefore, it was discarded while reconstructing
the denoised signal. All other IMFs and residual signals were added to form a denoised
version of the PuPG signal. Figure 9 illustrates the PuPG signal denoised through the EMD
process for normal and hypertension data. It is clear that high frequency noise that was
visible in raw PuPG signal (Figure 2) is eliminated now.
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Figure 7. EMD algorithm (flow chart).

Table 5. Comparison of mean relative energies and frequency ranges of various intrinsic mode functions (EMD) for Normal
and Hypertension classes. Bold font indicates the selected components.

Components
Normal Hypertension

Mean Frequency Range (Hz) Mean Relative Energy (%) Mean Frequency Range (Hz) Mean Relative Energy (%)

IMF1 103–483 0.00 86.5–484 1.02
IMF2 11.3–60.2 0.14 40.7–219 0.35
IMF3 3.09–14 30.34 3.3–61 2.04
IMF4 2.99–12.2 4.97 3.34–23.3 6.65
IMF5 1.28–10 22.76 2.98–11.4 14.95

Residual 0.129–5.55 41.78 0.0197–4.33 74.99
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Figure 8. EMD decomposition of raw PuPG signals.
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Figure 9. Preprocessed signal using EMD.

3.3. Feature Extraction

The objective of the feature extraction stage is to extract significant features from the
biomedical signals of various classes that contributes towards an effective classification
performance. In this study, a total of 102 features were separately computed from the
PuPG signal denoised through DWT and EMD. Table 6 lists all the extracted features along
with their statistical measures of mean and standard deviation (STD) for method I (DWT)
and method II (EMD). We extracted time domain [38–45], spectral [46,47], fractal and
chaos [48,49], chroma [50,51], cepstral [52], and texture features [53] and analyzed them sta-
tistically.

Table 6. Statistical data of all extracted features for both methods.

Method I Method II

Feature
Normal Hypertension Normal Hypertension

Mean STD Mean STD Mean STD Mean STD

Mean 0.008 0.027 0.017 0.031 0.001 0.049 0.013 0.053
Standard Deviation 0.253 0.032 0.250 0.046 0.254 0.032 0.248 0.045

Skewness −1.959 0.522 −2.144 0.651 −1.997 0.576 −2.220 0.641
Kurtosis 6.993 1.499 8.083 3.864 7.139 1.688 8.297 3.944

Peak to Peak Value 1.380 0.199 1.398 0.140 1.377 0.178 1.375 0.144
Root Mean Square 0.255 0.033 0.252 0.047 0.258 0.038 0.254 0.046

Crest Factor 1.659 0.939 1.635 0.381 1.587 0.991 1.523 0.536
Shape Factor 1.484 0.134 1.458 0.159 1.522 0.163 1.465 0.167

Impulse Factor 2.435 1.297 2.382 0.593 2.371 1.376 2.171 0.632
Margin Factor 15.22 14.64 15.12 7.27 15.16 15.56 13.39 6.45

Energy 389.6 209.7 437.4 207.6 393.9 207.4 448.5 222.5
Peak to RMS Value 3.894 0.623 4.094 0.991 3.921 0.663 4.108 1.102

Root Sum of Squares 18.933 5.600 20.292 5.089 19.069 5.525 20.480 5.412
Shannon Energy 549.7 312.3 618.2 279.7 526.6 295.8 686.5 414.4

Log Energy −27,888 15,515 −34,569 18,644 −28,509 16,289 −32,613 16,387
Mean Absolute Deviation 0.169 0.026 0.169 0.043 0.169 0.028 0.168 0.043

Median Absolute Deviation 0.074 0.026 0.071 0.030 0.071 0.033 0.059 0.024
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Table 6. Cont.

Method I Method II

Feature
Normal Hypertension Normal Hypertension

Mean STD Mean STD Mean STD Mean STD

Average Frequency 0.002 0.001 0.001 0.001 0.002 0.003 0.002 0.002
Jitter 137.1 180.9 85.5 150.4 159.0 248.8 52.0 95.8

Spectral Mean 3.144 5.928 0.771 1.960 8.623 15.700 2.764 6.372
Spectral Standard Deviation 3.401 4.833 1.549 3.463 7.571 11.498 3.031 6.016

Spectral Skewness 2.361 1.496 3.763 1.295 0.996 1.360 1.797 1.908
Specral Kurtosis 11.331 8.235 20.190 9.589 5.588 4.947 10.564 8.751

Spectral Centroid 9.442 0.202 9.915 1.481 9.771 1.576 10.768 2.216
Spectral Flux 0.008 0.002 0.008 0.002 0.008 0.002 0.008 0.002

Spectral Roll-off 91.699 1.010 96.587 8.383 97.036 10.371 136.257 44.372
Spectral Flatness 0.025 0.014 0.051 0.035 0.063 0.065 0.171 0.138

Spectral Crest 0.642 0.012 0.621 0.040 0.631 0.030 0.593 0.059
Spectral Decrease −4.333 0.228 −4.013 0.658 −4.169 0.538 −3.656 0.830

Spectral Slope −0.023 0.003 −0.023 0.003 −0.024 0.003 −0.023 0.005
Spectral Spread 18.505 0.199 19.029 1.178 19.328 1.617 23.521 5.818
Mean Frequency 4.347 0.949 4.999 3.451 4.989 3.063 6.446 4.440

Median Frequency 3.574 0.803 2.972 0.880 3.811 3.573 2.846 0.753
Spurious-free Dynamic Range 3.073 6.019 2.196 2.107 3.163 6.451 2.056 1.812

Signal to Noise Distortion −0.885 6.041 −2.036 3.101 −0.755 6.819 −2.097 3.030
Total Harmonic Distortions −2.376 5.452 −0.938 4.964 −3.144 6.562 −0.396 4.110

1st Coeffient of MFCC −44.99 0.37 −44.716 0.512 −44.84 0.60 −44.45 0.80
2nd Coeffient of MFCC 6.268 0.523 6.661 0.714 6.480 0.846 7.028 1.122
3rd Coeffient of MFCC 5.976 0.499 6.350 0.683 6.169 0.802 6.690 1.066
4th Coeffient of MFCC 5.508 0.462 5.851 0.634 5.671 0.733 6.148 0.976
1st Coeffient of GFCC −7.183 0.430 −6.762 0.610 −7.027 0.793 −6.220 1.266
2nd Coeffient of GFCC 1.844 0.063 1.869 0.071 1.522 0.419 1.119 0.574
3rd Coeffient of GFCC 0.553 0.138 0.367 0.269 0.643 0.105 0.492 0.206
4th Coeffient of GFCC 0.301 0.024 0.266 0.033 0.392 0.109 0.408 0.109

1st Coefficient of Chroma Vector 0.383 0.235 0.750 0.501 0.653 0.532 2.126 1.930
2nd Coefficient of Chroma Vector 0.416 0.258 0.773 0.518 0.663 0.546 2.130 1.948
3rd Coefficient of Chroma Vector 0.433 0.269 0.842 0.575 0.742 0.672 2.129 2.144
4th Coefficient of Chroma Vector 0.623 0.378 1.297 0.942 0.700 0.568 2.011 2.046
5th Coefficient of Chroma Vector 0.564 0.337 1.212 0.872 0.691 0.534 2.044 1.935
6th Coefficient of Chroma Vector 0.527 0.320 1.230 0.987 0.748 0.563 2.227 2.267
7th Coefficient of Chroma Vector 0.483 0.296 1.069 0.760 0.705 0.524 2.107 1.893
8th Coefficient of Chroma Vector 0.451 0.279 0.982 0.696 0.686 0.528 2.071 1.863
9th Coefficient of Chroma Vector 0.429 0.268 0.908 0.638 0.679 0.529 2.099 1.929
10th Coefficient of Chroma Vector 0.400 0.251 0.878 0.609 0.651 0.537 2.087 1.848
11th Coefficient of Chroma Vector 0.373 0.232 0.776 0.537 0.668 0.522 2.106 1.954
12th Coefficient of Chroma Vector 0.348 0.225 0.705 0.474 0.622 0.522 2.078 1.890
Enhanced Mean Absolute Value 0.297 0.039 0.302 0.055 0.294 0.052 0.301 0.049

Enhanced Wavelength 236.4 133.5 413.7 319.8 284.3 198.6 665.7 515.0
Wavelength 36.83 21.94 85.59 96.94 54.42 46.94 193.47 186.80

Slope Sign Change 45.1 86.9 508.4 549.0 1039.5 1657.6 3463.1 2792.1
Average Amplitude Change 0.006 0.003 0.010 0.009 0.009 0.009 0.021 0.018

Difference Absolute Std. Dev. 0.009 0.003 0.013 0.010 0.014 0.010 0.027 0.021
Log Detector 0.108 0.030 0.118 0.037 0.107 0.043 0.117 0.036

Modified Mean Absolute Value 0.130 0.025 0.133 0.034 0.130 0.033 0.132 0.030
Modified Mean Absolute Value 2 0.083 0.022 0.089 0.026 0.084 0.027 0.087 0.020

Pulse Percentage Rate 0.939 0.029 0.953 0.027 0.937 0.045 0.957 0.035
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Table 6. Cont.

Method I Method II

Feature
Normal Hypertension Normal Hypertension

Mean STD Mean STD Mean STD Mean STD

Simple Square Integral 389.6 209.7 437.4 207.6 393.9 207.4 448.5 222.5
Willison Amplitude 1153.6 765.6 2670.8 2603.9 1836.0 1707.6 4551.3 3502.4

Maximum Fractal Length −0.463 0.384 −0.136 0.740 −0.174 0.594 0.428 1.121
Root Squared Zero Order Moment 2.592 0.032 2.600 0.026 2.593 0.031 2.601 0.028
Root Squared 2nd Order Moment 2.068 0.066 2.036 0.062 1.984 0.115 1.913 0.130
Root Squared 4th Order Moment 2.045 0.077 2.001 0.078 1.891 0.159 1.794 0.205

Sparseness 0.535 0.064 0.582 0.086 0.655 0.137 0.747 0.188
Irregularity Factor −0.464 0.037 −0.445 0.047 −0.446 0.058 −0.406 0.061

Waveform Length Ratio −0.065 0.703 −0.354 0.230 −0.648 0.604 −0.721 0.727
Complexity 0.502 0.222 0.706 0.253 0.897 0.524 1.314 0.515

Mobility 0.038 0.011 0.057 0.038 0.055 0.035 0.115 0.079
Higuchi’s Fractal Dimension 1.054 0.052 1.149 0.119 1.183 0.240 1.490 0.401

Katz Fractal Dimension 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Lyapunov Exponent 437.4 49.5 394.8 49.3 362.9 78.8 239.1 92.2

Approximate Entropy 0.104 0.049 0.155 0.134 0.127 0.080 0.316 0.312
Correlation Dimension 1.687 0.168 1.733 0.191 1.676 0.202 1.731 0.300
1st Coefficient of LTP 259.6 128.8 291.5 122.1 259.6 128.8 291.5 122.1
2nd Coefficient of LTP 40.790 30.943 56.809 35.998 40.790 30.943 56.809 35.998
3rd Coefficient of LTP 24.574 23.717 41.723 32.083 24.574 23.717 41.723 32.083
4th Coefficient of LTP 16.381 15.761 30.738 22.667 16.381 15.761 30.738 22.667
5th Coefficient of LTP 18.472 15.755 33.411 24.881 18.472 15.755 33.411 24.881
6th Coefficient of LTP 25.205 21.607 45.518 33.715 25.205 21.607 45.518 33.715
7th Coefficient of LTP 17.699 16.352 29.035 22.609 17.699 16.352 29.035 22.609
8th Coefficient of LTP 26.261 23.075 39.645 28.386 26.261 23.075 39.645 28.386
9th Coefficient of LTP 47.483 32.844 58.163 35.132 47.483 32.844 58.163 35.132
10th Coefficient of LTP 207.278 94.769 201.809 72.537 207.278 94.769 201.809 72.537
11th Coefficient of LTP 269.5 137.7 302.1 121.7 269.5 137.70 302.1 121.7
12th Coefficient of LTP 41.733 31.354 59.773 38.092 41.733 31.354 59.773 38.092
13th Coefficient of LTP 24.006 23.096 41.071 31.294 24.006 23.096 41.071 31.294
14th Coefficient of LTP 16.784 15.900 30.199 23.471 16.784 15.900 30.199 23.471
15th Coefficient of LTP 18.506 15.140 33.390 25.583 18.506 15.140 33.390 25.583
16th Coefficient of LTP 26.148 22.755 44.177 31.682 26.148 22.755 44.177 31.682
17th Coefficient of LTP 16.898 16.559 30.149 21.910 16.898 16.559 30.149 21.910
18th Coefficient of LTP 25.790 22.892 39.312 26.784 25.790 22.892 39.312 26.784
19th Coefficient of LTP 46.534 33.045 56.298 33.647 46.534 33.045 56.298 33.647
20th Coefficient of LTP 197.773 85.090 191.858 74.487 197.773 85.090 191.858 74.487

These features were subjected to the feature selection step (HFSR) to recognize
the features with maximum discriminative content among normal and hypertension classes.

3.4. Hybrid Feature Selection and Reduction

Feature selection is one of the key steps in the modern pattern recognition and machine
learning paradigms. The extracted features may include redundant information and
irrelevant and noisy parameters. A two-stage hybrid feature selection and reduction
(HFSR) strategy was designed to select and transform the best distinctive features as shown
in Figure 10. The first stage ranks the input features through seven different methods and
the second stage transforms the selected ranked features to further reduce dimensionality.
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Figure 10. Block diagram (feature selection and reduction method).

3.4.1. Feature Selection Scheme

Feature selection routines serve to enhance the performance of classifiers by re-
ducing the feature dimensions as well as decreasing the computational time [54,55].
Feature selection methods are categorized as filter methods and wrapper methods. Filter
type feature selection methods employ feature ranking techniques based on the applied
statistical measure for selecting a suitable feature. In wrapper type feature selection tech-
niques, a feature subset is selected recursively based on the overall model performance.
The selection criterion computes the variation in model performance that decides the
addition or removal of a feature from the subset.

To address the limitations of individual feature selection approaches, we employed a
hybrid scheme of feature selection by combining seven feature ranking methods through
a voting strategy. Figure 10 illustrates the hybrid scheme of feature selection and reduc-
tion. In this scheme, seven state-of-the-art feature ranking techniques, namely student
t-test (TT), Kullback–Leibler distance (KLD) [56], Bhattacharya distance (BD) [57], Mann–
Whitney’s test (MWT), ReliefF (RRF) [58], minimum redundancy maximum relevance
(MRMR) [59,60], and receiver operating characteristic curve (ROC) were employed to rank
the feature individually. Ranking assigned to each feature by all feature ranking methods
is combined to calculate the mean rank (MR) value. A threshold is applied to MR value for
feature selection.

Table 7 provides the sorted lists of the best forty features with the highest MR values
for method I (features extracted from signal preprocessed through DWT). Rank assigned
to individual features by each ranking method is also computed. The top 24 features are
highlighted in Table 6 were forwarded to the next stage. It was perceived that if a feature
ranking method assigns a high rank to a particular feature that failed to get high scores
from other methods, it gets rejected due to the hybrid scheme of feature selection. For
instance, consider the Root Sum of Squares feature that received the rank value of 99 from
the ROC method, but gets scores of 53, 49, 52, 18, 58, and 72 from TT, KLD, BD, MWT,
MRMR, and RRF, respectively. It achieved an MR value of 57.29 that is below the selection
criterion, so it was rejected from the final feature vector of 1 × 24 dimensions. Table 8 enlists
the top forty features with the highest MR values for method II, i.e., features extracted from
the signal preprocessed through EMD. The rank value assigned by an individual feature
ranking method to a specific feature can be examined. One to one comparison of the top
ten MR values of method I in Table 7 and method II in Table 8 reveals that the magnitude
of MR values of method II (81–70) is higher than that for method I (73–67).
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Table 7. List of features extracted for method I and sorted with respect to mean rank (MR) value. Bold font indicates the top
24 ranked features.

Feature TT KLD BD ROC MWT MRMR RRF MR

3rd Coefficient of LTP 12 93 93 83 32 102 98 73.29
6th Coefficient of Chroma Vector 38 98 76 79 78 94 49 73.14
Lyapunov Exponent 93 92 92 70 81 10 70 72.57
Sparseness 70 90 90 30 62 79 84 72.14
Jitter 78 58 58 74 77 85 74 72.00
9th Coefficient of LTP 57 83 83 75 82 92 24 70.86
Spectral Decrease 62 28 61 85 75 93 83 69.57
4th Coefficient of MFCC 96 41 41 95 40 72 99 69.14
Irregularity 35 94 100 57 88 90 13 68.14
1st Coeffient of MFCC 99 23 23 100 37 96 97 67.86
Waveform Length Ratio 13 100 94 91 9 100 66 67.57
3rd Coeffient of MFCC 79 97 97 84 39 55 17 66.86
1st Coefficient of Chroma Vector 71 86 86 98 26 48 53 66.86
Spectral Roll-off 81 43 79 66 56 59 81 66.43
Spectral Crest 61 80 60 26 92 71 75 66.43
6th Coefficient of Chroma Vector 100 76 99 31 61 45 52 66.29
7th Coefficient of Chroma Vector 37 99 98 1 96 42 86 65.57
Median Frequency 88 35 78 71 102 78 2 64.86
2nd Coefficient of Chroma Vector 89 7 96 89 41 81 51 64.86
Spectral Centroid 76 79 43 39 86 69 58 64.29
Difference Absolute Std. Dev. Value 84 38 37 81 79 63 64 63.71
Shape Factor 59 53 53 54 72 80 73 63.43
Spectral Mean 43 77 77 96 46 40 61 62.86
Simple Square Integral 4 72 72 22 89 89 92 62.86
3rd Coefficient of GFCC 95 29 88 94 34 53 45 62.57
4th Coefficient of Chroma Vector 40 96 30 87 85 52 47 62.43
Root Mean Square 45 56 56 77 43 87 69 61.86
Signal to Noise Distortion 97 69 69 47 74 31 42 61.29
9th Coefficient of Chroma Vector 72 12 95 88 27 76 57 61.00
Mean Absolute Deviation 58 48 48 49 76 82 62 60.43
Root Squared 2nd Order Moment 91 82 71 8 59 20 91 60.29
Root Squared 4th Order Moment 101 71 82 82 4 66 14 60.00
10th Coefficient of Chroma Vector 36 95 85 28 73 41 56 59.14
12th Coefficient of Chroma Vector 90 89 89 59 10 37 38 58.86
1st Coefficient of GFCC 69 87 87 61 66 38 3 58.71
Mean 80 26 26 80 80 68 44 57.71
Enhanced Mean Absolute Value 21 73 73 62 58 54 63 57.71
Root Sum of Squares 53 49 52 99 18 58 72 57.29
2nd Coefficient of LTP 82 70 70 35 36 12 95 57.14
Katz Fractal Dimension 67 3 3 67 90 75 90 56.43
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Table 8. List of features extracted for method II and sorted with respect to MR value. Bold font indicates the top 24 ranked
features.

Feature TT KLD BD ROC MWT MRMR RRF MR

7th Coefficient of Chroma Vector 100 98 98 26 96 97 55 81.43
4th Coefficient of Chroma Vector 89 96 76 73 85 52 96 81.00
Mobility 93 64 64 67 68 91 95 77.43
Spectral Centroid 68 78 78 77 45 98 88 76.00
Enhanced Mean Absolute Value 71 95 95 28 98 56 87 75.71
9th Coefficient of LTP 64 101 101 64 93 79 19 74.43
1st Coefficient of GFCC 95 35 97 98 38 99 54 73.71
7th Coefficient of LTP 57 93 93 57 101 24 89 73.43
Slope Sign Change 74 73 89 79 89 89 13 72.29
Maximum Fractal Length 3 72 74 91 90 90 70 70.00
3rd Coefficient of MFCC 38 97 22 95 102 80 53 69.57
6th Coefficient of Chroma Vector 69 80 96 90 27 68 56 69.43
8th Coefficient of Chroma Vector 61 99 99 69 66 49 40 69.00
Enhanced Wavelength 81 85 85 68 94 16 50 68.43
Pulse Percentage Rate 4 94 100 42 73 76 77 66.57
Root Squared Zero Order Moment 63 84 84 30 69 72 46 64.00
Crest Factor 51 68 68 80 72 32 72 63.29
Modified Mean Absolute Value 2 42 90 90 7 88 64 62 63.29
Spectral Crest 87 58 45 40 47 85 75 62.43
2nd Coeffient of MFCC 37 69 69 84 77 48 51 62.14
1st Coeffient of MFCC 77 9 9 100 99 38 102 62.00
Average Frequency 80 29 54 47 54 86 82 61.71
4th Coefficient of LTP 34 65 65 65 42 74 84 61.29
Willison Amplitude 91 74 72 15 16 77 83 61.14
Spectral Spread 99 47 58 85 60 9 68 60.86
3rd Coefficient of LTP 65 91 91 5 65 2 101 60.00
Root Squared 4th Order Moment 70 66 71 14 97 62 36 59.43
Lyapunov Exponent 32 63 63 8 62 81 100 58.43
2nd Coeffient of GFCC 40 87 87 89 40 50 14 58.14
3rd Coeffient of GFCC 73 22 10 66 39 96 99 57.86
Correlation Dimension 14 70 70 101 57 1 91 57.71
Root Squared 2nd Order Moment 101 5 66 36 31 100 61 57.14
5th Coefficient of Chroma Vector 20 76 80 97 4 36 86 57.00
2nd Coefficient of Chroma Vector 75 41 41 88 78 73 2 56.86
11th Coefficient of Chroma Vector 66 39 39 74 95 47 37 56.71
Log Energy 45 75 52 53 19 88 60 56.00
10th Coefficient of Chroma Vector 90 38 38 19 100 69 38 56.00
5th Coefficient of LTP 8 82 82 83 5 101 30 55.86
1st Coefficient of LTP 11 92 92 24 83 57 31 55.71

3.4.2. Feature Reduction Using Kernel PCA

PCA applies orthogonal transformation to transform a group of likely correlated
features into a set of linearly independent features known as principal components.
These principal components represent the normalized linear combinations of the orig-
inal features. It includes information about the most powerful variations present in the
data set. The first principal component holds maximum variance information of the
data set.

Kernel PCA (KPCA) [61,62] enhances the original PCA to non-linear data distribution
problems through a kernel function. A kernel function projects low-dimensional feature
data to a higher-dimensional feature space, where it becomes linearly separable [63].
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The previous stage of hybrid feature selection reduced the feature dimensions to
1 × 24 which are fed to KPCA to further decrease dimensions for both methods I and II.
Components of KPCA were selected recursively based on the classification performance
through tenfold cross-validation. Separate sets of 5, 7, 10, 12, 15, and 17 components were
picked for methods I and II to investigate the classification performance for differentiating
normal and hypertension signal classes of PuPG signals.

3.5. Classification

To perform the classification of normal and hypertension classes of PuPG signal data
set, this study employed a range of classification methods through tenfold cross-validation
schemes. The classification methods opted in this study were SVM-Linear (SVM-L),
SVM-Quadratic (SVM-Q), SVM-Cubic (SVM-C), SVM-Fine Gaussian (SVM-FG), SVM-
Medium Gaussian (SVM-MG), KNN-Fine (KNN-F), KNN-Medium (KNN-M), KNN-Cosine
distance (KNN-Cos), KNN-Cubic (KNN-C), KNN-Weighted (KNN-W), Decision Trees (DT),
Linear Discriminant (LD), Logistic Regression (LR), Gaussian Naive Baise (NBG), Kernel
Naive Baise (NBK), Ensemble Boosted Trees (Eboost), Ensemble Bagged Trees (EBT),
Ensemble Subspace Discriminant (ESD), and Ensemble Subspace KNN (ESKNN). The
tenfold cross-validation was also compared with 5-, 15-, and 20-fold cross-validation
and 80–20% and 75–25% train-test experiments. All experiments were implemented on
MATLAB 2018a on a personal computer with Core i7 with 32 GB RAM.

4. Results

In this study, the PuPG signal data set comprising two classes (Normal and Hyper-
tension) was first preprocessed through DWT and EMD to develop methods I and II
respectively. We obtained 102 features for each method, i.e., DWT and EMD. These features
were subjected to the HFSR framework to reduce the computational complexity and feature
vector dimensions. Standard statistical parameters of Accuracy (Acc), Sensitivity (Sen),
Specificity (Sp), and Error rate (Err) were used to measure the classification performance.

4.1. Method I

In this research, a comparative analysis was performed via preprocessing the PuPG
signal through DWT and EMD. This section presents the results yielded by preprocessing
through DWT and succeeding processes of feature extraction, selection, and classification.
Various feature sets, namely S1, S2, S3, S4, S5, and S6 were formed by randomly choosing
5, 7, 10, 12, 15, and 17 transformed features. These feature components were fed to
several classification methods to examine the diagnostic performance through tenfold cross-
validation. Table 9 presents consolidated result analysis of various classification methods
for features sets S1 (5 components), S2 (7 components), and S3 (10 components). Table 10
illustrates comprehensive analysis of classification performance over different classifiers for
feature sets S4 (12 components), S5 (15 components), and S6 (17 components). As expressed
in Table 10, Ensemble Subspace KNN classifier scores highest average accuracy of 98.4%,
for 12 feature components, i.e., S4 feature set.

Figure 11 shows the performance in terms of accuracy for different feature sets in
various classifiers for distinguishing normal and hypertension classes using PuPG signals.
Figure 12 demonstrates the specificity performance of several classifiers for various features
sets from DWT based preprocessing method. Figure 13 presents a graphical comparison of
the sensitivity performance of several classifiers for different feature combinations.

NBG classifier achieves highest specificity performance of 100% for feature sets S3,
S4, S5, and S6 (Figure 12), but it reaches maximum sensitivities of 26%, 26%, 32%, and 34%
for the same feature sets (Figure 13); therefore, it results in significant reduction of overall
classifier accuracy of NBG. The sensitivity performance is 100% for several classifiers
(LD, LR, NBG, SVM-FG, SVM-MG, EBT) for feature set S1 (Figure 13), but the specificity
performance is comparatively low.
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Table 9. Consolidated result analysis of feature sets (S1, S2, S3) for method I with various classifiers.

Classifier
S1 (5 Components) S2 (7 Components) S3 (10 Components)

Acc Sp Sen Err Acc Sp Sen Err Acc Sp Sen Err

DT 0.874 0.89 0.89 0.126 0.924 0.92 0.93 0.076 0.934 0.94 0.93 0.066
LD 0.688 0.3 1 0.312 0.688 0.3 1 0.312 0.669 0.3 0.97 0.331
LR 0.688 0.3 1 0.312 0.688 0.3 1 0.312 0.688 0.3 1 0.312

NBG 0.688 0.3 1 0.312 0.688 0.3 1 0.312 0.59 1 0.26 0.41
NBK 0.804 0.91 0.72 0.196 0.83 0.92 0.76 0.17 0.893 0.91 0.88 0.107

SVM-L 0.479 0.56 0.41 0.521 0.587 0.11 0.97 0.413 0.498 0.37 0.6 0.502
SVM-Q 0.527 0.65 0.43 0.473 0.527 0.08 0.89 0.473 0.546 0.41 0.65 0.454
SVM-C 0.47 0.4 0.53 0.53 0.555 0.03 0.98 0.445 0.524 0 0.94 0.476

SVM-FG 0.688 0.3 1 0.312 0.688 0.30 1 0.312 0.688 0.3 1 0.312
SVM-MG 0.688 0.3 1 0.312 0.688 0.30 1 0.312 0.688 0.3 1 0.312
KNN-F 0.937 0.9 0.97 0.063 0.972 0.96 0.98 0.028 0.984 0.97 0.99 0.016
KNN-M 0.792 0.68 0.88 0.208 0.864 0.81 0.91 0.136 0.905 0.86 0.94 0.095

KNN-Cos 0.685 0.3 0.99 0.315 0.681 0.3 0.99 0.319 0.685 0.3 0.99 0.315
KNN-C 0.672 0.68 0.66 0.328 0.871 0.83 0.9 0.129 0.896 0.84 0.94 0.104
KNN-W 0.921 0.88 0.95 0.079 0.965 0.96 0.97 0.035 0.978 0.97 0.98 0.022
Eboost 0.918 0.89 0.94 0.082 0.864 0.74 0.96 0.136 0.555 0 1 0.445

EBT 0.688 0.3 1 0.312 0.972 0.95 0.99 0.028 0.943 0.93 0.95 0.057
ESD 0.94 0.92 0.95 0.06 0.688 0.3 1 0.312 0.681 0.3 0.99 0.319

ESKNN 0.915 0.91 0.91 0.085 0.984 0.98 0.99 0.016 0.981 0.97 0.99 0.019

Table 10. Consolidated result analysis of feature sets (S4, S5, S6) for method I with various classifiers. Bold font indicates
best results.

Classifier
S4 (12 Components) S5 (15 Components) S6 (17 Components)

Acc Sp Sen Err Acc Sp Sen Err Acc Sp Sen Err

DT 0.959 0.96 0.96 0.041 0.959 0.94 0.98 0.041 0.972 0.96 98 0.028
LD 0.581 0.3 0.99 0.419 0.662 0.3 0.95 0.338 0.691 0.32 0.99 0.309
LR 0.688 0.3 1 0.312 0.688 0.3 1 0.312 0.675 0.35 0.94 0.325

NBG 0.59 1 0.26 0.41 0.625 1 0.32 0.375 0.631 1 0.34 0.369
NBK 0.868 0.85 0.89 0.132 0.877 0.92 0.84 0.123 0.88 0.91 0.95 0.12

SVM-L 0.524 0.26 0.74 0.476 0.543 0.12 0.88 0.457 0.536 0.07 0.91 0.464
SVM-Q 0.552 0.22 0.82 0.448 0.536 0.33 0.7 0.464 0.546 0.02 0.97 0.454
SVM-C 0.524 0.8 0.88 0.476 0.517 0 0.93 0.483 0.514 0.05 0.89 0.486

SVM-FG 0.688 0.3 1 0.312 0.688 0.3 1 0.312 0.7 0.33 1 0.3
SVM-MG 0.665 0.3 1 0.335 0.688 0.3 1 0.312 0.694 0.31 1 0.306
KNN-F 0.981 0.97 0.99 0.019 0.975 0.97 0.98 0.025 0.915 0.88 0.94 0.085
KNN-M 0.918 0.85 0.97 0.082 0.912 0.85 0.96 0.088 0.659 0.7 0.63 0.341

KNN-Cos 0.688 0.3 1 0.312 0.688 0.3 1 0.312 0.685 0.3 0.99 0.315
KNN-C 0.905 0.85 0.95 0.095 0.909 0.85 0.95 0.091 0.909 0.89 0.93 0.091
KNN-W 0.981 0.98 0.98 0.019 0.975 0.97 0.98 0.025 0.978 0.97 0.98 0.022
Eboost 0.555 0 1 0.445 0.555 0 1 0.445 0.555 0 1 0.445

EBT 0.965 0.94 0.98 0.035 0.972 0.97 0.97 0.028 0.94 0.92 0.95 0.06
ESD 0.688 0.3 1 0.312 0.666 0.3 0.96 0.334 0.681 0.3 0.99 0.319

ESKNN 0.984 0.97 0.99 0.016 0.975 0.97 0.98 0.025 0.981 0.99 0.99 0.019
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Figure 11. Performance of accuracy for different feature sets in various classifiers for PuPG signal through method I.

Figure 12. Performance of sensitivity for different feature sets in various classifiers for PuPG signal through method I.

Figure 13. Performance of specificity for different feature sets in various classifiers for PuPG signal through method I.
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Figure 14 shows the classification performance results in the form of a confusion
matrix for best configurations such as ESKNN classifier with S4 (12 feature components).
The sensitivity of classification is 99%, which means that out of 700 PuPG signals of hyper-
tension, 693 were correctly predicted as hypertension data class while testing,
whereas only seven were misclassified as healthy class. The classifier achieved a 98%
specificity performance. Out of 709 healthy PuPG signal samples, 695 were accurately
predicted as healthy class, whereas the remaining 14 signals were misclassified.

(a) Confusion matrix in terms of numbers (b) Confusion matrix in terms of percentage

Figure 14. Confusion matrix for method I.

Table 11 includes the extensive experimentation results to avoid the classifier overfit-
ting. The selected configuration was tested through 5-, 10-, 15-, and 20-fold cross-validation
and 20% and 25% train-test holdout validations.

Table 11. Validation of the selected scheme of method I.

Evaluation Classes Accuracy True Positive Rate False Negative Rate

5-Fold Cross-Validation
Healthy

0.983
0.98 0.02

Hypertension 0.99 0.01

10-Fold Cross-Validation
Healthy

0.984
0.98 0.02

Hypertension 0.99 0.01

15-Fold Cross-Validation
Healthy

0.984
0.98 0.02

Hypertension 0.99 0.01

20-Fold Cross-Validation
Healthy

0.984
0.98 0.02

Hypertension 0.99 0.01

20% Hold Out Validation
Healthy

0.978
1 0

Hypertension 0.94 0.06

25% Hold Out Validation
Healthy

0.989
0.98 0.02

Hypertension 1 0

4.2. Method II

This section is primarily focused on the second method that is under discussion for
this research. It encompasses the results of the classification of the features extracted after
the preprocessing of the PuPG signal via EMD. A certain number of feature sets were
chosen that were the result of the HFSR. The feature sets comprising of 5, 7, 10, 12, 15,
and 17 transformed features were chosen and named S1, S2, S3, S4, S5, and S6, respectively.
These feature components were fed to a various number of classifiers for classification and
their performance was tested through tenfold cross-validation.
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Table 12 depicts the results obtained after the classification of the feature set
S1 (5 components), S2 (7 components), and S3 (10 components) on using a selection of vari-
ous classifiers. Table 13 shows the outcomes of various classification techniques applied on
feature sets S4 (12 components), S5 (15 components), and S6 (17 components). Analysis of
both Tables 12 and 13 show that a maximum average accuracy using the least number of
features is 99.4%. This accuracy is the result of the weighted KNN classification method
applied on the feature set S1.

Table 12. Feature analysis table (S1, S2, S3) for method II. Bold font indicates the best results.

Classifier
S1 (5 Components) S2 (7 Components) S3 (10 Components)

Acc Sp Sen Err Acc Sp Sen Err Acc Sp Sen Err

DT 0.974 0.98 0.97 0.026 0.983 0.98 0.99 0.017 0.989 0.98 0.99 0.011
LD 0.619 0.24 1 0.381 0.619 0.24 1 0.381 0.568 0.24 0.9 0.432
LR 0.679 0.97 0.39 0.321 0.679 0.97 0.39 0.321 0.679 0.97 0.39 0.321

NBG 0.619 0.24 1 0.381 0.619 0.24 1 0.381 0.268 1 0.26 0.732
NBK 0.946 0.97 0.92 0.054 0.946 0.98 0.91 0.054 0.94 0.97 0.91 0.06

SVM-L 0.48 0.49 0.47 0.52 0.497 0.59 0.41 0.503 0.523 0.52 0.53 0.477
SVM-Q 0.51 0.53 0.5 0.49 0.511 0.24 0.78 0.489 0.497 0.46 0.53 0.503
SVM-C 0.49 0.3 0.69 0.51 0.491 0.22 0.77 0.509 0.491 0.23 0.76 0.509

SVM-FG 0.668 1 0.34 0.332 0.662 1 0.32 0.338 0.665 0.99 0.34 0.335
SVM-MG 0.619 0.24 1 0.381 0.614 0.51 0.72 0.386 0.597 0.73 0.46 0.403
KNN-F 0.99 0.99 0 0.01 0.893 0.98 0.984 0.107 0.991 0.99 0.99 0.009
KNN-M 0.957 0.93 0.98 0.043 0.969 0.95 0.99 0.031 0.972 0.95 0.99 0.028

KNN-Cos 0.631 0.27 0.99 0.369 0.639 0.3 0.98 0.361 0.636 0.3 0.98 0.364
KNN-C 0.957 0.93 0.98 0.043 0.966 0.94 0.99 0.034 0.969 0.94 0.99 0.031
KNN-W 0.994 0.992 0.996 0.006 0.986 0.94 0.99 0.014 0.992 0.99 0.99 0.008
Eboost 0.489 0.39 0.59 0.511 0.489 0.39 0.59 0.511 0.489 0.39 0.59 0.511

EBT 0.98 0.97 0.99 0.02 0.986 0.98 0.99 0.014 0.986 0.98 0.99 0.014
ESD 0.619 0.24 1 0.381 0.619 0.24 1 0.381 0.571 0.24 0.9 0.429

ESKNN 0.991 0.99 0.99 0.009 0.983 0.99 0.98 0.017 0.991 0.99 0.99 0.009

Table 13. Feature analysis table (S4, S5, S6) for method II.

Classifier
S4 (12 Components) S5 (15 Components) S6 (17 Components)

Acc Sp Sen Err Acc Sp Sen Err Acc Sp Sen Err

DT 0.992 0.99 0.99 0.008 0.972 0.95 0.99 0.028 0.983 0.98 0.98 0.017
LD 0.548 0.32 0.78 0.452 0.565 0.34 0.8 0.435 0.665 1 0.33 0.335
LR 0.679 0.97 0.39 0.321 0.679 0.97 0.39 0.321 0.676 0.97 0.38 0.324

NBG 0.636 0.97 0.39 0.364 0.662 1 0.32 0.338 0.665 1 0.33 0.335
NBK 0.92 0.96 0.88 0.08 0.926 0.97 0.89 0.074 0.909 0.95 0.87 0.091

SVM-L 0.531 0.27 0.79 0.469 0.486 0.23 0.74 0.514 0.5 0.24 0.76 0.5
SVM-Q 0.503 0.19 0.82 0.497 0.469 0.15 0.79 0.531 0.514 0.15 0.88 0.486
SVM-C 0.472 0 0.94 0.528 0.472 0.1 0.85 0.528 0.486 0 0.97 0.514
SVM-F 0.662 1 0.32 0.338 0.662 1 0.32 0.338 0.696 1 0.39 0.304

SVM-MG 0.665 1 0.33 0.335 0.662 1 0.32 0.338 0.696 1 0.39 0.304
KNN-F 0.991 0.99 0.99 0.009 0.983 0.98 0.98 0.017 0.989 0.98 0.99 0.011
KNN-M 0.949 0.94 0.96 0.051 0.96 0.94 0.98 0.04 0.94 0.97 0.91 0.06

KNN-Cos 0.639 0.28 1 0.361 0.628 0.28 0.97 0.372 0.645 0.3 0.99 0.355
KNN-C 0.946 0.94 0.95 0.054 0.963 0.94 0.98 0.037 0.94 0.98 0.9 0.06
KNN-W 0.991 0.99 0.99 0.009 0.986 0.99 0.98 0.014 0.993 0.99 0.99 0.007
Eboost 0.489 0.39 0.59 0.511 0.534 0.48 0.59 0.466 0.489 0.39 0.59 0.511

EBT 0.989 0.98 0.99 0.011 0.966 0.97 0.96 0.034 0.986 0.99 0.98 0.014
ESD 0.577 0.26 0.89 0.423 0.563 0.39 0.73 0.437 0.665 1 0.33 0.335

ESKNN 0.991 0.99 0.99 0.009 0.983 0.98 0.98 0.017 0.991 0.99 0.99 0.009
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Figure 15 shows a comparison of the performance of various classifiers based on the
accuracy achieved as a result of distinguishing hypertension and normal PuPG signal.
Figure 16 depicts the comparison result of various classifiers based on their specificities
after using EMD as the preprocessing technique. Figure 17 represents the comparison
of the sensitivities of various classification methods. NBG classifier achieves the highest
specificity performance of 100% for feature sets S3 (Figure 16), but it reaches maximum
sensitivities of 26% for the same feature set (Figure 17). The sensitivity performance is
100% for several classifiers (LD, NBG, SVM-MG, ESD) for feature set S1 (Figure 17), but the
specificity performance is comparatively low.

Figure 18 illustrates the best classification performance in the form of a confusion
matrix for selected features set (S1) with KNN-W classifier. The sensitivity of classification
is more than 99%, which means only one out of 700 PuPG signals was wrong predicted
as hypertension data class, whereas the remaining 699 PuPG signals were correctly iden-
tified as hypertension. Out of 709 healthy PuPG signals, 702 were correctly predicted as
healthy, achieving specificity of 99%. The overall average classification accuracy in the best
configuration with the KNN-W classifier was 99.4%.

Figure 15. Performance of accuracy for different feature sets in various classifiers for PuPG signal through method II.

Figure 16. Performance of sensitivity for different feature sets in various classifiers for PuPG signal through method II.
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Figure 17. Performance of specificity for different feature sets in various classifiers for PuPG signal through method II.

(a) Confusion matrix in terms of percentage (b) Confusion matrix in terms of numbers

Figure 18. Confusion matrix for method II.

Table 14 includes the results of comprehensive experimentation which is performed
to avoid the classifier overfitting. The selected framework was examined through 5-, 10-,
15-, and 20-fold cross-validation and 20% and 25% train-test holdout validations. For all
experimental settings, the proposed scheme achieved more than 98% accuracy.

Table 14. Validation of the selected scheme of method II.

Evaluation Classes Accuracy True Positive Rate False Negative Rate

5 Fold Cross-Validation
Healthy

0.986
0.99 0.01

Hypertension 0.98 0.02

10 Fold Cross-Validation
Healthy

0.994
0.99 0.01

Hypertension >0.99 <0.01

15 Fold Cross-Validation
Healthy

0.994
0.99 0.01

Hypertension >0.99 <0.01

20 Fold Cross-Validation
Healthy

0.997
0.99 0.01

Hypertension 1 0

20% Hold Out Validation
Healthy

0.986
1 0

Hypertension 0.97 0.03

25% Hold Out Validation
Healthy

0.989
0.98 0.02

Hypertension 1 0
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4.3. Method I versus Method II: A Comparative Analysis

This section aims to compare both methods I and II analytically. Based on this com-
parison, we figure out the best working solution for the detection of hypertension through
PuPG signals. Method I comprises of preprocessing of PuPG signals through DWT, fol-
lowed by feature extraction. Extracted features were subjected to the HFSR scheme and
finally classified through Ensemble Subspace KNN. Method II consists of EMD-based
signal preprocessing followed by feature extraction. Features were fed to KNN-W classifier
for distinguishing normal and hypertension data classes after being reduced through the
HFSR approach.

Table 15 shows the performance comparison of methods I and II in terms of aver-
age accuracy, sensitivity, specificity, error, and number of features. Method I achieves
classification performance of 98.4% accuracy, 97% sensitivity, and 99% specificity using
12 transformed features. Method II obtains 99.4%, 99.2%, and 99.6% results of classification
accuracy, sensitivity, and specificity respectively through only five reduced features.

Table 15. Performance comparison of methods I and II.

Performance Method I Method II

Accuracy 98.40% 99.40%
Sensitivity 97.00% 99.20%
Specificity 99.00% 99.60%

Error 0.02% 0.60%
# of features 12 5

Comparative analysis of both methods establishes that method II outperforms method
I in terms of achieving better classification accuracy on a reduced number of features. This
might be due to the fact that the accuracy achieved in the case of DWT highly depends on
the proper wavelet basis selection [64]. The selection of an appropriate basis is challenging
especially for non-stationary data [65]. On the other hand, EMD is a fully data-driven,
adaptive, and basis-less transformation [66]. Moreover, the IMF selection process of
EMD based on relative energy and mean frequency has assisted the selection of useful
discriminative signal characteristics.

Figure 19 presents the finalized EHDS (expert hypertension detection system) based
on PuPG signal analysis. EHDS first takes raw PuPG signal as input and performs prepro-
cessing through EMD by rejecting the irrelevant IMFs. Next, only 24 significant features
highlighted by the hybrid selection scheme are extracted and reduced through KPCA.
The final transformed 1 × 5 feature vector is fed to KNN-W to distinguish the normal
and hypertension data classes. Figure 20 illustrates the classification performance of the
proposed EHDS as a function of the number of transformed features. It can be observed
that the proposed EHDS achieves the optimum performance on only five transformed
features. The classification performance shows no notable improvement with the increase
in the number of features.
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Figure 19. Proposed EHDS block diagram.

Figure 20. Performance of method II in terms of accuracy, sensitivity, and specificity for 1 to 24 trans-
formed features.

5. Discussion

Human blood vessels and the microcirculation system experience transformations
with the rise in blood pressure (BP); these changes are exceptionally obvious for patients
with severe hypertension. PuPG signals carry a wealth of information about the car-
diac health [25–27]. The PuPG signal reflects physical changes in blood volume pressure
in blood vessels during the cardiac cycle. The features extracted in this study indicate
the changes in Normal and Hypertension PuPG signals acquired from various subjects.
The high classification performance of EHDS reflects the association of extracted trans-
formed features with the physiological characteristics of the cardiac condition of the subject.
Thus, the proposed expert system may provide a good approximation of the presence or
absence of non-communicable diseases such as hypertension.

Table 16 presents a performance comparison of the recent studies. A diagnostic index
for the classification of low and high-risk hypertension classes attaining accuracy of 100%
was proposed by [17]. In contrast, our work is targeted towards the classification of Nor-
mal and Hypertension classes through PuPG signals. In another study, [18] developed a
computational intelligence tool based on ECG signals for the classification of normal and
hypertension. EMD was employed in the signal preprocessing stage, followed by nonlinear
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feature extraction from the decomposed IMFs. Extracted features were ranked through Stu-
dent’s t-test. The highest classification accuracy of 97.70% was obtained through the KNN
classifier with tenfold cross-validation. A photoplethysmograph (PPG) based detection of
hypertension was proposed by [19]. A total of 125 features of various types were extracted
and reduced through MRMR. The authors reported the best classification performance
with KNN-W, specifically to be 100%, 85.71%, and 92.31% for positive predictive value,
sensitivity, and F1-score, respectively.

Table 16. Comparison with previous works.

Ref. Modality Preprocessing Features Feature Reduction Classification Data Set Results

[12] PPG CWT GoogLeNet - GoogLeNet MIMIC F1 score: 92.55%

[13]
PPG and
ECG

-
PAT and
morphological
features

- KNN MIMIC F1 score: 94.84%

[14] HRV -
Standard deviation
of NN intervals

- MIL
Self-collected data set
Hypertension 24 and
Normal: 19

Accuracy: 85.47%

[15] ECG SGF Entropy features - SVM
Self-collected data set
Hypertension: 61 and
Normal: 67

Accuracy: 93.33%

[16] HRV -

Statistical, spectral,
geometrical,
wavelet, fractal,
and non-linear
features

PCA QDA
Self-collected data set
Hypertension: 41
Normal: 30

Accuracy: 85.5%

[17] ECG OWFB
Fractal dimension
and
energy features

Student’s
t-test

Diagnosis
index

PhysioNet database
High-risk
Hypertension: 17
subjects
Low-risk Hypertension:
122 subjects
Total: 139 subjects

100% between
low-risk and
high-risk classes

[18] ECG EMD Entropy features
Student’s
t-test

KNN
classifier

MIT BIH Sinus rhythm
database, SHAREE
database:
Normal: 18 signals
Hypertension: 139
signals

Accuracy: 97.70%
Sensitivity:
98.90%
Specificity:
89.10%

[19] PPG
Chebyshev
II

Time and
morphological
features

MRMR KNN-W
Hypertension: 35
Normal: 48
Total: 83

Positive
Predictive Value:
100%
Sensitivity:
85.71%
F1-score: 92.31%

[20] BCG
Morphological
features

- CAR
Self-collected data set
Hypertension: 61 and
Normal: 67

Accuracy: 84.4%

This study PuPG EMD

Time, frequency,
cepstral, fractal,
and chaotic
features

HFSR KNN-W
Self-collected data set
Hypertension: 56
Normal: 65

Accuracy: 99.7%
Sensitivity: 99.2%
Specificity: 99.4%

The current research is focused on the classification between normal and hypertension
data through PuPG signals. To the best of author’s knowledge, this is the first study that
uses the PuPG signals for discriminating among normal and hypertension with high preci-
sion. The current method achieves better performance than the existing ECG- [15,17,18],
PPG- [12,19], HRV- [14,16], and BCG-based [20] approaches. Our method also outperforms
the fusion-based method for detection of hypertension that utlized a combination of PPG
and ECG [13].

The proposed expert system could play a vital role in the early detection of hyperten-
sion in low- and middle-income countries. It is important to mention that an estimated
1.04 billion population suffered from hypertension in 2010 [67]. A non-invasive technique
based on PuPG signals analysis proposed in this research could be used for the detection
of non-communicable diseases.
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6. Conclusions

Early detection of hypertension or high blood pressure is extremely significant since
it does not cause any obvious symptoms in many people; hence, it can harm the heart,
the kidneys, and even the brain. In this study, we proposed an automated detection
system for hypertension from PuPG signals for timely and precise screening of disease.
First, PuPG signals were preprocessed through EMD, followed by feature extraction of
various types. Highly discriminative features were selected through the proposed HFSR
scheme that consisted of feature reduction and selection methods. The resultant reduced
features of dimension 1 × 5 were subjected to various classification methods. The KNN-W
classifier achieved the best performance in terms of accuracy, sensitivity, and specificity of
99.4%, 99.2%, and 99.6%, respectively. To compute the model performance and avoid over-
fitting, 5-, 10-, 15-, and 20-fold cross-validations were employed. The proposed method
was also compared with the DWT based preprocessing scheme followed by the same
feature extraction, selection (HFSR), and classification pipeline. The main advantages of
this research are as follows:

• The proposed EHDS system is based on the non-invasive methodology of
PuPG signals.

• The EHDS is reliable and less computational intensive with high accuracy.
• The EHDS avoids overfitting as it is validated through 5-, 10-, 15-, and 20-fold

cross-validation.
• The proposed approach does not only rely on morphological characteristics of the

acquired signal.
• The method can be completely automated, and it works with all qualities of PuPG

signals.

Despite the enormous advantages of the proposed method, it has a few limitations.

• The data set used in this research is yet small, with each sample with a length of 10 s.
• The procedure of initial feature extraction and selection of proper IMFs in EMD made

the overall process strenuous and time-consuming.

The proposed study conducted a comprehensive comparison of preprocessing schemes
(DWT and EMD), feature analysis, selection, and classification as illustrated in Figure 3.
The computational complexity of the proposed is significantly low due to the fact that it
operates on trained classifier models, therefore eliminating the training computational cost
(Figure 19). The proposed system has the potential to be deployed in clinical environments
and intensive care units where it can contribute to lessen the workload of medical profes-
sionals through its accurate detection and timely diagnosis. In future works, our research
group aims to increase the data set size and apply deep learning models to automate the
feature extraction process. The proposed framework is intended to be implemented on
portable embedded platforms.
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Abstract: The goal of this study was to develop and validate a hybrid brain-computer interface (BCI)
system for home automation control. Over the past decade, BCIs represent a promising possibility in the
field of medical (e.g., neuronal rehabilitation), educational, mind reading, and remote communication.
However, BCI is still difficult to use in daily life because of the challenges of the unfriendly head device,
lower classification accuracy, high cost, and complex operation. In this study, we propose a hybrid
BCI system for home automation control with two brain signals acquiring electrodes and simple
tasks, which only requires the subject to focus on the stimulus and eye blink. The stimulus is utilized
to select commands by generating steady-state visually evoked potential (SSVEP). The single eye
blinks (i.e., confirm the selection) and double eye blinks (i.e., deny and re-selection) are employed to
calibrate the SSVEP command. Besides that, the short-time Fourier transform and convolution neural
network algorithms are utilized for feature extraction and classification, respectively. The results
show that the proposed system could provide 38 control commands with a 2 s time window and
a good accuracy (i.e., 96.92%) using one bipolar electroencephalogram (EEG) channel. This work
presents a novel BCI approach for the home automation application based on SSVEP and eye blink
signals, which could be useful for the disabled. In addition, the provided strategy of this study—a
friendly channel configuration (i.e., one bipolar EEG channel), high accuracy, multiple commands,
and short response time—might also offer a reference for the other BCI controlled applications.

Keywords: hybrid brain-computer interface (BCI); home automation; electroencephalogram (EEG);
steady-state visually evoked potential (SSVEP); eye blink; short-time Fourier transform (STFT);
convolution neural network (CNN)

1. Introduction

A brain-computer interface (BCI) is a connection between a brain and a device that enables
signals from the brain to direct various external activities without the participant of the peripheral
nerve and muscles [1]. BCI is typically utilized by people with severe motor disabilities, such as
patients with amyotrophic lateral sclerosis, brainstem strokes, or other neuromuscular diseases [2–4].
People can utilize BCI-based applications to control wheelchairs, prosthetics, toys, video games,
and various computer applications. Additionally, a BCI-based home automation control system was
recently proposed based on the promising advantage in the field of artificial intelligence. In contrast to
other types of home automation systems (e.g., gesture and voice recognition), BCI-controlled home
automation systems have no limitations in terms of lighting and noise conditions [5]. Also, it essentially
allows a home automation system to be controlled based on user intentions directly.
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To avoid the surgical procedures, there are four popular non-invasive measurement
methods for acquiring the brain information: functional magnetic resonance imaging (fMRI) [6],
magnetoencephalography (MEG) [7], electroencephalogram (EEG) [8], and functional near-infrared
spectroscopy (fNIRS) [9,10]. Due to the advantage of the good temporal resolution, portable, and low
cost, EEG shows unique usability superiority for the BCI-based control system in comparison to the
other type of brain techniques (i.e., MEG, fMRI, and fNIRS) [11].

Traditionally, the EEG-based BCI system divided four various patterns, such as motor imagery
(MI), Steady-state visual evoked potential (SSVEP), P300 potentials, and slow cortical potentials.
Each category has its advantages and disadvantages [12]. One of novel literature [13] employed MI
signals to control a system based on hand grasps, which cover only a small range of commands.
Additionally, the MI model requires much training and suffers from significant accuracy problems
due to the BCI illiteracy, which is sourced from the sensorimotor rhythms [14]. One of the research
team [15] utilized eye blinks and eye movement as a control mode for a home lighting system and
determined that eye blinking is more accurate compared to eye movement, which has a margin of error
that may lead to unreliable results. In the comparison of MI and eye-blink signals, P300 and SSVEP
signals showed an excellent performance (i.e., accuracy) and fast response times, which is the reason
that most existing BCI-based home automation systems employ P300 [16–21], alpha rhythm [22,23],
and SSVEP [24–26] signals for obtaining a faster performance and more accurate control. As the
principle of P300 and SSVEP, both signals are based on external stimuli. P300 signals are excellent for
multi-stimuli recognition (more than six), whereas SSVEP signals provide superior performance when
the number of stimuli is less than six. Additionally, one reference [27] demonstrated that SSVEP signals
yield faster responses to user mental activity and are less reliant on channel selection. The current
study describes a hybrid BCI system that combines two/more than two brain techniques to control the
external device, which could make up for the disadvantages of each individual technique. A review
article [28] proved that hybrid BCI systems could provide more commands and provide the potential
to increases the classification accuracy and information transfer rates. It was also determined by
recent literature [29,30] on the hybrid BCI system, which used EEG (i.e., SSVEP and MI) and eye
blink/movement signals as the input for a speller.

Most existing BCI-based home automation systems employ multiple channels to acquire EEG
signals. However, multichannel data processing leads to considerable time consumption, and more
electrodes cause higher costs and more complex experimental setups [31]. Also, the multiple channels
configuration is the biggest challenge for daily usage, especially for disabled patients. Therefore,
the selection of the proper EEG channels and the related brain cortex is significant. For SSVEP signal
acquisition, one study [32] demonstrated that even though one can detect SSVEP signals from the scalp
from non-hair-bearing regions, the occipital region provides satisfactory SSVEP signals. Also, a review
article [33] states that the bipolar channel, based on the occipital region, can further enhance the signal
to noise ratio of SSVEP. Additionally, eye closure induces a strong alpha wave, which can be detected
via EEG or magnetoencephalography from the occipital region [34]. The above results reveal that both
SSVEP and eye blink signals could be acquired from the occipital region, which further reduces the
number of channels required for recording signals.

Among the studies published by BCI-based home automation researchers, many have been
published based on multi-channel systems with numbers of commands ranging from 2–113. A summary
of related studies is provided in Table 1. The highest accuracy of 94.17% was achieved by Goel [35]
with a response time of 5.2 s to produce two commands using four EEG channels. As we mentioned
above, two commands are not sufficient for system control in daily life. A more friendly system is
essential with a lower number of channels configuration, a high classification accuracy and multiple
control commands needs to be proposed.
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Table 1. Summary of related works on BCI-based home automation systems.

Publication Type Category Commands Channel
Evaluation Criteria

Accuracy (%) Time (s) ITR (bits/min)

Aloise et al. [17] Real P-300 16 8 90.00 4–5.6 11.19
Holzner et al. [21] Virtual P-300 13 N/A 79.35 N/A N/A
Karmali et al. [23] Virtual Alpha Rhythm 44 4 N/A 27.7 N/A
Kosmyna et al. [5] Virtual Conceptual imagery 8 16 77–81 N/A N/A

Goel et al. [35] Virtual SSVEP + Eye blink 2 4 94.17 5.2 11.6
Lin et al. [22] Virtual Alpha Rhythm 2 1 81.40 36–37 N/A

Prateek et al. [25] Virtual SSVEP 5 8 84.80 15 N/A
Perego et al. [26] Virtual SSVEP 4 N/A N/A 350 N/A

Corralejo et al. [20] Virtual P-300 113 8 75–95 10.2 20.1
Carabalona et al. [19] Real P-300 36 12 50–80 N/A N/A

Sellers et al. [18] Real P-300 72 8 83.00 N/A N/A
Our study Virtual SSVEP + Eye blink 38 1 96.92 2 146.67
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This paper proposes a hybrid BCI-based home automation system utilizing SSVEP and eye blink
signals to provide 38 commands (i.e., 6 × 6 SSVEP commands and two eye blink commands) for
controlling daily life activities through a single bipolar channel. SSVEP signals provide selection
functions, and single eye blinks provide the functionality to confirm selections. Resetting a selection
requires one to perform a simple double eye blink.

The short-time Fourier transform (STFT) is applied to extract the feature. Moreover, the classification
was conducted by a convolutional neural network (CNN). The offline/real-time results demonstrate
that the proposed system could be used in daily life for home automation control with a robust
classification accuracy and simple EEG headset structure by performing an easy task. The proposed
system provides a novel strategy for a BCI controlled system. Also, this BCI application could offer the
possibility for the disable people to utilize the home facility conveniently.

The rest of this paper is organized as follows: The materials and methodology regarding the brain
signal based home automation system are introduced in Section 2, which includes the information
of participants, device parameters, experimental protocol, and theoretical algorithm of brain signal
processing. Section 3 illustrates the results regarding the optimal channel selection, performance
comparison of different time windows, offline classification, and real-time evaluation. In Section 4,
the proposed system is compared and discussed. Conclusions are presented in the last section.

2. Materials and Methods

2.1. System Architecture and Parameters

This study describes a hybrid BCI-based home automation system utilizing SSVEP signals and
eye blinks. As shown in Figure 1, the proposed system consists of a SSVEP stimulus panel, BCI module,
and visual home automation interface. The stimulus panel (Samsung, Seoul, Korea, 21.5”, 60 Hz
refresh rate, 1920 × 1080 screen resolution) is utilized as the stimulus source. Each stimulus is a
square with a side length of 4 cm, horizontal spacing between squares of 16.5 cm, and vertical spacing
between squares of 9 cm. Six targets are presented in the BCI system with flicking frequencies of
6.6, 7.5, 8.57, 10, 11 and 12 Hz. The interface was designed in the C# platform, as shown in Figure 2,
in which the text indicators were displayed along the flickers to make corresponding control by the
user. A high-performance EEG device (Cognionics Inc., San Diego, CA, USA) was utilized to acquire
eye blinking and SSVEP signals from the O-bipolar channel (i.e., O1 and O2) with the reference of the
international 10–20 EEG system. HD-72 dry wireless EEG headset (Cognionics Inc., San Diego, CA,
USA) is a commercial high-density EEG recording device, which contains the 64 EEG electrodes plus
reference and ground. To utilize the low analog amplification and elimination of ac-coupling of the
signal path, the 24-bit ADC is applied in the headset system. Furthermore, EEG signals are referenced to
the right earlobe. The impedance of all electrodes was kept below 5 kΩ. The EEG data were amplified
and digitalized with a sampling frequency of 500 Hz and a band-pass filter in the range of 1–50 Hz.–
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Figure 1. The control structure for our hybrid BCI system.
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In this study, five healthy subjects (two females, three males, the median age of 24 years) with no
prior brain-related or health issues participated after giving informed consent. The experiments were
carried out following rules of the Declaration of Helsinki of 1975, revised in 2008. The identification
code of approval is 1041386-202003-HR-11-02, approved on 3 March 2020, by the ethic committee of
Pukyong National University. The subjects were asked to sit approximately 50 cm away from the
monitor. They were then asked to focus their eyes on one of the six stimulus targets with flicking
by the different frequencies (i.e., 6.6, 7.5, 8.57, 10, 11 and 12 Hz). EEG data were collected for 2 s for
target identification, and a pop-up window would show the identification result (e.g., “Do you want
to enter the sub-1 system?”). If the system detected a single-eye-blink signal, it meant the subject
confirmed their selection. If a double-eye-blink signal was received, the system determined that the
identified command was different from the subject’s intention. The system would then return to
the previous interface and resume gaze control for the stimulus targets. After choosing the correct
command, the participants could then further control the home automation system. A flow chart for
this process is presented in Figure 3.

–

sult (e.g., “Do you 
1 system?”). If the system detected a single

’

 

…

Figure 2. Interface for the selection menu.

2.2. Setting Up the Interface

The interface of the proposed BCI-based home automation system was set up based on a
6 × 6 categorical system. A user first chooses one of the six main categories. The categories were
designed based on the most common daily life activities, which could make life easier and more
comfortable for users. The main categories are presented in Figure 2 with six categories of daily
life control, calling, food ordering, conversation control, wheelchair control, and entertainment.
Each category is further divided into six subcategories, which contain the common tasks relevant
to each subcategory. Users can select an option by gazing at a flicker and confirm one selection
via the single eye blinking. To undo a selection, a double blink will return to the previous menu.
The interface was constructed in a C#-based visual environment. Each selection result is presented
to users through pop-up windows. During the experiment, all six stimulus buttons were displayed
simultaneously. The users were instructed to select their menu options by shifting their gaze to the
corresponding button.
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the headset on the user’s head and ensure that the scalp and electrode have 

result, EEG signals can be captured via Bluetooth communication using a PC’s serial port.

Figure 3. Control strategy for our hybrid BCI-based home automation system.

2.3. Experimental Protocol

Step 1: Setting up the headset on the user’s head and ensure that the scalp and electrode have good
contact with good signal quality. The real-time data acquisition software (Cognionics Inc., San Diego,
CA, USA) with its interaction channel between it and C# programming environment. As a result, EEG
signals can be captured via Bluetooth communication using a PC’s serial port.

Step 2: Initiate the interface for the home automation system utilizing the Microsoft visual studio.
A screen will appear on the monitor showing an interface with six main categories. To release the buffer
pool of C#, once the buffer pool of C# cached more than 500 data samples of each channel, packaged
MATLAB code was called for saving the EEG signals as the. mat file. After receiving two packages
(i.e., 1000 data points), further analysis would be performed in MATLAB for generating the commands.

Step 3: To choose one of the six main categories, the user gazes at the corresponding category block.
Each block is flickering with a different frequency (i.e., 6.6, 7.5, 8.57, 10, 11 and 12 Hz). The selected
target would be encoded by the signal acquired from the occipital cortex. The subject then blinks their
eyes to enter the subcategory menu (target block).

Step 4: A pop-up window will appear and ask the user if the window shows the correct selection.
The user blinks their eyes again to confirm or blinks twice to return to the previous menu.

Step 5: A new window will appear, displaying the common tasks relevant to the selected
category. The user can choose one term by blinking their eyes. Again, a pop-up window will appear to
confirm the selection. They are blinking the eyes once will confirm the selection. Blinking twice will
return to the previous menu.

2.4. Feature Extraction Protocol

A broad range of features has been implemented with the continuous development of BCIs to
design BCI applications, such as the amplitude of EEG signals, band power, power spectral density,
autoregressive models, and time-frequency features. In order to obtain effective output for BCI
classification, it is necessary to understand clearly which features are accessible and how they are used.
It is essential to select the relevant feature as the input for the classification [8]. As the literature [36]
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demonstrated that most brain activity patterns utilized to drive BCIs are defined by specific EEG
time point and frequency band. Therefore, the time window of EEG signals should be considered
as the important parameters during feature extraction Additionally, as the real-time analysis result
indicated [37] that the EEG control range could facilitate to discover the beginning of alpha wave
synchronization with low counts of false positives. Therefore, this study utilized the short-time Fourier
transform (STFT) to simultaneously extract the features of the SSVEP signal and the eye-blink signal,
which could contain the information in the time series and frequency band:

S( f , k) =
N−1
∑

n=0

S(n)
[

w(n− k)e−
j2π f n

N

]

. (1)

After recording the data from the selected EEG channel, the infinite pulse filter is applied with a
cutting-off frequency ranging from 5–30 Hz. 2 s EEG signals after the onset of the task was selected
for further analysis. The EEG power was determined by the STFT algorithm utilizing functions of
spectrogram (MATLAB™) over a 1 s (i.e., 500 data point) Kaiser window. The length of each step
is 1, and the overlap window length is set up as a value of 499. The detailed calculation is shown
in Equation (1), where S(n) is the original data in the time series, ƒ is the frequency, the window
function is represented by W(n), k refers to the power. All features are derived from the time windows,
and the oldest signal is eliminated from the active buffer when the new time series data reach. Then,
the extracted feature is saved for the classification step. The procedure for signal processing is presented
in Figure 4.

𝑆(𝑓, 𝑘)  =  ∑ 𝑆(𝑛) [𝑤(𝑛 − 𝑘)𝑒−𝑗2𝜋𝑓𝑛𝑁 ] 𝑁−1
𝑛 = 0 .

–

™

ƒ 

Figure 4. Procedure for signal acquisition, feature extraction, and classification.

2.5. Classification

Convolution neural networks (CNN) can be used efficiently for the identification of characters and
produce outstanding outcomes for multiple datasets [38], such as the MNIST database. A CNN model
can accommodate geometric deformation, and the receptive field/convolutional kernel can be readily
understood, and the forms of high-level features to identify are detected [39]. Therefore, numerous
studies [40–42] have employed CNNs as classifiers to identify EEG signals. Network topology is the
crucial feature in a CNN algorithm. Our Network topology is shown in Figure 4. Our network is
made up of four layers with one or more maps in each. The CNN model measures the forwarding
propagation activation by using a rectified linear unit as an activation function:
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Z(u, v) =
∑∞

i=−∞

∑∞

j=−∞
s( f , k)·N1·R(i, j) + β, (2)

R(i, j) =

{

1, j < 2, 0 < i;
0, Others;

, (3)

a(u, v) = max(z(u, v)). (4)

The normalization was performed for the extracted features with the frequency range of 5 to 30 Hz,
which maintains the important information for the identification of the different features. The matrix
of each input sample is 25 × 500. In this study, the size of the convolutional kernel (i.e., N) is 2 × 2.
The bias is β. The output (i.e., Z) of the convolutional layer is calculated, as shown in Equation (2).
Since the superiority of the fast speed of convergent, we applied the Relu function as the active function
(i.e., shown in Equation (4)):

p(u, v) = w·

∞
∑

i=−∞

∞
∑

j=−∞

a(u, v) + β. (5)

The pooling layer was used to reduce the size of the feature map. In this study, the max-pooling
was conducted, which was employed to avoid the overfitting issue. In Equation (5), the weight is W,
P represents the output of the convolutional layer. There were two fully connected layers (Layer 3
and Layer 4). This study employed the backpropagation to calculate the error term and gradient loss.
The cost function is shown in Equation (6), as the input is given by Equation (7). Here, hw,b((i)) is the
desired values, and y(i) is the output value after the four-layers propagation:

J(w, b) =
1
m

m
∑

m=1

J
(

w, b; x(i), y(i)
)

, (6)

J
(

w, b; x(i), y(i)
)

=
1
2

(

y(i) − hw,b

(

x(i)
))2

, (7)

After the calculation of each epoch, the unknown terms (i.e., w b) was updated with the negative
lag direction. The algorithm is given by Equation (8) and Equation (9), respectively. The parameter
α is the learning rate. After testing the trained CNN model, the error rate (ε = wrongly classified
samples/total samples) for the testing sample was computed. The accuracy is calculated based on the
equation: accuracy = (1 − ε) × 100%. Information transfer rate (ITR) is widely used om BCI filed [43],
and it was calculated using the equations below:

w
(l)

(i, j)
= w

(l)

(i, j)
− α

∂J

∂w
(l)

(i, j)

, (8)

b
(l)

(i, j)
= b

(l)

(i, j)
− α

∂J

∂b
(l)

(i, j)

, (9)

where P is the probability of detecting correct commands (i.e., refer to the accuracy in this study), N is
the number of the commands performed, and T (i.e., 2 s) is the time required to produce the number
of commands.

ψ =
(

Plog2P + (1− P)log2

( 1− P

N − 1

)

+ log2N
)

, (10)

ITR =
No o f commands×ψ

T
. (11)
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3. Results

3.1. Channel Selection

Applying a large number of EEG channels may result in noisy or redundant signals that degrade
BCI performance and user convenience. As demonstrated in [21], the occipital region provides the
best SSVEP signals. In this paper, we compared the performances of three occipital channels (i.e., O1,
O2, and O-bipolar) and choose the best electrode for online testing. The subjects were asked to sit in
front of the screen and execute each command in turn. To reduce the error caused by changes in the
environment, we compared the data acquired from the same subjects and time windows. Each channel
recorded 800 trials (i.e., five subjects × eight tasks × 20 trials) and then utilized the CNN algorithm
for training the model (i.e., 80% × 800 = 640 samples). The results after the testing (i.e., 20% × 800 =
160 samples), as shown in Figure 5, reveal that the O-bipolar channel provides the best performance
(average accuracy of 96.92%) for all the subjects among the three channels. And the performance of O1
and O2 are no significant differences.

𝜓 =  ( 𝑃𝑙𝑜𝑔2𝑃 + (1 − 𝑃)𝑙𝑜𝑔2 (1 − 𝑃𝑁 − 1) + 𝑙𝑜𝑔2𝑁 ) ,
𝐼𝑇𝑅 =   𝑁𝑜 𝑜𝑓 𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑠 ×  𝜓𝑇  .

 

Figure 5. Performance comparison between different channels.

3.2. Time Window Selection

To calibrate the tradeoff between performance and time window duration, we trained the CNN
models utilizing four different time-windows (1, 2, 3 and 4 s). The subjects were then asked to execute
tasks based on cues on the screen. We created different segmentations for each of the time windows.
Each time window contained 800 samples as input data. As shown in Figure 6, the 2 s time window
provided good accuracy at 96.92%. Moreover, the 3 s and 4 s windows provided better performance by
97.28% and 98.51%, respectively. Considering the importance of time windows for the control system,
the 2 s window is the selected for our system, since the 2 s time window could achieve the satisfied
classification results. The classification performance (i.e., accuracy and loss) of different time windows
are shown in Figure 7.

 

–
–

–

Figure 6. Performance comparison between different time windows.
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Figure 7. Performance results for different time windows, the accuracy results for the 1 s, 2 s, 3 s, and 4 s
time windows are shown in (a–d), respectively. The corresponding training losses are shown in (e–h).

3.3. Feature Extraction

As shown in Figure 8, the extracted features were calculated by the STFT in the time (i.e., 2 s) and
frequency domain. Totally, 800 feature maps (i.e., five subjects × eight tasks × 20 trials) were obtained
from five subjects. Since the SSVEP frequency in subcategory interfaces are consistent with the main
interface flickers, only six SSVEP features and two eye blinking features were extracted to train the
model. In other words, once the selected feature was trained in the CNN model, the CNN model
would recognize a similar pattern either during the selection in the subcategory interface or the main
category interface.

In Figure 8, the power bar is shown on the right side. The feature of single eye blink present in
Figure 8a; two power peaks were observed when the subjects performed double eye blink tasks, as shown
in Figure 8b. The powerband for the SSVEP tasks with specific frequency are shown in Figure 8c–h,
respectively, which refer to the brain features caused by gazing the different frequency flickering.

’

Figure 8. STFT features for (a) single eye blink, (b) double eye blink, (c) SSVEP at 6.6 Hz, (d) SSVEP at
7.5 Hz, (e) SSVEP at 8.57 Hz, (f) SSVEP at 10 Hz, (g) SSVEP at 11 Hz, and (h) SSVEP at 12 Hz.

3.4. Real-Time Evaluation

In the online section, each subject performs eight trials to test the proposed system. Each trial
includes a selection from the main interface, confirmation via eye blinking, selecting a command
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from the subcategory interface, and confirmation of the second command in sequence. The targeted
selection from 36 control commands was decided by the willingness of each participant. The results
for three subjects in the online evaluation experiments are listed in Table 2. As shown in Table 2,
the mean eye-blink time for a single blink was 1.3163 s, with the fastest time for a single blink recorded
for subject S1. The shortest time for sending a control command was 1.2 s and the longest time was
1.425 s. For a double blink, the longest time was 1.652 s, and the shortest time was 1.576 s, with a mean
value of 1.608 s for sending control commands. In addition, the correct identified command of the
single eye blink case was 47/48. In the double blink case, the five commands were detected correctly.
In comparison with the eye blink, the SSVEP shows the lower ability (43/48) for identification.

Table 2. Real-time results for three subjects controlling the virtual home automation system.

Subjects
Correct Command Response Time

Neye-blink Ndouble-blink NSSVEP Teye-blink (s) Tdouble-blink (s) TSSVEP (s)

S1 16/16 1/2 14/16 1.25 1.652 1.754
S2 15/16 2/2 15/16 1.425 1.576 1.953
S3 16/16 2/2 14/16 1.274 1.597 1.731

Total 47/48 5/6 43/48 1.316 1.608 1.813
Std. 0.036 0.289 0.036 0.095 0.039 0.122

N: Number; T: Time; Std: Standard Deviation.

4. Discussion

In this study, we designed a control mechanism for a BCI-based home automation system.
The proposed system can identify 38 commands (i.e., 36 control commands and two calibration
commands) utilizing single eye blinks, double eye blinks, and SSVEP signals recorded from a single
bipolar channel with a classification accuracy of 96.92%. As the best of the authors’ knowledge, this is
the first study that utilizes only one bipolar EEG channel for a home automation control BCI system
with good accuracy within a short time window. The proposed system could provide a novel way for
physical disordered people to control external devices by gazing and eye blinks. It offers a possibility
to conduct daily routine tasks using brain signals directly without any physical movement.

In comparison with the previous relevant research [29,30,44–47] (listed in Table 3), instead of using
the eye-tracking to detect the eye movement, this study applied the eye blinking to be a trigger in this
control system. In the eye-tracking system, the extra device is required to monitor the eye movement.
As demonstrated in the hybrid eye-tracking and SSVEP system [30], the participants need to wear
the extra video eye-tracking system, for which the threshold of velocity, acceleration, and minimum
deflection was 30◦/s, 8000◦/s2, and 0.1◦, respectively. Since the eyeblink and the SSVEP signal can
be acquired from the EEG device with the same channel, the unfriendly hardware burden and extra
cost of the hybrid device (e.g., EEG and eye-tracking device) will be reduced. With the development
of the eye-tracking, the pure eye-tracking system is going to be an alternative technique of the BCI.
However, one reference reported that the EEG-based system is easiest to use, also, the SSVEP-based
system shows better performance than the eye-tracking system [48].

Table 3. Related works regarding the hybrid EEG and eye blink BCI system.

Study Type Category Commands Channel
Accuracy

(%)
Time

(s)
ITR

(bits/min)

Wang et al. [44] Real P-300 + Eye blink +MI 8 17 91.25 4 N/A
Wang et al. [45] Virtual SSVEP + Eye blink 12 4 40–100 0–20 N/A
Park et al. [46] Virtual SSVEP + AR + Eye blink 16 32 92.8 20 37.4
Duan et al. [47] Real MI + SSVEP + Eye blink 6 12 86.5 48 1.69
Malik et al. [30] Virtual SSVEP + Eye tracking 48 8 90.35 1 184.06

He et al. [29] Virtual MI + Eye blink N/A 32 96.02 6.16 45.97
Our study Virtual SSVEP + Eye blink 38 1 96.92 2 146.67

119



Sensors 2020, 20, 5474

Five subjects participated in an offline training experiment to evaluate the performance of
different channels and time windows. The results demonstrate that the O-bipolar channel provides
better performance compared to channels O1 and O2, as shown in Figure 5. Based on our results,
we concluded that utilizing the O-bipolar channel significantly reduces the interference of noise.
Response time plays a vital role in real-time systems. Therefore, four different time windows for data
partitioning are utilized for the evaluation in this study. Figure 7 presents a comparison performance
(i.e., classification accuracy and loss) between the different time windows. The 4 s time windows offer
the best performance in terms of accuracy (i.e., 98.51%), as more information is included for the longer
time window in comparison to the short time windows. This finding is consistent with the pioneer
study [45], which could achieve 100% by conducting the task with a 20 s time window. With the
development of deep learning, an improved classification may be achieved by utilizing the hybrid
modality (i.e., EEG and fNIRS) [49,50] advanced machine learning algorithms, such as long-short team
memory [51] and deep neural network [52]. In addition, in this study, we applied red squares with
the text indicators to guide the participants to select the corresponding control commands. A more
intuitive display method might provide a more friendly interface (e.g., pictures, or different color
squares, or various shapes) for the user and we will consider this in our future work.

For the time windows selection, we applied four different time windows (i.e., 1, 2, 3, and 4 s) to
assess their performance. As shown in Figure 6, the time window of 4 s could achieve the highest
accuracy compared with the other time windows (e.g., 1, 2, and 3 s). However, to reduce the time
consumed of this proposed control system, we choose 2 s as the time window to obtain a satisfactory
result (i.e., 96.26%). In the online experiment, three subjects were recruited to control the proposed
system in real-time. Each participant performed eight trials, which were conducted in sequence:
(i) selection in the main interface, (ii) calibration via eye blinking, (iii) selection from the subcategory
interface, and (iv) calibration for the second selection. Before the experiment, the participants were
informed to select all the flickers in the main interface. The decision of selection in each subcategory
interface was made by the subjects randomly. Thus, part of the commands from the 36 functions was
evaluated. As shown in Table 2, the initial investigation results indicated the feasibility of the proposed
system. In future work, we will develop our own simplified device (i.e., two electrodes) and examine
the real-time system with a total of 36 functions.

Although the offline and real-time virtual results showed good performance (i.e., single bipolar
channel, good accuracy, and short time window) for the proposed home automation control system,
some limitations need to be mentioned. First, the system is simulated in the virtual environment.
The real home automation application results may lead to less accuracy due to the lousy human
mental state (e.g., distracted and motor artifact, etc.) and the signal transmission problem between
the home automation application and the EEG device. Secondly, eye blink is typically considered an
undesirable electrical potential. With the advantage of high amplitude and analytic features, voluntary
eye blinks are widely employed as an input or control command in BCI areas. Therefore, one needs to
pay attention during the analysis to noise reduction. Also, the control of the eye blink should follow
the cue while performing the task. In addition, the idle state/resting state was not considered for
state identification. Non-detection of the idle state may lead to misclassification during long duration
experiments. For a future study it was suggested to add an extra idle state detection to avoid this
issue. Lastly, the objective of this study was to investigate the feasibility of home automation control
application with a single bipolar channel by using the hybrid SSVEP and eye blink signals. In this
pilot study, only a few participants were considered (i.e., a total of 800 trials was conducted to increase
the dataset of the CNN classification subjects to assess the repeatability and stability). In future work,
more participants need to be investigated for comprehensive analysis in a real-time environment.

5. Conclusions

This study proposed a hybrid BCI-based home automation system utilizing SSVEP and eye-blink
signals with a single bipolar channel for multiple comment control (i.e., 38 commands). SSVEP signals
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are utilized to select desired commands, and eye-blink signals are utilized to calibrate command
selections. Both signals are obtained from the same bipolar channel and classified by the same CNN
model. Our experiments included two modules for processing and analyzing EEG signals. An offline
module was employed to assess general model performance (e.g., channel selection, time window
selection, feature extraction, and CNN model training). Five subjects participated in offline experiments.
The results demonstrated that 38 daily task commands could be identified with an accuracy of 96.92%
based on a 2 s time-window using the signal acquired from the O-bipolar channel. Three subjects
participated in a real-time experiment, and the results demonstrated that changes in brain intentions
could automatically control the proposed system. As the best knowledge of the authors, this is
the first work to utilize the combination of SSVEP and eye-blinks to perform home automation
control. This study demonstrated that it is possible to achieve multidimensional control with good
performance using SSVEP and eye blink signals from only one single bipolar channel. Also, the proposed
system could be applied to home automation control system, which could be a helpful assistant for
disabled/healthy people.
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Abstract: The development of fast and robust brain–computer interface (BCI) systems requires
non-complex and efficient computational tools. The modern procedures adopted for this purpose are
complex which limits their use in practical applications. In this study, for the first time, and to the
best of our knowledge, a successive decomposition index (SDI)-based feature extraction approach
is utilized for the classification of motor and mental imagery electroencephalography (EEG) tasks.
First of all, the public datasets IVa, IVb, and V from BCI competition III were denoised using multiscale
principal analysis (MSPCA), and then a SDI feature was calculated corresponding to each trial of
the data. Finally, six benchmark machine learning and neural network classifiers were used to
evaluate the performance of the proposed method. All the experiments were performed for motor
and mental imagery datasets in binary and multiclass applications using a 10-fold cross-validation
method. Furthermore, computerized automatic detection of motor and mental imagery using SDI
(CADMMI-SDI) is developed to describe the proposed approach practically. The experimental
results suggest that the highest classification accuracy of 97.46% (Dataset IVa), 99.52% (Dataset IVb),
and 99.33% (Dataset V) was obtained using feedforward neural network classifier. Moreover, a series
of experiments, namely, statistical analysis, channels variation, classifier parameters variation,
processed and unprocessed data, and computational complexity, were performed and it was
concluded that SDI is robust for noise, and a non-complex and efficient biomarker for the development
of fast and accurate motor and mental imagery BCI systems.

Keywords: electroencephalography; Brain-Computer Interface; multiscale principal component analysis;
successive decomposition index; motor imagery; mental imagery; neurorehabilitation; classification

1. Introduction

With the rampant growth in automated systems, computer-aided physical systems, and artificial
intelligence, brain–computer interface (BCI) has gained significant attention from researchers as it can
bind a human mind to the computer and operate complex physical applications. The healthcare realm
has been overwhelmed by the development of computer-aided brain devices, namely, prosthetic arms,
brain-controlled wheelchairs, mind-controlled home automation, etc., for physically impaired
people [1–7]. The fundamental source of BCI is the low-key signal generated on the surface
of the human scalp as a result of neural activity and it acts as a watershed for the plethora of
brain-controlled applications.

The common practices involved to retrieve such signals are invasive and noninvasive methods.
Invasive methods, as the name implies, record signals from the inside of the human brain which
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results in artifact-free data. On the other hand, noninvasive techniques accumulate noise artifacts that
degrade the performance of BCI systems. Electroencephalography (EEG) is the commonly employed
technology for the development of practical BCI systems.

Motor and mental imagery are subdomains in BCI which deal with the simulation of motor and
mental activities in the brain without performing any activity in real. The inherent nature of motor and
mental imagery suggests an economical, noninvasive, portable, and high temporal resolution mode of
acquiring signals and the best choice is electroencephalography (EEG) [3,8]. After acquiring the signal,
the subsequent process is to correctly wring out useful information from it [9,10].

The analysis of any signal processing problem comprises at least three basic procedures:
preprocessing (data preparation and artifacts removing), feature extraction (identifies the most
significant characteristics in signals), and classification (segregating classes between features).
As noninvasive mode of signal acquisition heavily accumulates noise artifacts and it is crucial to filter
out alienated signals without disturbing the original content. Recent studies proposed independent
component analysis (ICA) [11], principal component analysis, and canonical correlation analysis [12]
for the noise removal of EEG signals; however, these methods are not very effective for the analysis of
non-stationary signals [12]. Another hybrid algorithm namely multiscale principal component analysis
(MSPCA) is recently proposed and studies [13,14] revealed its robustness in denoising non-stationary
and nonlinear signals.

After preprocessing the data, the subsequent steps are features estimation and classification [15].
In EEG signal processing, some widely adopted feature extraction methods are categorized as
Fourier transform (FT) [16], power spectral density (PSD) [17], common spatial patterns (CSP) [18,19],
autoregressive (AR) [20,21], sparse representation, and signal decomposition (SD) [22–24] based
methods. All of these methods have their associated demerits and complications, for example,
FT-based features only preserve the spectral resolution of the signal and completely loses the temporal
information, PSD-based methods are susceptible to electrodes locality, AR-based techniques are
sensitive to noise content, etc.

Chattarjee et al. [25] does a comparative analysis for a different time, energy, entropy, and statistical
features using a different machine and deep learning classifiers for EEG signals. The maximum
classification outcome of 85% was observed for energy and entropy-based features using the support
vector machine (SVM) classifier. Wang et al. [26] amalgamates empirical mode decomposition (EMD)
with Hilbert spectral analysis for motor imagery EEG signals and backpropagation neural network
for classification purposes. The maximum recorded accuracy was 93.8%. Gupta et al. [17] extracted
PSD features for EEG signals and did a comparative analysis for different univariate and multivariate
features selection methods using different classifiers. A maximum classification accuracy of 85% was
obtained for the combination of the Burg and linear regression features selection method using the
linear discriminant analysis classifier.

Jasmine et al. [22] presents a comparative analysis for three signal decomposition techniques,
i.e., EMD, discrete wavelet transform, and wavelet packet decomposition (WPD), using motor imagery
EEG datasets. The highest accuracy of 92.8% was attained for higher-order statistical features extracted
from WPD using K-nearest neighbors classifier. Chaudhary et al. [27] combines the non-dyadic wavelet
decomposition method and CSP features extraction method for the classification of motor imagery
EEG signals. Maximum classification accuracy of 85.6% was obtained for decision tree classifier.
Jiacan et al. [28] presents a deep multi-view feature learning process for the classification of motor
imagery EEG tasks. First, many multidomain features (time, frequency, time-frequency, and spatial)
were extracted, and then a restricted Boltzmann machine network improved by t-distributed stochastic
neighbor embedding (t-SNE) is employed for features learning. An average classification accuracy of
78.5% was obtained using the SVM classifier. Chen et al. [29] develops an NAO robot walking control
system based on motor imagery by utilizing CSP and local characteristic scale decomposition (LCD).
The experimental results yielded a classification accuracy of 87.5%.
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Our study [23] proposed an instantaneous amplitude and instantaneous frequency
component-based features. First, the empirical wavelet transform (EWT) was employed to decompose
an EEG signal into representative modes, then the Welch PSD method was adopted for modes selection.
The last step was to calculate the instantaneous components of each selected mode and classify the
features with seven machine learning classifiers. The maximum accuracy achieved was 95.2% for the
proposed mechanism. Our second study [24] on motor imagery EEG proposed a multivariate empirical
wavelet transform (MEWT) for signal decomposition. By selecting features with correlation-based
method and classifying them with three benchmark classifiers, we obtained 98% classification outcomes
for the least square version of SVM classifier. All the methods discussed above, either utilized complex
signal decomposition methods in combination with features selection methods or used complex
features extraction methods, which are both impractical for the realization of functional BCI system.
Raghu et al. [30] proposed the successive decomposition index (SDI) method for the classification of
epileptic seizures. The classification outcomes suggested that SDI is a successful feature extraction
method for epileptic seizures and it can be extended to other EEG domains.

Many different studies have built graphical user interface (GUI) systems for the visual
implementation of their proposed approaches. EPILAB GUI was developed by Teixeirra et al. [31] for
the analysis and classification of epileptic seizures. EEGLAB developed by Delorme et al. [32] presented
an ICA-based EEG signal denoising method, time-frequency analysis, and visual representation of EEG
signals. Moreover, Oostenveld et al. [33] reviews a MATLAB open source toolbox named FieldTrip,
which does the time-frequency analysis, non-parametrical statistical tests, and reconstruction using
dipoles and distributed sources of EEG and magnetoencephalography (MEG) signals. Each of these
methods analyzes multidomain EEG signals, but a specialized GUI for motor and mental imagery
is lagging.

For the robust, efficient, and non-complex analysis and classification of motor and mental imagery
EEG signals, this article for the first time to the best of our knowledge and understanding, makes use
of successive decomposition index (SDI) for feature extraction. This research attests the performance
of SDI feature using six benchmark machine learning and neural network classifiers and different case
studies confirms the effectiveness of proposed method. The main contributions of this study are listed
as follows:

1. Successive decomposition index is proposed for the decoding of different motor and mental
imagery activities in development of the BCI system.

2. Statistical analysis and novel performance evaluation criteria named polygon area metrics (PAM)
are performed to confirm the efficacy of the SDI feature as a biomarker.

3. Four different channel selection schemes are employed to validate the performance of SDI features
corresponding to the number of channels.

4. Classifier parameters are varied to investigate its fallouts on the proposed method.
5. A comparison was undertaken for denoised and noisy data to confirm the robustness of SDI

features against noise artifacts.
6. Validate the performance of the proposed approach for multiclass mental imagery data.
7. Developed a computerized automatic detection of motor and mental imagery-successive

decomposition index (CADMMI-SDI) application for the visual and practical implementation of
SDI features.

The rest of paper is organized as follows. Sections 2 and 3 deal with the datasets and the
description of methods employed during the study, Section 4 describes the performance measures,
Section 5 presents experimental set-up, Section 6 provides the results and discussion of the experimental
outcomes, and, finally, Section 7 summarizes the study.

2. Materials

This study makes use of three motor and mental imagery publicly available datasets: IVa, IVb,
and V from BCI competition III. Dataset IVa is a motor imagery dataset with two tasks right hand
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(RH) (Class 1) and right foot (RF) (Class 2). Five normal subjects or participants (“aa”, “al”, “av”,
“aw”, and “ay”) participated for the collection of datasets. The global 10-20 system was used for the
placement of 118 electrodes on the scalp. All the participants were shown a visual sign for 3.5 s and a
total number of 280 trials (140 trials for each class) were recorded for an individual participant and the
data were sampled at 1000 Hz. Similarly, dataset IVb is another single participant binary class motor
imagery dataset with tasks left hand (LH) (Class 1) and right foot (RF) (Class 2). The data acquisition
parameters for dataset IVb are similar to dataset IVa. Dataset V is a data collection of 3 individuals with
imaginative roles of LH movement, RH movement, and random word (RW) production. These tasks
are named as Class 1, Class 2, and Class 3, respectively. Data was collected in three cycles from
3 individuals with 32 electrodes and sampling frequency of 512 Hz. Further information for data sets
is presented online at http://www.bbci.de/competition/iii/.

3. Methods

The study proposed a SDI-based framework for automated classification of two and
multi-category motor and mental imagery EEG tasks in the development of computer-aided BCI
systems. Figure 1 shows a clear presentation of the proposed strategy. First, the MSPCA process is used
to separate noise from the raw EEG signal. Afterward, SDI is employed, that is, an inspirational case
of discrete wavelet transform where a time series is pass through n levels of low-pass and high-pass
filters and the coefficient at each step is used as a feature, and at last the extracted features are used as
the inputs to the several machine leaning and neural network classifiers. Moreover, this study built
up a layout for the realistic implementation of proposed platform for identifying motor and mental
imagery EEG signals known as computerized automated detection of motor and mental imagery
successive decomposition index (CADMMI-SDI). The subsequent subsections describe the details of
the proposed automated framework.

Figure 1. Block diagram of the successive decomposition index for identification of motor and mental
imagery activities.

3.1. Module 1: MSPCA Denoising

EEG is a noninvasive method of signal retrieval from the subject that inherits different types
of noise artifacts, i.e., systematic noise, blink signal noise, cardiac signals noise, thermal noise, etc.
A mathematical model of the crude form signal can be described as follows [34],

X = XEEG + XN (1)

where XEEG is the desired EEG signal and XN is the supplemental noise artifact added to the original
signal. The objective is to model a system that can effectively remove noise from the raw signal without
influencing the content of XEEG. Principal Component Analysis (PCA) is conventionally adopted for
determining the linear relationship between correlated data points. Furthermore, the nonlinear
and non-stationary nature of the EEG signal demands a time-frequency resolution. Therefore,
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wavelet transform is commonly adopted and its significance is widely tested for non-stationary
and nonlinear signals. A hybrid signal denoising algorithm called multiscale principal component
analysis (MSPCA) is formulated by combining the properties of PCA and wavelet transform [24].
The workflow of MSPCA is given in Figure 2. We can define the procedure as follows.

1. Take a matrix A with dimensions n × m, where n is the length of each signal and m is the number
of channels. Decompose each channel into B levels using wavelet transform.

2. Formulate a detailed matrix Aj A and approximation matrix Xi A, and calculate PCA for all B

decompositions and m channels. As the Kaiser rule suggests, select principal components with
eigenvalues greater than the mean of collective eigenvalues.

3. Compute the inverse wavelet transform of the selected principal components.
4. A denoised signals matrix can be obtained by taking the PCA of the results obtained in step 3.

Figure 2. Multiscale principal component analysis (MSPCA) for denoising.

3.2. Module 2: Successive Decomposition Index Based Feature Extraction

In the past, a large number of studies [22,24,35,36] investigated the effectiveness of wavelet and
signal decomposition-based methods for motor and mental imagery EEG signals using different mother
wavelets and decomposition levels. The drawbacks of such methods are the selection of suitable mother
wavelets and the number of decomposition levels which requires a thorough investigation in terms
of classification outcomes and time complexity. The basic requirements of a practical BCI system are
robustness, non-complexity and efficiency that are lagging in current researches. To overcome the
aforementioned limitations a successive decomposition index (SDI) method is employed.

The proposed SDI method is an inspiration of discrete wavelet transform (DWT). In the first
level of DWT, a time signal of length n is passed through a low and high pass filter. In the next level,
the output of low pass filter is again passed through a high and low pass filter and this process is
iterated for a specific number of decomposition levels. Finally, the coefficients from each decomposition
level are used to extract features. The basic difference between DWT and SDI is that the former has to
have a predefined number of decomposition levels whether the later has no predefined decomposition
levels and the coefficient from the last level is considered for further analysis. The mathematical
formulation of the SDI feature is described in following steps [30].

1. Consider an EEG signal s = {s1, s2, s3, . . . . . . . . . ., sn}, where n is the length of the signal. The first
step is to compute the average of absolute values (S+ ) of the EEG signal is as follows.

S+ =
1
n

n

∑
i=1

|si| (2)
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2. The next step is to compute the average difference (S−) of the signal and it can be calculated by
the successive difference mean of non-overlapping pairs of time signal. It can mathematically
represented as follows,

s(1) =

{

s1 − s2

2
,

s3 − s4

2
. . . . . . ,

sn−3 − sn−2

2
,

sn−1 − sn

2

}

(3)

where the length of s(1) is n/2. Similarly, s(2) can be calculated as

s(2) =







s
(1)
1 − s

(1)
2

2
,

s
(1)
3 − s

(1)
4

2
. . . . . . ,

s
(1)
n/2−3 − s

(1)
n/2−2

2
,

s
(1)
n/2−1 − s

(1)
n/2

2







(4)

The process of calculating s(k) (where k is the number of iterations) continues until we get a
single coefficient and that final coefficient is the average difference term S−. The number of
iterations required to calculate S− can be determined as k = 3.33log10(n) and the total number
of coefficients at each step are n/2k. The next step is to calculate two new terms S++ and S−−

as follows.

S++ =
S+ + S−

2
(5)

S−− =
S+ − S−

2
(6)

The terms S++ and S−− gives the relation between S+ and S−. In addition, a square matrix Z is
formed from the four coefficients as follows.

Z =

[

S+ S−−

S− S++

]

(7)

3. The final step is to calculate the determinant of matrix Z multiplied by a scalar n/k followed
by log10.

SDI = log10

(n

k

(

S+S++ − S−S−−
)

)

(8)

The resultant SDI is a single value bio marker for an EEG signal of length n. The significance
of SDI is that it measures the variations of EEG signal successively with respect of time and packs it
into a single representative value. In addition, unlike other wavelet and signal decomposition-based
methods, there is no need to select a suitable mother wavelet and define the number of decomposition
levels rather the process of calculating SDI is linear and non-complex, which makes it a suitable choice
for the development of practical motor and mental imagery BCI systems.

3.3. Module 3: Classification

To segregate the motor and metal imagery tasks, we have utilized six widely used machine
learning and neural network classifiers. Their description and parameters of classifiers utilized in this
study are discussed as follows.

3.3.1. Support Vector Machine

A support vector machine (SVM) is a supervised learning classifier that formulates a hyperplane
to maximize the separability between two classes. For nonlinear feature sets, different kernel functions
are utilized to transform it into a linear problem at the cost of augmented dimensionality. The selection
of SVM in this study is based on its robustness and reliability for motor imagery tasks discussed
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in [37,38]. In this study, we have utilized the radial basis function, linear function, and polynomial
function as kernels and the default MATLAB toolbox hyperparameters were availed for each kernel.

3.3.2. Discriminant Analysis

Discriminative analysis (DA) is a supervised learning algorithm that formulates a predictive
model during the learning phase that can be applied to test data for labeling them. DA can use
lines, planes, and hyperplanes to segregate the normally distributed samples and thus it can classify
multidimensional data robustly. To build a DA model, we have to compute the class probability, mean,
and covariance matrix along with a suitable kernel function. In this study, we have utilized three
kernels: linear, pseudo-linear, and pseudo-quadratic. The effectiveness of DA for motor imagery tasks
has been accredited in [39,40].

3.3.3. Multilayer Perceptron with One Hidden Layers

A multilayer perceptron with single hidden layer (ANN) is the building block of deep learning
classifiers and is robust in approximating linear, nonlinear functions and pattern recognition effectively.
ANN has a three-layered structure consisting of input, hidden, and output layers. The number of input
nodes is same as the number of features while the number of output nodes is equal to the number of
classes. The number of hidden nodes is variable and depends primarily on classification outcomes.
ANN propagates the input signal from first to last layer and the backpropagation algorithm tunes the
hyperparameters of the network during training phase. The studies [41,42] attests the robustness of
ANN for motor imagery EEG.

3.3.4. Multilayer Perceptron with Two Hidden Layers

A multilayer perceptron with two hidden layers (MNN) is an extension of ANN. The basic
difference between both algorithms is that MNN has 2 to M hidden layers depending upon the
classification results while ANN has only one hidden layer. The advantage of using MNN is that it has
more parameters and hence it has an extra degree of freedom to approximate a nonlinear function
or recognize a pattern. The disadvantage is that, because of the large number of hyperparameters,
the training and testing time exceeds ANN and hence there is a trade-off between computational time
and classification outcomes.

3.3.5. Cascade Feedforward Neural Network

The architecture of cascade feedforward neural network (CFNN) resembles ANN. The core
difference between both classifiers is that CFNN has a connection from the output layer to the input
layer that ANN lags in its structure. This extra connection gives CFNN the ability to memorize
previous inputs and their outcomes and thus it is essential in learning sequential data. The authors
of [43] utilized CFNN for the classification of motor imagery tasks.

3.3.6. Feed-Forward Neural Network

Throughout the feed-forward neural network (FFNN), a multilayered structure is used with each
layer containing variable number of neurons. The signal is propagated from input to output across the
network and an error is computed using a cost function. This error is then repropagated across the
network and each parameter is tuned. In our research, tan sigmoid was used as an activation feature.
The Levenberg–Marquardt algorithm was used for fast learning [43].

There is no structural difference between ANN and FFNN. In the present study, we utilized
two different MATLAB functions named “patternenet()” for ANN and “feedforwardnet()” for FFNN.
The basic difference between these two functions is that ANN uses “glorot” weights and biases
initializer while FFNN uses “orthogonal” initializer. The “glorot” initializer takes random samples
from a normal distribution where mean is zero and variance is 2/(size of inputs + size of outputs),
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while the orthogonal initializer takes a matrix from a unit uniform distribution and initializes the
weights and biases with Q obtained from a QR decomposition [44,45].

4. Performance Parameters

This study utilizes a 10-fold cross-validation method to fairly evaluate the classification results.
For this purpose, the feature matrix containing Class 1 and Class 2 features is divided into 10 equal
parts, out of that 9 parts were used for training purposes and 1 part was used for validation.
In this way, each trial of the feature set is being trained upon as well as validated. To evaluate the
classification outcomes, we made use of 10-fold cross-validation method with different performance
metrics, namely, classification accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Kappa, and F1-Score.
Their mathematical expressions are given respectively as follows,

Acc =
TP + TN

TP + TN + FP + FN
(9)

Sen =
TP

TP + FN
(10)

Spe =
TN

TN + FP
(11)

Kappa =
TP × TN − FP × FN

√

((TP + FP)(TP + FN)(TN + FP)(TN + FN))
(12)

F1−Score = 2 ×
Prec × Sen

Prec + Sen
(13)

where TP (True positive) is the amount of adequately identify Class 1 labels, TN (True negative) is
the amount of adequately identify Class 2 labels, FP (False positive) is the number of inadequately
classified Class 1 labels. and FN (False negative) is the number of inadequately identified Class 2 labels.

Apart from the above mentioned five performance parameters, we utilized a novel performance
evaluation criteria named polygon area metrics (PAM) [46] for the very first time for motor and mental
imagery EEG classification evaluation. The PAM constructs a hexagon with six performance parameters
(F measure, Jaccard Index, Classification accuracy, Area under the curve, Sensitivity and Specificity) on
each edge. The performance in this case is evaluated by the area of the polygon. The greater the area
occupied by the polygon, the better the performance of the classifier and vice versa.

5. Experimental Setup

All experiments and simulations in this study were performed using MATLAB R2019b on an
Intel(R) Core (TM) M-5Y10c CPU @0.80GHz cpu, Windows 10 64-bit operating system, and 8 GB RAM
with WEKA 3.8.4.

Numerous studies have been performed in the past for effectively classifying motor and mental
imagery tasks as detailed in Section 1. Most of them utilized complex signal processing techniques
that make those unfeasible for the practical implementation and it also gets difficult for physicians to
understand complex signal processing tools without having a piece of proper knowledge about the
field. To cope up with such challenges, we have utilized a single non-complex feature that uses iterative
signal decomposition coefficients to construct a representative feature with the least computational
complexity and effective classification results.

Figure 1 shows the block diagram of the proposed methodology. At first, the raw data is passed
through an MSPCA filter that suppresses the noise content from the signals. Then the data is divided
into individual trials. In the case of dataset IVa and IVb, the single trial dimension is 400 × 118,
where 400 is the signal length and 118 is the number of channels. For dataset V, the single-trial
dimension is 512 × 32, where 512 is the signal length and 32 is the number of channels. Next, each trial
is given to an SDI computational function which calculates features for that trial. In the case of dataset
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IVa and IVb, we get 118 features for a single trial while for dataset V, we get 32 features for a single
trial. In this way, a features matrix is formed with dimensions n × m, where n is the number of trials
and m is the number of features (indirectly the number of channels) per trial. Last, the feature matrices
of various classes are given to six benchmark classifiers to evaluate the performance of SDI features in
estimating motor and mental imagery tasks.

6. Results and Discussion

6.1. Statistical Analysis

To analyze how the SDI feature segregates motor imagery tasks, we have performed a statistical
analysis in this section. Figure 3 presents the SDI feature distribution for Class 1 and Class 2 tasks by
utilizing channel C3 from all subjects of dataset IVa and IVb. Figure 3 suggests that subjects “aa”, “al”,
“av”, “aw”, “ay”, and dataset IVb have a highly nonlinear relationship between both task features and
it is imperative to use a nonlinear classifier to trace the pattern between both classes. It can be seen in
the Figure 3 that SDI feature has significantly singled out tasks for small training samples subject “ay”
and later in this study we will see that subject “ay” is the best performant among all other subjects in
terms of classification outcomes.
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Figure 3. Scatter plot of SDI features for dataset IVa and IVb subjects.

In addition, a descriptive statistical analysis in terms of mean, standard deviation, median,
and Kruskal–Wallis probability (p) values (KW test) of SDI features was performed for single trial
cases of each subject. The results presented in Table 1 suggest that the mean and median values of
subject “aa”, “al”, “av”, “aw”, “ay”, and dataset IVb are higher for Class 2 cases than Class 1. For the
subject “ay”, the mean and median values for Class 1 are higher and this trend was consistent for all
trials. Moreover, the KW p values for single-trial cases of all subjects are less than 0.05 which suggests
the significance of SDI features for motor imagery tasks and the high discrimination ability of extracted
features between two classes.
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Table 1. Statistical analysis.

Participants MI Tasks Mean Std Median KW p Values

“aa“
”Class 1 (RH)“ 4.071 0.506 4.088

2.16 × 10−19
”Class 2 (RF)” 4.633 0.175 4.626

“al”
“Class 1 (RH)” 3.994 0.498 3.986

0.06112
“Class 2 (RF)” 4.333 0.931 4.178

“av”
“Class 1 (RH)” 3.655 0.516 3.698

3.27 × 10−40
“Class 2 (RF)” 5.961 0.139 5.979

“aw”
“Class 1 (RH)” 3.811 0.343 3.737

0.0001927
“Class 2 (RF)” 3.966 0.323 3.925

“ay”
“Class 1 (RH)” 5.766 0.535 5.725

5.81 × 10−39
“Class 2 (RF)” 3.948 0.660 4.058

“IVb”
“Class 1 (LH)” 3.716 0.440 3.734

4.09 × 10−5
“Class 2 (RF)” 3.993 0.524 3.979

6.2. Results by Selecting Different Number of Channels

Siuly et al. [47] conducted a comparative analysis for 18 and 118 channels motor imagery dataset
IVa and IVb using two classification algorithms. Their study concludes that 118 channel results
outperform 18 channels in terms of classification outcomes. In this section, a similar type of comparison
is presented for dataset IVa and IVb with 18 channels, three channels and three channels selected with
automated channel selection criteria. The 18 and three channels are widely adopted motor cortex
channels while three-channel selection with automated channel selection criterion was proposed in
our previous study [24]. The list of automated channels for each subject is given in Table 2. As motor
imagery EEG signals are highly dependent upon subject physical and mental nature so for each
subject, different channels are selected by the automated channel selection criteria. Figure 4 shows
a visual representation of four channels selection schemes for best and worst-performing classifiers.
The worst classifier is characterized in terms of least gain in accuracy while the best classifier symbolizes
maximum gain in classification accuracy. This study made use of six machine learning and neural
network classifiers (NN, MNN, CFNN, FFNN, SVM, and DA) out of which FFNN was the best
performing classifier and SVM was the worst performer. The rest of the analysis is given as follows.

Table 2. List of 3 channels automated criteria.

Subjects Selected Channels

aa CCP5, CP5, CP6
al C3, FFC7, CCP3
av FT9, P8, PPO8
aw C4, CCP6, CP6
ay CCP5, C3, CFC5

IVb C3, CCP5, C4

1. It is inferred from Figure 4 that 118 channels give the highest classification accuracy for dataset IVa
as compared to other channel combinations. The average classification accuracy obtained using
118 channels with FFNN classifier is 97.46%. Similarly, the average accuracy for SVM classifier
using 118 channels is 93.05%. Moving on to the 18-channel combination, it is observed that the
average classification accuracy for FFNN and SVM classifier is 94.28% and 77.96% respectively.
Furthermore, the 3-channel scheme resulted in a mean accuracy of 77.6% and 60.1% for FFNN
and SVM classifiers respectively. Finally, the 3-channel automated scheme has the least average
results as compared to other channels combination. The average results obtained for 3-channel
automated criteria are 73.74% and 60.46% for FFNN and SVM classifiers, respectively.
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2. For dataset IVb, a similar trend of classification accuracies is observed for varying channel
combinations. Figure 4 shows that FFNN and SVM resulted in 99.5% accuracy each using
118 channels for dataset IVb and this is the highest among other channel selection schemes.
For the combination of 18 channels, the FFNN classifier resulted in 96.2% accuracy and SVM
yielded 91% classification certainty. Moving forward to the 3-channel strategy, it is noticed
that FFNN turnout 82.9% accuracy and 52.4% for SVM. Likewise, 3-channel automated scheme
resulted in similar pattern of results with 83.6% for FFNN and 54.6% for SVM classifier.

3. It is observed that the 118-channel combination has a maximum gain of 23.72% and 32.59% for
FFNN and SVM classifiers, respectively using dataset IVa. Dataset IVb has a maximum gain
of 16.6% and 47.1% for FFNN and SVM classifiers, respectively. It accredits the significance of
using 118 channels for SDI features and advocates the channel comparison study performed by
Siuly et al. [47].

4. One interesting observation is made that subject “ay” of dataset IVa has above 90% classification
accuracy for all channel combinations and classifiers. As mentioned in the descriptive analysis
section, the SDI features for subject “ay” tasks are well separated and distinguishable. We conclude
that SDI feature extraction is more significant for subject with small training samples as compared
to large one and this property makes it feasible for the development of practical BCI systems as
disabled patients need small training to train a device.

Figure 4. Bar plots for the comparison of 3-channel automated, 3-channel, 18-channel, and 118-channel
results: (a) FFNN classifier and (b) SVM classifier.

6.3. Analysis with Sensitivity, Specificity, Kappa, F1-Score and PAM

In this section, we explain the effect of other performance measures namely sensitivity, specificity,
kappa, F1-Score and most importantly a unified novel performance measure, the polygon area metric
(PAM). Figure 5 shows the sensitivity, specificity, kappa, and F1-score values for FFNN and SVM
classifiers using 118 channels with 10-fold cross-validation strategy. Figure 5a,e show the sensitivity
values for FFNN and SVM classifier, respectively. The average sensitivity values are 98.8% and 94.8%
accordingly for individual classifiers which suggests that FFNN correctly identified Class 1 instances
98 times and SVM classified them correctly 94 times. Similarly, Figure 5b,f show the specificity
values for FFNN and SVM classifiers respectively. The average 10-fold specificity values are 98.25%
and 95.57%, respectively, for each classifier, which indicates that FFNN classified Class 2 instances
effectively 98 times and SVM classified them positively 95 times. Figure 5c,g presents the kappa scores
for the aforementioned classifiers. It is noted that the average kappa for FFNN classifier is 96.93% with
slight variations for subject “aw”. The average kappa for SVM classifier is 91.5% with major variations
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in subject “av” and “aw”. Hence, we conclude that FFNN is more stable and unbiased in classifying
Class 1 and Class 2 tasks. Finally, Figure 5d,h show the F1-Score for each classifier, respectively, and the
average F1-Score for individual classifier is 98.07% and 93.83% accordingly. The high value of F1-Score
for FFNN classifier illustrates the high precision and recall measures.

1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

100

G
a

in
(%

)

(a)
1 2 3 4 5 6 7 8 9 10

30

40

50

60

70

80

90

100

(b)

1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

100

(c)
1 2 3 4 5 6 7 8 9 10

10 fold cross validation

30

40

50

60

70

80

90

100

(d)

1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

100

(e)
1 2 3 4 5 6 7 8 9 10

30

40

50

60

70

80

90

100

(f)

1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

100

(g)
1 2 3 4 5 6 7 8 9 10

30

40

50

60

70

80

90

100

(h)

aa

al

av

aw

ay

Dataset ivb

Figure 5. (a–d) 10-fold Sensitivity, Specificity, Kappa, F1-Score for FFNN Classifier. (e–h) Ten-fold
Sensitivity, Specificity, Kappa, and F1-Score for SVM Classifier.

Figure 6 shows the PAM graphs for dataset IVa all subjects and dataset IVb using FFNN and
SVM classifiers for 118 channels scheme. Figure 6a–f presents the PAM graphs for FFNN classifier
and Figure 6g–l shows PAM graphs for SVM classifier. It can be seen that subject “aa” and “ay” have
an area of 1 unit while subjects “al”, “av”, and “a” have areas of 0.95, 0.78, and 0.85 units for FFNN
classifier, respectively. Dataset IVb has an area of 0.98 units for FFNN classifier. All of these results are
consistent with the above-mentioned accuracy and other performance measures outcomes. Moreover,
in the case of SVM classifier, subject “aa”, “ay” and dataset IVb has an area of 0.98 units each, subject
“al”, “av”, “aw”, and “ay” has an area 0.95, 0.81, and 0.79 units, respectively. The key benefit of using
PAM graph is that complete classification performance is represented in a single graph with several
measures instead of looking into lengthy tables.

6.4. Results by Selecting Different Parameters of Classifiers

To investigate the fallouts of classifier parameters on the proposed approach, we compared
the classification accuracies for varying classifier parameters of all classifiers. Table 3 shows the
averaged 10-fold accuracies of all classifiers with varying parameters for the 118-channel scheme using
dataset IVa individual subjects and dataset IVb. For neural network (NN) classifiers, the number
of hidden layer neurons was varied and its effect was observed accordingly. For SVM classifier,
three different kernels namely radial basis function (RBF), linear kernel and the polynomial kernel
were utilized, for DA classifier, linear, pseudo quadratic and pseudo linear kernels were adopted and
their performance was evaluated for both datasets individually. The findings are as following:

1. The experimental results suggest that NN classifiers have no significant effect on average accuracy
by varying the number of hidden neurons. For NN classifiers, the maximum mean classification
accuracy was recorded for 40 neurons with 94.6% and 99.05% results for dataset IVa and IVb,
respectively. For MNN classifier, the best case mean classification outcome was obtained for
30 neurons for dataset IVa with an accuracy of 91.2% and 40 neurons for dataset IVb resulting in
94.29% mean accuracy. Moving on to CFNN classifier, it is noted that each number of neurons
yields 97% accuracy for dataset IVa and 99% outcomes for dataset IVb. Lastly, FFNN classifier
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turned out the maximum mean accuracy of 98.27% using dataset IVa and 99.52% using dataset
IVb for 30 neurons each.

2. Amid the three kernels of the SVM classifier, it is observed that polynomial kernel is the best
performant among others with the mean classification accuracy of 93.08% and 99.52% for datasets
IVa and IVb, respectively. The linear and RBF kernels are ranked second and third accordingly
with mean accuracies of 89.64% and 70.24% for dataset IVa and 96.19% and 83.33% for dataset
IVb respectively.

3. In case of the DA classifier, we observe that the linear kernel is ranked highest as compared to
pseudo-quadratic and pseudo-linear kernels. The average classification accuracy for linear kernel
is 95.29% and 98.1% for dataset IVa and IVb each. Moving forward, the pseudo-linear kernel is
ranked second with a mean classification accuracy of 93.29% and 95.1%, respectively, for datasets
IVa and IVb. Last, the pseudo quadratic-kernel results in an average classification result of 92.63%
and 92.24% accordingly for each dataset.

4. The thorough investigation of varying classifiers parameters suggests that polynomial and linear
kernels are the best performers for SVM and DA classifiers respectively. Similarly, for NN, MNN,
CFNN, and FFNN classifiers, 40 number of hidden neurons were chosen as the best parameter
setting and these parameters are employed throughout this study.

Figure 6. (a–f) PAM for Subjects “aa”, “al”, “av”, “aw”, “ay” and “Dataset IVb” respectively using
FFNN classifier. (g–l) PAM for Subjects “aa”, “al”, “av”, “aw”, “ay” and “Dataset IVb” respectively for
SVM classifier.
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5. Figure 7 shows the average accuracies of 10 times repeated 10-fold experiments for best (FFNN)
and worst (SVM) case classifiers and each subject of dataset IVa and IVb. It is noted that the
average results obtained for both classes results in slight variations of ±1.5%. In case of “av”
subject with the FFNN and subject “aw” with the SVM, the variations are larger than 10%, which is
due to the outliers caused by classifiers in some fold results but the mean results are more or less
the same as calculated previously. The extensive experimentation results obtained confirms the
robustness and stability of SDI features in estimating motor imagery tasks.

Table 3. Classification (%) results for different parameters of the classifier.

“Classifiers” “Variations in Parameters” “aa” “al” “av” “aw” “ay” “Dataset IVb”

“NN”

“5 Neurons” 97.61 93.30 77.78 83.67 95.43 99.52
“10 Neurons” 95.00 91.05 86.67 90.67 97.33 99.05
“20 Neurons” 97.61 98.20 87.22 89.33 98.23 97.62
“30 Neurons” 97.61 97.33 76.94 93.00 99.24 98.57
“40 Neurons” 99.41 95.49 85.97 93.00 99.10 99.05

“MNN”

“5 Neurons” 87.32 84.55 81.25 81.00 97.55 98.10
“10 Neurons” 89.71 88.30 72.78 63.00 98.33 92.38
“20 Neurons” 89.71 86.68 74.86 80.67 99.12 97.14
“30 Neurons” 95.74 94.58 78.33 91.00 96.34 93.33
“40 Neurons” 96.99 96.42 79.72 81.67 99.56 94.29

“CFNN”

“5 Neurons” 99.38 98.66 94.03 98.33 98.12 99.05
“10 Neurons” 99.41 99.55 93.06 98.33 97.24 99.52
“20 Neurons” 100.00 97.77 98.75 91.00 99.10 99.23
“30 Neurons” 99.41 99.55 95.28 91.33 100 99.52
“40 Neurons” 100.00 100.00 97.64 94.33 95.00 99.05

“FFNN”

“5 Neurons” 99.38 99.11 94.03 96.33 97.11 98.10
“10 Neurons” 98.75 98.24 91.81 98.00 98.67 98.57
“20 Neurons” 100.00 97.31 90.69 96.33 97.98 99.52
“30 Neurons” 99.41 98.66 95.28 98.33 99.65 99.52
“40 Neurons” 100 98.33 92.7 96.7 100 99.5

“SVM”
“RBF” 63.57 62.92 64.58 69.00 91.12 83.33

“Linear” 94.08 88.38 85.42 84.67 95.65 96.19
“Polynomial” 98.20 95.53 87.22 85.33 99.12 99.52

“DA”
“Linear” 98.82 99.09 86.53 94.67 97.33 98.10

“Pseudo Quadratic” 94.12 97.81 84.58 86.67 100.00 93.24
“Pseudo Linear” 98.82 99.09 85.42 84.00 99.12 95.10

Figure 7. Results obtained with 10-fold 10 times.
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6.5. Results with Raw EEG and Noise-Free EEG Signals

We discussed earlier that EEG is a noninvasive mode of signal retrieval and it inherits noise
artifacts while recording the data. In this section, a comparative analysis for MSPCA denoised and
unprocessed (noisy) data is performed and validated if SDI feature is being affected by noise artifacts
or not.

Figure 8 shows the classification accuracy for MSPCA denoised and noisy data of dataset IVa
and IVb. The classification results are calculated for best-case FFNN classifier. As observed from
Figure 8, the classification accuracies for noisy data are 83.1%, 84.4%, 82.5%, 85%, 92.4%, and 81.4%
for subjects “aa”, “al”, “av”, “aw”, “ay”, and dataset IVb, respectively. The average results are 85.5%
and 81.4% for dataset IVa and IVb respectively. We observe a significant improvement in individual
and average classification results after denoising the data. The results after denoising with MSPCA
are 100%, 97.3%, 90.6%, 96.3%, 100% and 99.52% for subjects “aa”, “al”, “av”, “aw”, “ay”, and dataset
IVb, respectively. The average accuracies for datasets IVa and IVb are 96.8% and 99.52%, respectively.
By looking at the results obtained from two case scenarios, we observe an increase of 11.3% and 18.12%
in accuracy for dataset IVa and IVb jointly. A similar trend of accuracy enhancement for denoised
data was observed for other classifiers and hence it is concluded that the proposed SDI based feature
extraction framework is robust against noise artifacts.

Figure 8. Comparison between denoised and noisy datasets.

It is important to note that we have also checked numerous conventional methods including such
band pass filters, temporal filtering, and spatial filtering for meticulous selection of a suitable strategy
in the preprocessing module and identified that MSPCA produces the best findings for the proposed
SDI feature extraction approach.

6.6. Classification Performance (%) with Dataset

This section deals with the experimental results of multiclass mental imagery dataset V. At first,
the dataset was denoised with MSPCA and rearranged into individual trials with dimensions 512 × 32
(where 512 is the signal length and 32 is the number of channels) for each trial. We have rearranged the
multiclass problem into 3 binary class experiments for each subject. The number of cases are given in
Table 4. Here cases 1 to 3 are dedicated for participant 1 (P1), cases 4 to 6 corresponds to the participant
2 (P2). and cases 7 to 9 are formed for the participant 3 (P3). Next, the SDI feature is calculated for all
trials and fed into six classifiers. The classification outcomes in terms of accuracies are given in Table 5.
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Table 4. Different cases consider for SDI experimental work by employing dataset V.

Case 1: “Class 1 (LH)” vs.
“Class 2 (RH)”

Case 2: “Class 1 (LH)” vs.
“Class 3 (RW)”

Case 3: Class 2 (RH) vs.
“Class 3 (RW)”

Case 4: “Class 1 (LH)“ vs.
”Class 2 (RH)“

Case 5: ”Class 1 (LH)“ vs.
”Class 3 (RW)“

Case 6: ”Class 2 (RH)“ vs.
”Class 3 (RW)“

Case 7: ”Class 1 (LH)“ vs.
”Class 2 (RH)“

Case 8: ”Class 1 (LH)“ vs.
”Class 3 (RW)“

Case 9: ”Class 2 (RH)“ vs.
”Class 3 (RW)“

It is observed from Table 5 that all classifiers achieved an average accuracy of above 90% for
each subject. Moreover, the average individual classification accuracy for NN, MNN, CFNN and
FFNN is above 95% which shows the effectiveness of NN classifiers in segregating mental imagery
tasks. The best-case scenario was observed in for FFNN classifier with an average accuracy of 99.07%,
98.16%. and 98.38% for participants 1, 2, and 3, respectively. It should be noted that FFNN was the best
performer for motor imagery tasks and now it again gives the best results for mental imagery dataset.
The worst-case scenario was observed for SVM classifier with accuracies 91.84%, 90.36%, and 93.81%,
respectively, for first participant, second participant, and third participant. As per the experimental
results, it is concluded that NN classifiers, especially FFNN classifier is intelligent in estimating mental
imagery tasks.

Table 5. Classification accuracies (%) obtained with different cases by employing dataset V.

Classifiers Cases “P1” “P2” “P3”

“NN”

Case 1 100.00 98.22 96.67
Case 2 93.21 97.98 97.44
Case 3 100.00 97.12 98.43

Average 97.74 97.77 97.51

“MNN”

Case 1 100.00 99.88 93.08
Case 2 98.43 95.16 98.30
Case 3 93.21 90.34 94.12

Average 97.21 95.13 95.16

“CFNN”

Case 1 98.44 99.12 97.12
Case 2 98.49 99.12 98.45
Case 3 96.34 99.34 96.34

Average 97.76 99.19 97.30

“FFNN”

Case 1 99.12 98.24 99.89
Case 2 100.00 99.13 97.12
Case 3 98.09 97.12 98.12

Average 99.07 98.16 98.38

“SVM”

Case 1 95.23 94.32 99.12
Case 2 94.74 95.23 94.98
Case 3 85.54 81.52 87.34

Average 91.84 90.36 93.81

“DA”

Case 1 93.45 94.55 93.19
Case 2 94.14 96.34 95.83
Case 3 88.32 91.78 89.15

Average 91.97 94.22 92.72

Figure 9 shows the classification performance of SDI feature for dataset V in terms of four
performance parameters (Sensitivity, Specificity, Kappa, and F1-Score). The performance parameters
are shown for the best classifier which is FFNN in our case. It can be inferred from Figure 9 that the
sensitivity and specificity values for all cases in each subject are above 95% and in some cases, it is 100%
which shows the greatness of FFNN classifier in predicting Class 1, Class 2, and Class 3 tasks. It can
also be seen that the kappa and F1-measures are above 95% in all cases which depict the stabilization
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and unbiased nature of FFNN classifier. Overall it can be concluded that SDI features are not only
specific for motor imagery tasks but equally essential and significant for mental imagery tasks as well.

6.7. CADMMI-SDI Application

Apart from the theoretical analysis, we have developed a computerized automatic detection of
motor and mental imagery using SDI (CADMMI-SDI) graphical user interface to assist physicians
and laymen to utilize SDI method for their purpose without having to implement it their self.
Table 6 presents the description of individual components present in the GUI while Figure 10 shows
the detailed interface of our developed CADMMI-SDI. Some interesting features of the developed
application are detailed in Table 6.
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Figure 9. Performance parameters of FFNN classifier for Dataset V.

Table 6. CADMMI-SDI application.

Application Components Description

Load EEG Data Load Sample EEG data for a specified destination. The file type must be *.csv or *.xlsx
Test EEG Signal Load test data from a specific folder. The file format should be *.csv or *.xlsx

Classifiers Choose a classifier by drop-down selection.
Start A key to initiate/start the process

Channel # Input desired number of channels and press “Plot” to display. The channel number should be separated by a comma
Summary Text section to demonstrate the specifics of the process underway

Signals 2D plot window to display EEG signals
Features Scatter Plot 2D plot window to display SDI feature corresponding to each channel

The demonstration of the GUI application can be seen in link https://www.youtube.com/watch?
v=ugWbq4JUtuI. A copy of the GUI application is freely available and interested readers are suggested
to write an email to corresponding author.

6.8. Computational Complexity of SDI Feature

Figure 11 shows the computational time for feature extraction, training and testing for all subjects
and classifiers using the system specifications given in Section 5. First of all, Figure 11a presents the all
trials feature extraction time for each subject of dataset IVa and dataset IVb. It can be seen that the
highest feature extraction time of 1.36 s is taken by subject “al” followed by subject “aa” and dataset
IVb with 1.06 s and 0.65 s, respectively. The average single-trial feature extraction time is calculated
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to be 0.85 milliseconds. Next, Figure 11b shows all trials training time for individual subjects and all
classifiers. It is observed that CFNN classifier takes the highest training time for all subjects followed
by FFNN classifier. The highest training time of 1.8 s, 1.75 s and 1.5 s was recorded for subjects “al”,
“aa”, and dataset IVb, respectively, using CFNN classifier. The highest training time recorded for
FFNN classifier is 1.2 s, 1.1 s and 1.08 s for dataset IVa, subject “al” and “aa”, respectively. The average
single-trial training time for FFNN classifier is calculated to be 1.27 milliseconds. Last, Figure 11c
shows all trials testing time for individual subjects and all classifiers. As noted, SVM classifier takes
the highest testing time of 70 milliseconds and 60 milliseconds for subjects “al”, and “aa”, respectively.
The time taken by FFNN classifier is minimum in most cases and the average single-trial training
time is recorded to be 0.01 milliseconds. By accumulating the single trials computational times for
FFNN classifier, it comes out to be 2.13 milliseconds which is very nominal as compared to other
complex signal decomposition methods and it shows that besides noise robustness and classification
accuracy, SDI features are computationally less complex and efficient and hence it can be employed in
the production of practical BCI systems.

Figure 10. A display of CADMMI-SDI portraying all features and functionalities.

6.9. Performance Comparison with Other Literature

This section presents a comparative analysis of the proposed SDI framework with other recent
state of art methods. Table 7 compares the classification accuracies for dataset IVa individual subjects
and the best-case results are highlighted to make a fair comparison of other methods with the proposed
approach. It can be seen from the table that subjects “aa” and “ay” attained 100% classification accuracy
which is the highest among other methods. The results for subjects “al”,“av”, and “aw” are above 90%
and very close to the best results achieved by other methods. Comparing the results of SDI feature
method with our previous studies [23,24], it is worth noting that our current method outperforms the
complex signal decomposition and modes selection-based methods. It can be noted from Table 7 that
our method achieved the highest average classification accuracy of 97.54% with minimal heterogeneity.
Moreover, there is a 24.04% maximum gain in accuracy comparing to other state of the art methods
and hence it suffices that SDI feature extraction is not only efficient and non-complex but also robust
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in estimating motor imagery EEG signals and this is validated by a fair comparison with other widely
acclaimed studies.

Figure 11. Bar plots representing time complexity: (a) Execution Time for SDI feature extraction
method. (b) Training time. (c) Testing time.

Table 8 shows the comparative results for multiclass dataset V. The outcomes are presented in
terms of average classification accuracies and the highest case results are highlighted to make the
best combination stand out. It is worth noting that the proposed SDI method outperformed all other
methods in terms of individual subject results. It can be seen that the SDI method attained an average
classification outcome of 99.07%, 98.16%, and 98.37% for participant 1, participant 2, and participant 3,
respectively, and these are highest as compared to other methods. In terms of overall average results,
the proposed SDI framework scored the highest 98.53% accuracy with a standard deviation of 0.387
that shows the consistency of overall results. Last, it is inferred from the comparison that SDI feature
extraction method gains a minimum of 15.26% average classification accuracy, which is a significant
improvement and it shows that the proposed method is not only useful for binary class motor imagery
datasets but equally significant for multiclass mental imagery dataset as well.
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Table 7. Performance comparison of motor imagery EEG signals in terms of classification accuracy (%) with other literature.

Methods By Suggested Methods Classification Accuracy(%)

“aa” “al” “av” “aw” “ay” “Avg.” “Std.”

Our Present Work
“Successive decomposition index tested with feedforward neural
network”/the proposed

100 98.3 92.7 96.7 100 97.5 2.7

our previous work in 2019 [24]
“Multivariate empirical wavelet transform tested with least-square
support vector machines”

95 95 95 100 100 97 2.7

our previous work in 2019 [23]
“Empirical wavelet transform tested with least-square support vector
machines”/our last work

94.5 91.7 97.2 95.6 97 95.2 2.3

work by “Wu” et al. in 2008 [48] “Iterative spatio-spectral patterns learning” 93.6 100 79.3 99.6 98.6 94.2 8.7

work by “Kevric” et al. in 2017 [22] “Wavelet packet decomposition tested with K nearest neighbors” 96 92.3 88.9 95.4 91.4 92.8 2.9

work by “Siuly” et al. in 2011 [49] “Clustering tested with least-square support vector machines“ 92.6 84.9 90.8 86.5 86.7 88.3 3.2

work by ”Song“ et al. in 2007 [50] “Common spatial pattern tested with support vector machines” 87.4 97.4 69.7 96.8 88.6 87.9 11.2

work by “Lu” et al. in 2010 [19] “Regularized common spatial pattern tested with aggregation“ 76.8 98.2 74.5 92.2 77 83.7 10.7

work by ”Zhang“ et al. in 2013 [51] “Z-score tested with linear discriminant analysis” 77.7 100 68.4 99.6 59.9 81.1 18.1

work by “Lotte“ et al. in 2010 [18]

”Regularized common spatial pattern with selected subjects“. 70.5 96.4 53.5 71.9 75.4 73.6 15.3
”Common spatial pattern with Tikhonov regularization“. 71.4 96.4 63.3 71.9 86.9 77.9 13.4
”Common spatial pattern with weighted Tikhonov regularization“. 69.6 98.2 54.6 71.9 85.3 75.9 16.6
”Spatially regularization common spatial pattern“. 72.3 96.4 60.2 77.7 86.5 78.6 13.8

work by ”Yong“ et al. in 2008 [52] ”Sparse spatial filter optimization“ 57.5 86.9 54.4 84.4 84.3 73.5 16
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Besides classification results, it is important to compare the complexity of other methods with SDI
feature extraction method. As mentioned earlier in this study, our method has no signal decomposition,
complex multidomain features extraction, or features selection procedures involved, which makes it
computationally simple and less time-consuming. The studies in [22–24] use signal decomposition
techniques that involves resolution of a time signal into different modes, then extraction of complex
features and lastly selection of highly uncorrelated features. Such systems might be useful for
the research analysis but they are not feasible to be adopted for practical BCI systems. Similarly,
the studies [18,19,53] employs common spatial pattern (CSP)-based methods, which is another complex
method for the analysis of EEG signals. The crux of the matter is whether we consider robustness,
efficiency and complexity, the proposed SDI method outperforms all state-of-the-art methods in every
aspect and gives us a feasible solution to be considered for the development of practical BCI systems.

Table 8. Performance comparison of mental imagery EEG signals in terms of classification accuracy
(%) with other literature.

Methods By Suggested Methods Classification Accuracy (%)

“P1” “P2” “P3” “Avg.” “Std.”

Our Present Work
“Successive decomposition index tested with
feedforward neural network”/The proposed

88.9 94.1 92.4 91.8 2.6

work by “Siuly” et al. in 2017 [54]
“Principal component analysis employed with
random forest”

91.8 75.2 82.8 83.3 8.3

research by “Lin” et al. in 2009 [55]
“Modified partical swarm optimization employed
with neural networks”

78.3 75.2 56.5 69.9 11.81

work by “Siuly” et al. in 2011 [49] “Clustering employed with least-square support
vector machines”

68.2 64.8 52.1 61.7 8.5

experiments by “Sun” et al. in 2008 [56]
“Selection of electrodes with the help of
Ensemble method”

68.7 56.4 44.8 56.7 11.9

work by “Sun” et al. in 2007 [57] “Ensemble Methods” 70.6 48.9 40.9 53.4 15.4

work by “Sun” et al. in 2009 [53] “Automated common spatial method” 67.7 68.1 59.6 65.1 4.82

6.10. Future Recommendations

In the present study, we utilized data with class labels, however, semisupervised learning or
transductive learning methods are attracting attention these days. In future, researchers are encouraged
to implement these methods for MI classification and information for these methods can be found
in [58,59]. It is also worth mentioning that here, in the present study, we focused on at most three
classes and presented the results in Table 5. However, for more number of classes readers should focus
on more innovative strategies such as available in [60].

7. Conclusions

This study exploits the successive decomposition index (SDI) for the feature estimation of motor
and mental imagery tasks. Three publicly available datasets namely dataset IVa, dataset IVb and
dataset V from BCI competition III were utilized to attest the effectiveness of proposed method.
Initially, the data was denoised with MSPCA and distributed into individual trials. Then, the SDI
algorithm was used to calculate the feature corresponding to each trial and build a feature matrix for
individual class instances. For the analysis purpose, a statistical test was performed that comprised
mean, median, standard deviation, and Kruskal–Wallis nonparametric test for individual trials and
it confirmed the efficacy of SDI as a potential feature. Moreover, a single evaluation metric named
polygon area metric is employed to avoid looking into long tables. To validate the performance of the
said method corresponding to the number of channels, four different channel selection criteria were
tested and it confirmed that the 118-channel scheme has the leading results among other combinations.
Furthermore, the classifier parameters were varied and a comparison between denoised and noisy data
was performed to certify its effect on the classification performance of SDI feature. We also carried out
a test for multiclass dataset V, and it was concluded that the proposed method is equally significant for
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the binary class as well as multiclass data. In the end, a computerized automated system CADMMI-SDI
was developed for the practical realization of the proposed method. A comprehensive comparison of
this study is made with other state of the art methods and it confirmed that the proposed method is
robust, efficient, less complex and it can be utilized for the development of practical BCI systems.
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Abstract: Novel trends in affective computing are based on reliable sources of physiological signals
such as Electroencephalogram (EEG), Electrocardiogram (ECG), and Galvanic Skin Response (GSR).
The use of these signals provides challenges of performance improvement within a broader set
of emotion classes in a less constrained real-world environment. To overcome these challenges,
we propose a computational framework of 2D Convolutional Neural Network (CNN) architecture for
the arrangement of 14 channels of EEG, and a combination of Long Short-Term Memory (LSTM) and
1D-CNN architecture for ECG and GSR. Our approach is subject-independent and incorporates
two publicly available datasets of DREAMER and AMIGOS with low-cost, wearable sensors
to extract physiological signals suitable for real-world environments. The results outperform
state-of-the-art approaches for classification into four classes, namely High Valence—High Arousal,
High Valence—Low Arousal, Low Valence—High Arousal, and Low Valence—Low Arousal.
Emotion elicitation average accuracy of 98.73% is achieved with ECG right-channel modality,
76.65% with EEG modality, and 63.67% with GSR modality for AMIGOS. The overall highest accuracy
of 99.0% for the AMIGOS dataset and 90.8% for the DREAMER dataset is achieved with multi-modal
fusion. A strong correlation between spectral- and hidden-layer feature analysis with classification
performance suggests the efficacy of the proposed method for significant feature extraction and
higher emotion elicitation performance to a broader context for less constrained environments.

Keywords: convolutional neural network (CNN); long short-term memory (LSTM); emotion recognition;
EEG; ECG; GSR; deep neural network; physiological signals

1. Introduction

Recent trends in the field of affective computing have shifted towards a more reliable source
of physiological signals [1–4] such as Electroencephalogram (EEG), Electrocardiogram (ECG), and
Galvanic Skin Response (GSR) due to their significance in human–computer interaction (HCI).
Emotions can be distinctively expressed as a non-verbal form of everyday social interaction.
These non-verbal cues are generally reflected through facial expressions and tone of voice.
However involuntary physiological responses (such as EEG and ECG) to the emotional stimuli
are more reliable compared to voluntary response (such as sound or facial expressions), because the
involuntary response cannot be masked intentionally [4] (a sad person may smile, which may also be
the indication of depression). Similarly, external factors such as lighting conditions, accessories like
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glasses or a hat, and surrounding audio noise may affect the performance of these external voluntary
modalities of expression, limiting their use in computing applications [5]. Biosensors help to monitor
and collect physiological signals from heart (ECG), brain (EEG), or skin (GSR), and proves to be the
most significant for the detection of stress levels and emotions [6,7]. Applications of physiological
signal-based emotion recognition encompass psychological health-care monitoring for hospitalized
patients [8], real-time stress-level detection of drivers, emotion-inspired multimedia applications [9],
various bio-inspired human–machine interfaces, and health-care applications [10].

The problem of emotion elicitation is generally approached in the literature by measuring valence
and arousal as represented in the emotion circumplex model [11]. A simple representation of the
circumplex model is shown in Figure 1, which exhibits the positions of six basic emotions (happiness,
anger, disgust, fear, sadness, and surprise) on the scales of valence and arousal. Valence expresses
the positivity or negativity of the emotion; arousal expresses the degree of excitement covered
by the emotion stimuli. Most of the affective computing literature based on physiological signals
classifies valence (high/low) and arousal (high/low) as separate binary classification tasks [12,13].
However, little other research has approached the problem in the broader context of the classification
of emotions into four categories [14,15] of High Valence—High Arousal (HVHA), High Valence—Low
Arousal (HVLA), Low Valence—High Arousal (LVHA) and Low Valence—Low Arousal (LVLA).

High Valence

Low Valence

High ArousalLow Arousal

Happy
Angry

Disgust

Fear

Sad

Surprise

Figure 1. Valence arousal model for emotion elicitation.

The process of emotion elicitation in the literature generally revolves around conventional feature
extraction from physiological signals. For EEG-based classification, the conventional statistical features,
wavelet features, and Empirical Mode Decomposition (EMD)-based features were applied to test the
efficacy of these algorithms for emotion elicitation. For instance, Support Vector Machine (SVM) was
tested with the efficacy of EMD in combination with the genetic algorithm [16]. Stable statistical
features such as band power, coherence, and entropy were proposed [17] for the classification of
four emotions, namely happiness, fear, pleasure, and anger. Similar conventional approaches for
ECG-based emotion recognition were also applied in the literature. In [18], time-domain ECG features
after computation of P-QRS-T wave detection were extracted and selected through hybrid Particle
Swarm Optimization (PSO) with a Fisher classifier for emotion recognition. However, these approaches
used their private datasets for emotion classification. The more standard approaches incorporated
publicly available datasets of DEAP for EEG and the MAHNOB-HCI dataset for ECG. For instance,
relative wavelet energy with SVM was used in [19] for the DEAP dataset, with the recognition rate of
61.8%. SVM classification was proposed [20] for the wavelet-based extracted EEG features from the
DEAP dataset to achieve 65.13% and 65.33% accuracy for binary classification of valence and arousal,
respectively. One of the approaches [2] for ECG signals from the MAHNOB-HCI dataset was based on
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neighborhood component analysis for binary classification of valence and arousal. In [21], heart rate
variability-based statistical features were incorporated with SVM for the recognition of five emotions
using the MAHNOB-HCI dataset.

Novel trends in the computation of emotion elicitation exploit Deep Neural Networks (DNN) for
physiological signals with improvement in recognition rates. One of the earliest attempts was made
by [22], using Wavelet Transform and Back-Propagation Neural Networks (BPNN)-based emotion
recognition from Electromyogram (EMG) signals to recognize four emotions of joy, sadness, anger,
and pleasure. Another early attempt proposed [23] Radial Basis Function (RBF) Neural Network for
an emotion elicitation task. However, both approaches used private datasets for the computation
of emotions; the publicly available dataset of DEAP is also incorporated using DNN architectures.
Long Short-Term Memory (LSTM) was deployed [24] for EEG-based emotion elicitation and reported
recognition rates of 72.06% and 74.12% for binary classification of valence and arousal using DEAP
dataset. A more recent study [25] proposed Graph-regularized Extreme Learning Machine (GELM)
for the classification of HVHA, HVLA, LVHA, and LVLA. They incorporated spectral features from
EEG with the GELM classifier for SEED [26] and DEAP datasets, respectively. In [27], LSTM networks
were incorporated in 5sec segments of EEG signal from the DEAP dataset to report recognition rates of
85.45% and 85.65% for binary classification of valence and arousal, respectively. Similarly, Ref. [28]
claimed the significance of deep CNN architecture for EEG-based emotion recognition using the DEAP
dataset. The authors reported a recognition rate of 73.36% and 81.4% for binary classification of arousal
and valence, respectively. Recognition results obtained from conventional and DNN-based approaches
as described in [20,24,27] point towards the significance of DNN-based algorithms trends as compared
to conventional approaches.

Various modalities such as face videos, eye movement, ECG, EEG, and GSR, etc. were incorporated
in the literature for emotion elicitation. A multi-modal approach combines any of these modalities for
better recognition performance. DNN-based multi-modal approach in the literature generally works
in two dimensions—one of the dimension involves the joint representation of multi-modality with
feature-level fusion, and the other dimension involves the coordinated representation of multi-modality
with decision-level fusion [29]. Feature-level fusion concatenates sets of extracted features from various
modalities before the classification learning stage, while decision-level fusion merges the classification
decisions of various classifiers or deep networks for specific modalities [30]. In [31], feature-level fusion
emotion recognition is applied using physiological signals. This study incorporated the decision-level
fusion scheme of majority voting. In [32], the authors proposed multi-layer LSTM for the multi-modal
fusion of EEG signals with videos for binary classification of valence and arousal respectively for
MAHNOB-HCI dataset. In [33], eye movement and EEG-based decision-level multi-modal fusion
was applied by analyzing confusion matrices. The significance of decision-level fusion lies in the
accessibility of modality comparison in terms of its overall contribution to the recognition results [29].
In our study, we incorporate decision-level fusion based on majority voting due to the simplicity of the
procedure for the combination of modalities.

Based on the previous research examination, there are the following few things that need to
be addressed for the contribution of existing knowledge. ECG is less explored in the literature as
compared to EEG, despite its higher significance in emotion elicitation. There is a need to build
a high-performance non-invasive emotion recognition process using low-cost wearable sensors for
broader classes of emotions. Connectivity among spectral features and the features extracted by
deep neural networks need to be examined to understand and build more robust neural network
architectures specific to the spectral properties of modality. EEG, ECG, and GSR are continuous-time
signals with high memory content, which could be exploited by LSTM for better results. LSTM has the
property of selectively remembering patterns for a long duration of time useful in feature extraction
from physiological signals. Due to the irregular structure of EEG [13], 14 channels need to be
arranged in the 2D image to exploit the usefulness of a 2D Convolutional Neural Network (CNN).
Therefore, the proposed 1D-CNN + LSTM architecture is used to exploit their usefulness for time-series
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data of ECG and GSR as well as 2D-CNN architecture for image representation of 14-channel EEG.
We selected recently published, publicly available datasets of AMIGOS [34] and DREAMER [35] for
the emotion recognition in less constrained scenarios with the additional ensemble of modalities at the
decision level.

The rest of the paper is organized as follows. Section 2 examines the state-of-the-art literature
in detail. It also exposes research gaps identified as the implication of previous research and our
contribution to fill those gaps in Sections 2.1 and 2.2. The details of the datasets used in this study
and the details of proposed methodology are discussed in Section 3. Section 4 provides results on
both datasets, and detailed discussion and spectral analysis of results are provided in Section 5.
The discussion section also includes the detailed analysis and representation of deep features from
hidden layers of proposed DNN architecture. Conclusions drawn from this research are finally
presented in Section 6.

2. Related Work

To establish a comparison of our computational framework with related works, most relevant
studies based on AMIGOS and DREAMER datasets are described in this section. A recent study [36]
proposed a fusion of statistical features extracted from EEG, ECG, and GSR from the AMIGOS dataset.
They reported a recognition rate of 67% and 68.8% for valence and arousal respectively using an SVM
classifier. Another recent GSR-based framework [37] using AMIGOS dataset proposed temporal and
spectral features with SVM (RBF kernel) to report recognition performance of 83.9% and 65% for
valence and arousal, respectively. For the AMIGOS dataset, the significance of DNN can be explained
by two similar studies, where one of the studies [34] reported 55.1% and 54.4% F1 scores for valence
and arousal, respectively, using Gaussian Naive Bayes, while another study [38] reported 71% and 81%
accuracy for valence and arousal, respectively, using convolutional neural networks.

In a recent study [39], the authors proposed self-supervised learning instead of self-assessment
labels for the AMIGOS dataset using a convolutional neural network. They reported a recognition rate
of 84% and 85.8% for valence and arousal, respectively. LSTM-RNN is recently proposed [40], with the
use of attention-based mechanism for AMIGOS dataset, and reported recognition rates of 79.4% and
83.3% for binary classification of valence and arousal, respectively. In [14], 3D-CNN and 1D-CNN
models are compared and report the accuracy of 99.7% for four classes of emotion. The significance
of results for four classes of emotion can be understood using the recent two studies. A study [41]
reported an accuracy of 66.67% and 71.54% for binary classification of valence and arousal, respectively,
and reported 38.28% classification accuracy for four classes (HVHA, HVLA, LVHA, and LVLA) of
emotions using the same proposed methodology. Another similar recent study [15] reported accuracy
of 83.02% and 82.74% for binary classification of valence and arousal respectively, while reported
58.57% classification accuracy for four classes (HVHA, HVLA, LVHA, and LVLA) of emotions.

Currently using the DREAMER dataset, Graph Convolutional Broad Network (GCB-net) is
suggested [13] to announce an accuracy of 86.99% and 89.32% for binary classification of valence and
arousal respectively. In [12], using DREAMER, the accuracy of 86.23% and 84.54% are reported for
classification of valence and arousal, respectively. In [35], a multi-modal fusion of EEG and ECG of
the DREAMER dataset was incorporated with 61.84% and 63.32% recognition rates for valence and
arousal, respectively.

To evaluate studies using both the DREAMER and AMIGOS dataset, Ref. [15] reported an accuracy
of 79.95% for binary classification of both valence and arousal using the DREAMER dataset. They also
reported accuracy of 83.94% and 82.76% for binary classification of valence and arousal respectively for
the multi-modal fusion of physiological signals in the AMIGOS dataset. The most recent study [42]
based on the AMIGOS dataset proposed the Bayesian network to achieve accuracy of 90% for binary
classification of the high and low level of valence. They also reported accuracy of 86% for binary
classification of the high and low level of valence for the DREAMER dataset.
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2.1. Implications

It is interesting to state a few implications here from an extensive literature review based on
a physiological signal-based emotion recognition. First, the deep-learning approaches especially
convolutional and LSTM-based neural networks performed much better in terms of recognition
performance of emotions as compared to conventional feature extraction and simple classifier-based
approaches [9]. Second, EEG is extensively used for the emotion elicitation process; however,
the separate significance of ECG and GSR modalities in terms of long duration sequence data are
much less explored for this purpose especially using DNN-based approaches [43]. Third, most of the
studies in the literature [44,45] with the most promising results are based on the evaluation of binary
classification of valence (high valence, low valence) and arousal (high arousal, low arousal) separately.
However, in the case of four classes of emotions (HVHA, HVLA, LVHA, and LVLA) the reported
recognition rates decrease to a much larger extent [17]. Fourth, due to the highly subjective and
dynamic nature of emotion, few pieces of research have proposed subject-dependent approaches with
better recognition performance; however, subject-dependent approaches besides higher recognition
rates require large training data from each subject and are not capable of being applied to unseen
subjects [46]. Therefore, studies reported for subject-independent approaches [47,48] are more reliable
for emotion elicitation tasks from a broader perspective as compared to the results obtained using
subject-dependent approaches [49,50]. Fifth, recognition performance of emotion is more reliable
and comparable when reported for publicly available datasets acquired using portable and wearable
sensors [34,35] for their use in real-world environments as compared to invasive and restricted
lab environments.

2.2. Our Contribution

We proposed the combination of LSTM and CNN architecture to improve the recognition
performance for four classes (HVHA, HVLA, LVHA, and LVLA) of emotion with multi-modal fusion
while exploiting the significance of various modalities such as ECG, EEG, and GSR. Our approach is
subject-independent and recognition rates are reported against two of the publicly available datasets of
AMIGOS and DREAMER. Both datasets acquired signals using wearable, low-cost sensors to represent
the significance and reliability of proposed methodology in real-world environments.

3. Material and Methods

This section will elaborate the significance and details of datasets used in this study.
After elaboration of materials used, proposed methodology will be discussed in detail.

3.1. Datasets

Two of the publicly available datasets named DREAMER and AMIGOS were incorporated
for the evaluation of proposed deep neural network architectures. Both of these datasets are
newly published yet extensively used in recent literature for physiological signal-based emotion
elicitation, primarily because of their non-invasive nature of the data acquisition process using
low-cost off-the-shelf devices. In both of the datasets, a 14-channel Emotiv Epoc [51] wireless
headset for EEG and two-channel Shimmer ECG sensor [52] was used as compared to quite an
invasive headset of Biosemi active two [53] used in DEAP [54] and MAHNOB-HCI [55] datasets.
Biosemi active two is much more accurate and precise, and leverages more channels for EEG
collection; however, invasive data acquisition procedure is required using this device. The DREAMER
and AMIGOS dataset helps to improve emotion classification performance for the non-invasive
environment with low-cost sensors. DREAMER data is provided with raw ECG and EEG signals,
therefore dedicated basic pre-processing steps were applied in Section 3.3.1 to raw DREAMER dataset
to be consistent with the basic pre-processed signals available for AMIGOS dataset. The concise details
of both datasets are given below.
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3.1.1. DREAMER

This dataset used audio-visual stimuli for affect elicitation from 23 subjects (14 males and
9 females). Each subject was exposed to 18 different trials of variable length from 65 s–393 s duration
with the addition of a 61 s baseline signal (where there was no stimulus provided as a neutral state)
for each trial. Each subject was asked to label each trial with the valence and arousal values for the
scale of 1–5 using Self-Assessment Manikins (SAM). 14 channels of EEG with AF3, F7, F3, FC5, T7, P7,
O1, O2, P8, T8, FC6, F4, F8, AF4 channels were recorded using Emotiv Epoc portable sensor with the
sampling frequency of 128 Hz. ECG with two channels was recorded using the Shimmer sensor with
a sampling rate of 256 Hz. 57 s of baseline signals (segmenting out the first two and last two seconds)
and the last 60 s of each stimulus trial signals is incorporated for this study.

3.1.2. AMIGOS

The AMIGOS dataset also acquires 14-channel EEG (same channel position as described for
DREAMER) and two ECG channels using similar sensors and sampling frequency used for the
DREAMER dataset. However, the AMIGOS dataset used audio-visual stimuli of 16 different short-term
trails with a variable duration from 51 s–150 s and the addition of a 5 s baseline (without stimulus) for
each trial. The signals were self-annotated (using SAM) for each trial with the valence and arousal
values on the scale of 1–9. Basic pre-processed data from AMIGOS is used for the complete length of
trials and 5 s of baseline for 33 subjects with valid data out of total 40 subjects with the exemption of
7 subjects (with ID number 33, 24, 23, 22, 21, 12, 9) with invalid data. DREAMER published a dataset
of 23 out of 25 persons with valid data only and exempted 2 persons with invalid data, therefore all
the 23 person data from the DREAMER dataset is used. AMIGOS dataset in comparison to DREAMER
additionally provided with GSR data, which is also incorporated in this study for comparison.

3.2. Methodology

The three main components of the proposed algorithm are pre-processing, classification,
and multi-modal fusion. First, all physiological signals are required to be pre-processed before their
use in neural network architecture [56]. EEG is quite different from other peripheral signals in terms
of the number of channels, frequency, and amplitude. Therefore, the sequence of steps applied to
the EEG is generally represented in parallel to the sequence of steps applied for other modalities
before multi-modal fusion. Figure 2 represents a general block diagram of all the steps applied in
this study. The following subsections represent a detailed description of these steps applied in the
proposed methodology.
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3.3. Pre-Processing

Pre-processing steps are divided into two categories, namely basic pre-processing and specialized
pre-processing. The basic pre-processing steps are common to the generic applications of physiological
signals. The basic pre-processing steps were followed by the steps used in basic pre-processing
of AMIGOS dataset [34] to standardize physiological signals from both datasets. These steps
involve signal filtering and noise removal, and are common for both GSR and ECG signals.
However, EEG signals required different pre-processing steps as compared to ECG and GSR due
to different inherent properties of EEG [57]. The second category with specialized pre-processing
consists of steps required specific to the emotion elicitation algorithm. These steps include baseline
removal and Z-score normalization, inspired by its significance in many studies such as [46,58–61].

3.3.1. Basic EEG Pre-Processing

The Basic EEG pre-processing framework consists of referencing common average, band-pass
filtering, and segmentation. First, raw EEG signals are required to be re-referenced to remove channel
biases introduced by online reference [62]. These channel biases affect the amplitude of EEG channels
based on their spatial locality from online reference. The common average was computed by extracting
the average EEG signal of all the 14 EEG channels as shown in Equation (1), where c represents
the channel number from 1 to N = 14 and l is the length of EEG channel (64 s with the total of
8192 samples) each for DREAMER dataset.

meanEEGl =
1
N

(

N

∑
c=1

EEGc,l

)

(1)

acrEEGc,l = EEGc,l − meanEEGl (2)

Now each of the 14 EEG channels with length l are subtracted from the computed common
average as described in Equation (2) to obtain EEG signals with averaged to a common reference.
The results of basic EEG pre-processing are depicted in Figure 3. Figure 3a represents raw EEG
signals of all the 14 channels and Figure 3b represents all channels of EEG signals after averaged to
a common reference.
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Figure 3. (a) Raw EEG signals of 14 channels. (b) EEG Signals of 14 channels averaged to
common reference.
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The second step of EEG pre-processing is band-pass filtering in which each channel of common
referenced EEG signal is individually passed through band-pass filtering for noise removal. To compare
against AMIGOS results, a passband frequency range of 4 Hz to 45 Hz is applied with transition band
steepness of 0.85 and a stopband attenuation of 60 dB selected as a parameter. Figure 4 represents
the original signal as an individual channel of EEG along with filtered signal after artifact removal
using band-pass filtering. The effect of the band-pass filter is also illustrated as the power spectrum
against frequency in Figure 4, where artifacts of below 4 Hz and around 50 Hz are removed from each
EEG channel. After band-pass filtering, each channel of length 64 s is segmented by removing a 2 s
signal from the start and 2 s of signal from the end to counter the effect of the filter at the edges. These
three basic pre-processing steps result in EEG signals of length 60 s each (total of 7680 samples) for the
DREAMER dataset. Therefore, the total size of DREAMER data for EEG after basic pre-processing is
5796 × 7680 (23 subjects, 18 trials, and 14 EEG channels).

3.3.2. Basic ECG and GSR Pre-Processing

Peripheral signals of raw DREAMER data also undergo basic pre-processing steps to be consistent
with the AMIGOS dataset. Therefore, both channels of ECG signals are individually down-sampled
to 128 Hz from 256 Hz. After down-sampling, a low-pass filter of 60 Hz was applied to remove the
high-frequency noise components from ECG data. After low-pass filtering, each channel of length 64 s
is segmented by removing 2 s from start and 2 s of signal from the end to counter the effect of the filter
at the edges. These three basic pre-processing steps result in ECG signals of length 60 s each (total of
7680 samples) for the DREAMER dataset. Therefore, the total size of DREAMER data for ECG after
basic pre-processing is 828 × 7680 (23 subjects, 18 trials, and 2 ECG channels).
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Figure 4. Band-pass filtering 4–45 Hz of individual EEG channel with power spectrum.

158



Sensors 2020, 20, 4551

3.3.3. Baseline Removal

Both DREAMER and AMIGOS datasets have baseline signals, where there is no stimulus provided
to the subjects. AMIGOS has 5 s and DREAMER has 57 s of baseline signal recorded with no emotional
activity. It is, therefore, useful to remove this neutral baseline activity from all the EEG, ECG, and GSR
signals as a specific pre-processing step for emotion elicitation. For this purpose, baseline signals were
divided into 1 s segments and then the mean of these segments is computed as the mean baseline
activity of each signal as shown in Equation (3).

meanBL =
1
S

(

S

∑
s=1

BLs

)

(3)

EEG, ECG, and GSR signals data of 60sec emotional activity is also divided into 60 segments of 1 s
each. After getting the mean of a specific channel for EEG, ECG, and GSR, each segment of emotional
activity is subtracted from their corresponding mean segment of baseline activity to remove the neutral
emotional effect as shown in Equation (4).

blrSigs = Sigs − meanBL (4)

These steps are performed to remove baseline from all the 14 EEG channels, 2 ECG channels,
and from GSR to enhance and emphasize the emotional effect of corresponding stimuli. For the
DREAMER dataset, the baseline was computed from the mean of all 57 segments of baseline activity.
Figure 5a illustrates a segment of the ECG signal (Left Channel) of 1 s of emotional activity after basic
pre-processing steps applied. Figure 5b represents five baseline segments of ECG with neutral activity
and the computed mean of these five segments, while Figure 5c shows the output of baseline removal
after subtracting segment of emotional activity represented in Figure 5a from the mean signal of five
baseline segments represented in Figure 5b.
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Figure 5. (a) ECG signal after basic pre-processing. (b) Five segments of ECG baseline activity with
computed mean signal. (c) ECG signal (left channel) 1 s segment of emotional activity after removing
mean of baseline activity. (d) After Z-score normalization.
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3.3.4. Z-Score Normalization

Each of EEG, ECG, and GSR segments after baseline removal are normalized using Z-score
normalization. Figure 5d illustrates the Z-score normalization of the already baseline removed ECG
signal. This step is performed to prepare signals to use as a feature for neural network architecture after
conversion to a common scale with unity standard deviation and zero mean. Both ECG channels and
GSR are now prepared to use as a sequence input to deep neural network architecture for classification.
Total size of ECG after pre-processing for DREAMER dataset is 828 × 60 × 128 (18 trials, 2 channels
and 23 persons, 60 segments of 128 samples each) and for AMIGOS dataset is 1056 × 86.125 × 128
(16 trials, 2 channels and 33 persons, 86.125 average segments of 128 samples each). AMIGOS dataset
has GSR with a total size of 528 × 86.125 × 128 after pre-processing.

3.3.5. Preparation of EEG-Based 2D Images

Total size of EEG data after Z-score normalization for DREAMER dataset is 5796 × 60 × 128
(18 trials, 14 channels and 23 persons) and for AMIGOS dataset is 7392 × 86.125 × 128 (16 trials,
14 channels and 33 persons). Each example of EEG containing 14 channels of 128 samples each
is mapped to Nasion 10–20 system [63] with their corresponding positioning of channels to a 1D
topological vector of size 81. Each corresponding sample of 14 channels is mapped to 1D topological
vector using the matching sequence of set of channels of AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6,
F4, F8, AF4 to the set of indices of 4, 13, 19, 21, 29, 31, 37, 39, 47, 49, 55, 57, 67, 76 respectively while
keeping all other indices of 1D topological vector as zero. After mapping, a feature matrix of 81×128
dimension is obtained as single EEG example of specific trial of a specific person. This feature matrix is
now converted to a 2D image (PNG format) for further processing. After the preparation of 2D images,
the DREAMER dataset contains 24,840 images and the AMIGOS dataset contains 45,474 images of
81 × 128 size each. These images are now ready to be used as input to the image input layer of deep
neural network architecture.

3.4. Proposed DNN Classification Architectures

ECG and GSR modalities can be used as sequence input to DNN architecture, while 14 channels
EEG after converted to 81 × 128 size of images can be used as image input to DNN architecture.
Therefore two different DNN architectures were developed for classification through the neural
network, one for EEG that would be useful for classification of images and another architecture for
ECG and GSR, which would hypothetically be useful for classification of signals or time-series sequence
data. Architecture for EEG primarily builds upon 2D convolutional layers, while the architecture for
ECG and GSR primarily builds upon the combination of LSTM and 1D convolutional layers, as LSTM
is expected to fully exploit the potential of sequence or time-series data [64]. The details of both
approaches and the design of their deep network architectures are given below.

3.4.1. DNN Architecture Design for EEG-Based Images

The detailed design of DNN architecture used for EEG image data is shown in Figure 6.
This architecture accepts image data of size 81 × 128 in the image input layer. Then there are three
sets of 2D convolutional layers, the first convolutional layer contains 8 filters of size 3 × 3, the second
convolutional layer contains 16 filters of size 3 × 3 while third convolutional layer contains 32 filters of
size 3 × 3 with padding of same values at the border. Each of these convolutional layers was followed
by three layers of batch normalization, Rectified Linear Unit (ReLU) and 2D max-pooling layer. Each of
the 2D max-pooling layers contains a pool size of 2 × 2 and a stride of 2 × 2 as well along with zero
paddings. The third max-pooling layer is connected to a fully connected (FC) layer of size 4 which
is then attached to the output layer after passing through the SoftMax layer. The findings from [65]
suggest that for 2D-CNN architecture, wider datasets which have more number of classes require
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more FC layers as compared to deeper datasets which have fewer classes and more samples per class,
and require fewer FC layers. Therefore, we used single FC layer in our 2D-CNN architecture.
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2D Layer
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  Preprocessed 
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Figure 6. Design of deep neural network (2D-CNN) for EEG-based image data.

The input image to this network is computed using a segment of 1 s of 14 channels of EEG
with 128 samples. Therefore, the trained network requires only one second of EEG signals to classify
into four basic emotions. This robust neural network has total learnable parameters of 80, 1168,
2320, and 43,012 for first, second, third convolution layers, and fully connected layer, respectively.
The detailed parameters internal to the neural network architecture are represented in Table 1.

Table 1. Details of 2D-CNN Architecture.

Serial Layer Type Activations Weights/Offset Bias/Scale Learnables

1 Image Input 81 × 128 × 1 - - 0
2 Convolution 81 × 128 × 1 3 × 3 × 1 × 8 1 × 1 × 8 80
3 Batch Normalization 81 × 128 × 1 1 × 1 × 8 1 × 1 × 8 16
4 ReLU 81 × 128 × 1 - - 0
5 Ma × Pooling 41 × 64 × 8 - - 0
6 Convolution 41 × 64 × 16 3 × 3 × 8 × 16 1 × 1 × 16 1168
7 Batch Normalization 41 × 64 × 16 1 × 1 × 16 1 × 1 × 16 32
8 ReLU 41 × 64 × 16 - - 0
9 Ma × Pooling 21 × 32 × 16 - - 0

10 Convolution 21 × 32 × 16 3 × 3 × 16 × 16 1 × 1 × 16 2320
11 Batch Normalization 21 × 32 × 16 1 × 1 × 16 1 × 1 × 16 32
12 ReLU 21 × 32 × 16 - - 0
13 Fully Connected 1 × 1 × 4 4 × 10,752 4 × 1 43,012
14 Softma× 1 × 1 × 4 - - 0
15 Classification Output - - - 0

3.4.2. DNN Architecture for ECG and GSR

Figure 7 present 1D-CNN architecture proposed for ECG and GSR modalities. One second signal
from either ECG or GSR data is captured as a sequence. This sequence is then passed through two
one-dimensional convolutional layers, each followed by ReLU activation and max-pooling layers
to extract temporal features directly from time-series data. Extracted features are then flattened for
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the LSTM layer. This LSTM layer learns the order dependence between extracted temporal features,
suitable for the classification of time-series data. Now three dense layers provide the learning of
prediction probabilities from extracted features for four classes of emotion.

The detailed design of DNN architecture for ECG and GSR-based sequence data is illustrated in
Figure 7. This architecture accepts sequence inputs of size 1×128 in its sequence input layer. After the
sequence folding layer, two sets of 1D convolutional layers were added. First convolutional layer
contains 16 filters of size 3 × 1, while second convolutional layer contains 32 filters of size 3 × 1.
Each of these convolutional layers is followed by the ReLU layer and 1D max-pooling layer of size 2 ×

1 with a stride of one. After max pooling, sequences are unfolded based on mini-batch size, and flatten
layer was applied to get a feature vector. This feature vector is now passed through the LSTM layer
with 128 hidden units, state activation function of tanh and gate activation function of sigmoid is used.
LSTM layer is then followed by a series of three fully connected layers of size 256 for FC1, 128 for FC2,
and a size of 4 for FC3. Each fully connected layer is followed by a dropout layer of 0.5, discarding
50% of random features to avoid over-training of sequence data from LSTM. The last FC layer after
dropout is connected to the classification output layer through the SoftMax layer for the classification
of HVHA, HVLA, LVHA, and LVLA classes of emotion.

Total learnable parameters of 160, 4640 and 2,163,200 exists for first convolution, second
convolution and LSTM layer, respectively. Recurrent weights to train for LSTM are 512 × 128 with the
512 × 1 bias for T4096 vector size of input from flatten layer. The detailed parameters of activations,
weights, bias, and learnables are provided in Table 2. Intermediate hidden-layer results are also
represented in Section 5 for comparison of features using this deep neural network architecture.
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Figure 7. Design of deep neural network (1D-CNN + LSTM) for ECG and GSR-based sequence data.

3.5. Multi-Modal Fusion

To establish and compare the efficacy of the various combination of modalities, majority voting
is applied. As every modality have their unique properties to depict the emotional state of a person,
multi-modal fusion using majority voting at the decision level is used. This fusion helps to contribute
comprehension of the effect of the various combination of modalities between GSR, ECG channels,
and EEG.
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Table 2. Details of 1D-CNN + LSTM Architecture.

Serial Layer Type Activations Weights Bias Learnables

1 Sequence Input 128 × 1 × 1 - - 0
2 Sequence Folding 128 × 1 × 1 - - 0
3 Convolution 128 × 1 × 16 3 × 1 × 1 × 16 1 × 1 × 16 64
4 ReLU 128 × 1 × 16 - - 0
5 Ma × Pooling 128 × 1 × 16 - - 0
6 Convolution 128 × 1 × 32 3 × 1 × 16 × 32 1 × 1 × 32 1568
7 ReLU 128 × 1 × 32 - - 0
8 Ma × Pooling 128 × 1 × 32 - - 0
9 Sequence Unfolding 128 × 1 × 32 - - 0
10 Flatten 4096 - - 0
11 LSTM 128 Input: 512 × 4096, Recurrent: 512 × 128 512 × 1 2,163,200
12 Fully Connected 256 256 × 128 256 × 1 33,024
13 Dropout 256 - - 0
14 Fully Connected 128 128 × 256 128 × 1 32,896
15 Dropout 128 - 0
16 Fully Connected 4 4 × 128 4 × 1 516
17 Dropout 4 - - 0
18 Softma× 4 - - 0
19 Classification Output - - - 0

4. Results

Pre-processed data for all modalities are now randomly split into 70% training data and 30% test
data. After pre-processing, each modality contains 24,840 instances of data (81 × 128 size of images
for EEG and 1 × 128 size of signals for ECG left, ECG right and GSR) for DREAMER dataset and
45,474 instances each for AMIGOS dataset. Two experiments were performed for each of AMIGOS
and DREAMER datasets by randomly split into training and testing for the computation of results in
both experiments. For the EEG approach, 13,642 images in the case of AMIGOS and 7452 images in
the case of DREAMER were randomly selected as test data, while the remaining randomly selected
images of these datasets were used as a training set of images. The same number of training and test
samples respectively were randomly selected for ECG and GSR approaches as well.

For the computation of all the presented results, training parameters of deep neural network
for both approaches of 2D-CNN and LSTM + 1D-CNN are consistent. Minimum batch size of 240,
an initial learning rate of 0.001 with ADAM optimizer, and a gradient squared decay factor of 0.99 were
used as training parameters. Core-i5 machine was used for the training of neural networks and testing
of performance measures. Separate representation of results of both datasets is presented below.

4.1. AMIGOS Results

Table 3 illustrates the results computed for AMIGOS dataset. 2D-CNN-based approach was used
to train 31,832 images randomly selected from the dataset. A similar number of instances from ECG left
channel, ECG right channel, and GSR was incorporated to individually train LSTM + 1D-CNN-based
neural network. ECG right channel among this second approach depicts the highest accuracy of
98.73%, while GSR with the lowest average accuracy of 63.67%. EEG signal using a 2D-CNN-based
approach depicts quite low performance 74.65% as compared to ECG, but much better than the existing
approaches in the literature for AMIGOS.

Table 3. Summary of results for AMIGOS dataset. Highlighted row represents best-performing modality.

Modality 1st Random Split 2nd Random Split Average Accuracy

ECG (Left) 96.98% 96.93% 96.96%
ECG (Right) 98.81% 98.65% 98.73%

GSR 63.77% 63.56% 63.67%
EEG 76.39% 72.91% 74.65%
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Table 3 depicts the better performance of the ECG right channel as compared to ECG left channel.
Similarly, both of ECG channels performed better as compared to EEG modality, while EEG modality
performs better than GSR. We used 2D-CNN architecture for EEG modality, while the same 1D-CNN
architecture is used for both ECG channels and GSR modality. The relatively low performance of
EEG is because of different architecture used for its 14 channel combinations, while the relatively low
performance of GSR is because of the nature of its modality. GSR generally depicts less contribution in
the evaluation of emotion elicitation as compared to ECG [66], which is enriched with more critical
information regarding the emotional state of a person. The fusion of ECG left channel, ECG right
channel, and EEG channel improve overall highest classification accuracy of 99%. The results for all
combinations of the modalities are separately represented in Table 4.

Table 4. AMIGOS results for majority voting (fusion of modalities). Highlighted row represents the
best-performing combination of modalities.

Modality 1st Random Split 2nd Random Split Average Accuracy

ECGL + ECGR + GSR + EEG 97.5% 97.0% 97.25%
ECGL + ECGR 98.2% 97.7% 97.95%
ECGL + GSR 79.8% 81.6% 80.70%
ECGL + EEG 85.4% 78.9% 82.15%
ECGR + GSR 80.5% 82.5% 81.50%
ECGR + EEG 86.1% 79.5% 82.80%
GSR + EEG 68.7% 65.8% 67.25%

ECGL + ECGR + GSR 98.5% 98.2% 98.35%
ECGL + ECGR + EEG 99.0% 98.6% 98.8%

ECGL + GSR + EEG 91.5% 90.0% 90.75%
ECGR + GSR + EEG 92.2% 90.5% 91.35%

4.2. DREAMER Results

Table 5 illustrates the summary of results computed for two random splits for ECG channel 1,
channel 2, and EEG. 2D-CNN network was trained with 17,388 randomly selected images and a similar
number of samples from ECG channel 1 and ECG channel 2 were used to individually train the LSTM
+ 1D-CNN-based neural network. ECG channel 2 results in the highest average accuracy among
these modalities, while EEG with another approach has low but comparable significant results for the
classification of four classes in the literature. Table 6 represents the results of majority voting using
combinations of channel 1 of ECG, channel of ECG, and EEG.

Table 5. Summary results for DREAMER dataset. Highlighted row represents best-performing modality.

Modality 1st Random Split 2nd Random Split Average Accuracy

ECG (Channel 1) 90.46% 88.31% 89.39%
ECG (Channel 2) 90.03% 90.96% 90.50%
EEG 47.44% 49.64% 48.54%

Table 6. DREAMER results for majority voting. Highlighted row represents best-performing
combination of modalities.

Modality 1st Random Split 2nd Random Split Average Accuracy

ECGL + ECGR 89.5% 89% 89.25%
ECGL + EEG 63.9% 61.6% 62.75%
ECGR + EEG 63.9% 62.2% 63.05%
ECGL + ECGR + EEG 90.8% 90.3% 90.55%
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The detailed results of the DREAMER dataset can be evaluated using confusion matrices for
individual modalities as well as the fusion of modalities. Therefore, Tables 7 and 8 represents confusion
matrices of ECG channel 1 and channel 2 respectively. Both channels of ECG depict promising results
as compared to EEG, while Table 9 represents detailed results of EEG modality. Similarly, the detailed
results of AMIGOS dataset in terms of confusion matrices are presented in Table 10 for ECG
right-channel modality, Table 11 for GSR modality, and Table 12 for EEG modality respectively.

In both datasets, the recognition rate of ECG is better than EEG because of the difference in
architecture. The combination of ECG and EEG yields better performance for both datasets because
these two are the highest achieving modalities individually. Secondly, architecture for ECG and EEG
is different, therefore EEG with relatively lower individual accuracy performed well on samples
converted into images for 2D-CNN architecture. The architecture used for both modalities of ECG
and GSR is the same, therefore the small accuracy value of individual GSR modality is due to less
informative nature of GSR signals as compared to ECG signals, which results in deterioration in overall
recognition rate when combined with ECG and EEG. In the DREAMER dataset, GSR signals are not
available, therefore, GSR is not combined for the representation of that dataset results.

Table 7. Confusion matrix of ECG channel 1 of DREAMER dataset.
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Table 8. Confusion matrix of ECG channel 2 of DREAMER dataset.
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Table 9. Confusion matrix of EEG of DREAMER dataset.
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Table 10. Confusion matrix of ECG right modality for AMIGOS dataset.
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Table 11. Confusion matrix of GSR modality for AMIGOS dataset.
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HVHA 1950
14.3%

332
2.4%

313
2.3%

444
3.3%

64.2%

HVLA 386
2.8%

1958
14.4%

380
2.8%

495
3.6%

60.8%

LVHA 420
3.1%

530
3.9%

2656
19.5%

617
4.5%

62.9%

LVLA 318
2.3%

362
2.7%

349
2.6%

2132
15.6%

67.4%

Total 63.4% 61.5% 71.8% 57.8% 63.7%

Table 12. Confusion matrix of EEG modality for AMIGOS dataset.

O
u

tp
u

t
C

la
ss

Target Class

HVHA HVLA LVHA LVLA Total

HVHA 2356
17.3%

282
2.1%

321
2.4%

287
2.1%

72.6%

HVLA 293
2.1%

2429
17.8%

350
2.6%

299
2.2%

72.1%

LVHA 231
1.7%

276
2.0%

2819
20.7%

285
2.1%

78.1%

LVLA 194
1.4%

195
1.4%

208
1.5%

2817
20.6%

82.5%

Total 76.6% 76.3% 76.2% 76.4% 76.4%

5. Discussion

After results analysis, it is observed that AMIGOS performed better as compared to DREAMER
dataset with the same methodology. The second observation from Tables 9 and 10 exhibits that the
response of all the four classes of HVHA, HVLA, LVHA, and LVLA is consistent for a specific modality,
except a significantly better response of LVHA in case of GSR modality as shown in Table 11. The third
observation is that the response of these four classes is also consistent for the specific modality of
the DREAMER dataset as shown in Tables 7–9, but based on the contribution of each class in the
overall dataset. This could also point towards the observation of more imbalance class instances for
the DREAMER dataset as compared to the AMIGOS dataset.

Based on these above-mentioned observations, one possible reason for AMIGOS outperforming
the DREAMER dataset is its more balanced distribution of classes as compared to DREAMER. Another
reason for the better performance of AMIGOS as compared to DREAMER is due to the nature of
the self-assessment acquisition process. Self-assessment for the AMIGOS dataset was obtained on
a scale of 1–9 for arousal and valence separately. However, for the DREAMER dataset, self-assessment
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from subjects was acquired on the scale of 1–5 for both valence and arousal. The scale of 1–5 not only
exhibits half the freedom of choice on an intensity scale of emotion but also restricts the imbalance
created by avoiding the midpoint between 1–5 scale as participants can only provide integer data for
the intensity of arousal and valence. However, AMIGOS gives participants the liberty to self-assess
in a floating-point number for the scale of 1–9, hence better categorization of emotion can be made
which implied better performance of the algorithm on this dataset comparatively. One more possible
reason for variation in results is because the total number of instances in AMIGOS for the specific trial
is variable and based on the actual length of the trial; however, in the case of DREAMER, only the last
60 segments (1 s each) of each trial were incorporated (because a few trials are much larger in length
to be significant for specific emotion). As AMIGOS explores the full-length potential of each trial,
this could also explain the variation between the performance of AMIGOS and the DREAMER dataset.

It is also interesting to investigate the spectral signature of ECG signals and compared it with GSR
signals to elaborate on the significance of ECG results as compared to GSR results for the same deep
neural network architecture. Best and worst-performing ECG instances from test data of AMIGOS,
based on their prediction probabilities were selected for four classes individually are presented in
Figure 8a,b respectively. Signals of all classes except LVHA are baseline shifted with high noise
content hiding the actual shape of an ECG signal results in its worst performance for the use of
emotion elicitation. The power spectrum comparison for four classes of best and worst of these signals
is presented in Figure 8c,d, respectively. Figure 8c depicts higher inter-class spectral variability of
best-performing signals as compared to lower inter-class spectral variability of worst signals except for
LVHA in Figure 8d.
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Figure 8. (a) Best-performing class-wise ECG samples. (b) Worst-performing class-wise ECG samples.
(c) Spectrum of best-performing class-wise ECG samples. (d) Spectrum of worst-performing class-wise
ECG samples.

A strong connection between the performance of proposed deep neural network architecture
and spectral inter-class variability can also be proven through spectral analysis of comparatively less
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significant modality of GSR. Therefore, Figure 9a,c exhibits higher inter-class temporal and spectral
variability of best-performing GSR signals as compared to lower inter-class temporal and spectral
variability of worst-performing GSR signals as shown in Figure 9b,d respectively with the exception
of LVHA class. This exception of LVHA class depicts higher recognition performance for LVHA
which is also evident from confusion matrices of AMIGOS dataset presented in Tables 10 and 11
for both ECG and GSR respectively. Another observation can be drawn with the higher inter-class
variability of the ECG signal in Figure 8c as compared to the GSR signal in Figure 8, representing the
spectral significance for the emotion elicitation process as a performance comparison of these two
modalities. Therefore, these temporal and spectral observations proved the significance of proposed
CNN + LSTM-based architecture to extract those temporal-spectral features for emotion elicitation.
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Figure 9. (a) Best-performing class-wise GSR samples. (b) Worst-performing class-wise GSR samples.
(c) Spectrum of best-performing class-wise GSR samples. (d) Spectrum of worst-performing class-wise
GSR samples.

Intermediate features from hidden layers of 1D-CNN + LSTM architecture are also interesting
to investigate for best-performing features in Figure 10 and worst-performing features in Figure 11
respectively. These layers’ wise deep features are the continuity of input signals of best-performing ECG
instances and worst-performing ECG instances represented in Figure 8a,b respectively. Figure 10a,c
represents extracted features after first and second convolution layers of 1D-CNN + LSTM architecture
while Figure 10b,d represents extracted features after first and second hidden ReLU layers respectively.
These hidden deep features from best ECG instances are about to evolve in next hidden layers, where
the flatten layer converts 32 instances of activations of 128 samples each into 4096 size feature vector as
shown in Figure 10e. This feature vector is passed through the LSTM layer with feature representation
in Figure 10f and with feature representation of first, second, and third fully connected layers shown
in Figure 10g–i respectively. Through all these hidden layers features evolve with the improvement in
inter-class variability in the subsequent layers.
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Figure 10. (a) Best class-wise features after first convolution layer. (b) Best class-wise features after
first ReLU layer. (c) Best class-wise features after second convolution layer. (d) Best class-wise features
after second ReLU layer. (e) Best class-wise features after flatten layer. (f) Best class-wise features after
LSTM layer. (g) Best class-wise features after FC1 layer. (h) Best class-wise features after FC2 layer.
(i) Best class-wise features after FC3 layer. (j) Best class-wise predictions after SoftMax layer.
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Figure 11a–h also describe the hidden feature representations evolved through subsequent layers
for worst ECG instances for the same 1D-CNN + LSTM architecture. It can be observed that the
inter-class variability improves significantly after LSTM and for deep layers of architectures such
as represented in Figure 11g,h. However, it is also evident that the overall inter-class variability
enhancement for emotion classification is much smaller as compared to the improvement found for
best-performing ECG instances. Signals performed worst primarily since these signals are inherited
with strong input noise, which is unable to be removed through pre-processing steps performed before
introducing the signals to DNN.

This investigation can be evaluated with the importance of a strong linkage between spectral
inter-class variability and the performance of proposed deep neural network architecture. The better
response of the LVHA class for both ECG and GSR modalities is strongly linked with its higher spectral
inter-class variability for the AMIGOS dataset as highlighted in Tables 10 and 11. Therefore, besides the
significance of LVHA class, it is wrongly classified as HVHA and other wrong decisions represented in
Figure 11i,j. The best-performing signals are predicted with the highest prediction probabilities are
represented in Figure 10i,j for FC3 and SoftMax layer respectively. It can also be concluded that the
1D-CNN + LSTM-based deep architecture is highly capable of extracting and distinguishing spectral
features that support better performance of the architecture.

The main objective of this study is to improve recognition performance of four classes of
emotions in a less constrained real-world environments. To evaluate the accomplishment of this
objective, we need to explore the performance comparison of this study with previous literature using
benchmark datasets. This comparison is made on the two publicly available datasets of AMIGOS
and DREAMER. Physiological signals acquired for both of these recently published DREAMER and
AMIGOS datasets use wearable low-cost sensors for EEG, ECG and GSR acquisition as compared
to invasive acquisition of physiological signals in previously published DEAP and MAHNOB-HCI
datasets. Therefore, comparison of emotion recognition of state of the art with proposed study for
both datasets is presented in Table 13.

In Table 13, two classes of emotions represent either high/low levels of valence or arousal,
while four classes represent HVHA, HVLA, LVHA, and LVLA. For instance, the study [36] with
statistical features and SVM using AMIGOS dataset results in 68.8% and 67% of accuracy for arousal
and valence respectively, while another study [37] improved valence results by using SVM-RBF.
The recognition results from [12,13,35,39] and attention-based LSTM-RNN study [40] improved with
deep-learning algorithms for either AMIGOS or DREAMER dataset for two classes of emotions. In a
recent study using Bayesian DNN [42], only binary classification of high and low level of valence results
are reported as 86% for DREAMER dataset and 90% for AMIGOS dataset. 3D-CNN architecture [14]
yields good results for AMIGOS dataset with the cost of computational complexity and expensive
training time and resources. In a more recent study [15], four classes of emotions with recognition
performance of 55.56% and 58.57% is achieved using transfer learning of CNN-VGG16 model [67]
for DREAMER and AMIGOS datasets respectively. The combination of 1D-CNN and LSTM used to
develop a robust methodology that performed much better than the previous results for two of the
latest publicly available datasets suitable for real-world emotion monitoring. Table 13 summarized the
comparison between proposed methodology with state-of-the-art research using physiological-based
emotion elicitation.

Therefore, our proposed architecture outperformed state-of-the-art approaches for the
physiological signals acquired through less invasive methods. ECG proved to be a more significant
modality as compared to EEG and GSR through the design of specialized deep neural networks based
on the nature of the physiological signals. Spectral analysis with a performance comparison for both
datasets appraises the adequacy of our methodology to inherently extract spectral features from these
modalities as well.
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Figure 11. (a) Worst class-wise features after first convolution layer. (b) Worst class-wise features after
first ReLU layer. (c) Worst class-wise features after second convolution layer. (d) Worst class-wise
features after second ReLU layer. (e) Worst class-wise features after flatten layer. (f) Worst class-wise
features after LSTM layer. (g) Worst class-wise features after FC1 layer. (h) Worst class-wise features
after FC2 layer. (i) Worst class-wise features after FC3 layer. (j) Worst class-wise predictions after
SoftMax layer.
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Table 13. Comparison with state-of-the-art related work. V and A represents binary classification (High
or Low) of Valence and Arousal respectively, while 4 classes are HVHA, HVLA, LVHA and LVLA.

Study Methodology Emotion Classes Accuracy (DREAMER) Accuracy (AMIGOS)

[36] Statistical Features, SVM 2 - 67%(V), 68.8%(A)

[37] SVM-RBF 2 - 83.9%(V), 65%(A)

[35] Statistical Features, SVM 2 61.84%(V), 63.32%(A) -

[12] DGCNN 2 86.23%(V), 84.54%(A) -

[13] GCB-net 2 86.99%(V), 89.32%(A) -

[39] CNN 2 - 84%(V), 85.8%(A)

[40] LSTM-RNN 2 - 79.4%(V), 83.3%(A)

[14] 3D-CNN 4 - 99.7%

[42] Bayesian DNN 2 86%(V) 90%(V)

[15] CNN-VGG16 4 55.56% 58.57%

Proposed Study LSTM + CNN 4 90.8% 99%

6. Conclusions

Our proposed deep-learning architecture combines the usefulness of LSTM and CNN,
which proved to be efficient for emotion recognition and outperforming previous approaches.
Intermediate results of the deep neural network as a hidden feature representation helps us
get an insight into features evolving through these layers. Furthermore, the significance of the
proposed methodology lies in the higher performance for four classes of emotion elicitation based on
subject-independent study, while the wireless acquisition of physiological signals is more suitable for
the less constrained real-world environments.

The scope of this study is limited to the decision-level fusion of modalities using majority voting;
however, feature-level fusion techniques with proposed architecture may yield significant results.
Similarly, three-dimensional CNN architectures can be explored with the combination of LSTM as
future investigation for performance improvement. Future dimensions will also assist EEG with more
specialized deep neural networks for better performance as well for various other physiological signals
such as skin temperature and respiration.
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Abstract: Congenital heart disease (CHD) is a heart disorder associated with the devastating
indications that result in increased mortality, increased morbidity, increased healthcare expenditure,
and decreased quality of life. Ventricular Septal Defects (VSDs) and Arterial Septal Defects (ASDs) are
the most common types of CHD. CHDs can be controlled before reaching a serious phase with an early
diagnosis. The phonocardiogram (PCG) or heart sound auscultation is a simple and non-invasive
technique that may reveal obvious variations of different CHDs. Diagnosis based on heart sounds is
difficult and requires a high level of medical training and skills due to human hearing limitations and
the non-stationary nature of PCGs. An automated computer-aided system may boost the diagnostic
objectivity and consistency of PCG signals in the detection of CHDs. The objective of this research was
to assess the effects of various pattern recognition modalities for the design of an automated system
that effectively differentiates normal, ASD, and VSD categories using short term PCG time series.
The proposed model in this study adopts three-stage processing: pre-processing, feature extraction,
and classification. Empirical mode decomposition (EMD) was used to denoise the raw PCG signals
acquired from subjects. One-dimensional local ternary patterns (1D-LTPs) and Mel-frequency cepstral
coefficients (MFCCs) were extracted from the denoised PCG signal for precise representation of data
from different classes. In the final stage, the fused feature vector of 1D-LTPs and MFCCs was fed to
the support vector machine (SVM) classifier using 10-fold cross-validation. The PCG signals were
acquired from the subjects admitted to local hospitals and classified by applying various experiments.
The proposed methodology achieves a mean accuracy of 95.24% in classifying ASD, VSD, and normal
subjects. The proposed model can be put into practice and serve as a second opinion for cardiologists
by providing more objective and faster interpretations of PCG signals.

Keywords: phonocardiogram; machine learning; empirical mode decomposition; feature extraction;
mel-frequency cepstral coefficients; support vector machines; computer aided diagnosis; congenital
heart disease; statistical analysis

1. Introduction

Congenital heart disease (CHD) is one the most common birth defects which affect the overall
structure of the heart and vessels, found in not more than 1% of newborns [1]. CHD manifests itself at
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birth and symptoms may vary from mild asymptomatic cases to severe, life-threatening indications.
With advances in treatment, there is an increasing population of adults surviving with congenital heart
malformations. Globally, cardiovascular diseases (CVD) are the main cause of mortality. Many adult
CHD survivors presenting an increased risk of CVD [2] may have long term health problems, which
affect their quality of life. In Pakistan, CHD remains to be an important medical issue and the
number of patients is increasing every day [3]. Among newborn children and youngsters, cardiac
disorders are responsible for a large extent (30% to 50%) of mortality brought about by birth surrenders.
The most common cardiac defects which represent about 85% of all congenital heart diseases are
ventricular septal defects (VSDs; 34%), and atrial septal defects (ASDs), which contribute up to 13% [4].
Like any other medical issue, robust diagnosis methods are required for the timely diagnosis of
the CHDs. Different non-obtrusive procedures are utilized in identifying heart defects. Using the
electrocardiogram (ECG) is one of the most common paths for identifying heart issues; it is based on
the electrical signals generated during the heart muscle contraction/relaxation. The ECG reveals the
electrical activity of the heart and is mostly recorded by the placement of three electrodes for early
diagnosis. It comprises five waves; i.e., P, Q, R, S, and T. These waves are prepared to make sense of
different pathologies [5].

Another commonly used mechanism for diagnosis of heart disorder is through the analysis of the
heart sound [6]. Easy access to digital stethoscopes allows medical staff to record and analyze heart
sounds for diagnostic purposes. The phonocardiogram (PCG) records heart sounds and murmurs in the
form of a plot and the machine by which these sounds are recorded is known as the phonocardiograph.
It is one of the non-obtrusive systems, which records heart condition in audible form. Heart sounds
are generated by the opening or closing of the heart valves. Blood flow through the valves’ orifices or
into the ventricular chambers also produces heart sounds. Recording of the PCG signal consists of
four important heart sound constituents; namely, S1, S2, S3, and S4.

An atrial septal defect (ASD) [7] is a birth deformity of the heart in which there is a hole in the wall
(septum) that isolates the upper chambers (atria) of the heart. A gap can fluctuate in size and requires
a medical procedure. The reasons for CHD amongst most infants are obscure, but genetic factors are
also important, as a few infants have heart defects as a result of changes in their genes or chromosomes
[8]. A ventricular septal defect (VSD) is an opening in the heart, a typical heart imperfection that is
present during childbirth (congenital).

Extensive research has been carried out for the detection and classification of congenital heart
disorders using the PCG signal. The PCG signal classification approach was suggested using the
nested set of classifiers; namely, random forest, cost-sensitive classifier, and LogitBoost (LB) [9].
A combination of time domain, statistical, and frequency domain features was used for effective
classification. Cepstrum-analysis-based feature extraction was performed to classify normal and
abnormal PCG signals through a support vector machine (SVM) classifier [10].

PCG signal classification was achieved through linear SVM and a combination of dynamic time
wrapping (DTW) and Mel-frequency cepstral coefficient (MFCC) features in [11] to achieve 82.4%
accuracy. The screening method of PCG signals using a modified Arash-band method and an SVM
classifier has been used [12]. In [13], the PCG signal was first segmented into S1, systole, S2, and
diastole through the hidden Markov model (HMM). Gammatone frequency cepstral coefficient (GFCC)
features were extracted to perform classification using weighted SVM without segmentation and with
segmented signals. The sensitivity of 90.3% and specificity of 89% were achieved through 10-fold
cross-validation. Rubin et al. [14] proposed a method for classification of normal and abnormal PCG
signals based on Mel-frequency cepstral coefficients (MFCCs) and a two-layer convolutional neural
network (CNN). This method achieved an overall score of 83.99% with the PHY16 challenge database.
Spectrogram features from PCG were used to train CNN and Adaboost classifiers [15]. A simple
decision rule was implemented on outputs of both classifiers to generate final classification results with
an overall reported accuracy of 89%. In another study [16], the authors used a Hamming filter for noise
reduction in PCG signals. A four-layer 1D CNN for PCG signal classification was employed and the
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overall accuracy of this method was 79%. In a recent study [17], the CNN architecture was presented
for heart sound classification. CNN was tested on different feature sets, such as Mel-Spectrogram,
MFCC, and sub-band envelopes.

Zhihai Tu et al. performed filtration of heart sound signals using wavelet transform. Heart sound
segmentation was performed using Hilbert transform [18,19], and cubic polynomial interpolation
[20]. Samuel E Schmidt et al. presented an easy and cheap system for the identification of coronary
artery disease (CAD) using acoustic features. A quadratic discriminant function was used to combine
the different features. The accuracy to diagnose the CAD disease is 73% [21]. In another study
[22], tunable Q-wavelet transformation [23–25] and signal second difference with the median filter
were used for the detection of artifact in heart sound. In [26], the classification of heart sound was
achieved through power MFCC features fused with fractal features. The nearest neighbor classifier
was employed to perform classification. The overall accuracies achieved on three publicly available
datasets were 92%, 81%, and 98%. In [27] heart sounds classification was performed through MFCC
and linear predictive coding (LPC) features in conjunction with the Adaboost ensemble classifier.
In [28], the authors used the least square support vector machine (LSSVM) with wavelet features
for the detection of heart pathologies. VSD was diagnosed from the time-frequency feature matrix
acquired from heart sounds [29]. The ellipse-based model achieved max accuracy of 97.6% on large
VSD sounds. The authors used the auscultation jacket to detect heart abnormalities [30]. The system
with a feed-forward neural network as the classifier achieved sensitivity and specificity of 84% and
86% respectively. In [31], normal and abnormal cardiac sounds were classified using ensemble EMD,
auto-regressive models, and a neural network. The method showed sensitivity and specificity of 82%
and 88% respectively. An efficient method for the detection of abnormal PCG signals was proposed [32]
using MFCCs and SVM with a classification accuracy of 92.6%. Classification of CAD and non-CAD
subjects from PCG and ECG [33] using a dual input neural network (DINN) achieved specificity,
accuracy, and G-mean of 89.17%, 95.62%, and 93.69%, respectively. A combination of machine learning
and a deep learning model [34] for identification of congestive heart failure (CHF) from audio PCG
obtained an accuracy of 93.2%.

Classification of ASD and normal PCG signals collected from newborn subjects was performed
using a combination of short-time Fourier transform (STFT) and MFCC and its derivatives features [35].
Accuracy of 93.2% was achieved through the KNN classifier. An approach based on discrete wavelet
transform (DWT) and multilayer perceptron (MLP) for estimation of VSD were presented in [36].
Features such as power, standard deviation, skewness, kurtosis, and Shannon entropy were extracted
from eight levels of detailed coefficients of DWT. In another similar study [37], a combination of
wavelet and MFCC features was proposed to achieve 97% accuracy on normal and four abnormal
classes of heart sounds. In [38], a comparative analysis of four features reduction methods for PCG
signals is presented. Experiments were performed on normal patients, and those with three different
classes of heart disorders; namely, ASD, VSD and AS. Double discriminant embedding (DDE), feature
space discriminant analysis (FSDA), clustering-based feature extraction (CBEF), and feature extracting
using attraction points (FEUAP) were used with a KNN classifier. Table 1 presents a comparative
summary of existing literature in terms of feature extraction and classification methods and the number
of classes used in the experimentation.

In the present research, a novel method for PCG signal analysis for the detection and classification
of congenital heart diseases is presented. Classification of ASD and VSD based on PCG signals is
targeted using empirical mode decomposition (EMD) and a fusion of MFCC and temporal features.
Specifically, a new feature fusion-based approach for the classification of ASD and VSD using PCG
signal analysis is proposed. The classification performances of MFCCs and temporal features 1D
local texture patterns (1D-LTPs) were individually evaluated and followed by the evaluation over
the proposed fused feature representation. The proposed method was shown to be accurate, reliable,
and robust due to comprehensive PCG signal representation with reduced features.
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Table 1. Comparison with existing literature.

Ref Year Dataset Classes Features Classifier Results

[9] 2016 Physionet Challenge 2016 [39] Normal(2488), Abnormal(665)
Time-frequency,
Wavelet and statistical

LogitBoost, Random Forest Acc: 84.48%

[11] 2016 Physionet Challenge 2016 [39] Normal(2575), Abnormal(665) Dynamic time warping SVM Acc: 82.4%

[15] 2016 Physionet Challenge 2016 Normal(2575), Abnormal(665) 124 Time-frequency features Adaboost, CNN Acc: 89%

[12] 2016 Self-collected
Normal(132), Abnormal
seven classes(131)

Arash-Band SVM Acc: 87.45%

[36] 2017 Self-collected Small VSD(60), Large VSD(60) Statistical, DWT features Multilayer Perceptron (MLP) Acc: 96.6%

[35] 2017 Self-collected Normal, VSD (STFT), MFCC KNN Acc: 93.2%

[13] 2018
PhysioNet Computing in
Cardiology Challenge

Normal(2575), Abnormal(665) GFCC Weighted SVM Sen: 90.3% Spec: 89%

[17] 2018
UoC-murmur database,
PhysioNet-2016

Normal(336), CHD(130),
Normal/Abnormal(2435)

Mel-Spectrogram, MFFC
and sub-band envelopes

CNN Acc: 81.5% Sen: 84.5%

[10] 2018
PhysioNet Computing in
Cardiology Challenge-2016

Normal(50), Abnormal(50) Cepstrum Analysis SVM Acc: 95%

[38] 2018 Self-collected Normal(40), Abnormal(58) CBFE, FEUAP, FSDA, DDE KNN Acc: 84.39%

[32] 2019 Self-collected Normal(175), Abnormal(108)
MFCC, normalized
average Shannon energy

SVM Acc: 92.6%

This work 2020 Self-collected Normal(140), Abnormal(140) MFCC + 1D-LTPs SVM Acc: 95.63%

This work 2020 Self-collected Normal(140), ASD(85), VSD(55) MFCC + 1D-LTPs SVM Acc: 95.24%
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The rest of this article is organized as follows. Section 2 describes details about the data acquisition
and the proposed methodology. Section 3 presents results of detection and multiclass experiments.
A comparative analysis of this work with previous studies is presented in Section 4. In Section 5,
conclusions of this research and future directions are described.

2. Materials and Methods

2.1. Overview

A PCG signal acquired using a stethoscope was digitized through an analog-to-digital converter.
Signal preprocessing was performed on the acquired signal to remove possible noise and distortions.
A data-driven approach known as empirical mode decomposition (EMD) was applied to denoise
the signal. After preprocessing, feature extraction was performed to capture the most significant
and decisive information from different classes of PCG signals. MFCC and temporal features were
extracted and fused to better represent the signal. Finally, the support vector machine classifier was
employed to distinguish different classes of PCG data. A sketch of the proposed system is presented in
Figure 1.

Figure 1. Sketch of the proposed cardiac disorder classification system.

2.2. Materials

One of the main challenges in studies related to the CHDs is the availability of respective PCG
signals. There are several PCG signal datasets available [40,41], but they have following shortcomings.

1. The number of observations (signals) is limited.

2. Not recorded in a hospital environment.

3. Limited to two classes of data; namely, normal and abnormal.

Therefore, a new dataset of PCG signals was acquired that contains ASD, VSD, and normal
data classes.

A self-built and low-cost data acquisition system (a microphone fitted in simple stethoscope)
was utilized and connected with a computer for the acquisition of PCG signals in .wav format with
16-bit resolution and a sampling frequency of 44.1 kHz. PCG signal data were acquired by placing
a stethoscope between the third and fourth left intercostal space. This site is best known for the
detection of CHDs through auscultation.

PCG data were acquired from different patients admitted at Rawalpindi Institute of Cardiology,
Rawalpindi, Pakistan; 85, 55, and 140 samples were collected from ASD, VSD, and normal subjects
respectively. All recordings, each of five seconds, were taken in the hospital environment and under the
supervision of an expert physician from the pulmonic, aortic, mitral, and tricuspid areas of the human
heart. Labeling of the samples was done by an expert cardiologist who further validated through
various tests of each participating subject. Table 2 provides a summary of the dataset according to each
class, and examples of signals collected from normal, ASD, and VSD subjects are shown in Figure 2.

The reader may also be interested in the MATLAB codes of the newly developed feature extraction
process [42]. However, it only provides experimental results on the PCG dataset comprised of the
normal, ASD, and VSD classes.
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Table 2. Description of PCG dataset.

Status No. of Signals No. of Subjects Male Female

Normal 140 28 17 11
ASD 85 17 12 5
VSD 55 11 7 4

Figure 2. PCG signals collected from normal, arterial septal defect (ASD), and ventricular septal defect
(VSD) subjects.

2.3. Preprocessing-Empirical Mode Decomposition

Acquired PCG signal gets corrupted due to embedded electronics, environmental noise, and
other body organ artifacts. These noise elements suppress useful discriminative data associated
with different classes of cardiac health and thus make the classification process more challenging.
Signal denoising is a crucial preprocessing phase to obtain the unique region of interest for each data
class, i.e., ASD, VSD, and normal. Empirical mode decomposition (EMD) [43–45] is a widely employed
method in the domain of medical signal processing for denoising [46,47] and feature extraction [48,49].
EMD reduces the given data into a collection of subcomponents called intrinsic mode functions (IMFs).
The process of IMF extraction is known as sifting. The original signal q(t) can be expressed in terms of
IMFs and residual signal r(t) as follows:

q(t) =
N

∑
k=1

hk(t) + r(t) (1)

where the number of extracted IMFs is represented by N and IMFs hk(t) are obtained from raw PCG
signal q(t) through an iterative process known as sifting. Major computing steps of the sifting process
are listed below [50].

1. Calculate local minima and maxima from PCG signal q(t).

2. Cubic spline interpolation is performed on local minima and maxima to form lower envelope
emin(t) and upper envelope emax(t).

3. Calculate the mean of upper and lower envelopes as described by Equation (2).

a(t) =
1
2
(emin(t) + emax(t)) (2)
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4. Subtract a(t) from the original signal q(t) as:

y(t) = q(t)− a(t) (3)

5. Repeat the steps (1)–(4) until the above mentioned two conditions of IMF are fulfilled.

Here, first, IMF is represented as h1(t) = y(t). Remaining IMFs from the residual signal are
extracted as defined by Equation (4).

r1(t) = q(t)− h1(t) (4)

To extract the remaining IMFs, r1(t) is now treated as a new signal and the sifting procedure
is iteratively applied until a residual signal becomes monotonic functions. Figures 3–5 show IMFs
extracted from PCG signals of normal, ASD, and VSD subjects. It was experimentally observed that
the first and last two IMFs contain high-frequency noise and DC offset respectively. Therefore, they
were subtracted from the remaining signal to acquire a good quality denoised signal represented by
x(t) as follows:

x(t) =
N−2

∑
k=2

hk(t) (5)

Figure 6 illustrates the preprocessed signal x(t) for normal, ASD, and VSD subjects.

Figure 3. Intrinsic mode functions (IMFs) extracted from the PCG signal of a normal subject.
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Figure 4. IMFs extracted from the PCG signal of an ASD subject.

Figure 5. IMFs extracted from the PCG signal of a VSD subject.

Figure 6. Preprocessed PCG signal of normal, ASD, and VSD subjects.
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2.4. Feature Extraction

In this step, feature extraction was performed on the preprocessed PCG signal x(t).
Frequency-based features such as Mel-frequency cepstral coefficients (MFCCs) and temporal features
1D local texture patterns (1D-LTPs) were extracted. The final feature vector was constructed by fusion
of these two feature sets to best represent the PCG signal data of different classes with minimum
possible values.

2.4.1. 1D Local Ternary Patterns (1D-LTPs)

Local ternary patterns are an extended form of widely used temporal features known as local
binary patterns [51] used extensively in the domain of computer vision [52–54]. One-dimensional
local ternary patterns (1D-LTPs) are modified feature descriptors applied for signal processing
applications [55–58]. Steps for extraction of 1D-LTP features are delineated in Figure 7.

Figure 7. One-dimensional local ternary pattern (1D-LTP) feature extraction steps.

To extract 1D-LTP features from preprocessed signal x(t), it is first divided into windows of size
W + 1. The center sample of each window is θ, the upper bound is θ + φ and the lower bound is θ − φ.
Each window of size W + 1 is divided into left and right equal-sized frames around center sample x[i].

F(xi, θ, φ)) =















+1, xi − (θ + φ) ≥ 0

0, (θ + φ) < xi < (θ − φ)

−1 xi − (θ − φ) ≤ 0

(6)

The F(.) is the three-valued vector output having values +1, 0 and −1. F(.) is split into upper and
lower patterns using Equations (7) and (9).

LTPupper =
8

∑
p=1

Su (F(p)) .2p (7)
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Su =

{

1, if F(p) = 1

0, otherwise.
(8)

LTPlower =
8

∑
p=1

Sl (F(p)) .2p (9)

Sl =

{

1, if F(p) = −1

0, otherwise.
(10)

LTPupper is calculated by using Equation (8) and LTPlower is computed from Equation (10).
LTPupper and LTPlower were the resultant LTP feature vectors extracted from the PCG signal.

2.4.2. Mel Frequency Cepstral Coefficients (MFCC)

Mel-frequency cepstral coefficients (MFCCs), a well-known group of features for speech/speaker
recognition systems, have recently gained importance as features for classifying heart
sounds [26,32,59,60]. Mel frequencies are grounded in the nonlinear physiognomies of the human ear’s
sensitivity to different frequencies [61]. MEL frequency is related to linear frequency in Equation (11).

Mel( f ) = 2595log10

(

1 +
f

700

)

(11)

The process of MFCCs’ calculation is shown in Figure 8. The preprocessed PCG signal is
pre-weighted to improve the signal to noise ratio. In a frame blocking stage, the segmented PCG
signals are blocked into frames using a window length of 30 ms with a 20 ms window overlapping.
For a sampling frequency of 44.1 kHz, a hamming window of length 1323 samples was chosen to avoid
the parasitic spectral leakage. Fast Fourier transform (FFT) is applied to segmented PCG signals to
transform each frame to its frequency domain version. The frequency-domain segmented PCG array is
filtered by a group of band-pass Mel triangular filters and transformed into the Mel inverse spectrum
domain. The logarithm of Mel spectrum coefficients from each Mel filter is used to compress the higher
band of the PCG signal. In the final stage, the logarithmic Mel spectrum coefficients are transformed
using the discrete cosine transform (DCT) illustrated in Equation (12).

Figure 8. The process of mel-frequency cepstral coefficient (MFCC) feature extraction.

c[n] =
N−1

∑
m=0

S[m] cos
(

πn

M

(

m −
1
2

))

, n = 0, 1, 2..., M (12)

where M is the total number of filter banks. For this study, 13 MFCCs were extracted from denoised
heart sound.

2.5. Feature Fusion

MFCC and 1D-LTP features extracted in previous steps were fused to construct a joint feature
vector having dimensions of 1 × 33. A combination of temporal and frequency features helps
in extracting more discriminant information embedded in the PCG signal about heart disorders.
Feature fusion is realized through a simple serial concatenation of MFCC and 1D-LTP features.
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2.6. Classification—Support Vector Machines

The final feature vector from the PCG signal consists of a total of 33 features (20 LTPs + 13 MFCC).
Features are extracted from each class (normal, ASD, VSD). The SVM classifier is a widely applied
method of classification for biomedical signals [62–65] due to its excellent generalization capability.
It obtains the optimal separating hyperplane for class separation by converting input features to higher
dimensions through some nonlinear mapping [66]. The distance between patterns and the hyperplane
is maximized using a maximum margin principle to get the best separation. Kernel functions, such as
quadratic, cubic, and Gaussian ones, are used for mapping the data into higher dimensional space.
Table 3 presents the parameters of classifiers used during training/testing. In this study, SVM was
used in two different settings: (1) Binary SVM where input PCG features were labeled as “normal”
and “abnormal.” (2) Multiclass experiments where input PCG features were labeled as "normal" or
according to the disease type; i.e., ASD or VSD.

Table 3. Parameters of selected classifiers.

Classifier
Kernel
Function

Kernel Scale
Box Constraint
Level

Multiclass
Method

Standardize
Data

SVM-L Linear Automatic 1 One-vs-one True
SVM-Q Quadratic Automatic 1 One-vs-one True
SVM-C Cubic Automatic 1 One-vs-one True
SVM-G Gaussian 44 1 One-vs-one True

3. Results

In this study, an automated heart disease classification system using the PCG signal is proposed.
Raw PCG signal was first preprocessed through EMD, followed by feature extraction through the
fusion of MFCC and 1D-LTP features. 1D-LTPs extract the most discriminative information embedded
in the PCG signal. Distribution of 1D-LTP features of different classes (normal/ASD/VSD) can be
visualized from scatter plots shown (Figure 9). It can be observed that the intra-class difference between
features is minimal, while the inter-class difference is maximal. This shows that the extracted features
contain generous decisive information about different classes of PCG signals.

The performance of the proposed method was evaluated using standard statistical indices
of accuracy, sensitivity (sen), and specificity (spec), which were calculated from the following
four parameters

• True positive (TP): abnormal PCG signal correctly detected as abnormal.

• False negative (FN): PCG signal of an abnormal subject detected as normal.

• True negative (TN): normal PCG signal correctly detected as normal.

• False positive (FP): PCG signal of a normal subject detected as abnormal.

Accuracy =
TP + TN

(TP + TN + FP + FN)
× 100 (13)

Sen =
TP

(TP + FN)
× 100 (14)

Spec =
TN

(TN + FP)
× 100 (15)

In this study, the experiments were performed for two different problems.

1. Detection experiment (normal vs. abnormal): All feature vectors belonging to abnormal subjects
(ASD, VSD) were labeled as abnormal.
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2. Multiclass evaluation (normal vs. ASD vs. VSD): Feature data were labeled according to the
disease type in the experiment.

Training and testing of classifiers were pursued through a 10-fold cross-validation method with
each subset of features; i.e., MFFC, 1D-LTPs, and fusion of MFCC+1D-LTP. All simulations were
performed in MATLAB 2018a on the core i5 computer. All results presented in this paper were
averaged over 100 experiments.

(a) Feature 1 vs. feature 5 vs. feature 6. (b) Feature 1 vs. feature 3 vs. feature 10.

(c) Feature 13 vs. feature 19 vs. feature 20. (d) Feature 3 vs. feature 4 vs. feature 19.

Figure 9. Scatter plots of 1D-LTP features.

3.1. Detection Experiment

The experiments for the detection of normal and abnormal subjects were performed on the
self-collected dataset using a low-cost data acquisition setup. In detection experiments, the dataset
was split into two classes; namely, normal and abnormal. All features vectors belonging to ASD
and VSD patients were labeled as abnormal. An SVM classifier with different kernel functions,
such as SVM-linear (SVM-L), SVM-quadratic (SVM-Q), SVM-cubic (SVM-C), and SVM-Gaussian
(SVM-G), was employed to perform classification. The results of these experiments in terms of
accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and
error rate are illustrated in Table 4. Results of applying individual feature sets (MFCC and 1D-LTP)
on PCG signal data are also presented (Table 4). The highest results using only MFCC features were
achieved through SVM-C (94.05%); 1D-LTP-only feature extraction achieved the highest accuracy of
94.05% with the SVM-Q classifier. The best results of 95.8% accuracy with SVM-C classifiers were
acquired upon feature fusion of MFCCs and 1D-LTPs. Table 5 illustrates the confusion matrix showing
individual class accuracy with SVM-C and a combination of MFCC and 1D-LTP features. It was
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evident from experimentation that the fusion of MFCC and 1D-LTP features provide a significant
improvement in classification performance.

Table 4. Performance comparison of SVM on different feature sets for binary experiments. Bold font
indicates the best result obtained against each feature set.

Feature Set Classifier Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Error (%)

MFCC

SVM-L 89.88 76.19 94.44 82.05 92.25 10.12
SVM-Q 89.29 80.95 92.06 77.27 93.55 10.71
SVM-C 92.26 88.1 93.65 82.22 95.93 7.74
SVM-G 75.6 7.14 98.41 60 76.07 24.4

1D-LTP

SVM-L 94.05 88.1 96.03 88.1 96.03 5.95
SVM-Q 94.05 83.33 97.62 92.11 94.62 5.95
SVM-C 91.07 76.19 96.03 86.49 92.37 8.93
SVM-G 86.31 47.62 99.21 95.24 85.03 13.69

MFCC+1D-LTP

SVM-L 94.05 90.48 95.24 86.36 96.77 5.95
SVM-Q 94.05 88.1 96.03 88.1 96.03 5.95
SVM-C 95.83 92.86 96.83 90.7 97.6 4.17
SVM-G 93.45 88.1 95.24 86.05 96 6.55

Table 5. Confusion matrix for detection (normal vs. abnormal) experiments.

Predicted Class

Actual Class Normal Abnormal

Normal 90% 10%

Abnormal 2% 98%

3.2. Multiclass Evaluation (Normal vs. ASD vs. VSD)

Multiclass experiments were performed to precisely identify the type of heart disorder. Features
were labeled according to the disorder type; i.e., ASD, VSD, or normal. A multiclass SVM with
different kernels was trained and tested using 10-fold cross-validation. The results of applying
different multiclass SVM classifiers on individual feature sets (MFCC, 1D-LTP) and the fusions of both
are illustrated in Table 6. The obtained results revealed that the SVM-C classifier achieved a peak
accuracy of 88.69% with only MFCC features, while the same classifier provided 94.64% accuracy with
1D-LTP features. Performance results were further improved by the fusion of MFCC and 1D-LTP
features with the SVM-C classifier; i.e., 95.24% accuracy. In Table 7, class-wise information of accuracy
for ASD, VSD, and normal classes in the form of a confusion matrix with the SVM-C classifier are
shown. The proposed feature fusion methodology effectively extracted the characteristic information
from multiclass PCG signals.

Table 6. Performance comparison of SVM using different feature sets for multiclass experiments. Bold
font indicates the best result obtained against each feature set.

Feature set Classifier Accuracy(%) Sensitivity(%) Specificity(%) PPV(%) NPV(%) Error(%)

MFCC

SVM-L 83.93 92.86 85.71 68.42 97.3 16.07
SVM-Q 86.9 90.48 90.48 76 96.61 13.1
SVM-C 88.69 90.48 94.44 84.44 96.75 11.31
SVM-G 83.33 97.62 81.75 64.06 99.04 16.67

1D-LTP

SVM-L 94.64 97.62 93.65 83.67 99.16 5.36
SVM-Q 94.05 90.48 95.24 86.36 96.77 5.95
SVM-C 94.64 90.48 96.03 88.37 96.8 5.36
SVM-G 93.45 92.86 93.65 82.98 97.52 6.55

MFCC+1D-LTP

SVM-L 93.45 97.62 92.06 80.39 99.15 6.55
SVM-Q 94.43 95.05 94.41 85.06 98.28 5.57
SVM-C 95.24 95.24 95.24 86.96 98.36 4.76
SVM-G 93.45 100 91.27 79.25 100 6.55
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Table 7. Confusion matrix for multiclass experiments.

Predicted Class

Actual Class Normal ASD VSD

Normal 90% 10% 0%
ASD 6% 94% 0%
VSD 0% 0% 100%

3.3. Statistical Significance

The primary objective behind performing this statistical analysis was to achieve a certain
level of confidence in the proposed scheme. Analysis of variance (ANOVA) [67] was utilized to
testify whether the results were statistically significant or not—simply by comparing the means of
multiple distributions.

In this work, a proposed scenario (MFCC + 1D-LTP) was considered for two different classifiers
(SVM-C, SVM-Q)—selected based on the improved performance compared to the rest. In using
ANOVA, a series of tests were performed for the assumptions of normality and homogeneity of
variance. A Shapiro–Wilk test [68] was performed for the former, and the Bartletts test [68] for the latter
one—with the significance level α selected to be 0.01. The means of our approach were x̄1,x̄2, calculated
from the overall accuracy of both classifiers. The null hypothesis H0, given that x̄1 = x̄2, while the
alternative hypothesis Ha given that x̄1 6= x̄2. The p-value was computed and the null hypothesis was
tested, H0; if it was rejected, p < α, then the Bonferroni posthoc test was applied.

For the proposed method (MFCC + 1D-LTP), and with selected classifiers (SVM-C and SVM-Q),
the Shapiro–Wilk test generated p-value, pc = 0.6987, and pq = 0.9352. By following the Bartletts test,
the associated chi-squared probabilities were: pc = 0.712 and pq = 0.312. The p-values of two different
classifiers are significantly greater than α. Therefore, from the test results (normality and equality of
variances), we failed to repudiate the null hypothesis H0, and we are confident in claiming that the
test data were normally distributed, and the variances were also homogeneous. The ANOVA test,
including five different parameters (degrees of freedom (dfs), a sum of squared deviation (SS), mean
squared error (MSE), F-statistics, and p-value) is shown in Table 8. The performance ranges of two
selected classifiers based on the proposed method are shown in Figure 10.

Table 8. ANOVA test on two selected classifiers based on the proposed method.

Variance Source SS df MSE F-Statistics p-Value

Between 1.8482 1 1.84815 0.63 0.4721
Within 11.7503 4 2.93758 - -
Total 13.5985 5 - - -

The results were validated based on the Bonferroni post hoc test, Figure 11, which is the most
common approach to be applied whenever there exists a chance of a significant difference between the
means of multiple distributions. It was certified that the proposed method performed much better
than conventional methods.
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Figure 10. Box-plot of accuracy values for selected classifiers (1:SVM-C, 2:SVM-Q).

Figure 11. The means of both classifiers belong to a single group and are not significantly different.

4. Discussion

The proposed method of feature fusion with EMD-based signal denoising effectively extracted
embedded information from PCG signals using the self-collected dataset of ASD and VSD cardiac
disorders. The MFCC extracted frequency-domain features, while 1D-LTP features extracted temporal
and texture information from the signal. Feature fusion of these two different types provided
a powerful signal representation for different classes (normal, ASD, VSD) with a high degree of
accuracy. Moreover, the proposed method classified normal and abnormal PCG data through SVM-C
classifier with 95.83% accuracy, while 95.34% average accuracy was achieved on multiclass PCG data
with the same classifier.

The numbers of classes, feature extraction techniques and classification methods of the proposed
method were compared with the previously developed platforms (Table 1), which showed that several
existing works [9–11,13,15,17] utilized the Physionet Challenge 2016 dataset [69] comprised of only
two classes (healthy and unhealthy) while others used self-collected PCG signal data. MFCCs were
widely employed by several studies [9,11,17,35], and acted as baseline features of choice. The SVM
classifier is also widely adopted by existing works [10–13].

DWT and statistical features were used with a multilayer perceptron to achieve 96.6% accuracy
on normal and ASD classes of PCG data [36]. In another work [38], a comparison of feature reduction
methods was demonstrated. Experimental results are shown between normal and three different
classes of heart diseases; i.e., ASD, VSD, and aortic stenosis. Feature reduction methods (DDE,
FSDA, CBEF, EFUAP) were applied with K-nearest neighbor (KNN) classifier and 84.3% accuracy
was achieved.
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In contrast to the existing work, our research targeted the classification of multiple heart disorders
(ASD, VSD) with the feature fusion approach of MFCC and new temporal feature descriptor 1D-LTP.
The proposed method outperforms the existing approaches, as is evident from the presented results.
To confirm the validity and robustness of our proposed method, confidence intervals against binary and
multiclass experiments are also provided for the two best classifiers; i.e., SVM-C and SVM-Q. Figure 12a
illustrates the confidence interval showing maximum, minimum, and average classification results
of individual MFCC and 1D-LTP features and the feature fusion approach for binary experiments.
Figure 12b presents a confidence interval of minimum, maximum, and average classification accuracy
for multiclass experiments. From this comprehensive statistical analysis, it is quite straightforward to
choose SVM-C as a standard classifier for this application.

(a) Binary class experiments (b) Multi-class experiments
Figure 12. Confidence interval simulation results.

Figure 12. Confidence interval simulation results.

5. Conclusions

Preprocessing and classification of heart sounds is a challenging problem due to the addition of
environmental noise. The addition of noise may hide the actual class information in the PCG signal.
In this study, an effective classification framework was developed for the diagnosis of ASD, VSD, and
normal subjects through PCG signal analysis. A feature fusion approach using novel 1D-LTP features
along with strong MFCC features has shown to be an effective strategy exhibiting good discriminative
properties of representing PCG signals. The proposed method was validated through different SVM
kernels, and the best performance was achieved with SVM-C. The main findings of this research are
the following:

• The proposed framework is non-invasive and reliable.

• The proposed scheme is independent of the morphological characteristics of the acquired
PCG signal.

• This research introduces a new feature descriptor, i.e., 1D-LTP, that significantly improves the
classification performance upon fusion with classical MFCCs.

• The proposed method is fully automated and works with all kinds of noisy PCG signals due to
the adoption of a data-driven preprocessing approach; i.e., EMD.

This research has the following shortcomings:

• The dataset used is small in size.

• The selection of proper IMFs in EMD is not automated.

The proposed method for cardiac disorders can be enhanced by adding more data samples of
PCG. In the future, we aim to apply feature reduction and fusion algorithms to further reduce the
feature vector dimensions and increase system accuracy.
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58. Kaya, Y.; Ertuğrul, Ö.F. A stable feature extraction method in classification epileptic EEG signals. Austral. Phys.

Eng. Sci. Med. 2018, 41, 721–730.

59. Khan, M.U.; Aziz, S.; Sohail, M.; Shahid, A.A.; Samer, S. Automated Detection and Classification of

Gastrointestinal Diseases using surface-EMG Signals. In Proceedings of the 2019 22nd International

Multitopic Conference (INMIC), Islamabad, Pakistan, 29–30 November 2019; pp. 1–8.

60. Chowdhury, M.E.; Khandakar, A.; Alzoubi, K.; Mansoor, S.; M Tahir, A.; Reaz, M.B.I.; Al-Emadi, N. Real-Time

Smart-Digital Stethoscope System for Heart Diseases Monitoring. Sensors 2019, 19, 2781.

61. Kamarulafizam, I.; Noor, A.M.; Harris, A.A.; Oemar, H.; Yusoff, K. Classification of heart sound based on

multipoint auscultation system. In Proceedings of the 2013 8th International Workshop on Systems, Signal

Processing and their Applications (WoSSPA), Algiers, Algeria, 12–15 May 2013; pp. 174–179.

62. Alturki, F.A.; AlSharabi, K.; Abdurraqeeb, A.M.; Aljalal, M. EEG Signal Analysis for Diagnosing Neurological

Disorders Using Discrete Wavelet Transform and Intelligent Techniques. Sensors 2020, 20, 2505.

63. Dash, D.; Ferrari, P.; Dutta, S.; Wang, J. NeuroVAD: Real-Time Voice Activity Detection from Non-Invasive

Neuromagnetic Signals. Sensors 2020, 20, 2248.

64. Aziz, S.; Khan, M.U.; Choudhry, Z.A.; Aymin, A.; Usman, A. ECG-based Biometric Authentication using

Empirical Mode Decomposition and Support Vector Machines. In Proceedings of the 2019 IEEE 10th Annual

Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC,

Canada, 17–19 October 2019; pp. 0906–0912.

65. Khan, M.U.; Aziz, S.; Ibraheem, S.; Butt, A.; Shahid, H. Characterization of Term and Preterm Deliveries

using Electrohysterograms Signatures. In Proceedings of the 2019 IEEE 10th Annual Information Technology,

Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 17–19 October 2019;

pp. 0899–0905.

66. Czabanski, R.; Horoba, K.; Wrobel, J.; Matonia, A.; Martinek, R.; Kupka, T.; Jezewski, M.; Kahankova, R.;

Jezewski, J.; Leski, J.M. Detection of atrial fibrillation episodes in long-term heart rhythm signals using a

support vector machine. Sensors 2020, 20, 765.

67. Akram, T.; Laurent, B.; Naqvi, S.R.; Alex, M.M.; Muhammad, N. A deep heterogeneous feature fusion

approach for automatic land-use classification. Inf. Sci. 2018, 467, 199–218.

68. Hoffman, J.I. Biostatistics for Medical and Biomedical Practitioners; Academic Press: Cambridge, MA, USA,

2015.

69. Yazdani, S.; Azghani, M.R.; Sedaaghi, M.H. A new algorithm for ECG interference removal from single

channel EMG recording. Austral. Phys. Eng. Sci. Med. 2017, 40, 575–584.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

196



sensors

Article

EEG Headset Evaluation for Detection of Single-Trial
Movement Intention for Brain-Computer Interfaces

Mads Jochumsen 1,* , Hendrik Knoche 2 , Troels Wesenberg Kjaer 3, Birthe Dinesen 1

and Preben Kidmose 4

1 Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; bid@hst.aau.dk
2 Department of Architecture, Design and Media Technology, Aalborg University, 9000 Aalborg, Denmark;

hk@create.aau.dk
3 Department of Neurology, Zealand University Hospital, Roskilde, Denmark. Department of Clinical Medicine,

University of Copenhagen, 2200 Copenhagen, Denmark; twk@regionsjaelland.dk
4 Department of Engineering—Electrical and Computer Engineering, Aarhus University,

8200 Aarhus, Denmark; pki@eng.au.dk
* Correspondence: mj@hst.aau.dk

Received: 1 April 2020; Accepted: 13 May 2020; Published: 14 May 2020

Abstract: Brain–computer interfaces (BCIs) can be used in neurorehabilitation; however, the literature
about transferring the technology to rehabilitation clinics is limited. A key component of a BCI is the
headset, for which several options are available. The aim of this study was to test four commercially
available headsets’ ability to record and classify movement intentions (movement-related cortical
potentials—MRCPs). Twelve healthy participants performed 100 movements, while continuous EEG
was recorded from the headsets on two different days to establish the reliability of the measures:
classification accuracies of single-trials, number of rejected epochs, and signal-to-noise ratio. MRCPs
could be recorded with the headsets covering the motor cortex, and they obtained the best classification
accuracies (73%−77%). The reliability was moderate to good for the best headset (a gel-based
headset covering the motor cortex). The results demonstrate that, among the evaluated headsets,
reliable recordings of MRCPs require channels located close to the motor cortex and potentially
a gel-based headset.

Keywords: movement intention; brain–computer interface; movement-related cortical potential;
neurorehabilitation

1. Introduction

Brain–computer interfaces (BCIs) have been proposed as a means for control of assistive devices
and communication for patients with severe disabilities, such as spinal cord injury and amyotrophic
lateral sclerosis (ALS) [1–3]. More recently, BCIs have been investigated for motor rehabilitation of
patients with neural injuries such as stroke or spinal cord injury [4–8]. It is possible to induce neural
plasticity, a proposed mechanism for motor learning and hence motor recovery [9,10], by pairing
an intention to move (detected from the ongoing brain activity) with contingent somatosensory
feedback from, e.g., electrical stimulation of nerves and muscles [11,12] or passive movements of the
limbs through exoskeletons or rehabilitation robots [13]. BCI training has a positive effect on motor
recovery after stroke (see [14] for a recent review). However, creating a stand-alone BCI training
system for use in rehabilitation clinics or patients homes is difficult due to several factors. One of the
factors is the setup of the EEG headset. It can be fairly time consuming to mount the EEG headset
and ensure the cap is correctly placed, and a proper EEG signal quality is obtained. This is especially
evident if the patients potentially should mount the EEG headset themselves [15]. These points
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are related to the usability of the headsets, which became a research topic when new and cheaper
headsets and electrode types became available [15–18]. The usability evaluation consists of three factors:
effectiveness, efficiency and satisfaction [19], and the former two factors are related to another impeding
factor to create a stand-alone BCI system, the need for calibrating the BCI to ensure adequate detection
performance. The non-stationarity of the electrical brain signals (electroencephalography (EEG) and
electrocorticography), requires that the BCI system is calibrated to ensure adequate performance,
which differs depending on the control signal and application. The BCI system performance is also
affected by the signal quality, and different signal processing and pattern recognition techniques are
used [20–22]. Several studies have investigated and compared different signal processing and pattern
recognition techniques, and some studies have investigated the signal quality and BCI performance
of different headsets or electrode types (dry vs. wet) [16,18,23–41]. The focus of these studies has
primarily been on BCI control signals related to communication or control, such as P300 or steady-state
visual evoked potentials (SSVEP). However, BCIs for inducing neural plasticity rely on control signals
associated with movement preparation, such as movement-related cortical potentials (MRCPs) or
event-related desynchronization (ERD). Hence, the ability to record MRCPs and ERD is crucial for
any neurorehabilitation BCI, and this ability has been less explored in commercial headsets. A single
study compared the signal quality of MRCP when recorded with two different amplifiers but with
the same headset [42], and a couple of studies investigated if ERD patterns could be identified using
dry and wet electrodes [27,28]. Thus, there is a need for an evaluation of different headset types
that potentially could be used for BCI training in neurorehabilitation clinics. Various metrics have
been used in the literature to evaluate the signal quality of the headsets or electrode types. For BCI
applications, reasonable measures would be BCI performance-related metrics, such as classification
accuracy or information transfer rate (especially for BCI applications within communication and control
of external devices) [18,23,25,26,30,31,34,37]. The signal quality may be quantified in other ways as
well. In a recent study, Oliveira et al [39] proposed a number of metrics to investigate the signal quality
when comparing different headsets. These metrics include data or epoch rejection rate [16,39,40,43] and
signal-to-noise ratio (SNR) or noise level [16,32,39,42,44]. This is also important for BCI applications,
since the performances of pattern recognition techniques are affected by various types of noise that
cannot be suppressed. Other important measures are related to the signal morphology, which can be
quantified from grand averages across multiple trials (both event-related and evoked potentials) in
which the amplitudes of the brain potentials are extracted, or scalp topographies in which amplitudes
or spectral content are extracted from multiple channels over the scalp [32,36–39]. Lastly, it is important
to evaluate the test–retest reliability of the measures [39].

In this study, the aim was to explore if MRCPs can be recorded with four different headset types.
Two headsets covered the motor cortex, which is the traditional position to record MRCPs. The other
two headsets were placed on the forehead and around the ear, which was preferred by stroke patients
in a recent usability study [15]; however, it is not known if MRCPs can be recorded from these positions.
We tested whether movement intentions (MRCPs) can be classified with respect to idle activity, which is
the scenario that would be used in BCI training for stroke rehabilitation. Moreover, different signal
quality measures are reported, as well as the test–retest reliability over two separate days.

2. Materials and Methods

2.1. Participants

Twelve healthy participants were included in this study (28 ± 3 years old, 2 females). All participants
gave their written informed consent prior to the experiments. All procedures were approved by the local
ethical committee of Region North Jutland, Denmark (N-20130081).

2.2. EEG Headsets

Four different types of headsets were included in this study. The four headsets are shown in Figure 1.
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Figure 1. Overview of the four headsets and the electrode types. (A): cEEGrid from TMSi. The inset
shows the sensor array and the double-sided adhesive tape. The channel in the upper part of the “C”
when mounted is channel 1, and the channel numbers ascend clockwise on the electrode. (B): MyndBand
from MyndPlay. The inset shows the dry electrode and the Bluetooth unit that transmits the data.
(C): Quick-Cap from Compumedics. The inset shows the electrode type that is mounted in the cap.
(D): Water-based headset from TMSi. The inset shows the electrode house and the felt insert.

2.2.1. cEEGrid: TMSi

The cEEGrid electrode (Figure 1A) contained 10 channels surrounding the ear [45]. In this
study, it was placed around the left ear (close to T9 with respect to the International 10−20 System).
The electrode consisted of a flex-PCB with screen-printed silver electrodes; the electrode was attached
to the user with double-sided adhesive tape, which had to be fitted accurately to the recording sites.
A small amount of electrode gel (ECI Electro-Gel™) was applied to each recording site. The channels
were referenced to the channel at the lower end of the “C” (channel 10) and grounded to a moist
wristband (left wrist). There was no measure of electrode impedance. The signals were sampled with
2000 Hz. The signals were recorded using a Mobita®amplifier from TMSi (Tucker, GA, United States).

2.2.2. MyndBand: MyndPlay

The MyndBand (Figure 1B) contained one dry electrode, which was placed on the forehead
(close to F9 with respect to the International 10−20 System). The electrode was fixed with a neoprene
headband. The signals were referenced to the left earlobe with an ear clip; there was no information
about a ground electrode. A tool for measuring the impedance was available in the recording software;
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the impedance could be in the following range: very poor–perfect. The impedance was perfect for all
participants. However, it is not known what “perfect” corresponds to in terms of kΩ. The signals were
sampled at 512 Hz.

2.2.3. Quick-Cap: Compumedics

The Quick-Cap (Figure 1C) electrodes covered the following positions with respect to the
International 10–20 System: F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4. The channels were referenced
to Pz and grounded at AFz. The electrodes were filled with conductive gel (ECI Electro-Gel™) to
establish contact between the electrodes and the scalp. A tool was available in the recording software
to measure the impedance; the impedance of all channels was below 5 kΩ in all experimental sessions.
The signals were sampled at 500 Hz. The signals were recorded using a Nuamp amplifier (EEG
amplifiers, Nuamps Express, Neuroscan).

2.2.4. Water-Based Electrodes: TMSi

The water-based electrodes (Figure 1D) were placed in the following positions with respect to
the International 10–20 System: F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4. They were referenced to Pz,
and they were grounded to a moist wristband (left wrist). The electrode consisted of a felt insert that
had to be placed in an electrode house and soaked in water before placing it in the cap. There was no
measure of electrode impedance. The signals were sampled at 2000 Hz. The signals were recorded
using a Mobita®amplifier from TMSi.

2.3. Experimental Procedure

The participants participated in an experiment consisting of two experimental sessions, which were
separated by at least 24 h. They sat in a comfortable chair and performed 100 cued ballistic palmar
grasps of the right hand when continuous EEG was recorded. The hand was opened immediately after
the grasp was performed; i.e, the contraction was not maintained. The participants were instructed to
perform the movements as rapidly as possible and relax immediately after the grasp was performed.
This movement type was performed for each of the four headsets, so, in total, 4 × 100 movements
were performed in each of the two experiments. The order of the headsets was randomized on both
recording days using Random.org. The participants were given two cues; one cue three seconds prior
to the second cue, which indicated the onset of the task. The participants were instructed to sit as still
as possible and avoid any eye movements and contractions of facial muscles. A trigger was used to
mark the continuous EEG at the first cue; this was used to divide the continuous EEG into epochs.
Each movement was separated by ten seconds. It took ~17 min to perform 100 movements. There was
a break between the tests of the different headsets in which the subjects washed their hair.

2.4. Data Analysis

The EEG signals were analyzed in two different ways; 1) an analysis of the signal morphology,
and 2) discrimination between movement intention and idle activity. For the signal quality analyses,
the signals from Cz, or channel two for the cEEGrid, were used, since the pre-movement components
of the MRCP can be recorded over the midline regardless of the site of movement [46]. For the
classification of movement intentions and idle activity, all available channels were used. All analyses
were performed in MATLAB 2019B (MathWorks).

2.4.1. Pre-Processing

The signals were band-pass-filtered from 0.05−10 Hz using a fourth-order zero-phaseshift
Butterworth filter and downsampled to 500 Hz. The epochs were divided into “idle/noise” and “signal”
epochs. Idle epochs were extracted from −5 to −3 seconds prior the movement onset, whereas the
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signal epochs were extracted from −1.5 to 0.5 s with respect to the task onset (0 s was the task onset).
See Figure 2.

Figure 2. Grand average across participants for each headset and each day. “0 s” is the task onset. For
the Quick-Cap and water-based electrodes, Cz was used, whereas channel 2 was used for the cEEGrid
and the single electrode on the forehead for the MyndBand.

2.4.2. Signal-to-Noise Ratio, Epoch Rejection, and Peak Amplitudes

Initially, the signal and idle epochs that exceeded ±150 µV in peak–peak amplitude were rejected
in the Cz channel (Quick-Cap and Water-based electrodes), channel 2 (cEEGrid, close to T9 according
to the International 10−20 System) and in the single MyndBand channel (close to F9 according to the
International 10−20 System). The analyses in this subsection were based on the specified individual
channel for each headset. If more than 80% of the epochs were rejected, all data from that participant
was removed from further analysis (see Table 1). The average of the signal and average of the idle epochs
were calculated, and the root-mean-square (RMS) value was calculated of the two averages. The ratio
between the signal and idle/noise RMS values were used as an estimate of the SNR. The average across
the signal epochs was computed and the average amplitude was calculated from −0.2 to 0.2 s around
the movement onset. The number of rejected epochs, SNR and averaged peak amplitudes were used
as measures of signal quality.

Table 1. Results of the signal quality analyses for the four headsets. The signal-to-noise ratio (SNR),
average amplitude around the movement onset, number of rejected epochs, and number of rejected
participants are presented for both experimental sessions. The results are presented based on Cz
(water-based electrodes and Quick-Cap) or the channel closest to that (MyndBand and cEEGrid).

SNR Amplitude (µV) # Rejected Epochs # Excluded Participants

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

cEEGrid 0.8/1.2/1.4 0.6/0.9/1.6 −4.9/−0.8/0.9 −3.6/−1.6/0.6 2/6/65 1/3/7 2 0
MyndBand 0.6/0.9/1.1 0.7/0.8/0.9 −0.7/0.3/0.9 −0.6/0.2/0.6 7/19/45 18/28/36 2 1
Quick-Cap 1.1/1.5/2.5 1.4/1.7/2.2 −3.4/−2.6/−0.9 −2.6/−1.0/0.0 0/1/2 0/0/2 0 0

Water-based 0.8/1.3/2.0 1.0/1.4/2.7 −7.4/−2.9/1.9 −4.3/−2.7/−0.3 2/2/6 2/3/9 0 0

25% /Median / 75%
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2.4.3. Feature Extraction and Classification

Initially, the signal and noise epochs that exceeded ±150 µV in peak–peak amplitude in any of
the recorded channels were excluded from further analysis. The feature extraction was performed for
each channel. The feature extraction was based on previous studies, where MRCPs and ERD were
detected from time domain analysis [47], frequency domain analysis [48], and template matching [49].
In the time domain, the mean amplitudes were extracted for 0.5-second windows without overlap and
used as features, and the difference between the average amplitude in the first half and second half of
the epoch. The power spectral density was estimated for the entire epoch with a 1-second Hamming
window with 0.5-second overlap; the features were the power spectrum in 1-Hz bins from 6 to 30 Hz.
For the template matching, the epochs were filtered from 0.05−10 Hz. An average of the signal epochs
in each channel was obtained, and the cross-correlation was calculated between the template and
the epochs at zero time lag. The classification was performed using a Random Forest classifier in
a leave-one-out cross-validation scheme. The classifier was trained using 512 trees. The classification
accuracy and number of rejected epochs are reported.

2.5. Test–Retest Reliability

The test–retest reliability was estimated using the intraclass correlation coefficient between the
two recording days for participants that had a complete dataset using a 2-way mixed effect model
with absolute agreement (IBM®, SPSS®). The intraclass correlation coefficient was calculated for SNR,
average peak amplitudes and classification accuracies.

2.6. Statistics

Five two-way repeated measures analyses of variance (ANOVA) were performed with ‘Headset’
(four levels: cEEGrid, MyndBand, Quick-Cap, and Water-based) and ‘Time’ (two levels: Day 1,
and Day 2) as factors on the following measures: 1) SNR, 2) amplitude, 3) number of rejected epochs
(single-channel), 4) classification accuracy, and 5) number of rejected epochs (multiple channels). If the
assumption of sphericity was violated, the Greenhouse–Geisser correction was applied. Significant
tests were followed up with a posthoc test with Bonferroni correction. Significant test statistics were
assumed when p < 0.05. The effect size was reported as well, using the partial eta squared value (η2).

3. Results

The results are summarized in Figures 3 and 4 and Tables 1–3.

3.1. Signal Quality

The results of the signal quality analyses are presented in Table 1 and Figures 2 and 3. The average
amplitude around the movement onset was most prominent for the Quick-Cap and Water-based
headset. It was expected to see a negative potential, such as the one shown in Figure 2C. The peak
amplitudes recorded from the other two headsets were less prominent, and the clear MRCP morphology
was absent. There was no interaction between headset and time (F(3,21) = 0.51; p = 0.68; η2 = 0.07),
and no effect of time (F(1,7) = 0.38; p = 0.56; η2 = 0.05) and headset (F(1.7,12.2) = 1.95; p = 0.19; η2 = 0.22).
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Figure 3. Boxplots with quartiles for the signal quality analyses. (a): Average amplitude around the
movement onset; (b): Signal-to-noise ratio; (c): Number of rejected epochs for a single channel.

The SNR was highest for the Quick-Cap and the water-based headset, whereas the other two had
similar SNRs. The statistical analysis showed no interaction between headset and time (F(1.2,7.1) = 0.03;
p = 0.89; η2 = 0.06) and no effect of time (F(1,6) = 0.01; p = 0.91; η2 = 0.02), but the effect of headset was
significant (F(3,18) = 6.67; p = 0.003; η2 = 0.53). The posthoc test revealed that the SNR associated with
Quick-Cap was higher than the SNR obtained with the MyndBand.

The median number of rejected epochs was in the range of 0−6 rejected epochs for the Quick-Cap,
water-based headset, and cEEGrid, whereas the median number of rejected epochs for the MyndBand
was 19 and 28. This is also reflected in the number of participants that were rejected based on the
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criterion of 80% of the samples that should be within ±150 µV peak–peak amplitudes. There was
no interaction between headset and time (F(1.3,14.2) = 1.38; p = 0.27; η2 = 0.11) and no effect of time
(F(1,11) = 4.37; p = 0.06; η2 = 0.28), but the effect of headset (F(1.9,20.6) = 11.71; p < 0.001; η2 = 0.52) was
significant. The posthoc test showed that more epochs were rejected for the MyndBand compared to
the Quick-Cap and water-based headset, and more epochs were rejected for the water-based headset
than the Quick-Cap.

3.2. Movement Intention vs. Idle Classification

The results are presented in Table 2 and Figure 4. The number of rejected epochs was high
for the MyndBand, and the 75% quartiles for the water-based and cEEGrid headset. This is also
reflected in the number of participants that were excluded from further analysis (more than 80% of the
epochs were rejected). The accuracies were close to the significance threshold of random classification
(chance level = 50%), calculated with 95% confidence limits (threshold for signficance = 60%) [50] for
the cEEGrid and MyndBand, whereas accuracy was well above the threshold for significance for the
Quick-Cap and Water-based headset. They had similar median classification accuracies, 74%−77%
and 72%−73% for the Quick–Cap and water-based headset, respectively, on the two different days,
but the classification accuracies were based on fewer samples and subjects for the water-based headset.
The statistical analyses revealed no interaction between headset and time (F(3,9) = 0.25; p = 0.86;
η2 = 0.08) and no effect of time (F(1,3) = 0.09; p = 0.79; η2 = 0.03) and headset (F(3,9) = 3.41; p = 0.07;
η2 = 0.53). However, the sample size was limited. For the number of rejected epochs, there was
no interaction between headset and time (F(2.1,23.4) = 2.36; p = 0.09; η2 = 0.18), and no effect of time
(F(1,11) = 0.06; p = 0.81; η2 = 0.006), but the effect of headset was significant (F(3,33) = 10.25; p < 0.001;
η2 = 0.48). The posthoc analysis showed that more epochs were rejected for the water-based headset
and Myndband compared to the Quick-Cap, and that more epochs were rejected for the MyndBand
compared to the cEEGrid.

Table 2. Results of the classification analyses for the four headsets. The classification accuracy and
number of rejected epochs are presented for both experimental sessions. The results are based on all
available channels; therefore, the number of rejected epochs differ from Table 1, which was based on a
single channel.

Classification Accuracy (%) # Rejected Epochs # Excluded Participants

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

cEEGrid 48/56/70 55/60/63 0/7/54 0/1/3 2 0
MyndBand 49/56/59 50/56/60 19/31/85 31/39/70 3 2
Quick-Cap 70/77/82 69/74/78 0/1/1 0/1/1 0 0

Water-based 64/73/78 65/72/75 0/3/88 0/63/100 3 4

25% /Median / 75%
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Figure 4. Boxplots with quartiles for the classification accuracies (a) and number of rejected epochs (b).

3.3. Test–Retest Reliability

The test–rerest reliability was assessed using the intraclass correlation coefficient, and the
results are presented in Table 3. A moderate (intraclass correlation coefficient: 0.50−0.75) to good
(intraclass correlation coefficient: 0.75−0.90) reliability was obtained for the Quick-Cap, whereas poor
(intraclass correlation coefficient <0.50) to moderate reliability was obtained for the other headsets [51].
The negative intraclass correlation coefficients are likely due to bad estimates from a limited sample [52],
where the mean-square error is larger than the mean square of the rows [51]. The negative values are
obtained for the headsets where subjects were excluded (see Table 2).

Table 3. Test–retest reliability of the signal-to-noise ratio (SNR), average amplitude around the
movement onset and the classification accuracies.

Intraclass Correlation Coefficient (ICC)

ICC_SNR ICC_Amplitude ICC_Classification Accuracy

cEEGrid −0.3 0.32 0.63
MyndBand 0.43 −0.21 0.33
Quick-Cap 0.78 0.83 0.59

Water-based −0.29 0.06 −0.11
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4. Discussion

In this study, the aim was to test four different types of headsets and electrodes. The results of the
evaluation suggest that it is important to have electrodes that cover the motor cortex area [46], and that
gel-based electrodes are superior to the alternatives, in order to discriminate between movement
intentions of the hand and idle activity (median classification accuracy of 77% and 74% on day 1
and 2, respectively). The MRCP morphology was most cleary seen for the headset that covered the
motor cortex and used conductive gel. It must be stated that some of the headsets were not developed
for recording movement-related activity, which was also reflected in the results. However, it was
important to include these headsets, since stroke patients in a comparative study preferred them [15].

The classification between movement-related and idle activity was not significantly higher than
chance level (when calculated with 95% confidence limits [50]) for the MyndBand and cEEGrid. This is
likely due to the electrode positions, which were too far away from the motor cortex to register the
MRCP. The water-based headset covered the motor cortex, and the classification accuracies were
significantly higher than chance level (threshold for signficance = 60% [50]). However, many epochs
were removed from the analysis due to large amplitudes in the EEG, which potentially arose from
electrodes losing contact with the skin. Further processing can be done to remove bad channels
and perform the classification based on a single or reduced number of channels. The most reliable
classification of movement-related activity was obtained using the Quick-Cap with gel-based electrodes.
The median classification accuracy was 77% and 74% for day 1 and day 2, respectively. These accuracies
are similar to what has been reported previously [47,48,53]. From a BCI training point of view,
the classification accuracy/BCI system perfomance needed for inducing plasticity is not known [7],
but the accuracies obtained for the water-based electrodes and Quick-Cap are higher or similar to
the BCI system performance that has been reported to induce neural plasticity in previous studies
(true positive range: 67%−85%) [11–13]. It has previously been indicated that the BCI system
performance and induction of plasticity are positively correlated [11]; therefore, there is an incentive
for further improving the classification accuracies and hence the BCI system performance. One way to
do this is by applying a spatial filter [20,54]; however, this can only be done when multiple channels
are recorded. Besides neurorehabilitation, these results are also relevant for communication or internet
browsing for late-stage ALS patients that will be able to produce similar slow cortical potentials.
In a simulation study [55], it was shown that an accuracy of 75% can be used to browse the internet,
using slowly developing control signals such as the MRCP or ERD. However, to increase the speed of
browsing or communication (i.e. increase the information transfer rate) evoked potentials such as P300
should be used if the user is able to operate them [56].

Limitations and Future Perspectives

A limiting factor that could affect the number of rejected epochs in the study was the choice of
amplitude threshold. The threshold of 150 µV could be too high to exceed for the cEEGrid electrode,
which would affect the classification analysis, since the accepted epochs would still contain noise.
This could also account for the high number of rejected epochs for the water-based electrodes and the
MyndBand. Another approach could be to use a data-driven threshold using X times the standard
deviation; X could be in the range of, e.g., 3–5, depending on how conservative the noise rejection
should be. Only the headset with electrodes covering the motor cortex region and with conductive
gel applied had clear MRCP waveforms, but both headsets that covered the motor cortex region
had significant decoding accuracies; this suggests that it is necessary to use headsets with motor
cortex region electrodes in order to decode MRCPs. If gel-based electrodes are used, patients may
need to wash their hair after using the BCI, unless a limited number of channels are used. It has
previously been shown that a single channel is sufficient to detect the MRCP [53]. In the current study,
it was an experimenter with several years of experience within EEG recordings and BCI research who
mounted the headsets. If BCI training is going to be performed in rehabilitation clinics and the patient’s
home then it would be important to test how much time it will take for rehabilitation professionals,
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caretakers, or relatives to learn to setup the headset correctly and obtain signals of sufficient quality
to be classified correctly. In this study, different headsets and electrode types were chosen to test if
movement-related activity could be recorded and classified, although they were not designed for that
specific purpose. There exist other headsets (and new ones are emerging) that are candidates to record
movement-related activity, and, therefore, it would be relevant to perform further comparative studies
between headsets to identify the optimal headset in terms of signal quality, comfort, setup difficulty
and price, to increase the likelihood of potential end-users adopting the BCI technology.

5. Conclusions

It is concluded that it is necessary to record signals from the motor cortex area to be able to detect
movement intentions. The results indicate that the most reliable classification accuracies are obtained
with gel-based electrodes. These results may have implications for the choice of headset for BCI
applications within neurorehabilitation, or applications that require an estimate of MRCPs.
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