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Diauxic Growth at the Mesoscopic Scale
Reprinted from: Entropy 2020, 22, 1280, doi:10.3390/e22111280 . . . . . . . . . . . . . . . . . . . . 215

vi



About the Editors
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Preface to ”Recent Advances in Single-Particle

Tracking: Experiment and Analysis”

Studying diffusion is not the newest topic in the field of statistical physics. The idea is commonly

linked to Robert Brown, who investigated the motion of pollen grains in water in 1827. However,

the transportation of particles and their dynamics had already been analyzed by Jan Ingenhousz. His

description of the movement of coal dust suspended in alcohol dates back to 1785. Since then, interest

in the molecular phenomenon of diffusion has remained practically unbroken, because it appears in

many domains, including physics, chemistry, biology, sociology, economics, and finance.

Starting with the pioneering experiments by Perrin and Nordlung in the 1910s, a quantitative

analysis of microscopy images of diffusing particles has become an important technique for various

disciplines. Over time, this method has evolved into what is now known as single-particle tracking

(SPT). The concept has deeply penetrated molecular biology and statistical and chemical physics

because it helps to unveil the local physical properties of molecules and their environment. It has also

become a popular field in applied mathematics.

The growth of single-particle tracking as a research topic is enormous. A recent query for SPT

in one of the popular scientific databases resulted in almost 2 million direct hits. Advances in recent

years have led to a vast array of new scientific lines of inquiry. Given the deluge of information

available, the idea behind this Special Issue was to summarize the recent findings in single-particle

tracking and bring them to a broader audience. The 13 contributions focus on different aspects of

SPT, both experimental and theoretical. A short summary of the topics covered by the papers can be

found in the following.

The first three contributions cover some experimental aspects of SPT. Scheda et al. introduce an

original pipeline for the segmentation and analysis of phase-contrast images of the wound-healing

scratch assay acquired in a time-lapse. They use an ensemble of pseudo-particles to represent

the wound edge. By tracking their stochastic motion, they are able to overcome some limitations

of standard approaches due to the change in the shape and density of cells during migration.

Speckner and Weiss focus on transport phenomena in intermediate systems, i.e., biochemically active

cell extracts. They have performed extensive SPT experiments on beads in native and chemically

treated Xenopus laevis extracts to show that the beads feature an anti-persistent subdiffusion that

is consistent with fractional Brownian motion. Finally, Zhang and Welsher present a novel 3D

single-particle tracking system with a 20% increase in precision compared to traditional approaches.

They use smart off-center sampling patterns for the optimal utilization of photons coming from

illumination. Their method may be of particular importance for studying biological samples, where

photons are often limited to small amounts.

The most commonly used method for the analysis of SPT trajectories is based on the

mean-squared displacement (MSD) of particles. Although quite simple in principle, the method is

known to have some drawbacks, mainly related to the short lengths of the experimental trajectories,

their heterogeneity (i.e., several types of motion within a single path), and the presence of noise.

Consequently, there is still a need for more robust analytical methods that go beyond MSD and

allow for a proper interpretation of the experimental results. The next five papers in our collection

fit into this research direction. Balcerek and Burnecki present a rigorous statistical test to detect a

multifractional Brownian motion (i.e., a fractional Brownian motion with a time-dependent Hurst

exponent) within the trajectories. Their approach is based on the covariance function and should be

ix



helpful in the analysis of anomalous diffusion. Hidalgo-Soria et al analyze the two-state “jumping

diffusivity” model. They show, with the help of the perturbation theory, that a non-analytical

behavior (a cusp) may be found in the distribution of displacements within the model in the short

time limit. Korabel et al. study the heterogeneous intracellular transport of endosomes. To improve

the prediction power of the local analysis, they split the ensemble of trajectories into fast and slow

subsets prior to the actual analysis. This step allows for a separate treatment of different motion

regimes. Lanoiselée et al. propose a new structural approach to detect transient trapping of particles.

Their method is based on the recognition of block structures along the diagonal of the recurrence

matrix. Stanislavsky and Weron use the conjugate Bernstein function theory to find a connection

between the tempered subdiffusion and the diffusion-limited aggregation. Since the model allows

for the detection of confined random walks within the trajectories, it may be applied to SPT data.

In recent years, machine learning (ML) has been employed for the analysis of single-particle

tracking data. In contrast to standard algorithms, where the user is required to explicitly define the

rules of data processing, ML algorithms can directly learn those rules from a series of data. Three

papers in this Special Issue cover different aspects of this approach to SPT. Gajowczyk and Szwabiński

use the deep recurrent neural network for the classification of trajectories (i.e., the detection of

diffusion modes). Loch-Olszewska and Szwabiński tackle the same problem with a more traditional

ML approach. Compared to deep learning, the feature-based methods they use do not work with

raw trajectories; instead, they require a set of human-engineered features for each trajectory in order

to feed a classifier. Although deep learning performs a little better, the traditional method was better

in terms of interpretability. Szarek et al. combine the two methods. They use a neural network,

together with features calculated from trajectories (autocovariance function), in order to estimate the

anomalous exponent from the trajectories. Their approach outperforms the analytical one.

Last but not least, the two remaining contributions cover some topics related to diffusion. Dinis

and Parrondo show how to optimally extract work from a Brownian particle that is reversibly

contained in an optical tweezer potential. Their model of a molecular motor should work, at

least in principle, for systems with much shorter response time of measurements than the systems’

relaxation times. Lachowicz and Debowski investigate models that may lead to diauxic growth at the

mesoscopic scale. They may help us to understand some complex motion patterns of bacterial cells.

We express our thanks to the authors of the contributions, and to the journal Entropy and MDPI

for their support during the preparation of this Special Issue. We hope that you will enjoy reading it,

whether you are a newcomer to the field and looking for a place to start, or already working in the

field and looking for stimulation. We also hope that you will recommend this issue to your colleagues.

Janusz Szwabiński, Aleksander Weron

Editors
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Abstract: Cellular contacts modify the way cells migrate in a cohesive group with respect to a free
single cell. The resulting motion is persistent and correlated, with cells’ velocities self-aligning in
time. The presence of a dense agglomerate of cells makes the application of single particle tracking
techniques to define cells dynamics difficult, especially in the case of phase contrast images. Here, we
propose an original pipeline for the analysis of phase contrast images of the wound healing scratch
assay acquired in time-lapse, with the aim of extracting single particle trajectories describing the
dynamics of the wound closure. In such an approach, the membrane of the cells at the border of the
wound is taken as a unicum, i.e., the wound edge, and the dynamics is described by the stochastic
motion of an ensemble of points on such a membrane, i.e., pseudo-particles. For each single frame,
the pipeline of analysis includes: first, a texture classification for separating the background from the
cells and for identifying the wound edge; second, the computation of the coordinates of the ensemble
of pseudo-particles, chosen to be uniformly distributed along the length of the wound edge. We
show the results of this method applied to a glioma cell line (T98G) performing a wound healing
scratch assay without external stimuli. We discuss the efficiency of the method to assess cell motility
and possible applications to other experimental layouts, such as single cell motion. The pipeline is
developed in the Python language and is available upon request.

Keywords: wound healing dynamics; single pseudo-particle tracking; phase contrast image
segmentation

1. Introduction

In this paper, we propose a pipeline for the segmentation and analysis of phase
contrast images acquired in time-lapse in the wound healing scratch assay, to overcome
some limitations of standard approaches due to the change in shape and density of the
cells during migration.

Cellular migration is a fundamental process for animal’s physiology during both the
period of development and that of maturity. Cells migrate to shape organs and tissues
and, in the case of damage, regenerate them. Furthermore, motility is a primary skill in
cancer metastatic processes and in the immune responses [1,2]. The capability to migrate
is a highly regulated process in which cells respond to external and internal mechanical,
electrical, and chemical stimuli by complex physiological processes that promote, enhance,
or suppress cell motility [3,4]. Cells can be induced to move in a particular direction by
positive and negative guidance signals, while in the absence of external guidance, cells
move randomly [5,6].

Entropy 2021, 23, 284. https://doi.org/10.3390/e23030284 https://www.mdpi.com/journal/entropy
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In cutaneous wound healing, which is a complex cellular and biochemical process
necessary to restore structurally damaged tissue, skin cells migrate from the wound edges
towards the empty space to restore skin integrity. In this case, the cohesive group of cells
organized in a layer modifies the classical characteristics of single cell migration, and the
presence of the wound induces peculiar migration behaviors. In fact, while a certain
freedom of movement is maintained inside the tissue, the cells along the edge of the wound
(front) move preferentially toward the gap. Such a process involves dynamical interactions
between both the contacting cells (which are absent in single cell migration) and the
extracellular matrix. These interactions regulate motility enhancement or suppression [7,8].

The wound healing scratch assay is a widespread experimental tool applied to study
the collective migration of cells cultured in vitro. Standard protocols provide that a highly
confluent monolayer of cells is scratched by a fine pipette tip to create a gap, which is then
allowed to heal. As a protocol of analysis, the area of the scratch is measured as a function
of time to determine the speed of the closure. This method is meant to simulate a natural
wound, and the procedure is simple and easy to set up, but it is difficult to analyze and
produce precise and reproducible results [9].

The mathematical continuum models that focus on the collective properties of cells
can explain the requirements for the onset of movement and some typical characteristics
of cell motility, but are usually limited to small space-time scales. Therefore, they provide
little information on how the integration of the lamellipodium protrusion, the retraction
of the posterior part, and the transduction of force on the extracellular matrix lead to
the long-term prolonged movement of the entire cell. This process is characterized by
alternating phases of direct migration and changes of direction and polarization. The
coordinated interaction of these phases suggests the existence of intermittency, strong
space-time correlations, and a close relationship between units (cell-cell interaction). It is
therefore an important question whether the long-term movement of the entire cell can still
be understood as a simple diffusive behavior such as Brownian movement or a random
walk or whether more advanced dynamic modeling concepts should be applied [10–12].

The change in shape and density of the cells during migration make it difficult to apply
standard automatic single particle tracking (SPT) pipelines to extract the cell migration
trajectory in phase contrast images acquired in time-lapse. These difficulties are even
greater when collective motion is considered and a dense agglomerate of cells is present.
To overcome such limitations, here, we propose a pipeline for segmentation and SPT
extraction in phase contrast images of the wound healing scratch assay. The pipeline
is original and follows the principle of Occam’s razor, based on a simple measure as
linear binary patterns (LBPs), which results in being sufficient to classify the texture
as cells or background by using a principal component analysis (PCA) and Gaussian
mixture classification, the code is available at the git-hub repository https://github.com/
riccardoscheda/AnomalousDiffusion (accessed on 1 November 2020). We chose the manual
segmentation performed over one experiment as the ground truth. We further compared the
performance of our pipeline with segmentation by Otsu thresholding [13] without manual
adjustment of the parameters for different frames of the same image. For all the cases,
the wound edge is approximated to a unique membrane and its dynamics approximated
by the stochastic motion of a point on the membrane, i.e., a pseudo-particle. This choice is
motivated by the fact that in the experiment under study, faster cells do not separate from
the borders during wound closure. Therefore, the dynamics and the heterogeneity of the
process are characterized through the collection of such SPT trajectories.

The paper is organized as follows: in the the Methods Section, we present step by
step our pipeline for phase contrast image processing and SPT; in the Results Section, we
show the trends of the pseudo-particle trajectories’ statistics for a wound healing scratch
assay, performed with glioblastoma T98G cells; in the Conclusions Section, we discuss the
performance and the SPT statistics of our pipeline, in comparison with the corresponding
measurements obtained through the professional tool ImageJ [14].

2



Entropy 2021, 23, 284

2. Methods

2.1. Data

Glioma cells (T98G), derived from brain human tumor glioblastoma multiforme
(GBM), were plated at a density of 1× 105 cells/cm2 on 35 (�) mm sterile Petri dishes with
a 10 (�) mm glass microwell (MatTek Corporation, Ashland, MA, USA) suitable for optical
microscopy. The cell culture, with a population doubling time (PDT) approximately of
28 h, as reported by the ATTC Company, which provided the cell line, was maintained in
GibcoTM Minimum Essential Medium (MEM) with Earle’s salts (Fisher Scientific, Milano,
Italy) supplemented with 10% fetal bovine serum, 1% L-glutamine, 1% sodium pyruvate,
and antibiotics (1% penicillin and 1% streptomycin) inside the incubator at 5% of CO2 and
37 ◦C. All chemicals were purchased from Merck KGaA (Darmstadt, Germany). After 48
h from seeding, the population covered the entire surface as a monolayer of confluent
and tightly contacting cells. Using a sterile pipette tip for Gilson (10–200 μL), a scratch
ranging 200–400 μm along the middle axis was done. Right after, the specimen was placed
into the pre-heated microscope stage incubator in the motorized table of the inverted
optical microscope Eclipse Ti (Nikon, Bologna, Italy). The phase-contrast micrographs of
multiple visual fields, pre-selected along the narrow scrape by the NIS Elements AR 4.0
(Nikon, Bologna, Italy) software, were acquired at 100× magnification for 20 h at the rate of
4 frames/hour. The setup allowed the acquisition of time-lapse images of living cultured
cells maintained in standard conditions for the entire duration of the experiment.

2.2. Image Processing

The aim of the pipeline was to identify the wound edges, which correspond to the
free edge of the two cell layers, separated by the wound. The procedure was done in the
following steps, which should be applied to all the frames of an experiment: (i) equalization,
to make all the frames comparable; (ii) binarization, to separate the background regions
from the cell layers; (iii) wound edge identification; and (iv) storage of the coordinates.
We describe here two alternative procedures of binarization, the first based on texture
classification and the second on hand drawing the wound edges over the images by using
the professional tool ImageJ [14].

2.2.1. Equalization of the Frames

To improve the difference of the wound borders from the background regions, we
applied to all the frames contrast limited adaptive histogram equalization (CLAHE) [15].

The image was divided into small blocks (tiles), with a tile size of 50× 50, to enhance
the difference between the cell border and the background (tile size is 8× 8 by default
in [16]). Then, each of these blocks was histogram equalized. Therefore, in a small area,
the histogram would be confined to a small region (unless there was noise). If noise was
there, it would be amplified. To avoid this, contrast limiting was applied. If any histogram
bin was above the specified contrast limit (by default, 40 in [16]), those pixels were clipped
and distributed uniformly to other bins before applying histogram equalization. This
procedure increased the image contrast and enhanced the texture patterns (e.g., Figure 1b)
by equalizing pixels’ intensity distribution of all the frames to a fixed range wider than the
original ones.

2.2.2. Image Binarization by Texture Analysis

Image binarization was performed by dividing each frame into 10,000 subimages
(12× 16 pixel subimages in 1200× 1600 pixel image) and by classifying each of them as
the background or cell layer on the bases of a score. The score was built to characterize
the texture of each subimage and corresponded to the distribution of the local binary
pattern (LBP) values for all the pixels of the subimage (scikit-image Python library [17],
skimage.feature.local_binary_pattern). We considered grayscale images; thus, the LBP of
each pixel corresponded to a scalar value. We calculate the LBP for a pixel by comparing
the pixel with its 8 first neighbors. To each couple was assigned a score: if the central pixel
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value was greater than or equal to the neighbor pixel value, we assigned 1, otherwise, if the
central pixel value was less than the neighbor pixel value, the score was 0. The LBP value
of the pixel corresponded to the sum of these scores, ranging from 0 to 8, and contained
information about the 3 × 3 square of pixels. The frequency of such LBP scores for each
subimage was an array of 9 values representing a texture feature of the subimage. Therefore,
each frame (image) was characterized by a matrix of 10,000 (sub-images) × 9 (LBP score)
values. Principal component analysis (PCA) [18] was performed over the 9 dimensions of
the texture score to separate the 10,000 subimages into two clusters: one corresponding to
the background regions and one containing the cell layer regions (Figure 1c). Taking the
first 5 principal components, the points belonging to the two clusters were classified and
labeled (0 or 1) using the Gaussian mixture model clustering algorithm (scikit-learn Python
library [19], sklearn.mixture.GaussianMixture). Each point in Figure 1c corresponds to a
subimage; hence, the obtained binary color labels (yellow or blue) were used as binarized
intensities for the corresponding subimages to build the binarized image (Figure 1d).

The performance of the algorithm with respect to the size of the subimages was
studied in terms of the Pearson correlation of the segmented fronts with the ground
truth for squared and rectangular shapes of different sizes. For complete tessellation
of the image, it supported the choice of the subimages’ size of 12 × 16 pixels (see the
Supplementary Material).

(a) (b)

(c) (d)

Figure 1. Original image (a); transformed image by using adaptive histogram equalization (b); 3D
scatter plot of the first 3 principal components of the linear binary pattern (LBP) score PCA (c); the
data points in the scatter plot are clustered by the Gaussian mixture model clustering algorithm;
color labels refer to cells (blue) or background (yellow); binarized frame image by using texture
analysis (d).

2.2.3. Wound Edge Recognition from Binarized Images

Contour lines can be easily recognized in a binarized image as the contour of 0 or
1 regions. We applied a function for contour identification, returning a list of all the
contours in an image (OpenCV-Python library, findContours). In the frames, the longest
contour line refers to the central part of the image until the two cellular fronts remain
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separate, identifying at the same time the background regions an the two borders of the
cell layers (Figure 2a).

(a) (b)

Figure 2. Image binarized by texture analysis with borders recognized by OpenCV-Python (a);
example comparison of the borders obtained through the professional tool ImageJ (blue line) and the
texture analysis (red dashed line) method superposed on the original image frame (b).

2.2.4. Wound Edge Recognition with the ImageJ Professional Tool

The extraction of the fronts with the professional tool ImageJ for image analysis was
performed by hand drawing the line of the front over each image (Figure 2b) and then by
saving the corresponding coordinates for each frame and for left (L) and right (R) front in
a .txt file [14].

2.2.5. Wound Edge Recognition with Otsu Thresholding

For the simple thresholding of the images, we performed an adaptive histogram
equalization (CLAHE) to improve the difference of the wound borders from the back-
ground, then we blurred the image with OpenCV Gaussian Blur, in order to have better
results for the Otsu thresholding. Then, we applied Otsu thresholding on the image [17].
Then, we applied morphological transformations in order to have a smoother border of the
wound. After morphological transformations, we collected the coordinates of the borders
(OpenCV-Python library, findContours).

2.3. Pseudo-Particles’ Trajectories

The wound edge (L and R) of the cell layers was considered as a single homogeneous
elastic membrane. The movement of such a membrane was tracked by means of N points
uniformly distributed along its length as pearls on an elastic necklace. To derive the
coordinates of the N pseudo-particles, we interpolated the wound edges’ 2D coordinates
as a function of the front length (scipy Python library, scipy.interpolate.interp1d), and then,
we computed the coordinates of the N pseudo-particles uniformly distributed along its
length [20].

The collection of the N points constituted the collection of pseudo-particles, and for
each of them, an SPT was built by considering its coordinates in the time sequence of the
experiment frames. The SPTs in 2D were allowed to cross because of invaginations and
protrusions of the front, despite the cells being attached to each other and the membrane of
the wound edge being considered as a unicum. However, the average displacement along
the membrane was approximately zero because it was constrained by the geometry of the
system and the microscope field.

The pseudo-particle n at time tk was defined by the coordinates of the n-th pseudo-
particle in the k-th frame of the image. The collection of the coordinates of the pseudo-
particle n for all the frames represented the trajectory of the pseudo-particle n. Thus,
the dynamics of the membrane could then be tracked by working on a matrix N × M,
where N is the number of tracked pseudo-particle and M is the number of frames. The latter
represent the time steps of the sampling.
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2.4. SPT Statistics

To study the SPT statistics, we applied the discrete version of mean squared displace-
ment (MSD) and autocorrelation functions (ACFs). In fact, discrete SPT statistics can be
performed directly on an SPT N (pseudo-particles)×M (frames) matrix dataset, one for
the x coordinate and one for the y coordinate, where the frame index k = 0, 1, 2 . . . , M− 1
corresponds to the sampling time, i.e., the time step of the process, and n = 1, 2 . . . , N
corresponds to the index of the pseudo-particle. Statistics on the single trajectory could be
performed as matrix operations along the M columns, while the ensemble average could
be performed by averaging over the N rows of the transformed matrix. In the present
work, we considered only the movement toward the free edge of the layers for the sake
of simplicity, i.e., the x component of the quantities of interest. For statistical analysis, we
applied a shift to the pseudo-particle position such that 〈X(t = 0)〉 = 0. Moreover, due to
the lack of long stationary trajectories, we considered here only ensemble averages:

E(Y(k)) =
1
N

N

∑
n=1

yn(k) , (1)

where yn(k) is the value of the variable Y for the n-th pseudo-particle at time t = k. The
velocity of the pseudo-particle is defined as the increment of the pseudo-particle position
X per unit sampling time (0.25 h):

V(τ) = X(τ + 1)− X(τ) , τ = 0, 1, 2 . . . , M− 2 . (2)

The increments of the velocity per unit sampling time are defined as the following:

A(τ) = V(τ + 1)−V(τ) , τ = 0, 1, 2 . . . , M− 3 . (3)

The autocorrelation function ACFY for the generic variable Y reads:

ACFY(τ) =
E[(Y(t0)− μt0)(Y(t0 + τ)− μt0+τ)]

σt0 σt0+τ
, τ = 0, 1, 2 . . . , M− 1 , (4)

where the initial time is t0 = 0 and σk and μk represent respectively the standard deviation
and the mean of the variable Y at time t = k.

The mean squared value (MSY) for the generic variable Y reads:

MSY(τ) = E[(Y(t0 + τ)−Y(t0))
2] , τ = 0, 1, 2, . . . , M− 1 , (5)

where the initial time is again t0 = 0.

2.5. Fit Procedure

All the fits were performed through a ordinary least squares (OLS) regression (scipy
Python library, scipy.optimize.curve_fit), which returned the optimized parameters of the
model and their matrix of covariance [20]. Poissonian uncertainty for counts in histograms
was considered. We further compared (results not shown) the parameters estimated by
OLS with the ones obtained by the maximum likelihood estimate (MLE) (stats Python
library, scipy.stats.rv_continuous.fit).

3. Results

We considered a single field in an experiment of the wound healing scratch assay
(without external stimuli applied to the cell substrate) as the test image.

The trends of the N SPTs obtained through the texture analysis for the experiment
under study are compared with the ones obtained by using the professional tool ImageJ in
Figure 3. SPTs from the right front are also mirrored.

6
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(a) (b)

Figure 3. Comparison of the single particle trajectories obtained with the professional tool ImageJ (blue line) and the texture
analysis (red or dashed line) method for the left wound edge (a) and the right wound edge (b), for N = 103.

In Figure 4, we display the temporal trends of the area between the wound edges
during wound closure, estimated by using the texture analysis in comparison with the
wound edges recognized manually.

Figure 4. Normalized area between the wound edges during wound closure as a function of time for
the texture analysis (blue line) and the professional tool ImageJ (red line).

The pseudo-particle average position and average velocity for the two methods of
analysis are displayed in Figures 5 and 6. The ACFs of the pseudo-particle position
and velocity along the x coordinate are compared for the two methods of analysis in
Figures 7 and 8, respectively. A regime with stationary increments of the velocity was
identified for the time range between 5 h and 8 h (Table 1), corresponding to the duration
of the regime with constant drift velocity in the ensemble averaged position (Figure 5).
The medium could be roughly approximated as viscous, and a constant velocity implies
constant force, on average, applied against friction by the cells. This stationary regime
with constant drift velocity was supported by zero correlation in the VACF(Figure 8) and
by the symmetric distribution of velocity increments with a zero average. For such a
time range, the distribution of the instant acceleration (velocity increments) along the x
coordinate is shown in Figure 9 for the two methods of image segmentation. The tails
of these distribution are compatible with both the exponential and the Gaussian scaling,
with comparable characteristic scales (Table 2). However, the linear decay of the tails in
Figure 10 suggests that a truncated-exponential decay is more plausible. To estimate the
consistency between the two methods, we computed the Pearson’s correlation (Table 3) for
their estimates of the pseudo-particles’ coordinates, i.e., the entire collection of estimated
position for the x and y coordinates, the average position 〈X〉, the average velocity 〈V〉,
and the average velocity increments 〈A〉 for N = 103 and M = 40.
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(a) (b)

Figure 5. Comparison of the average position of the pseudo-particle obtained with the professional tool ImageJ (blue dotted
line) and the texture analysis (red dashed line) and their linear OLS best fit (black dashed line; see Table 1 for details) for the
left wound edge (a) and the right wound edge (b).

(a) (b)

Figure 6. Comparison of the ensemble averaged pseudo-particle velocity obtained with the professional tool ImageJ (blue
dotted line) and the texture analysis (red dashed line) for the left wound edge (a) and the right wound edge (b).

(a) (b)

Figure 7. Comparison of the coordinate X autocorrelation function obtained with the professional tool ImageJ (blue dotted
line) and the texture analysis (red dashed line) for the left wound edge (a) and the right wound edge (b).

(a) (b)

Figure 8. Comparison of the velocity autocorrelation function obtained with the professional tool ImageJ (blue dotted line)
and the texture analysis (red dashed line) method for the left wound edge (a) and the right wound edge (b).
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Table 1. Estimated average drift velocity of the cell front vd and the lag time of quiescence τ1 with their corresponding
standard error obtained through OLS regression of the model and goodness of fit (Adj. R-squared). The second time scale
τ2 = 8 h is estimated from Figure 5b.

Model Front Method vd ± SD (μm/h) τ1 ± SD (h) Adj. R-Squared

x(t)|τ1<t<τ2 =
vd · (t− τ1)

L ImageJ 19.5± 0.3 4.49± 0.03 0.990

L texture analysis 17.4± 0.3 4.75± 0.03 0.984
R ImageJ 23.9± 0.4 5.25± 0.03 0.987
R texture analysis 21.8± 0.5 5.25± 0.03 0.975

(a) (b)

(c) (d)

Figure 9. Comparison of the ensemble averaged pseudo-particle acceleration trajectory obtained with the professional tool
ImageJ (blue dotted line) and the texture analysis (red dashed line) method for the left wound edge (a) and the right wound
edge (b); comparison of the standard deviation of pseudo-particle acceleration of the ensemble of pseudo-particles obtained
with the professional tool ImageJ (blue dotted line) and the texture analysis (red dashed line) method for the left wound
edge (c) and the right wound edge (d).

(a) (b)

Figure 10. Comparison of the velocity increments (absolute value) obtained with the professional tool ImageJ (blue) and the
texture analysis (red) method for the left wound edge (a) and the right wound edge (b); the best OLS fit of the frequencies
of a exponential (dashed line) and a normal distribution (bold line) is shown for the two methods (see Table 2 for details).
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Table 2. Estimated parameters with their corresponding standard error obtained through OLS regression of the correspond-
ing model and goodness of fit (Adj. R-squared).

Model Front Method λ± SD (μm) σ ± SD (μm2) Adj. R-Squared

P(|ΔV|) =
2 · G(|ΔV|; 0, σ2)

L ImageJ 29± 1 0.982

L texture analysis 117± 2 0.980
R ImageJ 36± 1 0.976
R texture analysis 103± 2 0.982

P(|ΔV|) =
1
λ e−|ΔV|/λ L ImageJ 23± 1 0.976

L texture analysis 92± 2 0.948
R ImageJ 31± 1 0.987
R texture analysis 82± 2 0.949

Table 3. Pearson correlation of the collection of the pseudo-particles’ coordinates, x and y, the average
position 〈X〉, the average velocity 〈V〉, and the average velocity increments 〈A〉 estimated by ImageJ
with the one estimated by texture analysis for N = 103.

Front Variable Pearson’s Coeff. p-Value

L x-coords 0.942 0.0
y-coords 0.985 0.0
〈X〉 0.997 1 × 10−50

〈V〉 0.547 1 × 10−4

〈A〉 0.275 0.08
R x-coords 0.913 0.0

y-coords 0.986 0.0
〈X〉 0.997 1 × 10−48

〈V〉 0.630 1 × 10−6

〈A〉 0.156 0.19

4. Conclusions

We present an original method to extract a 2D discrete representation of the wound
edge in phase contrast images acquired in time-lapse by texture analysis, and we compare
the results with the ones obtained by using the professional tool ImageJ and by Otsu
thresholding (see the Supplementary Material for edges derived by thresholding). The
dynamics of the wound edges is defined by the SPT of N pseudo-particles uniformly
distributed along the length of the fronts.

Thus, discrete SPT statistics can be performed directly on the SPT N (pseudo-particles)
×M (frames) matrix dataset for the x coordinate (crossing the wound gap).

We compare SPT statistics of the data obtained by hand drawing with the texture
analysis: average values, squared mean values, and the autocorrelation function of position
and velocity. The two approaches lead to consistent results in terms of the trends of the
dynamics (qualitative analysis) and in terms of Pearson’s correlation (Table 3). By a visual
check, the texture analysis appears more capable of recognizing lamellipodium protrusions
than the professional tool ImageJ, because such tiny structures could be occasionally missed
by human recognition (Figure 2). On the other side, the automatized procedure may also
produce artifacts in the front profile, for example it would consider as part of the cell layer
pieces of dead cells remaining in the middle of the wound when the cells at the wound
edges get close to them. For these reasons, the wound edges detected by texture analysis
are associated with larger fluctuations between different frames than the ones detected
manually. For the same reasons, the pseudo-particles position fluctuates more in the texture
analysis dataset between different frames, generating larger tails in the distribution of
increments along the x coordinate for the velocity (and position) of the pseudo-particle
(Figure 10) and larger mean squared velocity, in comparison to the one obtained by the
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professional tool ImageJ method. Despite such discrepancy, the average drift velocities
(Figure 5), which correspond to the mean of the distribution of the position increments and
the average velocity increments (Figure 10), are comparable.

Finally, by studying the SPT statistics, we are able to identify an intermediate regime
characterized by a constant average of the cellular front velocity and by exponential tails
for the velocity increments’ distribution (Table 2). We leave the full characterization of the
stochastic process and the biological meaning, which are beyond the scope of the present
paper, to future research with an enlarged cohort of experiments, in order to increase the
statistics, but also to characterize the inherent variability of the phenomena.

Supplementary Materials: The following are available online at https://www.mdpi.com/1099-430
0/23/3/284/s1.

Author Contributions: Conceptualization, S.V., G.P. and I.Z.; software, R.S. and E.G.; investigation,
I.Z.; resources, I.Z.; formal analysis, R.S. and S.V.; methodology, S.V. and G.P.; visualization, R.S.
and S.V.; writing—original draft preparation, all authors; supervision, S.V., E.G. and G.P.; funding
acquisition, G.P. and I.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: S.V. and G.P. are supported by the Basque Government through the BERC 2018–
2021 program and also funded by the Spanish Ministry of Economy and Competitiveness MINECO
via the BCAM Severo Ochoa SEV-2017-0718 accreditation.

Data Availability Statement: not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Friedl, P.; Wolf, K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat. Rev. Cancer 2003, 3, 362–374.
[CrossRef] [PubMed]

2. Rorth, P. Collective cell migration. Annu. Rev. Cell Dev. Biol. 2009, 25, 407–429. [CrossRef] [PubMed]
3. Ladoux, B.; Mège, R.M. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol. 2017, 18, 743–757. [CrossRef]

[PubMed]
4. Lintz, M.; Muñoz, A.; Reinhart-King, C.A. The Mechanics of Single Cell and Collective Migration of Tumor Cells. J. Biomech. Eng.

2017, 139, 0210051–0210059. [CrossRef] [PubMed]
5. Hakim, V.; Silberzan, P. Collective cell migration: A physics perspective. Rep. Prog. Phys. 2017, 80, 076601. [CrossRef] [PubMed]
6. Ascione, F.; Vasaturo, A.; Caserta, S.; D’Esposito, V.; Formisano, P.; Guido, S. Comparison between fibroblast wound healing and

cell random migration assays in vitro. Exp. Cell Res. 2008, 347, 123–132. [CrossRef] [PubMed]
7. Te, Boekhorst, V.; Preziosi, L.; Friedl, P. Plasticity of cell migration in vivo and in silico. Annu. Rev. Cell Dev. Biol. 2016, 32, 491–526.

[CrossRef] [PubMed]
8. Thuroff, F.; Goychuk, A.; Reiter, M.; Frey, E. Bridging the gap between single-cell migration and collective dynamics. eLife 2019,

8, e46842. [CrossRef] [PubMed]
9. Zheng, C.; Yu, Z.; Zhou, Y.; Tao, L.; Pang, Y.; Chen, T.; Zhang, X.; Qiu, H.; Zhou, H.; Chen, Z.; Huang, Y. Live cell imaging

analysis of the epigenetic regulation of the human endothelial cell migration at single-cell resolution. Lab Chip 2012, 12, 3063–3072.
[CrossRef]

10. Dieterich, P.; Klages, R.; Preuss, R.; Schwab, A. Anomalous dynamics of cell migration. Proc. Natl. Acad. Sci. USA 2008, 105,
459–463. [CrossRef] [PubMed]

11. Souza, Vilela, Podestá, T.; Venzel, Rosembach, T.; Aparecida dos Santos, A.; Lobato, Martins, M. Anomalous diffusion and
q-Weibull velocity distributions in epithelial cell migration. PLoS ONE 2017, 12, e0180777. [CrossRef] [PubMed]

12. Luzhansky, I.D.; Schwartz, A.D.; Cohen, J.D.; MacMunn, J.P.; Barney, L.E.; Jansen, L.E.; Peyton, S.R. Anomalously diffusing and
persistently migrating cells in 2D and 3D culture environments. APL Bioeng. 2018, 2, 026112. [CrossRef] [PubMed]

13. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66.
14. Rasband, W.S. ImageJ; U.S. National Institutes of Health: Bethesda, MD, USA, 1997–2018. Available online: https://imagej.nih.

gov/ij/ (accessed on 1 November 2020).
15. Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems IV; Heckbert, P., Ed.; Academic Press:

Cambridge, MA, USA, 1994; pp. 474–485.
16. Python Library OpenCV-Python. Available online: https://OpenCV-python-tutroals.readthedocs.io/en/ (accessed on 1 Novem-

ber 2020).
17. Python Library Scikit-Image. Available online: https://scikit-image.org (accessed on 1 November 2020).

11



Entropy 2021, 23, 284

18. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374,
20150202. [CrossRef]

19. Python Library Scikit-Learn. Available online: https://scikit-learn.org (accessed on 1 November 2020).
20. Python Library Scipy. Available online: https://www.scipy.org/ (accessed on 1 November 2020).

12



entropy

Article

Single-Particle Tracking Reveals Anti-Persistent Subdiffusion
in Cell Extracts

Konstantin Speckner and Matthias Weiss *

Citation: Speckner, K.; Weiss, M.

Single-Particle Tracking Reveals

Anti-Persistent Subdiffusion in Cell

Extracts. Entropy 2021, 23, 892.

https://doi.org/10.3390/e23070892

Academic Editors: Janusz Szwabiński
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Abstract: Single-particle tracking (SPT) has become a powerful tool to quantify transport phenomena
in complex media with unprecedented detail. Based on the reconstruction of individual trajectories, a
wealth of informative measures become available for each particle, allowing for a detailed comparison
with theoretical predictions. While SPT has been used frequently to explore diffusive transport in
artificial fluids and inside living cells, intermediate systems, i.e., biochemically active cell extracts,
have been studied only sparsely. Extracts derived from the eggs of the clawfrog Xenopus laevis, for
example, are known for their ability to support and mimic vital processes of cells, emphasizing
the need to explore also the transport phenomena of nano-sized particles in such extracts. Here,
we have performed extensive SPT on beads with 20 nm radius in native and chemically treated
Xenopus extracts. By analyzing a variety of distinct measures, we show that these beads feature an
anti-persistent subdiffusion that is consistent with fractional Brownian motion. Chemical treatments
did not grossly alter this finding, suggesting that the high degree of macromolecular crowding in
Xenopus extracts equips the fluid with a viscoelastic modulus, hence enforcing particles to perform
random walks with a significant anti-persistent memory kernel.

Keywords: anomalous diffusion; random walk; single-particle tracking

1. Introduction

Quantifying transport phenomena in soft and living matter on mesoscopic scales
virtually always involves optical microscopy techniques, due to their high spatiotemporal
resolution. Presumably, the most informative approach in this context is single-particle
tracking (SPT). In SPT experiments, the rapid imaging of a sparse set of (fluorescent) parti-
cles, e.g., molecules, beads, quantum dots, or even whole organelles, allows for retrieving
individual particle positions over time, eventually providing complete trajectories (see, for
example, Refs. [1–3] for reviews and [4] for a quantitative comparison of SPT to other tech-
niques). Direct access to particle trajectories facilitates the application of refined analysis
approaches [5], with the mean square displacement (MSD) supposedly being the easiest
and most familiar measure.

Having SPT data at hand, one can calculate, for example, the time-averaged MSD
(TA-MSD), 〈r2(τ)〉t, for each trajectory and compare these to their ensemble-average,
〈r2(τ)〉t,E. A commonly observed feature is a power-law scaling of both MSDs 〈r2(τ)〉t,E ∼
〈r2(τ)〉t ∼ τα, with normal Brownian diffusion being indicated by α = 1. Scaling exponents
α < 1 are commonly referred to as ‘subdiffusion’, whereas values 1 < α < 2 are termed
‘superdiffusion’. Subdiffusion with scaling exponents 0.3 < α < 0.9 has been observed very
frequently, at least on short and intermediate time scales, for tracer particles in complex
media, e.g., in equilibrated biomimetic crowded fluids [6–10], in the cytoplasm [6,11–15]
and in the nucleoplasm [11,16–18] of living cells, as well as on biomembranes [19–22]; see
also [23,24] for extensive reviews.

Cell extracts, which are basically only the cytosol of an ensemble of cells without larger
organelle compartments, constitute an intermediate between artificial equilibrated media
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and nonequilibrium fluids inside living cells. Although extracts support vital processes,
such as gene transcription [25] or even the formation of a mitotic spindle [26], diffusional
transport in these fluids has so far been explored only sparsely. Biochemically active
extracts may be derived from different sources, with the eggs of the clawfrog Xenopus laevis
supposedly being the most popular: here, unfertilized oocytes are collected from the spawn,
cooled down and crushed by centrifugation (see [27] for details). Due to different buoy-
ancies, most membranes and the yolk can be separated from the aqueous cytosol, which
eventually is obtained as extract. This extract not only includes all necessary biomolecules
at physiological concentrations, but also allows for native interactions of proteins and/or
nucleic acids and/or sugars. Due to its amphibian origin, the Xenopus extract provides
full functionality, e.g., a dynamic cytoskeleton and even functional spindles, already at
temperatures around 20 ◦C [27]. Given the crowdedness of these fluids and their inherent
nonequilibrium background noise due to active proteins, it is unclear how particles explore
such a (nearly) living fluid. While an early study, which was focused on the rheology of
Xenopus extracts, revealed already that particles with sizes around 1 μm move subdiffu-
sively in these fluids [28], a study on smaller particles but also a detailed investigation
of the random walk process associated with the observed subdiffusion has been lacking
so far.

As a stochastic process, subdiffusion may arise when the accessible space has a fractal
geometry [29], e.g., imposed by a sufficiently dense set of immobile obstacles that form
a random percolation cluster. In most experimentally relevant cases, however, obstacles
are too mobile to induce an obstructed random walk in a fractal environment (see [20]
for a discussion). Power-law distributed waiting times between successive steps can
also induce subdiffusion [30], yet at the cost of weak ergodicity breaking [31,32], i.e.,
the scaling of TA-MSDs is that of normal Brownian motion (α = 1), whereas a simple
ensemble-averaged MSD of many trajectories shows subdiffusive scaling. The difference
between both measures, at least in the unconfined case (see [33,34] for results in confined
geometries), is related to a successive aging of the system. While such processes were
sometimes observed [13,19], most experimental reports are more consistent with fully
ergodic random walk processes, albeit often with a marked anti-correlation of successive
steps instead of a purely Markovian random walk. For an abstract description of such
a subdiffusive mode of motion, fractional Brownian motion (FBM) [35] with a Hurst
coefficient H = α/2 ≤ 1/2 was used in many cases (see [5,23] for an extensive discussion).
In a nutshell, FBM is a Gaussian process with stationary increments whose anti-persistent
memory kernel may encode the viscoelastic characteristics of the surrounding medium.
Using SPT, experimental data can be tested directly for FBM features not only via MSDs,
but also via the power-spectral density (PSD) and correlation functions that report on the
memory kernel [5,23].

Here, we show via SPT that beads with 20 nm radius move subdiffusively in native
and chemically treated Xenopus extracts. A sublinear scaling of MSDs with an average
scaling of 〈α〉 ≈ 0.9 is found, accompanied by a significant anti-persistence peak in the
velocity autocorrelation function (VACF). The VACF shows excellent agreement with the
FBM prediction, and the distribution of step increments is Gaussian, suggesting that the
particles perform a subdiffusive random walk of the FBM type. Further support of this
notion is given by the PSD and the associated coefficient of variation, both of which
also agree very well with the FBM predictions. Chemical treatments of the extract, e.g.,
depolymerizing the cytoskeleton, do not grossly alter the results, suggesting that the high
degree of crowding in Xenopus extracts equips the fluid with a viscoelastic modulus that
forces particles to perform FBM-like random walks.

2. Materials and Methods

2.1. Microscopy and Single-Particle Tracking

Fluorescence images were taken with a customized spinning-disk confocal microscope,
consisting of a Leica DMI 6000 microscope stand (Leica Microsystems, Wetzlar, Germany)

14



Entropy 2021, 23, 892

equipped with a CSU-X1 spinning disk unit (Yokogawa Electric, Tokyo, Japan). Samples
were illuminated by a 491/561 nm dual-combined DPSS laser (Cobolt, Stockholm, Sweden),
and fluorescence was detected in the range of 500–550 nm or 575–625 nm, respectively. The
setup was controlled by a custom written LabView software (National Instruments, Austin,
TX, USA). Time series of images were recorded at room temperature (about 19 ◦C) with a
Hamamatsu Orca Flash 4V2.0 sCMOS camera (Hamamatsu Photonics, Hamamatsu City,
Japan ), using an HCPL APO 63x/1.4 oil immersion objective (Leica Microsystems). With a
2× 2 hardware camera binning, the size of the squared pixels was determined as 112.4 nm.

Rhodamine-labeled microtubules in Xenopus extracts were imaged with an exposure
time of 250 ms, using the 561 nm excitation channel. To improve the contrast between
microtubules and unbound fluorescent tubulin monomers, images were post-processed in
Fiji: the images were filtered with a median filter (radius set to 0.7 pixels), and background
fluorescence was removed using a rolling-ball algorithm with a 10-pixel radius (built-in
function ‘subtract background’). Subsequently, the colormap mpl-viridis was assigned to all
fluorescence images.

In our SPT experiments, fluorescent polystyrene microspheres with a diameter of
40 nm (FluoSpheres NeutrAvidin-Labeled, F8771, Thermo Fisher Scientific, Dreieich, Ger-
many) were used. In contrast to carboxylate surface coupling, neutravidin minimizes
unspecific interactions with DNA and RNA complexes or negatively charged surfaces.
For calibration measurements, 1:100 stock solutions in DNase/RNase-Free Distilled water
(Invitrogen) or 1:20 stock solutions (for Xenopus egg extract experiments) were prepared.
On average, about 200–400 fluorescent particles were observed in the field of view of the
camera sensor (110× 70 μm2). For tracking, 2000 images were recorded with an exposure
time of Δt = 25 ms per frame, using the 491 nm excitation channel.

Particle positions were detected and linked to trajectories by the ImageJ/FIJI plug-in
TrackMate [36]. As an input parameter for TrackMate, the diameter of fluorescent particles
was estimated via the intensity profiles of 119 particles embedded in pure glycerol, yielding
an average full width half maximum of the point-spread function of 2.9± 0.5 pixels. Particle
tracking was performed using the Laplacian-of-Gaussian detection algorithm (diameter
set to four pixels, threshold set to 50± 15 grey values and using sub-pixel localization).
No additional filters were applied to the detected spots. Identified particle positions were
linked with the simple linear assignment problem tracker adopted from [37]. Here, a
maximum linking distance of three pixels was used and frame gaps were not allowed.
The minimum trajectory length was set to N ≥ 50 positions and trajectories with a total
displacement of less than one pixel were discarded.

Non-assigned detections were cleaned from the time series experiments; particle
trajectories were exported as XML and converted to ASCII files for further processing in
Matlab (Matlab 2018b, The Mathworks Inc., Natick, MA, USA). All statistical analyses of
particle trajectories were performed with custom-written codes in Matlab that were prior
checked for proper function by random walk simulation data. In our analyses, particle
trajectories were clipped exactly to lengths of N = 70 or N = 150 time steps for better
comparability within the ensemble (i.e., all shorter trajectories were discarded for the
analysis). In total, our ensemble (=the number M of trajectories of a given length for a
given condition) consisted of 1000–3000 trajectories (N = 70) and 150–600 (N = 150) for
Xenopus extract experiments. For varying glycerol water mixtures, 1000–5000 (N = 70)
and 75–1000 (N = 150) trajectories were available. The specific ensemble sizes are given in
Tables 1 and 2.

2.2. Xenopus Extract Preparation and Modification

Cytostatic factor-arrested (CSF) cytoplasmic extracts were prepared from freshly laid
Xenopus laevis eggs based on standard protocols [26,27,38]. In brief, eggs in the metaphase
stage of meiosis II were collected, dejellied and packed into a centrifugation tube. The
packed eggs were crushed and fractioned into three distinctive layers by centrifugation.
The mid cytoplasmic layer was carefully isolated and supplemented with 10 μg/mL of
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protease inhibitors, leupeptin, pepstatin and chymostatin (diluted in DMSO), 10 μg/mL of
cytochalasin D, and ATP regeneration mix (190 mM creatine phosphate, 25 mM adenosine
triphosphate, 25 mM MgCl2 and 2.5 mM K-EGTA at pH 7.7) that was diluted 1:50 to the
extract. Finally, 0.35 μL from the 1:20 stock solution of fluorescent particles was added to
20 μL of the extract; optionally, pharmaceuticals for affecting microtubule structures were
added. Microtubules were labeled by fluorescent tubulin (TL 331M, Cytoskeleton Inc.,
Denver, CO, USA) according to the manufacturer’s protocol: 10 mg/mL stock solution
of fluorescent tubulin dissolved in general tubulin buffer (80 mM PIPES, 0.5 mM EGTA
and 2 mM MgCl2 at pH 6.9) with 1 mM GTP that was held on ice and added to Xenopus
extracts to a working concentration of 50 μg/mL. The CSF extract was chilled immediately
on ice and used within a maximum of two hours for the experiments.

Different chemicals were optionally added to Xenopus extracts to affect the micro-
tubule integrity. Here, attention was paid to dilute the extract as little as possible. Pre-
liminary investigations have shown that a total dilution of Xenopus extracts by up to
10% (due to the addition of beads or drugs) appears unproblematic and does not affect
the microtubule structures observed. For all experimental conditions, the total volume
added for modifying microtubules was balanced by the addition of distilled water to the
otherwise untreated extract.

Nocodazole (Sigma-Aldrich, Munich, Germany) was used to depolymerize micro-
tubules [18]. To this end, a stock solution of 10 mM dissolved in dimethylsulfoxide was
diluted to a final concentration of 33.3 μM in Xenopus extract that was kept on ice for
10 min. Afterward, the extract was incubated for 15 min at 25 ◦C and then transferred to
microscopy. Paclitaxel (in the remainder referred to as ‘taxol’, Sigma Aldrich, Germany)
was used to stabilize the microtubules. It was added to the extract at a working concentra-
tion of 25 μM. Non-hydrolizable analogues of ATP (ATPγS, Merck, Darmstadt, Germany)
or GTP (GTPγS, Merck, Darmstadt, Germany) were used to affect the turnover of chemical
energy in the extract. To this end, ATPγS and GTPγS (stored as stock solutions of 25 mM
for ATPγS and 12.5 mM for GTPγS in distilled water) were added to final concentrations
of 500 μM and 250 μM to the Xenopus extracts.

3. Results and Discussion

3.1. Calibration Experiments in Viscous Media

To arrive at a proper baseline for our SPT experiments, we first tracked fluorescent
beads with a radius of R = 20 nm in purely viscous media with varying viscosity (see
Section 2 for details). In particular, we used here glycerol–water mixtures in the range of
70–90% (per weight) for which the viscosity values are known from the literature. Adding
8% of the bead stock solution to the total volume of these mixtures, viscosities in the range
η ∈ [0.016, 0.096] Pa · s were probed by our SPT experiments. For consistency among the
trajectories and for better comparison to subsequent experiments in Xenopus cell extracts,
we fixed the trajectory length to N = 70 or alternatively to N = 150, bearing in mind that
short trajectories may suffer from statistical fluctuations [39] while longer trajectories might
show a bias for picking slower particles [15] that are easier to track without losing them
(e.g., due to leaving the focal plane).

Two-dimensional trajectories r(t) = r1, . . . , rN acquired at discrete times t = Δt, 2Δt,
. . . , NΔt with frame time Δt = 25 ms and a total measurement time T = NΔt were first
evaluated with their individual TA-MSDs, defined via the following:

〈r2(τ)〉t =
1

N − k

N−k

∑
j=1

(
rj+k − rj

)2
, (1)

where τ = kΔt denotes the lag time. The resulting TA-MSDs of trajectories were fitted with
a simple power-law as follows:

〈r2(τ)〉 = 4Kτα (2)
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in the range τ ∈ [0.05, 0.3] s by linear regression of log[τ] versus log[〈r2(τ)〉t]. Therefore,
the generalized diffusion coefficient K becomes equivalent to the familiar diffusion constant,
D, for normal Brownian motion (α = 1). In this case, the Einstein–Stokes relation predicts
the diffusion constant to depend on particle radius R and medium viscosity η as follows:

D =
kBT

6πηR
(3)

yielding predictions for diffusion constants in the range D ∈ [0.11, 0.67] μm2/s for our SPT
experiments in glycerol–water mixtures.

In line with our expectations for purely viscous fluids, we observed on average
normal diffusion, i.e., 〈α〉 = 1, for all viscosities and trajectory lengths (see summary in
Table 1), albeit the individual TA-MSD scaling exponents showing marked fluctuations in
the range α ∈ [0.8, 1.2] (see Figure 1 for representative MSDs and the probability density
function of scaling exponents, p(α)) due to the limiting statistics in TA-MSDs (see [39]
for a detailed discussion). Therefore, the extracted diffusion coefficients K also showed
marked fluctuations, and, yet again the average overall trajectories revealed a value 〈K〉
that compared favorably to the predicted values of D (cf. Table 1). This finding also
indicates that particle radii are, on average, near to their declared and expected value, in
line with previous findings [4]. Please note the slight but visible bias toward lower values
of K for longer trajectories, indicating an unwanted bias toward slower particles that could
be tracked over longer periods. Moreover, the amount of trajectories available for the
analysis clearly increases for increasing viscosity, since slower-moving particles can be
tracked easier. Overall, these calibration experiments demonstrate that normal diffusion
with the anticipated mobility is found via SPT in purely viscous fluids. Deviations from
unity in the (mean) scaling exponent of MSDs can therefore be taken as a clear signature of
a significant anomalous diffusion.

Table 1. Summary of glycerol concentrations (weight percent) in glycerol–water mixtures, along
with the respective viscosities η, and predicted diffusion constants D. Average scaling exponents
〈α〉 (found via fitting all TA-MSDs for trajectories of 20 nm radius particles as described in the
main text, followed by averaging the individual values of α) are near to unity and mean diffusion
coefficients 〈K〉 (also obtained by averaging the results for individual TA-MSDs) compare favorably
to the predicted values of D. Result for trajectories with length N = 70 and N = 150 are given in
upper and lower lines, respectively. The ensemble size of evaluated trajectories for the respective
condition is given by M.

glyc. η [Pas] D [μm2/s] 〈α〉 〈K〉 [μm2/sα] M

70% 0.016 0.67 1.00 0.56 929
0.99 0.45 67

75% 0.023 0.46 1.01 0.42 1513
1.03 0.35 185

80% 0.035 0.30 1.01 0.28 2158
1.03 0.24 250

85% 0.055 0.19 1.01 0.20 4426
1.02 0.18 749

90% 0.096 0.11 1.00 0.13 4668
1.02 0.12 980
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(a) (b)

Figure 1. (a) Representative TA-MSDs for trajectories with length N = 70 (randomly chosen from
the ensemble) from experiments in glycerol–water mixtures (red thin lines) and in Xenopus extract
(black thin lines), together with the respective ensemble-averaged TA-MSDs (colored thick lines). For
better visibility, data for calibration experiments have been shifted upward tenfold. The scaling for
normal diffusion (〈r2(τ)〉t ∼ τ) is indicated by a red dashed line; vertical grey dashed lines indicate
the fit region used to analyze individual TA-MSDs. (b) The PDF of anomaly exponents, p(α), as
obtained from fitting TA-MSDs in glycerol–water mixtures features a mean 〈α〉 ≈ 1, irrespective of
the trajectory length (black-grey histogram: N = 70, blue histogram: N = 150).

3.2. Evaluation of Tracer Motion in Native Xenopus Extract

As a next step, we explored the diffusive motion of the same fluorescent particles in
Xenopus extracts (see Materials and Methods for details). Given that these extracts are
complex and crowded fluids with an active biochemistry, we anticipated considerable
differences to the simple glycerol–water mixtures. As before, we restricted ourselves to
trajectory lengths N = 70 and N = 150, and used the TA-MSD and its ensemble average
for a first characterization. Representative TA-MSDs are shown together with the ensemble
average in Figure 1a.

Next, we fitted all TA-MSDs with Equation (2) to extract the respective scaling expo-
nents, α, and generalized diffusion coefficients, K. Here, we tacitly assume that static and
dynamic localization errors are negligible for our data; we will confirm this assumption
below. Still, to soften any remnant influence of localization errors, especially for retrieving
the scaling exponent α, we did not take the first point of TA-MSDs (at τ = Δt) into account
for fitting. Fitting was performed as in the calibration measurements.

Evaluating all TA-MSDs yielded probability density functions (PDFs) for the scaling
exponent, p(α), and the generalized diffusion coefficient, p(K). Inspecting p(α) (shown in
Figure 2a) reveals that the ensemble of trajectories shows, on average, a slight subdiffusive
scaling of TA-MSDs with a mean 〈α〉 = 0.89. The width of the PDF (about ±0.2 around
the mean) highlights, again, marked fluctuations between individual trajectories. In fact,
similar fluctuations in the trajectory-wise values of α are expected already from mere
statistical fluctuations due to fairly short trajectories (see [39] for discussion). Part of the
width in p(α), however, may also reflect the spatially varying properties of the extract
that is explored and reported on by different particles. Remarkably, trajectories of length
N = 70 and N = 150 resulted in comparable PDFs and the same mean, i.e., longer
trajectories were not biased toward lower scaling exponents. Notably, our observation of a
subdiffusive motion of beads with 20 nm radius in Xenopus extracts is consistent with an
earlier report [28] that reported scaling exponents in the range α ∈ [0.7, 0.95], with lower
values emerging for larger particles (radii in the range 0.1–1 μm).
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(a) (b) (c)

Figure 2. (a) The PDF of anomaly exponents, p(α), as obtained from fitting TA-MSDs in the interval τ ∈ [0.05, 0.3] s,
features a mean 〈α〉 ≈ 0.9, irrespective of the trajectory length (black-grey histogram: N = 70, blue histogram: N = 150).
The considerable width of the PDF may not only reflect statistical fluctuations but is likely to also report on spatially
varying material properties of the Xenopus extract. Performing a bootstrapping approach with geometric averaging
(black-open histogram) confirms the slightly subdiffusive motion of particles, while an arithmetic averaging (red histogram)
overestimates the mean scaling exponent; see also main text for discussion. Please note the logarithmic y-axis. (b) The PDF
of generalized diffusion coefficients, p(K), shown here versus the average area covered in one second, K × 1sα, features
an almost lognormal shape (indicated by full lines) for trajectory lengths N = 70 (grey/black) and N = 150 (blue), with
a slight tendency for lower mobilities in longer trajectories. Please see the main text for discussion. (c) A scatter plot of
trajectory-wise values of α and K (blue and grey symbols) highlights a correlation between these two quantities, in good
agreement with results on simulated FBM trajectories with a Hurst coefficient H = α/2 = 0.45 (red symbols). The black
dashed line is an empiric guide for the eye. FBM simulation data have been shifted upward fivefold for better visibility.

To further confirm and validate the significance of the mean exponent 〈α〉 ≈ 0.9, we
exploited a bootstrapping approach [15]. Based on a total set of several hundred TA-MSDs,
we randomly selected 100 trajectories and averaged these to a single, sub-ensemble av-
eraged MSD from which we determined the scaling exponent α. This random drawing
from the total set of TA-MSDs and the subsequent averaging was repeated 200 times to
obtain a PDF for these scaling exponents. By construction, the width of this PDF can be
expected to be much smaller [15], yielding a better estimate for the mean. Averaging over
the subensemble (SE) of TA-MSDs was either done arithmetically (〈〈r2(τ)〉t〉SE), or by
geometric averaging (exp[〈log(〈r2(τ)〉t)〉SE]). As a result, we found that the mean scaling
exponent found by bootstrapping with arithmetic averaging was 〈α〉SE,a = 0.98, which is
consistent with normal diffusion. In contrast, geometric averaging yielded 〈α〉SE,g = 0.90,
in agreement with the mean of the raw PDF p(α) shown in Figure 2a. Since geometric
averaging boils down to an arithmetic averaging of individual scaling exponents (due to
the invoked logarithm), this result is, in fact, the more trustworthy approach for retrieving
the average scaling exponent. Arithmetic averaging rather averages TA-MSDs with respect
to their individual (and strongly fluctuating) diffusion coefficients, hence obscuring the
mean scaling law and overestimating 〈α〉 (see [15] for another example). The difference
in scaling obtained by the two averaging procedures may also be understood as a conse-
quence of Jensen’s inequality. The mapping ϕ : α 
→ tα is convex for any choice of a real
number t. Jensen’s inequality then states that t〈α〉 = ϕ(〈α〉) ≤ 〈ϕ(α)〉 = 〈tα〉, in line with
our observation.

To check for the influence of localization errors when retrieving the scaling exponent
from individual TA-MSDs, we took the following approach: using immobilized beads,
we determined the contribution of the static localization offset to be a positive additive
constant of about 8× 10−4 μm2 (i.e., 20 nm accuracy of positions), whereas the dynamic
localization error for our frame time and diffusion coefficients amounts to a negative
constant with modulus 0.008 μm2 or lower. Considering either of these two extreme values
as additive constants to the power law Equation (2) while fitting TA-MSDs resulted in
minor deviations of ±0.03 from the previously found value for 〈α〉. We therefore conclude
that our SPT data show mild yet significant subdiffusion. In the following paragraphs, we
further corroborate this conclusion by additional measures.
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Let us now focus on the PDF of generalized diffusion coefficients, p(K), retrieved from
individual TA-MSDs (Figure 2b). To remove the ambiguity of units for varying scaling
exponents (units of K are μm2/sα), we report these PDFs as a function of K× 1 sα, which
represents the typical area covered by the particle within a second. As indicated already
in the discussion of the previous paragraph, individual values of K varied considerably
between trajectories, resulting in a very broad, almost lognormal-shaped PDF. Again,
statistical fluctuations as well as locus-specific mobilities are likely to contribute to the
width of p(K). In contrast to the anomaly exponents, a slight bias for smaller diffusion
coefficients was visible for longer trajectories, seen as a slight shift of the peak in p(K)
between N = 70 and N = 150 (cf. Figure 2b). Still, in both cases, the typical area
explored within a second matches roughly with our calibration experiments in highly
viscous glycerol–water mixtures (cf. Table 1), albeit the mean scaling exponent is clearly
different. Furthermore, a scatter plot of trajectory-wise values for α and K (Figure 2c)
highlights a correlation of these two quantities. This finding is in line with results of FBM
simulations (M = 2000 or M = 1000 two-dimensional trajectories of length N = 70 or
N = 150, obtained via the circulant method [40] with H = α/2 = 0.45 and K = 0.4 μm2/sα;
also shown in Figure 2c), which gives a first hint that an anti-persistent stochastic process
underlies the acquired trajectories.

Let us briefly insert here an intuitive explanation of why a lognormal-like shape of p(K)
is seen here and has also been reported frequently in the literature for other experiments
(see [18,22,41–48] for examples). For the simplicity of the argument, we restrict ourselves
to standard Brownian motion with Gaussian increment statistics and no memory kernel.
Then, the diffusion constant D = 〈〈r2(τ)〉t/(4τ)〉, as retrieved from a TA-MSD fit, is the
finite mean of positive, squared Gaussian random numbers, Δr2 (cf. Equation (1)). The
associated PDF of ϑ = Δr2/〈Δr2〉 follows a special variant of the gamma distribution,
known as Porter–Thomas distribution [49], p(ϑ) = exp{−ϑ/2}/

√
2πϑ. Similar PDFs,

featuring a power law that is cut by an exponential, have been observed, for example, for
blinking quantum dots [50]. For power-law PDFs with a cutoff, it is known that a finite sum
(or average) of random numbers will only slowly approach a Gaussian PDF, the hallmark
of the central limit theorem. Indeed, numerically drawing N random numbers from the
Porter–Thomas PDF and averaging (summing) them as x = ∑N

i=1 ϑi/N yields a PDF p(x)
with a nonzero skewness ∼ 1/

√
N that resembles a lognormal PDF. Hence, even mere

statistical reasons can lead already to an apparently lognormal PDF of diffusion constants
if trajectories are short enough. Varying mobilities, encountered by particles in different
spatial positions of a heterogeneous sample, broaden the PDF even further. Please also note
that applying a logarithmic transformation is basically only one variant of the more general
class of Box–Cox transformations x 
→ (xλ − 1)/λ [51], namely the one for λ = 0. These
transformations were introduced as a means to symmetrize a given data set, eventually
yielding a Gaussian-shaped PDF of the transformed data when choosing the optimal λ.
Restricting the choice to λ = 0, i.e., simply logarithmizing the data, therefore will reduce
the skewness in virtually all practical cases but may not yet completely symmetrize the
data, leaving a residual non-zero skewness. As a consequence, any skewed data set will
assume a more Gaussian shape upon applying a logarithmic transformation, although this
mere statistical approach does, in general, not yet reveal the reason for the skewness and
apparent lognormal PDF of the original data. In particular, inferring from an apparent
lognormal shape of the PDF that the underlying data is the product of independent,
identically-distributed variables may not be a compelling conjecture.

Coming back to our experimental data, we next explored whether the underly-
ing random walk process is Gaussian. To this end, we considered the step increments
(δxi, δyi) = (xi+n − xi, yi+n − yi) taken within a period δt = nΔt. These follow a Gaussian
PDF if the process is a simple FBM process. Recently, however, deviations from a Gaus-
sian PDF were reported [14,15,52,53], highlighting heterogenous diffusion characteristics
that could be rationalized by random walks with spatiotemporally fluctuating transport
coefficients [54,55] and/or by systems with spatial disorders [56,57]. To account for the
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strongly fluctuating diffusion coefficients, we normalized the step increments δx and δy of
each trajectory by the respective root-mean-square values. The resulting set of normalized
steps did not exhibit significant differences between x- and y-coordinates. We therefore
combined both into a single set of normalized increments, χ, which resulted in a symmetric
PDF so that inspecting p(|χ|) was sufficient.

Data for different δt show overall a very good agreement with a standard Gaussian and
are incompatible with a simple exponential (Figure 3), indicating that no major diffusion
heterogeneity is present in our SPT data from Xenopus extracts. For |χ| > 3 and δt ≥ 5Δt,
the experimental PDF falls slightly below the Gaussian benchmark for unknown reasons.
Despite this slight deviation, it appears fair to conclude that the trajectories emerged from
a mildly subdiffusive Gaussian process, suggesting that FBM is the most likely model that
describes our experimental data.

Figure 3. The PDF of normalized increments taken within a period δt, shown here as p(|χ|), complies
well with a standard Gaussian (black full line) for different choices of δt (color-coded symbols). For
δt ≥ 5Δt and |χ| > 3, consistently lower probabilities than the Gaussian benchmark are observed for
unknown reasons.

To follow up on this hypothesis and probe the existence of a non-trivial memory
kernel in our experimental data, we employed the ensemble- and time-averaged velocity
autocorrelation function (VACF) of each trajectory, defined as follows:

C(τ) =
〈 〈v(t)v(t + τ)〉t

〈v(t)2〉t

〉
E

, (4)

with v(t) = [r(t + δt) − r(t)]/δt denoting the instantaneous velocity that is simply the
two-dimensional step r(t + δt) − r(t) taken within integer multiples of the frame time,
δt = nΔt.

It is convenient to rescale the lag time τ = kΔt with δt, yielding a dimensionless time
ξ = τ/δt = k/n. For FBM, an analytical prediction for the VACF was derived [5,35]:

CFBM(ξ) = {(ξ + 1)α + |ξ − 1|α − 2ξα}/2 . (5)

The fact that the VACF does not depend on n and k but only on the ratio ξ = k/n
reflects the self-similarity of FBM processes. Localization errors in SPT experiments can
break this self-similarity [58,59], i.e., using different δt for rescaling τ to ξ leads to pro-
gressive deviations from Equation (5). In fact, very recently, the VACF was shown to
be a sensitive reporter for detecting localization errors for FBM from the sub- to the su-
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perdiffusive regime [60], as even small localization errors lead to significant changes of
C(ξ = 1) at different choices of δt. In our case, however, rescaling with different δt lead
to an almost perfect collapse of all data to the master curve predicted by Equation (5), see
Figure 4. In fact, this finding is in favorable agreement with the earlier rheology results
on Xenopus extracts that revealed a significant viscoelastic response [11,28], linking the
anti-persistent dip in the VACF to a viscoelastic memory kernel of the medium. Moreover,
the good agreement with Equation (5) for all choices of δt confirms our previous notion
that localization offsets (to which VACFs are very sensitive) are negligible for our data.

Figure 4. The normalized VACF, C(ξ), for different choices of δt (color-coded symbols) shows
excellent agreement with the FBM prediction [Equation (5)] when inserting the mean scaling exponent
〈α〉 = 0.9 (full black line). In particular, a clearly negative value of C(ξ = 1) confirms an antipersistent
random walk, most likely of the FBM type. No significant changes of the VACF minimum are seen
for different δt, confirming that trajectories are not plagued by localization errors.

As a further piece of evidence that the mild subdiffusion seen for particle motion in
Xenopus extracts is due to an antipersistent FBM process, we probed the power-spectral
density (PSD) of individual trajectories:

S( f ) =
1
T

∣∣∣∣∫ T

0
ei f tx(t)dt

∣∣∣∣2 + ∣∣∣∣∫ T

0
ei f ty(t)dt

∣∣∣∣2 , (6)

and the corresponding ensemble average, 〈S( f )〉E. A wealth of analytical information is
available for PSDs and their trajectory-wise fluctuations [61,62]. Alerted by the observations
that arithmetic and geometric averaging can perturb power-law effects in the ensemble of
trajectories (cf. above) we aimed at softening the influence of the grossly varying diffusion
coefficients K in the subsequent analysis. Therefore, we normalized all trajectories by
their respective root-mean-square step length within successive frames, in line with the
approach taken when probing the Gaussian shape of the statistics of increments (cf. context
of Figure 3).

As expected, the ensemble-averaged PSD of these normalized trajectories (for N = 70
and N = 150) followed the analytical prediction S( f ) ∼ 1/ f 1+〈α〉 around which PSDs of
individual trajectories fluctuated to a considerable extension (Figure 5). These fluctuations
encode another important hallmark of FBM via the coefficient of variation, defined as
γ( f ) = σ/〈S( f )〉E with σ( f ) denoting the standard deviation of trajectory-wise PSDs. For
FBM, asymptotic values γ = 1 for subdiffusion and γ =

√
5/2 for normal diffusion were

predicted and verified before [61,62]. To calculate the coefficient of variation for our data,
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we randomly drew 1000 curves from the ensemble of one-dimensional TA-PSDs for the x-
and y-direction and removed those 5% of TA-PSDs with the largest deviations from the
ensemble-averaged PSD. The resulting values for γ fully complied with the FBM predic-
tions (Figure 6). Normally diffusive trajectories from calibration experiments converge
toward the predicted value γ =

√
5/2, whereas subdiffusive trajectories clearly assume

lower values that eventually converge to the universal unity value for large frequencies.

Figure 5. The PSD of individual trajectories (black and blue thin lines, representing trajectories
with length N = 70 and N = 150, respectively) fluctuate around the ensemble-averaged PSD (thick
colored lines). In both cases, the FBM prediction for a scaling S( f ) ∼ 1/ f 1+〈α〉 (with 〈α〉 = 0.9,
dashed line) are nicely met. For better visibility, data for N = 150 have been shifted upward 100-fold.

Figure 6. The coefficient of variation of individual PSDs with respect to the ensemble mean, γ( f ), for
normally diffusive trajectories from calibration experiments (red line) clearly assumes higher values
than those for trajectories from the Xenopus extract (blue and black lines), irrespective of the trajectory
length, N. As predicted for FBM, these subdiffusive SPT data converge toward γ = 1, whereas
normally diffusive data from calibration experiments converge to the predicted value γ =

√
5/2.

Both are clearly distinct from the prediction for superdiffusive FBM motion, γ =
√

2. For convenience,
frequencies f were made dimensionless by multiplication with the total time T = NΔt covered in
each trajectory.
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Altogether, we conclude from the analyses of our SPT data that beads with 20 nm
radius feature a mild antipersistent subdiffusion in Xenopus extract with a mean scaling
exponent 〈α〉 = 0.9. Typical signatures of an FBM with a Hurst coefficient H = 〈α〉/2 = 0.45
are clearly visible, suggesting that the viscoelasticity of the extract determines these distinct
random-walk properties.

3.3. From Native to Pharmaceutically Treated Xenopus Extracts

To explore to what extent the observed subdiffusion is altered when challenging bio-
chemical processes in the extract, we also performed single-particle tracking experiments
after applying pharmaceuticals to the extract. In particular, we applied taxol or nocodazole
to either stabilize or completely disrupt the microtubule filaments (see Materials and Meth-
ods for details). Typical fluorescence images of the extract (stained for the beads and the
microtubule filaments) highlight the strong differences between untreated and chemically
challenged extracts (Figure 7). While untreated extracts feature some microtubule filaments
that might obstruct the free diffusion of beads, the addition of nocodazole completely
erradicates these structures, potentially resulting in a decreased obstruction of bead motion.
In contrast, the addition of taxol stabilizes microtubules and, therefore, even enhances the
gel-like geometry within the extract.

Figure 7. Representative fluorescence images of beads (upper panel) and microtubules (lower panel)
in native and pharmaceutically treated Xenopus extracts (see Materials and Methods for details);
scale bars indicate 10 μm. While native extracts feature a significant amount of microtubule fila-
ments (left column), the addition of nocodazole completely eradicates these higher-order structures
(right column). In contrast, stabilizing microtubules by taxol further enhances the ‘filament jungle’
(middle column).

Somewhat unexpectedly, however, altering the microtubule filament array had, on
average, only minor effects (Table 2). While disrupting microtubules had, on average, no
significant effect at all (with 〈α〉 and 〈K〉 being almost unchanged), the addition of taxol
induced a slight enhancement of the subdiffusion, i.e., a lower 〈α〉, in line with the notion
that increased density of filaments may further hamper the beads’ free diffusion. Still, the
effect is fairly small when bearing in mind that scaling exponents around and below α ≈ 0.5
were reported already for similar sized particles in the comparable cytoplasm of living
cells [6,11,15]. Our findings, therefore, indicate that mainly macromolecular crowding of
the fluid on length scales  1 μm, which induces a viscoelastic memory kernel, underlies
the observed subdiffusion. Higher-order structures, such as cytoskeletal assemblies or
endomembranes, appear to be less important for the observed (sub)diffusion of beads in
Xenopus extract.
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Table 2. Summary of results found for different conditions of Xenopus extracts. Data for trajectories
with length N = 70 and N = 150 are given in upper and lower lines, respectively. The ensemble size
for the respective condition is given by M.

cond. 〈α〉 〈K〉 [μm2/sα] M

untreated 0.89 0.39 3085
0.88 0.27 582

+taxol 0.83 0.33 2548
0.81 0.25 606

+nocodazol 0.89 0.37 1126
0.81 0.17 130

+ATPγS +GTPγS 0.85 0.31 915
0.81 0.10 189

+ATPγS +GTPγS
+noc. 0.88 0.35 2646

0.83 0.23 471

To complement these insights, we also applied non-hydrolizable analogues of ATP
and GTP to prevent non-equilibrium processes that are fueled by these nucleotides (see
Materials and Methods for details). In this case, the extract became very heterogeneous
with tracking results from separated loci differing strongly (from total immobilization up
to normal diffusion). Removing the immobilized tracks, the average behavior was in rea-
sonable agreement with our findings for untreated and taxol-treated extracts. This finding
suggests that (apart from immobilization loci) the ATP- and GTP-dependent processes
are also of little importance for the motion of small beads. As a caveat, we would like
to emphasize, however, that all of these findings might be subject to change when larger
particles or different surface properties are considered, as these might interact differently
with macromolecules and higher-order structures. In support of this statement, we would
like to refer the reader to previous measurements on the diffusion of quantum dots in
the cytoplasm of mammalian cells, where strong variations in the mobility and apparent
diffusion anomaly were observed upon varying the particles’ surface chemistry [63]. In fact,
understanding anomalous diffusion in complex media at non-equilibrium conditions, e.g.,
in the crowded interior of living cells, is still a major challenge (see [64] for a recent study).

4. Conclusions

In summary, we have shown here that beads with 20 nm radius explore cell extracts
from eggs of Xenopus laevis by mild subdiffusion that bears all properties of a FBM random
walk. This mode of motion is largely conserved when treating the extract with pharma-
ceuticals that alter microtubule filaments or ATP/GTP-dependent processes. Therefore,
the emergence of subdiffusion is most likely a consequence of the extracts’ viscoelasticity
that is induced by a high degree of macromolecular crowding, albeit changes in the beads’
surface chemistry might also enhance or lower the diffusion anomaly due to transient
and unspecific interactions with larger structures in the fluid [63]. In any case, given
that even mild subdiffusion was predicted and observed to significantly alter biochemical
reactions (see, e.g., [65–67]) our data provide a helpful clue for a deeper understanding of
self-organization and pattern formation processes in cell extracts.
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Abstract: In this work, we present a 3D single-particle tracking system that can apply tailored sam-
pling patterns to selectively extract photons that yield the most information for particle localization.
We demonstrate that off-center sampling at locations predicted by Fisher information utilizes photons
most efficiently. When performing localization in a single dimension, optimized off-center sampling
patterns gave doubled precision compared to uniform sampling. A ~20% increase in precision
compared to uniform sampling can be achieved when a similar off-center pattern is used in 3D
localization. Here, we systematically investigated the photon efficiency of different emission patterns
in a diffraction-limited system and achieved higher precision than uniform sampling. The ability to
maximize information from the limited number of photons demonstrated here is critical for particle
tracking applications in biological samples, where photons may be limited.

Keywords: 3D single-particle tracking; Fisher information; non-uniform illumination

1. Introduction

Single-particle tracking (SPT) [1] has led to numerous advances in unveiling sophis-
ticated intracellular biophysical events, including diffusion of membrane proteins [2],
transportation of intracellular vesicles [3], and viral internalization events [4,5]. Despite the
tremendous progress made in the field, there are limits to what can be gleaned from single-
particle trajectories by the intrinsic localization precision. In a conventional microscope,
this limit is given by σ/

√
(N), where σ is the size of the microscope’s point-spread function

(PSF) and N is the number of photons collected [6,7]. The diffraction limit dictates the size
of the PSF, so increasing the number of photons collected per localization is typically the
only method available for increasing precision. While the use of artificial particles [8] can
produce a higher flux of photons and improve localization precision, conventional organic
fluorophores and fluorescent proteins remain essential in biophysical studies. These probes
can only yield a finite number of photons before undergoing irreversible photobleaching,
so it is crucial to maximize the information available from this limited number of photons.
In a typical particle tracking experiment, the particle is uniformly illuminated as, typically,
the emitter’s position is not known at the outset of the experiment. An under-explored
avenue for increasing precision is adjusting the excitation pattern around the emitter to
get beyond the localization limit described above. This type of advance is only possible if
the particle position is known a priori, at least to some degree of certainty. Recent efforts
have focused on improving localization precision through non-uniform illumination in
the context of a super-resolution technique [9]. Gallatin et al. proposed a globally opti-
mized strategy in which the particle should be sampled at the maximum of the first-order
derivative of the square-root of the intensity [10]. This theory indicated that the optimized
sampling pattern is non-uniform, and the particle position should not be directly sampled,
but did not provide experimental support. Both of these works suggest that non-uniform
illumination shows promise for improved localization with a limited number of photons.

This study builds upon 3D single-molecule active real-time tracking microscopy (3D-
SMART) [11], a previously introduced real-time 3D single-particle tracking (RT-3D-SPT)

Entropy 2021, 23, 498. https://doi.org/10.3390/e23050498 https://www.mdpi.com/journal/entropy

29



Entropy 2021, 23, 498

system [12], by utilizing the emerging concept of non-uniform illumination to improve
localization precision significantly. A 2-fold increase in precision was observed in both 2D
(XY-plane) and 1D (Z-axis) localization, as has previously been noticed in several super-
resolution-based methods [13,14]. Unlike existing methods that require sophisticated PSF
engineering or specific materials, here, we have achieved higher photon efficiency in 3D
localization with a diffraction-limited point-scanning confocal microscope.

In this work, we investigate the potential of non-uniform illumination in the context
of real-time 3D single-particle tracking (RT-3D-SPT) [1]. Developed by several groups
over the past decades [15–22], RT-3D-SPT uses active feedback to keep a single particle
at the center of the microscope objective’s focal volume. In 3D-SMART, the laser spot is
guided to sample the XY-plane following a Knight’s Tour pattern, while simultaneously
sampling along the Z-axis following a sine wave, creating a scanning volume (Figure 1a–c)
that samples the vicinity of the particle of interest in an approximately uniform manner
(Figure 1d). Since the particle is held stationary in the lab frame, a priori information about
the particle position is available during the measurement. The question then occurs: If a
priori information is available regarding the particle’s position, can the above-described
precision limit be surpassed? We explore this potential in the following work. By examining
the expected information extracted from photons collected at various locations relative
to the particle center, we show that off-center sampling leads to dramatically increased
precision compared to uniform illumination schemes. We then demonstrate that this
photon-efficient sampling can be applied in practice using a 3D patterned laser spot. The
sampling density of an off-center, information-efficient pattern in 3D is shown in Figure 1e.

 

Figure 1. (a) Complete laser scanning volume with a dimension of 1 × 1 × 2 μm implemented
in 3D-SMART; (b) The laser is scanned in a Knight’s Tour pattern in the XY-plane using an EOD;
(c) Along the Z-axis, a TAG lens is used to drive the focus in a sinusoidal pattern. The color bar
indicates photon arrival density along the Z-axis; (d) Scanning density in the volume when sampling
in the default pattern shown in (b,c); (e) Scanning density of a 3D information-efficient pattern, with
the XY-plane, scanned in an off-center, information-efficient pattern. The Z-axis is scanned with a
sine wave with the laser power unmodulated.

2. Theory

The probability density of observing a photon from an emitter in a microscope in one
dimension is approximated by:

f (x|μ, σ) =
1√

2πσ2
e
−(x−μ)2

2σ2 (1)

where μ is the particle position and σ is related to the width of the PSF. The Gaussian
distribution is a good approximation for the actual diffraction pattern of a point-source,
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which is an Airy function [23]. The size of the PSF is ultimately limited by diffraction
and is not user-adjustable. The prefactor 1/

√
2πσ2 is a normalization factor and will be

neglected for the rest of this discussion. The Fisher Information (FI) is a statistical measure
employed to quantify the amount of information expected when estimating a parameter
of the underlying distribution [24]. The FI (J) is inversely related to the precision and is
given by:

J(θ) = Eθ

[(
∂

∂θ
ln f (x|θ)

)2
]

(2)

Here, θ is a parameter (or vector of parameters) of the underlying distribution, and Eθ is
the expectation value. The FI for Equation (1) above is:

J(μ) =
∫

x
f (x|μ) (x− μ)2

σ4 dx (3)

Taken over all space, the expectation value above yields a constant value of J(μ) = 1
σ2 ,

the average amount of FI contributed by each observed photon. The expectation is replaced
by the integral in this expression. It is also noticeable that σ will be the constant prefactor
upon integration and does not affect the solution. For a total of N photons, the FI is simply
J(μ) = N

σ2 . The FI is the inverse of the expected variance, so it is straightforward to see
that this is simply the limit of localization precision (σ/

√
N) described above. However,

this is only the average value, and photons collected from certain parts of the distribution
contribute more to the overall FI than others. To see this, we can more closely examine the
integrand above.

f (x|μ) (x− μ)2

σ4 (4)

This integrand, which we will refer to as the “information density”, is plotted in
Figure 2 to show the contribution of observed photons versus x− μ (so the origin is the
particle position). From Figure 2, it is easily seen that there are three critical points. There
is a minimum in the information density at x = μ, and two maxima at x = μ ± σ

√
2.

The minimum at x = μ contributes zero FI, meaning that photons collected precisely from
the particle center yield no information on the particle position. The maxima indicate
that photons collected from the off-center positions yield the most FI. In a typical imaging
experiment, which employs uniform illumination, the above analysis is not applicable.
First, the particle’s location is unknown, so it is impossible to collect photons only from
specific areas around the particle’s position. Second, while the photons collected exactly
from the particle center yield zero FI, there is no downside to collecting them if unlimited
photons are available. However, there are experimental conditions under which it is
possible, and even desirable, to tailor the excitation pattern. For single-molecule tracking or
super-resolution imaging, a finite number of photons can be extracted from each molecule
before irreversible photobleaching occurs. In these experiments, it is therefore beneficial
to collect photons from high information areas only, if possible. That being said, this
approach is typically impossible because there is no a priori information of the particle
position. This is where the a priori information regarding the particle position, available
from active-feedback single-molecule tracking, comes in.

In the following section, we survey three-dimensional laser scanning patterns to
identify the most information-efficient sampling patterns. We start with a discussion of
applying this sampling along the XY-plane and Z-axis separately, followed by a discussion
of achieving isotropic information-efficient sampling in all three dimensions.
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Figure 2. Demonstration of the proposed information-efficient sampling in a single dimension.
The green dots represent the experimentally observed intensity of a bead along the X-axis, and the
green line shows the Gaussian fit of the PSF. The red line shows the information density of the PSF.
The orange-shaded areas indicate photons with high information density.

3. Results

3.1. Identification of a Photon-Efficient Sampling Pattern in the XY-Plane

In the RT-3D-SPT system reported by Hou et al. [12], a focused laser spot is guided
by an electro-optic deflector (EOD) to scan a 5 × 5 grid with 250 nm between adjacent
pixels in the XY-plane (Figure 3a). Each pixel is sampled for 20 μs in a scanning cycle.
The 5 × 5 grid, typically scanned in a Knight’s Tour pattern, ensures a uniform illumination
pattern. However, the FI-based analysis above suggests that off-center positions should
be selectively sampled to achieve the highest photon efficiency. To obtain an unbiased
search for photon-efficient patterns, we evaluated subsets of the default 5 × 5 pattern.
The 25 pixels were divided into six different groups of inequivalent pixels based on their
distance to the scan center (Figure 3b). Immobilized fluorescent beads distributed in
PBS buffer were then scanned using the default 5 × 5 EOD pattern in the XY-plane.
A piezoelectric stage was then used to step the particle position in 20 nm increments
through the center of the scan area. All 62 possible combinations of inequivalent patterns
(Figure S1) were tested to identify the most photon-efficient sampling pattern. In each
experiment, photons were collected from each of the 25 pixels, but only photons obtained
from pixels in a given pattern were used to perform data analysis.

For each different sampling pattern, the particle position was estimated using maxi-
mum likelihood estimates (MLEs). In MLEs, the likelihood (L) for a position estimate (μ)
from an arbitrary number of photons (N) is defined as the product of probability density of
photon arrival positions based on a given model f which is a function of μ:

L(μX) =
N

∏
i=1

f (xiμ) (5)

Here the model f is a Gaussian distribution described in (1), X refers to the set of
arrival positions xi(i = 1, 2 . . . N) of photons used for estimation. The best estimate for the
particle position μ is obtained when L is maximized. A detailed example of MLE is shown
in Figure S2. Localization precision at different numbers of photons of each estimation is
shown in Figure S3. In this study, 2000 consecutively collected photons were used for each
position estimate unless otherwise stated.

MLE analysis was performed on immobilized 190 nm fluorescent beads that were
stepped in 20 nm intervals over a 100 nm range for the XY-plane. The average standard
deviation of MLE positions at different stage positions was used to quantify the precision
(Figure 3d–f). It was observed that the MLE positions were proportional, but not exactly
equal, to the expected particle positions. Off-center sampling generally results in an over-
estimation of the actual particle motion, compared to uniform sampling which generally
yields realistic position estimation. An underestimation of the actual particle motion is
associated with sampling patterns in which the center pixel is oversampled compared
to uniform sampling. This observation was validated by a simulation of sampling a 2D
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Gaussian emitter (Figure S4). Calibration was performed to account for these differences in
response to the same changes in particle position (Figure S5).

 

Figure 3. (a) 5 × 5 Knight’s Tour scanning pattern; (b) Inequivalent pixels based on distance from the
scan center; (c) 4-pixel 4-Corners scan, which uses only pixels from pattern 3 in (b), that was found
to have the highest precision; (d–f) MLE positions versus stage positions obtained with the default
5 × 5, 4-Corners, and 4-Corners plus center pixel scan patterns. The average standard deviation of
the estimated positions was measured to be 5.5, 2.8, and 4.4 nm, respectively. The orange line shows
the relative stage position. The dark and light blue lines show the estimated position calculated for
every 2000 photons. The different shades of blue indicate estimation based on two different stage
steps, 20 nm apart; (g) Precision obtained from selectively using photons obtained from pixels in
different inequivalent patterns (pattern 2–6 in 4b) alone (blue), specific pattern plus center pixel (red),
and default 5 × 5 pattern (orange).

Interestingly, though we did not propose an a priori model based on Fisher informa-
tion, the unbiased search resulted in an off-center, FI-efficient pattern. One 4-pixel pattern,
which we refer to as the 4-Corners pattern (Figure 3c), yielded the highest precision of
2.6 ± 0.3 nm, compared with the default pattern (where all 25 pixels are sampled) which
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gave 4.5 ± 0.3 nm precision (Figure 3d,e). In both cases, localization was performed us-
ing 2000 photons. Additional data were obtained with the laser excitation matching the
4-Corners pattern to validate that selectively using specific photons in data post-processing
was equivalent to sampling with the designated pattern. The resulting precision was
2.8 ± 0.4 nm, in excellent agreement with the post-acquisition processed data above. The
effect of the number of photons on the relative advantage of the 4-Corners pattern was
also investigated, showing a doubling in precision for various values of N (Figure S6).
Notably, when the center pixel is added back to the 4-Corners pattern, the precision is
nearly two-fold worse than the 4-Corners pattern alone and comparable to the full 25-pixel
scan (4.7 ± 1.1 nm vs. 4.6 ± 0.8 nm, Figure 3f). Complete 2D trajectories of Figure 3d–f are
shown in Figure S7. We note here that different sampling patterns yield different emission
rates for the same laser power. For example, the default 5 × 5 pattern gives a roughly
1.5-fold increase in intensity compared to the 4-Corners pattern, but the 4-Corners pattern
still exhibits doubled precision when sampling with equal bin time (Figure S8). A more
thorough investigation of patterns consisting of inequivalent pixels No. 2–6 (Figure 3b)
with or without the center pixel showed that precision obtained with the center pixel was
always worse than without (Figure 3g). The poor precision upon sampling the center pixel
shows the importance of not sampling low FI areas around the particle.

3.2. Laser Modulation in Z-Axis

We then proceeded to achieve photon-efficient sampling along the Z-axis. A Tunable
Acoustic Gradient (TAG) lens [25,26] was used to create custom illumination patterns
along the axial direction. The TAG lens deflects a focused laser spot in a sine wave with
an amplitude of ~1 μm around the focal plane at a frequency of ~70 kHz (Figure 1c).
The following mathematical relation describes the probability density of this sine wave
with an amplitude of 1:

f (z) =
1

π
√

1− z2
(6)

The probability density has a distribution where most probability is piled up at the
edges (top and bottom) of the scanning volume (Figure 1d). Photon arrivals obtained by
scanning an immobilized fluorescent bead with a non-modulated, continuous wave (CW)
laser spot confirm this distribution (Figure 4a). According to the theory described above,
photons collected at a certain distance away from the center contain the highest information
density and lead to the most efficient sampling. However, using CW laser modulation,
many photons are still collected from the center of the scanning volume (where the particle
spends most of its time). Real-time modulation of the laser intensity was applied to shift
the photon arrival distribution away from this low information density area. To do so,
the frequency and phase of the TAG lens were captured by a field-programmable gate
array (FPGA, NI-7852R). A digital signal with the same frequency and adjustable phase
delay was sent to a lock-in amplifier (SR850, Stanford Research Systems) and then to a
multiplier circuit to double the original frequency. The frequency-doubled signal was then
used to modulate the laser’s power, creating custom illumination patterns along the Z-axis.
A detailed illustration of how the signal was processed in the system is shown in Figure S9.
Phase delays between 0◦ and 90◦ were tested. Figure 4 shows photon arrival distribution
from immobilized 190 nm fluorescent beads sampled at each of the various conditions
(CW, in-phase modulation, out-of-phase modulation). At 0◦ phase delay, photon arrivals
occurred at the imaging volume center (in-phase modulation, Figure 4b). When the delay
was 90◦, (out-of-phase modulation) photon arrivals were clustered at the edges, with a
minimal number of photons at the center (Figure 4c). Complete trajectories of data shown
in Figure 4d–f are shown in Figure S10.
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Figure 4. (a–c) Laser intensity versus laser position in Z-axis with photon arrival distribution of 10,000 photons from
imaging a 190 nm fluorescent bead with TAG lens scanning in unmodulated (continuous wave) or modulated power (no
XY scanning). Note that the scanning rate of the TAG lens was held constant at 70 kHz; (d–f) Estimated particle position
versus stage position obtained from step tests. Each position estimation was based on 2000 photons. The average standard
deviation of estimated positions at each stage position in (d) CW, (e) in-phase modulation, and (f) out-of-phase modulation
from the partial trajectories shown in the figures was measured to be 17.6, 50.3, and 5.9 nm, respectively.

Upon performing step tests and data calibration similar to the XY scanning above, the
average precision of particles scanned with CW, in-phase modulation, and out-of-phase
modulation were 18.2 ± 2.3, 52.0 ± 24.2, and 9.2 ± 1.3 nm, respectively (Figure 4d–f).
These results reaffirmed that off-center sampling (out-of-phase modulation) is the most
information-efficient along the Z-axis, as precision was nearly doubled compared with CW
power (9.2 vs. 18.2 nm). In-phase modulation, which only samples near the particle center,
yielded very poor position estimates.

3.3. Determination of Optimized Sampling Parameters in 3D

Photon-efficient sampling patterns with the ability to localize in all three dimensions
were determined by step tests similar to those described above. Step tests with the full 25 XY
pixels and CW laser modulation along Z were first performed as a reference. These yielded
precisions of 9.3 ± 0.8 nm in X and 22.2 ± 1.6 nm in Z (n = 5). Step tests were then
performed with the 4-Corners EOD pattern and CW laser, which gave average precisions of
6.8 ± 0.6 nm in X and 19.6 ± 1.7 nm in Z, confirming the advantage of information-efficient
off-center sampling. A comparison of step tests in X obtained with the default 5 × 5 pattern
and the 4-Corners EOD pattern with TAG lens operating in CW power is shown in Figure 5.
These results again confirm the importance of not collecting photons from the center of
the 3D volume. The magnitude of the EOD scale (size of each pixel) and amplitude of
TAG lens scan that gave the highest precision in X and Z were found to be 200 nm and
30% TAG lens amplitude (FWHM = 1.93 μm), respectively (Figure S11). Apart from the
amplitude of the TAG lens, the laser power modulation pattern also altered the precision.
When imaging with the 4-Corners pattern and out-of-phase modulation, the Z precision
was high (12.6 ± 0.4 nm), but the X precision was low (22.8 ± 3.1 nm). Inversely, the
4-Corners pattern and in-phase modulation resulted in high X precision (4.7 ± 0.2 nm) and
low precision in Z (36.0 ± 5.0 nm). Photon arrival distribution along the Z-axis of 190 nm
beads sampled with the 4-Corners pattern and modulated power at different phase delay
is shown in Figure S12. It is noticeable that out-of-phase modulation in axial-only scanning
resulted in a “bi-plane” distribution (Figure 4c), similar to previously reported work [27].
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It should be noted that when XY scanning is enabled, photons from non-edge positions are
not necessarily excluded (Figure S12h).

 

Figure 5. (a,b) Estimated position versus stage position sampled with the 4-Corners and default patterns. Both used CW
laser power modulation along the axial direction. The standard deviation of estimated positions (based on 2000 photons)
was (a) 7.4 and (b) 10.5 nm from the partial trajectories shown above; (c) X, Z, and 3D precision of five different immobilized
190 nm fluorescent beads sampled with the 4-Corners pattern in the XY-plane and modulated power at different phase
delay along the Z-axis.

To get a comprehensive standard of overall precision in all dimensions in each con-

dition, we define an overall 3D precision =

√
P2

x+P2
y+P2

z
3 =

√
2P2

x+P2
z

3 . The 3D precision is
derived from X and Z precision here since X and Y were sampled via the same mechanism.
Step test trajectories obtained with the 4-Corners pattern and modulated laser power with a
phase delay of 50.4◦ yielded the highest 3D precision (12.3± 0.9 nm). This result is compara-
ble to the 3D precision found for the 4-Corners pattern and CW laser power (12.6 ± 1.1 nm).
It is also noteworthy that it is possible to achieve equivalent X and Z precision when a
phase delay of ~70◦ is applied, as is shown in Figure 5c, where the X and Z precisions
intersect. The estimated precision at this point is P = Px = Pz = 14.3 nm. This condition
makes it possible to conduct isotropic sampling, despite having non-uniform point spread
function scales in different dimensions (Figure S13c–d).

4. Discussion and Conclusions

This study showed that implementing information-efficient laser scanning patterns led
to dramatic improvements in precision in all three dimensions. A 4-pixel, 4-Corners pattern
yielded the highest precision of 2.6 ± 0.3 nm in the XY-plane compared to 4.6 ± 0.8 nm
given by a default 5 × 5 pattern (43.5% increase). When sampling the Z-axis only, out-of-
phase modulation of the laser power relative to the TAG lens phase (which gave a bi-modal
distribution of photon arrivals) gave the highest precision of 9.2 ± 2.6 nm, compared
to 18.2 ± 4.6 nm given by CW power modulation (49.5% increase in precision). In 3D
scanning, the 4-Corners pattern with laser power modulated with a 50.3◦ phase delay
gave a 3D precision of 12.3 ± 0.9 nm, compared to 14.9 ± 1.1 nm given by the default
5 × 5 pattern with CW power modulation (17.5% increase). These results are consistent
with the hypothesis that sampling at higher Fisher information regions leads to the best
precision. Moreover, it is also shown that sampling directly at the center of the particle is
inefficient, with those photons carrying little or no information. Achieving high photon
efficiency is extremely important as typical fluorophores give out only a limited number of
photons. The off-center, information-efficient imaging proposed in this work is the first to
achieve higher photon efficiency by merely scanning a focused laser spot without requiring
any PSF engineering.

It is noticeable that RT-3D-SPT methods might have used similar off-center excitation
patterns. For example, orbital tracking methods, developed by Gratton [28], Mabuchi [29,30],
Lamb [19,31], and others, utilize a circular scanning pattern in the XY-plane, which mini-
mizes sampling of the particle center. The motivation for such an approach was to sense
changes in the particle position by modulating the particle’s intensity. Others have utilized
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a method where the laser is scanned across the vertices of a tetrahedron [32,33]. All of these
methods benefit from the off-center sampling that we demonstrate above. Unlike previous
works [15,20] that utilized scan-free localization, using the EOD and TAG lens here is ad-
vantageous in defining a custom excitation pattern due to their highly tunable nature and
the intrinsically information-efficient pattern caused by the TAG lens’ sinusoidal motion.

Our work revealed the importance of information-efficient excitation patterns in
particle localization and tracking using non-uniform illumination. The information-efficient
patterns investigated in this work could shed light on an emerging field in biology: slowly
moving particles. Recent studies have shown that even the previously considered “static”
intracellular vesicles could still undergo small-scale motions of different rates, which could
profoundly influence the fate of these particles [34]. Information-efficient sampling should
optimize combined spatiotemporal precision in such demanding experiments, where the
diffusive step sizes are extremely small and the fluorophores are short lived.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/e23050498/s1, Figures S1–S10, and detailed methods.
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3. Wehnekamp, F.; Plucińska, G.; Thong, R.; Misgeld, T.; Lamb, D.C. Nanoresolution real-time 3D orbital tracking for studying
mitochondrial trafficking in vertebrate axons in vivo. eLife 2019, 8, e46059. [CrossRef]

4. Hou, S.; Welsher, K. An adaptive real time 3D single particle tracking method for monitoring viral first contacts. Small 2019,
15, 1903039. [CrossRef]

5. Zheng, L.L.; Li, C.M.; Zhen, S.J.; Li, Y.F.; Huang, C.Z. A dynamic cell entry pathway of respiratory syncytial virus revealed by
tracking the quantum dot-labeled single virus. Nanoscale 2017, 9, 7880–7887. [CrossRef]

6. Ober, R.J.; Ram, S.; Ward, E.S. Localization accuracy in single-molecule microscopy. Biophys. J. 2004, 86, 1185–1200. [CrossRef]
7. Ram, S.; Ward, E.S.; Ober, R.J. Beyond Rayleigh′s criterion: A resolution measure with application to single-molecule microscopy.

Proc. Natl. Acad. Sci. USA 2006, 103, 4457–4462. [CrossRef]
8. Li, Q.; Yin, W.; Li, W.; Zhang, Z.; Zhang, X.; Zhang, X.E.; Cui, Z. Encapsulating quantum dots within HIV-1 Virions through

site-specific decoration of the matrix protein enables single virus tracking in live primary macrophages. Nano Lett. 2018,
18, 7457–7468. [CrossRef]

9. Balzarotti, F.; Eilers, Y.; Gwosch, K.C.; Gynnå, A.H.; Westphal, V.; Stefani, F.D.; Elf, J.; Hell, S.W. Nanometer resolution imaging
and tracking of fluorescent molecules with minimal photon fluxes. Science 2017, 355, 606–612. [CrossRef]

10. Gallatin, G.M.; Berglund, A.J. Optimal laser scan path for localizing a fluorescent particle in two or three dimensions. Opt. Express
2012, 20, 16381–16393. [CrossRef]

11. Hou, S.; Exell, J.; Welsher, K. Real-time 3D single molecule tracking. Nat. Commun. 2020, 11, 1–10. [CrossRef]
12. Hou, S.; Lang, X.; Welsher, K. Robust real-time 3D single-particle tracking using a dynamically moving laser spot. Opt. Lett. 2017,

42, 2390–2393. [CrossRef]
13. Masullo, L.A.; Steiner, F.; Zähringer, J.; Lopez, L.F.; Bohlen, J.; Richter, L.; Cole, F.; Tinnefeld, P.; Stefani, F.D. Pulsed interleaved

minflux. Nano Lett. 2020, 21, 840–846. [CrossRef] [PubMed]

37



Entropy 2021, 23, 498

14. Reymond, L.; Huser, T.; Ruprecht, V.; Wieser, S. Modulation-enhanced localization microscopy. J. Phys. Photonics 2020, 2, 041001.
[CrossRef]

15. Wells, N.P.; Lessard, G.A.; Goodwin, P.M.; Phipps, M.E.; Cutler, P.J.; Lidke, D.S.; Wilson, B.S.; Werner, J.H. Time-resolved
three-dimensional molecular tracking in live cells. Nano Lett. 2010, 10, 4732–4737. [CrossRef]

16. Welsher, K.; Yang, H. Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. Nat.
Nanotechnol 2014, 9, 198–203. [CrossRef]

17. Liu, C.; Obliosca, J.M.; Liu, Y.L.; Chen, Y.A.; Jiang, N.; Yeh, H.C. 3D single-molecule tracking enables direct hybridization kinetics
measurement in solution. Nanoscale 2017, 9, 5664–5670. [CrossRef] [PubMed]

18. Levi, V.; Ruan, Q.; Kis-Petikova, K.; Gratton, E. Scanning FCS, a Novel Method for Three-Dimensional Particle Tracking; Portland Press
Ltd.: London, UK, 2003.

19. Katayama, Y.; Burkacky, O.; Meyer, M.; Bräuchle, C.; Gratton, E.; Lamb, D.C. Real-Time nanomicroscopy via three-dimensional
single-particle tracking. ChemPhysChem 2009, 10, 2458–2464. [CrossRef] [PubMed]

20. Shechtman, Y.; Weiss, L.E.; Backer, A.S.; Sahl, S.J.; Moerner, W. Precise three-dimensional scan-free multiple-particle tracking over
large axial ranges with tetrapod point spread functions. Nano Lett. 2015, 15, 4194–4199. [CrossRef]

21. Deich, J.; Judd, E.; McAdams, H.; Moerner, W. Visualization of the movement of single histidine kinase molecules in live
Caulobacter cells. Proc. Natl. Acad. Sci. USA 2004, 101, 15921–15926. [CrossRef]

22. Estrada, L.C.; Gratton, E. Spectroscopic properties of gold nanoparticles at the single particle level in biological environments.
ChemPhysChem 2012, 13, 1087–1092. [CrossRef] [PubMed]

23. Zhang, B.; Zerubia, J.; Olivo-Marin, J.C. Gaussian approximations of fluorescence microscope point-spread function models. Appl.
Opt. 2007, 46, 1819–1829. [CrossRef] [PubMed]

24. Cover, T.M.; Thomas, J.A. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing); Wiley-Interscience:
Hoboken, NJ, USA, 2006.

25. Duocastella, M.; Sun, B.; Arnold, C.B. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using
ultra-high-speed adaptive optics. J. Biomed. Opt. 2012, 17, 050505. [CrossRef] [PubMed]

26. Duocastella, M.; Theriault, C.; Arnold, C.B. Three-dimensional particle tracking via tunable color-encoded multiplexing. Opt.
Lett. 2016, 41, 863–866. [CrossRef]

27. Prabhat, P.; Ram, S.; Ward, E.S.; Ober, R.J. Simultaneous imaging of different focal planes in fluorescence microscopy for the study
of cellular dynamics in three dimensions. IEEE Trans. NanoBiosci. 2004, 3, 237–242. [CrossRef]

28. Levi, V.; Ruan, Q.; Gratton, E. 3-D particle tracking in a two-photon microscope: Application to the study of molecular dynamics
in cells. Biophys. J. 2005, 88, 2919–2928. [CrossRef]

29. McHale, K.; Mabuchi, H. Precise characterization of the conformation fluctuations of freely diffusing DNA: Beyond Rouse and
zimm. J. Am. Chem. Soc. 2009, 131, 17901–17907. [CrossRef]

30. McHale, K.; Berglund, A.J.; Mabuchi, H. Quantum dot photon statistics measured by three-dimensional particle tracking. Nano
Lett. 2007, 7, 3535–3539. [CrossRef]

31. Ruthardt, N.; Lamb, D.C.; Brauchle, C. Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry
mechanisms of viruses and pharmaceutical nanoparticles. Mol. Ther. 2011, 19, 1199–1211. [CrossRef]

32. Germann, J.A.; Davis, L.M. Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a
confocal microscope. Opt. Express 2014, 22, 5641–5650. [CrossRef]

33. Perillo, E.P.; Liu, Y.L.; Huynh, K.; Liu, C.; Chou, C.K.; Hung, M.C.; Yeh, H.C.; Dunn, A.K. Deep and high-resolution three-
dimensional tracking of single particles using nonlinear and multiplexed illumination. Nat. Commun. 2015, 6, 1–8. [CrossRef]
[PubMed]

34. Guo, Y.; Li, D.; Zhang, S.; Yang, Y.; Liu, J.-J.; Wang, X.; Liu, C.; Milkie, D.E.; Moore, R.P.; Tulu, U.S. Visualizing intracellular
organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 2018, 175, 1430–1442.e17. [CrossRef]
[PubMed]

38



entropy

Article

Testing of Multifractional Brownian Motion

Michał Balcerek *,† and Krzysztof Burnecki †

Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and
Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland; krzysztof.burnecki@pwr.edu.pl
* Correspondence: michal.balcerek@pwr.edu.pl
† These authors contributed equally to this work.

Received: 18 November 2020; Accepted: 10 December 2020; Published: 12 December 2020

Abstract: Fractional Brownian motion (FBM) is a generalization of the classical Brownian
motion. Most of its statistical properties are characterized by the self-similarity (Hurst) index
0 < H < 1. In nature one often observes changes in the dynamics of a system over time.
For example, this is true in single-particle tracking experiments where a transient behavior is
revealed. The stationarity of increments of FBM restricts substantially its applicability to model
such phenomena. Several generalizations of FBM have been proposed in the literature. One of
these is called multifractional Brownian motion (MFBM) where the Hurst index becomes a function
of time. In this paper, we introduce a rigorous statistical test on MFBM based on its covariance
function. We consider three examples of the functions of the Hurst parameter: linear, logistic,
and periodic. We study the power of the test for alternatives being MFBMs with different linear,
logistic, and periodic Hurst exponent functions by utilizing Monte Carlo simulations. We also
analyze mean-squared displacement (MSD) for the three cases of MFBM by comparing the ensemble
average MSD and ensemble average time average MSD, which is related to the notion of ergodicity
breaking. We believe that the presented results will be helpful in the analysis of various anomalous
diffusion phenomena.

Keywords: multifractional Brownian motion; autocovariance function; power of the statistical test;
Monte Carlo simulations

1. Introduction

Over the last decades, massive advances in single-particle tracking (SPT), partially based on
superresolution microscopy of fluorescently tagged tracers, or fluorescence correlation spectroscopy
allow experimentalists to obtain insight into the motion of submicron tracer particles or even single
molecules in complex environments, such as living biological cells, down to nanometer precision and
at submillisecond time resolution [1,2].

The observed data obtained by SPT experiments often show pronounced deviations from
Brownian motion, namely, anomalous diffusion of the power-law form

EX(t)2 � Kαtα (1)

of the mean-squared displacement (MSD) is observed [3–8]. Kα is the anomalous diffusion coefficient.
Depending on the magnitude of the anomalous diffusion exponent α we distinguish subdiffusion
for 0 < α < 1 from superdiffusion with α > 1 [5,8]. Subdiffusion is typically observed for
submicron particles in both bacterial and eukaryotic cells [6,9–13], in artificially crowded [14,15] and
structured [16–19] liquids, in pure and protein-crowded lipid bilayer systems [12,20–25], as well as
in groundwater systems [26]. Superdiffusion occurs in the presence of active motion, for instance,
in living biological cells [27–29] or due to bulk-surface exchange [30,31]. While typically anomalous
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diffusion refers to the power-law behavior (1) with a fixed α, an increasing number of systems are
reported in which the local scaling exponent of the MSD (1) is an explicit function of time, α(t).
Such transient behavior has, for instance, been observed for green fluorescent proteins in cells or for
the motion of lipid molecules in protein-crowded bilayer membranes [25,32].

Fractional Brownian motion (FBM) introduced by Kolmogorov in 1940 and rediscovered by
Mandelbrot and van Ness in 1968 [33–35] is a generalization of the classical Brownian motion (BM).
Most of its statistical properties are characterized by the self-similarity (Hurst) index 0 < H < 1. FBM is

H-self-similar, namely for every c > 0 we have BH(ct) D
= cH BH(t) in the sense of all finite dimensional

distributions, and has stationary increments. It is the only Gaussian process satisfying these properties.
FBM is the overdamped description for viscoelastic motion and thus intimately connected to the
fractional Langevin processes, an attractive framework for many physical systems [36], for instance,
of lipid molecules in bilayer membranes [22,25,37]. The second moment of FBM reads EB2

H(t) = σ2t2H ,
where EB2

H(1) = σ2 > 0. As a consequence, for H < 1/2 we obtain subdiffusive dynamics with
persistent motion, whereas for H > 1/2, the process is superdiffusive and antipersistent. Since FBM
is the classical model for power-law dependence a number of statistical tests have been already
introduced for this process in the literature. Let us mention here the tests based on the autocovariance
function (ACVF), MSD, and detrending moving average statistics [38–40].

FBM has stationary increments that do not allow us to model processes whose regularity of
paths and “memory depth” change in time [41]. Several generalizations of FBM have been proposed
recently. One of these, called multifractional Brownian motion (MFBM), was proposed by Peltier and
Véhel [42] with time-varying Hurst exponent H(t) which is a Hölder function. The variance at time
t of the MFBM BH(t)(t) is given by Var(BH(t)(t)) = σ2t2H(t) [43]. The time-varying Hurst exponent
H(t) characterizes the path regularity of the process at time t: sample paths near t with small Ht,
close to 0, are space-filling and highly irregular, while paths with large Ht, close to 1, are very smooth.
The variance constant σ2 determines the “energy level” of the process. This natural extension of FBM
results in some loss of some of FBMs basic properties, in particular, the increments of MFBM are
non-stationary and the process is no longer self-similar.

Other, similar generalizations are limited to a piecewise constant H [44] but, what is important
from a data analysis point of view, is that they lead to continuous Gaussian processes with stationary
increments. Let us also mention an idea involving an appropriate class of covariance functions.
Ryvkina [45] uses such covariance functions to define Gaussian processes to extend FBM and MFBM
to a class of fractional Brownian motions with a variable Hurst parameter parameterized by a set
of all measurable functions with values in (1/2, 1), and different from MFBMs. However, from a
biological data point of view, such a range for H values is not practical since it only corresponds to a
superdiffusive (long-range dependent) case.

MFBMs have become popular as flexible models in describing real-life signals of high-frequency
features in geoscience, microeconomics, and turbulence, to name a few [43]. They are closely related to
the notion of transient diffusion dynamics observed in biological experiments. The article is structured
as follows. In Section 2, the MFBM is defined and its basic properties are presented. We also recall
formulas for the ensemble average MSD, time average MSD, and present three Hurst exponent
functions that will be analyzed in the sequel. In Section 3, the main results are presented. We introduce
a statistical test on MFBM based on its ACVF which is presented as a quadratic form. Next, the power
of the test is studied for the three cases corresponding to different Hurst exponent functions. We show
the areas where the test is very strong in distinguishing between the processes and the cases when it
fails in this respect. Finally, Section 4 summarizes and concludes our work.

2. Model and Methods

Let us start with a definition of the MFBM.

40



Entropy 2020, 22, 1403

Definition 1. (Multifractional Brownian motion). Process
(

BH(t)(t)
)

t≥0
is called a multifractional Brownian

motion (MFBM) if it is a centered Gaussian process with covariance function

Cov(BH(t)(t), BH(s)(s)) = D(H(t), H(s))
(

tH(t)+H(s) + sH(t)+H(s) − |t− s|H(t)+H(s)
)

, (2)

where

D(x, y) =
σ2

√
Γ(2x + 1)Γ(2y + 1) sin(πx) sin(πy)

2Γ(x + y + 1) sin
(

π
x+y

2

) (3)

for some σ > 0 and Hölder function H : [0, ∞)→ [a, b] ⊂ (0, 1) of some exponent β > 0 [46].

The second moment of MFBM scales as E
(

B2
H(t)(t)

)
= σ2t2H(t). Hence, we will call H(t) the

Hurst exponent function. Furthermore, for H(t) ≡ H ∈ (0, 1) MFBM becomes standard FBM.

In general, MFBM has non-stationary increments. Its increment process Y(t)
de f
= BH(t+1)(t + 1) −

BH(t)(t) possesses the long-range dependence property, in the sense that

∀δ > 0, ∀s ≥ 0
∞

∑
k=0

|Corr (Y(s), Y(s + kδ)) | = +∞,

where Corr is the correlation function, i.e., Corr(Y(t), Y(s)) = Cov(Y(t),Y(s))√
E2Y(t)E2Y(s)

[46].

Furthermore, the function H(t) can be pointwise interpreted as a local self-similarity
parameter, i.e.,

lim
ε→0+

(
BH(u+εt)(u + εt)− BH(u)(u)

εH(u)

)
t∈R+

= s(u) (BH(t))t∈R+
,

where BH is a fractional Brownian motion with index H ≡ H(u), s(u) is a scaling function [47] and
the convergence is on the space of continuous functions endowed with the topology of the uniform
convergence on compact sets.

2.1. Mean-Squared Displacement

Let us now recall different estimators of the MSD for a sample of n trajectories X1, X2, . . . Xn,
each with N observations, that is, Xi consists of Xi(t1), Xi(t2), . . . , Xi(tN) equally spaced in time,
i = 1, 2, . . . , n. Ensemble average MSD (EAMSD) is defined as follows:

EAMSD(τ = mΔt) =
1
n

n

∑
k=1

(Xk(t1 + τ)− Xk(t1))
2 , (4)

where m = 1, . . . , N and Δt = t2 − t1. Time average MSD (TAMSD) is defined for each trajectory as

TAMSD(τ = mΔt, k) =
1

N −m

N−m

∑
j=1

(
Xk(tj + mΔt)− Xk(tj)

)2 . (5)

Finally, we consider ensemble and time average MSD (EATAMSD) which is an average of TAMSDs:

EATAMSD(τ) =
1
n

n

∑
k=1

TAMSD(τ, k). (6)

Physicists often observe systems where EA and EATAMSD are different. Such behavior is called
weak ergodicity breaking. In mathematics, the notion of ergodicity is restricted to stationary
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processes. Since the increments of MFBM lack stationarity, when analyzing the results, one has
to be exceedingly meticulous.

2.2. Three Cases of the Hurst Exponent Function

Following [48], we consider three basic families of the function H(t), namely

linear H(t) = at + b, t ∈ [0, T],

logistic H(t) =
c− b

1 + exp
{
−d t−t0

T

} + b, t ∈ [0, T],

periodic H(t) = a sin
(

4π
t
T

)
+ b, t ∈ [0, T]

for some time horizon T > 0. Furthermore, in the sequel we consider only case with parameter σ2 = 1
in (2). Such functions are continuous and as a consequence satisfy the Hölder condition, so in order
to MFBM be properly defined we only require H(t) ∈ (0, 1), for all t ∈ [0, T] [42]. Such choice of
considered functions can be interpreted as follows. In the linear case, MFBM can switch steadily
from short- to long-range dependence or vice versa, whereas in the logistic case such change is
quite rapid and it happens between two levels. The latter case closely resembles instantaneous
change in dependence or jump-type regime switching (such cases would lead to non-Hölder
function). An alternative function to the logistic which is also considered is the literature is the
arctan function [49]. Finally, the periodic case represents a situation where such changes are gradual
and repetitive.

In the paper, we focus on the following special cases with specified parameters:

linear function : H(1)(t) =
0.3

1000
t + 0.3, t ∈ [0, 1000],

logistic function : H(2)(t) =
0.3

1 + exp
{−100 t−500

1000
} + 0.3, t ∈ [0, 1000],

periodic case : H(3)(t) = 0.15 sin
(

4π
t

1000

)
+ 0.45. t ∈ [0, 1000].

We choose those specific parameters so that all of the cases have a similar “average” behavior of the
function H(t), i.e., its mean is close to 0.45, and the function itself has values in the interval [0.3, 0.6].
We illustrate those cases in Figures 1–3. On the top left panel of each of these figures, we can see three
simulated trajectories. The function H(t) is presented on the top right panel, whereas on the bottom
panel we can see a behavior of the corresponding MSDs. It is important to note that EAMSD (blue line)
is directly related to the variance of the model at time τ, i.e., EAMSD(τ) = V̂ar(X(τ)), thus, from (2),
it should behave like τ2H(τ).

For the linear case, see Figure 1, since H(1)(t) increases steadily from 0.3 to 0.6 we can see
trajectories exhibit more variability for bigger times. This is also related to the EAMSD dynamics.
In addition, such a model exhibits weak ergodicity breaking behavior (i.e., lack of equality between
EATAMSD and EAMSD), which can be inferred from the bottom panel.

Next, for the logistic case, see Figure 2, H(2)(t) increases quite rapidly from 0.3 to 0.6 near t = 500.
As a consequence, we can see a switch in the behavior of simulated trajectories: for times t < 500
they exhibit far less variability than for t > 500. Intuitively, for times t < 500 trajectories locally
exhibit short-range dependence, whereas for t > 500 they locally exhibit long-range dependence.
Again, we can see weak ergodicity breaking on the bottom panel.
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Figure 1. MFBM with the linear Hurst exponent function. Top left panel: three simulated trajectories.
Top right panel: illustration of the function H(t) used in simulations. Bottom panel: comparison of
EAMSD (solid blue line) with EATAMSD (dashed red line) and its 95% confidence interval (red shaded
area). EAMSD and ETAMSD with confidence interval were calculated on the basis of 1000 simulated
trajectories of MFBM.

Figure 2. Cont.
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Figure 2. MFBM with the logistic Hurst exponent function. Top left panel: three simulated trajectories.
Top right panel: illustration of the function H(t) used in simulations. Bottom panel: comparison of
EAMSD (solid blue line) with EATAMSD (dashed red line) and its 95% confidence interval (red shaded
area). EAMSD and ETAMSD with confidence interval were calculated on the basis of 1000 simulated
trajectories of MFBM.

Finally, for the periodic case, see Figure 3, H(3)(t) varies between 0.3 and 0.6. We can clearly
see two different regimes of behavior: for times when H(3)(t) is bigger, trajectories are smoother and
generally have larger values, in contrast to times when H(3)(t) is smaller. Despite lack of stationarity,
here, EAMSD almost always lies in the confidence region of EATAMSD, which could suggest there is
no weak ergodicity breaking.

Figure 3. MFBM with the periodic Hurst exponent function function. Top left panel: three simulated
trajectories. Top right panel: illustration of the function H(t) used in simulations. Bottom panel:
comparison of EAMSD (solid blue line) with EATAMSD (dashed red line) and its 95% confidence
interval (red shaded area). EAMSD and ETAMSD with confidence interval were calculated on the basis
of 1000 simulated trajectories of MFBM.

44



Entropy 2020, 22, 1403

3. Results

In applications, it is crucial to be able to check whether a stochastic model describes empirical
data well. Despite dedicated identification methods for the MFBM [50–53], to the best of the authors’
knowledge, there is no rigorous statistical test designed for such process. Here, we propose an
approach using a simple test statistic which also contains useful information about the process itself.

3.1. Test

For the testing purposes, we follow an approach based on the ACVF which was introduced by
Balcerek and Burnecki [38]. ACVF is a very popular statistic and it is also one of the simplest quadratic
forms. For a random sample XN = {X(1), X(2), . . . , X(N)} and τ ∈ {1, 2, · · · , N − 1}, it is defined
as follows:

ACVFN(τ) =
1

N − τ

N−τ

∑
i=1

X(i + τ)X(i). (7)

Here, we only consider a version of ACVF without subtracting the sample mean as it does not
influence performance of tests based on this statistic for a centered process [38] and it makes the
formulas much simpler.

Let us now introduce a matrix A(τ) = {a(τ; i, j)}N
i,j=1, where

a(τ; i, j) =

⎧⎪⎪⎨⎪⎪⎩
1
N I(i = j) if τ = 0
1
2

1
N−τ I(|i− j| = τ) if τ = 1, 2, . . . , N − 1

0 otherwise,

(8)

and I is the indicator. To summarize, the matrix A(τ) is either diagonal (for τ = 0) with elements 1
N

on diagonal or Toeplitz, with only two nonzero subdiagonals (starting at (1 + τ)th row and (1 + τ)th
column) with elements 1

2
1

N−τ . The statistic ACVFN can be now expressed as a quadratic form (as shown
in [38]) as a generalized χ2 distribution, that is

ACVFN(τ) =
N

∑
i=1

λi(τ)Z2
i , (9)

where Zis are i.i.d standard normal variables (so Z2
i has a χ2

1 distribution) and λk(τ) are eigenvalues
of the matrix ΣN(τ) = Σ1/2A(τ)Σ1/2 with Σ being the (theoretical) autocovariance matrix of our
trajectory XN . It is important to note that this result is true regardless of whether the considered model
is stationary or not.

Let us now formulate a test for checking whether a random sample XN comes from the MFBM
with function H : [0, T]→ (0, 1), where T is the time horizon:

H0 : sample comes from the model with function H(t)

versus

H1 : sample comes from the model with function different than H(t).

We will use ACVFN as a test statistic with its distribution given by Equation (9) to calculate critical
regions of such test for a given significance level. Naturally, eigenvalues λi(τ) depend on the matrix
A(τ) as well as on the matrix Σ. Elements of Σ are given by ACVF (2) and are calculated using the
function H(t) from the null hypothesis.
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3.2. Three Power Case Studies

The power of the test is the probability to reject the null hypothesis when the alternative is
true. The power is an important characteristic of any statistical test. We consider the following null
hypotheses, which correspond to the examples presented in Figures 1–3.

linear function null hypothesis H0 : H(t) = H(1)(t) t ∈ [0, 1000],

logistic function null hypothesis H0 : H(t) = H(2)(t), t ∈ [0, 1000],

periodic case null hypothesis H0 : H(t) = H(3)(t), t ∈ [0, 1000].

In our studies, for all considered cases, we calculate the power of the test by using Monte Carlo
simulations. We assume that the significance level is equal to 5%. In our Monte Carlo simulations
we consider the time horizon T = 1000 and equally spaced time points t = 1, 2, . . . , 1000. For each
set of parameters from the alternative hypothesis, we simulate n = 1000 trajectories, calculate test
statistic (7), and check if the null hypothesis is rejected at 5% significance level. In the test statistic, we
consider only τ = 1 since other choices of τ lead to worse results. Finally, we estimate the power of
this test for each considered case by calculating the fraction of rejected null hypotheses.

We present the results in the form of power functions with arguments being the parameters of the
function H(t) from the alternative hypothesis. For all of the cases, we considered the alternative coming
from the same family of functions as the function H(t) in the null hypothesis, i.e., linear alternative for
linear null, etc.

First, let us consider testing MFBM with the linear Hurst exponent function. We can see the
power function related to that case in Figure 4. The left panel presents the power function with
respect to parameters a and b from the alternative hypothesis H1 : H(t) = at + b, the right panel the
corresponding heat map. We can see “layers” (regions on the heat map with the same color) for which
our test has a very similar power. For example, the deep blue region on the right panel corresponds
to the processes indistinguishable from the null hypothesis process. We believe that the shape of the
region is related to the construction of our test, namely our test statistic ACVFN takes into account all
addends X(t)X(t + τ) with the same weight, thus it is not that relevant whether t is big or not. In the
case of MFBM, for which neither the process nor its increments are stationary, it might be an important
factor. As a consequence, we can see that the test has a difficulty in distinguishing between MFBMs with
increasing and decreasing Hurst exponent functions if their means are similar. However, this conjecture
is not very precise, namely the mean case H ≡ 0.45, which matches the alternative hypothesis with
a = 0, b = 0.45, yields a much higher power of the test than the significance level. We also note that for
parameters from the null hypothesis: a = 0.3, b = 0.3 power of such test is approximately equal to 5%,
which is the assumed significance level. On the heat map, white regions represent areas for which the
process MFBM is not well-defined, i.e., H(t) /∈ (0, 1) for some t ∈ [0, 1000].

Let us now consider the second case, that is MFBM with the logistic function H(t). We can observe
the power function in Figure 5. Left panel presents the power function with respect to parameters b
and c from the alternative hypothesis H1 : H(t) = c−b

1+exp
{
−d t−t0

T

} + b, the right panel the corresponding

heat map. The parameter b is related to the local self-similarity parameter for t < 500, and c for t > 500.
Similarly to the case with the linear function null hypothesis, here we can observe “layers” in which
parameters b and c are almost symmetric (e.g., the null hypothesis case where b = 0.3 and c = 0.6 is
closely related to the case b = 0.6 and c = 0.3). Moreover, we can see that the power function seems to
be quite high in the cases when a tested sample has the b parameter close to the value 0.3 from the null
hypothesis, but c is far from 0.6, or vice versa.
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Figure 4. Power of the introduced test for the linear Hurst exponent function H(t) = at + b with
respect to parameters a and b. The null hypothesis is a = 0.3

1000 and b = 0.3. The right panel depicts the
results in the form of a heat map with the red ’x’ sign representing parameters in the null hypothesis.
White regions represent areas for which MFBM is not well defined. The powers were calculated by
means of Monte Carlo simulations on the basis of simulated data from the MFBM with different as
and bs.
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Figure 5. Power of the introduced test for the logistic Hurst exponent function H(t) =
c−b

1+exp{−100 t−500
1000 } + b with respect to parameters c and b. The null hypothesis is c = 0.6 and b = 0.3.

The right panel depicts the results in the form of heat map with the red ’x’ sign representing parameters
in the null hypothesis. White regions represent areas for which MFBM is not well defined. The powers
were calculated by means of Monte Carlo simulations on the basic of simulated data from the MFBM
with different cs and bs.

Lastly, let us consider the case of MFBM with the periodic function H(t). We can observe the
power function in Figure 6. The left panel presents the power function with respect to parameters a
and b from the alternative hypothesis H1 : H(t) = a sin

(
4π t

T
)
+ b, the right panel the corresponding

heat map. Parameter b is related to the “mean” behavior of the function H(t), whereas the parameter a
corresponds to its amplitude. Again, similarly to the two previous null hypotheses, we can observe
“layers” of similar power values. Those layers are symmetric with respect to a = 0. This means that
for alternatives with opposite parameters a the test seems to return the same power. Let us note that
this is not intuitive, namely such opposite as are related to completely different local behaviors of the
self-similarity parameter. On the heat map, white regions represent areas for which process MFBM is
not well defined, i.e., H(t) /∈ (0, 1) for some t ∈ [0, 1000].
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Figure 6. Power of the introduced test for the periodic Hurst exponent function H(t) = a sin
(
4π t

1000
)
+

b with respect to parameters a and b. The null hypothesis is a = 0.15 and b = 0.45. The right panel
depicts the results in the form of heat map with the red ’x’ sign representing parameters in the null
hypothesis. White regions represent areas for which MFBM is not well defined. The powers were
calculated by means of Monte Carlo simulations on the basic of simulated data from the MFBM with
different as and bs.

Finally, we would like to emphasize that the introduced test requires MFBM parameters to be
fixed (we test if the data follow MFBM with fixed parameters). In practice, when analyzing empirical
data the parameters are often estimated. In the literature, methods for estimation of the Hurst exponent
function H(t) in the MFBM framework have been already introduced [50–52] and later combined to
improve both the goodness of fit and the computational speed of the algorithm [53].

4. Discussion and Conclusions

For power-law anomalous diffusion of the form (1) with constant anomalous diffusion
exponent α a number of models exist, including continuous-time random walks, fractional Langevin
equation motion, FBM, or scaled Brownian motion [8]. These models all have different physical
properties such as the PDF or their ergodic and aging properties [8].

In this paper, we concentrated on MFBM which is a generalization of FBM for Hölder continuous
functions H(t) that allows the Hurst exponent to vary in time. The time-varying Hurst exponent has
an impact on both the statistical properties of the process and trajectory characteristics. MFBM helps
to model phenomena whose regularity of paths and anomalous diffusion exponent change in time.
The process has no longer stationary increments and it is not self-similar but the variance scales in a
natural way as t2H(t).

Following the idea of testing FBM based on the ACVF statistic [38], in this paper, we introduced a
rigorous statistical test on MFBM with the ACVF statistic presented as a quadratic form. We derived
the distribution of the statistic which is the generalized χ2. In order to study the efficiency of the test,
we took into consideration three possible classes of the Hurst exponent function, namely linear, logistic,
and periodic. For those cases, we conducted power studies with the help of Monte Carlo simulations.
As alternatives, we considered MFBMs within the same class of the Hurst exponent function but with
different parameters.

We found ranges of the parameters where the test is more sensitive to differences and ranges
where it fails to distinguish between the models. It appears that for the linear Hurst exponent function
the test is most sensitive to changes in the mean of the function. If the means are similar then the
test often fails, even if the functions have completely different patterns, namely, one is increasing and
the other decreasing. The latter observation may sound like a serious objection for using the test,
but, in practice, an experimentalist knows whether the anomalous diffusion exponent increases or
decreases in time. In the logistic case, the situation is different, namely the mean does not matter
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much as for the linear case. Now, the test is most sensitive to deviations from the true values of the
two levels (c and b) with the exception that replacing c with b does not change the power of the test
(so, again, it does not matter if the function increases or decreases). For the periodic case, we have
again a different situation. The test is sensitive to the changes of the amplitude of the sine function and
the value of the free term but it does not detect a sign of the parameter related to the magnitude.

Finally, we note that we checked the behavior of the test for other sets of parameters of the null
hypotheses and different sample lengths, and the conclusions were similar. We only found that the
range of possible H values from the null hypothesis has an influence on the width of the acceptance
regions (the wider the range the wider the acceptance region, which is reasonable). We present some
of the additional tests’ power simulation studies in Appendix A. Figure A1 presents different cases of
the null hypothesis for the linear case, Figure A2 for the logistic case, and Figure A3 for the periodic
case. Tests for the linear case were performed for length N = 1000, whereas logistic and periodic cases
were studied for length N = 200.

In sum, we introduced a rigorous statistical test for MFBM based on ACVF statistic presented as a
quadratic form. We highlighted the weak and strong points of the test. Improving the efficiency of the
test will be a subject of our future studies. We believe that the obtained results can help to understand
the mechanisms underlying various anomalous diffusion phenomena.
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Abbreviations

The following abbreviations are used in this manuscript:

SPT Single-particle tracking
FBM Fractional Brownian motion
MFBM Multifractional Brownian motion
MSD Mean-squared displacement
TAMSD Time average mean-squared displacement
EAMSD Ensemble average mean-squared displacement
EATAMSD Ensemble and time average mean-squared displacement
ACVF Autocovariance function

Appendix A

In Figures A1–A3, we present power functions of tests related to different null hypotheses.
In Figure A1, we consider H0 : H(t) = −0.3

1000 t + 0.7 (top panel), so a case in which function H begins in
the superdiffusive regime and then decreases linearly to value 0.4; H0 : H(t) = −0.4

1000 t + 0.5 (middle
panel), so a case in which function H begins in the diffusion regime and then decreases linearly to
value 0.1; and H0 : H(t) = 0.6

1000 t + 0.2 (bottom panel), so a case in which function H begins in the
strong subdiffusive regime and then increases linearly to 0.8.
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Figure A1. Power of the introduced test for the linear Hurst exponent function H(t) = at + b with
respect to parameters a and b. The null hypotheses are: a = −0.3

1000 and b = 0.7 (top panel), a = −0.4
1000 and

b = 0.5 (middle panel), a = 0.6
1000 and b = 0.2 (bottom panel). All of the panels depict the results in the

form of a heat map with the red ‘x’ sign representing parameters in the null hypothesis. White regions
represent areas for which MFBM is not well defined. The powers were calculated by means of Monte
Carlo simulations on the basis of simulated data from the MFBM with different as and bs.

In Figure A2, we consider H0 : H(t) = −0.4
1+exp{−100 t−500

1000 } + 0.5 (top panel), so a case in which

function H begins in the diffusive regime and ends in the strong subdiffusive regime; H0 : H(t) =
−0.3

1+exp{−100 t−500
1000 } + 0.6 (middle panel), so a case in which function H begins in the superdiffusive

regime and ends in the subdiffusive regime; and H0 : H(t) = 0.6
1+exp{−100 t−500

1000 } + 0.2 (bottom panel),

so a case in which function H begins in the strong subdiffusive regime and ends in the strong
superdiffusive regime.
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Figure A2. Power of the introduced test for the logistic Hurst exponent function H(t) =
c−b

1+exp{−100 t−500
1000 } + b with respect to parameters c and b. The null hypotheses are: c = 0.1 and b = 0.5

(top panel), c = 0.3 and b = 0.6 (middle panel), c = 0.8 and b = 0.2 (bottom panel). All of the panels
depict the results in the form of heat map with the red ‘x’ sign representing parameters in the null
hypothesis. White regions represent areas for which MFBM is not well defined. The powers were
calculated by means of Monte Carlo simulations on the basic of simulated data from the MFBM with
different cs and bs.

In Figure A3, we consider H0 : H(t) = 0.1 sin
(
4π t

1000
)
+ 0.8 (top panel), so a case in which

function H varies periodically between 0.7 and 0.9, i.e., in the strong superdiffusion regime; H0 :
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H(t) = 0.2 sin
(
4π t

1000
)
+ 0.7 (middle panel), so a case in which function H varies periodically between

0.5 and 0.9, i.e., in the superdiffusion regime; and H0 : H(t) = 0.5 sin
(
4π t

1000
)
+ 0.4 (bottom panel),

so a case in which function H varies periodically between 0.1 and 0.9, i.e., in the whole spectrum of
anomalous diffusion.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure A3. Power of the introduced test for the periodic Hurst exponent function H(t) =

a sin
(
4π t

1000
)
+ b with respect to parameters a and b. The null hypotheses are: a = 0.1 and b = 0.8

(top panel), a = 0.2 and b = 0.7 (middle panel), a = 0.5 and b = 0.4 (bottom panel). All of the panels
depict the results in the form of heat map with the red ‘x’ sign representing parameters in the null
hypothesis. White regions represent areas for which MFBM is not well defined. The powers were
calculated by means of Monte Carlo simulations on the basic of simulated data from the MFBM with
different as and bs.
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Abstract: We study a two state “jumping diffusivity” model for a Brownian process alternating
between two different diffusion constants, D+ > D−, with random waiting times in both states
whose distribution is rather general. In the limit of long measurement times, Gaussian behavior with
an effective diffusion coefficient is recovered. We show that, for equilibrium initial conditions and
when the limit of the diffusion coefficient D− −→ 0 is taken, the short time behavior leads to a cusp,
namely a non-analytical behavior, in the distribution of the displacements P(x, t) for x −→ 0. Visually
this cusp, or tent-like shape, resembles similar behavior found in many experiments of diffusing
particles in disordered environments, such as glassy systems and intracellular media. This general
result depends only on the existence of finite mean values of the waiting times at the different states
of the model. Gaussian statistics in the long time limit is achieved due to ergodicity and convergence
of the distribution of the temporal occupation fraction in state D+ to a δ-function. The short time
behavior of the same quantity converges to a uniform distribution, which leads to the non-analyticity
in P(x, t). We demonstrate how super-statistical framework is a zeroth order short time expansion of
P(x, t), in the number of transitions, that does not yield the cusp like shape. The latter, considered as
the key feature of experiments in the field, is found with the first correction in perturbation theory.

Keywords: CTRW; diffusing-diffusivity; occupation time statistics

1. Introduction

The emergence of non-Gaussian features for the positional probability density function
(PDF) of particle spreading, denoted P(x, t), in a disordered environment is a common
attribute that arises in many different physical and biological systems. Specifically, a tent
like shape of the PDF, in the semi-log scale, together with a linear time dependence of
the mean square displacement (MSD) appear for diffusion in glassy system [1], biological
cells [2–7], and colloidal suspensions [8–11]. This tent shape, sometimes fitted with a
Laplace distribution P(x, t) ∼ exp(−C|x|) with C a constant, suggests that the decay of
the PDF is exponential. This feature is becoming a more frequent observation for the
spreading of molecules. Phenomenological approaches are diffusing diffusivity models,
in which non-Gaussianity is obtained by coupled stochastic differential equations with
random diffusion coefficients [7,12–20], and path integrals formalism for Brownian motion
in the presence of a sink [21]. More recently, theoretical frameworks describing this
behavior emerged from continuous time random walk (CTRW) approaches employing
large deviations theory [22–24] and microscopical models like molecular dynamics of
tracer particles in polymer networks [25,26] and interacting particles with fluctuating
sizes [27–29], the so-called Hitchhiker model [28].

While in some of the systems the non-Gaussian behavior disappears when the mea-
surement time is made long enough, the short time tent-like decay of the PDF seems to be
a universal phenomenon [22]. It is then natural to ask if there is some sort of universality
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that can be deduced for the temporal limit of short times. Within the diffusing diffusivity
models for the large x limit, exponentially decaying propagators have been observed by em-
ploying a dichotomous process for the diffusivity [13]. The latter model consists of a “fast”
and a “slow” phases, each one with a diffusion coefficient D+ and D−, respectively [13,30].
Furthermore, the appearance of a cusp at small displacements also has been reported in
different diffusive approaches like the Sinai model [31], employing the quenched trap
model [32–37] or spatial dependence in the diffusivity [38], within the Lévy–Lorentz gas
model [39] and using the fractional Fokker–Planck equation [40]. It is important to notice
that the cusp found in [31–34,36,38–40] is within the context of anomalous diffusion in the
MSD sense, and those presented in [35–37] are for normal diffusive systems.

It is worth mentioning that several systems in nature exhibit, or can be reduced to, a
dichotomous process. Examples of two state systems include nuclear magnetic imaging to
measure the diffusion of heterogeneous molecules [41], diffusion in glassy materials [1],
blinking quantum dots [42,43], diffusion in single molecules tracking experiments [4,7], and
protein conformational dynamics [44]. Other approaches for analyzing two state systems
were also devised over the years; see heterogeneous molecular transport [41], telegraphic
noise [43], Lèvy Flights [45], and CTRW models [1,22].

In this work, we deal with a two state jumping diffusivity model with equilibrium
initial conditions, i.e., we assume that the process started long before the measurement
began. The long measurement time behavior of the positional PDF for this model is
Gaussian and is independent of the specifics of the waiting times at the different diffusive
states. A rather unexpected result is achieved for the opposite temporal regime. We obtain
that the behavior in the limit of the short measurement times and the shape of the positional
PDF of the molecule spreading in the two state jumping diffusivity model attains a cusp or
a general tent-like shape. Our result is based on the statistics of the temporal occupation
fraction of the diffusivity states, the latter is defined as the time spent in state D+ over
the total measurement time. The Gaussian behavior in the long measurement time is
dictated by the δ-function shape of the distribution of this temporal occupation fraction,
a feature that is solely based on the ergodic properties of the system. We show that, in
the limit of short measurement time, the distribution of the temporal occupation fraction
attains a uniform distribution that leads to the mentioned cusp behavior of P(x, t). The
uniformity of the occupation fraction is a general result in the sense that it does not depend
on the statistics of the waiting times in the two states, and the latter can be arbitrary. The
non-Gaussian behavior of P(x, t) for short measurement times is similarly general as the
Gaussian behavior of the propagator for long times. We then show that our approach
reproduces the results of a specific representative system with exponentially distributed
waiting times.

Our manuscript is organized as follows: in Section 2.1, we introduce the jumping
diffusivity model and the initial conditions utilized in this work. In Section 2.2, we
develop our theory for the statistics of the occupation time in the short measurement
time limit, for which the PDFs of the waiting times in states D± are rather general. The
obtained behavior of the occupation fraction is used in order to describe the non-Gaussian
features of P(x, t), i.e., its cusp shape, that is observed in this model. In Section 2.3, we
corroborate our previous results for a system with exponentially distributed waiting times.
In Section 3.1, we discuss briefly how these theoretical results differ from those found
within the super-statistical approach [12,14,21] and further how our approach may be
applicable in experiments. Finally, in Section 4, we present a summary of our results,
and we discuss briefly recent work of Postnikov et al. [37] who considered a model with
quenched disorder, emphasizing the importance of equilibrium initial conditions. The
main derivations are given in the corresponding Appendixes.
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2. Results

2.1. The Model

We consider a two state renewal model, with a stochastic diffusion field D(t) for a
particle in a random medium. The position of the particle is following a diffusion process
given by dx(t)/dt =

√
2D(t)ξ. D(t) ∈ {D+, D−} is a dichotomous model, considering

the case when D− < D+ and ξ is a standard white noise, i.e., with mean zero, variance
one, and delta correlated. As an example of the dynamics of the model, at a given time,
the particle follows a pure diffusion process with a diffusion coefficient D+ > 0 during a
period τ. After this time period has elapsed, the diffusion coefficient jumps and, during the
next time interval, the particle diffuses with diffusion coefficient D−. The waiting times at
each state D± are distributed according to a general PDF ψ±(τ), with mean waiting times
〈τ〉±. The subscript ± denotes whether the waiting times are defined for the D+ or D−
states. In the following, we present the two-state model with D− = 0, while the case with
D+ > D− > 0 is analyzed in Appendix A. In Figure 1, we show representative trajectories
for the position at time t, x(t), while, in Figure 2, we present the same for D(t) and we
show the notation we use.

t1 t2 t3 t4 t5 t6 t7 t8

1 2 3 4 5 6 7 8

Figure 1. Typical trajectory of x(t) given by Equation (2) with D+ = 10 (blue regions), and D− = 0
(red regions). For this trajectory, exponential waiting times with 〈τ〉+ = 1 and 〈τ〉− = 5 were used.

We define T± as the occupation time in state “±”, namely the total amount of time
that the process diffuses with D+ or D− during t. Jumps between states D+ and D− occur
at random times t1, t2, etc., until a final measurement time t and clearly t = T+ + T−. The
intervals of time between each jump are defined by τ1 = t1, τ2 = t2 − t1, τ3 = t3 − t2, etc.,
see Figure 2. Then, the occupation times in each state, when started from D+, are explicitly
provided by

T+ = τ1 + τ3 + . . . + τN

T− = τ2 + τ4 + . . . + τN−1 + τ∗ i f N = 2k + 1,

T+ = τ1 + τ3 + . . . + τN−1 + τ∗,

T− = τ2 + τ4 + . . . + τN i f N = 2k, (1)

where N is the random number of transitions that were performed between the two states
during the measurement time t and k is an integer. The measurement time t and N satisfy
t ≥ tN , with tN = τ1 + τ2 + . . . + τN , i.e., the exact time when the Nth jump was performed.
The backward recurrence time τ∗ is defined by τ∗ = t − tN [46]. Each waiting time τi
follows τi = ti − ti−1 with i ∈ (1, N). For this particular initial condition, odd values of
i in τi refer to waiting times at D+ and even values of i to waiting times during which
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the diffusion coefficient is D− (see Figure 2). Expressions similar to Equation (1) are also
obtained when the process starts from D−, see Equation (A65) .

Since the particle is diffusing with a constant diffusion constant D+ for time τ1, when
starting from D+, the position x(τ1) is simply x(τ1) =

√
2D+τ1ξ1, where ξ1 is a zero mean

Gaussian random variable with 〈ξ2
1〉 = 1. When at the state with diffusion constant D− = 0,

the particle is not moving, therefore x(t2) − x(t1) = 0 and x(t3) − x(t2) =
√

2D+τ3ξ3,
where ξ3 is a zero mean Gaussian random variable with 〈ξ2

3〉 = 1 independent of ξ1.
Generally, x(ti)− x(ti−1) =

√
2D±τiξi, where all ξi are independent zero mean Gaussian

random variables that satisfy 〈ξ2
i 〉 = 1. By using Equation (1) and exploiting the properties

of summation of independent Gaussian variables, we obtain that the position at general
time t is provided by

x(t) =
√

2D+T+ξ, (2)

when D+ > 0 and D− = 0. Equation (2) holds irrespective of the state at t = 0. We see that
the particles’ position is a product of two independent random variables, the square root of
the time staying at the state D+ times a standard Gaussian random variable.

D+

D-

τ1

τ2

τ3

τ4 τ2k

τ2k+1

t1 t2 t3 t2k t t2k+1t0

τ*

Figure 2. Alternating process for the diffusivity, starting from the state ‘+’ and N = 2k + 1. For the
case of equilibrium initial conditions exposed in Section 2.2, for N = 1, τ1 works as the forward
recurrence time with PDF Equation (10).

In the following, we consider a situation in which the process has started long before
the measurement began, i.e., at t = 0, the process was already running for a very long
time. In this way, the measurement begins from an initial condition in which the system is
in equilibrium, meaning that the probability to start from D+ is 〈τ〉+/[〈τ〉+ + 〈τ〉−] and
accordingly the probability to start from D− is 〈τ〉−/[〈τ〉+ + 〈τ〉−] (see [46,47]). For this
set-up, the PDF of the occupation time T+, ft(T+), is determined by the contribution to
start from D+ and the contribution to start from D−, yielding

ft(T+) =
〈τ〉+

〈τ〉+ + 〈τ〉− f+t (T+) +
〈τ〉−

〈τ〉+ + 〈τ〉− f−t (T+), (3)

where f±t (T+) is the PDF of T+ for measurement time t, given that the process has started
from ±. Since D− = 0, Equation (2) dictates that the positional PDF, provided that the
system has occupied the state with D+ for a time T+, is given by

P(x|T+) =
e−

x2
4D+T+√

4πD+T+
. (4)

The propagator of the system is obtained via integrating over all possible values of the
occupation time T+, whose PDF is ft(T+) Equation (3), yielding
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P(x, t) =

t∫
0

P(x|T+) ft(T+)dT+. (5)

Likewise, we can work with the temporal occupation fraction, which is defined by p+ =
T+/t with 0 ≤ p+ ≤ 1. In this case, the positional PDF for a specific value of p+ follows

P(x|p+) = e−
x2

4D+ tp+√
4πD+tp+

. (6)

and the propagator is obtained similarly to Equation (5), but using the PDF of p+, which
we denote by gt(p+),

P(x, t) =

1∫
0

P(x|p+)gt(p+)dp+. (7)

Since the properties of P(x|T+) or P(x|p+) are known, the task of computing the propagator
completely depends on our ability to calculate the PDF of T+ or p+. In the following section,
we address this problem.

2.2. The General Case: Arbitrary Distribution of Waiting Times

Two regimes of the process are of special interest. The long and the short limits of
the measurement time t. The two different limits involve different considerations when
computing the PDFs of the occupation time (T+) and fraction (p+). We first handle the
regime of small t and then we treat the t → ∞ limit.

2.2.1. Short Time Regime

The PDF of the occupation time T+ is defined by Equation (3). We condition on the
number of transitions N, and each term f±t (T+) is provided by

f±t (T+) =
∞

∑
N=0

f±t (T+|N)Q±
t (N), (8)

where Q±
t (N) is the probability to perform exactly N transitions during t when the process

started at ±. f±t (T+|N) is the PDF of T+ when exactly N transitions were performed
(during t), and the process has started from ±. This conditional probability is obtained
by counting the number of trajectories of temporal span t that started from the ± state
and performed exactly N transitions, out of the total number of trajectories that started
from the ± state and for which the diffusion spent a total time T+ at this state. Utilizing
Equation (8), we rewrite Equation (3) as

ft(T+) =
〈τ〉+

〈τ〉+ + 〈τ〉−
∞

∑
N=0

f+t (T+|N)Q+
t (N) +

〈τ〉−
〈τ〉+ + 〈τ〉−

∞

∑
N=0

f−t (T+|N)Q−
t (N). (9)

Since we consider a renewal process, the expression for Q±
t (N) is known in the Laplace

space [42], as Q̂±
s (N) = L{Q±

t (N)} =
∫ ∞

0 Q±
t (N) exp(−ts) dt, for any general ψ̂±(s) =

L{ψ±(τ)}. Concretely, Q±
t (N) is obtained by taking into account all the possibilities

to perform N jumps up to time tN < t, and no additional jumps during the backward
recurrence time τ∗. This sums up to a convolution of N + 1 random variables. It is
important to notice that, since we assume equilibrium initial conditions, τ1, which is
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measured from t = 0, is only a part of a full renewal event and is termed the forward
recurrence time. The PDF of τ1 for the ± state, f±eq (τ1), is provided by (see [46])

f±eq (τ1) =

(
1−

∫ τ1

0
ψ±(τ) dτ

)
/〈τ〉± (10)

and in the Laplace space L{ f±eq (τ1)} = (1− ψ̂±(s))
/
〈τ〉±s. This initial condition stems

from the equilibrium of the underlying process, in which we do not have a jump at the
initial time (t0 = 0 in Figure 2). In the literature [13,42,46,48,49], the case where the renewal
process starts at t = 0 is called ordinary or non-equilibrium, and as we will see below, by
following our approach, this does not yield any universal features for P(x, t), hence the
assumption of an equilibrium process is important in our methodology, (see discussion
about non-equilibrium initial conditions in Appendix B).

The probability of not performing any jumps during τ∗ is equivalent to the probability
of obtaining a waiting time τN+1 > τ∗, i.e., 1− ∫ τ∗

0 ψ±(τ) dτ. Eventually, by implementing
the initial equilibrium condition, we obtain

Q̂±
s (0) =

1− 1−ψ̂±(s)
〈τ〉±s

s
,

Q̂±
s (1) =

(
1− ψ̂±(s)
〈τ〉±s

)(
1− ψ̂∓(s)

s

)
,

Q̂±
s (2) =

(
1− ψ̂±(s)
〈τ〉±s

)
ψ̂∓(s)

(
1− ψ̂±(s)

s

)
,

Q̂±
s (3) =

(
1− ψ̂±(s)
〈τ〉±s

)
ψ̂∓(s)ψ±(s)

(
1− ψ̂∓(s)

s

)
. (11)

In all the equations above on the right-hand side, we have a multiplication of functions
in the Laplace space, this implies convolutions as we transform from s to t. The first term
in the multiplication on the right-hand side of Equation (11) obviously stems from the
equilibrium initial condition under study. We assume that the PDF of the waiting times is
analytic for τ → 0, thus we can express ψ±(τ) as [22,23]

ψ±(τ) ∼ C±A±τA± + C±A±+1τA±+1 + . . . , (12)

with A± ≥ 0 an integer number. As an example, consider the case with exponential waiting
times, i.e., ψ±(τ) = ψ(τ) = exp(−τ/〈τ〉)/〈τ〉, namely the waiting times at the D± states
are identically distributed. Its analytic expansion is ψ(τ) ∼ 1/〈τ〉 − τ/〈τ〉2, with A± = 0,
C±A± = 1/〈τ〉 and C±A±+1 = 1/〈τ〉2. The analyticity of ψ±(τ) Equation (12) is a very mild
demand that covers a wide range of sojourn times distributions. Since we are interested
in the small t limit, the corresponding behavior in the Laplace space is found for s → ∞,
where the leading terms of ψ̂±(s) are [22]

ψ̂±(s) ∼
Γ(A± + 1)C±A±

sA±+1 +
Γ(A± + 2)C±A±+1

sA±+2 + . . . , (13)

For the mentioned example with exponential waiting times, ψ̂(s) ∼ 1/[〈τ〉s]. Using
Equation (13) for Q̂±

s (N), we obtain that, in the s → ∞ limit, corresponding to the short
time limit, which is at the focus of our interest
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Q̂±
s (0) ∼ 1

s
− 1
〈τ〉±s2 +

Γ(A± + 1)C±±
〈τ〉±sA±+3 + . . . ,

Q̂±
s (1) ∼ 1

〈τ〉±s2 −
2C±A±Γ(A± + 1)

〈τ〉±sA±+3 + . . .

Q̂±
s (2) ∼

Γ(A∓ + 1)C∓A∓
〈τ〉±sA∓+3 + . . .

Q̂±
s (3) ∼

Γ(A± + 1)Γ(A∓ + 1)C±A±C∓A∓
〈τ〉±sA±+A∓+4 + . . . . (14)

We see that the leading terms for all Q̂±
s (N) with N > 1 are of the order 1/sγ with γ > 2.

Thus, in the small t limit, terms with N > 1 contain contributions that scale like tγ−1 and
are negligible with respect to the N ∈ {0, 1} cases. Therefore, only the first two Q±

t (N)s
are taken into account, i.e.,

Q±
t (0) ∼ 1− t

〈τ〉± , (15)

Q±
t (1) ∼ t

〈τ〉± . (16)

This is an expected result, as, for short times, only contributions from a single transition
and zero transitions are important. By calculating Q±

t (N), we advanced towards obtaining
the behavior of the PDF of T+, according to Equation (9), in order to complete this mission,
one needs to compute the relevant contributions of f±t (T+|N) in the t → 0 limit. First, we
see that the conditional distribution f±t (T+|0) depends only on the starting state. There are
only two types of trajectories that have performed 0 transitions, i.e., for all the time, they
have been either at D+ or at D−. Consequently,

f+t (T+|0) = δ(t− T+), (17)

f−t (T+|0) = δ(T+). (18)

The calculation of f±t (T+|N) is obtained by conditioning over the first event. If starting
from the + state, the process will spend a time τ1 at this state before jumping to the −
state. τ1 can attain any value 0 ≤ τ1 ≤ T+ and for the remaining time t− τ1 the process
has to perform one transition less. In general, without regarding the initial conditions of
the problem, an integration over all possible τ1’s provides the relation

f+t (T+|N′ + 1) =
∫ T+

0

1
B+

ψ+(τ1) f−t−τ1
(T+ − τ1|N′) dτ1 (19)

with N′ + 1 = N, and B+ a normalization factor. For instance, for N = 1, we have that∫ t
0 ψ+(τ1)/B+ dτ1 = 1, which stems from the fact that we consider only trajectories of time

span t. The corresponding formula for f−t (T+|N′ + 1) is

f−t (T+|N′ + 1) =
∫ t−T+

0

1
B−

ψ−(τ1) f+t−τ1
(T+|N′) dτ1. (20)

Since we are assuming equilibrium initial conditions, the ψ± in the N′ + 1 element of the
iterative forms (Equations (19) and (20)) must be replaced by f±eq (Equations (10)). As was
already noted above, only the N = 0 and N = 1 are of interest in the small t limit, then,
according to Equations (17), (20), and (10), we get for N = 1
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f+t (T+|1) =
f+eq (T+)∫ t

0 f+eq (t′) dt′
, (21)

f−t (T+|1) =
f−eq (t− T+)∫ t
0 f−eq (t′) dt′

. (22)

Using the small time approximation of ψ±(τ) Equation (12), in Equations (21) and (22),
we obtain that, independently of the starting state,

f±t (T+|1) ∼ 1
t

. (23)

The 1/t dependence comes from the integral factors in Equations (21) and (22), all the
other terms in the numerator and denominator simply cancel out. See Appendix B for a
complementary derivation of Equation (23) using the definition of the joint PDF of T+ and
N. Gathering Equations (15)–(18), and (23) in Equation (9), we find that

ft(T+) ∼ 〈τ〉+
〈τ〉+ + 〈τ〉−

(
1− t

〈τ〉+

)
δ(t− T+)

+
〈τ〉−

〈τ〉+ + 〈τ〉−

(
1− t

〈τ〉−

)
δ(T+) +

2
〈τ+〉+ 〈τ−〉 . (24)

The PDF of the occupation fraction is obtained trivially from Equation (24) by changing
variables to p+ = T+/t

gt(p+) ∼ 〈τ〉+
〈τ〉+ + 〈τ〉−

(
1− t

〈τ〉+

)
δ(1− p+)

+
〈τ〉−

〈τ〉+ + 〈τ〉−

(
1− t

〈τ〉−

)
δ(p+) +

2t
〈τ〉+ + 〈τ〉− . (25)

The third term in Equations (24) and (25) is uniform, i.e., terms which are independent
of T+ or p+, and this is the first main result of this paper. All the additional terms and
contributions to the PDF of p+ only introduce terms that depend on higher orders of
t and are thus negligible in the small t limit. This means that, for equilibrium initial
conditions, regardless of the exact form of ψ±(τ), the PDF of p+ (Equation (25)) is always
uniform for 0 < p+ < 1. This general uniform behavior of the PDF of the occupation
fraction is applicable for an extremely large class of waiting times PDFs ψ±(τ). As a
remark, the connection between the conditional PDF of T+, f±t (T+|N), and the joint PDF
of T+ and N, f±t (T+, N) is discussed in Appendix B.1. In the following, it is shown that
this uniformity leads to universal features of the propagator in the limit of small t. In
Sections 2.3.1 and 2.3.2, we treat particular examples (with exponential waiting times) that
are exactly tractable, without any simplifications or assumptions. The results agree perfectly
with the general form in Equation (25). It is important to notice that our approximations
affect only the form of gt(p+) and do not affect P(x|p+). This allows us to obtain the
behavior of P(x, t) for any −∞ < x < ∞, as is shown below.

2.2.1.1. P(x, t) for Arbitrary Waiting Times

In order to obtain the positional PDF for small t, we combine Equations (6), (7),
and (25), which, after integration, gives
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P(x, t) =
〈τ〉+

〈τ〉+ + 〈τ〉−

(
1− t

〈τ〉+

)
e−

x2
4D+ t

√
4πD+t

+
〈τ〉−

〈τ〉+ + 〈τ〉−

(
1− t

〈τ〉−

)
δ(x)

+

(
2t

〈τ〉+ + 〈τ〉−

){
e−

x2
4D+ t

√
πD+t

− |x|
2D+t

(
1− Er f

( |x|√
4D+t

))}
. (26)

Considering x �= 0, in the limit of x −→ 0 when exp(−x2/4D+t) ∼ 1− x2/4D+t and
1− Er f (|x|/√4D+t) ∼ 1− 2|x|/√4πD+t. After substituting in Equation (26), it turns into

P(x, t) ∼ (3t + 〈τ〉+)√
4πD+t[〈τ〉+ + 〈τ〉−] −

|x|
D+[〈τ〉+ + 〈τ〉−] + K1x2, (27)

with K1 = (5t − 〈τ〉+)/[8(〈τ〉+ + 〈τ〉−)
√

π(D+t)
3
2 ]. We can see that, in Equation (27),

there is a linear dependence on |x| in the vicinity of x = 0. This means that for short
enough measurement times the PDF of x will always have a tent like shape, irrespective of
the distributions ψ± that were chosen (see Figure 3 below). Only the mean sojourn times
affect the shape. This is a general result for the short time regime, and it is based on the
general fact that the PDF of the temporal occupation fraction is uniform for 0 < p+ < 1.
Concretely, at short times when |x| is small, the decay of P(x, t) will always resemble
an exponential one. For large |x|, the form of P(x, t) must be Gaussian, due to the fact
that this limit is determined by the instances when no transition to D− was ever made
and the transport is controlled by diffusion with D+. However, if we only look at the
particles that have moved, i.e., we get rid of the delta function at x = 0 in Equation (26).
We can relate these dynamics with some experiments which condition the measurements
on the movement of the particles. This procedure is called population splitting; see [50,51].
Technically, if D− > 0, the cusp is not found; however, as long as D−/D+ << 1, the tent
like shape will be found; for further details, see Appendix A.

2.2.2. Long Time Regime

In the limit t −→ ∞, the PDF of the temporal occupation fraction gt(p+) follows a
different but also a general form. As mentioned, we are focusing on the case where both ψ±
have finite first moments, 〈τ〉± > 0. In the long time limit, ergodicity is satisfied, namely
the equivalence of ensemble and temporal averages are attained. Particularly, in this case,
the ensemble average of the occupation fraction at D+ is equal to the temporal average
which is defined by the fraction of average waiting times at D+ and D−, i.e., 〈p+〉 =
〈τ〉+/[〈τ〉+ + 〈τ〉−] (see Appendix F). Thus, in the long time limit, gt(p+) converges to a
δ-function,

gt(p+) −−→
t→∞

δ

(
p+ − 〈τ〉+

〈τ〉+ + 〈τ〉−

)
. (28)

Since ergodicity prevails, by using Equation (28) in Equation (7), the positional PDF
gets the form

P(x, t) =

√
〈τ〉+ + 〈τ〉−
4πD+t〈τ〉+ e

− x2(〈τ〉++〈τ〉−)
4D+ t〈τ〉+ . (29)

In the long time limit, the positional PDF given by Equation (29) represents a Gaus-
sian propagator with an effective diffusion coefficient D+〈τ〉+/[〈τ〉+ + 〈τ〉−]. Since
〈τ〉+/[〈τ〉+ + 〈τ〉−] < 1, and the effective diffusion coefficient is always smaller com-
pared with D+. Indeed, this slow-down is an expected result due to the portion of the
time that the particle spends in the state with D− = 0 and basically not moving during
this period.

65



Entropy 2021, 23, 231

Figure 3. Distribution of displacements P(x, t) in semi-log scale, obtained by simulations, for a two
state system with uniform distributed waiting times and gamma distributed waiting times. The
left panel presents short time results where a tent like shape is clearly visible and a non-analytical
feature is obvious, while the right panel exhibits Gaussian statistics for long times. Left: P(x, t) for
t = 1 for τ ∼ U(0, 5) at D+ and τ ∼ U(0, 10) at D− (red triangles)—with 〈τ〉+ = 2.5 < 〈τ〉− = 5. In
addition, t = 2 with τ ∼ Gamma(0.5, 8) at D+ and τ ∼ Gamma(0.5, 12) at D− (blue squares), such
that 〈τ〉+ = 4 < 〈τ〉− = 6. Both cases fit with Equation (26) (red and blue solid lines) with a tent like
shape. In both normalized histograms at x = 0, there is a peak representing the Dirac delta function
in Equation (26). Right: P(x, t) for t = 30 and waiting times uniformly distributed (green triangles)
with the same parameters as above and for gamma distributed waiting times (orange squares) with
τ ∼ Gamma(2, 1) at D+, τ ∼ Gamma(8, 1) at D−, and 〈τ〉+ = 2 < 〈τ〉− = 8. We employed the last
set of parameters in the gamma distributed waiting times in order to avoid an overlapping between
curves. P(x, t) converges to the Gaussian statistics Equation (29) (green and orange solid lines). In all
the presented cases, D+ = 10 and D− = 0 were used.

2.2.3. Simulations

The two general limits of gt(p+) Equations (25) and (28) produce two different prevail-
ing distributions of P(x, t) Equations (26) and (29). In Figure 3, we compare analytical for-
mulas Equations (26) and (29) (solid lines) with simulations of two different state models—
one with uniform distributed waiting times τ ∼ U(0, 5) for D+ and τ ∼ U(0, 10) for D−
and with t = 1 (red triangles) and t = 30 (green triangles), such that 〈τ〉+ = 2.5 < 〈τ〉− = 5.
Here, the notation τ ∼ U(a, b) means that τ has a uniform distribution with a and b the
minimum and maximum values, respectively. In addition, the other with gamma dis-
tributed waiting times, such that τ ∼ Gamma(k, θ). The latter notation denotes that τ has a
gamma distribution with k its shape parameter and θ the corresponding scale parameter.
In this case, the PDF follows

ψ±(τ) =
τk−1e−

τ
θ

Γ(k)θk , (30)

particularly the PDF of the gamma distribution Equation (30) implies a cumulative distri-
bution function F(τ) = γ(k, τ/θ)/Γ(k), with γ(x, y) the incomplete gamma function and
Γ(x) the standard gamma function. For the latter case, we used τ ∼ Gamma(0.5, 8) at D+

and τ ∼ Gamma(0.5, 12) at D−, for t = 2 (blue squares) and t = 30 (orange squares), with
〈τ〉+ = 4 < 〈τ〉− = 6. As we can see in the short time regime, for uniform and gamma
distributed waiting times (red triangles and blue squares), P(x, t) has a tent shape for short
displacements, and it agrees with Equation (26), joined with a peak at x = 0 due to the
Dirac delta function in Equation (26). For t = 30 (green triangles and orange squares), each
case of P(x, t) converges to Gaussian statistics (Equation (29)).

The cusp we have found for small |x| implies that we may approximate the distribution
on a small scale with a Laplace like distribution, P(x, t) ∼ exp(−C|x|). However, clearly
this does not hold globally for large x, see Figure A2 in Appendix C. Still within the interval
of short displacements, due to the presence of the delta peak at the origin, we expect for

66



Entropy 2021, 23, 231

this span a considerable contribution on the normalization of P(x, t). Particularly, we find
that the area underneath the curve for the case of uniformly distributed waiting times
(red line) in Figure 3 in the left panel has a value of 0.88 for x ∈ (−4, 4). In addition, the
corresponding area within the same figure, but, for gamma distributed waiting times, the
(blue curve) has a value of 0.89 for x ∈ (−8, 8).

2.3. Exponentially Distributed Waiting Times

In this section, we obtain gt(p+) for a specific distribution of waiting times, but using
different methods, which let us corroborate the validity of our general approach described
above. We analyze the case of exponential waiting times in states with D+ and D−, each
waiting time following a PDF given by

ψ±(τ) =
e
− τ
〈τ〉±

〈τ〉± . (31)

We show first the case of a two state system with the same mean waiting times and
then investigate the complimentary case. In Appendix D, we analyze both cases for
non-equilibrium initial conditions, e.g., a system starting from D+.

2.3.1. Equal Mean Waiting Times 〈τ〉+ = 〈τ〉−
Let us consider a system with 〈τ〉+ = 〈τ〉− = 〈τ〉. We know that the temporal fraction

occupation p+ and T+ can be related to the difference of occupation times defined by
St = T+ − T−, as St = 2T+ − t = 2p+t − t [46]. In this section, we analyze the double
Laplace transform of the PDF of St, called φt(St), with Laplace pairs St ⇔ v and t ⇔ s.
In [46], φt(St) is provided by

φ̂s(v) =
s[1− ψ(s + v)ψ(s− v)] + v[ψ(s + v)− ψ(s− v)]

(s2 − v2)[1− ψ(s + v)ψ(s− v)]
. (32)

The Laplace transform of ψ(τ) in Equation (31) is given by L
{

ψ(τ)
}

= ψ̂(s) = 1
1+〈τ〉s .

Substituting ψ̂(s) in Equation (32), we obtain

φ̂s(v) =
s + 2〈τ〉

s2 + 2〈τ〉s− v2 . (33)

In Appendix E, an analytical expression for the PDF of St is found, i.e., inverse Laplace
transform of Equation (33) is performed (see Equation (A44)). Then, remember that the
temporal occupation fraction in the plus state p+ is related to the difference of occupation
times as St = 2p+t− t. We can employ Equation (A44) for obtaining the PDF of p+, which
is given by

gt(p+) = 1
2 e−

t
〈τ〉

{
δ(1− p+) + δ(p+)

}

+ tΘ(t−|2p+t−t|)e−
t
〈τ〉

〈τ〉

[
I0

(
2t
√

p+(1−p+)
〈τ〉

)
+

I1

(
2t
√

p+(1−p+)

〈τ〉

)
2
√

p+(1−p+)

]
.

(34)

A similar expression for a system with non-equilibrium initial conditions (always starting
from D+) is found in Appendix D. Expanding Equation (34) in the short time limit t −→ 0,
i.e., t << 〈τ〉, Equation (34) can be approximated by a uniform distribution

gt(p+) ∼ e−
t
〈τ〉

2

{
δ(1− p+) + δ(p+)

}
+

t
〈τ〉 . (35)
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For 〈τ〉+ = 〈τ〉− = 〈τ〉, Equation (35) agrees with Equation (25) obtained by the general
approach of Secton 2.2. In the left panel of Figure 4, we show the short time approximation
of gt(p+) (Equation (35)) compared with the general formula in Equation (34); it is evident
that both results agree perfectly. In the right panel of Figure 4, we show Equation (34)
for short and long measurement times. gt(p+) evolves from a uniform distribution to a
peaked distribution centered at its mean value p+ = 1/2 (see Appendix E for a deduction
of the central moments of gt(p+)).

Figure 4. Left: Comparison between gt(p+) Equation (34) (red solid line) and the short time uni-
form approximation Equation (35) (black asterisks) for exponentially distributed waiting times
Equation (31) with 〈τ〉± = 〈τ〉 = 1 and t = 0.1. Right: gt(p+) Equation (34) for 〈τ〉 = 1 and
t ∈ {0.1, 0.5, 1, 2, 5, 10}.

Positional Distribution Function

An analytical expression for the positional distribution function P(x, t) (given by
Equation (7)), with gt(p+) provided by Equation (34), can be deduced by using the series

representation of the modified Bessel functions, Iν(y) =
∞
∑

k=0
( y

2 )
2k+ν/[k!Γ(ν + k + 1)]. The

integration in Equation (7) yields

P(x, t) = e
− t
〈τ〉 −

x2
4Dt

2
√

4πDt
+ δ(x)e

− t
〈τ〉

2 +

te
− t
〈τ〉 −

x2
4Dt

2〈τ〉√4πDt

{
∞

∑
k=0

(−1)kπ

k!

( t
〈τ〉

)2k
[

1F1
(
k + 1; 1

2 − k; x2

4DT
)

Γ
(
2k + 3

2
)
Γ
( 1

2 − k
) −

( x2

4Dt
)k+ 1

2
1F1

(
2k + 3

2 ; k + 3
2 ; x2

4Dt
)

Γ
(
k + 1

)
Γ
(
k + 3

2
) ]

+

1
2

∞

∑
k=0

(−1)kπ

(k + 1)!

( t
〈τ〉

)2k+1
[

1F1
(
k + 1; 1

2 − k; x2

4Dt
)

Γ
(
2k + 3

2
)
Γ
( 1

2 − k
) −

( x2

4Dt
)k+ 1

2
1F1

(
2k + 3

2 ; k + 3
2 ; x2

4Dt
)

Γ
(
k + 1

)
Γ
(
k + 3

2
) ]}

,

(36)

with 1F1(a; b; z) the confluent hypergeometric function of the first kind. Nonetheless, in
a short time limit, we can use the uniform approximation of gt(p+) (Equation (35)), and
then Equation (7) provides

P(x, t) ∼ e−
t
〈τ〉 − x2

4D+ t

2
√

4πD+t
+

δ(x)e−
t
〈τ〉

2
+

t
〈τ〉

{
2e−

x2
4D+ t

√
4πD+t

− |x|
2D+t

[
1− Er f

(
|x|√
4D+t

)]}
, (37)

which agrees with the results obtained above in Equation (26), when 〈τ〉+ = 〈τ〉− and for
t −→ 0, since, in that limit, exp(−t/〈τ〉) ∼ 1− t/〈τ〉. Particularly for x �= 0 and taking
x −→ 0, Equation (37) yields a tent shaped propagator described by

P(x, t) ∼ 3t + 〈τ〉
4〈τ〉√πD+t

− |x|
2D+〈τ〉 + K2x2, (38)
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with K2 = (5t − 〈τ〉)/[16〈τ〉√π(D+t)
3
2 ] and in concordance with Equation (27). On

the other hand, within this short time limit, for large displacements x −→ ∞, the two
terms between curly braces in Equation (37) cancel each other, and only the first term
in Equation (37) is left (when x �= 0). This is due to the expansion of 1 − Er f (z) ∼
exp(−z2)/(

√
πz) for z −→ ∞, in our case z = |x|/√4D+t. Then, Equation (37) can be

approximated by

P(x, t) ∼
x→∞

e−
t
〈τ〉 − x2

4D+ t

2
√

4πD+t
. (39)

This Gaussian behavior of P(x, t) at the tails is expected. The large |x| limit is dominated
by trajectories for which no transitions to D− were performed and a pure diffusion process
with D+ occurs.

When t >> 〈τ〉, ergodicity is satisfied and, therefore, the system on average visits the
two states the same amount of time. Namely, the ensemble average of p+ is equal to the
corresponding fraction of the average waiting times. In this case, when 〈τ〉+ = 〈τ〉−, the
occupation fraction is concentrated at p+ = 1/2. Thus, the PDF of p+ is represented by the
delta function

gt(p+) −−→
t→∞

δ
(

p+ − 1
2

)
. (40)

Substituting Equation (40) in Equation (7), we recover Gaussian statistics for the displace-
ments

P(x, t) ∼ e−
x2

2D+ t

√
2πD+t

. (41)

In Figure 5, we present the two different limit distributions for P(x, t) in the short time
limit t = 0.1 (red circles) and t = 0.5 (blue crosses) Equation (37) and the Gaussian limit for
t = 5 (orange circles) and t = 10 (green crosses) Equation (41), for the normalized variable
z = x/

√
t. As we can see, the displacements for short times follow a tent shape (black solid

line) and a Gaussian one in the long time limit (magenta solid line).

Figure 5. P(z, t) in semi-log scale, with z = x/
√

t. Left: For short times t = 0.1 (red circles) and
t = 0.5 (blue crosses), P(z, t) is represented by Equation (37) (black solid line) with a tent like shape.
Right: The same for large times t = 5 (orange circles) and t = 10 (green crosses), P(z, t) converges to
the Gaussian distribution Equation (41) (magenta solid line). In all the cases, D+ = 10, D− = 0, and
〈τ〉 = 1 were used.

2.3.2. Different Mean Waiting Times 〈τ〉+ �= 〈τ〉−
Relaxing the assumption of equal mean waiting times for exponentially distributed

sojourn times in the model, we have that 〈τ〉+ �= 〈τ〉−, with waiting times follow-
ing Equation (31). As mentioned, for equilibrium initial conditions, the PDF of T+ is
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given by Equation (3). Let f̂±s (u) be the double Laplace transform of f±t (T+), defined as
f̂±s (u) =

∫ ∞
0

∫ ∞
0 ft(T+) exp(−uT+ − st) dT+ dt. Then, the different terms of the PDF of T+

in Equation (3) are provided in Laplace space, by [42,47,49]

f̂+s (u) =

{
ψ̂+(s + u)

[1− ψ̂−(s)
s

]
+

1− ψ̂+(s + u)
s + u

}
1

1− ψ̂+(s + u)ψ̂−(s)
, (42)

f̂−s (u) =

{
ψ̂−(s)

[1− ψ̂+(s + u)
s + u

]
+

1− ψ̂−(s)
s

}
1

1− ψ̂+(s + u)ψ̂−(s)
. (43)

Summing up Equations (42) and (43) according to Equation (3), we obtain, for exponentially
distributed waiting times,

f̂s(u) =
〈τ〉2− + 〈τ〉2

+(1 + 〈τ〉−s) + 〈τ〉+〈τ〉−[2 + 〈τ〉−(s + u)]
(〈τ〉+ + 〈τ〉−)[〈τ〉−s + 〈τ〉+(1 + 〈τ〉−s)(s + u)]

. (44)

Taking the double inverse Laplace transform of Equation (44) with respect to u ⇔ T+ and
s ⇔ t and changing variables to p+ = T+/t, we obtain the PDF for p+ (see details in
Appendix F)

gt(p+) =
〈τ〉−e

− t
〈τ〉−

〈τ〉++〈τ〉− δ(p+) +
〈τ〉+e

− t
〈τ〉+

〈τ〉++〈τ〉− δ(1− p+) + 2t
〈τ〉++〈τ〉−

{
I0

(
2t
√

p+(1−p+)
〈τ〉+〈τ〉−

)

+

[
(1−p+)

√
〈τ〉+〈τ〉−

〈τ〉+ +
p+
√
〈τ〉+〈τ〉−
〈τ〉−

]
I1

(
2t
√

p+(1−p+)
〈τ〉+〈τ〉−

)
2
√

p+(1−p+)

}
e
− tp+
〈τ〉+ −

t(1−p+)
〈τ〉− . (45)

For the case when 〈τ〉+ = 〈τ〉− = 〈τ〉, Equation (45) recovers Equation (34) obtained by
the methods reported in [52,53]. The case of non-equilibrium initial conditions is shown in
Appendix D.

In the short time regime, strictly speaking when t << 〈τ〉±, by expanding Equa-
tion (45) for t −→ 0, gt(p+) can be approximated by the uniform distribution

gt(p+) ∼ 〈τ〉−e
− t
〈τ〉−

〈τ〉+ + 〈τ〉− δ(p+) +
〈τ〉+e

− t
〈τ〉+

〈τ〉+ + 〈τ〉− δ(1− p+) +
2t

〈τ〉+ + 〈τ〉− . (46)

As mentioned above, Equation (25) that was deduced for general PDFs of waiting times,
encloses the particular case of Equation (46). For the uniform approximation of gt(p+)
(Equation (46)), the positional PDF (Equation (7)) is

P(x, t) ∼ 〈τ〉+e
− t
〈τ〉+ − x2

4D+ t

(〈τ〉++〈τ〉−)
√

4πD+t +
〈τ〉−

〈τ〉++〈τ〉− e
− t
〈τ〉− δ(x)

+ 2te
− x2

4D+ t

(〈τ〉++〈τ〉−)
√

πD+t −
|x|

D+(〈τ〉++〈τ〉−)

[
1− Er f

( |x|√
4D+t

)]
,

(47)

which agrees with the general case described by Equation (26).
Similar to Section 2.2, in the limit t −→ ∞, the PDF of the occupation fraction gt(p+)

follows Equation (28). In addition, the PDF of the displacements in the long time regime is
given by Equations (7) and (29), recovering Gaussianity.

In Figure 6, we show gt(p+) for exponential waiting times with 〈τ〉+ = 1 and 〈τ〉− =
5, in the left panel, we compare the uniform approximation of Equation (46) (black asterisks)
with the full solution Equation (45) (red solid line), observing an excellent agreement. In the
right panel of Figure 6, the behavior of gt(p+) (as provided by Equation (45)) is displayed.
As we can see, it starts with a uniform distribution for short times and then it evolves
to a peaked distribution centered at p+ = 〈τ〉+/(〈τ〉+ + 〈τ〉−) = 1/6. As shown in
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Appendix D, for non-equilibrium initial condition, the PDF of p+ is still uniform within
the short time regime. See also Appendix B for other similar cases.

Figure 6. Left: Comparison between gt(p+) Equation (45) (red solid line) and the uniform approxima-
tion Equation (46) (black asterisks) for 〈τ〉+ = 1, 〈τ〉− = 5 and t = 0.1. Right: gt(p+) Equation (45)
for 〈τ〉+ = 1, 〈τ〉− = 5 and t ∈ {0.1, 0.5, 2, 5, 10, 20}.

Finally, in Figure 7, we show the corresponding positional spreading for the normal-
ized variable z = x/

√
t. As we can see in the short time, t = 0.1 (red circles) and t = 0.5

(blue crosses) P(z, t) (given by Equation (47)) attain a tent-like shape. In the long run,
t = 20 (orange circles) and t = 30 (green squares) P(z, t) have a Gaussian distribution
given by Equation (29).

Figure 7. For a system with, 〈τ〉+ = 1 and 〈τ〉− = 5, P(z, t) in semi-log scale, with z = x/
√

t. For
short times t = 0.1 (red circles) and t = 0.5 (blue crosses), P(z, t) is represented by Equation (47)
(black solid line) with a tent like shape. For large times t = 20 (orange circles) and t = 30 (green
diamonds), P(z, t) converges to the Gaussian statistics Equation (29) (magenta solid line). In all
the cases, D+ = 10 and D− = 0 were used. Compared with Figure 5, in this case, the Gaussian
curve is above the tent curve, contrary to the case with equal mean waiting times. This is because
the coefficient of the Gaussian curve Equation (29) is bigger compared with the weight of the delta
peak in Equation (47). In Figure 5, we have the opposite, and the weight of the corresponding delta
function in Equation (37) is bigger compared with the Gaussian Equation (41).

3. Discussion

3.1. The Histogram of the Diffusion Coefficient as Extracted from Experimental Data
3.1.1. Super-Statistics

We have found that at x = 0, P(x, t) exhibits a cusp. A mathematically similar
non-analytical behavior is found using an approach called super-statistics [12,14,21,54],
which was used to explain laboratory observations. This framework postulates that
the distribution of diffusion constants in the system is exponential, namely P(D) =
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exp(−D/〈D〉)/〈D〉 for D > 0 and 〈D〉 the average diffusivity. Then, the diffusion follows
a Gaussian process with a random D. This approach gives

P(x, t) =
∫ ∞

0

e−
x2

4Dt√
4πDt

e−
D
〈D〉

〈D〉 dD =
e−

|x|
〈D〉t

4〈D〉t . (48)

Here, on the right-hand side, we have the Laplace PDF, which was used by Laplace
in 1774 [55] to describe his linear law of errors [56]. In addition, as in our case, within the
super-statistics method, we see in Equation (48) a non-analytical behavior since P(x, t) ∼
C1 − C2|x|, for small x and with C1, C2 constants. Our work does not support the Laplace
law, see Equations (26) and (27). However, maybe more importantly, the whole approach
presented in this manuscript differs from the super-statistical approach in the following way.
In our model, we have two diffusion constants, D+ and D− = 0 (see Appendix A for the
case when D− �= 0). Hence, the PDF of diffusion constants is P(D) = aδ(D) + bδ(D−D+),
with a, b ≥ 0. It follows that the super-statistical approach predicts that the diffusing packet
P(x, t) is a sum of a delta function corresponding to non-moving particles and a Gaussian
packet describing the movers. Thus, when the non-moving particles are excluded, we have
perfect Gaussian behavior. This is actually correct, to leading order, for very short times.
Thus, the super-statistical approach gives the correct t −→ 0 behavior but fails to predict
the main issue (in our opinion), and that is the cusp on x = 0. To explore the non-analytical
behavior, one needs to go to the next order terms in the expansion to include paths with a
transition between states. Then, as we have shown, the equilibrium initial condition yields
a uniform distribution of the occupation fraction Equation (25). It is this fact that brings the
non-analytical behavior in the final result for P(x, t) Equation (27), graphically represented
by a “tent” see Figures 3, 5 and 7. It follows that the exponential conspiracy in which
distribution of diffusion constants is exponential is not a necessary condition for a cusp like
behavior of P(x, t). We further remark that the non-analytical behavior is found also in the
context of normal diffusion in [35–37] and within the anomalous one at [31–34,36,38–40].

3.1.2. Time Average MSD

We note that, in single molecule experiments, the time average mean squared dis-
placement (TAMSD) is used in many cases to estimate the distribution of diffusion con-
stants [2,5,6]. Since time averages are recorded over a finite measurement time, the time
average fluctuates. Hence, we have naturally a distribution of the estimator for the diffu-
sion parameters. In addition, the aforementioned two delta peak distribution of D, i.e., on
D+ and on D−, is expected to be smeared out. This topic was extensively studied in a wide
variety of models [57,58].

We now investigate the fluctuations of the time averaged diffusivities in a two state
model and their implications in the distribution of diffusion coefficients obtained from real
experimental data. For a further analysis of the time average diffusivity within a two state
system, see [59,60].

We note that, in different single particle tracking experiments with non-Gaussian
propagators, the recorded distribution of the diffusion coefficient D (obtained by means of
TAMSD analysis) is relatively broad and peaked close to the origin [2,5,6]. Those experi-
mental distributions of D are typically fitted by exponential [6] or gamma [2] distributions.
Within the two state model, the diffusivity takes only two possible values D− or D+, but
the respective TAMSD analysis gives values of D around D− and D+ [59]. The average
D is given by 〈D〉 = (D+〈τ〉+ + D−〈τ〉−)/(〈τ〉+ + 〈τ〉−). Thus, how different is the
distribution of the diffusivities, extracted via TAMSD techniques, in a two state model
compared with the one present in single molecule experiments? As we show next, this
will be determined by the values of D± and 〈τ〉±. In Figure 8, we show the distribution of
the diffusion coefficients obtained by means of TAMSD analysis for D+ = 10, D− = 0 and
exponentially distributed waiting times. We show two different cases, the first one with
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the same mean waiting times 〈τ〉+ = 〈τ〉− = 1 (see red boxes). In addition, the second one
with different mean waiting times, such that 〈τ〉+ = 1 and 〈τ〉− = 5 (see blue boxes).

Figure 8. Distribution of diffusion coefficients P(D) obtained via TAMSD analysis of simulated
trajectories of a two state system with D+ = 10, D− = 0 and exponentially distributed waiting times.
From the linear plots of the TAMSD versus the lag time estimates of D were extracted. We show two
cases, the first for a system with the same mean waiting times 〈τ〉+ = 〈τ〉− = 〈τ〉 = 1 (red boxes). In
addition, the PDF of D for a system with different mean waiting times with 〈τ〉+ = 1 and 〈τ〉− = 5
is also shown (blue boxes). For the system with the same mean waiting times, the average diffusivity
found in the simulations is 〈D〉 = 4.98, and, for the case of different mean waiting times, we have
〈D〉 = 1.69. In both cases, we used t = 1000 and 1000 trajectories.

As we can see in Figure 8, when the difference between the diffusion coefficients is
large, as in our case D+ = 10 > D− = 0, P(D) is relatively broad. Nonetheless, for the
case with 〈τ〉+ = 1 and 〈τ〉− = 5, the peak of P(D) is closer to the origin compared to the
case with 〈τ〉 = 1.

This difference between mean waiting times in each state is the second factor that
determines the shape of P(D). For instance, when this difference is such that 〈τ〉+ < 〈τ〉−,
it is straightforward that the more the process spends in the state “−”, the more the
observed values of D will be closer to D−. In this latter case, the distribution of D is peaked
close to the origin since D− < D+. Thus, we can say that, when the differences between
the diffusivities (and the mean waiting times) in the different states are pronounced, i.e.,
D− << D+ and 〈τ〉+ << 〈τ〉−, P(D) in the two sate model resembles the distributions
found in single molecule experiments [2,5,6].

4. Conclusions

From symmetry of the density of spreading particles P(x, t) = P(−x, t), we expect an
analytical expansion of the propagator as P(x, t) ∼ K1 − K2x2 + . . ., with K1, K2 constants.
Instead, in the two state model handled throughout this work, we get an expansion that is
linear in |x|, see Equation (27). This is a non-analytical expansion graphically represented
by a tent like structure, see Figures 3, 5 and 7. As mentioned above, Laplace in 1774
considered a similar non-analytical PDF, P(x) = exp(−|x|)/2 for −∞ < x < ∞ [55,56].
However, the expression we find is clearly non-exponential, see Equation (26). Furthermore,
for large x, we get a Gaussian behavior for P(x, t). It should be noted that a non-analytical
behavior is found only if D− = 0, see Appendix A for further details. In practice, we may
approach the non-analytical features of P(x, t), as D− is getting small.

Recently, a very general theory was developed for the non-Gaussian spreading of
packets of particles. Using a CTRW framework, it was shown that, for any analytical PDF
of waiting times, for large x limit P(x, t) ∼ exp(−C|x| ln |x|), with C a constant [22]. In the
former model, we thus find exponential tails for large x, while, here, the anomaly, i.e., the
cusp or tent like feature of P(x, t), comes from the small x limit.

Recently, Postnikov et al. [37] investigated a model of diffusion in a quenched disor-
dered setting, where the diffusive field is spatially varying. They showed that equilibrium
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initial conditions play a major role stating: “within the class of models with quenched
disorder, the Itô model under equilibrium conditions is the only promising candidate for
the description of Brownian Non Gaussian diffusion (BnG).” Note that here the definition
of BnG means a model or system where the MSD is increasing linearly for all times and
the propagator is non-Gaussian. Our model uses a time dependent diffusivity, and we
showed that equilibrium initial conditions are indeed a key requirement. Here, we note
that BnG does not imply a cusp, and vice versa. Namely, we may find a system where the
MSD is increasing linearly in time, for the entire span of time, with or without a cusp for
P(x, t) at x = 0. The main focus of our work is the presence of a cusp for P(x, t). Regard-
ing the behavior of the MSD, it can be shown that, when equilibrium initial conditions
are applied, 〈T+〉 = (〈τ〉+t)/[〈τ〉+ + 〈τ〉−], for all times t (see Appendix G). Then, by
Equations (A62) and (A68), the MSD is provided by

〈x2(t)〉 =
(

D+〈τ〉+ + D−〈τ〉−
〈τ〉+ + 〈τ〉−

)
t, (49)

for any time t. Thus, if the process starts from equilibrium, the MSD grows linearly for
all times and we have BnG. Nevertheless, we would like to emphasize that our model is
exhibiting BnG, but specifically P(x, t) has a cusp only if D− = 0, and practically when
D− << D+.

To summarize, we emphasize that we have shown, by means of the statistics of the
temporal occupation, that there is a universality for the PDF of the temporal occupation
fraction in a two state model. For PDFs of waiting times with finite first moments, gt(p+)
can be approximated by a uniform distribution following Equation (25). This leads to tent
like decaying propagators (Equation (26)) similar to those found in many experimental
systems. We corroborate our results by solving analytically a two state system with
exponentially distributed waiting times. We have shown that, either for short or long times,
the distribution of displacements P(x, t) has a general form, either a “tent” or a Gaussian
bell curve. These two endpoints of the positional PDF are independent of the actual form of
the distribution of waiting times. The crucial point within our framework is the generality
of the behavior of the PDF of the occupation fraction p+, being a uniform distribution
for short times and a delta peak for long times. The former was found for a system with
equilibrium initial conditions. We note that, for certain types of non-equilibrium initial
conditions, we can still get a uniform PDF for the fraction occupation time; however, this is
not generic (see details in Appendix B). Therefore, the non-Gaussian features are readily
present in our model within the short time regime, and regardless of the specifics of the
waiting times.

Mathematically, we presented an expansion in terms of the number of transitions from
state + to − and backwards. Naturally, for very short times, the leading contribution to
the packet comes from the paths with zero transitions, and then the packet is simply a sum
of two Gaussian curves with diffusion coefficients D+ and D−. However, we showed that,
by going to next order terms in the expansion, namely considering the paths with a single
jump, we get the cusp like shape, found in the limit D− → 0. Thus, the whole effect is
achieved by using a perturbation approach obtaining the leading order correction to the
trivial behavior. Put differently, a widely popular super statistical approach is found
to miss one of the main issues of the field, namely the cusp in P(x, t). A super-statistical
approach [14,54] uses a distribution of diffusivities, which in our model is a sum of two
delta functions, at D− = 0 and D+. This does not give the cusp, as it is merely the zeroth
order of the perturbation theory developed here.
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Appendix A. A Two State Model with D+ > D− > 0

When D+ > D− > 0, the process for the displacements becomes

x(t) =
√

2D+T+ξ1 +
√

2D−(t− T+)ξ2, (A1)

with ξ1 and ξ2 each i.i.d. Gaussian variables. In this case, the form of the conditioned PDF
is given by

P(x, t|T+) =
e
− x2

4[D+T++D−(t−T+)]√
4π[D+T+ + D−(t− T+)]

. (A2)

Then, the marginal distribution for the displacements follows

P(x, t) =
1∫

0

e
− x2

4t[D+ p++D−(1−p+)]√
4πt[D+p+ + D−(1− p+)]

gt(p+)dp+. (A3)

Appendix A.1. P(x, t) for Arbitrary Waiting Times

As we did in Section 2.2.1.1, using the general forms obtained above, i.e., Equations (9),
(17), (18), (23), and (28), we can analyze P(x, t) in the short and long time limits.

Figure A1. Distribution of displacements P(x, t) obtained by simulations of a two state system with
D+ > D− > 0 and gamma distributed waiting times τ ∼ Gamma(3, 1) at D+ and τ ∼ Gamma(6, 1)
at D− following Equation (30). We compare with Equation (A4) (solid lines) with t = 0.5, 〈τ〉+ = 3,
〈τ〉− = 6, D+ = 10. For D− = 0.1 (red triangles), D− = 5 (cyan squares) and D− = 9 (magenta
circles). Exponential like decaying is present at small values for x, when D+ = 10 >> D− = 0.1
(red solid line). In the cases when D− −→ D− (cyan and magenta solid lines), P(x, t) follows a full
Gaussian distribution.
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Appendix A.1.1. Short Time Regime

Substituting Equation (25) in Equation (A3), we get

P(x, t) = 〈τ〉+
〈τ〉++〈τ〉−

(
1− t

〈τ〉+

)
e
− x2

4D+ t√
4πD+t +

〈τ〉−
〈τ〉++〈τ〉−

(
1− t

〈τ〉−

)
e
− x2

4D− t√
4πD−t

+ 2√
π(〈τ〉++〈τ〉−)[D−−D+]

{
√

D−te−
x2

4D− t −√D+te−
x2

4D+ t

−
√

π|x|
2

[
Er f

(
|x|√
4D+t

)
− Er f

(
|x|√
4D−t

)]}
.

(A4)

In Figure A1, we compare Equation (A4) (in solid lines) and P(x, t) obtained by simulations
of a two state model for a fixed value of D+ and different values of D−, such that D+ > D−.
In all cases, we used gamma distributed waiting times τ ∼ Gamma(3, 1) for the state with
D+ and τ ∼ Gamma(6, 1) for the state with D− (the gamma distribution is defined by
Equation (30)). As we can see when D+ >> D−, e.g., D+ = 10 and D−0.1 (red triangles),
the PDF of the displacements at small values of x has a non-Gaussian peak; thereafter, for
large values of x, it follows a Gaussian distribution. When the values of D− approach D+

(cyan squares and magenta circles), P(x, t) is fully described by Gaussian statistics even in
the short time limit.

Appendix A.1.2. Long Time Regime

In the long time limit, the PDF of temporal occupation fraction is provided by Equa-
tion (28), then, according to Equation (A3), the PDF of the displacements is determined by

P(x, t) ∼
√

〈τ〉+ + 〈τ〉−
4πt[D+〈τ〉+ + D−〈τ〉−] e

− x2(〈τ〉++〈τ〉−)
4t[D+〈τ〉++D−〈τ〉− ] . (A5)

Thus, the Gaussian limit is also restored.

Appendix A.2. P(x, t) for Exponentially Distributed Waiting Times with 〈τ〉+ �= 〈τ〉−
In the short time regime, we can use the uniform approximation Equation (46) in

Equation (A3), and the distribution for the displacements yields

P(x, t) ∼ 〈τ〉+
〈τ〉++〈τ〉−

e
− t
〈τ〉+ − x2

4D+ t√
4πD+t + 〈τ〉−

〈τ〉++〈τ〉−
e
− t
〈τ〉− − x2

4D− t√
4πD−t

+ 1
(〈τ〉++〈τ〉−)(D−−D+)

√
π

{
√

4D−te−
x2

4D− t −√4D+te−
x2

4D+ t

+ π

[
Er f

( |x|√
4D−t

)
− Er f

( |x|√
4D+t

)]}
.

(A6)

For the long time regime, we use gt(p+) provided by Equation (28); then, according to
Equation (A3), the PDF of the displacements follows Gaussian statistics described by
Equation (A5).

Appendix B. A Complementary Deduction of f±t (T+|1)
In this section, we obtain Equation (23) from the definition of conditional probability.

The conditional probability of T+, given that N jumps have been made, follows

f±t (T+|N) =
f±t (T+, N)

Q±
t (N)

, (A7)
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with the distribution of jumps defined by [46]

Q±
t (N) = 〈�(tN ,tN+1)

(t)〉, (A8)

with �(a,b)(t) the indicator function, such that it is equal to one if t ∈ (a, b) and zero if
t /∈ (a, b). The average 〈·〉 is over all the the values of τi’s, with i ∈ {1, 2, . . . , N + 1}.In
addition, f±t (T+, N) is the joint probability of T+ and N, which satisfies [46]

f±t (T+, N) = 〈δ(y− T+)�(tN ,tN+1)
(t)〉, (A9)

with tN = τ1 + . . . + τN and the average 〈·〉 defined as above.
Let us find Equations (A8) and (A9) and therefore Equation (A7) for the case N = 1.

It is important to notice that, for the case of equilibrium initial conditions such as the
one handled in Section 2.2, when N = 1, the corresponding average on τ1 is given by
the forward recurrence distribution Equation (10). Following Equation (A8), and taking
the Laplace transform defined as Q̂±

s (N) =
∫ ∞

0 e−stQ±
t (N)dt, after simple manipulations,

we obtain

Q̂±
s (1) =

∞∫
0

e−sτ1 f±eq (τ1)dτ1

∞∫
0

(1− e−sτ2

s

)
ψ∓(τ2)dτ2,

=

(
1− ψ̂±(s)
〈τ〉±s

)(
1− ψ̂∓(s)

s

)
, (A10)

which is already the result shown in Equation (11).
For the joint distribution f±t (T+, 1), following Equation (A9) and taking the double

Laplace transform defined as f̂±s (u, N) =
∫ ∞

0 e−uT+
∫ ∞

0 e−st f±t (T+, N)dtdT+, after perform-
ing the corresponding integrals in the case we started from “+”, we get

f̂+s (u, 1) =

∞∫
0

e−(s+u)τ1 f+eq (τ1)dτ1

∞∫
0

(1− e−sτ2

s

)
ψ−(τ2)dτ2,

=

(
1− ψ̂+(s + u)
〈τ〉+(s + u)

)(
1− ψ̂−(s)

s

)
. (A11)

Following the same procedure for the case when the process started from “−”, we obtain

f̂−s (u, 1) =

(
1− ψ̂−(s)
〈τ〉−(s)

)(
1− ψ̂+(s + u)

s + u

)
. (A12)

Next, we show the connection of the joint PDf Equation (A9) with the uniform distribu-
tion of the occupation times Equation (24). Let f̂ eq

s (u, 1) be the double Laplace transform of
f eq
t (T+, 1), i.e., the joint PDF of T+ and one single jump, starting from equilibrium. Clearly,

the former follows

f̂ eq
s (u, 1) =

〈τ〉+
〈τ〉+ + 〈τ〉− f̂+s (u, 1) +

〈τ〉−
〈τ〉+ + 〈τ〉− f̂−s (u, 1). (A13)

Using Equations (A11) and (A12) in Equation (A13), we get

f̂ eq
s (u, 1) =

2
〈τ〉+ + 〈τ〉−

(1− ψ̂+(s + u)
s + u

)(1− ψ̂(s)
s

)
. (A14)
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One of the key features of our paper is found when we consider both u and s to be large.
This corresponds to the short time limit, when T+ and t are of the same order. Then, we
may use ψ̂+(s + u), ψ̂−(s) −→ 0 in Equation (A14), yielding to

f̂ eq
s (u, 1) ∼ 2

[〈τ〉+ + 〈τ〉−](s + u)s
. (A15)

Equation (A15) is easy to invert, and we find in the short time limit

f eq
t (T+, 1) ∼ 2

〈τ〉+ + 〈τ〉− ; f or T+ < t. (A16)

This is the short time uniformity we have found that, in turn, as explained in Section 2.2,
gives the cusp like shape in P(x, t). Equation (A16) is the last term in Equation (24),
corresponding to N = 1 (the first two terms in Equation (24) are contributions from
N = 0).

Now, we are interested in inverting Equations (A10)–(A12) and then applying the
definition of conditional probability Equation (A7). However, first, since we are dealing
with the short time limit t −→ 0, in the Laplace space, this corresponds to the limit of
s −→ ∞ and u −→ ∞. Thus, for this particular approximation, due to the definition of
the Laplace transform ψ̂±(s) =

∫ ∞
0 e−stψ±(t)dt, we have that lims→∞ ψ̂±(s) −→ 0 for a

general ψ±(τ). In this case, Equations (A10)–(A12) are approximated by

Q̂±
s (1) ∼ 1

〈τ〉±s2 , (A17)

f̂±s (u, 1) ∼ 1
〈τ〉±(s + u)s

. (A18)

Inverting Equation (A17) with respect to s and Equation (A18) with respect to u and s with
0 < T+ < t, we obtain

Q±
t (1) ∼ t

〈τ〉± , (A19)

f±t (T+, 1) ∼ 1
〈τ〉± . (A20)

Now, substituting Equations (A19) and (A20) in the conditional probability Equation (A7)
for N = 1, we obtain

f±t (T+|1) ∼ 1
t

, (A21)

which is the same result shown in Equation (23) of Section 2.2. As expected, since the
joint distribution f±t (T+, N) Equation (A20) does not depend on the time or any other
variable, when it is used for computing the PDF of the occupation time, it gives the
uniform distribution Equation (24). The same procedure for values of N ≥ 2 gives a joint
distribution f±t (T+, N) such that, in the double Laplace space, it is defined as
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f̂+s (u, N) =

(
1− ψ̂+(s + u)
〈τ〉+(s + u)

)
ψ̂k−(s)ψ̂k

+(s + u)

(
1− ψ̂−(s)

s

)
;

i f N = 2k + 1. (A22)

f̂+s (u, N) =

(
1− ψ̂+(s + u)
〈τ〉+(s + u)

)
ψ̂k−1
+ (s + u)ψ̂k−(s)

(
1− ψ̂+(s + u)

s + u

)
;

i f N = 2k. (A23)

f̂−s (u, N) =

(
1− ψ̂−(s)
〈τ〉−(s)

)
ψ̂k−(s)ψ̂k

+(s + u)

(
1− ψ̂+(s + u)

s + u

)
;

i f N = 2k + 1. (A24)

f̂−s (u, N) =

(
1− ψ̂−(s)
〈τ〉−(s)

)
ψ̂k−1− (s)ψ̂k

+(s + u)

(
1− ψ̂−(s)

s

)
;

i f N = 2k. (A25)

In order to analyze the joint, we have to deal with the analytical expression of ψ±(τ)
defined by Equation (12). For instance for N = 2, after substituting Equation (13) in
Equations (A23) and (A25), we have that the dominant term is f̂+s (u, 2) ∼ [Γ(A− +
1)C−A− ]/[〈τ〉+(s + u)2sA−+1], and f̂−s (u, 2) ∼ [Γ(A+ + 1)C+

A+
]/[〈τ〉−s2(s + u)A++1], re-

spectively. Inverting the double Laplace transform, in each case, it gives a positive power
of T+ and therefore, with respect to t, e.g., f±t (T+, 2) ∼ TA∓+1

+ . A∓ ≥ 0 is a positive integer
number, this correction term for t −→ 0 (T+ −→ 0) is negligible, and also the remaining
terms in f±t (T+, N) with N > 2. We conclude that, for the case of equilibrium initial
conditions, the uniformity in the short time limit, for the PDF of the occupation/fraction
time, is always preserved, as long ψ±(τ) is analytical.

Appendix B.1. Non-Equilibrium Initial Conditions

Still, by employing the joint distribution f±t (T+, N), it can be shown, as follows that,
for non-equilibrium initial conditions, when ψ±(τ) in the Laplace space is approximated
by ψ̂±(s) ∼ 1/s for short times, it can lead to a uniform distribution in the occupation time
and therefore to a tent shape in P(x, t).

In the case of non-equilibrium initial conditions, either starting just from D+ or from
D−, the averages over τ1, within Q±

t (N) Equation (A8) and the joint distribution f±t (T+, N)
Equation (A9), are no longer given by f±eq (τ1) Equation (10). Now, in the non-equilibrium
case, these corresponding averages are performed using the waiting time PDF ψ±(τ1).
Following the same procedure as above, for the case N = 1, the double Laplace transform
of the joint distribution f±t (T+, 1) yields to

f̂±s (u, 1) = ψ̂±(s + u)

(
1− ψ̂∓(s)

s

)
. (A26)

For a system with non-equilibrium initial conditions, in order to recover the uniform
distribution in the PDF of T+, it is enough to ask that, for large s (short times), the PDF of
the waiting times in the Laplace space follows

ψ̂±(s) ∼ 1
s

. (A27)

Substituting Equation (A27) in Equation (A26), we have that f̂±s (u, 1) ∼ 1/[(s + u)s]. This
implies in the real space, for 0 < T+ < t, that the joint distribution follows f±t (T+, 1) ∼ 1,
and therefore, because of Equation (3), we also have a uniform distribution for T+. As an
example of a model in which ψ̂±(s) goes as Equation (A27) and for non-equilibrium initial
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conditions ψ±(τ) �= f±eq (τ1) as expected, we have the case in which the PDF of waiting
times is the sum of two exponential functions, e.g., ψ±(τ) = (1/2){[exp(−τ/C1±)/C1±] +
[exp(−τ/C2±)/C2±]}, with C1±, C2± > 0. In this case for s −→ ∞, ψ̂±(s) ∼ [C1± +
C2±]/[2C1±C2±s] and f±eq (τ1) = [exp(−τ1/C1±) + exp(−τ1/C2±)]/[C1± + C2±]. For this
latter case, since ψ̂±(s) satisfies Equation (A27), following the same analysis as above, we
find that the joint distribution f±t (T+, 1) is uniform.

In Appendix D, we show that, for a system with non-equilibrium conditions and expo-
nentially distributed waiting times with equal and different mean values, the distribution
of the occupation/fraction time is also uniform. This is mainly because, for exponentially
distributed waiting times, the forward recurrence time distribution in equilibrium f±eq (τ1)
Equation (10) is equal to ψ±(τ1), as in the non-equilibrium case. Furthermore, for expo-
nentially distributed sojourn times, Equation (A27) is also satisfied, and its PDF in the
Laplace space for s −→ ∞ follows ψ̂±(s) ∼ 1/[〈τ〉±s]. By using Equation (3), this gives the
uniform distribution shown in Equations (A35) and (A40).

For ψ̂±(s) given in Equation (A27), the correction terms when N ≥ 2, following the
same analysis as in the case of equilibrium initial conditions, yield to elements of the form
f±t (T+, N) ∼ TN−1

+ , which are negligible for t −→ 0 ⇐⇒ T+ −→ 0. Thus, they do not
contribute in the PDF of the fraction occupation time.

Appendix C. P(x, t) from Simulations with Uniform and Gamma Distributed Waiting

Times within the Complete Range of x

Following Figure 3 in the left panel in which, for short time and displacements, the
cusp of P(x, t) is displayed. Now, from simulations (with the same parameters as above)
of a two state model, with uniform (red triangles) and gamma (blue squares) distributed
waiting times. In Figure A2, we show P(x, t) in semi-log scale but for the whole span of x.
In each case, we compare the normalized histogram of the simulation data with the short
time analytical formula Equation (26), finding a perfect agreement. As we can see, the cusp
is located at the origin, and, for large displacements, Gaussianity is recovered.

Figure A2. Distribution of displacements P(x, t) in semi-log scale, obtained from simulations, of a
two state system with uniform and gamma distributed waiting times within the short time limit
and displaying the whole span of x. P(x, t) for uniformly distributed waiting times is shown in red
triangles. In addition, the case of gamma distributed waiting times is shown in blue squares. We
employed the same set of parameters as those used in Figure 3 in the left panel. Both cases fit with
Equation (26) (red and blue solid lines).

Appendix D. PDF of Occupation Times for Exponentially Distributed Waiting Times

and Non-Equilibrium Initial Conditions

We consider the case of a system with exponentially distributed waiting times, with
〈τ〉+ = 〈τ〉− in Equation (31). Here, we address the situation with non-equilibrium initial
conditions. Particularly, the initial conditions are such that the probability of starting at the
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state with D+ is 1 and the probability of starting from the state with D− is 0. The PDF of
T+ then satisfies

ft(T+) = f+t (T+) =
∞

∑
N=0

f+t (T+, N). (A28)

With f+t (T+, N) given by Equation (A9) explicitly for this case, we have [46]

f+t (T+, 2k + 1) =
∫

. . .
∫

δ
(

T+ −
2k+1

∑
i=1(odd)

τi

)
�(t2k+1,t2k+2)

(t)ψ(τ1)ψ(τ2)

. . . ψ(τ2k+2)dτ1dτ2 . . . dτ2k+2 i f N = 2k + 1,

f+t (T+, 2k) =
∫

. . .
∫

δ
(

T+ −
2k−1

∑
i=1(odd)

τi − τ∗
)
�(t2k ,t2k+1)

(t)ψ(τ1)ψ(τ2)

. . . ψ(τ2k+1)dτ1dτ2 . . . dτ2k+1 i f N = 2k, (A29)

with �(a,b)(t) the indicator function equal to 1 if t ∈ (a, b) and 0 if t /∈ (a, b). We work with

the double Laplace transform L
{

f+t (T+, N)
}

= f+s (u, N) with t ⇐⇒ s and u ⇐⇒ T+,

which is given by f̂+s (u, N) =
∫ ∞

0 e−uT+
∫ ∞

0 e−st f+t (T+, N)dtdT+. Thus, taking the double
Laplace transform of Equation (A29), after substitution of ψ(τ), we have

f̂+s (u, 2k + 1) = ψ̂k+1(s + u)ψ̂k(s)
(1− ψ̂(s)

s

)
i f N = 2k + 1

f̂+s (u, 2k) = ψ̂k(s + u)ψ̂k(s)
(1− ψ̂(s + u)

s + u

)
i f N = 2k. (A30)

Thus, using Equation (A30) for summing over all the values of N in Equation (A28), we get

f̂s(u) =

(
ψ̂(s + u)

1− ψ̂(s)
s

+
1− ψ̂(s + u)

s + u

)
1

1− ψ̂(s + u)ψ̂(s)
. (A31)

For exponentially distributed waiting times ψ̂(s) = 1/(1 + 〈τ〉s), by substituting ψ̂(s) in
Equation (A31), we get that the double Laplace transform of Equation (A28) is given by

f̂s(u) =
2 + 〈τ〉s

2s + 〈τ〉s2 + (1 + 〈τ〉s)u . (A32)

By the same procedures used in Appendix F, the inversion of the double Laplace transform
of Equation (A32) yields

ft(T+) = δ(t− T+)e
− t
〈τ〉 +

e−
t
〈τ〉

〈τ〉 0 F̃1

(
; 1;

T+(t− T+)

〈τ〉2

)

+
e−

t
〈τ〉

〈τ〉2 T+0 F̃1

(
; 2;

T+(t− T+)

〈τ〉2

)
. (A33)

Employing the identity Iν(y) = (y/2)ν
0 F̃1(; ν + 1; y2/4) [61] and changing variables, we

obtain the PDF of the occupation fraction, which follows
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gt(p+) = δ(1− p+)e
− t
〈τ〉 +

t
〈τ〉

{
I0

(
2t
〈τ〉

√
p+(1− p+)

)

+ p+
I1

(
2t
〈τ〉

√
p+(1− p+)

)
√

p+(1− p+)

}
e−

t
〈τ〉 . (A34)

By taking the series expansion of Equation (A34) in the limit t −→ 0, the PDF of p+ can be
approximated by

gt(p+) ∼ δ(1− p+)e
− t
〈τ〉 +

t
〈τ〉 . (A35)

Therefore, for 1 > p+ > 0, the PDF of p+ follows a uniform distribution (see the left panel
of Figure A3), as in the case of equilibrium initial conditions (Equation (35)).

Figure A3. Left: gt(p+) Equation (A34) for 〈τ〉 = 1 and t ∈ {0.1, 0.5, 1, 2, 5, 10} and non-equilibrium
initial conditions (starting from state “+”). The uniform approximation of gt(p+) Equation (A35)
for t = 0.1 is shown in black circles. Right: gt(p+) Equation (A39) for 〈τ〉+ = 1, 〈τ〉− = 5 and
t ∈ {0.1, 0.5, 2, 5, 10, 20} and non-equilibrium initial conditions (starting from state “+”). The uniform
approximation of gt(p+) Equation (A40) for t = 0.1 is shown in black circles.

P(x, t) is obtained by exploiting the uniform approximation of gt(p+) in Equation (A35),
i.e.,

P(x, t) ∼ e−
t
〈τ〉 − x2

4D+ t

√
4πD+t

+
t
〈τ〉

{
2e−

x2
4D+ t

√
4πD+t

− |x|
2D+t

[
1− Er f

(
|x|√
4D+t

)]}
. (A36)

Equation (A36) follows the same structure as Equation (37), i.e., the case with equilibrium
initial conditions.

When 〈τ〉+ �= 〈τ〉−, we have to include ψ±(τ) and ψ̂±(s) in Equations (A29) and (A30).
Summing the resulting expressions in Equation (A28), we obtain

f̂s(u) =

(
ψ̂+(s + u)

1− ψ̂−(s)
s

+
1− ψ̂+(s + u)

s + u

)
1

1− ψ̂+(s + u)ψ̂−(s)
. (A37)

By employing ψ̂(s) = 1/(1 + 〈τ〉±s) in Equation (A37), we obtain that the double Laplace
transform of the PDF of T+ is provided by [49]

f̂s(u) =
〈τ〉+ + 〈τ〉− + 〈τ〉+〈τ〉−s

〈τ〉−s + 〈τ〉+(1 + 〈τ〉−s)(s + u)
. (A38)

The inverse Laplace transform of Equation (A38) is obtained by the same procedures
explained above and, in Appendix F, eventually
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gt(p+) = δ(1− p+)e
− t
〈τ〉+ +

t
〈τ〉+

{
I0

(
2t

√
p+(1− p+)
〈τ〉+〈τ〉−

)

+

√
〈τ〉+
〈τ〉− p+

I1

(
2t
√

p+(1−p+)
〈τ〉+〈τ〉−

)
√

p+(1− p+)

}
e
− tp+
〈τ〉+ −

t(1−p+)
〈τ〉− . (A39)

We recover Equation (A34) when 〈τ〉+ = 〈τ〉− = 〈τ〉. In the short time limit, Equation (A39)
follows as well a uniform distribution for 1 > p+ > 0, see the right panel of Figure A3. In
this case, the PDF of p+ is given by

gt(p+) ∼ δ(1− p+)e
− t
〈τ〉+ +

t
〈τ〉+ . (A40)

Thus, for exponentially distributed waiting times, for equilibrium and non-equilibrium
conditions, in the short time regime, the PDF of the occupation fraction is always uni-
form. This feature is only valid for exponentially distributed waiting times, and it is not
necessarily fulfilled for other distributions of waiting times.

P(x, t) for the specific case of non-equilibrium initial conditions and exponentially
distributed waiting times is

P(x, t) ∼ e
− t
〈τ〉+ −

x2
4D+ t

√
4πD+t

+
t

〈τ〉+

{
e−

x2
4D+ t

√
πD+t

+
|x|

2D+t

[
1− Er f

(
|x|√
4D+t

)]}
. (A41)

Appendix E. Deduction of gt(p+) for Waiting Times with Similar Mean

Waiting Times

We can use the results found in [52,53] for inverting the double Laplace transform of St
as provided by Equation (33). For a Fourier–Laplace transform, κ̂(ω, s) =

∫ ∞
−∞

∫ ∞
0 eiωx̃e−st

κ(x̃, t)dsdx of the form

κ̂(ω, s) =
2λ̃ + s

s2 + 2λ̃s + c2ω2
, (A42)

the inversion yields the result [52,53]

κ(x̃, t) =
1
2

e−
t
λ̃

{
δ(x̃− ct) + δ(x̃ + ct)

}
+

1
2λ̃c

Θ(ct− |x̃|)[I0(z(t)) +
t

λ̃z(t)
I1(z(t))

]
, (A43)

with z(t) = 1
λ̃c

√
c2t2 − x̃2.

Now, we can compare the double Laplace transform of St given in Equation (33) with
the results shown in Equation (A42). Concretely, we can relate the Laplace variable v with
the Fourier variable ω in κ̂(ω, s). Since the Laplace transform and the Fourier transform are
exponential operators, by setting v = icω, we can make the former equivalent to a Fourier
transform, and we use the expression given by Equation (A43) for inverting φs(v). In our
case, c = 1, so St ⇔ ω are Fourier conjugates and therefore the inversion of φs(v) results in

φt(St) =
1
2

e−
t
〈τ〉

{
δ(St − t) + δ(St + t)

}

+
Θ(t− |St|)

2〈τ〉

[
I0

(√
t2 − S2

t

〈τ〉
)
+

tI1

(√
t2−S2

t
〈τ〉

)
√

t2 − S2
t

]
. (A44)

By changing variables, St = 2T+ − t = 2p+t− t, we obtain Equation (34) in a straight-
forward manner. The results in Equation (34) can also be obtained by the inversion of

83



Entropy 2021, 23, 231

the double Laplace transform (t ⇔ s and T+ ⇔ u) of the PDF of T+ Equation (3) (see
Appendix F). In this case, the double Laplace transform of the PDF of T+ is given by

f̂s(u) =
4 + 2〈τ〉s + 〈τ〉u

2〈τ〉s2 + 4s + (2 + 2〈τ〉s)u . (A45)

Finally, we mention that the moments of T+ and therefore p+ can be obtained by
expanding Equation (A45) in powers of u as

f̂s(u) =
1
s
− 1

2s2 u +
1 + 〈τ〉s

2s3(2 + 〈τ〉s)u2 + O(u3). (A46)

The first two moments of T+ are then

〈T+〉 ∼ t
2

, (A47)

〈T2
+〉 ∼

( 〈τ〉
4

+
t
4

)
t +

〈τ〉2

8

(
e−

2t
〈τ〉 − 1

)
. (A48)

For 〈p+〉 = 〈T+〉/t, we obtain

〈p+〉 ∼ 1
2

, (A49)

〈p2
+〉 ∼ 1

4
+
〈τ〉
4t

+
〈τ〉2

8t2

(
e−

2t
〈τ〉 − 1

)
, (A50)

Var(p+) ∼ 〈τ〉
4t

+
〈τ〉2

8t2

(
e−

2t
〈τ〉 − 1

)
. (A51)

Appendix F. Deduction of gt(p+) for Waiting Times with 〈τ〉+ �= 〈τ〉−
Here, we show the procedure for obtaining Equation (45) in Section 2.3.2. Starting from

the double Laplace transform of the PDF of T+ given by Equation (44), first by inverting
with respect to u ⇐⇒ T+, we get

f̂s(T+) =
〈τ〉2−δ(T+)

(〈τ〉+ + 〈τ〉−)(1 + 〈τ〉−s)

+
(〈τ〉+ + 〈τ〉− + 〈τ〉+〈τ〉−s)2

〈τ〉+(〈τ〉+ + 〈τ〉−)(1 + 〈τ〉−s)2 e
−T+s

(
〈τ〉++〈τ〉−+〈τ〉+〈τ〉−s

〈τ〉++〈τ〉+〈τ〉−s

)
, (A52)

the exponent in Equation (A52) can be written as −T+s
(

1 + 〈τ〉−
〈τ〉++〈τ〉+〈τ〉−s

)
. The inversion

of Equation (A52) with respect to s ⇔ t can be expressed as

f̂s(T+) =
〈τ〉−e

− t
〈τ〉−

〈τ〉+ + 〈τ〉− δ(T+) + L−1{q̂(s)ĥ(s)}. (A53)

Thus, the inversion of the second term in Equation (A53) is given by the convolu-
tion theorem, following L−1{q̂(s)ĥ(s)} =

∫ t
0 L−1{q̂(s)}|t−t′L−1{ĥ(s)}|t′dt′, with q̂(s) =

(〈τ〉++〈τ〉−+〈τ〉+〈τ〉−s)2

〈τ〉+(〈τ〉++〈τ〉−)(1+〈τ〉−s)2 and ĥ(s) = e−T+se
− T+〈τ〉−s
〈τ〉++〈τ〉+〈τ〉−s . The inverse Laplace transform of

q̂(s) is given by

L−1{q̂(s)} = 2e
− t
〈τ〉−

〈τ〉+ + 〈τ〉− +
te
− t
〈τ〉−

〈τ〉+(〈τ〉+ + 〈τ〉−) +
〈τ〉+δ(t)

〈τ〉+ + 〈τ〉− . (A54)
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The inverse Laplace transform of ĥ(s) can be obtained by rewriting the exponent in the
second term of ĥ(s) as − T+〈τ〉−s

〈τ〉++〈τ〉+〈τ〉−s = − T+
〈τ〉+ + T+〈τ〉−

〈τ〉+〈τ〉−+〈τ〉2−〈τ〉+s
, then we obtain

L−1{ĥ(s)} = L−1
{

e
− T+〈τ〉−s
〈τ〉++〈τ〉+〈τ〉−s

}∣∣∣
t−T+

Θ(t− T+)

= e
− T+
〈τ〉+ L−1

{
e

T+〈τ〉−
〈τ〉+〈τ〉−+〈τ〉2−〈τ〉+s

}∣∣∣
t−T+

Θ(t− T+)

= e
− T+
〈τ〉+

[
e
− (t−T+)

〈τ〉−

√
T+

〈τ〉+〈τ〉−(t− T+)
I1

(
2

√
T+(t− T+)

〈τ〉+〈τ〉−

)

+
e
− (t−T+)

〈τ〉−

〈τ〉+〈τ〉2−
δ

(
t− T+

〈τ〉+〈τ〉2−

)]
Θ(t− T+). (A55)

Substituting Equations (A54) and (A55) in Equation (A53), and, after integration, we obtain

ft(T+) =
〈τ〉−e

− t
〈τ〉−

〈τ〉+ + 〈τ〉− δ(T+)

+
〈τ〉+e

− t
〈τ〉+

〈τ〉+ + 〈τ〉− δ(t− T+) +

{
2

〈τ〉+ + 〈τ〉− 0 F̃1

(
; 1;

T+(t− T+)

〈τ〉+〈τ〉−

)

+

[
t− T+

〈τ〉+(〈τ〉+ + 〈τ〉−) +
T+

〈τ〉−(〈τ〉+ + 〈τ〉−)

]
0 F̃1

(
; 2;

T+(t− T+)

〈τ〉+〈τ〉−

)}
e
− T+
〈τ〉+ −

(t−T+)
〈τ〉− . (A56)

Employing the identity Iν(y) = (y/2)ν
0 F̃1(; ν + 1; y2/4) [61] and changing variables, we

obtain the form of gt(p+) as provided by Equation (45). This procedure can be employed
for a system with the same mean waiting times, inverting the double Laplace transform
Equation (A45) and obtaining gt(p+) shown in Equation (34). In addition, also for the
non-equilibrium cases treated in Appendix D, see Equations (A34) and (A39).

Finally, we show the corresponding first two moments of T+ and p+. As we proceeded
in Appendix E, we obtain the moments of T+ by expanding in powers of u Equation (A37),
which yields

〈T+〉 ∼ 〈τ〉+t
〈τ〉++〈τ〉− , (A57)

〈T2
+〉 ∼ 〈τ〉2+t2

(〈τ〉++〈τ〉−)2 +
2〈τ〉2+〈τ〉2−t

(〈τ〉++〈τ〉−)3 +
2〈τ〉3+〈τ〉3−

(〈τ〉++〈τ〉−)3

(
e
− (〈τ〉++〈τ〉−)t

〈τ〉+〈τ〉− − 1
)

. (A58)

Therefore, the moments of p+ are

〈p+〉 ∼ 〈τ〉+
〈τ〉++〈τ〉− , (A59)

〈p2
+〉 ∼ 〈τ〉2+

(〈τ〉++〈τ〉−)2 +
2〈τ〉2+〈τ〉2−

t(〈τ〉++〈τ〉−)3 +
2〈τ〉3+〈τ〉3−

t2(〈τ〉++〈τ〉−)3

(
e
− (〈τ〉++〈τ〉−)t

〈τ〉+〈τ〉− − 1
)

, (A60)

Var(p+) ∼ 2〈τ〉2+〈τ〉2−
t(〈τ〉++〈τ〉−)3 +

2〈τ〉3+〈τ〉3−
t2(〈τ〉++〈τ〉−)3

(
e
− (〈τ〉++〈τ〉−)t

〈τ〉+〈τ〉− − 1
)

. (A61)

Appendix G. Deduction of the MSD in a Two State Model with 〈τ〉+ �= 〈τ〉−
From Equation (A1), we can compute the second moment of x(t) as

〈x2(t)〉 =
〈(√

2D+T+ξ1 +
√

2D−(t− T+)ξ2

)2〉
,

= 2D+〈T+〉+ 2D−(t− 〈T+〉), (A62)
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In the second line of Equation (A62), we have employed the linearity of 〈·〉, and the
properties of independent standard normal random variables, i.e., 〈ξ2

i 〉 = 1 and 〈ξiξ j〉 = 0
(with i, j ∈ {1, 2} and i �= j). Thus, now we just have to find 〈T+〉. In order to do that, we
start from the definition of average occupation time

〈T+〉 =

∞∫
0

T+ ft(T+)dT+,

=

∞∫
0

ft(T+)
(
− d

du
e−uT+

)∣∣∣
u=0

dT+,

= − lim
u→0

( d
du

f̂t(u)
)

. (A63)

With f̂t(u) =
∫ ∞

0 ft(T+)e−uT+ , and T+ ⇔ u Laplace conjugates. Now, for equilibrium
initial conditions, the PDF of the occupation time is given by

ft(T+) =
〈τ〉+

〈τ〉+ + 〈τ〉−
∞

∑
N=0

f+t (T+, N) +
〈τ〉−

〈τ〉+ + 〈τ〉−
∞

∑
N=0

f−t (T+, N), (A64)

with f±t (T+, N) the joint PDF of the occupation times at D+ and the number of jumps
between states during t, once started from D±. When starting from D+ and having
N = 2k + 1 or N = 2k jumps, the occupation time in each case satisfies Equation (1). In the
case when the initial state is at D−, we have

T+ = τ2 + τ4 + . . . + τ∗ i f N = 2k + 1,

T+ = τ2 + τ4 + . . . + τN i f N = 2k, (A65)

with τ∗ = t− tN , the backward recurrence time. The definition of the joint PDF f±t (T+, N)
is already given in Equation (A9). In addition, its double Laplace transform f̂±s (u, N) =∫ ∞

0

∫ ∞
0 ft(T+, N) exp(−uT+− st) dT+ dt, is shown in Equations (A22)–(A25). When N = 0,

we have

f̂+s (u, 0) =
1−

(
1−ψ̂+(s+u)
〈τ〉+(s+u)

)
s + u

,

f̂−s (u, 0) =
1−

(
1−ψ̂−(s)
〈τ〉−s

)
s

. (A66)

Now, for obtaining f̂s(u), we compute the double Laplace transform of Equation (A64)
and then we sum Equations (A22), (A25), and (A66) for all values of N. Thereafter, we
compute the derivative of f̂s(u) with respect to u and its corresponding limit when u −→ 0.
Following algebraic simplifications, we yield

lim
u→0

( d
du

f̂s(u)
)
= − 〈τ〉+

〈τ〉+ + 〈τ〉−
1
s2 . (A67)

For obtaining the average occupation time Equation (A63), we invert Equation (A67)
with respect to s, having

〈T+〉 =
(

〈τ〉+
〈τ〉+ + 〈τ〉−

)
t. (A68)
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Finally, substituting Equation (A68) in Equation (A62), we get Equation (49), which
indicates that the MSD is linear with respect to t, for any value of time t.

References

1. Chaudhuri, P.; Berthier, L.; Kob, W. Universal Nature of Particle Displacements close to Glass and Jamming Transitions. Phys.
Rev. Lett. 2007, 99, 060604–060608. [CrossRef] [PubMed]

2. Hapca, S.; Crawford, J.W.; Young, I.M. Anomalous diffusion of heterogeneous populations characterized by normal diffusion at
the individual level. J. R. Soc. Interface 2009, 6, 111–122. [CrossRef]

3. Wang, B.; Anthony, S.M.; Bae, S.C.; Granick, S. Anomalous yet Brownian. Proc. Natl. Acad. Sci. 2009, 106, 15160–15164. [CrossRef]
4. Leptos, K.C.; Guasto, J.S.; Gollub, J.P.; Pesci, A.I.; Goldstein, R.E. Dynamics of Enhanced Tracer Diffusion in Suspensions of

Swimming Eukaryotic Microorganisms. Phys. Rev. Lett. 2009, 103, 198103–198107. [CrossRef] [PubMed]
5. Wang, B.; Kuo, J.; Bae, S.C.; Granick, S. When Brownian diffusion is not Gaussian. Nat. Mater. 2012, 11, 481–485. [CrossRef]
6. Lampo, T.J.; Stylianidou, S.; Backlund, M.P.; Wiggins, P.A.; Spakowitz, A.J. Cytoplasmic RNA-Protein Particles Exhibit Non-

Gaussian Subdiffusive Behavior. Biophys J. 2017, 112, 532–542. [CrossRef] [PubMed]
7. Sabri, A.; Xu, X.; Krapf, D.; Weiss, M. Elucidating the Origin of Heterogeneous Anomalous Diffusion in the Cytoplasm of

Mammalian Cells. Phys. Rev. Lett. 2020, 125, 058101–058107. [CrossRef]
8. Weeks, E.R.; Crocker, J.C.; Levitt, A.C.; Schofield, A.; Weitz, D.A. Three-Dimensional Direct Imaging of Structural Relaxation

Near the Colloidal Glass Transition. Science 2000, 287, 627–631. [CrossRef]
9. Kegel, W.K.; van Blaaderen, A. Direct Observation of Dynamical Heterogeneities in Colloidal Hard-Sphere Suspensions. Science

2000, 287, 290–293. [CrossRef]
10. Chakraborty, I.; Roichman, Y. Disorder-induced Fickian, yet non-Gaussian diffusion in heterogeneous media. Phys. Rev. Res.

2020, 2, 022020–022025. [CrossRef]
11. Lavaud, M.; Salez, T.; Louyer, Y.; Amarouchene, Y. Surface Force Measurements Using Brownian Particles. arXiv 2020,

arXiv:2012.05512.
12. Chubynsky, M.V.; Slater, G.W. Diffusing Diffusivity: A Model for Anomalous, yet Brownian, Diffusion. Phys. Rev. Lett. 2014,

113, 098302–098307. [CrossRef]
13. Miyaguchi, T.; Akimoto, T.; Yamamoto, E. Langevin equation with fluctuating diffusivity: A two-state model. Phys. Rev. E 2016,

94, 012109–012130. [CrossRef] [PubMed]
14. Chechkin, A.V.; Seno, F.; Metzler, R.; Sokolov, I.M. Brownian yet Non-Gaussian Diffusion: From Superstatistics to Subordination

of Diffusing Diffusivities. Phys. Rev. X 2017, 7, 021002–021022. [CrossRef]
15. Sposini, V.; Chechkin, A.V.; Seno, F.; Pagnini, G.; Metzler, R. Random diffusivity from stochastic equations: Comparison of two

models for Brownian yet non-Gaussian diffusion. New J. Phys. 2018, 20, 043044–043077. [CrossRef]
16. Lanoiselée, Y.; Grebenkov, D.S. A model of non-Gaussian diffusion in heterogeneous media. J. Phys. A 2018, 51, 145602.

[CrossRef]
17. Sposini, V.; Chechkin, A.; Metzler, R. First, passage statistics for diffusing diffusivity. J. Phys. A 2018, 52, 04LT01. [CrossRef]
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Abstract: Trajectories of endosomes inside living eukaryotic cells are highly heterogeneous in space
and time and diffuse anomalously due to a combination of viscoelasticity, caging, aggregation and
active transport. Some of the trajectories display switching between persistent and anti-persistent
motion, while others jiggle around in one position for the whole measurement time. By splitting the
ensemble of endosome trajectories into slow moving subdiffusive and fast moving superdiffusive
endosomes, we analyzed them separately. The mean squared displacements and velocity auto-
correlation functions confirm the effectiveness of the splitting methods. Applying the local analysis,
we show that both ensembles are characterized by a spectrum of local anomalous exponents and
local generalized diffusion coefficients. Slow and fast endosomes have exponential distributions of
local anomalous exponents and power law distributions of generalized diffusion coefficients. This
suggests that heterogeneous fractional Brownian motion is an appropriate model for both fast and
slow moving endosomes. This article is part of a Special Issue entitled: “Recent Advances In Single-
Particle Tracking: Experiment and Analysis” edited by Janusz Szwabiński and Aleksander Weron.

Keywords: heterogeneous; anomalous diffusion; endosomes

1. Introduction

Intracellular transport of organelles, such as endosomes, has been described by anoma-
lous diffusion caused by different mechanisms [1,2]. Various models have been proposed
to describe it, such as fractional Brownian motion (FBM), continuous time random walks
and fractional Langevin equations [3]. However, which of these models is the best is a
current topic of much debate.

To decipher which mechanism is at work and determine the appropriate mathematical
model to describe it, a large ensemble of trajectories is necessary. Modern experimental
techniques facilitate the tracking of large ensembles of intracellular objects for consid-
erable amounts of time. Therefore, the extraction of meaningful statistical information
from trajectories is becoming an important issue. The traditional statistical analysis of
trajectories includes quantification of ensemble evolution in time and space using the
ensemble-averaged mean squared displacements (EMSD), time-averaged MSD (TMSD),
probability density functions of displacements and correlation functions. As the accessible
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measurement time in experiments increases with better live-cell microscopy techniques,
the accurate analysis of single trajectories has become possible [4]. New methods of
trajectory analysis were developed, such as local time-averaged MSD [5], first passage
probability analysis [6–8] and time-averaged diffusion coefficients [9].

Improved microscopy imaging, tracking and analysis methods revealed the intrinsic
spatial and temporal heterogeneity within individual trajectories of numerous biological
processes [5,10–18]. Significant progress has also been made in analysis and interpretation
of superresolution single particle trajectories [19–23]. Recently, individual trajectories of
quantum dots in the cytoplasm of living cultured cells were found to perform subdiffu-
sive motion of the FBM type with switching between two distinct mobility states [24].
In contrast to homogeneous systems, heterogeneous trajectories are most prominently
described by broad distributions of diffusivities and anomalous exponents, an exponential
probability distribution of diffusivities and a Laplace probability distribution of displace-
ments [25]. These observations led to the development of various heterogeneous diffusion
models [26–39].

Recently, the intracellular transport of endosomes in eukaryotic cells was shown to be
described by spatiotemporal heterogeneous fractional Brownian motion (hFBM) with non-
constant Hurst exponents [40]. By analyzing the local motion of endosomes, we found that it
is characterized by power-law probability distributions of displacements and displacement
increments, exponential probability distributions of local anomalous exponents and power-
law probability distributions of local generalized diffusion coefficients. In this paper, we split
the ensemble of endosomes into slow and fast moving vesicles, which is the main difference
between this study and that of [40]. This splitting allows us to study sub-ensembles separately
in addition to studying the ATP driven active transport of endosomes. In particular, there is
the central question: What is the appropriate mathematical model to describe the subdiffusive
transport of slow moving endosomes? By analyzing locally the slow and fast endosomal
trajectories, we find that both are characterized by exponential distributions of anomalous
exponents and power-law distributions of generalized diffusion coefficients. This suggests
that hFBM is an appropriate model for both slow and fast endosomes.

Endosome trajectories are composed of segments of active and passive motion, and
therefore they could be further decomposed into directed runs and random motion. We seg-
mented endosomal trajectories in this way in [10]. In this study, we separated endosome
trajectories into superdiffusive trajectories and subdiffusive trajectories for their whole
duration. Subdiffusive trajectories do not contain segments of directed movement and
cannot be segmented further into active and passive motion. In contrast, fast superdiffusive
trajectories can be further segmented. We leave the segmentation of fast trajectories into
directed runs and random motion for future work.

2. Materials and Methods

2.1. Experimental Trajectories

We studied a large ensemble of two dimensional experimental trajectories,
r(t) = {x(t), y(t)}, of early endosomes in a stable MRC5 cell line expressing GFP-Rab5. Tra-
jectories were obtained from tracking wide-field fluorescence microscopy videos (see [10]
for experimental details). We studied 103,361 experimental trajectories of early endo-
somes, the same data acquired in [10]. Three live-cell microscopy videos of MRC5
cells stably expressing GFP-Rab5 could be found in the Supplementary Material (https:
//zenodo.org/record/5106450#.YPBsEuhKhPY, accessed on 23 July 2021). An example
of experimental trajectories is shown in Figure A1. The endosomes were tracked using an
automated tracking software (AITracker, based on a convolutional neural network) [41].
Currently, it is not yet feasible to determine the diameter of endosomes in these experiments,
because they are diffraction limited. Thus, it was possible to track the centers of endosomes
with sub-pixel accuracy, but not the sizes of the smaller endosomes (less than 200 nm).
The duration of all trajectories, T, has a good fit to a power law distribution, T−1.85 [40],
which is a manifestation of the heterogeneity of the trajectories. Slow moving endosomes
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stay longer within the observation volume and therefore have longer trajectories than fast
moving endosomes, leading to the emergence of the power-law probability distribution for
the trajectories’ duration.

2.2. Splitting of Ensemble into Slow and Fast Moving Endosomes

We split ensemble of trajectories into slow and fast moving endosomes using the
distance traveled by endosomes:

R(t) =
√
(x(t)− x(0))2 + (y(t)− y(0))2. (1)

Trajectories which possess active motion have periods of rapid increase or decrease of R
(Figure 1A). Fast trajectories which have active motion are defined as max{R(t)} > ε and
slow trajectories which exhibit only passive motion are defined by max{R(t)} < ε. Here,
max{R(t)} denotes the maximum values of R(t) attained in the time interval (0, t) and ε
is the threshold. We choose the threshold ε = 0.25 μm. In the Appendix, we show that
changing the threshold to ε = 0.2 μm in the splitting does not qualitatively change the
results. Therefore, we define fast moving endosomes as those that, in the time interval (0, t),
experienced at least one period of active motion and the maximum distance travelled from
the origin exceeds the threshold of ε = 0.25 μm. Otherwise, an endosome is defined as
slow moving. Small variations of the threshold value do not affect the EMSDs of slow and
fast moving endosomes, which suggests that the splitting method is robust (Figure A3).

Changing the splitting threshold from max{R(t)} = 0.25 μm to max{R(t)} = 0.2 μm,
the increase of the number of slow trajectories was 12%. Therefore, in addition to the
method of splitting trajectories which uses the minimum travelled distance, we also tested
a second method, which makes use of the time-dependent Hurst exponent H(t) neural
network (NN) estimate at the single trajectory level [10]. The procedure is as follows:
(1) estimate the time-dependent anomalous exponent αNN using the NN; (2) if the anoma-
lous exponent αNN is superdiffusive αNN(t) > 1 for more than 4 consecutive time points,
the endosome is considered as fast moving. Otherwise, the endosome is labeled as slow
moving (see Figure A2). The correct implementation of the NN procedure requires a
minimum time window [10] that is larger than the duration of some of the endosomal
trajectories. Hence, short trajectories were discarded in this analysis. The similarity of
the distributions of generalized diffusion coefficients (Figures A3B and A4B) suggests
that the chosen threshold max{R(t)} = 0.25 μm was reasonable. Alternative methods of
binary classification could be performed using the first passage probability analysis [7] or
implementing the normalized radius of gyration of each trajectory [42].

Figure 1. Endosomes are split into slow and fast moving: (A) Distance R(t) traveled by fast
(black curves) and slow (red curves) endosomes (nine sample experimental trajectories are shown).
Most experimental trajectories possess active motion visible as a rapid increase or decrease of R;
(B) EMSDs (solid curves) and E-TMSDs (dashed curves) of fast (black curves) and slow (blue curves)
endosomes compared with EMSD and E-TMSD of all trajectories (orange curves). The dashed-dotted
and dashed-double-dotted lines represent t1.26 and t functions.
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2.3. Ensemble and Time Averaged Mean Squared Displacements

From the two dimensional experimental trajectories r(t) = {x(t), y(t)}, we calculated
the ensemble-averaged mean squared displacement (EMSD) as

EMSD(t) =
〈r〉2(t)

l2 , (2)

where l is the length scale which we choose l = 1 μm,

〈r〉2(t) =
〈
(xi(t)− xi(0))2 + (yi(t)− yi(0))2

〉
, (3)

where the angular brackets denotes averaging over an ensemble of trajectories, 〈A〉 = ∑N
i=1 Ai/N

and N is the number of trajectories in the ensemble.
By fitting the EMSD to power law functions, the anomalous exponent α and the

generalized diffusion coefficient Dα can be extracted using

EMSD(t) = 4Dα

(
t
τ

)α

, (4)

where α and Dα are constants which characterize averaged transport properties of ensemble
of endosomal trajectories. The time scale τ = 1 s and the length scale l = 1 μm are
introduced in order to make the generalized diffusion coefficient Dα dimensionless.

The time-averaged mean squared displacement (TMSD) of an individual trajectory
{xi, yi} of a duration T is calculated as:

TMSDi(t) =
δ2(t)

l2 , (5)

where l is the length scale, for which we chose l = 1 μm, and

δ2(t) =

∫ T−t
0

(
xi(t′ + t)− xi(t′))2 + (yi(t′ + t)− yi(t′))2)dt′

T − t
. (6)

TMSDs of individual trajectories are averaged further over the ensemble of trajectories to
get the ensemble-time-averaged MSD (E-TMSD):

E-TMSD(t) = 〈TMSDi(t)〉, (7)

where the angular brackets denotes averaging over an ensemble of trajectories as before.

2.4. Local Analysis of Endosomal Trajectories

The time-local statistical analysis was implemented as follows. We considered only the
portion of a single endosomal trajectory within a window of size W and centered around
the time t, i.e., (t−W/2, t +W/2). We calculated the TMSD within this chunk of trajectory
only: this is the reason for the acronym L-TMSD, i.e., the local TMSD. The experimental
detection of the endosomal motion is achieved with the frame rate 1/Δt s−1, hence t = iΔt
(here, i = 0, 1, 2, . . . is the time index) and W = NΔt, with N > 10. The first 10 points of
the L-TMSD were fitted with the power-law function

L-TMSD = 4DL(t)
(

t′

τ

)αL(t)

, (8)

where t′ = 10Δt. αL(t) and DαL(t) are the local anomalous exponent and generalized
diffusion coefficient, respectively. We iterate this procedure by shifting the time window of
a single Δt (i → i + 1) until the end of the experimental endosomal trace, thus obtaining
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αL(t) and DαL(t) along the entire trajectory. Notice that αL and DL are not constants in
time and they vary, being local properties of each endosomal trajectory.

2.5. The Time and Ensemble-Time Averaged Velocity Auto-Correlation Functions

The time averaged auto-correlation function (TVACF) along a single trajectory is
defined as:

TVACFi(t) =

∫ T−t−τ
0 �v(t′ + t)�v(t′)dt′

T − t− τ
, (9)

where �v = �r(t+τ)−�r(t)
τ . TVACFs of individual trajectories are averaged further over the

ensemble of trajectories to get the ensemble-time averaged VACF (E-TVACF):

E-TVACF(t) = 〈TVACFi(t)〉, (10)

where the angular brackets denotes averaging over an ensemble of trajectories. The velocity
autocorrelation function was suggested as a tool to distinguish between subdiffusion
models [43].

3. Results

We split the ensemble of endosomes into slow and fast moving vesicles using the
two methods described above (see Methods, Figures 1A and A2). For both slow and fast
endosomes, the EMSDs and E-TMSDs show similar behavior, which suggests ergodicity
(see Methods and Figure 1B). MSDs of slow endosomes are not increasing in time, which
confirms that these trajectories have no active periods of motion. Surprisingly, we found
that both EMSDs and E-TMSDs of slow endosomes are decreasing functions of time, which
to our knowledge has never been observed before. We explain this behavior in terms
of the coupling between the average diffusivities of slow trajectories and their duration
(see Figure 4 and the discussion below). Conversely, MSDs of fast endosomes are increasing
functions of time in the intermediate time scale (0.2, 2) s. The anomalous exponent extracted
from EMSD or E-TMSD of fast endosomes is α � 1, smaller than the anomalous exponent
obtained by considering all trajectories without distinction into fast or slow, i.e., α � 1.26.
Notice that two subdiffusive regimes characterize the MSD time behavior for fast and all
trajectories. The first, at small time scales (t ≤ 10−1 s), can be attributed to the measurement
errors [44–46]. The second, at longer time scales (t > 10 s), was shown to be spurious
and originate from the coupling of the trajectories’ duration and their diffusivities [40,47].
We suggest that, due to this coupling, the anomalous exponents deduced from the power-
law fit of EMSD and E-TMSD, do not capture the essential characteristics of the endosome
superdiffusive motility, nor shed light on its fundamental aspects. Therefore, to reveal the
effect of the duration of trajectories on the statistical analysis, we consider only trajectories
longer than a certain threshold T [40].

Figure 2A,B shows the EMSDs and E-TMSDs of slow and fast endosomes, considering
only experimental trajectories with duration longer than T seconds (2 or 8 s). Unlike the
slow moving endosomes, the MSDs of fast vesicles (Figure 2B) present similar qualitative
behaviors by choosing T = 2 s, T = 8 s or no T at all (all the fast molecules considered as in
Figure 1B, black curve). However, in the intermediate regime, the superdiffusive behavior
becomes more and more apparent, ∝ t1.26, and stable. In [40] we found that this process is
described by the space-time heterogeneous FBM with the Hurst exponent H that randomly
switches between persistent H > 0.5 and anti-persistent regimes H < 0.5, together with the
coupling between the diffusivity and duration of trajectories which account for spurious
subdiffusion at longer time scales. Moreover, the EMSD curves obtained for T = 2 s and
T = 8 s deviates considerably from the corresponding E-TMSD curves.
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Figure 2. EMSDs and E-TMSDs (solid and dashed curves) of experimental trajectories of slow (A)
and fast moving endosomes (B). Black curves correspond to T → ∞ s. Red and blue curves represent
EMSDs and E-TMSDs of experimental trajectories which have duration longer than 2 and 8 s, respec-
tively. The dashed-dotted line in (A) represents the function t0.5. In (B), the dashed-dotted line and
the dashed-double-dotted line represent the linear, t, and super-linear, t1.26, functions, respectively.

The MSDs of slow endosomes (Figure 2A) display very different, but ergodic, behavior.
For 0.01 < t < 2 s, the MSDs of all slow endosomes decreases in time. On the other side,
the MSDs of the sub-ensembles of slow endosomes with T = 2 s and T = 8 s reveal
subdiffusive trends with α∼0.5. As in the case of fast moving endosomes, we argue that
this behavior is due to the coupling between the diffusivity and duration of trajectories.
Therefore, we attempt to confirm this hypothesis, by performing simulations of an ensemble
of heterogeneous FBM trajectories with constant Hurst exponent H = 0.25 (see Figure 4).

The velocity auto-correlation functions (VACF) also confirm the effectiveness of this
simple threshold splitting (Figure 3A,B). Indeed, slow and fast endosomes have very differ-
ent VACFs. Ensemble-time averaged VACFs (E-TVACFs) of fast endosomes (Figure 3B) are
positive as expected for superdiffusive motion. In contrast, E-TVACFs of slow endosomes
have negative dips at t = τ and approach zero from negative values (Figure 3A). Such
behavior is characteristic of FBM and the generalized Langevin equation but cannot be
reproduced by the CTRW model [3].

Figure 3. Time-ensemble averaged VACF (E-TVACF) of experimental trajectories of slow (A) and fast
endosomes (B) calculated for different τ given in the legend.
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To verify that heterogeneous FBM describes slow moving endosomes, we simulated an
ensemble of hFBM trajectories. Individual hFBM trajectories were simulated with constant
Hurst exponent H = 0.25. For standard FBM, this would correspond to subdiffusive
MSDs,

〈
r2(t)

〉∼t2H∼ t0.5. The duration of hFBM trajectories was drawn from the power-
law distribution φ(T)∼T−1.85, in accordance with the experimental evidence [40]. The
generalized diffusion coefficients were chosen inversely proportional to the duration of
trajectories, i.e., D∼T−0.6. As shown in Figure 4, the EMSDs of hFBM trajectories agree
well with the experimental data.

Figure 4. EMSDs calculated for simulated hFBM trajectories (solid lines) as a function of time interval.
Black curves correspond to EMSDs of all trajectories of slow endosomes and hFBM, blue curves are
EMSDs of trajectories longer than T = 2 s and cyan curves are EMSDs of trajectories longer than
T = 8 s. The subdiffusive behavior with the anomalous exponent α = 0.5 is shown as the dashed-
dotted line. The EMSDs of slow experimental endosomal trajectories are shown for comparison
(dashed lines). Notice that hFBM trajectories were simulated without external noise (measurement
error), which led to discrepancy between simulated and experimental EMSDs at small time scale.

We next implemented the local analysis [40] to better characterize the slow and fast
endosomal dynamics. We calculated the local TMSDs (L-TMSD) for each experimental
trajectory at various times t ( Methods). From the fit of L-TMSD to Equation (8), we ex-
tracted the local anomalous exponents αL(t) and the local generalized diffusion coefficients
DαL(t) for slow and fast endosomes separately. The local anomalous exponents αL(t)
and the local generalized diffusion coefficients DαL(t) appear to be positively correlated
both for slow and fast endosomes (see Figure A6). The origin of these correlations is not
known and will be investigated in future publications. In [40], we found that PDFs of local
anomalous exponents and local generalized diffusion coefficients do not depend on the
window size or the time t (stationary) and are best fitted with exponential and power law
functions, respectively.

The PDFs of αL and DαL for slow and fast endosomes are shown in Figure 5A,B.
In both cases, the PDFs of αL follow an exponential distribution, while those of DαL are best
fitted with a power-law. However, the parameters characterizing the distribution shapes
are very different. Furthermore the parameters for the fast endosomes’ PDFs coincide with
those found by considering all experimental trajectories [40]. This is in agreement with a
heterogeneous FBM model of endosomal transport [40], which describes the endosome
motion as FBM with non-constant Hurst exponents.

95



Entropy 2021, 23, 958

Figure 5. Distribution of local anomalous exponents αL (A) and local generalized diffusion coefficients
DL (B) obtained from experimental trajectories of slow and fast endosomes. The dashed and dashed-
dotted lines are best fits to exponential (A) and power-law PDFs (B). In (A), they correspond to
1.86 exp(−1.86αL) for PDF of αL of fast endosomes (dashed line) and 4.3 exp(−4.3αL) for PDF of αL

of slow endosomes (dashed-dotted line). In (B) they correspond to (DL)−1.5 for PDF of DL of fast
endosomes (dashed line) and (DL)−2.7 for PDF of DL of slow endosomes (dashed-dotted line).

Finally, we calculated propagators of experimental trajectories for slow and fast endo-
somes (Figure 6). Using the power-law forms of distributions of local generalized diffusion
coefficients of slow pS(DL)∼(DL)−1−γS and fast pF(DL) ∼ (DL)−1−γF endosomes with
γS � 1.7 and γF � 0.5 (Figure 5), we fit the propagators with the propagators of hFBM,
PDF(ξ)∼|ξ|−1−2γ with γ = γS for slow endosomes and γ = γF for fast endosomes (see
Supplementary Note and [33]). For slow endosomes (Figure 6A), we also compare the ex-
perimental PDFs with the analytical propagator for obstructed diffusion in two dimensions,
ξ−0.108 exp(−|ξ|1.65) [48].

Figure 6. Distribution of scaled x-component of coordinate ξ = x/σx obtained from experimental
trajectories of slow (A) and fast (B) endosomes. The dashed-dotted lines correspond to power-law
fit |ξ|−1−2γS for slow endosomes (γS � 1.7) and |ξ|−1−2γF for fast endosomes (γF � 0.5). In (A),
we also compare PDF of slow endosomes with the analytical propagator for obstructed diffusion
(dashed line) [48].

4. Discussion

In this paper, we extend our investigation of the heterogeneous intracellular transport
of endosomes based on the local analysis of experimental trajectories [40]. Individual
endosomes move for long distances in a heterogeneous way with short bursts of directed
motility, interspersed with periods of subdiffusive motion [49,50]. The heterogeneous
character of this motion is also manifested as some endosomes are less motile than others.
Some endosomes look as if they are jiggling in one position for the whole period of
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observation. Therefore, we split the ensemble of trajectories into slow and fast moving
endosomes. The distinct time behavior of mean squared displacements and velocity auto-
correlation functions confirm the effectiveness of these methods. The splitting allowed us
to study passive subdiffusive and active superdiffusive transport of endosomes separately.

Comparing the behavior of fast endosomes (MSDs, VACFs and propagators) to the be-
havior of the entire ensemble, we find that they are most consistent with FBM models [40].
Therefore, we conclude that fast endosomes follow heterogeneous FBM [40]. The ergodicity
(Figure 2A) and the VACF (Figure 3A) suggest that slow endosomes are also described by
the hFBM or heterogeneous generalized fractional Langevin equation motion. For slow
endosomes, crowding and obstruction effects could also lead to subdiffusive behavior [2,4].
It is known that obstructed diffusion has many similarities with FBM such as stationar-
ity of the increments and the equivalence of the time and ensemble MSDs [48,51]. The
propagators provide a clear way to distinguish obstructed diffusion from FBM. Therefore,
we calculated propagators of experimental slow endosomes and compared them with
analytical prediction for the propagator of obstructed diffusion and prediction of heteroge-
neous fBM. The results shown in Figure 6 indicate that slow endosomes follow hFBM at
longer time scales, while on smaller scales obstructed diffusion likely contributes to their
subdiffusive behavior as well. Crowding effects remain as a possible source of anomalous
diffusion of slow endosomes. Recently, in numerical simulations, lipids in crowded condi-
tions of the membrane were shown to be multifractal and anomalous. The dynamics was
no longer described by the mechanism consistent with the fractional Langevin equation
or by any single known mechanism. Instead, the motion was found to be non-Gaussian
and heterogeneous, yet maintains its ergodic properties [52], which is similar to what we
observed for experimental trajectories of slow endosomes.

Both slow and fast endosomal trajectories are found to be highly heterogeneous in
space and time. The spatial heterogeneity in the form of coupling between endosome
diffusivity and duration of endosome trajectory explains the behavior of the MSDs. Longer
trajectories have smaller generalized diffusion coefficients since in experiments slowly
moving endosomes with smaller diffusion coefficients stay longer in the field of view,
having longer durations. For slow and fast endosomes, we can conclude that EMSD and
E-TMSD are not adequate to describe the large heterogeneity exhibited in space and time.
Therefore, we applied a time local analysis of individual trajectories.

From the local analysis, we found that slow and fast endosomal trajectories are
both characterized by exponentially distributed anomalous exponents and power-law
distributed generalized diffusion coefficients. However, the parameters of these distribu-
tions are different. Although the factors that cause the power-law distributed generalized
diffusion coefficients for slow and fast endosomes could be different, some common factors
can exist. One of them could be the scale free properties of endosomal networks [53].
Hence, the differences in endosome diameters could generate distinct diffusive proper-
ties intrinsic to each endosome. Heterogeneous diffusion generated by the fluctuations of
molecular size was found in single-molecule experiments within the cell [14,18,42]. Another
common factor promoting power-law distributions of generalized diffusion coefficients
could be non-specific interactions with the endoplasmic reticulum or other organelles and
large intracellular structures. Recently, non-specific interactions were shown to generate
heterogeneous diffusion of nanosized objects in mammalian cells [47].

Our analysis of endosomal transport would be valuable for both fundamental cell
biology and nanomedicine applications such as drug and gene delivery. In these appli-
cations, nanoparticles are often used as cargo-carrying vesicles, which in turn utilize the
endosomal network for their intracellular transport. For example, gold nanoparticles were
shown to cluster inside endosomes and move via sub- and superdiffusion [54]. Our results
would also be useful for the nanoparticle enhanced radiation therapy of cancer [55–57]
where clusters of nanoparticles inside endosomes are used for dose enhancement.

In the future, we expect microscopy techniques will improve in tandem with track-
ing algorithms, providing datasets with larger ranges of time scales and improved res-
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olution. Thus, further subclassification of ensembles of endosomal tracks (beyond the
binary fast and slow separation) will become possible towards the ultimate goal of single
molecule specificity. Increasing the dynamic range (to submillisecond time scales) will
allow the stepping motion of the motor proteins (kinesin and dynein) attached to micro-
tubules to be connected with the spectra of α and Dα for the fast moving endosomes at a
fundamental level.

Supplementary Materials: The following are available online at https://zenodo.org/record/510645
0#.YPBsEuhKhPY, Video S1: Videos for MRC5 cells stably expressing GFP-Rab5.
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Appendix A

Figure A1: An example of the experimental endosome trajectories measured in MRC5
cells stably expressing GFP-Rab5. See the main text for details.

Figure A1. An example of the experimental endosomal trajectories (30,000 trajectories are shown).

Figure A2: Two splitting methods used to separate endosome trajectories into slow
and fast moving endosomes. The first method uses the maximum distance traveled R(t).
The second method uses the time-dependent anomalous exponent H(t) estimated with the
neural network. An example of the two trajectories is shown, which were classified as slow
and fast by both methods. See the main text for details of the methods.
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Figure A2. An example of experimental trajectories of slow and fast moving endosomes obtained
using the maximum distance traveled R(t) (top) and the time-dependent anomalous exponent H(t)
estimated with the neural network (bottom).

Figure A3: The EMSD of slow and fast moving endosomes calculated with the splitting
method, which uses the maximum distance traveled R(t). Two values of the threshold ε
produce qualitatively similar results, which suggests that the splitting method is robust
against small variations of the threshold.

Figure A3. The EMSD of experimental trajectories of slow and fast moving endosomes calculated
with the splitting method, which uses the maximum distance traveled R(t) for two values of the
threshold: ε = 0.2 μm and ε = 0.25 μm.

Figure A4: Comparison of distributions of anomalous exponents αNN and generalized
diffusion coefficients DNN and local anomalous exponents αL and DL of slow moving
endosomes. Anomalous exponents αNN were estimated using a neural network with
window size 0.26 s. The generalized diffusion coefficients DNN were estimated by fitting
the local TMSD of the trajectory with the power law DNNtαNN

. The distribution of αNN has
a maximum of 0.6 and decays faster than the distribution of αL. This may be because many
short trajectories are missing in the NN analysis, since the NN could analyze trajectories
with durations longer than its window size [10]. The distributions of generalized diffusion
coefficients (right panel), on the other hand, are similar to each other.
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Figure A4. Slow endosomes. (Left) Distribution of anomalous exponents αNN of slow moving
endosome trajectories (the solid curve) compared with the distribution of local anomalous exponents
αL of slow moving endosome trajectories (the dashed curve); (Right) Distribution of generalized
diffusion coefficients DNN of slow moving endosome trajectories (the solid curve) compared with
the distribution of local generalized diffusion coefficients DL of slow moving endosome trajectories
(the dashed curve).

Figure A5: Comparison of distributions of anomalous exponents αNN and general-
ized diffusion coefficients DNN and local anomalous exponents αL and DL of fast moving
endosomes. Anomalous exponents αN N were estimated using neural network with win-
dow size 0.26 s. The generalized diffusion coefficients DNN were estimated by fitting the
local TMSD of trajectory with the power law DNNtαNN

. The distributions of anomalous
exponents (Left) are similar to each other, while the distributions of generalized diffusion
coefficients (Right) are almost indistinguishable.

Figure A5. Fast endosomes. (Left) Distribution of anomalous exponents αNN of fast moving endo-
some trajectories (the solid curve) compared with the distribution of local anomalous exponents
αL of slow moving endosome trajectories (the dashed curve); (Right) Distribution of generalized
diffusion coefficients DNN of fast moving endosome trajectories (the solid curve) compared with the
distribution of local generalized diffusion coefficients DL of fast moving endosome trajectories (the
dashed curve).

Figure A6: Local anomalous exponents αL and local generalized diffusion coefficients
DL are positively correlated for both slow and fast moving endosomes.
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Figure A6. Correlation between local anomalous exponents αL and local generalized diffusion
coefficients DL for slow (A) and fast (B) moving endosomes.
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Abstract: In this article, we introduce a new method to detect transient trapping events within a single
particle trajectory, thus allowing the explicit accounting of changes in the particle’s dynamics over
time. Our method is based on new measures of a smoothed recurrence matrix. The newly introduced
set of measures takes into account both the spatial and temporal structure of the trajectory. Therefore,
it is adapted to study short-lived trapping domains that are not visited by multiple trajectories.
Contrary to most existing methods, it does not rely on using a window, sliding along the trajectory,
but rather investigates the trajectory as a whole. This method provides useful information to study
intracellular and plasma membrane compartmentalisation. Additionally, this method is applied to
single particle trajectory data of β2-adrenergic receptors, revealing that receptor stimulation results in
increased trapping of receptors in defined domains, without changing the diffusion of free receptors.

Keywords: single particle trajectory; stochastic processes; trapping; confinement

1. Introduction

Single particle methods, which track fluorescent molecules over time, allow for the
quantification of biological events with unprecedented spatial and temporal resolution.
In cell biology, the complex organisation of the plasma membrane significantly impacts
the lateral diffusion of membrane proteins, leading to non-stationary motion patterns. A
proper interpretation of these complex trajectories requires that we take into account the
changes in a molecule’s underlying motion mechanism. For example, transient trapping
of G-protein-coupled receptors and G-proteins is closely related to a restricted collision-
coupling model [1,2]. In this model, the association rates of molecules on the plasma
membrane are enhanced by the presence of confining nano-domains, where receptors
and G-proteins are more likely to encounter one another. However, using analysis tools
that assume the same molecular motion over time leads to incorrect interpretations of the
underlying biology. An intermittent process alternating between free Brownian motion and
trapping (as observed in [3]) can wrongly be interpreted as a case of anomalous diffusion
with an anomalous exponent α < 1.

In the present article, we introduce a method to detect transient trapping events within
a single trajectory. An advantage of analysing transient trapping events is the possibility of
quantifying the binding kinetics of a molecule through different cellular nano-domains.
Additionally, this approach does not require multiple visits of independent molecules to
the same nano-domain to assess trapping and does not assume trapping nano-domains
to be long-lived. Our strategy is to isolate different trapped portions of trajectories by
considering the spatial self-localization of consecutive points within a single trajectory.
We introduce local measures computed for each trajectory point, n ∈ [1, N], containing
information on neighbouring trajectory coordinates as a way to elucidate the structure of
the trajectory. For each trajectory position, the number of neighbours considered for the
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local measure is determined by the number of consecutive trajectory coordinates within
the range of the test lengthscale.

The detection of trapping is challenging and has been the subject of investigation
by several authors. A possible strategy, based on an ensemble of trajectories, consists of
evaluating trapping domains from the evaluation of local confining force [4–8]. On the
side of single trajectory analysis, techniques were based on the maximum square displace-
ment [9–11], although they are generally too sensitive to noise and local fluctuations of
trajectory dynamics. Following this, a number of methods were developed, including: im-
age analysis techniques [12], a model specific maximum likelihood estimator [13], random
forest models [14], back propagation neural network approaches [15], moment-scaling
spectrum analysis [16], and standardized maximum distance [17]. Another approach pro-
poses to detect confinement size based on first-passage times [18]. Closer to our approach,
Sikora et al. [19,20] have developed a method for transient confinement identification based
on recurrence statistics, and Verdier et al. [21] used a graphical representation of trajec-
tories to identify the diffusion mode of a whole trajectory. Most of the above-mentioned
techniques [9–11,14–16,19,20] rely on time window approaches. Alternatively, our method
is based on a recurrence matrix and investigates a trajectory as a whole, whilst still deter-
mining sub-trajectory dynamics.

Recurrence matrices are used in various areas of science. They can be used to recon-
struct protein structure [22] and are even used to detect structural changes in reaction-
diffusion systems [23]. In general, they are used for quantifying non-linear time-series
derived from dynamical systems, such as detecting protein conformation changes in molec-
ular dynamics [24] or for quantifying physiological measurements [25]. In the context
of dynamical systems, it has been shown that one can reconstruct the chaotic attractor
associated with a time-series [26]. Additionally, the influence of observational noise on
recurrence plots has been previously investigated [27], in addition to recurrence plots
being used for testing time-series stationarity [28]. Although the concept of a recurrence
matrix is not new, we construct it in a modified way that greatly limits the effect of outliers
and localisation error. Our central hypothesis is that a trapping event within a trajectory
is translated into a recurrence matrix as a square block structure along the diagonal of
the recurrence matrix. We introduce 3 new local measures that are particularly relevant
in detecting block structures along the diagonal, which are characteristic signatures of
molecular trapping. From both our construction and these newly introduced measures,
we derive a quantity that is invariant when the molecule is trapped and close to zero
everywhere else.

In Section 3, we performed extensive simulations and tests to assess the reliability of
our method and its robustness to noise for both 2D and 3D trajectories, comparing our
method to the ‘Divide and Conquer Moment Scaling Spectrum’ (DC-MSS) [16]. Finally,
in Section 4, we apply our method to single particle tracking data to trajectories of a
prototypical G-protein-coupled receptor (β2 adrenergic receptor), analysing the effects of
different pharmacological treatments on receptor trapping.

2. Methods

We consider either 2 or 3-dimensional trajectories composed of N successive coor-
dinates {x1, . . . , xN}, where bold face emphasises the multi-dimensionality of each data
point. To make our analysis independent of the trajectory scale, trajectory increments
(one-step displacements) are rescaled on each coordinate by their empirical standard devia-
tion. Therefore, the results obtained for Brownian motion are independent of its diffusion
coefficient. A recurrence matrix is then calculated from the distance between each pair of
points within the trajectory. For each trajectory (see Figure 1a), we construct a positive
matrix with Gaussian weights (see Figure 1b):

Mi,j = exp

(
−1

2

( |xi − xj|
λ

)2)
, (1)
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where |xi − xj| denotes distance between two points i and j, and λ is the test lengthscale.
Each element Mi,j is in the range [0, 1], taking values close to 0 when the distance |ri − rj| is
larger than λ. The weights are chosen to be Gaussian in such a way that each element, Mi,j,
remains close to 1 for |xi − xj|/ λ < 1 and decays fast when |xi − xj|/ λ > 1. Therefore,
the presence of a trapped portion of a trajectory of size ≈ λ translates in the matrix M
as a square block of near 1 entries whose diagonal is aligned to the matrix diagonal.
Due to the random nature of molecule displacement, Mi,j entries are noisy, making it
difficult to determine the transition between different phases of motion. To overcome
this, a local smoothing of the matrix is performed. This operation can be done with
computational efficiency by convolving the matrix M by a normalized and constant square
matrix (2μ + 1)× (2μ + 1), where μ is the smoothing parameter, through a fast Fourier
transform (FFT). An advantage of this is to greatly limit the effect of outliers, such as one-
step large jumps in position due to tracking errors within a particle’s trajectory. Whereas
locally averaging trajectory coordinates would greatly disturb the shape of the trajectory
and enhance the effect of outliers, zeroes in the Laplacian matrix induced by an outlier are
removed by local averaging if an outlier lies inside a trapping block.

The smoothed recurrence matrix is then thresholded to obtain a binary matrix B
by setting to one all the values larger than a critical value pc (see Figure 1c). Here, we
choose the critical value to be pc = exp(−1), so two points of a trajectory are considered
colocalizing if they are within a distance λ

√
2 from each other. The consequence of these

manipulations turns the problem of finding trapped regions in the trajectories into finding
square block structures along the diagonal of the binary matrix B.

From matrix B, one has to identify the individual block structures. This could be
achieved by employing a clustering algorithm, such as k-means or k-medoids algorithms;
however, these require known numbers of clusters. Even though empirical methods
exist to estimate the number of clusters, such as the ‘elbow’ or ‘silhouette’ methods,
they do not perform well when clusters are of a greatly differing number of entities [29].
Although spectral clustering [29] does not suffer from these limitations on cluster sizes,
detection of cluster numbers relies on spectral gap detection, which fails when blocks
overlap. Thus, it would not be suited for situations where a molecule jumps from one trap to
another (Hop-diffusion, described in [10]). We therefore introduce a new methodology that
is specific to the detection of block structures and solves all of the aforementioned issues.

We wish to detect if any trajectory step n ∈ [1, . . . , N] is a part of a block or not (i.e.,
trapped or not). For this purpose we define three measures that can be constructed from
each point along the matrix’s diagonal Bn,n (see Figure 1d for visual illustration). (i) t|(n):
The block time, which is the approximate trapping duration seen from the n-th trajectory
coordinate. It is computed as the number of matrix elements being both equal to 1 and
connected to Bn,n along the vertical line Bn±k,n. (ii) t⊥(n): The neighbouring time, which is
related to the size of the window 2t⊥(n) + 1 centred on time point n for which all points
colocalize. The neighbouring time is computed as the number of connected matrix elements
being equal to 1 along the line perpendicular to the matrix diagonal and going through
Bn,n. (iii) t‖(n): The persistence time, which is the segment formed by connected matrix
elements being equal to 1 that are parallel to the matrix diagonal and starting from the
extremity of the segment used to compute t⊥. This determines how many m frames in the
future the lower bound t⊥(n) ≤ t⊥(n + m) holds.

Let us consider an ideal case where the whole trajectory is trapped such that the
recurrence matrix is an N × N square with matrix elements being equal to 1 everywhere.
From these three measures, one can deduce an invariant quantity that is valid for any point
along the matrix diagonal (see proof in Appendix A):

ν(n) =
t|(n)

t‖(n) + t⊥(n)− 1
= 1. (2)

Figure 1e illustrates the computed block time as a function of time (red) and how
neighbouring (cyan) and persistence (purple) time compensate each other to verify the
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equality. This equality is a necessary condition for the point xn to belong to a square
block. Specific events or features related to trapping interruption will cause violation of
this equality.

For an ideal free portion, the matrix is diagonal (let us call it 1−diagonal). In the case
of a trapping event followed by free diffusion at n + 1, there is a sharp transition from
ν(n − 1) = 1 to ν(n + 1) = 1/N. Let us consider a special case, where two successive
trapping events are spatially separated such that their corresponding blocks, of size s1 and
s2, respectively, share only a single point (the transition point n) that lies on the matrix
diagonal. Given that the trajectory is longer than the two trapping events, N > s1 + s2,
there is a sharp transition at n because the increase of t‖ from s1− 2 to N is not compensated
by the increase of t| from s1 to s1 + s2 − 1 (see Figure 1f). In the case where two trapping
events occur successively at even closer locations, their corresponding blocks will overlap.
Even though the equality would be broken at the transition point, departure from ν = 1
may not be very sharp because the transition point is no longer on the matrix diagonal,
and accordingly, the persistence time is bounded by blocks sizes t‖ < s1 + s2. Adding
nd diagonal lines along each side of the matrix diagonal, such that an ideal free motion
for which B is a 1−diagonal matrix would become a (2nd + 1)−diagonal matrix, helps to
enhance the variation in ν at the transition point by changing the bound to t‖ < N − 2nd,
where nd is the number of diagonals. Adding sufficient numbers of lines makes the
persistence time t‖(n) almost as long as the trajectory duration itself, so that when the
invariant is violated, ν becomes very close to 0.

The number of diagonal lines that should be added depends on the lengthscale λ
and the smoothing parameter μ. In general, adding more diagonal lines allows one to
distinguish between traps that are very close to each other. In turn, a large number of
diagonal lines reduces the precision of change-point detection for isolated traps. In order
to decide the number of diagonal lines used, we performed simulations. Block time has
been calculated from M = 103 simulated trajectories of N = 2× 103 steps drawn from two
reference types of motion that mimic free diffusion.

In the first case, we simulated Brownian motion (Bm) as the classical model of a
freely moving molecule in a homogeneous medium. In the second case, we simulated
subdiffusive, fractional Brownian motion (fBm) [30] with anomalous exponent α = 0.7
(Hölder exponent H = 0.35) as a prototypical diffusion in a crowded environment at
percolation threshold [31–34]. In both cases, trajectories were simulated in both 2 and
3 dimensions. As a compromise between sensitivity and precision, the tenth percentile
values of block time are used for the rest of the paper for the numbers of diagonal lines to
be filled, independent of the dimension of the problem and of the user’s choice of reference
model (see Appendix D for a comparison of the effect on detection results of the number of
added lines).

It is possible that our invariant is broken because of lacunarities inside blocks due to
the random nature of molecules’ displacements, which can easily be avoided by filling
lacunarities inside block components along the diagonal (function imfill in MATLAB).
Figure 1g presents the three measures for the trajectory in Figure 1a. The graph shows that
inside a block, the pattern is very similar to the one presented in Figure 1e for the ideal case
and shows the large change in persistence time at a block transition.

We claim that the n-th point of the trajectory is in a block when ν(n) is larger than a
critical value νc. In practice, blocks are never perfect squares, so we choose νc = 3/4 as a
criterion such that blocks can be deformed as illustrated in Figure 1h. However, even in
the case of purely free motion (e.g., Brownian motion), some blocks would still be detected
because it takes a random finite time to escape a region of size λ. To ensure that a detected
block is due to trapping and not due to chance, we chose a p-value approach. For each
test lengthscale and each type of test motion (2D and 3D Brownian motion and fractional
Brownian motion), we simulated 103 trajectories and computed the matrices Bij before
adding diagonal lines based on our previous simulations. Those simulated trajectories
were very long (104 steps each) in order to ensure the capture of very large potential blocks
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as test lengthscale λ increases. Block size was computed as the number of consecutive
points for which our criterion ν(n) > νc is verified. From these simulations, we estimated
in each case the empirical cumulative probability density of block size. From a given
p-value pval , the hypothesis that a detected block is a real trapping event (compared to
the reference simulated motion: Bm or fBm) is then rejected if the cumulative probability
density associated with the tested block size is smaller than 1− pval .

Figure 1. (a). Simulated 2D trajectory alternating between free Brownian motion and reflected diffusion in a disk of radius
R = 1. Diffusion coefficient is D = 1/2 in both cases and duration of states in both cases is a Poisson distributed duration
with mean Tf = 5 and Tf = 30 for free and reflected motions, respectively. Red circle denotes beginning and blue square
the end of the trajectory. (b). Matrix M computed from trajectory in (a) with a test lengthscale λ = 1. (c). Binary matrix B
after thresholding M in (b), filling the lacunarities and adding diagonal lines. (d). Illustration of the the block time t| (red),
the neighbouring time t⊥(n) (purple), and the persistence time t‖(n) (cyan) computed at the step n = 3 of an ideal B
matrix illustrating a fully trapped trajectory of 8 steps. (e). Illustration of the inequality along the diagonal Bnn for a perfect
block t| = t‖(n) + t⊥(n)− 1. (f). Illustration demonstrating that at transition between two blocks, the persistence time
t‖(n) becomes as long as the trajectory itself. (g). Computation of t| (red), t⊥(n) (purple), and t‖(n) (cyan) based on (c).
(h). Block invariant ν(n) (blue) computed over time based on (g) against the threshold value νc = 0.75; green rectangles
underline misclassified trajectory portions. (i). Classified trajectory, where black represents free portions and different
colours represent distinct detected trapped portions.

3. Simulations

In this section, we present performance tests for our algorithm in 2D and 3D and
compare it to an alternative algorithm, DC-MSS [16], where possible (in 2D).

3.1. Fixed Parameters

For the analysis, the smoothing parameter μ, the number of lines to be filled along
the matrix diagonal, and the p-value needed to be set. We chose μ = 2 in such a way that
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high-frequency variability in the matrix Mij would be dampened without significantly
affecting the precision of change-point detection. Then, based on simulations on the effect
of different additional diagonal lines (see Appendix D), we added a number of diagonal
lines corresponding to the tenth percentile of block-times. Finally, reasoning that the tail of
a Brownian motion’s first-passage-time distribution from the centre to the border of a disk
spans over multiple timescales, choosing a p-value very close to 1 would exclude many
transient trapping events. Accordingly, we fixed the p-value pval = 0.05 as a compromise
between the sensitivity and reliability of the method and then varied simulation parameters
to assess the potential of our approach.

3.2. Simulation

To test our methodology, for each data point presented below, we simulated 103 of
either 2D or 3D trajectories of 103 steps each. Molecules alternate between a free diffusive
state and a trapped state in which the molecule remains within a region of set size. We
chose the free state to be Brownian motion with one-step diffusion lengthscale σ = 1,
corresponding to a diffusion coefficient D = 1/2. The trapped state was chosen to be
reflected Brownian motion inside a disk (2D) or sphere (3D) of radius R with the same
diffusion coefficient. Similarly, we produced another dataset (2D and 3D), where instead
of Brownian motion, we modelled free portions with fractional Brownian motion with
Hölder exponent H = 0.35, corresponding to an anomalous exponent α = 0.7. In all cases,
the random duration of each state was chosen to be Poisson distributed with mean τBm and
τtrap for the free and trapped states, respectively. White noise with standard deviation σerr
was added to trajectory coordinates to model the effect of the localisation error, starting
from low noise σerr = σ/10 to mild noise σerr = σ/2 and finally strong noise with an
equivalent standard deviation of trajectory one-step displacements σerr = σ.

3.3. Results

Figure 2a shows the results where both the time spent in free duration and in trap-
ping were varied while the trapping radius was always R = 1, and the test lengthscale
was λ = 1. Different levels of noise σerr = σ/10, σ/2, σ were added, respectively,
in Figure 2a–c. In these cases, the minimal duration for detecting a trapping event is
τp0.05 = 9 frames (see table in Appendix E). In these three cases, when there is no confine-
ment at all (τcon f /τp0.05 = 0), the recognition score is close to 1, meaning that the algorithm
is robust to false negatives and is able to confirm the absence of trapping. In most cases,
more than 90% of trajectories are correctly assigned to their state. The method performs
poorly when the trapping duration is close to or shorter than τp0.05 or when the time spent
between two trapping events is smaller than the time it takes to explore a distance larger
than the trap size. Both mild and strong noise does lower the recognition score, but only
marginally. Figure 2d–f test cases when radius R = 3 and the test lengthscale is λ = 3.
In this case, the conclusions are the same, but one has to keep in mind that the durations
are much longer because the minimum duration for detecting trapping with λ = 3 is
τp0.05 = 42 (see table in Appendix E).

The above presented cases are idealised because, except when searching for a partic-
ular trap size, one does not precisely know the size of traps a priori. A reasonable range
can instead be determined by observation of the experimental data. Taking advantage of
the robustness to false negatives offered by our p-value approach, we propose combining
the recognition for each lengthscale into a single one. We combine results by taking the
union of detected trapped frames, considering lengthscales in the range λ ∈ [1, λmax] by
increments of 0.5. We simulated trajectories alternating between free motion and trapping
of distributed sizes. Possible trap radii are uniformly distributed in the range [1, Rmax],
where Rmax = 1, 2, 3 in Figure 2g–i, respectively. The duration in each trapped state is set
to be τcon f = 6R2 + 50, so the trapping time takes into account the radius of the trapping
area plus an offset of 50 frames. Trapping was simulated as reflected Brownian motion
with an integration step dt = 1/2 unless the diffusion length during a step was larger than
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a third of the radius
√

2Ddt > R/3, in which case positions were approximated as being
uniformly distributed inside the trap.

Figure 2. Each panel presents the recognition score ∈ [0, 1] for 2D trajectories alternating between free and trapped motions.
(a–c) Trapping radius is R = 1, and test lengthscale is λ = 1. Shown are tested combinations of free Brownian motion of
mean duration τBm = [5, 10, 20, . . . , 70] and mean trapping duration τcon f ∈ [0, 60]; coordinates are perturbed with white
noise of level σerr = σ× [0.1, 0.5, 1] (a–c). (d–f) R = 3 and λ = 3. Each rectangle represents a combination of free Brownian
motion of mean duration τBm = [5, 10, 20, . . . , 70] and mean trapping duration τcon f ∈ [0, 210]; coordinates are perturbed
with white noise of level σerr = σ× [0.1, 0.5, 1]. (g–i) Free motion is Brownian motion; noise level σerr = 0.5σ was added to
trajectories. Trapping radius is in the range R ∈ [1, Rmax], where Rmax = 1, 2, 3 in (g–i). In each case, test lengthscales from
1/2 to λmax by increments of 1/2 are combined where λmax = 1, 2, 3 (dashed red, dotted-dashed blue, and dotted magenta).
Black line shows the recognition score obtained from DC-MSS algorithm. (j–l) Same as for (g–i) except that the free motion
is replaced by subdiffusive fractional Brownian motion with Hölder exponent H = 0.35.

For each of these three cases, noise level σerr = 0.5σ was added to trajectories, and we
then tested our combination scheme with three possible λmax = 1, 2, 3. For comparison, we
applied the DC-MSS algorithm [16] to our simulated data with the default parameters. DC-
MSS separates the data into four categories: immobile, confined, free, and superdiffusive.
To make it comparable to our scheme, we considered the two first categories as being
‘trapped’ and the two latter as being ‘free’. In Figure 2g the performance of DC-MSS is
better than ours when we overestimate the maximum test lengthscale λmax = 3, which
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overestimates three times the maximum trap size Rmax = 1. In turn, choosing λmax = 2
already significantly improves our classification, and λmax = 1 gives close to perfect
recognition. Then, in cases Rmax = 2 (Figure 2h) and Rmax = 3 (Figure 2i), DC-MSS had
a consistently lower score for any choice of parameters λmax. It can be surprising that in
Figure 2h,i, λmax = 1 outperforms the other λmax in all cases, while the size of the traps can
be larger than this. We explain this by the fact that the test lengthscale does not specify the
trap size to be discovered and instead describes distances between points to be considered
‘in the vicinity’. When a molecule spends enough time inside a trap of radius R = 3, then
even with λmax = 1, any trajectory point will colocalize with many other points in such
a way that the recurrence matrix Mi,j will be in ‘quasi-block’ form (a block with many
holes). In this case, the combination of the smoothing step and the lacunarities-filling will
complete the block and allow for accurate detection. In turn, larger lengthscales λmax will
tend to include, along with a trap, some free points in the vicinity of the confinement area,
thus lowering the recognition score.

We also considered the case in which trajectories alternate between subdiffusive frac-
tional Brownian motion and trapping. In the case of a single trap size, results were similar
to those obtained in Figure 2a–f (data not shown). In the case of multiple traps’ radii
(see Figure 2j–l) similar results were obtained, meaning that our approach can distinguish
subdiffusion due to molecular crowding from actual trapping in a nano-domain. In com-
parison, the DC-MSS algorithm tends to misclassify free portions as being trapped, thus
giving lesser scores. In Appendix C, additional simulations performed in 3D gave similar
results for both diffusive Brownian motion and subdiffusive fractional Brownian motions
as ‘free states’ (see Figure A1).

Lastly, we verified that trajectory duration has only negligible effects as long as
trajectory duration is longer than the minimum duration for trapping detection (not shown).

4. Application to Experimental Data

Based on our methodology, with λ = [0.5, 1, 1.5, 2], smoothing parameter μ = 2 and
pval = 0.05, and subdiffusive fBm as our reference for free motion, we investigated the
effect of different drugs on the diffusion and trapping of β2 adrenergic receptor (β2AR)
on the plasma membrane. We recorded fluorescently labelled β2AR molecules with total
internal reflection microscopy, as they diffuse in the plasma membrane of living cells (2D
recording) (see Appendix B for experimental methods). We first characterized receptors
under basal conditions (36 cells), without pharmacological stimulus. Next, we treated
the cells with a gold-standard agonist (isoproterenol) that activates receptors (47 cells).
Additionally, we probed receptors with a neutral antagonist (propranolol), which prevents
ligand-dependent receptor activation (29 cells). Figure 3a–c show, respectively, all of the
trajectories longer than 50 frames (for improved visibility) from a single cell for each
described treatment. Portions of trajectories are coloured according to their identified state
(trapped in red and free in blue).

It clearly appears that, although trapping is present in all cases, the prevalence of trap-
ping is increased upon agonist stimulation. This is quantitatively supported in Figure 3d,
where it is shown that under basal conditions, 39.2% of receptors at each frame were
trapped on the plasma membrane. Upon agonist stimulation, this percentage increased
to 52.2%, while it remained similar (45.5%) after neutral antagonist treatment. To test the
relevance of the observed change, we used a non-parametric Kruskal–Wallis test with
Tukey–Kramer correction for multiple comparisons. We found the change between basal
and agonist stimulation to be significant (p = 2× 10−4), clearly demonstrating an effect
of agonist stimulation on receptor diffusion dynamics. Contrarily, the change between
basal and neutral antagonist treatment was not significant (p = 0.74, while the difference
between agonist and neutral antagonist was significant (p = 9× 10−3), suggesting that the
drug employed directly influences the receptor trapping, an increase in which correlates
with activation of the receptors.
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We then sought to further explore the differences observed between these cases.
For each trapped trajectory portion, we computed the trapped radius as the distance from
the estimated centre of the trap (evaluated as the median of x and y coordinates for a
trapped portion) and the point further away than 95% of points within the trapped portion.
In Figure 3e, we binned all of the trapped radii into an empirical probability density
function (pdf) which was revealed to be similar for the three conditions, suggesting that the
trapping domains are of the same nature in all cases. In all cases, the pdf of trapped radii
could be fitted approximately with a Gamma distribution, highlighting the exponential
decay of the tail of the distribution. This was further reinforced by the computation of the
empirical pdf of trapped portions’ durations (see Figure 3f), from which we again obtained
a similar empirical pdf for all three conditions. The tails of the trapping duration pdf were
fitted to a stretched exponential distribution, thus encompassing the wide (yet finite) range
of trapping durations.

Figure 3. (a–c). All receptor trajectories longer than 50 frames from a single cell in each group; trajectory portions are
coloured according to whether they are detected as free (blue) or trapped (red). Cells are, respectively: (a) in basal state,
(b) stimulated with agonist, and (c) treatment with neutral antagonist. (d). Proportion of trapped molecules per frame;
each point corresponds to a cell for basal (black), agonist stimulated (yellow), and neutral antagonist treated (green).
(e,f). Empirical probability density function for basal (black), agonist stimulated (yellow), and neutral antagonist treated
(green) of (e) trap radius and (f) trapping duration. Grey lines denote fitting with Gamma distribution (e) and stretched
exponential (f). (g,h). Empirical probability density estimated for free trajectory portions longer than 50 frames of (g) the
anomalous diffusion exponent α and (h) the corresponding generalized diffusion coefficient Dα.
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Finally, we enquired into the dynamics of free trajectory portions. To do so, follow-
ing [35], we computed the time-averaged mean square displacement (TAMSD) of each
portion on each coordinate as

δ2(n, N) =
1

N − n

N−n

∑
k=1

(xk+n − xk)
2, (3)

and summed the result for both coordinates before performing a non-linear fitting, over the
lag-time range n ∈ [1, 5], with the formula for ensemble-averaged TAMSD for a 2D ergodic
anomalous diffusion process (e.g., fractional Brownian motion), with localisation error σerr

〈δ2(n, N)〉 = 4Dαnα + 4σ2
err, (4)

where α is the anomalous exponent, and Dα is the generalized diffusion coefficient. From
this, we obtained the empirical pdf for both anomalous exponent and generalized diffusion
coefficients for each condition and observed once again that it was remarkably consistent
among the tested conditions. The exponents for free portions of trajectories (see Figure 3g)
were distributed slightly over α = 1 (average exponent 〈α〉 = 1.04, 1.05, 1.04), correspond-
ing to simple Brownian motion. The generalized diffusion coefficients were very similar
in all tested conditions (see Figure 3h) with an average 〈Dα〉 = 0.173, 0.169, 0.168 μm2 s−1

for basal, agonist, and antagonist, respectively. For comparison, we computed the pdf
of exponent and Dα from simulated Brownian motion (see Figure 3g,h), using the same
parameters for trajectory duration and mean diffusion coefficient as the free portions found
in the case of the tested agonist. The distributions obtained from simulations match the
experimental for exponent (average exponent from simulation is 〈αsim〉 = 1.05). However
the experimental distributions of diffusion coefficients are wider that the simulated one.
We conclude that the distributed nature of the estimated exponent is mainly due to the
intrinsic randomness of the TAMSD applied to random trajectories [36,37] while the spread
of Dα highlights the heterogeneous nature of cell membrane.

Altogether, these results shed light on the effects of different drug treatments on
receptor dynamics. We observe that receptors do not slow down after agonist stimulation.
In fact, the change we observe is that receptors are more likely to be trapped, with the
nature of the trapping domains remaining the same. For the case of the antagonist, we do
not find a significant difference compared to the basal condition, which correlates with
the proposed model where neutral antagonists impart no intrinsic activity on the receptor
in the absence of an accompanying agonist. We conclude that on timescales longer than
our exposure time frame (30 ms), receptors alternate between free lateral diffusion that
could be modelled by Brownian motion with fluctuating diffusion coefficient [38–49] and
transient trapping in nano-domains of distributed size.

5. Conclusions

In conclusion, we present an algorithm (Code availability: MATLAB code can be
downloaded from https://github.com/YannLanoiselee/Transient_trapping_analysis, ac-
cessed on 9 August 2021) that can accurately detect transient trapping events from a single
trajectory either in two or three dimensions. Our approach is based on recognizing block
structures along the diagonal of a thresholded, smoothed recurrence matrix. To this end,
we introduced three local measures to be computed along the diagonal of the matrix from
which we deduced an invariant quantity inside blocks (trapped portions).

Then, based on a set of user-inputted test lengthscales and on simulations of Brownian
and fractional Brownian motions in 2D and 3D as reference processes, we could assess the
minimal size of blocks that could be interpreted as the molecule actually being trapped
and not a block due to chance, depending on a p-value. We tested our method on a set
of simulated data and verified the good performance in 2D and 3D when the free type
of motion is either Brownian motion of sub-diffusive fractional or Brownian motion with
anomalous exponent α = 0.7. We checked the robustness of our results against increasing
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magnitudes of localisation error. We also compared our 2D results with the classification
obtained from the DC-MSS algorithm [16] and showed that our method is more accurate in
the task of detecting trapping in all tested cases.

Finally, we applied our analysis to single-particle trajectories of β2 Adrenergic G-
protein-coupled receptors recorded through total internal reflection microscopy. Three
conditions were tested: the basal state, stimulated with an agonist, and treatment with
a neutral antagonist. In all cases, we found that molecules explore traps with similar
distributions of size and duration. Instead, it was only the frequency with which molecules
were trapped that was different. TAMSD analysis of the free portions of trajectories
led to the conclusion that molecules were mostly undergoing Brownian motion, with a
variety of parameters indicative of cell membrane heterogeneity. The demonstration
of this technique on real biological data and delineation of pharmacological principles
using it (agonist = activation, antagonist = net 0 effect) suggest that our methodology to
detect trapping events can be used to study the complexity of both intracellular (3D) and
membrane proteins (2D) in live cells.
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Appendix A. Proof of the Square Block Invariant

To prove the equality in Equation (2), we proceed by two inductions. For a square
block of fixed side length c, we start by noting the symmetry with respect to the line
perpendicular to the matrix diagonal going through point c/2 (that lies between two
points for odd c). Then, we define n ∈ [1, c/2]; our relationship is verified for n = 1,
and we suppose it true for n. Then, observing that t|(n + 1) = t|(n), t‖(n + 1) = t‖(n)− 2,
and t⊥(n + 1) = t⊥(n) + 2, we deduce ν(n + 1) = ν(n) = 1. For the second induction,
we start by noting that our relationship is valid for c = 1, and we suppose it is true for
c = k. Then, for c = k + 1, we find that t⊥(n) remains unchanged, while both t|(n) and
t‖(n) increase by one, thus again verifying our equality. The relationship is thus valid for
arbitrary block sizes and at any point along the diagonal within the block.

Appendix B. Experimental Methods

Appendix B.1. Materials

Cell culture reagents, Lipofectamine 2000, and TetraSpeck fluorescent beads were
purchased from Thermo Fisher Scientific. Isoproterenol and Propranolol were from Tocris
Bioscience. The fluorescent SNAP-Surface 549 was from New England Biolabs. Ultra-
clean glass coverslips were obtained as previously described [50]. For single-molecule
experiments, Chinese hamster ovary K1 (CHO-K1) cells (ATCC) were cultured in phenol
red-free Dulbecco’s modified Eagle’s medium (DMEM)/F12, supplemented with 10% FBS,
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penicillin, and streptomycin at 37 ◦C, 5% CO2. Cells were seeded onto ultraclean 25 mm
round glass coverslips at a density of 3 × 105 cells per well. On the following day, cells
were transfected using Lipofectamine 2000 with N-terminally SNAP-tagged human β2AR
(SNAP-β2AR) [50] and N-terminally GFP-tagged clathrin light chain (GFP-CCP) (kindly
provided by Emanuele Cocucci and Tom Kirchhausen), following the manufacturer’s pro-
tocol. Cells were labelled with 1 μM SNAP-Surface 549 in complete culture medium for
20 min at 37 ◦C and imaged by single-molecule microscopy ≈ 4 h after transfection to
obtain low physiological protein expression levels [2,50]. Cells were washed with complete
culture medium and imaged in Hank’s balanced salt solution (HBSS) supplemented with
10 mM HEPES. The labelling efficiency was ≈ 90% ([50]) with non-specific labelling < 1%.
β2ARs were stimulated with either 10 μM Isoproterenol or treated with 10 μM Propranolol.

Appendix B.2. Single-Molecule Microscopy

Single-molecule microscopy experiments were performed using total internal reflec-
tion fluorescence (TIRF) microscopy on a custom system, based on an Eclipse Ti2 micro-
scope (Nikon, Japan) equipped with a 100× oil-immersion objective (NA 1.49, Nikon); 405,
488, 561, and 637 nm diode lasers; an iLas TIRF illuminator; quadruple band excitation and
dichroic filters; a quadruple beam splitter; 1.5× tube lens (Cairn Research); four EMCCD
cameras (iXon Ultra 897, Andor); and hardware focus stabilization. The sample and objec-
tive were maintained at 37 ◦C throughout the experiments. Multicolour single-molecule
image sequences were acquired simultaneously at full frame in frame transfer mode, cor-
responding to one image every 30 ms. Automated single-particle detection and tracking
were performed with the u-track software [51], and the obtained trajectories were further
analysed using custom algorithms in MATLAB environment as previously described [2].

Appendix C. Simulations for the 3D Case

In this section, we present the simulation results obtained in three dimensions.

Figure A1. Each panel presents the recognition score ∈ [0, 1] for 3D trajectories alternating between free and trapped
motions. (a–c) Free motion is Brownian motion with added noise level σerr = 0.5σ. Trapping radius is in the range
R ∈ [1, Rmax], where Rmax = 1, 2, 3 in (a–c). In each case, test lengthscales from 1/2 to λmax by increments of 1/2 are
combined, where λmax = 1, 2, 3 (dashed red, dotted-dashed blue, and dotted magenta). (d–f) Same as for (a–c) except that
the free motion is replaced by subdiffusive fractional Brownian motion with Hölder exponent H = 0.35.

Appendix D. Effect of the Number of Diagonal Filled

In Figure A2, we analysed 2D and 3D simulated trajectories alternating between either
Bm or fBm and reflected Brownian motion. Then, we computed the recognition score
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for three possible maximum lengthscales λmax = 1, 2, 3. Then, for each of these λmax, we
computed results depending on the number of lines that were added along to the matrix
diagonal of the binary matrix B. We considered no diagonal added at all (d0) or the tenth
percentile d10 or median d50 of the block time obtained from simulations of Bm or fBm
in either 2D or 3D. In all considered cases, the best maximum lengthscale was λmax = 1,
and the best recognition score was obtained with d10.The case d0 was similar to d10 for
Rmax = 1 but failed for larger trapping radii. On the other hand, d50 could not capture
change-points for a short duration of the free states as well as d10.

Figure A2. Each panel presents the recognition score ∈ [0, 1] for 2− 3D trajectories alternating between free and trapped
motions. Each column corresponds to a trapping radius range R ∈ [1, Rmax], where Rmax = 1, 2, 3, respectively. Rows
corresponds to different dimensionality and types of free motion 2D and Bm, 2D and fBm, 3D and Bm, and 3D and fBm,
respectively. For the two first rows, black lines correspond to predictions from DC-MSS. Red, blue, and magenta lines
correspond to λmax = 1, 2, 3, while crosses, circles, and squares indicate that lines along the diagonal of the binary matrix B
have been filled according to the zeroth, tenth, and median percentiles of block times computed from simulations for either
Bm or fBm according to the situation.

Appendix E. p Value Tables

In this section, we present the minimal trapped duration including the number of
filled diagonal lines (for d10) corresponding to p-values [0.1, 0.05, 0.01] for different test
lengthscales λ for fixed smoothing parameter μ = 2 and νc = 0.75 (see Table A1). Values
corresponding to each test lengthscale λ are obtained from 103 simulated trajectories of
104 steps. Simulations have been performed on 2-dimensional Brownian motion with diffu-
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sion coefficient D = 1/2 (although the result is independent of D because of rescaling) and
on 2-dimensional fractional Brownian motion (each coordinate generated independently)
with diffusion coefficient D = 1/2 and a Hölder exponent H = 0.35 corresponding to an
anomalous diffusion exponent α = 0.7, similar to what is found in diffusion in a crowded
molecular environment.

In the case of 3D diffusion (see Table A2), similar simulations have been performed
with one extra dimension. A table of the minimal trapped duration including the number
of filled diagonal lines corresponding to p-values [0.1, 0.05, 0.01] can be seen below. They
are generally shorter because a trajectory has one more degree of freedom to escape.
For Brownian motion, the mean square-displacement is increased 50%.

Table A1. Minimal size for a block to be considered a trapped portion for when reference motion is
2D Brownian motion (left) and 2D fractional Brownian motion with H = 0.35 (right).

2D Bm 2D fBm H = 0.35

λ pval = 0.1 pval = 0.05 pval = 0.01 pval = 0.1 pval = 0.05 pval = 0.01

0.5 4 5 6 5 5 7
1 8 10 14 10 13 18

1.5 17 20 28 28 35 52
2 26 32 46 54 68 103

2.5 38 46 68 88 112 176
3 45 57 87 131 169 272

Table A2. Minimal size for a block to be considered a trapped portion for when refence motion is 3D
Brownian motion (left) and 3D fractional Brownian motion with H = 0.35 (right).

3D Bm 3D fBm H = 0.35

λ pval = 0.1 pval = 0.05 pval = 0.01 pval = 0.1 pval = 0.05 pval = 0.01

0.5 4 4 5 4 4 5
1 5 6 8 6 7 8

1.5 10 11 15 13 15 21
2 14 17 23 24 28 40

2.5 21 25 34 39 48 69
3 28 33 46 60 74 109
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Abstract: The Laplace distribution of random processes was observed in numerous situations that
include glasses, colloidal suspensions, live cells, and firm growth. Its origin is not so trivial as in the
case of Gaussian distribution, supported by the central limit theorem. Sums of Laplace distributed
random variables are not Laplace distributed. We discovered a new mechanism leading to the Laplace
distribution of observable values. This mechanism changes the contribution ratio between a jump
and a continuous parts of random processes. Our concept uses properties of Bernstein functions and
subordinators connected with them.

Keywords: anomalous diffusion; statistical analysis; single-particle tracking; trajectory classification

1. Introduction

Based on a myriad of examples in the physical sciences, 1963 Nobel Prize winner in physics
H.P. Wigner emphasized the exceptional role of mathematics in understanding the physical structure of
the world around us [1]. Indeed, mathematics is a kind of mental tool created for this purpose, and the
world is organized in a logical pattern very similar to mathematics [2]. Thus, mathematics turns out to
be the language of science and technology. In many experiments the single-molecule motion manifests
anomalous diffusion, absolutely not like the classical Brownian diffusion having the mean-squared
displacement (MSD) linear in time [3]. To describe the data, a number of theoretical models was developed.
The most popular of them are: continuous-time random walk (CTRW) and Fractional Fokker–Planck
equation (FFPE) [4–7], fractional Klein–Kramers equation [8], obstructed diffusion (OD) [9,10], random
walk on random walk (RWRW) [11,12], fractional Brownian motion (FBM) [13–16], fractional Lévy
α-stable motion (FLSM) [17–19], fractional Langevin equation (FLE) [20,21] and autoregressive fractionally
integrated moving average (ARFIMA), see [22] and references therein. The ARFIMA model [23–25]
is a discrete time analogue of the overdamped fractional Langevin equation [26] responsible for the
non-Gaussian law (Lévy α-stable) and a long memory. Moreover, the ARFIMA process is a universal and
simple discrete time model for fractional dynamics of empirical data. Recall also that the celebrated FBM
and FLSM is nothing but the limiting case of ARFIMA. Since the ARFIMA models were successful
in analyzing data from other fields (econometrics, see 2003 Nobel Prize in Economic Sciences for
C.W.J. Granger and R. Engel; finance and engineering [27–29]), many statistical tools (and computer
packages, e.g., ITMS [24]) are widely available for users, see [25,30].

A relation beetwen physical environment and mathematical models is crucial [1,30]:

– Trapping, crowded environment (CTRW, FFPE, subordinated BM);
– Labyrinthine environment (OD, percolation, RWRW);
– Viscoelastic system (FBM, FLSM, FLE, ARFIMA);
– System with time-dependent diffusion (scaled BM, scaled FBM, ARFIMA);
– System with transient diffusion (BM with transient subordinators).

Entropy 2020, 22, 1317; doi:10.3390/e22111317 www.mdpi.com/journal/entropy121
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By using the conjugated Bernstein function theory [31] for a subordinated diffusion, we uncover
here a general universal behavior for the pairs of conjugated subordinators. Namely, one can connect
the tempered subdiffusion with the diffusion-limited aggregation. Moreover, for the pure Brownian
motion this is the Laplace distribution whereas for the Lévy flights is its generalization, the Linnik
distribution. It should be also noticed that a large part of well-known anomalous diffusion processes
can be represented as time-changed Brownian motion. Thus, by employing the I. Monroe result [32]
we find that an anomalous diffusion process is represented as time-changed Brownian motion if and
only if it is a semimartingale, [33]. Randomizing the time of the Brownian motion B(t) by using the
independent random process U(t), we obtain a new process X(t) = B(U(t)). Such an operation is
called subordination, first introduced by S. Bochner [34], and see also [35]. The process B, called the
parent process, is directed by the new operational time clock U called subordinator. The first reasonable
usage of subordination in physics dates back to [36], see also [37,38]. Later, physicists developed a
considerable intuition on subordination [39,40]. For the very recent results, see [41].

In the method of single-particle tracking (SPT) a major result is that motion in cell membranes is
not limited to pure diffusion. Several modes of motion have been detected including such as immobile,
confined, tethered, directed, normal diffusion, and anomalous diffusion [42]. After an ensemble average,
the time dependence of the MSD for pure modes of motion is well recognized from others [43,44]. One of
important phenomena related to the classification of modes of motion is that practically all experimental
results show apparent transitions among modes of motion [45]. If a transition is real, it causes this
nonclassical behavior to be different. Their studies are of great interest [46–48]. In cell membranes,
anomalous diffusion is most likely the result of both obstacles to diffusion and traps with a distribution of
binding energies or escape times [49]. Confined motion may result from corrals formed by cytoskeletal
proteins near the membrane, from tethering to immobile species, or from restrictions to motion imposed
by lipid domains [50]. The confined diffusion of plasma membrane proteins or lipids can be regarded as
a special case of subdiffusion [51]. Analytical treatments have been provided for certain shapes of the
confinement zones and the characteristic mobilities [52]. The motion of single biomolecules inside a living
cell often exhibits subdiffusion in the confined and crowded environment [53]. For the interpretation of
experimental results and quantitative predictions of the diffusion behavior, theoretical models can be
extremely helpful. One of them is presented in this paper. It describes the transition from subdiffusion to a
confined state. It is interesting that the model has a one-to-one connection with the well-known tempered
subdiffusion which demonstrates the transition from subdiffusion to normal diffusion in condensed
matter physics [54] and geophysics [55], respectively. Such characteristic crossover from subdiffusion to
normal diffusion has been observed also in lipid bilayer systems [56–58]. The tempered stable process
in different guises has been intensively researched recently [59–67]. The aim of this work is to get the
stochastic representation of anomalous diffusion tending to the confinement. We compare its properties
with similar ones for the tempered subdiffusion. Finally, our results are applied for relaxation processes
with non-exponential decay as well as for the analysis of the experimental data with confined random
trajectories of G proteins and receptors in living cells.

2. Conjugate Laplace Exponents and Stochastic Representation of Anomalous Diffusion

The subdiffusive dynamics is fruitfully modeled as a diffusive motion X(τ) subordinated by a
wide class of random processes subject to infinitely divisible distributions. If the stochastic process
X(τ) has the probability density function (PDF) h(x, τ), it is a solution of the ordinary Fokker–Planck
(FP) equation

∂h(x, τ)/∂τ = L̂(x) h(x, τ) . (1)

where L̂(x) is the time-independent FP operator (for example, − ∂
∂x F(x) + D ∂2

∂x2 with a force F).
Generally, the operator L̂ can be both multidimensional and fractional in space, but with no loss
of generality we will consider the one-dimensional case. Infinitely divisible distributions, following
the Lévy–Khintchine formula [68], are characterized by the exponentially weighted function
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〈e−u TΨ(τ)〉 = e−τΨ(u) =
∫ ∞

0
e−ut gΨ(t, τ) dt , (2)

where Ψ(u) is called the Laplace exponent, and gΨ(t, τ) is the PDF of this process. Note, the Laplace
exponents may be only Bernstein functions. This is a very extensive class of functions [31]. In the
theory of Bernstein functions a special role is played by so-called conjugate pairs [69]. If one of them is
Ψ(s), then another will take the form Φ(s) = s/Ψ(s). The parent process X(τ) may be subordinated by
SΨ(t) = inf{τ > 0 : TΨ(τ) > t} as well as SΦ(t) = inf{τ > 0 : TΦ(τ) > t}, where TΦ is a conjugate
subordinator. Both cases lead to the FP equation in a general form

p(x, t) = q(x) +
∫ t

0
dτ M(t− τ) L̂(x) p(x, τ) , (3)

where M(t) is the memory function [54,70]. The kernel M(t) has a simple expression after the Laplace
transform. Denote the inverse Laplace transform L−1

t . This gives

MΨ(t) =
1

2πi

∫ c+i∞

c−i∞
est ds

Ψ(s)
= L−1

t
1

Ψ(s)
, (4)

MΦ(t) =
1

2πi

∫ c+i∞

c−i∞
est Ψ(s)

ds
s

= L−1
t

Ψ(s)
s

, (5)

where c is large enough that 1/Ψ(s) (for the first case) and Ψ(s)/s (for the second) are defined for
�s ≥ c, and i2 = −1. The PDF of the operational time SΦ(t) is simply written as a Laplace image

f̃ (τ, s) =
1

Ψ(s)
e−τs/Ψ(s) . (6)

The solution (propagator) of Equation (3) takes the form of a subordination integral

p(x, t) =
∫ ∞

0
h(x, τ) f (τ, t) dτ . (7)

Using the Brownian motion as a parent process

hB(x, τ) =
1√

2πDτ
exp

(
− x2

2Dτ

)
, (8)

the Laplace image p̃(x, s) is written as the tabulated integral [71], expressed in terms of the modified
Bessel function of the third kind. As its index is equal to 1/2, we get the following propagator

p̃(x, s) =
1√
2D

1√
sΨ(s)

exp

(
−2

|x|√s√
2DΨ(s)

)
. (9)

Similar calculations can be fulfilled for SΨ(t), which we will not present here. If the moments of
a parent process X(τ) are known exactly, as in the case of the Brownian motion, the moments of
the process X[SΦ(t)] can be found analytically. Using the MSD of Brownian motion in the form〈

B2(τ)
〉
= Dτ, where D is a diffusive constant, the MSD of Y(t) = B[SΨ(t)] and Y(t) = B[SΦ(t)] reads

〈
B2[SΨ(t)]

〉
= D L−1

t
1

sΨ(s)
= D

∫ t

0
MΨ(y) dy , (10)〈

B2[SΦ(t)]
〉

= D L−1
t

Ψ(s)
s2 = D

∫ t

0
MΦ(y) dy . (11)

It is clear that the MSD is depended on the function Ψ(s), but in different ways it manifests in
a conjugate pair. Similar analysis of two different forms of the Fokker–Planck equation where
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the memory kernels are conjugate pairs has been done in [72,73]. When the memory kernel is an
exponentially truncated power-law, the MSD can approach to saturation. In the next section, we will
look at specific examples.

3. Tempered α-Stable Process and Its Conjugate Partner

An important exemplar of infinitely divisible subordinators is tempered α-stable processes,
having all moments of operational time [74]. In this case the diffusive motion demonstrates an
intermediate behavior between subdiffusion and normal diffusion [54,55]. Then the Laplace exponent
is Ψtemp(s) = (s + δ)α − δα, where δ is a positive constant and 0 < α < 1. If δ equals to zero,
the tempered α-stable process becomes ordinary α-stable. Let the Brownian motion be a parent process,
and the inverse tempered α-stable process is directing. The MSD of the subordinated diffusion is〈

x2(t)
〉
= D

∫ t

0
e−δy yα−1 Eα, α(δ

αyα) dy , (12)

where Eα,β(x) = ∑∞
k=0 xk/Γ(αk + β) is the two-parameter Mittag–Lefeffler function [75]. If t  1

(or δ → 0), this value strives for Dtα/Γ(α + 1), whereas for t � 1 (or α → 1) it is linear in time
Dδ1−αt/α as expected for normal diffusion shown in Figure 1a. From the asymptotic values for

〈
x2(t)

〉
it is easy enough to obtain the crossover time tx =

[
α δα−1/Γ(α + 1)

]1/(1−α) between the two diffusive
modes, also shown in Figure 1a. This diffusion behaves anomalous at short time and almost normal at
long times.

Figure 1. (Color online) Mean squared displacement of tempered subdiffusion (a) and its conjugate
partner (b) with α = 0.6 and δ = 1 (for D = 1). The dashed red and dash-dot green lines show
asymptotic behavior of the values. If the panel (a) indicates a transition of the subdifussion into normal
diffusion at long times, whereas the panel (b) shows the emergence of diffusion-limited aggregation.

Next, we study the diffusion motion with the conjugate Laplace exponent s/Ψtemp(s). Its MSD
is not difficult to find. It is expressed in terms of the three-parameter Mittag–Leffler function [75],
having the following Taylor series

Eρ
α,β(x) =

∞

∑
k=0

(ρ, k) xk

Γ(αk + β)k!
, α, β > 0 , (13)

where (ρ, k) = ρ(ρ + 1)(ρ + 2) . . . (ρ + k− 1) is the Appell’s symbol with (ρ, 0) = 1, ρ �= 0. The MSD
has also an analytical form
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〈
x2(t)

〉
= D

∫ t

0
e−δy y−α E1, 1−α(δy) dy− Dδαt

= De−δt t1−α E2
1, 2−α(δt)− Dδαt , (14)

that gives the short- and long-time behavior

〈
x2(t)

〉
=

{
Dt1−α/Γ(2− α) if t → 0 ,

Dαδα−1 if t → ∞ .
(15)

The interrelation in the conjugate pair between each other is quite non-trivial. If for the Laplace
exponent Ψtemp(s) the pure subduffusion evolves to normal diffusion in time, then for the conjugate
case s/Ψtemp(s) the subdiffusion transforms into diffusion-limited aggregation. Figure 1b just presents
the evolution. It has a simple explanation. As the normal diffusion is characterized by the Laplace
exponent Ψ(s) = s, its conjugate partner has Φ(s) = s/Ψ(s) = 1. This clearly implies the confinement.

Using asymptotic behavior of the MSD, we determine the crossover time t�x =
[
Γ(2− α) α δα−1]1/(1−α)

between the diffusive regimes. Consequently, the duality relation between infinitely divisible
subordinators allows one to generate a new impact scenario of traps, in which diffusion behaves
less anomalous at short time and extremely anomalous at long times.

Using numerical methods, the propagator under the conjugate Laplace exponent s/Ψtemp(s) is
shown in Figure 2. The propagator has a cusp which is saved for t → ∞. Recall that the tempered
subdiffusion loses this feature at long times. If the axis y is logarithmic, as in Figure 2, the propagator
of tempered subdiffusion goes to a parabola (see the panel a), whereas in the confined case it takes a
triangular shape (panel b). This is not surprising because for t → ∞ the propagator of diffusion motion
with the conjugate Laplace exponent s/Ψtemp(s) can be found analytically, and its form corresponds to
the well-known Laplace (or double exponential) distribution [76,77], namely

lim
t→∞

p(x, t) =
1√

2Dαδα−1
exp

(
− 2|x|√

2Dαδα−1

)
(16)

with a location parameter μ = 0 (in general, it may be nonzero) and a scale parameter
θ =

√
αδα−1D/2 > 0. Although the PDF of the Laplace distribution is reminiscent of the normal

distribution, they are different: the normal distribution is expressed in terms of the squared difference
from the mean whereas the Laplace distribution is expressed in terms of the absolute difference
from the mean. Therefore, the Laplace distribution has fatter (more precisely, moderate) tails than
the normal distribution (with thin tails always) [68]. To get the Laplace distribution as the average
value of elementary Gaussians, the necessary (“superstatistical”) distribution of the diffusivities is
exponential [78–80]. It should be noticed that the Brownian yet non-Gaussian diffusion is not the
same considering in this paper. The stationary Laplace distribution of particles’ motion also takes
place in compartmentalized media [81]. The inverse cumulative distribution function of the Laplace
distribution is equal to xc = −θ ln(2 − 2q). The value xc is such that any observation from this
distribution with the scale parameter θ falls in the range [0 xc] with probability 0 < q < 1 [77].
This allows one to estimate borders of the confinement region, taking into account the values D, α and
δ. The Laplace distribution as a confined case is characteristic for the Brownian motion as a parent
process. If the parent process becomes infinitely divisible, the confined distribution will be other and
presented in the next section.
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Figure 2. (Color online) Propagator p(x, t) for the tempered subdiffusion (a) and its conjugate partner
(b), tending to the confinement, with a constant potential, α = 0.5 and δ = 1, drawn for consecutive
dimensionless instances of time. Starting with the Dirac delta-function and passing to the subdiffusive
PDF, for t → ∞ the value p(x, t) becomes the normal distribution, shown by black dotted line on the
panel (a), and the Laplace distribution (black dotted line) on the panel (b).

Note that for α = 1/2 the MSD of the tempered subdiffusion and its conjugate partner coincide
with each other at short times. The point is that the Laplace exponent s1/2 is the only one convertible
into itself by the duality relation between conjugate pairs of Laplace exponents [82]. If α > 1/2, then for
the same values α the MSD of tempered subdiffusion less anomalous than the MSD of its conjugate
partner at short times. For α < 1/2 the opposite happens. Usually the duality relation accelerates
the subdiffusion more anomalous (in the sense of α < 1/2) and slows down too fast subdiffusion
(with α > 1/2). This is especially evident for multi-scale anomalous diffusion [82].

4. Confined Distributions for Infinitely Divisible Motion

Now we apply our approach for infinitely divisible motion as a parent process, whereas the
subordinator has the Laplace exponent s/[(s + δ)α − δα] leading to a confined distribution for t → ∞.
Without loss of generality the one-dimensional case will be represented. Consider any infinitely
divisible motion by using the characteristic function in the form

ĥ(k, t) =
∫ ∞

−∞
eikx h(x, t) dx = e−D∗t Ξ(|k|)/2 , (17)

where D∗ is a generalized diffusive constant. In the case of β-stable Lévy motion the characteristic
exponent Ξ(|k|) is equal to |k|β with β ∈ (0, 2). There are also other well-known examples of the
characteristic exponent: (i) (|k|2 + mβ/2)2/β −m, β ∈ (0, 2); (ii) log(1 + |k|β), β ∈ (0, 2]; (iii) b|k|2 + |k|β;
(iv) log((1 + |k|2) +√

(1 + |k|2)2 − 1) and so on [69].
The next development is to consider the subordination of such parent processes. For this purpose

we use the same subordinator led to the Laplace distribution above from Brownian motion. Based on
the simple forms of ĥ(k, τ) and f̃ (τ, s), the solution (propagator) of a subordinated infinitely divisible
motion is convenient to write as the Laplace–Fourier transform, taking the form

˜̂p(k, s) =
1
s

s/((s + δ)α − δα)

[D∗Ξ(|k|)/2 + s/((s + δ)α − δα)]
. (18)

As lims→0 s/((s + δ)α − δα) = δ1−α/α, using the final value theorem (limt−>∞ p̂(k, t) =

lims−>0 ˜̂p(k, s)), the confined characteristic function is written as
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p̂(k, ∞) =
1

1 + D∗αδα−1 Ξ(|k|)/2
. (19)

For the ordinary Brownian motion it is not difficult to check this result by the inverse Fourier transform
clearly, as this is the tabulated integral [71]. Other forms of the characteristic exponent Ξ(|k|) do
not lead to so simple analytical expressions, but then they can be evaluated numerically. Note that
1/[1 + AΞ(|k|)] with A = D∗αδα−1/2 > 0 is an even function, and thus its Fourier transform is
equivalent to the cosine transform.

Taking the β-stable Lévy motion with the characteristic exponent Ξ(|k|) = |k|β under β ∈ (0, 2),
the confined characteristic function p̂β(k, ∞) manifests the characteristic function of the symmetric
Linnik distribution [83] (or the β-Laplace distribution, following Pillai [84]), namely

pβ(x, ∞) =
1
π

∫ ∞

0

cos(k|x|)
1 + Akβ

dk

=
1
π

∫ ∞

0

sin(z1/β |x|)
(1 + Az)2 dz . (20)

The last expression was obtained from the integration by parts and has a better convergence in
numerical integration. Examples are shown in Figure 3. The symmetric Linnik distribution attracted
considerable attention from researchers [85–88]. Generally, the PDF is unimodal [89], geometrically
stable [90] and can be expressed in terms of Meijer’s G-function [91]. Moreover, the peak of the density
is finite for 1 < β ≤ 2 (see Figure 3a), it becomes infinite for 0 < β ≤ 1 (shown in Figure 3b) [92].
Based on the tabular integral of [93], its value yields

pβ(0, ∞) =
1
π

∫ ∞

0

dk
1 + Akβ

=
1

βA1/β sin(π/β)
. (21)

A series expansion for small x is written as

pβ(x, ∞) =
1
β

∞

∑
n=0

(−1)n

(2n)!
x2n

A(1+2n)/β

1
sin[π(1 + 2n)/β]

. (22)

If x = 0, only the n = 0 term is saved, and one obtains the previous expression. According to [94],
the asymptotic expansion for large x reads

pβ(x, ∞) =
1
π

∞

∑
n=1

(−1)n+1 Γ(1 + nβ) An

|x|1+βn sin(πβn/2) . (23)

Consequently, the leading term of this expansion becomes

pβ(x, ∞) ∼ Γ(1 + β) sin(πβ/2)
π

A
|x|1+β

. (24)

There are some specific examples representable by tabular integrals [93] that will be
considered elsewhere.

Since Ξ(|k|) is a Bernstein function (or otherwise the function having a complete monotone
derivative), the characteristic function 1/[1 + AΞ(|k|)] is typical for a geometrically infinitely divisible
PDF [95]. In any case the PDF form is symmetric and unimodal. In dependence of Ξ(|k|) it has a finite
or infinite maximum. This is because the integral

∫ ∞
0 dk/[1 + AΞ(k)] has a single improper point,

namely k → ∞, where the integral is convergent or divergent.
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Figure 3. (Color online) Propagators p(x, t) from the parent processes, having the β-stable Lévy
distribution: (a) 1 < β < 2; (b) 0 < β ≤ 1; under the subordinator, conjugate to a tempered random
process in the sense of Bernstein functions, for t → ∞. The value A = D∗αδα−1/2 is taken equal to 1.

We can formulate the following Confinement Principle: Any subordinated infinitely divisible
motion, in which the subordinator is characterized by the Laplace exponent conjugate to a tempered
α-stable process, has a confined probability distribution. By the infinitely divisible motion we
mean a wide class of infinitely divisible processes, including Brownian motion (as a marginal case),
Lévy stable motion (Lévy flight) and many other processes with jumps. It is important that each case
of characteristic exponents in such an infinitely divisible motion determines its confined probability
distribution. For the pure Brownian motion this is the Laplace distribution whereas for the Lévy flights
its generalization is the Linnik distribution. This procedure covers a class of geometrically infinitely
divisible distributions as a confined case of the infinitely divisible motion subordinated by a special
subordinator responsible for the confinement.

5. Conditionally Non-Exponential Decay of Relaxation

Our comparative analysis of tempered and confined diffusion may be pretty simple extended
to relaxation processes with non-exponential decay. As is well known [96,97], the manifestations
of many-body effects in anomalous dynamics of relaxing systems, independent of the physical and
chemical structures of their interacting entities, are successfully described by stochastic tools. Then the
relaxation function of non-exponential relaxation is written as

φΨ(t) =
∫ ∞

0
e−bτ fΨ(τ, t) dτ , (25)

where b is a constant, and fΨ(τ, t) is the PDF of an inverse subordinator
SΨ(t) = inf{τ > 0 : TΨ(τ) > t}. The Laplace image φΨ(t) takes the simple form

f̃Ψ(τ, s) =
Ψ(s)

s
e−τΨ(s) . (26)

Then the Laplace transform of φΨ(t) in time yields

φ̃Ψ(s) =
1
s

Ψ(s)
Ψ(s) + b

. (27)

Similar conversions that we omit can be done for s/Ψ(s).
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Based on the Laplace exponent of tempered diffusion Ψtemp(s) = (s + δ)α − δα and its conjugate
partner s/Ψtemp(s), it is not difficult to obtain their relaxation functions numerically. They are presented
in Figure 4.

Figure 4. (Color online) Relaxation functions, caused by the inverse tempered subordinator (a) and its
conjugate partner (b) respectively, with α = 0.6, δ = 1 and b = 1 . The first represents the tempered
relaxation, and the second is confined. The dashed red line shows a conditionally non-exponential
decay due to the confinement effect (limt→∞ φconf(t) = const �= 0).

Using the above relationship, we have found asymptotic behavior of the functions. They read

lim
t→0

(1− φtemp(t)) = btα/Γ(α + 1) ,

lim
t→0

(1− φconf(t)) = bt1−α/Γ(2− α) (28)

at short times and accordingly

lim
t→∞

φtemp(t) = lim
t→∞

e−btδ1−α/α = 0 ,

lim
t→∞

φconf(t) =
1

1 + αδα−1b
= const (29)

at long times. Note that both types of relaxation start with 1 as a power function in time. However,
tempered relaxation tends to zero exponentially, whereas the confined relaxation does not reach zero at
all. From the physical point of view this latter model can be interpreted in the following way. Dipoles
ordered by the external field do not fall into disorder with probability 1 after removing the field as t
tends to infinity. Therefore, we believe that this model demonstrates a conditionally non-exponential
decay. In this context it should be mentioned that the conditionally exponential decay model is
a key for the concept of clusters and their dynamics to an imperfectly ordered state, used for the
explanation of relaxation in dielectric materials [98–100]. During the relaxation process the strongly
coupled local (intracluster) motions are expected to be generated first and then followed by the weakly
coupled (intercluster) motions which produce the partial long-range structure. Each of these motions,
those leading to the local structure order and those leading to the cluster ordering in general, has its
own perceptible contribution to the observed features such as the relaxation function in time domain
and the susceptibility in frequency domain.
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6. G-Proteins vs. a2AR Receptors from the Analysis of the SPT Data

As an example for detecting the Laplace confinement in experimental data, we present our
analysis of random trajectories obtained from a recent SPT study on G protein-coupled receptors,
namely the motion and interaction of individual receptors and G proteins on the surface of living
cells [44]. Two types of particles and only the basal case (without drug stimulation) data were studied:
G-protein coupled receptors (further we will call them simply receptors) and the G proteins with
which the receptors interact. The sample data consisted of 20,000 trajectories of 30 sets for G proteins
and more 35,000 trajectories of 30 sets for receptors which randomly walk along x and y coordinates.

The first aim of the data study is to classify the dynamics for both types of particles. It is based on
the standardized maximal distance Tn of random processes from its starting point [101]. This approach
is quite justified. Really, if the motion is driven by the fractional Brownian motion, then the best among
the available methods is the one based on the p-VAR test, especially for longer trajectories. But, if the
particle dynamics can be described by the Ornstein–Uhlenbeck or diffusive Brownian motion process,
then the method yielding the smallest errors is based on the MAX test [102–105]. Following the
procedure, we use the statistical test:

• H0—an observed trajectory X = {X1, X2, . . . , Xn} comes from Brownian motion,
• H1—the trajectory looks like a confined or directed diffusion.

Then Tn is estimated with respect to the quantiles of order α/2 and 1− α/2 (for example, α = 5%)
for different trajectory lengths n. The decision rule is as follows: Tn < qn(α/2) means a confined motion,
whereas Tn > qn(1− α/2) is superdiffusion (or directed motion). If qn(α/2) < Tn < qn(1− α/2),
then X = {X1, X2, . . . , Xn} is Brownian motion. Consequently, this permits us to classify the
trajectories available for processing. The results are shown in Figure 5. As seen from this figure,
the most of trajectories is Brownian motion: 69% for G proteins and 78% for receptors. The contribution
of superdiffusion is the smallest, 2%. The rest corresponds to confined motion. This part is especially
interesting to us. Next, we are going to estimate the statistics of such trajectories. It is assumed that the
confined random walks can occur in two cases. The first of them is classical, the Ornstein–Uhlenbeck
model. It gives the normal distribution for t → ∞. The second case leads to the Laplace confinement for
t → ∞, considered above. Possible transitions of the particles’ diffusion type within single trajectories
are noted and investigated. For example, in [104] it has been proposed a statistical procedure for
detecting transitions of the MSD exponent value within a single trajectory.

Discriminating the statistics of G-protein and receptor confined trajectories between the normal
and Laplace distribution functions, we apply the logarithm of the ratio of their maximized
likelihoods [106]. The approach leads to the calculations of means, medians, sample variances
and averages of the absolute difference between data values and the median. This statistical test
gives the ratio Q > 0 for the normal distribution, otherwise the Laplace distribution is preferred.
After applying the second statistical test, its results together with the first test results are also presented
in Figure 5. This shows that for G proteins the confined trajectories obey equally the normal and
Laplace distributions, whereas for receptors the normal distribution is approximately twice as common
as the Laplace distribution. But it should be pointed out also that the share of confined trajectories with
normal statistics remains unchanged for both G proteins and receptors. Judging by the contribution of
Brownian motion in all the sets of trajectories, the difference between the percentage ratio of confined
trajectories with the normal and Laplace distributions for G proteins and receptors can indicate greater
mobility of receptors over G proteins. It should be mentioned that Laplace distributions were detected
in the complex diffusive behavior of RNA-protein particles [107].

The occurrence of the Laplace distribution for confined trajectories in the experimental data used
by us seems to be natural. First, the most part of the trajectories is Brownian motion. What could be a
parent process for subordination in this environment? Brownian motion is preferred. Why? Since we
observe a following Competition Principle between parent processes: Brownian motion, Lévy motion or
other infinitely divisible process even for any fixed subordinator conjugated one to tempered α-stable responsible
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for confinement. If Brownian motion is parent, the confined distribution from our subordination
approach can have only the Laplace form. In the above data sets any feature, for example, typical
for Lévy motion, is not detected. If this was true, it would be a chance for the play of generalized
Laplace distributions as a confined distribution. Another case is the Ornstein–Uhlenbeck process
leading to the normal statistics in confined trajectories, it has the same (Brownian) roots too. Therefore,
the presence of normal and Laplace distributions together into confined trajectories is quite logical and
justified physically.

Figure 5. (Color online) Analysis of the experimental data as applied to G-protein and receptor
random-walk trajectories along the coordinates x and y with the cutoff length of trajectories more and
equal to 50.

7. Discussion

We have revealed that the conjugate property of Bernstein functions connects the tempered stable
subdiffusion with the diffusion-limited aggregation by an one-to-one mapping (in fact, a bijection).
If the pure subdiffusion is characterized by multiple trapping events with infinite mean sojourn time,
and the power function exponent of MSD is constant in time, then a truncated power-law distribution
of trapping times leads to tempered subdiffusion, in which diffusion is anomalous at short times and
normal (contribution of traps seems to disappear) at long times [45]. The interpretation of anomalous
diffusion tending to the confinement is that the trap impact has the opposite tendency, long waiting
times in traps dominate more and more so that it becomes impossible to leave such traps. This model,
just like the tempered one, is applicable for the analysis of SPT. Its effects are present in confined
random motions of G proteins and receptors in living cells. We have established that the confined
distribution form depends on the PDF of the parent process under subordination. If the parent process
is Brownian motion, the confined distribution has only the Laplace form. If the Lévy motion is directed,
the confined distribution takes the Linnik case. If the support of the parent process is changed from
(−∞, ∞) to (0, ∞), as a confined limit, the Mittag–Leffler distribution arises. All this manifests that the
presented method has ample opportunities for the study of confined random walks in complex systems.
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Concerning to relaxation phenomena, complete disorder (e. g. in the form of charge neutralization
in dielectrics) does not occur in the relaxing system with confinement features. This concept can be
used for developing new cluster models of non-exponential relaxation. It will be considered in more
detail elsewhere. Our new methodology is generally valid in a wide class of problems of transport in
random media that include live cells, relaxation in heterogeneous substances, and jump-diffusion.

Author Contributions: A.S. analyzed tempered subdiffusion in a conjugate map based on Brownian motion and
performed the analysis of corresponding relaxation decay and experimental data. A.W. invented the confined
distributions for infinitely divisible motion. A.S. and A.W. wrote the text. A.S. prepared Figures 1, 2 and 4,
and Figures 3 and 5 were prepared by the authors together. Both authors reviewed the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: A.S. is grateful to the Hugo Steinhaus Center for pleasant hospitality during his visit in
Wrocław University of Science and Technology as well kindly acknowledges a support of NAWA
PPN/ULM/2019/1/00087/DEC/1. A.W. would like to thank for support of Beethoven Grant No. DFG-NCN
2016/23/G/ST1/04083.

Acknowledgments: The authors would like to thank T. Sungkaworn and D. Calebiro for providing the
experimental data analyzed in Section 6.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wigner, E.P. The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pure Appl. Math.
1960, 13, 1–14. [CrossRef]

2. Hamming, R.W. The unreasonable effectiveness of mathematics. Am. Math. Mon. 1980, 87, 81–90. [CrossRef]
3. Metzler, R.; Jeon, J.H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties:

Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem.
Chem. Phys. 2014, 16, 24128. [CrossRef]

4. Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach.
Phys. Rep. 2000, 339, 1–77. [CrossRef]

5. Manzo, C.; Garcia-Parajo, M.F. A review of progress insingle particle tracking: From methods to biophysical
insights. Rep. Prog. Phys. 2015, 78, 124601. [CrossRef]

6. Metzler, R.; Barkai, E.; Klafter, J. Anomalous diffusion and relaxation close to thermal equilibrium:
A fractional Fokker–Planck equation approach. Phys. Rev. Lett. 1999, 82, 3563–3567. [CrossRef]

7. Bel, G.; Barkai, E. Weak ergodicity breaking in the continuous-time random walk. Phys. Rev. Lett. 2005,
94, 240602. [CrossRef]

8. Magdziarz, M.; Weron, A. Numerical approach to the fractional Klein–Kramers equation. Phys. Rev. E 2007,
76, 066708. [CrossRef] [PubMed]

9. Havlin, S.; Ben-Avraham, D. Diffusion in disordered media. Adv. Phys. 1987, 36, 695–798. [CrossRef]
10. Saxton, M.J. Anomalous diffusion due to obstacles: A Monte Carlo study. Biophys. J. 1994, 66, 394–401.

[CrossRef]
11. Kehr, K.W.; Kutner, R. Random walk on a random walk. Phys. A 1982, 110, 535–549. [CrossRef]
12. Schulz, J.H.P.; Barkai, E.; Metzler, R. Aging renewal theory and application to random walks. Phys. Rev. X

2014 , 4, 011028. [CrossRef]
13. Guigas, G.; Kalla, C.; Weiss, M. Probing the nanoscale viscoelasticity of intracellular fluids in living cells.

Biophys. J. 2007, 93, 316–323. [CrossRef] [PubMed]
14. Burnecki, K.; Kepten, E.; Janczura, J.; Bronshtein, I.; Garini, Y.; Weron, A. Universal algorithm for

identification of fractional Brownian motion. A case of telomere subdiffusion. Biophys. J. 2012, 103, 1839–1847.
[CrossRef]

15. Manzo, C.; Torreno-Pina, J.A.; Massignan, P.; Lapeyre, G.J., Jr.; Lewenstein, M.; Garcia Parajo, M.F. Weak
ergodicity breaking of receptor motion in living cells stemming from random diffusivity. Phys. Rev. X 2015,
5, 011021. [CrossRef]

16. Bronstein, I.; Israel, Y.; Kepten, E.; Mai, S.; Shav-Tal, Y.; Barkai, E.; Garini, Y. Transient anomalous diffusion of
telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 2009, 103, 018102. [CrossRef]

132



Entropy 2020, 22, 1317

17. Burnecki, K.; Weron, A. Fractional Lévy stable motion can model subdiffusive dynamics. Phys. Rev. E 2010,
82, 021130. [CrossRef]

18. Krapf, D.; Lukat, N.; Marinari, E.; Metzler, R.; Oshanin, G.; Selhuber-Unkel, C.; Squarcini, A.; Stadler, L.;
Weiss, M.; Xu, X. Spectral content of a single non-Brownian trajectory. Phys. Rev. X 2019, 9, 011019. [CrossRef]

19. Dybiec, B.; Gudowska-Nowak, E.; Barkai, E.; Dubkov, A.A. Lévy flights versus Lévy walks in bounded
domains. Phys. Rev. E. 2017, 95, 052102. [CrossRef]

20. Kou, S.C.; Xie, X.S. Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a
single protein molecule. Phys. Rev. Lett. 2004, 93, 180603. [CrossRef]

21. Sadegh, S.; Higgins, J.L.; Mannion, P.C.; Tamkun, M.M.; Krapf, D.Plasma membrane is compartmentalized
by a self-similar cortical actin meshwork. Phys. Rev. X 2017, 7, 011031. [CrossRef] [PubMed]

22. Burnecki, K.; Sikora, G.; Weron, A. Fractional process as a unified model for subdiffusive dynamics in
experimental data. Phys. Rev. E 2012, 86, 041912. [CrossRef] [PubMed]

23. Granger , C.W.J.; Joyeux, R. An introduction to long memory time series models and fractional differencing.
J. Time Ser. Anal. 1980, 1, 15–29. [CrossRef]

24. Brockwell, P.; Davis, R. Introduction to Time Series and Forecasting; Springer: New York, NY, USA, 2002.
25. Beran, J. Statistics for Long-Memory Processes; Chapman and Hall: New York, NY, USA, 1994.
26. Magdziarz, M.; Weron, A. Fractional Langevin equation with α-stable noise. Stud. Math. 2007, 181, 47–60.

[CrossRef]
27. Crato, N.; Rothman, P. Fractional integration analysis of long-run behavior for US macroeconomic time

series. Econom. Lett. 1994, 45, 287–291. [CrossRef]
28. Fouskitakis, G.; Fassois, S. Pseudolinear estimation of fractionally integrated ARMA (ARFIMA) models with

automatic applicatins. IEEE Trans. Signal Process. 1999, 47, 3365–3380. [CrossRef]
29. Gil-Alana, L.A. A fractionally integrated model for the Spanish real GDP. Econom. Bull. 2004, 3, 1–6.
30. Burnecki, K.; Weron, A. Algorithms for testing of fractional dynamics: A practical guide to ARFIMA

modelling. J. Stat. Mech. 2014, 2014, P10036. [CrossRef]
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Abstract: Identification of the diffusion type of molecules in living cells is crucial to deduct their
driving forces and hence to get insight into the characteristics of the cells. In this paper, deep
residual networks have been used to classify the trajectories of molecules. We started from the well
known ResNet architecture, developed for image classification, and carried out a series of numerical
experiments to adapt it to detection of diffusion modes. We managed to find a model that has a better
accuracy than the initial network, but contains only a small fraction of its parameters. The reduced
size significantly shortened the training time of the model. Moreover, the resulting network has less
tendency to overfitting and generalizes better to unseen data.

Keywords: SPT; anomalous diffusion; machine learning classification; deep learning; residual neural
networks

1. Introduction

Recent advances in single particle tracking (SPT) [1–4] have allowed to observe single
molecules in living cells with remarkable spatio-temporal resolution. Monitoring the details
of molecules’ diffusion has become the key method for investigation of their complex
environments.

The data collected in SPT experiments often reveal deviations from the Brownian
motion [5], i.e., the normal diffusion governed by the Fick’s laws [6] and characterized
by a linear time-dependence of the mean square displacement (MSD) of the molecules.
Those deviations are referred to as anomalous diffusion, a field intensively studied in the
physical community [7–10]. Since Richardson found a cubic scaling of MSD for particles
in turbulent flows [11], anomalous diffusion was observed in many processes including
tracer particles in living cells [12–14], transport on fractal geometries [15], charge carrier
transport in amorphous semiconductors [16], quantum optics [17], bacterial motion [18],
foraging of animals [19], human travel patterns [20] and trends in financial markets [21].
Depending on the type of nonlinearity, the anomalous diffusion is further divided into
sub- and superdiffusion—two categories corresponding to sub- and superlinear MSD,
respectively.

Several analytical approaches have already been attempted to analyze mobility patterns
of molecules. The most popular one is based on the mean square displacement [7,22–25].
The appeal of this method lies in its relative simplicity. However, it is known to have
several limitations due to the finite precision of SPT setups [7,22,26,27] and the lack of
significant statistics (short trajectories and/or very few ones). To overcome these problems,
several other analytic methods have been proposed [27–38]. Most of them simply replace
MSD by other features calculated from trajectories (e.g., radius of gyration [28] or velocity
autocorrelation function [39]).

In the last few years, classification of diffusion modes utilizing machine learning (ML)
algorithms is gaining on popularity. Bayesian approach [40–42], random forests [43–47],
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gradient boosting [44–47], neural networks [48], and deep neural networks [44,49–51]
have already been used in an attempt to either just classify the trajectories or to extract
quantitative information about them (e.g., the anomalous exponent [45,49,51]). The ML
approach seems to be more powerful than the analytical one. However, the latter usually
offers a deeper insight into the underlying processes governing the dynamics of molecules.

Despite the enormous progress in both the analytical and ML methods, the analysis of
SPT data remains challenging. The classification results produced by different methods
often do not agree with each other [27,38,46,47]. The reasons are similar to the ones limiting
the applicability of MSD: localization errors, short trajectories, or irregular sampling.
Thus, there is still need for new robust methods for anomalous diffusion. To catalog the
already existing approaches, to assess their usability and to trigger the search for new
ones, a challenge (called AnDi challenge) was launched last year by a team of international
scientists [52].

In this paper, we are going to present a novel approach to anomalous diffusion based
on deep residual networks (ResNets) [53]. In general, deep learning is quite interesting
from the perspective of an end user, since it is able to extract features from raw data
automatically, without any intervention by a human expert [54]. We already tested the
applicability of convolutional neural networks (CNN) to SPT data [44]. They turned out
to be very accurate. However, their architecture was quite complicated and the training
times (including an automatic search for an optimal model) were of the order of days.
Moreover, the resulting network had problems with the generalization to data coming
from sources different than the ones used to generate the training set. Residual networks
are a class of CNNs able to cure most of the problems the original CNN architecture is
facing (i.e., vanishing and/or exploding gradients, saturiation of accuracy with increasing
depth). They excel in image classification—a ResNet network won the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) in 2015.

We will start from the smallest of the residual architectures, i.e., ResNet18, and then
perform a series of numerical experiments in order to adopt it to characterization of
anomalous diffusion. Our strategy for model tuning will be quite simple and focused
mainly on the reduction of the parameters of the network. However, it should be noted
here that there exist already sophisticated methods for designing small models with good
performance [55–58]. The resulting network will then be applied to the G protein-coupled
receptors and G proteins data set, already analyzed in Refs. [38,46,47]. Although our
method is not a direct response to the AnDi Challenge [52] (e.g., we use different diffusion
models for training), it is consistent with its goal to search for new robust algorithms for
classification.

The paper is structured as follows. In Section 2, we briefly introduce the basics of
MSD-based methods, the diffusion models we are interested in as well as the residual
networks, which will be used for classification. In Section 3, data sets are briefly discussed.
The search for the optimal architecture and the performance of the resulting model are
presented in Section 4. The results are concluded in the last section.

2. Models and Methods

2.1. Traditional Analysis

A typical SPT experiment yields a series of coordinates (2D or 3D) over time for every
observed particle. Those series have to be analyzed in order to find a relationship between
the individual trajectories and the characteristics of the system at hand [59]. Typically, the
first step of the analysis is the detection of the type of diffusion encoded in the trajectories.

The most common approach to classification of diffusion is based on the mean-square
displacement (MSD) of particles [7,22–25]. The recorded time series is evaluated in terms
of the time averaged MSD (TAMSD),

δ2
t (Δ) =

1
t− Δ

∫ ∞

0

[
x(t′ + Δ)− x(t′)

]2dt′ (1)

138



Entropy 2021, 23, 649

where x(t) is the position of the particle at time t and Δ is the time lag separating the
consequtive positions of the particle. Typically, δ2

t (Δ) is calculated in the limit Δ  t to
obtain good statistics, since the number of positions contributing to the average decreases
with the increasing Δ.

The idea behind the MSD-based method is simply to evaluate the experimental MSD
curves, i.e., δ2

t (Δ) as a function of the varying time lag Δ and then to fit them with a
theoretical model of the form

δ2
t (Δ) � KαΔα, (2)

where Kα is the generalized diffusion coefficient and α is the so-called anomalous exponent.
The value of the latter one is used to discriminate between different diffusion types.
The case α = 1 corresponds to the normal diffusion (ND), also known as the Brownian
motion [5]. In this physical scenario, a particle moves freely in its environment. In other
words, it does not meet any obstacles in its path, and it also does not interact with other
distant molecules. Any non-Brownian (α �= 1) emanation of particle transport is referred
to as the anomalous diffusion. A sublinear MSD (α < 1) stands for subdiffusion, which
is appropriate to represent particles slowed down due to viscoelastic properties of their
surroundings [60], particles colliding with obstacles [61,62] or trapped particles [63,64].
A superlinear case (α > 1) indicates superdiffusion, which relates to a fast and usually
directed motion of particles driven by molecular motors [65].

2.2. Choice of Diffusion Models

Many different theoretical models of diffusion may be used for analysis of experimen-
tal data (see Ref. [9] for a detailed overview). However, following Refs. [43,44], we decided
to consider four models: normal diffusion [5], directed motion (DM) [22,66,67], fractional
Brownian motion (FBM) in subdiffusive mode [68], and confined diffusion (CD) [40].
According to Saxton [7], for those basic models of diffusion in 2D, we have:

δ2
ND(Δ) = 4DΔ,

δ2
FBM(Δ) = 4DΔα, (3)

δ2
DM(Δ) = 4DΔ + (vΔ)2,

δ2
CD(Δ) � r2

c

[
1− A1 exp

(−4A2DΔ
r2

c

)]
.

Here, v is the drift velocity in the directed motion, the constants A1 and A2 characterize
the shape of the confinement, and rc is the confinement radius.

2.3. Deep Learning Classification Methods

The above method has become very popular in the SPT community due to its simplicity.
It should work flawlessly for pure long trajectories with no localization errors. However,
real trajectories usually contain a lot of noise, which makes the fitting of mathematical
models to MSD curves challenging, even in the case of normal diffusion [22]. Moreover,
many experimental trajectories are short, limiting the evaluation of the MSD curves to
just a few time lags. As a consequence, there is a need for methods going beyond MSD to
provide a reliable information concerning the trajectories.

In a recent paper [44], we proposed two machine learning methods that outperform
the MSD analysis in case of noisy data. The first one is perceived as traditional machine
learning and utilizes a set of human-engineered features that should be extracted from
trajectories to feed the classifiers (see also Refs. [46,47] for a more extensive analysis). The
second one is based on deep neural networks, which constitute the state-of-the-art of the
modern machine learning classification. We showed that both methods perform similarly
on the synthetic test data. However, the deep learning approach may seem appealing to
practitioners from the SPT community because it usually operates on raw trajectories as
input data and does not require human intervention to create features for each trajectory.
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A cascade of multiple layers of nonlinear processing units is used in this case for automatic
feature identification, extraction, and transformation [69].

2.3.1. Convolutional Neural Networks

Convolutional neural networks (CNN) were used in Ref. [44] for classification pur-
poses. This choice was triggered by the fact that those networks have already been success-
ful in many tasks including time series analysis [70]. A CNN has usually two components.
The first one consisting of hidden layers extracts features from raw data. The fully con-
nected part of the network is responsible for classification (see Figure 1 for a schematic
representation of a CNN). In order to detect features in the input data, the hidden layers
perform a series of convolutions and pooling operations. Each convolution provides its
own map of features (a 3D array) by utilizing a filter that is sliding over the input data. The
size of the maps is reduced in the pooling elements.

Convolution
and pooling

Convolution
and pooling

Convolution
and pooling

Fully connected
layers

Output

Hidden layers
(feature extraction)

Classi cation

Input

Figure 1. A schematic representation of a CNN network (source: Ref. [44]).

Choosing the right depth of the network is a challenging task. In Ref. [44], we assumed
the architecture of the form (see also Ref. [71] for implementation details)

Batch− [Conv− Batch− ReLu] ∗ N − Dense− ReLu− Dense− Batch− So f tMax, (4)

and then performed a random search in the architecture and hyperparameter space in
order to find the optimal model as well as other parameters required to initialize it. Here,
Batch is the batch normalization layer, i.e., a layer performing normalization of the data
(not explicitly shown in Figure 1). Conv and Dense stand for convolution and dense layers,
respectively. ReLu is the abbreviation of the rectified linear unit, which is an activation
function filtering out negative values from the output of the preceding layer. Finally,
So f tMax is the activation function determining the final output of the classifier. We haven’t
used the pooling layers in this model because reducing the spatial size of the 2D trajectories
is usually not necessary. The procedure resulted in a network consisting of six convolutional
layers and two dense ones.

2.3.2. ResNet Architecture

Although the model resulting from the above procedure performed well on our
synthetic data (accuracy at the level of 97%), its architecture was quite complicated and the
network itself was relatively deep, resulting in processing times of the order of days on a
cluster of 24 CPUs with 50 GB total memory. However, long training times were not the
only issue. It is known that with the increasing depth the problem of vanishing/exploding
gradients may appear in the training phase of neural networks. Moreover, the training
error may increase with the number of layers, resulting in a saturation of accuracy [53].

This is the reason why in this paper we decided to use the residual network (ResNet) [53].
It is a class of CNNs, which utilizes shortcuts (skip connections) to jump over several layers
of the networks. Those shortcuts allow the network to make progress even if several layers
have stopped learning because there is one blocking the backpropagation (Figure 2).
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Residual unit

Layer blocking
backpropagation

Layer not learning

Residual unit
Residual unit

Figure 2. A regular CNN (left) versus a Resnet. Thanks to the skip connections in ResNet, the signal
can easily pass a blocking layer in the backpropagation phase.

The residual network may be understood as a stack of residual units, where each
unit is a small neural network with a skip connection. The outline of the unit is shown in
Figure 3. For given input x, the desired mapping we want to obtain by learning is H(x).
Since the shortcut connection carries out the input layer to the addition operator shown in
the figure, the rest of the unit needs only to learn the residual mapping F(x) = H(x)− x.
When a regular CNN network is initialized, its weights are close to zero, so the network just
outputs values close to zero. After adding the shortcuts, the network initially models the
identity function. Therefore, if the target function is close to that function (which is often
the case), the training phase will be significantly shorter than in the case of a regular CNN.

In Figure 4, the actual ResNet architecture is shown. We see that the core of the
network is divided into four stages. Each of them contains, in addition to the residual
units, a downsampling block. Its role is to reduce the information making its way across
the network.

2.3.3. XResNet

In 2018, three modifications to the original ResNet architecture have been proposed
under the common name XResNet [72]. Going into their details is beyond the scope of this
paper. However, since they are known to have a non-negligible effect on the accuracy of
the resulting model in some scenarios, we decided to include them in our search for the
optimal architecture.
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Figure 3. Residual unit in ResNet.

Figure 4. The architecture of ResNet. The downsampling block at the beginning of each stage help to
reduce the amount of information in the case of deeper networks (path B is used in this case).

3. Synthetic and Experimental Data

3.1. Synthetic Training Data

The main factor limiting the deployment of machine learning to trajectory analysis
is the availability of high-quality training data. It should contain a reasonable (i.e., large)
amount of input data (trajectories) and corresponding desired output (their diffusion types).
Since real data from experiments is not really provable (otherwise we would not need any
new classification method), synthetic sets generated with computer simulations of different
diffusion models are used for training. An ML algorithm uses the input–output pairs to
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learn the rules for data processing. Once trained, it is able to use those rules to classify new
unseen trajectories.

As already mentioned in Section 2.2, we decided to follow Refs. [43,44] and use four
basic models of diffusion to generate the training set of trajectories. The simulation methods
will be briefly described in the remaining part of this section.

3.1.1. Normal Diffusion

Although several equivalent methods for simulation of Brownian motion exist, we will
follow the approach presented by Michalet [22]. In case of normal diffusion, the probability
distribution of the displacement’s norm of a particle is given by the Rayleigh distribution

P(u) =
2u

4DΔt
exp

( −u2

4DΔt

)
, u ≥ 0, (5)

where u is the absolute distance traveled by the particle in time Δt. Thus, to simulate a
trajectory, we have to randomly choose a start position of a particle and a random direction
of the displacement ϕ and then pick a random step length u from the distribution (5). The
new position of the particle is calculated,

xnew = xold + u cos ϕ, (6)

ynew = yold + u sin ϕ,

and taken as the starting point for the next move. The whole procedure is repeated till a
trajectory of a desired length is generated.

3.1.2. Directed Motion

The simulation algorithm for the Brownian motion may be easily extended to generate
a trajectory for diffusion with drift. All we have to do is simply to add a correction to the
particle’s position due to its active motion:

dxi = vΔt cos β, (7)

dyi = vΔt sin β, (8)

where v is the norm of the drift velocity and β its direction. Once we have the corrections,
we add them to the new coordinates:

xnew = xold + u cos ϕ + dxi, (9)

ynew = yold + u sin ϕ + dyi.

The drift velocity is one of the parameters of the simulation. However, instead of
setting its value directly, we will rather use an active-motion-to-diffusion ratio [43]:

R =
v2T
4D

, (10)

where T is the time duration (i.e., the length of the trajectory). In our simulations, we will
draw a random value of R from a given range and then calculate v for given D and T. In
this way, it will be easier to generate similar trajectories with different values of v and D.

3.1.3. Confined Diffusion

Again, a small modification of the model for normal diffusion is needed to simulate a
particle confined inside a reflective circular boundary. We simply divide every step of the
simulation into 100 substeps with Δt′ = Δt/100. Then, a normal diffusion move is carried
out in every substep. The new position of the particle after all substeps will be updated
only if the distance from the center of the boundary to new coordinates is smaller than the
radius rc of the boundary.
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Following Wagner et al. [43], we will introduce a boundedness parameter B, defined as
the area of the smallest ellipse enclosing a normal diffusion trajectory (with no confinement)
divided by the area of the confinement,

B =
Aellipse

πr2
c

� DNΔt
r2

c
. (11)

It will help us to control the level of trapedness of particles in the simulations. B will be set
randomly for each synthetic trajectory. Based on its value, the radius rc will be calculated
for given D, N, and Δt.

3.1.4. Fractional Brownian Motion

In addition to the confined diffusion, we will also use fractional Brownian motion to
simulate the subdiffusive motion. FBM is the solution of the stochastic differential equation

dXi
t = σdBH,i

t , i = 1, 2, (12)

where σ =
√

2D is the scale parameter related to the diffusion coefficient D, H ∈ (0, 1) is
the Hurst parameter and BH

t is a continuous-time, zero-mean Gaussian process starting at
zero, with the following covariance function

E
(

BH
t BH

s

)
=

1
2

(
|t|2H + |s|2H − |t− s|2H

)
. (13)

The Hurst parameter H is connected with the anomalous exponent α via the relation

H =
α

2
. (14)

Since we want to use FBM for subdiffusion (i.e., α < 1) only, the values of H will be
restricted to the interval (0, 1/2) in the simulations.

3.1.5. Creating Noisy Data

Real measurements of particles’ positions are usually altered by noise from different
sources including localization errors, vibrations of the sample, electronic noise or errors in
the postprocessing phase [73]. Different methods of adding noise to synthetic trajectories
are possible. One can, for instance, vary the diffusion coefficient of particles or simply add
some disturbance to every point of a trajectory. We will go for the latter method and add
normal Gaussian noise with zero mean and standard deviation σ to each simulated position.

To easily generate trajectories characterized by different levels of noise, we will proceed
in the following way. We first introduce the signal-to-noise ratio:

Q =

{ √
DΔt
σ for ND, CD, and FBM,√

DΔt+(vΔt)2

σ for DM.
(15)

Then, we will randomly set Q and use the above formula to determine the standard
deviation σ appropriate for given D, Δt, and v.

3.1.6. Simulation Details

For the sake of comparison, our synthetic data set should resemble all characteristics of
the one used in Ref. [44]. To recap, we generated 20,000 trajectories, 5000 for each diffusion
type. The time lag between consecutive points within a trajectory was set to Δt = 1/30 s,
which is a typical value in experimental setups. All other parameters of the diffusion
models were chosen randomly from the predefined ranges. Details can be found in Table 1.
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Table 1. Parameters of the simulation and their values. All values except Δt were randomly chosen
from given ranges.

Parameter Meaning Range of Values

Δt timelag between steps 1/30 [s]
D diffusion coefficient 0.1–20 [μm2/s]
N length of a trajectory 30–600
B boundedness 1–6
R active motion to diffusion ratio 1–17
α anomalous exponent 0.3–0.7

SNR signal to noise ratio 1–9

The data set was then divided into three subsets: the training set for fitting the machine
learning models, the validation set used to estimate prediction errors for model selection
and the test set for assessment of the final model. The stratified sampling method [74] was
used for that purpose to guarantee a balanced representation of the diffusion modes in the
subsets. Their sizes are presented in Table 2.

Table 2. Partition of the synthetic data set.

Subset Type FBM CD DM ND Size Share

Training 3500 3500 3500 3500 14,000 70%
Validation 750 750 750 750 3000 15%

Test 750 750 750 750 3000 15%

3.2. Real Data

We will apply our classifier to data from a single particle tracking experiment on
G protein-coupled receptors and G proteins, already analyzed in Refs. [38,46,47]. The
receptors mediate biological effects of many hormones and neourotransmitters and are
also important as pharmacological targets [75]. Their signals are transmitted to the cell
interior via interactions with G proteins. The analysis of the dynamics of these two types
of molecules is extremely interesting because it may shed more light on how the receptors
and G proteins meet, interact, and couple.

4. Results

The main goal of this work was to find a deep residual network with the simplest
possible architecture, which is able to detect types of anomalous diffusion with satisfactory
accuracy. In this section, we will first present a series of experiments that allowed us
to significantly reduce the number of parameters of the original ResNet architecture.
Then, we will apply the resulting model to classify both synthetic and real trajectories.
All results were obtained with custom Python codes, available at https://github.com/
milySW/NNResearchAPI, accessed on 20 May 2021. PyTorch library [76] was used to build
the neural networks.

4.1. Finding the Optimal Network Architecture

We performed a series of computer experiments to find a reasonable ResNet architec-
ture. Our goal was to keep the network as small as possible to reduce both the training times
and the danger of overfitting. At the same time, we targeted the classification performance
on synthetic data beyond the accuracy of 90%.

Before we dive into the results of the most important experiments, we would like
to provide one important note. It is usually not worth investing effort and time in more
complicated networks for tiny improvements of accuracy because, due to the stochastic
nature of the networks, even different instances of the same model may yield slightly
different results. Having that in mind, we introduced a (rather arbitrary) threshold equal
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to 0.2 percentage point as an indicator of improvements worth considering. All changes in
accuracy smaller than the threshold were seen as irrelevant.

4.1.1. Impact of XResNet Modifications

Our first attempt was to check if the XResNet modifications [72] to the original
architecture are worth considering. We took ResNet18, i.e., the smallest residual network
with 18 layers, as the starting point. Results are shown in Table 3. Although the original
architecture performs better on the training set, the modified one generalizes better to
unseen data (i.e., has higher accuracy on the validation set). This may indicate the tendency
of ResNet18 to overfit. The cost we have to pay for the improvement in validation accuracy
by 0.34 percentage point is the increase in the number of parameters of the model (by
43,328) and a longer average time needed to complete one epoch (i.e., one cycle through
the training data set). Despite the cost, we will keep the modifications in the model and try
to reduce the number of parameters by other means.

Table 3. Impact of the XResNet modifications [72] on the accuracy of the model. Bold indicates the
architecture we chose for further investigations.

Architecture
Number of
Parameters

Accuracy
(Training)

Accuracy
(Validation)

Best Epoch
Epoch Time

[s]

ResNet 11,177,092 93.16% 90.33% 12 40
XResNet 11,220,420 92.19% 90.67% 21 48

4.1.2. Depth of Neural Network

The baseline ResNet architecture consists of four stages, each of which is characterized
by a different number of kernels that are convolved with the input [53]. However, ResNet
was designed for classification of images, which are usually more complex than our
trajectories. Thus, it will be interesting to check how a partial removal of those stages
impacts the accuracy of the classifier. Results of our experiments are shown in Table 4. We
see that reducing the depth of the network leads to a significant decrease in the number of
the parameters in the model and improves its accuracy on the validation data.

Table 4. Relationship between the accuracy of the model and its depth. Depth equal to 3 was chosen
for further investigations.

Depth
Number of
Parameters

Accuracy
(Training)

Accuracy
(Validation)

Best Epoch
Epoch Time

[s]

4 11,220,420 92.19% 90.67% 21 48
3 2,823,108 91.32% 91.10% 25 33
2 721,604 90.26% 90.80% 38 28

As expected, one does not need the full depth of the original ResNet architecture
to classify the trajectories. Although the number of the parameters for two stages is
very tempting, we decided to go further with depth 3 because it gives a slightly better
performance.

4.1.3. Dimension and Size of Convolutions

The original Resnet architecture works with 2D objects and uses convolution kernels
of size 3× 3. It will be interesting to see how the model performs with smaller kernels.
Although a 2× 2 kernel is theoretically possible, one usually tries to avoid kernels of even
sizes due to the lack of a well defined central pixel. Consequently, we will compare only
1 × 1 kernels with the baseline. As it follows from Table 5, the accuracy of the model
declines significantly with the introduction of the smaller kernels.
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Table 5. Relationship between the size of the 2D convolution kernels and the performance of
the model.

Conv.
Kernel

Number of
Parameters

Accuracy
(Training)

Accuracy
(Validation)

Best Epoch
Epoch Time

[s]

1× 1 357,188 75.95% 76.93% 24 9
3× 3 2,823,108 91.32% 91.10% 25 33

There is also a possibility of flattening the trajectories to 1D vectors and convolve them
with 1× X kernels. We have checked the model for kernels with an odd X ranging from 3
to 11. Results are shown in Table 6. As we can see, those changes could slightly improve
the performance of the model. Moreover, the size of the model was reduced by 44%. Thus,
we will keep 1× 5 kernels and work with 1D input for further investigations.

Table 6. Relationship between the size of the 1D convolution kernels and the performance of
the model.

Conv.
Kernel

Number of
Parameters

Accuracy
(Training)

Accuracy
(Validation)

Best Epoch
Epoch Time

[s]

1× 3 973,668 92.69% 91.23% 25 39
1× 5 1,590,148 92.77% 92.17% 30 24
1× 7 2,206,628 90.91% 91.60% 14 28
1× 9 2,823,108 93.59% 91.17% 20 30
1× 11 3,439,588 92.71% 91.70% 15 32

4.1.4. Feature Maps

The number of parameters of the model may also be reduced by limiting its “breadth”,
understood here as the number of feature maps (convolution kernels) at each layer. The
latter for the i-th block is given by the formula:{

x0 = 64,
xi = x0 · 2i−1, for i = 1, 2, . . . , n.

(16)

From Table 7, it follows that decreasing x0 from 64 to 32 will not significantly decrease
the accuracy of the model, but will reduce the number of parameters by a factor of 4.
Moreover, the learning process of the network takes noticeably less time.

Table 7. Relationship between the number of feature maps and the accuracy of the model.

x0
Number of
Parameters

Accuracy
(Training)

Accuracy
(Validation)

Best Epoch Epoch Time [s]

64 1,590,148 92.77% 92.17% 30 24
32 399,556 90.00% 92.00% 9 16
16 100,900 92.29% 91.10% 25 15

4.1.5. Additional Features

One of the advantages of deep networks, at least from the perspective of an end user,
is the ability to work with raw experimental data. There is no need for human-engineered
features as input because the network extracts its own features automatically from the data.
While this is true for ResNet architecture as well, in principle, we could augment the input
to the model by some additional attributes, including the ones tailor-made to the problem
of diffusion.

A set of features with the potential of distinguishing different diffusion modes from
each other was presented in Ref. [44]. Here, we would like to check if adding some of
those attributes to the model will have a positive impact on accuracy. We decided to use
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asymmetry, efficiency, fractal dimension, and TAMSD at lag 20 as additional input (see
Refs. [43,44] for definitions). For each trajectory, the values of the attributes were added to
the network after the raw data went through all convolutional layers and was flattened.

Results of this series of experiments are shown in Table 8. Although the network was
fed with additional information, its accuracy has not improved. To explain that, let us have
a look at the distribution of asymmetry among trajectories in our data set. As it follows
from Figure 5, its values for different types of diffusion overlap to some extent. Thus,
classifying them based on the information encoded in asymmetry may be challenging.
The same holds for the other attributes. Thus, we are not going to include them in our
final model.

Table 8. Impact of additional attributes on the performance of the model.

Additional Features
Number of
Parameters

Accuracy
(Training)

Accuracy
(Validation)

Best
Epoch

None 399,556 90.00% 92.00% 9
Asymmetry 399,560 89.96% 91.03% 15
Efficiency 399,560 91.34% 91.90% 61

Fractal dimension 399,560 91.20% 91.17% 23
TAMSD 399,560 90.54% 91.03% 34

All 399,572 83.82% 83.97% 12

Figure 5. Distribution of asymmetry among trajectories in the synthetic data for different types of diffusion.

4.1.6. Impact of Autocorrelation

Following Ref. [77], we decided to check if the autocorrelation function taken as
additional input improves the accuracy of the model. We combined the raw trajectories
with their autocorrelations calculated at lags 8, 16, and 24 into a single tensor structure and
used it as input to the model. Again, this measure did not improve the accuracy (Table 9).

Table 9. Using autocorrelation function as additional input to the model.

Autocorrelation
Number of
Parameters

Accuracy
(Training)

Accuracy
(Validation)

Best
Epoch

No 399,556 90.00% 92.00% 9
Yes 401,872 91.55% 91.93% 19

4.1.7. Selective Backprop

One of the interesting techniques to accelerate the training of deep neural networks is
the selective backprop [78]. The idea behind this procedure is to prioritize samples with
high loss at each iteration. It uses the output of sample’s forward pass in the training phase
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to decide whether to use that sample to compute gradients and update parameters of the
model or to skip immediately to other sample.

We carried out an experiment with two selective backprop scenarios. In the first one,
a subset of training data covering 98% of the total loss was chosen for back-propagation. In
this way, only 50–60% of trajectories were used in every epoch to update the network. In
the second scenario, 50% of the training data were always taken, covering between 94%
and 99% of the total loss in each epoch. It turned out that this method indeed shortens the
training phase of the network (in particular average epoch time). However, it yields worse
performance compared to the model utilizing the whole data set for back-propagation
(Table 10).

Table 10. Different scenarios of selective backprop and their impact on the accuracy of the model.

Scenario
Number of
Parameters

Accuracy
(Training)

Accuracy
(Validation)

Best Epoch
Epoch Time

[s]

None 399,556 90.00% 92.00% 9 16
98% of cost 399,556 81.81% 90.67% 14 11
50% of cost 399,556 80.57% 90.97% 19 10

4.1.8. Choice of Hyperparameters

In the last series of experiments, we tried to find optimal values of some hyperparam-
eters of the model. First, we looked at the cost function. Its choice allows us to control the
focus in the training phase. Cross entropy for instance strongly penalizes misclassification,
as it grows exponentially while approaching a wrong prediction [79]. Mean squared error
(MSE) is usually used for regression problems. It does not punish wrong classifications
enough, but rather promotes being close to a desired value. Although the cross entropy is
the natural choice in classification tasks, the choice of the cost function seems to have no
significant impact on the model’s validation accuracy (Table 11). We kept MSE for shorter
training times.

Table 11. Impact of cost function on the accuracy of the model.

Cost Function Accuracy (Training) Accuracy (Validation) Best Epoch

Cross-entropy 91.91% 91.97% 26
MSE 90.00% 92.00% 9

An activation function defines the output of a node for the given input. It usually in-
troduces some nonlinearity to the model. We checked four different functions. Sigmoid [80]
is one of the most widely used activation functions today. It nicely mimics the behavior of
real neurons; however, it may suffer from vanishing/exploding gradients. ReLU [81] is
computationally very cheap, but it is also known to “die” in some situations (weights may
update in such a way that the neuron never activates). Leaky ReLU [82] and ELU [83] are
modifications of ReLU that mitigate that problem.

According to Table 12, ReLU activation function offers the highest accuracy on the
validation set.

Table 12. Accuracy of the model for different choices of the activation function.

Activation Function Accuracy (Training) Accuracy (Validation) Best Epoch

Sigmoid 87.65% 85.13% 10
ReLU 90.00% 92.00% 9

LeakReLU 91.50% 91.53% 24
ELU 85.15% 87.20% 3

149



Entropy 2021, 23, 649

The batch size is another important hyperparameter in the model. It defines the
number of samples to work through before the model’s internal parameters are updated.
Larger batches should allow for more efficient computation, but may not generalize well to
unseen data [84]. Small batches, on the other hand, are known to sometimes have problems
with arriving at local minima [79].

Results for three different batch sizes are shown in Table 13—512 turned out to be the
best one in our model.

Table 13. Accuracy of the model for different batch sizes.

Batch Size Accuracy (Training) Accuracy (Validation) Best Epoch

256 89.15% 91.63% 7
512 90.00% 92.00% 9
1024 94.75% 91.37% 23

4.1.9. Resulting Model

Based on the results of the above experiments, we were able to reduce the number
of parameters in the model from 11,220,420 in Resnet18 with XResNet modifications to
399,556. In the same time, the accuracy of the model on validation data increased by 1.33
percentage points.

The architecture of the final model is summarized in Table 14. Besides the already
mentioned parameters and hyperparameters, there are two others that have not been
discussed yet. The activation threshold is a boolean flag telling the model whether it should
automatically estimate the threshold value, above which the neurons become active. In
addition, the learning rate is a tuning parameter that determines the step size at each
iteration while moving toward a minimum of the loss function. To find its value, we
used a finder algorithm proposed in Ref. [85] and implemented in a PyTorch Lightning
module [86].

Table 14. Details of the optimal architecture.

Category Feature Value

Architecture

XResNet Yes
Dimension 1D

Depth 3
Feature map number 32

Modifications
Additional attributes No

Autocorrelation No
Filtering No

hyperparameters

Conv. kernel 1× 5
Cost function MSE

Activation function ReLU
Batch size 512

Activation threshold Yes
Learning rate 0.0003

4.2. Performance of the Model

A test set consisting of 3000 samples (750 for each diffusion type) was used to assess
the performance of the final model (see Section 3.1.6 for details). In Figure 6, the confusion
matrix of the classifier is shown. By definition, an element Cij of the matrix is equal to the
number of observations known to be in class i (true labels) and predicted to be in class j [87].
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Figure 6. Confusion matrix of the model. Rows correspond to the true labels and columns to the
predicted ones.

The model achieves the best performance for subdiffusion. Only 12 out of 750 trajec-
tories have been wrongly classified in case of FBM and 25 out of 750 in case of CD. The
other two modes are more challenging for the classifier. As for DM, 136 trajectories are
misclassified, most of them as normal diffusion. The performance for the latter is slightly
better—109 trajectories got wrong labels.

In Section 4.1.5, we tried to improve the performance of the model with some addi-
tional human-engineered features, which were motivated by the characteristics of diffusion
itself. We were not really successful because it turned out that the distributions of those
features overlap with each other, particularly for DM and ND, contributing to the confusion
of the classifier. We guess that the same holds for features extracted automatically by the
ResNet model—they are not specific enough to better distinguish DM from ND.

The confusion matrix may be used to calculate the basic performance metrics of the
classifier. They are summarized in Table 15. Accuracy is defined as the number of correct
predictions divided by the total number of predictions. Precision is the fraction of correct
predictions of a class among all predictions of that class. It indicates how often a classifier is
correct if it predicts a given class. Recall is the fraction of correct predictions of a given class
over the total number of samples in that class. It measures the number of relevant results
within a predicted class. Finally, F1 score is the harmonic mean of precision and recall.

Table 15. Basic performance metrics of the model on test data.

Accuracy Precision Recall F1 Score

FBM - 96.98% 98.40% 97.68%
CD - 91.77% 96.67% 94.16%
DM - 92.33% 81.87% 86.78%
ND - 81.76% 85.47% 83.57%

Total/Average 90.6% 90.71% 90.6% 90.55%

Even though the model has apparently some problems with DM and ND classes,
its overall accuracy on test data are high. It returns much more relevant results than the
irrelevant ones (high average precision), and it is able to yield most of the relevant results
(high average recall). The F1 score simply confirms that.

It could be also interesting to check how the performance metrics of the classifier
evolve with the training time (i.e., with the number of epochs). The results are presented in
Figure 7. To generate the plots, we trained 50 instances of the model and then averaged
the metrics. In this way, we could also estimate the 95% confidence levels. We see that all
metrics reach a satisfactory level already in the third epoch. Further training improves the
performance of the model only slightly.
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Figure 7. Performance metrics (on validation data) of the model as functions of the training time.

The same results, but this time broken down into separate diffusion modes, are
shown in Figure 8. The measures for DM and ND are not only smaller than the ones
for subdiffusion, but they also fluctuate to a higher extent when we look at values after
the early epochs. This is due to the fact that these two classes are often confused with
each other.

Figure 8. Performance metrics (on validation data) for each diffusion mode as functions of the training time.

The metrics for individual classes in the best epoch are shown in Figure 9. Again, we
see a small gap between the subdiffusive classes on one hand and the problematic ones
(i.e., DM and ND) on the other. However, even in the worst case, the metrics are above 80%
indicating a good performance of the classifier.
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Figure 9. Performance metrics in the best epoch for each diffusion mode.

4.3. Classification of Real Data

From the available data on G protein-coupled receptors and G proteins, we took into
account only trajectories with at least 50 steps. In this way, the data set was reduced to
1029 G proteins and 1218 receptors. Classification results are shown in Table 16. For the
sake of comparison, two other predictions are reported in the table: a gradient boosting
method utilizing noisy training data and a set of human-engineered features (reduced Set
A trained with noise, see Table 15 in Ref. [47] for details) and a statistical testing procedure
based on the maximum distance traveled by the particle (MAX method, see Refs. [38,46]
for details).

Table 16. Classification of real data: comparison of our model with the feature based ML method
from Ref. [47] (Set A with noise) and the statistical hypothesis testing from Ref. [38,46] (MAX method).
“Rec.” and “G Prot.” stand for G protein-coupled receptors and G proteins, respectively. Due to
rounding, the numbers may not add up precisely to 100%.

Our Model Set A with Noise MAX Method

Rec. G Prot. Rec. G Prot. Rec. G Prot.

Subdiffusion 0% 0.6% 25% 34% 21% 24%
Normal diffusion 70% 65% 72% 58% 79% 76%

Superdiffusion 30% 34.4% 1% 6% 0% 1%

Despite some differences in the absolute numbers, all three methods classify most of
the trajectories as normal diffusion. However, there are significant discrepancies between
them in the classification of the remaining time series. While our method labels almost all
of them as superdiffusion, the other two ones predict subdiffusion in most of the cases.
Unfortunately, the ground-truth for real data are missing and the results cannot be proven.
However, it was already pointed out in Ref. [38] that different classification algorithms may
provide substantially different results for the same data sets. Averaging of the results from
all available methods has been proposed to mitigate the risk of large classification errors.

5. Discussion and Conclusions

Identifying the type of motion of particles in living cells is crucial to deduct their
driving forces and hence to get insight into the mechano-structural characteristics of the
cells. With the development of advanced AI methods in the last decades, there is an
increasing interest to use them for that purpose. These methods are expected to outperform
the well established statistical approach, in particular for noisy and small data sets.
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In this paper, deep residual networks have been used to classify the SPT trajectories.
We started from the well-known ResNet architecture [72], which excels in image classifica-
tion, and carried out a series of numerical experiments to adapt it to detection of diffusion
modes. We managed to find a model that has a better accuracy than the initial network,
but contains only a small fraction of its parameters (399,556 vs. 11,177,092 in ResNet18,
i.e., the smallest among ResNet networks). The reduced number of parameters had a huge
positive impact on the training time of the model. Moreover, the resulting network has less
tendency to overfitting and generalizes better to unseen data.

The overall accuracy of our model on the synthetic test data with noise is pretty good
(90.6%). Breaking down the predictions into individual classes reveals that the model
is able to recognize FBM and confined diffusion with a remarkable accuracy (99.6% and
98.53%, respectively). The detection of normal diffusion and directed motion seems to be
more challenging and the model mixes up those two categories with each other from time
to time.

Regarding the classification of real data, the predictions of our model are a little bit
confusing. Compared to two other methods, i.e., a statistical testing procedure based on
the maximum distance traveled by the particle [38,46] and gradient boosting methods
with a set of tailor-made features characterizing the trajectories [47], it gives a similar
fraction of normal diffusion (the majority class) among the trajectories. However, while
our model classifies the remaining data as superdiffusion, the other ones assign most of
those trajectories to the subdiffusive class. Moreover, it should be mentioned that some
other classifiers provide results different from the ones in Table 16 [38,46]. In light of
the above, the authors in Ref. [38] suggested taking a mean of the results of all available
methods to minimize the risk of large errors. Therefore, there is still need to search for new
classification methods for SPT data.
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Abstract: The growing interest in machine learning methods has raised the need for a careful study
of their application to the experimental single-particle tracking data. In this paper, we present the
differences in the classification of the fractional anomalous diffusion trajectories that arise from
the selection of the features used in random forest and gradient boosting algorithms. Comparing
two recently used sets of human-engineered attributes with a new one, which was tailor-made
for the problem, we show the importance of a thoughtful choice of the features and parameters.
We also analyse the influence of alterations of synthetic training data set on the classification
results. The trained classifiers are tested on real trajectories of G proteins and their receptors on a
plasma membrane.

Keywords: anomalous diffusion; machine learning classification; feature engineering

1. Introduction

Starting with the pioneering experiment performed by Perrin [1], the quantitative analysis
of microscopy images has become an important technique for various disciplines ranging from
physics to biology. Over the last century, it has evolved to what is now known as single-particle
tracking (SPT) [2–4]. In recent years, SPT has gained popularity in the biophysical community.
The method serves as a powerful tool to study the dynamics of a wide range of particles including small
fluorophores, single molecules, macromolecular complexes, viruses, organelles and microspheres [5,6].
Processes such as microtubule assembly and disassembly [7], cell migration [8], intracellular
transport [9,10] and virus trafficking [11] have been already successfully studied with this technique.

A typical SPT experiment results in a series of coordinates over time (also known as “trajectory”)
for every single particle, but it does not provide any directed insight into the dynamics of the
investigated process by itself. Mobility patterns of particles encoded in their trajectories have to
be extracted in order to relate individual trajectories to the behavior of the system at hand and the
associated biological process [12]. The analysis of SPT trajectories usually starts with the detection of a
corresponding motion type of a particle, because this information may already provide insights into
mechanical properties of the particle’s surrounding [13]. However, this initial task usually constitutes
a challenge due to the stochastic nature of the particles’ movement.

There are already several approaches to analyse the mobility patterns of particles. The most
commonly used one is based on the mean square displacement (MSD) of particles [10,14–17]. The idea
behind this method is quite simple: a MSD curve (i.e., an average square displacement as a function
of the time lag) is quantified from a single experimental trajectory and then fitted with a theoretical
expression [18]. A linear best fit indicates normal diffusion (Brownian motion) [19], which corresponds
to a particle moving freely in its environment. Such a particle neither interacts with other distant
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particles nor is hindered by any obstacles. If the fit is sublinear, the particle’s movement is referred
to as subdiffusion. It is appriopriate to represent particles moderated by viscoelastic properties of
the environment [20], particles which hit upon obstacles [21,22] or trapped particles [9,23]. Finally,
a superlinear MSD curve means superdiffusion, which relates to the motion of particles driven
by molecular motors. This type of motion is faster than the linear case and usually in a specific
direction [24].

Although popular in the SPT community, the MSD approach has several drawbacks. First of
all, experimental uncertainties introduce a great amount of noise into the data, making the fitting of
mathematical models challenging [10,14,25,26]. Moreover, the observed trajectories are often short,
limiting the MSD curves to just a few first time lags. In this case, distinguishing between different
theoretical models may not be feasible. To overcome these problems, several analytical methods that
improve or go beyond MSD have already been proposed. The optimal least-square fit method [10],
the trajectory spread in space measured with the radius of gyration [27], the van Hove displacements
distributions [28], self-similarity of trajectory using different powers of the displacement [29] or the
time-dependent directional persistence of trajectories [30] are examples of methods belonging to the
first category. They may be combined with the results of the pure MSD analysis to improve the outcome
of classification. The distribution of directional changes [31], the mean maximum excursion method [32]
and the fractionally integrated moving average (FIMA) framework [33] belong to the other class.
They allow efficient replacement of the MSD estimator for classification purposes. Hidden Markov
models (HMM) turned out to be quite useful in heterogeneity checking within single trajectories [34,35]
and in the detection of confinement [36]. Classification based on hypothesis testing, both relying on
MSD and going beyond this statistics, has been shown to be quite successful as well [26,37].

In the last few years, machine learning (ML) has started to be employed for the analysis of
single-particle tracking data. In contrast to standard algorithms, where the user is required to explicitly
define the rules of data processing, ML algorithms can learn those rules directly from series of data.
Thus, the principle of ML-based classification of trajectories is simple: an algorithm learns by adjusting
its behavior to a set of input data (trajectories) and corresponding desired outputs (real motion types,
called the ground truth). These input–output pairs constitute the training set. A classifier is nothing
but a mapping between the inputs and the outputs. Once trained, it may be used to predict the motion
type of a previously unseen sample.

The main factor limiting the deployment of ML to trajectory analysis is the availability of
high-quality training data. Since the data collected in the experiments is not really provable (otherwise,
we would not need any new classification method), synthetic sets generated with computer simulations
of different diffusion models are usually used for training.

Despite the data-related limitations, several attempts at ML-based analysis of SPT experiments
have been already carried out. The applicability of the Bayesian approach [18,38,39], random
forests [40–43], neural networks [44] and deep neural networks [41,45,46] was extensively studied.
The ultimate goal of those works was the determination of the diffusion modes. However, some of
them went beyond the pure classification and focused on extraction of quantitative information about
the trajectories (e.g., the anomalous exponent [42,45]).

In one of our previous papers, we compared two different ML approaches to classification [41].
Feature-based methods do not use raw trajectories as input for the classifiers. Instead, they require a set
of human-engineered features, which are then used to feed the algorithms. In contrast, deep learning
(DL) methods extract features directly from raw data without any effort from human experts. In this
case, the representation of data is constructed automatically and there is no need for complex data
preprocessing. Deep learning is currently treated as the state-of-the-art technology for automatic
data classification and slightly overshadows the feature-based methods. However, from our results,
it follows that the latter are still worth to consider. Compared to DL, they may arrive at similar
accuracies in much shorter training times, are usually easier to interpret, allow to work with trajectories
of different lengths in a natural way and often do not require any normalisation of data. The only
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drawback of those methods is that there is not a universal set of features that works well for trajectories
of any type. Choosing the features is challenging and may have an impact on the classification results.

In this paper, we would like to elaborate on the choice of proper features to represent trajectories.
Comparing classifiers trained on the same set of trajectories, but with slightly different features, we will
address some of the challenges of feature-based classification.

The paper is structured as follows. In Section 2, we briefly introduce the concept of anomalous
diffusion and present the stochastic models that we chose to model it. In Section 3, methods and data
sets used in this work are discussed. The results of classification are extensively analysed in Section 4.
In the last section, we summarise our findings.

2. Anomalous Diffusion and Its Stochastic Models

Non-Brownian movements that exhibit non-linear mean squared displacement can be described
by multiple models, depending on some specific properties of the corresponding trajectories. The most
popular models are the continuous-time random walk (CTRW) [9], random walks on percolating
clusters (RWPC) [47,48], fractional Brownian motion (FBM) [49–51], fractional Lévy α-stable motion
(FLSM) [52], fractional Langevin equation (FLE) [53] and autoregressive fractionally integrated moving
average (ARFIMA) [54].

In this paper, we follow the model choice described in [26,37,43]—namely, we use FBM,
the directed Brownian motion (DBM) [55] and Ornstein–Uhlenbeck (OU) processes [56]. With the
particular choice of the parameters, all these models simplify to the classical Brownian motion
(i.e., normal diffusion).

The FBM is the solution of the stochastic differential equation

dXi
t = σdBH,i

t , i = 1, 2, (1)

where σ > 0 is the scale coefficient, which relates to the diffusion coefficient D via σ =
√

2D, H ∈ (0, 1)
is the Hurst parameter and BH

t is a continuous-time, zero-mean Gaussian process starting at zero,
with the following covariance function

E
(

BH
t BH

s

)
=

1
2

(
|t|2H + |s|2H − |t− s|2H

)
. (2)

The value of H determines the type of diffusion in the process. For H < 1
2 , FBM produces subdiffusion.

It corresponds to a movement of a particle hindered by mobile or immobile obstacles [57]. For H > 1
2 ,

FBM generates superdiffusive motion. It reduces to the free diffusion at H = 1
2 .

The directed Brownian motion, also known as the diffusion with drift, is the solution to

dXi
t = vidt + σdB1/2,i

t , i = 1, 2, (3)

where v = (v1, v2) ∈ R2 is the drift parameter and σ is again the scale parameter. For v = 0, it reduces
to normal diffusion. For other choices of v, it generates superdiffusion related to an active transport of
particles driven by molecular motors.

The Ornstein–Uhlenbeck process is often used as a model of a confined diffusion (a subclass of
subdiffusion). It describes the movement of a particle inside a potential well and can be determined as
the solution to the following stochastic differential equation:

dXi
t = −λi(Xi

t − θi)dt + σdB1/2,i
t , i = 1, 2, θi ∈ R. (4)

The parameter θ = (θ1, θ2) is the long-term mean of the process (i.e., the equilibrium position of a
particle), λ = (λ1, λ2) is the value of a mean-reverting speed and and σ is again the scale parameter.
If there is no mean reversion effect, i.e., λi = 0, OU reduces to normal diffusion.
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3. Methods and Used Data Sets

In this paper, we discuss two feature-based classifiers: random forest (RF) and gradient boosting
(GB) [58]. The term feature-based relates to the fact that the corresponding algorithms do not operate
on raw trajectories of a process. Instead, for each trajectory a vector of human-engineered features is
calculated and then used as input for the classifier. This approach for the diffusion mode classification
has already been used in [41–43,45], but here, we propose a new set of features, which gives better
results on synthetic data sets.

Both RF and GB are examples of ensemble methods, which combine multiple classifiers to obtain
better predictive performance. They use decision trees [59] as base classifiers. A single decision tree
is fairly simple to build. The original data set is split into smaller subsets based on values of a given
feature. The process is recursively repeated until the resulting subsets are homogeneous (all samples
from the same class) or further splitting does not improve the classification performance. A splitting
feature for each step is chosen according to Gini impurity or information gain measures [58].

A single decision tree is popular among ML methods due to the ease of its interpretation.
However, it has several drawbacks that disqualify it as a reliable classifier: it is sensitive to even
small variations of data and prone to overfitting. Ensemble methods combining many decision trees
help to overcome those drawbacks while maintaining most of the advantages of the trees. A multitude
of independent decision trees is constructed by making use of the bagging idea with the random
subspace method [60–62] to form a random forest. Their prediction is aggregated and the mode of the
classes of the individual trees is taken as the final output. In contrast, the trees in gradient boosting
are built in a stage-wise fashion. At every step, a new tree learns from mistakes committed by the
ensemble. GB is usually expected to perform better than RF, but the latter one may be a better choice
in case of noisy data.

In this work, we used implementations of RF and GB provided by the scikit-learn Python
library [63]. The performance of the classifiers was evaluated with the common measures including
accuracy, precision, recall, F1 score and confusion matrices (although the information given by
those measures is to some extent redundant, we decided to use all of them due to their popularity).
The accuracy is a percentage of correct predictions among all predictions, that is a general information
about the performance of a classifier (reliable in case of the balanced data set). The precision and recall
give us a bit more detailed information for each class. The precision is a ratio of the correct predictions
to all predictions in that class (including the cases falsely assigned to this class). On the other hand,
the recall (also called sensitivity or true positive rate) is the ratio of correct predictions of that class
to all members of that class (including the ones that were falsely assigned to another class). The F1
score is a harmonic mean of precision and recall, resulting in high value only if both precision and
recall are high. Finally, the confusion matrices show detailed results of classification: element ci,j of
matrix C is the percentage of the observations from class i assigned to class j (a row presents actual
class, while the column presents predicted class).

The Python codes for the data simulation, features calculation, models preparation and
performance calculation are available at Zenodo (see Supplementary Materials).

3.1. Features Used for Classification

As already mentioned above, both ensemble methods require vectors of human-engineered
features representing the trajectories as input. In some sense, those methods may be treated as a kind
of extension to the statistical methods usually used for classification purposes. Instead of conducting a
statistical testing procedure of diffusion based on one statistic, what is often the case, we can combine
several statistics with each other bu turning them into features, which are then used to train a classifier.
This could be of particular importance in situations, when single statistics yield results differing from
each other (cf. [43]). It should be mentioned, however, that choosing the right features is a challenging
task. For instance, we have already shown in [41] that classifiers trained with a popular set of features
do not generalise well beyond the situations encoutered in the training set. Thus, great attention needs
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to be paid to the choice of the input features to machine learning classifiers as well. They ought to
cover all the important characteristics of the process, but at the same time, they should contain the
minimal amount of unnecessary information, as each redundant piece of data causes noise in the
classification or may lead to overfitting, for example (for a general discussion concerning a choice of
features, see, for instance, [64]).

Based on the results in [41,43], we decided to use the following features in our analysis, hereinafter
referred to as Set A:

• Anomalous exponent α, fitted to the time-averaged mean square displacement (TAMSD).
This exponent relates to the Hurst parameter in Equation (1) via α = 2H.

• Diffusion coefficient D, fitted to TAMSD.
• Mean squared displacement ratio, characterising the shape of a MSD curve. In general, it is given

with the formula

κ(n1, n2) =
1

N−n1
∑N−n1

i=1

∣∣Xi+n1 − Xi
∣∣2

1
N−n2

∑N−n2
i=1

∣∣Xi+n2 − Xi
∣∣2 − n1

n2
,

where n1 < n2. In this work, we set n2 = n1 + 1 and averaged the output over n1. In other words,
we used (n1 replaced by n for convenience):

κ =
1

N − 1

N−1

∑
n=1

κ(n, n + 1). (5)

• Efficiency, calculated as

E =
|XN−1 − X0|

(N − 1)∑N−1
i=1 |Xi − Xi−1|2

, (6)

which measures the linearity of a trajectory.
• Straightness, a measure of the average direction change between subsequent steps, calculated as:

S =
|XN−1 − X0|

(N − 1)∑N−1
i=1 |Xi − Xi−1|

. (7)

• The value of empirical velocity autocorrelation function [65] of lag 1 in point n = 1, that is

χ =
1

N − 2

N−2

∑
i=1

(Xi+2 − Xi+1) · (Xi+1 − Xi) .

• Maximal excursion, given by the formula

ME =
max(Xi+1 − Xi)

XN−1 − X0
. (8)

It is inspired by the mean maximal excursion (MME) [32], detecting the jumps that are long as
compared to the overall displacement.

• The statistics based on p-variation [52]:

V(p)
m =

N/m−1

∑
i=0

|X(i+1)m − Xim|p.

The usefulness of this statistic to recognition of the fractional Lévy stable motion (including
fractional Brownian motion) was shown in [52]. We introduce a quantity that verifies if for any
p the function V(p)

m of the variable m changes the monotonicity. We provide the information if
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for the highest value of p such that V(p)
m does change the monotonicity, it is convex or concave.

In short, we analyse V(p)
m as a function of m to provide one the following values:

P =

⎧⎪⎨⎪⎩
0 if it does not change the monotonicity,
1 if it is convex for the highest p for which it is not monononuous,

−1 if it is concave for the highest p for which it is not monononuous.
(9)

The first five features were already used in [41]. It should also be mentioned here that three of them are
based on MSD curves. There is one important point to consider while calculating the curves, namely
the maximum time lag. If not specified otherwise, we will use the lag equal to 10% of each trajectory’s
length. Since this choice is not obvious and may impact the classification performance, we will discuss
the sensitivity of classifiers’ accuracies to different choices of the lag in Section 4.5.

Apart from the set of features presented above, denoted Set A, we are going to analyse two other
sets: the one used in [40,41], referred as Set B, and the one proposed in [43] (set C). The lists of features
used in each set are given in Table 1 (for their exact definition, please see the mentioned references).
Sets A and B have several features in common. The link between sets A and C is not so apparent,
but the maximal excursion and p-variation-based statistics play in the description of trajectories a role
similar to the standardised maximum distance and the exponent of power function fitted to p-variation,
respectively.

Following [41], we consider four classifiers for each set of features: RF and GB classifiers built
with the full set (labelled as “with D”) and with a reduced one after the removal of the diffusion
constant D (“no D”).

Table 1. Features used for classification purposes in each of analysed sets.

Set A Set B Set C
(from [41]) (from [43])

Anomalous exponent α Anomalous exponent α Anomalous exponent α
Diffusion coefficient D Diffusion coefficient D Diffusion coefficient D

MSD ratio MSD ratio —
Efficiency Efficiency —

Straightness Straightness —
VAC (for lag 1) — —

Maximal excursion — —
p-variation-based statistics — —

— Asymmetry —
— Fractal dimension —
— Gaussianity —
— Kurtosis —
— Trappedness —
— — Standardised maximum distance
— — Exponent of power function

fitted to p-variation (for p = 1, 2, ..., 5)

3.2. Synthetic Data

Unlike the explicitly programmed methods, machine learning algorithms are not ready-made
solutions for arbitrary data. Instead, an algorithm needs to be firstly fed with a reasonable amount
of data (so-called training data) that should contain the main characteristics of the process under
investigation in order to find and learn some hidden patterns. As the classifier is not able to extract
any additional patterns from previously unseen samples after this stage, its performance is highly
dependent on the quality of the training data. Hence, the training set needs to be complete in
some sense.
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First, we created our main data set, which will be referred to as the base data set for the remainder
of this paper. It is analogous to the one used in [43]. We generated a number of 2D trajectories according
to the three diffusion models described in Section 2, with no correlations between the coordinates.
A single trajectory can be denoted as

Xn = (Xt0 , Xt1 , . . . , XtN ) , (10)

where Xti =
(

X1
ti

, X2
ti

)
∈ R2 is the position of the particle at time ti = t0 + iΔt, i = 0, 1, . . . , N. We kept

the lag Δt between two consecutive observations constant.
The details of our simulations are summarised in Table 2. In total, 120,000 trajectories have been

produced, 40,000 for each diffusion mode, in order to balance the data set. The length of the trajectories
was randomly chosen from the range between 50 and 500 steps to mimic typical observations in
experiments. We set σ = 1 μm s−1/2 and Δt = 1 s.

Table 2. Characteristics of the simulated trajectories used to train the classifiers. For the base training
set, the following values were used: c = 0.1, σ = 1μm s−1/2 and Δt = 1 s.

Diffusion Class Model Parameter Ranges Number of Trajectories

Normal diffusion FBM H ∈ [0.5− c, 0.5 + c] 20,000
DBM v = (v1, v2), v1, v2 ∈ [0, c] 10,000
OU θ = 0, λ = (λ1, λ2), λ1, λ2 ∈ [0, c] 10,000

Subdiffusion FBM H ∈ [0.1, 0.5− c) 20,000
OU θ = 0, λ = (λ1, λ2), λ1, λ2 ∈ (c, 1] 20,000

Superdiffusion FBM H ∈ (0.5 + c, 0.9] 20,000
DBM v = (v1, v2), v1, v2 ∈ (c, 1] 20,000

Since the normal diffusion can be generated by a particular choice of the models’ parameters
(H = 0.5 for FBM, v = 0 for DBM and λ = 0 for OU), it is almost indistinguishable from the anomalous
diffusion generated with the parameters in the vicinity of those special values. The addition of the
noise complicates the problem even more. Thus, following [43], we introduced a parameter c that
defines a range in which a weak sub- or superdiffusion should be treated as a normal one. Although
introduced here at a different level, it bears resemblance to the cutoff c used in [37].

Apart from the base data set, we are going to use several auxiliary ones to elaborate on different
aspects of the feature choice. In Section 4.3, we will work with a training set, in which the trajectories
from the base one are disturbed with a Gaussian noise to resemble experimental uncertainties.
In Section 4.4, we will analyse the performance of classifiers trained on synthetic data generated
with σ = 0.38, corresponding to the diffusion coefficient D = 0.0715 μm2 s−1, which is adequate for
the analysis of real data samples. To study the sensitivity of the classifiers to the value of the cutoff c in
Section 4.6, we will use three further sets with c = 0, c = 0.001 and c = 0.01. In Section 4.7, a synthetic
set with σ = 2D, where D is drawn from the uniform distribution on [1, 9] will be used to check how
the classifiers cope with the trajectories characterised by heterogeneous mobilities.

For all data sets, the training and testing subset were randomly selected with a 70%/30% ratio.

3.3. Empirical Data

To check how our classifiers work on unseen data, we will apply them to some real data.
We decided to use the trajectories of G proteins and G-protein-coupled receptors already analysed
in [37,43,66]. To avoid some issues related with short time series, we limited ourselves to trajectories
with at least 50 steps only, obtaining 1037 G proteins’ and 1218 receptors’ trajectories. They are
visualised in Figure 1.
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Figure 1. Trajectories of the receptors (left) and G proteins (right) used as input for the classifiers.
Different colors are introduced to indicate different trajectories. The set of the receptors contains 1218
trajectories and the one of G proteins—1037 trajectories. The lengths of the trajectories are from range
[50, 401], the time step is equal to 28.4 ms and recorded positions are given in μm.

4. Results

The main goal of our work is a comparative analysis of classifiers trained using different sets of
features (see Table 1 for their definition). The classifiers were trained and tested on our base data set
and the auxiliary data sets, for comparison.

In order to optimise both classification algorithms, we looked for their hyperparameters using
the RandomisedSearchCV method from scikit-learn library. It performs a search over values of
hyperparameters generated from their distributions (in our case, discrete uniform ones). The term
hyperparameter in this context means a parameter required for the construction of the classifier,
which has to be set by a human expert before the learning process starts. In general, it influences the
performance of the classifier, hence its choice is essential.

4.1. Classification Results on Base Data Set Using Proposed Set of Features

We start with the classifiers trained on the base set (see Table 2 for details). We trained four
different classifiers: RF and GB for both the full set of attributes (“with D”) and a reduced one (“no D”).
Set A of features was used for representation of trajectories. The performance of these classifiers will
be treated as a benchmark in our further analysis.

The hyperparameters of the classifiers are presented in Table 3 (for the detailed explanation of
each of these parameters, please see [43,58]). It is worth noticing a difference in the ensemble sizes
between the full set and the reduced one—in case of the gradient boosting, we observe a ninefold
reduction of the number of trees. However, this difference does not reflect in the performance of the
classifiers. Taking the number of features into account, the value of the max_depth hyperparameter
for RF with D is surprisingly high. It seems to be an artifact of the hyperparameter tuning procedure
via random grid search. From our analysis (not included in this paper), it follows that this value can
be set to 20 without a negative impact on accuracy. Nevertheless, we decided to keep the original
result of the automatic hyperparameter tuning in order to treat all of the classifiers on the same footing.
We should probably add that the largest tree in RF was 38 levels deep, despite such a high value of the
maximum depth.

We begin the analysis of the classifiers by inspecting their accuracies. The results are shown in
Table 4. As we can see, both classifiers perform excellently, with more than 95% of correct predictions
for the test set. In the case of the training data, GB performs better than RF. However, RF is slightly
more accurate on the test set, indicating a small tendency of GB to overfit.
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Table 3. Hyperparameters of the optimal classifiers built on base data set with Set A of features. The full
set of features is labelled as “with D”. The “no D“ columns stand for the reduced set of features after
the removal of the diffusion coefficient D. N/A (i.e., “Not Applicable”) indicates hyperparameters
specific for random forest.

Random Forest Gradient Boosting

Hyperpareameters With D No D With D No D

bootstrap True True N/A N/A
criterion gini entropy N/A N/A
max_depth 80 10 50 10
max_features sqrt sqrt sqrt log2
min_samples_leaf 4 2 4 2
min_samples_split 2 10 10 2
n_estimators 800 600 900 100

Table 4. Accuracy of the best classifiers trained on the base data set (see Table 2) with Set A of features.
The “with D” and “no D” columns refer to the full and reduced (after removal of D) sets of features,
respectively. The results are rounded to three decimal digits.

Random Forest Gradient Boosting

Data Set With D No D With D No D

Training 0.979 0.962 1.0 0.993
Test 0.957 0.955 0.956 0.955

To explain the relatively small differences in the performance between the “with D” and “no D”
versions of the classifiers, we may want to look at the importances of features. There are several ways
to calculate those importances. We used a method which defines the importance as the decrease in
accuracy after a random shuffling of values of one of the features. Results are given in Table 5. Just to
recall, features with high importances are the drivers of the outcome. The last important ones might
often be omitted, making the classification model faster to fit and predict. The results of the node
impurity importances (the total decrease in node impurity caused by a given feature, averaged over all
trees in the ensemble [67]) are similar.

Table 5. Permutation feature importances of the classifiers built on base data set with Set A of features.
The “with D” and “no D” columns refer to the full and reduced (after removal of D) sets of features,
respectively. The rows are sorted according to the decreasing importances for random forest with D.
The most and least important features are indicated with bold or underlining, respectively.

Random Forest Gradient Boosting

Feature With D No D With D No D

χ – VAC for δ = 1, n = 1 0.1428 0.0812 0.1612 0.2292
Anomalous exponent α 0.0212 0.0436 0.0244 0.0204

MSD ratio 0.0128 0.0194 0.0080 0.0168
Efficiency 0.0118 0.0074 0.0030 0.0046

Straightness 0.0110 0.0062 0.0064 0.0048
p-variation statistic P 0.0104 0.0090 0.0024 0.0060
Maximal excursion 0.0080 0.0046 0.0068 0.0094

D 0.0074 – 0.0056 –

It turns out that D is the least important feature for RF classifier trained on the full set and the
third one with the smallest importance for GB classifier. That is why its removal has a small impact on
the accuracy of prediction and why the classifiers trained on the reduced set of features with no D
are worth considering—we expect them to work better on unseen data having diffusion coefficients
different from the one used in the base set. Indeed, its removal does not change the performance of the
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classifier on the test set (see Table 4). Later in Section 4.7, we will show that in case of the training set
with varying D, the situation is different: D will become more important and excluding it from the set
will reduce the accuracy.

The most informative feature in all cases is the velocity autocorrelation function for lag δ = 1
at point n = 1. It is worth mentioning that this quantity has been already successfully used for the
distinction of subdiffusion models [68], but not in the ML context. The anomalous exponent α, which is
a standard method for the diffusion mode classification, is the second most important feature for
all models, with a significant influence on the results. Thus, it seems that the classifiers distinguish
between the models first and then assess the mode of diffusion.

To get more insight into the detailed performance of the classifiers, their normalised confusion
matrices are shown in Figure 2. Please note that the percentages may not sum to 1.0 due to rounding.
We see that all models have the biggest problems with the classification of normal diffusion. This is
simply due to the fact that the differences between normal diffusion and realizations of weak sub- or
superdiffusion are negligible and it is challenging to classify it properly even after introduction of the
parameter c (the role of which will be studied in more detail in Section 4.6).

Figure 2. Normalised confusion matrices for classifiers built on base training data (see Table 2) with
Set A of features. The “with D” (top row) and “no D” (bottom row) labels refer to the full and reduced
(after removal of D) sets of features, respectively. All results are rounded to two decimal digits.

The values presented in Figure 2 may be used to calculate the other popular measures of
performance: precision, recall and F1 score (see Section 3). The results, rounded to three decimal
digits, are summarised in Table 6. Again, we see that the measures point to the highest error rate
for the normal diffusion: for the random forest model with D as one of the features, only 92.9% of
the trajectories classified as normal diffusion were in fact in this class (precision), whereas 94.4%
of freely diffusing trajectories were correctly classified (recall). Such a high error rate is related to
the mentioned lack of distinctions between the nodes—the normal diffusion is some kind of buffer
between subdiffusion and superdiffusion, thus it can be incorrectly classified as one of these two.
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Table 6. Precision, recall and F1 scores of the classifiers trained on base synthetic data with Set A of
features. For each classifier, the testing set consists of 12,000 trajectories per diffusion mode—that is,
36,000 in total. All classifiers were built on base data set with Set A of features.

Method Variant Measure Normal Diffusion Subdiffusion Superdiffusion Total/Average

Precision 0.929 0.973 0.970 0.957
with D Recall 0.944 0.966 0.962 0.957

RF
F1 0.936 0.969 0.966 0.957

Precision 0.922 0.971 0.971 0.955
no D Recall 0.943 0.963 0.958 0.955

F1 0.933 0.967 0.964 0.955

Precision 0.928 0.972 0.970 0.956
with D Recall 0.942 0.966 0.961 0.956

GB
F1 0.935 0.969 0.965 0.956

Precision 0.925 0.970 0.969 0.955
no D Recall 0.940 0.964 0.960 0.955

F1 0.932 0.967 0.965 0.955

4.2. Comparison with Other Sets of Features

Below, we show the comparison of the classification results with all considered classifiers (based on
three different set of features) on our base data set (Table 2).

In Table 7, the accuracies on the test set are shown, calculated using the tenfold cross-validation
method [58]. As the calculation of the accuracy of the classifier is based on the single train/test
split, in an unfortunate case, the test set can contain the data with characteristics that have not
been seen by classifier during training, and thus the accuracy would be falsely low. The k-fold
cross-validation is a technique that helps to reduce that bias. The data is randomly split into k folds
(without replacement) and the model is trained and tested k times—each time one fold is the test set,
whereas the remaining ones create the training set. The overall accuracy is the mean of the accuracies
of each run. The hyperparameters of the particular models are summarised in Table 8 and they were
established using the RandomisedSearchCV method again.

Table 7. Accuracy of the classifiers built on the base data set using different sets of features, measured
using tenfold cross-validation method. All results are rounded to three decimal digits.

Random Forest Gradient Boosting

Data Set With D No D With D No D

Set A 0.957 0.955 0.956 0.953
Set B 0.946 0.928 0.945 0.928
Set C 0.948 0.946 0.948 0.944

In the comparison of all these classifiers, the ones based on the set of features proposed in this
article provide the best results on our base synthetic data set. Actually, the choice of features was
inspired by two of our previous articles [41,43]. The new set combines the attributes used in those
papers: it contains the anomalous exponent α, diffusion coefficient D, efficiency, straightness and mean
squared displacement ratio that have been used in [41], and the normalised maximal excursion and
p-variation-based features used in [43].

Nevertheless, we need to underline here that it does not mean that this set of features is the
solution for all the classification problems—it simply seems to be the best choice for such synthetic
data set. The lack of universality of feature-based methods was already presented in [41]: the classifiers
did not generalise well to samples generated with slightly altered models.
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Table 8. Hyperparameters of the optimal classifiers built on base data set used for the calculation of
tenfold cross-validation accuracy in Table 7. The “with D” and “no D” columns refer to the full and
reduced (after removal of D) sets of features, respectively. N/A stands for “Not Applicable” (the first
two parameters are random forest specific). The definitions of the feature sets are given in Table 1.
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Se
tA

RF with D True gini 80 sqrt 4 2 800
no D True entropy 10 sqrt 2 10 600

GB with D N/A N/A 50 sqrt 4 10 900
no D N/A N/A 10 log2 2 2 100

Se
tB

RF with D True entropy None None 2 5 1000
no D True entropy None log2 1 10 600

GB with D N/A N/A 110 log2 2 10 400
no D N/A N/A 10 log2 4 5 100

Se
tC

RF with D True entropy 60 log2 4 2 900
no D True entropy 10 sqrt 2 10 600

GB with D N/A N/A 10 log2 2 2 100
no D N/A N/A 10 log2 2 2 100

To compare the performance of these models in more details, the values of recall, precision and F1
score are given in Table 9. For the sake of clarity, we only compare the random forest classifiers built on
the complete features’ sets (with the diffusion coefficient D). For the remaining cases, the behaviour is
alike, except for the fact that all measures for classifiers with features as in Set B but without diffusion
coefficient D are significantly lower than for other classifiers. We would like to underline here that
the set of features proposed in Section 3.1 provides the best results in all measures used here. For all
classifiers, the results for superdiffusion and subdiffusion are better than for normal diffusion class,
what is understandable, as the only kind of error that occurs is the misclassification of anomalous
diffusion trajectories as the normal diffusion. In case of normal diffusion, a part of misclassified
trajectories is labelled as superdiffusion, and another part is labelled as subdiffusion.

Table 9. Detailed performance comparison of random forest classifiers based on three sets of features,
built on the base data set. Metrics are calculated on the test data. All results are rounded to three
decimal digits. For each classifier, the test set consists of 12,000 trajectories per diffusion mode—that is,
36,000 in total.

Set of Features Measure Normal Diffusion Subdiffusion Superdiffusion Total/Average

Precision 0.929 0.973 0.970 0.957
Set A Recall 0.944 0.966 0.962 0.957

F1 0.936 0.969 0.966 0.957

Precision 0.910 0.970 0.963 0.948
Set B Recall 0.934 0.957 0.950 0.947

F1 0.922 0.964 0.956 0.947

Precision 0.912 0.969 0.966 0.949
Set C Recall 0.935 0.958 0.951 0.948

F1 0.923 0.963 0.959 0.948
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4.3. Adding Noise

The results on our base data set are promising, but, unfortunately, real data are more challenging
to classify, as they usually contain some noise and/or measurement error. Thus, we added a random
Gaussian noise with zero mean and standard deviation σGn to our trajectories. In order to control the
noise amplitude with respect to standard deviation of a process, we followed the idea used in [40,41,43],
namely setting a random signal-to-noise ratio instead of σGn. The signal-to-noise ratio is defined as

Q =

{ √
DΔt+v2Δt2

σGn
for DBM,√

DΔt
σGn

otherwise,
(11)

where v =
√

v2
1 + v2

2. The value of σGn was calculated for each trajectory separately, based on the
random value of Q drawn from the uniform distribution on interval [1, 9].

The accuracies of the classifiers trained on the data set with noise are given in Table 10. It is worth
comparing the results with Table 4—there is a decrease of the accuracy, especially in case of the reduced
set of features (“no D”), but both methods still classify the diffusion modes well. Nevertheless, in this
case, it turns out that the inclusion of the diffusion coefficient D as one of the features is important.
Still, for our synthetic data set with noise, the features in Set A seem to describe the characteristics of
the used processes most precisely.

Table 10. Performance of the classifiers trained on data with random Gaussian noise. Accuracies (for
test data only) are rounded to three decimal digits.

Random Forest Gradient Boosting

Features With D No D With D No D

Set A 0.950 0.937 0.949 0.937
Set B 0.941 0.918 0.941 0.918
Set C 0.944 0.932 0.943 0.930

4.4. Empirical Data

In order to present the methods in a practical context, we are going to apply the classifiers from
Sections 4.1 and 4.3 to real G protein data (see Section 3.3). Additionaly, to follow the approach
from [43], we will consider additional classifiers fed with the data set similar to the base one, but with
σ = 0.38, since this value corresponds to the mean diffusion coefficient of the real data sample
(D = 0.0715 μm2s−1). Accuracies of the additional classifiers are shown in Table 11. Interestingly,
they are slightly better than the ones for the base set. It seems that the change of the scale parameter
positively influenced the ranges of other characteristics, resulting in an increased accuracy (it worked
as implicit feature engineering in the absence of data normalization).

Table 11. Performance of the classifiers trained on data with σ = 0.38. Accuracies (for test data only)
are rounded to three decimal digits.

Random Forest Gradient Boosting

Features With D No D With D No D

Set A 0.961 0.959 0.960 0.958
Set B 0.949 0.927 0.948 0.928
Set C 0.953 0.951 0.952 0.949

Before we start to analyse the results for real data, there are several points to consider.
First, it should be emphasised once again that the data collected in experiments is not provable.
Since the ground truth is missing, we cannot really choose the best among the classifiers. We just
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could use some additional information about the G proteins in order to indicate if the classifiers work
reasonably or not. Second, real trajectories are often heterogeneous, meaning that a particle may
change its type of motion within a single trajectory [69]. Thus the classifiers fed with homogeneous
synthetic data may be not the best choice to work with such data.

In Tables 12–14, we show the results of classification of real data with the base classifiers, the ones
with the noise and the ones with σ = 0.38, respectively. In all three cases, we considered only the
“with D” classifiers (for the justification, see Section 4.7). The results obtained with the classifiers
trained on different data sets vary slightly, but they agree on a small percentage of superdiffusive
trajectories. This is somehow expected from the biological background: during their movement, the G
proteins and G-protein-coupled receptors pair, spending some amount of time immobilised. In the
same time, there is no evidence of any other force that can accelerate the movement.

Table 12. Classification results for real trajectories. The base data set (σ = 1, no noise; see Section 4.1)
with the full sets features (labelled as “with D” in the previous sections) was used for training.
The numbers may not add up precisely to 100% due to rounding.

Random Forest Gradient Boosting

Features Classified Mode Receptor G Protein Receptor G Protein

Free diffusion 22% 26% 12% 17%
Set A Subdiffusion 76% 64% 84% 70%

Superdiffusion 1% 9% 2% 12%

Free diffusion 2% 7% 0% 0%
Set B Subdiffusion 97% 90% 99% 97%

Superdiffusion 0% 1% 0% 2%

Free diffusion 40% 45% 41% 40%
Set C Subdiffusion 59% 52% 57% 54%

Superdiffusion 0% 1% 1% 5%

Table 13. Classification results for real trajectories. The noisy data set (σ = 1, see Section 4.3) with the
full sets of features (labelled as “with D” in the previous sections) was used for training. The numbers
may not add up precisely to 100% due to rounding.

Random Forest Gradient Boosting

Features Classified Mode Receptor G Protein Receptor G Protein

Free diffusion 28% 31% 27% 28%
Set A Subdiffusion 70% 61% 70% 61%

Superdiffusion 1% 6% 2% 9%

Free diffusion 3% 11% 2% 9%
Set B Subdiffusion 96% 86% 96% 87%

Superdiffusion 0% 1% 0% 3%

Free diffusion 45% 48% 41% 41%
Set C Subdiffusion 54% 49% 58% 53%

Superdiffusion 0% 1% 0% 5%

On our base data set, the classifiers based on Set A label most of both G proteins’ and G
protein-coupled receptors’ trajectories as subdiffusion (64–84%, depending on particle type and
method). This is somewhat in between the results of classifiers based on Set B and Set C, where the
former point to subdiffusion more frequently, while the latter apply only in 52–59% of cases.

Comparing the behaviour of the classifiers based on the different data sets used for training,
we can see that the classifiers built on the Set C are the most stable in some sense—they yield similar
results independently of the training data, indicating to a significant fraction of subdiffusive and freely
diffusing trajectories. For the new proposed set of features, Set A, as well as for Set B, the introduction
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of noise does not alter the classification significantly, but the decrease of the scale of the trajectories in
data set (setting σ = 0.38) leads to recognition of more trajectories as the normal diffusion, similarly
to the p-variation-based statistical test proposed in [37]. Alternately, the GB classifier based on Set
B and scaled data set classifies a significant percentage of trajectories as superdiffusive, which is
rather unexpected.

Table 14. Classification results for real trajectories. The data set with σ = 0.38 (no noise) and with
the full sets of features was used for training. The numbers may not add up precisely to 100% due
to rounding.

Random Forest Gradient Boosting

Features Classified Mode Receptor G Protein Receptor G Protein

Free diffusion 42% 40% 36% 35%
Set A Subdiffusion 56% 54% 61% 58%

Superdiffusion 1% 5% 1% 5%

Free diffusion 51% 38% 44% 24%
Set B Subdiffusion 44% 50% 37% 44%

Superdiffusion 3% 10% 17% 30%

Free diffusion 54% 51% 54% 51%
Set C Subdiffusion 45% 47% 45% 46%

Superdiffusion 0% 1% 0% 1%

For the full picture, in Table 15, we also include the results for the classifiers built with the
reduced Set A—that is, without diffusion coefficient D (“no D”). Following the results for the synthetic
trajectories, where on the noisy data set the accuracy for the classifiers based on the reduced set of
features is smaller (see Table 10), we acknowledge that the results on that data set can be biased.
Indeed, such classifiers claim that most of the trajectories exhibit the normal diffusion, whereas the
classifiers built on the base and the scaled data set classify them as subdiffusion.

Table 15. Classification results for real trajectories. The classifiers were trained with the reduced Set A
(labelled as “no D”). The numbers may not add up precisely to 100% due to rounding.

Random Forest Gradient Boosting

Classifier Classified Mode Receptor G Protein Receptor G Protein

Free diffusion 33% 35% 32% 30%
Base classifier Subdiffusion 65% 59% 65% 59%

Superdiffusion 0% 5% 2% 9%

Free diffusion 72% 58% 77% 60%
Trained with noise Subdiffusion 25% 34% 18% 29%

Superdiffusion 1% 6% 3% 10%

Free diffusion 34% 34% 28% 30%
Trained with σ = 0.38 Subdiffusion 63% 58% 69% 59%

Superdiffusion 1% 7% 2% 10%

To sum up, all the classifiers identify most trajectories as normal or subdiffusive, but the fraction
of both diffusion modes varies between classifiers. The scaling of trajectories in the training data set
has introduced significant changes in the results (please compare Tables 12 and 14), thus the properties
of particular features should be further examined (for example, their normalisation). Moreover, in [69],
the authors showed that the trajectories in the analysed data set change their character during the time
evolution. Different features used in the classifiers probably capture slightly different characteristics of
the trajectories; thus, the sensitivity of features for the heterogeneity of movement should be verified.
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4.5. Influence of MSD Calculation Methods

Some of the features used in our set—that is, the diffusion coefficient D, the anomalous exponent
α and the mean displacement ratio κ, are based on the time-averaged MSD. This quantity can be highly
biased for large lags, as then only a few displacements are included in the calculation of the mean
value. Alternately, if we choose to fit the diffusion coefficient or the anomalous exponent to only a few
data points (to MSD calculated for a few lags only), the estimation could be biased. This is a known
problem in the analysis of the biological data and has already been discussed in [26,70,71].

We have considered the influence of the number of lags on the accuracy of the classifiers and
trained them on the base data set with the values of features calculated using 50% or 10% of available
TAMSD length. In Table 16, the comparison of these accuracies on the test set is shown, using all three
sets of features. For each set, only the “with D” variant has been considered. The better results are
obtained with the shorter TAMSD curve, but the differences are only slight. Thus, we have set the 10%
as the fixed value for all our considerations.

Table 16. Accuracies on test sets for the classifiers built with the features’ sets with 10% or 50% of
MSD curve length used for calculation of the MSD-based features. All results are rounded to three
decimal digits.

Random Forest Gradient Boosting

Features 10% 50% 10% 50%

Set A 0.957 0.956 0.956 0.955
Set B 0.947 0.942 0.947 0.942
Set C 0.948 0.947 0.947 0.946

4.6. Sensitivity of the Model to Parameter C

Up to this point, we used set of synthetic data generated with c = 0.1 (see Table 2 for the meaning
of c). This parameter was used to define ranges, outside of which weak sub- or superdiffusion
should be distinguished from the normal one. It is time to analyse the impact of c on the prediction
performance of our classification models.

In Table 17, the accuracies on the test set of the particular classifiers are presented. The highest
value of this metrics for c = 0.1 could suggest that it is is the best choice, but there is the other side
of a coin—the highest c means that more trajectories in the data set were falsely labelled as normal
diffusion on the data set simulation stage, despite the fact that they were generated from models with
the parameters corresponding to the anomalous diffusion. In Table 18, the values of precision, recall
and F1 are shown for the random forest classifier (“with D”) trained on each of the analysed sets.
Although the precision for the normal diffusion grows with the increasing value of c, there is a drop
in the recall value between c = 0.01 and c = 0.1. Inversely, for both modes of anomalous diffusion,
the precision drops when changing from c = 0.01 and c = 0.1. It means that we not only make a
base mistake in labelling, falsely labelling some normal trajectories as anomalous ones at the data
set generation stage (what is not visible here), but also setting too high value of c parameter adds
some confusion.

The issue is visualised in Figure 3, where the histograms of predicted labels are shown (please
mind the logarithmic scale on y-axis). The ranges defined by the parameter C are indicated with
black dashed lines. All observations between the dashed lines were treated as normal diffusion by
the classifiers (such label was assigned at the data set generation stage as ground truth). Although for
c = 0.1 and all diffusion models, the major part of trajectories was classified correctly, the distribution
of the normal diffusion label assigned is wider than, for example, c = 0.01, especially in the case
of fractional Brownian motion. Thus, to diminish the error (understood as an incorrect label in
comparison to real diffusion mode, not assigned ground truth label), a smaller value of c should be
taken—for example, the mentioned c = 0.01.
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Figure 3. The histograms of assigned labels for different diffusion models, as predicted for the test sets
by classifiers built on data sets with different values of parameter c with Set A of features. Please mind
the logarithmic scale on y-axis. The dashed lines bounds the regions for which the normal diffusion
was assigned as ground truth despite the real character of trajectories.

Table 17. Accuracies on test set of the optimal classifiers built on data sets with different values of
parameter c and Set A of features. All results are rounded to three decimal digits.

Random Forest Gradient Boosting

Data Set With D No D With D No D

c = 0 0.920 0.919 0.920 0.919

c = 0.001 0.924 0.924 0.923 0.923

c = 0.01 0.929 0.929 0.928 0.926

c = 0.1 (base) 0.957 0.955 0.956 0.955

4.7. Role of Diffusion Coefficient D

Finally, we move to the case in which parameter σ varies between trajectories. The data set for the
classification was prepared according to Table 2, but each trajectory was characterised by a random σ value
equal to

√
2D, where D was drawn from the uniform distribution on the interval [1, 9]. The same set of

features was used and an additional regularisation was performed in the classifier training procedure.
The accuracy results for such classifiers are shown in Table 19. As one can see, the classifiers are still

correct in more than 90% of cases and we can still consider them as useful. Interestingly, the changes in
D have bigger influence to values than adding noise, introduced in Section 4.3. Thus, our classifiers work
better in case of homogeneous environment with a constant diffusion coefficient, and as could be somehow
expected, the difference between the classifiers with the diffusion coefficient D as a feature and the ones
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without it is visible, in favour of the all features’ set. Thus, there is no reason to consider the reduced set of
features in future research.

Table 18. Precision, recall and F1 scores for classifiers trained on data with different values of the
cutoff c. Set A of features was used. All results are rounded to three decimal digits. For each data set,
the support of the testing set is 12,000 trajectories per diffusion mode, giving 36,000 in total.

c Value Measure Normal Diffusion Subdiffusion Superdiffusion Total/Average

Precision 0.835 0.972 0.974 0.927
c = 0 Recall 0.950 0.910 0.900 0.920

F1 0.889 0.940 0.936 0.921

Precision 0.842 0.975 0.972 0.930
c = 0.001 Recall 0.952 0.915 0.906 0.924

F1 0.894 0.944 0.938 0.925

Precision 0.850 0.976 0.976 0.934
c = 0.01 Recall 0.955 0.918 0.913 0.929

F1 0.900 0.946 0.943 0.930

Precision 0.929 0.973 0.970 0.957
c = 0.1 Recall 0.944 0.966 0.962 0.957

F1 0.936 0.969 0.966 0.957

Table 19. Performance of the best classifiers trained on the data set with varying diffusion coefficient D
and Set A of features. Accuracies are rounded to three decimal digits.

Random Forest Gradient Boosting

Data Set With D No D With D No D

Training 0.971 0.921 0.979 0.966

Test 0.919 0.912 0.920 0.909

In Figure 4, the confusion matrices of the analysed classifiers are shown. There is definitely more
confusion between superdiffusion and free diffusion, in both directions, but still there is no misclassification
between super- and subdiffusion (what would point to more serious problems with the classification). We
think that these results can be even improved with the revision of the diffusion coefficient estimation method.

4.8. Beyond Multi-Class Classification

Up to this point, the classifiers were set to output only one among three available classes. However,
both RF and GB classifiers are ensemble methods that determine the final output through voting of their
base learners (decision trees). That voting can be exploited to provide probabilities of being assigned to each
class. Their analysis can help in understanding the classifiers’ behaviour and sources of misclassifications.

In Figure 5, ternary plots for both random forest and gradient boosting classifiers based on full Set
A of features are shown. They complement the results shown in Table 4 and Figure 2. As we can see,
the majority of the points is concentrated at the edges of the plots, corresponding to a situation with at
most two non-vanishing class probabilities for given trajectories. The points located near the vertices depict
the trajectories with one dominant class. There is much less of a burden in case of the gradient boosting
classifier—the probability of assigning a trajectory to a finally claimed class is much higher and there are
almost no trajectories with non-zero probabilities for all classes. This is clearly linked to the construction of
both these classifiers. In random forest, each base classifier independently returns a predicted class and the
final output is the most frequent class returned. Thus, the spread of the predictions can be high. In gradient
boosting, the trees are constructed sequentially: each new one is supposed to correct the predictions of the
ensemble and its results have a higher weight in the final aggregation. Thus, the final trees are having the
greatest impact on the outcome and we expect GB to produce output with one dominant probability in
most of the cases.
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In Figure 6, predicted class probabilities for sample trajectories are shown, for random forest
(left graph) and gradient boosting (right graph). Indeed, the gradient boosting classifier was more
decisive, producing more univocal results, even if they were incorrect (please see the first trajectory
from the top and the second trajectory form the bottom).

Figure 4. Normalised confusion matrices for classifiers built on training data with varying D and Set A
of features. All results are rounded to two decimal digits.
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Figure 5. Ternary plots of the class probabilities assigned to the testing data by the classifiers trained
on the base data set with Set A of features.

Finally, we can verify the distribution of the class probabilities for our experimental data (see Section 3.3
and 4.4), where the ground truth for the diffusion type is not known. In Figure 7, the corresponding
ternary plots for empirical data are presented, for random forest and gradient boosting classifiers (left and
right column, respectively) and for both G-protein-coupled receptors and G proteins (top and bottom row,
respectively). These graphs can clearly show us the trajectories for which the classifiers’ decisions were the
most vague—all points near the center of the triangle correspond to trajectories with significant probabilities
of all of three diffusion types. Moreover, we can see that in case of random forest, the trajectories classified as
superdiffusion had also a significant probability of being a normal diffusion, whereas the gradient boosting
classifier undoubtedly returned high probability of them belonging to superdiffusion.
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Figure 6. The class probabilities for exemplary trajectories from the testing set, based on the classifiers
trained on the base data set and constructed with Set A of features.

In Figure 8, the predicted class probabilities for several interesting trajectories are shown, for both
random forest (left graph) and gradient boosting (right graph). Again, the gradient boosting algorithm is
more firm, but in cases of misclassification, it also claims the incorrect diffusion type with less doubt. Such
an analysis of the classifiers decisions is a great starting point for further research—the output classifiers
build on different data sets and with different sets of features can be examined in detail to find the exact
source of a given prediction. That can also lead us to a reasonable model for the anomaly detection in
the trajectories.

Figure 7. Ternary plots of the class probabilities assigned to empirical data by the classifiers trained on
the base data set with Set A of features.
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Figure 8. The class probabilities for exemplary trajectories from the empirical data set, based on the
classifiers trained on the base data set and constructed with Set A of features.

5. Conclusions

In this paper, we presented a new set of features (referred to as Set A, see Table 1) for the two
types of machine learning classifiers, random forest and gradient boosting, that on the synthetic data
set gives good results, better than the set used previously in [43]. We have analysed the performance
of our classifier trained and tested on the multiple versions of the synthetic data set, allowing us to
assess its usefulness, flexibility and robustness. Moreover, we compared the proposed set with the
ones already used in this problem, from [40,41,43]. Our set gives the best results in terms of the most
common metrics.

Although the results on the synthetic data set are promising, we acknowledge the challenge with
the application of the classifiers to real data. As discussed in [41], the classifiers trained on particular
models for given diffusion modes do not generalise well. In Section 4.4, we show that even the
classifiers with good accuracy return not clear result when used with the data of potentially different
characteristics. To some extent, it can be improved by including more models in the training data set.

Thus, we would like to underline the importance of the features’ selection for a given
problem—even for the same task (e.g., diffusion mode classification), both models chosen for the
training data generation and features chosen for their characterisation have a great influence on the
performance of classifiers. Moreover, the assumptions made in constructions of the classifiers, such as
hyperparameters’ values or simply the choice of classifier type, are also highly important.

Supplementary Materials: Python codes for every stage of the classification procedure, together with a short
documentation, are publicly available at Zenodo (https://doi.org/10.5281/zenodo.4317214).
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MSD mean square displacement
OU Ornstein–Uhlenbeck process
RF random forest
SPT single-particle tracking
TAMSD time-averaged mean square displacement

References

1. Perrin, J. Mouvement brownien et molécules. J. Phys. Theor. Appl. 1910, 9, 5–39. [CrossRef]
2. Geerts, H.; Brabander, M.D.; Nuydens, R.; Geuens, S.; Moeremans, M.; Mey, J.D.D.; Hollenbeck, P. Nanovid

tracking: A new automatic method for the study of mobility in living cells based on colloidal gold and video
microscopy. Biophys. J. 1987, 52 5, 775–782. [CrossRef]

3. Barak, L.; Webb, W. Diffusion of low density lipoprotein-receptor complex on human fibroblasts. J. Cell Biol.
1982, 95, 846–852. [CrossRef] [PubMed]

4. Kusumi, A.; Sako, Y.; Yamamoto, M. Confined Lateral Diffusion of Membrane Receptors as Studied by Single
Particle Tracking (Nanovid Microscopy). Effects of Calcium-induced Differentiation in Cultured Epithelial
Cells. Biophys. J. 1993, 65, 2021–2040. [CrossRef]

5. Chenouard, N.; Smal, I.; de Chaumont, F.; Maška, M.; Sbalzarini, I.F.; Gong, Y.; Cardinale, J.; Carthel, C.;
Coraluppi, S.; Winter, M.; et al. Objective comparison of particle tracking methods. Nat. Methods 2014,
11, 281–289. [CrossRef]

6. Saxton, M.J. Single-particle tracking: Connecting the dots. Nat. Methods 2008, 5, 671–672. [CrossRef]
7. Akhmanova, A.; Steinmetz, M.O. Tracking the ends: A dynamic protein network controls the fate of

microtubule tips. Nat. Rev. Mol. Cell Biol. 2008, 9, 309–322. [CrossRef]
8. Berginski, M.E.; Vitriol, E.A.; Hahn, K.M.; Gomez, S.M. High-Resolution Quantification of Focal Adhesion

Spatiotemporal Dynamics in Living Cells. PLoS ONE 2011, 6, e22025. [CrossRef] [PubMed]
9. Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach.

Phys. Rep. 2000, 339, 1–77. [CrossRef]
10. Michalet, X. Mean square displacement analysis of single-particle trajectories with localization error:

Brownian motion in an isotropic medium. Phys. Rev. E 2010, 82, 041914. [CrossRef]
11. Brandenburg, B.; Zhuang, X. Virus trafficking—Learning from single-virus tracking. Nat. Rev. Microbiol.

2007, 5, 197–208. [CrossRef] [PubMed]
12. Bressloff, P.C. Stochastic Processes in Cell Biology; Interdisciplinary Applied Mathematics; Springer: Cham,

Switzerland, 2014; pp. 645–672.
13. Mahowald, J.; Arcizet, D.; Heinrich, D. Impact of External Stimuli and Cell Micro-Architecture on

Intracellular Transport States. ChemPhysChem 2009, 10, 1559–1566. [CrossRef] [PubMed]
14. Saxton, M.J.; Jacobson, K. Single-Particle Tracking: Applications to Membrane Dynamics. Annu. Rev. Biophys.

Biomol. Struct. 1997, 26, 373–399. [CrossRef] [PubMed]
15. Kneller, G.R. Communication: A scaling approach to anomalous diffusion. J. Chem. Phys. 2014, 141, 041105.

[CrossRef] [PubMed]
16. Qian, H.; Sheetz, M.P.; Elson, E.L. Single particle tracking. Analysis of diffusion and flow in two- dimensional

systems. Biophys. J. 1991, 60, 910–921. [CrossRef]
17. Gal, N.; Lechtman-Goldstein, D.; Weihs, D. Particle tracking in living cells: A review of the mean square

displacement method and beyond. Rheol. Acta 2013, 52, 425–443. [CrossRef]
18. Monnier, N.; Guo, S.M.; Mori, M.; He, J.; Lénárt, P.; Bathe, M. Bayesian Approach to MSD-Based Analysis of

Particle Motion in Live Cells. Biophys. J. 2012, 103, 616–626. [CrossRef]
19. Alves, S.B.; de Oliveira, G.F., Jr.; Oliveira, L.C.; de Silansa, T.P.; Chevrollier, M.; Oriá, M.; Cavalcante, H.L.S.

Characterization of diffusion processes: Normal and anomalous regimes. Physica A 2016, 447, 392–401.
[CrossRef]

20. Weiss, M.; Elsner, M.; Kartberg, F.; Nilsson, T. Anomalous Subdiffusion Is a Measure for Cytoplasmic
Crowding in Living Cells. Biophys. J. 2004, 87, 3518–3524. [CrossRef]

180



Entropy 2020, 22, 1436

21. Saxton, M.J. Single-particle tracking: Models of directed transport. Biophys. J. 1994, 67, 2110–2119. [CrossRef]
22. Berry, H.; Chaté, H. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian

motion or Orstein-Ulhenbeck processes. Phys. Rev. E 2014, 89, 022708. [CrossRef] [PubMed]
23. Hoze, N.; Nair, D.; Hosy, E.; Sieben, C.; Manley, S.; Herrmann, A.; Sibarita, J.B.; Choquet, D.; Holcman, D.

Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis
of live cell imaging. Proc. Natl. Acad. Sci. USA 2012, 109, 17052–17057. [CrossRef] [PubMed]

24. Arcizet, D.; Meier, B.; Sackmann, E.; Rädler, J.O.; Heinrich, D. Temporal Analysis of Active and Passive
Transport in Living Cells. Phys. Rev. Lett. 2008, 101, 248103. [CrossRef] [PubMed]

25. Kepten, E.; Weron, A.; Sikora, G.; Burnecki, K.; Garini, Y. Guidelines for the Fitting of Anomalous Diffusion
Mean Square Displacement Graphs from Single Particle Tracking Experiments. PLoS ONE 2015, 10, e0117722.
[CrossRef]

26. Briane, V.; Kervrann, C.; Vimond, M. Statistical analysis of particle trajectories in living cells. Phys. Rev. E
2018, 97, 062121. [CrossRef]

27. Saxton, M.J. Lateral diffusion in an archipelago. Single-particle diffusion. Biophys. J. 1993, 64, 1766–1780.
[CrossRef]

28. Valentine, M.T.; Kaplan, P.D.; Thota, D.; Crocker, J.C.; Gisler, T.; Prud’homme, R.K.; Beck, M.; Weitz, D.A.
Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Phys.
Rev. E 2001, 64, 061506. [CrossRef]

29. Gal, N.; Weihs, D. Experimental evidence of strong anomalous diffusion in living cells. Phys. Rev. E 2010,
81, 020903. [CrossRef]

30. Raupach, C.; Zitterbart, D.P.; Mierke, C.T.; Metzner, C.; Müller, F.A.; Fabry, B. Stress fluctuations and motion
of cytoskeletal-bound markers. Phys. Rev. E 2007, 76, 011918. [CrossRef]

31. Burov, S.; Tabei, S.M.A.; Huynh, T.; Murrell, M.P.; Philipson, L.H.; Rice, S.A.; Gardel, M.L.; Scherer, N.F.;
Dinner, A.R. Distribution of directional change as a signature of complex dynamics. Proc. Natl. Acad.
Sci. USA 2013, 110, 19689–19694. [CrossRef]

32. Tejedor, V.; Bénichou, O.; Voituriez, R.; Jungmann, R.; Simmel, F.; Selhuber-Unkel, C.; Oddershede, L.B.;
Metzler, R. Quantitative Analysis of Single Particle Trajectories: Mean Maximal Excursion Method. Biophys. J.
2010, 98, 1364–1372. [CrossRef] [PubMed]

33. Burnecki, K.; Kepten, E.; Garini, Y.; Sikora, G.; Weron, A. Estimating the anomalous diffusion exponent for
single particle tracking data with measurement errors—An alternative approach. Sci. Rep. 2015, 5, 11306.
[CrossRef] [PubMed]

34. Das, R.; Cairo, C.W.; Coombs, D. A Hidden Markov Model for Single Particle Tracks Quantifies Dynamic
Interactions between LFA-1 and the Actin Cytoskeleton. PLoS Comput. Biol. 2009, 5, 1–16. [CrossRef]
[PubMed]

35. Slator, P.J.; Cairo, C.W.; Burroughs, N.J. Detection of Diffusion Heterogeneity in Single Particle Tracking
Trajectories Using a Hidden Markov Model with Measurement Noise Propagation. PLoS ONE 2015, 10.
[CrossRef] [PubMed]

36. Slator, P.J.; Burroughs, N.J. A Hidden Markov Model for Detecting Confinement in Single-Particle Tracking
Trajectories. Biophys. J. 2018, 115, 1741–1754. [CrossRef] [PubMed]

37. Weron, A.; Janczura, J.; Boryczka, E.; Sungkaworn, T.; Calebiro, D. Statistical testing approach for fractional
anomalous diffusion classification. Phys. Rev. E 2019, 99, 042149. [CrossRef]

38. Thapa, S.; Lomholt, M.A.; Krog, J.; Cherstvy, A.G.; Metzler, R. Bayesian analysis of single-particle
tracking data using the nested-sampling algorithm: Maximum-likelihood model selection applied to
stochastic-diffusivity data. Phys. Chem. Chem. Phys. 2018, 20, 29018–29037. [CrossRef]

39. Cherstvy, A.G.; Thapa, S.; Wagner, C.E.; Metzler, R. Non-Gaussian, non-ergodic, and non-Fickian diffusion
of tracers in mucin hydrogels. Soft Matter 2019, 15, 2526–2551. [CrossRef]

40. Wagner, T.; Kroll, A.; Haramagatti, C.R.; Lipinski, H.G.; Wiemann, M. Classification and Segmentation
of Nanoparticle Diffusion Trajectories in Cellular Micro Environments. PLoS ONE 2017, 12, e0170165.
[CrossRef]
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anomalous-diffusion-exponent estimation from noisy data. Phys. Rev. E 2018, 98, 062139. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

183





entropy

Article

Fractional Dynamics Identification via Intelligent
Unpacking of the Sample Autocovariance Function by
Neural Networks

Dawid Szarek 1, Grzegorz Sikora 1, Michał Balcerek 1, Ireneusz Jabłoński 2
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Abstract: Many single-particle tracking data related to the motion in crowded environments exhibit
anomalous diffusion behavior. This phenomenon can be described by different theoretical models.
In this paper, fractional Brownian motion (FBM) was examined as the exemplary Gaussian process with
fractional dynamics. The autocovariance function (ACVF) is a function that determines completely the
Gaussian process. In the case of experimental data with anomalous dynamics, the main problem is first
to recognize the type of anomaly and then to reconstruct properly the physical rules governing such a
phenomenon. The challenge is to identify the process from short trajectory inputs. Various approaches to
address this problem can be found in the literature, e.g., theoretical properties of the sample ACVF for a
given process. This method is effective; however, it does not utilize all of the information contained in the
sample ACVF for a given trajectory, i.e., only values of statistics for selected lags are used for identification.
An evolution of this approach is proposed in this paper, where the process is determined based on the
knowledge extracted from the ACVF. The designed method is intuitive and it uses information directly
available in a new fashion. Moreover, the knowledge retrieval from the sample ACVF vector is enhanced
with a learning-based scheme operating on the most informative subset of available lags, which is proven
to be an effective encoder of the properties inherited in complex data. Finally, the robustness of the
proposed algorithm for FBM is demonstrated with the use of Monte Carlo simulations.

Keywords: anomalous diffusion; fractional Brownian motion; estimation; autocovariance function;
neural network; Monte Carlo simulations

1. Introduction

Many single-particle tracking data related to the motion in crowded environments exhibit anomalous
diffusion behavior [1,2]. This behavior is also visible in various phenomena such as finance [3,4], ecology
[5], hydrology [6], and biology [7], as well as meteorology and geophysics [8,9]. Anomalous diffusion
behavior is manifested by deviations from the laws of Brownian motion (BM). One of the most common
definitions of the anomalous diffusion process is expressed in the nonlinear behavior of its second moment:

E

[
X2(t)

]
∼ tα, (1)
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where α is the so-called anomalous diffusion exponent. When α = 1, the process is classified as diffusion,
while for α �= 1, we call it anomalous diffusion. More precisely, for α < 1, it is called subdiffusion, while
for α > 1, it is superdiffusion. It should be mentioned that anomalous diffusion can be also related to the
non-Gaussian probability density function of the corresponding process; for instance, see [10–13].

The class of anomalous diffusion processes is very rich. The most classical anomalous diffusion models
are fractional Brownian motion (FBM) [8,14], Lévy stable motion [15], continuous-time random walk [16,17],
and the subordinated processes (also called time-changed processes) [18–25]. We also mention here the
processes with time- or position-dependent diffusion coefficients such as scaled Brownian motion [26,27]
or heterogeneous diffusion models [28], as well as the superstatistical process [29] or diffusing diffusivity
models (also called Brownian yet non-Gaussian diffusion process) [30]. We also refer the readers to the articles
[31–34] and the references therein.

In the case of experimental data with anomalous dynamics, the main problem is first to recognize the
type of anomaly and then to reconstruct properly the physical rules governing such a phenomenon. The main
challenge is to identify the process from short trajectory inputs. Various approaches to address this problem
can be found in the literature; for instance, see [35–42]. One of the simplest and most efficient approaches is
based on the theoretical properties of the sample autocovariance function (ACVF) [43]. It is known that the
ACVF is the characteristic that determines completely the centered Gaussian process. Thus, its sample version
is a proper tool for the testing and estimation of the parameters of this process. The approach presented in the
literature [43] is effective; however, it does not utilize all of the information contained in the sample ACVF for
a given trajectory, i.e., only values of statistics for selected lags are utilized. Therefore, an evolution of this
approach is proposed in this paper.

Herein, we compared three approaches that apply the ACVF for estimation of the anomalous diffusion
exponent. The first one, the so-called naive method, uses the ACVF in one specific lag to estimate
the anomalous diffusion exponent of the given process. The second algorithm is based on the ACVF
corresponding to the vector of the selected lags. The last technique is based on the sample ACVF
information extracted with the most informative subset of available lags. The designed novel method in
the third approach is intuitive and it uses information directly available in a new fashion. Information
retrieval from the sample ACVF vector is performed here with a learning-based scheme operating on the
most informative lags, i.e., a feedforward neural network (FNN) [44] is designed and applied for solving
the regression task. This approach has been proven to be an effective encoder of the properties inherited
in complex data [45–47]. The goal is to preliminarily assess (using computer simulations) the predictive
properties of an FNN for the estimation of the anomalous diffusion exponent based on a short data set.
This exercise provides evidence of the performance of the simple version of the neural network (NN)
adapted for the defined regimes (anomalous diffusion) and the ACVF vector, which is a projection of a valid
complex and real trajectory, e.g., for particle movement in a solution. The reported results can be further
enhanced by the exploitation of adaptive mechanisms inserted into recurrent neural networks (RNNs)
and/or the detailed and proper inferences of multiscale pattern(s) for deep learning [1–5]. The advantage
of the application of an FNN to the task defined above is that a trained neural network model can be a
robust and efficient estimator for anomalous diffusion exponents, e.g., complex relations hidden in ACVF
data can be extracted within one-step, concluding in a trained feedforward neural network.

The robustness of the introduced algorithm based on the ACVF and NN methods in comparison to the
known ACVF-based techniques is demonstrated herein for the exemplary Gaussian process using Monte
Carlo simulations. We considered the FBM as an exemplary model with fractional dynamics; that is, the
Gaussian process with stationary increments and the so-called self-similar property parametrized by the
Hurst exponent H = 0.5α, where α is the anomalous diffusion exponent given in (1).

The main goal of the paper was to prove that the incorporation of intelligent-based algorithms
into classical estimation schemes can shed new light on the investigation of the anomalous diffusion
phenomenon. Moreover, the classical tools enhanced by artificial intelligence (AI) methods are more
effective in comparison to the known statistical algorithms used for anomalous diffusion parametrization.
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The rest of the paper is organized as follows: In Section 2, we outline the definition of the
fractional Brownian motion and the exemplary Gaussian process with anomalous diffusion behavior.
Next, in Section 3, we discuss two of the estimation methods for the Hurst exponent based on the ACVF
that are commonly used in various applications. In the next section, we present a new approach for the
estimation of the H index. Namely, in the new algorithm, we combined the ACVF and NN methods. To
demonstrate the effectiveness of the new approach, in Section 5, we present a simulation study where
we compare the three considered algorithms for the estimation of the Hurst exponent. The last section
concludes the paper and presents a future study.

2. Fractional Brownian Motion

Fractional Brownian motion (FBM) {XH(t), t ≥ 0} with the Hurst index H ∈ (0, 1) is a continuous
and centered Gaussian process defined through the following Langevin equation [14,48–50]:

dXH(t)
dt

= DξH(t), (2)

where the parameter D is the diffusion coefficient. In Equation (2), {ξH(t), t ≥ 0} is the fractional Gaussian
noise process with the autocorrelation function satisfying the following:

Corr(ξH(0), ξH(t)) ∼ 2H(2H − 1)Dt2(H−1), t ≥ 0. (3)

The FBM was introduced by Kolmogorov in 1940 (see [8]). FBM is the only Gaussian process with the
self-similar property. Because the FBM is a centered Gaussian process, it can be also defined through the
ACVF that, in this case, is given by [14]:

E [XH(t)XH(s)] =
1
2

D
(

t2H + s2H − |t− s|2H
)

, where t, s ≥ 0. (4)

Thus, for the given t ≥ 0, XH(t) ∼ N (
0, Dt2H)

. The FBM has stationary increments. Moreover, if
H > 1/2, then the increments of the process are positively correlated, while for H < 1/2, they are negatively
correlated. Moreover, for H > 1/2, the FBM exhibits the so-called long range dependence, which means that
the following property is satisfied:

∞

∑
n=1

E [XH(1)(XH(n + 1)− XH(n))] = ∞. (5)

As can be seen, for H = 1/2, the FBM reduces to the ordinary Brownian motion (BM). It should
be mentioned that the FBM is considered one of the classical processes used to describe the anomalous
diffusion phenomenon. Indeed, for H < 1/2, it exhibits subdiffusion behavior, while for H > 1/2, it shows
superdiffusion behavior. To see the differences between the behavior of the trajectories corresponding to
different anomalous types, in Figure 1, we demonstrate the exemplary trajectories of FBM for H = 0.3
(subdiffusion), H = 0.5 (diffusion), and H = 0.7 (superdiffusion).
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Figure 1. Exemplary trajectories for H ∈ {0.3, 0.5, 0.7}.

3. ACVF-Based Methods for the Estimation of the Hurst Exponent

In this article, we consider three approaches that utilize the ACVF in the estimation of the Hurst
parameter H. Here, we depict two approaches known from the literature. The last technique is described
in detail in the next section.

The methods presented in this section are based on the sample version of the ACVF. Let us consider
the trajectory of FBM, XH = {XH(1), XH(2), · · · , XH(n)}, and the corresponding sample of increments,
ξH = {ξH(1), ξH(2), · · · , ξH(n)}, where ξH(t) = XH(t) − XH(t − 1) for t = 1, 2, . . . , n. The sample
ACVF for ξH is given by [51]:

γ̂ξ(τ) =
1
n

n−τ

∑
t=1

ξH(t)ξH(t + τ), τ = 0, 1, . . . , n− 1. (6)

The statistic γ̂ξ(τ) is a rescaled estimator of the theoretical autocovariance function for γξ(τ),
corresponding to lag τ, where γξ(τ) = E (ξH(1)ξH(1 + τ)). One can easily show that the statistic (6) is a
biased estimator of γξ(τ), namely:

E
[
γ̂ξ(τ)

]
=

1
n
E

[
n−τ

∑
t=1

ξH(t)ξH(t + τ)

]
=

=
n− τ

n
E [ξH(1)ξH(1 + τ)] =

D(n− τ)

2n

(
|τ + 1|2H + |τ − 1|2H − 2|τ|2H

)
=

n− τ

n
γξ(τ).

However, in our considerations, we used the biased version of the γξ(τ) estimator due to its lower
variance in comparison to the unbiased one.

In the literature, a few possibilities of estimating the Hurst parameter H using the ACVF have been
presented. In the simplest approach, we considered only the first lag τ = 1, and compared the statistic
γ̂ξ(1) with the desirable theoretical value of γξ(1) = D

2 (2
2H − 2). Thus, using the following relation:

γ̂ξ(1) =
D
2

(
22H − 2

)
,

one can obtain the simple estimator of H:

Ĥ =
1
2

log2

(
γ̂ξ(1)

2
D

+ 2
)

. (7)

As such an approach is simple, we refer to it as naive (the M1 method) in the following analyses.
In this approach, the diffusion coefficient D is assumed to be known. However, in real applications, the D
parameter can also be estimated as a sample variance of the vector ξ. As one can see, the ACVF for lag
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τ = 1 includes the necessary information about the FBM process. Unfortunately, if the corresponding
measurements are burdened by an additive error (i.e., some measurement noise), γ(1) changes accordingly,
resulting in the need to consider more advanced techniques for the estimation of the H parameter; for
instance, see [52,53] and the discussion therein.

In an alternative approach for estimating the H parameter, one can simultaneously use more lags τ.
Thus, we can fit the function τ 
→ D

2
(|τ + 1|2H + |τ − 1|2H − 2|τ|2H)

to the empirical ACVF γ̂ξ(τ) for the
corresponding lags τ = 1, 2, . . . , τmax in the least squares sense, i.e., the estimator is calculated as follows:

Ĥ = arg minH∈(0,1)

τmax

∑
τ=1

[
γ̂ξ(τ)− D

2

(
|τ + 1|2H + |τ − 1|2H − 2|τ|2H

)]2
, (8)

for some maximum lag τmax. Again, if the diffusion coefficient is unknown, we can estimate it by considering
arg min over (H, D) ∈ (0, 1)× (0, ∞). This approach is unfortunately much more complex, as it requires
nonlinear regression methods. In the further analysis, we refer to this approach as the M2 method.

4. ACVF and NN-Based Methods for the Estimation of the Hurst Exponent

As mentioned above, three methods for the estimation of the Hurst exponent H are compared in this
article. All of the identification algorithms are based on the ACVF. The first (M1) and the second (M2)
methods were described in the previous section. In this section, we present the algorithm based on the
ACVF and NN methods, denoted as the M3 method in the simulation study.

One might expect that the two proposed methods provide the best estimation results when
the data follows the “pure” theoretical model, i.e., FBM. In reality, this is rarely the case—often,
the observed trajectories are biased by a measurement error and/or various interleaving processes cover
the anomalous diffusion component in the acquired signal. A purely statistical approach, such as in
the M1 and M2 methods, can bring about limitations in real-world data applications, whereas artificial
intelligence has shown its potential to overcome parasitic conditions in data from numerous fields of
applications [45,54–56]. This triggers applications of learning-based schemes that enable weakening of
the initial assumptions related to data properties and model building, providing good estimators for a
wide range of anomalous diffusion regimes (i.e., for a wide range of H values). The assumed architecture
for the neural network model and the training process are crucial aspects for efficient data exploration in
artificial intelligent schemes, with the latter being of particular importance for NN model performance
[44]. As a consequence, the input data properties used for the NN model training condition the reliability
of the observed outputs—i.e., the value of the estimated H and its uncertainty in the reported study.

In the previous section, we assumed that the relationship between the data and the estimated
parameter is known and given by Equations (7) and (8) for the M1 and M2 methods, respectively.
Now, we propose to use a feedforward neural network as the predictor of this theoretical relationship,
i.e., E[H|{γ̂ξ(τ)}]. To be more precise, the FNN is proposed as the model of the hidden relationships in
the experimental data. The last one means that obtaining a formal expression for the rules governing
the phenomena in a real-world system is not the main subject of interest here, but encoded in the FNN
model, these rules are used to enhance the reliability of the Hurst exponent estimation from the data that
correspond to the FBM, according to our assumption. It is worth noting that the modeling of E[H|XH ] or
E[H|ξH ] is also possible with the NN-based approach; however, more sophisticated NN topologies are
required to reconstruct the long dependency valid for the FBM model (for H � 0.5). Thus, dealing with
long and varying input vector lengths is required to realize this task; models based on RNNs, long
short-term memory (LSTM) neural networks [57], or other forms of intelligent recurrence should be used,
which implies higher requirements regarding their training [58].
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The information about the underlying process is concentrated in the first couple of lags of the sample
ACVF. In this paper, 32 lags (including the 0th lag) were used as the input for the Hurst exponent estimation.
In the next section, it is shown that this amount was sufficient for our study.

The proposed architecture of the neural network model consists of three hidden layers of consecutive
sizes of 64, 64, and 32. The Swish-1 [59] activation function, defined as:

Swish-β(x) := x× σ(βx) =
x

1 + e−βx , (9)

was used for the neurons in each layer—in many applications, this expression outperforms the other
activation functions [59].

In the designed FNN predictor, the size of the first layer was conditioned by the number of lags
corresponding to the ACVF used during the experiment (i.e., 32 neurons were inserted into the first layer)
and the output layer consisted of one neuron, which produced the H estimator as the model response.
Since the estimated value of the Hurst exponent was within the range of H ∈ (0, 1) and the FNN model
designed for its estimation can produce all real numbers as the output, post-processing transformation
needed to be applied to the response of the output neuron. Here, the sigmoid function, defined as:

σ(x) :=
1

1 + e−x , (10)

was used. The function given in (10) projects all real numbers to the interval (0, 1).
To boost the FNN training process, the Adam optimization algorithm [60] was applied as it quickly

converges to a minimum [61–64]. The mean squared error (MSE) was used to quantify the prediction
error of the FNN model.

5. Simulation Study

The efficiency of the three methods (M1, M2, and M3) designed for H estimation is demonstrated in
this section using computer simulations. Cholesky decomposition [65] was used for the generation
of the FBM trajectories, since it allows to simulate outputs with extreme H parameter values
(unlike Davies–Harte [66], which can fail to generate small samples for H parameters close to 1). Regarding
the practical usefulness of the designed procedures, their efficiency can be expressed in the context of the
length of the input trajectory required to estimate H with expected reliability. This study was performed
for trajectories of various lengths, and the results are reported below.

The two statistical methods described in Section 3 were ready to use, whereas the designed
feedforward neural network needed to be trained in advance, for which training and validation datasets
were prepared.

The training dataset was formed with 1,572,64 FBM trajectories generated during computer
simulations. This set consisted of vectors of different lengths (from 32 up to 1024) and referred to different
H parameter values. For every trajectory length, N ∈ {32, 64, 128, 256, 512, 1024}, 262,144 trajectories
were generated using computer simulations (262,144 × 6 = 1,572,864), each with the H parameter selected
randomly from the uniform distribution U (0, 1). Next, for each trajectory ξH , the ACVF (biased estimator (6),
as introduced earlier) was calculated, resulting in a set of ACVFs of lengths N (N lags—τ ∈ {0, 1, . . . , N − 1})
with corresponding H parameters. Using the same procedure, the validation and test subsets were generated,
each of a size of 196,608 (32,768 × 6 = 196,608).

The length of the ACVF vectors for the NN training was limited to 32 first lags (namely, τ ∈ {0, 1, . . . , 31}).
This selection was preceded by the calculation of MAE prediction error, such as in Figure 2—more input
samples do not decrease the error, whereas a smaller input size increases the MAE value.
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Figure 2. The MAE calculated for the M3 method when a different number of lags is used as the feedforward
neural network (FNN) input (determining the size of the input layer of the FNN), depending also on the
selected quantile; the number of lags (32) selected for use in the paper are marked with a red line.

To train the FNN (the architecture of the FNN as described in Section 4), input data were gathered
into batches of 64 (the number of training examples used to calculate weight updates). The total number of
NN parameters was 8385, trained for 13 epochs (the number of times that the training algorithm operated
on the entire training dataset), for a total of 93 s× 13 epochs ≈ 20 min. The number of epochs was selected
dynamically using the early stopping method [67]. Since the model did not improve the prediction error
significantly after the third epoch, the training procedure could be stopped then (then, the training time
would be 5 min). Calculations were performed on a PC with Intel Core i7 (3.7 GHz, 6 cores, 12 threads)
and RAM of 64 GB.

The test dataset was used to compare the M1, M2, and M3 methods—for M1, the first lag was used
(τ = 1); for M2, the set of lags was τ ∈ {0, 1, . . . , τmax} (if not stated differently, τmax = 31); M3 always
used 32 lags (τ ∈ {0, 1, . . . , 31}). The metrics used were the absolute error and (for the aggregated results)
the mean absolute error.

Figure 3 provides a comparison of the MAEs for the three methods (i.e., M1, M2, and M3) when
dealing with trajectories of different lengths and with the diffusion characteristic (H parameter), grouped
by the true parameter H into the bins [0–0.2), [0.2–0.4), [0.4–0.6), [0.6–0.8), and [0.8–1).
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Figure 3. MAE heatmap for the M1, M2, and M3 methods depending on the length of the input trajectory
and the value of the Hurst exponent applied during the computer simulations.

The conclusion is that the NN-based approach (M3) is more efficient than the other schemes studied in the
paper, as it did not need long trajectories to estimate the Hurst exponent H with a minimized/minor error. For
H close to 0 or 1, there was a significant difference in the MAEs between the considered methods—although
the NN approach achieved a similar level of error to the other methods when fed samples of a size of 64 for
the estimation, M1 and M2 struggled to deliver equivalent performance for longer inputs, i.e., up to 16-times
longer trajectories, as was shown during the computer simulations. It is worth noting that the estimation error
for the Hurst exponent in the diffusion case (i.e., H ≈ 0.5) was similar for all of the considered approaches.
In summary, since M1 estimated H reliably when using only the first lag, which was also true for the other
methods, it was possible to distinguish between normal and anomalous diffusion using the information
contained in the first lag or the first few lags.

To further compare these methods, the distribution of the (absolute) prediction error is shown in
Figure 4. A logarithmic scale was applied to the y-axis in the boxplots to distinguish the performance of
the following algorithms. The figure is divided into six parts, each reporting on the performance of the
M1, M2, and M3 methods. In this way, it was possible to analyze how the distributions of the prediction
error varied for each of these methods, the different lengths of the input trajectories, and also the different
diffusion types (i.e., superdiffusion and subdiffusion); similarly to Figure 3, the input data were grouped
evenly into five bins in reference to the true value of the H parameter.

Figure 4 depicts the spread of the estimation error and also reports on the number of outliers.
The obtained results prove that the NN-based algorithm can more reliably estimate the H value for its
following ranges (thus regimes of anomalous diffusion behavior) than in the two classical (M1 and M2)
methods.

When it comes to the analysis of the multidimensional spread of the observed distributions, M3
performed similarly to the other methods. However, it is worth noting that M1 could not be used to obtain
reliable results for some anomalous diffusion regimes, i.e., in several cases in Figure 4, the prediction
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errors were over 0.5 (which means that M1 could not distinguish between sub- and superdiffusion in
these cases). There were also some cases in the presented study when all of the methods working with the
smallest considered sample size (32) struggled to distinguish between subdiffusion and superdiffusion.
Nonetheless, M3 applied to two-times longer trajectories (i.e., 64 samples inserted as the input) performed
reliably and efficiently through the whole range of H values.
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Figure 4. Absolute error calculated for the M1, M2, and M3 methods when fed with simulated input
trajectories of different lengths and representing various modes of anomalous diffusion regimes (encoded
with the H value).
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It would be advantageous here to understand what makes M3 outperform the M2 algorithm. The most
straightforward explanation relies on the fact that the input information contributes to outputs in various
ways in M2 and M3. Namely, although M2 and M3 use the same input information, M2 explores each lag
with the same importance, which is not the case for the FNN. The neural network-based method can learn
inhomogeneous relationships contained in historical data, focusing on a specific subset of lags and leaving
others with less influence on the observed output. This is exactly how the intelligent unpacking mechanism
works in the M3 method.

This phenomenon can be clearly observed in Figure 5, where the MAE is compared for the methods
working with trajectories of different lengths, for different H parameter values, and various numbers
of lags used during the calculations. In the case of the M1 method, the results are presented only for
τ = 1, as there was no possibility to expand or shrink the set of lags here. M2 used lags up to τmax for the
Hurst exponent estimation, i.e., (τ ∈ {0, 1, . . . , τmax}) with τmax ∈ {2, 3, . . . , 31}. The number of used lags
could not be reduced for the M3 method since it required exactly 32 lags. To overcome this problem, a
selected number of the first values of the calculated lags for the ACVF (this number is later referred to as
non-zero lags) were extracted. The remaining lags were reset to zero during the calculations. This means
that the relationships valid for the raw data were cut at the level of some lags, resembling the diffusion
case H = 0.5 (i.e., there is no inter-dependency and the ACVF is equal to 0). All of these contributed to
weakening the anomalous behavior (filling further lags with zero diminished/removed the long-range
dependencies); thus, the reliability of the used methods for prolonged input data sequences could be
improved, especially in the case of the M3 algorithm (see Figures 3 and 4).

Figure 5. MAE heatmap calculated for the M1, M2, and M3 methods depending on the length of the input
trajectory, τmax, and for the following ranges of Hurst exponent values.

Figure 5 proves that using at least 20 lags was sufficient to minimize the error of H estimation in M3.
However, the prediction error imperceptibly decreased for M2 with the addition of consecutive lags to the
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input. One of the explanations for this observation might be that the magnitude of the contribution to the
observed outputs (here, the value of the Hurst exponent) was smaller for the higher-order lags than for the
first few lags. This means that the feedforward neural network more efficiently unpacked the information
about the anomalous diffusion process than the M1 and M2 statistical schemes.

6. Summary and Conclusions

Anomalous diffusion is a complex phenomenon observed in physical systems. This complexity
is inherited in recorded data, which, in practice, can be additionally corrupted by measurement noise.
Moreover, anomalous diffusion components can emerge from a bunch of other regimes manifested in the
observed system (and thus, in recorded data). Unpacking and disentangling the information contained in
such data is a challenge, especially because complex interrelations are typically encoded in a small number
of data samples. The statistical modeling of anomalous dynamics is quite well established and is concerned
with the approximation of nontrivial patterns by the anomalous diffusion exponent. The problem is that
for complex systems and the limited a priori knowledge available, the statistical inference can bring about
non-robust estimation, especially when noisy components occur in data.

In recent years, there has been increasing interest in the use of AI methods of data exploration in
various areas of science and engineering, especially when dealing with complex systems and a limited
amount of preliminary information. In this paper, we proposed the application of a simple feedforward
neural network to the quantification of anomalous dynamics. Namely, we compared this AI-based
approach with statistical modeling, which allowed us to conclude that a combination of these two data
exploration methods can decrease the estimation error of the anomalous diffusion exponent.

Herein, we considered the FBM, as it is one of the classical Gaussian processes that can be used for the
description of anomalous diffusion behavior. Moreover, the FBM for special cases reduces to the classical
BM, and thus is also useful for the analysis of diffusion processes.

Our approach is based on the ACVF, which completely describes the zero-mean Gaussian process.
Thus, we selected the sample version of this statistic as a base for the estimation methodology.
Via a simulation study, we proved that the classical approaches that utilize the sample ACVF are effective;
however, when the process under consideration becomes anomalous diffusion, then their efficiency
decreases. Thus, there is a need to incorporate more advanced techniques. In this article, we addressed
such problems and proposed a simple modification of the classical ACVF-based approaches through the
inclusion of NN-based methodology. Our simulations showed that the introduced estimation method
outperformed the other considered approaches, especially for short trajectory lengths. This message is
crucial for practical applications, where the real trajectories may be relatively short. In this case, the method
based on a combination of ACVF and NN techniques seems to be more effective in contrast to the classical
algorithms. It should be highlighted that although the presented approach in this paper is based on the
ACVF, this methodology can be applied to any other statistic that is crucial for the estimation of anomalous
diffusion processes, e.g., mean squared displacement, p-variation, and ergodicity breaking parameter.
Moreover, the potential applicability of the described approach is much wider than the anomalous diffusion
field. It could bring new insight into studies of physical systems with various properties reflected and
decoded in the corresponding statistical quantities, i.e., long-range dependence, ergodicity breaking, or
self-similarity. Additionally, the FBM was considered here only as an exemplary anomalous diffusion
process, and the presented approach can be used for any other models with anomalous diffusion behavior.
The designed method can also also used not only for estimation purposes, but also for the classification of
the anomalous diffusion model governing physical phenomena. It could be directly achieved by the NN
learning various ACVF formulas that uniquely define different Gaussian processes. Finally, outside of
the Gaussian world, other appropriate statistics that evidently and precisely detect proper non-Gaussian
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models can be effectively brought into the identification process. Thus, the introduced approach is
universal in many areas and can be extended in various directions.

The combination of known statistical algorithms with the deep learning methodology is not a new
idea in the area of anomalous diffusion phenomena analysis. Many authors have recognized that simple
statistical methods in some cases seem to be inefficient for the proper identification or parametrization of
the anomalous diffusion model, especially for recordings with short-length trajectories. In recent years, in
the literature regarding anomalous diffusion processes, one can find the application of intelligent methods
that enhance the classical approaches. In the physical sciences, deep learning methods have ound very
interesting applications. We mention here the new approaches based on the artificial NN algorithms (i.e.,
[68–73]) or the general machine learning methods applied to fractional dynamics analysis (i.e., [74–77]).
However, to the best of our knowledge, a combination of ACVF- and NN-based methods has not been
presented in the context of anomalous diffusion analysis.

In a future study, we plan to analyze the influence of additive noise on the estimation results for a
model disturbed by external force. The same problem has been considered previously (e.g., in [53]), where
the effectiveness of the time-averaged mean square displacement-based approach for the H parameter
estimation was analyzed for the FBM with additive noise. Another future study will be related to the
combination of the other time-averaged statistics [78] and deep learning methodology for the estimation
problem in the anomalous diffusion regime.
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fluctuation analysis for Gaussian processes. Phys. Rev. E 2020, 101, 032114. [CrossRef]

43. Balcerek, M.; Burnecki, K. Testing of fractional Brownian motion in a noisy environment. Chaos Solitons Fractals 2020,
140, 110097. [CrossRef]

44. Bishop, C. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1996.
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48. Szymański, J.; Weiss, M. Elucidating the Origin of Anomalous Diffusion in Crowded Fluids. Phys. Rev. Lett.

2009, 103, 038102. [CrossRef] [PubMed]
49. Weiss, M. Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids. Phys.

Rev. E 2013, 88, 010101. [CrossRef] [PubMed]
50. Krapf, D.; Lukat, N.; Marinari, E.; Metzler, R.; Oshanin, G.; Selhuber-Unkel, C.; Squarcini, A.; Stadler, L.; Weiss, M.;

Xu, X. Spectral Content of a Single Non-Brownian Trajectory. Phys. Rev. X 2019, 9, 011019. [CrossRef]
51. Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting; Springer: New York, NY, USA, 1994.
52. Sikora, G.; Kepten, E.; Weron, A.; Balcerek, M.; Burnecki, K. An efficient algorithm for extracting the magnitude of

the measurement error for fractional dynamics. Phys. Chem. Chem. Phys. 2017, 19, 26566–26581. [CrossRef]
53. Lanoiselee, Y.; Grebenkov, D.; Sikora, G.; Grzesiek, A.; Wyłomańska, A. Optimal parameters for anomalous
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68. Kowalek, P.; Loch-Olszewska, H.; Szwabiński, J. Classification of diffusion modes in single-particle tracking
data: Feature-based versus deep-learning approach. Phys. Rev. E 2019, 100, 032410. [CrossRef]
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Abstract: Measurement and feedback allows for an external agent to extract work from a system
in contact with a single thermal bath. The maximum amount of work that can be extracted in a
single measurement and the corresponding feedback loop is given by the information that is acquired
via the measurement, a result that manifests the close relation between information theory and
stochastic thermodynamics. In this paper, we show how to reversibly confine a Brownian particle in
an optical tweezer potential and then extract the corresponding increase of the free energy as work.
By repeatedly tracking the position of the particle and modifying the potential accordingly, we can
extract work optimally, even with a high degree of inaccuracy in the measurements.

Keywords: confinement; information theory; Brownian particle; stochastic thermodynamics

1. Introduction

Modern techniques have allowed for the manipulation of objects at the microscale.
A paradigmatic example are colloidal particles trapped by optical tweezers. At this scale—
the scale of Brownian motion—not only the motion of particles, but the energy fluxes, work,
or heat, become stochastic. Nevertheless, the combination of manipulation and imaging
or other detection techniques allow for some degree of control [1]. For instance, in driven
systems, the external driving may be modified based on outcomes of measurements, as in
feedback control, leading, for example, to (efficient) confinement in small region of space [2]
or to the reduction of thermal fluctuations, i.e., cooling, a technique that is implemented in
both classical or quantum systems [3,4]. Another application of feedback is an increase of
the performance of certain motors operating at the microscale, such as Brownian ratchets
or micro-motors [5–9].

Feedback exploits the information that is acquired through measurement as a ther-
modynamic resource. It is now known that the work needed to perform an isothermal
feedback process, for a system in contact with an environment at constant temperature T,
is bounded by the following extension of the second law of thermodynamics [9,10]:

W ≥ ΔF− kTI, (1)

where ΔF is the free energy difference between the final and initial states of the process,
k the Boltzmann’s constant, and I is the amount of information that is gained in the
measurement, quantified by the mutual information from information theory. Information
is always positive (or zero) and, thus, in a cycle (ΔF = 0) it is possible to extract work
(W < 0) from a single thermal bath with measurement and feedback.

Equation (1) also shows that a given level of accuracy in the measurement, quantified
by the mutual information, limits the amount of work that can be extracted in one feedback
operation. Some especially tailored protocols saturate that bound (1) and they may be used
to convert all of the information acquired into useful work. These are processes that are
reversible under feedback [11–13]. In this article, we first review these protocols and show
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how to use their special properties in order to extract energy with the same efficiency and
even power when operating with higher measurement errors. In order to fix ideas, we use
a well known model that we proceed to describe in the following section.

2. Model Description and Cycle Operation

As our system, we consider an overdamped Brownian particle that is in contact with
a thermal bath, which acts as its environment. The particle feels a harmonic potential.
This is a well proven theoretical model for an experimental system that was formed by
a colloidal particle in water at constant temperature and trapped by optical tweezers.
The potential Vκ,x0 = 1

2 κ(x − x0)
2 has tunable parameters x0, the position of the center

of the trap, and κ, the stiffness. As the Brownian particle position fluctuates, the energy
transfers and thermodynamic potentials become also fluctuating; in fact, they are stochas-
tic variables. The framework to analyze energetics for these fluctuating systems in the
mesoscale is stochastic thermodynamics [14–16] .We review the main concepts in the follow-
ing. The Brownian particle may, due to a collision with the solvent, absorb some energy and
climb the potential well. Or it may transfer energy back to the thermal bath via viscosity
and go down in the potential. These energy transfers with the thermal bath constitute heat
Q̂ and, and since this energy can be stored as potential energy, this is the internal energy Ê
of the particle. In our system then the internal energy is Ê = Vκ,x0 = 1

2 κ(x− x0)
2 [17–20].

We will use â to denote a stochastic variable and the regular letter a for the average over
realizations, i.e., E = 〈Ê〉. Another form of energy transfer is work Ŵ: an external agent
may modify the harmonic potential (changing the parameters) and increase or decrease
the potential energy of the particle. If the internal energy depends on a parameter λ that is
modified from λ0 to λ f then, formally, the definition of work is:

Ŵ =
∫ λ f

λ0

∂E
∂λ

dλ (2)

This is best seen with an example. For instance, consider a fast increase of the stiffness
of the potential from ki to k f . If the increase is very fast, so that the particle does not modify
its position x during the time, the stiffness is changing, the energy of the particle increases
by an amount ΔV = 1

2 (x− x0)
2(k f − ki). This energy is supplied by the agent controlling

the potential who has then performed a work Ŵ = ΔV > 0. Consequently, the particle is in
a tighter parabola and the equilibrium dispersion of the position of the particle decreases,
so that this is commonly referred to as a compression. If the stiffness is decreased, work is
exerted on the agent by the system and, since the distribution of particle positions will
eventually widen, this corresponds to an expansion.

With these definitions, energy is conserved and the first law is fulfilled either at the
level of trajectories Δ̂E = Q̂ + Ŵ or as averages E = Q + W [14–20].

In order to extract energy from the thermal bath, we propose the following cyclic
operation in two stages:

1. Confinement of the Brownian particle by (repeated) measuring and feedback
2. Isothermal expansion

The system works as a motor if the work obtained in the isothermal expansion exceeds
the work that is needed for confinement. During a compression, the free energy of the
system increases (due to the entropy decrease). Using reversible feedback confinement [2],
we can minimize the work that is needed for stage 1, which turns out to vanish, and extract
all of the free energy increase of stage 1 as work during stage 2. Let us analyze each stage
in more detail.

2.1. Optimal Confinement

The confinement of a system to a small region of the phase space (at constant tempera-
ture) implies a decrease of entropy of the system. For the entropy of a Brownian particle,
we use the standard choice of Shannon’s entropy, S = −k

∫
ρ(x) log(x)dx, where ρ(x)
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is the probability distribution of the particle position. With this choice, the second law
of thermodynamics is fulfilled on average and the thermodynamic relation F = E− TS
is recovered for a system in contact with a thermal bath. Although, strictly speaking,
this is a generalization of the free energy to non-equilibrium systems, in systems that are
in contact to a thermal bath it plays a similar role as the standard thermodynamic free
energy, and stochastic thermodynamics for our system closely resembles macroscopic
thermodynamics [9].

Let us consider, for simplicity, that the internal energy change between the initial and
final states of the confinement process vanishes (we will see later that this is the case in
our particular system). A reduction of entropy then corresponds to an increase of free
energy ΔF = ΔE− TΔS. This increase in free energy could then be extracted as work in an
isothermal expansion. However, the whole process cannot operate as a motor, as this will
defeat the second law (extracting work from a single thermal bath). Indeed, the second law
states for the confinement

W1 ≥ ΔF1 (w/o. feedback) (3)

and then for the isothermal expansion back to the initial state (ΔF2 = −ΔF1)

W2 ≥ ΔF2 = −ΔF1 (w/o. feedback) (4)

so that Wtotal = W1 + W2 ≥ 0 and the system dissipates energy into the thermal bath.
However, as explained above, when measuring and feeding back to the system, W is

bounded by (1) instead. Thus, the work that is needed for the confinement may be reduced
and the work output of the cyclic process (ΔFcycle = 0) may be negative:

Wtotal ≥ −kTI (5)

Notice that mutual information is always a positive quantity.
Following [2], we propose a reversible feedback confinement that can confine the

particle with W1 = 0 and, as will be shown later (see Equation (13)), without dissipating
heat to the thermal bath, so that the increase in free energy that is produced by the
confinement can later be completely recovered as work during a quasistatic expansion in
stage 2.

For a system that is in contact with a thermal bath, a feedback process is reversible if the
Hamiltonian is modified after the measurement, so that probability of the state of the system
conditioned on the measurement outcome is the Gibbsian state of the new Hamiltonian.
After a measurement, the probability to find a given state changes instantaneously, the new
probability distribution takes into account the information obtained, and ut must be
updated according to Bayesian inference. If the Hamiltonian also changes rapidly and
the Gibbs state of the new Hamiltonian matches the posterior probability distribution,
the system remains at equilibrium and no further evolution of the probability distribution
ensues until a new measurement is taken.

In our model, we take the common assumption of Gaussian measurement errors. If the
particle is located at a position x, then the measurement outcome m is Gaussian distributed
around x and the dispersion σm quantifies the measurement error:

q(m|x) = 1√
2πσ2

m
e−(m−x)2/2σ2

m (6)

After a measurement, the probability distribution of the position of the particle updates
according to Bayes’ theorem from the initial distribution ρ:

ρ′(x|m) =
ρ(x)q(m|x)

π(m)
(7)

where π(m) =
∫

dxq(m|x)ρ(x) is the marginal distribution of the measurement outcome.
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For a Brownian particle in a time-independent potential, the equilibrium distribution
is its corresponding Gibbs distribution:

ρ(x) ∝ e−V(x)/kT (8)

In a harmonic potential, it is a Gaussian, centered in the trap position x0 and with variance
being given by σ2 = kT/κ. It can be shown [7] that, after a measurement, the new
distribution that is computed according to (7) remains Gaussian. If the initial distribution
has mean x̄ and standard deviation σ, after a measurement, then the distribution updates
to a Gaussian with the mean and deviation given by [2]:

x̄′(m) =
σ2

m
σ2 + σ2

m
x̄ +

σ2

σ2 + σ2
m

m (9)

1
σ′2

=
1
σ2 +

1
σ2

m
(10)

We can make the post-measurement distribution an equilibrium distribution by setting
a new center of the trap position x′0 and stiffness κ′, as

κ′ = kT/σ′2 (11)

x′0(m) = x̄′(m) (12)

Notice that κ′ > κ; hence, the particle is more tightly bound or confined after this
change. Additionally, Equation (10) implies σ′ < σ, so that every measurement and
feedback step further reduces the variance of the particle distribution.
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Figure 1. Reduction of variance after measuring. Left: Initial distribution. Histogram of 40,000 random Gaussian numbers
centered in 0 with standard deviation σ = 3.0 (blue bars) and a theoretical Gaussian distribution with the same parameters
(red continuous line). Right: Posterior distribution. Histogram of particle positions with measurement outcomes in a
given interval (0.89, 0.98) (blue bars) and prediction according to Bayes’ theorem (7) (red). Measurement outcomes were
performed with measurement error σm = 3.0. Using σm = 3.0 and σ = 3.0 in (10) gives σ′ = 2.12, which matches the sample
standard deviation of 2.10.

In order to check this reduction of variance in simulation, we have computed the
particle distribution after a measurement. For this, we first generate a large number of
trajectories, starting from an initial equilibrium distribution for a harmonic potential cen-
tered in position x0 = 0 and corresponding dispersion σ = 3.0, as depicted in Figure 1(left).
After some time interval, for each trajectory, we measure its position by generating a
(Gaussian) random measurement outcome m around the actual position x with dispersion
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σm = 3.0 (see the details in Section 5). We can then fix a small interval around a given
measurement of the position (m, m + Δm) of our choice, for instance (0.89, 0.98), and only
check the realizations that gave a measurement in that interval. The distribution of the
actual positions x of these particular realizations are distributed as in (7). In our case,
a Gaussian with new reduced standard deviation σ′ = 2.12 is given by (10). This can be
seen in Figure 1 (right).

This process of measurement and feedback can be repeated and a new, more con-
fined state could be achieved. Figure 2 (top) shows the confining effect of repeating
this procedure.

In every measurement and feedback step, the trapped Brownian particle stays in
equilibrium with the thermal bath at temperature T. Consequently, the average energy is
not modified by the feedback process. The average internal energy E of a trapped particle in
one dimension is given by the equipartition theorem, as E = kT/2. Because the process is
isothermal, ΔE = 0. On the other hand, always being in equilibrium, there is no relaxation
of the particle distribution and the heat that is transferred from the heat bath vanishes on
average Q = 0. Therefore, according to the first law, the average work done on the system
also vanishes:

ΔE1 = Q1 + W1 = 0 ⇒ W1 = −Q1 = 0 (13)

This has been checked in simulations, as shown in Figure 2 (bottom). Details about
work computation during measurement and feedback can be found in Section 5.
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Figure 2. Confinement. Top: particle trajectory (gray line), measurement outcome (red dots) and
trap center position (blue line). Bottom: Cumulative work for different realizations (color lines) and
its average over 200 realizations (thick black line) for confinement in 10 measurement steps. See the
simulation details in Section 5. Initial trap stiffness κ = 0.1 and position x0 = 0. Initial condition is
equilibrium with trap potential to avoid transient due to equilibration. Particle diffusion coefficient
D = 1 and friction γ = 1.
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In general, for other feedback protocols where the stiffness of the trap is suddenly
changed, work is performed, on average [21], as in the simple example described after
Equation (2). The feedback process used here is different (in addition to a sudden increase
of stiffness, trap position is also modified in a precisely combined manner) and it is special
in the sense that average work vanishes. As encoded in Equation (1), this can solely
be achieved by using information regarding the position through measurement in the
feedback (see Equation (9) for the new trap position). To see why this matters, consider
our Brownian particle in a harmonic potential, where the observer happens to know that
the particle is exactly at the bottom of the well. This would allow for this external agent
to increase the stiffness of the potential well with an abrupt change, without performing
work, since the energy of the particle is always zero at the bottom of the well, for any
stiffness. The confining protocol is a refinement of this idea that works for any position of
the particle, by displacing the bottom of the potential well towards the measured particle
position and changing the stiffness in a suitable manner.

Furthermore, one can compute the mutual information that is obtained in the process
of measurement and evaluate the increase in free energy ΔF1 for the confinement stage.
From the definition of mutual information:

I(m, x) =
∫

π(m)q(m|x) log
q(m|x)
π(m)

(14)

When considering that the measurement outcome distribution q(m|x) and the marginal
distribution π(m) are Gaussian with variance σ2

m and σ2 + σ2
m = σ2

mσ2/σ′2, respectively,
the information that is acquired in a measurement is

I(m, x) = −1
2

log
σ′2

σ2 ≥ 0 (15)

Mutual information intuitively measures the decrease in uncertainty of variable x if we
know the value of m, or vice versa [22]. In our case, from (10), if the measurement error σm
is very large then σ′ ≈ σ and we extract almost no information from measuring (I ≈ 0).
Conversely, for infinite precise measurement σm → 0, then σ′ → 0, and we obtain infinite
information from a measurement, as an infinite precise description of a position would
require an infinite number of bits to store it.

The entropy of a Gaussian of variance σ2 is S(ρ) = k log σ
√

2πe. In the measurement
process, the distribution changes from a Gaussian of variance σ2 to a Gaussian of variance
σ′2, and we have

ΔS1step = k log σ′
√

2πe− k log σ
√

2πe = k
1
2

log
σ′2

σ2 = −kI(m, x) (16)

Because ΔE = 0, we finally obtain

ΔF1step = ΔE− TΔS1step = kTI(m, x). (17)

This is valid for every measurement and feedback step while using the reversible feedback
protocol. In a sequence of confinement steps with successive variances σ0, σ1, . . . , σn,
the total information is

Itotal = −1
2

n

∑
i=1

log
σ2

i
σ2

i−1
= −1

2
log

σ2
n

σ2
0

. (18)

σ2
n can be obtained from (10) by recursion, giving:

1
σ2

n
=

1
σ2

0
+ n

(
1

σ2
m

)
(19)
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Finally, the free energy difference between the final and initial states in the confinement
stage is

ΔF1 = kTItotal =
kT
2

log
σ2

0
σ2

n
= kTItotal. (20)

Every bit of information that is extracted in the measurement is turned into an increase
of free energy during the confinement stage and it can be converted into useful work in the
subsequent expansion.

2.2. Work Extraction by Isothermal Expansion

If an external agent changes the stiffness of the optical trap from κi to κ f < κi, energy
is recovered as work, as explained above. In a quasistatic process, the work done by
the system is given by the free energy difference. Because stage 2 completes the cycle of
operation of the motor ending in the initial state, we have ΔF2 = −ΔF1 and

Wtotal = W1 + W2 = 0− ΔF1 = −kTItotal, (21)

which corresponds to extracted work. In fact, it saturates expression (5) and it is the
maximum possible work that can be extracted while using the information that was
obtained in the measurements.

This result can also be recovered by the direct computation of the work of a process
changing stiffness from κi to κ f and while taking into account that, for a quasistatic process,
one can use the equipartition theorem stating 〈x2〉 = kT/κ(t), with κ(t) the instantaneous
value of the stiffness. Subsequently, the average work during the expansion, according
to (2), reads:

W2 =
∫ κ f

κi

dκ
〈x2〉

2
=

kT
2

∫ κ f

κi

dκ
κ

=
kT
2

log
κ f

κi
(22)

The expansion starts at the end of the confinement process with a distribution of variance
σn and ends at σ0. Subsequently, while using the relation between stiffness and variance in
the confinement stage (11), we have

W2 =
kT
2

log
κ f

κi
= − kT

2
log

σ2
n

σ2
0
= −kTItotal (23)

Notice that during both the confinement and expansion the system must be at equilibrium
in order to transform every bit of information into useful work.

In practice, though, for a process changing the stiffness of the potential to be ap-
proximately quasistatic, it is enough that the time of the process is large compared to
the inverse frequency of the trap given by ν = κ/γ. This is the criterion that we have
used for simulations. Additionally, it is worth noting that, even though the work in every
realization of the expansion may differ in principle in a stochastic system, work is—in
this particular example—a self-averaging quantity: for a quasistatic expansion, the total
work obtained in any realization is very similar to its average value. The argument for
self-averaging of the work is the following: from work definition (2), work in a single
realization when expanding is Ŵ =

∫ x2

2 dκ. If the expansion is very slow, in the time κ is
modified a certain small amount, the particle position has time to fluctuate and sample the
whole quasi-equilibrium distribution and x2 approximately can be replaced by its average
value (see the full computation in [14]).

Figure 3 depicts the complete diagram of the proposed cycle.
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Finally, one could also define an efficiency η as the ratio between the extracted thermo-
dynamic resource (work) and the thermodynamic resource consumed to make the engine
run, in this case information. With this definition, this reversible feedback engine attains
the maximum efficiency:

η =
−W
kTI

= 1 (24)

as in a similar system [23], with just one measurement per cycle.

Stage 1: multistep
optimal con nement 
       (W=0)

Stage 2: quasistatic
expansion (W<0)

Figure 3. Cycle for extracting work from a thermal bath with inaccurate measurements.

3. Results

3.1. Work Is Optimal

We have performed computer simulations of the model system that is described
above. Figure 4 depicts part of two consecutive cycles, each of them with a confinement
stage that is composed of 10 measurement and feedback steps, followed by an isothermal
expansion. The top panel depicts the particle position (gray line), trap center (blue line),
and measurement outcomes (red dots), whereas the bottom panel shows the evolution of
the stiffness along the cycle.

Figure 5 shows the cumulative work that was done on the system along the time of
a single cycle. The thick solid line represents the average over 200 cycles. Every cycle
consists of a confinement that is achieved by measuring the particle position 10 times and
the subsequent isothermal expansion. Average work extracted (W < 0) by the end of the
cycle approaches the expected result that is given by Equations (18), (19) and (21), marked
with dashed black line. The shaded area represents the variance of the work, which is
substantially large. As is apparent from the figure, most of the variance comes from
the confinement step, with the quasistatic work being a self-averaging quantity. Finally,
work that corresponds to two particular cycles is shown by thin blue lines.
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Figure 4. Trajectories. (Top) Particle trajectory (gray continuous line), trap center (blue continuous
line), measurement outcomes (red dots). (Bottom) Stiffness evolution during the cycle. Every cycle
starts with κ = 1, there are 10 measurement steps, followed by quasistatic expansion. D = 1, γ = 1.

Figure 5. Average cumulative work along the confinement-expansion cycle (thick blue line) com-
puted from 200 realizations. The shaded area corresponds to one standard deviation from the
average. Thin blue lines represent cumulative in two representative cycles. Simulation parameters
are: Δt = 0.001, time between measurements τ = 0.1, number of measurements before expansion is
10, measurement error σ2

m = 1, initial stiffness of the trap κ = 1, diffusion coefficient D = kT/γ = 1,
and drag coefficient γ = 1.

3.2. Power and Efficiency with Higher Measurement Errors

Consider two setups, A and B, with different measurement errors being given by
variances σ2

mA and σ2
mB = 2σ2

mA. Suppose that only one measurement step is performed in
each system before the expansion. According to our discussion above, the measurement
information that can be later transformed into work is smaller in system B than in A:
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IB1 =
1
2

log
σ2

mB + σ2
0

σ2
mB

=
1
2

log

(
1 +

σ2
0

2σ2
mA

)
<

1
2

log

(
1 +

σ2
0

σ2
mA

)
= IA1 (25)

However, we can obtain as much information in system B with two measurements as
in system A with one measurement. After two measurements, while using the reversible
confinement protocol, the variance of the equilibrium distribution σ2

B2 in system B is equal
to the variance in system A after one measurement σ2

A1:

1
σ2

B2
=

1
σ2

0
+ 2

(
1

σ2
mB

)
=

1
σ2

0
+

(
1

σ2
mA

)
=

1
σ2

A1
(26)

Using (18), we obtain:

IB =
1
2

log
σ2

B2
σ2

0
=

1
2

log
σ2

A1
σ2

0
= IA (27)

As explained above, this implies that the same work can be extracted in the subsequent
quasistatic expansion. In fact, bothof the systems run with the same efficiency η = 1;
hence, every bit of information is turned into work in the expansion. Furthermore, system
B can also be run in principle at the same power as system A. During the confinement
process, after the adjustment of the potential, the particle distribution is at equilibrium.
No relaxation occurs, as explained previously. Therefore, a new measurement and feedback
step could, in principle, be taken immediately after, in rapid succession. Thus, halving the
time between measurements in system B as compared to system A ensures the same cycle
time. As the work obtained is also the same, both of the systems operate with the same
power. Figure 6 depicts this, where we show the simulation results for system A with one
measurement and expansion and system B with two (faster) measurements and expansion.
Approximately the same work is obtained in both systems. For reference, we have also
marked the expected extracted work for a system with tge measurement error given by
σmB, but using just one measurement.

Figure 6. Average work extraction for two different measurement errors, using one measurement
with variance σ2

mA = 1 (blue thick line), and using two measurements with variance σ2
mB = 2

(red thick line). Dashed line represents expected work extraction and fine dashed line corresponds
to expected work extraction with just 1 measurement of variance σmB. Thin lines represent single
realizations of the work in system A (blue) and B (red).
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4. Discussion

Reversible feedback confinement is an optimal way of reducing the entropy of a system
to be later used for work extraction. Nevertheless, it requires a high degree of control over
the Hamiltonian, to adapt it to the new probabilistic state after the measurement. This might
be a limitation for experimental realizations, although a low dissipation is expected, even if
a similar or approximate protocol is implemented. Theoretically, the dissipation could
be accounted for by using the Kullback–Leibler distance between the post-measurement
particle distribution and the equilibrium distribution of the potential after feedback [24] ,
if they were different due to a less precise tuning of the potential.

In principle, for a measurement and feedback protocol, imprecision in the measure-
ment, which will inevitably arise in an experimental setup, will limit the work extraction
or power. Nevertheless, we have shown here that this limitation can be overcome by
adding more measurement steps before the quasistatic expansion, as long as the reversible
feedback confinement protocol is used. In principle, the application of this protocol is
instantaneous. In practice, this means that the confinement may be applied in a very short
time, limited maybe by the response time of the feedback mechanism or the measurement
acquisition time. Thus, if the response times of measurement, feedback, and Hamiltonian
modification are fast as compared to system’s relaxation time, optimal work extraction is
feasible, even with a high degree of inaccuracy in the measurement, while using repeated
optimal feedback.

5. Materials and Methods

The confined Brownian particle evolves according to Langevin equation:

γẋ = −V′
κ,x0(x) + ξ(t), (28)

with ξ(t) Gaussian white noise 〈ξ(t)ξ(t′)〉 = 2kTγδ(t − t′), T bath temperature and
k Boltzmann’s constant. The potential Vκ,x0(x) is defined above and it is controlled
through measurement and feedback. Model simulations were performed in C language,
solving the Langevin evolution equation with the Heun method for a stochastic dif-
ferential equation [25]. We provide, in the following, some details on work computa-
tion, measurement, and feedback steps. For full details, the code is available here:
http://seneca.fis.ucm.es/ldinis/code/extract_optimal_work.zip.

• Measurement. In order to perform a measurement in the simulation, a Gaussian
number “r” with zero average and standard deviation 1 is generated. Subsequently,
if particle position is x, the measurement outcome m is

m = x + σmr (29)

Notice that m is then distributed according to Equation (6)
• Feedback. Immediately after measurement, and using the measurement outcome

m just computed, the potential parameters κ and x0 are recomputed according to
Equations (9) to (12). Notice that the old values need to be stored in an auxiliary
variable for the work computation, as explained in the following step.

• Work computation during feedback process. According to its definition for a trajectory,
work is the difference in the potential energy when the potential is changed. If κ → κ′
and x0 → x′0 as a result of measurement and feedback, then work is computed as

ΔW =
1
2

κ′(x− x′0)2 − 1
2

κ(x− x0)
2 (30)

This ΔW is added to a variable W that stores the cumulative work that was done along
the whole simulation.

• After the feedback, evolution equation resumes with the new potential parameters.
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• Work during expansion. Work is also performed as a result of the change in κ during an
expansion. In the simulation, during the expansion stage, κ changes an amount Δκ =
κ f−κi
Nexp in every time step, where Nexp is the number of time steps of the expansion.

Therefore, in a time step, a work

ΔW =
1
2

Δκ(x− x0)
2 (31)

is performed. Again, this ΔW has to be added to the variable W, which stores the
total or cumulative work of the whole process.
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Abstract: In the present paper, we study a diauxic growth that can be generated by a class of model at
the mesoscopic scale. Although the diauxic growth can be related to the macroscopic scale, similarly to
the logistic scale, one may ask whether models on mesoscopic or microscopic scales may lead to such
a behavior. The present paper is the first step towards the developing of the mesoscopic models that
lead to a diauxic growth at the macroscopic scale. We propose various nonlinear mesoscopic models
conservative or not that lead directly to some diauxic growths.

Keywords: diauxic growth; replicator equation; mesoscopic model; integro-differential equations

1. Introduction

In various processes in nature and social sciences, e.g., artificial neural networks, biology, medicine,
and sociology, the logistic growth is observed in experiments. The logistic growth describes, at the
macroscopic scale, the limited growth of a population. It is a typical way of modeling tumor growth—see
e.g., [1–3] and references therein. It leads to the curve of S, or sigmoid, shape. In more mathematical terms
a single inflection point is present. In some cases, however, a more complex behavior is observed. That was
pointed out in 1949 by Monod—see [4], page 390—“This phenomenon is characterized by a double growth
cycle consisting of two exponential phases separated by a phase during which the growth rate passes
through a minimum, even becoming negative in some cases”. Monod referred such a behavior to the
growth of bacterial cultures and called it—diauxie. The similar effect was hypothesized in the analysis
of a role for the CDC6 protein in the entry of cells into mitosis—see [5]. Based on the experimental data
in [5], a new hypothesis that CDC6 slows down the activation of inactive complexes of CDK1 and cyclin B
upon mitotic entry was formulated and the corresponding mathematical model was developed. Another
example is the process of DNA melting in the case when the possible base pairs of AT (or TA) and of CG
(or GC) appear in two separate groups composed only of AT and CG—see Figure 7.14, page 205, in [6].

In mathematical terms, we can refer to diauxic growth, if the corresponding increasing bounded
function has more than one single inflection point. The first mathematical description of such a behavior is
contained in [7].

One may note that the data of total cases of COVID–19, according to Johns Hopkins University,
in September 2020, show the curves with more than one inflection points in cases of various European
countries, like Spain, Italy, France, Germany, and UK. On the other hand, countries like Brazil, Chile,
and South Africa display curves closed to the logistic growth (with only one inflection point).

The comparison between the logistic curve and the curve with diauxic growth is presented in Figure 1.

Entropy 2020, 22, 1280; doi:10.3390/e22111280 www.mdpi.com/journal/entropy
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Figure 1. Comparison between logistic curve and diauxic growth curve.

In the present paper, we apply

Definition 1. An increasing bounded and positive-valued real function is said to have a diauxic growth if its
number of inflection points is bigger than one.

Although the diauxic growth can be related, similarly to the logistic one, to the macroscopic scale one
may ask whether the models on mesoscopic or microscopic scales (cf. [8]) can result in a diauxic growth.
The present paper is the first step towards the developing of the mesoscopic models that lead to a diauxic
growth at the macroscopic scale. We propose various nonlinear mesoscopic models, both conservative and
not, which lead directly to some diauxic growths.

2. Replicator Equation

We consider the following replicator equations that occur in the multi-player games, see [7,9].

d x
d t

= x(1− x)P(x) , (1)

where P = P(x) is a polynomial. In [7] the following polynomials were considered

P(x) = (x− a)2 + ω , (2)

where 0 < a < 1, ω > 0 is a small number, and

P(x) = (x− a)2(x− b)2 + ω , (3)

where 0 < a < b < 1 and ω is a (small) number. The former refers to three players games whereas the
latter to five players games. Both are related to two strategies ↑ and ↓ in an infinitely large population.
The variables x and 1− x are the frequencies of strategies ↑ and ↓, respectively.
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Consider the following payoff matrix in the case of a 3 players (for the sake of simplicity) game

↑↑ ↑↓ ↓↓

↑ a1 a2 a3

↓ b1 b2 b3 ,

where ai, bi, and i = 1, 2, 3, are the corresponding payoffs. The classical way of presentation is used.
For example a2 is payoff of the “first player” with strategy ↑ against the other players with strategies ↑
and ↓. Again, for the sake of simplicity, we assume that the payoffs are nonnegative.

Let now μ = μ(t) and ν = ν(t) be densities of players with strategies ↑ and ↓, respectively, cf. [10].
In terms of the averages payoffs of the two strategies their dynamics is defined by the system

d
d t μ = μ

(
a1

μ2

(μ+ν)2 + 2a2
μ ν

(μ+ν)2 + a3
ν2

(μ+ν)2 − κ

)
,

d
d t ν = ν

(
b1

μ2

(μ+ν)2 + 2b2
μ ν

(μ+ν)2 + b3
ν2

(μ+ν)2 − κ

)
,

(4)

where, in addition to the net growth, we consider a linear death terms with rate κ > 0. We see that
x(t) = μ(t)

μ(t)+ν(t) satisfies Equation (1) with

P(x) = âx2 + 2b̂x + x̂ , (5)

where â = a3 − 2a2 + a1 − b3 + 2b2 − b1, b̂ = −a3 + a2 + b3 − b2 and x̂ = a3 − b3. We refer to these
statements throughout the paper.

3. Mesoscopic Model

We study the time–evolution of the probability density f . The function f = f (t, u) is the distribution
of an internal, microscopic state u ∈ U at time t ≥ 0 of a (statistical or test ) agent, U is a domain in
Rd, d ∈ N = { 1, 2, . . . }. Such a description then has a mesoscopic nature. An arbitrary vector u ∈ U

can be related to a biological state, activity, opinion (e.g., political opinion), a social state of a test agent ,
etc.—cf. [8,11–14] and references therein. The model has therefore a wide range of possible applications in
various applied sciences, such as biology, medicine, social, or political sciences.

The time evolution is defined by the general nonlinear integro–differential Boltzmann-like equation,
see [14] and references therein,

∂

∂ t
f (t, u) = Q[ f ](t, u) , t > 0 , u ∈ U , (6)

where
Q[ f ](t, u) =

∫
Rd

(
f (t, v) T[ f (t, . )](v, u)− f (t, u) T[ f (t, . )](u, v)

)
dv .

The nonlinear operator Q describes interactions between agents causing the change of state.
The turning rate T[ f ](u, v) measures the rate for an agent with state u to change it into v. A simpler
equation, with two possible states only, was studied in [15]—see also [8].

The modeling process leads to a proper choice of the turning rate.

Case 1. Let
T[ f (t, . )](u, v) = β(u, v) f γ(t, v) , u, v ∈ U ,
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where γ > 1 is here a given integer.

The rate of transition from state u to state v is proportional to the γ–th power of actual probability
of state v. The higher is the probability, the larger is the chance of the change. The interaction kernel β

corresponds to the tendency of agents to change a state. In particular, it may restrict the interactions only
to states that are close each to other—see Ref. [16]. The (sensitivity) parameter γ describes the level of
sensitivity of interactions: The greater is γ the more sensitive interactions are.

The models defined by Case 1 were proposed in [14], and then studied in various directions in [16–18].
Ref. [14] proposed results of global existence in the space homogeneous case for 0 < γ < 1, whereas γ > 1
was considered in [16–18]. Assuming γ = 1 for symmetric β yields a trivial model. Thus it was excluded
as it is stated in Case 1. The detailed information on the modeling leading to Case 1 can be found in [19]
(see also references therein), where it was referred to the conformist society.

We consider the following equation

∂

∂ t
f (t, u) = Q[ f ](t, u) t > 0 , u ∈ U , (7)

with
Q[ f ](t, u) = f γ(t, u)

∫
U

β(v, u) f (t, v)dv− f (t, u)
∫
U

β(u, v) f γ(t, v)dv . (8)

Independently we consider the following two, formally more general, kinetic equations

Case 2. Let
T[ f (t, . )](u, v) =

∫
U

. . .
∫
U︸ ︷︷ ︸

γ×

A (v, u, v1 , . . . , vγ) α (u, v1 , . . . , vγ) ×

f (t, v1) . . . f (t, vγ)dv1 . . . dvγ , u, v ∈ U ,

where γ is an integer.

Case 2 leads to
∂

∂ t
f (t, u) = Q̄[ f ](t, u) t > 0 , u ∈ U , (9)

with
Q̄[ f ](t, u) =

∫
U

. . .
∫
U︸ ︷︷ ︸

(γ+1)×

A (u, v, v1 , . . . , vγ) α (v, v1, . . . , vγ) ×

f (t, v) f (t, v1) . . . f (t, vγ)dv dv1 . . . dvγ −
f (t, u)

∫
U

. . .
∫
U︸ ︷︷ ︸

γ×

α (u, v1, . . . , vγ) f (t, v1) . . . f (t, vγ)dv1 . . . dvγ .

(10)
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Case 3. Let γ be an integer and

T[ f (t, . )](u, v) = A0 (v, u) α0 (v) f (t, v) +

+
γ

∑
j=1

∫
U

. . .
∫
U︸ ︷︷ ︸

j×

Aj
(
v, u, v1, . . . , vj

)
αj

(
u, v1, . . . , vj

)
f (t, v1) . . . f (t, vj)dv1 . . . dvj .

u, v ∈ U ,

Case 3 leads to
∂

∂ t
f (t, u) = Q̃[ f ](t, u) t ≥ 0 , u ∈ U , (11)

with
Q̃[ f ](t, u) =

∫
U

A0 (u, v) α0 (v) f (t, v)dv− α0(u) f (t, u) +

+
γ

∑
j=1

( ∫
U

. . .
∫
U︸ ︷︷ ︸

(j+1)×

Aj
(
u, v, v1, . . . , vj

)
αj

(
v, v1, . . . , vj

) ×
f (t, v) f (t, v1) . . . f (t, vj)dv dv1 . . . dvj −
f (t, u)

∫
U

. . .
∫
U︸ ︷︷ ︸

j×

αj
(
u, v1, . . . , vj

)
f (t, v1) . . . f (t, vj)dv1 . . . dvj

)
.

(12)

The terms Aj(u, v, v1, . . . , vj) can be interpreted as the transition probabilities of changing from state
v to u caused by interaction with agents with states v1, v2,...,vj whereas aj(v, v1, ..., vj) as rate of interaction
between the agent with state v and agents with states v1,...,vj.

One may note that Equations (9) and (11), under suitable symmetry assumption, can be directly related
with the dynamics of N interacting agents in the limit N → ∞—see [8,13]. The former may be related to
the interactions between γ agents, whereas the latter to interactions between j agents, with j = 1, 2, . . . , γ

and j = 0 corresponds to a stochastic change without any interaction—see [13]. One may note, however,
that Equation (11) can be directly reduced to Equation (9) just taking αj ≡ 0 for each j = 0, 1, . . . , γ− 1.
On the other hand, thanks to the conservative properties, Equation (9) results in Equation (11) as well,
under a suitable choice of A and α. For these reasons we concentrate on Equation (11) only.

The Lp-norm is denoted by ‖ . ‖p.
We may state the following local existence–uniqueness result for solutions to Equation (7).

Proposition 1. Let γ > 1 and
β ∈ L∞(U×U) . (13)

If f0 is a probability density such that f0 ∈ L∞(U), then there exists T > 0 such that the solution f = f (t)
to (7) exists and is unique in L∞(U) ∩ L1(U) on the interval [0, T). The solution preserves positivity and L1-norm
(i.e., it is a probability density) on [0, T). Moreover,

• The solution, depending on initial data, is either global (T = ∞) or local (T < ∞).
• Under the additional assumption that β is a symmetric function—see [19]—the solution possesses all finite

Lp-norms on [0, T), p > 1, and the functions t 
→ ‖ f (t)‖p are increasing for t ∈ [0, T).

The first part of proof follows from [14]—see [19]—based on the Lipschitz property of the
corresponding operator. The rest follows by a priori estimates.
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From [16–20] we see that the behavior of the solution to Equation (7) may be very complex and may
lead to various interesting applications in biology, medicine, and social sciences.

In contrast to Equation (7) with γ > 1, Equation (7) with γ = 1 (for asymmetric β), as well as
Equations (9) and (11) result in the global existence–uniqueness of solutions.

Proposition 2. Let γ = 1 and Equation (13) be satisfied. If f0 is a probability density then for any T > 0 the
solution f = f (t) to (7) exists and is unique in L1(U) on the interval [0, T]. The solution preserves positivity and
L1-norm (i.e., it is a probability density) on [0, T].

We consider the following conservative situation

Assumption 1. Let γ be an integer and

Aj ≥ 0 , αj ≥ 0 , αj ∈ L∞
(
Uj+1) ,∫

U

Aj
(
u, v, v1, . . . , vj

)
du = 1 for all

(
v, v1, . . . , vj

) ∈ Uj+1

such that αj
(
v, v1, . . . , vj

)
> 0 , ∀ j = 1, . . . , γ .

(14)

Proposition 3. Let Assumption 1 be satisfied. If f0 is a probability density then for any T > 0 the solution f = f (t)
to Equation (11) exists and is unique in L1(U) on the interval [0, T]. The solution preserves positivity and L1-norm
(i.e., it is a probability density) on [0, T].

Corollary 1. The solutions in Propositions 2 and 3 are in L∞(U) on every compact [0, T] provided that f0 ∈ L∞(U).

The proofs of Propositions 2 and 3 are standard and based on the Lipschitz property in L1(U)—cf. [20].
Similarly Corollary 1 follows.

Moreover, we need the smoothness of the solutions. Let Wm,p(U) and Cm
B (U) be the Banach

spaces—the classical Sobolev space (a subspace of Lp(U)) and the space of m–differentiable functions with

the usual norms denoted by ‖ . ‖(m)
p and ‖ . ‖(m)

[B] , respectively—see [21].

Let X(m) = Wm,1(U) ∩ Cm
B (U), m = 0, 1, 2, . . . , and ‖ . ‖(m) be defined

‖ . ‖(m) = ‖ . ‖(m)
p + ‖ . ‖(m)

[B] , m = 0, 1, 2, . . . .

In particular, for m = 0, we write X = X(0) = L1(U) ∩ L∞(U) and ‖ . ‖ = ‖ . ‖(0).

Proposition 4. Let the assumption of Proposition 1 be satisfied and additionally f0 ∈ X(m) and∫
U

β(u, v)g(v)dv ∈ X(m) for each g ∈ X(m) , (15)

for some m = 1, 2, 3, . . . . Then the solution f = f (t) (given by Proposition 1) satisfies f (t, . ) ∈ X(m) for
all t ∈ [0, T).

4. Macroscopic Behavior in the Conservative Case

In the present section we fix our attention on the behavior of the cumulative distribution function
corresponding to the solution of a (mesoscopic) kinetic equation.
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For simplicity we assume that U = [ 0, ∞ [ ≡ R1
+ and γ = 3, however possible generalizations

are straightforward.
We show that, for particular assumptions on the parameters Aj, αj, j ≤ 3, of Equation (11), the solution

f = f (t, u) leads to the distribution

F(t, u) =
u∫

0

f (t, ũ)dũ , (16)

that possesses a diauxic growth with respect to t > 0, for any sufficiently large u > 0.

Assumption 2. We assume the interactions such that

αj(u, v1, . . . , vj) = j! ηj χ (v1 ≤ u) χ (v2 ≤ v1) · · · χ
(
vj ≤ vj−1

)
for all u, v1, . . . , vj ∈ R

1
+ , (17)

where χ (true) = 1, χ (false) = 0, ηj are positive constants,

u∫
0

Aj
(
ũ, v, w1, . . . , wj

)
dũ = χ (w1 ≤ u) for all u, v, w1, . . . , wj ∈ R

1
+ , (18)

j = 1 , 2 , 3 (we keep in mind that γ = 3), with the standard convention, i.e., if j = 1, then w1, . . . , wj means w1,
if j = 2, then w1, . . . , wj means w1, w2, if j = 3, then w1, . . . , wj means w1, w2, w3, and

α0(u) = η0 for any u ∈ R
1
+ , (19)

u∫
0

A0 (ũ, v) dũ = ζ(u) for all u ≥ u0 and v ∈ R
1
+ , (20)

where u0 > 0 is a given constant and ζ is a increasing function such that ζ(0) = 0 and lim
u→∞

ζ(u) = 1.

We may note, that Assumption 2 implies Assumption 1.
By Equation (17) and simple calculations, we obtain

u∫
0

∞∫
0

. . .
∞∫

0︸ ︷︷ ︸
j×

f (t, ũ) αj
(
u, v1, . . . , vj

)
f (t, v1) . . . f (t, vj)dv1 . . . dvj dũ =

ηj
j+1

(
u∫
0

f (t, ũ)dũ

)j+1

,

(21)

for j equal 1, 2 and 3 , and any f (t, ·) ∈ L1
(
R1
+

)
and

u∫
0

f (t, ũ) α0 (ũ) dũ = η0

u∫
0

f (t, ũ)dũ . (22)
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Moreover, for any f (t, ·) ∈ L1
(
R1
+

)
such that ‖ f ‖1 = 1, j = 1, 2, 3, by Equations (17) and (18), we have

u∫
0

∞∫
0

. . .
∞∫

0︸ ︷︷ ︸
(j+1)×

Aj
(
ũ, v, v1, . . . , vj

)
αj

(
v, v1, . . . , vj

) ×
f (t, v) f (t, v1) . . . f (t, vj)dv dv1 . . . dvj dũ =

j! ηj

∞∫
0

f (t, v)
∞∫
0

f (t, v1)χ (v1 ≤ v) χ (v1 ≤ u)
v1∫
0

f (t, v2) . . .
vj−1∫
0

f (t, vj)dv dv1 . . . dvj dũ =

I1 + I2 ,

(23)

where

I1 =
ηj

j + 1

⎛⎝ u∫
0

f (t, ũ)dũ

⎞⎠j+1

,

and

I2 = ηj

⎛⎜⎝
⎛⎝ u∫

0

f (t, ũ)dũ

⎞⎠j

−
⎛⎝ u∫

0

f (t, ũ)dũ

⎞⎠j+1
⎞⎟⎠ .

Finally, for any f ∈ L1
(
R1
+

)
such that ‖ f ‖1 = 1, by Equations (19) and (20), for any u > u0 we have

u∫
0

∞∫
0

A0 (ũ, v) α0 (v) f (t, v)dv dũ = η0 ζ(u) . (24)

By the above calculations, integrating Equation (11) with respect to u, we can see that any solution f
of Equation (11), corresponding to an initial datum that is a probability density, is such that x(t) = F(t, u)
given by Equation (16), for any fixed u > u0, satisfies the following equation

ẋ =W(x) , (25)

where
W(x) = −η3x4 + (η3 − η2) x3 + (η2 − η1) x2 + (η1 − η0) x + η0ζ(u) , (26)

where u is treated here as a (fixed) parameter.
Therefore, it is easy to see that the parameters of the model can be chosen in such a way that

t → F(t, u) possesses a diauxic growth for any fixed sufficiently large u. We then obtain

Corollary 2. Let Assumption 2 be satisfied and f0 be a probability density on U = R1
+. The solution f = f (t, u)

to Equation (11), given by Proposition 3, is such that the corresponding F = F(t, u) given by Equation (16) has a
diauxic growth with respect to t, for any sufficiently large u ∈ R1

+.

5. Macroscopic Behavior in the Nonconservative Case

In order to adapt to a situation typical in game theory—cf. Section 2, we replace Assumption 1 by the
following more general statement.
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Assumption 3. Let γ be an integer and

Aj ≥ 0 , αj ≥ 0 , αj ∈ L∞(Uj+1) ,
Aj

(
. , v, v1, . . . , vj

) ∈ L1(U) for all
(
v, v1, . . . , vj

) ∈ Uj+1

such that αj
(
v, v1, . . . , vj

)
> 0 , ∀ j = 0, . . . , γ .

(27)

In this section, we deal with the macroscopic behavior derived by the mesoscopic structures defined
in the previous section.

We decompose U = U∗ ∪U∗, where U∗ and U∗ are arbitrary (Lebesgue) measurable sets such that
U∗ ∩U∗ = ∅, both with positive (Lebesgue) measures. For a given solution f of the mesoscopic equation
we are interested in the behavior of∫

U∗

f (t, v)dv and
∫
U∗

f (t, v)dv (28)

that can be related to μ(t) and ν(t), cf. Equation (4), as well as∫
U∗

f (t, v)dv∫
U

f (t, v)dv

that can be related to x(t) in the macroscopic description, cf. Equation (1) with Equation (5).
Similarly to that of [22], we assume a direct dependence of the rate α2 on the unknown function f in

Equation (11). This is a Enskog-type of assumption known in kinetic theory—cf. [23] and references therein.

Assumption 4. We assume

1. α0 = α1 and
α2 = α2 ( f (t); v1, v2, v3) =

κ(∫
U

f (t, u)du

)2 ,

2. A2 = A2 (u, v1, v2, v3) is such that

(a)
∫
U∗

A (u, v1, v2, v3) du = a1
κ , if v1, v2, v3 ∈ U∗;

(b)
∫
U∗

A (u, v1, v2, v3) du = 2 a2
3 κ , if vi ∈ U∗, for some i = 1, 2, 3, and vj ∈ U∗ for each j = 1, 2, 3 such

that j �= i;
(c)

∫
U∗

A (u, v1, v2, v3) du = a3
3 κ , if vi ∈ U∗, for some i = 1, 2, 3, and vj ∈ U∗ for each j = 1, 2, 3 such

that j �= i;
(d)

∫
U∗

A (u, v1, v2, v3) du = b1
3 κ , if vi ∈ U∗, for some i = 1, 2, 3, and vj ∈ U∗ for each j = 1, 2, 3 such

that j �= i;
(e)

∫
U∗

A (u, v1, v2, v3) du = 2 b2
3 κ , if vi ∈ U∗, for some i = 1, 2, 3, and vj ∈ U∗ for each j = 1, 2, 3 such

that j �= i;
(f)

∫
U∗

A (u, v, v1, v2) du = b3
κ , if v, v1, v2 ∈ U∗.
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Assume now that the payoffs a1, a2, a3, b1, b2, b3, see Section 2, are such that the corresponding
Equation (1) with Equation (5) result in solutions that have a diauxic growth—cf. [7]. Then the kinetic
Equation (11) leads to diauxic growth of (28) if Assumption 4 is satisfied. In fact

Theorem 1. Let Assumption 4 be satisfied and f0 ∈ L1(U) be nonnegative and such that∫
U∗

f0(u)du > 0 .

Then, for any t > 0, there exists a unique solution f = f (t) of Equation (11) in L1(U). Moreover it is possible
to choose the payoffs a1, a2, a3, b1, b2, b3 in such a way that (28) given by the solution f = f (t) has a diauxic growth.

Proof. It is standard to see that the operator defined by the right-hand-side of Equation (11) is locally
Lipschitz continuous in L1(U). Then a local in time solution f = f (t) exists in L1(U) and it is unique.
It is also standard that the solution preserves nonnegativity of the initial datum. We observe that μ(t) :=∫
U∗

f (t, u)du and ν(t) :=
∫
U∗

f (t, u)du satisfy Equation (4) on the interval of time of existence of the solution.

Therefore μ(t)
μ(t)+ν(t) satisfies Equation (1) on the same time interval. By the form of Equation (4), we observe

that any solution of Equation (4) must be bounded on any compact interval. This delivers an a priori
estimate of the L1(U)-norm of the solution, which concludes the proof.

Remark 1. For simplicity, we assumed at the beginning that all payoffs were nonnegative. It is easy to see that
Assumption 4 can be easily modified to cover the case if any of payoffs is negative.

6. Concluding Remarks

In the paper, we show that some mesoscopic models can produce a diauxic behavior on the
macroscopic level. In such a case, the macroscopic picture is more complex that the usual one of a
logistic-type, similar to the curve of cumulative normal distribution function (and thus related to the
central limit theorem) with only one inflection point. The paper should be understood as the first
step of description the relationships between the mesoscopic and macroscopic scales where new and
interesting effects can appear. One may hypothesize that a complex but organized behavior on the level of
micro-scale or meso-scale can lead to the diauxic macroscopic growth. This, however, still needs a new
mathematical background.
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