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Preface to ”Advances in Green Infrastructure

Planning”

The expansion of urban areas has facilitated the conversion of undeveloped lands, which has

led to environmental degradation, such as loss of habitats, hydro-modification, and the collapse of

existing ecosystems. Recent climate change has exacerbated these damages by causing more frequent

and serious hazards. To attenuate the impacts of urbanization and the negative effects of climate

change, green infrastructure (GI) planning (e.g., nature-based strategies, technologies, policies, and

solutions) has arisen as an important approach for balancing urban development and nature. GI

offers a variety of benefits to our cities by reducing stormwater runoff, heat waves, and air pollution;

expanding wildlife habitats; and increasing recreational opportunities and even nearby property

values.

While many studies have revealed various positive effects of GI, further contributions to the

linkage of hubs and corridors; the adoption of up-to-date, smart, low-impact developments practices;

urban environmental and hazard management planning; and indirect physical or social effects are

still encouraged to promote more systematic and sustainable decision-making processes for different

types of green spaces.

Hyun-Woo Kim

Editor
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Abstract: The urban heat island effect has been studied extensively by many researchers around the
world with the process of urbanization coming about as one of the major culprits of the increasing
urban land surface temperatures. Over the past 20 years, the city of Dallas, Texas, has consistently
been one of the fastest growing cities in the United States and has faced rapid urbanization and
great amounts of urban sprawl, leading to an increase in built-up surface area. In this study, we
utilize Landsat 8 satellite images, Geographic Information System (GIS) technologies, land use/land
cover (LULC) data, and a state-of-the-art methodology combining machine learning algorithms
(eXtreme Gradient Boosted models, or XGBoost) and a modern game theoretic-based approach
(Shapley Additive exPlanation, or SHAP values) to investigate how different land use/land cover
classifications impact the land surface temperature and park cooling effects in the city of Dallas.
We conclude that green spaces, residential, and commercial/office spaces have the largest impacts
on Land Surface Temperatures (LST) as well as the Park’s Cooling Intensity (PCI). Additionally,
we have found that the extent and direction of influence of these categories depends heavily on
the surrounding area. By using SHAP values we can describe these interactions in greater detail
than previous studies. These results will provide an important reference for future urban and park
placement planning to minimize the urban heat island effect, especially in sprawling cities.

Keywords: urban heat island; urbanization; shapley additive explanation; park characteristic;
extreme gradient boost; Dallas; land use land cover

1. Introduction

Green spaces and landscapes, both natural and man-made, provide diverse ecological
benefits, such as surface runoff mitigation [1,2], air quality improvement [3], biodiversity
increment [4], and heat wave reduction [5] to urban areas. Particularly, the Urban Heat
Island (UHI) effect refers to the phenomenon that temperatures of an urban area are
higher than the temperatures of the surrounding area [6–8]. The primary cause of this
environmental phenomenon has been attributed to the process of urbanization. Only 15%
of the world’s population lived in urban areas and in 2020 that number was over 50% [9].
As places urbanize, there comes with it a change to the urban land cover, primarily via the
action of replacing the natural vegetation cover with built-up areas, which can come in
many forms but generally are seen as an increase in commercial, residential, and industrial
zoning [10–13]. This process leads to changes in the physical properties of the land, which
in turn leads to an increase in land surface temperature. As the materials making up the
surface of the environment change, so do the refraction rates, heat capacity, water retention,
and multiple other physical factors that in turn increase land surface temperatures (LST) in
the newly developed areas [14]. Thus, with this increase in temperatures in the urbanizing
areas disproportionately from the areas outside of the city, there arises the problems
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of urban heat islands. For some time, UHI research has been a hot topic of research
globally [15–19], which has led to many breakthroughs and improvements in the field.

This study focuses on creating a more robust and correct methodology that allows
us a more in-depth understanding of not what causes UHI but what influences it the
most. More specifically, we are developing and testing a methodology using state-of-
the-art techniques (XGBoost and SHAP values) to understand which Land Use Land
Cover (LULC) category type has the largest influence on Land Surface Temperature (LST).
Additionally, we hypothesize, along with other researchers, that green spaces have the
largest impact on LST reduction, and thus UHI, leading us to incorporate an additional test
on LULC influence on Park Cooling Intensity (PCI).

Globally, cities have grown exponentially. Large cities have become commonplace
and have been studied more intensively. However, there has been less focus on urban
areas with a large total area but comparatively smaller population densities, typically being
cities experiencing large amounts of urban sprawl even though both high- and low-density
cities can experience issues with UHI. For example, the Dallas–Fort Worth metropolitan
area, between 2001 to 2011, experienced a 0.148 ◦C increase in urban LST. This increase
has been attributed to the rapid urbanization of the area especially in the suburbs, which,
as previously mentioned, is a known cause of increased UHI effects. Additionally, UHI
is now considered a cause of severe drought in the metropolitan and surrounding areas
in 2011 [20]. Recent literature on urban heat island generally indicates that the artificial
increase of temperatures in cities is happening largely due to changes in the built-up
environment [12,21–23]. The increased temperatures effect multiple layers of the urban
microclimate from the ground surface to canopy layer (buildings, city features, and people),
as well as from the canopy layer to the boundary layer (approximately 1500 m above the
ground surface) [24]. This indicates that the increase in temperatures has an effect larger
than just at the street level of cities, as identified at the 2011 North-Texas drought case.

In small-scale temperature studies, the UHI is mainly characterized by the actual
measured air temperature [25–27]. These kinds of studies mainly focused on the tem-
perature difference between the green space and other land types in the city, and the
method of characterizing UHI intensity. In addition, some other studies have added mi-
croclimate factors and Local Climate Zone (LCZ) factors in their research to investigate
UHI [7,12,28,29]. These factors include microclimate conditions such as wind speed, wind
direction, humidity, solar light intensity, surface reflectance, and other localized effects on
temperature [30–32]. Those studies showed that green spaces have a cooling effect on the
air primarily due to the transpiration of the plants in the spaces; this then contributes to
lower UHI levels. In addition, local wind speed and wind direction have been shown to
have the ability to modify air temperature. Researchers have also found that higher surface
albedo correlates with lower temperatures [10]. In short, there is an innate complexity in
local climates and related environmental conditions.

However, the downside to microclimate data is in its availability and accuracy at a
small scale. The measurement of air temperature is limited by the monitoring system,
including pieces of equipment, experts, methods, and related factors. The accuracy of
data collection is a key factor, and it is difficult to conduct ideal UHI research on a wide
range of space-time scales. These data sources are, however, useful in understanding the
generalized sources of data studied. While there are methods such as data interpolation
and a growing number of ground-based weather monitoring stations, this data area still
presents a challenge to researchers.

In Urban Cold Island (UCI) studies, researchers aim to investigate what helps to cool
a city. A major area of research in this field is the investigation of parks and green spaces’
effects on UHI mitigation [33,34].

There are two main methods used to quantify the cooling effect of parks: Green-space
Cooling Intensity (GCI) and Park Cooling Intensity (PCI) [35,36]. GCI is defined as the
temperature difference between green space and the average temperature of the whole
study area, while the PCI is typically determined as the temperature difference between
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inside the park area and the urban areas within a specified buffer area [37,38]. While both
methods are used to describe the cooling effect of green spaces and parks, for the purpose
of this paper and to better understand the impact of parks on decreasing LST in their
immediate area, PCI was chosen.

Reiterating, through the utilization of machine learning boosting algorithms, this
research aims to determine which LULC classifications have the largest impact on LST and
thus UHI; as well as assess the feasibility of applying these new state-of-the-art machine
learning models, being XGBoost, and more modern analysis tools, being SHAP values, to
this area of research. The greatest benefit of the XGBoost model is its ability to analyze
a large range and scale of data without worries of null values; and as the main model is
tree-based, there is a significantly decreased risk of overfitting. In addition, it is borrowed
from a game theoretic approach known as SHapley Additive exPlanations (SHAP). SHAP
can give a more detailed understanding of which factor has the largest impact on the model.
It does this by removing each factor one at a time and trying a combination of factors
to see how the combinations change the prediction accuracy. In the end, the machine
learning model and analysis tool work together to provide not only a stronger analysis
of the LULC-LST relationships but a more human-interpretable result (via SHAP values),
which overcomes the largest challenge in current machine learning techniques of result
interpretation difficulties.

2. Materials and Methods

The methods of this study follow a similar hypothesis of previous research [23,35,39]
believing that vegetation coverage, water bodies/moisture, impervious surface, and park
characteristics have an impact on UHI and that the cooling effect of parks is also dependent
on the land surface types outside the park spaces [37,40]. Many researchers employed the
thermal conduct theory, a physical science methodology, to investigate the heat balance
between the park and its surrounding area [41–43]. This method of study can assist in
providing a methodical approach to understanding the cooling effect of parks. However,
departing from previous studies, we utilized machine learning techniques to provide a
more robust study on the relationship between our chosen factors and the park cooling in-
tensity and land surface temperatures to see which has the higher impact. More specifically,
a boosting model was used in the analysis as it could handle null values as well as large
datasets. All machine learning algorithms, including boosting models, have the potential
to overfit, however, standard multivariate linear regression is guaranteed to overfit due
to Stein’s phenomena or as some refer to as Stein’s Paradox. This phenomena states that
estimating the maximum likelihood of an average is suboptimal. In Stein’s works, he
proved that by shrinking the maximum likelihood estimator, it is possible to get better
performing estimators. In machine learning modeling, this is not necessarily a new concept
but is typically referred to as regularization [44].

2.1. Study Area Selection

Dallas (32.7767◦ N, 96.7970◦ W) is the largest city in the North Central Texas region.
This metropolitan area is situated on a coastal plain, about 400 km north of the Gulf of
Mexico. The city and surrounding region has been the center of major economic and
demographic structural changes over the past few decades, most notable between 2000
and 2010 seeing a nearly 23% increase in population density with the region projected to
be a “megacity” with 15 million inhabitants by the year 2050 [20]. This has led to rapid
industrialization and urbanization of the city and surrounding areas, mainly in the form of
urban sprawl.

The growth of the city has brought about a greater density of impervious surfaces,
mainly in physical infrastructure, parking lots, buildings, and commercial/industrial areas.
With this growth, there has also been a noticeable increased air pollution and energy
consumption, and a consistent rise in the UHI. Following with the theories stated in the
introduction, the UHI of Dallas has been influenced by the local land surface usage and
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land coverage, regional climate variations, large-scale climate variability, and long-term
climate change due to meteorological variables, like cloud cover, wind speed, and soil
moisture [20].

As much of the previous research has focused on cities that have grown denser and
taller, Dallas makes a great sample city to see how the same theories apply to cities that
have urbanized but have also grown outward.

2.2. Data Acquisition and Analysis
2.2.1. Data Sources

In this research, land use/land cover data from North Central Texas Council of
Governments (NCTCG) was obtained for Dallas, Texas. Additionally, Landsat 8 satellite
images from the United States Geological Survey (USGS) were obtained at a resolution
of 30 m. The satellite images were an aggregation of 10 images taken over the summer
of 2015 in the city to match the county level land use/land cover dataset dates provided
by NCTCG.

We chose to focus on summer months as other researchers have found that the UHI in-
tensity and ranges are significantly higher in the summer months when compared to other
seasons [11,45]. This higher range and intensity are helpful when performing impact analy-
ses due to the ability for the model to easier assess the impact of the independent variables.

2.2.2. Land Use and Land Cover Dataset

Our dataset for land use/land cover was provided by NCTCG via their open data
portal [46]. The NCTCG releases an updated dataset every 5 years for land use/land
cover data. At the time of this research, the most recent publicly available dataset, and our
chosen dataset, was for the year 2015. Thus, our park’s dataset was constrained to match
this temporal frame having parks only built before 2015; in addition, there was a similar
temporal restriction on our satellite images collected, which was used for calculating LST.

In total there were 33 separate LULC categories that were aggregated, with guid-
ance from the NCTCG dataset documentation, into 11 separate groups, Appendix A,
being: Residential, Commercial/office, Industrial, Misc. built-up, Transit, Mixed-use,
Parks/recreation, Misc. open (green), Misc. open (non-green), Flood control, Parking,
and Water.

More specifically—the Misc. built-up is an aggregation of the utility, airport, runway,
large stadium, railroad, and communication categories; Misc. open (green) is an aggre-
gation of vacant land, residential acreage, ranch land, timberland, and improved acreage
categories; and lastly, Misc. open (non-green) is an aggregation of landfill, construction
site, and cemetery categories.

The park location data and polygons were constructed from the parks and recreation
category of the NCTCG dataset. The size of the parks within the city varied largely with
the largest being over 9 million square meters and the smallest being around 30 square
meters. To remove any outliers in the dataset related to park size, we utilized a z-score
method. As the z-score is valuable to represent how many standard deviations away the
given value is from the mean value, using a z-score threshold of ± 3 allowed us to remove
any data points where the park’s size was larger or smaller than 99.7% of the data. After
performing that transformation, we were left with a total of 1201 parks (n = 1201). Overall,
the parks used in our dataset had an average of 380,660 square meters. As seen in Figure 1,
the distribution of the parks follows more of a natural path going along rivers and around
lakes; however, there is still a decent scattering of parks in and among the suburbs of
the city.
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Figure 1. Dallas, Texas with parks overlaid and example park displaying 50-, 100-, 150-, 200-, 250-,
and 300-m buffer zones.

The parks’ perimeter acted as the center point for our buffers, created in ArcGIS, at
50 m, 100 m, 150 m, 200 m, 250 m, and 300 m (Figure 1). The buffer interval (50 m) is a
recommended choice as it is almost double the size of our satellite image resolution (30 m)
used to calculate our LST data, as mentioned in Section 2.2.3 [47]. We chose a 300 m limit
to match with previous research, finding that the extent of the parks’ cooling effect does
not extend much past that. As well, 300 m has been suggested as the limit to define a
“recreational neighborhood” based on how far people are willing to walk. This means that
outside of that 300 m buffer distance, the park is no longer considered to be part of the
recreational zone [47–50].

Lastly, within each of these buffer zones, we calculated the area in square meters
occupied by each of the 11 separate LULC classifications that were constructed from the
NCTCG dataset.

2.2.3. Retrieval of LST and Average LST Calculations

To retrieve the Land Surface Temperatures (LST) in the city, we utilized the method-
ology of the Remote Sensing Lab under the Institute of Applied and Computational
Mathematics (IACM) [51]. The lab provides open-source code, which gives us the ability
to easily obtain the LST data for our study area. The researchers were able to accurately
predict LST with a RMSE of 1.52 ◦C.

5
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Following the methodology proposed by the IACM, the data has been precision
ortho-corrected; corrected for brightness temperature and cloud mask, Landsat surface
reflectance, and emissivity; and has undergone atmospheric correction to provide the
highest level of accuracy and standardization.

As mentioned, the satellite images we chose for our analysis were captured from
the Landsat 8 satellite at a 30 m resolution. With the lab’s methodology, we were able to
create 10 separate LST datasets for Dallas over the summer 2015 season, which corresponds
with our LULC data date range. These different datasets were averaged together, utilizing
ArcMap’s raster calculator, to help with managing limitations of lack of meteorological
data as the average of the 10 datasets is a more rounded depiction of the LST than a single
dataset from a single satellite image.

After the creation of our LST dataset, the data was further processed in ArcGIS to
calculate the average LST within the park borders as well as within buffers around the
park at each 50, 100, 150, 200, 250, and 300 m radii. These calculations were then used in
the computation of PCI (Section 2.2.4).

2.2.4. Determination of the Park Cooling Intensity (PCI)

For Park Cooling Intensity (PCI) analysis studies, there are two main approaches to
data collection. The first being in person field observation to collect data from the study
area manually; and the second being data from monitoring stations or through thermal
infrared (TIR) remote sensing [52,53]. For this study we chose the latter, utilizing remote
sensing. There is a growing availability of high-quality satellite images, taken at regular
intervals, over large areas of land. Additionally, there have been improvements in LST
retrieval algorithms allowing for more accurate characterizations of the urban thermal
environment [54–56]. As previously mentioned, for our specific study, our LST retrieval
algorithm follows the methodology of the Remote Sensing Lab under the Institute of
Applied and Computational Mathematics (IACM) [51] due to its robustness and flexibility.

When calculated, PCI (1) shows the temperature difference between the inside of the
park and the urban area immediately bordering it [57,58]. In this study, the PCI (measured
in ◦C) used mean LST in the calculation as opposed to air temperatures.

PCI = Tu − Tp (1)

where Tu refers to the mean LST of the urban area at a buffer zone outside of the park; Tp
indicates the mean LST inside the park’s borders.

The buffer zone includes the area around the park, which contains different LULC
types: industrial/commercial areas, buildings, roads, etc. (impervious surfaces), and trees
and other green spaces.

2.2.5. Dataset Construction

After the collection of the land use/land cover data and Landsat 8 satellite images, it
was possible to construct our dataset to be analyzed. As mentioned in Section 2.2.2, our
park data was created from the LULC data collected from the NCTCG using the parks and
recreation LULC category to place where the parks in the city are and get their geometry as
a shapefile. With the park geometry and location data, it was then possible to calculate the
50, 100, 150, 200, 250, and 300 m buffers using ArcGIS.

Land surface temperatures (LST) were calculated as outlined in Section 2.2.3 utilizing
a third-party methodology and open-source Python code. With the buffers and LST
calculated, it was then possible to calculate the park cooling intensity (PCI), outlined in
Section 2.2.4.

After calculating the park geometry, buffers, LST, and PCI we were then able to
complete our dataset by getting spatial statistics of the mean PCI in each buffer around the
park, the mean LST, and the proportion of space (in square meters) taken by each LULC
category making up each buffer zone. Our data construction framework can be visualized
best with Figure 2.
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Figure 2. Framework for dataset construction.

2.3. Analysis Methods

As previously mentioned, our methodology utilizes machine learning techniques. For
our model, Extreme Gradient Boosted (XGBoost) machine learning models were chosen to
produce SHAP values that can be used to accurately analyze both the effects of the various
LULC classifications on the PCI and LST at the diverse buffer distances.

Our model’s framework, visualized in Figure 3, is as follows, with ai and ri making up
the regularization parameters, i being the respected regression tree, and hi being a function
trained to predict residuals (ri) using X. XGBoost computes ai by using the computed
residuals and the following Equation (2).

mina =
m

∑
i=1

L(Yi, Fi−1(Xi) + ahi(Xi, ri−1))with the loss function being :L(Y, F(X)) (2)

Figure 3. Framework for our XGBoost model.

As we are using XGBoost for a regression analysis, the weak learners are regression
trees. To get the best estimate, the model makes multiple smaller, and weaker, estimates
(regression trees) and then averages their residuals to get the final estimation. The training
proceeds iteratively, adding new trees that predict the residuals or errors of prior trees that
are then combined with previous trees to make the final prediction. It is called gradient
boosting because it uses a gradient descent algorithm to minimize the loss when adding
new models.

2.3.1. XGBoost

With our dataset, constructed in Section 2.2.5, we began constructing our XGBoost
model using Python and the XGBoost package (version 1.5.0).

The focus of this analysis was to determine which LULC classification has the largest
impact on the land surface temperature and PCI, to give us a better understanding of
which of the classifications have the highest impact on changing temperatures and a
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better understanding on which classifications have the highest impact on parks’ ability to
affect temperatures.

XGBoost is a highly flexible, quick, and versatile algorithm that can work through
regression, classification, and other problems. It is the evolution from decision-tree based
models and uses a gradient boosting framework. For a more detailed breakdown of the
model, please refer to Chen’s study [59] on the creation of the algorithm.

We selected this model due to its high performance and accuracy in preliminary tests
as well as for its scalability. With each buffer having varied levels of each of the LULC
classifications, we needed a model that could be comparable across each of our buffer
zones and a model that could be accurate without the need to construct a new model for
each buffer zone. Additionally, XGBoost can handle null values well, on issues that we
faced in our dataset (for example, very few 50 m buffers have water and there exists an
overall lack of mixed-use LULC classification type among all the buffers).

For the performance analysis, the Root Mean Square Error was employed due to the
noisiness of the data as an attempt to add extra weight to large errors.

For the importance modeling analysis, the main scope of the study, we borrowed a
game theoretic approach known as SHapley Additive exPlanations (SHAP). SHAP can
give a detailed and clear picture of which factor has the largest impact on the model by
removing each factor one at a time and trying a combination of factors to see how the
combinations change the prediction accuracy.

Our model, as shown in the framework above, followed a 70/30 split on the dataset
created in Section 2.2.5. To calculate our model’s hyper parameters, we did not utilize the
popular grid search method and instead opted for the speedier Bayesian Optimization. For
models and datasets that can be computationally heavy, the grid search method can be
equally heavy and time-consuming. Bayesian Optimization, on the other hand, can find the
optimal parameters by learning from previous optimizations. In the end, this method has
greater success but is also less computationally expensive and quicker. Using this method,
we calculated the parameters shown in Table 1. Lastly, our model was then trained and
tested using Python and XGBoost.

Table 1. Parameters calculated using Bayesian Optimization used in our model.

Parameter Value

colsample_bytree 0.5
eval_metric rmse

min_child_weight 30
subsample 0.7

eta 0.075
objective reg:log

max_depth 9
booster gbtree

2.3.2. SHAP Values

SHAP values, founded by Lundberg and Lee [60], are best suited for when you are
processing a more complex model, such as gradient boosting or neural networks, and are
needed to better understand what decisions the model is making. By using predictive
models alone, we can answer questions related to “how much” change takes place, but
with the addition of SHAP values we are able to go a step further and begin to answer
“why” the changes are happening.

To more easily explain our XGBoost model, we provide summary plots for the SHAP
values produced. Each plot contains the LULC category (left hand y-axis), a colormap of
the feature value of the individual datapoint (right hand y-axis), and the SHAP value for
the individual point (x-axis). These summary plots are similar to the partial dependence
plots; however, they have an advantage with their ability to display the extent to which the
interaction terms matter.
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It is important to note that while these plots explain our XGBoost models, it does
not necessarily represent a causal relationship. Since our XGBoost model is trained on
observational data, the model is not necessarily attempting to observe causation. With that,
the results are not stating causal relationships, and stating an increase in one variable will
lead to a change in another; however, the results do present the factors with the highest
impact on the models’ predictions.

A main consideration for choosing SHAP as our main tool for analysis is that it is
possible to see the overall impact of each datapoint as well as the impact of null data points,
which is a similar consideration when choosing to use XGBoost. Traditionally, when there
is a point missing, it is replaced with a 0 or an average of similar values; however, in some
cases, this can tamper with the data. In our case, replacing the values with a 0 would
have skewed our data significantly due to the large number of missing values for some
classifications in some buffers; in addition, providing an average number would have
skewed our results in the opposite direction and would have taken away the game theory
aspect of SHAP.

3. Results

To better understand which land use/land cover classifications had the greatest impact
on LST and PCI, we used SHAP values. A SHAP value represents how much the model
prediction changes when we observe a certain feature, in the case of this study, the area
size of each LULC classification. In the summary plots throughout this section the SHAP
values for a single feature are plotted on a row, where the x-axis is the SHAP value. With
this method, it is possible to see which features drive the model’s prediction the most, as
well as which only affect the prediction a little. As well, in each plot, the individual dots
are colored to represent the value of the feature from high to low.

3.1. Relationship between LST and LULC Classifications

The below subsections present the results of the analyzed relationship between park
LST and the LULC classifications at each buffer level. While the buffers were at distances
of 50, 100, 150, 200, 250, and 300 m, for simplicity the following section will present results
at only three separate buffer zones, 100, 200, and 300 m. However, the section will be ended
with an overall analysis of all six buffer zones.

To better explain the models, the SHAP values were normalized and summed to 100
for each plot to represent 100% of the model. However, the SHAP values on the summary
plots themselves are not normalized and are the true SHAP value for each of the models.

Figure 4 below shows each individual datapoint value compared to the overall SHAP
score for the specific point and its LULC classification when modeling for impact on LST.
The right y-axis in the figure shows the feature value, which indicates how high or low the
specific buffer’s average LULC area is (with grey features being null values). On the left
y-axis, we can see the individual LULC classifications. And, lastly, on the x-axis we can
see the SHAP value with negative values indicating that the LST is decreased and positive,
indicating that LST is increased.
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Figure 4. The SHAP values from the XGBoost model at the different buffer zones around the parks for
the impact analysis of each Land Use/Land cover classification group on Land Surface Temperature.
(a) 100 m buffer, (b) 200 m buffer, (c) 300 m buffer.
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3.1.1. 100-m Buffer

At the 100-m buffer zone, visualized in Figure 4a, our model returned an RMSE of
1.56. With the minimum LST being 31.49 ◦C and the maximum being 45.89 ◦C, we have a
range of 14.40 ◦C, with that consideration the RMSE of 1.56 is decent and shows that the
model was able to predict the average temperature of any individual 100-m buffer zone
within 1.38 ◦C. With this current model, “misc. open (green)”, commercial/office, and
residential explain 73% of the impact on LST.

In Figure 4a, “misc. open (green)” has the largest impact on the model overall, explain-
ing roughly 26.32% of the model. Based on these results, there is a negative relationship
between this LULC category and LST. The results show that an increase in area coverage of
the “misc. open (green)” classification within the 100-m buffer distance of the part has a
greater chance to negatively impact LST. Likewise, it shows if the area size of “misc. open
(green)” within the 100 m buffer is lower, then there is a greater chance that that area has a
higher LST. These results are in line with others that have found green spacing to have a
cooling effect on the surrounding areas [35,36,38,61] as well as case studies that have found
the greening of cities as a significant source of UHI mitigation [5,25,27,33].

By using SHAP values, we can see which factors have the highest chance to increase
(the right of the 0.00 mark) or decrease (the left of the 0.00 mark) our dependent variable.
As well, the intensity, or level of impact, is represented to show how high or low the feature
value is. A high feature value indicates a large presence of the specified feature and vice
versa with a low feature value indicating a smaller presence.

The next most impactful feature at the 100-m buffer was the “commercial/office”
category, explaining 24.54% of the model, having a more mixed result. With “commer-
cial/office” zones, we can see that there is a mixed effect of high values potentially raising
or lowering the LST. However, higher values have a higher impact factor when it comes to
raising the LST indicated by the higher SHAP values for ‘high’ feature value data points.
When analyzing SHAP values, it is also important to consider the low values and while
the case of the commercial/office zones still looks quite mixed, the slight tail of low values
going negative does hint that a lower total area of commercial/office zones has a higher
impact on decreasing LST. Considering both sides of this, we conclude that at the 100 m
buffer distance, commercial/office zone area has a positive impact on LST, in other words,
the greater the area of this zone, the greater the LST.

The third most impactful feature was “residential” zones explaining 22.86% of the
model. For residential zones, after analyzing the plot, we conclude that, at the 100-m buffer
distance, this zone has a positive impact on lowering LST as the higher feature values
are to the left of the plot and lower feature values are to the right. We suspect that this is
due to the large amounts of suburban parks in the city of Dallas. As suburbs are typically
“greener” with yards, tree lined streets, and more green areas overall, they are more likely
to act a semi-green/semi-built-up area, have less of an impact on increasing LST, and in
this study appear to be collaborating with the parks in lowering LST.

As seen by previous studies, “built-up” areas are more likely to contribute to increased
LST [39,42,45]; this can be a partial explainer of the “fuzziness” in the interpretation of the
“commercial/office” zones as well as the decreased impact of residential areas as they are
generally a mix of both built-up and green spaces that have been shown to have competing
effects on LST.

Following these features comes misc. built-up explaining 7.66% of the model with a
positive effect on LST; industrial explaining 7.43% and having an overall negative impact on
LST but a trend of more area coverage of this type increasing LST; water explaining 6.17%
of the model with a positive effect on LST, which we did not expect; transit explaining
5.02% of the model with a positive impact; and, lastly, parking, misc. open (non-green),
and mixed-use explaining <0% of the model without any measurable effect.
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3.1.2. 200-m Buffer

At the 200-m buffer zone, visualized in Figure 4b, the same trend from the 100-m
buffer continues overall. The RMSE for this model was 1.79 with the min temperature
being 31.47 ◦C and the max being 45.98 ◦C, making a range of 14.5 ◦C.

The largest change in increasing the buffer size is that the number of data points also
increase, allowing new trends to emerge. Here, the biggest change in impact observed is the
somewhat large increase in the impact of “misc. built-up” areas on LST. At the 200-m buffer
zone, the misc. built-up feature area size accounts for 21.23% of the model, an increase
from 7.66% at the 100 m buffer. This LULC category has a positive trend with LST, with a
large tail of low values. The absence of this feature can be associated with areas of lower
LST and in areas that this category is present there are increases in LST. This is in line with
previous research that has found that the increase of impervious and built-up areas as well
as the decrease in trees and vegetation as contributing factors increase LST [29,33,39,45,56].

Like the 100 m buffer analysis, the commercial/office classification is one of the more
impactful features, explaining 25.14% of the model with a quite clear negative impact on
LST, differing from the 100 m buffer zone result. The reason for this shift is not explainable
with SHAP values alone and would require further and more in-depth research into the
specific makeup of the commercial/office zones in the City of Dallas, something that is
outside of the scope of this study.

The third most impactful feature is misc. open (green), explaining 15.28% of the model.
The trend here maintains and strengthens from the first model at the 100 m buffer. This is
followed by residential (13.20% of the model) with an ambiguous impact; water (9.43% of
the model) with a positive impact; transit (7.52% of the model) with a stronger negative
impact on LST, differing from the 100 m buffer analysis; industrial (7.03% of the model)
with a negative impact on LST; parking (1.17% of the model) with an ambiguous trend;
and then misc. open (non-green) and mixed-use having no trends and explaining 0% of
the model.

3.1.3. 300-m Buffer

Our last buffer analysis is at the 300-m zone, visualized in Figure 4c, the furthest out
and the one with the most data points. The RMSE for this model was 1.92 with the min
temperature being 31.58 ◦C and the max being 46.11 ◦C, with a range of 14.53 c.

This buffer zone analysis saw the misc. built-up LULC classification move to the top
as the most impactful feature, accounting for 25.81% of the model. For this classification,
there is a strong trend showing lower area coverage of misc. built-up areas having a higher
negative impact on the model’s prediction. This is followed by commercial/office, having
a positive trend on LST, accounting for 19.27% of the model. The third most impactful
feature in the 300 m buffer zone was industrial, accounting for 16.16% of the model and
having a strong positive impact on LST with lower feature values having a much higher
impact on the dependent variable than higher feature values.

The next most impactful feature in this buffer was residential, making up 12.40%
of the model. Again, the residential values seem to show less of a trend. One plausible
explanation for this is the large and varied types of residences in the city, with this one
classification comprising suburban homes, apartment buildings, and even mobile homes.

After residential LULC classifications were misc. open (green) spaces closely following
with 11.57% of the model’s explanation. This feature appears to show that high feature
values can either increase or decrease the LST of an area, and lower values seem to have no
effect. As this feature is a “misc.” feature and acts as an aggregator of smaller classes, this
type of result requires more research to better determine which specific features of misc.
open (green) are contributing to either the decrease or increase of LST.

Water (with 9.30% of the model) continues to show a positive impact on LST with
lower values having a higher impact on lowering LST. This is followed by transit with
1.99% of the models’ impact, and misc. open (non-green) and mixed-use with no trend and
0% of the model’s explanation or not impactful on this specific model.
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3.1.4. LST SHAP Comparison

In this section, we combine each of the LULC classes and the average SHAP values
across all the points (1201 data points for each model) in each model to both compare
the trends among all six buffer zones and then aggregate the SHAP values together as an
average to get an idea of the overall impact of each class. To compare the SHAP values
between groups, the values were normalized so the values for each of the models sum to
100 as SHAP is not naturally comparable across models.

Figure 5 shows the trends for each of the different buffer zones across each of the
LULC categorise. As displayed, each buffer follows roughly the same pattern with “misc.
open (green)” and “misc. built-up” being the two with the most similar trends across
buffers. This does not come as a surprise as both built-up and green areas have been
heavily studied to show their impacts on LST, as cited throughout the paper.

Figure 5. SHAP values by buffer for LST analysis. Averaged normalized SHAP values (x/100%) for each LULC classification
group and buffer zone distance to show the overall trend in the impact of each group on LST by buffer.

Additionally, the residential and commercial/office are generally a hybrid of built-up
and green spaces making their impacts on LST a bit more difficult to measure; however,
they do still present a significant impact [3,8,30,56]. This difficulty in measurement explains
their less resemblant trends as there are a multitude of interactions taking place within
these categories as well as between them and others.

The “misc. open (non-green)”, “mixed-use”, and “parking” were the least impactful
variables across all buffer areas. Notably, for mixed-use, this lack of impact is likely due to
the lack of actual mixed-use zoning in the City of Dallas. We also suspect that parking was
not as prominent as expected due to it being naturally grouped with other areas such as
“commercial/office” and rarely standing on its own.

To give a better idea of the aggregate trends, the SHAP values were averaged to
produce Figure 6. In this figure, “commercial/office” is shown as the most impactful
LULC category, accounting for 23.61% of the model’s power. From the individual buffer
zone breakdowns showing this category having a positive impact LST, we can assume
that, overall, that a higher area ratio of “commercial/office” space has the potential to
lead to higher LST. However, as mentioned before, this is a difficult assessment to make
due to the makeup of these zones, especially in a city like Dallas that has experienced
significant urban sprawl. The category with the next highest impact “misc. open (green)”
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having 19.34% of the prediction power and, again based on the buffer zone breakdowns,
has a stronger trend towards decreasing LST. This category is closely followed by “misc.
built-up” with 18.69% of the model’s prediction power and, based on the breakdowns,
also shows an overall trend of increasing LST. These results of green spaces and built-up
areas having large, but opposite, impacts on LST follow results found by other researchers
who have found that green areas have a cooling affect while impervious/built-up areas
contribute to urban warming [23,27,37,39,40,47].

Figure 6. Aggregate SHAP values for LST analysis. Further aggregation of averaged normalized SHAP values (x/100%) for
each LULC classification group show the overall trend in the impact of each group on LST.

The remainder of the variables accounted for less than 10% of the model’s prediction
power with “industrial” having 8.38% (increasing LST), “water” having 6.62% (no trend),
“transit” with 3.64% (no trend), “parking” with 2.13% (no trend), and lastly “mixed-use”
with 0% (no trend).

3.2. Relationship between PCI and LULC Classifications

PCI is typically defined as the temperature difference between inside the park area
and the urban areas within a set buffer. It gives insight into how much colder the park area
is compared to the buffer regions and can give an idea of how a park cools its surrounding
areas. Like Section 3.1, we performed the same analysis while replacing LST with PCI to
get a better idea of how the various park characteristics affect the temperatures of the areas
around them and not just inside the park itself. If PCI is 0.00, then that means the buffer
zone is the same temperature as the park; if the value is positive, then it means the buffer
zone temperature is higher when compared to the park, and likewise, when the value is
negative it indicates that the buffer zone temperature is lower than the park.

Similar to Figure 4, Figure 7 below shows each individual datapoint value compared
to the overall SHAP score for the specific point and its LULC classification when modeled
for impact on PCI. The right y-axis in the figure shows the feature value, which indicates
how high or low the specific buffer’s average LULC area is (with grey features being null
values). On the left y-axis, we can see the individual LULC classifications. Lastly, on the
x-axis we can see the SHAP value with negative values indicating that the PCI is decreased,
and positive indicating that LST is increased.
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Figure 7. The SHAP values from the XGBoost model at the different buffer zones around the parks
for the impact analysis of each Land Use/Land cover classification group on Park Cooling Intensity.
(a) 100 m buffer, (b) 200 m buffer, (c) 300 m buffer.
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3.2.1. 100-m Buffer

At the 100 m buffer zone analysis, visualized in Figure 7a, our model had an RMSE
of 1.37. For the 100 m buffer zone, the minimum PCI was −1.128, indicating that, at least
one park buffer had a temperature decrease of 1.13 ◦C in comparison to the park; as well,
there is a max PCI of 18.99, indicating an 18.99 ◦C increase in temperature of at least one of
the buffer zones in comparison to the park. The range between the min and max PCI is
20.13, meaning the RMSE for this model is quite good. As would be expected, the LULC
classification with the highest impact on the model is similar to those in the LST analysis.
However, this time, we are not considering how the feature impacts LST directly but how
it impacts the PCI. In other words, we are interested in seeing which LULC class has the
biggest impact on increasing and decreasing the cooling effects of the parks.

In the 100 m buffer zone, the “commercial/office”, “misc. open (green)”, and “res-
idential” classes had the largest impacts making up over 75% of the model’s prediction
power with 26.36%, 26.13%, and 22.19% shares of the model respectively. Similar to the
LST analysis, commercial/office shows a slight impact on decreasing the PCI at the 100
m buffer range. As well, misc. open (green) has a heavy impact on decreasing PCI. This
means that both factors, at the 100 m buffer zone, help with the park’s cooling effects.

For residential zones, there is less of an obvious trend for when the area ration of this
class increases; however, the plot does indicate that as the area ratio is decreased there is a
slight negative impact on PCI.

In the same model, “misc. built-up”, making up 13.97% of the model, is also shown to
have a negative impact on PCI with the plot indicating lower values of this class leading
to a higher impact on lowering the PCI. This trend is also the same with “transit” (with
3.84% of the model) and “industrial” (3.79% of the model), with all showing a decrease in
PCI with a decrease in their feature value and an increase in PCI with an increase in their
feature value, or some of both relationships together.

The LULC class here that was very different from the LST analysis was “water”. While
it shared only 3.73% of the model’s prediction power, it also showed a very negative impact
on PCI. For the model run, the water class was shown to decrease the PCI as its area ratio
increased, and the PCI increased as its area ratio increased. The remaining classes had no
impact on the model’s prediction power.

3.2.2. 200-m Buffer

This model, visualized in Figure 7b, gave an RMSE of 1.62, with a min PCI of −1.75
and a max PCI of 22.24, having a range of 23.98. This result was interesting as the results
seem to be driven by the lack of a LULC classification rather than the presence of it, and the
results are slightly different than the others. However, this model had very similar SHAP
values as the 100 m buffer analysis.

For this buffer, the “commercial/office” LULC classification had the highest impact
on the model, holding over a quarter of the model’s prediction power at 25.44%. While the
trend is slight, there does appear to be a negative impact on PCI with the commercial/office
area ratio. This result is the same with the “misc. open (green)”, which has 23.14% of the
model prediction.

Unlike the 100 m buffer analysis, “residential” shows a slight positive impact on PCI,
meaning that the residential zones can potentially increase the PCI. However, from the
plot, this relationship is not obvious. As previously mentioned, the residential class is
a bit broad as Dallas has a wide range of housing types (from suburbs to multi-family
apartments) that are all grouped into one class.

“Misc. built-up” (8.65% of the model) has a slightly mixed result that indicates the
possibility of this class to negatively impact PCI when the feature values are too high or low.
This can be due to a limited data size, or due to some other factors involved in this class.

The “water” class (6.13% of the model) continues to show a negative impact on PCI,
however, with a higher impact on PCI increasing as the area ratio of water is lower.
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In this buffer analysis, the “industrial” class (5.75% of the model) gave a bit of a
different result with a plot indicating a negative impact on PCI. This is the same with the
“parking” class (5.69% of the model). However, the “transit” class (2.33% of the model)
shows a heavy trend in increasing the PCI at this buffer level.

The “misc. open (non-green)” class, while showing a negative impact, only accounted
for 0.34% of the model and “mixed-use” accounted for 0%.

3.2.3. 300-m Buffer

At the 300-m buffer zone, visualized in Figure 7a, our model has an RMSE off 1.59
with the min PCI being −1.94 and the max being 23.15, a range of 25.09, indicating a good
RMSE. This model, having the most data points, also produced some of the clearest results
for the factors that impact PCI the most.

For this model, the most impactful LULC class was “misc. open (green)", accounting
for 21.19% of the model. This feature shows a negative impact on PCI due to the higher PCI
values when the feature value is lower. The “residential” class had the next highest impact,
sharing 19.73% of the model. The residential feature showed a clear positive impact on
the PCI, meaning that higher area ratios of residential zones led to a higher PCI in the
300 m buffer.

After residential was the “commercial/office” class, with 16.26% of the model, also
showing a positive impact on PCI. The next feature, “parking” with 13.63% of the model,
followed a similar trend and showed an overall positive impact on PCI. However, with
parking, there are a couple of rows of data that show a lower PCI with higher parking area
ratios. To fully determine what would cause this would require a more robust dissection of
the parking LULC class, which is beyond the scope of this study.

One odd result here was that the “misc. built-up” class, holding 8.42% of the model’s
prediction power, showed a very slight negative impact on PCI. This goes against the LST
analysis, which showed the opposite. The “industrial” class made up 7.29% of the model,
with no real trend; “water” made up 5.89% of the model, again with no real trend; then
finally, “transit” and “misc. open (non-green)” both showed a positive impact on PCI,
making up 5.81% and 1.79% of the model respectively.

3.2.4. PCI SHAP Comparison

Similar to Section 3.1.4, the various SHAP values and LULC classes were compared
to try to determine any overarching trend. Unlike the similar process done for the LST
analysis, the PCI analysis does not have as many similar patterns. As seen in Figure 8, the
major similarity between the six buffer zones is the “misc. open (green)” LULC category
and to a lesser extent the “commercial/office” and “misc. built-up” classes. This shows
that despite the distance from the park, the presence of additional green spaces had a
significant impact on the PCI as did residential and commercial/office areas. Interestingly,
the built-up and industrial categories had lower impacts the closer to the park they were,
and increased in impact until about 150 m away and then the increase became less linear.
The best explanation for this is first a potential lack of data, but secondly it is supported by
the ideas belonging to thermal conduct theory research and investigations into the heat
balance between the park and its surrounding area especially in relation to impervious and
built-up areas where it has been found that heat can transfer from these surfaces to parks
more easily at the edges of the parks where they come into direct contact. [41–43].
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Figure 8. SHAP values by buffer for PCI analysis. Averaged normalized SHAP values (x/100%) for each LULC classification
group and buffer zone distance to show the overall trend in the impact of each group on PCI by buffer.

Again, as done in Section 3.1.4, we have aggregated all the SHAP values together to
see the average trend among the buffers (Figure 9). When comparing Figures 6 and 9, the
overall trends are nearly the same when modeling LULC categories on LST and PCI with
Figure 9 having softer curves. However, with the PCI SHAP averages, “misc. open (green)”
spaces show the highest impact on PCI with a 24.11% average and an overall negative trend
on PCI, meaning that higher area ratios of “misc. open (green)” contribute to lower PCIs
and aid in the park’s cooling, which is supported extensively in previous literature on the
topic [16,27,37,38,40,47,61]. Commercial/office and residential are nearly tied with 21.98%
and 21.93%, respectively, and both have a slight negative effect on the PCI. As mentioned,
and supported by previous research, commercial/office and residential zones are generally
a hybrid of built-up and green spaces, making their impacts on temperatures and PCI a
bit more difficult to measure; however, they do still present a significant impact [3,8,30,56].
These values are followed by misc. built-up with 9.77% (a very slight positive effect, or
possibly no effect), industrial with 6.74% (a positive effect), parking with 5.44% (a positive
effect), water with 5.44% (a negative effect), transit with 3.90% (a positive effect), misc.
open (non-green) with 0.68% (no effect), and mixed-use with 0.00% (no effect).

Figure 9. Aggregate SHAP values for PCI analysis. Further aggregation of averaged normalized
SHAP values (x/100%) for each LULC classification group to show the overall trend in the impact of
each group on PCI.
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3.3. PCI at Different Buffer Distances

While our research aims to study the impact of each LULC grouping on PCI, it is also
important to analyze the extent of the cooling effect. The PCI values were aggregated at
each of the buffer distances (50, 100, 150, 200, 250, 300 m) to determine any relationship
between the distance and PCI. As seen in Figure 10, there is an increasing trend in PCI
across the buffers.

Figure 10. Average PCI at various buffer zones around parks. The average PCI at each buffer zone
shows the change in PCI as the distance from the park changes.

It can be determined that the parks do have a cooling effect on the surrounding areas,
indicated by the PCI increasing as the distance from the parks increases. The largest increase
in PCI is from the 50 m to 100-m buffers and then the trend becomes more linear. Previous
research found similar results showing that parks had a positive relationship with PCI
intensity up to 300 m buffer region [47]. Additionally, our results are in line with previous
research that also found that parks do have a cooling effect on urban areas [27,38,57,58].

This information is useful as it gives an idea of how the park’s cooling effect changes
over distance. If parks were planned better to maximize their cooling effects, taking into
consideration the factors investigated in Sections 3.1–3.3, and we could plan proper buffer
distances, then less parks would be necessary.

4. Conclusions

While previous studies have analyzed the impacts of various LULC categories on LST
and PCI, our study utilizes a novel methodology incorporating XGBoost machine learning
algorithm and state-of-the-art SHAP values for a more rounded analysis benefiting from
SHAP’s more unified approach to understanding complex model outputs. Unlike many
prediction models, SHAP value outputs are not focused on quantifying how much change
the input variables have caused to the output but focus more specifically on how the inputs
are impacting the output. In other words, it is not trying to answer, “how much” but
“why”. Furthermore, by using SHAP values, we can analyze the results at the individual
park level as well as at a more aggregate level without compromising our model or results.

As LST and PCI are two factors that both have an impact on the urban heat island
phenomena [35,36], this area of research is growing in importance. Furthermore, our
results give extra reference to fill gaps in previous research that has focused more on
rapidly growing and urbanizing cities that are denser (and densifying) and less on cities
that are less dense but still rapidly growing, with large amounts of urban sprawl and
suburbanization, such as Dallas, Texas.

In the end, the analysis of this study found that greener areas tend to have a higher
impact on both lower LSTs and lower PCIs. This is in line with previous literature such
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as Du et al., 2017 [35] and Oliveira et al., 2011 [36] who studied Green-space Cooling
Intensity (GCI) and Park Cooling Intensity (PCI), with us using PCI in our study. Other
researchers have utilized PCI and remote sensing to study the effects of parks and green
areas on lowering temperatures and found similar results that parks have a cooling af-
fect [38,40,47,61]. Various case studies have also found the greening of cities as a significant
source of UHI mitigation [5,25,27,33]. While our results are very much in line with previous
studies, despite different methodologies and analytical tools, it is impactful to show that
the cooling effect of green areas has a measurable impact in a range of urban areas from
dense to sprawling.

When considering built-up areas, “misc. built-up” zones had a larger impact LST than
PCI. On the other hand, “misc. open (green)” spaces had the highest impact on PCI and
the second highest on LST. This is in line with previous research showing that artificial
increases of temperatures in cities is happening in large part due to changes in the built-up
environment [21–23,62].

Commercial and office zones, generally being more built-up, were found to have a
bigger impact on LST than do residential zones; however, when considering PCI, they
have practically the same impact. This result is both novel and intriguing as it shows the
first divergence of LULC classifications affecting LST and PCI differently. In this specific
case, we saw that commercial and office zones have a larger impact on the temperatures
themselves than does residential zones, however, when looking at the impact they have
on the surrounding park’s ability to cool the buffer zones, they have relatively the same
impact; these findings were in line with other research finding that residential as well as
middle density are major contributors to UHI. This is an important finding when it comes
to planning the zoning and placement of parks.

These results overall indicate that green space planning is crucial for both LST and
PCI impacts, and better green space planning can help to mitigate urban heat island effects.
Furthermore, our results show that LULC planning should consider currently existing
parks in the planning area when attempting to mitigate urban heat island as the different
categories affect the LST and PCI differently.

In terms of green space planning in the city of Dallas, a larger focus on planning near
and within built-up areas is needed. Building within the areas can more efficiently lower
the LST of the zone, however, there are acting forces against the PCI that limit its reach.
With that, building parks towards the outside of the built-up zones and nearer to other
existing parks and green spaces can help increase the PCI of the new park and extend
its reach.

In other words, for adequate green space planning to mitigate UHI, it is necessary to
focus not only on building parks in areas that are built-up (which predominantly lowers
LST in just that area) but also taking into consideration existing parks and green spaces
that can have positive effects on nearby parks, increasing and extending the PCI of the new
park (which lowers the temperatures of both the area and surrounding areas). Although
creating new parks in empty/vacant lots will anyway have heat reduction effects, local
planners are recommended to develop future parks in appropriate places, where they can
maximize the UHI reduction impacts. A local comprehensive, green space plan, as well
as several land and tree preservation codes should also be adapted by recognizing the
differential effects of parks and green spaces to nearby areas and conduct more systematic
suitability analysis for finding potential park locations.

Furthermore, our study was able to conclude that the utilization of machine learning
boosting algorithms, in our case XGBoost, to generate SHAP values, is indeed a viable
method to study the impact of different factors, with us focusing on LULC classification,
LST and PCI, two factors found to correlate with UHI. This novel method allows for quicker
analyses over larger areas of studies as much of the previous research, obtaining the same
results, focused on case studies or smaller level analyses [25–27].
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Limitations

While this study found several noteworthy policy implications that need to be con-
cerned during the future park development, some limitations still exist, which need to be
further concerned in the future study.

First, the main limitations of this study are centered on data availability. For our LULC
data, we had to use data produced at the county level for the city of Dallas in 2015. While
our results are in line with previous research, a more micro level data input could have
potentially yielded more detailed results. As well, more up-to-date data and data over
more frequent periods could have contributed to a better study of the city.

However, the 2015 dataset was the most up-to-date available data at the time of this
study. The LULC data is produced at 5-year intervals, making the data a challenge to
perform longitudinal studies on as the classifications can change significantly over that
time. To help solve this data issue, future research could focus on more novel ways to
collect LULC data, potentially utilizing satellite images and machine learning techniques.

Again, while this study did align with previous study’s results, another data limita-
tion is the lack of micro level weather data to add as factors in our model. As mentioned
beforehand, microclimate and meteorological data has a potentially large impact on the
temperature of the study area. There is an innate complexity in local climates and re-
lated environmental conditions. The measurement of air temperature is limited by the
monitoring system, including pieces of equipment, experts, methods, and related factors.
The accuracy of data collection is a key factor, and it is difficult to conduct ideal UHI
research on a wide range of space-time scales. These data sources are, however, useful in
understanding the generalized sources of data studied. To help lessen the effects of missing
these variables, our final LST calculations are based on an average of multiple days over the
same month in the study area to help give a more rounded estimation of the temperatures.

Future studies could benefit from incorporating more advanced data detection meth-
ods such as utilizing satellite images and machine learning algorithms to detect and classify
the various LULC categories or potentially use more advanced models to assist with micro-
climate data interpolation in areas with less dense spreads of weather monitoring stations.
While these would make for excellent research, they are beyond the scope of this current
paper, which is focused on utilizing boosting algorithms and SHAP values to build impact
assessment models.

Additionally, future studies could incorporate other methods and expand on previous
studies such as Li, et al. [63], which utilized machine learning techniques to predict land
use demand and zoning with a focus on urban-industrial zones. By expanding the study, it
would be possible to better predict potential future impacts of zoning and thus be able to
better plan mitigation of UHI.

Another limitation, which comes with most studies utilizing machine learning, is
the limitations around model creation, tuning, and processing. While we have taken all
precautions possible to build the best models with the least error and bias, there will always
be other considerations that could have been taken to improve the models. To help mitigate
this limitation, our approach utilized Bayesian Optimization for our parameter tuning and
followed a basic cost–benefit curve comparing accuracy to processing power required.

Author Contributions: Conceptualization, D.M. and H.W.K.; data collection, D.M. and H.W.K.;
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Appendix A

Table A1. Original 33 Land Use Land Cover classifications and 11 groupings.

Land Use/Land Cover Category Grouping

Water Water

Transit Transit

Mobile home

Residential
Group quarters

Single family

Multi family

Parks recreation Parks

Parking Parking

Mixed use Mixed-use

Landfill

Misc open
(non-green)

Under construction

Cemeteries

Farmland

Improved acreage

Cultivated crops

Barren land

Residential acreage

Vacant

Ranch land

Communication

Misc built-up

Large stadium

Airport

Runway

Utilities

Railroad

Industrial Industrial

Flood control Flood control

Office

Commercial/office

Hotel motel

Retail

Institutional semi public

Commercial

Education
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Abstract: Differences in the accessibility to urban resources between different racial and socioeco-
nomic groups have exerted pressure on effective planning and management for sustainable city
development. However, few studies have examined the multiple factors that may influence the
mitigation of urban green spaces (UGS) inequity. This study reports the results of a systematic
mapping of access inequity research through correspondence analysis (CA) to reveal critical trends,
knowledge gaps, and clusters based on a sample of 49 empirical studies screened from 563 selected
papers. Our findings suggest that although the scale of cities with UGS access inequity varies between
countries, large cities (more than 1,000,000 population), especially in low- and middle-income coun-
tries (LMICs), are particularly affected. Moreover, the number of cities in which high socioeconomic
status (high-SES) groups (e.g., young, rich, or employed) are at an advantage concerning access to
UGS is substantially higher than the number of cities showing better accessibility for low-SES groups.
Across the reviewed papers, analyses on mitigating interventions are sparse, and among the few
studies that touch upon this, we found different central issues in local mitigating strategies between
high-income countries (HICs) and LMICs. An explanatory framework is offered, explaining the
interaction between UGS access inequity and local mitigating measures.

Keywords: access inequity; systematic mapping; empirical studies; city scale; inequity mitigation

1. Introduction

Over half of the world’s population now live in urban areas, and this proportion is
projected to increase to about 75% by 2050 [1]. Urban green spaces (UGS), as the criti-
cal connection between the natural environment and human beings in cities, can deliver
a variety of ecosystem services that increase both the life quality and resilience of ur-
ban dwellers [2–4]. Moreover, UGS have been linked to increased physical and mental
well-being, reduced psychological morbidity, and enhanced social cohesion [5,6]. Urban
residents might be particularly vulnerable to the disparity between green, blue, and built
infrastructures under the complicated circumstances of the multiple interacting ecological,
social, and technological drivers of urban expansion. At the same time, disparities in access
to UGS have been found among groups with different socioeconomic statuses (SES, often
measured by income, education, and occupation), and this inequity has been investigated
in different geographical settings. Access to UGS has been further conceptualized by
Rigolon [7] in the light of three aspects—proximity, quantity, and quality—to compare
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empirical studies in high-income countries (HICs), and the geographical differences be-
tween inner-city areas (where UGS are relatively sparse and low-income residents are
frequent) and suburbs might also contribute to access inequity. A recent comparative
study of 290 Chinese cities revealed ubiquitous differences in UGS exposure between old
and newly urbanized areas [8]. Rapidly urbanizing cities have been confronted with the
sustainability issue of urban green system development and adding new parks might cause
the increase in nearby housing prices and subsequent neighboring gentrification [9,10].
Although this inequity has been quantified and mapped, the underlying mechanisms of
UGS access inequity and potential mitigation measures are not fully understood. Economic
development and urban afforestation-related policies might exert divergent impacts on
UGS distributions [11]. A review of the local contexts moderating UGS access inequality in
various cities across different countries and continents may provide critical insights in this
field of research.

The past two decades have seen increasing concerns related to UGS access and associ-
ated inequity. Empirical studies have been published in journals from various disciplines,
including land use, urban planning, sustainable science, public health, and environmen-
tal science [12]. Research related to access inequity has focused on the disparity among
groups based on income, age, gender, education, family structure, employment, race, and
ethnicity. Previous research attempted to identify the critical areas of access inequity in
densely populated areas [13] of a city, or the newly developed areas in a city’s rural or
suburban areas [14]. Moreover, quantitative models have been developed and applied to
reveal unfairness in the provision of UGS facilities, especially the quantity and proximity
aspects of accessibility [15]. Another significant concern that accompanies the inequity is its
consequences for social interaction and health inequalities [16]. To improve human health
and well-being, various forms of UGS in different communities of a city require elaborate
design, planning, and management [17,18]. Therefore, in urban areas, the associations
between access inequity to UGS and human health inequities at both local and regional
scales are important. Furthermore, more epidemiological evidence that combines spatially
explicit urban environment data with socioeconomic conditions and individual health
data is needed to dissect the individual and societal effects of inequity in the proximity,
quantity, and quality of UGS. Mitigating inequity in access to green spaces in urban en-
vironments could deliver a triple win, including strengthened social cohesion, improved
health outcomes, and sustainable urban ecosystems. Nevertheless, few systematic reviews
of empirical studies on this topic have been published, and a synthesis of the findings and
remaining gaps in knowledge is lacking.

The main objectives of this study were to reveal the relationship between city-scale
and access inequity from global empirical studies, examine the multiple factors that may
influence the mitigation of UGS inequity, and provide a systematic map to identify the gaps
and clusters in research on inequity in access to UGS. We expect that our effort to collate
evidence covering the field’s breadth will stimulate future research on UGS access inequity.

2. Methods

2.1. Literature Search

To conduct a systematic review of the literature on spatial accessibility to UGS in the
context of inequity, we searched the databases of the Web of Science focused on empirical
studies from 2000 to 2020. We focused on empirical studies using the method of equity
mapping, which was developed in the late 1990s [7], and thus, we did not search studies
published before 2000. We searched papers in peer-reviewed journals using the following
multiple terms: (greenspace * or green space * or open space * or urban park * or park *
or playground *) AND (access * or “accessibility” or “spatial distribution” or “provision”
or equit * or inequ * or disparit * or “socioeconomic” or “socioeconomic” or “income”).
Studies were identified and screened with the following criteria:
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(i) English language and full text available: Only studies published in English and studies
with available full-text versions were included. Comments, conference abstracts, book
chapters, and reviews were excluded.

(ii) Empirical research: Studies that demonstrated accessibility using spatial data with a
quantitative measure under the scope of proximity, quantity, or quality were included.
Purely descriptive studies were excluded.

(iii) Index of inequity: Studies that performed inequity analysis were required to include
a quantitative measure related to socioeconomic or ethnic status.

(iv) Study objects: Studies that focused on the intra-city inequity pattern were included.
Studies that targeted more than one city but performed intra-city quantitative analysis
for each city were also included. Multi-city studies that solely assessed inter-city
differences were excluded.

The literature search initially identified a total of 563 articles, of which 118 articles
were further screened in full text (Figure 1) after the title and abstract screening. In total,
49 studies were included in the review (Table 1).

 

 

 

 

Figure 1. The conceptual diagram for the literature search process.

Table 1. Articles selected for systematic mapping.

Author(s) and Date

Abercrombie et al. [19] Almohamad et al. [20] Arroyo-Johnson et al. [21]
Astell-Burt et al. [22] Bahrini et al. [23] Barbosa et al. [24]

Bruton et al. [25] Chen et al. [26] Comber et al. [27]
Cradock et al. [28] Dadvand et al. [29] Dai [15]
de Mola et al. [30] Engelberg et al. [31] Feng et al. [32]

Gu et al. [33] Guo et al. [34] He et al. [35]
Hoffimann et al. [36] Iraegui et al. [37] Jenkins et al. [38]
Kabisch & Haase [13] Kamel et al. [39] Knapp et al. [40]

La Rosa et al. [41] Lara-Valencia & Garcia-Perez [42] Lara-Valencia & Garcia-Perez [43]
Lin et al. [44] Manta et al. [45] Nero [46]

Park et al. [47] Rahman & Zhang [48] Reyes et al. [49]
Sathyakumar et al. [50] Schule et al. [51] Shen et al. [52]

Sugiyama et al. [53] Tan et al. [54] Tan & Samsudin [55]
Tian et al. [56] Tu et al. [57] Wei [58]

Weiss et al. [59] Wende et al. [60] Xiao et al. [14]
Xu et al. [61] Yang et al. [62] Zhang et al. [63]

Zhou & Kim [64]
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2.2. Coding Methods to Perform Research Synthesis

To analyze the articles that met the review criteria, we used research feature variables
to code the studies for synthesis. The codes were key variables for correspondence analysis
(CA), including the type of access to UGS, measures of SES, findings for inequity, the
country characteristics of the studied city, the population of the studied city, the spatial
and temporal analysis scale, and the intervention analysis (Table 2). These variables were
adopted to find critical trends, research gaps, and clusters in access inequity.

Table 2. Coded variables for correspondence analysis (CA).

Code Variables Categories Definition

Type of access studied

Proximity Distance to UGS

Quantity Amount or coverage of UGS within given areas

Quality
Multi-dimensional features of UGS
(e.g., amenities, safety, biodiversity)

Multiple Two or more aspects of access were studied

Measures of SES
Single Only one measure of SES

Multiple Two or more measures of SES

Inequity Yes/No
Studies defined as “Yes” explicitly stated that they found differences in access

to UGS among groups of different SES status

Country characteristics
HICs The city (or cities) studied in the article is in a high-income country

LMICs The city (or cities) studied in the article is in a low- or middle-income country

City size
More than 1,000,000

The population of the studied city; the multi-city studies containing one city of
more than 1,000,000 population were also coded into this category

Less than 1,000,000 The population of the studied city (or cities)

Temporal scale
Cross-sectional The empirical analyses were based on data at a single point in time

Longitudinal The empirical analyses were based on multiple-year data

Spatial scale
Single scale Results were analyzed at a single spatial resolution

Multiple scales Results were analyzed at different spatial resolutions

Interventions Yes/No
Studies defined as “Yes” mentioned the influence of local policy, planning, or

initiatives on inequity

Note: HICs: high-income countries; LMICs: low- and middle-income countries; UGS: urban green spaces.

2.3. Evolution of Quantitative Models for Estimating UGS Accessibility

Various methods were applied to quantify the accessibility of UGS, and hence, we
summarized the changes in those quantitative approaches in the articles analyzed in this
study. We mapped the evolution of quantitative models on a time axis. Furthermore, we
categorized the studies according to three typical aspects (i.e., quantity, proximity, and
quality) of access to UGS [7] and listed the years of publication and the corresponding
number of those publications (Supplementary, Figure S1).

2.4. Spatial Distribution of the Studied Cities and Access Inequity

To further illustrate the distribution patterns of studied cities, we analyzed the em-
pirical studies according to their geographical areas. The single analysis unit of a country
might not imply the varied spatial distribution patterns of the city under examination; we
classified the studied cities by the population scale to which they belong. Accordingly,
we checked each paper and recorded the specific city, county, or district that had been its
focus on and then mapped the distribution using the vector data from the Database of
Global Administrative Areas (GADM) for administrative subdivisions (https://gadm.org/,
accessed on 17 February 2021).
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The SES of urban residents can be identified from income, education, gender, age,
housing price, employment, as well as ethnic/racial factors. Previous studies from HICs
tended to emphasize the inequity of UGS accessibility among different ethnic groups (e.g.,
white or Latino), and most studies from LMICs did not analyze the variations of accessibility
from the aspect of ethnic/racial groups. We gathered the advantage or disadvantage
patterns from the 49 included articles and checked the inequity pattern of access to UGS.

2.5. Visualizing the Synthesis Analysis with Correspondence Analysis

Systematic mapping has been accepted as an effective method to describe and identify
the characteristics of evidence synthesis. Given that the objectives of the review were not
to answer a specific question about access inequity occurrence, but to present a broad
synthesis of the access inequity research field to identify future study priorities, we did
not choose meta-analysis but adopted CA as a combination of quantitative and qualitative
measurement [65]. CA could facilitate the visualization of multiple features from reviewed
studies in one figure through a display of a few dimensions. This method has been widely
used in social sciences [66] and is now increasingly adopted in urban ecology [67,68],
using novel data visualization methods to translate the evidence into a vital message for
policymakers [69,70].

In this study, we characterized the individual empirical study using the nominal vari-
ables in Table 2 to link studies together and generated frequencies and two-way contingency
tables. Mathematically, CA provides the spatial representation of similarity, similar to the
principal component analysis, based on the chi-squared distance. Accordingly, we used
CA to study the similarities between those empirical studies and examined whether some
of those categories were closely related to each other. CA could visually display the rows
and columns of the two-way contingency tables and describe the relationships between
the categories of each variable. The CA biplots for the distribution pattern of variables
could be used as an objective and effective method to demonstrate their interdependence.
Specifically, a higher proximity of categories indicates a higher correspondence, and the
same domain of the categories’ location according to the axes means a positive clustering,
which could elucidate the key trends of the research field. To conduct CA, in this study, we
used the R package ‘FactoMineR’ [71] to create the CA plots [6].

3. Results

3.1. The Global Distribution Patterns of City-Scale and Access Inequity

Table 3 presents the spatial distribution of the studied cities. We found very few studies
in large areas of LMICs (e.g., Africa, South America, South Asia, Southeast Asia, eastern
Europe, and Russia). Specifically, the majority of cities in these studies are on the scale
of more than a population of 1,000,000 people, such as Munich, New York City, Sydney,
and Beijing. It is noteworthy that studies in LMICs, especially China, predominantly
emphasized large cities with a population of more than 5,000,000 people (blue circles).
Comparatively, the distribution of studied cities in Europe and North America covered a
broader range of city-scale.

Table 4 shows the access inequity of each studied city, and we found a global inequity
in access to UGS. The number of cities where the high-SES groups were advantaged was
substantially larger than that of cities showing better accessibility for the low-SES groups.
However, we found that the proportion of cities demonstrating inequity in LMICs (84.2%)
is slightly smaller than that in HICs (78.8%). Specifically, previous studies did not find
significant inequity in accessibility to UGS for Tehran [23], Sheffield [24], Barcelona [29],
Seattle [31] and Phoenix [43], Catania [41], and Beijing [57]. Those cities are distributed in
three continents of Asia, Europe, and North America. By contrast, studies carried out for
Sydney [22], New York City [59], and Shanghai [14] obtained the opposite conclusions and
found the advantageous status of low-SES groups in terms of accessibility to UGS.
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Table 3. The city-scale (population) distributions from the reviewed empirical studies.

City Scale City Number Location

5,000,000 and greater 19
Australia, Bangladesh, Chile, China,

Columbia, Ghana, Iran, Mexico, Peru,
Singapore, South Korea, US

1,000,000 to 5,000,000 16
Argentina, Australia, Bolivia, Canada,

Germany, India, Japan, Spain, Syria, US

500,000 to 1,000,000 6 Brazil, Mexico, UK, US

250,000 to 500,000 8 Italy, Portugal, UK, US

100,000 to 250,000 3 US

Table 4. The distribution of access inequity from the reviewed empirical studies.

Access Inequity City Number Location

Found 42

Argentina, Australia, Bangladesh, Bolivia, Brazil,
Canada, Chile, China, Columbia, Germany,

Ghana, Japan, India, Mexico, Peru, Portugal,
Singapore, South Korea, Syria, UK, US

Not Found 10 China, Australia, Iran, Italy, Spain, UK, US

Those three cities are distributed in Asia, North America, and Oceania. There has been
more than one study carried out on New York City, and the conclusion of inequity or equity
is not absolute due to the research approach and data availability. Equitably distributed
across different social groups might be the ideal goal of policymakers and practitioners.
Xiao et al. [14] used the spatial clustering method to assess the social equity of accessibility
to urban parks and found that two typical vulnerable groups (i.e., laid-off workers and
rural migrants) are more favored over more affluent residents in Shanghai. They pointed
out that this phenomenon might be attributed to the local municipal endeavors in ensuring
the socially equitable access to parks, and it is noteworthy that the authors emphasized
the critical influence of the planning legacy of China’s socialist era. The study by Astell-
Burt et al. [22] adopted the negative binomial and logit regression model to examine the
inequitable distribution through a cross-city comparison and found the varied magnitude
between cities and the intra regions within a city. They inferred that because of urban
sprawl, those suburbs distant from business centers could have cheaper land and more
green space.

3.2. Interventions for Access Inequity Mitigation

Figure 2 shows the major factors of SES in those 49 empirical articles on access inequity.
The income and age traits of the residents might be the most important aspects to consider
when mitigating the inequity in access to UGS. Meanwhile, a few studies focused on
gender, employment, or/and family structure traits. While a local, targeted urban greening
policy might result in the inequity pattern of access to parks, it can also act as an effective
amelioration measure to address this issue [72,73]. However, across the reviewed papers,
we found that analyses of mitigating interventions are sparse, and inadequate attention has
been paid to the implementation phase and to evaluating the effects of specific local policies,
planning, or practical initiatives to improve accessibility and mitigate inequity. Table 5
lists the interventions described in the reviewed articles. Research on large cities in the
USA (i.e., Atlanta and Boston), and China (i.e., Beijing, Hangzhou, Nanjing, and Shanghai),
place their policy influence analysis in their discussion sections. Scholars focused on
initiatives related to local social structures (e.g., Singapore), long-term urban master plans,
or current investment in parks. The policies from two empirical studies in the US [15,28]
focused on redeveloping urban parks and paid attention to the parks’ quality features (e.g.,
safety). Nevertheless, mitigation policies in the empirical studies in China shown in Table 5
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mainly referred to the improvement of park areas and the walking time or distance to UGS,
emphasizing the quantity and proximity aspects of accessibility. Notably, for Singapore, a
typical multicultural city, social harmony might be the theme of urban green space planning
and inequity mitigation interventions.

Figure 2. The major socioeconomic factors that influence access inequity.

3.3. Systematic Map of the Features of Access Inequity Research

To find critical trends, knowledge gaps, and clusters in access inequity research, we
used key variables (Table 2) for CA to code the reviewed studies to produce a systematic
map. The correspondence biplot (Figure 3) shows the diversity of approaches applied
in access inequity research (blue text). The distance between any points or text gives a
measure of their similarity. The plot displays the first two dimensions, which together
explained 43.3% of the total variability (Table S1) in study features.

There is a small angle between the lines of the feature “proximity” and a lack of
intervention analyses, as well as a small angle between studies measuring “quality” and
adopting multiple measures of SES in the negative quadrant (Table S2). UGS “proximity” is
the primary measure of accessibility (59% of the final studies for synthesis), and studies that
analyzed access inequity under the scope of “quality” contributed the smallest proportion
(Table S3). A total of 39 articles used multiple measures, and the proportion of adopting
multiple measures of SES for “proximity”, “quality”, and “quantity” is 76.7%, 87.5%, and
85.2%, respectively (Table S4). The variable “proximity” displays the highest proportion
(23.3%) for the research approach of using a single SES index. The proximity indicator
weights the user’s specified distance to measure the possibility of reaching an urban park,
and the advance in access inequity research since 2000 has been accompanied by the
increasing availability of spatial data and enhanced geographical information system (GIS)
features, particularly the ArcGIS Network Analyst. The classic article of Dai (2011) [15]
in the journal of Landscape and Urban Planning reported significantly poorer access to
green spaces for neighborhoods with a higher proportion of African Americans in Atlanta.
The author introduced a Gaussian-based two-step floating catchment (2SFCA) to assess the
proximity, aiming to identify the key areas for intervention to address disparities. From the
reviewed studies, the frequency of studies for “proximity” peaked in 2017 and kept being
the dominant measure thereafter (Figure S1).
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Table 5. Policies or interventions to mitigate access inequity described in the reviewed articles.

Author(s) Study Location
Urban Green Space Planning

and Inequity Mitigation
Initiatives

Goals

Cradock et al.,
2005 [28]

Boston, USA
Renovation by the Boston Parks

and Recreation Department
Improve the safety of playgrounds

Dai, 2011 [15] Atlanta, USA
Atlanta beltline redevelopment

plan (Atlanta Development
Authority, 2005)

Create 1200 acres of new or expanded
parks; Improvements to over 700

acres of existing parks

Tan and Samsudin,
2017 [55]

Singapore Ethnic Integration Policy
Maintain a racial mix quota in public
housing estates and avoid forming
racial enclaves in residential areas

Tu et al., 2018 [57] Beijing, China
Urban Green Space System

Planning (2004–2020)

Fund and build more than 100 public
urban parks with a total area of 1700

hectares during 2005–2010

Wei, 2017 [58] Hangzhou, China

Urban Green Space System
Planning in Hangzhou

Recommend a 2 km distance for city
parks and a 1–2 km for district parks

with driving by private vehicles

The Green Space Planning
in Hangzhou

The Public Open Space Planning
in Hangzhou

Xiao et al., 2017 [14] Shanghai, China

The 13th Five Year Plan’s Public
Green Space Special Plan
(Ministry of Housing and

Urban–Rural Development of the
People’s Republic of China, 2015)

Reduce the walking distance to
public green space in the city proper

to 500 m

Gu et al., 2017 [33] Shanghai, China Shanghai Master Plan (2015–2040)
Develop a new urban–rural parks

system by 2040 to improve the
accessibility of public green spaces

Zhang et al., 2019 [63] Nanjing, China
The Planning of Nanjing City

Parks (2017–2035)

Recommend that people enjoy a
10 min walk to the community-level

park and a 20 min walk to the
district-level park.

The variables “Without_Interventions_analyses” and “proximity” show similar trajec-
tories in the CA biplot. There is either a weak or no correlation between “proximity” and
“quantity” or “quality”. UGS “quality” accounts for the least proportion in those studies
that lack intervention analyses (Table S5). Both the proximity and quantity metrics ignore
the inner characteristics of urban parks, and likely, that UGS quality is among the attributes
that continually attracts nearby residents to visit those parks. A comparative study in a
large US metropolitan area found significant differences in quality (i.e., location, care and
maintenance, and entertainment value) between groups with different household income
characteristics [38]. The influence of park quality on park usage might vary by gender,
and the groups of active or female users could be significantly affected [40]. However,
both of the above-mentioned empirical studies did not move forward to corresponding
inequity-mitigating initiatives analysis.

There is a strong correlation between the studies in LMICs and studies in city sizes
of more than 1,000,000 in the positive quadrant. Studies showing significant inequity of
access were less distributed (32%) in LMICs (Table S6). However, the large angle between
the lines of the feature “inequity” and cities in developing countries and the long distance
between the two features indicate weak or no correlation. Although studies in LMICs
have focused on large cities and found prevalent inequity, there has been a global inequity
pattern despite the scenarios of LMICs or HICs.
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Figure 3. Biplot of the correspondence analysis with the 49 included studies. The studies are in gray
points and characteristics (from Table 2) are in blue text. This symmetric plot shows the distribution
pattern within the data. The percentage of explained variances of the first two dimensions are shown
in the axes’ labels. The distance between any points or text gives a measure of their similarity. Long
lines of the text or points to the origin indicate a strong association. Small angles between two lines
of text that point to the origin indicate associations. Lines with angles near 180 degrees present
negative associations.

The variables of “Multiple_Spatial_Scales” and “Longitudinal_Analyses” showed
a high level of similarity. Among the 49 reviewed articles for CA, only several articles
were found to analyze the temporal dynamics of access inequity or analyzed inequity
at different spatial scales (Tables S7 and S8). Wei [58] conducted a longitudinal study of
Hangzhou, a megacity in China, and revealed the overall increase in park accessibility (i.e.,
proximity) from 2000 to 2010. This multi-temporal research was based on data acquisition
from a variety of sources (i.e., statistical yearbooks, local government planning, and satellite
images), but Wei found that neither access nor changes in access are significantly associated
with the selected socioeconomic variables. Tan and Samsudin [55] explored the scale effects
by comparing the park provisions and spatial equity from three different planning units
(i.e., region, planning area, and subzones). They observed the pattern of stronger inequity
with smaller scales in Singapore. To demonstrate the inequity variations, longitudinal and
multi-spatial-scale research should address the challenge of overcoming socioeconomic
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and UGS distribution data availability and the selection of fitted statistical analysis models
to reveal the mechanism of inequity dynamics.

4. Discussion

The global distribution map shows that studies have been concentrated in cities (blue
circles) with more than 1,000,000 people, and large cities are predominantly affected by
the inequity in access to UGS in LMICs. General interest in large cities might result from
the fact that more data were available for large cities than for small cities in LMICs, as
national governments tend to emphasize the sustainable development of capital cities
and give priority to the budget for the census survey [74]. Population statistics data
have been typically adopted to calculate accessibility when quantitative models (e.g., the
2SFCA were applied. The 2SFCA model was first proposed by Radke and Mu [75] to
study spatial accessibility based on resource supplies and population demands. However,
the administrative geographic units for the demographic data varied in many cases, and
the spatialization method of population data to reduce the spatial mismatch between
the urban park provision and population distribution pattern has not been investigated
effectively. Recently, prognosis areas (sub-district level) in Berlin [13], US Census data by
block group boundaries in Boston [28], and neighborhoods in Denver [76] were chosen as
units from which demographic information was extracted. These studies assumed that the
population is evenly distributed within the statistical unit, and therefore, they ignored the
exceptionally high heterogeneity of population distribution in urban environments. The
lack of spatialized population data of high resolution has been a limitation to improving
inequity evaluation accuracy [77]. Tan et al. [54] used land cover type and demographic data
to build a geographically weighted regression (GWR) model and generated the population
grid map of 150 m resolution. They used the fine-scale population in their network analysis
to obtain precise coverage data of different levels of accessibility. The input data of small-
scale units for accessibility models can help diagnose the critical areas of spatial disparities
to guide urban planning. Indeed, fine-scale building data could be incorporated into
models for the grid map of demographic data [78], but those auxiliary data are often
difficult to obtain.

The willingness of residents in large cities to visit urban forests might be influenced by
the quality, due to various demands for recreation and relaxation [79]. The previous quanti-
tative supply–demand models (e.g., the 2SFCA model), assuming that people are willing
to visit nearby parks, might not work well if those parks are not aesthetically pleasing.
Existing reviews have presented evidence suggesting that inequities of park quantity and
quality exist in HICs and LMICs and that LMICs experienced a more consistent pattern of
quality inequity than proximity and quantity [7,12]. Despite the recognized attraction of
high park quality, present studies, in terms of urban park supply, have primarily focused
on the presence/absence issues of urban parks rather than the intra-park characteristics.
One of the most important reasons for this gap mentioned above is that researchers in this
field may commonly rely on vector data (i.e., planning data for road and park boundaries).
Admittedly, planning data could meet the research needs, to some extent, to demonstrate
the inequality pattern of park coverage and proximity to urban residents. However, not
enough is known about park quality, including vertical forest structure, vegetation type,
landscape fragmentation, diversity, and complexity, all of which might influence the vari-
ous ecosystem functions and services and could be effectively assessed using multi-source
data [80,81]). The increasing availability of high-resolution, remote sensing data (e.g., im-
ages from QuickBird, Worldview, and SPOT satellites) and the LiDAR cloud data will allow
for the spatially explicit evaluation of inequity concerning park quality. Future studies
need to consider the increasing demand of urban residents to enjoy high-quality parks
and explore the access inequity of parks at different quality levels in more detail. Future
quantitative analyses should also focus on quantifying park-quality-related variables, such
as forest structure, landscape diversity, and landscape fragmentation. More attention
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should be given to the integrated approach to strengthen the understanding of the driving
mechanisms for park access inequity.

Of the existing access inequity studies, the majority are single-phase studies; hence,
they lack a longitudinal analysis. A temporal comparative study can identify causal
relationships between access inequity and its driving factors (e.g., socioeconomic, policy,
or urban planning factors) and accordingly facilitate UGS planning optimization. The
historical trajectories of infrastructure construction during the rapid urbanization process
have shaped the spatial patterns of park access. Therefore, accessibility could be treated as
a process with multiple dimensions rather than as an established state or outcome. The
pioneering investigation of park access dynamics took place in Hangzhou, China [58]. This
study demonstrated the predominant role of park investment on individual sub-districts
to improve overall accessibility, but the research in Hangzhou did not show significant
differences among socioeconomic groups in terms of park access variations. Barriers
to the development of the study of the dynamics of access inequity are mainly due to
the availability of multi-temporal park distribution data and place-based socioeconomic
data [6]. In the future, multidisciplinary cooperation with training and skills presents
an opportunity to make full use of multi-source data, detect the reasons that may cause
inequity, and to help evaluate current policies efficiency through dynamic analyses. City
planners and policymakers should focus on those areas and groups of people experiencing
decreasing accessibility and those priority zones that have already benefited from effectively
implemented initiatives to ameliorate access inequity. We found very few studies in large
areas of LMICs and the possible reasons that most of the empirical studies on UGS equity
are located in western Europe, China, Australia, and the US might be local urbanization
processes and the high demand of UGS for public health [58,60]. Since the US and China
have been the major contributors to the publications in this field and have accumulated
spatially explicit studies for individual cities, one of the pressing research areas is the
comparison of park accessibility and the changes in accessibility among socioeconomic
groups. Furthermore, the urban land structure could significantly influence the provision
of UGS [82]. Thus, taking the different spatiotemporal patterns of urbanization in China
and the US into account might enrich the research on spatial and temporal access inequity
to UGS.

Advances in research on UGS access inequity have profoundly enhanced our under-
standing of the effects of the provision of UGS on social inequity. However, research on
the contribution of interventions to improve access inequity remains a nascent field with
substantial knowledge deficits. Hunter et al. [83] identified 6997 articles when reviewing
the equity effect of urban green space interventions (only 38 articles were finally included)
and found that there was too little evidence to draw firm conclusions. Both the political and
scientific communities have acknowledged the importance of UGS, and it is the practical
intervention strategies that could tackle the inequity issue in local urban contexts. Fur-
thermore, to avoid exacerbated inequity, local governments must propose new initiatives,
especially projects that would benefit regions with deficit residents. Cost-effective ways
of green infrastructure network optimization, such as nature-based solutions, should be
adopted to increase access to green spaces [84]. However, some cities may not prioritize
urban planning in the creation of UGS and might prioritize industrial development and eco-
nomic growth. The access equity issue may also be compromised by real-estate investment.
Therefore, the governance, planning, and maintenance measures regarding the construc-
tion and redevelopment of UGS should not be detached from the urbanization traits. In
particular, the temporal and spatial patterns of urban land expansion and urban population
growth could help us to understand the formation mechanism of access inequity. Local
interventions should be proposed based on public surveys and in situ research to guarantee
the effectiveness of specific measures [85]. UGS access is not a single-dimension issue of
green infrastructure, and therefore, the corresponding adjustment of a city’s non-biotic or
gray structures, especially the transport system, should be appropriately incorporated into
the UGS planning system [60]. Sound UGS inequity mitigation policies, sensitive to the
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demographic distribution of income, age, ethnicity, or other social vulnerabilities, are much
needed to effectively narrow the inequity gap. In the future, a combination of quantitative
and qualitative methods might be essential to evaluate the effectiveness of policies and
help policymakers find the pathways through which the inequity-intensifying impacts
emerge. Scholarly local studies focusing on a given policy from a specific disciplinary view,
and interdisciplinary considerations by the architectural, engineering, and construction
professions are needed to enrich the research and develop new practical guidelines for
urban green space planning. More studies are needed to uncover the access inequity issues
for cities of LMICs with high populations concentrated in their urban areas.

5. Conclusions

We reported a systematic mapping of access inequity research based on a sample of
49 empirical studies screened from 563 selected papers. Although the scale of cities with
UGS access inequity varies between countries, large cities (more than 1,000,000 population),
especially in LMICs, are particularly affected. Disparities of UGS were found among
different SES groups, and access inequity was investigated in different geographical settings.
Across the reviewed papers, analyses on mitigating interventions are sparse. Using CA
methodology, we found the critical trends, knowledge gaps, and clusters of this research
field and underscored the incorporation of the UGS access inequity factor into urban
planning and management to avoid exacerbated pressures on the sustainable development
of cities. We provided the explanatory framework for the interaction between access
inequity and local mitigating measures and have called for interdisciplinary cooperation
by architectural, engineering, and construction professionals to reduce access inequity to
UGS. In future research, it will be necessary to conduct comparative studies in various
cities across different countries or continents for a comprehensive understanding of the
factors that may influence the mitigation of this inequity.
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Abstract: Urban shrinkage is a critical issue in local small- and medium-sized cities in Korea. While
there have been several studies to analyze the causes and consequences of vacancy increases,
most have only focused on socioeconomic associations at larger scale and failed to consider in-
dividual housing level characteristics, primarily due to a lack of appropriate data. Based on data
including 52,400 individual parcels, this study analyzes the primary contributors to vacant properties
and their spatial distribution through a multilevel model design based on data for each parcel. Then,
we identify areas at high risk of vacancy in the future to provide evidence to establish policies for
improving the local environment. Results indicate that construction year, building structure, and road
access conditions have a significant effect on vacant properties at the individual parcel level, and the
presence of schools and hypermarket within 500 m are found to decrease vacant properties. Further,
prediction outcomes show that the aged city center and areas with strict regulations on land use
are expected to have a higher vacancy rate. These findings are used to provide a set of data-based
revitalization strategies through the development of a vacancy prediction model.

Keywords: urban shrinkage; vacancy parcel data; multilevel analysis; predicting vacancy

1. Introduction

Recent rapid urban growth has forced Korean cities to focus on physical and spatial
expansion [1]. As such, planning policies related to growth management or smart growth
are being developed with sustainability and development in mind [2]. Accordingly, a large
number of development projects have been put forth in response to the growing demand
for housing in the Seoul Metropolitan Area (SMA) of South Korea, such as the ambitious
3rd Generation New Towns project. In contrast, many small- and medium-sized cities and
rural areas outside of the SMA are experiencing depopulation that first began in the 1980s.
Of 230 Korean cities, 139 (60.4%) experienced depopulation between 1990 and 2015. While
only 18.6% (20) of cities in the SMA lost population during this period, non-metropolitan
areas also showed a 30.1% (119) decline, indicating urban shrinkage in these regions [3].
In particular, this trend is expected to worsen for small- and medium-sized cities due to
continued low fertility rates (in fact, Korea has the lowest among OECD member countries)
and aging of the population [4].

Urban decline can be a result of shrinkage and cause not only a long-term economic
recession, but also socioeconomic problems including deteriorating neighborhoods and
living environments, poor regional competitiveness, and high crime rates [5]. Another
related issue is that of excessive amounts of vacant land—a physical manifestation of
economic decline brough about by depopulation [6,7]. According to the 2017 Housing
Census by Statistics Korea [8], vacant properties accounted for 7.4% (1,270,000) of the
housing properties in the country at the time—a 3.4-fold increase in just 22 years from
360,000 (3.9%) in 1995. Statistics Korea forecasts that vacant properties will account for 10%
(3 million) of housing properties by 2050.
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If left unattended long-term, vacant properties can cause complex physical, social,
and economic problems such as deteriorating residential conditions, poor esthetics, increas-
ing crime and disasters, falling housing prices, and higher administrative costs. We must
establish a framework to both upgrade and reuse vacant properties, especially given the
projected rise in vacant properties. Housing demand will decrease beyond absolute housing
shortages based on the current housing supply rate above 100% (total number of houses
to total number of households ratio). This will be coupled with a decreasing population
growth rate and a declining working-age population.

We understand that all cities seek to promote economic growth through the use of
diverse resources. Among these resources, land is crucial—especially vacant land [9].
As noted, shrinking cities have a much larger influence on the socioeconomic fabric of
affected societies. Among these problems, the issue of vacant properties is especially critical
to address [10]. If we recognize vacant properties as both the cause and result of a declining
city, and accordingly identify and manage this cause-and-effect relationship, it may be
possible to preemptively prevent the vicious cycle of vacant properties and deteriorating
cities. Under the hypothesis that a property becomes vacant/abandoned not only due to
individual building characteristics but also regional economic, social, and environmental
characteristics, the multilevel logistic regression model was used to extract the determinants
of vacancies at different levels and predict the probability of vacancy in each building in
the future.

The literature has proposed various definitions of “vacant properties” and their con-
tributing factors across different scales—from city-based macroscopic to neighborhood-
and individual housing unit-based local scales. Vacant land is said to include not only
underperforming or unoccupied properties, but also neglected or abandoned commer-
cial/industrial buildings that may pose a threat to public safety [10,11]. Vacant land may
also include open spaces such as parks, farm sites, and properties with natural resource
value [6].

Vacant housing in residential areas are especially worrisome. Although there is no
agreed-upon concept and definition of vacant properties in Korea in the literature, the Act
on Special Cases Concerning Unoccupied House or Small-Scale Housing Improvement,
2017, defines vacant properties as “a house not occupied or used for at least one year as of
the date the Special Self-Governing City Mayor has verified that the house was occupied
or used.” Surveys into such properties in different regions have since been conducted
routinely.

On the contributing factors of vacant properties, Scafidi et al. (1998) and Hillier et al.
(2003) [12,13] found that housing characteristics and the socioeconomic characteristics of
owners affected housing abandonment in declining cities across the US. They confirmed
that, if housing properties have poor functional and economic conditions, or homeowners
have poor financial conditions, they are more likely to be neglected and therefore become
vacant. Bassett et al. (2006), Silverman et al. (2013), and Morckel et al. (2013) [14–16] found
that the proportion of African-Americans, proportion of poorly educated, unemployment
rates, poverty rates, age of the building, and housing prices are all related to housing aban-
donment; that is, a local area’s physical, social, and economic characteristics may trigger
housing abandonment. Morckel (2013) [16] conducted a multilayer analysis of Youngstown
and Columbus to analyze the effect of the neighborhood scale on housing abandonment,
and identified the relationship between vacant properties and three conditions in the target
and nearby areas: market conditions, gentrification, and physical abandonment.

Further, local market and economic conditions may also affect the emergence of vacant
properties. According to the real estate market, the main cause of vacant housing is a
low demand for such properties. Such properties arise because of a mismatch between
supply and demand under conditions of housing oversupply [17,18]. If the demand is
lower than the housing supply, consumers improve the quality of their houses through
housing filtering; in this process, houses with low competitiveness are abandoned [19,20].
If many new housing properties are supplied without changes in local housing demand,
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properties with low market values, such as old and poor-quality ones, will be left vacant and
abandoned. This phenomenon evolves beyond a single area. If a specific area has a low level
of market competitiveness, residents who can afford to move will do so, thus producing
more vacant properties.

Studies identifying the spatial distribution of vacant properties across the city and
predicting areas at higher risk of vacancy are rare; a deep-learning-based vacancy prediction
model was only developed in 2016 [10,13,21]. Hillier et al. [13] identified the determinants
of vacancy and predicted housing abandonment in Philadelphia using a logistic regression
model. They found that identifying the principal predictor of abandonment is essential for
establishing long-term strategies to protect housing stock. Furthermore, they noted that the
causes of vacancies differ depending on the scale.

Newman et al. (2016) and Lee and Newman (2017) [10,21] developed a neural-
network-based vacancy prediction model. By comparing four different model accuracy
tests, they proved that the model can be a suitable alternative for predicting future possible
urban vacancy dynamics and conditions. By quantifying and comparing factors that occur
in a growing city (Fort Wort, TX, USA) and a declining city (Chicago, IL, USA), they found
that while transportation-related variables in the declining city are major contributors to
vacancy, socioeconomic variables such as unemployment rate, housing price, and race
have stronger influence in a growing city. With the latest technological advances that can
collect and analyze various types of data, scholars are beginning to analyze and predict
vacancy patterns based on the deep-learning-based prediction model. However, most deep-
learning-based predictive models require time-series data, and it is difficult to conduct a
more detailed analysis because the analysis must be conducted with raster-based pixel units.
Since this study obtained 2020 parcel-level vacancy data, multilevel logistic regression
model was utilized to predict the vacancy possibility of each parcel.

The primary objectives of this research are twofold: (1) to accurately analyze contribu-
tors to vacant properties and spatial distribution through a multilevel model design based
on data for individual parcels, and (2) to provide evidence to establish policies to boost
the local area by predicting areas at risk of vacancy. Our study differs from the prevailing
works on vacant properties in three ways. First, prior studies are limited in their analysis
of the characteristics of vacant properties in a more specific unit of land because they rely
on data at the administrative district scale, given the challenges in obtaining proper data.
For example, Morckel (2013) [16] used tax-delinquent information on individual properties
as a proxy for abandonment, while Zou and Wang (2020) [22] detected vacant houses using
high-resolution remote sensing images. We conducted a more detailed and accurate spatial
analysis based on data from approximately 32,000 individual parcels in Jeonju, a small- and
medium-sized local city in western South Korea experiencing a rapid decline.

Second, while some scholars use data from individual buildings, most limit their anal-
ysis to only a few areas in the city or focus on physical characteristics such as construction
year and architectural type. We included not only the physical characteristics of individual
parcels, but also the characteristics of neighborhood residential conditions such as access
to amenities as key explanatory variables, not limiting ourselves to a certain small area
within the city. Williams et al. (2019) [23] highlighted the importance of access to amenities
such as schools, grocery stores, medical facilities, and malls to allow communities from
ghost cities (i.e., cities with housing vacancies) to flourish. Access to public transport
also increases housing value [24–26]. Accordingly, variables such as access to a variety
of amenities, such as elementary schools, hypermarkets, and hospitals, the presence of
unwanted facilities such as waste treatment plants, and vacant properties were employed
in our analysis.

Third, vacant properties may be related to conditions differently across different scales.
While Accordino and Johnson (2000) [20] showed that specific housing conditions and
neighboring conditions influence housing properties, most other scholars seem to focus
on the socioeconomic status of the entire city level due to the lack of vacancy-related data.
This includes population and employment status rather than neighborhood conditions such
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as service accessibilities, and the physical conditions of each property, such as structures
and the year built.

By investigating each house’s conditions, we included not only the local area’s so-
cioeconomic characteristics but also the unique characteristics of individual buildings and
access to infrastructure related to neighborhood environments as key explanatory vari-
ables. We employed a multilevel logistic regression model to identify parcels at high risk
of vacancy in the future, instead of using past data to analyze trends and suggest policy
alternatives. In addition to identifying parcels at high risk of vacancy, we identify high risk
of vacancy clusters at the regional scale within the study area by examining their spatial
distribution with hotspot analysis. Within this process, we present a reference to establish
more realistic and future-oriented policies.

While there has been a concerted effort to study and understand how vacant properties
can be used, without identifying the causes and consequences of the increase in vacancy,
it is difficult to systematically manage and use these properties. In the context of our study—
South Korea—we note that while the Korean government creates the available data on
vacant housing property through the Housing Census of Statistics Korea, the information
is only a simple aggregate that includes spatial ranges of cities or census tract levels. These
data lack accuracy and specificity in identifying the number and status of vacant properties,
thus rendering them ineffective for analyzing the microscopic and accurate causes of vacant
properties that take regional heterogeneity into account. In the literature, for example,
while Jeon as well as Kim and Park [27,28] conducted their studies at the scale of individual
buildings, they failed to identify the spatial distribution or cause of vacant properties across
the city; further, they did not consider access to amenities and the presence of nearby vacant
properties.

2. Materials and Methods

2.1. Study Area

To examine urban vacancy patterns and their causes, we examined the case of Jeonju,
located in the North Jeolla Province, South Korea (Figure 1). The extinction risk index was
considered to measure the urban shrinkage. The index was first introduced to measure the
urban shrinkage of Japan [29]. It is the value dividing the female population aged 20 to
39 years in a region by the population aged 65 years and above in the region. According
to an analysis of trends in the local extinction risk index for 261 local governments across
Korea, Jeonju was rated 0.67 as of 2020, which is quite low. However, as its risk has increased
sharply since 2000, urgent measures need to be taken (see Table 1 for the extinction risk
index). Lee [30,31] analyzed Korea’s local extinction and found that if the value is under
0.5, depopulation will continue to stagnate for over 20 years.

≥

 

Figure 1. Location and demographics of the study area.
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Table 1. Location extinction risk index in the study area.

2000 2010 2020 2010–2020 Rate of Change Local Extinction Risk Index

Jeonju 2.5 1.3 0.7 73.4% Low extinction risk: ≥1.5
Moderate extinction risk: 1.0–1.5

High extinction risk: 0.5–1.0
Very high extinction risk: <0.5

North Jeolla Province 1.3 0.7 0.5 63.6%

Nationwide 2.1 1.1 0.6 71.5%

As vacant housing properties caused by population outflows are becoming a serious
social issue, Jeonju is creating strategies to reuse vacant properties and explore how to
manage and support these properties by reviewing relevant laws and ordinances. In 2020,
Jeonju collaborated with the Land and Geospatial Informatrix Corporation to establish a
database on vacant properties. They conducted a survey of vacant properties left unat-
tended for over one year in the city and began to seek strategies to use these properties,
taking into account aging and use of unoccupied properties.

We analyzed the factors contributing to vacant properties in 31,810 detached housing
parcels in Jeonju. We then predicted the areas likely to have vacant properties in the future
using a multilevel logistic regression model and explored measures to tackle housing
vacancy issues. Our analysis provides implications for a more objective and systematic
response, as we examined the status of vacant properties with two different levels of vari-
ables: (1) individual building level such as parcel size, shape, construction year, and access
to infrastructure, and (2) the Dong, which is the smallest administrative unit in Korea,
sharing relatively homogeneous socioeconomic conditions such as population density,
employed population, and fertility rate [32].

2.2. Housing Vacancy Database

According to the “Act on Special Cases Concerning Unoccupied Houses or Small-scale
Housing Improvement”, a vacant house is defined as a property that has been unoccupied
for more than one year. Since it is difficult to keep track of properties that have been
vacant for over one year, we identified the occupation status and building conditions of
current housing. To obtain the vacancy data, the most accurate way to build data for vacant
properties is to investigate the status of all buildings in the study area and determine
whether they are vacant and how old they are. However, we surveyed the status of vacant
properties to build a more effective data-limited budget using the following three steps (see
Figure 2):

(1) Extract buildings expected to be vacant properties based on data on water and elec-
tricity consumption in individual residential buildings;

(2) Visit and investigate the buildings extracted from (1), and confirm whether they are
actually vacant properties;

(3) Identify the buildings’ conditions such as abandonment, aging, owner, access, and the
possibility of potential future reuse for buildings confirmed to be vacant properties.

 

Figure 2. Vacant property’s survey process.
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Based on the parcel numbering unit code for vacant properties derived from the above
process, we established a building database along with building data from the geographic
information system. The established building database includes various characteristics,
including building identification number, parcel number, building structure, land area,
gross floor area, violated building, building area, height, and construction year [1]. These
data can be used to analyze contributors to vacant properties. From this process, a total of
52,429 parcels were extracted and spatialized out of 88,404 in Jeonju, excluding those that
could not be analyzed (including illegal ones) as their characteristic data were not included
in the building register. Since some multifamily properties share water and electricity usage,
the survey has a limitation to determine whether a house is vacant within multifamily
housing. Thus, 31,810 detached house parcels were re-extracted and used for analysis,
and 4.2% of them (1348) were confirmed to be vacant (Table 2).

Table 2. Total and analyzed single family parcels in numbers and ratio.

Total Parcels (%) Total Vacant Properties (%) Total Analyzed Parcels (%) Vacant Properties in Analyzed Parcels (%)

52,429 2046 31,810 1348
(100%) (3.9%) (60.7%) (4.2%)

As shown in Figure 3, vacant properties are densely concentrated around the historic
city center. For the historic city center, large-scale housing development projects on the
edges of the city in the late 1970s led to a decline in population in residential areas in
Jeonju; the North Jeolla Provincial Office was relocated to the outskirts of the city in 2005,
bringing the city’s residential base into a further decline and exacerbating the issue of
vacant properties. This reorganization of urban functions not only relocated or dispersed
urban functions but forced residents to flow out to where the functions were relocated,
thus increasing loss of employment and urban decline.

 

Figure 3. Distribution of parcel of detached house land and vacant properties in the study area.
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Because we analyzed vacancies within individual parcels, vacancies were expressed in
binary code as 1 and non-vacancies as 0. Since the dependent variable was binary, a binary
logistic regression analysis was performed.

Based on vacant property data from the above process, we identified the physical,
spatial, and demographic characteristics of vacant properties using a dataset from two
different scales: (1) individual building level and (2) the Dong level. Based on these charac-
teristics, we predict the probability of non-vacant buildings becoming vacant properties in
the future, identify areas at risk of vacancy, and establish a framework to devise relevant
policies in the future.

2.3. Variable Data

Considering the factors reviewed from previous studies, seventeen variables at two
levels were used as factors contributing to vacancy: those representing local characteristics
and those reflecting the characteristics of individual parcels (Table 3). Variables representing
local characteristics included five variables, such as the percentage of secondary industry
workers, population density, the percentage of old buildings and parks and green area
per person. Variables reflecting the characteristics of individual parcels included twelve
variables, such as construction year, building structure, type of parcel, and road access
conditions [33]. Within individual parcel variables, the total number of parcels within a
radius of 500 m from amenities, such as elementary schools and hypermarkets, and the
total number of parcels within a radius of 500 m from vacant ones were identified by spatial
analysis in order to consider the effect of neighborhood environments around parcels on
vacant properties.

Among individual parcel data, there were 11 dummy variables (0 or 1) excluding parcel
area and construction year, and the reinforced concrete structure was set as default and
compared with block, wood, steel, and other structures in order to obtain a relative vacancy
probability. Regarding access to key infrastructure related to neighborhood environments,
the area influenced by amenities was set at a radius of 500 m based on the literature
examining a walkable and service-accessible distance [34–36], and we identified whether a
parcel was included within a radius of 500 m from the center of amenities. Parcels within a
radius of 500 m from unwanted facilities were also included in this study’s analysis because
unwanted facilities such as waste treatment plants and wastewater discharge facilities may
contribute to vacancies [37–39]. Over 50% of detached houses were located within a radius
of 500 m from infrastructure for amenities such as elementary schools and hypermarkets.

Before analysis, a comparison of the characteristics of 31,810 detached house parcels
confirmed that the percentage of wooden structures was 39.2% among vacant properties—
2.7 times higher than that of wooden structures among non-vacant properties. Road access
conditions and age (construction year) had poorer vacant properties than other detached
house parcels. In contrast, the type of parcel (regular/irregular) in vacant properties was
found to be regular, which is expected to have a positive effect on the use of the properties
in the future (Table 4).
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Table 3. Characteristics of variables.

Variable Description Source (Year)

Dependent variable Vacancy
• Land and Geospatial Informatrix

Corporation vacancy database (2020)
• Seumteo Building Register (2020)

Dong level

• Percentage of secondary industry
workers

• Fertility rate
• Population density
• Percentage of old buildings
• Park and green area per person

• Percentage of secondary industry
workers (mining, manufacturing,
and construction) among all workers

• Annual number of newborns per
1000 persons

• persons/km2

• Percentage of buildings built more
than 30 years ago among all
buildings as of 2020

• Park and green area per person:
Green area compared to the
population in a dong (m2/person)

• Statistics Korea Housing Census (2020)
• Jeonju Data Portal Statistics Report (2020)

Individual parcel
variables

Building
characteristics

• Built year
• Parcel area
• Building structure
• Type of parcel
• Road access conditions

• Reinforced concrete, block, wooden,
steel frame, and others

• Regular or irregular
• Accessible to roads or not

• Seumteo Building Register (2020)
• National Spatial Data Infrastructure Portal

Open Market Cadastral Map (2020)

Neighborhood
environment
characteristics
(access)

• Access to amenities
• Presence of vacant properties
• Presence of unwanted facilities

• Number of elementary schools,
hypermarkets, hospitals,
and welfare facilities located within
the radius of 500 m per parcel (bus
stop: 100 m)

• Number of vacant properties within
the radius of 500 m per parcel

• Number of waste-treatment plants
and wastewater discharge facilities
within the radius of 500 m per parcel

• Jeonju Data Portal Statistics Report (2019)
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Table 4. Characteristics of analyzed parcels.

Characteristics
Analyzed Parcels in Total Vacant Properties

Parcels Except for Vacant
Properties

Number Percentage (%) Number Percentage (%) Number Percentage (%)

Building
structure

Reinforced
concrete

6786 21.3% 20 1.5% 6766 22.2%

Block 19,120 60.1% 766 56.8% 18,354 60.3%

Wooden 4916 15.5% 529 39.2% 4387 14.4%

Steel frame 955 3.0% 16 1.2% 939 3.1%

Others 33 0.1% 17 1.3% 16 0.1%

Type of
parcel of land

Regular 7860 24.7% 475 35.2% 7385 24.2%

Irregular 23,950 75.3% 873 64.8% 23,077 75.8%

Access
Not possible 8097 25.5% 720 53.4% 7377 24.2%

Possible 23,713 74.5% 628 46.6% 23,085 75.8%

Construction year 37.0 52.8 36.3

Parcel area (m2) 288.4 447.8 281.4

Basic statistics on variables also revealed that the percentage of aged buildings which
were more than 30 years old among detached houses in Jeonju was 55.8%, and the average
number of years since construction was ≥53—approximately 16.5 years older than non-
vacant properties. As new buildings less than five years old accounted for only 1.2% of
all buildings, a high percentage of old buildings is expected to worsen neighborhood
environments and further exacerbate vacancies.

2.4. Methods

A multilevel logistic regression model calculates the probability that something will
take place by considering other scales, and a logistic model is established based on expo-
nential functions. The multilevel model is a statistical model that can be used to analyze
data in hierarchical structures, where more than two units are included. This is also known
as a hierarchical model. As vacant properties are locally affected by the characteristics
assigned to the neighborhood level in addition to the individual building level, each effect
may not be properly analyzed if the analysis is conducted at only one scale [20]. Because
the multilayered model includes units at various scales when examining the effects of
Dongs and the characteristics of buildings, as in this study, the model’s advantage is that it
can calculate the variance of the dependent variable by level and identify the effect at each
level. Because the dependent variable—whether an individual parcel is vacant (vacant
property = 1; non-vacant property = 0)—is a discrete variable, a multilevel logistic regres-
sion model with a logit link function, and not a linear multilayer model, was used. Because
we analyzed environmental factors contributing to vacant properties by considering two
spatial layers of individual parcels and neighborhood environments, a two-level multilayer
model was established and used for analysis.

The logistic regression model equation is as follows.

P(Yl = 1) =
exp (B0 + B1 × Xl)

1 + exp (B0 + B1 × Xl)
+ el (1)

P(Yl = 1) is the conditional probability that something will occur (vacant properties
in this study). B0 is the y-intercept; Xl is the predictor variable; B1 is the coefficient for Xl ,
and el is the residual.
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Because it is difficult to intuitively interpret the logistic regression model, transforming
the s-shape curve in the exponential function into a linear line with the logit model as an
alternative may make interpretation easier. The logit model equation is as follows:

Logit (odds) = B0 + B1 × Xl (2)

Logit(odds) equals Logit
(

P(Yi=1)
1−P(Yi=1)

)

and is interpreted as a logit scale for conditional
probability. For instance, assuming Xi as the construction year and B1 as 1.5, the odds ratio
(OR) is exp(B1) = exp(1.5) ≈ 4.5. It is interpreted that an increase of one construction
year increases the probability of vacancy by 4.5 times. In contrast, when B1 is −1.5, it is
exp(B1) = exp(−1.5) ≈ 0.22. It is 1/0.22 ≈ 4.5. It is therefore interpreted that a decrease
of one construction year decreases the probability of vacancy by 4.5 times.

Before conducting a multilayer analysis, it must be validated by establishing an
unrestricted model. An unrestricted model is a model in which only the dependent variable
is input without any explanatory variable, and it consists only of the mean of the sample
and the error term for each level. The sum of the error terms represents the total variance
of the dependent variable, and the intra-class correlation can be obtained by calculating
the percentage of the error term for each level. A high value means that the explanatory
power is high at a certain level, and it is reasonable to analyze levels separately. In general,
it is considered meaningful to use a multilayered model when it exceeds 5%. From the
above process, we predicted the probability of vacancy for each detached house parcel,
more objectively identified the spatial distribution of vacant properties using hotspot
analysis, and confirmed the spatial distribution of vacant properties at risk of vacancy.
The following equation was used:

ICC =
var

(

u0j
)

var
(

u0j
)

+
(

π
2

3

) (3)

where var
(

u0j
)

is the random intercept variance between Dongs.
The Stata/MP16 program was used for MLRM analysis. Then, hotspot analysis was

conducted to determine where the vacant lands were statistically clustering by calculating
the Getis-Ord Gi * of each parcel.

3. Results

3.1. Proportion of Variability in the Change of Vacancy

To determine whether a multilevel model is suitable for conducting the multilevel
logistic regression model, we identified whether local characteristics contributed to an
increase or decrease in vacancies between Dongs. Subsequently, a logistic regression analy-
sis was conducted with 17 of the 18 variables extracted by considering previous studies,
local characteristics, and data availability—except for the percentage of new buildings.
New buildings built within the last five years were excluded from the analysis because they
accounted for only 1.02% of the detached house parcels in Jeonju, which was considered
insufficient for inclusion in the analysis.

Before analysis, we checked whether the variance in vacancy rate across Dongs was
significant. As shown in Table 5, AIC and BIC were lower in the mixed effect model with a
random intercept among Dongs than the standard logistic regression without a random
intercept among Dongs. The difference was 755.06 with statistical significance at p < 0.05 in
Chi-squared distributions. The results confirmed a local difference between Dongs in the
effect on a vacancy increase or decrease, thus demonstrating the validity of the multilevel
model.
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Table 5. Comparison between models without a random intercept and those with a random intercept
among Dongs.

AIC BIC p-Value

Standard logistic regression without variables 9222.1 9281.7
0.000Mixed effect model without variables 9096.6 9099.2

We also examined variability in the probability of vacancy between Dongs with the ICC
coefficient by considering only the random effect between Dongs without vacancy-related
variables.

The ICC value indicates how much Dong scales compared to building scale account
for the variations of vacancy. An analysis of local variance for the distribution of vacant
properties, excluding the explanatory variable, with the above Equation (3) showed an
intra-class correlation value in Jeonju of 0.206, which suggested that the variance in vacant
properties in Jeonju is explained by 20.6% between Dongs (see Table 6). Since the ICC
had high enough statistical reliability (over 5%), the results of volatility in the probability
confirmed that the local characteristics of Jeonju greatly contributed to vacancy, and at the
same time, proved that it is suitable to use the multilayered model. Therefore, we conducted
a multilevel logistic regression model analysis to predict vacancies for each detached house
parcel with the variables contributing to vacancy.

Table 6. Intraclass correlation coefficient value.

Level 1 Intra-Class Correlation Std. Err. [95% Conf. Interval]

Dong Code 0.206 0.048 0.127 0.314

3.2. Multilevel Logistic Regression Model Analysis

Table 7 indicates the results of the multilevel logistic regression model analysis of
variables that contribute to housing vacancies. The results of the analysis showed that
13 out of 20 variables had a statistically significant effect (95% significance) on vacancy.
An analysis of the effect of each variable on vacant properties based on the estimated
coefficient value showed that the probability of vacancy increased when the building
structure was not concrete among other parcel and building characteristics. In particular,
the variable that had the highest effect on vacant properties was the building structure and
increasing the proportion of use of wooden structures by 1 (100%) increased the probability
of the property being left vacant by 4.4 times compared to reinforced concrete structures.
When detached houses and facilities in the neighborhood are old and poor and access
to amenities decreases, preferences for the neighborhood decrease, which increases the
probability of vacancy. Hence, it is necessary to continuously manage aged buildings with
poor road access conditions.

Meanwhile, in terms of neighborhood environment characteristics, the presence of
vacant properties or unwanted facilities around detached house parcels increased the
probability of vacancy by about 1.17 times, while higher access to elementary schools and
hypermarkets among other amenities led to a lower probability of vacancy. As such, vacant
properties and unwanted facilities may harm the neighborhood, have a substantially nega-
tive effect on housing properties nearby, and eventually result in more vacant properties.
High access to frequently used amenities, such as elementary schools and hypermarkets,
also shows a negative relationship with vacant properties in our model, implying that the
neighborhoods show less vacancies when anchor developments such as these are in place.
The result indicates that such amenities are a positive attribute and result in decreased
amounts of vacancy.
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Table 7. The result of multilevel logistic regression analysis.

Variables Coefficient SE
95% Coefficient Interval

Exp(Coefficient)
95% Coefficient Interval

Sig.
Lower Upper Lower Upper (%)

Dong Level

Intercept −6.548 0.329 −7.193 −5.904 0.001 0.001 0.003 0.000

Secondary industry −0.862 0.603 −2.045 0.321 0.422 0.129 1.378 0.153

Fertility rate 0.019 0.007 0.005 0.034 1.019 1.005 1.034 0.009

Population density −0.000 0.000 −0.000 0.000 1.000 1.000 1.000 0.053

Old building rate 0.702 0.287 0.140 1.264 2.018 1.151 3.539 0.014

Building
Characteristics

Park and green area 0.001 0.001 0.000 0.002 1.001 1.000 1.002 0.016

Vacancy (500 m) 0.008 0.001 0.006 0.009 1.008 1.006 1.009 0.000

School (500 m) −0.192 0.066 −0.321 −0.064 0.825 0.726 0.938 0.003

Hospital (500 m) −0.087 0.079 −0.241 0.067 0.917 0.786 1.069 0.268

Hypermarket (500 m) −0.246 0.076 −0.395 −0.098 0.782 0.673 0.907 0.001

Welfare facility (500 m) −0.035 0.070 −0.174 0.103 0.965 0.841 1.108 0.615

Bus stop (100 m) −0.102 0.069 −0.237 0.033 0.903 0.789 1.033 0.138

Unwanted facility (500 m) 0.153 0.078 0.001 0.305 1.166 1.001 1.357 0.048

Built year 0.025 0.002 0.021 0.028 1.025 1.021 1.029 0.000

Parcel area 0.000 0.000 0.000 0.000 1.000 1.000 1.000 0.105

Structure Block 1.353 0.240 0.884 1.823 3.871 2.421 6.190 0.000

Structure Wood 1.477 0.256 0.975 1.980 4.382 2.652 7.239 0.000

Structure Steel 1.324 0.348 0.642 2.005 3.758 1.901 7.429 0.000

Structure Others 4.753 0.455 3.861 5.644 115.874 47.502 282.656 0.000

Parcel type 0.075 0.067 −0.057 0.207 1.078 0.945 1.230 0.263

Road access 0.649 0.063 0.526 0.773 1.914 1.692 2.166 0.000
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Four out of the five Dong-level variables, except for the percentage of secondary indus-
try workers, were found to have an effect on vacant properties. In particular, buildings over
30 years old had the highest effect, and population density and fertility rate had little effect.
Unlike the common expectation that a higher percentage of secondary industry workers
(mining, manufacturing and construction industry) will increase vacant properties, Jeonju
showed opposite results. It seems that secondary industries, including manufacturing, still
play a positive role in the local economy, as Jeonju is not yet a shrinking city experiencing a
rapid population and economic decline. This phenomenon was confirmed to have a similar
pattern in other studies on vacant properties in some growing cities [11,21,40]. Secondary
industries take the raw materials produced by the primary sector and process them into
manufactured goods and products (e.g., heavy and light manufacturing, food processing,
oil refineries, energy production, etc.) and Jeonju’s secondary industries still seem to be
productive contributors to the local economy. It is important in the long term, however,
that the city develops a method to phase out and reuse such industries as they become
outdated or technological shifts require new facilities for existing services as to not increase
their vacant land amount due to industrial life span dynamics.

3.3. Mean Multilevel Logistic Regression Model-Based Prediction of the Probability of Vacancy

Through The MLRM analysis with the above 20 variables, a prediction of the prob-
ability of vacancy for each detached house parcel in Jeonju predicted the probability of
vacancy for total detached houses in Jeonju as 7.6%. Considering the current vacancy rate
of 4.2% in Jeonju, we set detached house parcels with ≥5% in the probability of vacancy
as areas at risk, those with ≥5 to <10% as areas at low risk, those with ≥10 to <15% as
areas at moderate risk, and those with ≥15% as areas at high risk, and then confirmed
their distribution. The results showed that 8723 parcels (27.4%) of the total parcels were
currently vacant or ≥5% in the probability of vacancy, and 2537 parcels were currently
used, but their probability of vacancy was ≥10% (Figure 4). Vacant properties are more
likely to be distributed densely in a certain area than randomly spread across a wide area.
In particular, the spatial density and spread of vacant properties accelerate a slum’s growth
into adjacent areas and facilities, leading to negative external effects such as deteriorating
residential environments, risk of collapse, poor esthetics, increasing crime and disasters,
falling housing prices, and increasing administrative costs.

To empirically analyze the above findings, we used a hotspot analysis to confirm
the spatial distribution of parcels with a vacancy probability of ≥5% and identified the
probability of vacancy by Dong (Figure 5). The results showed that the vacancy rate is
expected to increase in all 35 Dongs. Furthermore, it is expected that areas with high
vacancy rates will face a vacancy threat in the future. More specifically, the probability
of vacancy in Area (1), an old city center, is expected to be the highest (24.7%). Areas (2)
and (3), adjacent to the old city center, where construction activities are limited to prevent
loss or damage to cultural heritage and protect the landscape in the area designated as a
cultural heritage preservation site, are expected to have a higher probability of vacancy
(14.5%). In contrast, Area (4), where real estate development is the most active and new
large-scale commercial zones are being formed, had better residential environments than
other areas, and its probability of vacancy is less than 1% (Table 8).

Table 8. Current and predicted vacancy probability by Dong.

(1) (2) (3) (4)

Current Vacancy (%) 0.14 0.06 0.06 0.00

Predicted Vacancy (%) 0.25 0.12 0.12 0.00

The result indicated that the spatial clustering of high-risk of vacancy has similar char-
acteristics, such as structure type and year of construction. Thus, these physical conditions
might have a stronger influence on the spatial cluster of vacancy than socioeconomic status.
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Figure 4. MLRM-based vacancy probability prediction (left) and hotspot analysis (right).
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Figure 5. Dong (Census district) level current vacancy status (left) and vacancy prediction (right).

4. Conclusions

As vacant housing properties have recently emerged as a social issue, the central and
local governments are making efforts to address this issue. To properly address the vacancy
problem, it is more important than ever to establish a response strategy by first accurately
identifying the contributors and characteristics of vacant properties, and then predicting
areas at risk of vacancy in the future. We thus analyzed the causes and characteristics
of vacant properties on a more local scale based on information on vacant properties in
individual parcels in Jeonju. In addition, based on data for individual buildings, along with
the local area’s socioeconomic characteristics examined in previous studies, the analysis of
contributors to vacant properties in this study included not only the unique physical char-
acteristics of individual parcels but also the neighborhood environments as key explanatory
variables.

Then, we predicted areas at risk of vacancy in the future and analyzed the spatial distri-
bution of vacant properties. More importantly, to empirically examine the effect at different
spatial levels, we established a multilayer model, conducted analysis, and overcame the
limitations of previous studies that analyzed hierarchical data at one level. By predicting ar-
eas at risk of vacancy based on the analyzed results, we also provided a reference for using
vacant properties tailored to the region and establishing urban regeneration strategies.

The following summary describes the results of this study. First, an analysis of factors
contributing to vacant properties in Jeonju found that structure type and access to public
facilities parks, schools, and hypermarkets, was related to vacant possibilities. This is
consistent with the argument of Williams et al. (2019) [23], who showed the importance of
schools and malls to thriving cities. It suggests that local governments need to improve
access to public amenities.at Level 1 (individual parcels). In particular, wooden structures
exhibited a high probability of vacancy. At Level 2 (Dong level), the fertility rate and old
building rate were significantly associated with the vacant possibilities. This suggests
that locally poor physical conditions and low rate of young people are related to the local
economic recession to increase vacant possibilities at the local scale [41,42]. The results
show that the local government should establish urban regeneration plans in Dongs with
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high fertility and old building rates. Second, a prediction of the probability of vacancy
in Jeonju and a hotspot analysis showed that the old city center and areas with strict
regulations on land use are expected to have a higher vacancy rate. Hence, it is necessary
to prepare measures to repurpose vacant properties. Areas where vacant properties are
concentrated and form a cluster require a careful analysis of urban spatial characteristics,
including streets, blocks, and unwanted facilities, as well as the architectural characteristics
of the properties.

5. Discussion

This study is significant in that it identified the distribution patterns of vacant proper-
ties, found various environmental factors contributing to vacant properties, and analyzed
areas at high risk of vacancy in the future. However, as there are limitations in generalizing
this study’s results, an in-depth study would need to be conducted on the relationship
between urban decline and vacant properties by region as well as the causes and character-
istics of vacant properties. More notably, if time-series data were obtained with continuous
follow-up of data on vacant properties, it would be possible to establish a more systematic
management system for vacant housing properties.

Further, we conducted this study only on parcels, except for illegal buildings that did
not have data on building characteristics. Nevertheless, as illegal buildings are actually
old or highly likely to be vacant in the future, including them in the analysis would more
accurately identify patterns in vacant properties and their changing effects on the properties.
Finally, as this study’s analysis was conducted only for vacant detached house properties,
factors contributing to different types of vacant housing properties were not examined.

According to the results of this study, various effects from individual parcels, neigh-
borhoods, and spatial ranges at the local level should be considered to solve issues related
to excessive vacant properties. If neighborhood or local environments are in high-quality
condition, it may be possible to solve such problems by upgrading individual vacant
properties. If vacant properties are caused by complex effects at different spatial levels,
it would be desirable to implement multidimensional measures such as improving the
conditions of individual houses, upgrading neighborhood environments, and mitigating
socioeconomic vulnerabilities at the local level. Further, it is also necessary to suggest
different revitalization strategies based specifically on the regional characteristics of the
area. In the central business districts, new anchor developments may spur regeneration
in the highly vacant properties. However, it might be more helpful to promote place
attachment and social relationships to increase the quality of life in residential areas by
providing qualified community service facilities.

Despite the growing number of vacant properties in local small- and medium-sized
cities owing to continuously outflowing and aging populations, most local governments
continue to adhere to growth-oriented urban regeneration strategies that are unsupported
by accurate empirical studies. Plans and projects to upgrade vacant properties should pri-
oritize the identification of causes and patterns contributing to vacant properties based on
an accurate survey of the actual status. Therefore, it is necessary to accurately recognize the
causes of vacant properties, as identified in this study, and establish appropriate measures
to reduce the number of vacant properties with policies. Accordingly, more efficient urban
regeneration strategies can be established. This process must precede the identification
of optimal alternatives and set project priorities when implementing urban regeneration
projects.
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Abstract: In recent years, particulate matter (PM) has emerged as a major social issue in various
industries, particularly in East Asia. PM not only causes various environmental, social, and economic
problems but also has a large impact on public health. Thus, there is an urgent requirement for
reducing PM emissions. In South Korea, the PM generated at construction sites in urban areas directly
or indirectly causes various environmental problems in surrounding areas. Construction sites are
considered a major source of PM that must be managed at the national level. Therefore, this study
aims to develop a technology for predicting PM emissions at construction sites. First, the major
sources of PM at construction sites are determined. Then, PM emission factors are calculated for
each source. Furthermore, an algorithm is developed for calculating PM emissions on the basis of an
emission factor database, and a system is built for predicting PM emissions at construction sites. The
reliability of the proposed technology is evaluated through a case study. The technology is expected
to be used for predicting potential PM emissions at construction sites before the start of construction.

Keywords: construction site; particulate matter emissions; emission factor; prediction technology

1. Introduction

The World Health Organization has recently classified particulate matter (PM) as a
class 1 carcinogen because research has shown that it may cause lung, cardiovascular, and
respiratory diseases. Thus, considerable effort is being made to reduce PM emissions in
various industries worldwide [1–9]. In East Asian countries, particularly South Korea and
China, the emission of large amounts of PM due to radical industrialization is emerging
as a major social problem [10–15]. According to the statistical data of the Ministry of
Environment (ME) of South Korea, fugitive emissions account for approximately 50% of
PM10 and smaller PM emissions in South Korea. Furthermore, the fugitive emissions
caused by construction work are the largest at 33% [16,17].

PM is generated during construction mainly by the movement of construction equip-
ment and construction activities. Accordingly, there is an urgent requirement for research
on various PM emission sources associated with construction equipment [18]. Currently,
there is no standard for regulating PM emissions at construction sites in South Korea and
no method for calculating PM emissions to set such a standard [19]. The National Institute
of Environmental Research (NIER) of South Korea uses the method provided by the US
Environmental Protection Agency (EPA) to calculate the amount of PM10 in fugitive dust
at construction sites using an equation [20]. However, the equation calculates PM10 using
only the construction period and the size of a construction area, and it cannot reflect the
various construction conditions that generate PM.

In South Korea, PM at construction sites is managed on the basis of the emission
concentration through “PM Emergency Reduction Measures” [21]. However, this is a
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passive method that is applied after a high concentration of PM has already been generated.
Therefore, a method to preventively manage PM emissions by controlling the quantity
of emissions is needed for accurate PM management. As the South Korean government
has recognized the need for quantitative management of dust emission, the “Business
Site Total Air Pollution Management System” was implemented nationwide in South
Korea in 2020. This is a preemptive system for managing air pollutants by presenting
quantitative emission standards in advance. It has realized an active reduction in air
pollution by setting the total amount of allowed emissions and then assigning an amount
to each business site to maintain pollutants within the allotted range [22]. However, this
system only regulates the business site emissions and does not include construction sites as
management targets. The South Korean government continuously discusses the importance
of managing construction site emissions; however, there is no clear standard to evaluate
PM emissions generated from construction sites. Therefore, it is necessary to develop
a systematic method for calculating PM emissions at construction sites quantitively by
developing emission factors and calculating methods to expand the national air pollution
management system to construction sites in the future [23].

Therefore, this study develops a technology to predict PM emissions at construction
sites by calculating the emission factors for PM10 and PM2.5 for major PM emission
sources. PM emissions are calculated on the basis of an emission factor database (DB).
Furthermore, a system is developed for predicting PM emissions. The reliability of the
prediction technology is examined through a case study.

2. Materials and Methods

The PM emission factors at construction sites were calculated and used to construct a
DB. Then, this DB was utilized to develop a method for calculating PM emissions. Finally,
an algorithm was developed to predict PM emissions at actual construction sites. The PM
emission factors were calculated by identifying the major sources of PM emissions and
construction activities. The emission factor DB consisted of direct and fugitive emission
factors for each construction activity and emission source. In addition, emission scenarios
and calculation methods were proposed for each emission source. Finally, a system for
predicting PM emissions at construction sites was developed on the basis of the emission
factor DB and calculation method. Figure 1 shows the research method of this study.

 

Figure 1. Research framework and methods.

2.1. Major PM Emission Sources at Construction Sites

Earthworks are considered the major source of PM emissions at construction sites [24].
In addition, according to US EPA AP-42 and the ME of South Korea, the movement of
construction equipment used for civil works and construction activities is a major source of
PM emissions at construction sites [20,25]. Figure 2 shows the major PM emission sources
selected in this study. These sources were selected on the basis of the construction-related
air pollutant emission sources defined by the US EPA and ME of South Korea [17,20,25–27].
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Among the large category of air pollutant emission sources defined in South Korea, the
categories of on-road and nonroad mobile pollution sources were selected. The major
dust generating sources defined in AP-42 (Heavy Construction Operations) of US EPA
match with the nine types of construction equipment and four types of material transport
equipment in the small category of South Korean air pollutant emission sources. As a
result, 13 major PM emission sources were selected in this study.

 

Figure 2. Major particulate matter (PM) generating sources in construction sites.

2.2. PM Emission Factor DB for Construction Sites

Two types of PM emissions due to construction equipment were considered. The first
type was direct emission, in which PM is released into the air through fuel combustion in
construction equipment. The second type was fugitive emission, in which PM is released
by the construction activities of construction equipment. Different methods were used to
calculate the emission factors for each type of emission.

For direct emission, the air pollutant emission factor data presented by the NIER of
South Korea were applied mutatis mutandis [26]. The emission factors for dump trucks
and trailers were directly specified in the freight car category of on-road mobile pollution
sources. The emission factors for the nine types of construction equipment were defined
according to the rated output of each equipment type [20]. This study directly calculated
the emission factors using the average rated output data for construction equipment
manufactured in South Korea in accordance with the National Air Pollutant Emission
Calculation Method Manual of South Korea. Table 1 shows the direct emission factors for
PM10 and PM2.5 for different types of construction equipment.

For fugitive emission, the emission factors were calculated according to US EPA AP-
42 [27–29]. However, forklifts, concrete pumps, and air compressors were excluded because
the definition of fugitive emission activities was unclear. Table 2 shows the equations for
calculating the emission factors for the construction activities of construction equipment.
The information required for calculating the emission factors, such as the silt content,
moisture content, and mean wind speed, was obtained from South Korean literature (GRI,
2019) [25].
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Table 1. Direct emission factors for construction equipment according to rated output.

Equipment
Rated Power (kW)

[20]

Emission Factor (kg/kWh) [27]

PM10 PM2.5

Bulldozer 114 0.00022000 0.00020240

Loader 100 0.00022000 0.00020240

Forklift 56 0.00028000 0.00025760

Excavator 85 0.00019000 0.00017480

Crane 175 0.00012000 0.00011040

Roller 70 0.00034000 0.00031280

Air compressor 201 0.00010000 0.00009200

Concrete pump 199 0.00002000 0.00001840

Boring machine 106 0.00012000 0.00011040

Dump truck, trailer
Average vehicle

speed V = 20 km/h 4.30 × 10−4 (kg/km) 3.96 × 10−4 (kg/km)

Table 2. Formulae for calculating fugitive emission factors for construction equipment.

Equipment
Construction Work

[27]

Emission Factor Calculation [28,29]

PM10 PM2.5

Bulldozer Bulldozing 0.75[0.45(s)1.5/(M)1.4] (kg/h) 0.105[2.6(s)1.2/(M)1.3] (kg/h)

Loader Loading material
0.35(0.0016) ×

[(U/2.2)1.3/(M/2)1.4] (kg/Mg)
0.053(0.0016) ×

[(U/2.2)1.3/(M/2)1.4] (kg/Mg)

Forklift Vehicular traffic No fugitive emission factor

Excavator

Power shovel 0.018(00005/0.001) 0.018(0.0001/0.001)

Loading material
0.35(0.0016) ×

[(U/2.2)1.3/(M/2)1.4] (kg/Mg)
0.053(0.0016) ×

[(U/2.2)1.3/(M/2)1.4] (kg/Mg)

Crane Vehicular traffic 1.5(s/12)0.9(W/3)0.45 × 0.2819
(kg/VKT)

0.15(s/12)0.9(W/3)0.45 × 0.2819
(kg/VKT)

Concrete pump Pumping No fugitive emission factor

Roller Compacting 0.75[0.45(s)1.5/(M)1.4] (kg/h) 0.105[2.6(s)1.2/(M)1.3] (kg/h)

Air compressor Painting No fugitive emission factor

Boring machine Drilling 0.59 × (0.16/1.3) (kg/hole) 0.59 × (0.16/1.3) × 0.2 (kg/hole)

Dump truck

Dumping 0.001 × (0.001/0.002) (kg/ton) 0.001 × (0.001/0.002) × 0.2 (kg/ton)

Vehicular traffic
(25 tons)

1.5(s/12)0.9(W/3)0.45 × 0.2819
(kg/VKT)

0.15(s/12)0.9(W/3)0.45 × 0.2819
(kg/VKT)

Vehicular traffic
(8 tons)

1.5(s/12)0.9(W/3)0.45 × 0.2819
(kg/VKT)

0.15(s/12)0.9(W/3)0.45 × 0.2819
(kg/VKT)

Trailer
Vehicular traffic
(20 ton trailer)

1.5(s/12)0.9(W/3)0.45 × 0.2819
(kg/VKT)

0.15(s/12)0.9(W/3)0.45 × 0.2819
(kg/VKT)

Concrete mixer
Vehicular traffic

(15 tons)
1.5(s/12)0.9(W/3)0.45 × 0.2819

(kg/VKT)
0.15(s/12)0.9(W/3)0.45 × 0.2819

(kg/VKT)

s: silt content (%); M: moisture content (%); U: mean wind speed (m/s); W: vehicle weight (ton). s = 9; M = 12; U = 3.65; W = various [25].
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However, according to the Korean national air pollutant emission factors (NIER,
2015) which are used for calculating the annual emission in Korea, fugitive emissions are
calculated using Equation (1) and the emission factors in Table 3 [26].

E = ∑ A × P × EF (1)

where E denotes the total fugitive emissions (kg/year), A denotes the annual construction
area (m2), P denotes the annual earthwork construction period (month/year), and EF
denotes emission factor (kg/m2/month).

Table 3. Emission factors (kg/m2/month) for Equation (1) [26].

Construction Type PM10 PM2.5

Residential
House 0.0072 0.00072

Apartment 0.0247 0.00247

Nonresidential 0.0426 0.00426

Road construction 0.0941 0.00941

The emission factors were derived from a NIER study (NIER, 2008) to select the most
appropriate emission factors for construction sites among the emission factors developed
by the US EPA [30]. According to this research study, the fugitive emission factors for each
construction equipment were calculated using AP-42 as in this study. However, the types
of construction equipment considered in the research were limited compared to this study,
which implies that the fugitive emission factor database of this study is more appropriate
for calculating the fugitive emissions of construction sites compared to Equation (1). The
comparison of construction equipment considered in both studies is shown in Table 4.

Table 4. Construction equipment considered for fugitive emission factor development.

Studies Construction Equipment

NIER, 2008 [30] Bulldozer, excavator, roller, dump truck

This study
Bulldozer, loader, excavator, crane, concrete pump, roller, compressor,

boring machine, forklift, concrete mixer truck, dump truck, trailer

2.3. Calculation Method for PM Emissions at Construction Sites

The PM emissions at construction sites in South Korea were calculated using
Equation (2) of US EPA AP-42. This equation requires the activity rate, emission factor, and
overall emission reduction efficiency, which quantify the degree and scope of construction
activities. These variables should be presented as applicable figures in South Korea. The
activity rate applicable to South Korea was obtained by deriving the construction activity
scenarios for each type of construction equipment using the Standard of Construction
Estimate [31]. In particular, the activity rates for bulldozers and rollers were derived by
selecting the most typical usage of each equipment type, and other scenarios were derived
by following the use of each equipment type described in the standard. Table 5 shows the
construction activity scenarios for the construction equipment. In addition, the emission
factor applicable to South Korea was obtained using the emission factor DB described in
Section 2.2.

E = A × EF ×

(

1 − ER
100

)

(2)

E, A, EF, and ER denote the emissions, activity rate, emission factor, and overall emission
reduction efficiency, respectively. However, ER in this study was considered 0, as there is
no standard for ER.
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Table 5. Scenarios for calculating the amount of construction activity.

Construction
Equipment

Scenario

Bulldozer
—Amount of construction activity: amount of earthwork
—Operation area = building area + excess area for excavation ((0.3 × structure depth) × perimeter of building area)
—Operation depth = 25 cm (20 cm to 30 cm on average)

Loader —Amount of construction activity: amount of earthwork
—Loading excavated soil onto the dump truck

Forklift —Scenario development required

Excavator —Amount of construction activity: amount of earthwork
—Amount of excavation excluding the amount of excavation by bulldozer

Crane —Scenario development required

Concrete pump
—Amount of construction activity: amount of ready-mixed concrete work
—Pouring ready-mixed concrete
—No fugitive emission activity

Roller
—Amount of construction activity: amount of earthwork
—Soil stabilization of the area
—Thickness of the spread soil = 30 cm

Air compressor —Scenario development required

Boring machine —Amount of construction activity: pile hole (depth of 1 hole = 20 m)

Dump truck
(8 tons)

—Amount of construction activity: amount of cement and other major materials (excluding ready-mixed concrete and rebar)
—Exiting through the site main entrance after transporting materials from the site main entrance to the site center

Dump truck
(25 tons)

Unloading external soil —Amount of construction activity: amount of earthwork
—When the fill amount is greater than the cut amount, loading soil from the outside (dumping)

Transporting external soil —Amount of construction activity: amount of earthwork
—Exiting through the site main entrance after transporting external soil from the site main entrance to the site center

Transporting waste soil
—Amount of construction activity: amount of earthwork
—When the fill amount is less than the cut amount, moving from the site main entrance to the site center to transport the waste soil from the site center to the
main entrance

(Exclusions) —Movement between the main entrance and the dumpsite of waste soil is not considered in this study as an activity outside the site
—Loading or unloading of soil at the dumpsite of waste soil is not considered in this study as an activity outside the site

Trailer —Amount of construction activity: rebar work
—Exiting through the site main entrance after transporting materials from the site main entrance to the site center

Concrete mixer —Amount of construction activity: amount of ready-mixed concrete work
—Exiting through the site main entrance after transporting materials from the site main entrance to the site center
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3. Results

3.1. PM Emission Factors for Major Construction Equipment

Table 6 shows the emission factors obtained for major types of construction equipment.
The construction equipment is divided into two categories, i.e., working and moving,
according to the work type (construction activities). The direct and fugitive emission factors
are obtained for PM10 and PM2.5 for each type of construction equipment. Hours, tons,
and kilometers (or vehicle kilometers traveled (VKT)) are used as the functional units for
the work time, amount of work, and distance traveled, respectively. According to Table 6,
the direct emission factors for heavy construction equipment, such as bulldozers, loaders,
and rollers, were higher than those for transportation equipment such as dump trucks.

Table 6. Emission factor DB for construction site.

Construction
Equipment

(Loading Weight)

Work Type
(Construction

Activities)

Emission Factor (kg/unit)

Direct Emission Factor Fugitive Emission Factor

PM10 PM2.5 Unit PM10 PM2.5 Unit

Bulldozer
Working

(bulldozing) 1.20 × 10−2 1.11 × 10−2 h 5.96 × 10−2 3.20 × 10−2 tons

Loader
Working

(loading material) 1.06 × 10−2 9.72 × 10−3 h 8.80 × 10−5 1.33 × 10−5 tons

Excavator

Working
(power shovel)

7.75 × 10−3 6.92 × 10−3 h
9.00 × 10−3 1.80 × 10−3 tons

Working
(loading material) 8.80 × 10−5 1.33 × 10−5 tons

Crane Moving 1.01 × 10−2 9.27 × 10−3 h 4.11 × 10−1 4.11 × 10−2 VKT

Concrete pump
Working

(pumping) 1.91 × 10−3 1.76 × 10−3 h N/A N/A -

Roller
Working

(compacting) 1.14 × 10−2 1.05 × 10−2 h 5.96 × 10−2 3.20 × 10−2 tons

Air compressor
Working

(painting) 9.65 × 10−3 8.88 × 10−3 h N/A N/A -

Boring machine
Working
(drilling) 6.11 × 10−3 5.62 × 10−3 h 7.26 × 10−2 1.45 × 10−2 hole

Forklift Moving 7.53 × 10−3 6.92 × 10−3 h 4.11 × 10−1 4.11 × 10−2 VKT

Dump truck
(8 tons)

Working
(dumping)

- -
km

5.00 × 10−4 1.00 × 10−4 tons

Moving 4.30 × 10−4 3.96 × 10−4 5.07 × 10−1 5.07 × 10−2 VKT

Dump truck
(25 tons)

Working
(dumping)

- -
km

5.00 × 10−4 1.00 × 10−4 tons

Moving 4.30 × 10−4 3.96 × 10−4 6.73 × 10−1 6.73 × 10−2 VKT

Concrete mixer
(15 tons)

Moving 4.30 × 10−4 3.96 × 10−4 km 5.86 × 10−1 5.86 × 10−2 VKT

Trailer
(20 tons)

Moving 4.30 × 10−4 3.96 × 10−4 km 6.73 × 10−1 6.73 × 10−2 VKT

Furthermore, the fugitive emission factors for cranes, forklifts, bulldozers, and loaders
were higher than those for other types of construction equipment. The above construction
equipment is mainly used for cutting, excavating, and filling soil in earthworks, a large
amount of fugitive dust is generated from the soil during these operations. In the case of
transport equipment, the fugitive emission factors were higher than the direct emission
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factors. The direct emissions of PM due to the unloading of dump trucks were considered
to be negligible and excluded from this study.

3.2. System for Predicting PM Emissions at Construction Sites

Figure 3 shows the components and algorithm of the system for predicting PM
emissions at construction sites. The total PM emissions at construction sites were the sum of
the direct and fugitive emissions caused by construction equipment, which were calculated
as described in Section 3.1. An Excel-based system was developed for predicting PM
emissions at construction sites. Figure 4 shows the information input screen of the system,
where a user enters a design statement and general information about a construction
project, and a sheet for displaying the evaluation result. The information input sheet was
divided into two parts for entering the general information and design statement. The
general information part was configured to input general site information such as the name
of the construction project, construction period, site area, gross floor area, underground
depth, and ground height. The design statement part was configured to input the amount
of earthwork and construction material, which determined the amount of activity of
construction equipment, on the basis of design documents and detailed statements.

 

Figure 3. Algorithm of system for predicting PM emissions at construction sites (EF: emission factor).
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(a) (b) 

(c) 

Figure 4. System for predicting PM emissions at construction sites. (a) Main screen, (b) Information input sheet, (c) Assess-
ment result sheet.
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4. Case Study

4.1. Overview of Case Study

The applicability of the developed system was examined by predicting PM emissions
using actual construction site information, as shown in Table 7. This information was
obtained from the design outline, elevation drawing, floor plan, and design details of the
building. The duration of earthworks and general works and the number of concrete piles
were not available; these were assumed based on the scale of construction. The amount
of work was calculated according to the PM emission scenario at the construction site in
the prediction system. Then, the final PM emissions were predicted using the calculated
amount of work and established emission factor DB.

Table 7. Information of the construction site to be evaluated (PM: particulate matter).

Project Name
Case Study for PM Emission Prediction at

Construction Site
Building Use Nonresidential

General
information

Civil construction
period

200 days
General

construction
period

150 days
Total construction

period
350 days

Land area 2564 m2 Building area 1426.90 m2 Gross floor area 17,226.47 m2

Underground
depth

19.40 m
Above-ground

height
41.90 m

Building area
perimeter

186.70 m

Road width on
site

8.00 m
Average moving

distance
39.26 m Construction type

Building
construction

Statement
information

Fill amount 6845.00 m3 Cut amount 1176.00 m3 Distance to waste
soil dumpsite

0.50 km

Amount of
ready-mixed

concrete work
20,879.60 tons

Amount of rebar
work

868.67 tons Pile hole 50 holes

Amount of
cement work

1755.61 tons
Other major

materials
22,024.70 tons

Road distance on
site

2000 m

4.2. Results of Case Study

Table 8 shows the evaluation results of PM emissions by construction equipment. The
PM10 emissions by the concrete mixer truck were the largest (50.36% of the total PM10
emissions), followed by the 25-ton dump truck, 8-ton dump truck, and excavator. The
PM10 emissions from these types of equipment accounted for approximately 95% of the
total emissions at the construction site. The PM2.5 emissions showed a similar trend, with a
few differences. The concrete mixer truck generated the largest amount of PM2.5 emissions.
Nevertheless, they accounted for only 42.53% of the total emissions. Furthermore, the
PM2.5 emissions decreased in the order of the 25-ton dump truck, excavator, and 8-ton
dump truck. Table 9 shows the predicted total emissions and Figure 5 shows the predicted
PM2.5 and PM10 emissions for construction equipment. The concrete mixer truck and
dump trucks (25 tons and 8 tons) emitted high amounts of PM. Thus, a plan for reducing
PM emissions should focus on these types of equipment.
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Table 8. PM emissions by construction equipment.

Construction
Equipment

Fugitive Emissions (kg) Direct Emissions (kg) Total Emissions (kg)

PM2.5 PM10 PM2.5 PM10 PM2.5 PM10

Bulldozer 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Loader 1.39 × 10−2 9.16 × 10−2 1.10 × 10−1 1.20 × 10−1 1.24 × 10−1 2.11 × 10−1

Forklift 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Excavator 1.89 × 100 9.46 × 100 5.99 × 10−2 6.51 × 10−2 1.95 × 100 9.52 × 100

Crane 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Concrete pump - - 1.99 × 10−1 2.17 × 10−1 1.99 × 10−1 2.17 × 10−1

Roller - - 1.26 × 10−1 1.37 × 10−1 1.26 × 10−1 1.37 × 10−1

Air compressor - - 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

Boring machine 7.26 × 10−1 3.63 × 100 8.99 × 10−2 9.77 × 10−2 8.16 × 10−1 3.73 × 100

Dump truck
(8 ton) 1.88 × 100 1.88 × 101 1.47 × 10−2 1.60 × 10−2 1.90 × 100 1.88 × 101

Dump truck
(25 tons) 3.36 × 100 2.82 × 101 1.34 × 10−2 1.45 × 10−2 3.37 × 100 2.82 × 101

Trailer (20 tons) 2.30 × 10−1 2.30 × 100 1.35 × 10−3 1.47 × 10−3 2.31 × 10−1 2.30 × 100

Concrete mixer
(15 tons) 6.40 × 100 6.40 × 101 4.33 × 10−2 4.70 × 10−2 6.44 × 100 6.41 × 101

Total 1.45 × 101 1.26 × 102 6.58 × 10−1 7.16 × 10−1 1.52 × 101 1.27 × 102

Table 9. Results obtained using system for predicting PM emissions at construction sites.

Emission Type
Total Emissions (kg) Annual Average Total Emissions (kg/year)

PM2.5 PM10 PM2.5 PM10

Fugitive emissions 1.45 × 101 1.26 × 102 1.51 × 101 1.32 × 102

Direct emissions 6.58 × 10−1 7.16 × 10−1 6.87 × 10−1 7.46 × 10−1

Total 1.52 × 101 1.27 × 102 1.58 × 101 1.33 × 102
− − − −

 
(a) (b) 

Figure 5. Prediction results for PM2.5 and PM10 emissions by construction equipment. (a) PM2.5 emissions, (b) PM10
emissions.
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Moreover, while the direct emission factors applied in this study are reasonable since
they are based on the national air pollutant emissions statistics data which are widely
used in Korea, the accuracy of the fugitive emission factors needs to be verified. However,
there is no proper comparison target for verification, and it is necessary to study the
detailed method of fugitive emission factor development in further studies. Thus, in
this study, the comparison between the fugitive emissions result of the case study and
fugitive emissions calculated by Equation (1) was studied to provide basic points of fugitive
emission factor development.

According to the general information of the construction site used for the case study,
the annual construction area is 2564 m2 and the annual earthwork period is 6.67 months.
Since the building is a nonresidential building, the emission factors for Equation (1) are
0.0426 for PM10 and 0.00426 for PM2.5. Therefore, the total fugitive emissions calculated by
Equation (1) are 7.28 × 102 kg/year for PM10 and 7.28 × 101 kg/year for PM2.5. Compared
to the annual fugitive dust emissions derived in Table 7, the results of Equation (1) are
approximately 5 times bigger in both PM10 and PM2.5. This gap is basically caused by
the difference in the variables used in fugitive emission factor equations; in particular,
the silt content and the moisture content highly affect fugitive emissions. Previously, it
was found that the PM emissions increase as the silt content increases and that the PM
emissions decrease as the moisture content increases [17]. According to the NIER research
(NIER, 2008) for Equation (1) development, the moisture content used for fugitive emission
factor calculation was 0.7% and silt content was 14.1%. However, the moisture content
used in this study was 12% and the silt content was 9%, as shown in Table 2. Since the
moisture content in this study is higher and the silt content is lower compared to the NIER
research (NIER, 2008) the fugitive PM emissions calculated in this study were low. Thus,
the moisture and silt content should be supplemented in further studies to improve the
accuracy of PM emissions evaluation.

5. Discussion

This study has developed an original technology for quantitatively predicting PM
emissions at construction sites. The proposed technology overcomes the limitations of the
existing concentration-based PM assessment and management method. Furthermore, this
study is expected to provide a guideline for investigating PM emissions at construction
sites nationwide.

However, the variables applied for generating fugitive PM emission factors in this
study only rely on the single study from GRI and still need to be studied to retain accuracy.
Variables such as silt content and moisture content highly influence the value of fugitive
PM emission factors [17]. However, methods of how the variables were selected were
not considered in this study. According to the result of the case study, fugitive emissions
compose the largest share of total emissions; thus, updating the fugitive emission factors
by applying reasonable variables should be performed in further studies. Moreover,
construction equipment considered in this study is limited to only 13 types. US EPA
provides more equipment emission factors through AP-42, such as those for graders
and batch plants [29]. Considering the diversity of construction events in large-scale
construction sites, additional emission factors for equipment and construction work should
be continuously developed in future studies.

The proposed technology is based on a limited amount of existing literature and
data. Thus, further research is required to establish a more precise emission factor DB
and calculate input scenarios for construction equipment. In addition, the data that are
assumed in the calculation of emission factors, such as the topsoil silt content and soil
moisture content, should be supplemented with geographic information.

6. Conclusions

This study aimed to develop a technology for predicting particulate matter (PM)
emissions at construction sites. The primary findings of this study are as follows:
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1. Thirteen types of construction equipment were selected as the main PM emission
sources at construction sites. Then, an emission factor DB was established, which
consisted of direct and fugitive emission factors for PM10 and PM2.5 for various types
of construction equipment.

2. The PM emission activity scenarios for construction equipment were presented and
used to develop a method for predicting PM emissions at construction sites.

3. A system for predicting PM emissions at construction sites was built using the emis-
sion factor DB and activity scenarios.

4. A case study was performed using the developed system, and the fugitive and direct
emissions of PM2.5 and PM10 were calculated for construction equipment.

5. Moisture content and silt content values applied in fugitive factor development
equations should be supplemented in further studies to improve the accuracy of PM
emissions evaluation.
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Abstract: Urban Green Infrastructure (GI) provides promising opportunities to address today’s
pressing issues in cities, mainly resulting from uncurbed urbanization. GI has the potential to make
significant contributions to make cities more sustainable by satisfying the growing appetite for higher
standards of living as well as helping cities adapt to extreme climate events. To leverage the potentials
of GI, this article aims to investigate the effectiveness of GI that can enhance social welfare benefits in
the triple-bottom line of urban sustainability. First, publicly available data sets representing social
demographic, climate, and built environmental elements are collected and indexed to normalize its
different scales by the elements, which is termed as the “Social Well-being Index.” Second, a random
forest regressor was applied to identify the impacts of variables on the indexed scores by region. As
a result, both the Seoul and Gyeonggi-do models found the most significant relationship with the
type of GI to prevent pollutants and disasters, followed by GI types to conserve and improve the
environment in Seoul and GI types to serve activity spaces in Gyeonggi-do. Furthermore, variables
such as population, number of pollutants, and employment rate in Seoul were found significant
and employment rate, population, and air pollution were significant in Gyeonggi-do. Finally, a
scenario analysis is conducted to investigate the impacts of the overall index score with additional
GI facilitation according to the model’s findings. This article can provide effective strategies for
implementing policies about GI by considering regional conditions. The analytical processes in this
article can provide useful insights into preparing effective ecological and environmental improvement
policies accordingly.

Keywords: green infrastructure; indexing; random forest; interpretation of machine learning

1. Introduction

As humans settle together in cities, economies of scale and efficiency have been
enhanced to better provide the essentials of residents. This has made our modern cities
more attractive places to live and work because they offer higher living standards compared
to rural areas [1]. In general, human society essentially requires resources and energy
provided by nature; however, many human behaviors in cities treat these natural resources
as free and almost unlimited. For the sake of living well, human society has built many built
infrastructures—also known as grey infrastructure—and it has generated other challenges
we have to face in cities [2].

Cities now face numerous societal and environmental challenges, such as inequity,
resource depletion, climate changes, and air quality. These recent challenges are inextricably
interconnected to the challenges we have faced in the past—e.g., rapid urban population
growth, pollution, limited urban infrastructure networks. To mitigate these challenges,
a series of urban renaissance projects (e.g., urban retrofitting, urban regeneration) are
initiated to make cities more sustainable and livable areas. For example, urban renaissance
projects [3,4] aim to meet policy objectives to enhance living standards (e.g., health, social
cohesion), revitalize the local economy, and help cities adapt to climate changes.
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As one of the promising solutions to a series of urban renaissance projects, approaches
using Green Infrastructure (GI) are being discussed and understanding of GI’s potential has
gained particular interests recently. Specifically, GI helps to avoid investing in a large-scale
infrastructure system that requires enormous government budgets since it can often find
cheaper and more durable solutions, generating various benefits. The European Commis-
sion (EU) [5], for instance, describes that the Green Space, an urban environmental indicator,
is a nature-based solution that has been successfully tested in urban spaces, providing
economic, social, and ecological benefits to sustainable development goals (SDGs) [6–8].
In general, GI is integrated into, or embedded within, other urban infrastructure systems
to alleviate various challenges—e.g., stormwater management, carbon mitigation, energy
savings in other infrastructure, air quality improvement, human health and well-being, and
other social and ecological benefits. Moreover, since urban infrastructure and its consump-
tion behaviors are intricately interconnected, GI can provide complementary solutions to
existing grey infrastructure systems [2]. Therefore, GI has the potential to make significant
contributions to making cities more sustainable by satisfying the growing appetite for
higher standards of living as well as helping cities achieve a goal of urban sustainability.

GI holds many definitions and interpretations for different disciplines. From a plan-
ning and engineering perspective, in the realm of urban studies, it can be defined as
strategically built or planned interconnected features with other infrastructure systems
and environments, which can deliver a wide range of benefits to urban sustainability [9].
Several studies have concluded that whole or partially nature-based solutions, including GI
and its associated elements, offer a wide range of benefits such as environmental, human
health, and well-being (e.g., satisfaction) benefits in cities [1,5,10]. In terms of livability in
cities, GI has various positive impacts on cities and residents [11]. The U.S. Environmental
Protection Agency (EPA), for example, has also made various efforts to reduce the heat
island effect in cities with vegetation, improving air quality and eliminating pollutants [12].
To put it differently, the rare integration of GI with cities has a negative impact on envi-
ronmental ecosystems and the health and well-being of residents [13,14]. Based on the
previous studies, it is obvious that the environmental and ecological improvements using
GI can enhance residents’ overall conditions. In particular, it can be viewed that the im-
portance of GI has a wide range of effects, from the psychological satisfaction of humans
to environmental health. Therefore, securing sufficient GI has a positive impact on the
satisfaction of the residents of urban environments.

In addition, previous studies also found that optimal implementation of GI can be
an effective strategy for challenging issues in cities—e.g., water resources depletion, air
quality issues, and other extreme events associated with climate change [15]. For instance,
GI can improve air quality [16] and mitigate the heat island effect in the city center [17].
Providing that GI is sufficiently installed, extreme stormwater events, heat island effects,
and air pollution can be alleviated [18]. More precisely, the effectiveness of GI largely
depends on the location of GI being effectively integrated into, or embedded within, other
urban infrastructure systems. In particular, some studies discuss the location of green
spaces and GI while considering air pollution, noise, population, temperature, and green
levels [19–21]. For example, Maruani and Amit-Cohen compared open space planning
models to find effective factors. They concluded that both open space factors and external
factors affect planning qualities [22]. Thompson suggested new patterns of connected open
space to be effective with considerations of the size, application cost, period, complexity,
etc. [23] Schilling and Logan suggested a model to find right sizes of GI by community
sizes [24]. Votsis and BenDor et al. [10,25] found the impact of green areas on residential
selection and child-rearing were found to be highly utilizable and efficient. Kim and
Tran evaluated GI’s comprehensive plan performance in the United States and proposed
a more comprehensive and concrete policy framework for local planners proposed for
GI locations [26]. Campagnaro et al. [27] predicted the Pielou’s equivalence index of
Green information from Italy’s Padua region, compared regional distributions according
to variables, and discussed its applicability to find adequate locations. Lee and Oh [28]
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developed the GI location assessment system based on geographical information for
Namyangju-si, Korea, and attempted the landscape ecological evaluation from both macro
and micro perspectives. Zhou and Wu [29] attempted to distribute the Green Land of
Hekou City, China, by matching the demand for rust and topographical characteristics.
Lai et al. [30] identified the relationship between land use and spatial identification by
presenting a plan to implement GIs in three areas near Cagliari, Italy.

In this circumstance, being able to analyze the effectiveness of GI is essential for
municipalities and utilities to effectively meet users’ needs in urban areas. In particular, GI
generally occupies large lots and has difficulty changing land use once implemented [17,31],
thus, disproportionately distributed GI occurs potential degradation in ecological and
environmental services [32–34]. Although some previous studies include fine-grained
quantitative and qualitative information about GI for analyzing the impacts of GI, it is not
applicable to most cities and municipalities where cities and utilities have limited access
to the fine-grained data. Therefore, in this study, we suggest an approach to help policy
makers and planning experts find a more feasible solution for determining the location of
GI. Basically, the aim is to investigate the effectiveness of GI in urban areas that can enhance
social welfare benefits for the triple-bottom line of urban sustainability to leverage the
potential of GI. Furthermore, considering the connectivity aspects of the cities, maximizing
the impacts of GI by allowing it to be linked to adjacent regions under the given conditions
has been determined to have a more sustainable development direction. In addition,
regional differences by functional and developmental characteristics by the linkage of
population expansion and urban facilities will be considered. The specific objectives of this
article are to answer the following research questions:

- How does GI influence residents’ satisfaction with livability?
- Which attributes of sociodemographic and regional characteristics are most sensitive

for adopting GI?
- How do we maximize the model’s application in the realm of urban studies?

2. Materials and Method

2.1. Materials

The overall research framework is described in Figure 1. Considering the geographical
perspective of the research area, there are substantial distributional discrepancies between
the two regions of Seoul and Gyeonggi-do. Thus, we made two different models to
minimize technical issues in modeling—e.g., heterogeneity. To analyze the GI’s influence to
their residents in two different regions, we adopt a random forest (RF) regressor, which is
less susceptible to scales and outliers than other machine learning (ML) approaches [35–37].
Then, the estimated ML models are interpreted by surrogate interpretation techniques.
Lastly, two scenario analyses were conducted to demonstrate the applicability of our
models for future policy analysis.

This study geographically focused on 25 districts in Seoul and 31 cities and counties
in Gyeonggi-do, as shown in Figure 2. In terms of high population concentration and
interconnected facilities, residents’ responses to local GI changes were expected to be
sensitive within the same living zone spectrum, thus ideal for evaluating alternatives
to location green facilities presented in this work. In addition, through the relationship
between better environmental conditions and population concentration, population and
environmental variables are found to be highly interconnected throughout the research area,
and the data should be available from the same sources to match. For reference, the detailed
administrative district units of Seoul and Gyeonggi-do were marked as ‘area’ to represent
them as unified terms in describing the data and the model setting and analysis stages.
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Figure 1. Research design.

 

Figure 2. Geographical scope of the research area—Seoul and Gyeonggi-do in South Korea.

Studies on location selection for balanced GI expansion in cities have been mainly
done through micro-level optimization approaches through multi-objective optimization
by setting specific environmental factors—for example, air quality, noise, population,
temperature, green scale—as variables [18,38–41]. However, the implementation of GI’s
facilities is characterized by having to override other projects in their location or size. It
should consider a broader geographic area, including its vicinity, not just for the benefit
of the region, which is the reason to provide information to consider the GI’s location at
a higher level of the planning process to plan GI location preferentially [22]. In addition,
various and ever-changing environmental factors should be included as much as possible
to be analyzed in more detail.

Among the publicly available sources, data of demographics, GI, climate, and built
environmental characteristics were collected, which can be used to check the environmental
and ecological conditions of each region and area. To capture the concentration of the
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population in the city and its relationship or preference with climate and environmental
variables in consideration of the population per unit area in each region, the area’s total
numbers of the population, population under 16 years of age, and the employment ratio
was considered. The annual data of GI, road rate, and the number of pollutants producing
facilities were utilized as they were found to have an ecological impact on the urban
environment. Green areas and the number of air pollution and water pollution emission
facilities per area unit were considered. The Buffer GI is created to prevent pollution and
natural disasters. The Connection GI serves as a walking space for urban residents by
organically connecting parks, rivers, and mountainous areas. The Scenic GI is installed for
environmental conservation and improvement. The three types of green areas are divided
into Buffer GI, Connected GI, and Scenic GI by laws and regulations of the Ministry of
Land, Infrastructure and Transport, the Ministry of Environment, and local governments.
Since the scale of installation for each type of green area is also different, all three types of
GIs were considered as variables differently in this study.

The climate variables were taken into account by the average monthly temperature
(in Celsius), wind speed (meter/second), and rainfall (millimeter). The most stable air
pollutants were collected using PM10 (Particulate Matter, finer than 10 micrometers) av-
erage monthly data (microgram/m2). The number of air and water pollution emission
facilities for each area were collected. Considering the conventional time zone of the entire
data, the time range was set from January 2013 to December 2019. The variables and their
descriptive statistics are shown in Table 1.

Table 1. Descriptive statistics of independent variables.

Variables Description
Time

Range
Mean S.D. Min. Max.

Demographic characteristics
Pop Total population Year 404,873.60 252,774.03 43,824 1,203,285

Pop_16 Number of the population age 16 or under Year 61,644.73 43,861.39 5020 213,391

Emp
Employment ratio

(employed/total population)
Year 59.31 2.37 49.6 66.5

Green Infrastructure characteristics
Buffer_gi Buffer Green Infrastructure area (m2) Year 573,978.77 815,943.75 0 4,504,737
Scenic_gi Scenic Green Infrastructure area (m2) Year 494,455.95 2,672,348.84 0 34,908,592

Connection_gi Connection Green Infrastructure area (m2) Year 93,391.83 427,795.86 0 3,939,590
Built environment characteristics

Water_pol_fac Number of water pollution facilities Year 320.99 409.81 19 2775
Air_pol_fac Number of air pollution facilities Year 314.86 530.14 2 3231

Road Road coverage (km2) Year 11.65 10.21 0.11 28.83
Climate characteristics

temp Temperature (◦C) Month 12.51 10.12 −8.5 29.3
wind Wind speed (m/s) Month 1.54 0.58 0 6.8

precipitation Precipitation (mm/day) Month 85.07 108.34 0 1076.50

PM10
Particulate Matters

(<10 micrometers, micrograms/m2)
Month 47.39 15.81 6 124

Although there is no significant difference between weather and air pollution as
Gyeonggi-do shares the same geographical characteristics with the boundary of the form
surrounding Seoul as shown in Figure 1, it should be considered that there is a difference
in the development process of the two regions [40].

To compare heterogeneous demographic characteristics between Seoul and Gyeonggi-
do, bivariate probabilistic density for the two regions was estimated. Joint probability
density estimation offers a means to study the joint probability density distribution between
two variables (i.e., bivariate distribution) in a nonparametric way. This is significant because
the joint probability density distribution between two variables captures the relationships
between the two variables. In other words, it shows the probability by which each of the
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two variables falls in any certain intervals or discrete sets of values. For instance, suppose
that X and Y are continuous variables, and X takes values in [a, b] and Y takes values in
[c, d]. Then the pair of X and Y takes the product [a, b]× [c, d]. In this case, we can express
the joint probability distribution of two variables, X and Y, as:

∫ d

c

∫ b

a
f (x, y)dx dy = 1 (1)

In addition to studying the joint probability density distribution of two variables, we
estimate a univariate probability density function for each single variable. Specifically, the
univariate probability density function of a single variable, X, can be estimated using a
kernel density estimation method. For instance, the estimated function ( f́ ) for the variable,
X = {x1, x2, · · · xn}, is derived from the kernel density estimator as defined below:

´f(h)(x) =
1
n

n

∑
i=1

Kh(x − xi) =
1

nh

n

∑
i=1

K(
x − xi

h
) (2)

where K is the kernel or weight function (it should be a non-negative function that integrates
into one), and h is a smoothing parameter that acts as a bandwidth. For the kernel (K)
and the smoothing parameter (h), we apply the standard normal kernel and auto-selection
algorithm derived from the asymptotic mean integrated squared error (AMISE). In Figure 3,
the bivariate probability distribution of demographic variables for the two regions was
estimated.

𝑋 𝑌 𝑋 ሾ𝑎, 𝑏ሿ𝑌 ሾ𝑐, 𝑑ሿ 𝑋 𝑌 ሾ𝑎, 𝑏ሿ ൈ ሾ𝑐, 𝑑ሿ𝑋 𝑌න න 𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
 = 1 ௗ


𝑋 𝑓ሖ)𝑋 = ሼ𝑥ଵ, 𝑥ଶ, ⋯ 𝑥ሽ

𝑓()ሖ (𝑥) =  1𝑛  𝐾(𝑥 − 𝑥) =  1𝑛ℎ  𝐾(𝑥 − 𝑥ℎ
ୀଵ )

ୀଵ𝐾 ℎ𝐾 ℎ)

 

Figure 3. Demographic bivariate distribution for Seoul and Gyeonggi-do (Seoul in blue and Gyeonggi-
do in red).

The total population and the number of people under the age of 16 per unit area
were clearly different in Seoul and Gyeonggi-do, and the comparison of employment rates
showed that Seoul was concentrated in the 60% range, while Gyeonggi-do was widely
spread around the late 50%. In terms of road rate, it was also confirmed that the road rate
per unit area in Seoul was much higher than that of Gyeonggi-do. The relationship between
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the variables in Seoul and Gyeonggi-do were distributed and noticeably distinguishable
from the difference between the characteristics of the two areas. Therefore, since it is
reasonably concluded to consider the location of GI by the characteristics between the two
regions, separate models were prepared.

2.2. Model Method

The selected and collected measurement data have different characteristics to compare
as they are and they have difficulty considering weights. The alternative approach to
resolve this conflict is the indexing method for measuring Better Life Index in the Organi-
sation for Economic Co-operation and Development (OECD) [41] and Seoul, Korea [42].
In this study, this indexing method was applied to normalize the scale in the relevant
variables and to utilize the sum of the entire scale as an index for analysis. It was named the
Social Well-Being Index. Through the RF Regression, the importance of variables affecting
index were examined by specifying the sum of index obtained by month and region as
dependent variables. Seoul and Gyeonggi-do, which were established as research areas,
were composed of separate models because the distribution of population and geographical
characteristics were not the same. The model was constructed using data from 2013 to 2017,
and it was validated using data from 2018 and 2019. Based on these estimated models
and the importance of identified variables, a scenario analysis was conducted varying
regionally important GI in Seoul and Gyeonggi-do to determine how much improvement
is made in the Social Well-Being index in each region. Although a direct model for GI is
not suggested, it is considered a more effective method for sustainable planning because it
measures the expected effects of the expansion of GI in situations where both climate and
environmental variables are considered.

2.2.1. Social Well-Being Index

Indexing is the process of leveling the range of analysis and identifiable indicators
among the variables that affect climate and environmental condition in this research
context. Since it is impossible to directly compare the original values of the data to each
other because all the variables for the observed climate and environmental indicators
were measured at different levels and ranges, the level and scope of the measurement are
identified for correct comparison. In this process, the method of equalizing the values of
the data was applied to the Min-Max method used by the OECD and Seoul, Korea, and
variables will have index scores based on the following Equation (3):

Positive Var. Index =
xi − min(x)

max(x)− min(x)
(3)

where x represents the input records (x = x1, x2, · · · , xn).
As a result of this Equation (3), the index value is located between 0 and 1 regardless

of the unit and distribution of the corresponding variable origin values enables comparison
between variables. However, if the characteristics of the variables that make up the data
have a negative meaning, such as the values of the pollutant facilities, air quality, and road
rates, the corresponding indicators were used as minus the original equivalence value as
shown in the Equation (4):

Negative Var. Index = 1 −
xi − min(x)

max(x)− min(x)
(4)

The index scores for all variables were obtained, and Equation (5) represents the

Social Well − Being Index = ∑ Positive Var. Indexi + ∑ Negative Var. Indexj (5)
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This process cancels the scale difference of the variables, and sets the sum of them,
the Social Well-Being Index score, as the model’s dependent variable. Through this, each
variable was exploited to determine the impact and relationship on the overall index.

As aforementioned, we used the sociodemographic and geographical characteristics
of Seoul and Gyeonggi-do and the correlation among variables for two regions presented
in Figure 4. The population in Seoul is highly correlated with a population under 16,
showing a correlation at 0.92, but it is seen as a normal relationship when viewed at the
rate of population size. Weather-related factors including precipitation and temperature
of PM10, where inverse index scale is proposed, were all are found to be in the correct
relationship. The relationship between air pollution source facilities and water pollution
source facilities is also seen as a proper relationship because one facility often releases air
and water pollutants simultaneously. Similar correlation patterns in population, weather,
and pollutant facilities can be found in Gyeonggi-do, just as in Seoul. However, the
difference from the Seoul area is that the road rate shows a high inverse correlation
compared to the number of people. Considering that the road rate is inversely proportional,
the road rate is higher in places with a large total population and a large population
under the age of 16 and is more correlated than in Seoul. Unlike Seoul, Gyeonggi-do has
developed arterials before its residential area, and this is also a proper relationship because
public transportation networks are also not closely connected compared to Seoul. The two
regional differences are also distinct in the correlation between the population, land use,
and variables in Seoul and Gyeonggi-do. Therefore, we can see that developing a model
for each of the two regions is the correct analysis approach.

𝑆𝑜𝑐𝑖𝑎𝑙 𝑊𝑒𝑙𝑙−𝐵𝑒𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥 =  ∑ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑉𝑎𝑟. 𝐼𝑛𝑑𝑒𝑥𝑖 + ∑ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑉𝑎𝑟. 𝐼𝑛𝑑𝑒𝑥𝑗
’

 

Figure 4. Cont.
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Figure 4. Correlation between variables in two regions (Relationship of positive in blue and negative
in red; above: Seoul, below: Gyeonggi-do).

2.2.2. Random Forest Regressor: Rule-Based Bootstrap Aggregation

Tree- and rule-based models, being applied to both classification and regression prob-
lems, are nonparametric modeling methods (also known as machine learning, ML) [43,44].
This nonparametric additive model learns the nonlinear relationships between a set of pre-
dictors and corresponding targets based on specific splitting rules without predetermined
assumptions—e.g., linearity.

In particular, a regression tree (also known as a decision tree regressor), for example,
is constructure by recursively partitioning the predictor space (i.e., samples) into several
homogeneous groups (also known as tree nodes), which ends up with terminal nodes.

The goal of regression trees is to find non-overlapping partitions (Rj) that minimize
the overall sum squared errors, given by:

SSE =
J

∑
j=1

∑
i∈Rj

(yi − ŷRj
) (6)

where ŷRj
is the average response of the training observations within the jth partition.

A single tree model locally learns patterns, i.e., local learners, and then aggregates local
learners as a hierarchical tree structure (i.e., additive learning).

Thanks to the logic of their estimation, i.e., the set of splitting rules used to partition
the predictor space are provided with a hierarchical structure (i.e., a tree), tree-based models
have relative competitiveness with the other modeling approaches for various reasons.
First, tree models built on an additive and hierarchical learning algorithm have gained
popularity because of their ability of recognizing the non-linear patterns (e.g., non-linear
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relationships) of input features, while providing a higher degree of interpretability [44].
Furthermore, tree models can effectively handle various types of variables in nature (e.g.,
continuous, categorical, sporadically missing values) but also estimate models without
having enough observations compared to other ML approaches—e.g., artificial neural
networks [35,44].

Nonetheless, models learned by single trees or rules (e.g., regression tree) have two
acknowledged weaknesses compared to other supervised learning approaches: (1) instabil-
ity of model estimation and (2) relatively low predictive performance compared to other
ML models. Specifically, the hierarchy of variables seen in a regression tree can vary each
time a tree is estimated. In general, to train a regression tree, a certain portion of the data is
commonly used, and the remaining portion is kept to test the accuracy of the tree, which is
known as the “hold out” method. Therefore, if a different portion of the data is used to
generate another tree, the hierarchy of variables changes. As a result, fitting one single
tree is not enough to validate a hierarchy of variables. In addition, the latter is due to the
fact that local fitting processes (i.e., recursively partitioning sub-regions) can increase the
variance of the overall tree structure, which causes higher prediction errors than other ML
models—i.e., bias-variance trade-off [45].

To alleviate these weaknesses of single tree models, bagging or bootstrap aggregation
techniques (also known as ensemble methods) can be applied to balance the overall bias
and variable of models [35,45,46]. RF regressor is basically an aggregate of bootstrapped
trees (i.e., tree estimators) with decorrelating processes: (1) each bootstrapped tree is based
on a random sub-sample of the given observations, and (2) each partition within each
bootstrapped tree is split by a random subset of predictors. Thanks to this decorrelating
process, RF can provide an additional improvement over simple bagging algorithms by
reducing the correlation among the collection of bagged trees. RF regressor predicts y given
xi as follows:

y (xi) = f̂ N
RF(xi) =

1
N

N

∑
b=1

Tb(xi) (7)

where xi is a vector of an independent variable, Tb(xi) represents a single regression tree
grown by bootstrapped samples including a subset of variables, and N represents the total
number of trees.

2.2.3. Interpretation of ML Models

As mentioned above, RF tends to show high predictive performance thanks to its
machine-based repetitive computation (also known as a bagging process) [47]. Nonetheless,
high predictive performance (e.g., prediction accuracy) does not provide enough informa-
tion to investigate the impact of policies and associated users’ behaviors, especially in the
realm of urban studies. To enhance the applicability of ML, urban analytics with ML also
require an understanding of how model makes a certain decision based on the given data
samples.

In predictive modeling, the contribution of predictor variables can be varied. In
general, a few variables have substantial impacts on the result. To obtain useful information
about the relative contribution of each variable, the reduction in bias and variance is
measured, which is referred to as the “Variable Importance” (VI) (also known as the feature
importance).

The sum of squared residuals (SSR) can be defined as:

SSR = ∑
c∈leaves (T)

∑
i∈c

(yi − yc)
2 (8)
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where i is an observation on leaf c, and yi is the predicted value of the dependent variable
of observation i. yc is the actual value of the dependent variable of leaf c. The changes in
SSR among the variables indicates the VI of xj and it can be calculated as follows:

VId
(

xj
)

= ∆d = SSRd − ∑
i

SSRd
i (9)

where d denotes a node, i is the branch of node d, SSRd is a terminal node (i.e., leaf node),
and SSRd

i is an internal node. For the entire tree model, the VI score for each variable can
be expressed as follows, where D is the total number of nodes:

VI
(

xj
)

=
∑

D
d=1 VId

(

xj
)

n_nodes
(10)

In general, the VI scores are expressed with the standardized values—i.e., ranging
from 0 to 1. For instance, the VI score becomes zero (i.e., VId

(

xj
)

= 0) when a variable has
no “contribution”. This interpretation can provide useful insights into planning, regulatory
factors, and policy impacts in the realm of urban studies. The SHAP package was utilized
to visualize VI scores more readable [48].

3. Model Results

Based on the data from 2013 to 2017, the Social Well-Being Indices of Seoul and
Gyeonggi-do were estimated through the RF Regressor. A total of 13 variables were used
to build the model, including Buffer GI, Connection GI, Scenic GI, water and air pollutants
facilities, road rates, wind speed, temperature, precipitation, air quality, total population,
the population under 16 years of age, and the employment rate. As a result of validating
the model using data from 2018 and 2019, a comparison of the estimated values of the
Social Well-Being Index for each region and the model’s prediction values are shown in
Figure 5.

𝑑 𝑖 𝑆𝑆𝑅ௗ𝑆𝑆𝑅ௗ 𝐷𝑉𝐼(𝑥) =  ∑ 𝑉𝐼ௗ(𝑥)ௗୀଵ𝑛_𝑛𝑜𝑑𝑒𝑠
𝑉𝐼ௗ൫𝑥൯ = 0)

  

Figure 5. RF model performance plot (Left—Seoul, Right—Gyeonggi-do).

Figure 5 presents plots between the estimated Social Well-Being Index value and the
modeled value of 2018 and 2019, with an R-squared of 0.97 for the Seoul model and 0.98
for the Gyeonggi-do model. The explained variance score for the Seoul model is 0.96 and is
0.98 for Gyeonggi-do model.

3.1. Relative Importance of Variable

In addition to the model’s high predictive accuracy, the VI is prepared to identify
variables showing significant impacts on each model. As shown in Figure 6, the importance
of the Seoul model was in the order of temperature, population under 16, water pollution
source, employment, Buffer GI, precipitation, and Scenic GI, Gyeonggi-do model was in
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the order of temperature, Buffer GI, Connection GI, employment, population, PM10, and
precipitation. It is interesting to see that the temperature in both regions has the most
significant impact on the overall model prediction. Regarding GI, both the Seoul and
Gyeonggi models were found to significantly impact the Buffer GI compared to other GI
models. Due to the characteristics of Buffer GI, it was judged that the more it was installed
to distinguish it from the contaminated or pollution emitting facility, the more it affected
the entire index. Scenic GI seems to have a positive impact in the Seoul model because
development has already been completed, and the concentration of residents in urban
areas is high. However, the competition model showed higher importance of Connection
GI connecting to green areas outside the city center, indicating that the shape of GI affecting
the index was also different.

Figure 6. Importance of variables (Upper—Seoul, Lower—Gyeonggi-do).

3.2. Green Infrastructure Index Distribution

A visual representation is prepared in Figure 7 with the total index by region and the
index values by the shape of GI to identify differences in regional distributions.
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Figure 7. Social Well-being Index score distribution.

Comparing the Social Well-Being Index scores, Seoul generally showed higher scores
in most regions. On the other hand, Gyeonggi-do showed higher index scores in the south
than in the north. It is easy to see that the index value of each GI varies from region to
region. For example, the buffer GI was found installed in areas that include airports and
major highways in Seoul. In contrast, Gyeonggi-do was found to represent high scores in
areas near highways and industrial complexes entering Seoul. Connection GI obtained a
high index score in some areas—i.e., the connection of green areas among parks. However,
Scenic GI is in one of Seoul’s highest areas where a particularly high availability of space
has been confirmed. In addition, various types of GI are sporadically distributed in Seoul.
Still, in Gyeonggi-do, the distribution of GI is located adjacent to Seoul and more in the
southern region than in the northern part.

85



Sustainability 2021, 13, 9620

4. Scenario Analysis and Discussion

4.1. Scenario Analysis: Potential Impacts of GI on Social Well-Being Index

As mentioned above, a model was designed to measure the Social Well-Being Index
by using publicly accessible information, representing demographic, green infrastructure,
climate, and built-environment characteristics. The models were verified by a 10-fold
cross-validation process. Based on the estimated models, a scenario analysis was designed
to further analyze the impacts of GI for the Social Well-Being index score. Specifically,
the impacts of the Social Well-Being Index score resulted from the changes in the GI ratio
were measured by selecting a specific area in each region. Climate conditions, including
temperature, wind speed, precipitation, and demographic conditions, are assumed to be
fixed. The scenario is established considering only the magnitude change of the GI types,
the main object of this study. Too many combinations are expected for scenario analysis
across the region, and the performance of model effects is not easy to observe. Therefore,
each area with a low GI ratio and a high population ratio in Seoul and Gyeonggi-do was
selected. The effect of the Social Well-Being Index on more residents when the area of GI
is expanded by region is examined. As a result of checking the most recent record in the
data, Gwangjin-gu in Seoul and Anyang-si in Gyeonggi-do were selected based on data
from December 2019. Considering the differences in regional GI importance through the
VI of RF regressor as shown in Figure 6, each scenario is prepared by adjusting the ratio
of Buffer and Scenic GIs for Gwangjin-gu and adjusting the Buffer ratio Connection GIs
for Anyang-si. The selected area’s GIs are set as the default outcome—Base Case—and
three different scenarios are prepared: the mean of the region’s unit area, 150% of the mean,
and the highest unit area. Therefore, Gwangjin-gu, Seoul, has set a scenario that applies
Buffer GI and Scenic GI to Seoul’s mean, 150 percent of the mean, and the highest ratio in
Seoul. Anyang-si, Gyeonggi-do, confirmed the change in Social Well-Being Index scores
by setting up and applying Buffer GI and Connection GI three scenarios, which apply the
mean, 150% of the mean, and the highest ratio in Gyeonggi-do.

The overall scenario design and analysis results can be found in Table 2 and the
Social Well-Being Index also improved as the proportion of GI increases. In the case of
Gwangjin-gu, Seoul, the improvement of the Social Well-Being Index was confirmed in
all three scenarios because the area ratios of Buffer and Scenic GI were observed to be
lower than the average of Seoul and enough spaces for the GI was available for its Social
Well-being index score improvements. Interestingly, due to the relatively low GI ratio
compared to other districts in Seoul, the Index value represented the highest rank in the
entire city as the GI area ratio increases. Anyang-si, Gyeonggi-do, can see that if Buffer
and Connection GIs are adjusted to the mean of Gyeonggi-do, the ratio of Buffer GI was
lower than the current one, and the ratio of Connection GI was higher than the present
condition, resulting in no change due to the trade-off result in the overall Index values.
Instead, when the GI area ratio is 150%, and the maximum of the mean of Gyeonggi-do,
the rise of Social Well-Being Index rank resulted in being proportional to the increase in
GI area ratio. In conclusion, when each area in Seoul and Gyeonggi-do was selected to
analyze the scenario cases and scrutinize the results, the changes and predictions in the
model do not deviate significantly from the previous verification results and are confirmed
to be reliable. In addition, rather than randomly increasing the proportion of GI, the
Social Well-Being Index can significantly promote the efficiency of GI positioning and
sizing and maximize its effectiveness. Residents’ livability can be increased in the process
of presenting a location to install GI that can achieve the appropriate size and a high
efficiency, and it will be a valuable reference in the policy-making process. Finally, upon
this process being undertaken appropriately, the burden of post-GI location changes will
be alleviated, enabling more active policy implementation and sustaining policy direction
to maintain viability through proper form of GI installation in line with long-term land
use development.
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Table 2. Scenario variables and Social Well-being Index ranks.

Analysis Cases GI Type
Gwangjin-gu (Seoul) Anyang-si (Gyeonggi-do)

Ratio Index Rank Ratio Index Rank

Base case (December 2019)
Buffer 0.099%

10
0.551%

28Scenic 0.011% 0.219%
Connection 0.000% 0.043%

Scenario
cases

Mean ratio
Buffer 0.506%

9
0.520%

28Scenic 0.151% 0.219%
Connection 0.000% 0.055%

150% of the
mean ratio

Buffer 0.759%
8

0.780%
26Scenic 0.226% 0.219%

Connection 0.000% 0.083%

Maximum ratio
Buffer 2.467%

1
1.969%

6Scenic 1.062% 0.219%
Connection 0.000% 0.506%

4.2. Discussion

This article aims to investigate the impacts of GI and the relevant factors affecting
life satisfaction in cities by adopting ML approaches (i.e., random forest regressor) with
surrogate interpretation. Specifically, the model is designed to investigate an index score
of variables for various characteristics and scales, suggesting the analytical potential to
represent the overall well-being state of the city and the availability of GI location choices
in a sustainable urban space. Existing GI studies mainly considered geographic and
topographic characteristics as key variables [26–30]. In this study, however, publicly ac-
cessible descriptive variables—i.e., demographic, climate, environment, and form-specific
GI variables—were considered together to enable the overall efficiency improvement of
urban elements, including residents. This revealed that the variables utilized in the model
and Social Well-Being Index have different regional relationships and confirmed that the
different GI types are found important in the models. Further scenario analysis allowed us
to verify the effectiveness of improving Social Well-Being Index efficiently when expanding
GIs that we considered to be regionally important. In this context, it is possible to choose a
location for GI that increases equity with the surrounding regions and indicated that it was
effective in establishing sustainable development plans for planners.

In addition, the findings from this article can help planners consider and evaluate
efficient and proper location of the GIs in the Social Well-being perspectives. The results of
the study suggested that effective location selection of GIs is also effective across urban
areas. Recently, research on the effectiveness and location of GIs has been highly interested
in, and efforts have been made to apply them to planning processes through various
approaches. In addition, as various data become available, models that take many variables
into account are presented and the application feasibility is emphasized through case
examples. However, we believe that the model that does not consider residents and
their circumstances, the largest and essential beneficiaries of GI, deviates from the core of
sustainable development in urban areas where new natural GI cannot be found. Selecting
a location in consideration of the type of household composition of residents, employment
conditions, road accessibility, and climate and environmental factors in their lives can
secure the sustainability of existing and new GI in cities. Residents’ livability can be
increased in the process of presenting a location to install GI that can achieve appropriate
size and high efficiency, and it will be a valuable reference in the policy-making process.
Finally, upon this process being undertaken appropriately, the burden of post-GI location
changes will be alleviated, enabling more active policy implementation and sustaining
policy direction to maintain viability through proper form of GI installation in line with
long-term land use development.
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Lastly, predictive models have been integral for urban infrastructure planning as
well as decision-making process in urban contexts to investigate urban behaviors and
phenomena. Nonetheless, researchers generally face technical challenges when analyzing
real-world urban problems, such as the availability of data and modeling techniques.
Although we are living in the era of Big Data, most cities and utilities generally do not
have access to fine-grained information about the characteristics of urban areas. In this
context, this article can provide useful insights into constructing acceptable models using
publicly accessible descriptive variables for understanding the relationship between users’
satisfaction and GI systems in an urban context.

5. Conclusions

In this study, data on climate and environmental factors as well as demographics and
pollutant facilities were quantified through indexing before the RF regressor was used to
identify GI’s ecological and environmental factors to present more objective evaluation
criteria in selecting GI locations. As a result of the models for Seoul and Gyeonggi-do,
by GI types, both models have the largest impact by Buffer GI, followed by Scenic GI
in Seoul and Connection GI in Gyeonggi-do. In addition, variables such as population,
number of pollutants, and employment rate in Seoul were found significant, and Gyeonggi-
do had a big impact on employment rate, population, and air pollution. As a result, the
improvement of the overall index score was identified, indicating a noticeable improvement
in the Ecological Index (see Figure 7).

Based on the data and analysis results, it was possible to identify efficient GI instal-
lation conditions by region and present criteria to maximize GI installation effectiveness
based on climate and environmental improvement policies. It is also noteworthy that
this research has identified the possibility of a local Social Well-Being Index to analyze
utilizing existing measurements and collection data, rather than requiring additional and
more resources to check the weights of variables. The three issues promised in the intro-
duction of the study were also identified: (1) how GI affects residents’ satisfaction; (2)
what variables are most sensitive to GI installation; and (3) how to maximize the actual
application of the model. The index score was calculated to measure social well-being
standards and the model predicted their major impacts. The GI variables were found to
be significant among all and the significance was different by Seoul and Gyeonggi-do.
Sensitive variables associated with GI installation were demographic variables, and ad-
ditional needs were identified according to the existing GI installation level. Scenario
analysis also highlighted that the practical applicability of urban research and concluded
the ML-based model showed impressively high predictive accuracy and identified the
region’s characteristics by establishing a distinguished model of Seoul and Gyeonggi-do
from the inconsistent distribution characteristics of regional data. It is encouraging that
such built models are also sensitive in real-case scenario analysis, confirming the potential
to help decision makers make policy decisions. However, there is still a possibility of
expansion in collecting extensive data considering the diverse variables of urban context in-
cluding ecologic and environmental variables, time range, and transferability of the model
prepared for the Social Well-Being Index. Furthermore, it is expected that more efficient
GI location exploration will be possible through a comprehensive model construction that
considers these variables. Finally, detailed standards for urban development and facility
preparation can be provided if a more detailed model is estimated according to the applied
classification rather than the type of GI.
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14. Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting Ecosystem and Human

Health in Urban Areas Using Green Infrastructure: A Literature Review. Landsc. Urban Plan. 2007, 81, 167–178. [CrossRef]
15. Wu, J.; Plantinga, A.J. The Influence of Public Open Space on Urban Spatial Structure. J. Environ. Econ. Manag. 2003, 46, 288–309.

[CrossRef]
16. Mell, I.C. Can Green Infrastructure Promote Urban Sustainability? Proc. Inst. Civ. Eng. Eng. Sustain. 2009, 162, 23–34. [CrossRef]
17. Sung, H.-C.; Hwang, S. A Preliminary Study on Assessment of Urban Parks and Green Zones of Ecological Attributes and

Responsiveness to Climate Change. J. Korea Soc. Environ. Restor. Technol. 2013, 16, 107–117. [CrossRef]
18. Zhang, Y.; Murray, A.T.; Turner, B.L. Optimizing Green Space Locations to Reduce Daytime and Nighttime Urban Heat Island

Effects in Phoenix, Arizona. Landsc. Urban Plan. 2017, 165, 162–171. [CrossRef]
19. Meerow, S.; Newell, J.P. Spatial Planning for Multifunctional Green Infrastructure: Growing Resilience in Detroit. Landsc. Urban

Plan. 2017, 159, 62–75. [CrossRef]
20. Liu, Y.; Wang, R.; Grekousis, G.; Liu, Y.; Yuan, Y.; Li, Z. Neighbourhood Greenness and Mental Wellbeing in Guangzhou, China_

What Are the Pathways? Landsc. Urban Plan. 2019, 190, 9. [CrossRef]
21. Neema, M.N.; Ohgai, A. Multitype Green-Space Modeling for Urban Planning Using GA and GIS. Environ. Plan. B Plan. Des.

2013, 40, 447–473. [CrossRef]
22. Yuan, Z.; Tiemao, S.; Chang, G. Multi-Objective Optimal Location Planning of Urban Parks. In Proceedings of the 2011

International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp.
918–921.

23. Maruani, T.; Amit-Cohen, I. Open Space Planning Models: A Review of Approaches and Methods. Landsc. Urban Plan. 2007, 81,
1–13. [CrossRef]

24. Thompson, C.W. Urban Open Space in the 21st Century. Landsc. Urban Plan. 2002, 60, 59–72. [CrossRef]
25. BenDor, T.; Westervelt, J.; Song, Y.; Sexton, J.O. Modeling Park Development through Regional Land Use Change Simulation.

Land Use Policy 2013, 30, 1–12. [CrossRef]
26. Kim, H.; Tran, T. An Evaluation of Local Comprehensive Plans Toward Sustainable Green Infrastructure in US. Sustainability 2018,

10, 4143. [CrossRef]

89



Sustainability 2021, 13, 9620

27. Campagnaro, T.; Sitzia, T.; Cambria, V.E.; Semenzato, P. Indicators for the Planning and Management of Urban Green Spaces: A
Focus on Public Areas in Padua, Italy. Sustainability 2019, 11, 7071. [CrossRef]

28. Lee, D.; Oh, K. The Green Infrastructure Assessment System (GIAS) and Its Applications for Urban Development and Manage-
ment. Sustainability 2019, 11, 3798. [CrossRef]

29. Zhou, C.; Wu, Y. A Planning Support Tool for Layout Integral Optimization of Urban Blue–Green Infrastructure. Sustainability
2020, 12, 1613. [CrossRef]

30. Lai, S.; Leone, F.; Zoppi, C. Assessment of Municipal Masterplans Aimed at Identifying and Fostering Green Infrastructure: A
Study Concerning Three Towns of the Metropolitan Area of Cagliari, Italy. Sustainability 2019, 11, 1470. [CrossRef]

31. Giles-Corti, B.; Broomhall, M.H.; Knuiman, M.; Collins, C.; Douglas, K.; Ng, K.; Lange, A.; Donovan, R.J. How Important Is
Distance To, Attractiveness, and Size of Public Open Space? Am. J. Prev. Med. 2005, 28, 169–176. [CrossRef]

32. Liang, X.; Tian, H.; Li, X.; Huang, J.-L.; Clarke, K.C.; Yao, Y.; Guan, Q.; Hu, G. Modeling the Dynamics and Walking Accessibility
of Urban Open Spaces under Various Policy Scenarios. Landsc. Urban Plan. 2021, 207, 103993. [CrossRef]

33. Chiesura, A. The Role of Urban Parks for the Sustainable City. Landsc. Urban Plan. 2004, 68, 129–138. [CrossRef]
34. Roe, M.; Mell, I. Negotiating Value and Priorities: Evaluating the Demands of Green Infrastructure Development. J. Environ. Plan.

Manag. 2013, 56, 650–673. [CrossRef]
35. Lee, D.; Derrible, S. Predicting Residential Water Demand with Machine-Based Statistical Learning. J. Water Resour. Plan. Manag.

2020, 146, 04019067. [CrossRef]
36. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-Learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830.
37. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R, 2nd ed.; Springer:

Berlin/Heidelberg, Germany, 2013; Volume 112, ISBN 978-1-4614-7138-7.
38. Abhijith, K.V. Air Pollution Abatement Performances of Green Infrastructure in Open Road and Built-up Street Canyon

Environments—A Review. Atmos. Environ. 2017, 162, 71–86. [CrossRef]
39. De Groot, R.S. Functions of Nature: Evaluation of Nature in Environmental Planning Management and Decision-Making; Wolters-

Noordhoff BV: Toronto, ON, Canada, 1992; ISBN 90-01-35594-3.
40. Seoul Metropolitan Governments. Urban Planning-Seoul’s Unique, Sustainable Urban Planning; Seoul Solution: Seoul, Korea, 2021.
41. OECD. How’s Life in Your Region? Measuring Regional and Local Well-Being for Policy Making; OECD: Paris, France, 2014.
42. Byun, M.; Choi, J.; Park, M.; Lee, H. The Quality of Life in Megacity and Seoul-Specific Happiness Indicator; Seoul Research Institute:

Seoul, Korea, 2015.
43. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31073-2.
44. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY,

USA, 2009; ISBN 978-0-387-84858-7.
45. Lee, D.; Mulrow, J.; Haboucha, C.J.; Derrible, S.; Shiftan, Y. Attitudes on Autonomous Vehicle Adoption Using Interpretable

Gradient Boosting Machine. Transp. Res. Rec. 2019, 2673, 865–878. [CrossRef]
46. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
47. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Statist. 2001, 29. [CrossRef]
48. Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural

Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.;
Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30, pp. 4765–4774.

90



sustainability

Article

The Potential of Stormwater Management in Addressing the
Urban Heat Island Effect: An Economic Valuation

Daniel Johnson * , Judith Exl and Sylvie Geisendorf

Citation: Johnson, D.; Exl, J.;

Geisendorf, S. The Potential of

Stormwater Management in

Addressing the Urban Heat Island

Effect: An Economic Valuation.

Sustainability 2021, 13, 8685. https://

doi.org/10.3390/su13168685

Academic Editor: Hyun-Woo Kim

Received: 15 July 2021

Accepted: 30 July 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Environment and Economics, ESCP Business School Berlin, Heubnerweg 8-10, 14059 Berlin, Germany;
judith.exl@edu.escp.eu (J.E.); sgeisendorf@escp.eu (S.G.)
* Correspondence: djohnson@escp.eu

Abstract: Urban green infrastructure (UGI) within sustainable stormwater management provides
numerous benefits to urban residents, including urban heat island (UHI) mitigation. Cost–benefit
analyses (CBA) for UGI have been conducted at neighborhood level with a focus on stormwater
management, but valuations of reductions in heat-related hospitalizations and mortality are lacking.
These benefits create significant social value; the quantification thereof is essential for urban planning
in providing a scientific foundation for the inclusion of UGI in UHI mitigation strategies. This
study assesses the potential of three UGI scenarios developed for an urban neighborhood in Berlin,
Germany. First, climate data analyses were conducted to determine the cooling effects of tree drains,
facade greening, and green roofs. Second, a CBA was performed for each scenario to value UHI
mitigation by estimating the damage costs avoided in reduced heat-related hospitalizations and
fatalities, using the net present value (NPV) and benefit–cost ratio (BCR) as indicators of economic
feasibility. The results indicate heat mitigation capabilities of all three UGI types, with tree drains
achieving the strongest cooling effects. Regarding economic feasibility, all scenarios achieve positive
NPVs and BCRs above one. The findings confirm the potential of stormwater management in
mitigating UHI and generating substantial social value.

Keywords: stormwater management; urban heat island; cost–benefit analysis; ecosystem services;
urban green infrastructure

1. Introduction

Urbanization combined with rising frequency and intensity of heat events as a result of
climate change leads to increased occurrence of the so-called urban heat island (UHI) effect.
This well-recognized phenomenon has been widely described in the literature and refers
to increased ambient temperatures in heavily built-up urban environments as compared
to rural areas [1]. The development of UHIs within cities are attributed to higher shares
of sealed surfaces [2], for example, buildings and streets [3], and further exacerbate other
urban issues such as stormwater management [4]. Moreover, building materials often
absorb more heat during the day due to low solar reflectance, which is then emitted as
thermal radiation during the night, reducing cooling phases between periods of daytime
heat stress [5–7]. Average daytime UHI intensity recorded for European cities is currently
2.6 ◦C above temperatures in surrounding areas [8].

Besides the development of UHI as a result of urbanization, stormwater management
becomes a pressing issue. Conventional solutions to stormwater management in dense
urban areas attempt to convey stormwater quickly from the source to nearby water bodies
or wastewater treatment plants [9]. Often, separated sewer systems are installed to convey
the stormwater directly into nearby water bodies, carrying along polluting elements such as
dust, heavy metals, and organic trace substances from construction and transportation [10].
Sustainable stormwater management is one alternative strategy to retain stormwater at the
source and replicate natural processes in the water cycle, often referred to as sustainable
urban drainage systems (SUDS) [11]. Such systems not only reduce stormwater runoff and
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improve receiving river water quality [12] but also allow for the creation of numerous addi-
tional ecosystem services, which when monetarily valued provide substantial benefits that
can outweigh the costs of installing and maintaining them [13]. With such a management
approach, planners can instill multifunctionality in the planning process [14,15], addressing
both stormwater management issues as well as numerous other issues such as the UHI
effect [16]. In terms of mitigating UHI effects, measures within the framework of SUDS
including tree drains (tree drains, or tree trenches, allow for the temporary storage and
quicker infiltration of stormwater [17]), green roofs and façade greening provide substantial
contributions and are further termed urban green infrastructure (UGI) [18].

UGI mitigates the UHI effect by offering heat regulation services through shading,
evapotranspiration and thermal insulation of buildings [5,19–21]. Economic analyses of
UGI have been conducted for individual measures, frequently with a focus on water
management, e.g., [20–24]. Perini and Rosasco [25] also performed a monetary valuation of
facade greening benefits such as heat regulation and air quality improvements. A complete
analysis of UHI-related economic impacts on city scale has been carried out for Melbourne,
Australia by Raalte et al. [26]. However, to date, the evidence of human health impacts
of UGI in stormwater management is lacking [27], and only one study by Johnson and
Geisendorf [13] assesses the economic performance of UGI measures on neighborhood
level in Germany. The authors focus primarily on the valuation of ecosystem services
ranging from water management to air quality improvement, but do not address heat
regulation benefits provided by UGI. The purpose of the current study is to build on
Johnson and Geisendorf’s [13] study by quantifying the UHI mitigation effect of UGI
for stormwater management and estimating the economic value of these temperature
regulation benefits by identifying the damage costs avoided through reductions in heat-
related hospital admissions and excess mortality. Three different UGI scenarios for a
neighborhood in Berlin, Germany are compared to assess the potential of stormwater
UGI to create net benefits for society by reducing urban dwellers’ heat stress exposure.
As the analysis is based on an actual management exercise within a research project that
was developed for the Berlin study site, the calculation of UHI mitigation benefits can
support the real planning process by providing quantitative information for objective
evaluation of the different measures and scenarios and induce stakeholders to support the
implementation of those UGI measures that create the highest net benefits for society.

2. UHI and Valuation

The UHI effect causes many negative impacts on urban life, resulting in high social
and economic costs. Among the most commonly discussed effects are work productivity
losses [28,29], increased energy consumption for indoor cooling [7,25], as well as increases
in morbidity and mortality rates [5,30–32]. Heat-related mortality in particular represents
a significant factor in UHI-related costs to society. Scherer et al.’s [32] comparison of
approximately 1600 annual heat-related deaths in Berlin to an average of 64 road traffic
fatalities in the German capital accentuates the topic’s relevance and consequently the
necessity for sustainable UHI mitigation strategies.

The effectiveness of UGI in lowering urban temperatures is well documented. Temper-
ature regulation can be supplied by UGI mainly through evapotranspiration and shading,
but also thermal insulation [8,20,21,33], and can be achieved in critical areas through tree
drains supplemented with facade greening and green roof installation where space is
limited. These measures not only positively impact the ambient air temperature [34] but
also the indoor cooling loads [35], and the need for effects in urban areas have been ap-
parent. For instance, Larondelle and Lauf [20] conducted a study investigating the supply
and demand for different urban ecosystem services provided by UGI in Berlin, Germany.
The demand for such services was found to be higher the more densely concentrated the
infrastructure (e.g., in city centers). Moreover, Simperler et al. [36] found that areas in
Berlin with high UHI correlated highly with areas also generating significant stormwater
pollution and that UGI measures can combat both challenges at once. Such measures
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require substantial financial investments, underlining the need for objective economic
valuation of non-marketable goods such as heat regulation, in order to create transparency
in policy making [37]. Although arguments against economic valuation as a comprehensive
approach to encompassing the many facets of nature’s value have their legitimacy [38,39],
we see the importance of including monetary valuation of ecosystem services in enabling
cost-efficient urban planning processes [40].

As the present analysis incorporates private and social elements, ecosystem services
and health-related impacts over time, a brief discussion on discounting is warranted.
We adopt a dual discounting scheme to discount private and social costs and benefits
separately [41]. Although there are ethical concerns regarding the use of exponential
discount rates [42], we do not pursue a hyperbolic discounting scheme since the impacts
are analyzed over a shorter time horizon than typical climate-economic models that extend
beyond the end of the current century [43]. The 3% discount rate for private costs and
benefits is the same rate used in the KURAS project [44] and suggested by the German
Association for Water, Wastewater and Waste for use in German economic analyses [45].
We use a lower 2.1% discount rate for ecosystem services accruing as social benefits, in light
of recent research on the proper discount rates to be used for ecosystem services [46,47].
This rate is also used for health-related impacts, which resembles the rate suggested by
Attema et al. [48]. However, it should be noted that there are grounds for discounting
health-related impacts with a zero-discount rate, as society may place little to no difference
in weight on future lives saved [49,50].

3. Materials and Methods

This study assesses the economic value of reductions in heat stress by three UGI sce-
narios on a neighborhood level while incorporating the monetary valuation of ecosystem
services. First, the analysis is based on climate data from the KURAS project (“Concepts
for urban stormwater management and sewer systems”; German: “Konzepte für urbane
Regenwasserbewirtschaftung und Abwassersysteme”, http://www.kuras-projekt.de/ (ac-
cessed on 17 July 2017)) [12], funded by the German Federal Ministry for Education and
Research. The project modeled an urban neighborhood within the district of Pankow,
Berlin, which is the site for current investigation. The second part of the analysis concerns
the economic valuation of the results obtained from the climate data analysis. The UHI
mitigation effects of UGI for the three scenarios are combined with demographic statistics
as well as heat-related morbidity and mortality data from the literature to calculate UHI
mitigation-related benefits. Other UGI benefit and cost calculations for the Berlin study
site were also taken from existing literature to supplement the UHI mitigation benefit data.

3.1. Study Site

The Berlin neighborhood is a residential area of 117 hectares within the urban district
of Pankow, characterized by a combination of multi-story apartment buildings from the
1920s and 1930s, and higher residential buildings from the post-war period [44]. In terms of
demographic indicators such as population density and age structure, it represents a typical
Berlin neighborhood. Although the KURAS project focused on stormwater management
and therefore included measures such as swales and ponds, the UGI measures relevant for
this study were part of the project scope, and their effects could be isolated for the purpose
of the benefit calculations. Moreover, we align the economic valuation of ecosystem services
for the three UGI scenarios designed in the KURAS project according to the methodology
described in Johnson and Geisendorf [13].

The KURAS project partners developed three independent scenarios for the imple-
mentation of urban stormwater management measures, including UGI, based on local
requirements—for example, improving groundwater management, urban climate, and
biodiversity—as well as stakeholder priorities and feasibility [44]. The creation of different
scenarios allows identification of the most efficient UGI placement, which is an important
factor because the strategic implementation of UGI measures in key areas yields better
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results than simply increasing the share of green cover [21]. Furthermore, the scenarios
were developed independently of one another within separate groups of stakeholders,
planners and interest groups. Figure 1 shows the placement of UGI measures as part of the
stormwater management scenarios.

  
(A) (B) 

 
(C)  

Figure 1. Placement of UGI measures for stormwater management scenarios (A–C).

Whereas Scenario A is characterized by the lowest coverage of greening, Scenario C is
characterized by the highest overall greening coverage. In particular, Scenario C receives
more façade greening and extensive green roofs than the other two scenarios, and the level
of tree drain coverage is only slightly lower than Scenario B. Although Scenario B has a
higher coverage of tree drains and extensive green roofs than Scenario A, the application of
façade greening is greatly lower than in the other two scenarios, which significantly lowers
the overall costs as seen below in Section 4.2.

3.2. Climate Data Analysis

The KURAS climate data that were evaluated for the current study is organized in a
Cartesian coordinate system with 8 m × 8 m grid cells. A value attached to each grid cell
represents how the specific space is being used, that is, if the area is covered with buildings,
streets, other (partially) sealed surfaces such as parking lots or railways, or if green or blue
spaces such as grass, trees or ponds are present. Additionally, climate data for each grid cell
is available with temperatures measured at a height of 2 m (i.e., pedestrian level), showing
diurnal heat stress measured in hours per year. For categorization of daytime heat stress,
the universal thermal climate index (UTCI) was selected, including UTCI classes strong
heat stress (SHS; >32 ◦C–36 ◦C), very strong heat stress (VSHS; >36 ◦C–46 ◦C), and extreme
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heat stress (EHS; >46 ◦C). This selection is consistent with the German Meteorological
Service’s (German: “Deutscher Wetterdienst”, DWD) policy of issuing heat warnings above
temperatures of 32 ◦C [51]. Daytime heat stress, that is, UTCI in hours per year, for the
current situation in the Pankow study site is shown in Figure 2.

Figure 2. Heat stress in the current situation for the study site in Pankow, Berlin.

For all three scenarios, the grid cell values show where stormwater management
measures were added. These measures include extensive green roofs, facade greening,
urban trees, swales, swale-trench systems, swale-trench beds, ponds, permeable pavement,
rainwater harvesting cisterns, and retention soil filters. R software [52] was used to filter
out only those grid points where UGI (i.e., tree drains, facade greening, or green roofs) was
added. Temperature differences were then calculated for these grid points as compared
to the base scenario, specifically extracting minimum, maximum and mean temperature
changes achieved by each UGI type, expressed in UTCI.

3.3. Economic Valuation

UHI mitigation effects achieved by UGI were valued in monetary terms. The damage
costs avoided by lowering heat-related morbidity and mortality were combined with
additional ecosystem services following the methodology of Johnson and Geisendorf [13].
Once quantified, those benefits were balanced against initial UGI installation costs as
well as recurring maintenance and operation expenses taken from Strehl et al. [53]. In
the final step, the resulting net benefits were calculated over a time span of 50 years and
subsequently discounted to present value in order to obtain the NPV and BCR.

The first step in the monetization of UHI mitigation benefits was to calculate the share
of the study site area covered with additional UGI in each of the three scenarios developed
by the KURAS project. Next, the total heat stress reduction per scenario was calculated as
the sum of all UTCI classes (i.e., SHS, VSHS, and EHS) and converted from hours per year
to the number of hot days per year. This conversion was performed assuming an average
of 16.03 h of daylight in Berlin for the months of June–August [54], which is the period
during which most heat events and the majority of heat-related fatalities occur [32,55].
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Demographic data from the German Federal Statistical Office (German: “Statistisches
Bundesamt”) and Umweltatlas Berlin [56] were used to determine the number of residents
that are reached by UGI measures in the Pankow neighborhood and consequently benefit
from reduced heat stress and lower morbidity and mortality rates. The calculation method
was modeled after a similar approach used by Bodnaruk et al. [19]: population data was
first calculated on neighborhood level and then multiplied by the percentage of the model
site area covered with UGI to obtain the number of residents who actually benefit from
the additional green cover. Subsequently, the numbers of these citizens falling into the
0–74 years and 75+ years age groups were calculated based on the respective shares of
92.16% and 7.84% [57], since the latter age group has been found to be significantly more
vulnerable to heat-related morbidity and mortality increases [28]. Different excess morbid-
ity and mortality rates were consequently applied to both age groups. All demographic
data used in the UHI mitigation benefit calculations is for the year of 2017. Using values
from this single year rather than an average from a range of years was deemed appropri-
ate because 2017 can be classified as a statistically average weather year: DWD climate
summary reports for the years 2014–2018 reveal that all five years showed average annual
temperatures of 1.4–2.2 ◦C above the international reference period of 1961–1990. The value
for 2017 was 1.4 ◦C above average and no unusual number of heat events occurred during
2017 compared to the other years [58–62].

3.3.1. Reduced Heat-Related Morbidity

The demographic situation for the study site base scenario is as follows: According
to Umweltatlas Berlin [56], the total population of the Pankow study site was 23,276 in
2017. A total of 21,451 of this number fall into the 0–74 age group with a 17.09% annual
hospitalization rate for all causes, and the remaining population of 1825 are aged 75 years
or older with a base hospital admission rate of 49.86%, consistent with hospitalization
statistics for Germany [63].

Reductions in heat-related hospitalization cases by age group were calculated for each
scenario using increases in morbidity rates for UTCI class SHS based on a study conducted
by Johnson et al. [64] for the 2003 heat wave in England, and EHS morbidity rate increases
as calculated by Hübler et al. [28] based on the data provided by Johnson et al. [64]. Excess
morbidity for VSHS was not considered by either study, therefore linear extrapolation of
moderate heat stress and SHS values from Johnson et al. [64] was used to determine the
effect for VSHS. Total excess morbidity rates obtained in this manner amount to 1.82% for
SHS, 2.91% for VSHS, and 3.99% for EHS. These values were then converted to a weighted
average increase for hot days (i.e., days with average temperatures above 32 ◦C) by UTCI
class incidence in the current situation, yielding relative morbidity increase rates of 0.76%
for the 0–74 age group, and 16.93% for the 75+ age group. These rates were subsequently
multiplied by the share of the model site population reached by UGI measures and applied
to the reduction in hot days achieved by each UGI scenario as calculated from KURAS
climate data.

Exact quantification of the costs related to heat-related hospitalizations is challenging
as no data is available on treatment costs of heat-related illnesses in Germany [28,65].
Therefore, Hübler et al. [28] carried out an economic appraisal of the overall expenditures
based on average hospitalization costs in Germany. According to the authors’ calculations,
current heat-related hospitalization costs amount to EUR 82 million and will increase six-
fold for the period 2071–2100, taking into account climate change as well as demographic
changes such as population size and age structure. In relative terms, this figure represents
0.27% of total German healthcare expenses. Each prevented hospital admission case was
estimated to account for an average of EUR 3300 in damage costs avoided, with the estimate
referring to statistics on hospital treatment costs for heat-related illnesses [28,65].

We derive the estimated economic value of the reduced heat related morbidity (Vmorb)
in accordance with the damage cost avoided for age groups k (0–74 years) and K (75+ years):
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Vmorb = ∑
K
k PopUGI,k·Morb2017,k·Morbheat,k·

UTCIred,trees + UTCIred,GR + UTCIred,FG

365 days
·HCavg (1)

where PopUGI,k is the number of residents reached by UGI in the specific age group
(0–74 years: 4130 residents; 75+ years: 351 residents) [56], Morb2017,k is the base morbidity
rate in 2017 for the specific age group (0–74 years: 17.09%; 75+ years: 49.86%) [63], Morbheat,k
is the relative increase in heat-related morbidity rate for the specific age group (0–74 years:
0.76%; 75+ years: 16.93%) [28,64], UTCIred is the average reduction in UTCI exceedance in
hours per year of cells by UGI (trees drains, trees; green roofs, GR; façade greening, FG),
and HCavg is the average hospitalization cost.

3.3.2. Reduced Heat-Related Mortality

Mortality cases in the current situation were calculated using the base mortality rate
of 1.04% for Germany [66]. The base mortality rate was adjusted for seasonality, taking into
account that winter mortality has been found to be 8% higher and summer mortality 8%
lower than the annual average [28]. Reduced mortality for each scenario was determined
by applying a heat-related excess mortality rate of 5% [32] to the base mortality rate and
multiplying the result with the number of model site residents reached by UGI cooling
effects, as well as the reduction in number of hot days as calculated from UTCI data
(Table 3). Based on data from the 2003 European heat wave, 20% of the mortality reduction
was attributed to the 0–74 age group, while the remaining 80% were assumed to occur in
residents aged 75 years and older [28]. In order to express the value of these avoided deaths
in monetary terms, population percentages by age were used to break down the average
life expectancy in Germany of 78.81 years to the average number of life years lost per death,
yielding 49.88 years for the 0–74 age group and 5.76 years for the 75+ age group [57,67,68].

Each lost year of life was valued at EUR 95,653 based on dividing the VSL for Germany
(EUR 7.538 million), as estimated by Viscusi and Masterman [69], by the current average
life expectancy. Viscusi and Masterman [69] provide the most up to date VSL by taking a
base VSL derived through a meta-analysis of revealed preference data from hedonic wage
studies and income elasticity for the U.S. and estimating country-specific VSLs. Although
the OECD [70] proposes a base VSL of approximately USD 3.6 million (2005 dollars), this
estimate is based on stated preference data, whereas Viscusi and Masterman [69] discuss
the disadvantages of the OECD [70] values and base their data on revealed preferences to
mitigate hypothetical bias. In order to account for uncertainty in such a large VSL, we test
for sensitivity of the cost–benefit model to the VSL by incorporating the Germany-specific
VSL estimate from Spengler [71] of EUR 1.978 million as a minimum value.

We derive the estimated economic value of the reduced heat related mortality (Vmort) in
accordance with the damage cost avoided for age groups k (0–74 years) and K (75+ years):

Vmort = ∑
K
k Pop ·M2017·Mheat,k·dseason·UGI·

UTCIred

UTCIcurrent
·
(

LEk − AGEavg,k

)

·VOLY (2)

where Pop (23,276 residents) is the population in the study site in 2017 [56], M2017 (1.13%) is
the base mortality rate of Germany in 2017 [66], Mheat,k is the excess heat-related mortality
rate (5%) in Berlin [32] given the 0–74 age group (4%) and 75+ age group (1%) [28], dseason

is the adjustment for seasonal mortality (i.e., summer mortality 8% lower and winter
mortality 8% higher than annual average [28]), UGI is the share of the study site area (%)
to be complemented with UGI, UTCIred is the average reduction in UTCI exceedance in
hours per year of cells with UGI, UTCIcurrent is the current average UTCI exceedance in
the cells with UGI, LE is the average life expectancy for the specific age group, AGEavg is
average age of residents in the age group, and VOLY is the value of life year derived from
the average life expectancy (78.8 years [66]) and the inflation-corrected VSL of EUR 7.538
million [69].
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3.3.3. Ecosystem Service Valuation

The UGI measures in this study bring about numerous additional ecosystem services.
The methodology for economic analyses of these ecosystem services is described by Johnson
and Geisendorf [13], and the applicable results from their research were included in the
CBA performed for this study.

The ecosystem services valued for UGI in this study included reduced stormwater
runoff [10], increased building longevity [72], habitat creation [73], increases in building
value (aesthetic improvements) [74], heating and cooling savings [72], and pollution [75]
and carbon dioxide (CO2) reduction [25]. For example, green roofs and tree drains directly
contribute to reducing loads on municipal treatment plants. Berlin charges a rainwater
fee for sealed surface at 1.804 EUR/m2 for home and property owners, but this fee can be
reduced by 50% for such UGI measures [76]. We assume that tree drains provide additional
stormwater retention for 250 m2 area on average.

The remaining relevant benefits could be completely attributed to UGI implemen-
tation and were therefore computed directly according to Johnson and Geisendorf [13]:
longevity increases apply to green roofs and facades, which can be replaced or restored at
larger intervals compared to conventional roofs and facades due to the building materials’
protection against weathering by greening. Habitat creation benefits are added by green
roofs and could therefore also be transferred entirely. The same was true for aesthetic
improvements achieved by facade greening, heat savings and avoided heat externalities
resulting from green roof installation, as well as cooling effects of green roofs and facades.
Air quality improvement calculations were equally based on UGI effects only. They include
pollution removal by all UGI types, and carbon storage and sequestration by tree drains
and green roofs.

3.4. Cost–Benefit Model

Unit investment costs as well as operation and maintenance costs for the three UGI
types were taken from an interim report presenting the economic side of the KURAS
project [53], as well as Johnson and Geisendorf [13], and used to calculate total costs of
UGI measures implemented in each scenario. The unit costs for each measure are shown in
Table 1. Tree drains are clearly the most expensive UGI type to install, but operation and
maintenance costs are lower than for the other two measures. Green roofs are a low-cost
choice both in terms of installation and running costs, while facade greening generates the
second-highest installation costs as well as the highest annual costs.

Table 1. Unit installation (I)/annual operation and maintenance (O&M) costs of the three UGI types.

I (EUR/m2) O&M (EUR/m2)

Extensive green roofs 20 1.50
Façade greening 100 10.00

Tree drains 303 1.21

Benefits gained from lowering morbidity and mortality rates as a result of reduced
heat stress were added to the additional ecosystem services. The economic analysis was
calculated over a project horizon of 50 years, reflecting the typical lifetimes of UGI measures:
green roofs are estimated to need replacement after 40–55 years, green facades after 40–45
years, and trees can remain in place for several decades beyond this time horizon [25,72].
Both the NPV and BCR were selected as indicators for economic comparison of the three
scenarios. When the NPV of a project is greater than zero, or the BCR greater than 1, this
indicates that the present value of all benefits outweighs the sum of the discounted costs
over the project period, and pursuing the project is an economically sound option. Future
costs and benefits were discounted to present value following the discounting regime
described in Section 2.
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3.5. Sensitivity Analysis

A sensitivity analysis was performed to test the sensitivity of the results to changes in
the parameters of cost–benefit model. According to the European Commission [77], if a
20% change in a project parameter leads to a 20% change in the NPV, the NPV is assumed
to be sensitive to the parameter. Johnson and Geisendorf [13] demonstrated that the NPV
may be sensitive to the installation and maintenance costs as well as the property value
increases due to green roofs. Given the VSL and discount rate may produce significant
effects on the NPV, we additionally included these parameters in the sensitivity analysis.

The sensitivity analysis was performed in the form of a Monte Carlo analysis with
10,000 iterations of repeated drawings from distributions of the parameters for which the
NPV can be sensitive. We varied the parameters according to distributions in Table 2.

Table 2. Input parameters and distributions for the Monte Carlo simulations with U(minimum,
maximum) as a uniform distribution, N(mean, standard deviation) as a normal distribution and
T(minimum, maximum) as a triangular distribution.

Distribution and Parameters Units

Installation costs U(−20, +20) %
Operation and maintenance costs U(−20, +20) %

Property value increase in green roofs U(2, 5) %
Heat-related mortality rate N(5.2, 1.3) %

Value of statistical life T(1,978,165, 7,538,485) EUR
Private discount rate U(1, 5) %
Social discount rate U(0, 3) %

Since the installation and operation and maintenance costs of the scenarios were
partially determined through general and site-specific cost estimations, we assume a range
of costs at ±20% for each of the scenarios. For the property value increases in green roofs,
we assume an increase in building values in the range from 2–5% based on the study by
Bianchini and Hewage [74]. For heat-related mortality, we follow the mean and standard
error values given in Scherer et al. [32]. The VSL follows a triangular distribution because
the Viscusi and Masterman [69] estimate is the most likely (also the maximum), although
we acknowledge prior studies [71] estimating the Germany-specific VSL be much lower
(minimum). The range of private discount rates used follow those tested in Johnson and
Geisendorf [13], and the social discount rates are assumed to follow a uniform distribution
but only maximizing to the private discount rate for a given iteration of the analysis.

4. Results

A visual representation of the UHI mitigation in each of the three scenarios can be seen
in Figure 3. Results of the climate data analysis including minimum, maximum and mean
reductions in UTCI by UGI measure and for each scenario are summarized in Table 3.
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Figure 3. Changes in heat stress as reduced hours of UTCI exceedance for each of the scenarios,
(A–C) is a visual representation of the UHI mitigation in each of the three scenarios.

Table 3. Changes in UTCI following the implementation of UGI measures for the three scenarios.

Scenario UGI Measures Areas
Change in UTCI (hours/year)

Min Max Mean

A
Tree drains 5341 −711.49 0.00 −319.52

Extensive green roofs 58,515 −380.80 96.10 −10.94
Façade greening 199,880 −380.80 96.10 −12.67

B
Tree drains 10,631 −593.14 0.00 −221.59

Extensive green roofs 72,926 −316.5 19.18 −8.98
Façade greening 79,008 −76.78 10.34 −3.01

C
Tree drains 10,118 −669.00 0.00 −285.71

Extensive green roofs 121,658 −297.40 37.84 −4.68
Façade greening 290,732 −230.21 22.08 −5.73

Comparing the effects of the different UGI measures, tree drains generally achieve
the highest mean daytime heat stress reductions, whereas facade greening and green roofs
perform at similar, lower levels across the three scenarios. Using mean heat stress reduction
values and assuming an average of 16.03 daylight hours per day for the heat event season
from June to August in Berlin, Scenario A experiences 21.41 fewer hot days compared to
the current situation; Scenario B 14.57 days; and Scenario C 18.48 days.
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4.1. Economic Valuation

The UGI benefits are shown in Table 4, with all benefits calculated over the project time
horizon of 50 years and discounted at 3% for private benefits and 2.1% for social benefits.

Table 4. Present value (EUR) of all benefits over the 50-year time horizon discounted at 3% for private benefits and 2.1%
for social benefits. Benefits provided by tree drains (TD), extensive green roofs (GR), and façade greening (FG). Valuation
methods include damage cost avoided (DCA), market price (MP), replacement cost (RC), and benefit transfer with hedonic
pricing (BT).

Benefits
Provided

by
Valuation
Method

Type of
Benefit

Scenario A Scenario B Scenario C

U
H

IM
it

ig
at

io
n

Heat-related mortality reduction
TD
GR
FG

DCA Social 35,057,726 20,436,515 34,460,982

Heat-related morbidity reduction
TD
GR
FG

DCA Social 208,386 95,900 270,181

E
co

sy
st

em
se

rv
ic

es

Runoff reduction
TD
GR

MP Private 2,309,569 3,520,134 4,575,692

Increasing building longevity
Roof longevity GR RC Private 1,732,711 2,159,438 3,602,475

Façade longevity FG RC Private 8,985,805 3,551,884 13,070,148
Habitat creation GR RC Social 474,941 591,909 987,449

Aesthetic improvements
Property value (w/façade greening) FG BT Private 14,038,596 8,896,971 18,522,905

Property value (w/green roof) GR BT Private 20,050,658 24,988,683 41,687,285
Energy savings
Heating savings GR MP Private 1,842,809 2,296,651 3,831,380

Cooling savings
GR
FG

RC Social 462,488 474,455 886,747

Heating externalities GR DCA Social 1,098,200 1,368,662 2,283,265

Air quality improvements
TD
GR
FG

DCA Social 392,520 311,150 682,411

CO2 storage and sequestration
TD
GR

DCA Social 112,187 157,210 228,933

Totals 86,766,596 68,849,562 125,089,853

Regarding UHI mitigation benefits, heat-related hospitalizations are reduced by
2.05 cases per year for Scenario A, by 0.94 for Scenario B, and by the highest number
of 2.66 cases for Scenario C. Heat-related morbidity reductions result in comparatively low
monetary benefits, with Scenario C reaching the highest value of EUR 270,181 in damage
costs avoided over the project horizon. In terms of mortality reduction, the results for Sce-
narios A and C are almost identical with 0.78 and 0.77 annual deaths avoided, respectively.
For Scenario B, heat-related mortality cases are reduced by 0.46 per year, resulting in lower
societal benefits for that scenario.

Combining both morbidity and mortality reductions, the results for both Scenarios A
and C are similar, with the benefits of Scenario A being slightly higher at EUR 35,266,112
compared to EUR 34,731,163 for Scenario C. Scenario B achieved considerably lower UHI
mitigation benefits of EUR 20,532,416. The similar performances of Scenarios A and C
may initially seem surprising, particularly in view of the fact that Scenario C receives
a much higher portion of additional green cover—28.92% of the entire study site area
receive greening in this scenario, as compared to 19.25% for Scenario A. This means that a
larger share of the population benefits from heat mitigation through UGI, which should
result in higher UHI mitigation benefits for Scenario C. However, at the same time the
mean heat stress reduction effect of UGI measures implemented in Scenario A is larger
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(Table 3). The higher effectiveness seems to be due to particularly successful placement of
UGI measures in areas affected by exceptionally strong heat stress. This finding is in line
with the conclusion of Zölch et al. [21] who, as mentioned in the literature review, note that
placing UGI in strategically advantageous areas is more important than aiming for sheer
increase in volume.

When combining both UHI mitigation benefits and ecosystem services, the resulting
total UGI benefits of the three scenarios were as follows: Scenario C performed best
with EUR 125,089,853; even though UHI mitigation benefits are comparable with those
of Scenario A, the other benefits tip the balance in total benefit calculations. Scenario A
follows with considerably lower total benefits of EUR 86,766,596, and Scenario B amounted
to EUR 56,831,176. UHI mitigation benefits contributed a share of 41%, 30%, and 28% to
the total benefits of Scenarios A, B, and C, respectively, with only aesthetic improvements
achieving higher contributions for Scenarios B and C. This identifies heat regulation as one
of the main contributing factors in UGI benefit generation.

4.2. Cost–Benefit Analysis

Comparing the three scenarios’ costs as calculated over the entire project time horizon
(Table 5), it is clear that Scenario C is the costliest to implement and maintain with total costs
for installation as well as operation and maintenance. These high costs can be explained
by the much higher area to be covered with additional UGI measures for Scenario C as
compared to the other two scenarios, particularly with regard to facade greening, which
generates the highest operation and maintenance costs of all UGI measures (Table 1).

Table 5. Present value of all costs and installation (I) and annual operation and maintenance (O&M) costs of the three
scenarios [54].

Scenario A Scenario B Scenario C

I (EUR/m2) M (EUR/m2) I (EUR/m2) M (EUR/m2) I (EUR/m2) M (EUR/m2)

Tree drains 1,618,348 5988 3,221,973 11,921 3,065,945 11,344
Extensive green roofs 1,170,294 87,772 1,458,511 109,388 2,433,156 182,487

Façade greening 19,988,560 1,998,856 7,900,800 790,080 29,073,220 2,907,322
Totals 22,777,202 2,092,616 12,581,284 911,389 34,572,321 3,101,153

Present value of all costs 76,619,718 36,031,108 114,364,256

Table 6 shows the NPVs and BCRs of the three scenarios, combining both discounted
costs (Table 5) and discounted benefits (Table 4) linked to each scenario. Scenario B clearly
performed the best given the higher BCR and NPV. Despite greatly different implemen-
tation of UGI and corresponding costs, the performances of Scenarios A and C are very
similar in both the NPV and BCR calculations and make the cutoff for economic feasibility.
The significantly better performance of Scenario B despite its comparatively low benefit
contribution is largely due to the fact that implementation costs for this scenario are by far
the lowest. Scenario B included a high share of additional trees with tree drains, which
are the costliest UGI type in terms of installation However, tree drains are also the most
inexpensive measure when it comes to operation and maintenance costs (Table 1), lowering
the overall cost over the project life span. Scenario B also receives the lowest share of facade
greening, which is the costliest measure in terms of operation and maintenance. In sum,
these low costs compensate for the relatively low benefits to be gained from implementing
Scenario B.

Table 6. Net present values (NPV) and benefit–cost ratios (BCR) of the three scenarios.

Scenario A Scenario B Scenario C

NPV EUR 10,146,769 EUR 32,818,400 EUR 10,725,544
BCR 1.13 1.91 1.09
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The similar performances of scenarios A and C, even with Scenario C receiving a
significantly higher share of UGI, can be traced back to the more efficient UGI placement
for Scenario A mentioned above. This results in almost the same level of UHI mitigation
benefits for both scenarios, which combined with lower costs for Scenario A ultimately
leads to the slightly better performance of this scenario. In other words, Scenario A achieves
the same level of UHI mitigation benefits at a much lower cost, meaning that benefits are
reached in a more cost-effective manner. Nevertheless, both Scenarios A and C have low
BCRs, which becomes a relevant factor in the sensitivity analysis presented in 5.3. This
leaves Scenario B as the most robust option; while the scenario generates lower benefits
than the other two, the discounted costs are also substantially lower, resulting in a higher
positive net outcome and thus confirming that this scenario generates substantial value
for society.

4.3. Sensitivity Analysis

A Monte Carlo analysis was performed with 10,000 draws from the given distribution
of parameters in Table 2 to test the sensitivity of the NPV to the parameters. The number
of draws is assumed to be amply large to obtain a random sample from each distribution
with all possible combinations. We obtained probabilities of achieving an economically
feasible result (NPV > 0) of 64%, 100%, and 63% for Scenarios A, B, and C, respectively.
Therefore, the results are robust given the uncertainty of the tested parameters. Given that
Scenario B would remain positive even with a significantly lower VSL estimate, we achieve
a much higher likelihood of economic feasibility.

We also tested the probabilities of achieving the baseline NPV, which resulted in
probabilities of 34%, 39%, and 40% for Scenarios A, B, and C, respectively. The triangular
distribution of the VSL became a significant factor for these probabilities because the
maximum VSL was already the estimate used for the baseline calculation. Additionally, the
uniform distribution for a ±20% change in total installation and operation and maintenance
costs lead to higher risks in terms of the likelihood of achieving a positive outcome.
However, we maintain that the cost estimates provided by Strehl et al. [53] are already
general costs estimates from the literature and expert estimations, and a 20% variation
from these would likely gravitate to more extreme outliers.

5. Discussion

Statistical climate data analysis and CBA were used as methods for determining the
effectiveness of three stormwater management scenarios developed for a neighborhood
in Pankow, Berlin, in combating UHI effects and thereby creating value for society. The
findings indicate two things: first, the climate data analysis reveals mean temperature
reductions in locations where UGI measures were added, confirming that UGI measures
in stormwater management can be effective in mitigating UHI effects. Secondly, lower
morbidity and mortality rates resulting from this decreased heat stress created monetized
benefits which contributed significantly to the positive economic performance of the
three scenarios, allowing the conclusion that UGI measures can be implemented in an
economically feasible manner.

The climate data analysis showed that UGI can be effectively employed to mitigate
urban heat stress, with varying results depending on UGI type as well as strategic place-
ment of measures. The results for all three scenarios generally match the findings of
previous studies. For tree drains, the climate data analysis showed the highest daytime
heat stress reductions of up to 711 h per year (Table 3). This is in line with the findings of
existing literature, where trees are found to have the strongest heat mitigation effect which
can even extend to several meters distance from the trees themselves [8,21,78]. Facade
greening, by contrast, achieved considerably lower cooling effects; a maximum of 381 h in
annual heat stress reductions could be confirmed. This pattern is also found in existing
studies which are in general agreement that green facades contribute less to heat stress
mitigation for residents, as the effect seems to be limited to the immediate proximity of the
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walls [21,33,79]. One finding that could not be confirmed by the climate data analysis is the
indoor cooling effect of facade greening, as the climate data were measured and simulated
for outdoor areas only in the KURAS project. Green roofs reached cooling effects very
similar to those of green facades, with the same maximum daytime heat stress reduction of
381 h per year. Existing literature offers mixed findings for the climate effects of green roofs,
with some studies not finding any effect at street level, and others acknowledging very
slight effects [7,8,21,31,65]. The effects that are revealed by the climate data analysis are
mostly due to low roofs such as underground parking lots, but overall the UHI mitigation
contribution of green roofs is low during the day [44].

Given the high heat-related benefits of the study, it is important to consider plausibility
as few studies have empirically investigated the green cover and improved health outcomes
relationship, i.e., [80]. The UHI mitigation benefits that were calculated for the study site,
that is, reductions in heat-related hospitalizations and deaths, were tested for plausibility by
extrapolating the CBA results to national level and comparing them with actual heat-related
hospitalization and mortality statistics for Germany. For heat-related hospitalizations in
Germany, 1856 cases were recorded in 2013, while 2003, the year of the European heat wave,
resulted in 2561 hospitalizations [81]. Taking the maximum number of hospitalization cases
avoided for the Pankow, Berlin study site, hospitalizations were reduced by 2.66 cases for a
total of 23,276 residents. Linearly extrapolating this to a population of roughly 80 million
for all of Germany yields a reduction of 9142 cases per year. This figure evidently exceeds
the number of regular countrywide hospitalization cases by a factor of 4. Possible reasons
for this could be that due to the UHI effect, urban dwellers are at a higher risk of suffering
heat-related illnesses, leading to a higher share of hospitalizations in the city compared
to the national average. Conversely, building resilience against heat stress through UGI
has a greater impact and reaches a greater number of citizens in a more efficient manner in
densely populated urban areas, which could also lead to the comparatively high number of
avoided hospitalization cases in the model site area. Nonetheless, assuming that the benefits
could indeed have been overestimated, this would be counterbalanced to a degree by a
conservative hospitalization cost estimate. Calculating total treatment costs for Germany
for 9142 heat-related hospitalizations at EUR 3300 per case—the amount used in the CBA—
we arrive at just over EUR 30 million in annual costs, representing less than 40% of the
EUR 82 million in national heat-related hospitalization costs [28]. Moreover, the economic
effect of reduced hospital admissions on the CBA calculations remains in any event limited,
as these savings account for only 1% of total UHI mitigation benefits.

Annual heat-related mortality cases for Germany have been estimated at 4500 deaths [65].
Taking the maximum number of deaths avoided for the model site area, we arrive at
0.78 cases for a population of 23,276, which would correspond to 2681 deaths avoided at
national level. This equals only approximately 60% of the number of heat-related deaths in
Germany estimated by Tröltzsch et al. [65]. Assuming that, as with hospitalizations, the
occurrence of heat-related fatalities is not evenly distributed throughout the country, but
that incidence is clustered in urban areas, the results appear to be even more conservative
estimates. However, we tread lightly in this conclusion as there is evidence of urban-rural
disparities in heat-related mortality, with higher rates being found in rural areas [82].
Despite this evidence, the outcome is consistent with observations made in the literature
review of Berlin accounting for a disproportionate share of Germany’s heat-related deaths.
Looking at the economic valuation of heat-related deaths, Tröltzsch et al. [65] arrive at
an inflation-adjusted annual cost to society of EUR 2.24 billion for 4500 deaths, assuming
an average of 8 lost life years per death. Using the number of fatalities as calculated
for the Pankow study site and extrapolating it to national level, total heat-related deaths
in Germany amount to 2681 cases. Applying the same VOLY of 62,126 as calculated by
Tröltzsch et al. [65] as well as a slightly higher average of 9.56 life years lost per case, total
cost savings would amount to EUR 1.59 billion, or 70% of the total costs calculated by
Tröltzsch et al. [65], suggesting conservative benefit estimates for this study.
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Overall, the results show that by addressing stormwater management issues, specific
UGI measures can be used as a cost-effective method for lowering urban heat stress, but
at the same time the strategic selection and placement of measures is key to achieving
economic feasibility. This becomes most evident when comparing the shares of green cover
and temperature reduction effects for Scenarios A and C, with Scenario C receiving by far
the highest share of UGI, but Scenario A still performs better in terms of heat mitigation
due to more effective placement of the measures.

6. Conclusions

Urban areas are increasingly affected by stormwater management issues and the UHI
effect due to a continuing urbanization trend leading to growing urban populations and
further consolidation of already heavily built-up city centers. The implementation of UGI
measures encompassed in sustainable stormwater management represents one solution to
mitigating heat stress for the urban population while also providing numerous additional
benefits. The purpose of this study was to quantify and value the UHI mitigation potential
through heat-related mortality and morbidity reductions in three different UGI scenarios
and assess the economic feasibility using a CBA approach. Two contributions were made
to the literature on valuing UGI benefits in a UHI context. First, a climate data analysis
with the aim of assessing the heat stress mitigation potential for different UGI scenarios
in a typical neighborhood of Berlin, Germany was conducted. The second contribution
was delivered in the form of CBAs with a focus on social benefits related to reduced
morbidity and mortality rates as a result of UHI mitigation through UGI. While previous
studies have addressed the UHI mitigation benefits of individual UGI measures, and
stormwater management related UGI benefits on a neighborhood scale, this study proposes
a method for analyzing complete UGI scenarios, including both ecosystem services and
economic benefits related to reduced morbidity and mortality. The results of the climate
data analysis indicate clear heat mitigation effects of UGI. The CBA results show that
UHI mitigation through implementation of UGI measures at the neighborhood level is
economically feasible. The methods for quantification of UGI project costs and benefits
proposed in this study can be applied by urban planners in the objective evaluation of
project proposals. Since UGI benefits create significant social value, the quantification
thereof is essential for urban planning in providing a scientific foundation for the inclusion
of UGI in UHI mitigation strategies. This is important as UGI installation and maintenance
costs are high and delivering value to society can only be achieved through identification
of the most suitable UGI measures and ensuring their effective placement.

Author Contributions: Conceptualization, D.J. and S.G.; methodology, J.E. and D.J.; formal analysis,
J.E.; investigation, J.E.; data curation, D.J. and J.E.; writing—original draft preparation, J.E. and D.J.;
writing—review and editing, S.G.; visualization, J.E.; supervision, S.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: 3rd party data. Restrictions apply to the availability of these data. Data
was obtained from the Institute of Meteorology and Climatology at Leibniz University Hannover
and from GEO-NET Umweltconsulting GmbH and are available from the authors upon request
with permission.

Conflicts of Interest: The authors declare no conflict of interest.

105



Sustainability 2021, 13, 8685

References

1. Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [CrossRef]
2. Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [CrossRef]
3. Mohajerani, A.; Bakaric, J.; Jeffrey-bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal

properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [CrossRef]
4. Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for

receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [CrossRef]
5. Grant, J.; Gallet, D. The Value of Green Infrastructure a Guide to Recognizing Its Economic, Environmental and Social Benefits; Center for

Neighborhood Technology: Chicago, IL, USA, 2010; ISBN 1938-6478.
6. Herath, H.M.P.I.K.; Halwatura, R.U.; Jayasinghe, G.Y. Modeling a Tropical Urban Context with Green Walls and Green Roofs as

an Urban Heat Island Adaptation Strategy. Procedia Eng. 2018, 212, 691–698. [CrossRef]
7. Santamouris, M.; Haddad, S.; Saliari, M.; Vasilakopoulou, K.; Synnefa, A.; Paolini, R.; Ulpiani, G.; Garshasbi, S.; Fiorito, F. On the

energy impact of urban heat island in Sydney: Climate and energy potential of mitigation technologies. Energy Build. 2018, 166,
154–164. [CrossRef]

8. Buchin, O.; Hoelscher, M.-T.T.; Meier, F.; Nehls, T.; Ziegler, F. Evaluation of the health-risk reduction potential of countermeasures
to urban heat islands. Energy Build. 2016, 114, 27–37. [CrossRef]

9. Dierkes, C.; Lucke, T.; Helmreich, B. General Technical Approvals for Decentralised Sustainable Urban Drainage Systems
(SUDS)—The Current Situation in Germany. Sustainability 2015, 7, 3031–3051. [CrossRef]

10. Wicke, D.; Matzinger, A.; Rouault, P. Relevanz Organischer Spurenstoffe im Regenwasserabfluss Berlins; Kompetenzzentrum Wassetr:
Berlin, Germany, 2015.

11. Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-
Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban
drainage. Urban Water J. 2015, 12, 525–542. [CrossRef]

12. Riechel, M.; Matzinger, A.; Pallasch, M.; Joswig, K.; Pawlowsky-Reusing, E.; Hinkelmann, R.; Rouault, P. Sustainable urban
drainage systems in established city developments: Modelling the potential for CSO reduction and river impact mitigation. J.
Environ. Manag. 2020, 274, 111207. [CrossRef]

13. Johnson, D.; Geisendorf, S. Are Neighborhood-level SUDS Worth it? An Assessment of the Economic Value of Sustainable Urban
Drainage System Scenarios Using Cost-Benefit Analyses. Ecol. Econ. 2019, 158, 194–205. [CrossRef]

14. Hansen, R.; Pauleit, S. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in
green infrastructure planning for urban areas. Ambio 2014, 43, 516–519. [CrossRef]

15. Lähde, E.; Khadka, A.; Tahvonen, O.; Kokkonen, T. Can we really have it all?-Designing multifunctionality with sustainable
urban drainage system elements. Sustainability 2019, 11, 1854. [CrossRef]

16. Gordon, B.L.; Quesnel, K.J.; Abs, R.; Ajami, N.K. A case-study based framework for assessing the multi-sector performance of
green infrastructure. J. Environ. Manag. 2018, 223, 371–384. [CrossRef]

17. Caplan, J.S.; Galanti, R.C.; Olshevski, S.; Eisenman, S.W. Water relations of street trees in green infrastructure tree trench systems.
Urban For. Urban Green. 2019, 41, 170–178. [CrossRef]

18. Saaroni, H.; Amorim, J.H.; Hiemstra, J.A.; Pearlmutter, D. Urban Green Infrastructure as a tool for urban heat mitigation: Survey
of research methodologies and findings across different climatic regions. Urban Clim. 2018, 24, 94–110. [CrossRef]

19. Bodnaruk, E.W.; Kroll, C.N.; Yang, Y.; Hirabayashi, S.; Nowak, D.J.; Endreny, T.A. Where to plant urban trees? A spatially explicit
methodology to explore ecosystem service tradeoffs. Landsc. Urban Plan. 2017, 157, 457–467. [CrossRef]

20. Larondelle, N.; Lauf, S. Balancing demand and supply of multiple urban ecosystem services on different spatial scales. Ecosyst.
Serv. 2016, 22, 18–31. [CrossRef]

21. Zölch, T.; Maderspacher, J.; Wamsler, C.; Pauleit, S. Using green infrastructure for urban climate-proofing: An evaluation of heat
mitigation measures at the micro-scale. Urban For. Urban Green. 2016, 20, 305–316. [CrossRef]

22. Carter, T.; Keeler, A. Life-cycle cost-benefit analysis of extensive vegetated roof systems. J. Environ. Manag. 2008, 87, 350–363.
[CrossRef]

23. Joksimovic, D.; Alam, Z. Cost efficiency of Low Impact Development (LID) stormwater management practices. Procedia Eng.
2014, 89, 734–741. [CrossRef]

24. Liu, W.; Chen, W.; Feng, Q.; Peng, C.; Kang, P. Cost-benefit analysis of green infrastructures on community stormwater reduction
and utilization: A case of Beijing, China. Environ. Manag. 2016, 58, 1015–1026. [CrossRef]

25. Perini, K.; Rosasco, P. Cost-benefit analysis for green façades and living wall systems. Build. Environ. 2013, 70, 110–121. [CrossRef]
26. Van Raalte, L.; Nolan, M.; Thakur, P.; Xue, S.; Parker, N. Economic Assessment of the Urban Heat Island Effect; AECOM Australia Pty

Ltd.: Melbourne, Australian, 2012.
27. Venkataramanan, V.; Packman, A.I.; Peters, D.R.; Lopez, D.; Mccuskey, D.J.; Mcdonald, R.I.; Miller, W.M.; Young, S.L. A systematic

review of the human health and social well-being outcomes of green infrastructure for stormwater and flood management. J.
Environ. Manag. 2019, 246, 868–880. [CrossRef] [PubMed]

28. Hübler, M.; Klepper, G.; Peterson, S. Costs of climate change. The effects of rising temperatures on health and productivity in
Germany. Ecol. Econ. 2008, 68, 381–393. [CrossRef]

106



Sustainability 2021, 13, 8685

29. Yu, S.; Xia, J.; Yan, Z.; Zhang, A.; Xia, Y.; Guan, D.; Han, J.; Wang, J.; Chen, L.; Liu, Y. Loss of work productivity in a warming
world: Differences between developed and developing countries. J. Clean. Prod. 2019, 208, 1219–1225. [CrossRef]

30. Koppe, C.; Jendritzky, G. Die Auswirkungen von thermischen Belastungen auf die Mortalität. In Warnsignale Klima: Gesund-
heitsrisiken. Gefahren für Pflanzen, Tiere und Menschen; Lozan, J., Graßl, H., Jendritzky, G., Karbe, L., Reise, K., Eds.; Universität
Hamburg, Institut f. Hydrobiologie, c/o Dr. J. Lozán: Hamburg, Germany, 2014.

31. Sahnoune, S.; Benhassine, N. Quantifying the Impact of Green-Roofs on Urban Heat Island Mitigation. Int. J. Environ. Sci. Dev.
2017, 8, 116–123. [CrossRef]

32. Scherer, D.; Fehrenbach, U.; Lakes, T.; Lauf, S.; Meier, F.; Schuster, C. Quantification of heat-Stress related mortality hazard,
vulnerability and risk in Berlin, Germany. DIE ERDE J. Geogr. Soc. Berlin 2013, 144, 238–259. [CrossRef]

33. Hoelscher, M.-T.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying cooling effects of facade greening: Shading, transpiration and
insulation. Energy Build. 2016, 114, 283–290. [CrossRef]

34. Schubert, S.; Grossman-Clarke, S. The influence of green areas and roof albedos on air temperatures during extreme heat events
in Berlin, Germany. Meteorol. Z. 2013, 22, 131–143. [CrossRef]

35. Von Tils, R. Effect of trees and greening of buildings on the indoor heating and cooling load—Microscale numerical experiment. J.
Heat Isl. Inst. Int. 2017, 12, 35–39.

36. Simperler, L.; Ertl, T.; Matzinger, A. Spatial Compatibility of Implementing Nature-Based Solutions for Reducing Urban Heat
Islands and Stormwater Pollution. Sustainability 2020, 12, 5967. [CrossRef]

37. Meyerhoff, J.; Dehnhardt, A. On the “non” use of environmental valuation estimates. In Sustainability, Natural Capital and Nature
Conservation; Döring, R., Ed.; Metropolis: Marburg, Germany, 2009; pp. 143–166.

38. Gómez-Baggethun, E.; Ruiz-Pérez, M. Economic valuation and the commodification of ecosystem services. Prog. Phys. Geogr.
2011, 35, 613–628. [CrossRef]

39. Kallis, G.; Gómez-Baggethun, E.; Zografos, C. To value or not to value? That is not the question. Ecol. Econ. 2013, 94, 97–105.
[CrossRef]

40. Rode, J.; Le Menestrel, M.; Cornelissen, G. Ecosystem service arguments enhance public support for environmental protection—
But beware of the numbers! Ecol. Econ. 2017, 141, 213–221. [CrossRef]

41. Almansa, C.; Martínez-Paz, J.M. What weight should be assigned to future environmental impacts? A probabilistic cost benefit
analysis using recent advances on discounting. Sci. Total Environ. 2011, 409, 1305–1314. [CrossRef]

42. Dasgupta, P. Discounting climate change. J. Risk Uncertain. 2008, 37, 141–169. [CrossRef]
43. Gowdy, J.; Rosser, J.B.; Roy, L. The evolution of hyperbolic discounting: Implications for truly social valuation of the future. J.

Econ. Behav. Organ. 2013, 90, S94–S104. [CrossRef]
44. Matzinger, A.; Riechel, M.; Remy, C.; Schwarzmüller, H.; Rouault, P.; Schmidt, M.; Offermann, M.; Strehl, C.; Nickel, D.; Pallasch,

M.; et al. Zielorientierte Planung von Maßnahmen der Regenwasserbewirtschaftung–Ergebnisse des Projektes KURAS; Konzepte fur
Urbane Regenwasserbewirtschaftung und Abwassersysteme: Berlin, Germany, 2017.

45. DWA. Leitlinien zur Durchführung Dynamischer Kostenvergleichsrechnungen (KVR-Leitlinien); 8. überarb; DWA Deutsche Vereinigung
für Wasserwirtschaft, Abwasser und Abfall e. V.: Hennef, Germany, 2012; ISBN 9783941897557.

46. Baumgärtner, S.; Klein, A.M.; Thiel, D.; Winkler, K. Ramsey Discounting of Ecosystem Services. Environ. Resour. Econ. 2015, 61,
273–296. [CrossRef]

47. Drupp, M.A. Limits to Substitution Between Ecosystem Services and Manufactured Goods and Implications for Social Discounting.
Environ. Resour. Econ. 2018, 69, 135–158. [CrossRef]

48. Attema, A.E.; Bleichrodt, H.; L’Haridon, O.; Peretti-Watel, P.; Seror, V. Discounting health and money: New evidence using a
more robust method. J. Risk Uncertain. 2018, 56, 117–140. [CrossRef]

49. Frederick, S. Measuring Intergenerational Time Preference: Are future lives valued less? J. Risk Uncertain. 2003, 26, 39–53.
[CrossRef]

50. Robinson, L.A.; Hammitt, J.K.; O’Keeffe, L. Valuing Mortality Risk Reductions in Global Benefit-Cost Analysis. J. Benefit-Cost
Anal. 2019, 10, 15–50. [CrossRef] [PubMed]

51. Deutscher Wetterdienst. Erläuterungen und Kriterien zu Hitzewarnungen. Available online: http://www.wettergefahren.de/
warnungen/hitzewarnungen.html (accessed on 5 April 2019).

52. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria.
Available online: https://www.r-project.org/ (accessed on 17 January 2019).

53. Strehl, C.; Offermann, M.; Hein, A.; Heinzmann, B.; Thamsen, P.U.; Matzinger, A. Schlussbericht des Forschungsvorhabens KURAS.
IWW-Teilbericht: Ökonomische Effekte der Regenwasserbewirtschaftung am Beispiel Berlins; KURAS: Berlin, Germany, 2017.

54. Eglitis-media. Sonnenaufgang und Sonnenuntergang in Deutschland. Available online: https://www.laenderdaten.info/Europa/
Deutschland/sonnenuntergang.php (accessed on 16 March 2019).

55. Baccini, M.; Biggeri, A.; Accetta, G.; Kosatsky, T.; Katsouyanni, K.; Analitis, A.; Anderson, H.R.; Bisanti, L.; D’Iippoliti, D.; Danova,
J.; et al. Heat effects on mortality in 15 European cities. Epidemiology 2008, 19, 711–719. [CrossRef]

56. Umweltatlas Berlin. Einwohnerdichte 2017 (Umweltatlas). Available online: https://fbinter.stadt-berlin.de/fb/index.
jsp?loginkey=zoomStart&mapId=wmsk_06_06ewdichte2017@senstadt&bbox=389304,5822972,396530,5826388 (accessed on
4 March 2019).

107



Sustainability 2021, 13, 8685

57. Statistisches Bundesamt Deutschland. Durchschnittliches Sterbealter. Available online: https://www-genesis.destatis.de/
genesis/online/link/tabelleErgebnis/12613-0007 (accessed on 19 March 2019).

58. Deutscher Wetterdienst. Deutschlandwetter im Jahr 2018. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/
DE/2018/20181228_deutschlandwetter_jahr2018.pdf?__blob=publicationFile&v=3 (accessed on 25 March 2019).

59. Deutscher Wetterdienst. Deutschlandwetter im Jahr 2017. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/
DE/2017/20171229_deutschlandwetter_jahr2017.pdf?__blob=publicationFile&v=2 (accessed on 25 March 2019).

60. Deutscher Wetterdienst. Deutschlandwetter im Jahr 2016. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/
DE/2016/20161229_deutschlandwetter_jahr2016.pdf?__blob=publicationFile&v=3 (accessed on 25 March 2019).

61. Deutscher Wetterdienst. Deutschlandwetter im Jahr 2015. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/
DE/2015/20151230_deutschlandwetter_jahr2015.pdf?__blob=publicationFile&v=2 (accessed on 25 March 2019).

62. Deutscher Wetterdienst. Deutschlandwetter im Jahr 2014. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/
DE/2014/20141230_Deutschlandwetter_Jahr_2014.pdf?__blob=publicationFile&v=7 (accessed on 25 March 2019).

63. Statistisches Bundesamt Deutschland. Aus dem Krankenhaus Entlassene Vollstationäre Patientinnen und Patienten (Ein-
schließlich Sterbe- und Stundenfälle). Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/
Gesundheit/Krankenhaeuser/Tabellen/entlassene-patienten-eckdaten.html (accessed on 21 March 2019).

64. Johnson, H.; Kovats, S.; Mcgregor, G.; JR, S.; Gibbs, M.; Walton, H. The impact of the 2003 heat wave on daily mortality in England
and Wales and the use of rapid weekly mortality estimates. Eurosurveillance 2005, 10, 168–171. [CrossRef]

65. Tröltzsch, J.; Görlach, B.; Lückge, H.; Peter, M.; Sartorius, C. Kosten und Nutzen von Anpassungsmaßnahmen an den Klimawandel:
Analyse von 28 Anpasungmaßnahmen in Deutschland; Umweltbundesamt: Dessau-Roßlau, Germany, 2012.

66. Statistisches Bundesamt Deutschland. Sterbefälle je 1000 Einwohner: Deutschland, Jahre. Available online: https://www-genesis.
destatis.de/genesis/online/data;sid=C87037CAAF16C78B632D87B957981466.GO_1_4?operation=abruftabelleBearbeiten&
levelindex=1&levelid=1553004933048&auswahloperation=abruftabelleAuspraegungAuswaehlen&auswahlverzeichnis=
ordnungsstruktur&ausw (accessed on 19 March 2019).

67. Statistisches Bundesamt Deutschland. Bevölkerung: Bundesländer, Stichtag, Geschlecht, Altersjahre. Available online:
https://www-genesis.destatis.de/genesis/online/data;sid=3A8959F91730FAB9CEAF0C0518849BB1.GO_1_4?operation=
abruftabelleBearbeiten&levelindex=1&levelid=1552996107046&auswahloperation=abruftabelleAuspraegungAuswaehlen&
auswahlverzeichnis=ordnungsstruktur&ausw (accessed on 19 March 2019).

68. Statistisches Bundesamt Deutschland. Durchschnittliche Lebenserwartung (Periodensterbetafel): Deutschland, Jahre, Geschlecht,
Vollendetes Alter. Available online: https://www-genesis.destatis.de/genesis/online/logon?sequenz=tabelleErgebnis&
selectionname=12621-0002&zeitscheiben=16&sachmerkmal=ALT577&sachschluessel=ALTVOLL000,ALTVOLL020,ALTVOLL0
40,ALTVOLL060,ALTVOLL065,ALTVOLL080 (accessed on 19 March 2019).

69. Viscusi, W.K.; Masterman, C.J. Income Elasticities and Global Values of a Statistical Life. J. Benefit-Cost Anal. 2017, 8, 226–250.
[CrossRef]

70. OECD. Recommended Value of a Statistical Life numbers for policy analysis. In Mortality Risk Valuation in Environment, Health
and Transport Policies; OECD Publishing: Paris, France, 2012; Volume 2, pp. 125–136.

71. Spengler, H. Kompensatorische Lohndifferenziale und der Wert eines statistischen Lebens in Deutschland. Z. Arbeitsmarktforsch.
2004, 3, 269–305.

72. Clark, C.; Adriaens, P.; Talbot, F.B. Green roof valuation: A probabilistic economic analysis of environmental benefits. Environ.
Sci. Technol. 2008, 42, 2155–2161. [CrossRef]

73. MacMullan, E.; Reich, S.; Puttman, T.; Rodgers, K. Cost-Benefit Evaluation of Ecoroofs. In Proceedings of the Low Impact
Development for Urban Ecosystem and Habitat Protection, Seattle, WA, USA, 16–19 November 2008; pp. 1–10.

74. Bianchini, F.; Hewage, K. Probabilistic social cost-benefit analysis for green roofs: A lifecycle approach. Build. Environ. 2012, 58,
152–162. [CrossRef]

75. Yang, J.; Yu, Q.; Gong, P. Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ. 2008, 42, 7266–7273.
[CrossRef]

76. Berliner Wasserbetriebe. Tarife für Trinkwasser, Schmutzwasser, Niederschlagswasser, Fäkalwasser und Fäkalschlamm vom 1.
Januar 2016 bis 31. Dezember 2017. Available online: http://www.bwb.de/content/language1/html/204.php (accessed on 5
April 2018).

77. European Commission. Guide to Cost-Benefit Analysis of Investment Projects. Economic Appraisal Tool for Cohesion Policy, 2014–2020;
European Commmission: Brussels, Belgium, 2014; ISBN 978-92-79-34796-2.

78. Groß, G.; von Tils, R. Schlussbericht des Forschungsvorhabens KURAS -Teilbericht Leibniz Universität Hannover; KURAS: Hannover,
Germany, 2017.

79. Yazdanseta, A. Estimating the Cooling Power through Transpiration of Vining Green Walls in Various Climates. In Symposium on
Simulation for Architecture and Urban Design; Turrin, M., Peters, B., O’Brien, W., Stouffs, R., Dogan, T., Eds.; Society for Modeling &
Simulation International: Toronto, ON, Canada, 2017; pp. 235–242. ISBN 9781365888786.

80. Dang, T.N.; Van, D.Q.; Kusaka, H.; Seposo, X.T.; Honda, Y. Green Space and Deaths Attributable to the Urban Heat Island Effect
in Ho Chi Minh City. Am. J. Public Health 2018, 108, S137–S143. [CrossRef]

108



Sustainability 2021, 13, 8685

81. Arzbach, V. Hitze-Notfälle: Die Schattenseiten des Sommers. Available online: https://ptaforum.pharmazeutische-zeitung.de/
ausgabe-122018/die-schattenseiten-des-sommers/ (accessed on 1 February 2019).

82. Hu, K.; Guo, Y.; Hochrainer-stigler, S.; Liu, W.; See, L.; Yang, X.; Zhong, J.; Fei, F.; Chen, F.; Zhang, Y.; et al. Evidence for
Urban—Rural Disparity in Temperature—Mortality Relationships in Province, Zhejiang. Environ. Health Perspect. 2019, 127, 1–11.
[CrossRef] [PubMed]

109





MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel. +41 61 683 77 34

Fax +41 61 302 89 18

www.mdpi.com

Sustainability Editorial Office

E-mail: sustainability@mdpi.com

www.mdpi.com/journal/sustainability





MDPI  

St. Alban-Anlage 66 

4052 Basel 

Switzerland

Tel: +41 61 683 77 34 

Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-3711-5 


