E applied sciences

hallenges\l'nends
and Applications

"%

Edited by

Juan Jesus Roldan Gédmez and Antonio Barrientos Cruz
Printed Edition of the Special Issue Published in Applied Sciences

www.mdpi.com/journal/applsci



Multi-Robot Systems: Challenges,
Trends and Applications






Multi-Robot Systems: Challenges,
Trends and Applications

Editors

Juan Jestis Roldan Gémez
Antonio Barrientos Cruz

MDPI e Basel o Beijing ¢ Wuhan e Barcelona e Belgrade e Manchester e Tokyo e Cluj e Tianjin



Editors

Juan Jests Roldédn Gémez Antonio Barrientos Cruz
Universidad Auténoma de Madrid Universidad Politécnica de Madrid
Spain Spain

Editorial Office

MDPI

St. Alban-Anlage 66
4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal
Applied Sciences (ISSN 2076-3417) (available at: https://www.mdpi.com/journal/applsci/special
issues/Multi-Robot_Systems).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,
Page Range.

ISBN 978-3-0365-2846-5 (Hbk)
ISBN 978-3-0365-2847-2 (PDF)

Cover image courtesy of Juan Jestis Rolddn Gémez

© 2021 by the authors. Articles in this book are Open Access and distributed under the Creative
Commons Attribution (CC BY) license, which allows users to download, copy and build upon
published articles, as long as the author and publisher are properly credited, which ensures maximum
dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons
license CC BY-NC-ND.




Contents

Aboutthe Editors . . . . . . . . . . .

Juan Jestis Roldan-G6mez and Antonio Barrientos
Special Issue on Multi-Robot Systems: Challenges, Trends, and Applications
Reprinted from: Appl. Sci. 2021, 11, 11861, doi:10.3390/app112411861 . . . . . . .. ... .. ...

Kurt Geihs
Engineering Challenges Ahead for Robot Teamwork in Dynamic Environments
Reprinted from: Appl. Sci. 2020, 10, 1368, d0i:10.3390/nano10041368 . . . . ... ... ... ...

Rongye Shi, Peter Steenkiste and Manuela Veloso

SC-M*: A Multi-Agent Path Planning Algorithm with Soft-Collision Constraint on Allocation
of Common Resources

Reprinted from: Appl. Sci. 2019, 9, 4037, d0i:10.3390/nano9194037 . . . . . . ... ... ... ...

Yang Lyu, Jinwen Hu, Chunhui Zhao and Quan Pan

Unscented Transformation-Based Multi-Robot Collaborative Self-Localization and Distributed
Target Tracking

Reprinted from: Appl. Sci. 2019, 9, 903, doi:10.3390/nano9050903 . . . . .. ... ... .. ...

Martin Juhas and Bohuslava Juhasova

Synchronization of Heterogeneous Multi-Robotic Cell with Emphasis on Low
Computing Power

Reprinted from: Appl. Sci. 2020, 10, 5165, doi:10.3390/nano10155165 . . . . . .. ... ... ...

Facundo Benavides, Caroline Ponzoni Carvalho Chanel, Pablo Monz6én and Eduardo
Grampin

An  Auto-Adaptive  Multi-Objective ~ Strategy  for ~ Multi-Robot  Exploration  of
Constrained-Communication Environments

Reprinted from: Appl. Sci. 2019, 9, 573, d0i:10.3390/nano10040573 . . . . . . ... .... .. ...

Pablo R. Palafox, Mario Garzén, Jodo Valente, Juan Jests Rolddn and Antonio Barrientos
Robust Visual-Aided Autonomous Takeoff, Tracking, and Landing of a Small UAV on a Moving
Landing Platform for Life-Long Operation

Reprinted from: Appl. Sci. 2019, 9, 2661, d0i:10.3390/nan09132661 . . . . . . ... .... .. ...

Abhijeet Ravankar, Ankit A. Ravankar, Yohei Hoshino and Yukinori Kobayashi

On Sharing Spatial Data with Uncertainty Integration Amongst Multiple Robots Having
Different Maps

Reprinted from: Appl. Sci. 2019, 9, 2753, d0i:10.3390/nan09132753 . . . . . . ... ... ... ...

Aliakbar Akbari, Mohammed Diab, and Jan Rosell
Contingent Task and Motion Planning under Uncertainty for Human—Robot Interactions
Reprinted from: Appl. Sci. 2020, 10, 1665, d0i:10.3390/nan010051665 . . . . .. ... ... .. ..

David Garzén Ramos and Mauro Birattari
Automatic Design of Collective Behaviors for Robots that Can Display and Perceive Colors
Reprinted from: Appl. Sci. 2020, 10, 4654, d0i:10.3390/nan010134654 . . . . ... ... ... ...

James Wilson, Jon Timmis and Andy Tyrrell
An Amalgamation of Hormone Inspired Arbitration Systems for Application in Robot Swarms
Reprinted from: Appl. Sci. 2019, 9, 3524, d0i:10.3390/nano9173524 . . . . . . ... ... ... ...



Ashish Kumar, Sugjoon Yoon and V.R.Sanal Kumar

Mixed Reality Simulation of High-Endurance Unmanned Aerial Vehicle with Dual-Head
Electromagnetic Propulsion Devices for Earth and Other Planetary Explorations

Reprinted from: Appl. Sci. 2020, 10, 3736, d0i:10.3390/nano10113736 . . . ... .. ... ... .. 249

Luis Pérez, Silvia Rodriguez-Jiménez, Nuria Rodriguez, Rubén Usamentiaga, and Daniel F.
Garcia

Digital Twin and Virtual Reality Based Methodology for Multi-Robot Manufacturing Cell
Commissioning

Reprinted from: Appl. Sci. 2020, 10, 3633, d0i:10.3390/nan010103633 . . . . .. ... ... .. .. 273

Wenzhou Chen, Shizheng Zhou, Zaisheng Pan, Huixian Zheng and Yong Liu

Mapless Collaborative Navigation for a Multi-Robot System Based on the Deep Reinforcement
Learning

Reprinted from: Appl. Sci. 2019, 9, 4198, d0i:10.3390/nan09204198 . . . . . . ... ... ... ... 291

Juan Jesus Roldan-G6omez, Eduardo Gonzilez-Gironda, Antonio Barrientos

A Survey on Robotic Technologies for Forest Firefighting: Applying Drone Swarms to Improve
Firefighters’ Efficiency and Safety

Reprinted from: Appl. Sci. 2021, 11, 363, d0i:10.3390/app11010363 . . . . . . .. ... ... .. .. 307

Angel Montes-Romero, Arturo Torres-Gonzilez, Jestis Capitdn, Maurizio Montagnuolo,
Sabino Metta, Fulvio Negro, Alberto Messina and Anibal Ollero

Director Tools for Autonomous Media Production with a Team of Drones

Reprinted from: Appl. Sci. 2020, 10, 1494, d0i:10.3390/nano10041494 . . . . . ... .. ... ... 325

Toshiaki Nishio, Yuichiro Yoshikawa, Kohei Ogawa and Hiroshi Ishiguro
Development of an Effective Information Media Using Two Android Robots
Reprinted from: Appl. Sci. 2019, 9, 3442, d0i:10.3390/nan09173442 . . . . .. ... . ... .. ... 349

Takamasa Iio, Yuichiro Yoshikawa, Mariko Chiba, Taichi Asami, Yoshinori Isoda, and
Hiroshi Ishiguro

Twin-Robot Dialogue System with Robustness against Speech Recognition Failure in
Human-Robot Dialogue with Elderly People

Reprinted from: Appl. Sci. 2020, 10, 1522, d0i:10.3390/nan010041522 . . . . ... ... ... ... 361

vi



About the Editors

Juan Jestis Rolddan Gémez is an Assistant Professor at the Department of Computer Science
and Engineering of the Autonomous University of Madrid. He received a Ph.D. in Automation and
Robotics (2018), an MSc in Automation and Robotics (2014), and an MSc in Industrial Engineering
(2012) from the Technical University of Madrid. His research focuses on robotics, including topics
such as multi-robot systems, robot swarms, artificial intelligence applied to robots, adaptive and

immersive interfaces, and robotics in agriculture.

Antonio Barrientos Cruz is a Full Professor at the Technical University of Madrid. He received
a Ph.D. in Robotics (1986) and an MSc in Industrial Engineering (1982) from the Technical University
of Madrid, and an MSc in Biomedical Engineering (2002) from the National Distance Education
University. He is the head of the Robotics and Cybernetics research group at the Centre for
Automation and Robotics a (joint center of the Technical University of Madrid and the Spanish
National Research Council). He has worked in robotics for more than 30 years, developing industrial

and service robots for different areas. His main research interests are ground and aerial field robotics.

vii






friricd applied
L sciences

Editorial

Special Issue on Multi-Robot Systems: Challenges, Trends,
and Applications

Juan Jests Roldan-Gémez ** and Antonio Barrientos 2

Citation: Roldan-Gomez, J.J.;
Barrientos, A. Special Issue on
Multi-Robot Systems: Challenges,
Trends, and Applications. Appl. Sci.
2021, 11, 11861. https://doi.org/
10.3390/app112411861

Received: 20 October 2021
Accepted: 30 November 2021
Published: 14 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Departamento de Ingenieria Informatica, Escuela Politécnica Superior, Universidad Auténoma de Madrid,
Francisco Tomds y Valiente, 11, 28049 Madrid, Spain

2 Centro de Automatica y Robética (UPM-CSIC), Universidad Politécnica de Madrid, José Gutiérrez Abascal, 2,
28006 Madrid, Spain; antonio.barrientos@upm.es

Correspondence: juan.roldan@uam.es

1. Introduction

Multi-Robot Systems (MRSs) have emerged as a suitable alternative to single robots to
improve current and enable new missions. These systems offer the following advantages
over single robots:

e Effectiveness: In most scenarios, using a fleet of homogeneous robots improves the
performance obtained by a single one. For instance, multiple robots can cover a larger
area or spend less time than one robot in an exploration task.

e  Efficiency: In a wide range of missions, using a heterogeneous fleet leads to more
efficient management of resources than using a single robot. That is the case of fleets
with aerial and ground robots applied to search tasks, where the aerial units can
cover more terrain and make faster detections, but the ground ones can provide more
accurate information of these detections.

¢ Flexibility: A multi-robot system can adapt to changes in the mission better than a sin-
gle robot. These changes can be related to the scenario (e.g., scalability of mission area
in search), tasks (e.g., fire control in environmental monitoring), or fleet (e.g., robots
with difficulties during missions). The availability of resources allows replanning the
missions to address these situations.

e Fault tolerance: This is a particular but relevant case where a multi-robot system is
more flexible than a single robot. When a robot experiences problems, such as getting
trapped in an obstacle or consuming all its battery, the rest can assume its functions.

However, multi-robot systems still face challenges related to robot autonomy and
human factors. The deployment, operation, and collection of these systems in real-world
scenarios need autonomy in the broad sense: robots with more capabilities and intelligence
to operate longer in adverse conditions. In addition, the complexity of these systems poses
some challenges to operators in terms of workload, situational awareness, and stress.

The recent literature on MRSs considers these challenges and proposes new strategies
to face them. That is the case of artificial intelligence, which has given rise to new algorithms
that allow managing the complexity and uncertainty of real scenarios, and immersive
technologies (virtual and augmented reality), which are applied to facilitate the work of
operators. These technologies are opening up a wide variety of missions, such as search
and rescue, environmental monitoring, and many more.

In this “Special Issue on Multi-Robot Systems: Challenges, Trends, and Applications”,
we have collected a set of high-quality works that discuss the main challenges of MRSs,
present the trends to address these issues, and report various relevant applications.

The remainder of this editorial is organized as follows: Section 2 discusses the chal-
lenges of MRSs, Section 3 addresses the proposals to solve them, and Section 4 describes
the real-world applications presented in the different articles of the Special Issue.

Appl. Sci. 2021, 11, 11861. https:/ /doi.org/10.3390/app112411861

https:/ /www.mdpi.com/journal/applsci



Appl. Sci. 2021, 11, 11861

2. Challenges

The contributions to the Special Issue reveal a good amount of challenges for the
operation of MRSs. Some are related to multi-agent mission planning, intervention in
complex scenarios with uncertainty, and operation under restricted communications. Robot
cooperation often helps deal with these issues through sharing information and coordi-
nating actions. Kurt Geihs [1] reviews the state-of-the-art on teamwork in the context of
multi-robot systems and dynamic environments. His paper identifies and analyzes multi-
ple engineering challenges: dynamic coalitions, platform harmonization and configuration,
knowledge base, methodology and tools, edge and cloud integration, and human in the
loop and other sociotechnical concerns, among other concepts.

Rongye Shi, Peter Steenkiste, and Manuela M. Veloso [2] address the challenge of
Multi-Agent Path Planning (MAPP), which is a resource allocation problem complicated by
the highly dynamic and distributed environments. In contrast to most MAPP approaches,
they assume soft collisions instead of hard collisions, which means that the agents can share
resources or concur at the same location at the expense of reducing the quality of solutions.
They propose the Soft-Collision M* (SC-M¥*) algorithm to solve these constrain satisfaction
problems and compare its results with the most common algorithms in terms of path cost,
success rate, and run time. Meanwhile, Yang Lyu, Quan Pan, and Jian Lv [3] address
the problem of multi-robot collaborative self-localization in the context of target tracking
missions. They propose an unscented transformation-based collaborative self-localization
algorithm to deal with inter-robot and robot-target correlations during the missions.

Martin Juhds and Bohuslava Juhadsové [4] address other relevant challenges for MRSs,
which are communications and coordination. Their paper presents a time-synchronization
solution for operations performed by a heterogeneous set of robotic manipulators grouped
into a production cell. They develop a master-slave architecture without an external control
element, whose communications are implemented via TCP/IP sockets. Similarly, Facundo
Benavides, Caroline Ponzoni Carvalho Chanel, Pablo Monzén, and Eduardo Grampin [5]
consider the multi-robot exploration problem under restricted communications. They
propose a novel auto-adaptive multi-objective strategy to support the selection of tasks
regarding both exploration performance and connectivity level. Compared with other
algorithms, it shows effectiveness and flexibility to tackle the multi-robot exploration
problem, decreasing the effects of disconnection periods without noticeable degradation of
the exploration time.

Cooperation can be carried out in homogeneous fleets but also between robots with
different morphology. Pablo R. Palafox, Mario Garzén, Jodo Valente, Juan Jests Roldén,
and Antonio Barrientos [6] analyze air-ground robot cooperation in their paper. The com-
bination of aerial and ground robots is useful in search and rescue tasks, given that aerial
robots can provide valuable insight to support the navigation of ground robots in complex
scenarios affected by disasters. The article proposes a state machine with algorithms that
allow an aerial robot to take off, track, and land on a mobile ground platform.

Abhijeet Ravanka, Ankit A. Ravankar, Yohei Hoshino, and Yukinori Kobayashi [7]
focus on another relevant challenge in multi-robot missions: uncertainty. They find infor-
mation sharing as a powerful tool to deal with uncertainty in mission planning. In this
way, when a robot finds a new obstacle or blocked path, it can share this information with
the rest of the fleet, allowing other robots to plan better paths. The paper proposes a novel
method for information sharing that works when robots have different sensors, there is
positional uncertainty, and obstacles are dynamic. Aliakbar Akbari, Mohammed Diab,
and Jan Rosell [8] also focus on uncertainty but in the context of mobile manipulation.
In these applications, humans can collaborate with robots to execute complex actions,
sharing their knowledge about the task and scenario. They propose a contingent-based
task and motion planning method that generates trees of feasible plans considering robot
uncertainty and human-robot interactions. This algorithm is validated in grasp tasks with
occluding objects.



Appl. Sci. 2021, 11, 11861

3. Trends

Currently, one of the most relevant multi-robot systems is swarms. David Garzén
Ramos and Mauro Birattari [9] present an automatic method to design robot swarms. This
method can generate control software by assembling preexisting software modules via
optimization. They validate these developments with a swarm of e-pucks, which can
use color-based information for handling events, communicating, and navigating. James
Wilson, Jon Timmis, and Andy Tyrrell [10] address another relevant aspect of swarms:
hormone systems for collective behaviors. They use a collection of virtual hormones to
control the selection of behaviors that produce an effective foraging swarm.

Immersive technologies such as virtual, augmented, and mixed realities are usually
proposed to improve operator workload, situational awareness, and performance. Ashish
Kumar, Sugjoon Yoon, and V.R. Sanal Kumar [11] present a mixed reality simulation for
Unmanned Aerial Vehicles in high-endurance missions of Earth exploration. This environ-
ment combines real and virtual quadcopters to monitor missions and find paths, among
other things. Luis Pérez, Silvia Rodriguez-Jiménez, Nuria Rodriguez, Rubén Usamentiaga,
and Daniel F. Garcia [12] propose the creation of digital twins of manufacturing processes
in Industry 4.0. In this way, a virtual reality testbed can be used to design, implement, and
monitor the process in real-time before its physical development.

Finally, machine learning and especially reinforcement learning are increasingly pop-
ular for MRSs, especially for their operation in complex unstructured scenarios. Wenzhou
Chen, Shizheng Zhou, Zaisheng Pan, Huixian Zheng, and Yong Liu [13] apply deep
reinforcement learning for the collaborative formation and navigation of a robot fleet.

4. Applications

Robots are often applied in emergency scenarios because they can obtain information
and even intervene, preventing dangers for human teams. Multi-robot systems are being
introduced in these missions, such as outdoor and indoor fires. Juan Jestus Roldan-Gémez,
Eduardo Gonzélez-Gironda, and Antonio Barrientos [14] propose the use of drone swarms
for the prevention, surveillance, and extinguishing of forest fires. This system consists
of quadcopters that individually can visit waypoints and use payloads but, collectively,
can perform complex tasks. The authors propose the use of immersive interfaces to allow
operators to control multiple drones simultaneously.

However, emergency scenarios are not the only ones in which these systems can
add value. Angel Montes-Romero, Arturo Torres-Gonzélez, Jestis Capitan, Maurizio
Montagnuolo, Sabino Metta, Fulvio Negro, Alberto Messina, and Anibal Ollero [15] propose
a set of director tools for autonomous media production with a team of drones. They
focus on a language for cinematography mission description and a procedure to translate
missions into plans, so a media director that is not necessarily familiar with robots can
manage the system.

Finally, multi-robot systems have also reached social robotics, although the need was
not as clear as in other fields. Toshiaki Nishio, Yuichiro Yoshikawa, Kohei Ogawa, and
Hiroshi Ishiguro [16] study multi-party conversations with two human-like robots. They
focus on conveying information to the viewers through a natural conversation between
the robots. Takamasa lio, Yuichiro Yoshikawa, Mariko Chiba, Taichi Asami, Yoshinori
Isoda, and Hiroshi Ishiguro [17] try a question-answer-response dialogue model with two
humanoid robots to involve elderly users in the conversation. The results suggest that the
presence of two robots might likely encourage elderly people to sustain longer talks.

Author Contributions: Conceptualization, J.J.R.-G. and A.B.; methodology, JJ.R.-G. and A.B.;
writing—original draft preparation, J.J.R.-G.; writing—review and editing, J.].R.-G.; visualization,
J.J.R.-G.; supervision, A.B.; project administration, ].J].R.-G. and A.B.; funding acquisition, J.J].R.-G.
and A.B. All authors have read and agreed to the published version of the manuscript.



Appl. Sci. 2021, 11, 11861

Funding: Work produced with the support of a 2020 Leonardo Grant for Researchers and Cultural
Creators, BBVA Foundation. The Foundation takes no responsibility for the opinions, statements,
and contents of this project, which are entirely the responsibility of its authors.

Acknowledgments: This Special Issue has been possible thanks to the hard work of authors, re-
viewers, and editors. We would like to thank and congratulate all the authors for their valuable
contributions to our Special Issue. In addition, we would like to express our gratitude to Daria Shi,
Managing Editor of Applied Sciences (MDPI), for her outstanding work during these years. Juan
Jestis Rolddn-Gomez wants to dedicate this book to the memory of their grandmother Gloria Montoya
Guerrero, who would have been very proud to hear about it on one of their Sunday evening calls.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Geihs, K. Engineering Challenges Ahead for Robot Teamwork in Dynamic Environments. Appl. Sci. 2020, 10, 1368. [CrossRef]

2. Shi, R.; Steenkiste, P.; Veloso, M. SC-M*: A Multi-Agent Path Planning Algorithm with Soft-Collision Constraint on Allocation of
Common Resources. Appl. Sci. 2019, 9, 4037. [CrossRef]

3. Lyu, Y, Pan, Q.; Lv, J. Unscented Transformation-Based Multi-Robot Collaborative Self-Localization and Distributed Target
Tracking. Appl. Sci. 2019, 9, 903. [CrossRef]

4. Juhas, M.; Juhdsovd, B. Synchronization of Heterogeneous Multi-Robotic Cell with Emphasis on Low Computing Power. Appl.
Sci. 2020, 10, 5165. [CrossRef]

5. Benavides, F.; Ponzoni Carvalho Chanel, C.; Monzon, P.; Grampin, E. An Auto-Adaptive Multi-Objective Strategy for Multi-Robot
Exploration of Constrained-Communication Environments. Appl. Sci. 2019, 9, 573. [CrossRef]

6.  Palafox, P; Garzén, M.; Valente, J.; Roldén, J.; Barrientos, A. Robust Visual-Aided Autonomous Takeoff, Tracking, and Landing of
a Small UAV on a Moving Landing Platform for Life-Long Operation. Appl. Sci. 2019, 9, 2661. [CrossRef]

7. Ravankar, A.; Ravankar, A.; Hoshino, Y.; Kobayashi, Y. On Sharing Spatial Data with Uncertainty Integration Amongst Multiple
Robots Having Different Maps. Appl. Sci. 2019, 9, 2753. [CrossRef]

8. Akbari, A; Diab, M.; Rosell, J. Contingent Task and Motion Planning under Uncertainty for Human—-Robot Interactions. Appl. Sci.
2020, 10, 1665. [CrossRef]

9. Garzén Ramos, D.; Birattari, M. Automatic Design of Collective Behaviors for Robots that Can Display and Perceive Colors. Appl.
Sci. 2020, 10, 4654. [CrossRef]

10.  Wilson, J.; Timmis, J.; Tyrrell, A. An Amalgamation of Hormone Inspired Arbitration Systems for Application in Robot Swarms.
Appl. Sci. 2019, 9, 3524. [CrossRef]

11. Kumar, A.; Yoon, S.; Kumar, V. Mixed Reality Simulation of High-Endurance Unmanned Aerial Vehicle with Dual-Head
Electromagnetic Propulsion Devices for Earth and Other Planetary Explorations. Appl. Sci. 2020, 10, 3736. [CrossRef]

12.  Pérez, L.; Rodriguez-Jiménez, S.; Rodriguez, N.; Usamentiaga, R.; Garcia, D. Digital Twin and Virtual Reality Based Methodology
for Multi-Robot Manufacturing Cell Commissioning. Appl. Sci. 2020, 10, 3633. [CrossRef]

13.  Chen, W.; Zhou, S.; Pan, Z.; Zheng, H.; Liu, Y. Mapless Collaborative Navigation for a Multi-Robot System Based on the Deep
Reinforcement Learning. Appl. Sci. 2019, 9, 4198. [CrossRef]

14. Roldédn-Goémez, J.; Gonzalez-Gironda, E.; Barrientos, A. A Survey on Robotic Technologies for Forest Firefighting: Applying
Drone Swarms to Improve Firefighters’ Efficiency and Safety. Appl. Sci. 2021, 11, 363. [CrossRef]

15. Montes-Romero, A.; Torres-Gonzélez, A.; Capitén, J.; Montagnuolo, M.; Metta, S.; Negro, F.; Messina, A.; Ollero, A. Director Tools
for Autonomous Media Production with a Team of Drones. Appl. Sci. 2020, 10, 1494. [CrossRef]

16. Nishio, T.; Yoshikawa, Y.; Ogawa, K.; Ishiguro, H. Development of an Effective Information Media Using Two Android Robots.
Appl. Sci. 2019, 9, 3442. [CrossRef]

17.  Tio, T.; Yoshikawa, Y.; Chiba, M.; Asami, T.; Isoda, Y.; Ishiguro, H. Twin-Robot Dialogue System with Robustness against Speech

Recognition Failure in Human-Robot Dialogue with Elderly People. Appl. Sci. 2020, 10, 1522. [CrossRef]



Firicd applied
b sciences

Review
Engineering Challenges Ahead for Robot Teamwork
in Dynamic Environments

Kurt Geihs 12

1 University of Kassel, Electrical Engineering & Computer Science, 34121 Kassel, Germany;

geihs@uni-kassel.de

2 Universidad Carlos III de Madrid, Ingenieria Telematica, 28911 Leganes (Madrid), Spain

Received: 29 November 2019; Accepted: 12 February 2020; Published: 18 February 2020

Abstract: The increasing number of robots around us creates a demand for connecting these robots
in order to achieve goal-driven teamwork in heterogeneous multi-robot systems. In this paper, we
focus on robot teamwork specifically in dynamic environments. While the conceptual modeling
of multi-agent teamwork was studied extensively during the last two decades and commercial
multi-agent applications were built based on the theoretical foundations, the steadily increasing use
of autonomous robots in many application domains gave the topic new significance and shifted
the focus more toward engineering concerns for multi-robot systems. From a distributed systems
perspective, we discuss general engineering challenges that apply to robot teamwork in dynamic
application domains and review state-of-the-art solution approaches for these challenges. This leads
us to open research questions that need to be tackled in future work.

Keywords: autonomous robots; multi-robot systems; teamwork; coordination; dynamic environments

1. Introduction and Motivation

Autonomous robots pervade our daily lives. Single autonomous robots for particular tasks are
already accepted and used in private, business, and public environments, for example, in application
domains such as warehouse and transportation logistics, search and rescue, smart factories, space
exploration, healthcare, smart public transportation, precision farming, and domestic services. Clearly,
autonomous robots will play a crucial role in more and more application domains. It is an obvious
thought that these robots around us will have to talk to each other and work collaboratively as a
team—a trend that one can compare with the evolution of distributed computing by connecting
stand-alone computers. Teams can be more than the sum of their parts. A multi-robot system is able to
perform tasks that exceed the capabilities of a single robot, not only due to workload sharing but also
in terms of functionality. Just like a team of human beings can achieve more than a single individual,
the teamwork of autonomous robots provides opportunities for robots to accomplish tasks that a single
robot cannot do alone.

Conceptual teamwork models for multi-agent systems were a subject of intense research
approximately 20 years ago. Among the seminal papers at this time were [1-5], to name just a
few out of many (see the survey in [6] for more information on early research). However, the
commercial adoption of agent-based solutions was low during the subsequent decade. According
to [7], among the main hindrances for agent-based applications were limited awareness about the
potentials, limited publicity of successful industrial projects, misunderstandings and over-expectations,
and lack of mature enough design and development tools. While the subject since then never vanished
from the research agenda, one may notice a recent increased interest in robot teamwork. This is due to
substantial progress in robotic hardware and software. In the realm of software, which is our focus in
this paper, advances in artificial intelligence techniques make autonomous robots fit for applications in

Appl. Sci. 2020, 10, 1368; d0i:10.3390/nan010041368 5 www.mdpi.com/journal/applsci



Appl. Sci. 2020, 10, 1368

private, industrial, and public environments. Thus, we are observing a shift of research focus from
theoretical multi-agent models to practical software and hardware engineering issues. Moreover,
the general acceptance of robotic helpers is increasing steadily in society, as demonstrated, for example,
in the private sector by the increasing number of autonomous robots for lawn mowing, vacuum
cleaning, window cleaning, and even for caretaking and medical applications.

Our emphasis in this paper is on the engineering challenges that arise when autonomous robots
collaborate as a team to solve a joint task. In particular, we view these systems from a distributed
systems perspective. In general, teamwork in multi-robot systems exhibits potential benefits and
complexities as any distributed computing system. However, robot teamwork introduces a number of
additional new challenges that we discuss in this paper. For each challenge, we present state-of-the-art
solution approaches. This leads us to research questions that future research needs to tackle.

Our own experience with multi-robot systems originated from our participation in the Middle-Size
League of international RoboCup tournaments where teams of custom-build soccer robots compete
against each other. Our research focus was mainly on a software framework for the development of
teamwork applications in adverse and dynamic environments, as they prevail in Robocup tournaments.
Later, we evolved the framework and showed successfully that it was also fit for other robotic
application domains, such as collaborative exploration, autonomous driving, and service robotics.

In particular, in this paper we are interested in robotic teamwork in dynamic and adverse
application environments where adaptation and reconfiguration may be necessary due to a continuously
changing runtime context. This is a far-reaching assumption that includes fewer demanding
requirements. Our focus is on the software for robot teamwork. Neither the variety of theoretical
models for multi-agent systems nor the mechatronic and hardware design issues are subjects of this
paper. For these issues, we refer the reader to surveys such as [8,9].

In Section 2, we start with a brief clarification of terminology for collaborative robots. This is
necessary because there is no general agreement on the terminology in the wider robotic community.
In Section 3, we discuss engineering challenges for robot teamwork, and we point to existing solution
approaches in order to explicate dimensions of the design space. Section 4 presents a summary of open
research questions. Section 5 concludes the paper.

2. Terminology

Let us first briefly define the basic terminology used in this paper. A robot is a programmable
machine capable of carrying out a complex series of actions automatically (The Oxford English
Dictionary, Oxford University Press). An autonomous robot is capable of perceiving its environment
through sensors, reasoning about the gained information, making decisions accordingly, and acting
upon its environment through actuators, all without human intervention. These capabilities are
also commonly associated with the term agent, whereby agent is considered a more general term,
i.e., a robot is a special kind of agent that (mostly) is realized as a mechatronic construct. A robot
may adopt a certain role based on its capabilities. It executes fasks that are described in a task plan.
For example, in an autonomous driving traffic scenario, an emergency vehicle has a role that is different
from regular vehicles. It has specific capabilities and rights and executes different tasks than regular
traffic participants.

According to Farinelli et al. [6], a multi-robot system is a group of robots operating in the same
environment. The authors point out that there are many different kinds of multi-robot systems. Their
taxonomy is based on the two general dimensions coordination and system. The coordination dimension
is subdivided into cooperation (do the robots cooperate to solve a problem?), knowledge (how much
knowledge do the robots have about each other?), coordination (how much coordination is enforced?),
and organization (what kind of decision structure does the multi-robot system employ?). The system
dimension consists of communication (what kind of communication mechanisms and protocols do the
robots use?), team composition (are the robots homogeneous or heterogeneous?), system architecture (does
the collective as a whole deliberately cope with an unanticipated problem or just the directly affected



Appl. Sci. 2020, 10, 1368

robots), and team size (how scalable is the system in terms of number of robots?). For a more detailed
discussion, we refer the reader to the original publication [6].

Specifically, our emphasis in this paper is on multi-robot systems consisting of autonomous robots
that collaborate in order to achieve a common global goal, perhaps in addition to their own local goals.
We call such a collective of collaborating robots a multi-robot team (MRT) or multi-robot coalition.
In dynamic and unpredictable environments, roles and tasks are allocated dynamically to the members
of an MRT according to their capabilities and current situation [10]. This allocation was formally
modeled and analyzed as an optimization problem using various optimization techniques [11].

From a conceptual modeling perspective, an MRT is a multi-agent system that has a physical
representation with specific properties determined by the mechatronic nature of the agents. The main
focus of our own research is achieving adaptive goal-driven teamwork in a group of autonomous robots.
Thus, according to the taxonomies in [6,12], we are concerned only with cooperative MRTs, consisting of
robots that are aware of their teammates. How cooperation and awareness are achieved may differ.

Since teamwork is the main subject of this paper, we should briefly discuss the related terminology
for characterizing the type of interaction that the robots employ to achieve teamwork. Here, we have
to point out that, even with existing standards such as the Foundation for Intelligent Physical Agents
(FIPA, http://www.fipa.org/), there is no common agreement on the definitions of these terms, i.e.,
different authors use different connotations. We refer to Parker [13] who differentiates between four
types of interaction styles as follows:

Entities are not aware of other entities on the team, yet they do share goals, and their

Collective . - .
actions are beneficial to their teammates.
. Entities are aware of other entities, they share goals, and their actions are beneficial to
Cooperative .
their teammates.
X Robots have individual goals, they are aware of their teammates, and their actions do
Collaborative
help advance the goals of others.
L Entities are aware of each other, but they do not share a common goal, and their actions
Coordinative

are not helpful to other team members.

We refer the reader to [13] for more information and examples. Here, it should suffice to note
that our focus with respect to goal-driven teamwork is on the two interaction styles cooperative and
collaborative. We rule out the other two because they lack properties that we consider essential for
teamwork in an MRT: collective lacks awareness for other teammates, and coordinative lacks a common
team goal and robots do not act together as a team.

Clearly, as stated by Parker, there is no sharp boundary between the two interaction styles
cooperative and collaborative. For the sake of clarity and simplicity, we hereafter view the two terms
as synonyms (as a side remark: The Merriam-Webster dictionary lists both words as synonyms; see
https://www.merriam-webster.com) and do not differentiate between the two styles, but combine and
denote them as collaborative interaction. It is worthwhile to note here that a collaborative interaction
style does not imply a particular choice of system architecture, teamwork programming paradigm,
communication protocol, decision-making technique, agreement protocol, etc.

3. Teamwork Challenges

In this section, we discuss key engineering challenges that apply to multi-robot teams in dynamic
application scenarios from a software developer’s point of view. It is not our intention to present
a complete review of the broad spectrum of design aspects for multi-robot teamwork. Instead, we
focus on those engineering challenges that are related specifically to dynamic environments. For each
challenge, we present a brief look at initial approaches as examples for possible solutions. The order of
the sections below does not imply any kind of priority.



Appl. Sci. 2020, 10, 1368

3.1. Dynamic Coalitions

In open robot teams where the team members are not known a priori at design time, we need
support for establishing a temporary team membership. Participants form temporary coalitions in
order to solve a problem and achieve a common goal. A traffic intersection in autonomous driving
scenarios is an example of a short-lived coalition with continuous team reconfiguration, while Industry
4.0 scenarios would likely imply a longer-lasting coalition. Only members of a coalition should be
involved in the teamwork interactions, and agents outside of the coalition should not disturb it. This
requires that all agents know about their membership. Moreover, it may require security measures to
protect the interactions of a team. Key challenges are as follows:

e  How are team members discovered and identified?

e Who manages team membership?

e  How do team members learn about the team composition?

e  How does the team protect itself against malicious intruders?

Many communication paradigms achieve interaction among distributed components based on
the identities of the components. Examples are the classical client/server model, the actor model [14],
or named channels in channel-based binary communication [15]. On the other hand, broadcast
communication [16] may not require identities depending on the capabilities of the underlying
communication system, but loses the ability to address a selection of individual agents. However,
in open teams in dynamic environments, the identity of robots may not be known at design time,
if robots may join and leave a team at run-time. Thus, the concept of identity is not easy to establish
and may even be irrelevant [17].

In such environments, we need different ways to determine team membership and to address
team members. Note that a single central team manager that monitors and controls team membership
is out of the question here because we need to avoid a single point of failure in environments where
robots may move out of reach temporarily or break down completely.

One solution is based on attribute-based interaction. It is a variant of publish/subscribe
communication, and it was proposed in [17,18] as a paradigm to address collectives of possibly
anonymous agents. In attribute-based interaction, robots of a multi-robot system explicitly expose a
set of attributes that are relevant for the application at hand. Interaction between robots is based on
groupcast communication, whereby sending and receiving messages is determined by predicates over
the specified attributes. A send command expresses the intention to deliver a message to all robots
satisfying the send predicate. Likewise, a receive command signals willingness to receive messages from
team members according to the specified receive predicate.

For example, in an Industry 4.0 scenario, one might ask for “components that need to be delivered
within the next 15 min” or, in autonomous driving, one might want to address “vehicles that are capable
of autonomous driving and are closer than 50 m to the intersection”. Thus, attribute-based interaction
is a more fine-grained content-based selection of possible receivers and senders. Potentially, it allows a
more efficient filtering of messages by the distribution infrastructure and reduces the communication
overhead. The drawback is the need for a powerful, rather heavyweight distribution infrastructure.
Attribute-based interaction is integrated into the syntax of several programming languages, such as
Erlang [19] and Google Go [20].

Other well-known protocols for open coalitions include the JXTA peer-to-peer protocols that target
overlay-based communication of peers across public networks, where security issues such as firewall
traversal are of utmost importance [21]. An application of JXTA for the control of robots was reported
in [22]. However, the JXTA project is no longer officially supported. The FIPA recommendations (http://
www.fipa.org/) offer a conceptual framework for communication and management in multi-agent teams.
Their focus is on intelligent (software) agents, not on mechatronic robots. The FIPA standardization is
currently not active.



Appl. Sci. 2020, 10, 1368

3.2. Heterogeneity

Heterogeneity in an MRT may refer to the hardware and software features of the individual team
members. Different application domains require different robot functionalities. Thus, capabilities related
to robot mobility (e.g., static, wheels, legs, aerial), sensors (e.g., optical, acoustical, temperature, air quality
parameters, laser, lidar, infrared, etc.) and actuators (e.g., arm, drill, kicker, extension rails, etc.), compute
power, storage capacity, operating system software, communication type and range (e.g., WiFi, Bluetooth,
LoRaWAN), access to cloud computing resources, and many more will be different for different robot
types. In a smart factory, the degree of heterogeneity will probably be limited and known in advance
at design time, while, in autonomous driving scenarios, we cannot anticipate completely what kind of
traffic participants appear and what their specific properties and capabilities are.

From the perspective of teamwork, robots in a team need to be capable of interacting with
each other. Thus, not only must a common communication architecture be in place, but team-wide
understood application level protocols for information exchange, coordination, and decision-making
are also needed. On the one hand, the heterogeneity of robots certainly contributes to the complexity
of the teamwork application design, particularly since, so far, there are no dominating standards for
masking the heterogeneity through transparency solutions. On the other hand, from an application
perspective, heterogeneity may be beneficial if a team is able to make use of specific capabilities of
team members. Then, the whole can truly be more than its parts.

The key challenge is as follows:

e Will it be possible to agree on a small set of standardized hardware and software interfaces for the
wide range of diverse robot hardware components and software services?

The situation is similar to the evolution of computing hardware and software where commonly
agreed interface standards—de facto or official ones—made it possible to mix and match components
from different manufacturers to prevent vendor lock-in and to respond to the variety of user
requirements. If the emergence of multi-robot applications continues at the speed that we are witnessing
today, more standardization is needed in order to enable a flexible combination of heterogeneous
robots for application specific robot teamwork. Consequently, more practical experience and applied
research are needed to fuel such a standardization.

3.3. Middleware Support

A multi-robot system, as any other distributed system, benefits from middleware that hides the
complexities of distributed computing in heterogeneous environments and, thus, eases the job of the
developer of a distributed application. In general, middleware for robotic applications needs to satisfy
the same basic requirements as any middleware in a distributed computing system, i.e., to simplify the
application design by making transparent the low-level details of the underlying hardware, software,
communication, sensing, and actuating activities. Moreover, middleware facilitates the integration of
new technologies, and it improves software maintenance and evolution, as well as software re-use
across multiple development efforts, thus reducing application development costs.

Taking up experiences with agent reference models (e.g., FIPA and its offspring NAWG (FIPA P2P
Nomadic Agents WG (P2PNA WG6), http://www.fipa.org/subgroups/P2PNA-WG.html)) and agent
platform implementations (see the FIPA web page at http://www.fipa.org/resources/livesystems.html
for an (outdated) list of publicly available FIPA compliant implementations of agent platforms), as well
as with popular general-purpose middleware systems, many middleware architectures specifically for
multi-robot systems were proposed in the literature. We point the reader to surveys such as [23,24].

Key challenges are as follows:

e Do we need specialized middleware for robot teamwork, or can we build on existing standards
for general middleware architectures?

e Are the robot devices capable of running a heavyweight middleware in terms of processing and
storage capacity?



Appl. Sci. 2020, 10, 1368

e  How important are quality of service guarantees for the application at hand?

There are a variety of models underlying middleware for multi-agent coordination. Middleware
frameworks such as Orocos [25], CLARAty [26], and MIRO [27] use event-based behavior coordination.
The events are triggered by either communication or timer events that are mostly realized as remote
procedure calls. This results in an insufficient decoupling between the initiator and receiver of an
event. Orocos and MIRO rely on heavyweight architectures, i.e., CORBA [28] and Ice [29], respectively.
In contrast, CLARAty which was developed for communication of NASA rovers, explicitly handles
unreliable communication and can operate in either centralized or decentralized mode.

The most common communication concept of robot middleware is publish—subscribe due to its
higher degree of decoupling. Examples are RoboFrame [30], Spica [31], and ROS [32]. RoboFrame and
Spica were designed explicitly for distributed computing in multi-robot systems. They are capable of
dealing with unreliable communication, as for example encountered in RoboCup soccer tournaments
where standard WiFi communication channels often suffer from bandwidth limitations and packet
losses due to interferences among the many WLANS at the competition site. While the robot software
framework ROS 1 had limited support for distributed multi-robot applications, the new ROS 2 includes
a middleware based on the popular data distribution service (DDS) (Data Distribution Service, OMG,
https://www.omg.org/spec/DDS/).

Nevertheless, there are several open issues related to middleware support for robot teamwork that
need more research. A truly flexible middleware toolbox would be needed that enables the designer
of a teamwork application to configure the middleware by selecting the specific set of components
that matches best the application requirements. Operating systems research faced basically the same
problem several decades ago when more and more electronic devices became available with very
different hardware architectures and application requirements.

Another open issue is the concern for security in distributed collaboration scenarios; most existing
middleware solutions for multi-robot systems assume that applications, if needed, can make use of
transport-level security mechanisms. Not all applications would need such security. For example,
in RoboCup tournaments, there is no real need to secure the communications between the robots
(and no time to do so anyway). Likewise, in the collaborative exploration of unknown territories,
e.g., on another planet as part of a space mission, secure communication between the explorer robots is
not required. However, when it comes to collaborative autonomous vehicles on public roads, potential
vulnerabilities are a crucial concern. Moreover, in Section 3.1, we already mentioned the need for
security in managing dynamic team membership. More research specifically on adaptive security for
teams of autonomous robots is needed. This seems to be a research area on its own.

3.4. Organizational Structure and Decision-Making

Teams need to take team decisions. For example, vehicles need to agree on the speed and direction
of a particular vehicle or soccer robots on the location of the ball on the field. Obviously, application
requirements are very different. In an autonomous driving scenario, decisions on the locations and
intentions of unequipped traffic participants need to be taken very fast in very dynamic short-lived
coalitions. Since safety concerns are paramount, consensus is required for most decisions. On the
other hand, in robot soccer, for most decisions, we tolerate a relaxed consensus level but demand swift
reactions due to the high dynamics of the game situation.

Decision-making (note that our notion of decision-making is different from Reference [9] where
the term is viewed as a synonym for planning and control of a multi-agent system) in a team can be
organized according to three basic structural principles, i.e., centralized, hierarchical, and distributed [33].
In a centralized structure, decisions are made by a central leader or controller. This structure suffers from
the vulnerability of a central point of failure and the potential performance bottleneck. In a hierarchical
structure, decisions are made at different levels by a hierarchy of leaders that have decision authority
according to their rank. Such a structure is more robust than a centralized one because it can potentially
react faster to “lower-level” events and tolerate partial failures. Its drawback is the incurred high

10



Appl. Sci. 2020, 10, 1368

organizational overhead. In a decentralized structure, all team members autonomously perceive their own
situation and the state of the surrounding execution environment. Team members decide about their
actions by themselves according to a given team plan. Team decisions that tolerate a relaxed consensus
level can be taken using different kinds of voting schemes, auctions, games, and more.

Decisions are made based on the given team plan and observations about the current context.
The application developer will need to evaluate and judge the required level of agreement for team
actions, as well as the affordable coordination overhead. A decentralized decision structure is an obvious
choice if we are concerned about the reliability of the individual robots and the communication network.
Likewise, if we deal with temporary coalitions in highly dynamic environments where swift decisions
are required, such as in robot soccer, there is no time for the execution of a time-consuming leader
election algorithm or any other costly algorithm for establishing an organizational structure. The reader
is referred to [33-35] for detailed discussions of organizational structures and decision-making in
multi-agent systems.

The key questions are as follows:

e What kind of organizational structure follows from the application requirements?

e  What kind of consensus level is required for team-wide decisions?

e Which decision-making protocols are appropriate considering the trade-off between consensus
level and protocol overhead?

Let us look in more detail at a decentralized team organization. Generally, decision-making
happens in five steps:

Agents collect relevant data by observing the environment and their own status;
Agents form their own opinion based on the outcome of step 1;

Agents propose their own opinion by replicating it to all team members;

The team discusses and resolves conflicting opinions;

AR A

The team takes a joint decision.

For replication and conflict resolution, there is a choice of well-known protocols depending on the
application needs. Hence, a teamwork middleware should offer flexible support for decision-making
that is tunable to different application requirements. The core functionality of such a middleware
function is to support the team decision-making process with respect to the current values of specified
decision variables. Below, we present one concrete example for such a middleware.

The middleware PROVIDE [36] is part of a multi-agent framework called ALICA [37]; ALICA
teams have a decentralized team structure. PROViDE offers a choice of replication and agreement
protocols for common decision variables. If a team decision about the value of an environment variable
needs to be made, all team members broadcast their opinion to their teammates. The developer may
choose the level of replica consistency depending on the specific application requirements in the face
of unreliable communications, temporarily disconnected robots, and diverging sensor readings by
the robots. The replicated values of a decision variable can lead to a situation where a robot receives
several divergent observations from its teammates in addition to its own observed value. Thus, after
the replication phase, a robot needs to decide which value from the set of available opinions it will
accept locally as its own value. This may lead to a situation where the individual team members accept
different values of the decision variable as their own individual “view of the world”. Now, we need a
third coordination phase where the robots agree on a single joint value. Such a decision could be based
on majority voting, priorities, timestamps, or other criteria.

Thus, there are three distinct phases in team decision-making that resemble the typical process of
decision-making in human teams (added in parentheses):

1. Replication of individually perceived values of the decision variable to teammates (team members
learn about diverse opinions in the team).

11



Appl. Sci. 2020, 10, 1368

2. Team members locally commit to a value (team members determine their own opinion).
3. If needed, conflicting choices are resolved by a specified conflict resolution protocol (the team
consolidates diverging opinions and arrives at a joint decision).

In summary, based on the PROVIDE middleware, the application developer can tune the
middleware by choosing from a set of provided protocols and, thus, can adapt the quality and
overhead of decision-making to diverse application requirements. However, this raises another
question. One might argue that such an abundant choice of strategies shifts the complexity onto
choosing the right combination of strategies. This argument cannot be ignored. One solution might be
to identify reusable typical patterns of strategy combinations for specific application scenarios. This
can be addressed in future work.

3.5. Programming

The complexity of teamwork in multi-robot systems in dynamic and adverse environments requires
software architectures and integrated toolchains that ease the development process. Model-driven
engineering (MDE) allows developers to shift their focus from implementation to modeling in the
domain knowledge space. MDE is expected to promote separation of concerns, efficiency, flexibility,
and evolution in application development. From a practical engineering point of view, MDE demands
a toolchain that not only automates the required model transformations, but also includes tools
for examining the models through simulation (e.g., using Gazebo (http://gazebosim.org/)) or model
checking (e.g., using UPPAAL [38]).

In order to ease the modeling and implementation of executable plans for robot applications,
domain-specific languages (DSL) were proposed. A DSL is a computer programming language of
limited expressiveness focused on a particular domain [39]. The “limited” in this definition should not be
seen as a negative point; instead, it signals that a DSL is targeted at a specific application domain.
Typically, a DSL for developing plans for robots consists of two parts, i.e., a modeling language and an
associated execution engine. While there are a number of DSLs available for programming single robots
(e.g., [3,40-45]), only a few DSLs explicitly address teamwork for multi-robot systems (e.g., [46,47])
(see [48] for a detailed review of robot DSLs). We claim that the complexity of teamwork in dynamic
environments makes such a high-level abstraction a necessity, i.e., a DSL that enables the developer to
concentrate on the teamwork behavior of the distributed robot system.

Dynamic environments typically imply a dynamic allocation of tasks to individual team members.
A good example is robot soccer. A soccer team continuously needs to be aware of the game situation,
which may change instantaneously. Thus, tasks such as defending, attacking the ball, dribbling,
blocking an opponent, etc. need to be assigned dynamically based on conditions such as whether the
team possesses the ball, proximity of robots to the goal, position of the ball, distance to opponents,
etc. Clearly, dynamic task allocation in a decentralized formation is a team decision where all team
members should agree on their current duties. In contrast, in an Industry 4.0 scenario, allocation of
tasks to robots will typically be static.

General research questions are as follows:

e Do we need different teamwork DSLs for different application domains? Ideally, a single DSL
would be suitable for programming a wide spectrum of teamwork scenarios in order to enable
reuse of models and development know-how.

e Does the modeling and execution environment support a dynamic task allocation to team members
instead of fixed allocations?

e How can we efficiently integrate simulation and automated verification into the application
development environment in order to examine the models for desired MRT properties, such as
safety, fairness, freedom from deadlocks and livelocks, no starvation, etc.?

Let us look at three examples for high-level modeling languages for robot teamwork, i.e.,, STEAM,
BITE, and ALICA.

12



Appl. Sci. 2020, 10, 1368

Shell for Teamwork (STEAM) [5] is a modeling approach for teamwork. STEAM builds on two
well-known teamwork theories, i.e., joint intentions theory [3] and shared plans theory [1]. It tries to
combine their benefits in order to achieve a coordinated behavior of the team members. In particular,
STEAM assigns sub-teams of agents to a hierarchical shared plan structure. Agents need to establish
ajoint intention before acting together. This makes the teamwork susceptible to degraded or failed
communication links.

The Bar Ilan Teamwork Engine (BITE) by Kaminka and Frenkel [49] divides the team modeling into
three structures. A tree-like structure, similar to hierarchical task networks [50], represents the global
execution plan of the team. Another structure describes the organizational hierarchy of sub-team
memberships. This results in a hierarchical task structure that provides a team-wide allocation of
robots and sub-teams to behaviors. The third structure describes the social interaction behaviors, i.e.,
explicit communication and coordination activities between agents. A major drawback of BITE is the
fact that it requires a successful negotiation before any physical action can take place. As a result, BITE
is not appropriate for domains that require swift reactive behavior.

Let us look at one framework in more detail to make the descriptions more concrete. ALICA
(A Language for Interactive Collaborative Agents) is a language and execution environment for
developing teamwork applications. ALICA provides a formally defined modeling language, tool
support for development, and an execution engine for highly adaptive multi-agent team behavior [37,46].
The design of ALICA targets dynamic environments with fast changing situations, imperfect network
communication, and possibly diverging sensor data from team members. It supports the known
design blocks of multi-robot systems [51], i.e., task decomposition, team formation, and task allocation,
as well as task execution and control. ALICA was developed and used originally for robot soccer and
then evolved and applied to other application domains such as collaborative exploration of unknown
territories, autonomous driving, and service robotics [52].

The team behavior is specified from a global perspective in a single ALICA program which
is deployed to all team members and executed without central control. ALICA uses hierarchically
arranged annotated state machines to model robot tasks. Figure 1 shows an example where agents
collaborate to explore a territory, collect objects, and assemble some structure. Note that this plan is
not complete; the figure only shows the highest specification level. A characteristic feature of ALICA
is that task allocation to the individual robots is not static but adaptive to the current context and
capabilities of the involved robots. State transitions depend on the situation at hand as perceived by a
robot. For further information on the syntax and semantics of ALICA, the reader is referred to [37].

Default Task

| Construct Habitat

SupporlJ—o L —— Zq Explore —4— Z;

Collect | Drive Home Explore

“\ +

Construct — Za Z4 Construct Zg
B o o]

- Bl Ty

|
Support — Z-
| Collect

Figure 1. Example of ALICA (A Language for Interactive Collaborative Agents) program for
an exploration.

13



Appl. Sci. 2020, 10, 1368

ALICA features a strictly decentralized team organization. Team decisions, e.g., about task
allocation, result from individual decisions of the team members according to the given team plan, their
observations of the environment, and the information exchange with their teammates. Nevertheless,
there may be application situations where the team has to agree unanimously on the value of a certain
decision variable. This might lead to decision conflicts that have to be resolved. For example, to execute
a ball passing plan in robot soccer, at least the pass executor and pass receiver have to agree on their
own positions, the position of the ball, and the opponents’ positions. Thus, these positions represent
joint decision variables. Note that “agree” in this context may mean different levels of agreement
on a spectrum from simple broadcasts of opinions to strict consensus [53]. The developer of the
respective ALICA plans must decide what kind of agreement is appropriate for an application in a
certain situation. To facilitate this choice, ALICA contains a specific decision-support middleware (see
Section 3.4 above).

Other examples of languages suitable for the specification of MRT behavior are Buzz [54], ISPL [55],
and SCEL [56]. These languages differ in many properties according to their specific application focus
and design paradigms. SCEL is the only language that supports open teams using attribute-based
interaction (see [19] for a detailed comparison of the three languages).

3.6. Shared Knowledge

We already mentioned that our viewpoint of robot teamwork is closely linked to mutual awareness
in the robots, i.e., teammates have—in addition to their local knowledge—some knowledge about
their colleagues in the team. This awareness often, but not necessarily, is based on the provision of a
shared global knowledge base for the entire team. The knowledge base, which typically would be
implemented as a distributed replicated knowledge store, contains the concepts, objects, and relations
known to the robots, as well as the fused perceptions of the state of the execution environment. In many
works, the individual local view of a robot is called the local world model, while the shared team
knowledge base is called the shared world model [57].

Potentially, such a shared knowledge base with frequently consulted thousands of objects and
relations is a very resource-consuming and a performance-critical element of the teamwork. This
creates several challenges, as listed below.

e How do we formally define the shared knowledge such that reasoning at run time satisfies
performance requirements?

e How do we equip robots with commonsense knowledge that human beings would have implicitly
about the environment?

e  How can we integrate individual, heterogeneous knowledge representations of heterogeneous
robots into a shared world model?

e What kind of consistency guarantees are necessary and feasible for the distributed, replicated
storage of the (dynamic) contents of the knowledge base?

e How robust and scalable is the common knowledge base in view of, e.g., unreliable communication
connections, imprecise sensor data, and predefined time barriers?

e  Can the knowledge base structure be adapted and extended at run time?

While there is a large set of publications focusing on knowledge representation techniques for robotic
applications (e.g., [58-60]), little was published specifically on distributed knowledge bases for
multi-robot systems. One thread of research—in particular for service robots—looked at offloading the
knowledge base to the cloud [61]. The viability of such an approach clearly depends on the application
requirements in terms of access performance and availability. Other approaches exploit a decentralized
storage of knowledge [57] leading to well-known questions of consistency in data replication.

The spectrum of diverse requirements in multi-robot applications seems to be so large, that a
harmonization of techniques for knowledge representation and storage is out of reach. On the other
hand, a vast body of know-how is available for knowledge representation, reasoning, distributed data

14



Appl. Sci. 2020, 10, 1368

storage systems, and replication and consensus protocols. In this situation, it is worth considering
the question of whether the variety of existing solutions could be narrowed down to a few solution
patterns, which would satisfy the majority of application scenarios.

3.7. Robustness and Dynamic Adaptation

Robustness is the ability of a system to cope with errors during execution and with erroneous
input (https://en.wikipedia.org/wiki/Robustness_(computer_science)). A lack of robustness in dynamic
team coordination may be due to various technical causes. Communication links may be unreliable,
i.e., different communication technologies and conditions in the runtime environment may lead to
message loss and network partitions such that standard communication protocols cannot provide
a guaranteed error-free service. Individual robots may move out of communication range and be
temporarily disconnected from the team. This has implications for the design of the application-level
protocols. Centralized configurations are not appropriate in this case, since a single point of failure and
performance bottleneck can severely hinder the teamwork and make the whole MRT useless. Sensors
of team members may deliver different values for the same environment variable. This raises the
question of what level of agreement the application requires for collective perceptions and whether
the fusion of different types of sensor information can help in such a situation to improve the quality
of the information in the shared world model. The amount of overhead for achieving reliable sensor
information and consensus building may be prohibitive in very dynamic environments where swift
decisions are more important than lengthy computation and communication activities. Moreover, run
time execution errors may be caused by situations that were not foreseen at design time. Robustness in
this case would mean that the system is able to perform an unanticipated adaptation. Thus, the team
as a whole should be able to evolve its team plan, as well as the plans of the individual team members
based on, e.g., input from other agents or machine learning techniques. In general, unanticipated
software adaptations, which were not planned by the developer at design time, are a challenging
problem. Only a few attempts on a general solution for unanticipated on-the-fly adaptation appeared
in the literature [62,63]. Most adaptive systems assume that the adaptation state space is known
completely at design time [64].

Related research questions are as follows:

e How does the MRT cope with diverging sensor readings?

e  Can the MRT tolerate temporarily impaired communications?

e Is the MRT capable of evolving its plans on-the-fly in order to integrate a learned or otherwise
derived behavior?

e What are appropriate strategies for unanticipated adaptation?

In teamwork scenarios, the arrival of new team members with new capabilities or the departure
of team members with individual capabilities might require changes in the team plans. Likewise,
the evolution of global team goals and/or individual robot goals might demand a re-planning. Note
that we are not concerned about the generation of the new plans. This may be done manually by a
human developer or automatically by machine learning techniques and planning algorithms. Our
emphasis is on the implications of openness of teams and, thus, on the capability for dynamic evolution
and interchange of team plans.

A possible approach to unanticipated adaptation in an MRT is based on semantic annotations
of team plans using a declarative logic programming language such as answer set programming
(ASP) [65,66]. ASP adheres to a similar programming model as Prolog [67]. A number of projects
showed that ASP meets the requirements for semantic specifications in a wide range of application areas
in terms of expressiveness, efficiency, dynamic extensibility, and scalability. Examples are semantic
service adaptation [68], dynamic information stream configuration in crisis management scenarios [57],
and service robotics [59]. Thus, by adding semantic annotations to team plans, the developer lays
the foundation for re-planning at runtime based on the specified properties and constraints for the

15



Appl. Sci. 2020, 10, 1368

robots and their relationships. The semantic compatibility of annotated team plans can be checked
using established techniques for semantic matching and adaptation [10,69]. Nevertheless, this is still
largely unchartered territory in respect to the applicability to different robot scenarios. More research
and practical experience are needed on the scope, expressiveness, and performance implications of
different paradigms for unanticipated adaptation.

3.8. Socio-Technical Concerns

Even if a team of robots is able to operate autonomously and perform application tasks without
human intervention, experience with self-adaptive applications shows that the human user does not
always appreciate being out of the loop [70]. Self-adaptive systems may fail to meet user expectations,
and autonomous actions may be inappropriate in certain user situations. In other words, the user
wants to stay in control in certain situations, or, even more importantly, in safety critical application
domains such as autonomous driving, the user must be able to override automatic decisions.

This automation paradox, also called the irony of automation [70], is known since automated
control systems took over tasks that were previously carried out by human operators. Psychologists
identified human contribution in automated systems as not less but more important. A more advanced
automated system denotes a more demanding interaction with the human user. In cases of failures
or irregular conditions, humans should still have a chance to intervene. At all times, humans need
to be protected against harm caused by the robot behavior. Clearly, this general insight related to
automation applies also to the engineering of an MRT, especially if the MRT may self-adapt its plans to
situations that the designer did not anticipate.

In addition to the human in the loop aspect, concerns about the social embedding of a robotic
application solution arise when a team of robots operates in a dynamic environment where users
and robots interact. Most of the concerns are of a general nature for adaptive systems, such as
transparency of decisions, trust in technology, fairness, privacy of context information, liability, and more.
Surely, these concerns play a crucial role for the user acceptance of any technical system and particularly
in safety-critical applications. They apply to single robots, as well as multi-robot systems. However,
one question remains unanswered so far in the literature:

e  Will the envisaged teamwork of robots, in comparison to a single robot application, create more
complex or even additional challenges in respect to socio-technical design concerns?

4. Summary

The wide spectrum of applications that require teamwork of robots poses the following question:
can we discuss engineering concerns at all from a general, all-encompassing point of view? Application
domains such as autonomous driving, Industry 4.0, and search and rescue clearly have very different
requirements. Nevertheless, our answer is positive, looking at a comparison of robot teamwork with
the evolution of distributed systems technologies where models, architectures, and techniques emerged
that provide a strong foundation for practical implementations.

In contrast to classical distributed systems technologies, we assume that robot teamwork happens
in dynamic environments; robots are mobile, robots use unreliable wireless communications, robots
move out of communication range, new team members appear, robots sense the state of the runtime
environment and reason about appropriate reactions, specific components of robots fail without
rendering the whole robot useless, the team encounters unforeseen situations, and more. Below, we
summarize from a general, systems-oriented perspective the discussions in the previous chapter about
engineering challenges for robot teamwork in dynamic environments. Thus, we point to research areas
that need to be tackled in future work.

16



Appl. Sci. 2020, 10, 1368

4.1. Dynamic Coalitions

The dynamic environment, as described above, implies a need for a highly flexible team
organization and collaboration infrastructure. Team membership must be managed to cope with
varying team membership. The capabilities of the team as a whole may change if robots leave, join,
or experience a breakdown of components or the whole robot. We need a semantic description of
the capabilities that are currently available in the team; consequently, we need reasoning about the
appropriate dynamic allocation of tasks to team members and the modification of execution plans.
All of this should be supported by the teamwork collaboration infrastructure such that the developer is
relieved as much as possible from the nitty-gritty details. The individual building blocks for such an
infrastructure are known. However, one difficult engineering question remains: how can the different
independently developed pieces be put together?

4.2. Platform Harmonization and Configurability

In order to facilitate the reuse of software components, portability of applications, and exchange
of know-how, a harmonization—if not standardization—of robot platforms and their application
programming interfaces is desirable. The diversity of robot application domains creates a need for a
flexibly configurable and customizable collaboration platform architecture that reflects the different
computational capacities of robots. Thus, in analogy to operating systems for embedded systems, we
need highly configurable, component-based teamwork collaboration platforms (i.e., middleware) that
can be tailored to specific application needs and properties of the involved robots. Such a toolbox
is missing.

4.3. Knowledge Base

The ability to share knowledge is a crucial prerequisite for teamwork. As discussed in Section 3.6,
there are various approaches for building a shared knowledge base in multi-robot systems. Some
standardization would also be helpful here. Important research questions to ask in this realm concern
the integration of heterogeneous knowledge representations, the implementation of the knowledge
base in a distributed system with largely diverging agent capabilities, the satisfaction of stringent
application performance requirements, the extensibility of the knowledge base structure at run-time,
i.e., adding new concepts and relations, as well as removing invalid facts, and the inclusion of
“common-sense knowledge” that humans would have implicitly, but which needs to be provided
explicitly to a robot team.

For all of these aspects, the state of the art provides individual solutions. However, how to forge
these solutions into a shared knowledge base that satisfies the specific requirements of an application
domain is an open problem. Moreover, we need to explore whether it is feasible to reduce the large
number of approaches to a few consolidated ones.

4.4. Methodology and Tools

Like other software, the development of robot teamwork applications should be supported by an
effective development methodology as well as corresponding development tools. Many proposals
for domain-specific languages for robotic applications exist, as mentioned above in Section 3.5. How
to filter out a few approaches that would serve a larger number of application domains is an open
question. The formal verification of teamwork plans for dynamic environments with respect to
correctness and properties such as liveness and freedom from deadlocks is not well developed so
far and requires more research. Moreover, facing the large variety of protocols for agreement, data
consistency, synchronization, etc., the identification of agreed-upon reusable best-practice design
patterns for teamwork applications would greatly facilitate the software development process. Ideally,
all of this should be integrated into a robot teamwork development environment built around a
powerful DSL.

17



Appl. Sci. 2020, 10, 1368

4.5. Edge and Cloud Integration

Offloading computation-intensive tasks or large data quantities from robots to edge or cloud
computing resources is an attractive option for resource-scarce robots. However, the challenges and
open questions that arise in such a scenario are manifold. Which part of an application can/should be
offloaded to improve the performance or to save battery capacity taking into account the communication
overhead and latencies? When and under what conditions should it be done? How can the state of the
robot’s execution context be provided to the offloaded computation? These questions were solved
already for mobile cloud computing scenarios on mobile devices, primarily looking at offloading
computation and data from a single device [68]. For teamwork scenarios in multi-robot systems with a
high degree of agent cooperation and coupling, the viability and effectiveness of these solutions have
to be re-examined.

4.6. Human in the Loop and Other Sociotechnical Concerns

In many application environments, robots interact with humans. For example, humans may
use the services of a robot team. Alternatively, humans may augment the capabilities of the team,
effectively making them a member of the team, or humans may give instructions to a robot team to
control the execution. Research in social robotics delivered various means of interacting with robots,
e.g., based on voice or gestures. However, interaction with and control of a whole team of robots
received little attention so far. Some general questions remain. How would the team and the individual
team members be addressed? How would an “emergency button” be implemented that immediately
stops the execution of the whole MRT? How would the possible actions of a human be modeled in the
team plan? How would the MRT react to unanticipated actions of the human?

Sociotechnical concerns for technical innovations, as presented in Section 3.8 above, received
increasing attention in society recently. Clearly, these concerns also apply to robot teamwork. As in
other technical domains, the big question is as follows: how do we translate abstract sociotechnical
requirements that are mostly specified in natural language into concrete engineering artefacts for
multi-robot applications? For example, liability issues for a team of heterogeneous robots from different
manufacturers could be difficult to decide. Likewise, explanations for team decisions and actions may
be even more difficult to understand for a user who demands transparency for MRT activities; this
will undermine the user’s trust in the technology and may lead to a lack of acceptance. Experts from
different disciplines must work together to solve these interdisciplinary puzzles.

4.7. General Remarks

As for any distributed system, the engineering of robot teamwork raises questions about concerns
such as scalability, fault tolerance, performance, software evolution, and the like. It is important that
developers of teamwork applications respond to these concerns. We do not discuss these concerns
here because they do not create specific questions for the engineering of robot teamwork.

5. Conclusions

The proliferation of robotics is likened often to the evolution of the personal computer (PC). Many
expect that—like the PC—autonomous robots, in whatever form, will become everyday assistants
that will surround and support us in all kinds of application domains. Naturally, over the years,
the increasing number of robots will lead to “distributed robot systems” where autonomous robots
form (temporary) teams and collaborate to achieve a common goal. Due to the manifold technical,
contextual, and situational dependencies, these teams will often act under dynamically changing
conditions, and not all teamwork can be planned and implemented at design time. Hence, dynamic
team building and adaptive team behavior will become important concerns.

In this paper, we focused particularly on the engineering of teamwork for multi-robot systems
that operate in dynamically changing environments. We tried to raise the awareness for crucial issues

18



Appl. Sci. 2020, 10, 1368

in the realization of such teamwork, and we pointed out exemplary solution approaches. Clearly,
the diversity of application requirements is huge, and the design space is vast. This will keep the
research and development community busy in the coming years.

Funding: This research received no external funding.

Acknowledgments: Parts of this paper were written while the author was a guest scientist at IMT Lucca (Italy).
The author sincerely thanks Rocco de Nicola and the members of his group for insightful discussions and
contributions. The author gratefully acknowledges the support from the Banco Santander Chairs of Excellence
program and the insightful discussions with researchers from Universidad Carlos IIl de Madrid (UC3M) and
IMDEA Networks, as well as the constructive comments by the anonymous reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grosz, B,; Kraus, S. Collaborative plans for complex group action. Artif. Intell. 1996, 86, 269-357. [CrossRef]

2. Jennings, N. Commitments and conventions: The foundation of coordination in multi-agent systems.
Knowl. Eng. Rev. 1993, 8, 223-250. [CrossRef]

3. Levesque Hector, J.; Cohen Philip, R.; Nunes José, H.T. On Acting Together. In Proceedings of the Eighth
National Conference on Artificial Intelligence (AAAI-90), Boston, MA, USA, 29 July-3 August 1990; pp. 94-99.

4. Parker, L.E. Current state of the art in multi-robot teams. In Distributed Autonomous Robotic Systems; Springer:
Berlin/Heidelberg, Germany, 2000; pp. 3-12.

5. Tambe, M. Towards flexible teamwork. J. Artif. Intell. Res. 1997, 7, 83-124. [CrossRef]

6. Farinelli, A.; Tocchi, L.; Nardi, D. Multi-Robot Systems: A classification focused on coordination. IEEE Trans.
Syst. Man Cybern. B 2004, 34, 2015-2028. [CrossRef] [PubMed]

7. Péchoutek, M.; Mafik, V. Industrial deployment of multi-agent technologies: review and selected case
studies. |. Auton. Agents Multi Agent Syst. 2008, 17, 397-431. [CrossRef]

8.  Chennareddy, S.; Agrawal, A.; Anupama, K.R. Modular Self-Reconfigurable Robotic Systems: A Survey on
Hardware Architectures. J. Robot. 2017, 2017, 1-19.

9. Rizk, Y, Awad, M., Tunstel, EW. Cooperative Heterogeneous Multi-Robot Systems: A Survey.
ACM Comput. Surv. 2019, 52, 29-31. [CrossRef]

10. Gerkey, B.P; Mataric, M.]. A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J.
Robot. Res. 2004, 23,939-954. [CrossRef]

11. Mosteo, A.R.; Montano, L. A Survey of Multi-Robot Task Allocation; Technical Report AMI-009-10-TEC;
University of Zaragoza: Zaragoza, Spain, 2010.

12.  Doran, J.; Franklin, S.; Jennings, N.; Norman, T. On cooperation in multi-agent systems. Knowl. Eng. Rev.
1997, 12, 309-314. [CrossRef]

13.  Parker, L.E. Distributed intelligence: Overview of the field and its application in multi-robot systems.
J. Phys. Agents 2008, 2, 5-14. [CrossRef]

14.  Agha, G. Actors: A Model of Concurrent Computation in Distributed Systems; MIT Press: Cambridge, MA, USA,

1986.

15.  Sangiorgi, D.; Walker, D. The Pi-Calculus: A Theory of Mobile Processes; Cambridge University Press: Cambridge,
UK, 2003.

16. Prasad, K. A calculus of broadcasting systems. In TAPSOFT'91; Springer: Berlin/Heidelberg, Germany, 1991;
pp.- 338-358.

17.  De Nicola, R.; Di Stefano, L.; Inverso, O. Towards formal models and languages for verifiable Multi-Robot
Systems. Front. Comput. Sci. 2018, 5. [CrossRef]

18.  Alrahman, Y.A.; De Nicola, R.; Loreti, M. On the Power of Attribute-Based Communication. In Proceedings
of the 36th IFIP WG 6.1 International Conference, FORTE 2016, Heraklion, Greece, 6-9 June 2016; pp. 1-18.

19. De Nicola, R.; Duong, T.; Inverso, O.; Trubiani, C. AErlang: Empowering Erlang with Attribute-Based
Communication; Jacquet, ].-M., Massink, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 21-39.

20. Alrahman, Y.A.; De Nicola, R.; Garbi, G. GoAt: Attribute-based Interaction in Google Go. Comput. Sci. 2018.
[CrossRef]

19



Appl. Sci. 2020, 10, 1368

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

Sun Microsystems, JXTA Java Standard Edition V2.5: Programmers Guide. 2007. Available online: https:
//www.tamps.cinvestav.mx/~{}vjsosa/clases/redes/[XTA_SE_ProgGuide_v2.5.pdf (accessed on 18 February
2020).

Ogata, Y.; Spaho, E.; Matsuo, K.; Barolli, L.; Moreno, J.; Xhafa, F. JXTA-Overlay P2P Platform and Its
Application for Robot Control. In Proceedings of the 13th International Conference on Network-Based
Information Systems (NBiS 2010), Takayama, Gifu, Japan, 14-16 September 2010; pp. 133-138.

Elkady, A.; Sobh, T. Robotics Middleware: A Comprehensive Literature Survey and Attribute-Based
Bibliography. J. Robot. 2012, 2012, 1-15. [CrossRef]

Mohamed, N.; Al-Jaroodi, J.; Jawhar, I. Middleware for Robotics: A Survey. In Proceedings of the 2008
IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, 21-24 September 2008;
pp- 736-742.

Bruyninckx, H.; Soetens, P.; Koninckx, B. The Real-Time Motion Control Core of the Orocos Project.
In Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan,
14-19 September 2003; pp. 2766-2771.

Volpe, R.; Nesnas, .A.D.; Estlin, T.; Mutz, D.; Petras, R.; Das, H. CLARAty: Coupled Layer Architecture for
Robotic Autonomy. Tech. rep. NASA Jet Propulsion Laboratory: Pasadena, CA, USA, 2000.

Utz, H.; Sablatnog, S.; Enderle, S.; Kraetzschmar, G. Miro—Middleware for mobile robot applications.
IEEE Trans. Robot. Autom. 2002, 18, 493-497. [CrossRef]

Object Management Group (OMG). The Common Object Request Broker: Architecture and Specification (CORBA
3.3); Object Management Group: Needham, MA, USA, 2012.

Shumko, S. Ice Middleware in the New Solar Telescope’s Telescope Control System. In Astronomical Data
Analysis Software and Systems XVIII; Astronomical Society of the Pacific: Orem, UT, USA, 2009; Volume 411.
Petters, S.; Thomas, D.; von Stryk, O. RoboFrame—A Modular Software Framework for Lightweight
Autonomous Robots. In Proceedings of the Workshop on Measures and Procedures for the Evaluation of
Robot Architectures and Middleware, IEEE/RSJ IROS, San Diego, CA, USA, 29 October — 2 November 2007.
Baer, P.A. Platform-Independent Development of Robot Communication Software. Ph.D. Thesis, University
of Kassel, Kassel, Germany, 2008.

Robot Operating System. Available online: https://index.ros.org/ (accessed on 10 February 2020).

Abbas, H.A_; Shaheen, S.I.; Amin, M.H. Organization of Multi-Agent Systems: An Overview. Int. ]. Intell.
Inf. Syst. 2015, 4, 46-57.

Bulling, N. A Survey of Multi-Agent Decision-Making, KI - Kiinstliche Intelligenz; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 147-158.

Grossi, D.; Dignum, E; Dastani, D.; Royakkers, L. Foundations of Organizational Structures in Multiagent
Systems. In Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2005), Utrecht, The Netherlands, 25-29 July 2005; pp. 690-697.

Geihs, K.; Witsch, A. Decentralized decision-making in adaptive multi-robot teams. Inf. Technol. 2018, 60,
239-248. [CrossRef]

Skubch, H. Modelling and Controlling Behaviour of Cooperative Autonomous Mobile Robots. Ph.D. Thesis,
Universitat Kassel, Kassel, Germany, 2012.

Nguyen Van, T.; Fredivianus, N.; Tran Huu, T.; Geihs, K.; Binh Huynh, T. Formal Verification of ALICA
Multi-agent Plans Using Model Checking. In Proceedings of the 9th Int. Symposium on Information and
Communication Technology, Danang, Vietnam, 6-7 December 2018.

Fowler, M. Domain-Specific Languages; Addison-Wesley: Boston, MA, USA, 2010.

Verma, V.; Estlin, T.; Jonsson, A.; Pasareanu, C.; Simmons, R.; Sing Tso, K. Plan Execution Interchange
Language (PLEXIL) for Executable Plans and Command Sequences. In Proceedings of the Internatational
Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), Munich, Germany,
5-8 September 2005.

Urmson, C.; Anhalt, J.; Bagnell, D.; Baker, C.; Bittner, R.; Dolan, J.; Duggins, D.; Ferguson, D.; Galatali, T.;
Geyer, C.; et al. Tartan Racing: A Multi-Modal Approach to the DARPA Urban Challenge; CMU TR
Urmson-2007-9708; Carnegie Mellon University: Pittsburgh, PA, USA, 2007.

Kammel, S.; Ziegler, J.; Pitzer, B.; Werling, M.; Gindele, T.; Jagszent, D.; Schroder, J.; Thuy, M.; Goebl, M.;
Hundelshausen, F; et al. Team AnnieWAY’s Autonomous System for the 2007 DARPA Urban Challenge.
J. Field Robot. 2008, 25, 615-639. [CrossRef]

20



Appl. Sci. 2020, 10, 1368

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Dhouib, S.; Kchir, S.; Stinckwich, S.; Ziadi, T.; Ziane, M. Robotml, A Domain-Specific Language to Design, Simulate
and Deploy Robotic Applications; Noda, 1., Ando, N., Brugali, D., Kuffner, ].J., Eds.; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 149-160.

Arda, K.; Umit, O. Hierarchical Finite State Machines for Autonomous Mobile Systems. Control Eng. Pract.
2013, 21, 184-194.

The Eclipse Foundation: Papyrus. Available online: https://www.eclipse.org/papyrus-rt (accessed on 2 April
2019).

Skubch, H.; Wagner, M.; Reichle, R.; Geihs, K. A Modelling Language for Cooperative Plans in Highly
Dynamic Domains. Mechatronics 2011, 21, 423-433. [CrossRef]

Zweigle, O.; Lafrenz, R.; Buchheim, T.; Kappeler, U.P,; Rajaie, H.; Schreiber, F.; Levi, P. Cooperative Agent
Behavior Based on Special Interaction Nets. In Proceedings of the 9th International Conference on Intelligent
Autonomous Systems—IAS, Tokyo, Japan, 7-9 March 2006; pp. 651-659.

Nordmann, A.; Hochgeschwender, N.; Wigand, D.; Wrede, S. A Survey on Domain-Specific Modeling and
Languages in Robotics. J. Softw. Eng. Robot. 2016, 7, 75-99.

Kaminka, G.A.; Frenkel, I. Flexible Teamwork in Behavior-Based Robots; Veloso, M.M., Kambhampati, S., Eds.;
The MIT Press: Cambridge, MA, USA, 2005; pp. 108-113.

Tate, A. Generating Project Networks. In Proceedings of the 5th International Joint Conference on Artificial
Intelligence IJCAI'77, Cambridge, MA, USA, 22-25 August 1977; Morgan Kaufmann Publishers Inc.:
Burlington, MA, USA, 1977; Volume 2, pp. 888-893.

Kiener, J.; Von Stryk, O. Towards cooperation of heterogeneous, autonomous robots: A case study of
humanoid and wheeled robots. Robot. Auton. Syst. 2010, 58, 921-929. [CrossRef]

Opfer, S.; Jakob, S.; Jahl, A.; Geihs, K. ALICA 2.0—Domain-Independent Teamwork. In Proceedings of the
42nd German Conference on Artificial Intelligence (K12019), Kassel, Germany, 23-26 September 2019.
Lamport, L. The Part-time Parliament. ACM Trans. Comput. Syst. 1998, 16, 133-169. [CrossRef]

Pinciroli, C.; Beltrame, G. Buzz: An Extensible Programming Language for Heterogeneous Swarm Robotics.
In Proceedings of the 2016 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS),
Daejeon, Korea, 9-14 October 2016; pp. 3794-3800.

Lomuscio, A.; Qu, H.; Raimondi, . MCMAS: An open-source model checker for the verification of multi-agent
systems. Int. ]. Softw. Tools Technol. Transf. 2017, 19, 9-30. [CrossRef]

De Nicola, R.; Loreti, M.; Pugliese, R.; Tiezzi, F. A Formal Approach to Autonomic Systems Programming.
ACM Trans. Auton. Adapt. Syst. 2014, 9, 1-29. [CrossRef]

Niemczyk, S.; Opfer, S.; Fredivianus, N.; Geihs, K. ICE: Self-Configuration of Information Processing in
Heterogeneous Agent Teams. In Proceedings of the Symposium on Applied Computing 2017, Marakesh,
Marocco, 4-6 April 2017; pp. 417-423.

Opfer, S.; Jakob, S.; Geihs, K. Reasoning for Autonomous Agents in Dynamic Domains: Towards Automatic
Satisfaction of the Module Property. In Agents and Artificial Intelligence, 1st ed.; Springer International
Publishing: Berlin/Heidelberg, Germany, 2018; pp. 22—47. ISBN 978-3-319-93581-2.

Opfer, S.; Jakob, S.; Geihs, K. Teaching Commonsense and Dynamic Knowledge to Service Robots.
In Proceedings of the 11th Conference on Social Robotics (ICSR2019), Madrid, Spain, 26-29 November 2019.
Paulius, D.; Sun, Y. A Survey of Knowledge Representation in Service Robotics. Robot. Auton. Syst. 2019,
118, 13-30. [CrossRef]

Riazuelo, L.; Tenorth, M.; Di Marco, D.; Salas, M.; Gélvez-Lépez, D.; Mésenlechner, L.; Kunze, L.; Beetz, M.;
Tardos, ].D.; Montano, L.; et al. Roboearth semantic mapping: A cloud enabled knowledge-based approach.
IEEE Trans. Autom. Sci. Eng. 2015, 12, 432-443. [CrossRef]

Keeney, ]. Completely Unanticipated Dynamic Adaptation of Software. Ph.D. Thesis, The University of
Dublin, Dublin, Ireland, 2004.

Khan, M.U. Unanticipated Dynamic Adaptation of Mobile Applications. Ph.D. Thesis, University of Kassel,
Kassel, Germany, 2010.

Floch, J.; Fra, C.; Fricke, R.; Geihs, K.; Wagner, M.; Lorenzo, J.; Cantero, E.S.; Mehlhase, S.; Paspallis, N.;
Rahnama, H.; et al. Playing MUSIC—Building context-aware and self-adaptive mobile applications.
Softw. Pract. Exp. 2013, 43, 359-388. [CrossRef]

Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T. Answer Set Solving in Practice; Morgan & Claypool
Publishers: San Rafael, CA, USA, 2012; Volume 6.

21



Appl. Sci. 2020, 10, 1368

66.

67.

68.

69.

70.

Gelfond, M.; Kahl, Y. Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set
Programming Approach; Cambridge University Press: Cambridge, UK, 2014.

Clocksin, W.E,; Mellish, C.S. Programming in PROLOG; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2003.

Baraki, H.; Schwarzbach, C.; Jakob, S.; Jahl, A.; Geihs, K. SAM: A Semantic-Aware Middleware for Mobile
Cloud Computing. In Proceedings of the 11th IEEE International Conference On Cloud Computing (IEEE
CLOUD 2018), San Francisco, CA, USA, 2-7 July 2018.

Scioni, E. Online Coordination and Composition of Robotic Skills: Formal Models for Context-aware Task
Scheduling. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2016.

Geihs, K; Evers, C. User Intervention in Self-Adaptive Context-Aware Applications. In Proceedings of the
17th Australasian User Interface Conference (AUIC), Canberra, Australia, 2-5 February 2016.

@ © 2020 by the author. Licensee MDP]I, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

22



Firicd applied
b sciences

Article

SC-M*: A Multi-Agent Path Planning Algorithm with
Soft-Collision Constraint on Allocation of
Common Resources

Rongye Shi '*, Peter Steenkiste >*and Manuela M. Veloso >*

1 Department of Electrical and Computer Engineering, Carnegie Mellon University,

Pittsburgh, PA 15213, USA

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Correspondence: rongyeshi@cmu.edu (R.S.); prs@cs.cmu.edu (P.S.); mmv@cs.cmu.edu (M.M.V.)

2
3

*

Received: 30 July 2019; Accepted: 21 September 2019; Published: 26 September 2019

Featured Application: SC-M* generalizes the M* algorithm to address real-world multi-agent
path planning problems in the soft-collision context, which considers the allocation of common
resources requested by agents. Application examples include but are not limited to city-scale
passenger routing in mass transit systems, network traffic engineering and planning for
large-scale autonomous vehicles.

Abstract: Multi-agent path planning (MAPP) is increasingly being used to address resource allocation
problems in highly dynamic, distributed environments that involve autonomous agents. Example
domains include surveillance automation, traffic control and others. Most MAPP approaches
assume hard collisions, e.g., agents cannot share resources, or co-exist at the same node or
edge. This assumption unnecessarily restricts the solution space and does not apply to many
real-world scenarios. To mitigate this limitation, this paper introduces a more general class of MAPP
problems—MAPP in a soft-collision context. In soft-collision MAPP problems, agents can share
resources or co-exist in the same location at the expense of reducing the quality of the solution. Hard
constraints can still be modeled by imposing a very high cost for sharing. This paper motivates
and defines the soft-collision MAPP problem, and generalizes the widely-used M* MAPP algorithm
to support the concept of soft-collisions. Soft-collision M* (SC-M*) extends M* by changing the
definition of a collision, so paths with collisions that have a quality penalty below a given threshold
are acceptable. For each candidate path, SC-M* keeps track of the reduction in satisfaction level of
each agent using a collision score, and it places agents whose collision scores exceed its threshold into
a soft-collision set for reducing the score. Our evaluation shows that SC-M* is more flexible and more
scalable than M*. It can also handle complex environments that include agents requesting different
types of resources. Furthermore, we show the benefits of SC-M* compared with several baseline
algorithms in terms of path cost, success rate and run time.

Keywords: multi-agent systems; planning; M* algorithm; shortest path finding; collision-free
constraint; optimality and completeness

1. Introduction

Multi-agent path planning (MAPP) involves finding the set of least-cost paths for a set of agents
co-existing in a given graph such that each of the agents is free from collision, where a collision is defined
as at least two agents moving to the same location at the same time. MAPP attracts increasing attention
due to its practical applications in multi-robot systems for surveillance automation, video gaming,

Appl. Sci. 2019, 9, 4037; d0i:10.3390 /nan09194037 23 www.mdpi.com/journal/applsci



Appl. Sci. 2019, 9, 4037

traffic control, and many other domains [1-4]. This problem is, however, difficult to solve because the
configuration space grows exponentially with the number of agents in the system, incurring extremely
heavy computational efforts. It is an NP-hard problem to find optimal solutions for MAPP in its
general form [5].

Approaches to solving MAPP problems fold into three main categories: coupled, decoupled and
intermediate [6]. Coupled approaches search the joint configuration space of the multi-agent system, which
is the Tensor product of the free configuration spaces of all the individual agents. A popular coupled
planner is the A* algorithm [7] that directly searches the whole joint configuration space, making such
an approach computationally infeasible when the number of agents is large. Enhanced variants of A*,
such as operator decomposition (OD), enhanced partial expansion A* (EPEA¥), and iterative deepening
A* (IDA¥), can—to some extent—mitigate the exponential growth in the number of neighbors by
improving the admissible heuristics [8-11]. Coupled approaches are optimal and complete, but usually
at high computational cost. Decoupled approaches plan for each agent separately and then adjust
the path to avoid collisions. Algorithms in this category are generally faster because they perform a
graph search and collision-avoidance adjustment in low-dimensional spaces. However, optimality and
completeness are not guaranteed [3,12].

Intermediate approaches lie between coupled and decoupled ones because they dynamically couple
agents and grow the search space during the planning. In this way, the search space is initially small
and grows when necessary. A few intermediate MAPP algorithms can guarantee optimality and
completeness. State-of-the-art examples include Conflict-Based Search (CBS) [6,13]. CBS is a two-level
algorithm. At the high level, conflicts are added into a conflict tree (CT). At the low level, solutions
consistent with the constraints given by the CT are found and updated to agents. CBS behaves poorly
when a set of agents is strongly coupled. Meta-agent CBS (MA-CBS) is then proposed by merging
strongly coupled agents into a meta-agent to handle the strongly coupled scenarios.

The M* algorithm is a state-of-the-art coupled approach. It starts with decoupled planning and
applies a strategy called sub-dimensional expansion to dynamically increase the dimensionality of the
search space in regions in which agent collisions occur. In this way, an efficient graph search with
a strict collision-free constraint can be achieved, while minimizing the explored portion of the joint
configuration space. M* identifies which subsets of agents can be safely decoupled and hence plans
for multi-agents in a lower-dimensional space. Compared to CBS and its variant MA-CBS, M* and its
variants, e.g., recursive M* (rM*), have much more fine-grained control over some technical details,
such as the management of conflict sets for better scalability. The fine-grained nature of M* allows it to
be integrated into MA-CBS to take advantage of both [14]. Recent work extended both M* and CBS
algorithms to handle the imperfect path execution due to unmodeled environments and delays [15,16].

Most fundamental MAPP approaches assume hard collisions, which means that solutions in
which agents share resources (nodes or edges) are rejected. In many real world scenarios, some
degree of resource sharing between agents is acceptable, so the hard-collision constraint needlessly
over-constrains the solution space. This paper relaxes the hard collisions constraint by allowing some
sharing of resources, including space and various services on edges/nodes, by agents. Such sharing
reduces the quality of the path, i.e., the satisfaction level of the agent using it, but as long as the quality
reduction for each path is below a settable threshold, the solution is acceptable. We call this concept soft
collisions. Hard collisions are still supported by having a very strict threshold, i.e., a penalty for sharing
is very high. The reduction in satisfaction level experienced by an agent caused by soft collisions on
resources in its path is quantified using a collision score. In this paper, we develop a generalized version
of the M* algorithm, called soft-collision M* (SC-M*), for solving the MAPP problem in the soft-collision
context. Note that we that we are not simply replacing hard with soft collisions, but instead introducing
soft collisions as a generalization that allows modeling different types of collisions.

SC-M* extends M* by taking the perspective of soft collision on common resources. Specifically,
SC-M* tracks the collision score of each agent and places agents whose collision scores exceed certain
thresholds into a soft-collision set for sub-dimensional expansion, a technique that limits the search space

24



Appl. Sci. 2019, 9, 4037

while maintaining the optimality of the algorithm with respect to the objective. In this way, SC-M*
achieves improved scalability to handle a larger number of agents while limiting the probability of
collisions on resources to a bound.

In this paper, we show that SC-M* has advanced flexibility and scalability for efficiently solving the
MAPP problem in the soft-collision context where common resources are considered, and can handle
complex environments (e.g., with multiple types of agents requesting multiple types of resources).
We theoretically prove that SC-M* is complete and suboptimal under the soft-collision constraints on
resources. Experimental results demonstrate the advantages/trade-offs of SC-M* in terms of path cost,
success rate and run time against baseline SC-based MAPP planners, such as SC-A* and SC-CBS.

The rest of the paper is organized as follows. Section 2 discusses the motivation of soft collisions.
Section 3 gives technical briefing of the M* algorithm. Section 4 presents our proposed SC-M* approach.
Section 5 evaluates SC-M* in a grid public transit network. Finally, Section 6 concludes our work.

2. Motivation

In some planning problems, solutions in which agents share resources, i.e., they collide using the
traditional MAPP problem definition, may be acceptable, at the cost of having a reduced level of agent
satisfaction. Problems of this type have two properties in common: (1) Agents’ satisfaction conditions
are reduced when meeting at the same place; and (2) the extent of reduction in satisfaction depends on
how long the dissatisfying situation lasts in terms of distance or time.

One motivating example of this type of problems involves mass transit systems, in which
passengers have various preferences, even necessities, in terms of common resources, such as seat
availability (necessary for seniors) and on-vehicle Wi-Fi supply (preferred by video viewers and
game players during the trip). Passengers may interfere with one another on common resources in
crowded situations. Individually optimal paths can cause serious interference, leading to low-quality
experiences. Interference between passengers is soft because it is possible that they do not call for the
same resource when they are on the same public vehicle. In addition, even when they call for the same
resource and interfere, they are able to tolerate each other over a short time and distance. Intuitively,
how likely a collision (intolerable interference) actually happens depends on: (1) whether the resource
supply is less than the demands; and (2) how long the lack-of-supply condition lasts in terms of the
time and distance that the passengers stay together. Passengers can be viewed as agents, moving
through the transportation network. When planners plan for all the agents, sticking to eliminating any
hard collision is neither necessary nor feasible. Thus, people are more interested in another problem:
How can the resource received by all agents be maximized such that the probability of collision of each
agent is less than a bound? This is an important topic of passenger-centered research [17-19].

In addition to public transit scenarios, other examples include: network traffic engineering, where
multiple data streams can route through a router. Long streams will have a higher chance of being
blocked when unexpected traffic spikes pop up, exceeding the link capacity [20]. How to maximize
the throughput with a bounded chance of blocking is of great interest to researchers in the field of
communications and computer networks.

Another example is planning for large-scale self-driving cars, where multiple cars can share the
same lane, and the number of cars on a road will influence the chance of crashes among autonomous
vehicles [21,22]. Scholars and engineers dealing with the fundamentals of autonomous vehicles in
unstructured and dynamic environments aim to increase the road traffic while bounding the crash risk.

Military transportation also has the soft-collision property, in which transport aircrafts or vehicles
are subject to higher risks to be detected and attacked by enemy troops when many of they move
together due to path overlap for a long distance. Formally, as the transportation volume on a road
increases, the degree of concealment decreases [23]. The dispatcher must bound the security risk when
attempting to maximize the military transportation efficiency.

To support these application classes, we introduce the soft-collision property (related to common
resources) to MAPP. SC-M*, introduced in this paper, is the first attempt to generalize M* to handle

25



Appl. Sci. 2019, 9, 4037

real MAPP problems in a soft-collision context, considering various common resources requested by
agents. Specifically, SC-M* changes M*’s definition of a collision so it can represent soft collisions on
resources and their impact on an agent’s dissatisfaction level. We show the advantages of the SC-M*
against other SC-based MAPP solvers.

3. Technical Briefing of M*

Before introducing the SC-M* method, this section reviews the traditional MAPP problem and
the M* algorithm [6].

3.1. MAPP Problem Definition

In this problem, we have m agents indexed by the set I = {1,...,m}. Let the free configuration
space of agent j be represented by the directed graph G/ = {V/, E/}. For any agent j, graph G/ is the
same. The joint configuration space, which describes the set of all possible states of the multi-agent
system, is defined as the tensor product of the graphs of all individual agents: G = G x --- x G™.
G consists of a joint vertex set V and a joint edge set E. As an example, in a 2-D joint configuration space
given by the agents j and k, the two 2-D joint vertexes v = (v;, p) and v; = (v{,, 5) is connected
by the joint edge (e/pq,epq) Note that v’ € Viand epq € El. Let i/ (v’ vq) denote a sequence of joint

vertexes, called a path in G/ from v’ to vq The cost of a path 77(vp, v) in G is defined as
g(n(vp,0)) Z g(m (v 1)

where g(77) is the sum of all edge costs involved in the joint path 7.

The goal of MAPP is to find a collision-free path, which is optimal with respect to minimal cost,
from the source configuration v; = v} x - - - x v!" to the destination configuration vy = v; X e X Ol
To determine the collision between agents, a collision function (v;) is defined to return the set of
conflicting agents at vy,.

Most fundamental MAPP approaches use hard collisions, where no intersection is allowed
between any two agents in terms of the occupation of any resource, such as a workspace. This implies
that the capacity of each resource can support only one agent at a time (i.e., a collision happens
immediately once agents intersect at any resource). Suppose we have a set of resources A =
{A1,..., AL} requested by each agent in the multi-agent system, where A; is defined as the set
of resource of type i on all edges and vertexes in G. A; is a continuous set because only continuous
resources are considered in the paper. A traditional hard-collision constrained MAPP problem is
formulated as follows:

min g (7 (02,0,))

s.t. @
U (Ak )N Ax(o) )) —Q, VA €A Vo e,

Vi#jel

where Ak(vé,) denotes the subset of resource Ay occupied by the agent j at the joint vertex vp.
One state-of-the-art solver to this problem is M*, which uses the sub-dimensional expansion strategy to
dynamically increase the dimensionality of the search space in regions featuring some agent collisions.
M* enables a relatively cheaper graph search under the strict hard-collision constraint.

3.2. Graphic-Centric Description of M*

This section uses the graphic-centric description introduced by wanger [6] to illustrate M*. M* is
a complete and optimal MAPP algorithm. The main idea of M* is to iteratively construct/update a

26



Appl. Sci. 2019, 9, 4037

so-called search graph G5 (i.e., to iteratively remove the collision configuration vertexes and expand
necessary neighbors) and apply the A* algorithm on the new G5 until the optimal collision-free
path to v, exists in the G and is found by the A* search. Specifically, G*" is a sub-graph of G and
consists of three other sub-graphs: the expanded graph G®*?, neighbor graph G"™", and policy graph G?.
The expanded graph G is the sub-graph of G that has been explored by M*. G contains the
limited neighbors of all the joint vertexes in G*7. The definition of limited neighbors is given below.
G consists of the paths induced by the individually optimal policy ¢ that connects each joint vertex in
G"Pl U GE*P to v, without the collision-free constraint. Specifically, ¢/ is the individually optimal policy
for the agent j that leads any o/ in G"" U G**? to v{i without considering collisions. Examples of policy
¢ include the standard Dijkstra’s algorithm [24] and A* [5]. Using the above graphic concepts, we can
define the collision set Cp as

@)

O (p) U{Uo,ev, ¥ (vg)}, forvp € GP
! % , forv, ¢ G&P

where V), = {v,]|37(vp,v4) € G**P} is the set of the joint vertexes to which there exists a path to from

vp in GP. Let ¢ (v/) be the immediate successor vertex of v/ in the policy path, then the set of limited
neighbors V;bh for the joint vertex v, in G"" is defined as
e;,quf,‘forjeCp }

Lals (ch) forie €, Y

nbh __
Vp = {vq

where e;,,, = edge (v],',, vf,) The definition of the limited neighbors implies the sub-dimensional
expansion strategy: We only expand the search space at the dimensions where the collision occurs
(j € Cp), otherwise for collision-free dimensions (j ¢ C,), M* will not expand, limiting the unexpanded
search space to the graph that only consists of individually optimal path induced by the policy ¢.

3.3. Algorithm Description of M*

The high-level description of M* is as follows [6]: Initially, M* computes the individually optimal
policy ¢ for each agent from source v to destination v. The initial search graph G only consists of
an individually optimal path: Initial G®*/ contains vs only; initial G contains ¢(vs) only, which is
the successor of v along the individually optimal policy; and initial G? contains the optimal policy
path from the vertex in G"" and G®P all the way to 4. Cp = @ for all vy, in initial G*". Given the
initial G*¢", the A* algorithm is applied using the following admissible heuristic

I (vp) = 8(mp(vp,va) ) < 8(me(0p, 0a)), ©)

where 77y is the individually optimal path induced by policy ¢, and 7. is the ground-truth optimal
multi-agent path we want to find. The initial open list (i.e., priority queue) contains vs only, with zero
cost. The open list is sorted according to vp.cost + h (vp,), where v,.cost is the current cost of v, from
the source.

In each iteration, M* expands the first-ranked vertex v, from the open list to G**7 and investigates
each joint vertex v, in the limited neighbors of v}, (i.e., v4 € V;bh) if no collision occurs at v,; otherwise,
it jumps to the next iteration. If there exists a collision (i.e., 1 (vq) # @), M* will update the collision
set C; with C; U ¢ (v4), and this update will back-propagate from v, to: (1) its immediate predecessor
vp; and (2) all the way back to any ancestors that have at least one path inside of G**¥ leading to v,
(see Equation (3) for details). After this pre-processing, the algorithm:

* investigates and updates the cost of the vertex v; and records its corresponding predecessor; and
* adds v, and all its predecessors/ancestors, of which the collision sets are changed, to the open list.

27



Appl. Sci. 2019, 9, 4037

This process is repeated until v, is expanded or open list is empty.

The critical point is that: Only when a collision set C, is changed will the search graph Gsh
change. It is the operation of updating the collision set in a back-propagation way that makes the
story different: By including ¢ (v,) to Cp, M* can tell which agents are immediately collided at the
current vp; by including all ¥ (vq) for vy € V) to Cp (i.e., the collision information of all the expanded
downstream successors from v,), M* can preview which agents will collide in the future, making it
possible to pre-plan to avoid that. Therefore, using the limited neighbor set in Equation (4) makes
sense: It advises M* to only expand the dimensions where there exists an immediate collision at v}, or
there will be collisions in the future, starting from v, in the current expanded graph G**¥. Figure 1
shows an example of how M* solves the optimal collision-free path planning for the two agents.

N

- 00000

d)

h) D.D;

Figure 1. Illustration of traditional M* for two agents, where we show the evolution of the expanded
graph GP (circle), neighbor graph G (diamond), and policy graph G? (square) for Agent 2 as the
M* algorithm proceeds. (a) Individually optimal paths; (b) the first expanded vertex; (c) the third
expanded vertex; (d) collision occurs at vertex sjg; (e) sub-dimensional expansion; (f) search in the
expanded space; (g) the destination of Agent 2 founded; (h) collision-free optimal paths for both agents
founded by M*.

In Figure 1, we can visualize the evolution of the search graph G5 of Agent 2. G consists of an
expanded graph G (circle), a neighbor graph G (diamond), and a policy graph G? (square). Edge
cost and direction-changing cost are considered during planning. Yellow zones are preferred areas
with lower edge cost. In M*, individually optimal paths are induced by ¢ for each individual agent
(Figure 1a). We can observe that there will be a collision at vertex sj9, which is ignored by ¢. For Agent 2,
M?* searches in the subspace, and the most promising vertex is expanded at each iteration (Figure 1b,c).
Then, a collision occurs at vertex sjg and triggers the removal of the rest of Gsch (Figure 1d), which is
equivalent to jumping to the next iteration. Following the sub-dimensional expansion strategy, M*
extends the search space to include the limited neighbors, and a new G*" is obtained (Figure le).
By searching in the new GSC’“, M* finds the optimal collision-free path for Agent 2 (Figure 1f,g). On the
other hand, the planning for Agent 1 is conducted simultaneously, and, finally, the collision-free
optimal paths for both agents are found by M* (Figure 1h).

4. Soft-Collision M* (SC-M*)

M* assumes hard-collision constraint which does not apply to many real-world applications.
Our contribution in this paper is to generalize M* to soft-collision context where common resources are
considered, and to introduce soft collisions as a generalized concept allows us to model different types

28



Appl. Sci. 2019, 9, 4037

of collisions. In addition, we show the advantages and trade-offs of the proposed algorithm in this new
scenario. The proposed SC-M* extends M* by changing the definition of a collision, so paths with hard
collisions but with a level of dissatisfaction on resources below a given threshold are acceptable. In this
section, we formulate the concept of soft collision on common resources, describe the generalized M*
(i.e., soft-collision M*) for planning in the soft-collision context, and extend our approach to a more
complex environment with multiple types of agents requesting multiple types of resources.

4.1. Soft-Collision Constraint on Conmon Resources

Inspired by real-world scenarios, we introduce the recourse-related soft-collision property to the
model of an agent. We define that all the agents have the following properties: (1) a collision among
agents is soft, quantified using some collision scores; and (2) different agents have different collision
scores, according to their individual experiences through the paths. We suppose that each agent cares
about a set of resources A = {A;,..., AL}. To obtain the properties, we introduce to each agent an
additional attribute called resource experience (for each resource) and use the resource experience to
calculate the collision score.

In doing so, this section first uses the resource experience (as defined in Section 4.1.1 Definition
1) to quantify how dissatisfying the agent is about the resource allocated to it. Then, we combine
this information of all the resources into a collision score (as defined in Section 4.1.2 Definition 2) that
indicates the probability of the agent announcing a collision given its resource experience. Threshold
of collision is used to limit the collision score, implying to what degree of unpleasantness we want
to pursue the solution. The agent, of which the collision score exceeds the threshold, will be placed
into a soft-collision set via the soft-collision function for sub-dimensional expansion (as defined in
Section 4.1.3 Definition 3).

4.1.1. Definition 1 (Resource Experience)

We define resource experience to quantify the dissatisfying experience per resource about which an
agent cares.
Let
e 1= 7 (vs,vp) be a path from the source v5 to some vy,;
e vy = 7 (v,) be the immediate successor of v, along the path 71;
o Ak(eé,q) be the capacity (amount) of the subset of the resource Ay on the edge e;,q, given by the
graph model; and
o A{((eéq) be the amount of the subset of the resource Ay actually allocated to the agent j on the edge
epq, called the allocated resource value.

The resource experience is then defined as the dissatisfying experience of agent j on resource Ay
along the path 7t/:

D(nf,Ak): y 1<Ak(e] ) > e A AL )<ek) -g(ehy), )

vp\vpen/ub

where 1(+) is the indicator function, whose value is one if the logical condition is true, else zero;
ex € e = {ey,..., e} is the satisfying value regarding the resource Ay, which is a positive real value;
g(eéq) is the edge cost regarding travel time/distance given by the graph model; and A (e/ ) is
formulated as: ;

Al(ehy) = _ Axlo) )
Lier1 (elfﬂl = dpq)

Obviously, Al (e/pq) Ag(e V‘i) if and only if no other agents are physically moving along with
agent j on the edge epq The allocated resource value Al (epq) quantifies the level of interference

29



Appl. Sci. 2019, 9, 4037

incurred by other agents when they physically move together. In contrast, the traditional hard-collision
setting will always label a collision to the agent j and all other involved agents whenever Ai(eé,q) is

(even slightly) smaller than Ak(e]pq). The resource experience is implemented as an attribute of the
vertex class and can be calculated incrementally using Algorithm 1.

Algorithm 1 Function: experience(vy, v;, A).

Input: v;: base vertex; v;: immediate successor of the base vertex; A: list of resources
Output: v; with updated experience
1: for Ay in A do

2. forjinIdo
3 vp.exp[Aplljl<— vr.explApl[jl1+D (7 (v, vl)f,Ap)
4:  end for
5. end for

6: return v; / /the successor with updated experience

Combined with the allocated resource value, which serves as a proxy of the interference level,
the definition of resource experience in Equation (6) actually defines a property of an agent: Only the
situation in which the resource allocated to an agent is dissatisfying because of the co-existence of

other agents (i.e., Ak(e‘éj ) > € should hold), will contribute to the dissatisfying experience of that
agent. Furthermore, each dissatisfying condition is weighted by the edge cost g(eé,q). In this way,
we can quantify the resource experience in terms of how long such a dissatisfying condition lasts in
travel time or distance, which is quantified by g(e],',q), As discussed below, the resource experience of
an agent will determine its collision score, which is defined from a probabilistic point of view.

4.1.2. Definition 2 (Collision Score)

We use the resource experience results from Definition 1 to calculate the collision scores. This is
defined from the view point of collision probability, that must be constrained under some threshold.
Let

*  Col;be the event that agent j announces a collision (i.e., when agent j calls for one of the resources,
the allocated resource is less than satisfying);

. DI = {D/ PR D]L}, where Di =D (7rj , Ak), be the set of dissatisfying experiences of agent j
along path 77/ on the resource Ay; and

o fre€f={f1,...,fL} beacustomized cumulative distribution function (CDF) defined on [0, +c0),
mapping the resource experience D to a probability of collision on the resource Ay.

The collision score of the agent j is defined as the probability of how likely a collision occurs to the
agent j on at least one of the resources given its resource experience DJ:

P(cop|p’) =1~ [T (1-#(D)). ®)

ke{1,.,L}

Note that P (Col; | DJ) calculates the complement of the success probability—the joint probability
of being tolerable at all resources.

Figure 2 shows two example designs of f: f1(D) = sigmoid(D — &), with a discontinuity point
f1(0) = 0, is a sigmoid-based CDF function, featuring a surge in the collision score (the derivative is
bump-shaped) at the experience value around 4. This function is suitable to important resources that
are sensitive to the agent; (D) = min(1,D/(40)) is a linear CDF with a shallow slope (the derivative
is flat). This function can apply to trivial resources that are not very sensitive to the agent but still
accumulate to contribute to the collision score. We use the offset parameter ¢ to adjust the tolerance level

30



Appl. Sci. 2019, 9, 4037

of the dissatisfying experience. With larger J, the agent will tolerate a longer unpleasant experience
before announcing a collision.

Although the definition of the collision score can be customized according to different practices,
the probabilistic definition of collision score introduced here is a general one: Different types of resources
may have different value ranges, and Equation (8) standardizes the resource ranges, mapping them to a
value within [0, 1] and enabling an efficient integration of different types of resources to the framework.

1

1

0.5

46

D

Figure 2. Example designs of cumulative distribution functions (CDFs), mapping the resource
experience D of an agent to a collision probability on certain resource. fi: sigmoid-based CDF for
important (sensitive) resources. f: linear CDF for trivial (insensitive) resource. d: offset parameter
adjusting the tolerance level.

4.1.3. Definition 3 (Soft-Collision Function)

Now, according to the collision scores from Definition 2, we want to pick out the above-threshold
agents and place them into the soft-collision set via the soft-collision function for the purpose of applying
the sub-dimensional expansion.

Given a path m = 7« (vs,vp) and corresponding resource experience DI for the agent j,
the soft-collision function of the agent j is

] =
¥ (@) @, otherwise ©

. { {j}, forP(Col;|DI) > T

where T is the threshold of collision. The definition of the global soft-collision function is then defined as

¥ (0p) = U9 (v)- (10)
jel
Based on Definition 3, we can formally construct the soft-collision constraint on common resources
and obtain the soft-collision constrained MAPP problem:
min g (7 (05, 0))
s.t. (11)
P (vp) =@, Vv, em.

This problem setting is general and can be utilized to express the hard collision setting in
Equation (2) by setting T = 0 or changing the condition inside the indicator function of Equation (6) to
Ak(e;,q) # A{c(eé,q) with infinite cost.

4.2. SC-M* Description

SC-M* is a general solver to the MAPP problem in Equation (11) by adjusting M* to the
soft-collision constraints on common resources. The pseudocode for SC-M* is presented in Algorithm 2,

31



Appl. Sci. 2019, 9, 4037

where critical commands relative to the soft-collision constraint are underscored. In this algorithm,
Lines 1-7 initialize each vertex v in the vertex set V with infinite cost from the source v; (the cost of v
itself is zero), set dissatisfying experience to zero and make collision set Cy empty. The initial open
list contains v only (Line 8). In each iteration, SC-M* expands the first-ranked vertex vy in the open
list ordered by the total cost vy.cost + heuristic[vy] (Lines 10 and 11). The algorithm terminates and
returns the result if the expanded vy, is the destination v, (Lines 12-14) or jumps to the next iteration if
immediate collision occurs at vy, i.e., 1} (vx) # @ (Lines 15-17). Line 18 constructs the limit neighbors
anbh of v, using Equation (4). For each vertex v, in Vfl’h (Line 19), it adds v; to the descendant set Vj
of vy (Line 20), updates the dissatisfying experience of v; using Algorithm 1 (Line 21), and merges
the immediate collision at v; to its soft-collision set C; (Line 22). On top of the new collision set of v},
SC-M* backpropagates to update all the affected ancestor vertexes from v; (see Equation (3)) and adds
them back to the open list for re-expanding (Line 23). After this collision set updating operation, if v;
is free from collision and has improved cost, the algorithm accepts the new cost by save the trace-back
information and adding v; to the open list for expansion (Lines 24-28). This process repeats until the
open list is empty (Line 9) when no solution exists or the optimal solution is found (Lines 12-14).

Algorithm 2 Soft-collision M*.

Input: vs: source joint vertex; v,;: destination joint vertex; {V, E}: joint configuration graph;

A: list of resources
Output: Path finding results
1: forall v, in V do

2 U).CcOSt < +00

3:  vg.exp < all zero experience
4: C <O

5. vp.traceBack <— @

6

7.

8

: end for
: vs.cost < 0
. open < {vs}
9: while open# @ do
10:  open.sort() by v.cost+heuristic[v] ~ //i.e., sort the open list from small to large
11: v < open.pop()
12:  if vy = v, then

13: return back_track_path[v,]  //optimal path found
14:  end if

15:  if P(vg) # D then

16: continue / /skip the vertex in collisions

17:  end if

18 conduct the construction of V""" using Equation (4)
19:  foro;in anbh do

20: add v, to Vj / /note Vi = {v,y|3m(vg, v5) € G*P}

21: v; — experience(vy, v, A)  //update experience using Algorithm 1

22: C <+ CuU z/z(vl)

23: backpro_update(vy, C;, open)  // 1) update all the affected soft-collision sets using Eq.(3)

//2) add all affected vertexes back to open list (see reference [6] for details)

24: if ¥(v;) = @ and vy.cost+ey.cost < vj.cost then
25: v;.cost < vg.cost+ey;.cost

26: v).traceBack<— vy

27: open.add(v;)

28: end if

29:  end for
30: end while
31: return no path exists

32



Appl. Sci. 2019, 9, 4037

SC-M* can make a transition from a decoupled individual A* (T = 1) to a standard hard-collision
constrained M* (T = 0), providing more flexibility to the performance of the algorithm with bounded
soft-collision scores.

4.3. Completeness and Cost-Suboptimality

A MAPP algorithm is complete if it guarantees that it will either return a path, or determine that
no path exists in finite time. An algorithm is optimal if it guarantees returning an optimal path if
such a solution exists. SC-M* is complete and suboptimal conditioned on the soft-collision constraint
(i.e., P (Col i ‘ D/ ) < T, for a given collision threshold T).

4.3.1. Completeness

Theorem 1. SC-M* is a complete algorithm.

Proof of Theorem 1. SC-M* inherits the sub-dimensional expansion from M* (i.e., it changes the Gseh
only when one of the soft-collision sets C, changes). The algorithm applies A* in the updated search
graph. Due to the merging operation applied to collision set Cp, as shown in Equation (3), C, for each
vertex will change finite times (at most m times, which is the number of agents). Because A* is complete,
applying A* to a given G takes finite time to return a result. Therefore, SC-M* is complete. [

4.3.2. Cost-Suboptimality

Different from M*, which is optimal, SC-M* is suboptimal because Equations (9) and (10) only
include the immediate conflicting agents to the soft-collision set; the agents that softly interfere with
the conflicting agents in the upstream path are excluded. Those excluded agents also contribute to
the announced collision (i.e., making the collision score above the threshold). Because of this, SC-M*
cannot guarantee the inclusion property, which is the basis to ensure the optimality in M* [6]: The optimal
path for some subset of agents costs no more than the optimal joint path for the entire set of agents. Without the
inclusion property, SC-M* may not guarantee cost optimality.

Figure 3 provides a counterexample of the inclusion property of SC-M* in the soft-collision
MAPP context defined in this paper. Let 7' (vg, v5) be the joint path constructed by combining the
optimal path for a subset Q € I of agents with the individually optimal paths for the agents in I\ ().
The inclusion property is defined as follows: If the configuration graph contains an optimal path
T (vg, v), then VO C I, g('(vg, vf)) < g(mi(vg, vf))- See Lemma 6 in [6].

In the soft-collision context, this inclusion property does not always hold. In Figure 3, we have a
three-agent MAPP problem (I = {r1,72,73}) in the soft-collision context. Agents r1, r2, and 3 attempt
to move from the vertexes 4, f, and & to the vertexes ¢, g, and 7, respectively. The individually optimal
paths (shortest distance) are a — b — ¢ — d — e with distance 4 for 1, f — ¢ — d — g with distance
3 forr2,and h — b — ¢ — i with distance 3 for r3. The total cost of the joint individually optimal path
is 10. However, assuming that the agents can only tolerate a dissatisfying experience with distance 1,
r1 will announce a collision at vertex d because of the interference on the edge b — ¢ and ¢ — d from
agents r3 and 12, respectively.

If we choose () = {r1,72} € I, as can be seen in Figure 3, the only solution would be that r1 takes
a detour through the vertex x to avoid the collision on the edge ¢ — d, resulting in a cost of 5 for
71, and the total g(77' o (vg, v)) is 11 (3 for r2, 5 for r1 and 3 for r3). On the other hand, by searching
through all three dimensions, a better solution would be that 73 detours through the vertex y, and 1 is
free from collision because the interference on the edge b — c disappears. The total cost of this joint
path is 10.5, and we have g(7'q(vr, vf)) = 11 > g(7.(vi, vf)) =10.5, which is contradictory to the
inclusion property.

33



Appl. Sci. 2019, 9, 4037

Figure 3. Counterexample of the inclusion property of soft-collision M* (SC-M*) in the soft-collision
context. Agents 1,2, and r3 have the planning O-D demands (a,¢), (f,g), and (h, i), respectively.
Vertexes in the system are labeled as 4, b, ¢, etc.

The reason for this phenomenon is that, in the hard-collision context, only the immediate
conflicting agent r2 contributes to the collision of 1 at vertex d. However, in the soft-collision context,
both 72 and 3 contribute to the collision of r1 at vertex d, and thus, the inclusion property does not
apply. Without this inclusion property, which is the basis of the optimality of M*, the optimality of
SC-M* cannot be guaranteed.

However, we notice that suboptimal methods have long been used successfully to solve many
interesting MAPP problems [15,25,26]. Given the fact that we show in the next section that SC-M* is
superior to other alternative SC-based MAPP solvers (e.g., SC-A* and SC-CBS) in terms of scalability,
run time, and path cost, we demonstrate that the proposed method, which is adjusted to MAPP in the
soft-collision context, is a powerful tool in practice.

5. Experiments and Results

We evaluated SC-M* in simulation on a grid public mass transit network with an Intel Core
i7-6700 CPU at 3.4 GHz with 16 GB RAM. As shown in Figure 4, the grid transit environment has
20 x 20 stops. There are 20 bidirectional horizontal lines. Likewise, 20 bidirectional vertical lines are
deployed in the environment. At each stop, agents can switch lines. The yellow areas are covered by
some resources, such as the on-vehicle free Wi-Fi in our experiments. Agents traversing those areas
can enjoy high-quality on-vehicle Wi-Fi connections. A fully covered edge has a Wi-Fi resource value
of 100, and the Wi-Fi value of an edge is proportional to the length of coverage. Each agent wants to
move from its source (square) to its destination (circle) with the lowest cost (i.e., a linear combination
of distance cost and Wi-Fi cost) as well as bounded collision score. The second resource is the space
on the edge, which is fixed at 5. The satisfying values are ¢; = 20 and ¢, = 1 for Wi-Fi and space
resources, respectively.

We randomly generated a source—destination pair for each agent. Each trial was given a 1000-s
run-time limitation to find a solution. For each configuration (including the number of agents,
collision threshold T, and offset parameter J), we ran 20 random trials to calculate the average
metrics (i.e., the success rate and run time). The success rate is the number of trials ending with a
solution divided by the number of trials. The run time is the average over trials ending with a solution
or a no-solution declaration. If all trials under a certain configuration exceeded 1000 s, we used “>1000"
to represent the run time of the corresponding configuration. We used the standard A* as the coupled
planner and policy generator in the SC-M* framework and compared our results to the baselines.

34



Appl. Sci. 2019, 9, 4037

I
L
Lt

ot
L

1 %ﬁy_
? ?
T ™1 T

Figure 4. Grid system with 20 x 20 stops and 40 bidirectional lines. Square and circle of the same color
correspond to the source and destination of an agent, respectively.

5.1. Planning for the One-Resource-One-Agent-Type

The first experiment considered Wi-Fi as the only resource requested by agents (i.e., A = {A; :
“WiFi”}). Only one agent type exists, and all agents use sigmoid-based function f; as the collision CDFE.

We first studied the influence of the collision threshold T and the offset parameter J on
performance. Figure 5a shows the success rate of the one-resource-one-type SC-M* with different
thresholds T =0 (equivalent to the basic M*), 0.2, 0.4, and 0.45, while the offset parameter is fixed
to & = 6.0. Table 1 (left) shows the run time in seconds for the experiment. The results clearly show
that larger thresholds bring improvement in performance with a higher success rate and lower run
time for a large system size (m > 50). The improvement in performance results from the property of

SC-M* that larger thresholds render more relaxed constraints, and thus, agents are less likely to collide
on resources.

== T=0 == T=0.2 ——5=0 —0-5=3.0
== T=0.4 =8 T=0.45 5=6.0 ——5=9.0
100! 10
80 80
9
& 60 60
©
o
% 40 40
Q
Q
(5]
@ 20 20
0 0 )
0 20 40 60 80 0 20 40 60 80 100 120
(a) Number of Agents (b) Number of Agents

Figure 5. Impact of the collision threshold T (given 6 = 6.0) and offset parameter ¢ (given T = 0.35) on
one-resource-one-type SC-M*.

Figure 5b shows the success rate of the SC-M* with different offset parameters 6 = 0, 3.0, 6.0,
and 9.0, with fixed T = 0.35. Table 1 (right) shows the run time for the experiment. The results

35



Appl. Sci. 2019, 9, 4037

illustrate that SC-M* is sensitive to J and can efficiently handle up to 100 agents with § = 9.0. These
results are reasonable because the sigmoid-based CDF is used in the experiments, featuring a surge in
the collision probability at the experience value around the offset, and the offset parameter poses a
cutoff value on the resource experience, with collision always announced once the resource experience
is larger than the offset. The standard M* (T = 0) can only scale to fewer than 30 agents. Taking
advantage of this property, one can tune the parameters to trade off the scalability against the tightness
of constraints.

Table 1. Run time of one-resource-one-type SC-M* under different parameters.

m T=0 T=02 T=04 T=045| m =30 6=60 0=9.0

5 0.556389 0.52489  0.5472 0.3616 5 0.506  0.3616  0.575
10 1.25143  1.18687  0.7057 0.7965 10 1.0765 0.7965  1.0427
20 403.3011 2.72513  1.4871 1.4488 20 22578 1.4488 2.1034
40 >1000 56.1898  4.2336 4.4318 40  17.201 44318  4.525
70 >1000 370.059  257.59 255.78 80 47796 29217  59.31
95 >1000 >1000  951.34 77440 | 120 >1000 >1000  857.0

Left: 6 = 6.0 Right: T =0.35

5.2. Planning for the Two-Resource-Two-Agent-Type

We also evaluated SC-M* in more complex environments: two agent types requesting two
resources. This experiment considered both Wi-Fi and space capacity (i.e., A = {Ay : “WiFi”, Ay :
“Space”}). Type I agents use f in Figure 2 as the collision CDF for the Wi-Fi resource, and the linear
CDF f, for the space resource, implying that they treat Wi-Fi and space as important and trivial,
respectively. On the other hand, Type II agents use f; for space and f, for Wi-Fi. Each agent has a 50%
chance of being Type I. Both CDFs are adjusted using the same ¢ at each trial, as illustrated in Figure 2.

Figure 6a shows the success rate of the two-resource-two-type SC-M* with different thresholds
T = 0 (equivalent to the basic M*), 0.2, 0.35, and 0.45, and with a fixed offset parameter = 9.0. Table 2
(left) shows the run time for the experiments. As can be seen from the results, in general, SC-M* can
handle the two-resource-two-type systems and plan for more than 80 agents. Because more resources
contribute more factors to increasing the collision score, a relatively large offset (§ = 9.0) is needed to
achieve comparable performance to the one-resource-one-type SC-M*.

A-T=04-T=02 8- T=03 =T=045  —=5-0 —B-5=6.0 1 5=12.0—f=5-15.0

100 C% 100
80 80
S
Q
2 60 60
o
2 40 40
3
@ 20 20
)
0 v 0
0 20 40 60 80 100 o 20 40 60 80 100
(a) Number of Agents (b) Number of Agents

Figure 6. Impact of the collision threshold T (given § = 9.0) and offset parameter ¢ (given T' = 0.35) on
two-resource-two-type SC-M*.

36



Appl. Sci. 2019, 9, 4037

Table 2. Run time of two-resource-two-type SC-M* under different parameters.

m T=02 T=035 T=045 | m =60 =120 =150

5 0.3438  0.3493 0.363948 | 5 0.333498 0.3677  0.527464
20 1.2485 1.8549  1.807993 | 20 1.479236  1.4032  2.369483
40 10102 3.2387 4415021 | 40 61.49792  4.5024 4.04331
60 50394  106.02  104.6499 | 60 5212721  306.46  60.30944
90 90191 801.47 7024526 | 70  627.0925  347.14  209.5725

100  >1000 909.0 901.1799 | 100  901.91 751.78  606.6522

Left: 6 =9.0 Right: T = 0.35

Figure 6b and Table 2 (right) present the impact of the offset parameter § on performance. Different
from the first experiment, SC-M* with the above configurations is less sensitive to §, when compared to
Figure 5. The reason is that 50% of the agents are insensitive to one of the resources because of the linear
CDF f;, thus increasing ¢ does not contribute to a significant reduction in collisions. This property
implies that we can control the importance levels of resources efficiently through the design of collision
CDFs. This experiment demonstrates that, with the proper parameter settings, SC-M* can feasibly
handle a complex environment with multiple resources and multiple agent types.

5.3. Comparison of SC-M* to Baselines

We next compared the SC-M* to other SC-based MAPP algorithms, including SC-A* (optimal)
and SC-CBS (suboptimal), in the one-resource-one-type environment.

5.3.1. Path Cost

Firstly, we compared the path cost of the three algorithms. We designed 60 planning tasks for
environments with 4-6 agents (20 tasks for each), in which agents will encounter at least one collision
along the individually optimal paths under the T = 0.05, § = 1 setting. We start with small agent
numbers because SC-A* cannot handle a large number of agents.

Figure 7 shows the average difference of the three SC-based solvers relative to the individually
optimal cost (i.e., the sum of the optimal cost of each agent when the agent is the only one in the
system). In other words, the Y-axis represents the cost of collisions. We observe that SC-A* and SC-CBS
have the lowest and highest additional cost, respectively. SC-M* solutions cost more than SC-A* but
noticeably less than SC-CBS.

120~ I SC-CBS -
[ sc-m*
2227 SC-A*

100
80,

60

optimal cost

40

Ave. difference from individual

20

5 6
Number of Agents

Figure 7. Average cost difference of soft-collision-based multi-agent path planning (SC-based MAPP)
solvers from the individually optimal cost in the one-resource-one-type context.



Appl. Sci. 2019, 9, 4037

To be more detailed, in the experiments, we designed MAPP tasks for environments containing
4-6 agents with 20 tasks for each. All tasks were designed to encounter at least one collision along the
individually optimal paths under the above-mentioned configuration. Thus, additional costs relative to the
individually optimal path are expected for each of the three SC-based MAPP solvers. Table 3 compares the
results of SC-M* and SC-CBS to the optimal solutions obtained by SC-A*. The top half of the table shows
the increase in cost relative to the cost for SC-A*; the costs for SC-A* for all scenarios vary within a small
range so the results are in absolute numbers. The bottom half shows the ratio in run time with respect to
SC-A*; the run time for SC-A* varies greatly across the experiments so we show the cost reduction as a
percentage. In the table, we observe that the additional cost of SC-M* from the SC-A* is consistently lower
than that of SC-CBS. We also observe that SC-M* is significantly faster than SC-A* and competitive relative
to the run time of SC-CBS. The standard deviations show the fluctuations of the solutions for SC-M* and
SC-CBS around the optimal solutions for SC-A*.

Table 3. Results of the path cost experiments.

m=4 m=5 m=6

idx | SC-CBS SC-M* | SC-CBS SC-M* | SC-CBS SC-M*

1 50.60 0.00 287.00  216.60 22.00 0.00

2 11.00 0.00 5.50 0.00 50.60 50.60

3 1.10 1.10 45.10 7.70 5.50 0.00

4 136.50 0.00 6.60 0.00 11.00 0.00

5 62.70 31.80 81.40 81.40 177.10 0.00

6 9.90 9.90 38.93 34.31 0.00 0.00

7 22.00 22.00 270.50  204.50 33.14 26.65

Cost 8 16.50 16.50 3.30 3.30 182.18 0.00
difference | 9 13.20 0.00 27.50 0.00 211.10  169.30
from 10 104.50 0.00 78.30 67.08 32.33 20.89
SC-A* 11 58.08 24.08 22.00 0.00 79.20 0.00
12 20.90 0.00 36.84 5.94 52.80 15.40

13 11.00 0.00 115.40 56.00 72.16 59.73

14 28.60 28.60 17.15 9.34 63.70 26.84

15 13.20 0.00 66.00 0.00 19.11 14.05

16 94.60 0.00 35.53 23.65 18.70 1.10

17 16.83 2.86 14.90 10.71 318.90 0.00

18 205.70 22.00 1.10 1.10 48.86 8.94

19 53.24 27.71 14.90 10.71 1.10 1.10

20 12.10 3.30 34.75 2.53 32.61 8.62

Std. dev 52.44 12.00 80.49 64.14 84.64 39.15
1 38.39%  52.84% 24.54%  18.24% 0.33%  0.58%

2 10.41%  20.12% 437%  3.42% 0.23%  0.26%

3 14.53%  24.58% 0.09%  0.30% 2.32%  4.60%

4 2512% 15.42% 0.29%  0.71% 092%  1.35%

5 0.81%  0.54% 21.62%  56.30% 0.55%  0.82%

6 19.17%  15.67% 0.52%  0.59% 3.48%  3.07%

7 14.02%  23.87% 16.39%  17.05% 043%  0.44%

Run time 8 29.82%  19.11% 140%  1.89% 0.07%  0.18%
percentage| 9 64.67%  14.87% 6.16%  8.93% 0.13%  0.14%
to 10 46.67%  37.19% 045%  0.73% 0.10%  0.15%
SC-A* 11 5.94%  16.49% 1.96%  5.56% 0.15%  0.23%
12 516% 36.22% 2.36%  3.29% 046%  1.19%

13 11.40%  19.94% 044%  1.12% 047%  0.61%

14 6.18%  17.72% 0.76%  211% 0.78%  0.58%

15 33.07% 44.81% 25.38%  34.96% 0.48%  0.56%

16 86.83%  37.86% 1.92%  3.10% 0.26%  0.20%

17 16.10%  29.91% 0.92%  2.10% 4.01%  3.95%

18 11.68%  31.59% 10.04%  9.57% 0.28%  0.67%

19 3.97% 14.12% 0.92%  2.10% 1.67%  1.80%

20 4.37% 13.83% 1.01%  1.54% 0.60%  0.52%

Std. dev. 22.34% 12.57% 8.65%  14.08% 1.12%  1.30%

38



Appl. Sci. 2019, 9, 4037

The reason for the results is that SC-A* is an optimal solver for this type of MAPP problem because
it always explores cheaper paths in the entire multi-agent joint space before considering the paths that
cost more [7]. SC-M* is suboptimal because of the process discussed in Section 4.3.2. Compared to
SC-M*, SC-CBS suffers from more path cost due to the way it collects a collision: CBS collects collisions
into a conflict tree and arranges the collision into the form [agent j, vertex v, step s], indicating that agent
j collides at vertex v at step s. In each iteration, CBS conducts decoupled planning to avoid agent j
reaching vertex v at step s. This might lose some information in the soft-collision context because there
might exist another path that leads j to vertex v at step s without announcing a collision, by avoiding
one of the upstream vertexes involved in soft interference. In contrast, SC-M* can explore those paths
excluded by SC-CBS because it searches the entire space of the immediate colliding agents. Figure 8
provides an example to visualize the difference in planning among the three SC-based MAPP solvers.

Figure 8. Illustration of the difference in planning among soft-collision A* (SC-A*), soft-collision M*
(SC-M*), and soft-collision conflict-based search (SC-CBS).

Figure 8 shows a two-agent MAPP problem in the soft-collision context. Agents r1 and r2 attempt
to move from vertexes a and f to vertexes e and g, respectively. The individually optimal paths (shortest
distance) for both agents are a — b — ¢ — d — e with distance 4 forrl and f = b — ¢ — d — g with
distance 4 for 12, respectively. The total cost of the joint individually optimal path is 8. r1 and r2 softly
collide on the edge b — c and ¢ — d, where r2 can tolerate the dissatisfying experience with distance 2.
However, 1 can only tolerate the dissatisfying experience with distance 1 and announces a collision at
the vertex d.

When using SC-CBS, we record the collision that occurred to r1 as [r1, d, 3], indicating that agent
r1 will collide at vertex d at the third step. Then, SC-CSB will avoid any paths leading r1 to d at Step
3 (includinga - b - x - d - eanda = b — ¢ — d — e) and will end up with a longer detour
through vertex y. The SC-CBS solution has a cost of 5 for #1 and 9 in total.

When using SC-M*, the collision at d triggers the sub-dimensional expansion of the search graph
in dimension 1, which includes both x and y. Thus, it can find a cheaper collision-free path through x
and end up withapatha — b — x — d — e with a dissatisfying experience of distance 1 and a cost of
4.5 for r1 (8.5 in total). However, SC-M* does not expand dimension 2 because no collision has been
announced by 2.

When using SC-A*, the joint search space of both dimension 1 and dimension 2 is expanded and
searched. Instead of vertexes x and y, SC-A* will first investigate vertex z in dimension 2 according
to some heuristics. This process leads to another cheaper path f — b — z — d — g with distance 4
for r2 (8 in total, which is the same as the individually optimal cost) and avoids all interference by
moving through this path. As a result, SC-A* returns an optimal solution that satisfies the soft-collision
constraint at the expense of search space.

The example in Figure 8 illustrates the optimality of SC-A* and the advantage of SC-M* in path
cost over SC-CBS. To be specific, SC-M* provides a better solution than SC-CBS by searching thoroughly

39



Appl. Sci. 2019, 9, 4037

through the expanded dimensions, whereas the way SC-CBS identifies collisions is inappropriate in
the soft-collision context. To the best of our knowledge, no other methodology capable of dealing with
the soft-collision path planning defined in Equation (11) has been developed. It is expected that, in the
future, more high-performance algorithms will be developed for solving the problem.

5.3.2. Run Time

Table 4 shows the average run time of the three SC-based MAPP solvers and we observe that
both SC-M* and SC-CBS are significantly faster than SC-A* in terms of run time. This is reasonable
because SC-A* always searches the global high-dimensional joint space, which is expensive. SC-CBS
is faster than SC-M* because it always searches in one individual dimension at a time, whereas the
SC-M* needs to occasionally deal with high-dimensional space when collisions occur.

Table 4. Average run time of SC-based MAPP solvers in the one-resource-one-type context.

m SC-CBS SC-M* SC-A*

4 1.971 2.002 47.35
5 1.798 3.312 473.7
6 1.942 2.969 390.0

5.3.3. Scalability

We compared the scalability of the three SC-based MAPP solvers in terms of planning for a large
system size (m > 50). Figure 9 presents the success rate, average additional cost (i.e., how much more
cost than the individually optimal path), and run-time ratio over SC-CBS under different thresholds T,
where the run-time ratio of SC-CBS is compared to itself and thus is constant. SC-A* has the slackest
constraint (T = 0.35,6 = 9.0) but poorest performance because of the prohibitively large search space.
SC-CBS has the best success rate because of the property of the decoupled searching. However, this is
at the expense of path cost. SC-M* performs decently in terms of both the success rate (significantly
superior to SC-A*) and cost (noticeably lower than SC-CBS) as the number of agents increases.

—8— SC-A*(T=0.35,6=9.0) —#— SC-A* (T=0.35,0=9.0
SC-CBS (T=0.25) ~ —— SC-CBS (T=0.05) e MRE I
—d— SC-M* (T=0.25) —%— SC-M*(T=0.05) SC-CBS/SC-CBS
10 e ——— 250 »n15
@ D 8 L
< a0 E8 200 Q125
T 3 E £ 10
S 60 §'E 150 3 g *
? 32 o75
& 40 =S 100 s
o . O 5
3 g2 £
20 <2 50 Z25
8 - & Oiah)-\'a—cr\"/ o—=—"
0 0 10 20 30 40 50 60 70 80 0 20 30 40 50 60 0 10 20 30 40 50 60 70 80
(@) Number of Agents (b) Number of Agents (c) Number of Agents

Figure 9. Success rate, cost, and run time ratio of the three SC-based MAPP solvers under different T.

The run time of the SC-M* is generally longer than that of SC-CBS. In another experiment,
we observe that the run-time ratio of SC-M* over that of the SC-CBS starts to decrease after a peak.
This is because we force all algorithms to terminate after 1000 s, and both curves will converge to
value one when their success rates decline to zero. We conducted another scalability experiment with
different offsets & (given T = 0.25) and observe the same results in terms of scalability. Figure 10 shows
the experimental results.

40



Appl. Sci. 2019, 9, 4037

—e— SC-A*(T=0.35, 5-9.0) —#— SC-A*(T=0.35,6-9.0)
SC-CBS(0=9.0) —¥—SC-CBS(5=2.0) —@— SC-M*/SC-CBS (§=2.0)
M (5= M* (6=2.0 —8— SC-M*/SC-CBS (5-9.0)
—O—scM(@=00)  Tw SCW =9 SC-CBS/SC-CBS
100 2
00 @124
Q
_ 80 £ B 150 O 10
X i 8o 5
3 60 2 E 275
4 g £ 100 E
? 40 s o g 5
8 k= ] [}
8 © 35 50 IS
@ 20 = 25
Z T c
2 R V- L
0 0@ o ——¥ |
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 10 20 30 40 50 60 70 80
a) Number of Agents (b) Number of Agents (c) Number of Agents

Figure 10. Success rate, cost, and run-time ratio of the three SC-based MAPP solvers under different J.

Considering the scalability and path cost altogether, SC-M* demonstrates its overall advantages
over alternative SC-based solvers.

6. Conclusions

This paper proposes SC-M*, a generalized version of M* with soft-collision constraints on common
resources, which can scale to solving the multi-agent path planning problem in the soft-collision context.
The SC-M* tracks the collision score of each agent and place agents, whose collision scores exceed
some thresholds into a soft-collision set for sub-dimensional expansion. We show that the SC-M* has
advanced flexibility and scalability for efficiently solving MAPP problems in the soft-collision context
and can handle complex environments (e.g., with multiple types of agents requesting multiple types
of resources). We compare the SC-M* to other SC-based MAPP solvers and show the advantages and
trade-offs of the SC-M* against baselines in terms of path cost, success rate, and run time.

Future work will focus on leveraging advanced variants of M*, such as EPErM*, ODrM?*, etc.,
to remove the basic A* component in our planner. We believe that better performance can be obtained
this way because these variants improve the coupled planner and policy generator (two important
components in the basic M*), which are directly related to the M* bottlenecks that limit the planning
scalability. We are also interested in applying SC-M* to real-world applications for case studies.
One promising research direction is to use the proposed algorithm to serve the passengers in public
transits. It is expected that SC-M* will handle large-scale mobility demands in cities

Author Contributions: Conceptualization, R.S., P.S. and M.M.V.; Methodology, R.S. and M.M.V.; experimental
design, R.S. and P.S.; software, R.S.; analysis, R.S.; writing, original draft preparation, R.S.; writing, review and
editing, R.S., P.S. and M.M.V,; supervision, M.M.V. and P.S.; and funding acquisition, M.M.V. and P.S.

Funding: This research was funded by the Fundacdo para a Ciéncia e a Tecnologia (FCT), the Portuguese
national funding agency, under the Sensing and Serving a Moving City (S2MovingCity) project (Grant
CMUP-ERI/TIC/0010/2014).

Acknowledgments: The authors would like to thank Stephen F. Smith and Carlee Joe-Wong for helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MAPP Multi-Agent Path Planning
SC-M* Soft-Collision M*

OD Operator Decomposition
EPEA* Enhanced Partial Expansion A*
IDA* Iterative Deepening A*

CBS Conflict-Based Search

MA-CBS Meta-Agent Conflict-Based Search

41



Appl. Sci. 2019, 9, 4037

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Dresner, K.; Stone, P. A multiagent approach to autonomous intersection management. J. Artif. Intell. Res.
2008, 31, 591-656. [CrossRef]

Pallottino, L.; Scordio, V.G.; Bicchi, A.; Frazzoli, E. Decentralized cooperative policy for conflict resolution in
multivehicle systems. IEEE Trans. Robot. 2007, 23, 1170-1183. [CrossRef]

Silver, D. Cooperative Pathfinding. In Proceedings of the 1st Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE), Marina del Rey, CA, USA, 1-3 June 2005; pp. 117-122.

Wagner, G.; Choset, H. M*: A complete multirobot path planning algorithm with performance bounds.
In Proceedings of the 2011 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS),
San Francisco, CA, USA, 25-30 September 2011; pp. 3260-3267.

Ratner, D.; Warmuth, M.K. Finding a shortest solution for the NxN extension of the 15-PUZZLE is intractable.
In Proceedings of the 5th AAAI Conference on Artificial Intelligence (AAAI), Philadelphia, PA, USA,
11-15 August 1986; pp. 168-172.

Wagner, G.; Choset, H. Subdimensional expansion for multirobot path planning. Artif. Intell. 2015, 219, 1-24.
[CrossRef]

Hart, PE.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths.
IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100-107. [CrossRef]

Standley T.S. Finding optimal solutions to cooperative pathfinding problems. In Proceedings of the 24th
AAAI Conference on Artificial Intelligence (AAAI), Atlanta, GA, USA, 11-15 July 2010; pp. 173-178.
Felner, A.; Goldenberg, M.; Sharon, G.; Stern, R.; Beja, T.; Sturtevant, N.; Schaeffer, J.; Holte, R. Partial-expansion
A* with selective node generation. In Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI),
Toronto, ON, Canada, 22-26 July 2012; pp. 471-477.

Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturtevant, N.; Holte, R.C.; Schaeffer, ]. Enhanced partial
expansion A*. ]. Artif. Intell. Res. 2014, 50, 141-187. [CrossRef]

Korf, R.E. Depth-first iterative-deepening: An optimal admissible tree search. Artif. Intell. 1985, 27, 97-109.
[CrossRef]

Sanchez, G.; Latombe, J.C. Using a PRM planner to compare centralized and decoupled planning for
multi-robot systems. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation
(ICRA), Washington, DC, USA, 11-15 May 2002; pp. 2112-2119.

Sharon, G.; Stern, R.; Felner, A.; Sturtevant, N.R. Conflict-based search for optimal multi-agent pathfinding.
Artif. Intell. 2015, 219, 40-66. [CrossRef]

Ferner, C.; Wagner, G.; Choset, H. ODrM* optimal multirobot path planning in low dimensional search
spaces. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany, 6-10 May 2013; pp. 3854-3859.

Wagner, G.; Choset, H. Path planning for multiple agents under uncertainty. In Proceedings of the 27th
International Conference on Automated Planning and Scheduling (ICAPS), Pittsburgh, PA, USA, 18-23 July
2017; pp. 577-585.

Ma, H.; Kumar, T.S.; Koenig, S. Multi-agent path finding with delay probabilities. In Proceedings of
the 31st AAAI Conference on Artificial Intelligence (AAAI), San Francisco, CA, USA, 4-9 Feburary 2017;
pp- 3605-3612.

Shi, R.; Steenkiste, P.; Veloso, M.M. Second-order destination inference using semi-supervised self-training
for entry-only passenger data. In Proceedings of the 4th IEEE/ ACM International Conference on Big Data
Computing, Applications and Technologies (BDCAT), Austin, TX, USA, 5-8 December 2017; pp. 255-264.
Shi, R.; Steenkiste, P.; Veloso, M.M. Generating synthetic passenger data through joint traffic-passenger
modeling and simulation. In Proceedings of the 21st IEEE International Conference on Intelligent
Transportation Systems (ITSC), Maui, HI, USA, 4-7 November 2018; pp. 3397-3402.

Shi, R. Optimizing Passenger on-Vehicle Experience Through Simulation and Multi-Agent Multi-Criteria
Mobility Planning. Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, USA, May 2019.

Wang, H.; Xie, H,; Qiu, L.; Yang, Y.R.; Zhang, Y.; Greenberg, A. COPE: Traffic engineering in dynamic
networks. In Proceedings of the 2006 Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM), Pisa, Italy, 11-15 September 2006; pp. 99-110.

42



Appl. Sci. 2019, 9, 4037

21.

22.

23.

24.

25.

26.

Fletcher, L.; Teller, S.; Olson, E.; Moore, D.; Kuwata, Y.; How, ]J.; Leonard, J.; Miller, I.; Campbell, M.;
Huttenlocher, D.; et al. The MIT—Cornell Collision and Why It Happened. J. Field Robot. 2008, 25, 775-807.
[CrossRef]

Leonard, J.; How, J.; Teller, S.; Berger, M.; Campbell, S.; Fiore, G.; Fletcher, L.; Frazzoli, E.; Huang, A.;
Karaman, S.; et al. A perception-driven autonomous urban vehicle. ]. Field Robot. 2008, 25, 727-774.
[CrossRef]

Zhou, W.; Zhang, C.; Wang, Q. Optimal flow distribution of military supply transportation based on network
analysis and entropy measurement. Eur. ]. Oper. Res. 2018, 264, 570-581. [CrossRef]

Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269-271. [CrossRef]
Jansen, M.R.; Sturtevant, N.R. Direction Maps for Cooperative Pathfinding. In Proceedings of the 4th
Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), Stanford, CA, USA,
22-24 October 2008; pp. 185-190.

Van Den Berg, J.; Abbeel, P.; Goldberg, K. LQG-MP: Optimized path planning for robots with motion
uncertainty and imperfect state information. Int. J. Robot. Res. 2011, 30, 895-913. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).

43






Jriried applied -
) sciences ﬁ“\“\?y
Article

Unscented Transformation-Based Multi-Robot
Collaborative Self-Localization and Distributed

Target Tracking
Yang Lyu *, Quan Pan ! and Jian Lv >*

1
2

School of Automation, Northwestern Polytechnical University, Xi’an 710072, China; quanpan@nwpu.edu.cn
Key Laboratory of Advance Manufacturing Technology, Ministry of Education, Guizhou University,
Guiyang 550025, China

*  Correspondence: lincoln1587@mail. nwpu.edu.cn (Y.L.); jlv@gzu.edu.cn (J.L.)

Received: 26 December 2018; Accepted: 27 February 2019; Published: 3 March 2019

Abstract: The problem of multi-robot collaborative self-localization and distributed target tracking
in practical scenarios is studied in this work. The major challenge in solving the problem in
a distributed fashion is properly dealing with inter-robot and robot-target correlations in order to realize
consistent state estimates of the local robots and the target simultaneously. In this paper, an unscented
transformation-based collaborative self-localization and target tracking algorithm is proposed. Inter-robot
correlations are approximated in a distributed fashion, and robot-target correlations are safely discarded
with a conservative covariance intersection method. Furthermore, the state update is realized in
an asynchronous manner with different kinds of measurements while accounting for measurement and
communication limitations. Finally, to deal with nonlinearity in the processes and measurement models,
the unscented transformation approach is adopted. Unscented transformation is better able to characterize
nonlinearity than the extended Kalman filter-based method and does not require computation of the
Jacobian matrix. Simulations are extensively studied to show that the proposed method can realize stable
state estimates of both local robots and targets, and results show that it outperforms the EKF-based
method. Moreover, the effectiveness of the proposed method is verified on experimental quadrotor
platforms carrying off-the-shelf onboard sensors.

Keywords: collaborative localization; distributed tracking; nonlinear model; unscented transformation

1. Introduction

Multi-robot systems (MRSs) have garnered tremendous research interest in recent years [1]. Compared
with a single robot, an MRS usually has greater efficiency and operational capability in accomplishing
complex tasks, such as transportation [2], search and rescue [3], and mapping [4]. Among these MRS
applications are the fundamental tasks of obtaining reliable localization information for the local robot
and the uncooperative target using various measurements; these two processes are often referred to as
collaborative self-localization (CL) [5-9] and distributed target tracking (DT) [10-13], respectively. In the
CL process, each robot measures the relative quantities with regard to neighboring cooperative robots.
By cooperating with other robots, each robot is able to refine its own positioning information. In the
DT process, each robot performs a measurement function on the uncooperative targets to be tracked.
Then, the states of the target can be estimated cooperatively through interactions with other robots.
Although the problems of CL and DT are usually solved by two separate techniques, such as in [5-11,13-17],

Appl. Sci. 2019, 9, 903; d0i:10.3390/nan09050903 www.mdpi.com/journal/applsci

45



Appl. Sci. 2019, 9, 903

they are correlated in most practical scenarios. In the DT process, the target tracking accuracy is dependent
on the localization information of the corresponding robots, as well as the relative measurements between
the robot and target. The target tracking results obtained by each local robot, in turn, can be implemented
to improve the localization performance of the robots. To realize MRS self-localization and target
tracking simultaneously, a combined collaborative self-localization and distributed target tracking (CLAT)
framework is studied in this paper.

The problem of multi-robot collaborative localization has drawn significant attention in recent years.
In [18], the state of the art in collaborative localization is surveyed, and the theoretical limits, algorithms,
and practical challenges are discussed. As one of the fundamental challenges in CL, the application of
a proper data fusion strategy to deal with the correlations between robots was studied in [5-9,14,15].
A direct approach involves the local robot treating the states of neighboring robots as fully confident
variables that will lead to zero correlations between robots [5]. However, this impractical assumption
of neighboring positions can lead to overconfident estimates. A more practical method to fuse the
relative measurements when the correlation is unknown is the implementation of conservative correlation
approximation methods, such as covariance intersection (CI) [6] or split covariance intersection (SCI) [7].
A CL approach using CI was proposed in [14]. This method is provably consistent and can handle
asynchronous communication and measurement. The SCI-based approach, as studied in [7,8], further
separates the covariance into correlated and uncorrelated parts, and the latter is fused using the CI method.
Despite the ability of Cl-based methods to preserve the consistency of the estimates, they often have
overly conservative results. Making a trade-off between estimation accuracy and the corresponding cost
during the Cl-based collaborative localization process was investigated using the optimal scheduling
problem in [19]. Another popular method to deal with the CL problem is based on factor graphs, which are
formulated on the basis of entire trajectories, such as in [15]. The correlation can be explicitly tracked in the
factor-graph-based method. However, storing all of the measurements resulting from this method requires
significantly more storage space than the recursive method. To address the above drawbacks, a recursive
extended Kalman filter (EKF)-based CL method was proposed in [20], in which the correlation was
accurately tracked in a decentralized manner. In [21], the processing and storage costs were further reduced
by introducing a server that broadcasts an update message when an inter-robot relative measurement is
taken. However, in this method, when a relative measurement is taken between two robots, communication
involves all robots rather than just the two in the relative measurement, and this significantly increases
the communication burden. Another recursive EKF-based CL method was proposed in [9]. This method
efficiently approximates the correlation and only stores the current measurement. When the relative
measurement is taken, only the communication between the two robots is required.

The distributed tracking problem has also been extensively studied [22]. Early-stage algorithms
that have been proposed to solve this problem can be roughly split into two categories: consensus-based
algorithms [16] and diffusion-based algorithms [10]. The former category, in general, requires multiple
communication iterations during each sampling time interval and hence could lead to a heavy
communication burden. To reduce the communication bandwidth, a distributed Kalman filter with
event-triggered communication was proposed in [23], and the stability is guaranteed. The latter category
does not have such drawbacks, but it may require local joint detectabilities at every single agent, and such
a requirement might not be satisfied in a general multi-robot target tracking scenario. A more practical
DT approach called distributed hybrid information fusion (DHIF) [11] is able to guarantee stability and is
asymptotically unbiased with very mild sufficient conditions. To further solve the distributed tracking
problem with a nonlinear process and sensing models, an EKF-based paradigm was proposed in [24],
and the stability was analyzed in [25]. Also, the unscented transformation-based approach, which has
been regarded as a superior alternative to the EKF when the systems are highly nonlinear, was integrated
with the DT process in [26]. However, both the EKF and unscented Kalman filter (UKF) mentioned

46



Appl. Sci. 2019, 9, 903

above are consensus-based and hence may generally result in a heavy communication burden. Recently,
the aforementioned DHIF was extended to a nonlinear scenario using the DT approach in [12], and the
stochastic stability was analytically studied. Besides the methodology research and theoretical analyses
above, the performance of different fusion strategies in terms of their communication rate, information
type, and memory size were compared in [27].

The CLAT framework has gained attention in recent years. There are two main kinds of methods:
batch and recursive methods. The batch method estimates the entire state trajectory on the basis of
all measurements and motion information up to the present, and the recursive method uses only the
current measurement and control information. The batch-based method is supposed to outperform the
recursive method but at the cost of significantly larger computation and storage requirements and, if in
a distributed fashion, communication requirements. One batch-based method was proposed in [28]. By
introducing a factor graph that contained robot and target nodes and relative measurements, the problem
was formulated as a least-square minimization problem and was solved with sparse optimization methods.
Another batch-based method was presented in [29], where the CLAT problem was formulated as a
maximum a posteriori estimation problem, and the unscented transformation (UT) technique was
implemented to better characterize the nonlinear process. Furthermore, the observability condition
was extensively studied. For an MRS with limited computation and storage capacity, the recursive method
is often preferred. A recursive-filter-based CLAT was studied in [30], and the error bounds are theoretically
provided. Nevertheless, the results in [30] are based on a specially designed measurement graph so that
the correlation can be tracked properly. A recursive Bayesian method was proposed in [31] to perform
the CLAT in a distributed sequential fashion; however, this method needs synchronous communication
at each time instance and will therefore add a significant communication burden. Further, an error
propagation analysis was carried out, and the convergence conditions are given in [32], which showed
that the localization and tracking accuracy only depends on the expectation of the measurement precision.

In this paper, the multi-robot localization and target tracking problem with a general nonlinear process
and various measurement models is studied, and a UT-based CLAT scheme is proposed with consideration
of the communication and memory limitations. The main contributions of this paper are summarized as
follows: First, the proposed UT-based CLAT is recursive, and it does not store measurements; each robot
only keeps the latest estimates of its own and the target, so the storage requirement is significantly reduced.
Furthermore, communication is limited to the two robots to obtain a cooperative relative measurement,
and no communication with other robots is needed. Meanwhile, to guarantee estimation consistency,
inter-robot correlations are approximated in a distributed fashion on the basis of the covariance split
method, and the robot-target correlation is discarded using the conservative CI method. Finally, the overall
system is modeled on the basis of general nonlinear models and is characterized on the basis of the UT
approach rather than the EKF method. Thus, the computation of a Jacobian is avoided. Simulations were
carried out, and they indicate that the proposed UT-CLAT method is able to realize stable state estimates
of both local robots and targets. More importantly, a hardware platform containing three quadrotors
was implemented to verify the effectiveness of the proposed UT-CLAT method. Specifically, three types
of measurements (absolute measurement, relative cooperative, and uncooperative measurement) from,
respectively, the navigation system, ultra-wide bandwidth (UWB) transmitters, and onboard cameras were
utilized to effectively estimate the states of the local robots and targets.

The rest of this paper is organized as follows: Section 2 formulates the CLAT problem, and Section 3
describes the proposed CLAT method. Sections 4 and 5, respectively, provide the simulation results,
which are based on synthetic data, and experimental results, which are based on hardware platforms.
Section 6 concludes the paper.

47



Appl. Sci. 2019, 9, 903

2. Problem Formulation

2.1. Models

Consider N homogeneous cooperative robots, denoted as i € V, performing collaborative
self-localization and distributed tracking of a target of interest, denoted as t. The dynamics of the
cooperative robots and the target are expressed respectively with the following nonlinear process models:

Xij11 = fo(Xik Wik), D

Xpk+1 = fr(Xep, Wik), 2

where x;; € R" and x; € R™ respectively denote the state of robot i and target  at time k. u;; € R" is
the control input of robot i, which is assumed to be subject to a Gaussian distribution u; ; ~ N (1@, Q;).
@; denotes the control command, and Q; is the control input covariance. w;; € R"® is the process noise
of the target and is assumed to be drawn from a zero-mean Gaussian distribution w; ; ~ N(0,Q4). Itis
assumed that all robots i € V share the same nonlinear transformation f, : R" x R", and the moving
target nonlinear transformation f; : R™ x R"v is known to all robots.

In the cooperative localization and target tracking scenario, each robot i is able to measure three pieces
of information: its absolute state and the relative pairwise measurements to neighboring robots and to the
target. The measurements at time instance k are denoted respectively as z{;, € R", ij,k c R"™,je V\{i},
and th't,k € R™. The corresponding measurement functions are listed below:

Z?,k = a(xi,k/ V?,k)/ (3)

Z?j,k = ]’lc(X,',k, X]',k, Vf{k), (4)
t t t

Zip o = N (Xij Xtk Vig),s 5)

where v{}, v, and Vg,k are the measurement noise of the above three measurement processes and assumed
to be drawn from zero-mean Gaussian distributions, i.e., V?, « ~ N(O,RY), V?,k ~ N(0,R§), and vf.,k ~
N(0,Rf).

Defining the CLAT as a graph G(V, E), the node set V. = V U {t} U {0}, and the special node 0
denotes the absolute position origin. The edge set is denoted as E C V' x V. For a robot i € V, an edge
(1,0) denotes a robot that can access its own absolute position. In this paper, it is assumed that a subset
of the robots V' can obtain the absolute measurement z{. An edge (i,t) indicates that a robot i is able
to detect a target t. Since the sensing range of an uncooperative sensor is limited, the availability of
an uncooperative target measurement depends on the relative positions of the robot and the target.
An edge (7,7),j € V\i denotes that a pairwise measurement between robots i and j is obtained. Similarly,
a cooperative relative measurement is available when two robots are within the cooperative sensing range.
Moreover, in this paper, it is assumed that whenever a relative measurement ij,k is taken, a communication
link is established simultaneously between robots i and j so that they can share information.

2.2. Motivation and Objective

Although the CL and DT problems have been extensively studied, their combination still draws
limited attention, especially when considering practical multi-robot operation conditions such as nonlinear
models or limited sensing and communication capabilities. One answer to the above challenge was
provided in [9] by implementing the EKF scheme and asynchronized measurement update. However,
this only covered the CL task, and the uncooperative target was not considered. On the other hand, it is
also well known that the computation of Jacobian matrices is required by EKF-based algorithms. This may

48



Appl. Sci. 2019, 9, 903

cause difficulties during implementation. Moreover, the estimation performance may deteriorate if the
assumption of local linearity is not valid (e.g., bearing sensors). An alternative approach to extending the
algorithm while avoiding the aforementioned potential drawbacks is to use the UT.

Motivated by the above observations, in this paper, a UT-based CLAT scheme (UT-CLAT) is proposed
that can realize self-localization and target tracking simultaneously in practical multi-robot operation
scenarios. The correlations are properly addressed by implementing split covariance methods, similar
to the method in [9], and the covariance intersection method. The UT approach was adopted to
approximate the statistics of random variables in nonlinear models. In the end, the effectiveness of
the proposed UT-CLAT algorithm is illustrated using not only simulations with synthetic data but also
experiments with a networked quadrotor system and off-the-shelf sensors (cameras and UWB transmitters).

3. UT-Based CLAT

In this section, the proposed UT-CLAT is described. The states of local robots and targets are estimated
using a recursive UT-based Kalman filter, with the aforementioned three types of measurements updated
in an asynchronous fashion. For each robot i, the local states, covariance, and the correlation between it and
other robots j € V are tracked. Specifically, the correlation term is approximately tracked in a distributed
fashion, similar to [9]. As a matter of fact, the target may be detected by different robots at different times.
It is difficult to track the robot-target correlation in a local robot when there are inter-robot correlations.
To realize consistent state estimation under unknown robot-target correlations, a conservative CI method is
introduced to safely remove the robot-target correlation terms and the correlation between target estimates
from different robots. The above algorithm consists of state propagation (Section 3.1) and three types
of measurement update processes (Section 3.2). In particular, the communication link is supposed to be
established only during the cooperative relative measurement update process and the data from different
robots are fused.

Suppose that at time k, each robot 7 has a posterior estimated state and its error covariance at a previous
time instance, denoted as X; ;_; and P; ;_1, respectively. If a relative measurement between robots i and j
is taken before time instance k, then the correlated term P;;;_; is arbitrarily decomposed as

.
Pijk—1 = Oijk-10ji 51 (6)

and respectively stored in robots i and j. Robot i also holds an estimation of the target f locally, denoted as
Xp k-1 and Py p_q.

3.1. Propagation

The propagation process involves the local robots as well as the target. According to the dynamics of
Equations (1) and (2), each robot propagates its own state estimates and the local estimate of the target.

Let the augmented state vector and the corresponding augmented covariance matrix for each robot’s
local state at time k — 1 be denoted respectively as ’A‘?/kfl € R™ and P?,kq € R">*" where n, = ny, + ny,

. X P 0
XK1 £ [ﬁli 1] ,and Pf;_4 & { I’S ! Q} . ()
ik— i

49



Appl. Sci. 2019, 9, 903

A set of 2n, + 1 sigma points, denoted as X*, is selected as follows:

X =%,
X =%+ {y/(na+7) P?,k,l}(:/,),if re{l,-- .},
X =% — {\/(a + M P}, otherwise.
Here, 7 = a? (n, + k) — n, is a scaling parameter, with 0 < & < 1 and x € R as tuning parameters to

control the spread of the sigma points. The weights for propagating the mean and covariances, denoted
respectively as W;, and W/, are computed as

WI(I)I:’Y/ (nﬂ+7)/
We =/ (na+7)+ (1-a2+8),
Wy =W.=1/2(na+7), r=1,...,2n,

where  is used to incorporate extra higher-order effects. Note that the definition of the sigma points
directly implies that

2n 0 &
Z oW )X;”kr 1= Xﬂk—l =X} 1

or equivalently,
21, royr 21, WU _
Z \ W ik—1— xzk 17 Z q muk—l = Ujk-1,

where X’ l.f 1 and Z/[i', 1 collect the components of A7/ ar ", corresponding to, respectively, x; 1 and u;;_1.
The above unscented transform is summarized below.

Xl”k’ 1 = UT(X 1, Pl ), r=0,---,2n,.

By defining the augmented state vector and the covariance with regard to the local estimates of the
target ¢ within robot i similar to Equation (7), the UT of the target  can be summarized as

a,r . oa a —
Xti,k—l = UT(Xti,k—l'Pt,,k—l)' r=0,--,2n,.

Then, the prior local estimates and corresponding error covariance of the current state and target are
computed respectively as

e =YWL, ®)
=YW ( Xr - xlk) (Xifk - ﬁi,k)T, )

and
K= Y WL (10)
=Y 2w ( T %) (K- f(tx.,k)T, a1

where
Ik_fv< ik—17 lk 1)’ r=0,---,2n,

50



Appl. Sci. 2019, 9, 903

and
L= ft (Xtr,-,k—lfwtrl,k—l) ;o r=0,, 20,

X, t’[,k_l and Wtr, 1 are the sigma points corresponding to x;, x—1 and w; ;_1, and

2, " N 2,

Lot Wnd g1 = Reeo1, Ly W Wha = 0.

The propagation of the correlation term P;; involves the pose and control inputs of both i and j,

and therefore cannot be propagated locally by robot i. To avoid communication, the local correlation term
0ij is instead propagated as

Gijk = Folijx-1, (12)

where F is the inferred Jacobian matrix with regard to the dynamic function in Equation (1) and, according
to [33], is defined as
: -1
Fo= P?i;f\kq (Pijg-1)"",

2 . .
where Pﬁ(\k—l ~ Zrlao(‘)(ir,k = %) (Xfy — Rig1)"

3.2. Update

In the update stage, three types of measurement (Equations (3)-(5)) are considered. When a private
measurement or a target measurement is taken by robot 7, the information is updated locally to avoid
communication. When two robots i and j are within the relative range, a relative measurement is taken,
and local beliefs of both robot and target and the inter-robot correlation term are exchanged to update the
estimates of the local robots and target. For clarity, =, P~ and X, P are used respectively to denote the
state estimate and covariance prior to and after a certain measurement update process.

3.2.1. Private Update

During each private update process, the local robot measures its local pose through, for example,
a GPS receiver and magnetometer, to refine its local estimation. Only the local pose participates in the
private update process.

First, the inferred Jacobian H;j corresponding to the measurement function in Equation (3) is
obtained as

1
Hip =Py (Pi/k> ’

where
2n,

5= YW (- %) () — 2.
r=0
Then, the state and covariance can be updated as
Rije = Ko+ K (20— (%)) (13)
Pij= (I—KipHix)P, (14)
where

Sik = (Hix) ' P Hix +RY,
Kk = P;kHiTkS;kl-

51



Appl. Sci. 2019, 9, 903

The correlation term within local robot 7 is updated as
Tijk = (L= KipHip) oy, j € V\ie (15)

3.2.2. Target Measurement Update

When a target is detected by robot i, a relative measurement related to the pose of both robot i and
target t, denoted as zf,, is obtained. The measurement update involves the estimates of the robot and the
target, as well as their correlation term. As a matter of fact, the correlation term, denoted as P;,, is difficult
to track in a distributed fashion owing to the existence of the inter-robot correlation term. Therefore, in this
part, a conservative Cl-based method [34] is used to remove the robot-target correlations and guarantee
consistency at the same time.

|:w11Pf,k 0
0 LP;U,C

1—wq

P, P
e { i P’“’k}. (16)

The weight w is determined according to [34]. Let P, = i P, and P; L E 1w P The augmented
state can be defined as

i P 00
f(f’; = Xk and P?,k =|0 P, 0
0 0 0 R
Then, the augmented sigma points are obtained as
XIFUT(?;,PZ’ ) F=0,--- 20, 17)
The inferred measurement Jacobian is
(Mo Hip Hox] = PE(PY) (18)

where
zxib = Z W, (Xb - X ) (ht()(il,?k) - th,k) :

The target measurement update process is finally summarized as Equations (19)—(22):

Rije = %o+ Ky (2 = M) ), (19)
Ruk = Ko+ Ky (2~ W) (20)
P = (1- Ky Hip)P, (21)
Ppj= (=K Hio)P, (22)

52



Appl. Sci. 2019, 9, 903

where the innovation covariance and gain are calculated as

P, 0 T
— k
Sik = [Hz',k Hi,,k] { 0 I—,tJ ['Hz‘,k 'Hif,k] +RY,
Kix =P HiiS;
Kti/k = P;kﬂti:ksijkl'
Formally, the correlation between robots i and j should be updated as
Pijic = (I = KixHif) Py -

On the basis of the decomposition in Equation (6), the correlation term 0ij can be calculated as below
without communication:
Tijp = (U= Ky Moy, j € V\i.

3.3. Neighbor Measurement Update and Target Information Fusion

When two robots i and j are within a given range, a relative measurement is taken, denoted as Zjj,
and a communication link between the two robots is established. The target update process is as follows.
First, the covariance between two robots P;; is recovered according to Equation (6). Similar to the target
measurement update process, we define the augmented state prior to the measurement update as

Xik ]
o o _ STl
X = ik and P;” = Pij Pj
0 0 0 R¢

Then, the augmented sigma points are obtained as

XE=UT (X7, P5 ), r=0,0-,2m,
The inferred measurement Jacobian is
{’Hi,k Hj,k ’Hv,k} = szC(PI?,;)*l
where
2n,
= LW (A5 -5 (1 (x50 — 25)
r=0

Consequently, the update process for the relative measurement between robots i and j is as below:

Xik = % + Kik (Zij,k - hf(ﬁf})) y (23)
Rj = Xy + K (2~ BE(3) ) 24)
Pije = (I—Kip M) Py — KM P, (25)
Pij = (1 KjHp)Pi, — K Py, 26)
Py = (1= KipHi )P — KigH P, @7)

53



Appl. Sci. 2019, 9, 903

where

Pir Py,
Sik=|Hix Hix| |pT  p
Kix = (PixHix+ PijxHir)S; '

K = (PjixHij+ PiH)S,

} [ ’H]-,k]T +R,

After the relative measurement update, the correlation P;; ; is decomposed again as two multiplicative
parts 0j; x and 0j; x according to Equation (22). Then, 0jj and 0j; ; are stored in i and j, respectively.

The relative measurement update process also involves the correlation term P, 1 € V,1 # i,j.
Formally, the P;; ; should be updated as

Py = (1= KixHix)Pik — KixHjxPjig-

The correlation term Pj x is not available to robot i. To reduce the overall communication and avoid
communication with /, the split term ¢;; in robot i is instead updated in an approximate form, similar to
the process in [9], as below:

ok = Pix(Pyy) "oy (28)

In addition to the measurement update, the target beliefs {%;, i, Py, x} and {f(t/,k, Ptj,k} are fused
simultaneously. As a matter of fact, the correlation between the two estimates is unknown owing to the
unknown target-robot correlation. Again, the conservative CI algorithm can be used as below:

Pric = (wa(Pr) "+ (1 —wn) (P ) 29)

%1 =Py (w2Pp 11+ (1= w2)P R k) - (30)
The weight w, can be determined according to [11]. The fused results are then stored in both robots
iand j.
4. Simulation

In this section, the proposed UT-CLAT method is validated using synthetic data. Without loss of
generality, the scenario contains four cooperative robots, labeled 14, tracking an uncooperative target in
2D space (as shown in Figure 1). The robots and the target are assumed to be subject to similar nonlinear
unicycle models, as below:

ki1 X + Ar(vc 4+ wy) cos(6y)
X1 2 |V | = | Yk + Ar(ve +wp) sin(6y) |
9k+l Gk + AT((UC + w;’)

A subscriber i or t is used to distinguish the robots or the target. The state vector x; to be estimated
contains three entries—uxy, yx, and 6y—which represent the 2D position and the orientation of the robots
and the target with respect to the global frame. It is assumed that at the initial time, the robots are randomly
placed on different circles centered at [—10,10], [10,10], [—10, —10], [10, —10]. The same control command
u = [v;,w]’ = [0.3,00375]" is applied to each robot to form four approximated circles with radii 8.
The velocity and angular velocity noise are assumed to be subject to Gaussian distributions with the
covariance Q; = diag([0.1%, (0.571/180)?]). The target is initialized at [—15, —15]" in the global frame,

54



Appl. Sci. 2019, 9, 903

and the control input is set as u; = [0.05,0] T. Similarly, the target control is subject to zero-mean Gaussian
noise with Q; = diag([0.022, (27r/180)2]).

| tar. traj.
robot 1 ——— _ - -
= N7 - > ‘,\
N
/
/ . / \

robot 2

~

local robot t’raj. robot 4

Figure 1. Simulation with four local robots and one moving target.

In the simulation, robot 1 is assumed to be accessible to the global position and orientation in the
global frame with the following measurement model:

a __ a
Zik = Xik T Vi

where v{, ~ N(0,diag [(0.52,0.52, 0.57r/180)2]) is the control noise.
Both the cooperative robots and uncooperative measurement are subject to a relative range
measurement model as follows:

zjjg = llxj — xilla + v (31)

ziy = 1% — xilla + 0} (32)

|| - |l7 is the operator that calculates the relative range between two robots or a robot and the target.
The sensing range for the target is set as r; = 20, and the sensing range for cooperative robots, as well
as the communication range, is set as r. = 10. The measurement noises are v ~ N (0,0.05%) and
ot ~ N(0,0.05%), respectively.

4.1. Scenario 1

One trial of the simulation described above was carried out. In this scenario, the target is jointly
observed by the four robots intermittently. The observation measurement availability for both cooperative
measurement and target measurement is based on the sensing ranges . and r¢, respectively, and is shown

in Figures 2 and 3.

55



Appl. Sci. 2019, 9, 903

g 3<->4

3]

=

;E 2<==> 4 Jrommnc o
2

g 2<-->3 % Rt s Rt b R
g

g 1<==>4 promsmenne e R b b
f 1<-->3

=N

S

O 1<-->2

0 200 400 600 800

Time (s)

Figure 2. Measurement and communication link availability between two robots with r. = 10.

robot 41

robot 3 I -

robot 2 I

Target measurement

robot 1

0 200 400 600 800
Time (s)

Figure 3. Measurement availability of target to four robots with r; = 20.

Although, for each robot, the observability of the local state and the target’s state cannot be guaranteed
owing to the discontinuous range-only measurement, the joint observability for the entire system over
a period of time can still be guaranteed through communication with neighbors according to [35].

The estimated trajectories of both robots and the target are plotted in Figure 4 in different colors.
Each robot’s self-localization result and local target tracking result are drawn with solid lines of the
same color. As observed in Figure 4, the estimated trajectories indicate that each robot is able to localize
its true pose and track the true trajectory of the target. The four robots” self-localization errors and
covariances (+3c bounds) are plotted in Figure 5, with solid lines in color and dashed lines in the same
color, respectively. It shows that the self-localization errors by each robot are bounded by the +3¢
envelopes in the steady state. Robot 1 has the lowest tracking error as it can access its own absolute
measurement. The target tracking results from the four robots are plotted in Figure 6, where, for each robot,
the target tracking errors (solid line in colors) are bounded by the corresponding +3¢ envelopes (dashed
line in the same colors) in the steady state. On the basis of Figures 5 and 6, the min/max self-localization
and target tracking errors for time instance k € [200, 800] are listed in Table 1.

56



Appl. Sci. 2019, 9,903

15}

10+

y-pos (m)

-10+

J151

Figure 4. Estimated trajectories of robots and the target in different colors (black dashed lines indicate the
ground truth).

err, (m)

0 200 400 600 800
Time instance & (s)

Figure 5. Self-localization errors and covariances of robots 1-4.

Table 1. Self-localization and target tracking errors (k € [200,800]).

Absolute Self-Localization Error ~ Absolute Target Tracking Error
(min/max) (min/max)

x(m) y(m) O(rad) x(m) y(m) O(rad)

robot1 0.05/0.35 0.03/0.41 0/0.08 0.03/0.5 0.03/0.66 0.01/0.65
robot2 0.04/0.94 0.1/1.13 0/0.11  0.04/0.54 0.05/0.54 0.01/0.71
robot3 0.01/1.31 0.12/096  0/0.07  0.02/0.61 0.05/0.47 0/0.72
robot4 0.02/1.08 0.04/1.24 0/0.12  0.04/0.44 0.03/0.55 0/0.75

57



Appl. Sci. 2019, 9, 903

2 . . :

1|
_ . A
é L e A 1At e i A DL g WY SIS SRS 0 ey

=

o)

5]

o " g S «
2 . | . u
0 200 400 600 800
2 : . -

[ Nt F e e P

0 200 400 600 800
Time instance k (s)

Figure 6. Target tracking errors and covariance of robots 1-4.
4.2. Scenario 2

In this part, the performance results of the proposed UT-CLAT method are presented on the basis
of 1000 Monte Carlo simulations. Specifically, the simulation in Scenario 1 was repeated 1000 times with
1 < k < 1200. For each robot, the position root-mean-square errors (PRMSEs) of the local posterior
estimates and target posterior estimates were computed for all trails. Moreover, to demonstrate the
effectiveness in a nonlinear scenario, the proposed UT-CLAT method is compared to the EKF-CLAT
method by extending the CL algorithm in [9] to the CLAT scenario. In Figure 7, the averaged PRMSEs of
the collaborative localization results of 1000 Monte Carlo simulations are plotted using both the UT-CLAT
and EKF-CLAT methods.

ot

---Veh. 1 EKF-CLAT
——Veh. 1 UT-CLAT
Veh. 2 EKF-CLAT |
Veh. 2 UT-CLAT
3 - --Veh. 3 EKF-CLAT -
——Veh. 3 UT-CLAT
- --Veh. 4 EKF-CLAT
——Veh. 4 UT-CLAT

PRMSE (m)

0 200 400 600 800 1000 1200
Time instance k (s)
Figure 7. Self-localization estimation position root-mean-square errors (PRMSEs) of the unscented

transformation-based collaborative self-localization and target tracking scheme (UT-CLAT) vs. the extended
Kalman filter-based CLAT (EKF-CLAT) for robots 1-4.

As observed in Figure 7, both methods can realize stable self-localization in around 200 time instances.
In general, the UT-CLAT method is able to achieve more accurate self-localization results. In Figure 8,
the averaged PRMSEs of the target tracking results of different robots are plotted. Similar to the CL result

58



Appl. Sci. 2019, 9,903

in Figure 7, the UT-CLAT is able to realize stable target tracking, and it outperforms the EKF-CLAT method
for each robot.

---Veh. 1 EKF-CLAT
——Veh. 1 UT-CLAT
Veh. 2 EKF-CLAT)
Veh. 2 UT-CLAT
---Veh. 3 EKF-CLAT| |
—Veh. 3 UT-CLAT
---Veh. 4 EKF-CLAT| |
—Veh. 4 UT-CLAT

0 L L L L L
0 200 400 600 800 1000 1200
Time instance k (s)

Figure 8. Target distributed estimation PRMSEs of the UT-CLAT vs. the EKF-CLAT for robots 1-4.
5. Experimental Validation of Quadrotors

In this section, the validation results of the proposed UT-CLAT method are presented. Validation was
performed using hardware platforms that included three quadrotors tracking a ground robot. As shown in
Figure 9, the system consists of three Intel Aero RTF quadrotors, referred to as quad1-3, and one TurtleBot
ground robot. Each quadrotor is equipped with UWB transmitters and a downward monochrome camera.
The UWB sensors measure the relative distance and transmit information when two quadrotors are
within the functional range of the UWB sensors. A camera is rigidly connected to the body frame of
each quadrotor. A target is detected by the camera when the target is within the field-of-view (FOV).
Furthermore, quad1 is assumed to have access to its position through the onboard navigation system. In
addition to the above onboard devices, UWB ground anchors are used to record the ground truth states of
both robots and the target.

onboard downward

ground robot  navigation system UWB transmitter camera

UWB anchor

Figure 9. Intel Aero RTF quadrotors (equipped with an onboard navigation system, ultra-wide bandwidth
(UWB) transmitters, and downward cameras) and the TurtleBot ground robot.

59



Appl. Sci. 2019, 9, 903

5.1. Robot and Target Dynamics Model

For target monitoring, each quadrotor is controlled to follow a plenary circular trajectory in 3D
space. The state x; includes the position in 3D space and the heading angle, namely, x; = [x;,y;,2;,6;] .
u; £ [0;,w;]" denotes the control input command, namely, the linear plenary velocity and angular velocity.
The actual velocity and angular velocity are contaminated by zero-mean Gaussian noises, wl’-’,k ~N (0, Qf’) ,
w¥, ~ N (0,Q¥). An extra altitude noise w?, ~ N (0,Q?) is added to the process noise. The overall
pr;)cess noise covariance is denoted as Q; = Blkdiag( 7, Q% le) On the basis of the above definition,

1
the process model for each robot f; is defined as follows:

Xiki1 Xik + Ar(vi + wf/k) cos(6; k)
Xipoy 2 |Yiker|  |Yik + Ar(v; + wf)) sin(6; ) (33)
K Zik+1 Ze + Wy
Bije+1 0;)c + Ar(w; + wiy)

The target ground robot is modeled with a unicycle model f; similar to Equation (33). Correspondingly,

the state, control input, and process noise are denoted as x;, u;, and Q; = blkdiag(Qf, Qf, Qf ), respectively.

5.2. Measurement Model

The three types of measurement are utilized to realize the CLAT purpose in this system setup: private
absolute measurement from the onboard navigation system, cooperative relative range measurement from
the UWB sensors, and angle measurement relative to the target from the downward cameras.

Although the position information from the onboard navigation system is a fusion result from
multiple sensors, in this part, it is treated as a private absolute measurement and is modeled as below:

Z?,k = H?X,',k + V;{k (34)

The measurement noise is assumed to be subject to a zero-mean Gaussian distribution, v{; ~ N(0,R7).
Obviously, the absolute measurement model is a linear model. Therefore, we can substitute the inferred
Jacobian matrix (defined in Section 3.2.1) with HJ'. In this paper, we assume that only a subset of all robots
has access to the onboard navigation signal.

The cooperative relative measurement between robots i and j from UWB is a scalar distance modeled
as the following nonlinear model:

Zjj e = Xk — Xjella + Vg (35)

The measurement noise vl?/. « is assumed to be subject to the zero-mean Gaussian noise vfj . ~ N(0,RS).

The target detection measurement is the position of the target on the captured image plane, and the
measurement function is defined as 12)

t_ _[t,j< t

zjy . = dy Gy T Vik (36)
Xitk

where dy denotes the focal length in pixels, X;; x denotes the position of the target in the camera coordinate,

ie., Xipg = R0 k) Re (X x — Xik). R(6; ) denotes the yaw angle rotation matrix, and

cos(0;x) sin(fix) O
R(0ix) = | —sin(f;x) cos(Bix) O
0 0 1

60



Appl. Sci. 2019, 9, 903

Rk denotes the roll and pitch rotation matrix and is assumed to be retrieved from the quadrotor navigation
system, and therefore, it is treated as a known variable. The measurement noise is of, ~ A(0,R}). In this
paper, target detection is carried out using kernelized correlation filters (KCFs) [36] on the image plane.

5.3. Experiment Results and Analysis

According to the above model description, an experiment with three quadrotors tracking one ground
robot on the basis of the UT-CLAT algorithm was carried out at 10 Hz. The experimental setup is shown
in Table 2.

One experimental snapshot of the three quadrotors with the corresponding captured images is shown
in Figure 10 when the ground robot is within the FOV of all three quadrotor cameras.

According to the CLAT algorithm, the trajectories of the three quadrotors’ self-localization results
and target tracking results are plotted in Figure 11. As observed in Figure 11, the three quadrotors are
able to localize themselves while stably tracking the target. It is obvious that the self-localization result
from quadl is better than that of the other two quadrotors as it can obtain the navigation signal from the
onboard navigation system. The errors of self-localization and target tracking are plotted in Figures 12 and
13, respectively. The local estimation errors (solid line in colors) and the corresponding approximated 3¢
envelopes (dashed lines in the same color) of the aforementioned three quadrotors are plotted. As observed
in Figures 12 and 13, the estimation errors by each quadrotor are bounded by the 3¢ envelopes in the
steady state.

Table 2. Experiment setup.

Item Quantity

circular center (in meters):

¢1 =[-5,-515]",¢c; = [5,-5,16.5] "

c3 =[-5,518]"

control input:

v; = 0.35m/s, w; = 0.035rad/s
robotsetup QY = 0.05%, Q¥ = (71/180)%, Q% = 0.12

initial state:

P, = diag([1?,12,0.5%, (1071/180)?])

x10 = [~8.5,11.5,15,2.35] T,

x20 = [~10,-11,16.5,-0.53] T,

x30 = [~1,1,18,0.78] T

control input:

v; =02m/s, w; = 0rad/s

QY = 0.022, Q¥ = (0.57/180)2, QF = 0.052
initial state:

P;, o = diag([0.1%,0.1%,0.5%, (7/180)?]),
xi,0 = [—15,-15,0,0.785] "

measurement R = diag([0.22,0.22,0.1%]),
Setup R¢ = 0.1%, R! = diag([5%,5%])

target setup

61



Appl. Sci. 2019, 9,903

Figure 10. Snapshot of the CLAT experiment setup (three quadrotors and corresponding captured image)

z-pos (m)

-10 a-pos (m)

Figure 11. Trajectories of three quadrotors’ self-localization results and target tracking results with different

colors. Ground truth is indicated by black lines.

62



Appl. Sci. 2019, 9,903

A= RS
~\,:::h;;x§h0~#r’a’ﬁ‘(‘:a,_;
us R it

50 100 150 200

=

© K F

t [ LJ-““ =<4-'4-$ ‘.,‘:.sw,,,,a,n;-,,w-mné‘», l.\\'~~rw~.
5} [

0 50 100 150 200

0.5 . . .

-0.5 L L I
0 50 100 150 200
Time (s)

Figure 12. The self-localization errors and covariance of three quadrotors.

\
- .\
"““\‘“\"" Noo
- o A -
vy “ AL AN A e s eA R YRR
I SIS~ N - .
ey e IIONITR L G SF i s
g ~r 1 %
B AL
LA ERENTS
- I I I
T T T
-
e,y
v ~
FhAD AT Ao RS XA
P ARy —_—

cortl
»

50 100 150 200

~11

SN R A A B VAN AAR L A AT RN

At e R R o e A A

50 100 150 200
Time (s)

Figure 13. Object tracking errors and covariance of three quadrotors.

63



Appl. Sci. 2019, 9, 903

6. Conclusions

A UT-based CLAT method is proposed to realize multi-robot self-localization and target tracking in
a distributed fashion. The proposed method is recursive, and only the most recent estimation is stored
within each local robot. The communication is limited to the two robots within the relative measurement,
and estimation consistency is guaranteed with the covariance split and covariance intersection method.
To deal with the nonlinearity in the dynamics models and measurement models, a UT was integrated into
the CLAT framework. Both simulation and experimental results show that the proposed method can fulfill
the self-localization and target tracking task in practical multi-robot operation scenarios. Future works
will focus on the theoretical analysis of the error bounds of both self-localization and target tracking on the
basis of different measurement setups.

Author Contributions: Investigation, Y.L.; Methodology, Y.L.; Project administration, Q.P; Software, J.L.;
Supervision, Q.P.

Funding: This work is supported by the National Natural Science Foundation of China under Grant 61603303,
61473230, the Natural Science Foundation of Shaanxi Province under Grant 2017JQ6005, 2017JM6027, the China
Postdoctoral Science Foundation under Grant 2017M610650 and the Fundamental Research Funds for the Central
Universities under Grant 3102017JQ02011.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ren, W, Beard, RW.; Atkins, EM. Information consensus in multivehicle cooperative control. IEEE Control Syst.
2007, 27, 71-82.

2. Alonso-Mora, J.; Baker, S.; Rus, D. Multi-robot formation control and object transport in dynamic environments
via constrained optimization. Int. . Robot. Res. 2017, 36, 1000-1021. [CrossRef]

3. Liu, Y;; Nejat, G. Multirobot cooperative learning for semiautonomous control in urban search and rescue
applications. . Field Robot. 2016, 33, 512-536. [CrossRef]

4. La, HM.,; Sheng, W. Distributed sensor fusion for scalar field mapping using mobile sensor networks.
IEEE Trans. Cybern. 2013, 43, 766-778. [PubMed]

5. Panzieri, S.; Pascucci, F; Setola, R. Multirobot localisation using interlaced extended Kalman filter.
In Proceedings of the 2006 IEEE/RS] International Conference on Intelligent Robots and Systems, Beijing,
China, 9-15 October 2006; pp. 2816-2821.

6.  Chen, L.; Arambel, P.O.; Mehra, R K. Fusion under unknown correlation-covariance intersection as a special case.
In Proceedings of the Fifth International Conference on Information Fusion, Annapolis, MD, USA, 8-11 July 2002;
Volume 2, pp. 905-912.

7. Li, H.; Nashashibi, F. Cooperative multi-vehicle localization using split covariance intersection filter. IEEE Intell.
Transp. Syst. Mag. 2013, 5, 33—44. [CrossRef]

8. Li, H.; Nashashibi, F; Yang, M. Split covariance intersection filter: Theory and its application to vehicle
localization. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1860-1871. [CrossRef]

9. Luft, L.; Schubert, T.; Roumeliotis, S.I.; Burgard, W. Recursive decentralized localization for multi-robot systems
with asynchronous pairwise communication. Int. . Robot. Res. 2018, 37. [CrossRef]

10. Hu,J.; Xie, L.; Zhang, C. Diffusion Kalman filtering based on covariance intersection. IEEE Trans. Signal Process.
2012, 60, 891-902. [CrossRef]

11. Wang, S.; Ren, W. On the convergence conditions of distributed dynamic state estimation using sensor networks:
A unified framework. IEEE Trans. Control Syst. Technol. 2018, 26, 1300-1316. [CrossRef]

12.  Wang, S.; Ren, W.; Chen, ]J. Fully distributed state estimation with multiple model approach. In Proceedings
of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12-14 December 2016;
Pp- 2920-2925.

64



Appl. Sci. 2019, 9, 903

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Wang, S.; Lyu, Y.; Ren, W. Unscented-Transformation-Based Distributed Nonlinear State Estimation: Algorithm,
Analysis, and Experiments. IEEE Trans. Control Syst. Technol. 2018, 99, 1-14. [CrossRef]

Carrillo-Arce, L.C.; Nerurkar, E.D.; Gordillo, J.L.; Roumeliotis, S.I. Decentralized multi-robot cooperative
localization using covariance intersection. In Proceedings of the 2013 IEEE/RS] International Conference on
Intelligent Robots and Systems (IROS), Tokyo, Japan, 3-7 November 2013; pp. 1412-1417.

Cunningham, A.; Paluri, M.; Dellaert, E. DDF-SAM: Fully distributed slam using constrained factor graphs.
In Proceedings of the 2010 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), Taipei,
Taiwan, 18-22 October 2010; pp. 3025-3030.

Ren, W.; Beard, R.W.; Kingston, D.B. Multi-agent Kalman consensus with relative uncertainty. In Proceedings of
the American Control Conference, Portland, OR, USA, 8-10 June 2005; pp. 1865-1870.

Farahmand, S.; Roumeliotis, S.I.; Giannakis, G.B. Set-membership constrained particle filter: Distributed
adaptation for sensor networks. IEEE Trans. Signal Process. 2011, 59, 4122-4138. [CrossRef]

Vaghefi, RM.; Buehrer, R.M.; Wymeersch, H. Collaborative Sensor Network Localization: Algorithms and
Practical Issues. Proc. IEEE 2018, PP, 1-26.

Chang, TK.; Mehta, A. Optimal Scheduling for Resource-Constrained Multirobot Cooperative Localization.
IEEE Robot. Autom. Lett. 2018, 3, 1552-1559. [CrossRef]

Kia, S.S.; Rounds, S.; Martinez, S. Cooperative Localization for Mobile Agents: A Recursive Decentralized
Algorithm Based on Kalman-Filter Decoupling. IEEE Control Syst. 2016, 36, 86-101.

Kia, S.S.; Hechtbauer, J.; Gogokhiya, D.; Martinez, S. Server-Assisted Distributed Cooperative Localization Over
Unreliable Communication Links. IEEE Trans. Robot. 2017, 99, 1-8. [CrossRef]

Chong, C.Y.; Chang, K.C.; Mori, S. A Review of Forty Years of Distributed Estimation. In Proceedings of the 2018
21st International Conference on Information Fusion (FUSION), Bonn, Germany, 10-12 October 2018; pp. 1-8.
Battistelli, G.; Chisci, L.; Selvi, D. A distributed Kalman filter with event-triggered communication and
guaranteed stability. Automatica 2018, 93, 75-82. [CrossRef]

Battistelli, G.; Chisci, L.; Mugnai, G.; Farina, A.; Graziano, A. Consensus-based linear and nonlinear filtering.
IEEE Trans. Autom. Control 2015, 60, 1410-1415. [CrossRef]

Battistelli, G.; Chisci, L. Stability of consensus extended Kalman filter for distributed state estimation. Automatica
2016, 68, 169-178. [CrossRef]

Li, W.; Wei, G.; Han, F;; Liu, Y. Weighted average consensus-based unscented Kalman filtering. IEEE Trans.
Cybern. 2016, 46, 558-567. [CrossRef] [PubMed]

Ajgl, J.; Straka, O. Covariance Intersection in Track-to-Track Fusion: Comparison of Fusion Configurations.
IEEE Trans. Ind. Inform. 2018, 14, 1127-1136. [CrossRef]

Ahmad, A.; Tipaldi, G.D.; Lima, P.; Burgard, W. Cooperative robot localization and target tracking based on least
squares minimization. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation
(ICRA), Karlsruhe, Germany, 6-10 May 2013; pp. 5696-5701.

Huang, G.; Truax, R.; Kaess, M.; Leonard, J.J. Unscented iSAM: A consistent incremental solution to cooperative
localization and target tracking. In Proceedings of the 2013 European Conference on Mobile Robots (ECMR),
Barcelona, Spain, 25-27 September 2013; pp. 248-254.

Morbidi, E; Mariottini, G.L. Active target tracking and cooperative localization for teams of aerial vehicles.
IEEE Trans. Control Syst. Technol. 2013, 21, 1694-1707. [CrossRef]

Meyer, F.; Hlinka, O.; Wymeersch, H.; Riegler, E.; Hlawatsch, F. Distributed Localization and Tracking of Mobile
Networks Including Noncooperative Objects. IEEE Trans. Signal Inf. Process. Netw. 2016, 2, 57-71. [CrossRef]
Zhou, B.; Chen, Q.; Xiao, P. The error propagation analysis of the received signal strength-based simultaneous
localization and tracking in wireless sensor networks. IEEE Trans. Inf. Theory 2017, 63, 3983-4007. [CrossRef]
Huang, G.P.,; Roumeliotis, S.I. An Observability Constrained UKF for Improving SLAM Consistency; Tech. Rep.;
University of Minnesota: Minneapolis, MN, USA, 2008.

Zhu, J.; Kia, S.S. Consistent loosely coupled decentralized cooperative navigation for team of mobile agents.
In Proceedings of the ION’s International Technical Meeting, Monterey, CA, USA, 30 January—2 February 2017.

65



Appl. Sci. 2019, 9, 903

35. Chakraborty, A.; Misra, S.; Sharma, R.; Taylor, C.N. Observability Conditions for Switching Sensing Topology for
Cooperative Localization. Unmanned Syst. 2017, 5, 141-157. [CrossRef]

36. Henriques, J.F.,; Caseiro, R.; Martins, P; Batista, J. High-speed tracking with kernelized correlation filters.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 583-596. [CrossRef] [PubMed]

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article
@ distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
BY

license (http:/ /creativecommons.org/licenses/by/4.0/).

66



Firicd applied
b sciences

Article
Synchronization of Heterogeneous Multi-Robotic
Cell with Emphasis on Low Computing Power

Martin Juhas * and Bohuslava Juhasova

Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava,
Trnava 917 24, Slovakia; bohuslava.juhasova@stuba.sk
* Correspondence: martin_juhas@stuba.sk

Received: 26 June 2020; Accepted: 23 July 2020; Published: 27 July 2020

Abstract: This paper presents a time-synchronization solution for operations performed by
a heterogeneous set of robotic manipulators grouped into a production cell. The cell control is realized
using master—slave architecture without an external control element. Information transmission in
a cell is provided by a TCP/IP channel in which communication is ensured via sockets. The proposed
problem solution includes an algorithm, which is verified and validated by simulation and tested in
real environment. This algorithm requires minimal computational power thanks to an empirically
oriented approach, which enables its processing directly by the control unit of each participating
element of the robotic cell. The algorithm works on the basis of monitoring and evaluating time
differences among sub-operations of master and slave devices. This ensures defined production
cycle milestones of each robotic manipulator in the cell at the same time are attained. Dynamic
speed adaptation of slave manipulators utilizing standard instructions of their native language is
used. The proposed algorithm also includes a feedforward form of operations synchronization which
responds to changes in the operating cycle of the master manipulator. The application of the solution
proposal is supplemented with a visualization part. This part represents a complementary form of
designed solution implementation.

Keywords: time-based synchronization; heterogeneous multi-robotic cell; socket communication;
low computational power; native language application

1. Introduction

A current significant challenge for industrial production is vision substantiation of a future
factory within the concept of Industry 4.0, with the aid of the Internet of Things (IoT) concept.
The implementation of this concept into production requires high flexibility and adaptability of
production lines and their smaller units. The deployment of this concept in practice is widely supported
in Germany, and the first solutions in isolated production systems were developed there [1,2]. Qin
et al. [3] note that the Internet of Things is a well-known concept that represents the next generation
of products and communication among them. It has a direct correlation with the Industry 4.0
standard, where the existence of smart products is one of the prerequisites for intelligent manufacturing
implementation [4].

In a smart factory, individual customer orders determine manufacturing processes and
the associated supply chains. This results in the need for high production flexibility with shorter
production times, which require the implementation of measures to improve production efficiency,
often at a low cost associated with solving these problems. The new term “smart factory” is introduced
here to refer to the current trend of automation and data exchange in manufacturing technologies. It
includes cyber-physical systems, the Internet of Things, and cloud computing, as declared by Hermann
et al. [5], Jasperneite [6], and Kagermann et al. [7]. One of the important indicators for such production

Appl. Sci. 2020, 10, 5165; d0i:10.3390/nan010155165 67 www.mdpi.com/journal/applsci



Appl. Sci. 2020, 10, 5165

is decentralized decision making, that is, the ability of equipment to make its own decisions, which
are the most independent inside closed production complexes. In the case of essential decisions and
conflicts, it is clearly necessary to assign tasks to the next level of production control [5]. Closed
production complexes require continuity of individual manufacturing operations, synchronization of
individual production facilities, and the possibility of rapid adaptation and production time changes
of individual production facilities, depending on the control structure of such complexes.

An alternative deployment area of robotic manipulators with a potential requirement for
synchronization of their activities is healthcare, particularly that related to the rehabilitation of
patients. Techniques dealing with robot-assisted therapy are included, for example, in the works of
authors Chang and Kim or Yoon et al. [8,9].

Various methods of synchronization and control of individual production operations and processes
are currently used. It is necessary to differentiate whether these are autonomous mobile systems or
manipulators and what usage is expected of them. Many published works deal with the synchronization
of mobile platform activities. Rubenstein et al. [10] offer a solution for the synchronization of a large
group of mobile robots as an open-source, low cost robot, designed to test collective algorithms on
hundreds or thousands of robots accessible to robotics researchers. This solution allows for easier
testing of algorithms designed to control robot groups because these control algorithms, due to their
cost, time, and complexity, are confirmed only through simulations. Popular synchronization methods
are also based on the observation of nature, for example, fireflies as presented by Werner-Allen etal. [11].
A modification of this approach is intended to operate on systems that use a communication channel
where contention and delays are possible. In addition, the coordination mechanisms that enable
the execution of cooperative tasks with modular robotic systems are presented in the contribution
of Baca et al. [12]. They describe the implementation of a tight cooperation strategy through Intra
M-Robot communication based on a closed-loop discrete time method and the remote clock across
the robot configuration enables proper coordination inside the colony.

The work of Chung and Slotine [13] presents a new synchronization tracking control law that can
be directly applied to the cooperative control of multi-robot systems and oscillation synchronization in
robotic manipulation and locomotion, where a common desired trajectory can be explicitly given.

Rodriguez-Angeles et al. [14] describe a controller utilization that solves the problem of position
synchronization of two (or more) robotic systems, under a cooperative scheme, in the case when only
position measurements are available. In the work of Yasuda [15], a Petri-net-based prototyping tool
is presented to implement the control flow of parallel processes in multiple robot systems. The next
variant of synchronization is presented by Markus et al. [16], where the coordination control of
two flexible joint robotic manipulators using flat outputs is implemented by means of simulations.
The differential flatness technique of trajectory generation enables easy estimation of synchronization
parameters and trivializes stabilization of these trajectories around predefined points. Bouteraa et
al. [17] describe a new adaptive algorithm, which was proposed for synchronization and trajectory
tracking of multiple robot manipulators. The same authors also discuss other techniques in this
problem area. They describe the possibility of designing decentralized control laws to cooperatively
command a team of general actuated manipulators in the article “Distributed synchronization control
to trajectory tracking of multiple robot manipulators” [18], or an approach to position synchronization
of multiple robot manipulators based on emergent consensus algorithms [19]. Synchronization of
activities in task-oriented robotic rehabilitation training using iterative learning synchronization (ILS)
and immediate error correction (IEC) techniques is addressed by Duschau-Wicke et al. [20].

In the above-mentioned cases, the authors based their solutions on complex mathematical
algorithms and derivation of complex relations, or by exploring new approaches using specialized
hardware.  These methods require investment in hardware infrastructure, which is their
major disadvantage.

68



Appl. Sci. 2020, 10, 5165

In some cases in homogenous production complexes, it is possible to use tools that are directly
implemented in control systems, such as the MultiMove option of ABB robots [21,22] or the RoboTeam
software of KUKA [22,23].

However, if limited possibilities exist to upgrade infrastructure and it is desired to use available
hardware that may not be from the latest production series, there could be a serious problem with the use
of the previously described solutions. We used an alternative approach in a production or technical
process of a simple solution implementation even in production facilities without the possibility of using
sophisticated methods of robotic set or robotic cell synchronization. Our aim is the simplest solution
possible in terms of computing power demands. The basis is to design the least complex algorithms that
can be easily implemented in existing controllers in their native programming languages. Therefore,
our goal is to develop a solution in which synchronization algorithms can be performed directly
on the control units of robotic manipulators. This is based on the utilization of our rich empirical
knowledge and experiences in algorithms, in addition to the implementation of various tasks in
the field of robotics or modeling and visualization of processes.

The main idea does not lead to a specific use or solution to a precisely specified problem, for
example in a production process. The aim of the proposed solution can have a wide range. From
the analyzed areas it is possible to use this solution either in production or in healthcare in rehabilitation.
Another area of application could be the control of collaboration-oriented workplaces with a master
manipulator connected to movements of a human as a cell control element. Finally, it could be used in
presentation events oriented to Industry 4.0 or the latest trend, Internet-of-Robotic-Things (IoRT).

2. Problem Area Definition

The multi-robotic cell consists of a set of 1 robotic manipulators M = {M;y, ..., M;, ..., M,}. In
the organizational structure of cell control, manipulator M; represents the master element and a set of
manipulators MS ¢ M, MS ={M,, ..., M;, ..., M,;} represents the slave elements. Each manipulator
M; performs a set of m operations O = {Oy, ..., Oj, ..., On/ cyclically. Each operation O; is in one cycle

Tl,l e Tl,m
executed by manipulator M;. The duration time of this operationis T;j € T = e
Twi - Tum

It is clear that duration times Ty, for x = (1, ..., n) of operation O; for every manipulator M;

are different without using a synchronization algorithm. Duration time depends on a movement
Vig oo Vim

speed V;j € V = e of manipulator M; endpoint, defined as a parameter of
S T ™

a movement instruction.

The goal is to modify the movement speed of manipulators MS separately for every operation O;
in such a way that the duration times of the same operation for every slave manipulator MS; will be
equal or very similar.

The main requirements for the synchronization algorithm design are listed in Figure 1.

69



Appl. Sci. 2020, 10, 5165

RO1 Time-synchronization

e |t is important that all cell’s members will achieve defined milestones of process
(end of operation) at the same time, without waiting

RO2 Structured operations

» One operation can contain several different instructions (movements, grasping)

RO3 Heterogenic composition of operations

* The same operation can consist of a different set of instructions for individual manipulators

RO4 Master-slave structure

* Control organizational structure of robotic cell is master-slave

RO5 Master as control element

* The cell is synchronized based on activity of selected manipulator—master

RO6 Low computing power

¢ No supplementary control software or hardware is required, solution must be
implementable in native language of controller

RO7 Optional—Synchronization of total movement

* If the operation performed by multiple (all) manipulators consists of an identical set of
instructions, the movement of the manipulator endpoints will be synchronized together
with milestones timing

R0O8 Optional—Quick response to changes

* Ensuring the option for minimizing the number of unsynchronized operations after
occurrence of master element speed change

Figure 1. Requirements for algorithm design.
3. Design of Multi-Robotic Cell Synchronization Algorithm

The principle of the synchronization algorithm design is to dynamically adjust the speed of
operation performing V;; on the slave side. The speed adjustment means the change of manipulator
endpoint movement speed, based on the synchronization coefficient K;; e K={Kj 1, ... , Knm/. This
coefficient K; is evaluated for each operation O; for each slave manipulator MS; based on Equation (1).

Kij=T;jT1; 1)

The synchronization coefficient K ; therefore represents the ratio of the operation duration T7; of
the master element and the operation duration of the slave element T;; for i = (2, ..., n).

It is necessary to emphasize that although the speed V;; is based on coefficient K; ; recalculated
immediately after operation O; execution, the new speed value is used only in the next cycle.

The ability of the master manipulator M; to distribute operation O; duration time Ty after
performing for each slave manipulator MS is the obligatory condition for feasibility of this proposal.

3.1. Basic Synchronization Algorithm

The elemental analysis results in the basic synchronization algorithm, which is the same for each
slave manipulator MS;; its structure is depicted in Figure 2.

70



Appl. Sci. 2020, 10, 5165

Algorithm 1: SlaveSpeedSynchronization

Data: m - number of operations in one cycle
Data: V - set of initial speed for each operation
Data: i - id of slave manipulator
begin
while not end of production. do
for j = 1 to m do
perform operation O; by speed V; ;:
T;.; = operation O; duration;
get 13 ; from master:
change speed V; ; =V, ; = T; ; /T ;:
end
end
end

Figure 2. Basic algorithm for synchronization of robotic cell operations.

As is later mentioned in Section 4.1., the main disadvantage of the proposed algorithm is low
reaction speed to changes in master or slave behavior. This is contrary to the requirement R08 from
Figure 1. Every change of master manipulator M; (or slave manipulator MS;) activity is captured
immediately so the synchronization coefficient K;; is evaluated. This leads to the adjustment of
endpoint movement speed V;; of each slave manipulator MS;. However, the adjusted endpoint
movement speed V;; is actually used during movement of the slave manipulator MS; in the next
production cycle.

3.2. Advanced Synchronization Algorithm

If the master manipulator M; (or slave manipulator MS;) activity change has a global character
(endpoint movement speed increasing/decreasing), then it is possible to indicate this change using
variable D. This variable represents the percentage proportion deviations among operation durations of

Dy1 ... Doy
master and slave manipulators, where D;j € D=4 ... ... ... }iscalculated based on Equation
Dy1 ... Dum
@
D;j=(1-(T;j/T1,) x 100 (2

The variable D is calculated in each step of the algorithm, but is only usable from the second
production cycle. The first production cycle has diverse values of deviations D;, from first step of
second cycle, D;; within defined tolerance represent synchronized state. Every change of D;; values
exceeding the limit can be considered as a desynchronization indicator.

If two (or another specified number d) differences D; j.(4-1) - .. D;j of consecutive operations Oj.(4-1)
. Oj are sufficiently similar based on the similarity threshold D,4to_jimir (Equation (3))

(I(1 = (D;j-/Dij)l X 100 < Dyatio_timit) A - -+ A (I(1 = (D j-(a-1/Di j-d-2)))| X 100 < Dygtio_timir) ~ (3)
and this difference exceeds the given threshold of change Dj;,,i; (Equation (4)),

IDijl > Diiit 4)

71



Appl. Sci. 2020, 10, 5165

then advanced synchronization coefficient K; (Equation (5)) is applied to all other operation execution
speeds V;;, except the actual operation (which is already adjusted in this step) and previous d — 1
values (which were adjusted in previous d — 1 steps).

d-1
1
Ki=1- EZ;D,-J_Z /100 ®)

Both algorithms were designed for (theoretically) endless repetition of production cycle.
The above-mentioned previous values of the current D;; in the initial steps of every cycle are
based on an endless loop of variable j. For example, in the case of 10 operations in one production
cycle, after the initialization cycle, the previous two elements V; ; (endpoint speed of slave manipulator
M) to element V; ; are V19 and V5 9.

The synchronization algorithm with a feedforward reaction to the general change of the master
manipulator M; (or slave manipulators MS;) endpoint movement speed is identical for every slave
manipulator MS; and is depicted in Figure 3.

Algorithm 2: SlaveAdvancedSpeedSynchronization

Data: m - number of operations in one cycle
Data: V - set of default speed for each operation
Data: 7 - id of slave manipulator
Data: d - number of compared values
Data: D_off - deviation offset
begin
while not end of production do
for j = 1 to m do
perform operation O; by speed Oy ;:
T;,; = operation O; duration;
get 11 ; from master;
change speed V; ; = Vi j * T; /Ty j:
D, j = percentage proportion deviation between T; j and 11 ;:
if
D;j > D_off
and
Dy j is significantly similar to previous d values of D; 2
then
evaluate K; based on last d values of D j:
begin
change speed V; , = V; , *K;
where v € (1,..., m) — (last d values of j)
end
end
end

end
end

Figure 3. Advanced algorithm for synchronization of robotic cell operations.
4. Validation of the Proposed Solution

The proposed solution was experimentally validated in two phases. In the first phase,
the algorithms were implemented as scripts in the MATLAB software environment. To evaluate
the efficiency of the algorithms, monitoring of the percentage proportion deviation D; ; (Equation (2)) was
used. The aim of the solution was to reach a D; ; value as close as possible to zero. The synchronization
state was indicated by a value close to zero within the specified tolerance. In contrast, a value exceeding
the limit can be considered as a desynchronization indicator.

In the second phase, the designed algorithms were implemented in the native language of real
robotic manipulators in a specific multi-robotic cell.

72



Appl. Sci. 2020, 10, 5165

4.1. Simulation Validation of Solution Functionality

The functionality of the proposed solution was validated by simulations using the MATLAB
software tool (R2018a, The MathWorks, Inc., Natic, MA, USA, 2018). The designed algorithms were
processed by a script and the results were represented in graphical form.

Duration times T;,; of master manipulator M; operations were simulated as generated random
values of a vector in the range of 0-5000 ms. Each value T;; was modified during its processing with
a random element from the range (—2%, +2%), that represents a stochastic process part. Because
the synchronization algorithm for all slave manipulators MS; is identical, the case with one slave
manipulator MS;, where i = 2, was validated by simulation. Operation durations T,-,]- of this slave
manipulator were simulated on the basis of Equation (6).

Tij=Sij/Vij (6)

In Equation (6) the variable S;; € S ={Sy1, ..., Sym! represents the path length of operation
O; performed by manipulator MS;. An idealized kinematic model of a manipulator with omission
of the non-linear character of robot arm movement in acceleration and deceleration was used for
simulation validation purposes. Elements of the S set were generated as random values of a vector in
the range of 0-1000 mm in the simulation validation process. The default endpoint movement speed
Vi of the slave manipulator was set to 200 mm/s. In processing of each operation duration T;j, an
additional modification with the stochastic part from the interval (-2%, +2%) of T;; was also used.

4.1.1. Experiment la—Master Speed Change, Basic Algorithm
Simulation Experiment la includes:

e eight production cycles of production cell
e five operations in every production cycle (1 = 5)
e  change of master manipulator M; operation speed

O in the 3rd production cycle by +20% of current speed value
O in the 4th production cycle by +30% of current speed value
O in the 7th production cycle by —50% of current speed value

e master manipulator M; speed change in different time of production cycle

4.1.2. Experiment 2a—Slave Speed Change, Basic Algorithm
Simulation Experiment 2a includes:
e  six production cycles of production cell

e 10 operations in every production cycle (m = 10)
e  change of slave manipulator MS, operation speed

O in the 2nd production cycle by —30% of current speed value
O in the 4th production cycle by +30% of current speed value

e  slave manipulator MS, speed change in different time of production cycle

4.1.3. Summary of Experiment 1a and Experiment 2a

The obtained simulation results of the experiment with master speed change are depicted in
Figures 4 and 5. Results of both experiments, experiment with master speed change and the experiment
with slave speed change, is aggregated in Figure 6, and the results of the experiment with slave speed
change in Figures 7 and 8. Figure 9 also presents results of both experiments, experiment with master
speed change and the experiment with slave speed change.

73



Appl. Sci. 2020, 10, 5165

5000 T T —T T T T T

1 duration times of master operations T1 j

4500

—6— duration times of slave operations TZJ
= = =master speed change 4
----- resynchronization

new production cycle

4000

3500

3000 -

[ms]

2500

ime

t

2000

5 10 15 20
operation []

Figure 4. Operation duration times of master and slave manipulators without feedforward
synchronization—Experiment 1a.

100 r, . ' ' . .
=@ percentage proportion deviation Di,/ 1
= = =master speed change I
50C == resynchronization 1
new production cycle
§‘ T
= 0 — Av 1 Bl ¢ wa 1 &
[y 1 1
1
50 1 1
B | 1 1
o 1 1
100 . P I 1 . 1 .
5 10 15 20 25 30 35 40

operation []

Figure 5. Percentage proportion deviation without feedforward synchronization—Experiment 1a.

Cycle 1

Initial evaluation of current state

__

Synchronized

Cycle 3—Master speed +20% in 2" operation
Synchronized Unsynchronized in 2™ operation

Cycle 4—Master speed +30% in 5t operation

. Synchronized in 2 Unsynchronized in 5*

Unsynchronized i N
operation operation

ks

Unsynchronized

__

Synchronized

Cycle 7-Master speed —50% in 4™ operation
Synchronized Unsynchronized in 4" operation

Unsynchronized Synchronized in 4" operation

Figure 6. Brief summary of Experiment 1a results.



Appl. Sci. 2020, 10, 5165

5000 T T

T eI T —r— T
Z‘) 1 & S duration times of master operations T1 i
. ] 1A
4500 4 1 P | —e— duration times of slave operations TZi
4000 F $ = = =slave speed change -
e 11 M0V~ resynchronization
3500 new production cycle 4
1
R 4 L4

= 3000 2 1
£
o 2500 7
£

2000 i 7

i
1500 ! ]
1
1000 ! H N
<+ ‘& i &
500 ' p
i i il | i i !

25 30 35 40 45 50 55
operation []

Figure 7. Operation duration times of master and slave manipulators without feedforward
synchronization—Experiment 2a.

100 . . '
1 1 1
H
1 1 1
50 [ I 1
1 1
g ! p
= 0 9! EoceareT e | R § S o
a {
] b - percentage proportion deviation Du
-50 + ) = = =slave speed change
1 ] |=me=———— resynchronization
1 . * new production cycle
100 . AR . . ! P P )

operation [ ]

Figure 8. Percentage proportion deviation without feedforward synchronization—Experiment 2a.

Cycle 1
Initial evaluation of current state

Cycle 2-Slave speed —30% in 3 operation
Synchronized Unsynchronized in 3™ operation

i

Unsynchronized Synchronized in 3" operation

Cycle 4-Slave speed +20% in 7th operation
Synchronized Unsynchronized in 7t operation

i

Unsynchronized Synchronized in 7th operation

I

Synchronized

Figure 9. Brief summary of Experiment 2a results.

4.1.4. Experiment 1Ib—Master Speed Change, Advanced Algorithm

The case with a 10% limit for the error of the difference between operation duration performed
by master and slave manipulators and a 15% significance limit for the similarity of two successive
deviations D;; and D;; , 1 was validated via simulation.



Appl. Sci. 2020, 10, 5165

In simulation Experiment 1b, equal parameters of the whole simulated system were used
as in simulation Experiment 1a, with the addition of the feedforward synchronization feature to
the synchronization algorithm.

4.1.5. Experiment 2b—Slave Speed Change, Advanced Algorithm

Identical parameters of the whole system as in simulation Experiment 2a were used in
simulation Experiment 2b. The synchronization algorithm was supplemented by a feedforward
synchronization function.

4.1.6. Summary of Experiment 1b and Experiment 2b

The simulation results of the experiment with a change of master manipulator speed are depicted
in Figures 10 and 11. Results of the experiment with a change of slave manipulator speed are shown in
Figures 12-14. Both experiments results, where an advanced synchronization algorithm was used, are
aggregated in Figures 12 and 15. These results prove that the proposed algorithm can identify a global
change of speed of the master element (Experiment 2a) and also of the slave element (Experiment 2b).
Most importantly, the algorithm is able to modify the speed of the slave element (elements) feedforward
unlike in the case of the standard algorithm. Based on monitoring the operation duration of master
and slave manipulators (Figures 10 and 13), and according to evaluation of percentage proportion
deviations (Figures 11 and 14), it is clear that the algorithm ensured the time-synchronized movement
in the 3rd step of the production cycle from such a change. This resynchronized activity is indicated
by a minimized absolute value of percentage proportion deviation D;; in the two operations after
this change.

2000

5000 T LN T T T T
LI duration times of master operations T .
4500 i RIE
1 1 |—— duration times of slave operations Tz,j
4oogé= $ @1 i = = =master speed change B
1 1 ! ————— resynchronization
3500 LI new production cycle i
1 ! 1 D
3000 1
k™ 11
£ i
g 2500 ' i
= SHh 4
1
1

1500
1000
500 i
0 J
5 10 15 20 25 30 35 40
operation []

Figure 10. Operation duration times of master and slave manipulators with feedforward
synchronization—Experiment 1b.

76



Appl. Sci. 2020, 10, 5165

100 _ « .o

- percentage proportion deviation DU

= = =master speed change

== === == resynchronization

<+~ new production cycle
T N LI

50

operation [ ]

Figure 11. Percentage proportion deviation with feedforward synchronization—Experiment 1b.

Cycle 1
Initial evaluation of current state

I

Synchronized

Cycle 3—Master speed +20% in 2" operation
Unsynchronized in 2" Synchronized in 4th

Synchronized . -
operation operation

Cycle 4—-Master speed +30% in 5t operation
Synchronized Unsynchronized in 2" operation

i

Unsynchronized Synchronized in 2" operation

I

Synchronized

Cycle 7-Master speed —50% in 4" operation
Synchronized Unsynchronized in 4™ operation

i

Synchronized in 1 operation

Figure 12. Brief summary of Experiment 1b results.

5000 - — . ; ; — : .
9 U duration times of master operations T1
4500 P1 . ' ik
1 —©— duration times of slave operations TZJ
4000 L | 1 = = =slave speed change 4
L\ = resynchronization
3500 1 new production cycle
1
U
— 3000 !
(23
E
o 2500
£
2000 |
1500 tH
1
1000
4 1
1
500 iy 4
A
5 10 15 55

operation []

Figure 13. Operation duration times of master and slave manipulators with feedforward
synchronization—Experiment 2b.

77



Appl. Sci. 2020, 10, 5165

100])

[ : :
50 (& : :

-~ 0 S P9 Pese e SeRe ek

1%

Q
& =@ percentage proportion deviation Di,/
-50 I = = =slave speed change
1 D |m—— resynchronization
1 : new production cycle
100 . M | L h ’ I N ’ :

operation [ ]

Figure 14. Percentage proportion deviation with feedforward synchronization—Experiment 2b.

Cycle 1
Initial evaluation of current state

Cycle 2-Slave speed —30% in 3'd operation
Unsynchronized in 37 Synchronized in 5t"

Synchronized z =
operation operation

i

Synchronized

Cycle 4-Slave speed +20% in 7'" operation
Unsynchronized in 7t Synchronized in 9th

Synchronized operation operation

i

Synchronized

I

Synchronized

Figure 15. Brief summary of Experiment 2b results.
4.2. Implementation of the Proposed Solution and Discussion

The functionality of the designed algorithms was tested in the final phase on real robot manipulators
in a multi-robotic cell. The algorithms were processed in the native language of each robotic manipulator
controller using its built-in standard functions.

The model robotic cell, used for the purposes of this paper, contains a heterogeneous triplet of
robotic manipulators as shown in Figure 16.

Figure 16. Heterogeneous multi-robotic cell.

78



Appl. Sci. 2020, 10, 5165

One production cycle consists of five operations (m = 5), and mainly contains instructions for
circular interpolation movement in combination with linear interpolation movement. The whole
production cycle is schematically shown in Figure 17.

( Operation O;

Slave M,

Master My _

Figure 17. Desired set of operations in one production cycle.

The organizational structure of this robotic cell control was realized as master—slave [24,25]
without an external control element. The master object (master manipulator) chosen was a Mitsubishi
Melfa RV-2FB-D robot with the Mitsubishi CR750-D control system [26]. Robots ABB IRB 120 and
ABB IRB 140, with IRC5 Compact control systems, were the child objects-slaves [27]. A personal
computer was considered an element of the slave group and provided visualization of the cell activity
synchronization process. Configurations of every cell element are listed in Tables 1 and 2. The TCP/IP
channel provided communication among cell elements on the basis of socket exchange [25,28].

Table 1. Slave Configuration.

Object IP Address

Robot ABB IRB 120
Controller ABB IRC5 COMPACT
Robot ABB IRB 140
Controller ABB IRC5 COMPACT 192.168.1.140

PC 192.168.1.111

192.168.1.120

Table 2. Master Configuration.

Parameter Value

Object Robot Mitsubishi Melfa RV-2FB-D

Controller Mitsubishi CR750-D

NETIP 192.168.1.20
COMDEV 5,6,7 (OPT16, OPT17, OPT18)
NETMODE 1 (SERVER)
NETPORT 10006, 10007, 10008

CRPCE 2 (DATALINK)

PORT COM6, COM7, COM8

Confirmed coordination of operations control among robotic manipulators and unconfirmed
communication between master and monitoring computer were used in the cell. Confirmed
coordination means that after every operation is executed by the master element, a terminating message
is sent to the slave side and the master element waits for a confirmation message. The next operation
can only be initiated after receiving a confirmation message from the slave object. Unconfirmed

79



Appl. Sci. 2020, 10, 5165

communication in this case involves simply receiving messages about the synchronization process by
the slave object, without sending any confirmation message to the master object [25].

4.2.1. Master—Mitsubishi Melfa RV-2FB-D

In the case of the Mitsubishi CR750-D controller of the robotic manipulator Mitsubishi
Melfa RV-2FB-D, the algorithm application was implemented in MELFA BASIC V language [29].
Communication with the slave object was realized through the initiated TCP/IP channel (Box 1).

Box 1. Communication initiation in MELFA BASIC V.

Open “COM?7:” As#1 ‘IRB120 IP:192.168.1.120 port 10007
Open “COMS:” As#2 ‘IRB140 IP:192.168.1.140 port 10008
Open “COM6:” As#3 ‘PC 1P:192.168.1.111 port 10006

A duration time of each operation was evaluated and this information was, after the message
was received on the completion of each operation by all slave objects, sent in a defined format to
these slave objects. This message was also a confirmation message that enabled the beginning of
the next operation execution. The operation duration time evaluated by the master object (Tine) was
measured in milliseconds. All of the obtained information was also sent to the visualization part of
the application for further processing (Box 2).

Box 2. Socket communication in MELFA BASIC V.

M_TIMER(1) =0

{Operation instructions}

Time = M_TIMER(1)

Input #1,msg1$

Input #2,msg2$

Print #1,STR$(Operation_ID)+":”"+STR$(Time)
Print #3,”1-"+STR$(ID)+":"+STR$(Time)

Print #3,”2-"+msg1$

Print #3,”3-"+msg2$

4.2.2. Slaves—ABB IRB 120/IRB 140

In the case of controllers ABB IRC5 Compact of robotic manipulators ABB IRB 120 and ABB IRB
140, the designed algorithms were implemented in RAPID language, which is the native language for
ABB robot programming [30]. Communication with master object was realized through the activated
TCP/IP channel (Box 3).

Box 3. Communication initiation in RAPID.

VAR socketdev client_socket;
SocketCreate client_socket;
SocketConnect client_socket,”192.168.1.20”,10007\ Time:=5;

Each operation time duration was measured in each production cycle and, on the basis of
the decoded information from the received socket sent by the master object (custom function
DecodeSocket), an actual speed for that operation was modified (custom function ChangeSpeed). This
modified speed was used for the presently evaluated operation in the next production cycle. If there is
a need for feedforward form of reaction on speed change then a custom function FeedforwardChange
can be used (Box 4).

80



Appl. Sci. 2020, 10, 5165

Box 4. Socket communication in RAPID.

ClkStart clock1;

{Operation instructions}

ClkStop clockl;

n_time: = ClkRead(clockl);

SocketSend client_socket\Str: = ValToStr(op_id)+":"+ValToStr(n_time&#13; x 1000);
SocketReceive client_socket\Str: = s_receive_string\Time:= 10;

DecodeSocket;

ChangeSpeed;

[FeedforwardChange];

The function DecodeSocket provided information extraction from received socket (s_receive_string).
This information consisted of operation identifier (op_id) and time of its duration (f_in) for the master
object. Built-in functions of RAPID language for string processing StrPart, StrMatch, StrLen and StrToVal
were used.

The custom function ChangeSpeed provided the modification of speed used for the current
operation execution in the array of all operations speeds. These speed values were used in the next
production cycle. A numerical array was also used for storing percentage proportion deviations
between durations of the operation performed by master and slave objects. This array can be optionally
used for feedforward synchronization. The operation duration time evaluated by a slave object (1_time)
was measured in seconds (Box 5).

Box 5. The function ChangeSpeed in RAPID.

speed{op_id}:= speed{op_id} x (n_time x 1000/t_in);
difffop_id}:= (1-(n_time x 1000/t_in)) x 100;

The optional function FeedforwardChange provides an evaluation of whether the indicator of
current operation change is supraliminal and, at the same time, is sufficiently similar to the indicator
of the previous operation change. In the case of positive evaluation, all records in the operation
speed array, except those of the current and previous operation, are modified utilizing a dynamically
modified array of operation indexes (Box 6).

Box 6. The feedforward function in RAPID.

op_indx:=[1, ..., n]; diff_ratio:=Abs(1-(diff{op_indx{n}}/difffop_indx{1}}))&#13; x 100;
IF (Abs(diff{op_indx{1}})>diff_limit) AND&#13; (diff_ratio<diff_ratio_limit) THEN
k:=1-(((diff{fop_indx{1}}+diff{op_indx{n})/2)/100);

FOR i FROM 2 TO n-1 DO

speed{op_indx{i}}:=speed{op_indx{i}} x k;

ENDFOR

ENDIF

Rotate_op_indx_left;

4.2.3. Visualization—MATLAB Application

For the visualization of the robotic cell behavior, any development tool supporting functionalities
for sockets processing can be used. In this case, the visualization part of application was implemented
using the MATLAB software tool since it was already used for simulation validation of the proposed
solution. The capability of MATLAB to access existing system Java classes to be used in the MATLAB
workspace [31-34] was utilized in this application part. The communication with the master object
was realized through the activated TCP/IP channel (Box 7).

81



Appl. Sci. 2020, 10, 5165

Box 7. Communication initiation in MATLAB.

import java.net.Socket

import java.io.x

input_socket = java.net.Socket();
input_socket.connect(java.net.InetSocketAddress(server,port));

The received message from the master object consisted of cell object identifier (station), operation
identifier (index), and operation duration (value). After decoding, the message was used as a data
source for graphical representation (3D bar graph) of the production process in the robotic cell, as
shown in Figures 18-20 (Box 8).

Box 8. Socket communication in MATLAB.

input =&#13; BufferedReader(InputStreamReader(input_socket.getInputStream));
message = char(input.readLine());
{graph(station)}.ZData(index) = value;

-duration times of master operations T,
- duration times of slave | operations T,
|:|duraﬁon times of slave, operations TS/

4000 —

operation number [ ] 4

5

Figure 18. Visualization of operation duration in the production process.

The graph in Figure 18 was updated after each operation. Information on the operation
duration of all participating executive elements was collected and subsequently distributed by

the master manipulator.

4.2.4. Implementation Results

Implementation results are represented based on the visualization part of the application.
The operation durations of all cell elements during the production process with the implemented basic
algorithm without feedforward synchronization are depicted in Figure 19.

The change of endpoint movement speed of the master manipulator occurred in this case during
operation number two in production cycle five (Figure 19e). The production cell activities were
resynchronized after the 2nd operation in the next production cycle (Figure 19f).

82



Appl. Sci. 2020, 10, 5165

i = .
2
after 2nd-operati@i

®)

Figure 19. Implementation and visualization—-synchronization without feedforward effect. (a) Initial
cycle; (b) Quasi-synchronized state; (c) Nearly-synchronized state; (d) Synchronized state; (e) Master
speed change cycle; (f) Resynchronized state.

In the case of the advanced algorithm with feedforward synchronization implementation
(Figure 20), the movement speed change of the master manipulator endpoint occurred in operation one
during production cycle five (Figure 20d). The feedforward effect ensured production cell activities
were resynchronized in the next two operations in the same production cycle (Figure 20e).

On the basis of the obtained results depicted in Figures 19 and 20, it is clear that the proposed
and simulation-validated algorithm for the synchronization of the movement speeds of manipulators
(representing endpoint movement speeds) grouped in heterogeneous robotic work cells is functional
and applicable. The deviations in achieved operation duration times of master and slave robotic
manipulators in the initial production cycles (Figure 19b,c and Figure 20b) are noticeable. These are
caused by non-linear characteristics of the movement of robot arms (acceleration, deceleration), and
because operations two and four are composed of several movements of different types (linear, circular).
However, this disproportion is fully eliminated by dynamic speed correction of the slave manipulators
during subsequent cycles.

83



Appl. Sci. 2020, 10, 5165

In the case of basic non-feedforward synchronization, the system reaction to the endpoint
movement speed change of the master manipulator was as expected. The process was resynchronized
in the next production cycle in the same operation, where the change occurred.

The results also indicate that the reaction of slave manipulators to the global change of the master
manipulator speed with the use of feedforward synchronization persists in real conditions for an
additional cycle step (Figure 20e) than is presented in Section 3.1 for the simulated system with
idealized conditions. The reason for this difference is that the master manipulator speed change
occurred during operation execution. The percentage proportion deviation among these operation
durations (between master and each slave) is thus different from the percentage proportion deviation
among durations of the next operation that is completely performed at the changed speed.

x [P TE—— -emm Iy 82 kst =]

(a)

= - 02 e s -emm

|b mem mm nex

=
o e s i e e

(e)

Figure 20. Implementation and visualization-synchronization with feedforward effect.(a) Initial cycle;
(b) Nearly-synchronized state; (c) Synchronized state; (d) Master speed change cycle; (e) Resynchronized
state in the same cycle; (f) Synchronized state.

5. Conclusions

In this study, an algorithms for the time synchronization of operations performed by
a heterogeneous set of robotic manipulators grouped into a production cell was proposed, validated,
and implemented. The organizational structure of this robotic cell control was realized as master-slave

84



Appl. Sci. 2020, 10, 5165

without an external control element. Communication in the cell was provided by a TCP/IP channel
via sockets. The proposed problem solution requires minimal computational power due to an
empirically oriented approach. We relied on our wide empirical knowledge and experiences in
process algorithmizing, as well as on various previously implemented tasks in the field of robotics
or the modeling and visualization of processes. This approach enabled the solution to be processed
directly by the control unit of each participating element of the robotic cell with utilization of standard
instructions in their native language. The main aim was to dynamically adapt the movement
speed of slave manipulator endpoints to the master manipulator activity. Therefore, the algorithms
ensure the defined milestones of the production cycle of each robotic manipulator in the cell are
attained at the same time, while all operations may include various sets of different motion or
manipulation instructions.

The proposed solution also includes an advanced feedforward form of operation synchronization
which responds to changes in the operating cycle of the master manipulator or slave manipulators more
effectively. The main difference between the two proposed algorithms is the number of unsynchronized
operations performed after the change of the master or the slave behavior. In the basic algorithm
case, after desynchronization, the operations of one cycle are performed unsynchronized. In contrast,
the advanced algorithm ensures resynchronization after a defined number (in our case two) of
asynchronously performed operations.

The application of the solution proposal is supplemented with a visualization part created
using MATLAB software for technical computing. This application illustrates each intervention
of the synchronization algorithms, and enables more efficient monitoring and evaluation of
the multi-robotic cell activity with a focus on the synchronization process. This application part
complements the validation of the functionality of the designed solution.

Finally, it can be stated that all requirements were successfully met and our solution for
synchronization of the heterogeneous multi-robotic cell with emphasis on low computing power is
functional and feasible.

Our goal in the future is to continue to develop this idea based on current trends in industrial
automation [35]. There is a possibility in master—slave architecture to distribute more process or control
information among elements, e.g., target position or movement type together with operation duration
as used in our solution. Visualization, as an important aspect of the production of tomorrow, can be
realized using virtual or augmented reality [35].

Author Contributions: Conceptualization, M.].; formal analysis, B.J.; project administration, M.J.; software,
M.J. and B.J.; supervision, M.].; validation, M.J.; visualization, M.J.; writing—original draft, M.]. and B.J.;
writing—review & editing, M.J. and B.]. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by VEGA agency, grant number 1/0232/18—"Using the methods of
multi-objective optimization in production processes control”.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

References

1. Weyer, S.; Schmitt, M.; Ohmer, M.; Gorecky, D. Towards Industry 4.0—Standardization as the crucial
challenge for highly modular, multi-vendor production systems. In Proceedings of the IFAC Symposium on
Information Control in Manufacturing (INCOM), Ottawa, ON, Canada, 11-13 May 2015. [CrossRef]

2. Halenar, I; Juhasova, B.; Juhas, M. Proposal of communication standardization of industrial networks in
Industry 4.0. In Proceedings of the IEEE 20th Jubilee International Conference on Intelligent Engineering
Systems (INES), Budapest, Hungary, 30 June-2 July 2016. [CrossRef]

3. Qin, Y, Sheng, Q.Z.; Falkner, N.].G.; Dustdar, S.; Wang, H.; Vasilakos, A.V. When things matter: A survey on
data-centric internet of things. J. Netw. Comput. Appl. 2016, 64, 137-153. [CrossRef]

85



Appl. Sci. 2020, 10, 5165

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Leitao, P.; Rodrigues, N.; Barbosa, J.; Turrin, C.; Pagani, A. Intelligent products: The grace experience. Control.
Eng. Pract. 2015, 42, 95-105. [CrossRef]

Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 49th
Hawaii International Conference on System Sciences (HICSS), Kauai, Hawaii, 5-8 January 2016.
Jasperneite, . Was hinter Begriffen wie Industrie 4.0 steckt. Comput. Autom. 2014, 12, 24-28.

Kagermann, H.; Wahlster, W.; Helbig, J. Recommendations for implementing the strategic initiative Industrie
4.0. In Final Report of the Industrie 4.0 Working Group; National Academy of Science Engineering: Munich,
Germany, 2013.

Chang, W.H.; Kim, Y.H. Robot-assisted Therapy in Stroke Rehabilitation. ]. Stroke 2013, 15, 174-181. [CrossRef]
[PubMed]

Yoon, J.; Novandy, B.; Yoon, C.; Park, K. A 6-DOF Gait Rehabilitation Robot With Upper and Lower Limb
Connections That Allows Walking Velocity Updates on Various Terrains. IEEE/ASME Trans. Mechatron. 2010,
15,201-215. [CrossRef]

Rubenstein, M.; Ahler, C.; Hoff, N.; Cabrera, A.; Nagpal, R. Kilobot: A low cost robot with scalable operations
designed for collective behaviors. Robot. Auton. Syst. 2014, 62, 966-975. [CrossRef]

Werner-Allen, G.; Tewari, G.; Patel, A.; Welsh, M.; Nagpal, R. Firefly-inspired sensor network synchronicity
with realistic radio effects. In Proceedings of the 3rd International Conference on Embedded Networked
Sensor Systems, San Diego, CA, USA, 2-4 November 2005; ACM: New York, NY, USA. [CrossRef]

Baca, ].; Pagala, P.; Rossi, C.; Ferre, M. Modular robot systems towards the execution of cooperative tasks in
large facilities. Robot. Auton. Syst. 2015, 66, 159-174. [CrossRef]

Chung, S.; Slotine, J.E. Cooperative robot control and concurrent synchronization of Lagrangian systems.
IEEE Trans. Robot. 2009, 25, 686-700. [CrossRef]

Rodriguez-Angeles, A.; Nijmeijer, H. Mutual synchronization of robots via estimated state feedback:
A cooperative approach. IEEE Trans. Control. Syst. Technol. 2004, 12, 542-554. [CrossRef]

Yasuda, G. A distributed autonomous control architecture for synchronization and coordination of multiple
robot systems. In Proceedings of the SICE Annual Conference 2012 (SICE), Akita, Japan, 20-23 August 2012.
Markus, E.D.; Yskander, H.; Agee, ].T.; Jimoh, A.A. Coordination control of robot manipulators using flat
outputs. Robot. Auton. Syst. 2016, 83, 169-176. [CrossRef]

Bouteraa, Y.; Poisson, G.; Ghommam, J.; Derbel, N. Adaptive multi-robots synchronization. In Proceedings
of the IEEE International Symposium on Industrial Electronics, Bari, Italy, 4-7 July 2010. [CrossRef]
Bouteraa, Y.; Ghommam, J.; Poisson, G.; Derbel, N. Distributed synchronization control to trajectory tracking
of multiple robot manipulators. J. Robot. 2011, 9, 1-10. [CrossRef]

Bouteraa, Y.; Ghommam, J. Synchronization control of multiple robots manipulators. In Proceedings of
the 6th International Multi-Conference on Systems, Signals and Devices, Djerba, Tunisia, 23-26 March 2009.
[CrossRef]

Duschau-Wicke, A.; von Zitzewitz, J.; Banz, R.; Riener, R. Iterative Learning Synchronization of Robotic
Rehabilitation Tasks. In Proceedings of the 10th International Conference on Rehabilitation Robotics,
Noordwijk, The Netherlands, 13-15 June 2007. [CrossRef]

ABB MultiMove Functionality Heralds a New Era in Robot Applications. Available online: https://
searchext.abb.com/library/Download.aspx?DocumentID=9AKK105152A2837&Action=Launch (accessed on
1 December 2019).

Gan, Y.; Dai, X.; Li, D. Off-Line Programming Techniques for Multirobot Cooperation System. Int. |. Adv.
Robot. Syst. 2013, 10, 1-17. [CrossRef]

KUKA. KUKA. RoboTeam. Available online: https://www.kuka.com/en-gb/products/robotics-systems/
software/hub-technologies/kuka_roboteam (accessed on 1 December 2019). [CrossRef]

Juhasova, B.; Juhas, M.; Halenar, I. TCP/IP Protocol Utilisation in Process of Dynamic Control of Robotic
Cell According Industry 4.0 Concept. In Proceedings of the 15th IEEE International Symposium on Applied
Machine Intelligence and Informatics (SAMI), Herl'any, Slovakia, 26-28 January 2017.

Mitsubishi Electric. MELFA Industrial Robots Instruction Manual (Ethernet Interface CRn-500 Series); Mitsubishi
Electric: Ratingen, Germany, 2002.

ABB Automation Technologies AB Robotics. Product Specification Controller Software IRC5 Manual; ABB:
Zurich, Sweden, 2004.

86



Appl. Sci. 2020, 10, 5165

27.

28.

29.

30.

31.

32.

33.

34.

35.

Youm, B.; Park, J. TCP/IP protocol over ieee-1394 network for real-time control applications. In Proceedings
of the 16th IFAC World Congress, Prague, Czech Republic, 3-8 July 2005; Volume 38, pp. 37-42.
Mitsubishi Electric. MELFA Industrial Robots Instruction manual (Detailed Explanations of Functions and
Operations); Mitsubishi Electric: Ratingen, Germany, 2005.

ABB AB Robotics Products. Technical Reference Manual—RAPID Instructions, Functions and Data Types; ABB:
Zurich, Sweden, 2010.

MathWorks Matlab, Call Java Libraries. Available online: https://www.mathworks.com/help/matlab/using-
java-libraries-in-matlab.html (accessed on 1 December 2019).

Oracle, Socket (Java Platform SE 7). Available online: https://docs.oracle.com/javase/7/docs/api/java/net/
Socket.html (accessed on 1 December 2019).

Oracle, Buffered Reader (Java Platform SE 7). Available online: https://docs.oracle.com/javase/7/docs/api/
java/io/BufferedReader.html (accessed on 1 December 2019).

MathWorks Matlab, Plot 3-D Bar Graph. Available online: https://www.mathworks.com/help/matlab/ref/
bar3.html (accessed on 1 December 2019).

Pérez, L.; Rodriguez-Jiménez, S.; Rodriguez, N.; Usamentiaga, R.; Garcia, D.E. Digital Twin and Virtual
Reality Based Methodology for Multi-Robot Manufacturing Cell Commissioning. Appl. Sci. 2020, 10, 3633.
[CrossRef]

Juhds, M.; Juhasova, B.; Halenar, I. Augmented reality in education 4.0. In Proceedings of the 2018 IEEE 13th
International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT
2018), Lviv, Ukraine, 11-14 September 2018. [CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

87






Firicd applied
b sciences

Article

An Auto-Adaptive Multi-Objective
Strategy for Multi-Robot Exploration of
Constrained-Communication Environments

Facundo Benavides >%*, Caroline Ponzoni Carvalho Chanel %%, Pablo Monzé6n %
and Eduardo Grampin 4

1 Computer Science Institute, Faculty of Engineering, Universidad de la Republica, 11300 Montevideo,

Uruguay; grampin@fing.edu.uy
2 Aerospace Vehicles Design and Control Department (DCAS), ISAE-SUPAERO, Université de Toulouse,
31055 Toulouse, France; caroline.chanel@isae-supaero.fr
Electrical Engineering Institute, Faculty of Engineering, Universidad de la Reptiblica, 11300 Montevideo,
Uruguay; monzon@fing.edu.uy
*  Correspondence: fbenavid@fing.edu.uy; Tel.: +598-2714-2714(12)
t Current address: J. H. y Reissig 565, Facultad de Ingenieria (InCo), 11300 Montevideo, Uruguay.
1 These authors contributed equally to this work.

Received: 21 December 2018; Accepted: 2 February 2019; Published: 9 February 2019

Featured Application: In application fields where strong communication requirements do
not condition the mission, the present approach represents a proper option for coping with
real communication constraints, being more fault tolerant and still having good performance
simultaneously.

Abstract: The exploration problem is a fundamental subject in autonomous mobile robotics that
deals with achieving the complete coverage of a previously unknown environment. There are several
scenarios where completing exploration of a zone is a main part of the mission. Due to the efficiency
and robustness brought by multi-robot systems, exploration is usually done cooperatively. Wireless
communication plays an important role in collaborative multi-robot strategies. Unfortunately, the
assumption of stable communication and end-to-end connectivity may be easily compromised in
real scenarios. In this paper, a novel auto-adaptive multi-objective strategy is followed to support
the selection of tasks regarding both exploration performance and connectivity level. Compared
with others, the proposed approach shows effectiveness and flexibility to tackle the multi-robot
exploration problem, being capable of decreasing the last of disconnection periods without noticeable
degradation of the completion exploration time.

Keywords: exploration missions; cooperative systems; multi-robot coordinated systems;
constrained-communication environments

1. Introduction

The exploration problem is a fundamental subject in autonomous mobile robotics that deals with
achieving the complete coverage of a previously unknown environment. There are several scenarios
where completing exploration of a zone is a central part of the mission, e.g., planetary exploration,
reconnaissance, search and rescue, agriculture, cleaning, or dangerous places as mined lands and
radioactive zones. Additionally, due to the inner qualities—mainly efficiency and robustness—of
multi-robot systems, exploration is usually done cooperatively [1].

Schematically, the exploration of an environment can be seen as the composition of Mapping and
Motion Planning tasks. A map is needed in order to plan new motions. Moreover, choosing a correct

Appl. Sci. 2019, 9, 573; doi:10.3390 /nano10040573 89 www.mdpi.com/journal/applsci



Appl. Sci. 2019, 9, 573

motion sequence based on this map is also needed to expand the knowledge about the environment
optimally. Consequently, Mapping is regularly interleaved with Motion Planning, and vice versa, during
the whole process [1-3].

Given that the lack of knowledge is essentially inherent to exploration missions, the best choice for
the robots is to visit the places where the gain of information can be potentially higher. The Task
Identification problem concerns the identification of the points of interest that should be visited
next. It strongly depends on both the sensory robot capabilities and the underlying environment
representation. The most widely used representation for this purpose is the well-known Occupancy
Grid structure [4]. Based on it, a method to identify points of interest was proposed by [5]. The strategy
assumes that the closer to the frontier between known and unknown regions the tasks are defined, the
more information the team can gather. Since then, the majority of exploration proposals has adopted
this scheme known as Frontier Points or Frontier Regions [6-8].

When multiple robots are involved, it is advisable to avoid several of them moving to the same
place. The Task Allocation problem concerns the search for a distribution of tasks to robots that
maximises the overall system utility and minimises the amount of overlapped information obtained
by the robots [1,9,10].

There exist a wide variety of proposed solutions to this problem where a family of methods based
on market economies are probably the most popular ones. These methods are based on the notion
of Auctions from which the robots can bid for the tasks to decide who goes to where at each moment.
The market may be managed centrally either by a virtual agent at the base station as in [3] where
the bids are processed centralised by a greedy algorithm or by a robotic agent as in [1]. Conversely,
the fleet can manage to exchange the bids among all the members in order to take decentralised
decisions [11,12], avoiding, in turn, the single point of failure. All these methods owe their popularity
to their simplicity and ease of implementation, but they suffer from a significant shortcoming: falling
in local minima [13].

Far from economy inspired approaches, a scheduling based approach is presented in [2].
This method combines an environment segmentation technique with the centralised task allocation
method proposed by [14]. The exploration is performed after dividing the environment into disjoint
segments. Thus, the expected sensory overlap between agents is decreased as much as possible.

In [15] the authors address coordination implicitly through localisation data exchanging. Robots
are forced to wait for others before making a decision. Task selection is made iteratively—one robot
after another—employing an objective function which rewards the right choices. In [16] a centralised
approach is used. The tasks-to-robots distribution is computed balancing information gain, localisation
quality, and navigation costs. Another centralised approach computes a utility function enabling the
robots to locally prioritise the tasks within its scope and, potentially, also enabling the whole team to
search for the best global distribution as well [9].

On the contrary, a decentralised approach, called minPos [17], attempts to distribute the robots
over the unexplored locations as much as possible. By doing so, it has outperformed several reference
proposals decreasing the completion-exploration time for a big set of practical scenarios. The working
principle is to rank robots concerning their distance to every possible task. The robots coordinate their
actions implicitly and may choose to visit the tasks for which they are best ranked at each point in time.

Finally, the strategy described in [18] is mainly devoted to deal with uncertainties in sensing
and motion processes of a multi-robot system. To this end, the authors model the exploration and
mapping problem as a POMDP that is solved centrally. In [19] the assignment algorithm works in an
asynchronous fashion assuming that not all robots must be ready for new plans at the same time.

Wireless communication plays an important role in collaborative multi-robot strategies.
Unfortunately, the assumption or requirement of stable communication and end-to-end connectivity
may be easily compromised in real scenarios due to interference, fading, or simply robots moving
beyond the communication range. When robots are unconnected they have no possibilities to
coordinate their actions and damages or inner failures can lead to information losses. Therefore,

90



Appl. Sci. 2019, 9, 573

depending on the application field, the exploration strategy should take this into account to prevent
isolation situations.

1.1. Communication Issues

Mobile Ad-hoc NETworks (MANETs) constitute a particular example of scenarios where the topology
of the robot network varies dynamically over time. This kind of network is recommended when the
fixed infrastructure is no longer available, e.g., in disasters to support the communication among rescue
team members. In such cases, connectivity is of utmost importance because the loss of communication
could imply human losses.

A first critical issue concerns the collective knowledge of the environment. Under communication
restrictions, such knowledge cannot be assumed to be always accessible and depending on the
coordination mechanism could be the cause of significant performance degradation [20]. Therefore,
depending on the application, the exploration strategy should take this into account in order to prevent
the robots from becoming completely unconnected, let say isolation situations. Such an isolation
situation, as well as its possible effects, are illustrated in the example scene depicted in Figure 1.

Figure 1. Re-exploration caused by restricted communication. [20]. The yellow portion of the map is
only known by robot B. Thus, robot A goes to re-explore the region beyond the red frontier.

1.1.1. Connection Requirements

Three categories are mainly identified [20]:

®  None. Robots are not required to communicate.

*  Event-based connectivity. The need for regaining connectivity is triggered by particular events
such as the discovery of new information or just periodically.

e Continuous connectivity. Every robot must be connected at all times to any other fleet member
either directly or in a multi-hop manner.

Please note that these requirements could have an impact on the fleet mobility and, in turn, on the
availability of exploration strategies to be adopted. For instance, under a continuous connectivity
scheme, the fleet is more restricted to move around than in other cases.

1.1.2. Communication Models

Communication model refers to the prior knowledge about communication capabilities that
support the decision making of the robots along the exploration. Nevertheless, sometimes no
communication model is assumed and, consequently, robots do not depend on communicating to
decide where to go next. In such cases, explicit coordination only occurs opportunistically due to
random encounters [20].

The communication models typically adopted are [20]:

®  None. Robots do not make any assumption on the communication possibilities between any pair
of arbitrary locations.

91



Appl. Sci. 2019, 9, 573

e Line-of-sight (LoS). Two robots can communicate if and only if their positions belong to a
free-of-obstacle line segment. Usually, the distance is also restricted to a maximum value that is
often related to the scope of the communication device.

e Disc or Circle. Communication with any other robot is permitted when its location is within a
fixed maximum distance (communication radius) regardless of the presence of obstacles.

e Signal. Communication is available with a certain probability that depends on the estimated
signal power between the robot positions. The higher the signal power, the higher the probability.

e Traces. Robots can communicate with each other by dropping messages in the environment.

Additionally, to these five categories that cover an essential aspect of the communications,
say connectivity, there exist other formulations aimed at cover bandwidth or throughput as well.
Clear examples of its use are the applications with a strong dependence on video streaming like search
and rescue applications.

1.2. Connectivity-Based Proposals

Despite its well-known inefficiencies, there exist some few approaches without any connection
requirements where robots meet each other by chance. Nevertheless, this section only surveys the
proposals that depend on connectivity in one way or another.

In [21] a behaviour-based approach is presented. The architecture is designed to guide the
exploration constraining the fleet to keep within the communication range, establishing a mobile
network. The well-known disk model and a graph structure are used to model the network connectivity
and identify possible disconnections. Frontier cells are evaluated regarding costs (computed utilising
a flooding algorithm) and information utility (based on the ideas proposed in [3]). Behaviours are
selected according to the network topology conditions.

In [22] a centralised communicative exploration algorithm is proposed. Communicative exploration
implies that the team of robots have to maintain connections between each other at all times. The target
selection is based on a utility function that weights the benefits of exploring new regions versus the goal
of keeping connected. While connectivity is valued using the classic disc model, the costs of the shortest
paths are computed from the Manhattan distance notion. Due to spatial and movement restrictions,
specific behaviours are defined to deal with deadlocks. Also following a centralised approach, [23]
presents four fully reactive exploration strategies. They consist in translating the distance to tasks
and disconnection situations into artificial forces that pull and push the robot to reach new positions
smoothly, avoiding them to lose connectivity. The radio signal quality is modelled considering both
the communication range and the distance attenuation effect. Deadlocks are avoided by assigning
tasks to a cluster of robots. This allocation guarantees that robots belonging to the same cluster do not
exert conflicting forces upon each other towards different directions.

In [24], the authors propose a decentralised version of the strategy proposed in [22] based on
message exchanging and a graph structure where the group always tries to keep a biconnected network
efficiently. Communication model is based on the classic disc model. In consequence, robot mobility
is restricted by the communication range. Using the same graph theory, in [25] the experimental
validation of a distributed algorithm that preserves connectivity is also discussed. Nevertheless,
a different coordination mechanism—supported by a market-based negotiation algorithm—is adopted.
Unfortunately, only results on connectivity maintenance are shown, lacking exploration metrics reports.

The proposal of [26] aims to maintain and repair the underlying wireless mesh network while
the coverage task is being performed, all at once. The system works in a fully asynchronous and
distributed way. Differently from previous works, the authors propose a network disconnection
detection by checking the real state of connections without assumptions on communication range or
propagation model. On the contrary, all nodes require knowledge about the area to be covered and on
global positions.

In [15] the robots can disconnect as long as they regain connectivity periodically following a
distributed but synchronous strategy. Authors address coordination implicitly through localisation

92



Appl. Sci. 2019, 9, 573

data exchanging. Robots are forced to wait for others before making a decision. The system works
as an optimisation method where each variable is optimised at a time in a round-robin while the
others remain unchangeable. In [27] the authors describe a heterogeneous multi-robot system for
exploration tasks. They consider several explorer robots and conceive a particular robot playing the
role of relay dispenser. This agent is in charge of place relays when and where it is necessary to support
the video/audio streaming generated by explorers.

In [28] the problem of exploration and mapping is addressed by using a Decentralised POMDP.
This technique takes advantage of local interaction and coordination from the interaction-oriented
resolution of decentralised decision makers. Distributed value functions (DVS) are used by decoupling
the multi-agent problem into a set of individual agent problems. In order to address full local
observability, limited information sharing, and communication breaks, an extension of the DVS
methodology is proposed and applied in multi-robot exploration so that each robot computes locally a
strategy that minimises the interaction between fleet members and maximises the coverage achieved
by the team, even in communication constrained environments. A decision step consists in building
the model, computing the policy from the DV'S and producing a trajectory.

Rendezvous-based techniques have also been used to deal with limited communication ranges.
In [16] robots are enabled to move out of the communication range but forced to rejoin the group
frequently. After moving out the communication range robots have to return to a pre-arranged
meeting point to exchange the information gathered during the disconnection period in order to avoid
exploration overlaps.

The proposal presented in [29] describes a Particle Swarm Optimisation based approach to achieving
fault-tolerance in preventing communication network splits. The principal objective is to keep the fleet
k-connected. Considering that the application domain defines the fault-tolerance level required to the
system, a MANET connectivity algorithm is extended with the concept of k-fault-tolerance.

A multi-robot system for crisis management is described in [30]. The system is composed of
mobile sensors (ground robots—UGV) and mobile relays (aerial vehicles—UAV). However, some
robots may change roles dynamically during the mission (e.g., UAVs equipped with both wireless
routers and cameras). The problem is modelled and solved using constrained-based local search on a
communication model based on graph theory.

In [31] a fully distributed approach for multi-robot sweep exploration is introduced. The proposal
aims to guarantee full coverage using a minimum number of messages and to maintain connectivity at
all times, even under severe restrictions on the communication type, range, and quality. The algorithm
proposed uses communication not only to exchange information but to direct the robot movements.
Communication intensity is used in order to disperse the fleet while beacons are used to mark locations
of interest.

In [32] a multi-robot exploration algorithm based on multiple behaviours is proposed. Quad-rotors
are asked to explore and map an indoor zone with unreliable communication and limited battery life.
Robots are enabled to change roles both dynamically according to intrinsic and extrinsic factors (e.g.,
boundaries/distances and battery level) and hierarchically in order to explore and avoid collision
among each other. The remaining battery level is considered in order to avoid losing gathered
information. Quad-rotors are also able to leave the network, but after a fixed period they search for
regaining connectivity. Relay robots are designated to forward information from/to the more distant
robots improving communication between team members. Although no optimal relay placement is
computed, the existence of relays is crucial in the proposed scheme.

In [33,34] the relay node dynamic re-positioning problem is tackled. The proposed solution relies
on optimisation procedures and evolutionary algorithms to find the best relay locations and how the
robots should move to these points. The authors follow a centralised multi-stage approach where one
node is in charge of computing the best assignment regarding both connectivity and throughput.

In [35], the problem of how to connect one or more remote units to a base station investing a limited
number of intermediate relay robots in constrained communication environments is investigated.

93



Appl. Sci. 2019, 9, 573

The authors study the complexity of the optimal relay placement problem and propose methodologies
to create chains or trees of relays as required by different static scenarios. By contrast, in changing
environments static solutions cannot be successfully applied because the location optimality does not
hold over time.

In [36] the exploration problem is addressed ensuring a time-varying connected topology in 3D
cluttered environments but following a decentralised control strategy which enables simultaneous
multi-task exploration.

Another centralised but asynchronous strategy is followed in [19,37] in order to address the
problem of multi-robot exploration under recurrent connectivity. In these works, the authors leverage
a variant of the Steiner tree problem that appears as a particular case of different known graph
optimisation problems. Robot placement is treated as an optimisation problem through Integer Linear
Programming. Exact and approximated algorithms are compared on particular scenarios.

1.3. Conclusions

Some conclusions arise from this brief survey of recent works. Firstly, it is remarkable that
despite being the most restrictive class of exploration algorithms, the exploration strategies based
on continuous connectivity are prevalent in applications where real-time image streaming are
needed (e.g., search and rescue), or simply when human operators at the base station need to
enforce timely information updates, or even when a high level of coordination is needed (i.e., when
globally shared knowledge between robots is assumed). Additionally, robustness is also highly
appreciated in hostile or inaccessible scenarios. In these missions, fault-tolerance is typically achieved
adding redundancy (e.g., systems that guarantee k-connected time-varying network topologies) and
employing distributed systems.

Nevertheless, when these strong requirements do not condition the mission, the event-based
connectivity—that is less restrictive than the former concerning the fleet mobility—seems to be
more appropriate.

Now, moving up from essential aspects as communication to the top of the software architecture
stack. There exists a large set of distributed reactive and behaviour-based proposals. Compared
to the centralised approaches, distributed approaches have the advantage of not presenting the
single-point-of-failure weakness. However, in many cases, it suffers from deadlocks at the individual
or collective level.

Market-based coordination methods represent another popular option. There exists a wide
variety of implementations that mainly differ from each other in the way the bids are computed by the
robots (e.g., single-item or multiple-item auctions). These difference are not insignificant and typically
trade simplicity and computational efficiency off for proper coordination and local optima avoidance.
Besides, since each auction involves a period of synchronicity between robots, fully asynchronous
market-based systems have no place. Nevertheless, asynchronous systems may be advantageous over
those that periodically ask the robots to wait for others before making a decision.

Finally, in communication-restricted environments, there seems to be a general agreement on the
benefits of spreading out the fleet as long as the robots can regain connectivity in disconnection case.
From this, and trying to balance these potentially opposed goals, some multi-objective utility-based
approaches have been proposed. Also, defining multiple roles (including communication relays)
has demonstrated to be a worthy strategy to address the multi-robot exploration problem when
communication restrictions are present.

In conclusion, the survey suggests that in the context of decentralised systems there is room to
try new ideas related to connectivity-regaining policies and rendezvous places. On the one hand, the
event-based connectivity framework imposes the execution of connectivity-regaining actions in the
presence of some events. On the other hand, rendezvous-based approaches imply the definition of
particular meeting points where robots have to meet in order to regain connectivity. Leaving apart the
fact that the selection of these places could be a hard issue itself, once the connectivity-regaining action

94



Appl. Sci. 2019, 9, 573

is triggered and the meeting place is known by robots, they should interrupt its exploration plans
deviating from its current trajectories in order to accomplish the new goal. This action probably leads
to global time performance degradation and individual energy consumption increasing. However,
what would happen if robots are only influenced to keep or recover connectivity at all times instead of
being demanded to regain connectivity? Furthermore, what would happen if they are free to meet by
chance, having been motivated to stay close but without having to meet at specific places?

1.4. Contributions

This work tries to answer these research questions from the development of a novel multi-objective
approach where the robots, when selecting their targets, are always considering travelling costs and
the opportunity cost of keeping connected or regaining connectivity. A simple yet useful model for the
signal strength and attenuation effects provide the robots with connectivity awareness. Thereupon,
connectivity level measurements and path costs are considered together into a fask utility function
for finding solutions with a right balance between the benefit of visiting the closer targets and the
usefulness of keeping the team connectivity level as high as possible.

For the sake of robustness, a decentralised approach is followed. Robots make decisions
asynchronously addressing coordination implicitly through localisation and mapping data exchanging.
The human operator is asked to use his application-field expertise to play a part in the task
assessment process.

The main contributions of this proposal can be summarised as follows.

Ease to Deploy and Flexibility

In order to establish the task selection criterion, the human operator only needs to choose the
extra distance he is willing to ask the robots to travel in order to keep or enlarge the connectivity level
of the fleet. From this criterion and through formal analysis, the weights of these potentially conflicting
objectives are derived. This way the robots can deal with communication constraints auto-adjusting
the weights of each objective in a more intuitive manner. Furthermore, by eliminating the need for
training stages the system is more adaptable to different environments.

Good Performance

Asynchronism is taken as a natural way of avoiding waiting times to make a decision as well as
decreasing the number of robots that are simultaneously making a decision. Since the task allocation
computation strongly depends on the number of robots under consideration, asynchronism also makes
optimal decisions can be linearly computable most of the time. As a consequence, robots can compute
optimal tasks-to-robots distributions in a short time, achieving high levels of dispersion efficiently.
Besides, regarding reconnections, the proposal consists of a rendezvous policy where the locations of
the selected tasks become the meeting points themselves, avoiding deviations from the planned paths.
Compared with others, the proposed approaches are capable of decreasing the last of disconnection
periods without noticeable degradation of the completion exploration time.

1.5. Outline

The present document is organised as follows. Section 2 provides the exploration problem
formalisation including models and goals. Next, an Auto-Adaptive Multi-Objective (AAMO) task
selection approach, as well as the task allocation algorithm and the decentralised coordination
mechanism, are thoroughly described in Sections 3-5, respectively. Experimental results related
to a baseline and to the AAMO approach itself are discussed in Section 6. Finally, the document is
concluded highlighting some future research directions in Section 7.

95



Appl. Sci. 2019, 9, 573

2. Problem Formulation

This section defines the instance of the multi-robot exploration problem, which constitutes the
basis for the proposal formulated in this work. All particular assumptions are mentioned throughout
the following sections. Firstly, the environment, robot and communication models are defined. Namely,
some real communication constraints are taken into account and formalised into the model. A task
definition is given as well as the task identification method. Finally, the global exploration objectives
are stated.

2.1. Environment Model

The environment E is defined as a bounded planar workspace E C R? previously unknown.
Besides, E is represented by an occupancy grid structure [4] where each cell ¢ can belong to three
different probabilistic states S = {f,0,u}, standing for free, occupied and unknown, respectively.
Typically, P(state(c) = f) = 1 — P(state(c) = 0) is assumed. When |P(state(c) = f) — 0.5| < € the
cell ¢ is labelled as unknown; otherwise it is labelled as free or occupied, accordingly. These states
represent all possible theoretical situations in which a point of the environment can be classified over
time. The mapping algorithm frequently updates the probability value of each cell on each robot.
Despite this, only the current classification of each cell at a given decision time step is considered.
Consequently, the representation of E belongs to the domain of matrices S"*". Furthermore, the
region already explored Ej,,,, and the remaining that is yet unexplored E, k0., at time t may be
defined from this representation as follows: E,xu0un (t) = {c € E | |P(state(c,t) = f) —0.5] < €} and

Eknown(t) = {C €E \ Eunknawn(t)}~
2.2. Robot Model

Given a robot team R = {Ry, Ry, ..., Ry} consisting of M homogeneous circular rigid mobile
robots with wireless communication capabilities, a traditional representation defines each robot:
R; = (x;,v;,0;,7i,8i,¢;), where i € [1.M] and X;(t) = {x;(t),yi(t),0;(t)} represents the configuration
vector of the robot 7 at time ¢ (position of its centre and heading with respect to the inertial frame), r;
represents the radius of the robot body, and s;, c; represent the sensory capabilities as maximum radius
of sensing and maximum range of communication, respectively.

2.3. Communication Model

This model aims to support the connectivity awareness ability of robots needed to deal
with disconnection situations during the exploration. Given the position of their teammates and
obstacles, robots can estimate the connectivity degree of a specific location considering some of the
communication constraints that are widely present in real scenarios, mainly indoor (e.g., office-like
and buildings).

The signal strength function (I'; represents a slight adaptation of the signal strength function
presented in [38]) I'; : N x §"™*" x R — R is defined as follows:

(]r Eknown( ), t dAH(i jr t) - wAtt(irj/ Einown (t)r t)
I = ]0 Daf logm(c /1’1)

) =
0

dAtt(l ], t)=10- Duf 10g10( i(j,t)/1:)
jit) =

(©))
= [[X:(0, x50
(j,E £),t) - Wyr if w;(j, E t),t) < C
Wt (i, j, Exnowon (), £) = Wi (j, Exnown (t), 1) af 1 w;(j .known( )ot)
C-Wyr otherwise

where, d o4y and w 44 stand for distance attenuation and wall attenuation terms, respectively. In addition,
d;(j, t) represents the Euclidean distance between two robot locations at time #: typically the transmitter

96



Appl. Sci. 2019, 9, 573

(X;(t)) and receiver (X;(t)), w;(j, Exnown (t), t) represents the number of walls (robots cannot distinguish
between different kind of rigid obstacles, but the term wall is used for simplicity and in order to be
consistent with the underlying proposal) present in the known region between transmitter and receiver
locations at time t, D, ¢ Tepresents a distance attenuation factor, and W, £ Tepresents a wall attenuation
factor. Finally, C represents the maximum number of walls up to which the W, factor causes a
significant effect in function I';. When w;(j, Exyown (£), £) > C, the distance attenuation effect dominates.
Finally, note that in [38] the independent term I ? is suggested to be either derived empirically or
obtained directly from the wireless network device specification. Nevertheless, in this work the model
is adapted in order to become independent from specific deployments (communication devices),
deriving the T' ? value so that the signal strength T;(j, Ex;00n (t), f) = 0 when d;(j, t) = c;.

In Figure 2 the shape of the function I';, as well as the attenuation effects caused by both distances
and walls, are plotted.

Signal Strength model Signal Strength model Signal Strength model

E
H
3
B
s
g

&

E

2
a

Signal Strength (dBm)

10

20

A s
30 7, 1 2 3
#of walls

(@) (b) (9

Distance (m) 10 2

15 20 3
Distance (m) #of walls

Figure 2. Behaviour of the signal strength model. (a) The signal strength function I'; (dBm) is plotted
for a [0..5] range of walls and [0..30] (m) range of distances; (b) Attenuation caused by distance;
(c) Attenuation caused by wall interference.

Unfortunately, due to uncertain and incomplete knowledge, the I'; function only can either
confirm the absence of connectivity or deliver an optimistic estimation of connectivity level instead.
Although this model represents a valuable improvement in relation to others (e.g., the classic disk or
line of sight models [20]), for the sake of simplicity other impairments also common in communication
(e.g., bandwidth, information losses, fading, and multi-path propagation phenomenon [39,40]) are not
considered in this work.

2.4. Task Identification Method

The task identification problem is addressed following a frontier point approach [5] where the
free cells (cf. Section 2.1) that belong to a frontier are over labelled as frontier points (FP). Besides, the
resulting set of FP cells is clustered (using procedures such as K-Means [41] or Affinity Propagation [42])
in order to identify the cells that better represent each frontier, defining a set of tasks (in the remainder
of the document, the terms task and target are used indistinctly) T = {Ty, T», ..., Tn} | T] € R?, Vj e
{1...N}. Thus, T represents, at each moment, the smallest set of promising locations that the robots
could be interested in visiting to explore all frontiers. In Figure 3 these task cells are coloured in yellow.

97



Appl. Sci. 2019, 9, 573

0 10 20 30 40 50

Figure 3. Frontier points. The different cell types are identified according to the following colour code:
dark blue cells are Obstacles, light blue cells are Unknown, green cells are Free, orange cells are FP
cells, and yellow cells are tasks.

2.5. Multi-Robot Task Allocation Problem—MRTA

Following the classification proposed in [10], the MRTA problem to be tackled is described as a
single-task robots (ST), single-robot tasks (SR), and instantaneous assignment (IA) problem. ST means that
each robot is able to visit at most one task at a time. SR means that each task requires only one robot to
be explored. IA means that the available information about the robots, the tasks, and the environment
permits only an instantaneous allocation of tasks to robots, preventing the possibility to plan future
allocations. Additionally, an ST-SR-IA can be formulated as an instance of the well known Optimal
Assignment Problem (OAP) as follows. Given M robots, N tasks, and utility estimates U for each MN
possible robot-task pair, the goal is to assign tasks to robots so as to maximise overall expected utility.
Finally, from an Integer Linear Programming perspective, the problem can be formalised as: Find the
MN non-negative integers «;; that maximise (2).

M=
M=z

Il
—
-
Il
-

;iU (2

s.t.

M
Zﬂti]':].,lngN
i=1

N
ZD{,’jIl,lSiSM
j=1

2.6. Global Objectives

The exploration aims for the full coverage of a bounded indoor environment, a priori totally
unknown, with a team of terrestrial robots, in minimal time and avoiding isolation situations as
much as possible. In this context, isolation refers to the fact of being unconnected from any other
fleet member. In this work, the multi-robot system is designed to address these objectives from the
following definitions.

2.6.1. Full Coverage

Given the Ejoupn and E,pxpown previously defined in Section 2.1, it is possible to claim that
the completion condition is reached when E = Ejy,,,, or equivalently E, x00n, = @. Although
this condition is straightforward, it is useless in practice. Alternatively, the completion condition is
conceived considering the sensing activity of the robots over time. Let sen;(t) = sen(X;(t)) be the

98



Appl. Sci. 2019, 9, 573

information gathered by the robot i at time f in the configuration X;(t). From this, Ej; 4, at completion
time 7 is defined as follows:
M T
Eknown = U U sen,—(t) @)
i=11=0
Finally, the completion condition may be written as in (4) implying that there are no reachable
configurations where any robot can gather new information.

ﬂxi l sen; ﬂ Eunknown # @ (4)

2.6.2. Completion Time Optimisation

Additionally to full coverage, the multi-robot system is asked to perform the exploration in minimal
time. Therefore, from (4), the minimal completion time condition can be expressed as:

min 7" | EX,'(T),SETZZ‘(T) m Eunknown # @ (5)

2.6.3. Isolation Avoidance

In multi-robot exploration missions, the individual isolation situations (when a robot becomes
unconnected from any other) are non-desirable. The key motivations to avoid them are (i) When robots
are unconnected they have no possibilities to coordinate their actions, hence they could visit the same
regions. Therefore, keeping the fleet connected is a way to decrease inefficiency; (ii) Damages or inner
failures during isolation periods can lead to information losses. Therefore, keeping the fleet connected is
also a way to decrease the risk of re-work and to prevent time performance degradation, consequently.

Thus, in addition to (5), the last of possible individual disconnections should be minimised. To this
end, concepts of graph theory are borrowed in order to model a time-varying network topology of
mobile robots. Such network is represented employing an undirected graph defined as G(t) = (V, £(t))
where the nodes V = {1... M} represent the robots R; | i € [1..M] and the edges £(t) = {i,j |
i,j € V,j € Ni(Exnown(t),t)} represent the operative communication links between any pair of
robots (R;, R;).

The function N; (Eguown (1), ) = {j | Ti(j, Exnown (t), t) > 0} computes the neighbours of a robot i
at time t. From this it is possible to define the isolation situations of any robot i like the periods when
the corresponding node i has no incident edges (degree(i) = 0). Furthermore, isolation situations may
repeat several times along the exploration.

In Figure 4 an example of an exploration timeline concerning disconnections is depicted.

dE dE dE dE
[ . . . 2, L , . . ! |

=0 tsl tel tsz tez tsk tek tsk+l telﬁ+l =T

Figure 4. Disconnection events representation. The disconnection events dEy can appear distributed
along the exploration timeline. Its last is variable and depends on the movements realised by the fleet
during the exploration. The starting and ending times of each disconnection are represented by the
timestamps t;k and t;k, respectively.

From this model, the expression for the disconnection last optimisation may be obtained
as follows:

min Z Z NdE; 6)

i€V k

99



Appl. Sci. 2019, 9, 573

where : k indexes the disconnection events dE
AdE; = t, — 1, represents the last of the disconnection event dE;

£

e = minty | N;(Egpown (), t) = @, represents the starting time of the disconnection dEj

ti,k = maxtg | Ni(Egnown (t), ) = @, represents the ending time of the disconnection dEj

3. Auto-Adaptive Multi-Objective Task Selection Approach

In this section, a novel multi-objective based approach for multi-robot exploration missions is
introduced. As was mentioned above, in exploration missions the best choice for the robots is to visit
the places where the gain of information can be potentially higher. Gaining information is, actually,
the only way to conclude the exploration task. Therefore, the connection between path-cost-based
target selection strategies and the completion time performance obtained resides in the fact that this
way the fleet expand its territorial knowledge potentially faster. Besides, when the environment
presents communication restrictions, individual failures or incoordinations can lead to inefficiency
more likely.

In order to make the system robust and efficient, a decentralised and asynchronous coordination
mechanism is defined. An auto-adaptive multi-objective task utility function is defined in accordance
with both the task identification method presented in Section 2.4 and the objectives of the exploration
problem defined in Section 2.6. Its primary purpose is to integrate travelling costs and connectivity
levels finding solutions with a right balance between the benefit of visiting the closer targets and the
usefulness of keeping the team connectivity level as high as possible.

Furthermore, to make the system more flexible, an analytic approach through which the
relative importance of each goal is set independently of the scenarios, is followed. As a result,
an auto-adaptive procedure—where the human operator is asked to use his application field
expertise in order to influence the robot decisions defining a criterion to balance the importance
of both objectives—is developed. Several proofs of correctness on such a procedure are conducted
demonstrating that the robots are always capable of auto-adapt the objectives weights to select the
tasks accordingly with the human-operator criterion.

3.1. Task Utility Function

This function will guide the optimal task distribution search regarding well-balanced solutions
where both the travelling cost and the team connectivity level are considered to evaluate the current
targets. The objectives are implemented using utility functions such as (i) path utility function takes
the travelling costs to deliver a notion of how beneficial—concerning distance—the tasks under
consideration are; (ii) connectivity utility function gives the robots a connectivity awareness ability.

The task utility function ®; : [0,1] x T x RM x gmxn _y [0,1], is defined as follows:

q>,‘(lX, Tj/ R, Eknown) = lIJI’(T]'/ Eknuwn) +B- Qi(Tj/ R) 7)

s.t.
1<i<M=|R,1<j<N=|T|
a+p=1|apecl0,1]

Given the current state of the fleet R and the current environment knowledge Ej,,o,,,,, the function
®; estimates the utility obtained by a robot R; in case of selecting the task T;. The current fleet state
refers to both the location of the assigned tasks in case of assigned robots and the robot positions
otherwise. The terms ¥ and Q) represent path utility and connectivity utility functions, respectively.
The weights « and p work as tuning parameters that permit to adjust the kind of solutions the system
will search for. If « = 1 during the whole exploration, then the system would only intent to spread out
the fleet. On the contrary, if & = 0 then the system would always search for potentially fully connected

100



Appl. Sci. 2019, 9, 573

solutions. Otherwise, when (0 < a < 1) the system will balance both path utility and connectivity
utility. As a result, sometimes the robots could choose other tasks than the closest to favour the team
connectivity level. This possibility is deeply analysed further below in Section 4.

Although in this double-objective function the symbol B could be substituted by 1 — &, it is
preserved for the sake of generality: if the weighted sum had more than two terms, it would not be
possible to express all weights as a functions.

3.2. Path Utility

Path utility measures the relative effort needed for a robot to reach a task from its current location.
The path utility function ¥; : T x S"™*" — [0, 1] is defined as follows:

AAi(Tj)>7
A -1

A

lIIi(Tj/ Egnown) = 2 < (8)

s.t.

1<i<M=|R,1<j<N=T|

where:

AI(TJ) = HXi’ Tj”sp - d
e—1
1%, Till, = 0 gy ebgiieiey 2 0P = wpics
wpy=Xjwpe=T; k=1
Given the current environment knowledge Ej,,o,,,, the function ¥; estimates the path utility obtained
by a robot R; in case of selecting the task T;. The parameter v works as a shaping factor that could be used
to tune the relation between distance and utility. The ordered sequence of waypoints wpj represents the
shortest path between the robot configuration X; and the target T;. All segments (wpy, wpg41) are safe
given that they are always built regarding only the collision-free pathways present in the known region
Eknown- The wavefront propagation method proposed by [43] is employed to determine the waypoint
sequence. The shape and behaviour of the ¥ function are depicted in Figure 5.

1 Path Utility
3 Ri=1
0.8 "a__ Si=6
d=36
i d=6
9
> 0.6
B .
0.4 "'-.._A
b,
0.2 S
o
",
o .

0 3 6 9 12 15 18 21 24 27 30
Relative Distance (m)

Figure 5. Path utility function behaviour. There are several tasks in the scene (blue circles). The closest
is located 6 m away from the robot while the furthest is 36 m far away. The closest and furthest tasks

always return 1.0 and 0.0, respectively.

101



Appl. Sci. 2019, 9, 573

3.3. Connectivity Utility
Connectivity utility computes, optimistically, the connectivity level present in a location at a
certain moment. The connectivity utility function Q; : T x RM x §"*" — [0,1] is defined as follows:

tga (2~ PG00 1)

Qi(Tjr R, Eknown) = 0 )

s.t.
1<i<M=|R|,1<j<N=]|T|

Given the current state of the fleet R and the current environment knowledge Ej;;4y,,, the function
Q); estimates the connectivity utility obtained by a robot R; in case of selecting the task T;. Particularly, it
is interesting to do so concerning the arrival time to T;. The current fleet state refers to both the location
of the assigned tasks in case of assigned robots and the robot positions otherwise. The parameter p
works as a shaping factor that could be used to tune the relation between connectivity level and utility.
Note that the utility is decreasing in the number of robots, and may favour the adoption of MANET
compliant connectivity techniques. In such networks, messages travel from source to destination
members in more than one hop, where intermediate nodes forward messages until the destination is
reached. The shape and usefulness of the () function may be appreciated in Figure 6.

Connectivity Level Map

Connectivity Utility

Robots within comm. scope

01
5 N Sensory Range: 6m
0 .
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 g __— Comm. Range: 30m|
Teammates 20 30 40 50

@ (b)

Figure 6. (a) Connectivity utility function shape; (b) A scene where the usefulness of the () function can
be appreciated. Three robots (coloured dots) and several walls were arranged simulating an ongoing
exploration process. Robots are surrounded with two lines of the same dot colour indicating sensory
(dashed) and communication ranges (solid); (c) Shows the connectivity level map corresponding to (b).
Therefore, as long as the will of another robot is to keep connected with the fleet, it would be able to

take this perspective into account when deciding where going to.

3.4. General Considerations

The definition of multi-objective weights is usually accomplished as an empirical matter. Typically,
a search process is run in order to find—after a lot of trials—values that fit some optimal criteria.
This kind of methods is typically used when the parametric function is planned to be used many
times. However, in the exploration context, this assumption or even the possibility of running trials
are frequently out of the question. It is not possible to assume that all scenarios where the exploration
will be conducted will be similar between each other and, for this reason, is neither possible to assume
that the best « and 8 values can remain unchangeable.

Furthermore, when these procedures are followed, at the end of the training stage it is often tough
to associate the resultant parameter values with real aspects of the problem (e.g., performance metrics
like time, distances, energy, or even connectivity levels). This lack of understanding may, in turn,
wrongly influence the fine tuning of such parameters without rerunning a portion of trials. Taking

102



Appl. Sci. 2019, 9, 573

those shortcomings into account, an analytic approach—through which the « and g values might be
set independently of the scenarios—is explored.

4. Adaptive a-Value Computation

When a multi-robot exploration process is going to run under communication constrained
conditions, choosing between only exploring or exploring preserving connectivity level is a crucial decision.
The first choice would be suitable when connectivity is out of the question, or it is impossible for
a robot to keep connected and explore at once. In such a case, connectivity does not play any role
in the decision-making process. On the contrary, the second choice is suitable when it is necessary
to interleave high-performance exploration (minimising the total exploration time) and acceptable
connectivity level (avoiding robot isolation as much as possible).

To this end, the human operator is let to use his application field expertise in order to influence the
robot decision—defining a criterion to balance the importance of both objectives—by merely setting a
parameter before the exploration starts.

Therefore, since & and p parameters determine the behaviour of the robots concerning target
selection, two questions come up: (i) How can the value of those parameters be defined in order to
ensure the applicability of the human-operator criterion along the exploration process? (ii) Should
these values be adapted during the exploration process?

Henceforth, the task selection framework and the human-operator criterion are formalised.
Besides, several proofs to demonstrate the existence and correctness of an adaptive a-value that makes
the robots behave following the criterion mentioned above are conducted.

4.1. Task Selection Framework

This process is always made iteratively from a list, comparing the currently best task against the
rest, one by one. Therefore, without loss of generality, the most relevant aspects can be studied just
analysing all the possible relations between an arbitrary pair of tasks. Regarding the distance to a
specific robot location and the connectivity level (number of connections with the rest of the fleet),
any task can be classified according to Table 1.

Table 1. Task classification.

Distance
W Closest (CI)  Furthest (F)

Connected (Co) Cl/Co F/Co
Non-Connected (NC) Cl/NC F/NC

Therefore, the meaning of these categories is straightforward: regarding the assignment of the
fleet, Co means that the task location would offer to the robot at least the minimum level of connectivity
(i.e., one connection to another fleet member); NC means the opposite; regarding the spatial distribution
of tasks, Cl means that the task under consideration is closest to the robot than any other; F means that
the task is furthest to the robot than any other task.

Moreover, let R; a robot and T; and Ty two tasks such that class(T) can belong to any class defined
in Table 1. In any scenario, these tasks can be related to each other according to Table 2. Given that T;
and T, are arbitrary tasks, the matrix can be considered symmetric. Thus, taking one of the triangular
matrices is enough to study all possible cases.

From the lower triangular, it is possible to identify some cases where one task is better (regarding
both path utility and connectivity utility) than the other. Such an example is the [C1/Co;F/NC] where
T; is closer to the robot than Ty, and it is the only one that keeps the robot connected as well. Similarly,
in the [C1/NC;F/NC] case neither task can keep the robot connected, and in consequence, the closest
task Tj results more convenient than Tj.. Thus, in both previous cases, the criterion to choose a task is

103



Appl. Sci. 2019, 9, 573

clear: the closest task should be selected. However, in the other cases, it is not clear at all which task
should be selected. In one case, [C1/NC;F/Co], whichever selection implies either traversing longer
distances or losing connectivity. In the other case, [Cl/Co;F/Co], selecting the closest task T; ensures
traversing the shortest path but could imply losing connectivity. By contrast, selecting the furthest task
T would be acceptable only when the gain in connectivity oppose a more significant travelling effort.

Table 2. Possible cases when selecting from two tasks.

. Ti | cuco F/Co CINC FINC
F/Co F/NC

l/Co [Cl/Co } {G/CO }

o]

CI/NC E{}\EJ

F/NC

Definition 1. The human operator threshold HO-Threshold expresses the human operator criterion through a
distance that represents the extra effort made by robots that the human operator is willing to accept in order to
maintain or enlarge the size of the robot communication network.

In other words, the human operator criterion is determined by setting the distance threshold until
which the targets that preserve or enlarge connectivity are preferred over the rest, for all robots.

For instance, in the [Cl/NC;F/Co] case the selection will be conditioned as follows: T; will be
selected if and only if the length of the shortest path between Ty and the robot location is less than or
equal to HO-Threshold. T; will be selected otherwise.

In order to make the influence of HO-Threshold clearer, an example scene is depicted in Figure 7.
Note that all tasks are within the HO-Threshold, but only T3 can enlarge the connectivity level of the
robot Ry. Thus, applying Definition 1 leads to the selection of task T3 because it enables the robot R; to
travel more distance to gain connectivity. On the contrary, whether the HO-Threshold < 3, Tz would
be no longer preferred over the rest, and consequently the closest task T, would be selected instead.

Hence, in the presence of some specific conditions, it is expected that the application of the HO
criterion can make the fleet more cohesive than following approaches that do not take communication
constraints into account and less restrictive than the ones that do not permit disconnections or force
re-connections as well.

Next, the proofs of correctness and existence of a (and p) values that implement
the HO criterion are conducted regarding the cases present in the lower triangular of
Table 2. The cases {[Cl/Co,F/NC];[Cl/NCF/NC]} are considered first, while the remaining
{[Cl/Co,F/Co];[F/Co,Cl/NC]} are considered afterwards.

104



Appl. Sci. 2019, 9, 573

50 N Explored Area
25 *  R1 (making decision) _
*  R2 (assigned) P Tl
— — —HO-Threshold ‘ .
wl 4 N
4 N
35 a \
< !
30 |
; 4
i 1 !
e ~ v ;
y25 o0 dismniet oty v
. 4 i
20t /ST A ¢ 7
ldist=631—+ A w0 i
15 [ [ | ‘}'““'_7""
| \-'\‘\'\. // I
00 A i
N dist=12.42 4
5
~e__ -7
0
0 10 20 X 30 40 50

Figure 7. Two robots are carrying out an exploration mission. The communication and sensory ranges
are drawn around the robots with red and green dashed lines, respectively. It is assumed that R, has
already chosen the task Ty whereas R; is still selecting from Tj, T, and T3. Dotted lines are used to
show the sight-line between R; and the tasks. The corresponding Euclidean distance is also shown.
HO-Threshold is set to 6.

4.2. [Cl/Co,F/NC] and [CI/NC,F/NC] Cases

In Figure 8a,b, two instances of these cases are depicted, respectively.

50 W Explored Area T ‘-i‘\.\ 50 W Explored Area 7 T
45 # Rl (making decision) N s #* R1 (making dg{c&'\om \-\
* e . ity .
o _HO-Thres| 3 — — —HO-Threshold p
40 — — —Next conngctivity range \ 40 — — —Next conn&lmwtv range \-\
< T2 - - . ' .
35 a1 A ! 35 g IPT*‘*:\ 97T !
a T4, ; 4 T4 o Yoot
30 //« _\ ; 30|, . | g
) P e . L \ T
o ~ 4 - .
y 77 1 dist=118T".g "y k'-'_*;/ Yy p < e
ol /1 Vet N ol / 4 k-
dist=6 i ! / lgist=6in L g
Pt ¥ | P 5 I
VN / ! N\ e ]
\ ]
w0 Y S e of N\ 4N
\ 4 NG _dist=12.42 4
5 N e 5 ~
T =T T o
0 0
0 10 20 30 40 50 0 10 20 30 40 50
X X
(a) C1/Co,F/NC case (b) C1/NC,E/NC case

Figure 8. Two robots are carrying out an exploration mission. It is assumed that R, has already
chosen the task T, whereas R; is still making its decision. The communication and sensory ranges
are drawn around the robots with red and green dashed lines, respectively. Dotted lines are used to
show the sight-line between R; and the tasks. The corresponding Euclidean distance is also shown.
(a) [C1/Co,F/NC] case: robot R; is selecting from targets T, that is the closest and keeps it connected
and T3 that is the furthest and cause a disconnection; (b) [C1/NC,F/NC] case: robot R; is selecting
from targets T;—the closest—and T,—the furthest—given that both targets cause a disconnection.

Proposition 1. When T; and Ty belong to [C1/Co, F/NC] or [Cl/NC, F/NC], the values of « and f do not
make any difference in the selection process.

Proof. This claim can be derived directly from the following facts:

105



Appl. Sci. 2019, 9, 573

e inthe [Cl/Co,F/NC] case the furthest task Ty makes the robot disconnected, and then applying
(7) to Tj and Ty leads to:

@;(a, Ty, R) = - ¥i(Ty) < o ¥i(Tj) + B~ (T, R) = ®;(a, Tj, R), Vo (10)

st Oi(T;, R) > 0,0:(T;, R) =0
Yi(Ty) < Yi(T))

. in the [C1/NC,F/NC] case both tasks make the robot to be disconnected, and thus the ® function
value will depend only on the ¥ term:

Di(a, Ty, R) = - ¥i(Ty) < - ¥i(Tj) = Di(a, T, R), Va (11)
st (T, R) =0,0(Ti,R) =0
¥i(Ty) < ¥i(T))

In conclusion, in any of these cases, the task selection is not affected by a. [

4.3. [Cl/Co,F/Co] and [F/Co,CI/NC] Cases

In the [C1/Co,F/Co] case both tasks offer the possibility to be connected. On the contrary, in the
[F/Co,C1/NC] case opposite objectives are present: one task is closer but disconnected while the other
is connected but further. Thus, the latter case is taken to prove the existence of an «, that can respect
any given HO criterion. The former case is finally used to corroborate the non-existence of any possible
unwanted side effect caused by the achieved a expression.

4.3.1. [F/Co,C1/NC] case.

Based on the human-operator criterion (set by a threshold value) we want an a-value that makes,
following the scenario depicted in Figure 9, T3 preferred over T; if and only if T3 belongs to the circular
area defined by the HO-Threshold.

50 B Explored Area T "-"\\
45 # Rl (making deciion) N
+  R2 (assigned)’ "\
— — —HO-Threshold "
40 F — — —Next conh&mwm range |
a T2 - ~, g
35 < T3 “i T :
a1 S AN
30 _ | *»y
7 Rl A vy
e N ~ ,*
¥ 2 / I dist=11.81" [N i C,/
| — ~ e
20 Jain ' il
/mst S I \ /
15 l o ¥ ] p ’
NN / J
ot ! s -
\ el A7
N /
5 ~ e
= -~ = -
a
0 10 20 X 30 40 50

Figure 9. [F/Co,Cl1/NC] case.

Next, the existence of such an a parameter will be demonstrated, and its value will be derived
as well.

106



Appl. Sci. 2019, 9, 573

Proposition 2. When T; and Ty belong to [F/Co,CI/NCI is always possible to find an a-value that satisfies the
following inequality:

i(a, Tj, R) = - ¥i(Tj) + B - (T, R) = - ¥i(Ty) = Pj(a, Ty, R) (12)

s.t. Q,‘(T]', R) >0, Q,‘(Tk,R) =0
Yi(T;) < ¥i(Ty)
Proof. Let (); the utility assigned to the fact of being connected with only one teammate. Then,
from (9), it is possible to state that: if Tj belongs to any [+/Co] class, Q1 < Q;(T}, R), V(i j) over time.

Moreover, if the number of robots does not change, it is also possible to state that (); remains invariant
over time. Applying this result into (12) leads to the inequality presented next in (13):

Di(a, Tj, R) > a-¥i(Tj) + B~ O >a- ¥i(Ty) = i, Ty, R)
a-Yi(Ty) + (1 —a)- O >a-¥i(Ty)
a- (Yi(Tj) — Q)+ >a - ¥i(Ty) (13)
0 >
Fi(T) = ¥i(Ty) + O —

Besides, substituting O; = x and ¥;(Ty) — ¥;(T;) = u, equation (13) may be rewritten as follows:

X
a <
T u+x

:Mginf(uj‘rx) (14)

st.0<c<x<1
0<u<i1
given that: () = ¢
¥i(Tx) > ¥i(T;)

From (14) is possible to claim the existence of an a-value that obey any HO-Threshold if and only if

the function ;77 presents an absolute minimum on the domain:

D={(x,u)|]0<c<x<1,0<u<1}.

This fact can be stated employing Weierstrass theorem (a function f has an absolute extreme if it is
continuous and its domain is compact). Besides, the minimum point might be calculated analysing
both: (i) the relative extrema and (ii) the points lying on the border of D. Following this procedure, it
is possible to find the absolute extreme of the function ;7 in (x,u) = (¢, 1).

Moreover, it is remarkable that this extreme represents a place where the most demanding
conditions are reached: task T; presents the lowest positive connectivity utility, and the distance
between both tasks is the largest. Hence, the existence of a positive value a < 1?—51 (regardless of how
demanding can be the distance relation between tasks) that might alter the task selection in favour of
connectivity has been demonstrated. [J

Nevertheless, in (13) a is independent of the HO-Threshold. Consequently, its direct application
would result in a strictly connectivity-guided exploration, where tasks that offer connectivity are
always preferred over the rest no matter how far they are. Therefore, to relate it with an HO-Threshold
the value of the term ¥;(T;) in (13) must be substituted by the utility of being HO-Threshold far from the
robot, say ¥;(Txo). Next, the value of the term ¥;(Ty) is substituted by 1 since ¥;(T;) = 1 represents

107



Appl. Sci. 2019, 9, 573

the necessary condition to reach the extreme coordinate # = 1 that arose from (14). Finally, the
expression for an HO-Threshold dependent «, say ayo, is expressed in (15) as follows:

Oy

T 1= ¥i(Tao) + O (15)

XHO
Proposition 3. The applicability of the apjo referred to in (15) causes any task within the threshold scope that
also offers any positive connectivity level to be favoured over the rest of the tasks that do not offer any connectivity
level, regardless of how close to the robot they are.

Proof. ®;(a,Tj,R) > @;(a T, R) is imposed to any tasks (Tj,Ti) that respect the
[F/Co,Cl/NC] conditions:

@;(a, Tj,R) = - ¥i(T)) + B- QU(Tj, R) > a0 ¥i(Ty) = Pi(a, Ty, R)
a-Yi(T) + (1 —a) - Oi(T;, R) > - ¥i(Ty)
a- (¥i(Tj) — Qu(T;, R)) + i(Tj, R) > - ¥i(Ti)
Qi(T]'rR) >
¥i(Ti) — ¥i(T)) + Qi(Tj, R) —
Then, applying (15) leads to (16):
Q;(T;, R) O
Yi(Ty) — ¥i(Tj) + (T, R) — 14+ — ¥i(Thao)
w1 2 G (i (10) - 1) + w1 (16

Q;(T;, R)
¥i(Tj) = sup o, (Yi(Tuo) — 1) + Yi(Ty)
L . . Q:(T,R) . ,
Since 7) ()1 is constant, ii) le > 1, and i7ii) (¥;(To) — 1) < 0, it is possible to conclude that:
e ¥,(T}) is monotonically decreasing concerning 0;(T}, R).
e the upper bound is reached when:

(@ Yi(Tmo) =1
(b) 0<¥i(Tno) <1,04(T;,R) = Q1 and ¥;(Ty) = 1.

Please note that (a) is out of the proposition conditions. Instead, (16) can be rewritten imposing (b),
leading to:
Q
¥i(T) 2 - (¥iTho) = 1) +1)
Yi(T;) > ¥i(Tro)

which is true if, and only if, A; (Tj) < HO-Threshold, which is indeed what the human operator would
like to get from his criterion application to tasks within the HO-Threshold. Hence, following (15) under
the [F/Co,Cl/NC] conditions it is always possible to compute an apjo-value that makes the robots
behave following the human-operator criterion. [

Likewise, it is important to highlight that the apjo-value needs to be calculated every time a robot
is ready to make a decision. This need for adaptation arises from ¥;(THo), which is not constant.
Its value depends on the relation between the HO-Threshold and the relative distance to the current
furthest task. That way, the robots can autonomously adapt the weights of the task utility function
according to the changing conditions of the environment in order to be always consistent with the
human-operator criterion.

108



Appl. Sci. 2019, 9, 573

4.3.2. [Cl/Co,F/Co] Case

This analysis is devoted to checking the applicability of the ajjo when the conditions to achieve a
good trade-off between path cost and connectivity level are less demanding than in the [F/Co,Cl/NC]
case. In the [Cl/Co,F/Co] case, although one task is closer than the other, the differences in the
positive connectivity level offered by them could make the furthest task more attractive than the
closest. From that, considering the connectivity level offered by the closest, two cases may be identified:
(i) When T; offers a higher level of connectivity than T;. In such a case, there is no doubt that
independently of the ayo value, the selection would always favour the task T; because it is the closest
as well; (ii) On the contrary, when Ty offers a higher level of connectivity than T]-, the selection of T
will depend on both how distant from robot it is and how much more connected would be the robot
on Tj respect to T;.

Finally, to show that the apo value does not introduce any unwanted side effect on the task
selection process when tasks belong to the [C1/Co,F/Co] case, it is needed to prove that it neither
contradicts the first case nor restricts the occurrence of the second case.

Proposition 4. In the presence of two tasks subject to the [Cl/Co,F/Co] case conditions, if T; is the closest and
simultaneously the one which provides the highest level of connectivity, then the application of the apo value
will never result in the selection of Ty.

Proof. By contradiction, it is assumed that under these conditions the selection could be in favour of
T}, implying that the following inequality holds:

Di(a, Tj, R) = - ¥i(Tj) + B- Q(Tj, R) < a-¥i(Ti) + B~ Qi(Ty, R) = @;(a, Ty, R) a7
)
j

a- (Fi(Ty) —¥i(Ty)) + B (u(Tj, R) — (T, R)) <0

Which implies that, independently of the ago value, the terms (‘¥;(T;) —¥;(T)) and (4 (T}, R) —
Q;(Ty, R)) should not be positive simultaneously. Thus, either (¥;(T;) < ¥;(Tx)) or (O;(T},R) <
Q;(T, R)). However, this contradicts the hypothesis where T; is stated as the closest and the one
which simultaneously provides the highest level of connectivity, and accordingly the proposition has

been demonstrated. [J
Proposition 5. In the presence of two tasks subject to the [Cl/Co,F/Col case conditions, if T; is the closest and
Ty the one which provides the highest level of connectivity, then the application of the apo value will never be

conclusive concerning the task selection.

Proof. The relation between the utility of tasks is written as follows in (18):

@;(a, Tj, R) = - ¥i(T)) + B- Q(Tj, R) s a- ¥i(Tx) + B- Qu(Ty, R) = Pi(a, Ty, R)
- (¥i(T) = ¥i(To) S B+ (QU(Ti, R) — (T}, R))
w- (¥i(T)) = ¥i(To)) S (1—a) - ((Ti, R) — (T}, R)) (18)

(Tk/ ) Q( )
(Qi(Ti, R) — Q4(T, R)) + (‘1’ (Tj) = ¥i(Tw))

xS

Substituting (Q;(Ty, R) — Q;(Tj, R)) = x and (¥;(T;) — ¥i(Tx)) = u, itis possible to state that in
order to favour the selection of T; the inequality (19) must be held, otherwise the (20):

109



Appl. Sci. 2019, 9, 573

n > o = /x:sup< o > (19)
u—+x u-+x
X x

< =1

(X_u-i-x == « mf<u+x) (20)
st.0<x<1

0<u<i1
given that: Q;(Ty, R) > (T}, R)
Yi(Tj) > ¥i(Tx)

On this domain, the function 3

iz presents an absolute maximum equal to 1 in the point
(x,u) = (1,0), and absolute minima equal to 0 along the line segment defined by (x,u) = (0,u).

Assessing the apjo expression derived in (15) with (0, 1) leads to (21) and (22), respectively:

O

0o=———— 0=0 21
14Oy — ¥i(Tho) ! @D
1=
1401 — ¥i(Tho) (22)
1-Y¥i(Tho) =0 .. Y¥i(Tuo) =1

From which, while the condition expressed in (21) is reached when |R| — co, the one expressed
in (22) is reached when HO-Threshold tends to 0. The condition (21) is unreachable in practice implying
that no apo can make the task Ty always preferred over T;. Conversely, the condition (22) is reachable
if, and only if, the human operator deliberately does not want to care about connectivity. Otherwise,
there is no positive apo-value that can make the task T; always preferred over Tj.

Consequently, when apjo € (0..1] under the [C1/Co,F/Co] conditions, it is not possible to hold a
single preference over time. [

4.4. Considerations and Usefulness

In order to establish the task selection criterion, the human operator only needs to choose the
extra distance HO-Threshold—according to his expertise and knowledge—he is willing to ask the robots
to travel in order to keep or enlarge the connectivity level of the fleet. Once the HO-Threshold is set,
robots are capable of selecting tasks consistently with the HO criterion following the Equation (15).
Furthermore, it is important to note that the HO-Threshold value does not change along the exploration
but, as was pointed out, the aj;0 does, due to the dependency on the ¥ function. This explains the
need for auto-adaptive capabilities concerning the multi-objective ® function.

Additionally, it also worth noticing that setting HO-Threshold= co it is a practical way to implement
an event-based connectivity approach where the tasks that provide connectivity will always be
preferred over the rest, no matter how close they are.

5. Task Allocation Scheme

The allocation scheme is founded on two pillars: the coordination method and the task
selection algorithm.

5.1. Coordination Method

In order to take advantage of the individual computing power of the robots, to avoid the single
point of failure, and to deal better with the presence of real communication constraints during the
exploration, a decentralised approach is followed. Typically, estimation of travelling costs and target
benefits, as well as mapping and localisation, are the tasks chosen to be made locally by the robots.

110



Appl. Sci. 2019, 9, 573

However, to achieve a cooperative behaviour, both the local map and localisation information must be
shared among team members.

Additionally, the relation between |T| and |R| can result in two somewhat different behaviours:
(i) If |T| < |R], not all robots would be needed to reach all targets. Some robots may choose
to keep quiet; (ii) When |T| > |R] all robots would be needed in order to reach the maximum
amount of targets at a time. When robots decide to explore, the task selection is made coordinately.
Robots coordinate their actions implicitly, sharing specific information (such as locations, eventually
already-done-selections, and local maps) and running the same selection algorithm. Thus, it is possible
for the multi-robot system to compute a coordinated-tasks-to-robots distribution in a decentralised
way [15,17,44].

To do so properly, the exchanging information time is carefully set up. The system is fully
asynchronous, meaning that: (i) Robots do not wait for others; (ii) After selecting a task, the robots do
exchange their selection in order to prevent future overlappings; (iii) Local maps and—by means of this
—the sets of new available tasks are periodically exchanged, each time two conditions are met: (1) A
waypoint of the planned path is reached; (2) New information has been gathered; (iv) Localisation
data is exchanged at a higher rate than maps because its influence on the task selection algorithm is
higher too.

While localisation data is exchanged periodically, the rest of data exchanging is triggered by events
instead. These policies make the system more efficient and flexible because: (i) No data is transmitted
when there is no new information to exchange; (ii) There is no need to set up any rate parameter when
exploring different environments. The robot life-cycle algorithm is sketched in Algorithm 1.

Algorithm 1 Robotic Agent Life-cycle algorithm.

1: function EXPLORE(i,R,HO-Threshold)
> i stands for the robot position in vector R.
> R stands for the robots location vector.

2: atT < true > atTarget flag.
3: pose < Rli]
4 gMap < getMap(pose) > Occupancy Grid map.
5: while true do
6: R* O > Vector of connected robot locations.
7: forje RAj#ido
8: if T';(j,gMap) > 0 then > Connected robot.
9: R*[j] = rcvPose(j) > Asking for localisation data.
10: sndPose(pose, j) > Sending own localisation data.
11: gMap = mapMerge(gMap, rcoMap(j)) > Asking for local maps.
12: end if
13: end for
14: if atT then
15: T = getFrontierTasks(gMap) > Tasks location vector.
16: task < get Assignment(i, R*, T, |R|, HO-Threshold)
17: goto(task)
18: end if
19: pose = getPose() > Global localisation.
20: atT < pose = task
21: [gMap, ni| = mapMerge(gMap, getMap(pose)) > Mapping.
22: if atT V ni then > R; arrives at task or new information was gathered.
23: forjc R*N\j#ido
24: sndMap(gMap, j) > Sending local map.
25: end for
26: end if
27: end while

28: end function

111



Appl. Sci. 2019, 9, 573

5.2. Task Selection Algorithm

The task selection process employs the multi-objective utility function ® defined in (7) with apo
values dynamically adapted by (15) to solve the MRTA problem stated in Secion 2.5. The corresponding
algorithm is sketched in Algorithm 2.

Algorithm 2 Task selection algorithm.

1: function GETASSIGNMENT(i, R*, T, M, HO-Threshold)
> i stands for the robot position in vector R*.
> R* stands for the robots location vector.
> T stands for the current tasks location vector.
> M stands for the fleet size.

2 (T4, T« T
3: R" + R*
THO « {T; | Tj € T", Ac(T;) < HO-Threshold, VR, € R"} > Relative distance Ax(Tj) is

defined in Section 3.2.

=

5: for each k in R* do

6: for each j in THO do

7: PU[k, j] = ¥(T;) > Path utility matrix.
8: end for

9: end for o)

10: XHO ! > (15)
o B=1 7&}—[0‘Y1(HO—Threshold) +0

122 NHO —|THO|

13 M" = |RY| HO

14: T2RDist < Arjl\\’/;:o & Tasks-to-robots distributions T2RDist € NI4T [*M*
15: for each row r in T2RDist do

16: ®fr] = TN apo - PULk, j] + B O (T]HO, [RY, Tﬂ}) ,j = T2RDist(r, k)

17: end for

18:  T* < T2RDist|r,i] | arg max, P[r]
19: return T*

20: end function

Firstly, the input parameter R* specifically corresponds to the locations of the teammates currently
connected with the robot R;. Next, in lines 2 and 3, both the task and robot location sets are split up into
two subsets each one (assigned and unassigned items, respectively). Line 4 is in charge of taking only
the unassigned tasks that are within the HO-Threshold scope from every robot. Afterwards, from lines
5 until 9, the path utility matrix is computed regarding all possible task-robot combinations. Next,
lines 10 and 11 aim to compute the apo and B values according to (15). The set of tasks-to-robots
distributions is calculated from line 12 to 14. Finally, from line 15 to 17 all possible assignments are
evaluated using the ® function while the task corresponding to robot i of the best assignment is
selected in line 18.

Some considerations on Algorithm 2 are hereafter discussed. Concerning the computation of the
set of tasks-to-robots distributions (lines 12 to 14), it provides a way to potentially avoid falling in
local minima or even taking wrong decisions. Note that the connectivity utility function is subject to
locality conditions and thus, it is not possible to compute optimal distributions from the application of
iterative polynomial-time assignation algorithms such as the Hungarian method [14].

On the contrary, Algorithm 2 can choose the optimum tasks-to-robots distribution by evaluating
all possible THO-to-R* distributions. Nevertheless, this process may be potentially very hard since
AN = (N%j‘d), = I _ (NHO — 1) = TI7ZL (NHO — i) — O(N*M"). Therefore, the
smaller |THO| and |R¥| the faster the algorithm will run. In the first case | TH°| is bounded by pruning
|T"| with the help of HO-Threshold.

112



Appl. Sci. 2019, 9, 573

On the contrary, even being naturally bounded (|R| > |R*| > |R"|), the set R could imply a large
R". Besides, all efforts are to keep the fleet connected as much as possible, leading to |R*| — |R|.
Fortunately, in a fully asynchronous multi-robot system the probability of two or more robots being
simultaneously making a decision is negligible.

Finally, note that Algorithm 2 assumes | THC| > |R¥|; otherwise the tasks-to-robots distribution
cannot be computed. In such a case, the input parameters are managed in order to conduct a
robots-to-tasks distribution instead. In turn, |Ar%1;0| does not represent a significant effort since
M* > NHO holds for small values.

6. Baseline Statement and AAMO Approach Results

The aims of this section are: (i) To establish a baseline on the main figure of merits that will be
defined to asses the benefits of different approaches; (ii) To assess and analyse the performance of
different instances of the Auto-Adaptive Multi-Objective (AAMO) approach (different instances—from
now on—refer to different HO-Threshold setup values) under non-ideal communication conditions;
(iii) To compare AAMO instances against other approaches under non-ideal communication conditions.

Regarding the first purpose, the baseline is established regarding two state-of-art approaches so
that the simulation runnings concern the comparison between a Yamauchi-based algorithm [5] and the
minPos algorithm [17] under ideal communication conditions. These algorithms were chosen since
they are decentralised, as are the author’s proposal; while Yamauchi is a reference on exploration and
typically serves itself as a comparison baseline, the minPos proposal has demonstrated very good
performance, outperforming other important reference algorithms.

On the contrary, regarding the AAMO assessment and the comparison with other approaches,
the simulation runnings concern exploration missions subject to non-ideal communication conditions.
In this case, the primary purpose is to understand how compromised could be the exploration time
performance when the connectivity level is prioritised and to reveal possible improvements concerning
previous techniques. In consequence, there are experiments which compare only the performance
achieved by different instances of AAMO, while in other experiments, where relevant, comparison
with state-of-art performance is taken into account too.

6.1. Simulation Setup

All simulations were conducted over MORSE physics simulator (www.openrobots.org/morse/
doc/stable/morse.html) using ATRV-like robots equipped with laser range sensors. The more relevant
simulation parameters are shown in Table 3.

Furthermore, it is important to precise that except for Communication range that depends on the
device, the rest of communication factors were taken from [38] regarding their strong dependency on
the materials present in the environment. The values of HO-Threshold correspond to 66%, 50%, and
33% of the communication range c;, respectively. In all simulations localisation and low level motion
control are taken for granted.

113



Appl. Sci. 2019, 9, 573

6.1.1. Scenarios

Table 3. Simulation setup.

Robot Features & Capabilities

Model ATRV
Maximum speed (s;) 1 (m/s)
Laser scan window 360 (°)
Laser range 6 (m)
Laser resolution 3(°)
Communication parameters.

Range (c;) 30 (m)
Wall attenuation factor (W, s) 3.1 (dBm)
Distance attenuation factor (D, f) 1523

C factor 4 (walls)
Fleet features.

Heterogeneity Homogeneous

Initial positions
Environment features.

Left Bottom corner

Terrain

Wall height
Wall thickness
Corridor width

Grid Map features & parameters.

80 x 80 (m?)
2 (m)

0.2 (m)

8 (m)

Mesh Cartesian grid
Cell side 2r;
AAMO parameters.
0 3
2-(|R| = 1)

P
HO-Threshold

20, 15, 10 (m).

Simulations are conducted over synthetic scenarios (See Figure 10) where long distances and
obstacle presence may offer similar challenging conditions that would be expected in the real world.
The Loop and Cross scenarios (see Figure 10a,b) were mainly used to confirm the correctness of the
implemented solutions and to show the advantages of using a multi-robot approach over a single
one. Unfortunately, and caused by the shape and size of the free zones, on those scenarios there are
nearly no possibilities to demonstrate any advantage of the proposed approaches over the others.
Finally, the Maze scenario (Figure 10c), that represents the most challenging environment, was used
to establish comparative results among the approaches. These results are further analysed below in
Sections 6.3 and 6.4, respectively. Due to the big amount of collected data, only the values related to
Maze runnings are summarised and discussed here. Even so, all charts and screen-shots generated
from data concerning all of the three environments are available online: www.fing.edu.uy/~fbenavid/
projects/MuRE /mure html.

114



Appl. Sci. 2019, 9, 573

(@ (b)

Figure 10. Benchmark scenarios. All terrains cover an 80 x 80 m? flat surface with static obstacles (walls
including the outer perimeter). Proposed as benchmarks in [45]. (a) Loop-like scenario; (b) Cross-like
scenario; (c) Maze-like scenario.

6.1.2. Robotic Agent Architecture

From a software architecture point of view, each robot is organised in three layers. In Figure 11
the main components are roughly depicted. Each layer is responsible for different aspects grouped
by abstraction levels so that the higher layer, the more abstract are the issues which the software
components are devoted to.

Physic/Simulated
World

Figure 11. Robotic Agent Architecture. The first layer includes the software components that represent
systems or devices through which the agent can interact with the environment. The second layer
includes models and algorithms to keep the models up to date. The third layer includes the task
identification and selection algorithms. Components on the shadowed zone were developed during
this work.

Going bottom-up in the layer stack, in the first layer the components are in charge of the
interaction between the robotic agent and the environment. The Motion Control component is taken
from the MORSE (MORSE physics simulator www.openrobots.org/morse/doc/stable/morse.html)
repository and is responsible for controlling the motors. Besides, in this work, the component follows
a way-point-based motion strategy. In the Sensory Capabilities component all sensory systems in charge
of gathering environmental information are grouped. The most relevant information comes from the
Pose and the Laser scanner sensors, also taken from the MORSE repository. From the Pose sensor it is
possible to know the robot configuration X;(t) = {x;(t),y;(t),6;(t)} at any time—implementing the

115



Appl. Sci. 2019, 9, 573

localisation capability—while the laser gives an array of distance measurements z(t) from which is
possible to build the map of the close surroundings. Finally, the Communication Capabilities component
is asked to manage every aspect related to communications receiving/sending information from/to
(see incoming/outgoing arrows) other team members. In this work, and since only the distance and
wall attenuation effects (discarding other sources of perturbation) are considered, the communication
is simulated in a very simple manner directly applying the communication model introduced in
Section 2.3.

The second layer represents the core of the system where the models and algorithms that support
the highest level functionalities—namely related to the exploration purpose of the system—are
allocated. On the one side, the World Model component is in charge of modelling all physic interaction
between the robotic agents and its surroundings. By keeping several structures up-to-date (e.g.,
occupancy grid map, the position of the fleet members, assignment of the fleet members), it is also
able to support foretelling services that would be required for the highest level algorithms. On the
other side, Mapping and Path Planning components are also supported by the World Model component
since it gives an access point to the mapping structures and the kinematic models as well. The Mapping
component implements a standard occupancy grid approach [46] where the posterior of the map is
calculated from a collection of separate problems of estimating p(my|z(t), X;(t)) for all grid cell m;
and where each m; has attached to it one of the occupancy values S = {f, 0, u} (previously defined
in Section 2.1). The Path Planning component implements the wave-front propagation approach
introduced in [43].

Finally, high level decisions as coordination are taken in the third layer when the task allocation
scheme is executed by the Task Assignment component. In particular, the arrow between Task Assignment
and Communication Capabilities components represents the exchange of current positions and task
assignments from the agent to the fleet and vice-versa.

6.2. Figure of Merits

The performance of approaches is assessed regarding the following figures of merit. The first three
are the most popular and represent the strongest quality indicators [20]. The fourth has been taken
from [47] and sometimes can be useful to explain the results concerning the first two. The fifth
was inspired by [48] in order to measure the connectivity quality. Besides, a sixth indicator is
proposed here in order to have a better qualitative analysis of the connectivity aspects. Moreover,
the connected components of the topology along the exploration are also plotted. The indicators are
defined as follows:

e Total exploration Time (TT): time elapsed from the beginning until the end of exploration measured
in seconds.
o Path Length (PL): sum of the distance travelled by each robot measured in meters.

e Coverage Ratio (CR): percentage of the accessible terrain covered by the team. Calculated as:

explored cells - 100
accessible cells * .

e Over-Sensing cell Ratio (OSR): percentage of cells sensed as new by more than one robot.
Ce‘alculated' as: 7""“;;‘1‘:?2;?5515‘ 100, ‘

e Disconnection Last Ratio (DLR): percentage of TT where at least one robot is totally unconnected.
Calculated from the Fiedler number corresponding to the network connectivity graph
(see Section 2.6.3).

e Maximum Disconnection Last Ratio (MDLR): calculated as: longest dlsmm?hon period - 100

6.3. Baseline Statement

In this section, a baseline of performance on the main indicators is established from runnings of
both Yamauchi and minPos approaches under ideal communication conditions. Since the exploration
problem is expected to be more difficult under non-ideal communication conditions than otherwise [20],
the obtained results may be considered as a baseline of the first four indicators—defined before in

116



Appl. Sci. 2019, 9, 573

Section 6.2—with respect to the corresponding performance achieved in runnings conducted under
non-ideal communication conditions.

6.3.1. Collected Data

In order to conduct the assessment and comparison stated above, at least ten realistic
software-in-the-loop simulations were executed on the Maze scenario presented in Figure 10.
All collected data is presented in Table 4 and are organised obeying the following scheme. The
columns refer to (from left to right): figure of merits (FM); approaches, where Y and MP stand for
Yamauchi and MinPos, respectively; and the fleet size |R|. In each fleet size, the average AVE and
standard deviation StD values are registered.

Table 4. Yamauchi and MinPos results under ideal communication conditions on Maze environment.

IR|
1 2 3 4 5 8 10
AVE StD AVE StD AVE StD AVE StD AVE StD AVE StD AVE StD

T Y 1958 121.8 1288 255.9 902 128.6 791 125.6 647 78.5 516 413 459.5 415
MP 1898 1480 1044 110.1 779 72.8 615 52.0 505  48.8 496 19.7 482 374

PL Y 1308 940 1581 1574 1665 1589 1831 2257 1896 186.2 2093 959 2294 173.9
MP 1268 59.0 1413 1241 1420 854 1467 948 1592 107.8 2053 50.3 2438 140.7

CR Y 99.1 009 990 006 990 004 991 005 99.0 0.04 99.0 005 991  0.04
MP 990 0.04 991 006 991 006 991 0.05 991 005 991 007 991 007

OSR Y 00 000 123 057 222 048 368 070 525 081 545 021 7.00 012
MP 00 000 093 019 231 038 294 025 437 050 545 0.11 7.00  0.08

FM

6.3.2. Baseline Assessment

We start the analysis highlighting that both approaches can adequately explore all the environments
presented above in Section 6.1.1. Coherently, both approaches achieve high levels of CR. This can be
seen clearer in Figure 12.

Coverage ratio
Ideal communication conditions

100

995

Fd 29

98

robots

Figure 12. Coverage ratio (CR) under ideal communication conditions. Both approaches achieve a
coverage bigger than 99% of the terrain regardless of the fleet size.

Furthermore, the minPos approach outperforms Yamauchi concerning TT as was expected.
However, the most notorious differences of performance are observed on fleets which size is less than
or equal to five robots, as can be seen in Figure 13.

117



Appl. Sci. 2019, 9, 573

Total Exploration Time
Ideal communication conditions

2500

MP —

2000

1500

seconds

1000

500

robots

Figure 13. Total exploration time (TT) under ideal communication conditions. Both approaches
show a decreasing trend of TT as the fleet size increase. Nevertheless, the fact that the performance
improvements are decreasing suppose the existence of a limit on the benefit from robots adding.

In crowded environments, going from one location to another is often more difficult than in the
presence of fewer robots. Therefore, due to collision avoidance manoeuvres, both approaches show
an increasing PL when the fleet size increases. This behaviour may be observed in the corresponding
chart in Figure 14. On the one hand, Yamauchi presents a trend with an almost invariant slope along
the different fleet size values. On the other hand, under MinPos, the trend of PL presents a positive but
minor slope from one to five-robot-sized fleet after what it becomes very steep.

Path length
Ideal communication conditions

2600

T <

2400 (M
2200
2000

1800

meters

1600

1400

1200

1000

800

robots

Figure 14. Path length (PL) under ideal communication conditions. The trend of PL is upward in
both cases.

Hence, the analysis is divided into two cases. Firstly, when fleet size is less than or equal to five
robots, MinPos is more efficient than Yamauchi since both approaches achieve very similar coverage
ratios (see Figure 12) despite in the latter robots need to traverse longer distances than in the former,
on average. That is expected since the Yamauchi approach does not take care about the dispersion of
the fleet as the MinPos does and consequently, in the former robots are forced to deal with crowding
more frequently than in the latter. This is a remarkable difference given that the energy needed to
support an exploration mission will be closely related to the distance traversed by robots.

Contrarily, as the fleet size increase beyond five robots, the shape of the scenario and the peculiar
wall distribution all together seem to make the crowding unavoidable for the MinPos approach, causing
a severe worsening on its PL performance.

118



Appl. Sci. 2019, 9, 573

Finally, it is interesting to observe the over-sensing-cell phenomenon, because, by observing the
amount of rework done by the fleet during exploration tasks, it also gives a good measure of the
system efficiency.

In this case, we start the analysis pointing that in an ideal world—with perfect communications,
perfect sensing and instantaneous actions—there would be no place for over-sensing. Nevertheless,
in the real world, communications and sensing systems are not perfect and, more important, all actions
take time. Even the ones which do not involve motion such as sensing, computing and communicating
actions need some window time to be executed. Therefore, many things can happen simultaneously,
e.g., sensing actions conducted on the same objects. In such a case, two or more robots might report
the discovery of the same cells.

In conclusion, even under ideal communication conditions, it is possible to register some level
of over-sensing, and this level is unavoidable because of the parallel nature of the system. However,
it is equally interesting to analyse the over-sensing results: (i) When the fleets are obeying different
policies; (ii) To have a baseline against which the results obtained under non-ideal communication
conditions may be compared.

Backing to the experiments, during the simulation runnings we verify that the most significant
over-sensing record is mainly generated at starting steps when all robots are very close to each other
(recall that all robots start from the same corner of the scenario, see Table 3) and, in consequence,
its sensing scopes overlap each other, significantly. In Figure 15 the robot placement setup at the
starting time is shown.

Figure 15. Robot placement setup at starting time. Robots are represented by black dots. The sensing
scope of the robot placed right in the corner is represented by a grey area where it is possible to see the
laser aces and the obstruction caused by some teammates. Robots are placed from the corner along the
x and y axes. As the fleet size increase, new robots are placed next following the row of robots on each
axis, alternately.

Conversely, after this initial period, the robots overlap each other less frequently, and hence the
OSR remains almost unchangeable over time, in both approaches. Despite this, minor differences may
be highlighted. Due to a better fleet distribution on the terrain—which decreases the probability of
simultaneous sensing events—the fleet makes slightly less rework under MinPos approach than under
Yamauchi approach (see Figure 16).

6.3.3. Conclusions

Concerning the maze scenario, the conclusions of the section are: (i) Regarding fleets integrated
with at most five robots, the MinPos approach is clearly advantageous (outperforming the Yamauchi
approach in all assessed figures of merit); (ii) The benefits of employing the MinPos approach are
severely affected when fleet increase beyond five robots, decreasing quickly or even disappearing
when it is about eight robots.

119



Appl. Sci. 2019, 9, 573

Over-sensing cell ratio
Ideal communication conditions

robots

Figure 16. Over-sensing ratio (OSR) under ideal communication conditions. This shows how as fleet
size increases the trend of OSR is upward as well. This is expected since the more robots sensing the
environment the higher the probability of simultaneously sensing the same cells.

6.4. AAMO Assessment

This section aims to study the impact of using different HO-Threshold values on the performance
of the proposed AAMO approach when the fleet is asked to explore an environment under non-ideal
communication conditions. Moreover, these results are compared with the one achieved by other
approaches like Yamauchi and MinPos—when they are subject to non-ideal communication conditions
too—and also with an event-based-connectivity strategy that does make all efforts in favour of
connectivity (regardless the total exploration time).

This last comparison is namely important because the performance of this kind of strategy may
serve as an upper bound on the connectivity level over time and the total exploration time as well.
To do so, typically two strategies (based on different connection requirements, see Section 1.1.1) can
be considered: the ones which force the robots to be connected only on task-arrival time (kind of
event-based connectivity) or the ones which force the robots to keep always connected—even during
the path traversal periods (continuous connectivity). In the former, the robots are forced to select
only between tasks which location would not cause isolation on arrival—regarding the current task
assignment of the fleet. Nevertheless, it does not take into account the connectivity level along the
path between the current robot location and the location of the task under consideration. Conversely,
the latter imposes stronger restrictions on the fleet mobility in order to guarantee connectivity at all
times. Consequently, depending on the application field the latter strategy would be recommended
but is more complex to implement than the former. On the contrary, the former allows a simpler
implementation but could lead to a lower level of connectivity along the exploration. Concerning this
document, a connectivity-at-task-arrival-time based strategy is used for comparison purposes.

Besides, it is also important to highlight that, despite Yamauchi and MinPos assume ideal
communication conditions, neither approach needs to be modified or adapted in order to properly run
under non-ideal communication condition. Nevertheless, in the MinPos case, some severe degradation
is expected because of the following working hypothesis are not guaranteed anymore: All robots
share the same map and know the position of the other fleet members, at all times. This could
lead to incoordinations that, in turn, would harm the dispersion strategy on which the approach is
strongly based. Conversely, in the Yamauchi case, the level of expected degradation is fewer due to
the coordination level between robots is fewer as well. Robots only try to avoid going to the same
task simultaneously.

120



Appl. Sci. 2019, 9, 573

6.4.1. Collected Data

In order to conduct the assessment and comparison stated above, at least ten realistic software-in-
the-loop simulations were executed on the Maze scenario presented in Figure 10. All collected data is
presented in Table 5 and are organised obeying the following scheme. The columns refer to (from left
to right): Figure of Merits (FM), Approach, where Y, MP, EbC, and AAMO:HO-Th stand for Yamauchi,
MinPos, Event-based Connectivity (implemented by an AAMO: instance, as was mentioned above in
Section 4.4) and Auto-Adaptive Multi-Objective:HumanOperator-Threshold, respectively; and fleet size
|R|. The HO-Threshold values are 20 m, 15 m, and 10 m (equivalent to 66%, 50%, and 33% of the
communication range c;, respectively). Besides, since the communication conditions are non-ideal all
runnings only concern fleets integrated with multiple robots (explicitly avoiding the single robot case
because the communication conditions do not make any difference on it).

Table 5. AAMO Results obtained under non-ideal communication conditions on Maze environment.

IR|

FM Approach 4
AVE StD AVE StD AVE StD AVE StD AVE StD
Y 1216  131.7 904 73.6 759 78.2 653 53.3 496 86.5
MP 1201 1182 945 95.4 801 90.2 683 57.9 491 29.2
T EbC 1751  131.0 1600  190.7 1339 291.7 1028  154.6 750 89.0
AAMO:20 1292 878 1100  88.1 913 949 767  104.0 661  108.2
AAMO:15 1222 73.6 1100 130.1 823 79.0 723 65.7 606 85.8
AAMO:10 1137 85.3 960 123.1 774 94.3 620 76.9 514 23.1
Y 1592 1442 1707 1738 1842 190.0 1846 139.0 2216 290.7
MP 1583 1349 1744 1777 1911 200.2 1960 173.8 2375 159.9
PL EbC 2215 1540 2929 3235 3416 618.6 3181 4151 3412 2963
AAMO:20 1726 1144 2086 2225 2243 236.1 2394 2528 2782 376.1
AAMO:15 1669 869 2056 207.8 2106 2048 2263 219.2 2536 2226
AAMO:10 1542 1199 1859 225.6 1982 2155 2007 221.7 2279 2485
Y 99.2 0.33 994 037 993 0.33 99.3 024 992 0.20
MP 99.3 0.35 994 029 994 0.33 99.6 034 992 0.20
CR EbC 99.1 004 990 005 99.1 0.09 99.1 011 992 0.30
AAMO:20 99.1 0.26 992 028  99.2 0.28 99.3 035 994 0.37
AAMO:15 99.2 0.35 99.3 0.32 99.3 0.31 99.2 0.12 99.4 0.39
AAMO:10 99.3 0.32 99.3 040 993 0.29 99.3 029 991 0.05
Y 13.39 6.72 2021 1771 2895 19.00 2328 13.94 6.44 1.28
MP 2049 1322 2872 1885 3046 1977 2798 1851  6.10 0.87
OSR EbC 247 298 3.99 3.01 3.94 1.96 504 234 544 0.01
AAMO:20 1.85 157  2.68 112 353 2.29 4.56 146 592 0.83
AAMO:15 1.94 1.50 247 1.07 2.40 0.10 4.81 2.04 5.43 0.02
AAMO:10 2.47 2.98 3.99 3.01 3.94 1.96 5.04 2.34 5.44 0.01
Y 77.0 9.10 85.9 6.35 79.7 7.47 77.1 5.94 60.7 9.38
MP 81.7 7.69 87.2 7.26 80.2 8.28 77.0 8.52 59.6  10.74
DLR EbC 14.5 2.60 309 383 29.0 9.02 418 1116 394 8.64
AAMO:20 406 9.32 540 943 441 1329 51.8 10.11 465 1392
AAMO:15 456 1241 539 1536 554 14.85 39.9 1122 478 1230
AAMO:10 61.3 9.49 68.6 13.24 54.9 9.53 62.8 11.32 46.6  14.28
Y 348 1430 580 2630 41.8 1806 493 1541 25.0 6.66
MP 33.8 10.88 555 1644 406 1752 446 1838 272 8.40
MDLR EbC 3.3 0.39 6.6 1.70 6.7 2.99 12.7 6.90 11.0 3.84
AAMO:20 17.8 1047 217 896 15.9 7.61 242 1299  18.0 8.88
AAMO:15 19.2 6.49 222 9.65 244 1317 15.2 6.62 174 436
AAMO:10 272 10.11 336 1095 200 572 249 915 229 8.61

121



Appl. Sci. 2019, 9, 573

6.4.2. Effectiveness Assessment

We start the analysis highlighting that all implemented approaches—and particularly all AAMO
instances—can adequately explore all the environments presented above in Section 6.1.1. Coherently,
all instances achieve a high level of CR when exploring the Maze environment, as can be appreciated
in Figure 17.

Coverage ratio
Non-ideal communication conditions

Y —

MP o

998 EbC ==

1 AAMO:20 ===

996 AAMO:15 ===

AAMO:!10
994

® 992 ﬂ]
- 1
98.8
9886
2 3 4 5 8

robots

Figure 17. AAMO Coverage ratio. Regardless of how different the HO-Threshold values are, in all cases,
the AAMO approach can cover more than 99% of the terrain.

6.4.3. AAMO vs. Baseline Comparison

Concerning TT, as was expected in multi-robot systems, all AAMO instances benefit from adding
robots to the fleet. This result can be seen in Figure 18a. Nevertheless, compared to the baseline results
all AAMO instances show performance degradation (see Figure 18b).

Total Exploration Time Total Exploration Time degradation
1600 350
Y — AAMO:20  m—
1400 MP m— AAMO!15
AAMO:20  mmmm 300 AAMO!10  mmmm
1200 AAMO:15 m=m
AAMO:10 == 250
1000
o o 200
k=l k=l
s 800 5
a o 150
600
100
400
200 50
0 0
2 3 4 5 8 2 3 4 5 8
robots robots
@ (b)

Figure 18. AAMO Total Exploration Time (TT) under non-ideal communication conditions and
Degradation with respect to baseline results. (a) All AAMO instances show a decreasing trend of
TT as the fleet size increase. The Yamauchi and MinPos approach results (coloured in purple and
green, respectively) obtained under ideal communication conditions are placed together to make the
comparison easier; (b) The degradation is expressed in terms of the difference between the TT achieved
by each of the AAMO instances and the one achieved by the MinPos approach, for each fleet size.

The evidence indicates that the more efforts made in favour of connectivity (bigger HO-Threshold)
the worst TT. In other words, not all HO-Threshold setup values produce the same level of performance

122



Appl. Sci. 2019, 9, 573

degradation. Since the degradation of TT performance could be very problematic in many application
fields, this subject is carefully analysed.

At first, the PL indicator can help to initially explain why the fleet spends more time under
AAMO approach than under the MinPos approach, to explore the same environment. In Figure 19a
it is possible to observe the same behaviour as in the baseline (see Section 6.3): larger fleets imply
bigger PL; while Figure 19b shows the difference between the corresponding total length of the paths
traversed by fleets.

Path length Path length increase

3500 900

AAMO:20
800 |AAMO:15  pemm

AAMO'10 mmmm

—
—
===

3000 =

—

2500

meters
meters

2000

1500

1000

2 3 4 5 8 2 3 4 5 8
robots robots

(a) (b)

Figure 19. AAMO Path length (PL) under non-ideal communication conditions and Degradation with
respect to baseline results. (a) An increasing trend of PL is shown by all AAMO instances as the fleet
size increase. The Yamauchi and MinPos approach results (coloured in purple and green, respectively)
obtained under ideal communication conditions are placed together to make the comparison easier;
(b) The degradation is expressed in terms of the difference between the PL achieved by each of the
AAMO instances and the one achieved by the MinPos approach, for each fleet size.

The similarity between Figures 18b and 19b is remarkable and could explain, to a large extent,
the origin of TT degradation. Simply, under the AAMO approach, the robots are asked to invest some
effort (translated as a distance using the HO-Threshold) in order to keep the fleet connected and
hence it is logic to get a bigger PL as a result. Moreover, the tradeoff between path and connectivity
utility discussed in Section 3.1 shows up through these results, reflecting that the price of connectivity
maintenance is the inability to apply an optimal policy concerning path costs.

Nevertheless, there exists a small portion of the TT degradation that cannot be explained by
the PL increasing. Therefore, the hypothesis assumed in the tractability analysis made at the end of
Section 5.2 are compared here with the simulation results in order to add a complementary explanation
on the TT degradation. Furthermore, this TT degradation shows a parabolic trend as the fleet size
increase, reaching a maximum about three-sized fleets, independently of the HO-Threshold values.
Thus, the analysis will be conducted observing what happens when the fleet size does change but
the HO-Threshold does not (in order to explain the shape of the curve or the relative values), and the
opposite conditions are imposed in order to explain the absolute values.

In any case, it is worth knowing that the Task selection algorithm is the most demanding software
component in the software architecture of the robots. Hence, the overall performance of the multi-robot
system is highly determined by the performance of this component. In turn—as was pointed out in
Section 5.2—its performance is strongly influenced by the number of unassigned thresholded tasks
n = |THO| and the number of unassigned robots in a connected component m = |R¥| that are making a

decision at the same time, in the following way: |Arl,| = (ni’in)! =1I""4 (n —m) — O(n™). Therefore,

123



Appl. Sci. 2019, 9, 573

the smaller | THO| and |R"| the faster the algorithm will run. Please recall that |THO| is upper bounded
by the amount of unassigned tasks |T"|.

Firstly, from Figures 20 and 21, it is possible to examine how |R*| and |T*| change along
explorations depending on the fleet size. In all cases, both values show well defined patterns that
are easily identifiable. Concerning |R"| (see Figure 20) it is possible to state that in all AAMO
instances—working in a fully asynchronous modality—the probability of two or more robots
simultaneously running a decision making process is negligible. Thus the majority of time either none
robot is making a decision or at most one robot is evaluating the available tasks.

Sy

RI
M w

b 4

t t ° t

(a) 3-Robot System (b) 5-Robot System (c) 8-Robot System

Figure 20. The maximum amount of unassigned robots |R"| in any connected component over
time under different sized multi-robot systems. All images concern instances of AAMO set with
HO-Threshold = 15. Blue dots represent the |R*| (on average) that are simultaneously deciding along
the exploration.

Results obtained during simulations are summarised in Table 6 and show a behaviour that is
consistent with this last statement independently of the fleet size. The low ratio of robot coincidences
is remarkable (e.g., for 3-sized fleets, about 96% of the decision making moments have only one robot
participating on them).

Table 6. AAMO Robot Coincidence on Decision Making moments.

|R*| that are simultaneously making a decision
HO-Threshold  |R| 1 2 3 4
AVE StD AVE StD AVE StD AVE StD

3 0959 0.01 0.041 0.01 ~0 =~0 n/a n/a
AAMO:10 5 0.895 0.02 0.097 0.02 0.011 0.01 ~0 ~0
8 0.807 0.02 0.153 0.04 0.037 0.02 ~0 ~0
3 0969 0.02 0.031 0.02 ~0 =~0 n/a n/a
AAMO:15 5 0929 0.02 0.068 0.03 0.003 0.01 ~0 ~0
8 0.823 0.03 0.146 0.03 0.024 0.01 ~0 ~0
3 0968 0.02 0.032 0.02 ~0 ~0 n/a n/a
AAMO:20 5 0917 0.02 0.080 0.02 0.003 0.01 ~0 ~0
8 0.838 0.02 0.148 0.03 0.018 0.01 ~0 ~0

In conclusion, in practice, the worsening of the TT performance is apparently only related to the
incidence of the HO-Threshold on the | THO| value. Next, this relation is carefully studied, and some
answers are essayed.

The parabola described by the TT degradation values in Figure 18 suggests the presence of two
factors impacting on this behaviour. One presses the trend upwards and the other in a counter sense.
In the following, two particular factors are analysed: the fleet size and the bounded condition of the
environment. (i) As the fleet size increase robots make progress faster, causing |TH°| to increase more
quickly as well. When |THO| rises, the task selection algorithm becomes slower, and thus the increase
in the fleet size could explain the first increasing section of the trend; (ii) In bounded environments, the
multi-robot exploration systems typically show two mobility patterns that characterise, in turn, two
different exploration stages: (1) One is characterised by the dispersion of the fleet on the terrain. In
such a stage, the new available tasks appear closer to each other, and its total amount |T*| is upward;
(2) On the contrary, the second exploration stage is characterised by the convergence of the fleet to the
remaining unexplored zones starting when it is no longer possible to disperse the fleet until the end of

124



Appl. Sci. 2019, 9, 573

the exploration. In such a stage, the new available tasks generally appear further to each other and its
total amount |T*| is decreasing. Therefore, since the tasks THO are the ones which are closer than a
relative distance HO-Threshold, under the AAMO approach, it is statistically less demanding for the
robots to select a task during the last exploration stage than in the initial one.

Additionally, either when the fleet size increase or the HO-Threshold decrease, the transition
from the first to the second exploration stage is achieved faster. This fact can be corroborated in both
Figures 21 and 22. For instance, concerning Figure 21, the 3-Robot system spends about 410 s to
reach the end of the dispersion stage whereas the 5-Robot system and 8-Robot system spend about
320 s and 260 s, respectively. Likewise, from Figure 22, the AAMO:20 instance spends about 310 s to

reach the end of the dispersion stage whereas the AAMO:15 and AAMO:10 spend about 260 s and
150 s, respectively.

m

st 260: T

(a) 3-Robot System (b) 5-Robot System (c) 8-Robot System

Figure 21. Amount of unassigned tasks |T"| over time for different sized multi-robot systems.
All images concern instances of AAMO set with HO-Threshold = 15. The maximum |T"| and the

end of the dispersion stage are reached at the same time. Red dots represent the |T"| considered by
robots (on average) along the exploration.

310 t

2600 B 0 B

(a) HO-Threshold = 20 (b) HO-Threshold = 15 (c) HO-Threshold = 10

Figure 22. Number of unassigned tasks |T"| over time for different instances of the AAMO approach
on 8-Robot systems. The maximum |T"| and the end of the dispersion stage are reached at the same
time. Red dots represent the | T*| considered by robots (on average) along the exploration.

Hence, despite the fact the impact of the fleet size on the exploration stage transition appears to
be higher than the one caused by the HO-Threshold value, both aspects contribute to reducing the task
selection effort enabling robots to save time in the task allocation procedure anticipatedly.

In conclusion, when the AAMO is executed in bounded environments, the addition of robots and
the decreasing of HO-Threshold can almost entirely mitigate the worsening in the total exploration time
performance. Please note that the performance degradation of AAMO:10 instances is almost null for
eight-sized fleets.

From these promising results, in the following, all AAMO instances are compared with the other
approaches concerning non-ideal communication conditions.

125



Appl. Sci. 2019, 9, 573

6.4.4. AAMO Efficiency Assessment

In this section, several statistical analyses were performed on different indicators to demonstrate
the efficiency of the proposed AAMO approach. Wilcoxon signed-rank tests were performed (a
non-parametric test was chosen since data in each condition do not follow a normal distribution) to
compare samples from two populations. More precisely, it tests the indicator differences between
approaches for a given fleet size.

Firstly, in relation to TT (see Figure 23), the evidence confirms two expected results: (i) All
approaches benefit from adding robots to the fleet. A Wilcoxon difference test was performed regarding
TT and the fleet size for each approach. All comparisons present a significant decrease in TT when
fleet size increases (p-value < 0.05); (ii) Since it only takes care of connectivity, the EbC approach
shows the worst performance regardless the fleet size. Wilcoxon tests showed a significant result
(p-value < 0.001) for all comparisons between approaches given a fleet size.

Additionally, all AAMO instances show competitive TT results even slightly outperforming other
approaches in the case of AAMO:10. In particular, a Wilcoxon difference test showed that AAMO:10
has a smaller TT than MinPos for 2 and 5 robots (resp. W = 169, p-value < 0.01, and W = 159,
p-value < 0.05).

Total Exploration Time
Non-ideal communication conditions

2000

—
1800 . MP oo

EbC ==
AAMO:20 ===
AAMOI15 ===
AAMOI10 oo

1600

1400

1200

1000

seconds

800
600
400

200

robots

Figure 23. Total Exploration Time (TT) under non-ideal communication conditions.

Secondly, concerning the PL indicator (see Figure 24), the EbC approach present the worst performance,
coherently. Again, the Wilcoxon test showed significant results (p-value < 0.001). Likewise, all AAMO
instances show competitive results too.

Besides, and as was pointed above, the TT and PL results show that the lack of ideal communication
conditions negatively affects the MinPos approach more than the Yamauchi approach. Wilcoxon tests
showed a trend for 4 and 5 robots (p-value < 0.1) concerning TT, and a sigfinicant difference in PL for
4 robots (p-value < 0.05).

Up to this point, the AAMO approach has shown results as good as the MinPos approach. Next,
the indicators related to connectivity are analysed in order to properly assess the potential advantages
of the AAMO approach in the presence of more realistic communication conditions.

The DLR indicator trend is shown in Figure 25. As can be seen, while the performance of the
MinPos and Yamauchi approaches are the worst, the EbC performance is remarkably the best. These
visual results were confirmed by Wilcoxon tests between approaches for each fleet size. DLR indicator
is significantly bigger (p-value < 0.001) for MinPos and Yamauchi than AAMO and EbC approaches,
except for 8-sized fleets where these results are significant only when compared to EbC. Moreover
EbC has a significant smaller DLR indicator (p-value < 0.05) than all the others approaches except for
the 5 and 8 robots cases, in which any statistical difference can be found between AAMO approaches
and EbC.

126



Appl. Sci. 2019, 9, 573

Path length
Non-ideal communication conditions

4500

4000

3500

3000

2500

meters

2000

1500

1000

robots

Figure 24. Path length (PL) under non-ideal communication conditions.

Similarly, the AAMO approach results represent a very good improvement with respect to both
MinPos and Yamauchi approaches. The chart in Figure 25 reveals that our approach outperforms
both Yamauchi and minPos approaches independently of the fleet size on average. Nevertheless, the
smaller fleet, the greater outperforming. The explanation can arise correctly from intuition: when
the environment is bounded, the probability of being disconnected tends to decrease as the fleet size
increase. Therefore, the benefits of our approach tend to be smaller when the fleet size increases. Either
way, it is always meaningful. Please note that even in the largest fleet size case, the DLR of AAMO
represents an improvement of 20% on average compared to the corresponding Yamauchi or MinPos.

Furthermore, the relation between TT, DLR and HO-Threshold is noticeable. The more effort
demanded by the human operator (higher threshold), the slower but higher connected the AAMO
performs. This claim is confirmed by Wilcoxon tests that showed a significantly bigger (p-value < 0.05)
TT indicator for AAMO:20 than for AAMO:10, and also show that the DRL indicator is significantly
smaller (p-value < 0.05) for AAMO:20 than for AAMO:10, regardless the fleet size.

Disconnection Last ratio
Non-ideal communication conditions

MP

EbC
AAMO:20
AAMOI15
AAMO:10

1

% of total exploration time

robots

Figure 25. Disconnection Last Ratio (DLR) under non-ideal communication conditions. The bigger
the HO-Threshold, the smaller DLR. This fact holds showing an oscillatory behaviour as the fleet
size increase.

Regarding the oscillation registered, it could suggest the existence of the following rational pattern.
When fleet size is even, the easier way to avoid isolation situations is keeping in pairs (connected
with at least another teammate). Contrarily, when the fleet size is odd, not all robots can keep in pairs.
In case the fleet has divided, at least one sub group must be composed of three robots. Therefore, this

127



Appl. Sci. 2019, 9, 573

oscillatory behaviour could hint at the fact that odd-sized fleets need to make little more effort to avoid
robot isolation situations and are consequently subject to bigger DLR results as well.

Likewise, it is interesting to analyse the DLR indicator and network topology together. This way it
is possible to get a closer notion about the interaction between robots along the exploration. Figure 26 is
devoted to showing the number of connected components present in the network, averaged over time.

Please note that for the AAMO:20 instance—run on 2-Robot fleet—the DLR is about 40% (see
Figure 25), coinciding with the percentage achieved by the 2CC of the same fleet size in Figure 26.
In other words, the fleet holds a network composed of one single connected component during 60%
(100%—40%) of total exploration time. Consistently, this is equivalent to say that during this portion of
the time none robot has been disconnected.

Additionally, and as a matter of fact, the chart shows that as the fleet size increase it is more
challenging to keep the whole fleet connected: 1CC stack is decreasing in size as the fleet size increase.
Nevertheless, it also shows that simultaneously with the adding of new robots, the fleet is more and
more cohesive (in relative terms). This fact may be corroborated looking at the upper part of the
chart where the stacks corresponding to the greatest number of connected components are plotted.
The following pattern can be observed: the number of connected components (given by nCC) increase
slower than the fleet size n. Again, the fact that the Maze scenario is bounded may explain this
phenomenon to a large extent.

Connected Components
Mon-ideal communication conditions

m—— 3CC
m /CC
m GCC
—— 5CC
mm— 4CC
== 3CC
 2CC
e 1CC

% of total exploration time

g 4’“63"?%’?4, B T - Tl i T 3
@o(f % 3 V’o\"@ % 4 T’o “:5* % s T’o “:5* % s E LA
robots

Figure 26. Network topology composition under non-ideal communication conditions averaged over
time. Depending on the number of connected components and the fleet size, it is possible to study
the existence of sufficient conditions to fall into isolation situations. For instance, for a 3-Robot fleet,
the 2CC or 3CC topologies imply having at least one robot isolated while for a 5-Robot fleet this
implication is related to 3CC, 4CC, or 5CC topologies, and so on.

Although all this information gives an approximated notion about how disconnected is the fleet
(group perspective) along explorations, it is not enough to hint what is happening at the individual
level. Thus, it is also interesting to study the worst case of the individual disconnections last. This
way it is easier to evaluate both coordination capabilities (how long a robot is unable to coordinate its
actions with any other teammates) and risky situations (how long the fleet present single points of
failure). Recall that the key motivations in considering communication constraints are strongly related
with the rework avoidance: (i) When robots are unconnected they have fewer possibilities to coordinate
their actions hence they could visit the same regions unnecessarily. Hence, keep them connected is a

128



Appl. Sci. 2019, 9, 573

way to favour the efficiency; (ii) In the presence of damages or inner failures the exploration strategy
should take those events into account preventing the need of re-exploration.

In Figure 27 the trend followed by Maximum Disconnection Last Ratio MDLR indicator is depicted
showing that the bigger HO-Threshold, the shorter disconnection periods (Wilcoxon tests showed that
the MDLR indicator is significant smaller (p-value < 0.05) for AAMO:20 than for AAMO:10, for 2 and
3 robots, and tends to be smaller (p-value = 0.09) for 4 robots) and that the last of isolation situations
is at most equivalent to half of the DLR values for every fleet size and HO-Threshold value as well.
In other words, the isolation situations regard more than one single robot and this in turn, reveals that
under the AAMO approach the robots often intent to rejoin each other.

Maximum Disconnection Last ratio
Non-ideal communication conditions

100

MP
EbC

—
—
—
80 =
—
—

60

40

% of total exploration time

20

robots

Figure 27. Maximum Disconnection Last Ratio (MDLR) under non-ideal communication conditions.
MDLR shows the longest individual isolation period registered by some fleet member along the
exploration. The trend is oscillatory following the same pattern as the DLR indicator.

At last but not least, it is worth to discuss the trend of OSR as the fleet size increase. The results
obtained by the different AAMO instances are depicted in Figure 28. In Section 6.3 the OSR levels were
achieved mostly thanks to simultaneous sensing actions, conversely, in these simulation runnings, the
OSRs achieve higher levels due to non-ideal communication conditions. As was expected, the more
the mapping information of the robots is out-of-date with respect to each other, the higher the OSR.
However, in any communication conditions, the same upper bound is achieved. This suggests that the
size and bounded condition of the Maze environment could be limiting the over-sensing phenomenon
when fleet size increase beyond five robots.

To sum up and concerning the Maze scenario and the baseline stated in Section 6.3, the conclusions
of this section are: (i) The AAMO approach can be employed as a strategy to coordinate multi-robot
systems that are dedicated to exploration tasks; (ii) As was expected, the HO-Threshold value directly
impacts on the connectivity level that the fleet is able to hold during the mission; (iii) Likewise,
the relation between HO-Threshold values and the TT and DLR/MDLR indicators is the expected:
the bigger the HO-Threshold value, the worse TT performance, but the better DLR/MDLR ratios;
(iv) Although all instances of the AAMO approach present TT degradation with respect to the baseline,
in any case it is not significantly due to the computation of the proposed task-to-robots distribution;
(v) All AAMO instances outperform the baseline concerning the DLR and MDLR indicators; (vi) With
the exception of DLR/MDLR, all instances of the AAMO approach outperform the EbC approach;
(vii) The topology of the fleet networks shown during exploration is consistent with the HO-Threshold
values, for all AAMO instances.

129



Appl. Sci. 2019, 9, 573

Over-sensing cell ratio
Non-ideal communication conditions

60

VP
50 EbC
AAMO:20
AAMO:15
40 | AAMO:10

I

20

10

robots

Figure 28. Over-sensing ratio (OSR) under non-ideal communication conditions. The Yamauchi
and MinPos approach results (coloured in purple and green, respectively) obtained under ideal
communication conditions are placed together to make the comparison easier.

The AAMO approach shows effectiveness and flexibility (through the HO-Threshold setup) to tackle
the multi-robot exploration problem. Particularly concerning the efficiency related to both completion
time and connectivity level maintenance, the approach appears as an intermediate solution that
presents much better TT performance than the most restrictive approach EbC and better connectivity
level along exploration than the approaches that do not take care about communication issues.

7. Conclusions

7.1. Task Assessment Problem

The proposed Auto-Adaptive Multi-Objective (AAMO) approach follows a multi-objective assessment
strategy where the tasks under consideration are assessed regarding two objectives: the cost associated
with the corresponding shortest path and the connectivity level each task location can offer to robots
at arrival time. The multi-objective strategy is implemented employing a weighted sum that trades
travelling cost off for connectivity levels. Up until now, all these concepts are quite standard being
present in several state-of-art approaches.

Nevertheless, in this work: (i) Connectivity awareness ability is given to the robots by modelling
attenuation effects that commonly affect the communication signal strength; (ii) the weights of these
potentially conflicting objectives are derived from formal analysis instead of a training stage, making
the system more adaptable to different environments; (iii) The human operator is asked to use his
application-field expertise to play a part in the task assessment process by setting a distance threshold
until which the tasks that preserve or enlarge connectivity are preferred over the rest. All this leads
to a more flexible system where the robots can deal with communication constraints adjusting the
weights of each objective independently of any scenario in a more intuitive manner, saving a lot of
training time.

All existence and correctness proofs conducted on the task selection procedure support the fact
that the robots are always capable of auto-adapting the objectives weights in order to select the tasks
accordingly with the human-operator criterion. In conclusion, this task assessment approach may be
very advantageous considering its ease of deployment.

7.2. Task Allocation Problem

Concerning the tasks-to-robots distribution algorithm, all previous proposals explicitly avoid
the combinatorial blow-up of allocation complexity using different heuristics. Nevertheless,

130



Appl. Sci. 2019, 9, 573

heuristic-based approaches make assumptions that cannot be verified at all times. In consequence,
when the heuristic fails the robots choose suboptimal distributions.

Taking into account this limitation and since the number of possible distributions depends on
both the number of available tasks and the number of robots making a decision, the proposal presented
here computes optimal distributions based on more general assumptions such as: (i) Robots can
implicitly coordinate their actions; (ii) Asynchronism may keep the number of simultaneous decision
making at small values; (iii) Pruning the furthest tasks (out of the scope defined by the human operator
—HO-Threshold) does not prevent the computation of optimal tasks-to-robots distribution.

7.3. Connectivity Maintenance Problem

While all event-based connectivity approaches consist in the execution of regaining-connectivity
actions in the presence of specific events (e.g., typically disconnections, whenever it happens
or periodically after a certain amount of time), the AAMO approach integrates a less restrictive
connectivity strategy where the robots are motivated but not compelled to regain connectivity. When
selecting their targets, the robots are always considering the opportunity cost of keeping connected
or regaining connectivity, implicitly. Furthermore, in reconnection cases, the task location becomes
the meeting point itself eliminating the need for rendezvous policy implementation and, maybe more
important, avoiding deviations from natural paths. This way, the policy is utterly transparent to the
eyes of the external observer: every time it is possible to explore and keep or enlarge connectivity level
the robots will choose this option. On the contrary, when it is not, they merely behave guided by a
pure path-cost exploration.

Particularly concerning the efficiency related to both completion time and connectivity level
maintenance, the approach is capable of decreasing the last of disconnection periods without a
noticeable degradation of the completion exploration time, appearing as an intermediate solution that
presents much better completion time performance than the most restrictive event-based connectivity
approaches and better connectivity level along exploration than the approaches that do not take care
about communication issues.

7.4. Future Research Directions

New research questions have arisen along this work leaving, as a result, several opportunities to
improve the developed system. Although the environments employed in simulations are proposed as
benchmarks, it would be beneficial to check the validity and performance of the proposed approach on
a broader variety of scenarios. Large office-like environments would be exciting to put the system into
more realistic situations like mapping buildings where larger fleets could be employed, too. Since the
robot model defined can support robots with different characteristics, exploiting heterogeneity could
be a promising research direction. Integrating a fleet with heterogeneous robots (e.g., different in size,
sensory, and motion capabilities) could enhance the skills of the fleet. For instance, given their greater
mobility, UAVs could help the fleet to keep connected by playing a relay role, while small terrestrial
robots could be the key to get into access-restricted spaces. At last but not least, executions on real
systems are also planned. Despite the goodness of any simulator, many important details escape
their scopes. The proposed approach is designed to serve as a solution for real-world applications so
that it is imperative to verify its feasibility in real scenarios. In such a case, localisation and mapping
errors cannot be ignored. Both simultaneous Localisation and Mapping (SLAM) algorithms and the
sensory and motor devices should be carefully studied to limit the influence of this kind of errors on
the high-level decision components. Regarding the equipment availability of the involved laboratories,
the candidate platforms would be either IRobot or Kheperalll units.

Author Contributions: Conceptualisation, Methodology, Software, Validation, Analysis and Writing-original
draft preparation, F.B.; Writing reviews and Supervision, E.G., C.C. and PM.

Funding: This research was partially funded by the Comisién Sectorial de Investigacién (CSIC-UdelaR) through
its mobility program MIA.

131



Appl. Sci. 2019, 9, 573

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following acronyms are used in this manuscript:

AAMO Auto-Adaptive Multi-Objective approach

CC
CR
EbC
DLR
DR
LoS

Connected Component

Coverage Ratio

Event-based Connectivity approach
Disconnection Last Ratio

Dual Role approach

Line-of-sight

MANET Mobile Ad-hoc NETwork

MDLR Maximum Disconnection Last Ratio
MDP Markov Decision Process

MORSE Modular Open Robots Simulation Engine

MRS
MP
OSR
PL

Multi-Robot System
MinPos approach
Over-Sensing Ratio
Path length

POMDP Partially Observable Markov Decision Process
SLAM simultaneous Localisation and Mapping

T
UAV
Y

Refe
1.

10.

11.

12.

Total exploration Time
Unmanned Aerial Vehicle
Yamauchi approach

rences

Burgard, W.; Moors, M.; Stachniss, C.; Schneider, F. Coordinated multi-robot exploration. IEEE Trans. Robot.
2005, 21, 376-386. [CrossRef]

Wurm, K.; Stachniss, C.; Burgard, W. Coordinated multi-robot exploration using a segmentation of the
environment. In Proceedings of the 2008 IEEE/RS] International Conference on Intelligent Robots and
Systems, Nice, France, 22-26 September 2008; pp. 1160-1165. [CrossRef]

Simmons, R.; Apfelbaum, D.; Burgard, W.; Fox, D.; Moors, M.; Thrun, S.; Younes, H. Coordination for
Multi-Robot Exploration and Mapping; Aaai: Menlo Park, CA, USA; AAAI Press: Cambridge, MA, USA; MIT
Press: London, UK, 1999/2000; pp. 852-858.

Elfes, A. Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer 1989, 22, 46-57.
[CrossRef]

Yamauchi, B. Frontier-based exploration using multiple robots. In Proceedings of the Second International
Conference on Autonomous Agents AGENTS 98, Minneapolis, MN, USA, 10-13 May 1998; pp. 47-53.
[CrossRef]

Keidar, M.; Kaminka, G.A. Efficient frontier detection for robot exploration. Int. ]. Robot. Res. 2014,
33, 215-236. [CrossRef]

Keidar, M.; Kaminka, G.A. Robot Exploration with Fast Frontier Detection: Theory and Experiments.
In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, Valencia,
Spain, 4-8 June 2012; pp. 113-120.

Yuan, J.; Huang, Y.; Tao, T.; Sun, F. A cooperative approach for multi-robot area exploration. In Proceedings
of the IEEE/RS] 2010 International Conference on Intelligent Robots and Systems, IROS 2010—Conference
Proceedings, Taipei, Taiwan, 18-22 October 2010; pp. 1390-1395. [CrossRef]

Korsah, G.A.; Stentz, A.; Dias, M.B. A comprehensive taxonomy for multi-robot task allocation. Int. J.
Robot. Res. 2013, 32, 1495-1512. [CrossRef]

Gerkey, B.P. A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems. Int. ]. Robot. Res.
2004, 23, 939-954. [CrossRef]

Sheng, W.; Yang, Q.; Tan, J.; Xi, N. Distributed multi-robot coordination in area exploration. Robot. Auton.
Syst. 2006, 54, 945-955. [CrossRef]

Zlot, R.; Stentz, A.; Dias, M.; Thayer, S. Multi-robot exploration controlled by a market economy.
In Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC,
USA, 11-15 May 2002; Volume 3, pp. 3016-3023. [CrossRef]

132



Appl. Sci. 2019, 9, 573

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Cavalcante, R.C.; Noronha, T.F; Chaimowicz, L. Improving combinatorial auctions for multi-robot
exploration. In Proceedings of the 2013 16th International Conference on Advanced Robotics (ICAR),
Montevideo, Uruguay, 25-29 November 2013; pp. 1-6. [CrossRef]

Kuhn, HW. The Hungarian method for the assignment problem. Nawval Res. Logist. 1955, 2, 83-97. [CrossRef]
Hollinger, G.A.; Singh, S. Multirobot coordination with periodic connectivity: Theory and experiments.
IEEE Trans. Robot. 2012, 28, 967-973. [CrossRef]

Pham, V.C; Juang, ].C. A multi-robot, cooperative, and active slam algorithm for exploration. Int. J. Innov.
Comput. Inf. Control 2013, 9, 2567-2583.

Bautin, A.; Simonin, O. MinPos: A Novel Frontier Allocation Algorithm for Multi-robot Exploration. ICIRA
2012, 7507, 496-508.

Valentin, L.; Murrieta-Cid, R.; Mufnoz-Gémez, L.; Lopez-Padilla, R.; Alencastre-Miranda, M. Motion
strategies for exploration and map building under uncertainty with multiple heterogeneous robots.
Adv. Robot. 2014, 28, 1133-1149. [CrossRef]

Banfi, J.; Li, A.Q.; Basilico, N.; Rekleitis, I.; Amigoni, F. Asynchronous multirobot exploration under recurrent
connectivity constraints. In Proceedings of the IEEE International Conference on Robotics and Automation,
Stockholm, Sweden, 16-21 May 2016; pp. 5491-5498. [CrossRef]

Amigoni, F; Banfi, J.; Basilico, N. Multirobot Exploration of Communication-Restricted Environments:
A Survey. IEEE Intell. Syst. 2017, 32, 48-57. [CrossRef]

Vazquez, ].; Malcolm, C. Distributed Multirobot Exploration Maintaining a Mobile Network. In Proceedings
of the IEEE International Conference on Intelligent Systems, Varna, Bulgaria, 22-24 June 2004.

Rooker, M.N.; Birk, A. Multi-robot exploration under the constraints of wireless networking.
Control Eng. Pract. 2007, 15, 435-445. [CrossRef]

Mosteo, A.R.; Montano, L.; Lagoudakis, M.G. Multi-robot routing under limited communication range.
In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA,
19-23 May 2008; pp. 1531-1536. [CrossRef]

Le, V.T,; Bouraqadi, N.; Stinckwich, S.; Moraru, V.; Doniec, A. Making networked robots connectivity-aware.
In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12-17 May
2009; pp. 3502-3507. [CrossRef]

Michael, N.; Zavlanos, M.M.; Kumar, V.; Pappas, G.J. Maintaining Connectivity in Mobile Robot Networks.
Springer Tracts Adv. Robot. (STAR) 2009, 54, 117-126. [CrossRef]

Derbakova, A.; Correll, N.; Rus, D. Decentralized self-repair to maintain connectivity and coverage in
networked multi-robot systems. In Proceedings of the IEEE International Conference on Robotics and
Automation, Shanghai, China, 9-13 May 2011; pp. 3863-3868. [CrossRef]

Pei, Y.; Mutka, M.W. Steiner traveler: Relay deployment for remote sensing in heterogeneous multi-robot
exploration. In Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul,
MN, USA, 14-18 May 2012; pp. 1551-1556. [CrossRef]

Laétitia Matignon, L.J.; Mouaddib, A.I. Coordinated Multi-Robot Exploration Under Communication
Constraints Using Decentralized Markov Decision Processes. In Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, Toronto, ON, Canada, 22-26 July 2012.

Couceiro, M.S.; Figueiredo, C.M.; Rocha, R.P; Ferreira, N.M. Darwinian swarm exploration under
communication constraints: Initial deployment and fault-tolerance assessment. Robot. Autonomous Syst.
2014, 62, 528-544. [CrossRef]

Pralet, C.; Lesire, C. Deployment of Mobile Wireless Sensor Networks for Crisis Management:
A Constraint-Based Local Search Approach. In Proceedings of the International Conference on Principles
and Practice of Constraint Programming, Toulouse, France, 5-9 September 2014; pp. 870-885.

Jensen, E.A.; Nunes, E.; Gini, M. Communication-Restricted Exploration for Robot Teams; Workshop on
Multiagent Interaction without Prior Coordination; Number Association for the Advancement of Artificial
Intelligence (AAAI): Palo Alto, CA, USA, 2014; pp. 15-21.

Cesare, K ; Skeele, R.; Yoo, S.H.; Zhang, Y.; Hollinger, G. Multi-UAV exploration with limited communication
and battery. In Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA,
USA, 26-30 May 2015; Volume 2015, pp. 2230-2235. [CrossRef]

Magén-Carrién, R.; Camacho, J.; Garcia-Teodoro, P; Flushing, E.F.; Di Caro, G.A. A Dynamical Relay node
placement solution for MANETs. Comput. Commun. 2017, 114, 36-50. [CrossRef]

133



Appl. Sci. 2019, 9, 573

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Magan-Carrién, R.; Rodriguez-Gémez, R.A.; Camacho, J.; Garcia-Teodoro, P. Optimal relay placement in
multi-hop wireless networks. Ad Hoc Netw. 2016, 46, 23-36. [CrossRef]

Rahman, M.M.; Bobadilla, L.; Abodo, F.; Rapp, B. Relay vehicle formations for optimizing communication
quality in robot networks. In Proceedings of the IEEE International Conference on Intelligent Robots and
Systems, Vancouver, BC, Canada, 24-28 September 2017; pp. 6633-6639. [CrossRef]

Nestmeyer, T.; Robuffo Giordano, P; Biilthoff, H.H.; Franchi, A. Decentralized simultaneous multi-target
exploration using a connected network of multiple robots. Autononous Robots 2017, 41, 989-1011, [CrossRef]
Banfi, J.; Quattrini Li, A.; Rekleitis, I.; Amigoni, F,; Basilico, N. Strategies for coordinated multirobot
exploration with recurrent connectivity constraints. Autonomous Robots 2018, 42, 875-894. [CrossRef]

Bahl, P; Padmanabhan, VN. RADAR: An In-Building RF-based User Location and Tracking System.
In Proceedings of the IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 26-30 March 2000;
pp- 775-784, [CrossRef]

Caccamo, S.; Parasuraman, R.; Freda, L.; Gianni, M.; Ogren, P. RCAMP: A resilient communication-aware
motion planner for mobile robots with autonomous repair of wireless connectivity. In Proceedings of the
IEEE International Conference on Intelligent Robots and System, Vancouver, BC, Canada, 24-28 September
2017; pp. 2010-2017, [CrossRef]

Fink, J.; Ribeiro, A.; Kumar, V. Robust Control of Mobility and Communications in Autonomous Robot
Teams. IEEE Access 2013, 1,290-309. [CrossRef]

MacQueen, J. Some Methods for classification and Analysis of Multivariate Observations. In Proceedings of
the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 1967.

Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972-976.
[CrossRef] [PubMed]

Bautin, A.; Simonin, O.; Charpillet, F. SyWaP: Synchronized wavefront propagation for multi-robot
assignment of spatially-situated tasks. In Proceedings of the 2013 16th International Conference on Advanced
Robotics, ICAR, Montevideo, Uruguay, 25-29 November 2013. [CrossRef]

Bautin, A.; Simonin, O.; Charpillet, F. Towards a communication free coordination for multi-robot exploration.
In Proceedings of the 6th National Conference on Control Architectures of Robots, CAR2011, Grenoble,
France, 24-25 May 2011.

Yan, Z.; Fabresse, L.; Laval, J.; Bouraqadi, N. Metrics for performance benchmarking of multi-robot
exploration. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems,
Hamburg, Germany, 28 September—2 October 2015; pp. 3407-3414. [CrossRef]

Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents); The MIT
Press: Cambridge, MA, USA, 2005.

Pal, A.; Tiwari, R.; Shukla, A. Communication constraints multi-agent territory exploration task. Appl. Intell.
2013, 38, 357-383. [CrossRef]

Satici, A.C.; Poonawala, H.; Eckert, H.; Spong, M.W. Connectivity preserving formation control with
collision avoidance for nonholonomic wheeled mobile robots. In Proceedings of the IEEE/RS] International
Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14-18 September 2013; pp. 5080-5086.
[CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).

134



Firicd applied
b sciences

Article

Robust Visual-Aided Autonomous Takeoff, Tracking,
and Landing of a Small UAV on a Moving Landing
Platform for Life-Long Operation

Pablo R. Palafox "*, Mario Garzén 2, Jodo Valente ® and Juan Jests Roldan 4
and Antonio Barrientos *

1 Computer Vision & Artificial Intelligence Group, Technical University Munich, Boltzmannstrasse 3,

85748 Garching, Germany
2 Univ. Grenoble Alpes, INRIA, Grenoble INP, 38000 Grenoble, France
Information Technology Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
4 Centro de Automatica y Robética (UPM-CSIC), Universidad Politécnica de Madrid, José Gutiérrez Abascal,
2, 28006 Madrid, Spain
*  Correspondence: pablo.rodriguez-palafox@tum.de

Received: 31 May 2019; Accepted: 25 June 2019; Published: 29 June 2019

Featured Application: Autonomous takeoff, tracking, and landing maneuvers on a moving target
with application to a fleet of robots with aerial and ground vehicles that need to operate for
extended periods of time, as in Search and Rescue tasks.

Abstract: Robot cooperation is key in Search and Rescue (SaR) tasks. Frequently, these tasks take
place in complex scenarios affected by different types of disasters, so an aerial viewpoint is useful for
autonomous navigation or human tele-operation. In such cases, an Unmanned Aerial Vehicle (UAV)
in cooperation with an Unmanned Ground Vehicle (UGV) can provide valuable insight into the
area. To carry out its work successfully, such as multi-robot system requires the autonomous takeoff,
tracking, and landing of the UAV on the moving UGV. Furthermore, it needs to be robust and capable
of life-long operation. In this paper, we present an autonomous system that enables a UAV to take off
autonomously from a moving landing platform, locate it using visual cues, follow it, and robustly land
on it. The system relies on a finite state machine, which together with a novel re-localization module
allows the system to operate robustly for extended periods of time and to recover from potential
failed landing maneuvers. Two approaches for tracking and landing are developed, implemented,
and tested. The first variant is based on a novel height-adaptive PID controller that uses the current
position of the landing platform as the target. The second one combines this height-adaptive PID
controller with a Kalman filter in order to predict the future positions of the platform and provide
them as input to the PID controller. This facilitates tracking and, mainly, landing. Both the system
as a whole and the re-localization module in particular have been tested extensively in a simulated
environment (Gazebo). We also present a qualitative evaluation of the system on the real robotic
platforms, demonstrating that our system can also be deployed on real robotic platforms. For the
benefit of the community, we make our software open source.

Keywords: robust autonomous landing; unmanned aerial vehicle; unmanned ground vehicle;
multi-robot systems; Kalman filter; PID controller; re-localization module

1. Introduction

Robotics is increasingly taking on greater importance in our lives. One of the main areas where
this can be perceived is Search and Rescue (SaR) tasks [1]. Robots designed for this kind of task,

Appl. Sci. 2019, 9, 2661; d0i:10.3390 /nan09132661 135 www.mdpi.com/journal/applsci



Appl. Sci. 2019, 9, 2661

known as SaR robots, must operate on many occasions in unknown environments, move over unstable
surfaces, and face multiple difficulties in order to carry out their mission, e.g., obtaining a map of the
environment to facilitate the subsequent intervention of the rescue brigades [2]. Using a single robot
under such conditions poses big difficulties: whether it moves on the surface or flies nearby areas,
there are intrinsic difficulties for each type of robot. Thus, by building heterogeneous teams of robotic
platforms that can jointly operate in such scenarios, it is possible to bring about great benefits, since
the shortcomings of each robot can be compensated with the strengths of the other [3,4].

Indeed, while aerial robots have the unique ability to obtain top views from the terrain and move
without being hampered by the elements that may be found on the ground after a collapse, their
reduced flight autonomy limits their operating time to a few tens of minutes. Moreover, their load
capacity is generally less than 1kg, which limits the type of sensors or equipment that can be deployed.

On the other hand, terrestrial robots are able to overcome, in general, the requirements of energy
autonomy and payload. In addition, they can act as relays for communication systems, as well as
provide high computing capabilities and data storage to the system. They have, however, limited
mobility, especially in cluttered environments, such as narrow bridges or inclined planes. Additionally,
their ability to obtain information about their environment may also be limited by their low height
above the ground level and by the very elements of the scenario.

The literature contains multiple examples of successful collaboration of ground and aerial robots to
carry out different missions: exploration in wide areas with obstacles [3]; precision farming for ground
moisture sampling [5]; surveillance in complex environments using route optimization strategies [6];
and supporting aerial surveys in maritime environments [7], where the maritime robot acts as a mobile
landing platform of the Unmanned Aerial Vehicle (UAV) when it has to perform an emergency landing,
charge its batteries, or be picked up by an operator. All these examples prove the efficiency and benefit
of building mixed robotic systems comprised of a terrestrial and an aerial robot for many different and
complex tasks.

This work proposes a step towards obtaining such a joint team by developing a system that
enables a UAV to: (1) take off autonomously from a landing platform attached to a Unmanned
Ground Vehicle (UGV); (2) detect, localize, and follow the ground robot while in the air; and (3) land
autonomously on the moving platform when required.

The proposed system differs from previous works by presenting a novel height-adaptive controller
for tracking and landing. In essence, the behavior of a Proportional-Integral-Derivative (PID) controller
is modified according to the UAV’s distance to the landing platform along the vertical axis. By doing
so, the performance and robustness of the system as a whole are largely increased.

Two different approaches to track and land robustly the UAV on the moving landing platform are
presented: in the first variant, the aforementioned height-adaptive controller uses the current position
of the landing platform as the target; the second approach extends the height-adaptive controller with
a prediction algorithm (based on a Kalman filter) that predicts the future position of the platform and
feeds it to the controller. This facilitates tracking and, more importantly, the autonomous landing of
the aerial robot.

Another key novelty introduced in this work is the addition of a recovery and re-localization
module for both tracking and landing. This further helps to increase the robustness of the system,
because the UAV can re-detect the landing platform autonomously in case the latter disappears from
the field of view of the UAV’s camera or if the relative error between the landing platform and the
UAV in the immediate moments before landing is greater than a threshold.

Furthermore, a novel finite state machine is presented in this work, which together with our
re-localization module allows for life-long operation, as we will demonstrate in Section 4.

The proposed system in its two versions has been extensively tested on a realistic
three-Dimensional (3D) simulated environment (Gazebo [8]) and deployed for qualitative evaluation
on real robotic platforms. Figure 1 shows the proposed aerial-ground robot fleet. We employ Robotnik’s
Summit XL as the UGV and the Parrot’s AR Drone 2.0 as the UAV. In the simulated environment, we

136



Appl. Sci. 2019, 9, 2661

use the corresponding Robot Operating System (ROS) [9] packages, namely the summit_xI_sim and
tum_simulator packages.

Figure 1. Cooperation between Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles
(UGVs) can greatly benefit Search and Rescue (SaR) tasks where both long-term operation and a wide
aerial view are required. The UAV can travel on top of the UGV (possibly recharging its battery) and,
when needed, take off, inspect the area, and land again autonomously.

This paper is organized as follows. Section 2 analyzes previous work. In Section 3, an overview
of our system is presented, and the robotic frameworks and platforms used are described. Section 4
presents an extensive evaluation of the system in the simulated environment and qualitative tests in
the real robotic platforms. Section 5 concludes this work.

2. Related Work

The development of drone-related applications has exploded in recent years. In particular, there
is enormous interest in using these robots for detecting and monitoring terrestrial mobile objects using
their on-board cameras. However, as previously mentioned, their low autonomy renders them unable
to perform tasks of long duration. That is why much of the research so far has focused on landing
UAVs on mobile platforms, giving them greater versatility, since in many scenarios, it is impossible
to ensure a stationary landing area. A good overview of the research done in the development of
vision-based autonomous landing systems, as well as the challenges in this field, can be found in [10].

Ling et al. [11] tried to solve the problem that arises when taking pictures of icebergs using drones
launched from a ship. Traditionally, the aerial vehicle had to be rescued semi-manually between two
operators: one would pilot the drone until it was close enough to the boat for a second operator to
manually recover it, with the danger that this action entailed. Ling proposed a precision landing
algorithm to eliminate completely the human participation in this type of situation, which uses a
downward-facing camera to track a target on the landing platform and generates high quality relative
pose estimates.

Lee et al. [12] focused on the use of vertical cameras and Image-Based Visual Servoing (IBVS)
algorithms to track a platform in a two-dimensional space and perform a Vertical Take-Off and Landing
(VTOL). They obtained the speed at which the platform moved, and then they used this information
as a reference to perform an adaptive control of sliding movement. Compared to other vision-based
control algorithms that reconstruct a complete 3D representation of the objective (which requires
accurate depth estimates), the IBVS algorithms are computationally less expensive.

137



Appl. Sci. 2019, 9, 2661

Prior to these two works, Saripalli and Sukhatme [13] worked with vision algorithms for the
autonomous landing of a helicopter on a mobile platform. They used Hu’s moments of inertia [14]
for an accurate detection of the objective and a Kalman filter for tracking. Based on the output of
the tracking algorithm, it was possible for them to implement a trajectory controller that ensured the
landing on the mobile target.

The literature also contains some proposals with Model Predictive Control (MPC). Maces et al. [15]
considered a mission with three phases (target detection, target tracking, and autonomous landing)
that were modeled in a state machine. During the last two phases, an MPC is used for position control,
whereas a PID controller is employed for altitude control. The system we present extends the state
machine proposed by Maces with a key additional phase, namely a recovery mode. This new state
increases the system’s robustness by allowing the UAV to re-locate the landing platform autonomously
in case the latter accidentally leaves the field of view of the drone’s camera. Feng et al. [16] combined
a vision-based target position measurement, a Kalman filter for target localization, an MPC for the
guidance of the UAV, and an integral control for robustness. They tested their algorithms on a DJI
M100 quadcopter and reached a maximum error of 37 cm with a platform moving at up to 12ms~1.

However, there are works that considered other techniques. Almeshal et al. [17] proposed a neural
network to estimate the target position, as well as a PID controller to track it and perform landing,
and validated it with a Parrot AR.Drone quadcopter. Finally, Yang et al. [18] developed a complete
UAV autonomous landing system using a hybrid camera array (fish-eye and stereo cameras) and a
state estimation algorithm based on motion compensation and tested them with multiple platforms
(Parrot Bebop and DJI M100).

A common assumption in many of these systems is that the speed of the mobile target is
low enough for the UAV to be able to land on it without compromising the integrity of both
robotic platforms. However, experiments carried out by the German Aerospace Center (DLR) have
demonstrated that it is possible to land a fixed wing drone on a net attached to the top of a car moving
at70kmh~1 [19]. Note, however, that in this experiment the ground vehicle followed a linear trajectory,
which is not always possible in SaR missions, where the debris forces the UGV to make turns almost
continuously.

Indeed, there are substantial differences when trying to land a UAV on a terrestrial moving
platform describing either a linear or a circular trajectory. Most of the research so far focused solely on
the former, without thoroughly considering that the movement of the target can also be circular or
even a mixture of both, thus producing random trajectories. This is, therefore, an interesting line of
work, since in SaR tasks we want to provide the terrestrial robot with complete freedom of movement.
In such a scenario, the UAV has to adapt to the trajectory described by the ground robot for a successful
landing. The work presented in this paper takes a step forward in this direction by demonstrating
a system capable of autonomously landing a UAV for both a linear and a circular trajectory of the
moving landing platform.

Finally, all of the works above described strategies towards precise landing in moving platforms,
but none presented a full system capable of operating for extended periods of time. In our work, a
robust state machine together with a recovery and re-localization module allows for life-long operation,
as we show in Section 4.

3. Proposed Approach

This section describes the proposed approach: (1) a state machine to execute robustly the complete
autonomous takeoff, tracking, and landing of a UAV on a moving landing platform (Section 3.1);
(2) detection and localization of the mobile target using a downward-looking camera (Section 3.2); and
(3) vision-based tracking of the mobile platform while in flight (Section 3.3).

138



Appl. Sci. 2019, 9, 2661

3.1. State Machine

The autonomous takeoff-tracking-landing system proposed in this paper builds upon a finite
state machine (Figure 2) with five states: landed, taking off, tracking, landing, and re-localizing.

takeoff signal

Target height reached?

yes

Figure 2. Finite state diagram that determines the behavior of the UAV.

Landed is the default state when launching the system and corresponds to the UAV resting on
top of the landing platform, awaiting for a takeoff signal. As soon as this takeoff order is received,
the drone’s state changes to faking off, which represents the period during which the UAV is gaining
altitude at a constant speed of 1 ms~! along its z axis (please refer to Figure 1 for a view of the UAV’s
axis). The detection-localization algorithm (Section 3.2) is also launched at this point, as well as
the tracking module (Section 3.3), so that the drone can start following the landing platform while
ascending.

Once the nominal height has been reached (set to 4 m in our experiments), the state automatically
changes to tracking, and the drone stops ascending. It will now follow the landing platform, keeping
a constant altitude. To do so, a PID controller computes the necessary speed signals (both in the x
and y axes) required to reduce the drone’s distance to the landing platform’s centroid in the xy-plane,
which is parallel to the ground.

A land command (user-induced or automated) will trigger the start of the landing maneuver and
shift the state to landing. The aerial robot will start its descent towards the moving landing platform at
a constant downward speed of —0.3ms ™! along its z axis, while the height-adaptive PID controller
provides the necessary speed commands along the UAV’s x and y axis. Note that the PID gains are
constantly being updated depending on the altitude (Section 3.3.1), thus height-adaptive.

Recovery module. The system can enter into recovery mode for either of the following two reasons:
(1) the tracking algorithm registers when the landing platform was detected for the last time, and if
more than 0.5 s pass without getting a new position, the state changes to re-localizing; (2) if the relative
error between the landing platform’s centroid and the UAV’s body frame is bigger than a threshold
(0.25m in our experiments) at the final landing stages—when the sonar indicates values smaller than
0.7 m—the system will also enter recovery mode. In both cases, the drone will start gaining altitude at a
speed of I ms~!, and the height-adaptive PID controller will be turned off so that no speed commands
are sent along the x or y directions. Note that the second condition is designed to work as a more strict
and early detection of potential landing failures.

139



Appl. Sci. 2019, 9, 2661

The intuition behind ascending vertically is that the viewed area by the UAV’s downward-looking
camera is gradually increased. When the landing platform is viewed again, the state is changed
to tracking and maintained so until the nominal tracking altitude of 4m is reached again. At that
point, new incoming landing signals may be processed again. As we will show in a set of extensive
experiments (Section 4.2.3), this re-localization strategy will prove to be key when the landing platform
moves faster than the nominal velocity, keeping the system alive and preventing failed landings.

3.2. Detection and Localization of the Mobile Platform

In this section, we describe the proposed method to detect and localize the landing platform relative
to the UAV’s coordinate frame. To this end, several standard computer vision techniques were used.
It should be noted that this task is not the central topic of this work, but rather a required task to
accomplish the rest of the steps that make up the autonomous landing of a UAV on a moving target.
Thus, it was assumed that the landing platform had an easy to detect pattern (color-wise) or a marker
on top of it. In either case, OpenCV [20] functions are readily available to accomplish shape- and
color-based or more accurate marker-based detection.

The detection algorithm is summarized in Algorithm 1. First, the input frame is converted to
the Hue, Saturation, Value (HSV) color model; second, a color mask is applied, where we keep all
pixels within a certain HSV range, in particular that which corresponds to the red color; third, a
Gaussian filter is applied to blur the image; finally, the Canny edge detection and Hough line transform
algorithms are employed, followed by polygon fitting and computation of the centroid’s coordinates
in the image plane. An example result of this approach using the downward-looking camera of a real
aerial vehicle (AR Drone 2.0) is shown in Figure 3.

Algorithm 1 Detection algorithm.
Input: video_feed

Output: centroid

1: while true do
2 image < getImage(video_frame)

3 image_hsv < rgb2hsv(image)

1 masked_image < hsvMask(image_hsv)

5. blured_image < gaussianBlur(masked_image)
6: edges < cannyEdgeDetector(blured_image)

7 lines < houghLineTrans form(edges)

8 polygon < polygonFitting(lines)

9

centroid <— computateFirstOrderMomentO f Area(polygon)
10: return centroid

(a) HSV img (b) masked img (c) blurred img (d) centroid

Figure 3. Detection of the landing platform and extraction of its centroid using the imagery from the
downward-looking camera of an AR Drone 2.0.

140



Appl. Sci. 2019, 9, 2661

To convert the previously calculated coordinates of the centroid in the image plane Q) to a
three-space vector in the camera frame the inverse of the well-known pinhole camera model can be
used. This process is depicted in Figure 4.

\ ‘
principal axis f

image plane

camera
centre

Figure 4. Pinhole camera geometry. C is the camera center and p the principal point [21].

Assuming radial distortion has been removed in a pre-processing step, Equations (1) and (2),
i.e., the pinhole camera model equations, can be used to define the projection of a three-space vector in
the camera frame into the image plane:

u' f 0 ¢\ (X
Ao =10 f ¢ Y|, 1)
1 0 0 1 Z
u=u'/A
v=0/A @

where (1,0)7 is the projection of the point on the image plane expressed in pixels; f is the focal length
in pixels; (cx, cy)T are the coordinates of the principle point of the camera; and (X, Y, Z) the three-space
coordinates of the landing platform’s centroid in the UAV’s camera frame. Note that in the above
equation we have assumed square and non-skewed pixels.

To obtain our desired 3D coordinates in the camera space, we need to invert the pinhole model.
Additionally, if we know Z beforehand (in our case, Z corresponds to the vertical distance from the
center of the UAV’s camera frame to the center of the landing platform), we can easily compute X

and Y:
e U—Cy
fy

and thus obtain the 3D position of the landing platform’s centroid with respect to the UAV’s
camera frame.

We discard measurements taken when the Inertial Measurement Unit (IMU) indicates an
inclination bigger than a threshold. Therefore, in theory, relative positions of the landing platform with
respect to the UAV computed by the detection-localization algorithm are always obtained without a
major tilt, thus producing reliable estimates to a certain degree. Nonetheless, a minor level of noise
is always present in the output of this algorithm. Leveraging a Kalman filter, as we will explain in
Section 3.3.2, will prove to be an effective way to deal with such measurement noise.

3.3. Tracking the Mobile Platform

Two variants for the tracking algorithm were explored. The first one uses the currently estimated
3D position of the landing platform’s centroid relative to the UAV’s body frame as the input cue for

141



Appl. Sci. 2019, 9, 2661

a height-adaptive PID controller. The required 3D position is computed by transforming the output
of the detection-localization algorithm presented in Section 3.2 to the UAV’s body frame, as detailed
in the following subsection. Note that by height-adaptive we refer to the fact that the PID gains are
modified continuously depending on the UAV'’s flight altitude at every instant.

The second variant extends this height-adaptive PID with a Kalman filter to predict the future
position of the landing platform. This prediction is then used as the target position for the same
height-adaptive PID controller. The implementation of the Kalman filter is based on a previous work
by the authors [22] where the prediction was used for tracking pedestrians.

Additionally, embedded in the tracking module, a height control system ensures that a proper
descent speed is set in every instant depending on the current UAV’s flight altitude. Furthermore, as
mentioned above, this height-adaptive control system updates the PID gains depending on the current
altitude: essentially, the goal is to have a faster response the closer the UAV is to the landing platform
along the vertical axis (perpendicular to the ground).

After having presented the general scheme of both algorithms, i.e., with (w/) and without (w/o)
the prediction of the future position of the moving platform, each variant is explained with more detail
in Sections 3.3.1 and 3.3.2, respectively.

3.3.1. Height-Adaptive, Non-Predictive PID Controller

A PID controller is a control loop feedback mechanism to compute the necessary control variable
u(t) that makes the error ¢(t) between the desired process value or setpoint r(f) and the measured
process value y(t) converge to zero as fast as possible. To do so, it uses three different actions, namely
a proportional, an integral, and a derivative action, each contributing differently to the control action.
The mathematical expression of a PID controller is given by:

de(t)
dt ’

u(t) =Kpe(t) +K; /Ote(t/) dt' + K, 4)
where ¢(t) = r(t) — y(t). In our system, the desired process value, r(t), is the 2D zero vector, i.e., the
origin of the UAV’s coordinate frame relative to the coordinate frame itself. The measured process
value, y(t), is the two-vector containing the x and y coordinates from the 3D position of the landing
platform’s centroid relative to the UAV’s body frame. Thus, e(¢) in our system is the distance in the
xy-plane (parallel to the ground) between the UAV’s frame and the centroid of the landing platform at
time ¢.

Recall now that in the localization stage we compute the three-space coordinates of the landing
platform in the drone’s camera frame, which we denote by Peuy,. If we are to use this position as a
target value for the PID controller, the first step is to transform its coordinates to the UAV’s body frame,
Ppogy, since what we want is for the center of the UAV—and not for the center of its downward-looking
camera—to get closer to the centroid of the landing platform. The transformation Tyogy_cqn that maps
a point from the camera frame to the body frame of the UAV is known from design and gives us:

Pyody = Toody_cam Peam- (©)]
We can then compute the position error e(t) using the expression:
e(t) = 1/ (Prody,)? + (Pooay, )* (6)
and finally, calculate the control variable u(t).
Tuning. Finding the optimal PID gains (proportional gain Kp, integral gain K;, and derivative gain K;)

was carried out through heuristic rules, i.e., looking first for the K, that provided the desired response
while keeping K; and K} at zero; then gradually increasing K; to cancel the position error (and slightly

142



Appl. Sci. 2019, 9, 2661

decreasing the K, so that the system did not become unstable); and, finally, increasing K so that the
response of the system was faster while fixing the values of Kj, and K; obtained in the former steps. In
practice, we found a PI controller, i.e., without the derivative action, to work better than a complete PID.

Height-adaptive PI controller. We also found a height-adaptive PI controller to perform better than
a fixed-gain PI, since different responses are needed when the drone is hovering at 4m above the
landing platform than moments before landing. In particular, the UAV needs to react faster the closer
it is to the landing platform along the vertical axis.

An initial tuning of the PI gains for an altitude of 4 and 2m in the simulation is shown in Table 1.
Note that no distinction has been made between the x and y axes of the UAV, since we can disregard
the different dynamics of the UAV with respect to each of these axes.

Table 1. Height-dependent PI gains.

Altitude Range
PID Gains —————————
4m 2m
K, 0.694  0.697
K; 0.198  0.199

We noticed that an exponential function of the form:
Ki=Qe TP @)

could nicely fit the values we had obtained manually, where Q and T are the parameters of the
function, p, the drone’s altitude, and K, the height-dependent PID gain we want to model. After
further fine-tuning, the final expressions for both the proportional and integral gains are the following:

K, =07¢ 00027z,
Ki =02 00027,

Landing. The descent speed during landing remains at a constant value of 0.3ms~! when flying
0.7m above the landing platform, i.e., when the sonar indicates more than 0.7 m. Below 0.7 m, the
UAV increases its downward speed notably to 2.0ms~!. The intuition behind this design choice
is that, when too close to the landing platform, the latter is not viewed completely by the UAV’s
downward-looking camera, and in turn the computed centroid might not represent the real center
position of the platform. It is therefore a better option to rely on the correct measurements taken at
altitudes higher than 0.7 m and then perform the final approach stages faster.

To determine whether the drone has successfully landed on the landing platform, we use the
sonar measurements and the linear acceleration provided by the IMU. If there exists some linear
acceleration, either in the x or y direction, that means the drone is moving. Moreover, if the sonar
indicates a value smaller than a threshold for a certain period of time, the drone is assumed to have
landed; this is not, however, a sufficient condition, since it might as well have landed on the ground.
Therefore, to be certain that the UAV has actually landed on the moving platform and not on the
ground, both conditions must be met, namely (1) the sonar measurement must be smaller than a
threshold persistently and (2) the IMU must indicate a non-zero linear acceleration. Note that these
assumptions are valid because the landing platform is assumed to be moving constantly.

In practice, the UAV mostly lands smoothly without major rebounds after the first contact with
the landing platform, as we could verify in a set of preliminary experiments. After all, given that the
height-adaptive PID controller ensures that the landing platform’s centroid and the UAV’s body frame
are aligned along the vertical axis at all times, landing mostly occurs very close to the center of the

143



Appl. Sci. 2019, 9, 2661

platform. Therefore, in all experiments (Section 4) we can safely use the initial touch point between the
landing platform and the UAV as stop signal for data recording.

3.3.2. Height-Adaptive, Predictive PID Controller

In this section, we describe how we integrated the pedestrian trajectory prediction algorithm
developed in a previous work by the authors [22] into the height-adaptive PID controller described in
the previous section. The resulting pipeline looks as follows:

1. The detection-localization algorithm (Section 3.2) outputs the centroid of the landing platform
in the UAV’s camera frame. The prediction algorithm requires as input a 3D point relative to an
inertial reference system. Therefore, we must transform the centroid of the landing platform from
the drone’s camera frame into the the world’s frame:

Puortd = Twortd_cam Peam- 8)

2. The new position is then sent to the prediction algorithm (Kalman filter), which returns a vector of
future positions of the centroid of the landing platform relative to the world frame P,,,, ;4. The first
element in this vector (with index zero) corresponds to the current position of the landing platform.
The next element (index one) corresponds to the next predicted position after a user-defined time
step. Correspondingly, the element with index two corresponds to a prediction carried out with
twice the defined time step. In general, the number of steps in this path of predicted positions is
computed as the ratio between a user-provided path time and the time step.

3. Subsequently, the predicted future position of the landing platform is transformed from the
world’s frame into the UAV’s body frame:

Pbody = Tbody_world Poorta- )

4.  Finally, the x and y coordinates of pbody are used to calculate the controller’s error, i.e., the distance
in the xy-plane between the UAV and the predicted position of the landing platform. Using this
error we can now calculate the speed commands in x and y, i.e., u(t) in (4), that make this error
converge to zero.

Configuration of the Kalman filter. We use a value of 0.1 s as the time step for our predictions and a
path time of 0.1s, thus obtaining a vector of future predictions of size two, where the element with
index one corresponds to the predicted position of the landing platform. (Recall that the element with
index zero corresponds to the current position of the landing platform’s centroid.) We studied the
effect of using different path times and then accessing different future positions within this vector
of predictions depending on the altitude, but in a set of preliminary experiments, we found that the
performance improvement of this design choice was minor or even negative.

By using the time step and path time defined above, if the landing platform were to move, for
instance, linearly at a speed of 0.5ms™!, the prediction algorithm would estimate an increment of
0.05m along the current trajectory of the moving target. We found that such a minor prediction (in this
example, the predicted position differs only in 5 cm from the current position) benefits the landing
accuracy notably, as presented in Section 4, when compared to the non-predictive system.

For completeness, we detail the co-variance matrices of the process noise, Q, and the observation
noise, R, both diagonal matrices of the form:

2.0
, R= (O 2>, (10)

@)

I
oo oN
co N o
oN oo
N O oo

which were obtained empirically.

144



Appl. Sci. 2019, 9, 2661

As will become apparent in Section 4, employing a Kalman filter to predict the future positions of
the landing platform not only provided the system with knowledge about the trajectory described by
the UGV, but also helped further stabilize the measurements from the detection-localization algorithm
(Section 3.2).

In this section, we described a system for the autonomous takeoff, tracking, and landing of
a small UAV on a moving landing platform. We presented two variants for the tracking module:
a non-predictive height-adaptive PID controller and its predictive counterpart, which leverages a
Kalman filter to predict the future position of the landing platform. By doing so, not only do we filter
out noise in the measured relative 3D position of the landing platform with respect to the UAV, but also
allow the UAV itself to stay slightly ahead of the UGV by directly feeding this virtual future position
to the height-adaptive PID. This approach will prove to be crucial to accomplish successful landings,
especially when the landing platform describes non-linear trajectories.

4. Results

In this section, we present the obtained results both in the simulated and real environments.
In Section 4.1, some general design considerations are given. Section 4.2 details the results obtained
for an extensive set of experiments in the simulated environment, which serve as a validation of the
system performance both in nominal and more demanding conditions. Finally, in Section 4.3, we
present some qualitative real-world experiments to demonstrate that our system can be deployed in
real robotic platforms.

4.1. Design of the Testing Environments

As previously mentioned, the scope of this work is focused on the development of a robust control
algorithm for the autonomous takeoff, tracking, and landing of a UAV on a moving landing platform
for life-long operation. Therefore, the experiments were designed so as to facilitate the detection task.
Nevertheless, it should be noted that the control algorithm can operate together with any kind of
detection method.

The initial approach was based on placing a visual marker on top of the landing platform, as
shown in Figure 1. However, this approach was discarded after testing that from a height of 4m
the downward-looking camera of the real AR Drone 2.0 was unable to detect the marker robustly.
Therefore, the visual marker was replaced by a red-colored, square-like landing platform like that
shown in Figures 3 and 5 for the real and simulated environments, respectively. Such a landing
platform can be easily detected by using standard computer vision techniques based on color and
shape detection, as already described in Section 3.2. To further simplify this task, both simulated and
real tests were performed on flat and feature-less terrains.

Close-up

UAV’s Camera View

Figure 5. Simulated environment and robotic platforms.

145



Appl. Sci. 2019, 9, 2661

4.2. Experiments in the Simulated Environment

The simulation experiments were conducted in the Gazebo simulator [8]. We designed two sets of
experiments: one evaluated the system under the same initial conditions; a second set of tests aimed at
evaluating the robustness of the system as a whole and the utility of our novel re-localization module
in particular.

4.2.1. Experiments under the Same Initial Conditions

In this set of experiments, the system was re-launched every time so as to have the same initial
conditions for every try. Moreover, the landing platform followed two different trajectories, namely
linear and circular. A total of 20 takeoff-tracking-landing maneuvers were executed, 10 for each
trajectory type, always re-initiating the whole system for every new test. Within a trajectory type, we
tested the two variants of our tracking algorithm, i.e., w/ and w/o prediction. In all experiments,
we computed the Euclidean distance between the landing platform’s centroid and the UAV’s body
frame with respect to the latter. In the following, we will denote this as the error. Note that this
error only coincides with the error fed to our height-adaptive PID controller in the mode w/o
prediction. The details of the two types of trajectories together with the results obtained in each case
are described next.

Linear trajectory. The UGV (and thus the landing platform) describes a linear trajectory at a speed
of 0.5ms ! along its x axis. Initially, both the UGV and the UAV are at rest, with the latter lying on
the landing platform. After a takeoff signal, the aerial vehicle begins its ascent phase to a pre-defined
height of 4m, and the UGV starts moving along a linear trajectory. Upon detection of the landing
platform, the UAV automatically begins to follow the UGV by reducing its distance to the latter in
the xy-plane, as explained in previous sections. After 30's in tracking mode, a landing signal is sent
automatically to the drone, which begins its descent towards the UGV.

Figure 6 shows the trajectory described by the UAV and the UGV for a single experiment of
the linear trajectory. Results for both the non-predictive and predictive modes of the controller are
presented. At first glance, no notable differences can be appreciated. The system w/ prediction is,
however, more stable than its non-predictive counterpart as can be noted by visualizing the slightly
more smooth curves in Figure 6b compared to those in Figure 6a. Importantly, note the scale of the y
axis in Figure 6a,b and how the trajectory of the UAV is bounded within roughly 3 cm after the first
5m in both cases (w/ and w/o prediction), following almost perfectly the linear trajectory described
by the landing platform.

Figure 7 plots the error along both the x and y axis for a single experiment of the linear trajectory.
As with the previous figures, results for both for the non-predictive and predictive variants are shown.
Note that the error along the UAV’s y axis is close to zero for both modes (w/ and w/o prediction),
as was expected in the case of a linear trajectory. As for the error along the x axis, the general trend
is similar in both modes, though more bounded for the algorithm w/ prediction. The big initial
peak in Figure 7a is due to the fact that the UGV starts moving at the same time that the UAV takes
off, thus generating a relatively large initial error along the x axis that is corrected after the first 10s
of simulation.

146



Appl. Sci. 2019, 9, 2661

— v | — uav
o4 — uev ' — ugv
0.2- 021
£ o0l (\ o o~ |E o %@VA%
S Jp— ES
-0.2 -0.24
—0.4- —0.4
° 5 10 15 20 [} 5 1o 15 20
x(m) x (m)
(a) Top view w /o prediction (b) Top view w/ prediction
— uav — VAV
— UGvY — uUGv
4.0 4.0
3.5 3.5
3.0 3.0
25 E 25 E
20 N 2.0 N
1.5 1.5
1.0 1.0
0.5 0.5
0.0 0.0

xtmy 15 5

(c) 3D view w /o prediction

10
X (my

15

20

(d) 3D view w/ prediction

Figure 6. Views of the movements of the UGV and the UAV during a linear trajectory experiment.

1.00
— predictive —— predictive
0.75 - = non-predictive 0.4+ = non-pradictive
0.50
0.2+
il £
x >
£ 0004 £ 00
o
5
g s
@ —0.25
—0.21
~0.50
~0.75 1 —0ad
=1.00 - v . . . \ | | | ;
[} 10 20 30 10 0 10 20 30 40
time (s) time (s}
(a) Error along the x axis (b) Error along the y axis

Figure 7. Errors for a linear trajectory sequence.

147




Appl. Sci. 2019, 9, 2661

Circular trajectory. In this experiment, the UGV describes circles with a forward speed along its x axis
of 0.5ms ™! and an angular velocity along its z axis of 0.05rad s~ L. In theory, this would result in a
circular trajectory of radius 10 m. In practice, due to the friction coefficient of the UGV’s wheels, it
results in a circle of radius 12 m in this particular case. Note that the takeoff-tracking-landing procedure
described for the linear trajectory is also followed here.

Figure 8 shows the trajectory described by the UAV and the UGV for a single experiment of the
circular trajectory. As with previous figures, results for both the non-predictive and predictive variants
are presented for comparison. Note how the UAV'’s trajectory resulting from the system w/ prediction
matches that of the landing platform slightly better than in non-predictive mode, especially in the
region between 6 and 8 m along the x axis.

Similarly, Figure 9 plots the error along both the x and y axis for a single experiment of the circular
trajectory. Once again, non-predictive and predictive approaches are compared. The reader will again
note that the system leveraging a predictive action outperforms its non-predictive counterpart in terms
of a smaller error overall, both along the x and the y axis.

14 — UAV 7 — uav
— uav — UGv
12 12
10 10
= B 8
£ g
T > 6
a4 ad
24 21
0+ 0
° 2 a 6 8 10 12 0 2 4 [ 8 10 12
x {m) x {m)
(a) Top view w/o prediction (b) Top view w/ prediction
— AV — uav
— UGv — uGv

z{m)
z{m)

8
0
10 12

6 6
X {m) 10 X (my)

(¢) 3D view w /o prediction (d) 3D view w/ prediction

Figure 8. Views of the movements of the UGV and the UAV during a circular trajectory experiment.

148



Appl. Sci. 2019, 9, 2661

1.00
—— predictive oa — predlcri\: |
— - 7 — PO Ictive
.75 non-predictive P
0.50
0.2 4
g 05 £
=
£ 0w £ 00
r v
B 5
@ _g25
-0.2
-0.50
-0.75 g
-1.00 1~ . ; , ,
0 10 20 30 a0 [ 10 20 30 a0
time (s) time (s)
(a) Error along the x axis (b) Error along the y axis

Figure 9. Errors for a circular trajectory sequence.
4.2.2. Overall Results in the Simulated Environment for a Linear and Circular Trajectory

Figure 10 reports the errors in the x and y axis, respectively, for all 20 experiments. Each box
within a boxplot represents five experiments, where for each experiment we computed the mean error
value of the whole trajectory (from takeoff until landing).

Note that the mean error in all cases was always lower than 0.12m. Note as well how for both
trajectory types (linear and circular) and for both the error in the x and y axes, the variant w/ prediction
achieved lower error than its non-predictive counterpart.

In particular, the error along the x axis (Figure 10a) for a linear trajectory was around 0.10 cm
on average for the system w/o prediction and around 0.04 cm for the system w/ predictive action;
for a circular trajectory, this error was smaller in general terms: around 0.04 cm for the system w/o
prediction and close to zero when employing the predictive height-adaptive PI controller.

With regards to the error along the y axis (Figure 10b), for a linear trajectory the mean error for
all ten experiments (five for each mode, i.e., w/o0 and w/ prediction) was very small with almost
no dispersion of the data at all. For the circular trajectory, the error produced by the non-predictive
tracking algorithm was in the range of 0.06 cm, while the system leveraging the Kalman filter achieved
lower errors in the range of 0.03 cm.

mode mode
0.10 N w/o pred 0.06 mm wio pred E
E wi pred [ w/ pred

0.08 2.03
E E voa
% 0.08 32
(] o
x 2003
= &= e
g e
L1 o

0.02 0.01

0.00 - 0.00 —

—————
—0.01
linear circular lingar circular
trajectory trajectory
(a) Error along the x axis (b) Error along the y axis

Figure 10. Comparison of the errors between linear and circular trajectories, both for the non-predictive
(w/o pred) and predictive (w/ pred) variants.

Overall, the system performed robustly in all tests, managing to land flawlessly in all cases.
We have therefore demonstrated how an approach based on a predictive height-adaptive PI controller

149



Appl. Sci. 2019, 9, 2661

outperforms its non-predictive counterpart, allowing the UAV to follow and land on the moving
landing platform consistently, performing a more stable and accurate flight.

4.2.3. Experiments to Test the Life-Long Operation Capabilities of the System

To further demonstrate the robustness of our algorithm and its life-long operation capability, we
carried out the following experiment: we launched the system once and let the UAV perform up to a
maximum of 50 takeoff-tracking-landing maneuvers continuously. For every iteration, 10s pass from
the moment of takeoff before an automated landing signal is sent. Once the UAV lands, it rests for
1s on top of the landing platform before taking off again to complete a new takeoff-tracking-landing
maneuver.

This test was carried out for a circular trajectory and for two different velocity conditions of
the landing platform, resulting in a total of 100 attempted maneuvers: on the one hand, nominal
conditions (vy = 0.5m s~ 1w, = 0.05rad 5_1) ; and, on the other hand, more demanding conditions
(vy = 0.7ms™!,w, = 0.07rads™!). Note that, in practice, the UGV model, i.e., the Summit XL, rarely
reaches linear speeds higher than vy = 0.7ms~!, commonly operating at a nominal speed of 0.5ms™!
along its x axis. However, we wanted to evaluate our re-localization module thoroughly under more
challenging conditions. We used our best-performing system, namely our system based on a predictive,
height-adaptive PID controller. Figure 11 visualizes the trajectories described by both the UAV and the
UGV for the two speed conditions mentioned above.

Note that, in practice, the trajectory followed by the UGV is never exactly a circle due to the
wheels’ friction coefficients. Moreover, the UGV also drifted in time, thus resulting in various circles
centered in different locations, as can be seen in Figure 11.

As gathered in Table 2, for a velocity of (vy = 0.5ms™!, w, = 0.05rad s~!) the system managed
to land the aerial vehicle successfully in all 50 consecutive maneuvers with a Mean Absolute Error
(MAE) along the UAV’s x axis of 0.127 m and 0.245 m along its y axis. Moreover, the maximum absolute
error along the x and y axes was 0.734 m and 0.653 m, respectively. When operating at a higher velocity
(vy =0.7m s w, =0.07rads ! ), the re-localization module had to be launched 16 times, leaving a
total of 34 successful landings. In this case, the MAE along the UAV’s x axis was 0.245m and 0.232m
along the y axis, and the maximum absolute errors were 1.526 m and 1.441 m for the x and y axes,
respectively.

— uav
07— uev
201 -
E
- N
E
= 104
o
~10
-0 15 -1 -5 o 5 10 15 x¢ % 5 10
x (m) m) 15 =10
(@) vz = 0.5ms L, w; = 0.05rads™! (bY vy = 05ms L, wy =0.05rads ™!

Figure 11. Cont.

150



Appl. Sci. 2019, 9, 2661

‘ ’ i {V’" A *‘:‘;p
Hlf[.'\\ l"“,w
Ny

z{m)

-15

-15 -10 -5 0 5 10 15 5
x(m) x{'") 10 15 0
(Qovx= 0.7ms !, w, = 0.07rad s~ 1 (d) vy = 07ms !, w, = 0.07rad s~ !

Figure 11. Trajectories described by the UAV (red) and the UGV (green) when performing a total of
50 consecutive takeoff-tracking-landing maneuvers continuously for two different linear and angular
speeds of the UGV.

1

Table 2. Statistics for the life-long capability experiments. Linear velocities (vy) are given inms™" and

angular velocities (w;) in rad s~

Study Variables Landing Platform Velocities (vy, w:)
(0.5,0.05) (0.7,0.07)
Total test time 1072.41s 1249.09s
Successful landings (num) 50/50 34/50
Successful landings (%) 100% 68%
Re-localization maneuvers 0 16
max(|error_x|) 0.734m 1.526 m
MAE, 0.127m 0.245m
max(|error_y|) 0.653m 1.441m
MAE, 0.103m 0.232m

Note that all 16 recovery maneuvers under the more challenging conditions were triggered not
because the UAV lost sight of the landing platform, but due to a too large error—greater than 0.25m in
our experiments—in the moments before landing. Such an early detection of potential failed landings
allows the system to avoid accidents and flawlessly continue functioning even under challenging
velocity conditions of the landing platform. An example of a relocalization maneuver can be viewed
in Figure 12. Moreover, Figure 13 shows the error along the UAV’s z axis during the first 200's of the
experiment for both velocity conditions studied. Overall, the rate of successful landings was 100%
for the nominal velocity of the UGV and 68% in the case of more challenging (and rather unusual)
conditions.

In this subsection, we demonstrated how our system performs flawlessly at the nominal speed of
the UGV. More importantly, we have shown that by leveraging our novel recovery module, potential
failed landing maneuvers can be detected and avoided, thus demonstrating the great benefits that
such a system brings about, both in terms of robustness and reliability.

151



Appl. Sci. 2019, 9, 2661

| re-localization maneuver | — UAV
— UGV

4.0
35
3.0
2.5
2.0
15

1.0

0.5
0.0

z{m)

5
10
10 5 15

0 _ 20

xgmy T2 10 5 25 g

I takeoff I I successful landings I

Figure 12. Detail of the 3D trajectory for a velocity of (vy = 0.7ms ™!, w, = 0.07rad s’l) where a
re-localization maneuver takes place. The run-time interval represented is [47.79s, 99.84 s].

0.0 0.0]
—0.51 -05
-144 -10
E-15 E-15 -
N w re-localization maneuvers |
c 1~
v =204 B =20
€ B
-25 | 25
—3.0 30
—35 255
0 25 50 75 100 125 150 175 200 © 25 50 75 100 125 150 175 200
time (5} tme {s)
(@) vy = 05ms !, w; = 0.05rads™! M vy =07ms L, w; = 0.07rad s~ 1

Figure 13. Error along the z axis (relative UAV-UGV distance along the z axis) during the first 200's for
both velocity conditions studied. (b) shows three re-localization maneuvers.

4.3. Experiments in the Real Environment

On the real robotic platforms we only tested the height-adaptive PID w/o predictive action, since
for the predictive system to have worked we would have needed an additional means to localize
the landing platform’s position in global coordinates, as described in Section 3.3.2. In the simulated
environment, transforming positions to a fixed global frame was straightforward. In the real world,
however, this is more complex; implementing a Visual Inertial Odometry (VIO) or even a full visual
Simultaneous Localization and Mapping (vSLAM) system would have been required in order to
localize the drone in the scene with respect to a fixed frame.

What we did, however, was localize the landing platform relative to the UAV’s coordinate frame,
which is the only input required by the non-predictive approach. Therefore, on the real robotic platforms
we qualitatively tested the system that employs our novel height-adaptive PID w/o prediction.

In particular, we performed five takeoff-tracking-landing sequences both for the linear and circular
trajectory, following the same strategy as that described in Section 4.2.1. The UAV landed successfully
in all five experiments for the linear trajectory and only failed once for the circular trajectory. The
landing quality is visualized in Figure 14. We therefore demonstrate that the system presented in
this work can be deployed on real robotic platforms. Figure 15 visualizes one of the linear trajectory

152



Appl. Sci. 2019, 9, 2661

experiments, and Figure 16 shows a sequence of a recovery maneuver. The complete sequences can be
found in the video provided as Supplementary Material, or at https://youtu.be/CCrPBw_we2E.

100

80

60

% successful landings

204

I height-adaptive non-predictive PID

Linear Circular

trajectory type
Figure 14. Percentage of successful landings in the real environment when using the height-adaptive,
non-predictive PID controller for a linear and circular trajectory of the UGV. Note that these experiments
were obtained by re-launching the system from scratch for every new test, as depicted in Section 4.2.1.

(a) Real robots (b) Landing sequence of the real UAV

Figure 15. Real robotic platforms (a) and landing sequence (b).

I recovery mode triggered

mmmm

Figure 16. Re-localization maneuver in the real environment.

The reader must note that the real experiments were targeted as a qualitative demonstration
of how our system can be integrated into real robotic platforms. We believe that the numerous
quantitative experiments presented for the simulated environment (where we have used the same
UAYV model as in the real tests, as well as the same UGV) can serve to demonstrate the robustness and
accuracy of the system, while the qualitative tests performed on the real robots can demonstrate that
our system can be deployed on the real world.

153



Appl. Sci. 2019, 9, 2661

5. Conclusions

In this work, we proposed a ROS-based system that enables a UAV to take off, track, and
land autonomously on a moving landing platform. A novel height-adaptive PID controller suffices
to operate the UAV satisfactorily when the landing platform describes either a linear or a circular
trajectory at a speed of 0.5ms™! along its x axis. Introducing a Kalman filter to predict the future
position of the landing platform further improves the overall performance of the system, reducing the
position error in comparison to the non-predictive approach.

Furthermore, we proposed a finite state machine architecture to keep track of different stages
robustly. Together with a novel recovery module, they enable our system to operate in a continuous
manner, providing it with life-long operation capability.

We extensively tested the system in the simulated environment (Gazebo), executing a total
of 120 takeoff-tracking-landing sequences and reporting detailed results that validate the system’s
performance. We also implemented our algorithms on real robotic platforms and carried out qualitative
evaluations, thus demonstrating that our system can be deployed in the real world.

Regarding future work, using a UAV with a better downward-looking camera would allow
leveraging a marker detection system instead of the current color- and shape-based detection algorithm.
By doing so, the whole system could be deployed in any kind of environment, regardless of the terrain’s
texture. Furthermore, a module could be added to localize the UAV in global coordinates, e.g., VIO or
visual SLAM. This would allow implementing the predictive variant of our system in real platforms,
which has demonstrated to outperform its non-predictive counterpart in the simulated environment.

Supplementary Materials: The software presented in this work is publicly available at https://github.com/pab
lorpalafox/uav-autonomous-landing. A video demonstrating the system can be viewed at https://youtu.be/C
CrPBw_we2E. Furthermore, we also provide as Supplementary Material all our log files as raw CSV files (plus
several Python scripts) so that the results presented in this work can be reproduced.

Author Contributions: Conceptualization, PR.P. and M.G.; methodology, PR.P, M.G., and ].V.; software, PR.P. and
M.G,; validation, PR.P. and M.G.; formal analysis, PR.P, ].V,, and ].].R.; investigation, PR.P,; resources, PR.P. and
A.B.,; data curation, PR.P; writing, original draft preparation, PR.P.; writing, review and editing, M.G., ].V., and ] J.R.;
visualization, PR.P. and J.V., ; supervision, M.G.; project administration, A.B.; funding acquisition, J.].R. and A.B.

Funding: The research leading to these results received funding from RoboCity2030-DIH-CM, Madrid Robotics
Digital Innovation Hub, 52018 /NMT-4331, funded by “Programas de Actividades I+Den la Comunidad de
Madrid” and cofunded by Structural Funds of the EU, and from the project DP12014-56985-R (Robotic protection
of critical infrastructures), financed by the Ministry of Economy and Competitiveness of the Government of Spain.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
UGV  Unmanned Ground Vehicle
PID Proportional-Integral-Derivative
3D Three-Dimensional

IBVS  Image-Based Visual Servoing
ROS Robot Operating System

MPC  Model Predictive Control
VTOL  Vertical Take-Off and Landing
HSV Hue, Saturation, Value

IMU Inertial Measurement Unit
MAE  Mean Absolute Error

csv Comma-Separated Values

154



Appl. Sci. 2019, 9, 2661

References

1. Liu, Y,; Nejat, G. Robotic Urban Search and Rescue: A Survey from the Control Perspective. ]. Intell.
Robot. Syst. 2013, 72, 147-165. [CrossRef]

2. Cardona, G.A.; Calderon, ].M. Robot Swarm Navigation and Victim Detection Using Rendezvous Consensus
in Search and Rescue Operations. Appl. Sci. 2019, 9, 1702. [CrossRef]

3. Garzoén, M,; Valente, J.; Zapata, D.; Barrientos, A. An aerial-ground robotic system for navigation and
obstacle mapping in large outdoor areas. Sensors 2013, 13, 1247-1267. [CrossRef] [PubMed]

4. Polvara, R.; Sharma, S.; Wan, J.; Manning, A_; Sutton, R. Vision-Based Autonomous Landing of a Quadrotor
on the Perturbed Deck of an Unmanned Surface Vehicle. Drones 2018, 2, 15. [CrossRef]

5. Roldan, J.; Garcia-Aunon, P.; Garzén, M.; de Leon, J.; del Cerro, J.; Barrientos, A. Heterogeneous multi-robot
system for mapping environmental variables of greenhouses. Sensors 2016, 16, 1018. [CrossRef] [PubMed]

6. Reardon, C.; Fink, J. Air-ground robot team surveillance of complex 3D environments. In Proceedings of the
2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland,
23-27 October 2016; pp. 320-327.

7. Borreguero, D.; Velasco, O.; Valente, J. Experimental Design of a Mobile Landing Platform to Assist Aerial
Surveys in Fluvial Environments. Appl. Sci. 2018, 9, 38. [CrossRef]

8.  Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator.
In Proceedings of the 2004 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No. 04CH37566), Sendai, Japan, 28 September—2 October 2004; Volume 3, pp. 2149-2154.

9. Quigley, M.; Conley, K.; Gerkey, B.; Faust, ].; Foote, T.; Leibs, ].; Wheeler, R.; Ng, A.Y. ROS: An open-source
Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan,
17 May 2009; Volume 3, p. 5.

10. Kong, W.; Zhou, D.; Zhang, D.; Zhang, J. Vision-based autonomous landing system for unmanned
aerial vehicle: A survey. In Proceedings of the 2014 International Conference on Multisensor Fusion
and Information Integration For Intelligent Systems (MFI), Beijing, China, 28-29 September 2014; pp. 1-8.

11. Ling, K. Precision Landing of a Quadrotor UAV on a Moving Target Using Low-Cost Sensors. Master’s Thesis,
University of Waterloo, Waterloo, ON, Canada, 2014.

12. Lee, D,; Ryan, T.; Kim, HJ. Autonomous landing of a VTOL UAV on a moving platform using image-based
visual servoing. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation,
Saint Paul, MN, USA, 14-18 May 2012; pp. 971-976.

13.  Saripalli, S.; Sukhatme, G.S. Landing on a moving target using an autonomous helicopter. In Field and Service
Robotics; Springer: Mt Fuji, Japan, 2006; pp. 277-286.

14. Hu, M.K. Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 1962, 8, 179-187.

15.  Macés-Herndndez, ].A.; Defay, F.; Chauffaut, C. Autonomous landing of an UAV on a moving platform using
Model Predictive Control. In Proceedings of the 2017 11th Asian Control Conference (ASCC), Gold Coast,
QLD, Australia, 17-20 December 2017; pp. 2298-2303.

16. Feng, Y.; Zhang, C.; Baek, S.; Rawashdeh, S.; Mohammadi, A. Autonomous Landing of a UAV on a Moving
Platform Using Model Predictive Control. Drones 2018, 2, 34. [CrossRef]

17.  Almeshal, A.; Alenezi, M. A Vision-Based Neural Network Controller for the Autonomous Landing of a
Quadrotor on Moving Targets. Robotics 2018, 7, 71. [CrossRef]

18. Yang, T, Ren, Q.; Zhang, E; Xie, B.; Ren, H.; Li, ].; Zhang, Y. Hybrid Camera Array-Based UAV Auto-Landing
on Moving UGV in GPS-Denied Environment. Remote Sens. 2018, 10, 1829. [CrossRef]

19.  German Aerospace Center. Autonomous Landing at Full Speed. Available online: https://www.dlr.de/dlr
/en/desktopdefault.aspx/tabid-10080/150_read-16413/#/gallery /21679 (accessed on 29 May 2019).

20. Bradski, G. The OpenCV Library. 2000. Available online: http://www.drdobbs.com/open-source/the-op
encv-library /184404319 (accessed on 29 May 2019).

21. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press:
Cambridge, UK, 2003.

22.  Garzén, M.; Garzén-Ramos, D.; Barrientos, A.; Cerro, ].D. Pedestrian Trajectory Prediction in Large

Infrastructures. In Proceedings of the 13th International Conference on Informatics in Control, Automation
and Robotics, Lisbon, Portugal, 29-31 July 2016; pp. 381-389.

155



Appl. Sci. 2019, 9, 2661

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).

156



Firicd applied
b sciences

Article
On Sharing Spatial Data with Uncertainty Integration
Amongst Multiple Robots Having Different Maps

Abhijeet Ravankar “**, Ankit A. Ravankar >*, Yohei Hoshino ! and Yukinori Kobayashi 2

School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of
Technology, Kitami, Hokkaido 090-8507, Japan

Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo,
Hokkaido 060-8628, Japan

* Correspondence: aravankar@mail kitami-it.ac.jp

t These authors contributed equally to this work.

Received: 30 May 2019; Accepted: 4 July 2019; Published: 8 July 2019

Abstract: Information sharing is a powerful feature of multi-robot systems. Sharing information
precisely and accurately is important and has many benefits. Particularly, smart information sharing
can improve robot path planning. If a robot finds a new obstacle or blocked path, it can share
this information with other remote robots allowing them to plan better paths. However, there are
two problems with such information sharing. First, the maps of the robots may be different in
nature (e.g., 2D grid-map, 3D semantic map, feature map etc.) as the sensors used by the robots
for mapping and localization may be different. Even the maps generated using the same sensor
(e.g., Lidar) can vary in scale or rotation and the sensors used might have different specifications like
resolution or range. In such scenarios, the ‘correspondence problem’ in different maps is a critical
bottleneck in information sharing. Second, the transience of the obstacles has to be considered while
also considering the positional uncertainty of the new obstacles while sharing information. In our
previous work, we proposed a ‘node-map” with a confidence decay mechanism to solve this problem.
However, the previous work had many limitations due to the decoupling of new obstacle’s positional
uncertainty and confidence decay. Moreover, the previous work applied only to homogeneous maps.
In addition, the previous model worked only with static obstacles in the environment. The current
work extends our previous work in three main ways: (1) we extend the previous work by integrating
positional uncertainty in the confidence decay mechanism and mathematically model the transience
of newly added or removed obstacles and discuss its merits; (2) we extend the previous work by
considering information sharing in heterogeneous maps build using different sensors; and (3) we
consider dynamic obstacles like moving people in the environment and test the proposed method in
complex scenarios. All the experiments are performed in real environments and with actual robots
and results are discussed.

Keywords: information sharing; multi-robot systems; positional uncertainty; path planning; mapping

1. Introduction

Mobile robots are increasingly being used to automate many tasks; tasks which are mostly dull,
dangerous, or demanding are a good fit for autonomous robots. The industrial sector has already
benefited a lot from ‘factory robots’. Recently, a new class of robots called ‘service robots” have been
increasing. These robots are used to provide several common services like cleaning and delivering,
dispatching and moving items. These service robots are also used for specific tasks like patrolling
and escorting people. Generally, multiple robots are used for such tasks in large service areas as there
are several advantages. One of the major advantages of using multiple robots is wide area coverage.
Multiple robots can cover a large area and perform several tasks simultaneously. Task parallelism is

Appl. Sci. 2019, 9, 2753; d0i:10.3390 /nan09132753 157 www.mdpi.com/journal/applsci



Appl. Sci. 2019, 9, 2753

possible as different robots can perform different tasks at the same time. Some robots may be cleaning,
some patrolling, while others may be delivering items to specific locations. Fault tolerance is another
advantage of multi-robot systems. Even if one of the robots goes out of service the entire service does
not stop as other robots can finish the task. Moreover, with task coordination, multiple robots can
perform the task efficiently and quickly.

However, with the introduction of multiple robots in a system, there are several challenges which
need to be addressed. Among these problems, effective communication between the multiple robots
is a major challenge. Communication forms the basis of other major modules like task coordination,
task distribution and collective execution. Accurate and content rich information is important for the
successful execution of many tasks.

Although there are many benefits of sharing spatial information in a multi-robot system, in this
paper, we consider the case of sharing obstacle information in a multi-robot system. The environments
at many service places, like hospitals and warehouses, are very dynamic with moving entities and new
obstacles. To navigate autonomously in such environments, robots need a map of the environment
and need to localize themselves within it. This is generally achieved through a SLAM (Simultaneous
Localization and Mapping) [1] module. Generally, if one robot finds a new obstacle in the environment,
it only updates its own map. The other robots do not benefit from this knowledge. However, if the
robot shares this knowledge with other robots along with updating its map, other robots can update
their maps and plan better paths with the real-time information. This is shown in Figure 1, in which,
Robot R1 finds a new obstacle and blocked path at the center passage of the service area and shares
the spatial coordinates of the obstacle with other robots R2, - - - ,R5 which can use this information in
generating optimal trajectories. The extension of use-case scenarios other than obstacle information
sharing is straightforward.

Iﬁ T L

Innnne IIRﬂl‘._ [ [
Innnne IHne i [

Figure 1. Robot R; finds a new obstacle blocking the path and shares this information with other
robots (Ry,---,Rs). The blue and red ellipses represents the robot’s and obstacle’s positional
uncertainty, respectively.

Related Works

There is a plethora of previous works related to sharing information in multi-robot systems.
Sharing corresponding matches of an object by two robots to calculate an accurate relative localization
over time is proposed in Reference [2]. Work in Reference [3] proposes sharing visual information.
In Reference [4], task negotiation between multiple robots by sharing information is proposed to decide
the sequence in which the tasks should be performed by different robots. Work in Reference [5,6]
proposes a protocol to share the region of interest between robots for efficient task cooperation. In-fact,
multi-robot sport activities like Robo-soccer [7,8] heavily relies on meaningful information sharing

158



Appl. Sci. 2019, 9, 2753

between robots to achieve a common goal. Virtual pheromones have been proposed to be used
for coordinating master-slave robots in References [9,10]. Path planning of multiple robots using
information from external security cameras is proposed in Reference [11]. In addition, a direct obstacle
coordinate information sharing was proposed in our previous work [12] without considering the
uncertainty. However, this is a limitation as in practical systems there is always some uncertainty
associated with robot’s localized information and mapped obstacle’s position due to sensor errors.
RoboEarth [13-15] is another platform which heavily uses information exchange through cloud.

Such information sharing has huge merits in robot path planning. Path planning is an active area
of research and in the context of multi-robot systems path-planning has shown promising advantages
through information sharing between robots. Multi-robot collision avoidance has been discussed
in Reference [16]. Work in Reference [17] presents a mechanism in which robots share information
about their remaining battery power and accordingly avoid collision by giving priority to a robot
with less battery power over the shortest path. An interesting approach of collaborative navigation
through visual-servoing is presented in Reference [18,19] which heavily relies on reliable and efficient
inter-robot communication to share information. The proposed work focuses on multiple robots
sharing information about the dynamic changes in the remote area of the environment. This enables
the robots to use updated and timely information to efficiently plan their paths. Information sharing
among multiple robots for efficient path planning usually involves a decentralized approach [20] in
which each robot calculates its path individually and decisions to change paths or avoid obstacles
is done later based on the received messages from other robots. This is unlike centralized path
planners [21] in which all the paths of all the robots are calculated simultaneously. In Reference [22],
a motion planner is proposed for multiple robots with limited ranges of sensing and communication
to reach the goal in dynamic environments. In Reference [23], a navigational technique for multiple
service robots in a robotic wireless network (RWN) is presented in which robots download map
information from map servers for safe navigation. Semantic information is used among multiple
robots for efficient task coorindation in Reference [24].

In Reference [25], a practical case of multi-robot navigation in warehouse has been discussed.
The proposed work also deals with the positional uncertainty of robots and obstacles. In this context,
a decentralized approach for collaboration between multiple robots in presence of uncertainty are
considered for robot action in Reference [26]. A review of multi-robot navigation strategies can be
found in References [27-29].

The proposed work is an extension of our previous work [12]. Our previous work proposed
the idea of a ‘Node-Map’ and obstacle’s confidence decay mechanism. However, there were many
limitations which are addressed in this extended work. The new major contributions are:

1. Uncertainty Integration in the Improved Confidence Decay Mechanism: The previous work [12]
did not consider the amount of estimated positional uncertainty of obstacles in the confidence
decay. Both were decoupled entities. However, this was a serious drawback in the previous
work because irrespective of the amount of positional uncertainty, confidence of all the obstacles
decayed at the same rate. This caused several false map updates corresponding to dynamic
obstacles which generally have large uncertainty associated. In the extended work, we have
mathematically modeled the integration of positional uncertainty in the confidence decay

mechanism. This is discussed in ‘Section 4.1 Integrating Uncertainty in Confidence Decay
Mechanism’.

2. New Experiments with Heterogeneous Maps with Different Sensors: Another shortcoming
of the previous work was that it only worked with the same type of 2D grid-maps made with
the same type of sensors. However, in the extended work, we include new experiments with
heterogeneous maps (3 dimensional RGBD map and 2D grid-map) made from different sensors.
In this regard, the merits of using the ‘node-map” as a means of smoothly sharing information

159



Appl. Sci. 2019, 9, 2753

coherently between heterogeneous maps are also discussed. This is discussed in ‘Section 6.1
Experiments with Heterogeneous Maps’.

3. New Experiments in Dynamic Environment with Moving People and Testing Under Pressure:
The previous work only worked with static obstacles. In the extended work, new experiments
have been performed to test the method when people are randomly moving in the vicinity of
the robot and obstructing its navigation. In this regard, the tight coupling of new obstacle’s
uncertainty in the confidence decay mechanism plays a vital role to avoid false map-updates
corresponding to the dynamic obstacles. This is discussed in ‘Section 6.2. Results with Dynamic
Entities (Moving Obstacle)’.

The comparison of the previous work with the extended work is summarized in Table 1.
In addition, the proposed work discusses the algorithm to generate the T-node map.

Table 1. Comparison of this extended work with the previous work [12].

Feature Previous Work [12]  Extended Work
Sharing New Obstacle’s Position Information Yes Yes
Consideration of Positional Uncertainty of Obstacles No Yes
Confidence Decay Mechanism Yes Yes
Uncertainty Influence Over Confidence Decay No Yes
Experiments in Very Dynamic Environment (e.g., Moving People) No Yes
Robots have Different Types of Sensors No Yes
Tests with Heterogeneous Maps No Yes

The paper starts by first explaining the correspondence problem in different maps in Section 2.
The node-map representation is explained in Section 3. Section 4 briefly explains obstacle removal
and update in the nodemap and Section 4.1 explains the integration of positional uncertainty in the
confidence decay mechanism. Further, using this coupling with Extended Kalman Filter is explained
in Section 5 with detailed algorithm. The experimental results are discussed in Section 6. Section 6.1
explains about the experiments with heterogeneous maps and Section 6.2 discusses the results with
dynamic entities (moving people). Finally, Section 7 concludes the paper.

2. Correspondence Problem in Different Maps

In dynamic environments, the new objects in the environment could be the temporary or new
permanent obstacles. Both needs to be estimated in the map for correct path planning. A robot
estimates the absolute position (x,ps, Yops) Of an obstacle in its map through its SLAM module.
This estimation also has an uncertainty (X,;;) associated with it which arises mainly from sensor
errors. This information about the new obstacle (x,ps, Vops, Zops) is difficult to be directly shared with
other robots.

A common problem occurring in multi-robot systems is information sharing in different types of
maps (e.g., 2D grid-map, 3D semantic map, feature map etc.) made from different sensors used by
the robots for mapping and localization. Even the maps generated using the same sensor (e.g., Lidar)
can vary in scale or rotation and the sensors used might have different specifications like resolution
or range. In such scenarios, the ‘correspondence problem’ in different maps is a critical bottleneck in
information sharing. Moreover, the uncertainty of localization also adversely affects the information
sharing. In other words, it is important to consider how to easily correspond local spatial information
in one map to spatial information in a separate map of different type or scale while considering
the uncertainty.

This is graphically explained in Figure 2. There is a scale difference between Map1 and Map2.
Whereas, Map2 and Map?3 differ by a rotation factor. A spatial obstacle information, for example,
position (x!, ') will correspond to different spatial coordinates in Map2 and Map3. In most real world
scenarios, these scale and rotation differences are generally not known. Some previously proposed

160



Appl. Sci. 2019, 9, 2753

techniques [30] to find the necessary translation and rotation can be applied to transform the spatial
information in one map to another. However, the computation costs are expensive and could introduce
undesired delays.

Although the example in Figure 2 is simplified for illustration, in actual scenarios different maps
may have different levels of noise and even feature dimensions. Moreover, some robots may only have
a partial map information. Similarly, Figure 3 discusses the problem of robots having different types of
maps [31]. Figure 3a is a map in the form of a graph, Figure 3b is a dense 3D map, while Figure 3c is
the gridmap of the same environment. It is difficult to for the robots to correlate spatial information in
such different types of maps.

_ Map 2
Py l :l &
R ﬂ Map 3

Scale Rotation

Mapl
4

Figure 2. Correspondence problem due to the scale and rotational differences between maps.

(a) Graph Map. (b) Dense 3D Map. (c) Grid Map.

Figure 3. Correspondence problem due to the different types of maps [31] of the same environment.
(a) Graph map. (b) Dense 3D map. (c) Grid map.

In the proposed work, it is assumed that the robots work in the common service area whose map
is available to the robots. This map itself could be heterogenous, for example, grid-map, RGBD map
and so forth, which is built using different sensors mounted on different robots. Moreover, the maps
could be build from different anchor points. Thus, different robots could have heterogeneous maps.

3. “T-Node’ Map Representation

A T-node representation of the map has been proposed in our previous work [12]. We briefly
explain the T-node map and how obstacles are represented in it. Later, we describe how path planning
is done on the node map. It is assumed that each robot is also assigned a unique robot-id (R4) and the
robots are on the same network to exchange messages with each other.

A node is defined as a point of turn in a path of the map. The paths are represented as a network
of these nodes in the map. Figure 4a shows the node representation of the environment shown in
Figure 1. Notice that, the nodes nj,ny, - - - ,ny; are the points of turns in the map. The terminal nodes
are shown in red color in Figure 4a. Nodes are connected to each other through edges. Figure 4b
shows the T-node map with an obstacle placed between the nodes ng and n3. The distance between

161



Appl. Sci. 2019, 9, 2753

the nodes ngn3 is L and the distance of the obstacle from node nj is x, which can easily be estimated
using an on-board distance sensor.

Ny Ny
n, N3 Ns n; n3 Ns
N e Ng N o Ne
obstacle
uncertaint
L y
X
N, e e Ny N7 e Ny
Ng Ng Nio Ng Ng Nio
] ]
Ni> Ni>
(a) T-node map without obstacle. (b) T-node map with obstacle.

Figure 4. T-node representation of the environment shown in Figure 1. (a) T-node map without obstacle.
(b) T-node map with obstacle between nodes ngns.

A table stores T-node map’s information viz. traversable/blocked edges (paths) and any changes
at the edges. All the robots have access to this table. In the context of Figure 4b, the corresponding
information is shown in Table 2. The table contains a set of four information about each path: (1) binary
information of whether a new obstacle is found on an edge, (2) a binary information if the path
is blocked and cannot be traversed, (3) details of the obstacle if the path is changed and (4) the
timestamp (Ts) when the information was updated. The details of the information will vary according
to the type of the sensor used. For example, in case of Lidar, the obstacle information will contain:
the obstacle coordinates from the node (d, dy), dimensions of the obstacle like width (ws) and height
(hgpbs) and the positional uncertainty associated in estimating the obstacle (0, 03). The uncertainty
information comes from the SLAM module used in the robot. As shown in T-node map of Figure 4b,
only one of the edges 319 is obstructed. This information is reflected in Table 2. It is possible that
a new obstacle is found on a path, however the path could be still be traversed. A blocked path cannot
be traversed by the robot.

Table 2. T-node map information corresponding to Figure 4b.

Node Path New Obstacle Path Blocked Meta-Data
niny 0 0 -
n3hg 1 1 { d:(dx, dy),W:tw,ps,hihgps, Zi(0x, 0y), Ts |
ngni 0 0 -

Each robot has a copy of this table which has small memory requirement as the meta-data for
only the changed paths are required. Moreover, information is communicated to other robots only
when some path information is changed. A T-node representation makes it easier for a robot to share
information with other robots. The local maps maintained by the two robots might differ by some
rotation, translation or scale. As an example, Figure 5a shows the section of the map of Figure 4b with
obstacles. Figure 5b shows a scaled version, Figure 5c a rotated version and Figure 5d a scaled and
rotated version of Figure 5a. However, the nodes on the paths remains the same and information
that there is an obstacle on one of the edges is still conveyed clearly from Table 2 which maintains
the details of the obstacles. In addition, with a T-node representation a global map is not required.

162



Appl. Sci. 2019, 9, 2753

Even for a large number of nodes, only those edges which are changed is communicated to the robots.
The small data size ensures fast and reliable communication with small communication bandwidth.

ns

3
w

'\
>
QY
N
X
-
g
<

9 Ng
(a) (b (©) (d)
Figure 5. Scale and rotation effects on the T-node map. In all cases, meaningful information can still be

shared between robots. (a) Original section ngng of Figure 4b. (b) Figure 5a scaled down. (c) Figure 5a
rotated by angle 6;. (d) Figure 5a scaled up and rotated by angle 6,.

=

The T-node map can be generated by maneuvering the robot in the environment and setting
points of turns (where the robot turns by around 90 degrees) as nodes. Automatic generation of T-node
map is also possible if a map is available. For example, if there is a grid-map with obstacles (black),
open (white) and unknown (grey) areas, the first step is to generate a binary image of the grid-map
which is done by turning all unknown cells to blocked (black) value. This is shown in Figure 6a. Noise is
removed by successively applying morphological erode and dilate operations [32,33]. The next step is
to apply skeletonization algorithm [34,35]. Many skeletonization and thinning algorithms generate
unnecessary tentacles which needs to be removed using pruning algorithm [36]. Result of showing
skeletonization on binary map of Figure 6a is shown in Figure 6b. Line segments are then detected
using techniques like SVD and Hough Transform [1]. The end-points of segments which are within
a small threshold distance (6) can be clustered [37] using k-means [38,39], fuzzy c-means [40] or density
based clustering methods [41] into a single node as shown in Figure 6¢,d. A graph ‘N’ of these nodes
{n1,ny,--- ,ny} form the T-node map of the environment. The pseudo-code is given in Algorithm 1.

Algorithm 1: T-node-map Generation

Data: m : Gridmap, m_height : map height, m_width : map width
1 Function node_mapping(m)
for each row in m_height do
for each col in m_width do
if cell m[row][col] is unknown then
| mirowlicol]  loceupiea

Apply skeletonization algorithm [34,35]

Apply prunning algorithm [36]

Detect lines segments and their endpoints using algorithm [1]
Cluster nearby endpoints in range 6 with k means algorithm. [37]
Mark clustered points as nodes N - {nj,ny, - ,nm}

return(N)

2
3
4
5
6 Successively erode and dilate binary image multiple times [32,33]
7
8
9

==
=3

1

S

It should be noted that a ‘node’ is merely a point of turn in the navigational graph. It does
not include any feature information (e.g., corners, line, color, etc.) of the map. Hence, map-merger
on T-Node map is not possible. However, traditional methods [42,43] can be used to first merge
feature-rich maps and thereby T-node map. Moreover, since the characteristics of the navigational
paths are different for unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs), this
work does not consider the case of heterogeneous robots. Only ground robots are considered and the
proposed method will work well for both differential drive robots and skid-steer drive robots.

163



Appl. Sci. 2019, 9, 2753
(b)

(a)

(o) ()

Figure 6. T-node map generation. (a) Binary grid-map. (b) Skeleton map. (c) Clustering within ¢
distance. (d) Clustered node n.

4. Obstacle Removal and Update in T-Node Map

This section briefly discusses about modeling the transience of obstacles first proposed in our
previous work [12]. The new contribution of this extended work lies in integrating the positional
uncertainty in the decay mechanism which is discussed in the next Section 4.1. The obstacles in the
passages may be permanent or temporary and removed after some time. Regardless of the transience
of the obstacles, all the robots update their respective T-node map. Newly added obstacles can only be
re-confirmed if a robot actually visits the area near the obstacle. Hence, once an obstacle information
on a particular node has been updated and communicated to other robots, robots update their map
and if that obstacle is found again, the timestamp is updated. However, there is no upper time bound
of when a robot would actually visit the particular location and update its map. The obstacle might
already have been removed by that time. This problem needs to be modeled mathematically.

A timestamp (T) is maintained for each obstacle representing the time at which the obstacle
was last seen. If an obstacle has recently been added to the map and a short time has elapsed since
its addition, then the probability that it has not been removed is high. On the contrary, if a lot of
time has elapsed since the addition of the obstacle, the probability that it still exists in the map is less.
We model a confidence (c) measure which represents this probability 0 < ¢y, < 1. The maximum value
of confidence is 1 and its value decreases with time. The robots assumes that the obstacle still exists in
the map until the corresponding confidence has not dropped to below a threshold confidence (Cy,).
Depending on the nature of the environment, a threshold time (t,) is chosen in which the confidence
decays to ¢y, value and the time in which the confidence decays to zero is (t;). To model the confidence
decay, the following family of curves are chosen.

_ tip "
c=1—-{-"*> 1)
t;
The curves given by Equation (1) have the desired characteristic that for higher values of n,
the curve flattens out more and delays confidence decay until the threshold time (t;,) and after that it

decays quickly to zero in ¢, time. For a given ¢y, t; and ¢,, the value of the degree of the curve (1) can
be found by solving Equation (1) as,

t n
(") =1, O<ens<),

t,
t
n log (f) = log(1 — cyy), @
log(1 — cn)
= n=—2-7"
08 ( = )

Figure 7 shows the curves for the decay function given by Equation (1) for various values of n.
The Ufactor in Figure 7 shows the uncertainty factor which is discussed in Section 4.1. The various
curves have been generated for cy, = 0.55 and t, = 600 s, for varying values of t;, between 300 s to

164



Appl. Sci. 2019, 9, 2753

600 s. It can be seen that the corresponding values of # can be found for different ¢, according to
Equation (2). Moreover, as the value of 7 increases, the decay curves flatten out more taking more time
to reach the threshold time and then quickly decrease to zero.

For a given instantaneous value of confidence ¢, the elapsed time t is calculated from
Equation (1) as,
f— e%log(l—c)ﬂog(tz) (3)

The time remaining (t.;) to reach the threshold time (t;,) is,

1 _
trem = by, —en log(1—c)-+log(tz) W

Obstacle Confidence Decay Function
[ Cth =0.55,tz =600 s, Ufactor = None ]

1
081
<
o061
o
C
(3]
e
€
3 04r
—n =1.5632
0.2 |—n=2.0316
n=2.7757
—n =4.1509
—n=75788 | | | |
0 100 200 300 400 500 600

Time (s)

Figure 7. Obstacle confidence decay function. cy, = 0.55, t; = 600 s. Effects of uncertainty are not
considered and Ufactor = 0.

4.1. Integrating Uncertainty in Confidence Decay Mechanism

Uncertainty in obstacle’s position affects the rate of confidence decay. If there is a large uncertainty
in obstacle’s spatial position, the threshold time ¢4, is reduced by an uncertainty factor. In case of

no uncertainty, Equations (1)—(4) are used. In SLAM, the obstacle’s uncertainty in state is generally
represented by the covariance matrix (X;),

‘7:% Oxy  Oxp

Tp = |Oxy ayz Ty (5)
2
Oxg Oyp Uy

If the uncertainty given by X; is large, the confidence falls down faster and vice-versa.
Hence, the confidence decay is modeled as,

1

Confidence decay o Uncertainty given by %;° ©

The eigenvalues (Ay, - - - A;) and eigenvectors (77, - - - 7,) of the matrix ¥; denotes the magnitude

of the variance. Two largest eigenvalues A1 and A, control the decay of confidence. The threshold time
after uncertainty integration t;h is given as,

’ Y

by =t — —=—=, @)
t N/YEwY

165



Appl. Sci. 2019, 9, 2753

. . . /. .
where, ¥ is a controlling factor. The new confidence ¢ is given as,

) t )
c=1—(-"*
tz

tih — —F—=—=
2.2
o AL+ A3 8)

— (A 3) T [t; (A2+23)% - {t,h (2423 - ‘{’}n] .

The degree of the curve is given as,

o log(1 _/Cth),
we(t)
_n n 1 n )
tog (1t (% +3) F 2 F+23)F — {in (13 +23)F —¥}'))
—— n =

1 1
log (tth (A2+272)2 — ‘F) —log (tz (A2+12) 2)

Figure 8 shows the results of integrating the spatial uncertainty in the obstacle confidence decay
time for various values ¢y, = 0.55, £, = 600 s and different values of the uncertainty factory (Ufactor).
In Figure 8, Ufactor represents,

Ufactor = L, (10)
VAT +A3
where, values A1 and A; capture the amount of estimated uncertainty. In Figure 8, Ufactor is given
as a factor of threshold time. It can be seen that for more uncertainty, the curve starts to fall faster to
the threshold time. Appropriate values of Ufactor can be chosen depending on different scenarios.
Moreover, this value can also be changed dynamically.

The obstacle confidence decay mechanism ensures a smooth robot operation in multi-robot
system where multiple robots frequently inform each other about the new obstacle information. If a
robot receives an obstacle information update from another robot while it is navigating towards its
goal location, then it would have to stop and update its map information which consumes time and
computation. To avoid this, a check is performed to see if the information received affects the current
navigation towards the goal. This is easily achieved by checking the blocked flag of the corresponding
edge. If the blocked flag is set to 1 and the current navigational path is affected, the timestamp and
other meta-data for the blocked edge are checked. Based on the obstacle’s confidence value, path
re-planning or continuation on the same path can be decided according to the priority of the task
at hand.

A major benefit of tightly coupling the obstacle’s uncertainty with confidence decay mechanism
is minimizing the false map updates corresponding to the dynamic obstacles in vicinity. Generally,
the uncertainty of dynamic obstacles is larger than that of static obstacles estimated by the underlying
SLAM module. In the absence of uncertainty integration, confidence all the obstacles irrespective
of their positional uncertainty decays at the same rate. Therefore, if there is a false map update
corresponding to a dynamic obstacle (like moving people), it decays at the same rate like other fixed
obstacles. This increases the chances of false map updates due to dynamic obstacles. However, with the
uncertainty integration, the confidence of obstacles with larger positional uncertainty decay faster than
those with less uncertainty. In effect, this allows minimizing false map updates, as they decay out
quickly. This also prevents false notifications to other robots.

166



Appl. Sci. 2019, 9, 2753

Obs. Confidence Decay: [ Cth = 0.55, tz = 600 s, Ufactor = 10 % tth | Obs. Confidence Decay: [ Cth = 0.55, tz = 600 s, Ufactor = 20 % tth | Obs. Confidence Decay: [ Cth = 0.55, tz = 600 s, Ufactor = 30 % tth ]
08 08 08
3 3 H
8 04 8 04 K] 04
=iz =T ==
02|—n= 16021 02|—n = 1.2059| 02|—n=1.0651
—no200 s i
S Enzieins o Cazziy ooz dazae
o o a0 w0 40 50 o0 o 100 a0 a0 a0 w0 6o o 100 20 a0 a0 s 600
Time 6 Time ) Time )
(a) Ufactor = 10%ty,. (b) Ufactor = 20%t,. (¢) Ufactor = 30%t,.
Obs. Confidence Decay: [ Cth = 0.55, tz = 600 s, Ufactor = 40 % tth | Obs. Confidence Decay: [ Cth = 0.55, tz = 600 s, Ufactor = 50 % tth | Obs. Confidence Decay: [ Cth = 0.55, tz = 600 s, Ufactor = 60 % tth ]
1 1 =0.66323 ! [—n =0.55753]
08 08 azoo 08 ey
Sos S06 Sos
E H H
8 04 8 04 8 04
02[—n=0.88343 02 02
:
“nz i1
i . .
o im0 a0 w0 40 s0 6o o o a0 w0 40 s0 6o o 0 a0 w0 40 0 60
Time ) Time ) Time )
(d) Ufactor = 40%t,. (e) Ufactor = 50%,. (f) Ufactor = 60%ty,.
Obs. Confidence Decay: [ Cth = 0.55, tz = 600 s, Ufactor = 70 % tth | Obs. Confidence Decay: [ Cth = 0.55, tz = 600 s, Ufactor = 80 % tth | Obs. Confidence Decay: [ Cth = 0.55, tz = 600 s, Ufactor =90 % tth ]
1 [—n=0.46566 1 [—n=0.37661 ! [—n =0.28382]
08 e 08 =0 3m009
A —asose
Sos = o
§o4 38 80
02 02
. |
o o o w0 40 so 6o o 0 a0 w0 40 s0 6o o 0 a0 w0 40 0 o0
Time ) Time ) Time )
(g) Ufactor = 70%ty,. (h) Ufactor = 80%t,. (i) Ufactor = 90%ty,.

Figure 8. Obstacle confidence decay function with uncertainty integration. With more positional
uncertainty, the confidence falls below the threshold confidence fast. In all the cases, c;, = 0.55
and t; = 600 s.

5. Uncertainty Integrated Confidence Decay Mechanism with Extended Kalman Filter

The integration of confidence decay meachanism in EKF is given in Algorithm 2. The algorithm is
straightforward and estimates the Kalman gain (K;), robot’s pose (¢) and the covariance (X;) at time ¢
until step 12. Later, Eigen values (A - - - A;;) are extracted from the covariance matrix (X;) by applying
Singular Value Decomposition. The degree of the confidence curve is then determined using the
amount of uncertainty represented by the Eigen values in steps 14 and 15 of Algorithm 2 as explained
in the previous section. Essentially, the degree of the curve is chosen to fasten the confidence decay
inversely proportional to the positional uncertainty.

6. Experimental Results

This section presents the results of the experiments. The extended work discuss information
sharing in heterogeneous maps made with different sensors and tests the proposed method under
pressure with dynamic obstacles in the vicinity of robots.

We used Pioneer-P3DX [44] and Kobuki Turtlebot [45] robot shown in Figure 9a. Both the robots
are wheeled differential drive robots and the motion model is explained in our previous work [12].
Both the robots used ROS [46] on Ubuntu computer and were on the same network to communicate
with each other.

167



Appl. Sci. 2019, 9, 2753

Algorithm 2: Uncertainty Integrated Confidence Decay with Extended Kalman Filter

1

1

1

1!

1

1

1 # x;: robot state, vy, w;: translation and rotational velocity.

x =[xy 6]
2 # EKF uses Jacobian to handle non-linearity. G;: Jacobian of motion function w.r.t state
1 0 — abcosf + Fcos( + wiAt)
Gt + |0 1 — arsin + sin(0 + wiAt)
0 0 1
3 # V;: Jacobian of motion w.r.t control
—sinf+sin(0+w;At) vy(sinf—sin(6+w;At)) + vi(cos(0+wi At)AL)
wt w? Wy
Vi = cosf—cos(0+w;At) _ vi(cosf—cos(0+w;At)) + vy (sin(6+w; At)At)
wy w? wy
0 At
4 # M;: Covariance of noise in control space. &y, - - - ,a4: Error-specific parameters.
2 2
M, — {oqv, + aowj , 0 2]
0 a30; + agwy

o

# j1;: Prediction updates in state.

;}:L sinf + %sin(e + wiAt)
0= -1 + %COSG - %cos(G + wiAt)
(,U[At

# Y;: Prediction updates in covariance.
%t = G241 Gr + ViM; V[T
# Q;: Covariance of the sensor noise.
2 0 0
Q=0 o5 0}
0 0 o2

L S
#[mjy miy]T: coordinates of the ith landmark. zi: measurement. q: squared distance.

4= (Mg — fp)? + gy — firy)?

o

<

®

[ Vi
ok = |atan2(my,, — 1 —fitx) —
Zt atan. mk,y Vt,yr mk”\, Ht,x ‘lttrg
L M5
9 # H;: Jacobian of measurement with respect to state.
Mo Mige—flex My~ iy 0
va Vi
Hg‘ = My —Hey _ Mg — iy -1
q q
0 0 0

15

# Si: Measurement covariance matrix.
Sk = HfS[HAT + Q.
# j(i): likely correspondence after applying maximum likelihood estimate.
i(i) = argmax ——L__ ¢~ 3G-2'IS{1 G2
/det(27Sf)
# K;: Kalman gain, p;: state, X: covariance.
K{; _ it[Hl{(Z)]T[S{(I)']il
pe = i + Kizh — 21
5 = (I - KiHMyg,
# Apply Singular Value Decomposition and get Eigen-values A;:
02 oy O
X X x0
A, Ay = svd(Xy) = svd {ny oy ”y9:|
Ox9  Oyp ‘7(3
4 # n: degree of decay curve, t;,: threshold time, ¢y, threshold confidence, t: time to decay to zero.
_ log(1 —cyy)
n=—=—m
log ()
s #n' degree of decay curve with uncertainty integrated, ¥: decay control factor.
_n n 1 n
log (1 —t;" (A3 +A3) 2 {t;’ (A2 +23)2 - {tth (A2 +23) - ‘1’} D

n =
tog (1, (2 +3) ! —¥) — log (1= (2 + 13)? )

=

)

)

168



Appl. Sci. 2019, 9, 2753

® ‘ ©

240
i
< N N "
SOI_I 105 I_I n n
O 3 4 .
R=9.8
240 Obstacle2
B n, Ns 10 "
o N
Obstaclel
| a0 G N
Ne Ny Ny
S 12
w
&
S G
—en; n; Ng B
lx
630 ' [ ] ]
(d) (e)

Figure 9. Experiment setup. (a) Differential drive robots Kobuki-Turtlebot2 and Pioneer-P3Dx.
(b) Environment with initial position of robots. (¢) Another view of the environment. (d) Environment
dimensions. (e) Node-map of the environment where S and G are the start and goal points.

6.1. Experiments with Heterogeneous Maps

In this section, we describe the results of the proposed method with heterogeneous maps.
The environment for experiments is shown in Figure 9b,c. The dimensions of the environment are
shown in Figure 9d. The environment had two static obstacles ‘Obstaclel” and ‘Obstacle2” marked in
Figure 9d. The start and goal positions are marked as ‘S” and ‘G’, respectively, in Figure 9d. The T-node
map is shown in Figure 9e.

The two robots used in the experiment were both equipped with 2D Lidar and RGBD sensors.
As shown in Figure 9a, the Pioneer P3DX robot was equipped with a Sick-Lidar of 10 m range and ASUS
Xtion-Pro RGBD camera. Turtlebot was equipped with a Hokuyo Lidar of 20 m range and a Kinect
RGBD camera.

169



Appl. Sci. 2019, 9, 2753

To test the proposed method with heterogeneous maps, Pioneer P3DX robot was programmed to
use only the RGBD sensor to build a 3D map, and navigate in the environment. Pioneer P3DX first
started navigation from location ‘S’ to the goal location ‘G’ as shown in Figure 10a. A* algorithm [47]
and SHP algorithm [48,49] were used for path planning and path smoothing, respectively. As soon as
the P3DX robot started moving, a long new obstacle was placed in the environment as shown in
Figure 10b, well outside the range of the sensor. As shown in Figure 10c, the person moves in front
of the robot and blocks its way purposefully. The details of dynamic obstacle are discussed in the
next Section 6.2. P3DX perceives the new obstacle and alters its path towards the goal as shown in
Figure 10d—f, while also updating the map with the newly added obstacle. P3DX was programmed to
come back to its initial position ‘S” and the navigation in shown in Figure 10g h.

-m

(d)

mﬁ

Figure 10. Timely snapshots of the experiment. (a) P3DX starts moving with old map. (b) Person adds
a new obstacle. (c¢) Person moves in front of P3DX. (d,e) P3DX observes the new obstacle, changes
trajectory and updates map. (f-h) P3DX return to the starting position. (Supplementary Materials)

The updated 3D map build by P3DX robot is shown in Figure 11a. In this experiment, Turtlebot
used only the 2D Lidar sensor with 2D gridmap. Hence, P3DX could not directly share the 3D
point-cloud information due to the heterogeneous maps used by the two robots. By using the T-node
map, P3DX blocked the path between nodes ng and ny and shared this information with the Turtlebot
to plan appropriate path. More information regarding the dimensions of the new obstacle could also
be shared for better path planning. Hence, the 3D information was converted to a 2D information to
be shared with Turtlebot. Grid maps are the most commonly used 2D maps in which each grid-value
represents whether the grid is occupied, free or unknown. The 3D point-cloud were projected to the
ground which was detected using a RANSAC based plane detection [50]. This 2D information was
shared by P3DX robot with Turtlebot and the updated T-node map is shown in Figure 11b. In the
updated T-node map of Figure 11b, the obstacle is placed between the nodes ng and ny blocking it.

Turtlebot was programmed to navigate from the same start location ‘S’ to the goal location ‘G’.
In the absence of the proposed information sharing mechanism, the path planned by Turtlebot would
be (Figure 11b),

S —ny; - ns — ng — ny

The Turtlebot would encounter a new obstacle between the nodes ng and ny and would have to
re-plan a new path towards the goal. However, with the proposed information sharing mechanism,
Turtlebot could directly plan a path considering the newly added obstacle and the planned path was
(Figure 11b),

S — ny — ns5 = ng — ng — ng — ny.

170



Appl. Sci. 2019, 9, 2753

ns na

Nz Ns

Ne Ny n,

(b)

Figure 11. (a) RGBD map updated by P3DX. (b) Node-map. S and G are the start and goal points.
The new obstacle is shown on nodes ngny. Ellipse represents positional uncertainty.

Notice that, this appropriate path was generated by Turtlebot ‘remotely’ before actually
encountering the new obstacle. Figure 12 shows the navigation of Turtlebot after considering the new
obstacle. The entire navigation is illustrated between Figure 12a-h. In particular, it can be seen from
Figure 12e-g, that Turtlebot maintains a safe threshold from the start itself. Turtlebot itself updated its
map using the attached Lidar and the updated grid-map is shown in Figure 13.

(b) (©
ﬁ
) (8)

Figure 12. Timely snapshots of the experiment. (a-h) Turtlebot starts navigation with the updated
information and plans a trajectory considering the new obstacle. (Supplementary Materials)

(h)

The dimensions of the obstacles in the experiment are given in Table 3.

The decay curve is shown in Figure 14. In the experiment, Cy;, was set to 0.45 and ¢, to 20 min.
Based on the uncertainty of the obstacle, the Ufactor was calculated as approximately 15% of t..
Figure 14 shows the decay of confidence considering the uncertainty of the obstacles.

Figure 15 shows different decay curves for different amounts of estimated positional uncertainties
of the new obstacle. Although Figure 14 shows the actual decay curve of the experiment, Figure 15
shows theoretical values for different values of uncertainty. Figure 15a—-d shows the confidence decay
with increasing uncertainty of 35%, 45%, 55% and 65%, respectively. It can be seen that, for increasing
uncertainty, the curve decays much faster, as desired.

Thus, the T-node enables robots to share information across heterogeneous maps. Indeed, there
is a need to transform the newly added obstacle’s information to spatial coordinates but it can easily
be achieved in real-time. Moreover, to avoid the overheads of such computation for time-critical

171



Appl. Sci. 2019, 9, 2753

applications, only the blocked /un-blocked information could also be shared. Using the same approach,
information among other type of maps could be shared effectively.

Figure 13. 2D gridmap updated by Turtlebot during navigation.

Table 3. Obstacle Dimensions in the Experiment.

Obstacle Length x Width x Height
Obstaclel 40 cm x 40 cm X 68 cm
Obstacle2 50 cm x 35 cm x 50 cm

Newly Added Obstacle 300 cm x 5cm x 100 cm

Obstacle Confidence Decay: [ Cth = 0.45, tz = 1200 s, Ufactor = 15]

1
_ 08}
©
[0}
o
8061
2
c
Q
(]
04
02
0 ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000 1200

Time (s)

Figure 14. Confidence decay curve in the new experiment. Cy, = 0.45, £, = 1200 s, Ufactor = 15.

172



Appl. Sci. 2019, 9, 2753

Obstacle Confidence Decay: [ Cth = 0.45, tz = 1200 s, Ufactor = 35] Obstacle Confidence Decay: [ Cth = 0.45, tz = 1200 s, Ufactor = 45]

o
®

o

@

Confidence (c)
o
>

Confidence (c)
°
>

04 04
02 02
0 0
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time (s) Time (s)
(a) (b)
Obstacle Confidence Decay: [ Cth = 0.45, tz = 1200 s, Ufactor = 55] Obstacle Confidence Decay: [ Cth = 0.45, tz = 1200 s, Ufactor = 65]

o
®

o

®

Confidence (c)
°
>
Confidence (c)
°
5

04 04
02 02
0 0
0 200 400 600 800 1000 1200 3 200 400 600 800 1000 1200
Time (s) Time (s)
(c) (d)

Figure 15. Estimation of confidence decay curve for different values of positional uncertainty with
Cy, =045 and £, = 1200 s. (a) Ufactor = 35%. (b) Ufactor = 45%. (c) Ufactor = 55%. (d) Ufactor = 65%.
It can be seen that for higher uncertainties, the curve decays faster as desired.

6.2. Results with Dynamic Entities (Moving Obstacle)

The proposed method was tested under complex scenarios by purposefully moving a person in
front of the robot and blocking its way. This is shown in Figure 16. As P3DX robot started navigation
from start location ‘S’ to goal location ‘G’, a person blocked its way by randomly moving in front of
the robot. This is shown in Figure 16a—j.

Similarly, the path of P3DX robot was blocked again while it was navigating back from the goal
location ‘G’ to its start location ‘S’. This is shown in Figure 17. The person randomly moved in front of
the robot blocking its path as shown in Figure 17aj.

In both the cases of Figures 16 and 17, the robot attempted to avoid collision and planned alternate
trajectories or stopped if the person stands dangerously close to the robot. Moreover, in both the cases,
the robot did not update the map corresponding to the person as a new obstacle in the map. This is
because the positional uncertainty corresponding to the moving obstacle was large as calculated by
Algorithm 2. Even if the person is falsely identified as a new obstacle and the map is updated, it
has no adverse effects in the proposed method, as uncertainty is integrated in the confidence decay
mechanism. Any wrong map update corresponding to dynamic obstacles has high probability of larger
positional uncertainty corresponding to the dynamic obstacle and therefore a quicker decay given by
Equation (6), (7) and (9). On the other hand, for static new obstacles in the map, the underlying SLAM
(Algorithm 2) algorithm estimates smaller positional uncertainty and therefore a larger decay time,
ensuring its permanence in the map.

Thus, uncertainty integration has two merits in the information sharing scheme. First, it acts
a filter for wrong map updates corresponding to the dynamic obstacles in the environment through
a quick confidence decay. Second, it ensures that only the correct information is shared with other
robots corresponding to the new static obstacles. It should be noted that the dynamic detection of

173



Appl. Sci. 2019, 9, 2753

moving people can be done using image processing for camera-based sensors [51], RGBD sensors [52]
or leg detector for Lidar-based sensors [53] and integration of such approaches [54] will increase the
robustness of the system.

(a) (b) (9 (d) (e)
() (8 (h) (®) @

Figure 16. Dynamic obstacle experiment with P3DX navigation from position S to G in Figure 9. (a—j)

Person moved randomly in front of P3DX for a long time moving in and out of the range of sensors.
P3DX changed trajectories or stopped if the obstacle was dangerously close. (Supplementary Materials)

Figure 17. Dynamic obstacle experiment with P3DX navigation from position G to S in
Figure 9. (a-j) To further test the method under pressure, a person moved randomly near P3DX.
(Supplementary Materials)

7. Conclusions

Information sharing is a powerful technique which has many potential benefits in path planning
of multi-robot systems. A node-map was proposed in our previous work to solve the problems of
information sharing in different robots. We extended our previous work by integrating the positional
uncertainty of the new obstacles in the confidence decay mechanism which models the transience of the
obstacles. This minimizes false map updates and notifications in the system. New experiments were
performed to share information about new obstacles in heterogeneous maps. The results shown that
using the nodemap allows the robots to smoothly share the information. Moreover, since path planning
is also done using the nodemap, efficient trajectories considering the position of new obstacles can be
done in real-time. The information sharing mechanism allows the robots to obtain timely information
about remote obstacles in the map without having to explicitly visit those areas. In addition, new
experiments were performed to test the proposed mechanism in complex environments with moving
people in the vicinity of the robots. Due to the tight coupling of uncertainty and decay mechanism,
the dynamic obstacles could be filtered and avoided false update of the map. Even if there is some
false update, the confidence corresponding to them decays fast due to larger uncertainty. Experiment
results confirm that, in the long run in large environments employing multiple robots, the proposed
method can improve the efficiency of the system in terms of shorter distance traveled by the robots
and shorter planning time by eliminating path re-planning. In future, we will continue to test the

174



Appl. Sci. 2019, 9, 2753

robustness of the proposed method in more complex and realistic environments such as cafeterias
and offices.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/2076-
3417/9/13/2753/s1.

Author Contributions: A.R. and A.AR. conceived the idea, designed, performed experiments, and summarized
the research; Y.K. made valuable suggestions to analyze the data and improve the manuscript. Y.H. provided
important feedback to improve the manuscript. The manuscript was written by A.R.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

Ravankar, A.; Ravankar, A.A.; Hoshino, Y.; Emaru, T.; Kobayashi, Y. On a Hopping-points SVD and Hough
Transform Based Line Detection Algorithm for Robot Localization and Mapping. Int. J. Adv. Robot. Syst.
2016, 13, 98. [CrossRef]

Wang, R.; Veloso, M.; Seshan, S. Multi-robot information sharing for complementing limited perception:
A case study of moving ball interception. In Proceedings of the 2013 IEEE International Conference on
Robotics and Automation, Karlsruhe, Germany, 6-10 May 2013; pp. 1884-1889. [CrossRef]

Riddle, D.R.; Murphy, R.R.; Burke, ].L. Robot-assisted medical reachback: using shared visual information.
In Proceedings of the ROMAN 2005, IEEE International Workshop on Robot and Human Interactive
Communication, Nashville, TN, USA, 13-15 Augest 2005; pp. 635-642. [CrossRef]

Cai, A.; Fukuda, T.; Arai, F. Cooperation of multiple robots in cellular robotic system based on information
sharing. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
Tokyo, Japan, 20-20 June 1997; p. 20. [CrossRef]

Rokunuzzaman, M.; Umeda, T.; Sekiyama, K.; Fukuda, T. A Region of Interest (ROI) Sharing Protocol
for Multirobot Cooperation With Distributed Sensing Based on Semantic Stability. IEEE Trans. Syst. Man
Cybern. Syst. 2014, 44, 457-467. [CrossRef]

Samejima, S.; Sekiyama, K. Multi-robot visual support system by adaptive ROI selection based on gestalt
perception. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA),
Stockholm, Sweden, 16-21 May 2016; pp. 3471-3476. [CrossRef]

Ozkucur, N.E.; Kurt, B.; Akin, H.L. A Collaborative Multi-robot Localization Method without Robot
Identification. In RoboCup 2008: Robot Soccer World Cup XII; Springer: Berlin/Heidelberg, Germany,
2009; pp. 189-199. [CrossRef]

Sukop, M.; Hajduk, M.; Janos, R. Strategic behavior of the group of mobile robots for robosoccer (category
Mirosot). In Proceedings of the 2014 23rd International Conference on Robotics in Alpe-Adria-Danube
Region (RAAD), Smolenice, Slovakia, 3-5 September 2014; pp. 1-5. [CrossRef]

Ravankar, A.; Ravankar, A.A.; Kobayashi, Y,; Emaru, T. Avoiding blind leading the blind.
Int. ]. Adv. Robot. Syst. 2016, 13. [CrossRef]

Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. On a bio-inspired hybrid pheromone signalling for
efficient map exploration of multiple mobile service robots. Artif. Life Robot. 2016, 221-231. [CrossRef]
Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Intelligent Robot Guidance in Fixed External Camera
Network for Navigation in Crowded and Narrow Passages. Proceedings 2017, 1, 37. [CrossRef]

Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Emaru, T. Symbiotic Navigation in Multi-Robot Systems with
Remote Obstacle Knowledge Sharing. Sensors 2017, 17, 1581. [CrossRef] [PubMed]

Hunziker, D.; Gajamohan, M.; Waibel, M.; D’Andrea, R. Rapyuta: The RoboEarth Cloud Engine.
In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany,
6-10 May 2013; pp. 438—444. [CrossRef]

Waibel, M.; Beetz, M.; Civera, J.; D’Andrea, R.; Elfring, ].; Galvez-Lopez, D.; Haussermann, K.; Janssen, R ;
Montiel, ] M.M.; Perzylo, A.; et al. RoboEarth. IEEE Robot. Autom. Mag. 2011, 18, 69-82. [CrossRef]
Tenorth, M.; Perzylo, A.C.; Lafrenz, R.; Beetz, M. Representation and Exchange of Knowledge About Actions,
Objects, and Environments in the RoboEarth Framework. IEEE Trans. Autom. Sci. Eng. 2013, 10, 643-651.
[CrossRef]

175



Appl. Sci. 2019, 9, 2753

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Stenzel, J.; Luensch, D. Concept of decentralized cooperative path conflict resolution for heterogeneous
mobile robots. In Proceedings of the 2016 IEEE International Conference on Automation Science and
Engineering (CASE), Fort Worth, TX, USA, 21-25 Augest 2016; pp. 715-720. [CrossRef]

Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Jixin, L.; Emaru, T.; Hoshino, Y. An intelligent docking
station manager for multiple mobile service robots. In Proceedings of the Control, Automation and Systems
(ICCAS), 2015 15th International Conference on, Busan, Korea, 13-16 October 2015; pp. 72-78. [CrossRef]
Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Emaru, T. Hitchhiking Robots: A Collaborative Approach for
Efficient Multi-Robot Navigation in Indoor Environments. Sensors 2017, 17, 1878. [CrossRef] [PubMed]
Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.C.; Watanabe, M. Hitchhiking Based
Symbiotic Multi-Robot Navigation in Sensor Networks. Robotics 2018, 7, 37. [CrossRef]

Guo, Y.; Parker, L. A distributed and optimal motion planning approach for multiple mobile robots.
In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292),
Washington, DC, USA, 11-15 May 2002; Volume 3, pp. 2612-2619. [CrossRef]

Svestka, P.; Overmars, M.H. Coordinated Path Planning for Multiple Robots; Technical Report UU-CS-1996-43;
Department of Information and Computing Sciences, Utrecht University: Utrecht, The Netherlands, 1996.
Clark, C.M.; Rock, S.M.; Latombe, J. Motion planning for multiple mobile robots using dynamic networks.
In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422),
Taipei, Taiwan, 14-19 September 2003; Volume 3, pp. 4222-4227. [CrossRef]

Teng, R.; Yano, K.; Kumagai, T. Efficient Acquisition of Map Information Using Local Data Sharing over
Hierarchical Wireless Network for Service Robots. In Proceedings of the 2018 Asia-Pacific Microwave
Conference (APMC), Kyoto, Japan, 6-9 November 2018; pp. 896-898. [CrossRef]

Ravankar, A.A.; Ravankar, A.; Peng, C.; Kobayashi, Y.; Emaru, T. Task coordination for multiple mobile
robots considering semantic and topological information. In Proceedings of the 2018 IEEE International
Conference on Applied System Invention (ICASI), Chiba, Japan, 13-17 April 2018; pp. 1088-1091. [CrossRef]
Pinkam, N.; Bonnet, F; Chong, N.Y. Robot collaboration in warehouse. In Proceedings of the 2016 16th
International Conference on Control, Automation and Systems (ICCAS), Gyeongju, Korea, 16-19 October
2016; pp. 269-272. [CrossRef]

Regev, T.; Indelman, V. Multi-robot decentralized belief space planning in unknown environments via
efficient re-evaluation of impacted paths. In Proceedings of the 2016 IEEE/RS] International Conference on
Intelligent Robots and Systems (IROS), Daejeon, Korea, 9-14 October 2016; pp. 5591-5598. [CrossRef]
Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path Planning and Trajectory Planning Algorithms:
A General Overview. In Motion and Operation Planning of Robotic Systems: Background and Practical Approaches;
Springer International Publishing: Cham, Switzeland, 2015; pp. 3-27. [CrossRef]

Tang, S.H.; Kamil, F; Khaksar, W.; Zulkifli, N.; Ahmad, S.A. Robotic motion planning in unknown
dynamic environments: Existing approaches and challenges. In Proceedings of the 2015 IEEE International
Symposium on Robotics and Intelligent Sensors (IRIS), Langkawi, Malaysia, 18-20 October 2015; pp. 288-294.
[CrossRef]

Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Hoshino, Y.; Peng, C.C. Path Smoothing Techniques in Robot
Navigation: State-of-the-Art, Current and Future Challenges. Sensors 2018, 18, 3170. [CrossRef] [PubMed]
Montijano, E.; Aragues, R.; Sagiiés, C. Distributed Data Association in Robotic Networks With Cameras and
Limited Communications. IEEE Trans. Robot. 2013, 29, 1408-1423. [CrossRef]

Ravankar, A. Probabilistic Approaches and Algorithms for Indoor Robot Mapping in Structured
Environments. Ph.D. Thesis, Hokkaido University, Sapporo, Japan, 2015.

Ravankar, A.; Kobayashi, Y.; Ravankar, A.; Emaru, T. A connected component labeling algorithm for sparse
Lidar data segmentation. In Proceedings of the 2015 6th International Conference on Automation, Robotics
and Applications (ICARA), Queenstown, New Zealand, 17-19 Feburary 2015; pp. 437-442. [CrossRef]
Ravankar, A.; Ravankar, A.A_; Kobayashi, Y.; Jixin, L.; Emaru, T.; Hoshino, Y. A novel vision based adaptive
transmission power control algorithm for energy efficiency in wireless sensor networks employing mobile
robots. In Proceedings of the 2015 Seventh International Conference on Ubiquitous and Future Networks,
Sapporo, Japan, 7-10 July 2015; pp. 300-305. [CrossRef]

Zhang, T.Y,; Suen, C.Y. A Fast Parallel Algorithm for Thinning Digital Patterns. Commun. ACM 1984,
27,236-239. [CrossRef]

176



Appl. Sci. 2019, 9, 2753

35. Yang, D.H.; Hong, S.K. A roadmap construction algorithm for mobile robot path planning using skeleton
maps. Adv. Robot. 2007, 21, 51-63. [CrossRef]

36. Bai, X,; Latecki, L.; Yu Liu, W. Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution.
Pattern Anal. Mach. Intell. IEEE Trans. 2007, 29, 449-462. [CrossRef] [PubMed]

37. Ravankar, A.A; Hoshino, Y.; Ravankar, A.; Jixin, L.; Emaru, T.; Kobayashi, Y. Algorithms and a framework
for indoor robot mapping in a noisy environment using clustering in spatial and Hough domains. Int. J. Adv.
Robot. Syst. 2015, 12. [CrossRef]

38.  MacQueen, ].B. Some Methods for Classification and Analysis of MultiVariate Observations. In Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Cam, LM.L., Neyman, J., Eds.;
University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281-297.

39. Lloyd, S.P. Least squares quantization in pcm. IEEE Trans. Inf. Theory 1982, 28, 129-137. [CrossRef]

40. Jain, AK.; Dubes, R.C. Algorithms for Clustering Data; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1988.

41. Ester, M.; Kriegel, H.P,; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise; AAAI Press: Menlo Park, CA, USA, 1996; pp. 226-231.

42.  Fox, D.; Ko, J.; Konolige, K.; Limketkai, B.; Schulz, D.; Stewart, B. Distributed Multirobot Exploration and
Mapping. Proc. IEEE 2006, 94, 1325-1339. [CrossRef]

43. Ravankar, A.A; Ravankar, A.; Emaru, T.; Kobayashi, Y. A hybrid topological mapping and navigation
method for large area robot mapping. In Proceedings of the 2017 56th Annual Conference of the Society of
Instrument and Control Engineers of Japan (SICE), Kanazawa, Japan, 19-22 September 2017; pp. 1104-1107.
[CrossRef]

44. Pioneer P3-DX. Pioneer P3-DX Robot. 2018. Available online: https://www.robotshop.com/community /
robots/show /pioneer-d3-px (accessed on 11 Janurary 2019).

45.  TurtleBot 2. TurtleBot 2 Robot. 2018. Available online: http:/ /turtlebot.com/ (accessed on 11 Janurary 2019).

46. Quigley, M.; Conley, K.; Gerkey, B.P; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An Open-Source
Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan,
12-15 May 2009.

47. Hart, P,; Nilsson, N.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths.
Syst. Sci. Cybern. IEEE Trans. 1968, 4, 100-107. [CrossRef]

48. Ravankar, A ; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. Path smoothing extension for various robot path
planners. In Proceedings of the 2016 16th International Conference on Control, Automation and Systems
(ICCAS), Gyeongju, Korea, 16-19 October 2016; pp. 263-268. [CrossRef]

49. Ravankar, A.; Ravankar, A.A.; Kobayashi, Y.; Emaru, T. SHP: Smooth Hypocycloidal Paths with
Collision-Free and Decoupled Multi-Robot Path Planning. Int. ]. Adv. Robot. Syst. 2016, 13, 133. [CrossRef]

50. Xu, B, Jiang, W.; Shan, J.; Zhang, J.; Li, L. Investigation on the Weighted RANSAC Approaches for Building
Roof Plane Segmentation from LiDAR Point Clouds. Remote Sens. 2015, 8, 5. [CrossRef]

51. Enzweiler, M.; Gavrila, D.M. Monocular Pedestrian Detection: Survey and Experiments. IEEE Trans. Pattern
Anal. Mach. Intell. 2009, 31, 2179-2195. [CrossRef] [PubMed]

52.  Spinello, L.; Arras, K.O. People detection in RGB-D data. In Proceedings of the 2011 IEEE/RS] International
Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25-30 September 2011; pp. 3838-3843.
[CrossRef]

53. Pantofaru C. Leg Detector. 2019. Available online: http://wiki.ros.org/leg_detector (accessed on
3 May 2019).

54. Moeslund, T.B.; Granum, E. A Survey of Computer Vision-Based Human Motion Capture. Comput. Vis.
Image Understand. 2001, 81, 231-268. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).

177






Firicd applied
b sciences

Article
Contingent Task and Motion Planning under
Uncertainty for Human-Robot Interactions

Aliakbar Akbari *, Mohammed Diab and Jan Rosell

Institute of Industrial and Control Engineering, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain;
mohammed.diab@upc.edu (M.D.); jan.rosell@upc.edu (J.R.)
* Correspondence: ali.akbaril01@gmail.com

Received: 8 February 2020; Accepted: 24 February 2020; Published: 1 March 2020

Abstract: Manipulation planning under incomplete information is a highly challenging task for
mobile manipulators. Uncertainty can be resolved by robot perception modules or using human
knowledge in the execution process. Human operators can also collaborate with robots for the
execution of some difficult actions or as helpers in sharing the task knowledge. In this scope,
a contingent-based task and motion planning is proposed taking into account robot uncertainty and
human-robot interactions, resulting a tree-shaped set of geometrically feasible plans. Different sorts
of geometric reasoning processes are embedded inside the planner to cope with task constraints like
detecting occluding objects when a robot needs to grasp an object. The proposal has been evaluated
with different challenging scenarios in simulation and a real environment.

Keywords: task and motion planning; manipulation planning; robot-human interactions; perception

1. Introduction

Robotic manipulation tasks become highly challenging when a mobile manipulator is required
to obtain a feasible plan to solve a given problem under potential uncertainties. Uncertainty shall
be viewed in the initial state of the robot environment, e.g., objects may rest in different positions
or some object features (like color) could be initially unknown for a robot. Uncertainty, moreover,
must be considered in the result of manipulation actions (as nondeterministic effects) since there
could be different action outcomes. To deal with such uncertainties, robots generally look for
a sequence of actions to satisfy the goal of a task and perform replanning in the case of action
execution failure or uncertain situations. This process may be costly while a robot requires repetition
of expensive replanning.

To tackle those challenging issues, these problems can rely on contingent task planning which
plans in belief space and can generate conditional plans under uncertainty in terms of initial state and
action effects. Contingent-based task planners can provide a tree of plans rather than a single sequence
of executive actions. Therefore, uncertainty is observed during the plan execution, and the tree of
plans is followed according to the binary observation values.

Other challenges are related to some demanding or difficult tasks which are either not performable
easily by robots or are out of their reach, but that can be done in collaboration with a human operator.
In these cases, the robot can ask the human operator to do some particular difficult actions, to transfer
some objects located in the human workspace or to share knowledge that is initially incomplete to the
robot. Moreover, there could be some geometric constraints imposed in the environment, e.g., lack of
space for placing objects, occlusions, kinematic issues, etc., and the finding of the geometric values for
each manipulation action becomes substantial in order to make a manipulation plan feasible. Therefore,
the way of combining task and motion planning plays a significant role when the manipulation task is
highly constrained in terms of geometric information and there is amount of uncertainty.

Appl. Sci. 2020, 10, 1665; doi:10.3390/nano10051665 179 www.mdpi.com/journal/applsci



Appl. Sci. 2020, 10, 1665

In this paper, we are going to deal with manipulation tasks carried out by a mobile manipulator
assisted by a human operator. The mobile manipulator will be responsible to execute the main
task, while the human operator will be responsible for some difficult actions (like to open some
box-like containers which cannot be opened by the robot), to share knowledge with the robot, and to
transfer objects to the robot when they are not reachable. Uncertainty in the initial state and in some
action effects are considered. Some manipulation and sensing actions are considered in the current
proposal, which allow illustration of the approach, and that can be extended to handle a broader
set of manipulation tasks. No geometric uncertainty is considered, e.g., in the robot motion or the
object poses.

Contributions: To deal with the aforementioned challenges, we propose a contingent-based
task and motion planner based on Contingent-FF [1] that works under uncertainty and considers
human-robot collaboration. The Contingent-FF includes two main components, heuristic evaluation
and search space, and results in a tree-shaped set of plans involving sensing actions. Three main
contributions extend the basic Contingent-FF planner:

e Robot action reasoning. Two types of geometric reasoning are proposed and integrated with
the basic planner: relaxed geometric reasoning and lazy motion evaluation. The former refers to
Reachability, Spatial, and Manipulation reasoning. This reasoning process is embedded within the
heuristic computation of the planner. Motion paths are lazily evaluated when actions are selected
by the state space search. If the reasoning processes fail, geometric constraints are fed back to
the planner. This part of the computation is done offline and aims to prune infeasible actions
due to geometric constraints and to obtain a feasible set of actions in the tree of plans. As the
basic contingent planner considers only symbolic reasoning, this module enables it to incorporate
geometric reasoning to deal with practical applications. The reasoning process provides feasible
initial and goal configurations for motion planning queries, improving its success rate and thus
the overall performance of the planner in the generation of a feasible manipulation plan.

e Human-robot collaboration. There are some actions which can be executed by the robot and others
that require the collaboration of a human operator. The proposed relaxed geometric reasoning is
extended to inform the planner about which actions cannot be executed by the robot, and hand
over them to the human operator, allowing the planner to handle those cases where the selection
of actions to be performed by a human operator is required. In these cases, the geometric world
resulting by these actions is simulated and used in the planning system for further geometric
reasoning evaluation. This step makes the basic planner flexible to consider the result of human
actions, extending its performance to situations it is not able to be handled autonomously.

e State observation. To observe the binary outcomes of actions, two modules are proposed: perception
and human knowledge. Perception is used to detect, e.g., the actual locations of the objects or some
objects feature like color. The knowledge provided by the operator is required for more difficult
observations like determining if a can is filled or empty, or if a glass contains a given drink. Action
observation takes place at execution time. The combining of both modules widens the capacity of
the planner to identify the current situation of the robot’s world and decide the best course of
actions in execution, thus improving the planner performance in finding feasible solutions.

One of the main advantages of the proposed framework is that the offline computation is
valid and works despite the actual values of the uncertainty variables or the actual outcomes of
the executable actions.

The rest of the paper is structured as follows. First, Section 2 summarizes some related work
and Section 3 explains a proposal for contingent task and motion planning. Afterwards, Section 4
presents and illustrates the proposed relaxed geometric reasoning for mobile manipulators, Section 5
demonstrates contingent heuristic computation using relaxed information, Section 6 details tree-based
planning using search space, and Section 7 presents manipulation plan execution using sensing and

180



Appl. Sci. 2020, 10, 1665

human interaction. Finally, Section 8 shows some implementation issues as well as empirical results,
and Section 9 sketches the conclusions and future works.

2. Related Work

Manipulation problems of different nature have been tackled in the literature with different
strategies, e.g., the manipulation problem of Navigation Among Movable Obstacles (NAMO) has been
addressed in [2,3] using a backward search algorithm, and dual-arm table-top manipulation problems
by combining motion planning and task assignment [4]. These robotic applications, like many others,
must deal with different sources of uncertainty and the use of sensors and perception strategies may
be required, e.g., the studies in [5,6] have investigated the machine robotic cell scheduling problem
for manufacturing systems with or without sensor inspection. The following sections classify more
approaches in the field of task and motion planning with and without uncertainty.

2.1. Task and Motion Planning without Uncertainty

Recently, much study has been centered to solve robotics manipulation tasks by combining task
and motion planning problems with no consideration on uncertainty. It is assumed that the initial
state of the environment is perfectly known, and actions are deterministic, i.e., state of planning is
only changed by the selected action. There is a huge number of task planners being able to solve
manipulation problems under perfect information [7].

In principle, two methods of combining task and motion planning have been explored: interleaved
or simultaneously. Several studies call first task planning, and then motion planning to determine
whether a plan is feasible or not such as [8-12]. In the case of failure, geometric constraints are identified
and reported to task planning and the procedure continues. This might be costly as a number of times
the process could be repeated in order to find a geometrically feasible plan.

On the other hand, other approaches enable task planning to incorporate geometric reasoning
within the task planning process [13-18]. Hence, in this case, task planning results in a feasible
manipulation plan. In this line, we recently proposed a heuristic-based task and motion planner [19] to
deal with constrained table-top problems for bi-manual robots by offering different type of geometric
reasoners that can be used in heuristic computation or when an action is selected. Our previous
approach does not consider any uncertainty, human actions, and reasoning about mobile manipulation
problems which are the subjects of this paper.

The way of integrating task and motion planning information in the current proposal is based on
the simultaneous approach in order to generate feasible plans, and is an extension of [19] that copes
with mobile manipulators, uncertainty, and to consider collaborative tasks with human operators.

2.2. Task and Motion Planning under Uncertainty

There are some situations in which a robot has incomplete information about its manipulation
environment; therefore, it needs to plan under uncertainty. Task planning under uncertainty is
a well-established field in Artificial Intelligence. Conditional-based task planners can provide
conditional plan to cope with uncertain information when either the initial state is not completely
known, or the result of actions are nondeterministic. There are various classes of planning in this field
like conformant, contingent, or probabilistic planning.

Conformant planning looks for plans under given uncertainty concerning the start state and
the effects of symbolic actions, assuming no sensing capabilities during the execution of the plan.
The plan should be successful regardless of which is the start state. Contingent planning also considers
uncertainty regarding the start state and the effects of actions. However, it can provide some sort
of observation over a conditional plan in execution. Probabilistic planning does planning under
probabilistic uncertainty regarding the start state and the effects of actions.

More details on some approaches following conditional-based task planning are commented
next as we are interested in this type of planner due to its feature of providing observation over

181



Appl. Sci. 2020, 10, 1665

a conditional plan. Some conditional task planners are Contingent-FF [1], POND [20], and PKS [21].
They plan in the belief space and compute conditional plans in the offline mode, which are guided
by the result of sensing actions. On the other hand, there are some conditional task planners like
K-Planner [22], SDR [23], and HCP [24] solving conditional plans online. Although these planners can
prune some branches by considering online sensing actions, satisfying the goal of task may not be
possible and the planners may face with dead-end even if there is a solution.

The concept of contingent-based task and motion planning has also emerged. For instance,
the Planning with Knowledge and Sensing (PKS) planner considers incomplete information and performs
contingent planning [25] in two main scenarios, using force sensing and visual sensing. In a similar
direction, offline-based hybrid conditional task and motion planning has been proposed [26], i.e.,
task planning is foremost performed, and then geometric evaluation is considered by incorporating
low-level feasibility checks inside conditional planning (assuming that actuation actions are
deterministic). On the contrary, the approach proposed here interweaves simultaneously efficient
geometric reasoning inside the task planning process to provide geometrically feasible plans.
The approach also copes with collaboration between the mobile robot and a human operator to
perform a manipulation task.

3. A Proposal for Contingent Task and Motion Planning

This section first presents a brief overview of the original Contingent-FF task planning, and the
modifications introduced in the present proposal to compute geometrically feasible manipulation
conditional plans.

3.1. Contingent-FF Overview

The Contingent-FF task planner [1] handles uncertainty in the initial state and in the result of
actions. The task planner has two main components which are heuristic computation and search space.
For the heuristic computation, the planner uses a modified version of the Relaxed Planning Graph (RPG)
used in the Fast-Forward (FF) planner [27]. The relaxed plan including a number of relaxed actions is
computed from the RPG, and the heuristic value is the length of this relaxed plan. Also, promising
actions (called helpful actions in FF) are extracted from the relaxed plan as a pruning technique in the
search space, as discussed in FF. The Contingent-FF planner extends the RPG process, called CRPG,
by adding unknown facts in an additional layer in the heuristic phase. Known facts are basically
those which do not have uncertainty and unknown facts are the ones which could be the result of
nondeterministic actions or uncertain in the initial state. It introduces reasoning about unknown
facts that allows such facts to become known in the RPG process. Once CRPG is successfully built,
the relaxed plan is extracted.

In Contingent-FF, belief states including known and unknown facts are considered. The search
space starts from the initial belief state and applies an And-Or search. The search space progress is
guided by the heuristic value and helpful actions. The result of planning provides conditional plans
that may involve a variety of sensing actions whose outcome causes different plan branches.

3.2. Planning Formulation

Our planning system domain D is a tuple (A, Q, F, W, S¢) where A is the action space, () is
the sensing action space, F is a set of literals, JV is a workspace involving a mobile manipulator R
(described by the pose of the base Pos,,, along the arm configuration Q,,,) and a number of objects
O, and, Sg is a set of grasping poses described for objects. Objects are denoted as: O={O}"(pos,fe)
0]’” (pos,fe), 0{ (pos fe) ... (’){ (pos,fe)], where j and k are the number of Movable and Fixed objects
respectively, whose initial position and orientation are denoted by pos, and whose features are denoted
by fe.

Anactiona € A is a tuple (name(a), pre(a), effect(a), coneffect(a), geom(a), Q(a)), where name(a) is the
action symbolic name, pre(a) is a propositional formula which must hold for the action to be applied,

182



Appl. Sci. 2020, 10, 1665

geom(a) is the numerical counterpart of an action containing geometric information, effect(a) represents
the negative and positive effects of @ on the state it is applied to, and Q(a) is a query function to the
motion planner which computes a motion between two robot configurations and stores the solution
if any. A relaxed action a’ € A’ (where A’ is the relaxed action space) is similar to the action despite
it does not consider any negative effects. Actions refer to executable actions, i.e., requiring motion,
and can be done by either the robot or a person. The following actions types are considered to deal
with some examples of mobile robot manipulation:

e Transit: an action done by the robot to travel from one configuration to another one without
an attached object.

e Transfer: an action done by the robot to move an attached object from one pose to another one.

e Push: an action done by the robot to push an object from one pose to another one.

e Open: an action done by the robot to open a box-like container (articulated cap with prismatic
joint is assumed with two positions corresponding to fully closed and fully opened, the state
being stored in the containers objects features).

e HumanTransfer: an action done by a person to transfer/push an object to the robot workspace.

e HumanOpen: an action done by a person to open a box-like container.

Each sensing action is a tuple (pre(a), o(a)), where o(a) is a literal with uncertainty. These are
actions not involving motion, devoted to observing the value of o(a). The observation is done in
run-time. Some sample sensing actions are considered in the proposed planning system. They are the
following:

e SenseColor: a sensing action is done by a perception module to determine the color of an object.

e SensePose: a sensing action is done by a perception module to determine the pose of an object.

e CheckContainer: a sensing action is done by a person to evaluate whether a container is open
or not.

e CheckCan: a sensing action is done by a person to evaluate whether can-like objects are filled
or not.

A belief state S is a tuple S = (P, V) where P includes a set of known literals which hold in that
state and a set of uncertain literals which may hold or not in the state, and V represents a full geometric
description of the scene, i.e., configurations of robots and poses of objects corresponding to certain
and uncertain literals. An executable action from a state S; results in a new world state using the state
transition functions Sy.P := S1.P — effect” (a) + effect™ (a) and Sp.V := S1.V — geom™ (a) + geom™ (a).
A sensing action splits a belief state and introduces two branches into the plan marked with o(a), and
~ o(a).

The planning problem 7 is expressed by a tuple (D, Sy, G) where D is a domain, Sy consists
of a set of literals representing the initial symbolic state Z such that Z C F along their geometric
assignments regarding the initial state of the world Wy, and G C F is the set of symbolic goal
conditions. The solution of a Combined Task and Motion Planning (TAMP) problem under uncertainty,
which we denote by 7, is a tree-shaped conditional plan, i.e., a sequence of symbolic actions achieving
G, along with a feasible motion for each action.

3.3. Geometric Constraint Predicates

Basically, three general predicates, evaluated by geometric reasoning, are allocated that set
constraints to the task states: isCrit( O}”, ', Pos), infeasByRob(R, O', Pos), and assist(Human, O, Pos).
The first predicate indicates that there is a blocking object (9]’.” which is located towards the target
object O’ placed in the pose Pos. The second one shows that the target object cannot be manipulated
by the robot R in the corresponding pose Pos. The last predicate shows the manipulation action with
the target object O" and the corresponding Pos must be done by a human operator Human.

183



Appl. Sci. 2020, 10, 1665

The proposed predicates are interleaved inside the pre- and post-conditions of the actions.
Concerning the actions done by the robot, the predicates ~isCrit and ~infeasByRob are inserted within
the preconditions of the actions Transit, Open, Transfer, and Push in order to avoid moving the robot
to any unreachable or infeasible configuration. Referring to the post-conditions, the last two actions
may include the negation of the predicate isCrit if they are moving a blocking object to a placement
where the obstruction does no longer hold. With respect to the actions performed by a human,
the preconditions of the actions HumanTransfer and HumanOpen may include the predicate assist in
order to indicate the requirement of a human operator.

To illustrate the use of these predicates, the actions Transit and HumanOpen are described next.
The action template Transit(R, Olm, Surface, Pos) is designed to move the robot R (arm and base),
without holding any object, towards a grasp configuration of a manipulatable object O} located on
a surface Surface at pose Pos. In the final configuration, the robot holds the target object. The action
is applicable if the following preconditions hold: the object is located on a surface, top of the object
is clear, the robot arm is empty, it can reach the grasp configuration if there is no movable objects
blocking its way to O}". The last precondition is represented by fact isCrit( O}”, O7", Pos); objects that
make this fact to hold are called Critical Objects which are the objects blocking the way of reaching the
object. As a result of the action, the robot holds an object.

Transit(R, O}, Surface, Pos):

Pre: onSurface(O}", Surface, Pos), armEmpty(R), clear(O}"), ~infeasByRob(R, O}, Pos),
VO ~isCrit( O}, OF, Pos)

Effect: holding(R, O{”, Pos), ~clear((9,m), ~armEmpty(R), ~on5urface(0i’”, Surface, Pos)

The action template HumanOpen(Human, (9{", Pos, Closed, Open) is used to open a box-like
container O} when it is closed. The action is applicable if the robot needs the assistance from a human
operator, represented by the assist predicate, and its status is closed, shown by the predicate status.
These conditions are introduced in the action preconditions. As a result of the action, the corresponding
container will be open.

HumanOpen(Human, O', Pos, Closed, Open):
Pre: assist(Human, OI?”, Pos), status(O{”, Closed)

Effect: status(O}", Open), ~status(O}", Closed)

3.4. The Proposed Framework

The proposed framework for task and motion planning under uncertainty extends the basic
Contingent-FF planner, aiming to incorporate different geometric reasoning procedures, observations
on sensing actions, as well as human-robot collaboration within planning. The overview of the system
is sketched in Figure 1. It involves three main parts: Heuristic Computation, Space Search, and Conditional
Plans Evaluation.

Heuristic Computation basically provides a value which is distance to goal and promising actions
for each belief state. The basic CRPG is initially computed and the associated relaxed plan is obtained.
This plan is forwarded to the relaxed geometric reasoner determining the feasibility of actions in terms
of reachability, collisions, manipulation constraints, and graspability. The heuristic value is returned
along with helpful actions if such constraints are met. If a constraint is violated, the associated belief
state is updated with facts describing the cause of failure, and an alternative relaxed plan is looked for.
Hence, the heuristic function is informative both in terms of symbolic and geometric constraints.

Space Search maintains the basic algorithm of the Contingent-FF planner that is based on the And-Or
search strategy. From each belief state, the action resulting in the state with lowest heuristic value
is selected and is a candidate to be added to the conditional plans. The only difference is that the
heuristic value now accounts for geometric constraints.

184



Appl. Sci. 2020, 10, 1665

Conditional Plans Evaluation tries to solve motion planning for an action if possible. It considers
sensing procedure to evaluate sensing actions and may assign actions, which are infeasible for robots,
to operators.

If motion planning fails, the current belief state is updated with the cause of failure and the search
resumes. In general, the geometric failure could be due to collisionable objects, so the literal isCrif is
added to the belief state. If the failure is because of fixed obstacles blocking the way of reaching an
object, inverse kinematic problems, or motion planning time-out problem, the literal infeasByRob is
added to the state. In such failure, if the type of the evaluated action is either transit or open, the literal
assist is also inserted.

Otherwise, when motion planning succeeds, the action is added to the tree-shaped conditional
plans at hand. After finding the complete conditional plans, feasible actions are executed by a robot
or a human operator in the real world and sensing actions are observed either using a perception
module or the information provided by the human operator in run-time. Therefore, the robot plan can
determine the correct branch to follow up its plan.

Heuristic Computation

Symbolic Reasoning
CRPG Construction CRPG Plan Extraction

Relaxed Geometric Reasoning

Reachability Spatial Manipulation
BasePose |Grasping Conf| | Placement Object Pose Base Pose|Manipulation Conf}

\Values Extraction

| Heuristic Valuel IHelpfuI Actionsl |Geometric Constraint Detection
T T

Search Space D e e '
e e e e ————————————————— ' 1
I
- Geometric Constraints !
Belief State emmemaaa ' !
1 Update-State| et Failure i
infeasByRob - - m e - !
assist
T
Failure !

Conditional Plans Evaluation

Action - -
R ittt [ =*| Motion Planning Tree-Shaped Plans |

Res ‘[ Feas-Act Sens-Adl [Res

Sensing Action

Action Execution

|Perception I Human |

Figure 1. The proposed system overview of contingent task and motion planning using the extended
version of Contingent-FF.

4. Relaxed Geometric Reasoning for Mobile Manipulators

Relaxed geometric reasoning is the evaluation of geometric conditions of actions with no call to
motion planning. It indicates that a feasible motion is likely to be obtained for the selected actions
if certain task constraints are satisfied. Therefore, the relaxed geometric reasoning process contains
three modules: reachability reasoning, spatial reasoning, and manipulation reasoning. This set of reasoning
extends our previous relaxed geometric reasoning process [19] to consider reasoning on mobile
manipulation along human actions.

Reachability reasoning (R,.;): This reasoning is applied for only transit action. To transit the robot
to a target position, a feasible arm configuration and robot base pose must be first obtained. A set

185



Appl. Sci. 2020, 10, 1665

of robot poses is considered in the workspace of the robot. From each pose, an Inverse Kinematic (IK)
solver is called for each candidate grasping pose, and moreover the result of IK is determined whether
it is collision-free or not. The first collision-free IK solution along the corresponding grasping pose
is reported if possible. Otherwise, failure is reported if there is neither IK solution nor collision-free
configuration among a set of robot poses. Accordingly, the reasoner returns the collisionable objects.

Spatial reasoning (Rsp): This reasoning is applied for the transfer, push, open, humanOpen, and
humanTransfer actions. This is considered to find a valid placement for an object within a given region
with no consideration of the robot. A pose is sampled, i.e., an object lies in the target region and the
initial stable posture is maintained. The feasibility of the sampled pose is also determined through
a collision-checking procedure to verify whether there are any collisions with other objects in the robot
environment or not. If it is valid, the sampled pose is stored in the geometry details of the action which
transfers the object. Otherwise, another sample will be attempted. In the case that all tried samples
are not valid, failure occurs and the collisionable objects are reported. Moreover, some constraints are
taken into consideration while the sample placement is accomplished. For example, in the case of the
push action, the sample is considered in the direction in which the object is being pushed. In the case of
humanOpen and Open, the valid object placement is extracted from the object feature (the box cap is
assumed to have a single full-open position).

Manipulation reasoning (Runp): This reasoning is considered to evaluate the compatibility of the
grasp poses to move an object from the initial position to the final one (using Rsp). The process applies
Ryei reasoning to return on of the feasible ways to transfer an object from initial to final position in
terms of collision-free IK solution. In the case that there is no possible solution meeting these conditions
because of collisions, then the collisionable objects are returned. In this way, it can obtain the valid
robot pose and grasping configuration when the robot manipulates an object.

Algorithm 1 describes the relaxed geometric function when applying the actions. Algorithm is
detailed below:

e Reasoning about the robot actions [lines 5-15]: The transit action calls the reachability reasoning
by the function R, [line 6]. The transfer, push and open actions call the spatial reasoning by
the function R, [line 11], and then call the function R, [line 13]. If the reasoning processes
are successfully done, the corresponding response is set to feasible and geometric details are
appended to the evaluated action [line 8] and [line 15]. On the contrary, if the failure is due
to manipulatable objects, the response is set to infeasible-criticalObjects and the collisionable
objects are stored in CO. In other cases of failure, the response is set to infeasible-infeasByRob that
could be because of collisions with fixed obstacles or because the IK module is not able to find
a configuration.

e Reasoning and finding the geometric values of the human actions [lines 16-23]: The humanTransfer
action calls the spatial reasoning by the function Ry, [line 17]. This function is responsible to find
the pose of the object placement for the human action and inserts it to the action [line 19]. For the
humanOpen action, the pose of the container object being opened is extracted from the object
feature by the spatial reasoner function Ry, [line 21] and is stored into the action details [line 23].

186



Appl. Sci. 2020, 10, 1665

Algorithm 1: RelaxGeomReas(a)
1 CO<+©

2 a.geom™ < Q@

3140

4 Res = False

5 if 2.name = Transit then
6 {Res, Qyob, Posyop, CO, g} < chh(a)
7 if Res = feasible then

8 L a.geom™.add(Qyop, PoS1ob, &)

9 else if a.name = Transfer or Push or Open then
10 | while i < Max do

1 {Ressp, O]’?’(posgaﬂ,),CO} — Rsp(a)

12 if Ressp = feasible then

13 {Res, Qrop, Posyp, CO, 8} < Ryuup(a, OF (P(’Sgaal))
14 if Res = feasible then

15 t a.geom™.add(Qop, PoSop, O?l(posgoal),g)

16 else if a.name = HumanTransfer then
17 {Res, (’)]'."(posgou,)} — Rsp(a)

18 if Res = feasible then

19 L a,georn*.add((?]?"(posgo”,))

20 else if a2.name = HumanOpen then

21 {Res, O;ﬁ(posopg,,)} — Rsp(a)

22 if Res = feasible then

2 L a.geom™.add(O} (posopen))

24 else
25 //u is not required to be checked;
26 return Null

27 return {Res, CO}

5. Contingent Heuristic Computation using Relaxed Information

Heuristic computation returns the heuristic value as well as helpful actions using relaxed symbolic
along geometric reasoning from each state. Algorithm 2 explains the modified version of Contingent-FF
heuristic computation for a given belief state S and goal G by taking into account geometric information.
This involves three steps: computing the CRPG and the relaxed plan 77/, determining 77/, and computing
the heuristic value and the helpful actions, as follows.

Computing the CRPG and 7’ [lines 1-2]: The CRPG graph CRPGg, involving state layers and action
layers is built by the function CRPGConst [line 1]. The function CRPGPIlan extracts 7’ from that graph
[line 2]. The process is performed in a similar way to the standard Contingent-FF.

Evaluating 7’ [lines 3-13]: Actions in 77’ are sent to the relaxed geometric reasoning for the
feasibility evaluation [line 5]. Basically, this process tries to figure out whether there is any feasible
world to meet the action conditions or not as we proposed in [19]. Upon failure, the function MaxUp
[line 9] determines whether a predefined maximum number of trials is reached or not to update
the belief state and find another relaxed plan. If updating the state is required, the feedback of the
geometric reasoner is evaluated. In the case of failure because of infeasible-critical Objects, the literal
isCrit(CO, O', Pos) with critical objects is added to the current belief state. Otherwise, the failure is
because of infeasible-infeasByRob and the literal infeasByRob(R, O, Pos) is added to the state. In this

187



Appl. Sci. 2020, 10, 1665

case, if the type of action is either transit or open, the literal assist(Human, O, Pos) is also added to
the state.

Computing the heuristic value and with helpful actions [lines 14-15]: In the case that the relaxed plan
is geometrically feasible with respect to the geometric reasoning evaluation, the heuristic value along
the helpful actions are achieved. The function HValue extracts the heuristic value (S) [line 14] and the
function HelpAct reports helpful actions H(S) [line 15] as the generic Contingent-FF.

Algorithm 2: CRPG(S, G)

1 CRPGg; < CRPGConst(G)
2 7'« CRPGPlan(CRPGg)
3 foreach {a’ € 7'} do

4 while True do

5 {Res, CO}«+RelaxGeomReas(a’)
6 if Res = True then

7 ‘ break

8 else

9 if MaxUp(S) < Max then

10 S < UpState(S, Res, CO)
1 return CRPG(S, G)

12 else

13 L return {co, @}

14 h(S); HValue()
15 H(S) < HelpAct()
16 return {h, H(S)}

An example is considered to show how geometric constraints are captured and handled during
the heuristic computation. The initial scene of the example is shown in Figure 2 where the robot is
required to move Can A inside Box. To make the problem challenging, it is assumed that top grasps are
not allowed and some side grasping poses are considered for each can. Several task constraints are
imposed, e.g., there is no direct collision-free motion to reach Can A, and also the robot is not able to
open Box and needs an operator assistant.

The computation of the heuristic process in terms of geometric feasibility is represented in Figure 3.
The corresponding physical world for each relaxed plan has been shown also. Figure 3a shows the
initial relaxed plan extracted. When the first action is forwarded for the relaxed geometric reasoning,
the reachability reasoner fails. This is because when the inverse kinematic module checks side grasping
poses considered for the box cap, all retrieved joint configurations have collisions with the box object.
The geometric reasoning process is done by the proposed function RelaxGeomReas in Algorithm 2 that is
added to the basic planner.

To handle this task constraint, the predicates infeasByRob(tiago, box, posBox) and assist(person, box,
posBox) are asserted to the planning state by the associated reasoning process. The updating sate step
is done by the proposed function UpState as it lets the planner know the detected constraints of the
environment. Figure 3b shows the next heuristic computation taking into account the task constraint.
In this case, the spatial reasoner module successfully finds the geometric state of Box after applying the
action humanOpen. However, the reachability reasoner reports a failure for evaluating the transit action
for the object Can A due to collision between the robot arm and Can B. This object is marked as a critical
object, so the state is updated with the predicate isCrit(can B, can A, pos A). The heuristic computation
is again repeated, and finally the reasoning processes can correctly find feasible geometric details for
the actions. This process results in geometrically feasible heuristic computation.

188



Appl. Sci. 2020, 10, 1665

Figure 2. The initial scene where the robot requires placement of the object A within the box in the
presence of geometric constrains.

' Relaxed geometric Failure
Rrch | Rsp | Runp .
Transit-Box | False | - - Collision with Box Physical world
Transit-CanA - - - _
Open-Box - - = _
Transfer-CanA - - = =

()

U« Re-computing heuristic

T Relaxed geometric Failure
Reeh Rsp | Romp Physical world
HumanOpen-Box - True - -
Transit-CanA False - = Collision with CanB
Transfer-CanA - - N =

(b)

U Re-computing heuristic

i Relaxed geometric Failure
Rrch Rsp Rmup
Humanf)pen-Box - True - - Physical worl
Transit-CanB True — — — |:‘?>
Transfer-CanB - True | True -
Transit-CanA True - - -
Transfer-CanA - True | True -

()

Figure 3. The steps of the computation of heuristic using the relaxed geometric reasoning and the
corresponding physical world. The information highlighted in bold shows the relaxed planning actions
which have been currently tested by the proposed relaxed geometric reasoning. Others are those which
have not been tested yet. True and false values show whether the reasoner is successful or failed.
(a) The transit action to reach the Box fails. (b) The transit action for the Can A fails due to collision
with other objects. (c) The final geometrically feasible heuristic computation.

189



Appl. Sci. 2020, 10, 1665

6. Tree-Based Planning using Search Space

The And-Or search procedure as considered in the Contingent-FF planner is used to result in
a feasible manipulation plan. The heuristic computation has been modified to incorporate geometric
check and, moreover, selected actions must be evaluated using motion planning. The process is
represented in Algorithm 3.

The algorithm gets 7 as input and outputs 77 if possible. First, the trials counter trial is set [line 1]
and the state S; is the initial belief state [line 4]. The function Search performs the standard search
mechanism as Contingent-FF does [line 6]: it provides the next state using the transit function to visit
Si+1 along the promising applicable action(s) with Hs,. This step is done with the modified CRPG
function (see Algorithm 2), by taking geometric constraints into account.

In the case that Hs, does not exist [line 7], the algorithm performs another search from the
beginning. Until the maximum number of iterations is not reached [line 9], the process is repeated
with the initial state updated by the function UpdatelnitState [line 11]. If the maximum number of trials is
reached, the process returns failure [line 14].

Algorithm 3: The Proposed Planning Algorithm
inputs: 7=(D, Sy, G), D=(A,Q, F,W,S;)

output: v
1 trial <0
2140
3 T D
4 5i = Sinit
5 while G Z S; do
6 {Hs,, Sit1} < Search(S;,G, A, Q)
7 if Hg, = @ then
8 trial < trial +1
9 if trial < Max then
10 i+ 0
1 S; < UpdatelnitState()
12 Continue
13 else
14 L return fail
15 else
16 if Hs, ¢ O And Hg,.name # HumanTransfer And Hg.name # HumanOpen then
17 L {Q,Res,CO} « MotionPlanner(Hg,)
18 if Hs, € O Or Hg,.name = HumanTransfer Or Hg.name = HumanOpen Or Res = feasible
then
19 ‘ 7t.append(Hsg,)
20 else
21 S; < UpdateState(Res, CO)
22 L Continue
23 i—i+1

24 return v

For those actions that either do not belong to the set of sensing actions and are not assigned to
human, the MotionPlanner function is used to compute a collision-free path for the currently selected
action(s) [line 17]. If a path is found, Res is set to feasible and the path Q is returned. Afterwards,
7t is appended with the sensing, human, or normal action(s) [line 19]. In the case of failure due to
infeasible-critical Objects, the literal isCrit(CO, O, Pos) with critical objects is added to the current belief
state. Otherwise, the failure is because of motion planning time-out problem or collisionable fixed
obstacles, the type of failure is infeasible-infeasByRob and the literal infeasByRob(R, O', Pos) is added to

190



Appl. Sci. 2020, 10, 1665

the state. In this case, if the type of action is either transit or open, the literal assist(Human, O’, Pos) is
also added to the state.

An example is considered to illustrate how the geometrically feasible conditional plan is obtained
offline under belief information of the initial state. The scene depicted in Figure 4 shows the initial
belief state of the mobile manipulation problem, where the color of the gray cylinder is uncertain
(it could be red or green), it is not known whether the can is filled or not, nor if the containers are open
or closed. The goal is to transfer the cylinder A to either the red or the green tray. Some particular
placements regions allocated for the manipulatable objects if required:

e The green cylinders must be placed on the green tray.

®  The red cylinders must be placed over the red tray.

®  The blue cylinders must be placed within the containers.

®  The can objects may be optionally placed anywhere over the table.

Figure 4. The manipulation example where the goal is to transfer cylinder A to one of the trays with
respect to its color.

The complete conditional plan is represented in Figure 5 that is obtained by Algorithm 3. It is
briefly discussed how this geometrically feasible plan is obtained. While the planning process is taking
place, there are several challenges in terms of geometric constraints which are captured and handled by
the proposed geometry reasoner. These steps are mainly done using the Search function which internally
calls Algorithm 2. To reach the target object, the reachability reasoning process, place in the function
RelaxGeomReas, detects cylinder B and reports that the object is blocking the way of reaching object A in
the heuristic computation. Therefore, the predicate isCrit(cylinderB, cylinderA, posA) is inserted to the
initial belief state of the planner using the function updating the belief state. This predicate says that
cylinder B blocks the way of reaching cylinder A.

Furthermore, when the robot attempts to find a feasible configuration for opening box 1 in the
case that the box is closed, the reachability reasoner fails due to colliding with the box. Here, it is the
case that robot needs to ask a human operator for collaboration. Accordingly, the reasoner appends

191



Appl. Sci. 2020, 10, 1665

the predicates infeasByRob(tiago, box1, posBox1) and assist(person, box1, posBox1) to the corresponding
state. The humanOpen action then appears.

Initial Belief State

CheckContainer Box1 Open

HumanOpen Box1 Trasnfer B Box1

Trasnfer B Box1 Transit A

SenseColor A Red

Trasnfer A GreenTray Trasnfer A RedTray

SenseColor A Red

Trasnfer A GreenTray Trasnfer A RedTray

Figure 5. The conditional plan results from the proposed planning process. The actions highlighted
with the blue color are the ones assigned to the robot or a human operator. Some important actions
parameters are represented. The actions specified by the red color are sensing actions.

7. Manipulation Plan Execution using Sensing and Human Interaction

When the manipulation conditional plan is achieved, it will be forwarded to for the execution
module. Algorithm 4 outlines the process of actions execution performed by the robot or human, and
calls to the sensing actions. The conditional plan is initialized from its root [line 1]. For each action of
the plan, its type first identified whether it is execution or sensing one. In the case of execution action,
if it has to be executed by human, the function executeByHuman asks a person to do the corresponding
action [line 5] and an operator then sends a command to the robot that the action has been done
successfully. Otherwise, the action is executed by the robot [line 7].

On the other hand, if the type of action becomes sensing, the function senseAct determines the
binary value of the sensing action which is True or False. This is done using the perception module
allocated for the robot. Depending on the type of uncertainty, the function may request to human or
activate a sensing module to observe the action value. Regarding the CheckCan or CheckOpen sensing
actions, human information is used, while a sensing module is used for the SensePose and SenseColor
sensing actions.

192



Appl. Sci. 2020, 10, 1665

Algorithm 4: Manipulation Plan Execution

inputs: 7
1 initializePlan(7r)
2 foreach {Hg € 1t} do

3 if Hs € A then

4 if Hg.name = HumanTransfer Or HumanOpen then
5 ‘ executeByHuman(Hys)

6 else

7 L executeByRob(Hys)

8 else

9 Res = senseAct(Hg)
10 selectBranch(rr, Hg, Res)

8. Empirical Results and Discussion

This section describes some manipulation problem solved using the proposed framework, and
the implementation issues. The mobile robot considered is TIAGo. It has 7 degrees of freedom arm,
equipped with a gripper, mounted on a mobile platform through a lift torso.

The executive simulated result of the manipulation problem represented in Figure 4, called
Problem-1, is shown in Figure 6. For the domain of the problem, a number of actions is considered
for the robot being transit, transfer, open, and push along with some actions for an operator that are
humanTransfer and humanOpen. Actions are selected according to the planning mechanism in terms
of symbolic and geometric reasoning. We assume that the values of the uncertainty information are
provided in run-time in simulation. Therefore, the executive plan is provided below:

Executive Plan: { Transit-B, CheckContainer-Box1-Open (False), HumanOpen-Box1, Transfer-B-Box1,
Transit-A, SenseColor-A-Red (True), Transfer-A-RedTray }

The states represented in the figure are classified as follows:

(a) is the initial belief state of the robot and environment.
(b)  is the state where the robot applies transit action to reach cylinder B.

(c) is the state where the sensing action CheckContainer-Box1-Open showed that Box 1 is
currently closed.

(d) is the state where the HumanOpen action is executed as the robot is not capable enough to open
the box.

(e)  is the state where the robot places cylinder B within box 1.
(f)  is the state where the robot transits to cylinder A.
(g) 1is the state where the sensing action SenseColor-A-Red showed that the cylinder is actually red.

(h)  is the state where the robot moves its base and the arm configuration to place cylinder A over
the red tray.

193



Appl. Sci. 2020, 10, 1665

(e) () (9
Figure 6. The simulation results of the executive plan performed by the TIAGo robot: (a) is the initial
robot and environment state, (b) is the state after Transit action towards cylinder B, (c) is the result of
the sensing action CheckContainer-Box1-Open, (d) is the state after applying HumanOpen action, (e) is the
state after the robot executes the Transfer action for cylinder B, (f) is the state when the robot transits to
cylinder A, (g) is the state resulting from the sensing action SenseColor-A-Red, and (h) is the state when

the robot place cylinder A on the associated tray.

In addition, the proposal has been evaluated for other cluttered problems where the robot needs
to sort objects according to the colors. Regarding the action domain, Robot actions are transit and
transfer, and the action template humanTransfer is considered for an operator. The problem represented
in Figure 7, called Problem-2, shows the initial and goal states of manipulation where the green and red
objects must be located on the green and red regions respectively. The red object is not initially located
on the table. The pink region is considered on the robot workspace where an operator can transfer
objects. The planning uncertainties are the color of the green object which could be actually green or
red and the location of the red object which could be on the robot table or in the human workspace.
Therefore, the humanTransfer action is applied to transfer the object to the robot workspace as the robot
is not allowed to move to the human workspace. The final executable plan would be to transfer the
green object to the target placement region by the robot. It then looks for the red object and figures out
the object is not located on the table and asks an operator to transfer the object. The humanTransfer
action is selected in the conditional plan, so the requested object is transferred to the robot workspace.
The operator updates the robot knowledge through the robot system terminal. The robot is aware
that the human action has been successfully performed, and afterwards it travels to grasp the object.
Eventually, the robot transfers the object to the target region.

The proposed approach has been tested for similar problems by increasing the number of objects
and varying color and/or location uncertainties. The problems performance are represented in
Table 1 in terms of conditional and executive plan length, and moreover planning time. Problems-3
includes a cluttered problem where there are nine objects and three of them need to be sorted. Similar
uncertainty of Problem-2 is considered regarding the color and location of objects. Problem-4 is the one

194



Appl. Sci. 2020, 10, 1665

where 12 objects exist and four of them must be sorted. In this case, the uncertainty information like
the objects color and locations are considered for more objects.

(a) (b)

Figure 7. The manipulation example where green and red objects must be placed in the green and red

regions. (a) shows the initial state of the problem. (b) shows the final state of the problem. The red object
is not initially located in the robot workspace. The pink region is the place where human can transfer
objects to the robot workspace. The solution can be visualized here: https://sir.upc.es/projects/
ontologies/GreenRedHuman.mp4. The solution for the case that the red object is initially located on
the table is visualized here: https:/ /sir.upc.es/projects/ontologies/ TiagoRedGreenRob.mp4.

Table 1. The conditional plan and executive plan length in terms of number of sensing and executive
actions and planning time in seconds for the evaluated problems.

Conditional Plan Executive Plan
Problem ; . . . Planning Time
Sensing Executive Sensing Executive
Problem-1 3 10 2 5 35
Problem-2 3 13 2 5 59
Problem-3 3 19 2 8 163
Problem-4 7 41 3 12 449

Concerning the implementation framework, four components are considered: task planning,
relaxed geometric reasoning, motion planning, and executive module. Task planning is developed
using a modified version of the Contingent-FF planner coded in C++. All the action templates are
described using PDDL by considering ADL (Action Description Language, ref. [28]) enabling us to
define operators in a more compact way, using quantifiers and conditional effects. There is not any
pre-processing step to compute geometric details of actions and they are computed and assigned
during the manipulation planning process.

We use The Kautham Project [29], a C++-based open-source tool for motion planning that enables
planning under geometric and kinodynamic constraints for relaxed geometric reasoning and motion
planning. It uses the Open Motion Planning Library (OMPL) [30] as a core set of sampling-based
planning algorithms. In this work, the RRT-Connect [31] motion planner is used for motion planning.
This planner is one of the most efficient motion planners, but it does not guarantee optimal
motions. The Kautham Project involves different collision checking modules to detect robot-object
and object-object collisions, and features a placement sampling mechanism to find feasible object poses
in the workspace. Relaxed geometric reasoning uses these modules to find feasible sample geometric
instances for symbolic actions. The executive module uses a sensing module which uses the 3D camera
mounted inside the TIAGo robot, and also some components provided by PAL Robotics to send a motion

195



Appl. Sci. 2020, 10, 1665

path to the robot. The communication between task, relaxed geometric reasoning, motion planning,
and executive modules is done via Robotic Operating System (ROS) [32].

9. Conclusions

This paper has proposed a contingent-based task and motion planning approach able to cope
with high-dimension mobile manipulation problems in the presence of high-level uncertainty and
human interactions (referred to the sharing of knowledge and to collaborative actions which are out of
the robot capabilities). For this purpose, the basic Contingent-FF planner has been modified to include
robot action reasoning, human-robot collaboration, and state observation. A set of geometric reasoning
processes has been offered to the planning process to capture the task constraints imposed in the robot
environment and to update belief state while task planning is done. Moreover, some modules linked
with the human knowledge along with the perception system, have been also designed to observe
the binary outcomes of actions. It is worth noting that the proposed approach results in a tree-shaped
conditional plan which is geometrically feasible regardless of the values of sensing actions.

To evaluate the proposed approach, several manipulation tasks have been executed in simulation
and real environments to show the way of tackling human-robot interactions, and identifying and
handling both geometric constraints and high-level uncertainty. Problems performance has been
reported in terms of the length of the manipulation plan and planning time, considering an increasing
number of objects. In all the cases, the robot in collaboration with the human operator has been able to
solve the tasks despite the uncertainty and the constraints.

Future work will concentrate on manipulation tasks also subject to low-level geometric uncertainty,
its effects in sensing and how it is transferred to task planning.

Author Contributions: A.A. and J.R. conceived the theoretical contributions, A.A. wrote the paper and
implemented the whole framework, being assisted by M.D. for the perception part. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Spanish Government through the project DPI2016-80077-R.
Mohammed Diab is supported by the Spanish Government through the grant 2017.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Hoffmann, J.; Brafman, R. Contingent planning via heuristic forward search with implicit belief states.
In Proceedings of the International Conference on Automated Planning and Scheduling, Monterey, CA, USA,
5-10 June 2005.

2. Stilman, M.; Schamburek, J.U.; Kuffner, J.; Asfour, T. Manipulation planning among movable obstacles.
In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy,
10-14 April 2007; pp. 3327-3332.

3. Stilman, M.; Kuffner, J. Planning among movable obstacles with artificial constraints. Int. J. Robot. Res. 2008,
27,1295-1307. [CrossRef]

4. Rodriguez, C.; Suédrez, R. Combining motion planning and task assignment for a dual-arm system.
In Proceedings of the 2016 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS),
Daejeon, Korea, 9-14 October 2016; pp. 4238-4243.

5. Zarandi, M.E; Mosadegh, H.; Fattahi, M. Two-machine robotic cell scheduling problem with
sequence-dependent setup times. Comput. Oper. Res. 2013, 40, 1420-1434. [CrossRef]

6. Foumani, M.; Smith-Miles, K.; Gunawan, I.; Moeini, A. A framework for stochastic scheduling of
two-machine robotic rework cells with in-process inspection system. Comput. Ind. Eng. 2017, 112, 492-502.
[CrossRef]

7. Ghallab, M.; Nau, D.; Traverso, P. Automated Planning: Theory & Practice; Elsevier: San Francisco, CA,
USA, 2004.

8.  Lagriffoul, E; Andres, B. Combining task and motion planning: A culprit detection problem. Int. ]. Robot.
Res. 2016, 35, 890-927. [CrossRef]

196



Appl. Sci. 2020, 10, 1665

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Dantam, N.; Kingston, Z.K.; Chaudhuri, S.; Kavraki, L.E. Incremental Task and Motion Planning:
A Constraint-Based Approach. In Proceedings of the Robotics: Science and Systems, Cambridge, MA, USA,
18-22 June 2016.

He, K.; Lahijanian, M.; Kavraki, L.E.; Vardi, M.Y. Towards manipulation planning with temporal logic
specifications. In Proceedings of the International Conference on Robotics and Automation, Seattle, WA,
USA, 26-30 May 2015; pp. 346-352.

Akbari, A.; Muhayyudin; Rosell, J. Task and Motion Planning Using Physics-based Reasoning.
In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation,
Luxembourg, 8-11 September 2015.

Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.; Abbeel, P. Combined task and motion planning
through an extensible planner-independent interface layer. In Proceedings of the IEEE International
Conference on Robotics and Automation Robotics and Automation, Hong Kong, China, 31 May-5 June 2014;
pp. 639-646.

Diab, M.; Akbari, A.; Muhayyuddin; Rosell, ]. PMK—A Knowledge Processing Framework for Autonomous
Robotics Perception and Manipulation. Sensors 2019, 19, 1166. [CrossRef] [PubMed]

Cambon, S.; Alami, R.; Gravot, E. A hybrid approach to intricate motion, manipulation and task planning.
Int. ]. Robot. Res. 2009, 28, 104-126. [CrossRef]

Garrett, C.R.; Lozano-Pérez, T.; Kaelbling, L.P. FFRob: An efficient heuristic for task and motion planning.
In Algorithmic Foundations of Robotics XI; Springer: Cham, Switzerland, 2015; pp. 179-195.

Akbari, A.; Muhayyuddin; Rosell, J. Reasoning-based Evaluation of Manipulation Actions for Efficient
Task Planning. In Proceedings of the ROBOT2015: Second Iberian Robotics Conference, Lisbon, Portugal,
19-21 November 2015.

Akbari, A.; Muhayyudin; Rosell, J. Task Planning Using Physics-based Heuristics on Manipulation Actions.
In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation,
Berlin, Germany, 6-9 September 2016.

Akbari, A.; Muhayyuddin; Rosell, J. Knowledge-oriented task and motion planning for multiple mobile
robots. J. Exp. Theor. Artif. Intell. 2019, 31, 137-162. [CrossRef]

Akbari, A.; Lagriffoul, F; Rosell, ]. Combined heuristic task and motion planning for bi-manual robots.
Auton. Robot. 2018, 1-16. [CrossRef]

Bryce, D.; Kambhampati, S.; Smith, D.E. Planning graph heuristics for belief space search. J. Artif. Intell. Res.
2006, 26, 35-99. [CrossRef]

Petrick, R.P;; Bacchus, F. Extending the Knowledge-Based Approach to Planning with Incomplete Information
and Sensing. In Proceedings of the International Conference on Automated Planning and Scheduling,
Whistler, BC, USA, 3-7 June 2004; pp. 2-11.

Bonet, B.; Geffner, H. Planning under partial observability by classical replanning: Theory and
experiments.  In Proceedings of the IJCAI Proceedings-International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, 16-22 July 2011; Volume 22, p. 1936.

Shani, G.; Brafman, R.I. Replanning in domains with partial information and sensing actions. IJCAI 2011,
2011, 2021-2026.

Maliah, S.; Brafman, R.L; Karpas, E.; Shani, G. Partially Observable Online Contingent Planning Using
Landmark Heuristics. In Proceedings of the International Conference on Automated Planning and
Scheduling, Portsmouth, NH, USA, 21-26 June 2014.

Gaschler, A.; Petrick, R.; Kroger, T.; Knoll, A.; Khatib, O. Robot task planning with contingencies for
run-time sensing. In Proceedings of the International Conference on Robotics and Automation Workshop on
Combining Task and Motion Planning, Karlsruhe, Germany, 6-10 May 2013.

Nouman, A.; Yalciner, LE; Erdem, E.; Patoglu, V. Experimental evaluation of hybrid conditional planning
for service robotics. In Proceedings of the International Symposium on Experimental Robotics, Tokyo, Japan,
3-6 October 2016; pp. 692-702.

Hoffmann, J.; Nebel, B. The FF planning system: Fast plan generation through heuristic search. ]. Artif.
Intell. Res. 2001, 253-302. [CrossRef]

197



Appl. Sci. 2020, 10, 1665

28.

29.

30.

31.

32.

Pednault, EPD. ADL: Exploring the Middle Ground Between STRIPS and the Situation Calculus.
In Proceedings of the First International Conference on Principles of Knowledge Representation and
Reasoning, Toronto, ON, Canada, 15-18 May 1989; Morgan Kaufmann Publishers Inc.: San Francisco,
CA, USA, 1989; pp. 324-332.

Rosell, J.; Pérez, A.; Aliakbar, A.; Muhayyuddin; Palomo, L.; Garcia, N. The Kautham Project: A teaching and
research tool for robot motion planning. In Proceedings of the IEEE International Conference on Emerging
Technologies and Factory Automation, Barcelona, Spain, 16-19 September 2014.

Sucan, I.; Moll, M.; Kavraki, L.E.; others. The open motion planning library. Robot. Autom. Mag. 2012,
19, 72-82. [CrossRef]

Kuffner, ].J.; LaValle, 5.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings
of the International Conference on Robotics and Automation, San Francisco, CA, USA, 24-28 April 2000;
Volume 2, pp. 995-1001.

Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source
Robot Operating System. In Proceedings of the International Conference on Robotics and Automation
Workshop on Open Source Software, Kobe, Japan, 12-17 May 2009; Volume 3, p. 5.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

198



riricd applied
b sciences

Article
Automatic Design of Collective Behaviors for Robots
that Can Display and Perceive Colors

David Garzén Ramos * and Mauro Birattari *

Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA), Université
Libre de Bruxelles, 1050 Brussels, Belgium
* Correspondence: dgarzonr@ulb.ac.be (D.G.R.); mbiro@ulb.ac.be (M.B.); Tel.: +32-02-6502729 (D.G.R.)

Received: 16 June 2020; Accepted: 1 July 2020; Published: 6 July 2020

Abstract: Research in swarm robotics has shown that automatic design is an effective approach to
realize robot swarms. In automatic design methods, the collective behavior of a swarm is obtained
by automatically configuring and fine-tuning the control software of individual robots. In this
paper, we present TuttiFrutti: an automatic design method for robot swarms that belongs to
AutoMoDe—a family of methods that produce control software by assembling preexisting software
modules via optimization. The peculiarity of TuttiFrutti is that it designs control software for
e-puck robots that can display and perceive colors using their RGB LEDs and omnidirectional
camera. Studies with AutoMoDe have been so far restricted by the limited capabilities of the e-pucks.
By enabling the use of colors, we significantly enlarge the variety of collective behaviors they can
produce. We assess TuttiFrutti with swarms of e-pucks that perform missions in which they
should react to colored light. Results show that TuttiFrutti designs collective behaviors in which
the robots identify the colored light displayed in the environment and act accordingly. The control
software designed by TuttiFrutti endowed the swarms of e-pucks with the ability to use color-based
information for handling events, communicating, and navigating.

Keywords: swarm robotics; automatic design; AutoMoDe; evolutionary robotics

1. Introduction

A robot swarm [1,2] is a group of robots that operate autonomously without relying on a leader
robot or on external infrastructures. By cooperating, the robots of a swarm can collectively accomplish
missions that individual robots could not accomplish alone. The collective behavior of a robot
swarm—and hence its ability to accomplish a particular mission—is the result of the interactions that
the robots have with the environment and with their peers [3].

Unfortunately, conceiving and implementing a collective behavior for a robot swarm is particularly
challenging. Indeed, to obtain a collective behavior, one must conceive and implement the control
software of the individual robots. The problem is that no generally applicable method exists to tell
what an individual robot should do so that the desired behavior is obtained [4]. Automatic design is a
promising approach to address this problem. An automatic design method produces control software
via an optimization algorithm that maximizes an appropriate mission-dependent objective function.
For a recent literature review on the automatic design of robot swarms, see Francesca et al. [5].

Traditionally, research on the automatic design of robot swarms adopts the neuro-evolutionary
approach [6,7]. Design methods based on neuro-evolution produce control software in the form
of artificial neural networks. The architecture and parameters of the network are selected by an
evolutionary algorithm. As an alternative to neuro-evolution, some modular methods have been
proposed [8-14]. In the modular approach, preexisting software modules are combined and tuned
by an optimization algorithm. Results show that modular methods are more suitable to produce

Appl. Sci. 2020, 10, 4654; doi:10.3390/nano10134654 199 www.mdpi.com/journal/applsci



Appl. Sci. 2020, 10, 4654

communication-based behaviors [14] and are more robust to the so-called reality gap [8,15], that is,
the possibly subtle but unavoidable differences between reality and the simulation models used in the
design process.

In this paper, we present TuttiFrutti: a method for the automatic design of swarms of e-pucks
(extended with an omnidirectional vision turret [16]) that can display and perceive colors. TuttiFrutti
designs control software for the individual robots in the swarm by selecting, tuning, and assembling
preexisting software modules into probabilistic finite state machines. TuttiFrutti is an instance
of AutoMoDe [8]—a family of modular methods for the realization of robot swarms. TuttiFrutti
differentiates from previous instances of AutoMoDe by enabling the production of control software
that operates with information expressed in the form of colors. More precisely, TuttiFrutti is
intended to solve classes of missions in which robots shall act according to colors displayed by objects
in their environment and/or their peers. With TuttiFrutti, we significantly enlarge the variety
of collective behaviors that can be obtained by AutoMoDe. The study we present in this paper is
framed within the tenets of the automatic off-line design of robot swarms, as recently defined by
Birattari et al. [17]: (i) TuttiFrutti is not intended to solve a specific design problem but rather a
class thereof, without the need to undergo any problem-specific modification or adjustment; (ii) once a
design problem is specified, human intervention is not provided for in any phase of the design process.

In our research, we address the following questions: Is TuttiFrutti capable of deciding
whether a color displayed in the environment provides information useful to accomplish a mission?
Can TuttiFrutti produce collective behaviors that exhibit color-based communication between
robots? Do the extended capabilities of the e-puck increase the difficulty of automatically designing
control software for the robot swarm? How could these new resources be used to create more
complex missions?

We consider a model of the e-puck that can use its RGB LEDs for emitting color signals,
and its omnidirectional vision turret [16] for detecting robots or other objects that display colors
in the environment. We conduct our study to demonstrate that e-pucks that display and perceive
colors enable the automatic design of collective behaviors with event-handling, communication and
navigation properties. As a proof of concept, we assess TuttiFrutti in three missions in which colors
displayed in the environment play a different role: STOP, AGGREGATION, and FORAGING. In STOP,
the robots must stop moving as soon as a color signal appears in the environment. In AGGREGATION,
the robots must aggregate in a region where a specific color is displayed. In FORAGING, the robots
must forage in an environment that has two sources of items—the sources differ in the profit they
provide and in the color displayed at their location. We report a statistical analysis of results obtained
with realistic computer simulations and with a swarm of e-puck robots.

Alongside the results of TuttiFrutti, we report the results obtained by EvoColor—a
design method based on neuro-evolution. EvoColor is a straightforward implementation of the
neuro-evolutionary approach that, likewise TuttiFrutti, produces control software for swarms of
e-pucks that can display and perceive colors. We report these results as a reference for appraising the
complexity of the missions considered in our study. In the absence of a well established state-of-the-art
off-line design method for the missions proposed here, we consider EvoColor as a reasonably
appropriate yardstick against which we can assess the performance of TuttiFrutti. A thorough
comparison of TuttiFrutti against any possible declination of the neuro-evolutionary approach is
well beyond the scope of this paper.

The paper is structured as follows: Section 2 discusses previous related work; Section 3 introduces
TuttiFrutti; Section 4 describes the experimental set-up; Section 5 presents the results; and Section 6
concludes the paper and highlights future work.

200



Appl. Sci. 2020, 10, 4654

2. Related Work

In this section, we first introduce studies in which the robots of a swarm have the capabilities of
displaying and perceiving colors. After, we revise related works on automatic design of robot swarms.
Finally, we compare TuttiFrutti with the other existing instances of AutoMoDe.

Robots that can display or perceive colors have been largely used to demonstrate collective
behaviors in swarm robotics. The literature on robot swarms that use visual information is extensive
and it is not our intention to provide an exhaustive review. We exclude from our discussion any
system in which robots only perceive visual information but do not display it—such as [18-22].
Instead, we focus on studies in which the robots both display and perceive colors to achieve collective
behaviors [23-47].

Designers of robot swarms commonly use color lights to represent specific information that robots
in the swarm must identify, process and/or transmit—the nature of the information varies from one
study to another and is used ad hoc to obtain a particular behavior. For example, Nouyan et al. [35]
designed a swarm that connects locations by establishing a chain of robots that act as waypoints
for their peers. They conducted two experiments in which robots use colors differently: in the first
experiment, robots repeat a pattern of 3 colors along the chain to indicate the sense in which the
peers should move; in the second one, robots use colors to inform their peers about a location
of interest. Mathewset al. [25] designed a swarm in which robots self-organize in mergeable
structures. In their experiments, robots react to colored objects in their environment and display
color signals that indicate their location. Garattoni and Birattari [31] designed a robot swarm that
autonomously identifies and perform sequences of tasks. In their experiments, robots emit color
signals to coordinate their collective action and associate each task in a sequence with objects that
display a particular color. In a more general sense, one can find a similar approach in swarms
that exhibit self-assembly and morphogenesis [23-26], collective fault detection [25,27], collective
exploration [28-31], collective transport [28,30], coordinated motion [25,26,32], human-swarm
interaction [33,34], chain formation [28,31,35], group size regulation [36], task allocation [31,37-40],
object clustering [39,41], and foraging [42]—according to the taxonomy proposed by Brambilla et al. [4].
In these studies [23-42], designers manually established ad hoc relationships between the colors that a
robot can perceive and the corresponding behavior that a robot must adopt when it perceives them.
The research question we address in the present paper is whether automatic design methods [5,17] can
establish similar relationships.

It is our contention that classes of missions that require the robots to communicate and react
to color-based information are an appropriate benchmark to assess automatic design methods.
First, the capability of displaying and perceiving colors is platform-independent and generalizes
across different design methods—robot platforms used in swarm robotics often include LEDs and
cameras [48]. Second, colors facilitate the conception and realization of complex missions—colored
environments can be created in various manners [40,41,49-51]. Finally, colors simplify the visualization
and monitoring of robot swarms [48]—a property relevant to the human understandability of collective
behaviors, an open research area in swarm robotics [52]. Yet, no existing method for the automatic
design of robot swarms targets classes of missions that require the robots to operate with color-based
information. Specifically, we refer to methods that can be framed within the tenets of the automatic
off-line design of robot swarms [17].

Few related studies have been conducted following the neuro-evolutionary approach [43-47].
Floreano et al. [43] evolved communication behaviors for a swarm performing a foraging mission.
Ampatzis et al. [44] evolved self-assembly behaviors with a team of two robots. Sperati et al. [45,46]
evolved behaviors for coordinated motion with a group of three robots, and later, evolved a dynamic
chain of robots that perform a foraging-like mission. Trianni and Lépez-Ibafiez [47] used multi-objective
optimization to evolve flocking and a two-robot collaborative behavior within a robot swarm. In the
studies mentioned above, the methods under analysis have not been tested for their ability to generate
control software autonomously. As a consequence, these studies belong in semi-automatic design

201



Appl. Sci. 2020, 10, 4654

rather than in automatic design [17]. Indeed, in these studies, researchers either focused a single
mission [43,44,46] or modify the design methods and/or robot platform when they applied the
methods under analysis to more than one [45,47]. In addition, we argue that mission-specific bias was
manually introduced in the way the robots display and perceive colors: robots display colors that
are manually defined at the beginning of the experiment [44]; robots display color-based information
that is encoded by the researchers [46,47]; and the perception capabilities of the robots are adjusted
to ease the emergence of a specific behavior [45,46]. We contend that these studies do not expose the
full potential of using color-based information in the automatic design of collective behaviors. As a
matter of fact, previous works were limited to produce control software for robots than can display
and perceive a single [43-45] or at most two simultaneous colors [46,47].

Our research belongs in the family of modular design methods known as AutoMoDe [8]. In the
rest of the section, we restrict our attention to this family. Francesca and Birattari [5] discussed
how the capabilities of robot platforms limit the variety of collective behaviors that automatic
design methods can produce. Methods conceived for e-puck robots with equal capabilities—such as
Vanilla [8], Chocolate [9], Maple [10], Waffle [11], Coconut [12] and IcePop [13]—are restricted to
address the same class of missions: robots in the swarm must position themselves regarding their
peers [9,15] or few static environmental features [8-13,15,53], and they can only use a single global
reference for navigation [8-13,15,53]. In contrast, Hasselmann et al. [14] obtained a larger variety of
collective behaviors by considering an extended set of capabilities with respect to those considered
in Chocolate. They introduced Gianduja—a method for the automatic design of swarms of e-pucks
that can selectively broadcast binary messages. Hasselmann et al. showed that by broadcasting and
reacting to messages, the robots can perform missions that Chocolate cannot address—for example,
missions that require event-handling collective behaviors.

The approach we follow in our research is similar to the one of Hasselmannet al. [14].
We conceived TuttiFrutti as an instance of AutoMoDe that designs control software for e-pucks
with the extended capability of communicating by displaying and perceiving colors. As we will see in
Section 3, TuttiFrutti can address missions that require the robots to act according to color-based
information—a class of missions that existing instances of AutoMoDe can not address.

3. AutoMoDe-TuttiFrutti

TuttiFrutti is a modular automatic off-line design method; it produces control software for
swarms of e-pucks that can display and perceive colors. More precisely, TuttiFrutti is an instance of
AutoMoDe specialized in the design of robot swarms that act according to color-based information.
The variety of collective behaviors produced by previous instances of AutoMoDe have been so
far restricted by the limited capabilities of the robots—see Section 2. We conceive TuttiFrutti to
overcome this restriction from a twofold perspective: on the one hand, e-pucks that display and
perceive colors could enable the design of robot swarms in which the individuals exhibit color-based
communication; on the other hand, these swarms could perform missions in complex and time-varying
environments. By introducing communication capabilities and missions with complex environments,
we meant to enlarge significantly the variety of collective behaviors designed with AutoMoDe.

Three fundamental components characterize TuttiFrutti: the robot platform, the set of
preexisting software modules, and the optimization process that produces the control software.
In the following sub-sections we describe each of these components, their relationship, and how
they differentiate from other instances of AutoMoDe.

3.1. Robot Platform

TuttiFrutti produces control software for an extended version of the e-puck [54,55]—see
Figure 1. The e-puck is a two wheeled, small, educational robot often used in swarm robotics
research [8-11,14,45,46]. We consider a model of the e-puck endowed with a set of sensors and
actuators defined by the reference model RM 3—see Table 1. We adopt the concept of reference

202



Appl. Sci. 2020, 10, 4654

model [5] to formally characterize the platform for which TuttiFrutti can produce control software.
RM 3 represents the capabilities of the robot both in real and simulated environments.

Omnidirectional
vision turret

RGB LEDs I

i Range-and-bearing
AR board
Q 5.0 -u()‘l”? A
T Proximity sensors

!
ets
l Wheels

Ground
sensors

RGB blocks

Figure 1. Extended version of the e-puck. The picture indicates the set of sensors and actuators defined
by RM 3. Alongside, we show the RGB blocks that we use in our experiments with TuttiFrutti.

Table 1. Reference model RM 3. Novelties with respect to RM 1.1 are highlighted in gray. They concern
the capabilities of displaying and perceiving colors. Robots can perceive: red (R); green (G); blue (B);

’

cyan (C); magenta (M); and yellow (Y). Robots can display no color (&); cyan (C); magenta (M);

and yellow (Y). V. is calculated likewise V,,—for each perceived color, the positions of color signals are
aggregated into a unique attraction vector.

Input Value Description

ProXieqq,.. 8y [0,1] reading of proximity sensor i

gndicy, 3 {black, gray, white} reading of ground sensor j

n {0,...,20} number of neighboring robots detected
\ ([0.5,20];[0,2] rrad) their relative aggregate position

CamMec (R G,B,C,M,Y} {yes, no} colors perceived

Vee(R,G,BCMY} (1.0;[0,2] rrrad) their relative aggregate direction
Output Value Description

Vrellr} [-0.12,0.12] m/s target linear wheel velocity

LEDs {2,C,M,Y} color displayed by the LEDs

Period of the control cycle: 0.1s.

The sensors and actuators available to the e-puck are proximity and ground sensors,
a range-and-bearing board [56], an omnidirectional vision turret [16], right and left wheels, and RGB
LEDs. The e-puck can detect nearby obstacles by its eight proximity sensors (prox;) distributed
around its chassis. Three infrared ground sensors (gndj) allow the e-puck to differentiate between
black, gray and white floor. By means of its range-and-bearing board, the e-puck knows the number
of neighboring peers (1) in a range of 0.5m. A vector (V) represents an attraction force to the
neighboring e-pucks—to which the robot is subject—following the framework of virtual physics [57].

203



Appl. Sci. 2020, 10, 4654

The omnidirectional vision turret allows the e-puck to perceive red, blue, green, cyan, magenta and
yellow lights (cam,) in a 360° field of view and within a range of about 0.5 m. For each color perceived,
a unit vector (V;) is associated, which represents a steady attraction to robots or objects that display
the color. Finally, the control software of the robot can adjust independently the velocity of each wheel
(vx) between —0.12 and 0.12m/s, and, using the three RGB LEDs placed on the top of the e-puck,
can display cyan, magenta or yellow.

RM 3 is the first reference model adopted in the definition of a design method of the AutoMoDe
family that includes the omnidirectional vision turret and the RGB LEDs of the e-puck platform.
Vanilla, Chocolate and Maple are based on the simpler RM 1.1 [58]—the differences between RM 3
and RM 1.1 are highlighted in Table 1. Gianduja introduced the reference model RM 2 [58], associated
to e-pucks that can exchange binary messages using their range-and-bearing board. An important
difference between TuttiFrutti and other instances of AutoMoDe is that in RM 3 we removed
the capability of the e-puck of measuring ambiance light. Although present in RM 1.1 and RM 2,
this capability is incompatible with the RGB LEDs we added in RM 3.

3.2. Set of Preexisting Modules

The major characteristic of AutoMoDe is that it produces control software by assembling
preexisting software modules. In TuttiFrutti, the modules are combined into probabilistic
finite state machines—as in Vanilla, Chocolate, and Gianduja [8,9,14]. We conceived a set of
modules that comprises six low-level behaviors—actions that a robot can take, and seven transition
conditions—situations that trigger the change from one low-lever behavior to another. The set
of modules of TuttiFrutti adapts and extends the modules originally conceived for Vanilla.
We designed the modules to operate with RM 3 and they provide the e-puck different means to
interact with robots and objects that display colors. Table 2 lists the low-level behaviors and transition
conditions of TuttiFrutti. We further describe the modules in the following.

Table 2. Set of TuttiFrutti’s modules. Novelties with respect to Vanilla are highlighted in gray.
They concern to the capability of acting upon perceived colors. The modules operate according to RM 3,

see Table 1.
Low-Level Behavior * Parameters Description
EXPLORATION {t,v} movement by random walk
STOP {7} standstill state
ATTRACTION {o, v} physics-based attraction to neighboring robots
REPULSION {a, v} physics-based repulsion from neighboring robots
COLOR-FOLLOWING {6,7} steady movement towards robots/objects of color &
COLOR-ELUSION {6,7} steady movement away from robots/objects of color &
Transition Condition Parameters Description
BLACK-FLOOR {B} black floor beneath the robot
GRAY-FLOOR {B} gray floor beneath the robot
WHITE-FLOOR {B} white floor beneath the robot
NEIGHBOR-COUNT {¢,n} number of neighboring robots greater than ¢
INVERTED-NEIGHBOR-COUNT {{, 7} number of neighboring robots lower than ¢
FIXED-PROBABILITY {B} transition with a fixed probability
COLOR-DETECTION {6, B} robots/objects of color J perceived

* All low-level behaviors display a color y € {2,C,M,Y} alongside the action described.

3.2.1. Low-Level Behaviors

In EXPLORATION, the robot moves straight until it detects an obstacle in front (prox;). Then,
it rotates for a number of control cycles determined by the integer parameter 7, in a range of

204



Appl. Sci. 2020, 10, 4654

7€{0,...,100}. STOP maintains the robot standing still. In ATTRACTION and REPULSION, the robot
moves closer (V) or farther from (—V;) neighboring peers, respectively. In both cases, the velocity of
the robot is a function of the number of robots detected (1) and the parameter €0, 5]. If the robot does
not detect other robots, it moves straight. COLOR-FOLLOWING and COLOR-ELUSION move the robot
with constant velocity towards (V;) or away (—V.) from robots or objects displaying specific colors
(camc). The parameter 5€{R, G, B, C, M, Y'} determines the color to which the behaviors react. Robots
can display the colors €{C, M, Y}, and other objects that might populate the environment can display
the colors 6e{R, G, B}. If the robot does not perceive the color determined by 4, it moves straight.
ATTRACTION, REPULSION, COLOR-DETECTION and COLOR-ELUSION incorporate a physics-based
obstacle avoidance [59]. In all the low-level behaviors, the parameter y€{@,C, M, Y} determines the
color displayed by the RGB LEDs of the robot. The parameters T, «, 4, and <y are tuned by the automatic
design process.

3.2.2. Transition Conditions

BLACK-FLOOR, GRAY-FLOOR and WHITE-FLOOR trigger a transition when the robot steps on
a portion of the floor (gnd j) that is, respectively, black, gray or white. The parameter f€[0,1]
determines the probability of transitioning. NEIGHBOR-COUNT and INVERTED-NEIGHBOR-COUNT
are transition conditions that consider the number of neighboring robots (7). NEIGHBOR-COUNT
triggers a transition with a probability z(n) € [0,1], with z(n) m
INVERTED-NEIGHBOR-COUNT triggers a transition with a probability of 1 — z(n). The parameter
¢e{0,...,10} determines the inflection point of the probability function z(n), the parameter #€(0, 20]
determines its steepness. FIXED-PROBABILITY triggers a transition with a fixed probability determined
by B€[0,1]. COLOR-DETECTION is based on the colors perceived by the robot (cam.). The parameter
0e{R,G,B,C, M, Y} defines the color that triggers a transition with a probability f€ [0, 1]. Robots in the
swarm can display the colors 6€{C, M, Y}, and other objects that might populate the environment can
display the colors €{R, G, B}. The parameters B, {, 17, and ¢ are tuned by the automatic design process.

EXPLORATION, STOP, ATTRACTION and REPULSION are modified versions of the original low-level
behaviors of Vanilla. In TuttiFrutti, we add the ability to control the color displayed by the LEDs.
All the transition conditions, with exception of COLOR-DETECTION, are implementations of the original
modules of Vanilla. COLOR-FOLLOWING, COLOR-ELUSION, and COLOR-DETECTION are modules we
introduce here for the first time.

Conversely,

3.3. Design of Control Software

TuttiFrutti produces control software following the automatic design process proposed in
Chocolate [9] and further studied in Gianduja [14]. The design of the control software is translated
into an optimization problem—an optimization algorithm selects an appropriate combination of
modules and parameters that, when uploaded to each robot, lead the swarm to exhibit a specific
collective behavior. The collective behavior results then from an optimization process that maximizes
the performance of the swarm, measured by an appropriate mission-specific performance measure.
In TuttiFrutti, the architecture of the control software is a probabilistic finite state machine with a
maximum of four states—each of which is a low-level behavior, and a maximum of four outgoing
edges—to each of which a transition condition is associated. Edges always originate and end in
different states—self-transitions are not allowed. The modules included in the finite state machine and
the values of their parameters are selected off-line—that is, before the swarm is deployed on its target
environment. To that purpose, TuttiFrutti uses Iterated F-race [60]—a multipurpose optimization
method based on F-race [61]—to search the design space for effective control software configurations.
The performance of the configurations is estimated through simulations performed in ARGoS3 [62],
version beta 48, together with the argos3-epuck library [55]. The duration of the optimization process
is determined by an a priori defined budget of simulations. Once the budget is exhausted, the design

205



Appl. Sci. 2020, 10, 4654

process terminates and Iterated F-race returns the best configuration found. This configuration is then
uploaded to the robots and assessed in the target environment.

4. Experimental Set-Up

In this section, we describe our experiments in the design of collective behaviors for robots that
can display and perceive colors. The study evaluates the capabilities of TuttiFrutti to address a class
of missions in which colors displayed by objects in the environment provide relevant information to
the robots. In the following, we first introduce the missions we consider in our study. Then, we present
EvoColor—a baseline design method that serves as a reference to appraise the complexity of the
missions. Finally, at the end of the section we describe the protocol we follow to assess TuttiFrutti.

4.1. Missions

We conceived three missions in which robot swarms operate in arenas surrounded by modular
RGB blocks: STOP, AGGREGATION, and FORAGING. STOP and AGGREGATION are adaptations we make
from the equivalent missions proposed by Hasselmann et al. to study Gianduja [14]. FORAGING is an
abstraction of a foraging task, in a best-of-n fashion [63]—similar to the experiment of Valentini et al. [64].
The performance of the swarm is evaluated according to a mission-dependent objective function.
We selected these missions because we conjecture that, to successfully perform them, the robots need
to identify, process and/or transmit color-based information. In all missions, the time available to
the robots is T = 120s. The RGB blocks are arranged in walls that display colors on a per-mission
basis—each RGB block is 0.25 m length and can display the colors red, green and blue {R, G, B}. In the
context of these missions, when we reference to colored walls we imply that the RGB blocks arranged
in the wall display the named color—for example, “the green wall” stands for a wall in which the RGB
blocks composing it display the color green. In the following, we describe the scenario, the objective
function, and the role of the colors for each mission. Figure 2 shows the arenas for the three missions.

STOP AGGREGATION FORAGING

Figure 2. Set-up of the simulated (top) and real arena (bottom) for the missions STOP (left),
AGGREGATION (center), and FORAGING (right). The images show an example of the initial position of
the robots.

206



Appl. Sci. 2020, 10, 4654

4.1.1. STOP

The robots must move until one of the walls that surrounds the arena emits a stop signal by
turning green. Once the wall turns green, all the robots in the swarm must stop moving as soon as
possible. The swarm operates in an octagonal arena of 2.75m? and gray floor. The wall that emits the
stop signal is selected randomly. At the beginning of each run, the robots are positioned in the right
side of the arena. Figure 2 (left) shows the arena for STOP.

The performance of the swarm (Cs) is measured by the objective function described by
Equation (1); the lower the better.

PN T N
CG=Y YL+ Y Y L) 1

I(t) = 1, if robot i is moving at time t; L(t) =1—L(t).
Y0, otherwise;

Cs measures the amount of time during which the robots do not perform the intended behavior—before
and after the stop signal. N and T represent respectively the number of robots and the duration of the
mission. f indicates the time at which the stop signal is displayed. The time f is uniformly sampled
between [40,60]s. We expect that TuttiFrutti produces collective behaviors with event-handling
capabilities that allow the swarm to react when the stop signal appears.

4.1.2. AGGREGATION

The robots must aggregate in the left black region of the arena as soon as possible. The swarm
operates in a hexagonal arena of about 2.60m? and gray floor. Triangular black regions of about
0.45m? are located at the left and right side of the arena. The walls lining the left black region are
blue and those lining the right black region are green—the colors do not change during the mission.
Each black region is characterized by the color of the walls that lines it. That is, the blue zone refers to
the black region lined by blue walls and the green zone refers to the black region lined by green walls.
At the beginning of each run, the robots are randomly positioned in the center of the arena—between
the black regions. Figure 2 (center) shows the arena for AGGREGATION.

The performance of the swarm (C,) is measured by the objective function described by
Equation (2); the lower the better.

T N
Co= Y Y Ll) @

L) = 1, if robot i is not in the aggregation area at time ¢;
)0, otherwise.

C, indicates the time that the robots spend outside of the blue zone. N and T represent the number of
robots and the duration of the mission, respectively. We expect that TuttiFrutti produces collective
behaviors in which the swarm uses the blue walls as a reference to navigate and aggregate in the
blue zone.

4.1.3. FORAGING

The robots must select and forage from the most profitable of two sources of items. The swarm
operates in a squared arena of 2.25m? and gray floor. A rectangular white region of about 0.23 m? is
located at the bottom of the arena and represents the nest of the swarm. A rectangular black region
of 0.23m? is located at the top of the arena and represents the two sources of items—the sources are
separated by a short wall segment that does not display any color. This wall segment divides the black
region in half. We account that an item is transported and successfully delivered when a robot travels

207



Appl. Sci. 2020, 10, 4654

from any of the sources to the nest. The walls lining the nest are red, the walls lining the left source are
blue, and the walls lining the right source are green—the colors do not change during the mission. We
consider then two types of sources of items: the blue source—the black region lined by blue walls; and
the green source—the black region lined by green walls. At the beginning of each run, the robots are
randomly positioned in the center of the arena—between the white and black areas. Figure 2 (right)
shows the arena for FORAGING.
The performance of the swarm (Cy) is measured by the objective function described by
Equation (3); the higher the better.
Cr = () + (—x)I; )

x=1.

Cr indicates the aggregate profit of the total of items collected from the two sources. I, corresponds
to the number of items collected from the blue source, and I, corresponds number of items collected
from the green one. We added the factor x to balance the profit of the items available in each source.
In our study x = 1. Items from the blue source account for a profit of +1 and items from the green
source account for a penalization of —1. We expect that TuttiFrutti produces collective behaviors in
which swarms use the blue walls as a reference to navigate towards the blue source, the green walls
for avoiding the green source, and the red walls to navigate towards the nest.

4.2. Baseline Method: EvoColor

No standard design method exists to address the class of missions we consider in this study.
Little related work exists—see Section 2—and refers only to mission-specific methods that follow
the neuro-evolutionary approach. Indeed, as no extensive comparison has ever been performed
between neuro-evolutionary methods across multiple missions, a state of the art in neuro-evolutionary
robotics has not been identified, yet. Together with the results obtained with TuttiFrutti, in the
following we will present also those obtained by EvoColor—a method based on neuro-evolution for
the automatic design of swarms of e-pucks that can display and perceive colors. The results we will
present should not therefore be considered as a comparison between TuttiFrutti and the state of
the art in neuro-evolutionary robotics. In this context, our results should rather be considered as a
comparison between TuttiFrutti and a reasonable instance of the neuro-evolutionary approach.

EvoColor is an adaptation of EvoStick [65]—a standard neuro-evolutionary method previously
used as a yardstick in studies on the automatic design of robot swarms [8,10,15,53]. To the best of our
knowledge, EvoStick is the only neuro-evolutionary method that has been tested via simulations and
robot experiments on multiple missions without undergoing any per-mission modification. EvoColor
produces control software for swarms of e-pucks that operate with RM 3—see Section 3.1. The control
software has the form of a fully connected feed-forward artificial neural network with 41 input nodes
(in), 8 output nodes (out) and no hidden layers. In this topology, the input nodes and output nodes are
directly connected by synaptic connections (conn) with weights (w) in a range of [—5,5]. The activation
of each output node is determined by the weighted sum of all inputs nodes filtered through a
standard logistic function. EvoColor selects appropriate synaptic weights using an evolutionary
process based on elitism and mutation. Just as in TuttiFrutti, the evolutionary process is conducted
through simulations performed in ARGoS3, version beta 48, together with the argos3-epuck library.
The evolution ends when an a priori defined budget of simulations is exhausted. Table 3 summarizes
the topology of the neural network, the novelties with respect to EvoStick and the parameters used in
the evolutionary process.

208



Appl. Sci. 2020, 10, 4654

Table 3. Network topology and parameters of the evolutionary process in EvoColor. Novelties with
respect to EvoStick are highlighted in gray. They concern the capability of displaying and perceiving
colors. The neural network operates according to RM 3, see Table 1.

Input Node Description

Mge(1,..8) readings of proximity sensors ProXic(y,. 8}
iNgefo,.. 11} readings of ground sensors gnd;c 1 3,

Mg (12} value of the density function z’ (1)

i”’ae{la ..... 16} scalar projections of V;

iNge(17,..,40) scalar projections of Vic(r 6 B,c,M,y}

iNge (41} bias input

Output Node Description

Outpe(s, 4} tuples v’ to map each velocity in the set Vke{lr}
outpeys,. 8y activation of each color in the set {&,C, M, Y}
Connection Description

contge (1, 308} synaptic connections with weights we[—5, 5]

Number of generations * —

Population size 100
Elite individuals 20
Mutated individuals 80
Evaluations per individual 10

Post-evaluation per individual ** 100

* The number of generations is computed according to the budget of simulations. ** The population obtained
in the last generation is post-evaluated to select the best individual.

The readings of the proximity (prox) and ground (gnd) sensors are passed directly to the network.
Information about the number of neighboring peers (1) is provided through the function z/(n) € [0,1],
withz/(n) =1— ﬁ The vector V;, and each vector in V ¢ (r g8, my} are translated into scalar
projections onto four unit vectors that point at 45°, 135°, 225°, and 315° with respect to the front of the
robot. Then, each projection is passed to the network through an independent input node. The last
input of the network comes from a bias node. Four output nodes encode tuples (v) of negative and
positive components of the velocity of the wheels. Each tuple is obtained from two independent output
nodes and is defined as v = ([—12,0], [0, 12]). The velocity of a wheel (v) is computed as the sum of
the two elements in a tuple (¢). Similarly, the color displayed by the RGB LEDs of the robot is selected
by comparing the value of the output nodes that correspond to colors in the set {&, C, M, Y}. The color
displayed corresponds to the maximum value found across the four colors.

EvoColor differs from EvoStick in two aspects: the reference model and how the output of the
neural network is mapped to the velocity of the robots. First, EvoColor is based on RM 3 and EvoStick
on RM 1.1. In accordance to RM 3, EvoColor does not integrate the capability of the e-pucks for sensing
the intensity of ambiance light—originally integrated in EvoStick. The second difference between
EvoColor and EvoStick is how the output of the neural network is mapped to the velocity of the
e-pucks. In EvoColor, we introduce a velocity mapping based on tuples to facilitate the evolution of
standstill behaviors—as we expect robots need them to perform STOP and AGGREGATION.

In EvoStick, the control software maps directly a single output node of the neural network
into velocity commands (v = [~12,12]) for each wheel (v4¢(;,})—a robot can stand still only if the
velocity of the two wheels is set exactly to 0. A standstill behavior is then difficult to achieve since
only one pair of values in the output nodes maps exactly to v; = 0 and v, = 0; Moreover, the output
nodes can not maintain a steady value because they are subject to the injection of sensory noise.
In EvoColor, the control software maps the sum of elements of a tuple (v') into velocity commands
for each wheel v ; ,;—each tuple is defined by two output nodes and provides a negative and a

209



Appl. Sci. 2020, 10, 4654

positive component to compute the velocity. We expect that this mapping facilitates the evolution of
standstill behaviors: first, robots can stand still if the elements of each tuple (v') are any pair of values
of equal magnitude—steady values are not required provided that the output nodes that encode the
same tuple vary proportionally; second, the sum of the positive and negative components can cancel
out the sensory noise injected in the output nodes that encode a tuple—given a proper tuning of the
synaptic weights. If one compares EvoColor with EvoStick, the first has more freedom to tune neural
networks that lead to standstill behaviors.

4.3. Protocol

We conduct experiments with twenty e-pucks on the missions described in Section 4.1. For each
mission, we produce ten designs of control software with TuttiFrutti and ten with EvoColor. We
assess the effectiveness of the methods by testing each design once in simulation and once with
physical robots.

Statistics

We use box-plots to represent the performance of the control software we produce. For each
method, we report the performance obtained in simulation (thin boxes) and with physical robots
(thick ones). In all cases, we support comparative statements with an exact binomial test, at 95%
confidence [66]: statements like “A performs significantly better/worse than B” imply that the
comparison is supported by a an exact binomial test, at 95% confidence. In addition, we estimate
the overall performance of TuttiFrutti with respect to EvoColor. To this purpose, we aggregate
the results by comparing the performance of the two design methods across each mission. In the
context of the overall performance of the design methods, any statement like “A performs significantly
better /worse than B” also implies that the comparison is supported by an exact binomial test, at 95%
confidence [66].

5. Results and Discussion

We present the qualitative and quantitative analysis of the results obtained with TuttiFrutti
and EvoColor. We discuss first the behavior and performance of the swarms on a per-mission basis.
Then, we elaborate on the aggregate performance across the three missions. In the end, we address
the research questions presented in Section 1 and we discuss our findings. The code, control software
and demonstrative videos are provided as Supplementary Material [67]. In the context of these results,
references to colored robots imply that the robots display the named color—for example, “cyan robots”
stands for robots that display the color cyan.

5.1. STOP

Figure 3 (left) shows the performance of TuttiFrutti and EvoColor in STOP. In this mission,
TuttiFrutti performs significantly better than EvoColor.

From visual inspection, TuttiFrutti produced control software that effectively uses the
capabilities of the robots for displaying and perceiving colors. The swarm first disperses and
homogeneously covers the arena—aiming to rapidly detect the stop signal. If a robot detects the
stop signal, it stands still and disseminates the information by emitting a signal of an arbitrary
color. When other robots perceive the signal emitted by their peer, they also transition to a standstill
behavior and relay the signal. The process continues until all robots in the swarm are standing still.
We consider that this behavior shows the potential of TuttiFrutti for producing event-handling
collective behaviors. The swarm collectively transitions from coverage to standstill when the stop signal
appears. As we expected, TuttiFrutti produces control software that establishes communication
protocols by correctly pairing the color of the signals that robots emit and the behavior other robots
must adopt when they perceive them—similarly to the results obtained by Hasselmannet al. [14]
with Gianduja.

210



Appl. Sci. 2020, 10, 4654

EvoColor, unlike TuttiFrutti, designed collective behaviors that do not respond to the stop
signal. The swarm adopts a rather simplistic behavior in which robots move until stopped by the walls.
They remain then in a standstill behavior because they persistently push against the walls—no reaction
can be appreciated in the swarms when the stop signal appears. This behavior was observed too in the
experiments with physical robots, and in many cases, robots maintained standing-still behaviors by
pushing against other robots too.

STOP AGGREGATION FORAGING
o % T =3 & T o
S =) (=) =] =)
1k 2 |575 al
=8 =NEN :
@ @ T @
= | = | &
= N = o N =
N o N N
§ | E O 8 | E g _ E
=
N |5 T 2|3 0
- - =]
=] | ] T
= = =]
= = T z Q
=3 =
8 ] Q £ Q a L H
l=) i
B I o
]
- I
S | =4 o | —_—
S S & < o (0
- @ ¢}
I I I I I I
TuttiFrutti EvoColor TuttiFrutti EvoColor TuttiFrutti EvoColor

Figure 3. Performance obtained in the missions STOP (left), AGGREGATION (center), and FORAGING (right).
The performance of TuttiFrutti is shown in white and the one of EvoColor in gray. Thin boxes
represent results obtained in simulation and thick boxes the ones obtained with physical robots.

In the experiments with physical robots, both TuttiFrutti and EvoColor showed a significant
drop in performance with respect to the simulations. However, the difference in mean performance
between simulations and experiments with physical robots is larger for EvoColor than TuttiFrutti.
Swarms deployed with the control software produced by TuttiFrutti showed the same collective
behavior observed in simulation, although the rapidness in discovering the stop signal and
disseminating the information decreased. In the case of EvoColor, robots often do not reach the
walls and they push against each other to remain still in place.

Figure 4 shows an example of the control software produced by TuttiFrutti for STOP. Robots
start in REPULSION with no color displayed (v = @). They transition to STOP and turn yellow (y = Y)
when COLOR-DETECTION is triggered either by a green wall (6 = G) or by yellow robots (6 = Y).
In this sense, robots change their behavior when they either perceive the stop signal or the yellow
signals that other robots emit.

5.2. AGGREGATION

Figure 3 (center) shows the performance of TuttiFrutti and EvoColor in AGGREGATION. In this
mission, TuttiFrutti performs significantly better than EvoColor.

Also in this case, from visual inspection, TuttiFrutti produced control software that effectively
uses the capabilities that the robots have of displaying and perceiving colors. As we expected,
TuttiFrutti designs collective behaviors in which robots reach and remain in the blue zone by
moving towards blue walls. This behavior is often complemented with navigation or communication
strategies that boost the efficiency of the swarm. For example, some instances of control software
include a repulsion behavior that drives robots away from the green walls—robots reach the blue zone
faster by avoiding unnecessary exploration in the green zone. In other instances, robots that step in the
blue zone, or perceive the blue walls, emit a signal of an arbitrary color—other robots then follow this

211



Appl. Sci. 2020, 10, 4654

signal to reach the blue zone. In this sense, robots communicate and collectively navigate to aggregate
faster. Finally, some instances combine the two strategies.

EvoColor designed collective behaviors in which robots use the colors displayed in the arena.
Robots explore the arena until they step in one of the black regions—either at the blue or green zone.
If robots step in the green zone, they move away from the green walls and reach the blue zone. If robots
step in the blue zone, they attempt to stand still. In this sense, robots react and avoid the green walls
as a strategy to aggregate in the blue zone.

COLOR-DETECTION
5=G
B =095

REPULSION
a =240
r=9

COLOR-DETECTION
=Y
B =099

COLOR-DETECTION
s=Y
B =0.10

Figure 4. Instance of control software produced by TuttiFrutti for STOP. The probabilistic finite
state machine shows the effective modules in black and non-reachable modules in light gray. Circular
modules represent the low-level behaviors and rhomboid modules represent transition conditions.

The control software produced by TuttiFrutti and EvoColor showed a significant drop in
performance when ported to the physical robots. As observed in STOP, the difference in mean
performance between simulations and experiments with physical robots is larger for EvoColor than
TuttiFrutti. Robot swarms that use the control software produced by TuttiFrutti display the same
collective behaviors observed in simulation. The decrease in performance occurs because few robots
that leave the blue zone do not return as fast as observed in the simulations. The control software
produced by EvoColor does not port well to the physical robots—that is, robots appear to be unable
to reproduce the behaviors observed in the simulation. Robots ramble in the arena and seem to
react to the presence of their peers, however, no specific meaningful behavior could be identified by
visual inspection.

Figure 5 shows an example of the control software produced by TuttiFrutti for AGGREGATION.
Robots start in COLOR-FOLLOWING displaying yellow (6 = Y) and move towards cyan robots (y = C).
When they perceive the blue walls (§ = B), COLOR-DETECTION triggers and the robots transition to a
second module COLOR-FOLLOWING in which they move towards the blue walls (6 = B) while emitting
a cyan signal (y = C). By cycling in these behaviors, robots can navigate to the blue zone either by
moving towards the blue walls or by following the cyan signals that other robots emit. The transition

212



Appl. Sci. 2020, 10, 4654

conditions FIXED-PROBABILITY, GRAY-FLOOR and NEIGHBOR-COUNT trigger the COLOR-FOLLOWING
behavior that allows the robot to return to the aggregation area.

COLOR-DETECTION
§=B
B =0.60

C-FOLLOWING
5=C
Y=Y

FIXED-PROBABILITY
B =029

GRAY-FLOOR

NEIGHBOR-COUNT C-FOLLOWING

=8
¥=C

Figure 5. Instance of control software produced by TuttiFrutti for AGGREGATION. The probabilistic
finite state machine shows the effective modules in black and non-reachable modules in light gray.
Circular modules represent the low-level behaviors and rhomboid modules represent the transition
conditions. Modules labeled as C-FOLLOWING stand for the low-level behavior COLOR-FOLLOWING.

5.3. FORAGING

Figure 3 (right) shows the performance of TuttiFrutti and EvoColor in FORAGING. In this
mission, EvoColor performs significantly better than TuttiFrutti in simulation. However,
TuttiFrutti performs significantly better than EvoColor in the experiments with physical robots.

As in the other missions, from visual inspection, TuttiFrutti produced control software that
effectively uses the capabilities that the robots have of displaying and perceiving colors. Robots explore
the arena and forage only from the profitable source. However, contrary to what we expected,
TuttiFrutti designed collective behaviors that do not use all the colors displayed in the arena. In fact,
robots mostly forage by randomly exploring the arena while moving away from the green wall—in
other words, they only avoid to step in the green source. Although the swarm can perform the mission
with this behavior, we expected that robots could navigate faster by moving towards the blue and
red walls. Still, TuttiFrutti produced only few instances of control software in which robots react to
more than one color—see Figure 6. We conjecture that TuttiFrutti exploits the convex shape of the
arena to produce solutions that are effective at the minimal complexity—that is, the performance of a
swarm in this mission might not improve even if robots react to all three colors.

EvoColor designed collective behaviors in which the swarm does not react to the colors displayed
in the arena. Robots forage from the blue source by following the walls of the arena in a clockwise
direction. This behavior efficiently drives the robots around the arena and across the blue source.
When the robots reach the intersection that divides the blue and green source, they continue moving
straight and effectively reach the nest. By cycling in this behavior, the swarm maintains an efficient
stream of foraging robots.

213



Appl. Sci. 2020, 10, 4654

BLACK-FLOOR
B =068

C-FOLLOWING
6=B
7=C

NEIGHBOR-COUNT
=9
n=1134

COLOR-DETECTION
5=G
B =009

WHITE-FLOOR
B =0.09

Figure 6. Instance of control software produced by TuttiFrutti for FORAGING. The probabilistic
finite state machine shows the effective modules in black and non-reachable modules in light gray.
Circular modules represent the low-level behaviors and rhomboid modules represent the transition
conditions. Modules labeled as C-FOLLOWING and C-ELUSION stand for the low-level behaviors
COLOR-FOLLOWING and COLOR-ELUSION, respectively.

TuttiFrutti and EvoColor showed a significant drop in performance in the experiments with
physical robots, in comparison to the performance obtained in the simulations. Likewise the other two
missions, the difference in mean performance between simulations and experiments with physical
robots is larger for EvoColor than TuttiFrutti. In the case of TuttiFrutti, we did not observe any
difference in the behavior of the swarms with respect to the simulations. Conversely, the collective
behaviors designed by EvoColor are affected to the point that the swarm is unable to complete the
mission. In the control software produced by EvoColor, the ability of the robots to follow the walls
strongly depends on the fine-tuning of the synaptic weights in the neural network—more precisely,
it requires a precise mapping between the proximity sensors and wheels of the robots. In the physical
robots, the noise of the proximity sensors and wheels differs from the original design model, and a
fine-tuned neural network is less effective. Indeed, the swarm is not any more able to maintain the
stream of foraging robots, and on the contrary, robots stick to each other and to the walls.

We also observe a rank inversion of the performance of the two methods in this mission. As defined
by Ligot and Birattari [53], a rank inversion is a phenomenon that manifests when an instance of control
software outperforms another in simulation, but it is outperformed by the latter when it is evaluated
on physical robots. In our experiments, TuttiFrutti is outperformed by EvoColor in simulation,
but it outperforms EvoColor when it is ported to the physical robots. These results are consistent
with the ones reported by Francesca et al. [8], and further discussed by Birattariet al. [68] and Ligot
and Birattari [53], for comparisons between the modular and the neuro-evolutionary approach to the
automatic design of robot swarms.

Figure 6 shows an example of the control software produced by TuttiFrutti for FORAGING.
Robots start in COLOR-FOLLOWING displaying cyan (y = C) and moving towards the blue
wall (6 = B). If a robot steps in one of the two sources, BLACK-FLOOR triggers and the robot

214



Appl. Sci. 2020, 10, 4654

transitions to COLOR-ELUSION—it then becomes cyan (v = C) and moves away from the green
wall (6 = G). When the robot steps in the nest, WHITE-FLOOR triggers and the robot transitions
back to COLOR-FOLLOWING. By cycling this behavior, robots move back and forth between the blue
source and the nest. When robots are in COLOR-ELUSION, COLOR-DETECTION can trigger with a
low probability (B = 0.09) if robots perceive the green wall (§ = G). This transition mitigates the
penalty caused by robots that step in the green source. If a robot steps in the green source, it transitions
back to COLOR-FOLLOWING and moves towards the blue wall. Finally, the transition condition
NEIGHBOR-COUNT can trigger when the robot perceives more than four neighboring robots. Yet, we
do not find a clear effect of this transition in the overall behavior of the robots.

5.4. Aggregate Results

TuttiFrutti and EvoColor obtain similar results when the control software is evaluated with
simulations. On the other hand, TuttiFrutti is significantly better than EvoColor when the control
software is ported to the physical robots. It has already been pointed out that when control software
developed in simulation is ported to a real-world platform, due to the reality gap one might observe
both a drop in performance [53] and a substantial modification of the collective behavior [69]. The entity
of these effects might depend on the design method, and some design methods might be more
robust than others [53]. Our results indicate that EvoColor is more affected by the reality gap
than TuttiFrutti across the three missions considered. This is apparent both in the entity of the
performance drop we measured and in the fact that the collective behaviors of the control software
generated by EvoColor are often dramatically differently in simulation and in the real world, while
the ones of the control software generated by TuttiFrutti are essentially unchanged.

By introducing TuttiFrutti, we also investigated the impact of an extended design space in
the optimization process of AutoMoDe. The size of the design space in Vanilla and Chocolate is
O(|B[*|C|'®), as estimated by Kucklinget al. [70]. B and C represent, respectively, the number of
modules in low-level behaviors and transition conditions. Using the same method as Kuckling et
al., we estimate the design space in TuttiFrutti to be O(|4B|* |C|'®)—that is, 256 times larger than
the one searched by Chocolate. Notwithstanding the larger design space, we do not find evidence
that TuttiFrutti is affected by the increased number of parameters to tune. Indeed, TuttiFrutti
produced effective control software for all missions considered.

5.5. Discussion

In the following, we first address the research questions defined in Section 1 and then we discuss
our findings.

TuttiFrutti selects, tunes and assembles control software that operates with information that is
available in the environment in the form of colors. In the three missions, the robot swarm reacts to these
colors and act according to the information they provide in each case—both for handling events and
navigating. Additionally, we observed that TuttiFrutti can design collective behaviors that exhibit
color-based communication between robots. For example, TuttiFrutti designed collective behaviors
with color-based communication in STOP and AGGREGATION—missions in which communication
can influence the performance of the robot swarm. These collective behaviors are feasible thanks
to the extended capabilities of the e-puck, capabilities that translated into a larger space of possible
control software than the one considered by Vanilla and Chocolate—early versions of AutoMoDe.
As the design space of TuttiFrutti is larger than the one of Vanilla and Chocolate, one could have
expected that the automatic design process would have difficulties in producing meaningful control
software. Still, we did not find evidence that TuttiFrutti suffers from an increased difficulty to
design collective behaviors for robot swarms. The reference model RM 3 and the set of modules
introduced with TuttiFrutti allowed it to conceive STOP and AGGREGATION—variants of missions
already studied with AutoMoDe, and FORAGING—a new mission framed within the best-of-n problem.

215



Appl. Sci. 2020, 10, 4654

By introducing TuttiFrutti, we enlarged the variety of collective behaviors that can be produced
with the AutoMoDe family.

We argue that the experiments we conducted with TuttiFrutti show evidence that automatic
modular design methods can establish a mission-specific relationship between the colors that the robots
perceive and the behavior that they must adopt. In Section 2, we described experiments in which this
relationship enabled the design of complex collective behaviors [25,31,35]. We find that these collective
behaviors have similarities with those designed by TuttiFrutti—for example, robots react to colored
objects in the environment and use colors signals to communicate with their peers. We conjecture that
TuttiFrutti, or design methods that might share its characteristics, can produce a wider range and
more complex collective behaviors than those described in this paper. In this sense, we believe that
research with robot swarms that can perceive and display colors has the potential to close the gap
between the complexity of the missions performed with manual design methods, and those performed
with automatic design.

6. Conclusions

In this paper, we introduced AutoMoDe-TuttiFrutti—an automatic method to design collective
behaviors for robots that can perceive and communicate color-based information. We designed control
software for swarms of e-pucks that comply with RM 3—e-pucks can use their LEDs to display colors
and their omnidirectional vision turret to perceive them. The capability of the robots to act upon
different colors translated into an increased variety of collective behaviors compared to previous
instances of AutoMoDe. We assessed TuttiFrutti on a class of missions in which the performance of
the swarm depends on its ability to use color-based information for handling events, communicating,
and navigating.

We conducted experiments in simulation and with physical robot swarms performing three
missions: STOP, AGGREGATION and FORAGING. In all cases, TuttiFrutti designed collective
behaviors that effectively use color-based information. In STOP, the swarm collectively changes
its behavior when a specific color signal appears. In STOP and AGGREGATION, the swarm exhibits
communication behaviors in which robots pair the color signals they emit and the colors to which
they react. In AGGREGATION and FORAGING, robots use the colors they perceive as a reference to
navigate the environment. In FORAGING, swarms differentiate two sources of items and forage from
the profitable one. Alongside the results obtained with TuttiFrutti, we assessed a method based
on neuro-evolution: EvoColor. In STOP and FORAGING, EvoColor designed collective behaviors
that do not use color-based information. In AGGREGATION, EvoColor designed collective behaviors
in which robots use the colors they perceive to navigate the environment—likewise TuttiFrutti.
The aggregated results showed that TuttiFrutti performs better than EvoColor in the class of
missions we considered. Results with physical robots suggest that TuttiFrutti crosses the reality gap
better than EvoColor—result partially sustained by the visual inspection of the behavior of the robots.

Automatic design methods can effectively produce control software for swarms of robots that
can display and perceive colors. We demonstrated that TuttiFrutti establishes an appropriate
relationship between the colors that the robots perceive and the behavior they must adopt. In our
experiments, this relationship was established on a per-mission basis and responded to the
specifications of each mission. Yet, the set of missions on which we assess TuttiFrutti is far from
being exhaustive, and more research work is needed to define the limitations of the design method.
Future work will be devoted to assess TuttiFrutti in a larger and more complex class of missions.
It is our contention that TuttiFrutti can design collective behaviors to address missions that involve
a larger number of features in the environment and time-varying conditions. As observed in STOP,
robots can effectively transition between two collective behaviors. We foresee that this ability enables
the design of swarms that can perform missions with two or more sequential tasks. To the best of our
knowledge, the design of collective behaviors to address this class of missions has not been studied in
the context of automatic off-line design of robot swarms.

216



Appl. Sci. 2020, 10, 4654

Supplementary Materials: The code, control software and demonstrative videos are available online at http:
/ /iridia.ulb.ac.be/supp/IridiaSupp2019-008.

Author Contributions: Implementations and experiments were done by D.G.R. The paper was drafted by D.G.R.
and refined by M.B. The research was directed by M.B. All authors have read and agreed to the published version
of the manuscript.

Funding: The project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 681872). M.B. acknowledges
support from the Belgian Fonds de la Recherche Scientifique—FNRS. D.G.R. acknowledges support from the
Colombian Administrative Department of Science, Technology and Innovation—COLCIENCIAS.

Acknowledgments: The authors thank Federico Pagnozzi and Jonas Kuckling for reading a preliminary version
of this paper.

Contflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Beni, G. From swarm intelligence to swarm robotics. In Swarm Robotics, Proceedings of the SAB 2004
International Workshop, Santa Monica, CA, USA, 17 July 2004; Sahin, E., Spears, W.M., Eds.; LNCS; Springer:
Berlin, Germany, 2004; Volume 3342, pp. 1-9. [CrossRef]

2. Sahin, E. Swarm robotics: From sources of inspiration to domains of application. In Swarm Robotics, Proceedings
of the SAB 2004 International Workshop, Santa Monica, CA, USA, 17 July 2004; Sahin, E., Spears, W.M., Eds.; LNCS;
Springer: Berlin, Germany, 2004; Volume 3342, pp. 10-20. [CrossRef]

3. Dorigo, M.; Birattari, M.; Brambilla, M. Swarm robotics. Scholarpedia 2014, 9, 1463. [CrossRef]

4. Brambilla, M.,; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: A review from the swarm engineering
perspective. Swarm Intell. 2013, 7, 1-41. [CrossRef]

5. Francesca, G.; Birattari, M. Automatic design of robot swarms: Achievements and challenges. Front. Robot.
Al 2016, 3, 1-9. [CrossRef]

6. Nolfi, S.; Floreano, D. Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines,
1st ed.; A Bradford Book; MIT Press: Cambridge, MA, USA, 2000.

Trianni, V. Evolutionary Swarm Robotics; Springer: Berlin, Germany, 2008. [CrossRef]

8. Francesca, G.; Brambilla, M.; Brutschy, A.; Trianni, V; Birattari, M. AutoMoDe: A novel approach to the automatic
design of control software for robot swarms. Swarm Intell. 2014, 8, 89-112. [CrossRef]

9.  Francesca, G.; Brambilla, M.; Brutschy, A.; Garattoni, L.; Miletitch, R.; Podevijn, G.; Reina, A.; Soleymani, T.;
Salvaro, M.; Pinciroli, C.; et al. AutoMoDe-Chocolate: Automatic design of control software for robot
swarms. Swarm Intell. 2015, 9, 125-152. [CrossRef]

10. Kuckling, J.; Ligot, A.; Bozhinoski, D.; Birattari, M. Behavior trees as a control architecture in the automatic
modular design of robot swarms. In Swarm Intelligence, Proceedings of the 11th International Conference, ANTS
2018, Rome, Italy, 29-31 October 2018; Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni,
V., Eds.; LNCS; Springer: Cham, Switzerland, 2018; Volume 11172, pp. 30-43. [CrossRef]

11.  Salman, M.; Ligot, A.; Birattari, M. Concurrent design of control software and configuration of hardware for
robot swarms under economic constraints. Peer] Comput. Sci. 2019, 5, €221. [CrossRef]

12.  Spaey, G.; Kegeleirs, M.; Garzén Ramos, D.; Birattari, M. Comparison of different exploration schemes in
the automatic modular design of robot swarms. In Proceedings of the Reference Al & ML Conference for
Belgium, Netherlands & Luxemburg, BNAIC/BENELEARN, Brussels, Belgium, 6-8 November 2019; CEUR
Workshop Proceedings; Beuls, K., Bogaerts, B., Bontempi, G., Geurts, P, Harley, N., Lebichot, B., Lenaerts, T.,
Gilles, L., Van Eecke, P., Eds.; CEUR-WS.org: Aachen, Germany, 2019; Volume 2491.

13.  Kuckling, J.; Ubeda Arriaza, K.; Birattari, M. Simulated annealing as an optimization algorithm in the
automatic modular design of robot swarms. In Proceedings of the Reference Al & ML Conference for Belgium,
Netherlands & Luxemburg, BNAIC/BENELEARN, Brussels, Belgium, 6-8 November 2019; CEUR Workshop
Proceedings; Beuls, K., Bogaerts, B., Bontempi, G., Geurts, P., Harley, N., Lebichot, B., Lenaerts, T., Gilles, L.,
Van Eecke, P., Eds.; CEUR-WS.org: Aachen, Germany, 2019; Volume 2491.

217



Appl. Sci. 2020, 10, 4654

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Hasselmann, K.; Robert, E; Birattari, M. Automatic design of communication-based behaviors for robot
swarms. In Swarm Intelligence, Proceedings of the 11th International Conference, ANTS 2018, Rome, Italy, 29-31
October 2018; Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V., Eds.; LNCS;
Springer: Cham, Switzerland, 2018; Volume 11172, LNCS, pp. 16-29. [CrossRef]

Francesca, G.; Brambilla, M.; Brutschy, A.; Garattoni, L.; Miletitch, R.; Podevijn, G.; Reina, A.; Soleymani, T.;
Salvaro, M.; Pinciroli, C.; et al. An experiment in automatic design of robot swarms: AutoMoDe-Vanilla,
EvoStick, and human experts. In Swarm Intelligence, Proceedings of the 9th International Conference, ANTS 2014,
Brussels, Belgium, 10—12 September 2014; Dorigo, M., Birattari, M., Garnier, S., Hamann, H., Montes de Oca,
M., Solnon, C., Stiitzle, T., Eds.; LNCS; Springer International Publishing: Berlin, Germany, 2014; Volume
8667, pp. 25-37. [CrossRef]

Ecole Polytechnique Fédérale de Lausanne. Omnidirectional Vision Turret for the e-Puck. 2010. Available online:
http:/ /www.e-puck.org/index.php?option=com_content&view=article&id=26&Itemid=21 (accessed on 3 July
2020).

Birattari, M.; Ligot, A.; Bozhinoski, D.; Brambilla, M.; Francesca, G.; Garattoni, L.; Garzén Ramos, D.;
Hasselmann, K.; Kegeleirs, M.; Kuckling, J.; et al. Automatic off-line design of robot swarms: A manifesto.
Front. Robot. AI 2019, 6, 59. [CrossRef]

Waibel, M.; Keller, L.; Floreano, D. Genetic team composition and level of selection in the evolution of
multi-agent systems. IEEE Trans. Evol. Comput. 2009, 13, 648-660. [CrossRef]

Gauci, M;; Chen, J.; Li, W,; Dodd, TJ.; Gro8, R. Self-organized aggregation without computation. Int. J.
Robot. Res. 2014, 33, 1145-1161. [CrossRef]

Chen, J.; Gauci, M.; Li, W.; Kolling, A.; Gro8, R. Occlusion-based cooperative transport with a swarm of
miniature mobile robots. IEEE Trans. Robot. 2015, 31, 307-321. [CrossRef]

Lopes, YK.; Trenkwalder, S.M.; Leal, A.B.; Dodd, T.J.; Gro8, R. Supervisory control theory applied to swarm
robotics. Swarm Intell. 2016, 10, 65-97. [CrossRef]

Jones, S.; Winfield, A.; Hauert, S.; Studley, M. Onboard evolution of understandable swarm behaviors.
Adv. Intell. Syst. 2019, 1, 1900031. [CrossRef]

O’Grady, R.; Christensen, A.L.; Dorigo, M. SWARMORPH: Multirobot morphogenesis using directional
self-assembly. IEEE Trans. Robot. 2009, 25, 738-743. [CrossRef]

O’Grady, R.; Grof3, R.; Christensen, A.L.; Dorigo, M. Self-assembly strategies in a group of autonomous
mobile robots. Auton. Robot. 2010, 28, 439-455. [CrossRef]

Mathews, N.; Christensen, A.L.; O’Grady, R.; Mondada, F.; Dorigo, M. Mergeable nervous systems for robots.
Nat. Commun. 2017, 8, 439. [CrossRef] [PubMed]

Mathews, N.; Christensen, A.L.; Stranieri, A.; Scheidler, A.; Dorigo, M. Supervised morphogenesis:
Exploiting morphological flexibility of self-assembling multirobot systems through cooperation with aerial
robots. Robot. Auton. Syst. 2019, 112, 154-167. [CrossRef]

Christensen, A.L.; O’Grady, R.; Dorigo, M. From fireflies to fault-tolerant swarms of robots. IEEE Trans. Evol.
Comput. 2009, 13, 754-766. [CrossRef]

Nouyan, S.; Grof3, R.; Bonani, M.; Mondada, E; Dorigo, M. Teamwork in self-organized robot colonies.
IEEE Trans. Evol. Comput. 2009, 13, 695-711. [CrossRef]

Ducatelle, E; Di Caro, G.A.; Pinciroli, C.; Gambardella, L.M. Self-organized cooperation between robotic
swarms. Swarm Intell. 2011, 5, 73-96. [CrossRef]

Dorigo, M.; Floreano, D.; Gambardella, L.M.; Mondada, E.; Nolfi, S.; Baaboura, T.; Birattari, M.; Bonani, M.;
Brambilla, M.; Brutschy, A.; et al. Swarmanoid: A novel concept for the study of heterogeneous robotic
swarms. IEEE Robot. Autom. Mag. 2013, 20, 60-71. [CrossRef]

Garattoni, L.; Birattari, M. Autonomous task sequencing in a robot swarm. Sci. Robot. 2018, 3, eaat0430.
[CrossRef]

Ferrante, E.; Turgut, A.E.; Mathews, N.; Birattari, M.; Dorigo, M. Flocking in stationary and non-stationary
environments: A novel communication strategy for heading alignment. In Parallel Problem Solving from
Nature, PPSN XI; Schaefer, R., Cotta, C., Kotodziej, J., Rudolph, G., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2010; Volume 6239, pp. 331-340. [CrossRef]

218



Appl. Sci. 2020, 10, 4654

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Giusti, A.; Nagi, J.; Gambardella, L.M.; Di Caro, G.A. Distributed consensus for interaction between humans
and mobile robot swarms (demonstration). In AAMAS "12: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems—Volume 3; International Foundation for Autonomous Agents
and Multiagent Systems: Richland, SC, USA, 2012; pp. 1503-1504.

Podevijn, G.; O’Grady, R.; Dorigo, M. Self-organised feedback in human swarm interaction. In Proceedings
of the Workshop on Robot Feedback in Human-Robot Interaction: How to Make a Robot Readable for a
Human Interaction Partner, Ro-Man 2012, Paris, France, 9 September 2012.

Nouyan, S.; Campo, A.; Dorigo, M. Path formation in a robot swarm: Self-organized strategies to find your
way home. Swarm Intell. 2008, 2, 1-23. [CrossRef]

Pinciroli, C.; O’Grady, R.; Christensen, A.L.; Dorigo, M. Self-organised recruitment in a heteregeneous
swarm. In Proceedings of the 2009 International Conference on Advanced Robotics, (ICAR), Munich,
Germany, 22-26 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1-8.

Pini, G.; Brutschy, A.; Birattari, M.; Dorigo, M. Task partitioning in swarms of robots: Reducing performance
losses due to interference at shared resources. In Informatics in Control Automation and Robotics; Andrade Cetto, J.,
Filipe, J., Ferrier, J.L., Eds.; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany,
2009; Volume 85, pp. 217-228. [CrossRef]

Pini, G.; Brutschy, A.; Frison, M.; Roli, A.; Dorigo, M.; Birattari, M. Task partitioning in swarms of robots:
An adaptive method for strategy selection. Swarm Intell. 2011, 5, 283-304. [CrossRef]

Pini, G.; Brutschy, A.; Scheidler, A.; Dorigo, M.; Birattari, M. Task partitioning in a robot swarm: Object retrieval
as a sequence of subtasks with direct object transfer. Artif. Life 2014, 20, 291-317. [CrossRef]

Brutschy, A.; Garattoni, L.; Brambilla, M.; Francesca, G.; Pini, G.; Dorigo, M.; Birattari, M. The TAM: Abstracting
complex tasks in swarm robotics research. Swarm Intell. 2015, 9, 1-22. [CrossRef]

Allwright, M.; Bhalla, N.; El-faham, H.; Antoun, A_; Pinciroli, C.; Dorigo, M. SRoCS: Leveraging stigmergy
on a multi-robot construction platform for unknown environments. In Swarm Intelligence, Proceedings of the
9th International Conference, ANTS 2014, Brussels, Belgium, 10-12 September 2014; Dorigo, M., Birattari, M.,
Garnier, S., Hamann, H., Montes de Oca, M., Solnon, C., Stiitzle, T., Eds.; Lecture Notes in Computer Science;
Springer: Cham, Switzerland, 2014; Volume 8667, pp. 158-169. [CrossRef]

Brambilla, M.; Brutschy, A.; Dorigo, M.; Birattari, M. Property-driven design for swarm robotics: A design
method based on prescriptive modeling and model checking. ACM Trans. Auton. Adapt. Syst. 2014,
9,17:1-17:28. [CrossRef]

Floreano, D.; Mitri, S.; Magnenat, S.; Keller, L. Evolutionary conditions for the emergence of communication
in robots. Curr. Biol. 2007, 17, 514-519. [CrossRef]

Ampatzis, C.; Tuci, E.; Trianni, V.; Christensen, A.L.; Dorigo, M. Evolving self-assembly in autonomous
homogeneous robots: Experiments with two physical robots. Artif. Life 2009, 15, 465-484. [CrossRef]
Sperati, V.; Trianni, V.; Nolfi, S. Evolving coordinated group behaviours through maximisation of mean
mutual information. Swarm Intell. 2008, 2, 73-95. [CrossRef]

Sperati, V.; Trianni, V.; Nolfi, S. Self-organised path formation in a swarm of robots. Swarm Intell. 2011,
5,97-119. [CrossRef]

Trianni, V.; Lopez-Ibafiez, M. Advantages of task-specific multi-objective optimisation in evolutionary
robotics. PLoS ONE 2015, 10, e0136406. [CrossRef]

Nedjah, N.; Silva Junior, L. Review of methodologies and tasks in swarm robotics towards standardization.
Swarm Evol. Comput. 2019, 50, 100565. [CrossRef]

Mayet, R.; Roberz, J.; Schmickl, T.; Crailsheim, K. Antbots: A feasible visual emulation of pheromone trails
for swarm robots. In Swarm Intelligence, Proceedings of the 7th International Conference, ANTS 2010, Brussels,
Belgium, 8-10 September 2010; Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P,, Floreano,
D., Gambardella, L.M., Gro8, R., Sahin, E., Sayama, H., et al., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2010; Volume 6234, pp. 89-94. [CrossRef]

Brutschy, A.; Pini, G.; Decugniére, A. Grippable Objects for the Foot-Bot; Technical Report TR/IRIDIA /2012-001;
IRIDIA, Université Libre de Bruxelles: Brussels, Belgium, 2012.

Soleymani, T.; Trianni, V.; Bonani, M.; Mondada, F.; Dorigo, M. Bio-inspired construction with mobile robots
and compliant pockets. Robot. Auton. Syst. 2015, 74, 340-350, d0i:10.1016/j.robot.2015.07.018. [CrossRef]
Kolling, A.; Walker, P.; Chakraborty, N.; Sycara, K.; Lewis, M. Human interaction with robot swarms:
A survey. IEEE Trans. Hum.-Mach. Syst. 2016, 46, 9-26. [CrossRef]

219



Appl. Sci. 2020, 10, 4654

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Ligot, A.; Birattari, M. Simulation-only experiments to mimic the effects of the reality gap in the automatic
design of robot swarms. Swarm Intell. 2019, 1-24. [CrossRef]

Mondada, F; Bonani, M.; Raemy, X.; Pugh, J.; Cianci, C.; Klaptocz, A.; Magnenat, S.; Zufferey, ].C.; Floreano,
D.; Martinoli, A. The e-puck, a robot designed for education in engineering. In Proceedings of the 9th
Conference on Autonomous Robot Systems and Competitions, Castelo Branco, Portugal, 7 May 2009;
Gongalves, P, Torres, P., Alves, C., Eds.; Instituto Politécnico de Castelo Branco: Castelo Branco, Portugal,
2009; pp. 59-65.

Garattoni, L.; Francesca, G.; Brutschy, A.; Pinciroli, C.; Birattari, M. Software Infrastructure for E-Puck
(and TAM); Technical Report TR/IRIDIA/2015-004; IRIDIA, Université libre de Bruxelles: Brussels,
Belgium, 2015.

Gutiérrez, A.; Campo, A.; Dorigo, M.; Donate, J.; Monasterio-Huelin, F.; Magdalena, L. Open e-puck range
& bearing miniaturized board for local communication in swarm robotics. In Proceedings of the IEEE
International Conference on Robotics and Automation, ICRA, Kobe, Japan, 12-17 May 2009; Kosuge, K., Ed.;
IEEE: Piscataway, NJ, USA, 2009; pp. 3111-3116. [CrossRef]

Spears, W.M.; Gordon, D.F. Using artificial physics to control agents. In Proceedings of the 1999 International
Conference on Information Intelligence and Systems, Bethesda, MD, USA, 31 October-3 November 1999;
IEEE Computer Society Press: Los Alamitos, CA, USA, 1999; pp. 281-288. [CrossRef]

Hasselmann, K.; Ligot, A.; Francesca, G.; Birattari, M. Reference Models for AutoMoDe; Technical Report
TR/IRIDIA /2018-002; IRIDIA, Université libre de Bruxelles: Brussels, Belgium, 2018.

Borenstein, J.; Koren, Y. Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern.
1989, 19, 1179-1187. [CrossRef]

Lopez-Ibanez, M.; Dubois-Lacoste, ].; Pérez Caceres, L.; Birattari, M.; Stiitzle, T. The irace package: Iterated racing
for automatic algorithm configuration. Oper. Res. Perspect. 2016, 3, 43-58. [CrossRef]

Birattari, M.; Stiitzle, T.; Paquete, L.; Varrentrapp, K. A racing algorithm for configuring metaheuristics.
In Proceedings of the GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference,
New York, NY, USA, 9-13 July 2002; Langdon, W.B., Cantt-Paz, E., Mathias, K., Roy, R., Davis, D.,
Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, |, et al., Eds.; Morgan Kaufmann Publishers:
San Francisco, CA, USA, 2002; pp. 11-18.

Pinciroli, C.; Trianni, V.; O’Grady, R.; Pini, G.; Brutschy, A.; Brambilla, M.; Mathews, N.; Ferrante, E.; Di Caro,
G.A.; Ducatelle, F; et al. ARGo0S: A modular, parallel, multi-engine simulator for multi-robot systems.
Swarm Intell. 2012, 6, 271-295. [CrossRef]

Valentini, G.; Ferrante, E.; Dorigo, M. The best-of-n problem in robot swarms: Formalization, state of the art,
and novel perspectives. Front. Robot. AI 2017, 4, 9. [CrossRef]

Valentini, G.; Hamann, H.; Dorigo, M. Efficient decision-making in a self-organizing robot swarm: On the
speed versus accuracy trade-off. In Proceedings of the AAMAS "15: Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems, Istanbul, Turkey, 4-8 May 2015; International
Foundation for Autonomous Agents and Multiagent Systems: Richland, SC, USA, 2015; pp. 1305-1314.
Ligot, A.; Hasselmann, K.; Delhaisse, B.; Garattoni, L.; Francesca, G.; Birattari, M. AutoMoDe, NEAT,
and EvoStick: Implementations for the e-Puck Robot in ARG0S3; Technical Report TR/IRIDIA /2017-002; IRIDIA,
Université libre de Bruxelles: Belgium, Brussel, 2017.

Conover, W.J. Practical Nonparametric Statistics, 3rd ed.; Wiley Series in Probability and Statistics, Applied
Probability and Statistics Section; John Wiley & Sons: New York, NY, USA, 1999.

Garzén Ramos, D.; Birattari, M. Automatic Design of Collective Behaviors for Robots That Can Display
and Perceive Colors: Supplementary Material. 2019. Available online: http://iridia.ulb.ac.be/supp/
IridiaSupp2019-008 (accessed on 3 July 2020).

Birattari, M.; Delhaisse, B.; Francesca, G.; Kerdoncuff, Y. Observing the effects of overdesign in the
automatic design of control software for robot swarms. In Swarm Intelligence, Proceedings of the 10th
International Conference, ANTS 2016, Brussels, Belgium, 7-9 September 2016; Dorigo, M., Birattari, M., Li, X.,
Lépez-Ibanez, M., Ohkura, K., Pinciroli, C., Stiitzle, T., Eds.; Lecture Notes in Computer Science; Springer:
Cham, Switzerland, 2016; Volume 9882, pp. 45-57. [CrossRef]

220



Appl. Sci. 2020, 10, 4654

69. Floreano, D.; Husbands, P; Nolfi, S. Evolutionary robotics. In Springer Handbook of Robotics, 1st
ed.; Siciliano, B., Khatib, O., Eds.; Springer Handbooks; Springer: Berlin/Heidelberg, Germany, 2008;
pp- 1423-1451. [CrossRef]

70. Kuckling, J.; Ligot, A.; Bozhinoski, D.; Birattari, M. Search Space for AutoMoDe-Chocolate and AutoMoDe-Maple;
Technical Report TR/IRIDIA /2018-012; IRIDIA, Université Libre de Bruxelles: Brussels, Belgium, 2018.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).

221






rirird applied -
b sciences ﬂw\pﬁ

Article
An Amalgamation of Hormone Inspired Arbitration
Systems for Application in Robot Swarms

James Wilson V*, Jon Timmis > and Andy Tyrrell !

1 Department of Electronic Engineering, University of York, York YO10 5DD, UK

2 Faculty of Technology, University of Sunderland, Sunderland SR1 3SD, UK
*  Correspondence: james.s.wilson@york.ac.uk

Received: 31 July 2019; Accepted: 22 August 2019; Published: 27 August 2019

Abstract: Previous work has shown that virtual hormone systems can be engineered to arbitrate
swarms of robots between sets of behaviours. These virtual hormones act similarly to their
natural counterparts, providing a method of online, reactive adaptation. It is yet to be shown
how virtual hormone systems could be used when a robotic swarm has a large variety of task types
to execute. This paper details work that demonstrates the viability of a collection of virtual hormones
that can be used to regulate and adapt a swarm over time, in response to different environments
and tasks. Specifically, the paper examines a new method of hormone speed control for energy
efficiency and combines it with two existing systems controlling environmental preference as well
as a selection of behaviours that produce an effective foraging swarm. Experiments confirm the
effectiveness of the combined system, showing that a swarm of robots equipped with multiple virtual
hormones can forage efficiently to a specified item demand within an allotted period of time.

Keywords: swarm; robotics; hormone; behaviour; arbitration; demand

1. Introduction

In nature, hormones provide an adaptation technique that cues behavioural change through
chemical processing. As stimuli reach cells or organs hormone chemicals are produced and diffused
throughout the body. The build up and gradual decay of these hormones as they are metabolised gives
an organism contextual information based on how frequently stimuli are received. The balance and
concentration of various hormones can then influence behaviour of the organism. These hormone
induced changes to behaviour have been observed in a variety of natural examples [1-3].

In the context of robotics, previous work has shown that virtual hormones can be engineered to
control, arbitrate and adapt swarms of robots amongst a small set of behaviours in a similar manner
to the examples seen in nature [4-6]. However, it is yet to be shown how hormone systems could
be used when a large array of behaviours and task types are available to a swarm. Evidence of
virtual hormones being used to control such systems in simulation would provide evidence of their
viability in non-abstracted tasks and support virtual hormone implementation in physical systems.
This paper identifies for the first time, the viability of combining multiple hormone systems at once,
each regulating a separate function or feature of the swarm. The primary goal of this amalgamation
of hormone systems will be to ensure that the benefits of each system can provide improvements to
the energy efficiency of a foraging swarm when combined, without disrupting the performance of
other systems.

Having already explored several applications for hormone inspired systems in previous work [5,7] in
which virtual hormone systems have effectively regulated behaviours and preference, respectively selecting
appropriate states in a dynamic environment and allocating robots to environments based on their
performance across different terrains. The work in this paper combines these applications to create an
energy efficient foraging swarm regulated by numerous, simultaneously functioning hormones.

Appl. Sci. 2019, 9, 3524; d0i:10.3390 /nan09173524 223 www.mdpi.com/journal/applsci



Appl. Sci. 2019, 9, 3524

The hormones comprising the amalgamation operate at different levels of a behavioural
hierarchy (illustrated in Figure 1), controlling preference, behavioural control and actuator control.
Combining systems acting at these different levels of behaviour allows for the swarm to be controlled by
hormones at every stage of operation, truly testing the combined systems capabilities and compatibility.
This, alongside the fact that more than three times the number of individual hormone types previously
studied have been used in these experiments means that the number of hormones used in this
amalgamation can be considered numerous.

ﬂl’he likelihoods through which a system\

selects behaviours.

A systems preference changes
throughout operation, creating possitive
and negative biases to the selections
\ made in behavioural control. )

Preference

The system arbitrating which action
should be performed next. Transistioning
Behavioural Control | states based on the current context of a
task and potentially the preferences

within the established system.

Y

Direct control over actuators providing

very explicit instructions to complete

Actuator Control a specialised behaviour such as

movement, navigation, manipulation,
etc...

\. J/

Figure 1. Behavioural hierarchy for those behaviours investigated within this paper.

Section 3 investigates virtual hormone driven motor control as a method to improve energy
efficiency in the foraging swarm. This will focus on the need for adaptive motor speeds and
their implementation.

Section 4 explores the compatibility between this new system and one governing sleep [5].
The potential energy efficiency benefits of combining a sleep system and a virtual hormone framework
are examined.

Section 5, the swarm will be diversified, using the heterogeneous wheel types designed in [7],
and a system capable of self analysis for task reallocation is combined with the previously established
hormone speed and sleep regulation. Thus creating a system with 6 or more simultaneously acting
virtual hormones in each member of the swarm, depending on the number of environments available
to the swarm.

The implementation of this complex virtual hormone system will be effective for live adaptation
and produce significant improvements to energy efficiency in foraging examples over individual
hormone systems.

Finally, Section 7 gives a number of conclusions for the presented work and suggests future areas
of investigation.

2. Background

Virtual hormones and hormone-inspired systems have previously been used to directly control
the motor functions of a single robot. In [8] the authors presented a method that modelled a robot as
two cells controlling the left and right motor of a puck robot, each motor was driven by their own
hormones H;, and H; with wheel speed changing proportionately with the magnitude of hormone value.
The hormones for each cell were stimulated by a proximity sensor and were capable of diffusing
between cells, acting as an inhibitor to the opposing hormone when present in the neighbouring cell.

224



Appl. Sci. 2019, 9, 3524

With the hormone values corresponding to the wheel speeds on the respective sides of the robot,
this produced an effective hormone controlled method for obstacle avoidance. The study found
that this system could be successfully implemented in hardware and could be well studied with an
exhaustive parameter sweep for ‘reasonable computational cost’.

Similarly, work by Kernbach et al [9] produced a system which allowed hormones to regulate the
movement of individual robots in a similar manner to [8]. This work added additional function to
the virtual hormone, using the same hormone to regulate an additional behaviour state. In this new
behaviour state the robots conjoined to produce a larger, specialised morphology. The hormone in this
state was re-purposed to create a hormone gradient, regulating the size of the newly formed conjoined
organism. This showed that, while explicit control over a robot is attainable with a virtual hormone
system, virtual hormones can also be used to effectively arbitrating behaviour states.

Following this work additional hormone-inspired controllers have been successfully implemented
to adapt swarm morphology, identifying context to environments via stimuli and then constructing
appropriate formations [4,10]. These studies show that hormone-inspired systems can be engineered
to provide an effective, computationally inexpensive method for robot control.

The need for mid-task adaptation for the energy efficient use of robot swarms has been highlighted
in works such as [11]. In which the energy consumption of several bio-inspired robotic coordination
procedures were investigated. This investigation found that energy consumption typically increased
in line with parameters (e.g., swarm size, arena size, number of tasks). It is, therefore, important that
such parameters are understood and controlled for before engaging in a task. This finding strengthens
the demand for self allocating systems such as [5,7,12] that modulate the number of active robots
performing a task. These self regulating systems reduce the need for a centralised decision on swarm
size and means that swarms can instead perform multiple different tasks in series or explore different
environments sequentially, without needing to return and redeploy.

In the previous implementations of hormone arbitration systems found in [5,7] the adaptive
properties of hormone equations have been utilised for both task arbitration and robotic preference.
By using hormone equations that provide a value that decays over time and increases as specified
stimuli are encountered, environmental features can be extrapolated based on the current value
provided by the equation. Through the comparison of hormone values receiving different stimuli or
the comparison of hormone values present in different robots, hormone equations provide a powerful
tool at a low computational cost for respectively regulating tasks or ranking the performance of robots
within a swarm.

Using virtual hormones as a method for behavioural control, while providing a strong method
for adaptation, does take an element of control away from the user. In traditional behavioural control
where user defined thresholds or specific actions are used for behaviour transition, systems can
be produced that behave consistently and repetitively in a manner that virtual hormones cannot.
However, while this may be appropriate for individual robots whose performance and interactions
can be predicted, in the context of swarms of robots exploring dynamic and volatile environments the
level of on-line adaptation a virtual hormone system provides to the swarm will typically produce a
better performance.

While the advantages of behavioural and preference control have be previously studied, there is
very little literature on energy efficient speed control systems capable of adapting to demand. There are
some examples of research investigating optimal speeds for energy efficiency [13,14]. However,
this research only relates to rail vehicles, providing little relevance to puck robot vehicles. For this
reason, the next section begins by obtaining data from real robots to obtain information that can be used
to produce the motor driving hormone system before it is added to the other, previously developed
hormone systems.

225



Appl. Sci. 2019, 9, 3524

3. HIBAS Implementation for Control of a Foraging System with Deviating Motor Speeds

Hormone Inspired behavioural arbitration systems (HIBAS) have been studied using energy
efficiency as the target output [5,7]. However, the speed at which robots move and the efficiency
of their movement, vital to energy efficiency, have not been investigated. When simulating the
energy consumption of robots it is typically assumed that robots in the swarm are either moving at a
specific speed, stationary or consuming a fixed quantity of energy in a given behaviour state [5,12,15,16].
This section investigates the viability of virtual hormone implementation to directly control and adapt
wheel speeds to achieve improved energy efficiency when foraging. A ‘demand’ concept will be
present in the task that allows the user to specify, prior to or during use, the number of items to be
gathered in a given time period. The purpose of this is to add an additional complexity for the swarm
to overcome through adaptation.

3.1. Energy Characteristics of Psi Swarm Robot Hardware

In order to bring realism to the simulated experiments and reduce the reality gap data was taken
from the PSI swarm robot platform [17] to obtain a power model similar to that produced in [18] for
the MarXbot. This model would take an individual robots speed as an input and produce a realistic
value for the power consumed at a given time step. As a result the total energy consumed by the
swarm across an experiment could be recorded using reports of energy consumption from each swarm
member, providing more meaningful data regarding changes of speed within the experiment.

To construct a power model, power consumption was measured using a Keysight N6705B power
analyser [19]. Results for power consumption as speed increases were recorded through 10 repetitions
and a quartic trend line was fit to the mean of these results, this is illustrated in Figure 2. The resultant
equation for power consumption with speed as the input was:

P=1.05-776x10"53s+2.2 x 103s> — 8.89 x 107 °s> 4+ 1.14 x 10 0s* 1)

where P is energy consumption per second (Watts) and s is the current speed of the robot (cm/s).
When implementing this equation in the robot swarm simulation, the offset of 1.05 was reduced to 0.05,
as it was assumed that most of the offset was due to the base consumption of energy used by robot
peripherals. The offset of 0.05 was left to ensure a negative power was never experienced during
experiments. The equation was also scaled for the appropriate time frame, ensuring that the correct
amount of power per wheel was collected per experiment tick. This equation was then used at each
time step to calculate the current energy consumption based on the speed of each individual robot.
Energy consumption could then be used to feed into the value of energy efficiency that would be used
to measure the fitness of the systems tested in the experiments presented in this paper.

After implementing Equation (1) in the simulation, the analyses of energy efficiencies at different
speeds were conducted. In these tests, 20 robots foraged in a simple environment for 500 simulated
seconds or until 100 food items were gathered. The average final energy efficiency (food item per unit
of energy consumed) from 50 trials at speeds ranging from 1 to 50 cm/s were then plotted (illustrated
in Figure 3). Taking the peak value of energy efficiency for a given speed, a value was chosen to act as
a baseline for the following experiments.

226



Appl. Sci. 2019, 9, 3524

Power Consumption Of Psi Swarm Robot Displaying Mean Trend Line: 1.05-7.76E-03x + 2.2E-03x*2-8.89E-5x"3+1.14E-06x"4

Power Used (Watts)

10 20 0 40

Velocity (cm/s)

Figure 2. Graph displaying the results of the power consumption of a Psi Swarm robot increasing
motor speed gradually. 10 repetitions were taken for these results and a trend line has been fit to the
mean of these results and is shown in red.

Graph of Average Food Collected Per Energy Consumed For a Swarm
of 20 Robots Maintating Static Speed

o
=)

'Speed = 35

0.08
|

Food/Energy (Item/Joules)

0.02
|

T T T T T T
0 10 20 30 40 50

Speed (cm/s)

Figure 3. Graph showing average food gathered per energy unit consumed in a swarm of 20 foraging
robots across 50 trials.

3.2. Hormone Interaction with Motor Speed

To produce a hormone equation that controlled motor speed in a direct manner and at appropriate
speeds given context, it was decided that the two primary influencing factors should be: item demand
and the evidence of negative performance.

The presence of frequent collisions and the decay present from failing to achieve task goals
have been demonstrated as good indicators of negatives performance [5,7]. Collisions in these
cases are identified by the detection of objects by short range proximity sensors, activating the
avoidance behaviour, rather than a physical collision between a robot and another entity. These features

227



Appl. Sci. 2019, 9, 3524

were therefore used as the first step in the implementation of the new hormone system. The decay
would reduce the hormone, and subsequently the speed, to an efficient settling point. Collisions would
also reduce the hormone, thus inhibiting the speed of poorly performing robots and limiting their
impact on energy consumption.

3.2.1. Demand

‘Demand’, as a new feature to the virtual hormone system, required the development of a novel
formula accounting for: a target number of items to be collected (to be specified before deployment), the
allotted time to collect said items, the current collection rate throughout the experiment. Following this,
Equation (2) was created:

It I +1
Tt t

In this equation D(t) represents the demand function, It is the total number of items desired by the end
of the allotted time period, tt is the end time for the allotted period, I is the current number of stored
items and t is the current time step. Decentralisation is required to remain ‘swarm like” during the

D(t) )

experiment, therefore the ‘demand value’ is only accessible to individual robots in the nest. The value
is updated as they leave and used as their stimuli throughout their next period of exploration.

Equation (2) models the demand value to fluctuate as items were collected without incurring an
exponential increase near the end of the experiment should the swarm only be a few items away from
the target collection. By setting the demand as the difference between the required average rate of
collection and the current rate of collection, the hormone value and speed could increase with repeated
failure to meet target collection rates. This meant that speed would only slightly deviate from the
optimal speed of travel. Gradual incrementation in this manner prevented an inefficient burst of speed
late in the experiment to compensate for a lack of items collected.

With a function for demand in place, the two Hormone equations were produced (Return
Hormone and Speed Hormone, shown respectively in Equations (3) and (4)) to regulate the speeds and
behaviours of each robot in the swarm. The hormones produced in these experiments were designed
in the same format as [5,7] with A representing decay and <y representing the coefficient of stimuli.

3.2.2. Return Hormone

The return hormone equation is as follows:
Hr(t) = /\rHr(t_l) +7C 3

where t is the current time step H; is the return hormone, A, is the decay for the system and +, is the
stimuli weighting. The return hormone has a single stimulus, C, for collision detection. Although it
does not regulate speed, it does feed into the speed hormone. The primary function of the Return
Hormone is to identify the frequency of collisions detected by a robot, between walls or other robots.
This information can then be used to decide if an individual robot should return to the nest having
been unsuccessful, typically by exceeding either a fixed or similarly adaptive threshold. At this stage
the threshold for returning was set to 50, with any value of H, exceeding that resulting in a given robot
changing behaviour state and travelling back to the nest site.

3.2.3. Speed Hormone

The speed hormone equation is as follows:
H;(t) = AsHs(t = 1) + 7D (#) = 7s2Hr “)

where H;(t) is the Speed Hormone, A, is the decay rate for the system, 7, is the weighting for the
stimuli and 7y, is the weighting for the inhibitor. The speed hormone had two influencing factors.

228



Appl. Sci. 2019, 9, 3524

A stimulus, D(t) (Demand), and an inhibitor, H,. With these features in place, higher demand would
result in faster activity, consuming more energy but reducing the item demand. Conversely, the system
would slow down robots in poor positions or in areas densely populated by other members of the
swarm, consuming less energy while in a compromised position. It is worth noting that H, was used
in this case rather than C in order to smooth the response to collisions, rather than experiencing a
sudden, large value inhibiting the system upon encountering a collision, H, allows for the reduction to
H; to be smooth and gradual. This avoids the sudden loss of mobility in what could potentially be a
one off collision.

While the speed of a robot does increase with the Speed Hormone, it doesn’t have true direct
control over the motor speed as has been seen in studies such as [8]. Instead, the Speed Hormone
system allows the robot to operate at the optimal travelling speed for energy efficiency. To avoid
deviation from this speed at low hormone levels, the speed hormone has no effect on speed until
it exceeds the value of 10. Values below 10 in speed hormone would have very minimal effect on
the actual speed of the robot while still reducing energy efficiency by deviating from the optimal
speed. After the value of 10, the speed hormone effects the speed with the relationship shown in
Equation (5), providing potential speeds ranging between 35, for H; values below 10, and 50 when H;

is fully saturated.

S =33.33+ % (5)

3.2.4. Parameters

Parameter values for the hormone equations (shown in Table 1) were selected empirically using
the context of the experiments to decide on appropriate time scales for decay, these time scales were
then converted to decay values using Equation (6), taking values for Hs,; (the numerical value at which
the virtual hormone will saturate) and H;, (the smallest value deemed relevant to the hormone system)
as 100 and 1 respectively. The period of decay chosen for the sleep hormone was based on the amount
of time it would take for an ideally operating robot to locate and retrieve two food items. i.e., the time
it would take to reach the centre of available items and return twice, travelling in a straight line while
operating at optimal speed. This meant that under ideal operation stimuli from the previous collection
would still be present when returning for the second time, allowing the hormone value to build.
The period for decay for the return hormone was calculated for only a single full collection and the
collisions in a previous search period should have minimal bearing on that of the next.

He:

n| Hfin
A=/ 6
Hsat ( )

Stimuli coefficients were subsequently chosen to provide adequate response when interacting at

expected minimum and maximum values of decay and rate of collision.

Table 1. Parameter values for the Return and Speed Hormones.

Ar YIr As Ys1 Vs2
09977 5 0999 9 0.01

3.3. Comparison Systems

In order to test how effective the designed hormone systems were, two additional systems were
produced for comparison. The first had no adaptive element, keeping all robots at optimal speed
(835 cm/s) while foraging. This system was not influenced by ‘demand’ and should highlight the
point at which speed adaptation is required to obtain remaining items required in the collection.
In order to keep environmental awareness consistent across the three systems, the return hormone

229



Appl. Sci. 2019, 9, 3524

was implemented across all systems, allowing swarm members to return to the nest site should they
encounter too many collisions.

The second comparison system featured an on-line adaptation method similar to
reinforcement learning. This engineered adaptation was driven by the same function for demand as
featured in the virtual hormone system. This style of online engineered adaptation has been used in
the past to modify swarm traits, finding optimal partition lengths in [20] modifying travel distances
based on success and failure of swarm individuals.

The adaptive system, designed for speed control, stepped the robot motor speeds up or down
depending on the value of demand upon returning to the nest site. Positive demand values would
increase speed, and negative values would decrease it. As with the hormone system, this would allow
speed to be increased or decreased (and hence increase or decrease energy expenditure) in relation to
collection requirements.

The increments and decrements made by the engineered system were influenced by demand,
providing a variable adaptation to the system. A base change of 1 was applied based on the sign of the
demand in addition to a change proportionate to the value of demand itself, increased by a coefficient
of 20 to make suitable changes to the speed value. These values were tuned via iterative selection to
produce strong rates of collection and energy efficiency across a wide variety of task demands.

The base change was used so that the swarm can catch up to the required collection rate even
when demand is small. If this change was not implemented, increments based solely of demand would
be too small to have a perceivable effect on robot speed. The same effect could not be achieved by
increasing the coefficient of demand because the system could react too quickly to large disparities in
current collection rate versus required rate and overcompensate by a large margin.

3.4. Analysis of Systems Highlighting the Need for Adaptation

After designing these systems, preliminary tests were conducted to demonstrate why adaptation
is required for the foraging task. This section will elaborate on the environment in which the
systems where tested, detail the key features of the simulations and discuss the results produced from
the experiments.

3.4.1. Environments

The three systems discussed in this paper were tested in two environments. The first is a square
environment measuring 15 x 15 m. The first 2 meters of the environment were assigned as the nest
area, highlighted in grey as illustrated in Figure 4. This environment provided an arena for simple
operation, identifying whether the system, under only the pressure of the specified demand could
operate effectively.

Figure 4. Screenshot of first simulated environment used. Food items are shown as black circles in the
white environment, puck robots can be seen waiting in the nest area (light grey).

230



Appl. Sci. 2019, 9, 3524

The second environment (illustrated in Figure 5) instead measured 20 x 10 m though retained
a similar nest layout to the first. Four funnelled corridors were included in this environment to act
as obstacles. These increase swarm density during exploration and provides additional difficulty to
the tested systems, akin to that of a group of robots attempting to complete tasks in industrial settings
such as mines, power plants or drainage systems, where space could be limited. This congestion
will not only limit the success of the robots by slowing them down, but short range collision sensors
will be triggered more frequently, meaning that the return hormone will potentially instruct robots to
return home too early. This will heavily test the adaptability of the system, giving the combination of
hormone systems a greater challenge, making the probability of one system disrupting the other in a
negative fashion more likely.

Figure 5. Screenshot of second simulated environment used. Food items are shown as black circles in
the white environment, puck robots can be seen waiting in the nest area (light grey). Obstacles creating
corridors are illustrated in dark grey.

3.4.2. Simulation

The experiments were performed in the ARGoS simulator [21] a multi robot simulator used to
simulate large robot swarms. It was assumed that each of the robots was equipped with a food sensor,
allowing them to identify food items within a 2m radius and each experiment featured a swarm of
20 robots.

Each test was executed for 500 simulated seconds (each simulation time step lasting 0.1 s) or until
the target number of food items were collected.

The number of replicates required for consistent results were determined by performing
cumulative mean tests as specified in [22]. This test indicated that the minimum number of trials
required for consistency was 36. Therefore, 36 was the lowest number of replicates used when testing
these systems.

3.5. Results

The results are illustrated in Figure 6 for environment 1 and Figure 7 for environment 2.

231



Appl. Sci. 2019, 9, 3524

Plot for FPE in 50 Trials At Different Collection Goals - Static Speed System

0.015-

0.010- Percentage of target

it B

.._I_.
—{1-

o
g
8
@
~
3

Food collected per energy used

0.000-

Target Number Food items

Plot for FPE in 50 Trials At Different Collection Goals — Engineered Adaptive Speed System

0.015=

0.010= Percentage of target

food collected

- 100

I+
_._
i
T
I+
—-
_-_
I

Food collected per energy used
.

0.000-

Target Number Food items

Plot for FPE in 50 Trials At Different Collection Goals — Hormone Adaptive Speed System

0.015-

L

90
80
0.005= . 70

Food collected per energy used

0.000-

80
Target Number Food items

Figure 6. Target number for items collected ranged from 10 to 150 items of food. Percentage of the
items requested versus those collected by the end of the simulation is indicated by colour (Green 100%
and Red < 70%).

232



Appl. Sci. 2019, 9, 3524

Plot for FPE in 50 Trials At Different Collection Goals - Static Speed System

0008~

§

Percentage of target
food collected

%

stsshmsentanns ¢

6 &

Food collected per energy used
g

& 10 160
Target Number Food items

Plot for FPE in 50 Trials At Different Collection Goals - Engineered Adaptive Speed System

Percentage of target
food collected

%

&

L L

Food collected per energy used
g

6 Qo & o 160
Target Number Food items

Plot for FPE in 50 Trials At Different Collection Goals - Hormone Adaptive Speed System

3

2 & Percentage of target
B food collecte

g . S -

Z oo %

<

§ 8

g |

H o

&
Target Number Food items

Figure 7. Three systems tested in in environment 2. Target number for items collected ranged from
10 to 150 items of food. Percentage of the items requested versus those collected by the end of the
simulation is indicated by colour (Green 100% and Red < 70%).

3.5.1. Environment 1—Square Open Arena

Visual inspection of the first environment (Figure 6) shows that the static speed system has a
fairly consistent level of food collected per energy unit used as the demand increases. This is expected
due to the lack of change in speed, though the lowest target number for item collection does see a

233



Appl. Sci. 2019, 9, 3524

drop in energy efficiency when compared with the rest of the collection rates. This is because not all of
the robots in the swarm will have returned to the nest by the time the experiment terminates having
reached the target number of items. This will result in unnecessary energy consumption from the
robots unable to return food items within the short period of the experiment.

The downside of this consistent energy consumption is the inability to reach greater item
target numbers. This drawback can be seen in the discolouration of the box plots starting at 100 food
items required and saturating to red, indicating a collection of less than 70% of the required items, by
130 required items.

Disregarding the lack of success in large item demand experiments, the results from the static
speed system provide a strong baseline for energy efficiency. Giving a clear target for the other two
more intelligent systems to aim for.

When inspecting the results of the two adaptive system it is immediately obvious that
target collections are met more consistently with the demand function introduced to the system,
with discolouration starting at 120 in the engineered system and 130 in the hormone system. In the
engineered system the collection rate drops to approximately 80% by the 150 item goal while the
hormone system still manages to collect upwards of 90%.

In terms of energy efficiency the engineered adaptive system follows a similar initial trend to
the none adaptive system. The similarity is maintained until an item target of 50, at which point the
engineered system becomes increasingly less efficient. Table 2 supports this, showing that there is no
significant difference in the data sets of the Engineered and static systems until 70 target items. At this
point the systems diverge as the engineered system consumes more energy.

Table 2. Environment 1: Wilcoxon rank sum tests comparing the three systems for the tested item
collection targets between 10-150 in terms of energy efficiency. Significant differences (indicated by a
p value of <0.05) are highlighted in bold.

System Type Engineered vs. Static Hormone vs. Static Hormone vs. Engineered
Item Target Number

10 0.8550 0.0330 0.0053

20 0.1648 p <0.0001 p <0.0001
30 0.1800 p <0.0001 p <0.0001
40 0.2626 p <0.0001 p < 0.0001
50 0.0906 p <0.0001 p < 0.0001
60 0.8227 p <0.0001 p < 0.0001
70 0.0068 p <0.0001 p < 0.0001
80 0.0262 p <0.0001 p < 0.0001
90 p <0.0001 p <0.0001 p < 0.0001
100 p <0.0001 p <0.0001 p < 0.0001
110 p <0.0001 p <0.0001 p < 0.0001
120 p <0.0001 0.0199 p < 0.0001
130 p <0.0001 0.3984 p < 0.0001
140 p <0.0001 p <0.0001 p <0.0001
150 p <0.0001 p <0.0001 p <0.0001

These results also show that the hormone system managed to outperform both systems in regard
to energy efficiency. With a significant difference versus the engineered adaptation and increased
median result at every collection target excluding 10, the hormone system results can be seen arcing
over those of the engineered system after starting at a similar point. Similarly, when compared to the
static system, the hormone system shows significant increases to the food collected per energy used in
all cases but targets of 10, 120 and 130 items. The similarity in energy efficiency of the hormone and
speed systems at item targets of 120 and 130 can be explained by the speed increase of the hormone
system in cases of very high item demand, actually reaching collection targets while the static system
misses them by a large margin.

234



Appl. Sci. 2019, 9, 3524

The efficiency of the hormone system over the static and engineered systems was explained by
three factors:

Sensitivity: The hormone system is sensitive to collisions and capable of not only returning robots
to the nest due to collisions, but also reducing speed due to the prolonged influence
of collisions.

Dispersion: Rather than consistent speeds, or speeds of specific increments, the speeds of the hormone
driven robots fluctuate during the search. Thus, dispersion is a by-product of efficiency
as speed will be diverse amongst the swarm. This in turn will lead to less traffic and more
energy efficient item collection.

Gradual variability: Speed can build over the duration of a search. This is contrary to the engineered
system, which made relatively large (and potentially exaggerated) changes in speed on
an individual’s return to the nest.

3.5.2. Environment 2—Funnelled Corridor Arena

The results for the second environment, the increased length of environment and introduction of
corridors, predictably show a notable decrease in percentage of target collection completed. The static
system started to fail collection targets at 50 items and the engineered adaptive system starting to fail
at 70. Compared with these, the change to collection rate in the hormone system is substantially less
reduced. The results show the hormone system falling to a 70% collection rate at the 130 item target
mark, showing a considerable increase in collection performance versus the two comparison systems.

In terms of energy efficiency there is again an expected drop in performance, when compared to
the first environment, across all experiments due to the larger, more cluttered arena.

Analysing the systems tested in this environment, there is very little statistical similarity. Table 3
shows that almost all of the data sets at each item target number, with the exception of the first 5 item
targets of the engineered versus static system, are all significantly different. The data produced from
this environment does however follow very similar patterns those of the first environment. The static
system maintains a consistent energy efficiency, though dipping slightly in the case of the smallest
collection target. The Engineered system, while improving collection, does little to benefit energy
consumption and lessens as target numbers increase. The hormone system, while exceeding the two
comparison systems in both collection and energy efficiency, as it did in the first environment, does so
in a much more exaggerated manner in the second environment.

Table 3. Environment 2: Wilcoxon rank sum tests comparing the three systems for the tested item
collection targets between 10-150 in terms of energy efficiency. Significant differences (indicated by a
p value of <0.05) are highlighted in bold.

System Type Engineered vs. Static Hormone vs. Static Hormone vs. Engineered
Item Target Number
10 0.2482 p <0.0001 p <0.0001
20 0.6918 p <0.0001 p <0.0001
30 0.3432 p <0.0001 p <0.0001
40 0.1010 p <0.0001 p < 0.0001
50 0.0817 p <0.0001 p <0.0001
60 0.0020 p <0.0001 p 