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Intelligent IoT (IIoT) Device to Identifying Suspected
COVID-19 Infections Using Sensor Fusion Algorithm and
Real-Time Mask Detection Based on the Enhanced
MobileNetV2 Model

Rupali Kiran Shinde 1 , Md. Shahinur Alam 1 , Seong Gyoon Park 2, Sang Myeong Park 1 and Nam Kim 1,*

1 Department of Information and Communication Engineering, Chungbuk National University,
Cheongju 28644, Korea; rups@chungbuk.ac.kr (R.K.S.); shahinur@chungbuk.ac.kr (M.S.A.);
smpark11@korea.kr (S.M.P.)

2 Department of Smart Information Technology Engineering, Kongju National University, Gongju 32588, Korea;
psk@kongju.ac.kr

* Correspondence: namkim@chungbuk.ac.kr; Tel.: +82-43-261-2482

Abstract: This paper employs a unique sensor fusion (SF) approach to detect a COVID-19 suspect
and the enhanced MobileNetV2 model is used for face mask detection on an Internet-of-Things (IoT)
platform. The SF algorithm avoids incorrect predictions of the suspect. Health data are continuously
monitored and recorded on the ThingSpeak cloud server. When a COVID-19 suspect is detected, an
emergency email is sent to healthcare personnel with the GPS position of the suspect. A lightweight
and fast deep learning model is used to recognize appropriate mask positioning; this restricts virus
transmission. When tested with the real-world masked face dataset (RMFD) dataset, the enhanced
MobileNetV2 neural network is optimal for Raspberry Pi. Our IoT device and deep learning model
are 98.50% (compared to commercial devices) and 99.26% accurate, respectively, and the time required
for face mask evaluation is 31.1 milliseconds. The proposed device is useful for remote monitoring of
covid patients. Thus, the method will find medical application in the detection of COVID-19-positive
patients. The device is also wearable.

Keywords: COVID-19; enhanced MobileNetV2; IoT device sensor fusion; suspect detection and s
tracking; face mask detection; remote monitoring

1. Introduction

In December 2019, a pneumonia-like disease began to spread worldwide, accompanied
by fever and cold-like symptoms [1,2], caused by the COVID-19 (Coronavirus disease of
2019) virus [3,4]. The World Health Organization (WHO) declared COVID-19 a Public
Health Emergency of International Concern on 30 January followed by declaration of
pandemic on 11 March 2020. pandemic affects people’s mental and physical health. To
date, 401 million COVID-19 cases have been detected, with 5.76 million deaths confirmed.
The increasing number of COVID-19 cases and deaths have led to worldwide lockdowns,
quarantines, and restrictions on human movements. Abdulkadir Atalan mentioned that
lockdowns could suppress the spread of the virus. Reference [4] also mentioned the effects
of lockdowns on psychology, the environment, and the economy. Various studies have
shown the effects of lockdowns on economics, domestic abuse, mental health, and social
health [5].

Even though many types of vaccines are in the market, but there are new virus
strains coming due to mutations. Vaccinating the entire world population is an ideal way
to stop pandemics, but many countries are poor, and their healthcare systems are not
advanced enough to provide vaccine for all population. Moreover, H.C Hsu presented
the effects of COVID-19 on healthcare workers; for example, nurses are overworking and
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are under pressure; thus, it will take a long time to reach an ideal situation [6]. In the era
of globalization, it has been difficult to travel during pandemic conditions. At present,
the omicron strain is a major concern worldwide and many countries have announced
restrictions on gathering and traveling, causing harm to economies and social welfare.
Early testing and tracing are used to control the number of cases and outbreaks.

Here, we present an Internet-of-Things (IoT)-based device for early detection of in-
fected subjects and to control spread via face mask detection. IoT devices collect and
share data (with minimal human interaction) using various transfer protocols [7]. IoT
applications are used in healthcare and smart factories, homes, and education. A fitness
band is an IoT-based wearable device that monitors user activities and health. Lockdowns
create economic and mental health difficulties [8]. This paper presents a wearable device
that detects suspected COVID-19-infected individuals.

Dong et al. [9] developed a wearable device for continuous blood pressure monitor-
ing [10]; this device did not store health data for future analysis. Aadil et al. [11] described
a wireless body area network (WBAN) that used the IoT for remote health monitoring.
A ZigBee network was implemented by Li et al. [12] to connect devices to a base station.
Fu et al. [13] utilized a wireless sensor network and a Wi-Fi transmission protocol to mea-
sure blood oxygen levels in athletes but this paper focuses only on one health parameter,
which makes overall health-checking difficult. The literature indicates that Wi-Fi protocols
are appropriate and cost-effective for wearable devices. Artificial intelligence (AI) has
played an important role during the pandemic. AI algorithms have been used to identify
COVID-19 infections using features extracted from electrocardiograms or chest x-rays.
Machine-learning algorithms that rapidly analyzed blood samples were 90% accurate
when used to estimate the survival of COVID-19-infected patients [14,15]. M. Phan et.al.
proposed a patent to detect COVID-19 using breathing data trained on IoT devices, but the
sample size of the data was small [16]. Several authors have used deep learning techniques
for face mask detection. The databases includes Kaggle, the face mask label dataset (FMLD),
the masked face analysis (MAFA) dataset, and the real-world masked face recognition
dataset (RMFRD) [17,18]. The YOLOv2, YOLOv3, SSDMNV2, MobileNetV2, and ResNet50
deep learning models for face mask detection are over 95% accurate. Some models are
compatible with IoT platforms; others require high-performance graphic processing units
(GPUs) [19–21].

This paper presents a preventive approach to avoid virus outbreaks and control the
pandemic. The major contribution of this work is the application of the sensor fusion
method for covid detection automatically using artificial intelligence. The proposed device
takes percussion to avoid false-positive alerts. False-positives will create trouble for the
healthcare system instead of helping it. The enhanced MobileNetV2 model is the optimal
solution for IoT platforms due to the small model size, higher accuracy, and lower detection
time.

Here, artificial intelligence (AI) is used to aid healthcare systems. This work detects
and traces infected persons in real-time; this limits viral spread and outbreak. Automatic
and correct locations of masks detected that control spread. This method is preventative
and rapid. This paper is divided into five sections. Section 2 focuses on the proposed
method, Section 3 presents the experimental setup, the results and discussion are presented
in Section 4, and the conclusion and future scope are presented in Section 5.

2. The Methodology

The proposed method uses a sensor fusion (SF) algorithm to detect infected suspects in
the early stage of infection and detect face masks. We implemented a deep learning model
on an IoT platform. The decision-making intelligence was provided by the SF algorithm and
the deep learning model. Section 2.1 explains the SF algorithm and Section 2.2—face mask
detection. The overall architecture of intelligent IoT (IIoT) devices is shown in Figure 1,
with separate layers and the functionality of each layer. The data flow is shown in Figure 2,
as well as the feature data collection and processing by the SF and deep neural network

2
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(DNN) algorithms, along with hardware and software components used in the system. SF
merges sensory inputs from various channels to improve the information (compared to
that available if the sources is used separately) [22]. SF finds applications in autonomous
cars [23], robotics [24], and biomedical appliances [25]. To the best of our knowledge, this
is the first work to use SF for COVID-19 disease prediction. The SF algorithm fuses inputs
from blood oxygen, body temperature, and heart rate sensors. Low oxygen levels and fevers
are the most common symptoms in COVID-19 patients; these are often misunderstood
as normal colds in the early stages of the disease. Our method focuses on these three
factors. Even if only one symptom is apparent, the AI algorithm sends an android alert of
the unusual reading. The subject can now consider self-isolation and a possible need for
medical care. The proposed approach does not detect asymptomatic people. This method
does not confirm infection but, rather, anticipates who might be infected with COVID; this
assists in early testing and tracing.

Figure 1. The overall architecture of the proposed IIOT device.

3
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Figure 2. The data flow. 
Figure 2. The data flow.

In this method, three different cloud servers are implemented for the respective
functionality, as shown in Figure 1. ThingSpeak [26] is a cloud-based IoT platform that
aggregates, visualizes, and analyzes real data streams. A private channel is created; the
cloud provides a write API key used to save data, and a read API key to receive saved data
in JSON, XML, or in text format. We installed the simple mail transfer protocol (SMTP)
on the Raspberry Pi [27]. The SMTP server sends an alert email with crucial health data
and the GPS position of a suspect to a healthcare provider. The Pushbullet server [28] is
used to transfer links, text, and files between devices. This server sends android alerts that
are not urgent but that require attention soon. After registering a device using its ID, the
Pushbullet server delivers messages and notifications. Data collection and cloud storage
are shown in Figure 2. The edge device features SF and notification servers. Real-time face
detection (using a spy camera) predicts an output with the aid of the trained deep learning
model (Figure 1).

2.1. Sensor Fusion (SF)

The sensor fusion (SF) approach is used to identify COVID-19 suspects. A body
temperature of 35–37 ◦C is normal; an alarm is sent if the temperature exceeds this range.
The normal blood oxygen level is 95–100%; anything below that range is considered serious.
To generate emergency alerts, the data from the two sensors are fused and the threshold
values evaluated. The SF algorithm and its implementation are shown in Algorithm 1.

4
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Algorithm 1. Pseudo-code: COVID suspect prediction

1. Save the input from the temperature sensor;
2. If a finger is on the sensor, go to step 3; otherwise stop;
3. If sensor reading confidence level is above 90% collect data;
4. Save the input from the oximeter;
5. If 90 < O2 < 95:
Send an android alert message via the Pushbullet server;
6. If O2 ≤ 90:
If fever > 37.5:
Assign Array [] and store the values for 30 min;
If max of array [] < 90:
Send an email stating that a suspect has been detected; include the GPS location;
Otherwise, clear the array;
else, send “low O2 need attention” alert to user;
else, collect and save data in real-time.

SF algorithm features:

• The SF algorithm receives input data from fever, oximeter sensors, and heart rate, all
of which are calibrated to commercial-level precision.

• To eliminate errors, the oximeter sensor accepts readings only when the sensor is in
contact with human skin and the sensor’s confidence level is above 90%.

• When the oximeter indicates a low oxygen level, this might be transient (caused
by exercise or stress). To avoid false positives, the SF system waits and examines
additional health metrics.

• When the oxygen level drops, the system seeks information from the body
temperature sensor.

• If both sensors produce anomalous results, the SF algorithm records all inputs for
30 min in an array and saves them for future study.

• If all values are below the usual levels for an extended period, only then does the SF
algorithm send an email alert with a GPS position. If the values are not anomalous
over an extended period, the algorithm concludes that no emergency exists, wipes all
data from the array, and sends a simple notice to an Android smartphone.

2.2. Face Mask Detection Using Deep Learning on an IoT Platform

Deep learning is a form of image processing for AI that employs feature extraction
algorithms. This requires a powerful GPU, but IoT devices lack a powerful GPU, which
makes rendering deep learning difficult. Image processing employs the OpenCV and
TensorFlow platforms. Raspberry Pi 4 includes support for image processing systems, such
as Keras. MobileNetV2 [29] is an efficient neural network for IoT devices featuring an
inverted residual structure with connections between the bottleneck levels, so we used this
as a backbone network.

We used the RFMD dataset (which includes 2165 pictures with masks and 1930 without
masks) for testing and training. Sample pictures are shown in Figure 3, along with pictures
from the Bing search API and the Kaggle datasets. The manually morphed pictures are not
included in the dataset; corrupt and duplicate pictures are removed. Cleaning, detection,
and correction improved prediction. The dataset was divided into 80% for training and
20% for testing subsets before pre-processing. A function was implemented that accepted
dataset folders as inputs, loaded all files, and resized the pictures. The list was then
sorted alphabetically, and the pictures were transformed into tensors. The list was then
transformed to a NumPy array (to accelerate computation).

5
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Figure 3. Sample images used for neural network training.

The OpenCV library was used to recognize human faces rapidly before training. To
eliminate recursive scan latency, several faces could be identified in a single shot; only one
image was required to identify numerous objects. This determined the region of interest for
MobileNetV2 feature extraction. Figure 3 presents sample images used to train the model.
We had a diversified dataset with different nationalities, age groups, sexes, ethnicities, and
types of masks for better accuracy.

MobileNetV2 is a lightweight, deep learning neural network for picture classification.
The standard MobileNetV2 model is in this work base model; the head model is added to
enhance to base model output. The head model enhances the accuracy and it includes an
averaging pooling layer followed by flattening operations. There were five dense layers
added before the output layer. Whereas in the base model, TensorFlow was used to load
the pre-trained weights. Then, to allow feature extraction, additional layers were added to
(and trained on) the database. The model was then fine-tuned, and the weights were saved
on the layers. Transfer learning saves time; existing biased weights were used without
sacrificing previously learned features. MobileNetV2 features a core convolutional neural
network layer. A pooling layer accelerates calculations by decreasing the size of the input
matrix without changing its features. The dropout layer prevents overfitting during model
training. The non-linear functions include several types of rectified linear units (ReLUs).
The fully connected layers are linked to the activation layers. If connections are skipped,
network execution may suffer. Thus, a linear bottleneck was added. Figure 4 shows the
detailed architecture of the model. The method precisely identifies mask location. If a
person is not wearing a mask, the model draws a red box around the face. The model can
detect several faces in the same frame at the same time. This model can employ a basic
picture as an input, or a real-time video stream from the Raspberry Pi camera. Figure 5
shows face mask detection and the percentage accuracies (red or green boxes). For critical
analysis, images were taken from a side view and multiple faces on the same image to
test the model. Figure A1a,b shows that face mask identification was 99.26% accurate; the
loss and accuracy were plotted by the epoch, respectively. The Figure A1a,b shows that,
after the 20th epoch, accuracy was close to 99.26%, and the “after loss” per epoch, was
also minimum, which satisfied the well-fitted model condition. The time required to train
the model on Raspberry Pi was almost twice that required when a PC equipped with a
GeForce GTX 750 GPU, an Intel Core i5 processor, and 8 GB of RAM, were employed. After
training, the real-time mask detection speeds on a PC and the IoT devices were identical.
The model was tested by placing different objects on faces, altering the mask positions, and
capturing faces from the side. Even in such unusual circumstances, model performance
was unaffected.

6
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Figure 4. Face mask detection.

 
(a) 

 
(b) 

Figure 5. (a) Real-time face mask detection from different viewpoints. (b) Real-time face detec-
tion without a mask, capable of detecting the incorrect position of the mask and identifying it as
“without mask”.

3. Experimental

In a serial communication system, Raspberry Pi 4 plays the role of a host and an
Arduino the role of a slave. The MLX 90614 sensor detects body temperature; the SparkFun

7
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sensor detects the blood oxygen level and heartbeat [30–33]. The GPS signal is detected by
an LM80 sensor connected to a USB port. The MLX 90614 and SparkFun biosensors are
integrated into the Raspberry Pi and the Arduino, respectively. The I2C protocol is used
to link the biometric sensors. The spy camera is installed on the Raspberry Pi camera slot
for real-time video-streaming and face mask recognition [34]. As we propose, this device
for wearable purposes, a small size camera is necessary. The detailed pin connections with
Raspberry Pi 4 and Arduino Uno are explained in Table A1 (Appendix A) and Table A2
(Appendix A) respectively.

Figure 6 shows the experimental setup. The Raspberry Pi 4 microprocessor is optimal
for the TensorFlow platform. The analog sensor is powered by an Arduino Uno. To allow
for future expansion, we used an Arduino rather than an analog-to-digital converter (ADC).
During implementation, the multithreading feature of the Python language was used to
effectively run the multiple sensors concurrently. There was a dedicated python thread;
running concurrently for each sensor, Pi camera, and GUI data update featured.

 

∑ ୣ୫୮୬୬ଵ

Figure 6. The experimental testbed.

Temperature sensor: the temperature sensor determines whether a person has a fever.
Five hundred continuous inputs from the sensor are averaged in real-time before display
to the user; the processing time is less than 1 s. A few milliseconds are required to provide
the results, but health data are enormous; a short delay is acceptable. The enhancement
algorithm is based on Equation (1):

Output temperature = ∑
n
1

Temp
n

(1)

where temp = current temperature in Celsius and n = number of inputs.
The SparkFun sensor: the SparkFun sensor works as a pulse oximeter and the heart

rate sensor is an I2C-based biometric sensor that features two Maxim Integrated chips; the
MAX32664 sensor analyzes data collected by the MAX30101 sensor and the photoplethys-
mogram (PPG).

4. Results and Discussion

4.1. Device Performance

The accuracies of sensor data and face mask identification were evaluated. The
MLX 90614 sensor was tested on the same individual; readings were obtained at 10-min
intervals and compared to those of a commercial thermometer (Figure 7). All temperature
measurements are in Celsius. The MLX 90610 sensor error was about 0.1 ◦C; the accuracy
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was thus about 98%. The temperature sensor gave the best accuracy when the user and
sensor were stable.

 

IoT value Commercial device value x 100 ൌ Accuracy percentage

Figure 7. Comparison of the MLX 90614 sensor and the thermometer.

The SparkFun sensor is a pulse oximeter. The values obtained are plotted against
those of the commercial Britz band (Figure 8). The picture of the commercial health band
is shown in Figure A2 (Appendix A). The values were near-identical. The percentage
accuracies at each time were averaged to yield an overall accuracy. Equation (2) shows the
accuracy percentages at specific times; the average accuracy was then determined.

IoT value
Commercial device value

× 100 = Accuracy percentage (2)

 

✓ ✓ ✓

✓

✓ ✓

✓

✓

✓

✓

✓

Figure 8. SparkFun sensor accuracy.

The average accuracy was 99.1%. The sensor also yielded the heart rate and raw
data. Heart rate monitoring is critical in COVID-19-infected and cardiac patients because,
according to Dr. Nisha Parekh, “There are numerous ways COVID-19 can damage the
heart during the first period when someone has the infection, particularly in the first few
weeks. These side effects might include new or worsening difficulties with blood pumping,
inflammation of the heart muscle, and inflammation of the membrane around the heart. It
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should be emphasized that other infections can potentially cause the same symptoms.” [35].
Heart rate data were collected on the IoT server; however, the it was not included in
suspected detection conditions.

An android message from the Pushbullet server is shown in Figure A3 (Appendix A).
The android alert is issued only when the temperature falls below 30 ◦C or rises above
37 ◦C. Regarding the ThingSpeak channel connectivity and real-time data visualization is in
MATLAB and each sensor value is represented as a single field and implementation output
is provided in Figure A4 (Appendix A). The geographical position and the temperature are
shown in Figure A5 (Appendix A). Heartbeat data were saved in field 3 of the ThingSpeak
channel and values are plotted as shown in Figure A6 (Aappendix A). This shows our
device is collecting data after every 15 min and saves over the cloud server. Along with
data collection, data analysis is also performed over edge servers in real-time.

It is difficult to test the device on actual COVID patients due to social distancing rules;
validation of the device was performed by Dr. Anuja Padwal, a practicing medical student
at the Maharashtra University of Health Sciences (MUHS). According to Padwal, “The
proposed method is beneficial for COVID perspective and automatic precautions for false
positive is worth noting in the study. This method is beneficial and practical to control
pandemics in developing countries because of the low manufacturing cost”.

The comparison of the our device with the available market devices are shown in
Table 1, considering the various factors such as heart rate, body temperature, cost of the
device, etc.

Table 1. Comparative study of the commercial device and proposed device.

Device Features Apple Watch Series 6 Apple Watch Series 5 Proposed Device

Heart rate X X X

Body temperature × × X

Oximeter X × X

Charging Wireless Wireless USB
Database Apple app Apple app IoT cloud

Data visualization × × X

Data sharing × × X

Alert and notification × × X

Sensor fusion for AI × × X

Covid suspect
tracking × × X

Price (USD) 400+ 400+ 100

4.2. Training and Testing of the Deep Learning Model

For accuracy testing, we performed several tests of system performance, in terms of
finding masked faces. For training purposes, the Adam optimizer with 30 epochs and a
batch size of 32 was used. Loey et al. [26] evaluated training using Adam and SGDM and
concluded that Adam outperformed SGDM in terms of a mini-batch root mean square error
and loss. The Adam training is shown in Table 2; any loss was minor. Model performance
was quantitatively compared to those of the InceptionV3 and ResNet50 architectures (using
the RMFD dataset); the values are listed in Table 3 and plotted in Figure 9. The sizes of the
deep learning model, the detection times, and the accuracies, were computed. Figure 9
shows that the ResNet50 architecture afforded the highest accuracy; however, this model
includes more parameters than MobileNetV2, rendering it larger and slower. Figure 9c
shows that the MobileNetV2 architecture is lightweight, with a size of 11.3 MB and a
detection speed nearly half that of the ResNet50 model.
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Table 2. Training and validation of the enhanced MobileNetV2 model on Adam.

Epoch Iteration Training Time (s) Batch Loss Accuracy (%) F1 Score

5 120 569.19 0.0711 98.29 0.98
10 240 1164.06 0.0420 98.46 0.99
15 360 1709.57 0.0336 98.90 0.99
20 480 2165.29 0.0305 99.15 0.99
25 600 2538.23 0.029 99.20 0.99
30 720 3248.43 0.025 99.26 0.99

Table 3. Comparison of model sizes and detection times.

Model
Model Size

(MB)
Detection
Time (ms)

Accuracy
(%)

Raspberry Pi
Support

MobileNetV2 11.3 31.3 99.11 X

InceptionV3 478.08 58.8 96.00 ×
ResNet50 1296.62 74.9 99.51 X

Enhanced MobileNetV2 11 31.3 99.26 X

(a) (b) (c) 

✓

✓

✓

Figure 9. A comparison of the proposed model (enhanced MobileNetV2) with InceptionV3 and
ResNet50 in terms of (a) size; (b) detection time; and (c) accuracy when evaluating the RMFD dataset.

The training and validation loss curve is shown in Figure A1b. We observed that our
model neither overfits nor underfits. Generally, the cost function is a way to compute error
and to quantify how good or bad the model is performing. The less the loss, the more
accurate the model is. From Figure A1b and Table 2, it could be concluded that the model
is fine-tuned with minimal loss. In this experiment, the binary cross entropy function was
used to optimize the model; the formula of the function is as given in Equation (3).

Log loss =
1
N ∑

N
i=1 −(Yi ∗ log(pi) + (1 + Yi) ∗ log(1 − pi)) (3)

Here, pi is the probability of class with mask and (1 − pi) is the probability of class
without a mask.

The model was further evaluated using the properly wearing masked face detection
(PWMFD) dataset and compared with the results of Loey et al. [21]. Table 4 shows that the
MobileNetV2 model size was the smallest and that our improvements reduced the detection
time. The model accuracy using the RMFD dataset, PWMFD dataset, and combined dataset
was only 99.11%, 89.00%, 90.14%, respectively, but when tested against the enhanced model,
the accuracy was 99.26%, 99.15%, and 92.51%, respectively. We conclude that the enhanced
model gives better accuracy with both datasets. The RMFD dataset performed better than
PWMFD in all instances because many PWMFD pictures were blurred, rendering single-
shot face identification difficult. Table 4 compares our system to that of Loey et al. [21].
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Table 4. Real-time face mask detection model comparative study.

Method Backbone Input Image Size Detection Time (ms) Accuracy % Raspberry Pi Support

RetinaNet ResNet-50 800 76.8 94.9 X

EfficientDet-D0 EfficientDet-Bo 512 99.3 84.5 ×
EfficientDet-D1 EfficientDet-B1 608 122.0 85.1 ×

SSD VGG-16 512 34.5 92.7 ×
YOLOv3 Darknet53 608 61.5 95.3 X

SE-YOLOv3 SE-Darknet53 512 49.2 96.2 ×
MobileNet MobileNetV2 512 31.9 90.1 X

Enhanced-Mobile net MobileNetV2 512 31.9 95. X

In Table 4, we compare our model with other papers to show that the proposed model
outperforms previously reported models. Whereas in Table 5, we combine RMFD and
PWMFD datasets to compare the results of using the proposed model. In all instances,
enhanced MobileNetV2 performs better than any other model. In [34], the authors pre-
sented face mask detection using SSD-MobileNetV2 and had 92.64% accuracy, whereas the
presented model had 99.26% accuracy; hence, we can conclude that our model is accurate
and lightweight compared to the other proposed models, which makes it suitable for
IoT devices.

Table 5. Enhanced MobileNetV2 compared with MobileNetV2 against different datasets.

Model Name

Accuracy (%)

RMFD Dataset PWMFD Dataset
RMFD + PEMFD
Combine Dataset

MobileNetV2 99.11 89.00 90.14
Enhanced MobileNetV2 99.26 91.15 92.51

To further evaluate the model, we calculated true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) on 30 random images with 38 random faces. The
confusion matrix is shown in Figure 10. The experiment results show that 15 TP, 19 TN, 2 FP,
and 2 FN were detected. Additionally, the precision and recall were calculated based on
Equations (4) and (5). The values of the precision and recall were 0.88 and 0.88, respectively.

Precision =
TP

TP + FP
= 0.88 (4)

Recall =
TP

TP + FN
= 0.88 (5)

Figure 10. Confusion matrix for face mask detection model.
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Here, FP and FN values are low, meaning we could predict that the algorithm is precise
and accurate, with a large-sized dataset; we are expecting higher TP and TN values.

5. Conclusions

We present a novel SF technique embedded in a device with a deep neural network;
this method “seeks” ways to help control a pandemic. The accuracy of the device is 98–99%,
compared to commercial devices. To avoid false-positive alerts, precautionary measures
were automatically taken by the SF algorithm without human interference (key features
of this paper). The proposed method identifies suspected COVID-infected individuals in
real-time, and facilitates tracing and tracking using a GPS sensor. The presented method
is economical, practical, scalable, easy to use, and pandemic-focused. To the best of our
knowledge, this method is the first to implement SF technology in a wearable device for
pandemic control. The proposed device mainly has application in two major categories—
wearable gadgets and devices for public areas. Wearable devices can be used by COVID-19
patients or those with other critical conditions who require continuous real-time data
monitoring in the absence of a doctor. If the device is used in public places (e.g., schools,
malls, train and bus stations, airports, tourist places), face mask detection would ensure
that people wear their masks correctly. The device is scalable, inexpensive, simple to deploy,
user-friendly, and securely saves health data. Remote monitoring (without face-to-face
medical consultation) is possible; continuously recorded data are shared. The read data
API key allows a user to control the data completely; anyone else needs specific permission
to view the data.

In the future, we will enhance device accuracy and attempt to reduce the size of the
wearable device to make it more user-friendly. Furthermore, we plan to include additional
sensors with microprocessors for other types of diseases, such as diabetics and cardiac
arrest. IoT devices are vulnerable to cyber-attacks. Thus, data flowing from the device to
the cloud must be encrypted and, therefore, security measures need to be added to prevent
cyber-attacks. Health data are “big data”; data storage and access are challenging and
researchers aim to address these issues.
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Appendix A

Raspberry Pi 4 connections with sensors are connected via a I2C protocol using
GPIO pins.
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Table A1. Pin connections of Raspberry Pi 4.

Raspberry Pi 4 IoT Device

Body temperature sensor
5V VCC

Pin 6 GND
GPIO 2 Serial Data SDA
GPIO 3 Serial Clock SCL

LCD screen
5V VCC

Pin 7 GND
GPIO 17 SDA
GPIO 27 SCL

Alert buzzer
GPIO Positive
Pin 39 GND

Arduino Uno works as an analog sensor data collection and preprocessing analog
data.

Table A2. Arduino Uno pin connection.

Arduino Uno Oximeter Sensor

3.3 V VCC
GND GND

Analog (A4) SDA
Analog (A5) SCL

  
(a) (b) 

Figure A1. Accuracy (a) and loss (b) of the proposed model per epoch.
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Figure A2. The Britz health band.

Human health-related vital data sometimes show abnormal readings, e.g., concerning
abnormal condition emergency alerts, which are sent to users and relatives. These alerts
will be useful for healthcare workers and in remote monitoring.

 

Figure A3. Android alert message.

Fever and low oxygen are common signs of COVID-19; when both conditions occur at
the same time, emergency tracing and testing is needed. To provide emergency services,
location and data history are provided to healthcare workers through a read API key of the
IoT cloud server.
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Figure A4. IoT cloud server ThingSpeak channel. 
Figure A4. IoT cloud server ThingSpeak channel.

 

Figure A5. GPS and body temperature sensor data visualization on ThingSpeak cloud.

16



Healthcare 2022, 10, 454

 

 

 
 
 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

Figure A6. Heartbeat graph on IoT cloud.
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Abstract: Kidney disease is a major public health concern that has only recently emerged. Toxins are
removed from the body by the kidneys through urine. In the early stages of the condition, the patient
has no problems, but recovery is difficult in the later stages. Doctors must be able to recognize this
condition early in order to save the lives of their patients. To detect this illness early on, researchers
have used a variety of methods. Prediction analysis based on machine learning has been shown to
be more accurate than other methodologies. This research can help us to better understand global
disparities in kidney disease, as well as what we can do to address them and coordinate our efforts to
achieve global kidney health equity. This study provides an excellent feature-based prediction model
for detecting kidney disease. Various machine learning algorithms, including k-nearest neighbors
algorithm (KNN), artificial neural networks (ANN), support vector machines (SVM), naive bayes
(NB), and others, as well as Re-cursive Feature Elimination (RFE) and Chi-Square test feature-selection
techniques, were used to build and analyze various prediction models on a publicly available dataset
of healthy and kidney disease patients. The studies found that a logistic regression-based prediction
model with optimal features chosen using the Chi-Square technique had the highest accuracy of
98.75 percent. White Blood Cell Count (Wbcc), Blood Glucose Random (bgr), Blood Urea (Bu), Serum
Creatinine (Sc), Packed Cell Volume (Pcv), Albumin (Al), Hemoglobin (Hemo), Age, Sugar (Su),
Hypertension (Htn), Diabetes Mellitus (Dm), and Blood Pressure (Bp) are examples of these traits.

Keywords: usability score artificial intelligence; medical information systems; image matching;
machine learning algorithms; morphological operations

1. Introduction

Kidney disease affects over 750 million people worldwide, a figure that is growing.
Kidney disease is a condition that affects people all over the world, but the disease’s
prevalence, identification, and treatment are all very different. Renal failure is the leading
cause of death among people living in modern society. Cigarette smoking, excessive
alcohol consumption, high cholesterol, and a variety of other risk factors all play a role in
the disease. The kidney is a vital organ in the human body, performing a variety of vital
functions. Despite the fact that kidney disease is better understood in developed countries,
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new research indicates that the condition is more prevalent in developing countries. The
primary function is to collect waste and excess fluid from the circulatory system and excrete
it via the kidneys via urine. If the function of this organ is compromised, the amount of
harmful liquids and wastes in our systems may have disastrous consequences [1]. It is
critical to emphasize that there are two kinds of kidney disease: acute kidney disease and
chronic (long-term) kidney disease [2]. The most common type of kidney illness is acute
renal disease. Chronic kidney failure is characterized by a progressive decline in kidney
function over time (usually years). When the kidney’s blood supply is cut off, the flow
of urine is hampered by an enlarged prostate, or the kidney itself is injured and becomes
ineffective, this type of kidney failure occurs. As a result of a chronic renal condition,
kidney failure does not occur overnight. In the early stages of the disease, the patient
exhibits no signs or symptoms of the illness. Patients who have had diabetes and high
blood pressure for a long time are more likely to develop this syndrome. Patients who have
been exposed for an extended period of time to lead-based medications and poisons are at
risk of developing this disease. According to a poll, this condition affects a large number
of people in our country, and thousands of people die from it each year. Only the most
affluent countries have access to renal failure treatment. According to the World Health
Organization, only 11% of the world’s population receive adequate treatment for renal
failure. Because they cannot afford dialysis or a kidney transplant, low-income patients die
of renal failure. Patients who are identified and treated early on have a better chance of
avoiding renal failure entirely. Scientists have developed a number of methods for detecting
kidney disease at an early stage [3,4]. Patients’ doctors may inform them ahead of time.
Taking preventative measures before things get out of hand is a viable option.

Chronic Kidney Disease

Humans have two kidneys that are roughly the size of a fist. Their primary purpose
is to filter blood. They remove waste and excess water, which turn into urine. They also
help to keep the body’s chemical balance, control blood pressure, and produce hormones.
Chronic kidney disease means that the kidneys are damaged and are unable to filter blood
as effectively as they should. This damage can cause waste to accumulate in the body
and cause other issues that can be harmful to health. The most common causes of chronic
kidney disease are diabetes and high blood pressure. Kidney damage occurs gradually
over a long period of time. Many people have no symptoms until their kidney disease
is advanced. Only blood and urine tests can inform you if you have kidney disease.
Treatments cannot cure kidney disease, but they can help to slow its progression. They
include blood pressure medications, blood sugar control medications, and cholesterol-
lowering medications. Chronic kidney disease can worsen over time. It can occasionally
result in kidney failure. Dialysis or a kidney transplant will be required if your kidneys
fail. Based on population studies from developed countries, a systematic review found
a mean prevalence of 7.2% in individuals older than 30 years. According to WHO data,
it affects approximately 10% of the adult population and more than 20% of those over
the age of 60, and it is undoubtedly underdiagnosed. The prevalence of CKD can reach
35–40% in patients followed up in primary care for diseases as common as high blood
pressure (HBP) or diabetes mellitus (DM). The magnitude of the problem is magnified
by the increase in morbidity and mortality, particularly cardiovascular mortality, caused
by renal deterioration. CKD is thought to be the common final destination of a group of
pathologies that affect the kidney in a chronic and irreversible manner. Once the diagnostic
and therapeutic options for primary kidney disease have been exhausted, CKD necessitates
common protocols of action that are, in general, independent of it. The most common
causes of ACKD are described below, along with links to further information. More than
one cause frequently coexists and worsens kidney damage.

In this work, the primary objective is to identify the best early-stage prediction
model [5] for renal disease based on the most optimal attributes possible [6]. The fol-
lowing sub-goals are included:
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• Review the existing approaches for the detection of kidney disease.
• Determine the best feature by applying various feature selection techniques.
• Build various prediction models on a kidney dataset using different machine learning

algorithms and analyze their accuracy in the detection of kidney disease.

The rest of the article is organized as follows: Section 2 provides a review of the
literature on the detection of kidney disease. Section 3 proposes a method for detecting
kidney disease that makes use of machine learning and feature extraction. Section 4
discusses the kidney dataset, experimental results, and comparisons with existing methods.
Section 5 discusses the conclusion and future work.

2. Related Works

The diagnosis of kidney illness using machine learning algorithms is an emerging
subject of computer vision in healthcare. Because of their great accuracy in identifying
illnesses, these procedures are gaining prominence. Using machine learning algorithms,
such as decision trees, J48, Support Vector Machine (SVM), and others, researchers have
developed several methods for identifying kidney illness. This section describes previous
research ideas proposed by a variety of scholars.

Boukenze, B. et al. [6] suggested a machine learning-based method for identifying
renal disorders. They employed the k-nearest neighbors algorithm (KNN), support vector
machine (SVM), decision tree, and artificial neural network (ANN) machine learning
algorithms. They used a number of performance measures to evaluate the accuracy of
prediction models. They observed that the decision tree-based model outperformed all
other models in diagnosing chronic failure, with an accuracy of 63 percent.

A. Salekin and colleagues employed SVM, KNN, and random forest techniques to
build prediction models. They based their findings on a dataset of 400 cases. There were
24 properties in each record. Different machine learning algorithm-based models produced
variable degrees of accuracy, it was revealed. The accuracy of the decision tree-based model
was 98 percent, which was greater than that of earlier models.

H. Polat et al. [7] predicted renal disease using the SVM machine learning technique.
They had a 97.5 percent accuracy rate. In order to enhance the accuracy, they applied
a variety of feature selection methodologies. They improved the accuracy by 1% by
employing feature selection.

Panwong, P. et al. [8] proposed an approach using KNN, NB, and decision tree classi-
fiers. They also reduced the number of features by using the wrapper technique. Using the
decision tree technique, they attained a maximum accuracy of 85 percent.

Dulhare, U. N. et al. [9] suggested a technique for diagnosing kidney illness using the
naive Bayes machine learning algorithm in combination with the R attribute selector. They
were 97.5% accurate in diagnosing renal illness.

Vasquez-Morales et al. [10] developed a neural network classifier based on massive
quantities of CKD data, and the model proved to be 95 percent accurate in its predictions.
To predict the advancement of diabetic kidney disease, Makino et al. [11] collected pa-
tient diagnoses and treatment information from textual data in an attempt to predict the
progression of diabetic kidney disease.

According to Ren et al. [12], they developed a prediction model for diagnosing chronic
kidney disease (CKD) using data from electronic health records (EHR). Based on a neural
network architecture, the proposed model encoded and decoded textual and numerical
data from electronic health records (EHR). A deep neural network model for identifying
chronic renal disease was developed by Ma F. et al. [13]. Comparing the supplied model
with ANN and SVM, the accuracy of the given model was the highest.

Almansour and colleagues [14] utilized machine learning to develop a technique
for preventing chronic kidney disease. Researchers used machine learning classification
methods, such as SVM and ANN, to make their findings. The experiments revealed that
ANN outperformed SVM in terms of accuracy, with a 99.75% accuracy rate.
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J. Qin and colleagues [15] presented a machine learning strategy for diagnosing chronic
kidney disease (CKD) in its early stages. In order to construct their models, they used
logistic regression, random forest, SVM, naive Bayes classifier, KNN, and the feedforward
neural network as techniques. With an accuracy rating of 99.75%, the random forest
classification model was shown to be the most accurate.

Z. Segal and colleagues [16] developed an ensemble tree-based machine learning algo-
rithm (XGBoost) for the diagnosis of kidney disease in its early stages. Models such as ran-
dom forest, CatBoost, and regression with regularization were used to compare the results
of the stated model. All matrices were improved by using the proposed model, which had c-
statistics of 0.93, sensitivity of 0.715%, and specificity of 0.958, among other improvements.

Khamparia et al. [17] developed a deep learning model for the early identification
of chronic kidney disease (CKD) that employed a stacked autoencoder model to extract
features from multimedia data and was published in Nature Communications. The au-
thors used a SoftMax classifier to predict the final class, which they found to be accurate.
Using the UC Irvine Machine Learning Repository (UCI) chronic kidney disease (CKD)
dataset [18], it was revealed that the recommended model outperformed standard classifi-
cation algorithms when compared to the data set in question.

Ebiaredoh Mienye Sarah A. et al. [19] developed a robust model for predicting chronic
kidney disease (CKD) by combining an enhanced sparse autoencoder (SAE) with Softmax
regression. The autoencoders in our proposed model achieved sparsity by penalizing
the weights, as previously stated. Because the SoftMax regression model was specifically
tailored for the classification task, the proposed model performed wonderfully in the testing
environment. On the chronic kidney disease (CKD) data set, the proposed model had a
precision of 98 percent, according to the researchers. When it came to performance, the
proposed model outperformed other already available strategies.

According to Zhiyong Pang et al. [20], a fully automated computer-aided diagnos-
tic approach that employed breast magnetic resonance imaging to differentiate between
malignant and benign masses was proposed.

Using a combination of the support vector machine and the ReliefF feature selection
approaches, the texture features were selected for use. It was found that this method was
92.3% accurate.

Chen, G. et al. [21] developed a model for identifying Hepatitis C virus infection that
used the Fisher discriminating analysis method with an SVM classifier to obtain a more
accurate diagnosis. The comparison of the proposed methodology to current methods
showed that the hybrid method outperformed all other methods, reaching the highest
classification accuracy of 96.77%. The authors of this paper developed a breast cancer
diagnosis model [22]. Artificial neural networks are used to classify breast cancer based
on qualities that have been selected using sequential forward and backward selection
processes. SBSP obtained the highest level of accuracy, with a score of 98.75%.

Table 1 outlines prior studies by different researchers. According to the table, re-
searchers employed multiple machine learning algorithm-based prediction models to pre-
dict renal disorders. The accuracy of these models varied and was inadequate. We noticed
that many researchers did not pre-process their data and used no feature selection strategy.
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Table 1. Summary of related work.

Sr. No. Author Year Machine Learning Algorithms and Accuracy (%)

1. A. J. Aljaaf et al. [1] 2018 Naïve Bayes: 83.4%, J48: 86.23%

2. N. Borisagar, D. Barad, and P. Raval [5] 2017 ANN: 99.5

3. B. Boukenze, A. Haqiq, and H. Mousannif [6] 2018 SVM: 63.5%, LR: 64.0, C4.5: 63%, KNN: 55.15%

4. H. Polat, H. D. Mehr and A. Cetin [7] 2019 SVM: 97.5%

5. P. Panwong and N. Iam-On [8] 2016 KNN: 86.32%, naïve Bayes: 60.46%, ANN: 83.24%,
RF: 86.60%, J48: 79.52%

6. Makino et al. [11] 2019 KNN, Naïve Bayes + LDA + random subspace +
Tree-based decision: 94%

7. Ren et al. [12] 2019 SVM + ReliefF: 92.7%

8. Ma F. et al. [13] 2019 Fisher discriminatory analysis and SVM: 96.7%

9. Almansour and colleagues [14] 2020 KNN and SVM: 99%

10. J. Qin and colleagues [15] 2019 SVM, KNN, and naïve Bayes decision tree: 99.7%

11. Z. Segal and colleagues [16] 2019 SVM, KNN, and decision tree: 99.1%

12. Khamparia et al. [17] 2020 Logistic regression, KNN, SVM, random forest,
naive Bayes, and ANN: 99.7%

13. Ebiaredoh-Mienye Sarah A. et al. [18] 2017 SVM 98.5%

14. Zhiyong Pang et al. [19] 2020 Softmax regression 98%

15. Tabassum, Mamatha et al. [23] 2017 DT: 85%, RF: 85%

16. K. R. A. Padmanaban and G. Parthiban [24] 2016 DT: 91%, naïve Bayes: 86%

17. Sahil Sharma, Vinod Sharma, and Atul Sharma [25] 2018 ANN: 80.4%, RF: 78.6%

18. Pratibha Devishri [26] 2019 ANN: 86.40%, SVM: 77.12%

19. Sujata Drall, G. Singh Drall, S. Singh, Bharat Naib [27] 2018 Naïve Bayes: 94.8%, KNN: 93.75%, SVM: 96.55%

LR: Logistic Regression; KNN: k-Nearest Neighbors; SVM: Support Vector Machines; CART: Classification and
Regression Trees; ANN: Artificial Neural Networks; LDA: Linear Discriminant Analysis; DT: Decision Tree; RF:
Random Forest.

3. Support Vector Machine

The first concepts and foundational principles of SVM were provided by the statis-
tical learning theory (structural risk minimization). It can be used in classification and
nonlinear regression. This broad classification of SVM can be further subdivided into two
subcategories: linear SVM (linear SVM) and nonlinear SVM (nonlinear SVM) [28].

L-SVM [29] training data of different types are classified using linear SVM, which
classifies training data by giving Class 1 to the “+1” and Class 2 to the “−1” symbols, then
uses the mathematical notation

{{xi, yi}
T
i−1, xi ∈ Rm, yi ∈ {−1,+1}}

w · x + b = 0
(1)

here w is the weight vector, x is the input dataset, and b is a bias in the hyper plane,
which is referred to as a displacement. Bias is used to make sure that the hyper plane [11]
is positioned correctly following movement in a horizontal plane. Thus, prejudice is
affected by training with bias. A hyper plane has its parameters, which are w and b. A
decision surface G. Chen et al. (2020) [29] is considered to be a function when SVM is used
for classification.

f (x) = sign(w · x + b) (2)
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SVM generally serves to increase the marginal distance of the data set and there-
fore enhance the distinguishing function, allowing better categorization. Improving the
hyperplane’s distinguishing function is a quantic programming issue.

minimize Lp =
1
2
‖ w ‖2 subject to yi(xi · w + b)− 1 ≥ 0, i = 1, . . . , l (3)

To solve the initial minimization issue, we apply the Lagrange theory:

LD(α) =
l

∑
i=1

αi −
1
2

l

∑
i=1

l

∑
j=1

αiαjyiyj(xixj)

subject to
l

∑
i=1

αiyi = 0, i = 1, . . . , l

αi ≥ 0, i = 1, . . . , l

(4)

In the end, the linear divisive decision-making function has been completed.

f (x) = sign

(

n

∑
i=1

yiα
∗
i (x · xi) + b∗

)

(5)

To sum up, when f (x) > 0, it indicates that the sample is marked +1 and is in the same
category as samples marked with “+1”; otherwise, it indicates that the sample is marked
−1 and is in the same category as samples marked with “−1”. Linear hyper planes [30]
cannot properly identify data points when training data include noise. Slack variables ξi
are introduced to the constraint, resulting in a modification of the original (3):

minimize 1
2 ‖ w ‖2 +C

(

l
∑

i=1
ξi

)

subject to yi(xi · w + b)− 1 + ξi ≥ 0, i = 1, . . . , l
ξi ≥ 0, i = 1, . . . , l

(6)

The position of the border and the classification point are separated by a distance of ξi;
in this case, C represents the cost of the training data classification mistake, as specified
by the user. A lower C value means that the margin will be narrower, suggesting that
fault tolerance has a lower chance of working in the event of a problem [31,32]. The fault
tolerance rate will be larger if C is lower. The linear inseparable issue (also known as the
infinitely large linear problem) will degenerate into a linear separable problem as C→∞. In
this instance, the parameters and the optimal solution of the target function may be found
by using the Lagrangian coefficient [33,34] in order to solve the linear inseparable dual
optimization issue; hence, the solution of the linear inseparable dual optimization problem
is as follows:

Max LD(α) =
l

∑
i=1

αi −
1
2

l
∑

i=1

l
∑

j=1
αiαjyiyj

(

xixj
)

subject to
l

∑
i=1

αiyi = 0, i = 1, . . . , l

0 ≤ αi ≤ C, i = 1, . . . , l

(7)

Finally, the linear decision-making function is

f (x) = sign

(

n

∑
i=1

yiα
∗
i (x · xi) + b∗

)

, (8)

a support vector machine whose operation can include nonlinear inputs (nonlinear SVM).
In the case where we cannot separate training samples using linear SVM, we may apply
feature transformation, such as the function ϕ, to convert original 2-D data into a new,
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high-dimensional feature space that allows us to solve linear separable problems. SVM
can use the kernel technique to effectively conduct nonlinear classification utilizing an
approach known as the kernel trick. For the time being, there are many diverse foundational
components being put forward. Differentiating distinct data characteristics with respect to
different core functions allows for more efficient computation with SVMs [7]. Of the very
common fundamental functions, these four functions have something in common:

Linear kernel function:
K(xi, yi) = xt

i · yj (9)

Polynomial kernel function:

K
(

xi, yj
)

=
(

γxt
i xj + r

)m, γ > 0 (10)

Radial basis kernel function:

K
(

xi, yj
)

= exp

(

− ‖ xi − yj ‖
2

2σ2

)

, γ > 0 (11)

Sigmoid kernel function:

K
(

xi, yj
)

= tanh
(

γxt
i · yj + r

)

(12)

This study utilizes the emissive core function, because settings such as γ and C can
increase computation efficiency and lower SVM complexity.

4. Materials and Methods

The proposed strategy is based on data mining framework as shown in Figure 1. Data
mining employs computational approaches at the intersection of artificial intelligence,
machine learning, statistics, and database systems [35]. Data mining is predicated on the
idea that data can be analyzed from a variety of perspectives. The “Knowledge Discovery
in Databases” (KDD) process is employed in this study to extract unknown patterns from
web data [36]. This section describes the suggested method for detecting kidney disease.
The availability of kidney disease care is directly affected by each country’s public policies
and financial situation. A lower dialysis–to–transplant ratio, for example, suggests that
more affluent countries have a higher rate of kidney transplantation.

𝐾(𝑥 , 𝑦) = 𝑥௧ ⋅ 𝑦
𝐾൫𝑥 , 𝑦൯ = ൫𝛾𝑥௧𝑥 + 𝑟൯, 𝛾 > 0

𝐾൫𝑥 , 𝑦൯ = 𝑒𝑥𝑝 ൬ି∥௫ି௬ೕ∥మଶఙమ ൰ , 𝛾 > 0
𝐾൫𝑥 , 𝑦൯ = 𝑡𝑎𝑛ℎ ൫𝛾𝑥௧ ⋅ 𝑦 + 𝑟൯

γ

 

Figure 1. Detection of chronic kidney disease using recursive feature elimination and classification al-
gorithms. CKD: Chronic Kidney Disease; SVM: Support Vector Machine; KNN: K-Nearest Neighbors.

25



Healthcare 2022, 10, 371

4.1. Kidney Disease Dataset

In this work, we used a dataset of 400 patients, each with 24 attributes [18,37]. The
dataset had 250 records of patients who were suffering from kidney disease and 150 med-
ical records for completely healthy people. This dataset has medical data for different
age groups. It has 50 records of people less than 30 years old and 55 records of people
greater than 70 years old. The remaining records belong to people aged 31–69. From the
various studies, it was found that people of any age group may suffer from kidney disease.
Therefore, there is no risk of bias in evaluating the performance of prediction models.
Table 2 shows the details of the various kidney disease-related attributes.

Table 2. Details of the various kidney disease-related attributes.

Name Feature Description

Age Age Patient’s age

Blood pressure Bp Blood pressure of the patient

Sugar level Su Sugar level of the patient

Bacteria Ba Presence of bacteria in the blood

Ratio of the density of urine Sg Ratio of the density of urine

Albumin level in the blood Al Ratio of the albumin level in the blood

Pedal edema Pe Does the patient have pedal edema or not

Red blood cells Rbc Patients’ red blood cell counts

Patient class Class Does the patient have kidney disease or not

Pus cell clumps Pcc Presence of pus cell clumps in the blood

Anemia Ane Does the patient have anemia or not

Red blood cell count Rc Red blood cell count of the patient

Hypertension Htn Does the patient have hypertension on not

Serum creatinine Sc Serum creatinine level in the blood

Diabetes mellitus Dm Does the patient have diabetes or not

Blood urea Bu Blood urea level of the patient

Blood glucose Bgr Blood glucose random count

Sodium Sod Sodium level in the blood

White blood cell count Wc White blood cell count of the patient

Hemoglobin Hemo Hemoglobin level in the blood

Packed cell volume Pcv Packed cell volume in the blood

Pus cell Pc pus cell count of patient

Potassium Pot Potassium level in the blood

Appetite Appet Patient’s appetite

Coronary artery disease Cad Does the patient have coronary artery
disease or not

To explain the proposed approach in an easy and efficient manner, a flow chart of the
whole procedure is given in Figure 2 and the steps are explained one–by–one as follows:
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𝐺𝑓𝑅 = 186 × (𝑐𝑟𝑒𝑎𝑡𝑒 )ିଵ.ଵହସ × (𝑎𝑔𝑒 )ି.ଶଷ × ቌ mLmin173mଶ ቍ 

Figure 2. Flow chart of the proposed model. LR: Logistic Regression; NB: Naïve Bayes; SVM:
Support Vector Machine; KNN: Nearest Neighbors; ANN: Artificial Neural Network; RFE: Recursive
Feature Elimination.

4.2. Proposed Algorithm

Procedure: The proposed approach for the detection of kidney disease
Input: Dataset of kidney disease records
Output: Performance of the prediction models in detecting kidney disease.
It has the following steps:
Step 1: The Glomerular Filtration Rate (GFR) is the most often utilized measure of kid-

ney health function in CKD medical therapy. In order to calculate which, the formula uses
information such as the patient’s blood creatinine, age, race, gender, and other variables.
As is widely accepted, the standard formula for renal disease modification of diet (MDRD).

G f R = 186 × (create )−1.154 × (age )−0.203 ×

(

mL
min

173 m2

)

(13)

Then preprocess the collected data: In this step, we preprocess the collected kidney
disease dataset. In the original dataset, the ‘rbc’ and ‘pc’ columns have normal, abnormal,
and empty values. The ‘rbc’ and ‘pc’ columns have 150 and 120 entries without any values,
respectively. In this dataset, the ‘pcc’ and ‘ba’ columns have ‘present’ and ‘not present’
values. The ‘cad’, ‘pe’, ‘htn’, ‘dm’, and ’ane’ columns have the values ‘yes’ and ‘no’. Also,
in this dataset, ‘appet’ has the values ‘poor’ and ‘good’. Therefore, preprocessing of this
dataset is a mandatory task for correct results. In this step, the empty values are replaced
by NaN. We converted nominal values to binary values as follows:
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1. In the ‘rbc’ and ‘pc’ columns, ‘normal’ and ‘abnormal’ nominal values are replaced
with 1 and 0, respectively.

2. In the ‘pcc’ and ‘ba’ columns, the ‘present’ and ‘nonpresent’ values are replaced with
1 and 0, respectively.

3. In the ‘htn’, ‘pe’, ’ane’, ‘dm’, and ‘cad’ columns, the values ‘yes’ and ‘no’ are replaced
with 1 and 0, respectively.

4. Finally, in the ‘appet’ column, ‘good’ and ‘poor’ are replaced with 1 and 0, respectively.

In the next step, null values are replaced by the average value of that particular
column’s values.

Step 2. Observe the relationship between different features. In this step, we find the
relationship between input and target features. We found that ‘pot’ and ‘ba’ are weakly
related to the target feature.

Step 3. Divide the dataset. In this step, we divide the dataset into training and testing
datasets using an 80:20 ratio. It means that 80% of data are used for training and 20% of
data are used for testing purposes.

Step 4. Set the parameters of the machine learning algorithms. In this step, the kidney
disease dataset’s processed features are used with machine learning algorithms to build
prediction models. We used Logistic Regression, Naive Bayes, Support Vector Machine,
K-Nearest Neighbors (KNN), and Artificial Neural Network (ANN) machine learning
algorithms. We applied a 10-fold cross validation for building the prediction models.

Let φ(x) be a ridge basis function, nonconstant, limited, and monotonically growing.
If K is a compact subset on Rn, and f (x1, . . . , xn) is a real-valued continuous function on K,
then K may be represented as a subset of Rˆn, where f is a collection of real numbers. Given
an arbitrary positive parameter, there are integer N and real parameters

vj, θj, wij for i = 1, . . . , n and j = 1, . . . , m.
f∼(x1, . . . , xn) = ∑

m
j=1 vjφj

(

∑
n
i=1 wijxi + θj

)

+ d
(14)

it satisfies the condition
maxX∈K| f∼(X)− f (X)| < ε (15)

We are saying that, for every given ε > 0, there exists a three-layer network, where
the hidden layer represented by the ridge basis function φ(x) and whose input–output
function is f∼(x1, . . . , xn), which has a maxX∈K| f∼(X)− f (X)| < ε mapping function
f∼(x1, . . . , xn) that results in f (x1, . . . , xn) being greater than or equal to ε.

Step 5. Feature selection. In this step, we select the best features using the Recur-
sive Feature Selection (RFE) and Chi-Square feature selection methods. As our kidney
disease data set was a labeled dataset, we used the wrapper and filter technique that is
the supervised feature selection technique. As we discussed earlier, the supervised feature
selection techniques were divided into three categories, which had different methods in
each category.

For feature selection, we used S = (U, C ∪ D) and B ⊆ C, where S is the set of
attributes of feature and attribute set D with respect to the conditional attribute subset B,
then the evaluation function for feature selection is defined by

σ(B, D) =
1
N
(σB(D1) + σB(D2) + · · ·+ σB(DN)) (16)

In this case, N is the number of decision classes generated by the decision attribute set
D, and is equal to σB(Di), i = 1, 2, . . . , N, reflecting the uncertainty measure of each decision
class, and σ(B, D) describes the integrated uncertainty degree of blocks D1, D2, . . . , DN .

Recursive Feature Elimination (RFE) is a feature selection algorithm of the wrapper
type. Internally, it employs filter-based techniques that are distinct from the filter approach.
It has two important configuration options: a. it specifies the number of features to be
selected, and b. it specifies the machine learning algorithm used in feature selection. In
the first case, it searches for a subset of features by considering all of the features in the
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training dataset and removing them until the required number of features remains. In the
second case, it employs a machine learning algorithm that ranks features [38] based on
their importance. It removes the least important features and then repeats the model fitting
process. The process is repeated until the specified number of features remain.

The Chi-Squared feature selection method investigates the relationship between the
input features and the target class. In this test, the Chi-Square value is calculated for each
input feature and the target class. It has the required number of features, as well as the
highest Chi-Square scores. We used the formula below to calculate the chi-square metric
(Xc2) between each target class feature and each input feature. It chooses only the input
features with the highest Chi-Squared values.

Chi-Square feature selection in data with m attribute values and k class labels as output.
Then, the value of χ2 is

χ2 =
m

∑
i=1

k

∑
j=1

(

Oij − Eij
)2

Eij
(17)

where Oij is the observed frequency.
Step 6. Build the prediction model using the selected features. In this step, again, we

applied 10-fold cross validation with the selected features and various machine learning
algorithms to build different prediction models.

Step 7. Finally, the performance of prediction models with all features and selected
features are compared.

5. Results and Analysis

To assess the performance of machine learning approaches, researchers use a variety
of performance metrics. To evaluate and compare the performance of proposed prediction
models, we used the precision, recall, F-measure, and accuracy performance measures.

5.1. Performance Measures

Accuracy is calculated by dividing the number of test records by the number of
successfully classified records. The percentage of True Positive (TP) records to the total
number of True Positive (TP) records in a certain class is called precision. There are two
types of recall: true positives and false negatives. The total number of records properly
categorized to the total number of records in a class is known as the recall ratio (FN). The
precision, recall, F-measure, and accuracy were calculated using the following formulas:

Precisioni =
TPi

TPi + FPi
(18)

Recalli =
TPi

TPi + FNi
(19)

Fβ =

(

1 + β2) precision ∗ recall

β2 ∗ precision + recall
(20)

where β is a parameter that can be used to give the importance to any one precision or recall.
Accuracy is commonly used as a measure for categorization techniques.

Accuracyi =
TPi + TNi

TPi + FPi + FNi + TNi
(21)

where TPi is the number of records correctly classified as belonging to the kidney disease
class, FPi is the number of records incorrectly classified as having kidney disease, FNi is
the number of records that were not classified as having a kidney disease, and TNi is the
number of images that were not assigned to the correct kidney disease class.
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Precision (P) is a metric that quantifies the proportion of correct positive outcomes
among all possible outcomes. It is computed as follows:

P = TP/(TP + FP) (22)

Specificity: The system’s ability to accurately recognize the absence of impurities in
the ghee picture is measured in this category. To obtain it, the number of true negatives
recognized in the photographs must be counted and divided by the amount of pure milk
included in the images. It was utilized to determine the specificity of the data.

Speci f icity (SP) = (TN)/(TN + FP) (23)

Mean: Means are a straightforward approach commonly used in pure mathematics, as
well as in analysis and computing; a wide variety of means have been invented to perform
these duties. During an image processing competition, the technique of filtering by the
mean is evaluated as abstraction filtering and is utilized for noise reduction.

X− =
∑

n
i=0 Xi

n
(24)

A measure of variability or diversity in statistics, the standard deviation is the most
widely used measure available to researchers. In the context of image processing, it
indicates what fraction of variance or dispersion occurs between the predicted value and
the observed value. An extremely low standard deviation suggests that the data points
have a strong tendency to be extremely near to one another. A large standard deviation, on
the other hand, shows that the data points are evenly distributed throughout a wide range
of values.

X−
rms =

√

∑
n
Xi=1

(Xi − X−)2

(n − 1)
(25)

We used Anaconda, an enterprise-ready, secure, and scalable data science platform,
and Spyder to build and analyze the prediction approaches (Python 3.6). To evaluate
the proposed method’s performance, we downloaded a kidney disease dataset containing
400 patient records. We pre-processed the data to remove null values and for other purposes.
The data set was divided into two parts: training and testing, with 80 percent of the records
in training and 20% in testing. Using machine learning algorithms, such as Logistic
Regression, NB, SVM, K-Nearest Neighbors (KNN), and Artificial Neural Network, we
developed a variety of prediction models (ANN).

The data correlation matrix was represented using Heatmap [6]. It shows how different
features interact with one another. It is a useful visualization technique for comparing the
values of any two features. A positive correlation indicates that, as the value of a feature
increases, so does the value of the target variable. It could be negative, implying that
increasing the value of a feature decreases the value of the target variable. The heatmap
was created with the help of the seaborn library. It visually displays which features are
closely related to the target variable. By simply looking at the different color tones used,
it can be determined which value is higher, lower, and so on. A heatmap correlation
matrix of kidney disease data was displayed. It showed that the Ane, Bgr, Bu, Sc, Pcv, Al,
Hemo, Age, Su, Htn, Dm, and Bp characteristics were highly related to the target variable
(represented in green color). This means that raising these parameter values raises the risk
of kidney disease.

5.2. Prediction Models with All Features

Table 3 and Figure 3 show the performance of the prediction models by considering
all features or, in other words, without applying any feature selection technique. From the
table and graph, we can see that the accuracies of the Logistic Regression, Naïve Bayes,

30



Healthcare 2022, 10, 371

SVM, KNN, and ANN-based prediction models with all features were 97.5%, 95%, 97.5%,
66.25%, and 65% respectively.

Table 3. Results of the prediction models with all features.

Machine Learning Precision Recall F-Measure Accuracy

Algorithms (%) (%) (%) (%)
Logistic regression 98 97 98 97.5

Naïve Bayes 95 95 95 95
Support Vector Machines 98 97 98 97.5

k-Nearest Neighbors 76 66 66 66.25
Artificial Neural Networks 42 65 51 65

Figure 3. Results of the prediction models with all features. SVM: Support Vector Machine; KNN:
K-Nearest Neighbors; ANN: Artificial Neural Network.

These also show that the accuracy of the Logistic Regression and SVM algorithm-based
prediction models were highest i.e., 97.5%. The ANN-based prediction model achieved
the lowest accuracy in the detection of kidney diseases. The performances of Logistic
Regression and SVM were the same and can be used interchangeably for the detection of
kidney diseases in the early stage. We can also see that the precision, recall, and F-measure
values were the highest for the Logistic Regression and SVM-based prediction models.

5.3. Prediction Models with RFE Feature Selection Technique

Recursive Feature Elimination (RFE) is a feature selection algorithm of the wrapper
type. It internally uses filter-based techniques; however, it is different to the filter approach.
It has two important configuration options: a. it specifies the number of features to be
selected, and b. it sets the machine learning algorithm in choosing the features. In the
first case, it searches a subset of features by considering all features present in the training
dataset and removes the features until the required number of features remains. In the
second case, it uses a machine learning algorithm and ranks the features by their importance.
It discards the least important features and repeats the model fitting process. The whole
process is repeated until the mentioned number of features remains.

Table 4 and Figure 4 show the results of the prediction models built with basic logistic
regression and with the RFE feature selection technique. From the table and graph, we can
see that it achieved 97.5% accuracy without feature selection and 91.25% accuracy with RFE
feature selection. It was also observed that the values of precision, recall, and F-measure
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were better without the RFE feature selection technique. Therefore, we conclude that the
accuracy of the basic logistic model is higher than that with the RFE feature selection
technique. Table 5 shows the results of the prediction models built with basic SVM and
with the RFE feature selection technique.

Table 4. Results of the LR model with RFE feature selection technique.

Performance Measure
Basic Logistic

Regression
Logistic Regression with RFE

Feature Selection

Precision (%) 98 92
Recall (%) 97 94

F-Measure (%) 98 93
Accuracy (%) 97.5 91.25

RFE: Recursive Feature Selection.

 

Figure 4. Comparison of LR Models with and without RFE feature selection. RFE: Recursive
Feature Selection.

Table 5. Results of the SVM model with the RFE feature selection technique.

Performance Measure Basic SVM SVM with RFE Feature Selection

Precision (%) 98 98
Recall (%) 97 96

F-Measure (%) 98 97
Accuracy (%) 97.5 96.25

SVM: Support Vector Machine; RFE: Recursive Feature Elimination.

From this, we can see that it achieved 97.5% accuracy without feature selection and
96.25% accuracy with RFE feature selection. It was also observed that the values of preci-
sion, recall, and F-measure were also better without the RFE feature selection technique.
Therefore, we conclude that the accuracy of the basic SVM model is higher than that with
the RFE feature selection technique.

5.4. Performance of Prediction Models with Chi-Square Feature Selection

In this subsection, from Table 3, we found that the accuracy of the Logistic Regression-
based model was highest among the other built models in the detection of kidney disease.
As we know, the feature selection technique may improve the performance of the model.
In this section, we applied the Chi-Squared (chi2) statistical test to select the K-best features
from the kidney disease-prediction dataset.
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The Chi-Square feature selection method checks the relationship between input fea-
tures and the target class. In this test, Chi-Square is determined among each input feature
and the target class. It provides the required number of features with the best Chi-Square
scores. It selects only those input features that have the maximum Chi-Square values. The
scikit-learn library provides the SelectKBest class that is used to select a specific number of
features in a suite of different statistical tests. Table 6 shows the scores of various features.
It shows that the Wbcc, Bgr, Bu, Sc, Pcv, Al, Hemo, Age, Su, Htn, Dm, and Bp features have
high scores in comparison with the other features.

Table 6. Features and their scores by the Chi-Square test.

Features Score

Wbcc 12,733.73
Bgr 2428.328
Bu 2336.005
Sc 354.4105

Pcv 324.7065
Al 228.1047

Hemo 125.0657
Age 113.4602
Su 100.95

Htn 86.29181
Dm 82.2
Bp 80.02432
Pe 45.10802

Ane 35.6116
Sod 28.7933
Pcc 24.07546

Rbcc 20.848
Cad 19.93604
Pc 14.16913
Ba 12.58705

Appet 12.58703
Rbc 9.416036
Pot 4.071145
Sg 0.005035

Wbcc: White Blood Cell Count; brg: Blood Glucose Random; Bu: Blood Urea; Sc: Serum Creatinine; Pcv: Packed
Cell Volume; Al: Albumin; Hemo: Hemoglobin; Su: Sugar; Htn: Hypertension; Dm: Diabetes Mellitus; Bp: Blood
Pressure; Pe: Pedal edema; Ane: Anemia; Sod: Sodium; Pcc: Pus cell clumps; Rbcc: Red blood cells count; Cad:
Coronary artery disease; Pc: Pus cell; Ba: Bacteria; Appet: Appetite; Rbc: Red blood cells; Pot: Potassium; Sg:
Ratio of the density of urine.

Table 7 and Figure 5 show the performance of the LR prediction model with the
Chi-Square feature-selection technique.

 

Figure 5. Results of the LR prediction model with Chi-Square feature selection.
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Table 7. Results of the LR prediction model with Chi-Square feature selection.

Performance Measure
Number of Features (K) Best

K > = 15K = 5 5 < K < 15

Precision (%) 96 100 100
Recall (%) 92 98 96

F-Measure (%) 94 99 98
Accuracy (%) 92.5 98.75 97.5

We evaluated the technique using a variety of best features. It was discovered that,
when the k-values ranged from 6 to 14, the model provided the best precision, recall,
f-measure, and accuracy, i.e., 100 percent, 98 percent, 99 percent, and 98.75 percent, respec-
tively. When k = 5 or fewer features are used, the model had the lowest accuracy. The table
also shows that, when more than 15 features were used, the model’s performance suffered.
As a result, it can be concluded that the model with more than 5 and less than 15 features
provided the highest accuracy in detecting kidney disease. The performance of the SVM
prediction model with the Chi-Square feature-selection technique is shown in Table 8.

Table 8. Comparative analysis of existing models on a dataset of 400 patients each with 24 attributes [2,27].

Method Accuracy Recall Precision F-Measure

Logistic regression [28] 91.8 1 0.98 0.98

KNN [29] 92.7 0.88 0.98 0.92

Naïve Bayes [30] 95.21% 0.92 1.00 0.94

SVM [31] 92.32 0.87 0.96 0.93

Decision tree [32] 93.45 0.95 1.00 0.96

Proposed method [33] 97.54 0.99 1.00 1.0
KNN: k-nearest neighbors algorithm; SVM: support vector machines.

We evaluated the technique with different numbers of best features. It was found that
the model achieved the best precision, recall, f-measure, and accuracy when the k-values
were greater than 15, i.e., 100%, 96%, 98%, and 97.5%, respectively. The model gave the
lowest accuracy when K = 5 or a smaller number of features was taken. From the table,
we also see that the performance of the model decreased whenever fewer than 15 features
were taken. Therefore, it can be concluded that the accuracy of the SVM model did not
increase by applying the Chi-Square test.

5.5. Comparison of Models with and without Feature Selection Technique

From all of the results, it can be seen that the accuracy of the Logistic Regression model
with the Chi-Square feature selection techniques was the best in the detection of kidney
disease. This result was the best among the other approaches in the detection of kidney
disease. Table 9 shows the results of various combinations of LR models and Figure 6
graphically compares the accuracy of the different models.

Table 9. Prediction models with and without various feature-selection techniques.

Prediction Model Accuracy (%)

Basic LR model 91.25
LR model + RFE feature selection 97.5

LR model + Chi-Square feature selection (K = 5) 92.5
LR model + Chi-Square feature selection (5 < K < 14) 98.75

LR model + Chi-Square feature selection (K > 14) 97.5
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Figure 6. Results of the models with and without feature selection. LR: Logistic Regression; REF:
Recursive Feature Elimination.

The accuracies of the basic LR model, LR model with RFE feature selection, LR model
with Chi-Square feature selection (K = 5), LR model with Chi-Square feature selection
(5K14), and LR model with Chi-Square feature selection (K > 14) were 91.25 percent,
97.5 percent, 92.5 percent, 98.75 percent, and 97.5 percent, respectively, as shown in Table 9.
This demonstrates that the Chi-Square method outperformed the RFE feature method in
terms of accuracy. It is also worth noting that the model produced good results, with
5 to 15 of the best features out of a total of 24. In summary, we achieved 98.5 percent
accuracy in detecting kidney disease. In comparison to existing approaches, this has the
highest accuracy.

As a result of the random forest algorithm, 250 positive samples (TP) and 150 negative
samples (TN) were correctly identified as positive. Positive (TP) samples were scored
at 94.74 percent by the SVM, KNN, and Decision Tree algorithms with an error (TN) of
5.26 percent each, and 97.37 percent by the SVM, KNN, and Decision Tree algorithms with
an error (TN) of 1.32 percent each. Table 6 shows the results of the four classifiers that
were used. The random forest method outperformed the other classifiers on all metrics,
including accuracy, precision, recall, and F1-score. The decision tree algorithm came in
second, with accuracy, precision, recall, and F1-score values of 99.17 percent, 100 percent,
98.68 percent, and 99.34 percent, respectively. As a result, the KNN algorithm achieved
98.33 percent accuracy, precision, recall, and an F1-score of 98.67 percent. The final SVM
accuracy, precision, recall, and F1-score were 96 percent, 92 percent, 93 percent, and
97 percent, respectively.

6. Conclusions and Future Work

In this paper, we developed many prediction models by using different machine
learning algorithms and feature-selection techniques. We used a dataset that contained a
large set of healthy and unhealthy patients with kidney disease. We used LR, SVM, and
many other classifiers to develop various prediction models. We exercised the prediction
models with Recursive Feature Elimination (RFE) and Chi-Square test feature selection
techniques. From the results, it was shown that the accuracy of the Logistic Regression
model with the Chi-Square feature selection technique achieved the best result in the
detection of kidney disease. This result was the best among other approaches in the
detection of kidney disease. It was also observed that the model achieved good results
with 5 to 15 best features among 24 features. It was also found that the Wbcc, Bgr, Bu, Sc,
Pcv, Al, Hemo, Age, Su, Htn, Dm, and Bp features had more significance in the detection of
kidney diseases. In the future, we will develop a hybrid approach for improving disease
detection accuracy before actual disease arises in humans.
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Abstract: The use of mHealth apps for the self-management of cardiovascular diseases (CVDs) is an
increasing trend in patient-centered care. In this research, we conduct a scoping review of mHealth
apps for CVD self-management within the period 2014 to 2021. Our review revolves around six
main aspects of the current status of mHealth apps for CVD self-management: main CVDs managed,
main app functionalities, disease stages managed, common approaches used for data extraction,
analysis, management, common wearables used for CVD detection, monitoring and/or identification,
and major challenges to overcome and future work remarks. Our review is based on Arksey and
O’Malley’s methodological framework for conducting studies. Similarly, we adopted the PRISMA
model for reporting systematic reviews and meta-analyses. Of the 442 works initially retrieved, the
review comprised 38 primary studies. According to our results, the most common CVDs include
arrhythmia (34%), heart failure (32%), and coronary heart disease (18%). Additionally, we found
that the majority mHealth apps for CVD self-management can provide medical recommendations,
medical appointments, reminders, and notifications for CVD monitoring. Main challenges in the
use of mHealth apps for CVD self-management include overcoming patient reluctance to use the
technology and achieving the interoperability of mHealth applications with other systems.

Keywords: cardiovascular diseases; mHealth; self-management

1. Introduction

According to the World Health Organization (WHO), cardiovascular diseases (CVDs)
are a group of disorders of the heart and blood vessels. They affect the normal behavior of
the organism and have an adverse impact on a patient’s emotional wellbeing, as well as
on their work, family, social, and economic environments. On a much larger scale, CVDs
are a public health concern due to their high prevalence, mortality, vulnerability, and the
high public costs implied in their management. According to the WHO, CVDs are and will
remain the number one cause of death globally at least for the following eight years. In
fact, by 2030 almost 23.6 million people are estimated to die from some form of CVD [1].
In 2017 alone, approximately 17.9 million people died from CVDs, representing 31% of
all global deaths. Overall, 85% of CVD-related deaths are due to either heart attacks or
strokes. People suffering from CVDs or those at greater risk of developing them need to
rely on effective means, such as counseling and medicines, for early CVD detection and
management.

Mobile health (mHealth) is a medical and public health practice supported by mobile
devices, such as mobile phones, portable monitoring devices, and personal digital assistants.
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It involves using strategies such as smartphone apps, global positioning systems (GPS), and
Bluetooth technologies. Approximately 500 million patients use mobile health (mHealth)
applications to support their self-healthcare activities [2]. In this sense, cardiovascular
mHealth is the most used in the mHealth domain through innovation, research, and
implementation in the areas of CVD prevention, cardiac rehabilitation, and education [3].
Additionally, the most promising domains of mHealth use have to do with blood pressure
monitoring, cardiac rehabilitation, arrhythmia monitoring, medication management, and
social support.

mHealth apps hold promise for delivering health information and services to patients,
especially for chronic diseases such as CVDs, which require extensive self-management.
Self-management is key to person-centered care, but its support requires an understanding
of individual preferences for different types of health information and decision-making
autonomy. The self-management of chronic conditions requires the ability to manage
the symptoms, treatment, physical, and psychosocial consequences and lifestyle changes
inherent to living with a chronic condition. Additionally, self-management is inherent to
person-centered care that promotes a balanced consideration of the values, needs, expecta-
tions, preferences, capacities, health, and wellbeing of all the constituents and stakeholders
of the healthcare system. Effective self-management and person-centered care require full
accommodation of people’s needs and preferences for different types and amounts of infor-
mation and other care services, a degree of autonomy in health-related decision-making,
and support from their healthcare professionals and family members [4].

Current studies investigating mHealth interventions for patients with CVDs have
returned mixed findings. Hence, more effort and work are needed to create engaging
mHealth platforms that provide the necessary level of support to make sustained behavioral
change. Similarly, addressing specific motivational, physical, and cognitive barriers to
mHealth adoption among patients might increase the utilization of future interventions. It
is also important to adopt new approaches that minimize the weaknesses of commercially
available mobile apps [5].

We found related reviews that are focused on mobile apps for CVDs self-management
using different technologies. These reviews studied the impact of incorporating mobile
applications for symptom tracking, medication reminding, self-care support, and physio-
logical state monitoring on the self-management of CVD patients’ health. In addition, we
identified that most of these proposals addressed the prevention and treatment of heart
failure, arrhythmias, and coronary disease. Searcy et al. [5] documented the use domains
of mHealth in CVD management, the barriers to mHealth adoption in older adults, and
future directions for mHealth to increase engagement in this population. Furthermore,
other studies [6–11] have explored the effectiveness, acceptability, and usefulness of mobile
applications for CVD self-management and risk factor control using a variety of perfor-
mance metrics. These studies have identified the most attractive features of the applications,
such as the monitoring of healthy behaviors and the personalization of content. In ad-
dition, they have concluded that cardiovascular disease risk factors and behaviors are
modifiable in the short term. Other authors [3,4,12] studied the mHealth apps for CVD
prevention and management. Likewise, Cruz-Martínez et al. [13] identified interventions
of self-management through the use of remote monitoring technologies. Other studies
have rather focused on the self-management of specific CVDs. For instance, Refs. [14,15]
analyzed the effect of the use of wearables and apps for cardiac rehabilitation of arrhythmia
patients, whereas [16–18] studied a series of prevention and treatment programs for heart
failure management through mHealth. Additionally, in [2,19–22] the functionalities of
mHealth apps for heart failure self-management were evaluated.

The main difference between our scoping review and similar state-of-the-art reviews
is that ours addresses more CVDs than those more frequently addressed in other reviews.
Our scoping review aims at describing the current state of mHealth apps for CVD self-
management by analyzing six aspects: (1) main CVDs managed, (2) main app functionali-
ties, (3) common wearables used with these apps, (4) disease stages managed, (5) common
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approaches used for data extraction, analysis, and management, and (6) challenges and
future work remarks. The review comprises a body of scientific literature issued from 2014
to mid-2021. The remainder of this paper is organized as follows: Section 2 introduces the
materials and methods used to conduct the review. In Section 3, we present our results with
respect to the research questions, whereas in Section 4, we discuss such findings. Finally,
our conclusions are summarized in Section 5.

2. Materials and Methods

Our review is based on Arksey and O’Malley’s [23] methodological framework for
conducting studies as well as on the recommendations of Levac regarding such a frame-
work [24]. Similarly, we adopted the PRISMA model proposed by Moher et al. [25] for
reporting systematic reviews and meta-analyses and the PRISMA-ScR model extension.
Next, we relied on the work of Tricco et al. [26] to determine how to organize and present
the scoping review findings. The scoping review comprises five development phases:
(1) identify research questions, (2) identify relevant studies, (3) select relevant studies,
(4) chart the data, and (5) collate, summarize, and report findings.

2.1. Research Questions

We formulated seven research questions that framed our scoping review, helped us
meet our research goals, and guided us throughout the reviewing process.

• RQ1. Which CVDs are most commonly managed by mHealth apps?
• RQ2. Which mHealth apps for CVD self-management are reported in the literature?
• RQ3. What are the main functionalities of mHealth apps for CVD self-management?
• RQ4. What are the major remarks for future work and challenges to be overcome by

mHealth apps for CVD self-management?
• RQ5. Which approaches to data extraction, analysis, and management are commonly

implemented in mHealth apps for CVD self-management?
• RQ6. Which wearables are commonly used to detect, monitor, and/or identify CVDs?
• RQ7. Which CVD stages are commonly managed by mHealth apps?

2.2. Inclusion and Exclusion Criteria

At the first stage of the search strategy, we defined the repositories in which we would
search for the primary studies. These repositories included IEEE Xplore Digital Library,
PubMed, ScienceDirect (Elsevier), SpringerLink, and Wiley Online Library. According to
our preliminary search, these digital libraries hosted a greater amount of related literature
when compared to other repositories, such as ACM (Association for Computing Machinery)
Digital Library and Web of Science. Additionally, we relied on Google Scholar to expand
our search. At the second stage of the search strategy, we performed a keyword search for
primary studies issued within the 2014–2021 period. Table 1 lists such keywords, which
were used both individually and combined using the conjunctions “and” and “or” to
broaden our results.

The following queries were built to search for primary studies in each selected repository.

1. ‘Cardiovascular disease’ AND (‘Self-management’ OR ‘Self-care’ OR ‘Self-monitoring’)
AND (‘mHealth’ OR ‘mobile application’ OR ‘smart application’ OR ‘wearable’ OR
‘smartwatch’ OR ‘app’). The analysis of the preliminary results of this query revealed
relevant search terms related to different cardiovascular disease types. Query 2 includes
these search terms to expand on the relationship identified.

2. (‘Heart disease’ OR ‘Cardiac issues’ OR ‘Heart failure’ OR ‘Arrhythmia’ OR ‘Coronary
heart disease’ OR ‘Atrial Fibrillation’ OR ‘Hypertension’ OR ‘Cardiac arrest’ OR ‘Pe-
ripheral artery disease’) AND (‘Self-management’ OR ‘Self-care’ OR ‘Self-monitoring’)
AND (‘mHealth’ OR ‘mobile application’ OR ‘smart application’ OR ‘wearable’ OR
‘smartwatch’ OR ‘app’).

Finally, we used the PRISMA model as a guide to organize and report our results.
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Table 1. Keywords and related concepts.

Area Keywords Related Concepts

Cardiovascular disease

Self-management
Self-care

Self-monitoring
Heart disease
Cardiac issues
Heart failure
Arrhythmia

Coronary heart disease
Atrial Fibrillation (AF)

Hypertension
Cardiac arrest

Peripheral artery disease

mHealth
mobile application
smart application

wearable
smartwatch

app

2.3. Study Selection and Eligibility

At the end of the search process, we found 442 relevant results: 33 from IEEE Xplore
Digital Library, 105 from PubMed, 96 from ScienceDirect (Elsevier), 57 from SpringerLink,
16 from Wiley Online Library, and 135 from Google Scholar. Then, after removing duplicates,
we relied on 159 articles for the first analysis, which necessitated classifying these papers
by title and abstract. We performed a full-text reading of 84 of these articles, 38 of which
were finally used in the scoping review (see Figure 1).

 

 
 
 

Figure 1. Study selection process—PRISMA diagram flow.
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Once we gathered the initial 442 studies, we selected those containing at least two of
the keywords listed in Table 1 in their abstract. Then, we removed those papers that were
not directly related to CVD self-management. Following this step, we kept just 159 studies:
16 from IEEE Xplore Digital Library, 35 from PubMed, 27 from ScienceDirect (Elsevier), 12
from SpringerLink, 10 from Wiley Online Library, and 59 from Google Scholar. Next, we
analyzed these papers with respect to our set of established exclusion criteria:

1. Studies on diseases other than CVDs;
2. Studies conducted in domains other than health self-management;
3. Studies written in languages other than English.

The remaining 38 primary studies were those comprising the scoping review. We
downloaded the entire file of each study to ensure its proper analysis. As depicted in
Figure 2, the majority of the studies (92.1%) were published in journals, 2.6% were issued
as book chapters, and 5.3% were published in conference proceedings. Moreover, most of
the studies were published between 2017 and 2018.

 

Figure 2. Type of publication from 2014 to 2021.

Figure 3 illustrates the geographical distribution of our primary studies. As can be
observed, most of them were conducted in the United States.

Figure 3. Geographical distribution of primary studies.
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As regards allocation (see Figure 4), the majority of the primary studies were collected
from PubMed, followed by Google Scholar, and then ScienceDirect. Research articles
retrieved from SpringerLink, Wiley Online Library, and IEEE were less frequent.

 

 
 

 

 

 

 

Figure 4. Primary studies by digital libraries.

2.4. Data Collection and Analysis

Once we defined the primary studies to be used in the review, we retrieved their
bibliographic data and content data. The former included research title, authors, research
goals, and database of provenance. The latter refer to the information contained in each
study helping us answer our research questions (see Section 2.1).

3. Results

We reviewed the studies with respect to six aspects (see Table 2) aligned with our
research questions. These aspects are listed and briefly explained below:

1. Type of CVD that is managed by each mHealth app.
2. Main app functionalities. Central capabilities of mHealth apps for CVD self-management,

including (a) medical recommendations for patient follow-up, (b) real-time alerts
before vital sign alterations, (c) medication management, (d) report of monitored
parameters, (e) reminders for patient adherence to medication, physical activity,
and/or dietary plans, (f) patient–physician communication via text messages, and
(g) atrial fibrillation (AF) detection.

3. Challenges and/or future work remarks (when applicable). Main challenges to
overcome and/or suggestions for future work for mHealth apps used in CVD self-
management.

4. Approaches to data analysis, extraction, and management. The approaches were
identified such as (a) machine learning techniques, (b) machine learning tasks, (c) big
data types, and (d) device/sensor types. We identified mHealth apps relying on large
datasets and big data analysis techniques. Additionally, there are apps relying on
machine learning algorithms (MLAs) or techniques. Finally, we detected mHealth
apps relying on sensors/wearables to obtain patient data (e.g., vital signs).

5. Device and apps. Information on the wearables and web and mobile apps—either
commercially available or purposefully developed in the study itself—used by each
mHealth app to retrieve patient data and biomedical variables.

6. CVD phase or set of phases managed by each mHealth app reviewed. The main CVD
phases identified were diagnosis, prevention, monitoring, and treatment.
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Table 2. Comparison of the main characteristics of mHealth apps.

Study Reference CVD Main App Functionalities
Challenges and/or Future

Work Remarks
Approaches

Device or Web/Mobile
Application

CVD Phase

Zisis et al. [27] Heart failure Medical recommendations,
reminders, weight control

Computer skills of the patient,
hearing problems, impaired

vision, and cognitive
impairment

Supervised machine learning
(classification)

Smartphone or
Tablet, Heart Failure app

Monitoring,
treatment

Bohanec et al. [28] Heart failure

Nutrition management,
managing medication intake,
psychological support, daily

Exercise management,
monitoring biomedical

variables, medical
recommendations

Increased adaptation to the
patients’ lifestyle, add methods

for recognizing
patients’ activities, and

integrating the optimization
module in a smart-home

environment

Supervised machine learning
(random forest algorithm),

classic differential evolution
algorithm, and IoT device (heart

rate, blood pressure)

Wristband, Blood pressure
monitor,

HeartMan Web app

Monitoring,
treatment

Heiney et al. [29] Heart failure

Text messages for
communication between

patients and physicians, weight
and symptoms control, medical
recommendations, medication

management

Disparate population with low
literacy, low health literacy, and

limited smartphone use
IoT device (heart rate) Smartphone, Healthy Heart

app
Monitoring,
treatment

Koirala et al. [30] Heart failure Medical recommendations Implement the app in a real
environment

Big data type (unstructured
data), Supervised machine

learning
Smartphone Prevention, diagnosis

Gonzalez-Sanchez et al. [31] Heart failure Medical recommendations

Overcome patient resistance
behavior toward using

technology
Add more functionality to the

mobile app

Unsupervised machine learning Smartphone, Evident II app Prevention

Barret et al. [32] Heart failure Medical recommendations
Measure patient variables

Greater focus on CVD
asymptomatic patients

Unsupervised machine learning Smartphone, Abby Web app Prevention, treatment

Silva et al. [33] Heart failure Medical recommendations

Ensure interoperability of
mHealth apps for remote

monitoring, Heart rate
measurement automation

Unsupervised machine learning Smartphone, MOVIDA.eros
app

Monitoring,
treatment

Foster [34] Heart failure Medical recommendations,
alerts

Implement the app in a real
environment Unsupervised machine learning Smartphone, HF mobile app Monitoring,

treatment

Sakakibara et al. [35] Heart failure
Medical recommendations,

alerts,
medication management

Implement the app in a real
environment

Big data type (unstructured
data)

Smartphone,
mobile app

Prevention,
treatment

45



Healthcare 2022, 10, 322

Table 2. Cont.

Study Reference CVD Main App Functionalities
Challenges and/or Future

Work Remarks
Approaches

Device or Web/Mobile
Application

CVD Phase

De la Torre-Diez et al. [36] Heart failure Medical recommendations,
alerts

Integrate the app system with
EMR systems, Improve the

usability of the mobile app, Add
serious games to the app

Unsupervised machine learning Smartphone, Heartkeeper
app Treatment

K. Rahimi et al. [37] Heart failure
Medical recommendations,

alerts,
medication management

Integrate the app system with
EMR systems, Increase wearable

precision

Unsupervised machine learning,
IoT device (heart rate, sensor

Sp02)

Smartphone, SUPPORT-HF
app, Oximeter

Monitoring,
treatment

Bartlett et al. [38] Heart failure Step count calculation, weight
control, blood pressure control

Overcome technological
problems

IoT device (heart rate, blood
pressure)

SMART Personalized
Self-Management System
(PSMS), HTC HD2 phone,
MiFi device, mobile app

Monitoring,
treatment

Turchioe et al. [39] Arrhythmia Medical recommendations Overcome patient resistance to
technology Unsupervised machine learning Smartphone Prevention,

monitoring

Pierleoni et al. [40] Arrhythmia Medical recommendations,
alerts

Implement application in a real
environment

Big data type (unstructured
data), Unsupervised machine

learning
Smartphone Monitoring,

treatment

Reverberi et al. [41] Arrhythmia AF detection Implement algorithm for AF
detection

IoT device (heart rate, ECG),
Supervised machine learning

(classification)

HR monitor of the
chest-strap type, RITMIA

app
Prevention

Fukuma et al. [42] Arrhythmia AF detection Increase patient monitoring
time IoT device (heart rate, ECG)

T-Shirt-type wearable, ECG
monitor,

Hitoe Transmitter 01,
smartphone

Prevention,
treatment

Bumgarner et al. [43] Arrhythmia AF detection

Increase sample size,
Increase the performance of the

KB smartwatch algorithm,
Review the real-time display of

the ECG recording

IoT device (heart rate, blood
pressure), Unsupervised

machine learning

Kardia Band, Apple Watch,
KB app

Prevention,
monitoring

Krivoshei et al. [44] Arrhythmia AF detection, monitoring of
heart rate, pulse wave analysis

Test the algorithm on a
smartwatch Unsupervised machine learning Smartphone,

iPhone 4S Prevention

Guo et al. [45] Arrhythmia
Medical recommendations,

medication management, alerts,
medical record

Overcome patient resistance to
using technology Supervised machine learning Smartphone,

mAF app Treatment
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Table 2. Cont.

Study Reference CVD Main App Functionalities
Challenges and/or Future

Work Remarks
Approaches

Device or Web/Mobile
Application

CVD Phase

Evans et al. [46] Arrhythmia AF detection

Extend study to other hospitals
serving low-resource areas,

Ensure interoperability with
further systems

IoT device (heart rate, blood
pressure), Supervised machine

learning (classification)

AliveCor Kardia mobile
ECG device, iPhone and

iPad

Diagnosis,
monitoring

Halcox et al. [47] Arrhythmia AF detection

The relatively high
false-positive rate in the minor
proportion of those reported as

AF by the device

IoT device (heart rate, blood
pressure), Supervised machine

learning (classification)

AliveCor Kardia device,
iPad

Diagnosis,
monitoring

Lowres et al. [48] Arrhythmia iPhone handheld
electrocardiogram (iECG)

Using iECG self-monitoring
among other patient groups Supervised machine learning

iPhone and
AliveCor Heart monitor

(iECG)
Monitoring

Hickey et al. [49] Arrhythmia AF detection Implement the application in a
real environment

IoT device (heart rate, blood
pressure), Supervised machine

learning (classification)

AliveCor Kardia mobile
ECG device, iPhone

Diagnosis,
monitoring

McManus et al. [50] Arrhythmia AF detection Improve pulse recording and
app performance

IoT device (heart rate),
Supervised machine learning

(classification)

PULSE-SMART app, iPhone
4S

Diagnosis,
monitoring

Kakria et al. [51] Arrhythmia
Alerts, monitoring of heart rate,

blood pressure, and
temperature

Solve the problem of delayed
alarms in remote areas

IoT device (heart rate, blood
pressure, stress level)

Smartphone, Zephyr BT
system, G plus sensor, the

Omron Wireless Upper Arm
blood pressure monitor

Diagnosis,
monitoring

Brouwers et al. [52] Coronary heart
disease

Medical recommendations,
alerts Sedentary patients IoT device (heart rate)

Patient-centered web app,
accelerometer, heart rate

monitor

Monitoring,
treatment

Zhang et al. [53] Coronary heart
disease Medical recommendations

Ensure interoperability of
applications for remote

monitoring

Big data type (unstructured
data), Unsupervised machine

learning

Smartphone, Care4Heart
app Prevention

Athilingam [54] Coronary heart
disease

Medical recommendations,
alerts,

medication management

Overcome patient resistance to
using technology

Replace current sensor with
handheld sensor

IoT device (heart rate),
Supervised machine learning

Smartphone, HeartMapp,
BioHarness Bluetooth

sensor

Monitoring,
treatment

Dale et al. [55] Coronary heart
disease

Text messages for
communication of patients and

physicians

Implement the app in a real
environment Big data type (structured data) Smartphone Treatment
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Table 2. Cont.

Study Reference CVD Main App Functionalities
Challenges and/or Future

Work Remarks
Approaches

Device or Web/Mobile
Application

CVD Phase

Skobel et al. [56] Coronary heart disease Exercise module,
activity level monitoring

Automatic arrhythmia
detection

IoT device (heart rate, ECG,
respiration, activity),

Supervised machine learning

HeartCycle’s guided exercise
(GEX) system, tablet or laptop,
portable PDA for ECG display,

shirt with sensors

Diagnosis,
monitoring

AM et al. [57] Coronary heart disease
Educational material,

medication reminders, and
activity level monitoring

Train medical personnel and
patients IoT device (heart rate) Smartphone Monitoring,

treatment

Dale et al. [58] Coronary heart disease

Text messages for
communication of patients and

physicians, medical
recommendations,

weight control

Implement app in a real
environment IoT device (heart rate) Smartphone, web app

Text4Heart Treatment

Jiang et al. [59] Several (coronary heart
disease and hypertension)

Alerts,
medication management

Achieve acceptance of
mHealth solutions among
older patient populations,

Improve app design

Supervised machine learning
(Regression)

Smartphone,
mobile app Treatment

Baek et al. [60]

Several (atrial fibrillation,
hypertension, chest pain,

vasovagal syncope, variant
angina, and dyspnea on

exertion)

Medical recommendations,
alerts, diary, weight control

Improve app usability,
Integrate app system with
EMR (Electronic Medical

Record) systems

IoT device (heart rate) Smartphone Treatment,
monitoring

Supervía &
López-Jimenez [61]

Several (heart failure,
coronary heart disease,

tachycardias, arrhythmia, and
hypertension)

Medical recommendations Guarantee patient data
protection and confidentiality

Unsupervised machine
learning Smartphone Treatment

Tinsel et al. [62]

Several (heart failure,
Coronary heart disease,

tachycardias, arrhythmia, and
hypertension)

Medical recommendations,
alerts

Overcome patient resistance
to using technology IoT device (heart rate) Mobile app Prevention,

treatment

Martorella et al. [63]

Several (heart failure,
coronary heart disease,

tachycardias, arrhythmia and
hypertension)

Medical recommendations,
medication management

Screen questionnaire to tailor
content according to chronic
postsurgical pain (CPSP) risk

factors

Not specified Web app Monitoring,
treatment

Johnston et al. [64]

Several (myocardial infarction,
angina pectoris, heart failure,

atrial fibrillation, embolic
stroke, peripheral artery
disease, hypertension)

Medication management, text
messaging, reminders,

e-diary, exercise module, BMI
module, and blood pressure

module

Improve patient self-reported
drug adherence IoT device (heart rate) Smartphone, web-based app Treatment
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4. Discussion

4.1. RQ1. Which CVDs Are Most Commonly Managed by mHealth Apps?

The CVDs most commonly managed by mHealth apps in the literature are arrhythmias,
heart failure, and coronary heart disease. Arrhythmia self-management is present in
34% of the reviewed studies [39–51], whereas heart failure self-management exhibited a
frequency of 32% [27–38]. In turn, coronary heart disease self-management is present in
18% [52–58]. Additionally, 16% of the papers explore the self-management of several CVDs
simultaneously [59–64].

We attribute this to the fact that these diseases have a high prevalence and mortality
worldwide. In this regard, we believe that researchers are mainly focusing on solutions for
the management of arrhythmias, specifically atrial fibrillation, because it affects 25% of the
population aged over 40 years.

Some studies analyzed mHealth apps that address more than one cardiovascular
disease at a time; we believe that this is due to the patients’ risk factors, which can cause
comorbidities, i.e., one disease can develop from another. However, our recommendation
is that mHealth applications should focus only on one particular disease to provide more
accurate forecasts, as each disease has its own characteristics.

4.2. RQ2. Which mHealth Apps for CVD Self-Management Are Reported in the Literature?

As regards arrhythmia self-management, mHealth apps include the RITMIA smart-
phone app [41], the KB app [43], the mAF app [45], and PULSE-SMART [50]. Generally
speaking, these apps issue medical recommendations and allow for the early detection of
AF, the most common type of arrhythmia. mHealth apps for arrhythmia self-management
generally focus on arrhythmia prevention, diagnosis, and monitoring. The monitoring
devices that can be connected to these apps are the T-shirt-type wearable ECG monitor and
the AliveCor Kardia Mobile ECG.

mHealth apps for heart failure self-management include the Heart Failure app [27],
HeartMan [28], Healthy Heart [29], Evident II [31], Abby [32], MOVIDA.eros [33], Heart-
Keeper [36], and SUPPORT-HF [37]. The majority of them focus on heart failure monitoring
and treatment through issuing medical recommendations and medication management.
Oximeters and sensors for blood pressure measurement are the most common devices
connected to these apps.

The Care4Heart [53], HeartMapp [54], and Text4Heart [58] apps support coronary
heart disease self-management. They primarily issue medical recommendations, reminders,
and alerts and offer medication management. Most of these apps focus only on coronary
heart disease monitoring. Devices and wearables such as heart rate monitors, the Bio-
Harness Bluetooth sensor, portable ECG monitors, and T-shirts with sensors are usually
connected to these applications.

mHealth apps such as those reported in [59–64] aim at supporting the self-management
of multiple CVDs. These mHealth apps mainly provide medical follow-up recommen-
dations for physical activity or dietary plans. Likewise, they issue medication reminders
and real-time warnings before potential vital sign alterations. We found that 63.6% of the
mHealth apps are compatible with the Android operating system, whereas 13.6% support
iOS, and 22.8% support both (see Table 3).

It is reasonable to believe that there are more mHealth applications for the Android
operating system because it is the most popular operating system in the world. However,
we found in this research that the most complete mHealth application is the Kardia app,
which is available for the iOS operating system only. Therefore, we believe that it is
important to develop cross-platform mHealth applications; in this regard, an alternative
would be the use of PWA (progressive web app) development technologies.

Another remarkable finding is that only 2 of the 16 mobile applications analyzed are
available through digital distribution platforms: (1) MOVIDA.eros and (2) the Kardia app.
Moreover, some of the applications analyzed were subjected to user acceptance tests with
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small groups of patients; in addition, some of them are not widely available because they
are still in development. In this regard, we believe there is an opportunity to release free
trial versions of the mHealth applications to test them with larger patient samples.

Table 3. mHealth applications for CVD self-management.

CVD Study Mobile App Name Android iOS

Heart failure

Zisis et al. [27] Heart Failure app �

Bohanec et al. [28] HeartMan �

Heiney et al. [29] Healthy Heart �

Gonzalez-Sanchez et al. [31] Evident II �

Barret et al. [32] Abby �

Silva et al. [33] MOVIDA.eros � �

Foster [34] HF mobile app � �

Sakakibara et al. [35]
Bartlett et al. [38] Not specified �

De la Torre-Diez et al. [36] HeartKeeper �

K. Rahimi et al. [37] SUPPORT-HF �

Arrhythmia

Reverberi et al. [41] RITMIA �

Bumgarner et al. [43]
Evans et al. [46]
Halcox et al. [47]
Lowres et al. [48]
Hickey et al. [49]

Kardia app �

Krivoshei et al. [44] Unstated �

Guo et al. [45] mAF app � �

McManus et al. [50] PULSE-SMART �

Kakria et al. [51] Not specified �

Coronary heart
disease

Zhang et al. [53] Care4Heart � �

Athilingam [54] HeartMapp �

AM et al. [57] Not specified �

Dale et al. [58] Text4Heart �

Other CVDs

Jiang et al. [59] Not specified �

Supervía & López-Jimenez [61]
Tinsel et al. [62] Not specified � �

4.3. RQ3. What Are the Main Functionalities of mHealth Apps for CVD Self-Management?

We identified six main functionalities of mHealth apps for CVD self-management (see
Table 4):

• Recommendations (F1). Medical recommendations issued for patient follow-up in
terms of dietary plans, physical activity, and overall health status.

• Alerts/reminders/text messages (F2). (a) Early, real-time warnings issued before
potential vital signal alterations, (b) medication, physical activity, and/or dietary
reminders, and (c) text messages communication between patients and physicians.

• Parameter monitoring (F3). Reports of monitored patient parameters, such as active
minutes, burned calories, weight, step count, traveled distance, heart rate, blood
pressure, body temperature, and physical activity.

• Medication management (F4). Control and follow-up of patient medication.
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• Patient medical history (F5). Electronic health records (EHRs) including clinical data,
medical history, diagnoses, medications, treatment plans, allergy test records, and
laboratory and test results.

• AF detection (F6). Early detection of AF using heart rate monitoring and ECG results.

To summarize our findings on the main functionalities of mHealth apps for CVD
self-management, 57.9% of these apps issue medical recommendations to
patients [27–37,39,40,45,52–54,58,60–63], whereas 47.3% can generate reminding notifica-
tions or alerts for medical appointments [27,29,34–37,40,45,51,52,54,55,57–60,62,64]. Addi-
tionally, 34.2% of these apps monitor patient parameters, such as physical activity, step
count, weight control, blood pressure, heart rate, pulse wave, and body
temperature [27–29,38,44,48,51,56–58,60,64], while 21% allow for AF detection [41–44,46,47,49,50].
Finally, 21% allow for medication management [27,29,35,37,45,54,59,63,64], and 10.5% allow
patients to access their electronic health records [28,45,60,64].

Table 4. Main functionalities of mHealth apps for CVD self-management.

CVD Study F1 F2 F3 F4 F5 F6

Heart failure

Zisis et al. [27] � � � �

Bohanec et al. [28] � � �

Heiney et al. [29] � � � �

Koirala et al. [30] �

Gonzalez-Sanchez et al. [31] �

Barret et al. [32] �

Silva et al. [33] �

Foster [34] � �

Sakakibara et al. [35] � � �

De la Torre-Diez et al. [36] � �

K. Rahimi et al. [37] � � �

Bartlett et al. [38] �

Arrhythmia

Turchioe et al. [39] �

Pierleoni et al. [40] � �

Reverberi et al. [41] �

Fukuma et al. [42] �

Bumgarner et al. [43] �

Krivoshei et al. [44] � �

Guo et al. [45] � � � �

Evans et al. [46] �

Halcox et al. [47] �

Lowres et al. [48] �

Hickey et al. [49] �

McManus et al. [50] �

Kakria et al. [51] � �

Coronary heart disease

Brouwers et al. [52] � �

Zhang et al. [53] �

Athilingam [54] � � �

Dale et al. [55] �

Skobel et al. [56] �

AM et al. [57] � �

Dale et al. [58] � � �

Several

Jiang et al. [59] � �

Baek et al. [60] � � � �

Supervía & López-Jimenez [61] �

Tinsel et al. [62] � �

Martorella et al. [63] � �

Johnston et al. [64] � � � �
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Most of the mHealth applications studied in this work have been demonstrated to
be useful in the self-management of CVDs. There is evidence that these applications have
changed the behavior of CVDS patients. This can be attributed to the self-alignment of
patients to healthier lifestyles and to the constant monitoring of their vital signs. In addition,
in the event of any change in patients’ health status, these applications allow relatives and
doctors to be notified to provide immediate care and avoid any health complications.

As part of the findings of this research, we identified six main features of the analyzed
applications: (1) simplicity of user interface, (2) professional medical assistance, (3) con-
nection with other services, (4) management of medical record, (5) reliable information,
and (6) real-time biometric data tracking. In addition, we identified characteristics that
are currently not considered in the development of applications to prevent and detect
cardiovascular diseases: management of psychological health and family participation.
Additionally, we suggest incorporating the following features: virtual rewards/gaming
features, social media integration, and data privacy, since they are characteristics commonly
sought by users.

The results of the usability tests performed for the mHealth applications have shown
that the age factor influences the importance that users give to the applications’ character-
istics. Therefore, for children and adolescents, we recommend applications with simple
user interfaces, which include social media integration and are oriented towards virtual
rewards/gaming. We recommend, however, fully customizable applications with features
such as psychological health management and family integration for adult patients.

4.4. RQ4. What Are the Major Remarks for Future Work and Challenges to Be Overcome by
mHealth Apps for CVD Self-Management?

Since CVD self-management implies dealing with and managing a significant number
of data, a lack of comprehensive information may hinder the correct functioning of mHealth
apps for CVD self-management. To overcome this problem, many studies recommend
implementing scalable app designs and ensuring the interoperability of these apps with
other systems. In this sense, we found that only 4 of the 38 applications reviewed allow
patients to access their electronic health records, yet this information is crucial both for
patients and for CVD self-management.

Additionally, over 60% of the reviewed apps request access to patient personal infor-
mation without a clear indication of how such information would be stored or used. In this
sense, since privacy concerns might affect app usage, application developers should inte-
grate privacy protection measures into their future designs. Other challenges to overcome
include improving user satisfaction with respect to app functionalities and supporting
patients in their learning of how to use the applications correctly. It is also important that
future mHealth apps for CVD self-management address patient psychological health in
their design [4]. We also found that none of the reviewed applications possess all the six
functionalities for CVD self-management listed in Section 4.3. Hence, we conclude that
the apps lack sufficient functions to support patients in effectively self-managing their
CVD. Finally, functionalities for patient family involvement have not been sufficiently
implemented in these apps.

4.5. RQ5. Which Approaches to Data Extraction, Analysis, and Management Are Commonly
Implemented in mHealth Apps for CVD Self-Management?

The approaches to data extraction, analysis, and management used by mHealth
apps for CVD self-management include machine learning techniques (supervised and
unsupervised approaches), machine learning tasks (classification, clustering, regression),
big data (structured and unstructured data), and IoT devices/sensors (see Table 5).

Big data make it possible to take advantage of the large amount of information that
results from patients accessing health services. These data include, for instance, personal
information, electronic medical records, social media data, telehealth data, clinical trials,
and even biometric data from wearables [65–67]. In this context, we also found that
mHealth apps may equally rely on data mining and sentiment analysis techniques. As
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for association rules and neural networks, they allow mHealth apps to create solutions
for better decision making based on real data, thus improving CVD diagnosis, proposing
customized treatment plans, reducing medical errors, increasing the effectiveness of CVD
prevention measures, and promoting better CVD self-management.

Table 5. Main approaches to data extraction and analysis in mHealth apps for CVD self-management.

CVD Study
Machine Learning

Techniques and Tasks
Big Data Types IoT Devices/Sensors

Heart failure

Zisis et al. [27] � �

Bohanec et al. [28] � �

Heiney et al. [29] �

Koirala et al. [30] � �

Gonzalez-Sanchez et al. [31] �

Barret et al. [32] �

Silva et al. [33] �

Foster [34] �

Sakakibara et al. [35] �

De la Torre-Diez et al. [36] �

K. Rahimi et al. [37] � �

Bartlett et al. [38] �

Arrhythmia

Turchioe et al. [39] �

Pierleoni et al. [40] � �

Reverberi et al. [41] �

Fukuma et al. [42] �

Bumgarner et al. [43] � �

Krivoshei et al. [44] �

Guo et al. [45] �

Evans et al. [46] � �

Halcox et al. [47] � �

Lowres et al. [48] �

Hickey et al. [49] � �

McManus et al. [50] � �

Kakria et al. [51] �

Coronary heart disease

Brouwers et al. [52] �

Zhang et al. [53] � �

Athilingam [54] �

Skobel et al. [56] � �

AM et al. [57] �

Dale et al. [58] �

Several

Jiang et al. [59] �

Baek et al. [60] �

Supervía & López-Jimenez [61] �

Tinsel et al. [62] �
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In regard to the IoT devices/sensors, this approach allows mHealth apps to retrieve
real-time data on patient biometric variables, such as body temperature, heart rate, and
blood pressure, through wearables, which in turn allow physicians to monitor patients
remotely [27,28,68–70]. Additionally, wearables provide apps with real-time data that
facilitate risk factor tracking and prevent CVD events [71]. In this regard, even though
IoT platforms can integrate data from medical devices, wearables, and apps, defining
data privacy parameters seems to be a considerable challenge to overcome; nevertheless,
wearables have been shown to enable effective CVD detection outside of clinics [72].

Finally, mHealth apps for CVD self-management may also resort to machine learn-
ing techniques to mainly create predictive models that support—for example—medical
diagnosis and treatment plans and predict the evolution of CVDs and their potential
complications [27,28,73–77].

4.6. RQ6. Which Wearables Are Commonly Used to Detect, Monitor, and/or Identify CVDs?

According to our findings, 85% of the reviewed mHealth apps for CVD self-management
rely on smartphones, whereas the remaining 15% use some type of wearable. We iden-
tified the five wearable devices most commonly connected to mHealth apps for CVD
self-management: chest strap (W1), heart rate monitors (W2), T-shirt-type wearable ECG
monitor (W3), the portable ECG monitor (W4), and the smartwatch/smartbands (W5).
Table 6 below summarizes such findings. On the other hand, less common devices include
pulse oximeters (Sp02 sensors), MiFi devices, and the Hitoe Transmitter 01 device.

Table 6. Main Wearables for CVD Monitoring.

CVD Study W1 W2 W3 W4 W5

Heart failure
Bohanec et al. [28] � �

Bartlett et al. [38] �

Arrhythmia

Reverberi et al. [41] �

Fukuma et al. [42] �

Bumgarner et al. [43] � �

Evans et al. [46] � �

Halcox et al. [47] � �

Lowres et al. [48] � �

Hickey et al. [49] � �

Kakria et al. [51] � �

Coronary
heart disease

Brouwers et al. [52] �

Athilingam [54] � �

Skobel et al. [56] � �

We found that it is essential to consider the use of wearables and other types of devices
for monitoring biomedical variables automatically. Wearables such as smartwatches and
smartbands can successfully assist in CVD detection and prevention. In addition, in most
cases, these devices can be synchronized with cloud platforms such as Google Fit, thus
storing all the data generated in the cloud. These platforms also allow synchronized data
to be retrieved and integrated into mHealth applications.

The Xiaomi Mi Band is one of the most successful families of sport bracelets on the
market, whose success could be due to its low price. It works, however, with another
mobile application called Mi Fit, which can also be synchronized with Google Fit. We
recommend this smartband as a great option for monitoring blood pressure and heart rate
with high precision.

4.7. RQ7. Which CVD Stages Are Commonly Managed by mHealth Apps?

Many mHealth apps for CVD self-management can support patients throughout
multiple stages of a CVD. As can be observed from Table 7, 63.2% of the mHealth apps can
manage CVD treatment, 57.9% cover CVD monitoring, 28.9% focus on CVD prevention,
and 18.4% allow for CVD diagnosis.
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Table 7. Disease stages managed by mHealth apps for CVD self-management.

CVD Study Prevention Diagnosis Monitoring Treatment

Heart failure

Zisis et al. [27] � �

Bohanec et al. [28] � �

Heiney et al. [29] � �

Koirala et al. [30] � �

Gonzalez-Sanchez et al. [31] �

Barret et al. [32] � �

Silva et al. [33] � �

Foster [34] � �

Sakakibara et al. [35] � �

De la Torre-Diez et al. [36] �

K. Rahimi et al. [37] � �

Bartlett et al. [38] � �

Arrhythmia

Turchioe et al. [39] � �

Pierleoni et al. [40] � �

Reverberi et al. [41] �

Fukuma et al. [42] � �

Bumgarner et al. [43] � �

Krivoshei et al. [44] �

Guo et al. [45] �

Evans et al. [46] � �

Halcox et al. [47] � �

Lowres et al. [48] �

Hickey et al. [49] � �

McManus et al. [50] � �

Kakria et al. [51] � �

Coronary heart disease

Brouwers et al. [52] � �

Zhang et al. [53] �

Athilingam [54] � �

Dale et al. [55] �

Skobel et al. [56] � �

AM et al. [57] � �

Dale et al. [58] �

Several

Jiang et al. [59] �

Baek et al. [60] � �

Supervía & López-Jimenez [61] �

Tinsel et al. [62] � �

Martorella et al. [63] � �

Johnston et al. [64] �

Most of the analyzed applications focused on the treatment of CVDs. These apps were
tested by patients diagnosed with a heart disease, showing positive results. We suggest that
new mHealth apps focus on the early stages of CVD management, specifically on detection,
to allow doctors and patients to prevent medical complications.

5. Conclusions

The goal of this scoping review was to describe the current state of mHealth apps
for CVD self-management through our analysis of six aspects: (1) CVDs commonly ad-
dressed, (2) main functionalities of mHealth apps for CVD self-management, (3) wearables
used for CVD detection, monitoring, and identification, (4) disease stages managed by
mHealth apps, (5) current approaches to data extraction, analysis, and management, and
(6) current challenges to overcome and future work remarks for mHealth apps used in
CVD self-management. The scoping review was performed on 38 primary studies, from
which we propose the following conclusions: First, arrhythmia is the most common CVD
addressed by mHealth apps, with a frequency of 34% (RQ1). Additionally, 63.6% of the
mobile applications used by these mHealth apps are compatible with the Android operat-
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ing system, whereas 13.6% support iOS, and 22.8% support both (RQ2). Additionally, the
majority of the reviewed mHealth apps can provide patients medical recommendations,
issue medical appointment reminders, and generate notifications for CVD monitoring
(RQ3). The two major challenges these applications must overcome are patient resistance
to using the technology and the lack of interoperability between mHealth apps and other
systems (RQ4). In regard to the approaches for data extraction, analysis, and manage-
ment, we found that the majority of the mHealth apps for CVD management rely on
big data (structured and unstructured data), IoT devices/sensors and machine learning
techniques (supervised and unsupervised approaches), and implementing classification,
clustering, and regression algorithms (RQ5). Finally, smartphones—specifically Android
smartphones—are commonly connected to mHealth apps for CVD self-management, even
though wearables are becoming increasingly used (RQ6). Finally, the great majority of
mHealth apps for CVD self-management focus on CVD treatment rather than on any other
disease phase (RQ7). As regards our suggestions for future work, we first recommend
conducting a systematic review of diseases that are correlated with CVD, such as diabetes
and hypertension. Likewise, new research efforts should concentrate on exploring the
implications of the increasing use of wearables for managing CVDs such as arrhythmia,
heart failure, coronary heart disease, and cardiopathies.
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Abstract: Among mental health diseases, depression is one of the most severe, as it often leads to
suicide; due to this, it is important to identify and summarize existing evidence concerning depression
sign detection research on social media using the data provided by users. This review examines
aspects of primary studies exploring depression detection from social media submissions (from 2016
to mid-2021). The search for primary studies was conducted in five digital libraries: ACM Digital
Library, IEEE Xplore Digital Library, SpringerLink, Science Direct, and PubMed, as well as on the
search engine Google Scholar to broaden the results. Extracting and synthesizing the data from each
paper was the main activity of this work. Thirty-four primary studies were analyzed and evaluated.
Twitter was the most studied social media for depression sign detection. Word embedding was the
most prominent linguistic feature extraction method. Support vector machine (SVM) was the most
used machine-learning algorithm. Similarly, the most popular computing tool was from Python
libraries. Finally, cross-validation (CV) was the most common statistical analysis method used to
evaluate the results obtained. Using social media along with computing tools and classification
methods contributes to current efforts in public healthcare to detect signs of depression from sources
close to patients.

Keywords: depression; social media; sentiment analysis

1. Introduction

Mental disorders are a worldwide health problem affecting a large number of people
and causing numerous deaths every year. According to a World Health Organization
(WHO) report, the most common major disorders in 2017 included anxiety (284 million
sufferers), depression (264 million), bipolar disorder (46 million), schizophrenia (20 million),
and eating disorders (16 million) [1].

According to the American Psychiatric Association (APA), depression is a serious and
common medical condition that negatively affects how people feel and act and the way
they think. Fortunately, major depression is also treatable. Depression is an important
factor in suicide among both adolescents and the elderly, but those with a late onset of
depression are at higher risk [2]. In fact, nearly 800,000 people die due to suicide every
year, and suicide alone is the second leading cause of death among 15–29 year-old people
(WHO). Depression can lead to physical and emotional problems and can affect a person’s
ability to work [3]. Furthermore, the stress factors of the COVID-19 crisis indicate that a
great number of people in the world may be in the course of developing depression as a
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result of the new and unusual lifestyle caused by the pandemic. It is also common for the
effects of a viral disease to affect people’s moods, causing them to go into depressive states;
moreover, the COVID-19 crisis has increased the chances of depression, which in turn will
make recovery from the pandemic harder across a spectrum of needs [4]. According to
Szmuda [5], during the current situation, telemedicine and social media allow patients
to receive healthcare while still practicing social distancing, the principal anti-pandemic
defense. Moreover, bots can be adjusted quickly based on the latest research findings
and WHO recommendations on COVID-19. With triage being exclusively handled by
bots, nurses and clinicians can devote more of their time to patient care. We can say
that the focus of this research is valuable in the application of tools to detect the onset of
depressive problems in people so that they can be used in healthcare institutions, as well
as in the support of individuals, making those who suffer from mental problems more
participatory in relation to their mental health. When the period of social isolation finishes,
people suffering from depression will have a harder time returning to their common social
activities and exercise, and when the virus infection abates, people with depression are
more likely to suffer from immunological problems, making them more prone to other
conditions [6].

During this time, it is crucial for psychiatrists to become familiar with screening and
triage procedures and work closely with public health specialists and physicians to reduce
the problems that their patients face [7].

The study of social media, particularly in the public health domain, is a rapidly grow-
ing research area. For instance, social media are commonly used to monitor outbreaks of
infectious diseases [8–11] and understand trends in prescription medication usage [12].
Furthermore, several authors [13–16] claim that the value of social media in understand-
ing mental health is of the utmost importance, since they provide access to the public
accounts, behaviors, activities, thoughts, and feelings of users that may be indicative of
their emotional wellbeing.

Since social media information is of great value for identifying people at risk of de-
pression or with other mental disorders, many models and systems have been developed
to detect the signs and symptoms of mental illnesses from social media data. For instance,
Renara et al. [17] found that sentiment analysis on social media could help monitor the
mood of a person, which is particularly important since people with depression symptoms
experience similar feelings and have similar behavior, which are often expressed through
what they post on their social media platforms. To perform sentiment analysis, the n-gram
model, i.e., a set of n consecutive words, is commonly used. In fact, several authors [18–21]
use the n-gram model for the specific case of n equals one (n = 1), which is also called
unigram. According to De Choudhury and Gamon [13], the following unigrams are associ-
ated with depression signs or symptoms: retraction, psychosis, harsh, delusions, ADHD,
imbalance, sleeplessness, suicidal, vertigo, retching, attacks, sleep, seizures, addictive,
weaned, swings, dysfunction, appetite, fuzzy, irritability, episodes, headache, tiredness,
edging, anxiety, burden, heaviness, and somnolent. On the other hand, investigations
from these authors [22–25] have demonstrated the results obtained in this topic. From
this perspective, it seems relevant for the scientific community to perform a systematic
literature review to identify and become familiar with the social media sites and features of
datasets, methods for linguistic feature extraction, machine-learning algorithms, computing
tools, and statistical analysis methods currently employed to determine depression on
social media.

The scope of this research is to identify and summarize the existing evidence concern-
ing depression sign detection on social media via computing tools, methods for linguistic
feature extraction, statistical analysis techniques, and machine-learning algorithms. The
research follows the methodology proposed by Brereton et al. [26] to review relevant liter-
ature from the last five years (from 2016 to mid-2021), which were retrieved from major
academic digital libraries. Then, we synthetize the results from our primary sources using
strategies for reducing bias and random errors. Our findings highlight the social media
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sites, computing tools, methods for linguistic feature extraction, statistical analysis tech-
niques, and machine-learning algorithms most used in depression sign detection research.
We also analyze and discuss literature reviews similar to ours to emphasize the progress
being made in terms of depression sign detection via innovative techniques. The review is
focused on the research into depression sign detection and seeks to elucidate the different
methods used for detecting depression on social media using sentiment analysis.

An Overview of Machine-Learning Techniques, Dataset Features, and Social Media

Sentiment analysis (SA) is a technique for analyzing consumer opinions and producing
data that can depict these opinions as a whole [27]. SA is also known as opinion mining,
a text analysis technique that analyzes the opinions of human emotions toward entities
and the features that exist in these entities [28]. In the context of SA, a feature is an item
that people talk about in relation to services, products, policies, events, organizations, or
individuals. The combination of features and corresponding sentiment words can help
produce accurate, meaningful, and high-quality sentiment analysis results [27].

Machine-learning (ML) techniques are applied in sentiment classification to organize
text into positive, negative, or neutral categories. Training datasets and testing datasets are
used in ML techniques. The training datasets are applied to learn the documents, while the
testing datasets are used to validate the execution of ML techniques [29]. As Maetschke
et al. [30] explain, machine-learning algorithms comprise supervised, unsupervised, and
semisupervised methods. Unsupervised methods are applied on expression data but have
a lower prediction capability than supervised methods. Supervised methods need data
on known associates for training, and these are often scarce. Semisupervised methods
can be trained with fewer interaction data but are generally less accurate predictors than
supervised methods.

Social media allows researchers to obtain behavioral data relevant to a person’s way
of thinking, emotional state, communication, activities, and means of relating. The texts
that are published on social networks allow the detection of feelings of uselessness, guilt,
powerlessness, and self-aversion that determine the signs of depression. According to De
Choudhury and Gamon [13], changes in social relationships, activity, and language can be
applied to build statistical models that allow the detection and prediction of depression in a
more precise way, including ways that can complement traditional diagnostic approaches.

The rest of this paper is organized as follows: Section 2 discusses the goal and justifi-
cation of the research, while Section 3 explains the methods, which include our research
questions, search strategy, selection process of primary studies, and data extraction process.
The results of the review are included in Section 4, whereas in Section 5 we introduce a
discussion of the results. At the end, in Section 6 we define the conclusions and suggestions
for future work.

2. Research Goal and Need for Literature Review

This literature review seeks to identify and summarize existing evidence concerning
depression sign detection research on social media using methods of linguistic feature
extraction, machine-learning algorithms, computing tools, and statistical analysis methods.
Currently, there are works that address a theme similar to that of this work. Table 1 lists
research works similar to ours, for example, Guntuku et al. [31] focus on studies aimed
at predicting mental illness using social media. First, they consider the methods used
to predict depression, and then they consider four approaches that have been used in
the literature: prediction based on survey responses, prediction based on self-declared
mental health status, prediction based on forum membership, and prediction based on
annotated posts. Wang et al. [32] examined relevant investigations with the Beck Depres-
sion Inventory-II for measuring depression in medical settings to provide guidelines for
practicing clinicians. The Beck Depression Inventory-II showed high reliability and good
correlation with the measures of depression and anxiety. Its threshold for detecting de-
pression varied according to the type of patient, suggesting the need for adjusted cutoff
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points. The somatic and cognitive–affective dimension described the latent structure of the
instrument. Gottlieb et al. [33] showed that contextual interventions for the prevention and
treatment of depressive symptoms and psychological distress can be effective, though very
limited data exist in this field. Policy implications include a greater emphasis on improving
conditions to decrease the incidence of depression and other mental disorders.

Although the aforementioned works share some similarities with our research, none
of them review sentiment-analysis-based initiatives. Moreover, only one of the works
reviewed social media for predicting mental illnesses, but it did not specifically focus on
depression sign detection. From this perspective, we conclude that the principal differences
between our literature review and similar works are as follows: (1) we analyze the most
recent relevant works; (2) we identify the social media sites most commonly studied and
the features of the datasets retrieved; and we determine (3) the linguistic feature extraction
methods, (4) machine-learning algorithms, (5) computing tools, and (6) mathematical
analysis methods most commonly applied in depression sign detection from social media.

Table 1. Summary of related studies.

Study Reference Approach Year Studies Reviewed Years Covered

Guntuku et al. [31] Predictive models 2017 12 2013–2017
Wang and

Gorenstein [32]
Beck Depression

Inventory-II 2013 70 1996–2012

Gottlieb et al. [33] Social contexts 2011 30 1997–2008

3. Methods

This literature review examines quantitative and qualitative aspects of primary stud-
ies exploring depression detection from social media submissions via novel approaches
and methods. We followed the three-stage methodology depicted in Figure 1, which was
proposed by Brereton et al. [26] as a straightforward method for conducting systematic
literature reviews. The planning stage of the methodology comprises three steps: (a) deter-
mine need for literature review, (b) state research questions, and (c) review the protocol.
Next, the conducting stage of the methodology comprises four steps: (a) determine search
strategy, (b) select primary studies, (c) extract data, and (d) synthesize data. In the end, the
documenting stage involves three steps: (a) obtain results, (b) identify threats to validity,
and (c) establish conclusions.

Figure 1. Literature review process.
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3.1. Research Questions and Motivations

Five research questions were formulated that oriented the research and helped meet
the objectives of the review. These questions are listed in Table 2.

Table 2. Research questions.

Research Question (RQ) Question

RQ1 Which social media sites and features of datasets are mainly used in
depression sign detection research?

RQ2 Which are the main linguistic feature extraction methods used for
detecting depression signs on social media?

RQ3 Which are the main machine-learning algorithms used in
depression sign detection from social media?

RQ4 Which are the main computing tools applied in detecting
depression signs on social media?

RQ5 Which are the main statistical analysis methods used to validate
results in detecting depression signs on social media?

3.2. Search Strategy

The search for primary studies was conducted in five digital libraries: ACM Digital
Library, IEEE Xplore Digital Library, SpringerLink, Science Direct, and PubMed, as well as
on the search engine Google Scholar to broaden our results. We selected the libraries based
on their prestige and popularity in the scientific community, since they all provide access
to a large proportion of digital literature, especially peer-reviewed articles, on a wide range
of topics, including those related to our research. In a second step, we conducted a search
based on keywords. To do this, we performed two tasks: we first identified a set of words or
phrases in relation to our search topic (i.e., keywords); then, we identified related concepts.
As for the search period, our review was intended to be not only accurate, but also up to
date. To this end, the search covered the last six years—from 2016 to mid-2021. Finally,
regarding the keyword search, Table 3 lists the set of keywords and related concepts used.

Table 3. Keywords and related concepts of the literature review.

Area Keywords Related Concepts

Mental health Depression Mental illness
Social media Social media Mental disorder

Social networks
Social web
Microblogs

Twitter
Facebook

Reddit
Instagram

Weibo
NHANES

The search strings were formed by combining the keywords listed in Table 3 using
connectors “AND” and “OR” as follows: ((Depression) OR (Mental Health) OR (Mental
illness) OR (Mental disorder) AND (Social media OR Social networks OR Social web OR
Microblogs OR Twitter OR Facebook OR Reddit OR Instagram OR Weibo OR NHANES))
Year: 2016–2021. As Figure 2 shows graphically, we found 482 relevant search results: 154
from IEEE Xplore Digital Library, 89 from SpringerLink, 78 from ACM Digital Library, 62
from Google Scholar, 62 from PubMed, and 37 from ScienceDirect.

According to Figure 2, the majority of the literature regarding depression detection
on social media is produced by IEEE, followed by SpringerLink and ACM. Conversely,
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Google Scholar and PubMed provide access to fewer research articles on the subject matter.
Finally, we found lowest number of publications relevant to our search on Science Direct.

Figure 2. Research papers by digital libraries.

3.3. Selection of Primary Studies

We selected only studies including at least one of the keywords such as Depression,
Social Media, and related concepts (see Table 3).

We identified 420 records through database searching; furthermore, we identified
62 additional records through other sources such as Google Scholar. After the duplicates
were removed, we obtained 287 papers that determined the records screened. Once we had
read the abstracts, were excluded 95 (57 master and doctoral dissertations and 38 papers
not written in English). Then, we read the full articles assessed for eligibility and excluded
158 studies conducted in domains other than detecting depression signs on social media
to obtain the studies included in the synthesis (192). Finally, we obtained 34 studies that
constituted the studies included in the quantitative synthesis.

A PRISMA diagram [34] is shown in Figure 3 that represents the flow diagram of the
papers searched and chosen for our review.

We retrieved and analyzed 192 full text articles assessed for eligibility but only con-
sidered 34 primary studies. As depicted in Figure 4, 59% of the retrieved publications
were published in journals, 32% in conference proceedings, and 9% as book chapters. As
regards the year of publication, 8 papers were issued in 2016 (journals); 26 papers were
published in 2017 (7 in conference proceedings, 18 in journals, and 1 as a book chapter);
35 papers were published in 2018 (12 in conference proceedings, 20 in journals, and 3 as
book chapters); 40 were issued in 2019 (14 in conference proceedings, 22 in journals, and 4
as book chapters); 49 papers were published in 2020 (18 in conference proceedings, 25 in
journals, and 6 as book chapters); and finally, 34 papers were published in the first half of
2021 (10 in conference proceedings, 20 in journals, and 4 as book chapters).

Figure 5 graphically represents the geographical distribution of the retrieved publi-
cations. As can be seen, the majority of the research was conducted in the United States
(29%), China (24%), India (12%), England (9%), Spain (5%), Taiwan (5%), Thailand (3%),
Switzerland (3%), Germany (3%), Brazil (1%), Israel (1%), Saudi Arabia (1%), Argentina
(1%), Canada (1%), Mexico (1%), Australia (1%), and Iran (1%).
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Figure 3. PRISMA flow diagram for the literature search.

Figure 4. Type of publication from 2016 to mid-2021.
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Figure 5. Geographical distribution.

3.4. Data Extraction

We retrieved two types of data from the papers: bibliographic data and content data.
The former included information such as research title, author names, research goal, and
research database; the latter concerned actual information on the research, namely, the stud-
ied social media sites and dataset features, along with the computing tools, linguistic feature
extraction models, mathematical analysis methods, and machine-learning algorithms used
for depression sign detection. The following section discusses our findings.

4. Results

As previously mentioned, we initially retrieved 192 relevant works but ultimately
selected and reviewed 34 primary studies, which better described the researched topic. The
findings of the review are discussed in the following five subsections, corresponding to our
five research questions. The first subsection discusses the most common social media sites
and corresponding features of datasets used for depression detection on social media. In the
second subsection, we discuss linguistic feature extraction methods from sentiment analysis
found in the literature. Then, in the third subsection, we discuss the machine-learning
algorithms most commonly applied when trying to detect depression signs from social
media data, whereas the fourth subsection identifies the most common computing tools
used to process the data. Finally, the fifth subsection reviews the main statistical analysis
methods used to validate the results of the classification algorithms applied.

4.1. RQ1: Which Are the Main Social Media Sites and Dataset Features Used in
Depression Detection?

Table 4 lists the social media sites and features of datasets most commonly studied in
depression detection research during the period of 2016 to mid-2021.

According to Table 4 and Figure 6, Twitter, Reddit, and Facebook—in that specific
order—are the social media sites most commonly studied. In the case of Twitter, the study
of Leis et al. [35] was applied to texts in Spanish and was developed in two steps. In the
first step, the selection of users and the compilation of tweets were performed. A total of
three datasets of tweets were created, a depressive users dataset (made up of the timeline
of 90 users who explicitly mentioned that they suffer from depression), a depressive tweets
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dataset (a manual selection of tweets from the previous users, which included expressions
indicative of depression), and a control dataset (made up of the timeline of 450 randomly
selected users). In the second step, the comparison and analysis of the three datasets of
tweets were carried out.

Table 4. Social media and corresponding features of datasets used in depression detection research.

Social Media Study Features of Dataset

Twitter Leis et al. [35] 140,946 tweets
Kr [36] 4000+ tweets
Shen et al. [37] 36,993 depression-candidate dataset users

Chen et al. [38] 585 and 6596 unique and valid users with their
past tweets

Arora and Arora [39] 3754 tweets
Biradar and Totad [40] 60,400 tweets
Ma et al. [41] 54 million tweets
Nadeem [42] 1,253,594 documents (tweets) as control variables

Yazdavar et al. [43] 8770 users, including 3981 depressed users and
4789 control subjects

Titla-Tlatelpa et al. [44] 7999 users with Twitter submissions
Chiong et al. [45] 22,191 records
Safa et al. [46] 570 users from the control group of 16,623,164 tweets

Reddit Leiva and Freire [47] 135 depressive users, 752 control-group users
Rissola et al. [48] 1,076,582 submissions from 1707 unique users
Sadeque et al. [49] 531,453 submissions from 892 unique users
Tadesse et al. [50] 1293 depression-indicative posts, 548 standard posts
Wolohan et al. [51] Reddit posts from a sample of 12,106 users
Burdisso et al. [52] 887 subjects with 531,394 submissions

Trotzek et al. [53] 135 depressed users and a random control group of
752 users

Titla-Tlatelpa et al. [44] 1707 users, Reddit eRisk 2018 task
Martinez-Castaño
et al. [54]

eRisk collections containing up to 1000 posts and
1000 comments

Facebook Tai et al. [55] 3599 diaries
Katchapakirin et al. [56] 35 Facebook users
Wongkoblap et al. [57] 509 users in the final dataset
Wu et al. [58] 1294 students with their data
Yang, Mcewen, et al. [59] 22,043,394 status updates from 153,727 users
Aldarwish and
Ahmad [60] 2287 posts

Ophir et al. [61] 190 Facebook status updates of at-risk adolescents
Chiong et al. [45] Facebook, Virahonda, 9178 records

Instagram Ricard et al. [62] data from 749 participants
Reece and Danforth [63] 43,950 user photographs and data

Mann et al. [64] 221 students, mean of 16.73 posts per student
(60 days)

Chun et al. [65] 520 users from Instagram through the data
collection method

Weibo Li et al. [66] 15,879 Weibo posts from 10,130 distinct Weibo users
Lixia Yu et al. [67] 7,116,958 posts

NHANES,
K-NHANES Oh et al. [68]

dataset of 28,280 participants with 157 variables for
NHANES and 4949 participants with 314 variables
for K-NHANES

In the case of Reddit, Rissola et al. [48] introduced a methodology to automatically
gather post samples in English of depression and nondepression and used the dataset to
train models which are able to determine whether a post conveys evidence of depression.

Katchapakirin et al. [56] employed Natural Language Processing (NLP) techniques to
develop a depression detection algorithm for the Thai language on Facebook, which people
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use as a tool for sharing opinions, feelings, and life events. Results from 35 Facebook users
indicated that Facebook behaviors could predict depression level.

Instagram is less prominently researched form of social media, since the platform em-
phasizes photograph and video sharing rather than text sharing, although some researchers
have focused on the alternative text descriptions from Instagram posts to develop their
research. We also found a few social media sites that are distinctive to a particular region.
For instance, Weibo was studied in China by Li et al. [66], and K-NHANES and NHANES
in Korea and the US, respectively, by Oh et al. [68]. Some of these studies were designed
to be applied among speakers of other languages, such as Chinese, Thai, Korean, Arabic,
and Portuguese. Overall, our findings indicate a growing use of social networking services
around the globe.

Figure 6. Social media sites explored in depression sign detection research.

4.2. RQ2: Which Are the Main Linguistic Feature Extraction Methods Used for Detecting
Depression Signs on Social Media?

Table 5 lists our findings in response to the second research question.

Table 5. Linguistic feature extraction methods used for detecting depression signs on social media.

Model Study

Word embedding Rissola et al. [48]
Wongkoblap et al. [57]

Wu et al. [58]
Ma et al. [41]

Yazdavar et al. [43]
Trotzek et al. [53]
Mann et al. [64]

Titla-Tlatelpa et al. [44]
Yueh et al. [65]

N-grams Wolohan et al. [51]
Rissola et al. [48]

Sadeque et al. [49]
Arora and Arora [39]

Wolohan et al. [51]
Nadeem [42]

Titla-Tlatelpa et al. [44]
Chiong et al. [45]

Safa et al. [46]
Tokenization Tadesse et al. [50]
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Table 5. Cont.

Model Study

Arora and Arora [39]
Biradar and Totad [40]

Aldarwish and Ahmad [60]
Trotzek et al. [53]

Titla-Tlatelpa et al. [44]
Chiong et al. [45]

Safa et al. [46]
Bag of words Ricard et al. [62]

Rissola et al. [48]
Nadeem [42]

Mann et al. [64]
Titla-Tlatelpa et al. [44]

Chiong et al. [45]
Safa et al. [46]

Stemming Tadesse et al. [50]
Arora and Arora [39]

Aldarwish and Ahmad [60]
Emotion analysis Leis et al. [35]

Shen et al. [37]
Chen et al. [38]

Part-of-Speech (POS) tagging Wu et al. [58]
Leis et al. [35]

Chiong et al. [45]
Behavior features Wu et al. [58]

Yang, McEwen, et al. [59]
Sentiment polarity Leis et al. [35]

Rissola et al. [48]

Methods for linguistic feature extraction are important since researchers need to
use basic elements to determine whether a person shows or does not show depression
symptoms. As can be observed from Table 5, word embedding is a prominent model used
to detect depression from social media data. In word embedding, each word from a text
is listed as a continuous, low dimensional, and real-valued vector [58], and researchers
may combine word embedding with other methods for better results. For instance, Rissola
et al. [48] combined word embedding with the bag-of-words model to build a depression-
post classifier using depression-positive sample posts (D+); depression-negative sample
posts (D−); unigrams; word count; and the polarity scores, sadness scores, and happiness
scores of words.

The n-gram model is another effective tool in depression sign research. According
to Damashek [69], in the n-gram model a document can be listed as a vector whose
components are the relative frequencies of its distinct constituent n-grams. In their work,
Wolohan et al. [51] found that the best performing model for depression sign identification
mixes word-and-character n-grams with LIWC features. As for tokenization, another model
for linguistic feature extraction, Arora and Arora [39] explain that it is a process of a giving
a token to a sequence of characters that we want to treat as a group; treating text as a
token enables the creation of counts of tokens, which can be used as features. In the work
of Aldarwish [60], the tokenize operator splits the text of a document into a sequence of
tokens. For instance, the research of Tadesse et al. [50] reports the use of tokenization
for data preprocessing in order to divide social media posts into individual tokens. Next,
all the URLs are divided by punctuation and stop words. Then, the researchers applied
stemming to decrease the words to their root form and join similar words together. As for
the bag-of-words model, Nadeem [42] describe it as an approach that uses the frequency of
word occurrence to determine the content of a tweet. In the bag-of-words model used by
Rissola et al. [48], each post is depicted with the raw frequency of the unigrams from the
textual content of the posts.
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According to Arora and Arora [39], the stemming model for linguistic feature extrac-
tion refers to the process of grouping words that are close in meaning. In the study of Arora
and Arora [39], the goal was to remove the suffix of a word to retrieve its base form, thus
reducing redundancy. In the process of feature extraction, stemming is regularly combined
with tokenization. Emotion analysis, behavior feature extraction, polarity, and POS tagging
are less frequently used to detect depression from social media. As Shen et al. [36] claim, an
emotion analysis determines whether the emotional state of depressed users differs from
that of common users. Authors Shen et al. [37] studied emotion-related words and extracted
positive and negative word counts from recent tweets using LIWC. As for the behavior
feature extraction model, its usefulness is related to the fact that depression sufferers are
inclined to focus on themselves and detach from others; moreover, they rarely succeed at
communicating with others. Researchers Ramirez-Esparza et al. [70] performed behavior
feature extraction on social media posts to identify the behavior of depression sufferers.
Additionally, Wu et al. [58] applied this model with POS tagging, UKW (unknown word),
word embedding, content-based features, and living-environment features.

In the polarity model, emotions can be tied to the sentiment polarity of a message
defined by the text. In their research, Liu and Liu [28] consider that the negative polarity of
social media posts (i.e., a value below zero) is a good indicator of unhappiness or distress,
especially when the posts come from users with depression. In their work, Rissola et al. [48]
combined the polarity score, word count, happiness score, and sadness score of social media
posts to build a depression predictor model. Finally, POS tagging is a form of syntactic
analysis with countless applications in Natural Language Processing (NLP). According to
Lovins [71], it is also one of the most basic parts of the linguistic pipeline.

4.3. RQ3: Which Are the Main Machine-Learning Algorithms Used for Detecting Depression
Signs on Social Media?

To respond to this question, Table 6 lists our review of the machine-learning algorithms
used in depression sign detection research.

Table 6. Machine-learning algorithms.

Machine-Learning Algorithm Study

Support vector machine (SVM) Leiva and Freire [47]
Rissola et al. [48]

Katchapakirin et al. [56]
Sadeque et al. [49]

Chen et al. [38]
Tadesse et al. [50]

Arora and Arora [39]
Wolohan et al. [51]

Yang, McEwen, et al. [59]
Burdisso et al. [52]

Li et al. [66]
Nadeem [42]

Yazdavar et al. [43]
Oh et al. [68]

Aldarwish and Ahmad [60]
Mann et al. [64]

Titla-Tlatelpa et al. [44]
Chiong et al. [45]

Safa et al. [46]
Logistic regression Leiva and Freire [47]

Rissola et al. [48]
Chen et al. [38]

Tadesse et al. [50]
Reece and Danforth [63]
Yang, McEwen, et al. [59]
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Table 6. Cont.

Machine-Learning Algorithm Study

Burdisso et al. [52]
Li et al. [66]

Nadeem [42]
Yazdavar et al. [43]

Oh et al. [68]
Trotzek et al. [53]

Martinez-Cataño et al. [54]
Chiong et al. [45]

Safa et al. [46]
Neural networks Kr [36]

Sadeque et al. [49]
Wongkoblap et al. [57]

Wu et al. [58]
Biradar and Totad [40]

Yang, McEwen, et al. [59]
Li et al. [66]

Yazdavar et al. [43]
Trotzek et al. [53]
Mann et al. [64]
Yueh et al. [65]

Random forests Leiva and Freire [47]
Katckapakirin et al. [56]

Chen et al. [38]
Tadesse et al. [50]

Reece and Danforth [63]
Yang, McEwen, et al. [59]

Li et al. [66]
Yazdavar et al. [43]

Titla-Tlatelpa et al. [44]
Chiong et al. [45]

Safa et al. [46]
Yueh et al. [65]

Bayesian statistics Tai et al. [55]
Chen et al. [38]

Arora and Arora [39]
Reece and Danforth [63]
Yang, McEwen, et al. [59]

Burdisso et al. [52]
Nadeem [42]

Decision trees Yang, McEwen, et al. [59]
Nadeem [42]

J Oh et al. [68]
Titla-Tlatelpa et al. [44]

Chiong et al. [45]
Safa et al. [46]

K-Nearest Neighbor Leiva and Freire [47]
Yang, McEwen, et al. [59]

Burdisso et al. [52]
Oh et al. [68]

Linear regression Leiva and Freire [47]
Ricard et al. [62]

Yu et al. [67]
Ensemble classifiers Leiva and Freire [47]

Oh et al. [68]
Multilayer Perceptron Chiong et al. [45]

Safa et al. [46]
Boosting Tadeesse et al. [50]
K-Means Ma et al. [41]
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Machine-learning algorithms are powerful generalizers and predictors [72]. According
to Baharudin et al. [73], many algorithms and techniques have been recently proposed for
the classification and clustering of digital documents.

According to Batta [74], Support Vector Machines are supervised learning models
with associated learning algorithms that analyze data used for classification and regression
analysis. In addition to performing linear classification, SVMs can efficiently perform
a nonlinear classification using what is called the kernel trick, implicitly mapping their
inputs into high-dimensional feature space. Ray [75] explains that logistic regression is
used to deal with classification problems. It gives a binomial outcome for the probability
of whether or not an event will occur (in terms of 0 and 1), based on the values of input
variables. For example, predicting whether a tumor is malignant or benign or an e-mail is
classified as spam or not. Logistic regression deals with the prediction of target variables
that are categorical. According to Batta [74], a neural network is a series of algorithms that
endeavors to recognize underlying relationships in a set of data through a process that
mimics the way the human brain operates. In this sense, neural networks refer to systems
of neurons, either organic or artificial in nature. Neural networks can adapt to changing
input; thus, the network generates the best possible result without needing to redesign the
output criteria.

Related to our review, machine-learning algorithms increase the accuracy of predic-
tions in multiple types of datasets. In some cases, several algorithms are used in a single
research work. For example, Leiva and Freire [47] use support vector machine, logistic
regression, random forest, k-nearest neighbor, linear regression, and ensemble classifiers;
Rissola et al. [48] use support vector machine and logistic regression.

As can be observed from Figure 7, researchers generally rely on SVM, logistic re-
gression, or neural networks to complete their diagnosis of depression from social media
data. Other machine-learning algorithms less frequently employed include random forests
(14%), Bayesian statistics (9%), decision trees (7%), k-nearest neighbor classifiers (6%), linear
regression (4%), ensemble classifiers (2%), multilayer perceptron (2%), and boosting and
k-means (1%).

Figure 7. Machine-learning algorithms used for detecting depression signs on social media.

4.4. RQ4L: Which Are the Main Computing Tools Used for Detecting Depression Signs on
Social Media?

To respond to this question, Table 7 shows the main computing tools used for detecting
depression signs on social media.
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Table 7. Computing tools used for detecting depression signs on social media.

Computing Tool Study

Python libraries Kr [36]
Leiva and Freire [47]

Rissola et al. [48]
Katchapakirin et al. [56]

Tadesse et al. [50]
Wongkoblap et al. [57]
Biradar and Totad [40]

Ma et al. [41]
Burdisso et al. [52]

Nadeem [42]
Yazdavar et al. [43]
Trotzek et al. [53]
Mann et al. [64]

Martinez-Cataño et al. [54]
Safa et al. [46]
Lu et al. [67]

LIWC Shen et al. [37]
Chen et al. [38]

Tadesse et al. [50]
Wolohan et al. [51]

Yang, McEwen, et al. [59]
Li et al. [66]

Yazdavar et al. [43]
Trotzek et al. [53]

Safa et al. [46]
Word2Vec Shen et al. [37]

Rissola et al. [48]
Wu et al. [58]
Ma et al. [41]

Yueh et al. [65]
Twitter APIs Chen et al. [38]

Biradar and Totad [40]
Leis et al. [35]

Kr [36]
WordNet Shen et al. [37]

Arora and Arora [39]
FastText Rissola et al. [48]

Trotzek et al. [53]
Weka Katchapakirin et al. [56]

Li et al. [66]
RapidMiner Katchapakirin et al. [56]

Aldarwish and Ahmad [60]
Google Apps Katchapakirin et al. [56]

Wu et al. [58]
Microsoft Excel Li et al. [66]

Aldarwish and Ahmad [60]

Figure 8, below, introduces a graphic representation of the most common computing
tools used for detecting depression signs from social media data. As can be observed, the
authors use Python in first place; for example, Rissola et al. [48] use the TextBlob2 Python
library to compute the polarity score of the posts in negative samples and sort them in
ascending order. In the study of Leyva and Freire [47], the implementation of the learning
algorithms and the vectorization were implemented with the scikit-learn library, version
0.18, for Python. In second place is LIWC (Linguistic Inquiry and Word Count). Tausczik
and Pennebaker [76] explain that LIWC is a program for text analysis that counts words
in psychologically meaningful categories. In their work, Shen et al. [37] extracted positive
and negative word counts in recent tweets with LIWC, while Tadesse et al. [50] explored
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the users’ linguistic usage in the posts, employing the LIWC dictionary. Word2vec and
Twitter APIs are also popular but less commonly used, followed in the list by WordNet;
FastText; Weka; RapidMiner; Google Apps (in this case, it is interesting to mention that this
program was used as a language translator with the Google Cloud Translation API [56]);
and Microsoft Excel [60]. In the case of Microsoft Excel, the supervised dataset used in the
two classifiers were created using three columns: the first being the sentiment (depressed or
not depressed); the second being the depression category, which consists of one of the nine
depression categories; and the third containing the manually trained posts. Finally, much
less prominent tools include SPSS, Clickworker (a crowdsourcing platform), Instagram
Graph API, Java, Jade, Google Cloud Translation API, and MATLAB. All these are applied
along with mathematical analysis methods and machine-learning algorithms for higher
accuracy in the results. Herein lies the importance of knowing which computing tools can
be applied in combination with other methods.

Figure 8. Computing tools used for detecting depression signs on social media.

4.5. RQ5: Which Are the Main Statistical Analysis Methods Used to Validate Results in Detecting
Depression Signs on Social Media?

Our findings summarized in Table 8 respond to our fifth research question.
Statistical analysis is the use of mathematics to analyze data. According to our review,

and as summarized in Table 8, the most common statistical analysis methods applied to
validate results in depression detection research from social media include cross-validation
(CV), term frequency/inverse document frequency (TF–IDF), and Cohen’s kappa statistic.
On the one hand, CV is remarkably versatile; it is applicable to a wide range of problems
across multiple areas. For instance, CV has been used for smoothing parameters in non-
parametric smoothing and for variable selection in regression. The idea behind this method
is simply splitting the data into two parts, applying the first part to determine a prediction
rule, and then assessing the quality of the prediction by matching its outputs with the rest
of the data; hence, the name cross-validation [77]. In the work of Ricard et al. [62], the mean
and SD of the text-based scores for the most recent k posts were utilized as features in their
model training, with k as a hyperparameter tuned through cross-validation. Wongkoblap
et al. [57] created a predictive model and used n-fold cross-validation to report the perfor-
mance of the model. The results of the evaluation are presented with accuracy, precision,
recall, and the f1-score achieved by the model after training and testing with five-fold
cross-validation. Oh et al. [68] ran 10-fold cross-validation for all algorithms and datasets
to validate the performance of each classifier and to avoid overfitting. On the other hand,
TF–IDF is a statistic used to determine the relevance of a search query to a document in a
collection of documents or the occurrences of a given query in a document. It is commonly
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used as a basic weighting factor for text retrieval [78]. In their work, Tadesse et al. [50]
used the term frequency/inverse document frequency (TF–IDF) as a numeric statistic for
n-gram modelling, where the importance of a word with respect to each document in the
corpora is highlighted. The main goal of its usage is to scale down the impact of empirically
less-informative tokens that occur frequently to provide space for the more informative
words occurring in a smaller fraction.

Table 8. Statistical analysis methods used to validate results in detecting depression signs on so-
cial media.

Statistical Analysis Method Study

Cross-validation Ricard et al. [62]
Wongkoblap et al. [57]

Oh et al. [68]
Tai et al. [55]

Sadeque et al. [49]
Burdisso et al. [52]

Li et al. [66]
Nadeem [42]

Yazdavar et al. [43]
Mann et al. [64]

Titla-Tlatelpa et al. [44]
Chiong et al. [45]

Term frequency/inverse Leiva and Freire [47]
document frequency (TF–IDF) Tadesse et al. [50]

Wolohan et al. [51]
Yang, McEwen, et al. [59]

Aldarwish and Ahmad [60]
Martinez-Cataño et al. [54]

Titla-Tlatelpa et al. [44]
Cohen’s kappa statistic Rissola et al. [48]

Li et al. [66]
Yazdavar et al. [43]

Yang, McEwen, et al. [59]
Mean/standard deviation Chen et al. [38]

Ricard et al. [62]
Mann et al. [64]

Mann–Whitney Ricard et al. [62]
Ophir et al. [61]

Likert scale Kr [36]
Ophir et al. [61]

Softmax function Wongkoblap et al. [57]
variance Leis et al. [35]

Direction method of multipliers Shen et al. [37]
Adam optimizer Biradar and Totad [40]

Pixel-level averages Reece and Danforth [63]

Finally, Cohen’s kappa statistic is a measure for assessing the degree of agreement
between evaluators for the absence or presence of a trait [79]. In the work of Yazdavar
et al. [43], the dataset used provided the users’ profile information, including screen name,
profile description, follower/followee counts, profile image, and tweet content, which
could express various depression-relevant characteristics and determine whether a user
indicated any depressive behavior. They reported the inter-rater agreement as K = 0.74,
based on Cohen’s kappa statistics.

Other common mathematical analysis methods include mean/standard deviation,
the Mann–Whitney U test, Likert scales, and SoftMax functions, which help improve
the accuracy of the results. We also found evidence of the use of variance analysis, the
alternating direction method of multipliers (ADMM), Adam optimization, and Pixel-level
weighted averaging.
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5. Discussion

Depression sign detection from social media data is a growing area of interest, as the
literature confirms. Data sources may vary across studies (e.g., Twitter, Facebook, Reddit,
Instagram, Weibo, and NHANES). Users tend to employ social media to write about how
they feel according to their interest in doing so and the facility of the use of such social
media; however, in our study, we could see that much of the research into this is based on
the tools that are most commonly used worldwide and that the datasets examined range
from a few tweets to millions of posts. As new social media services constantly emerge,
their focus continues to vary. Nowadays, a growing number of social networking services
focus more on photo and video sharing rather than text sharing, thus making mental
disease prediction efforts more challenging. As internet tools become more user-friendly,
an increasing number of people join the social media community every day. In our study,
we could see that there have been many different methods applied by researchers to extract
data from tweets or posts written by users. These tools can be combined to gain better
results. Machine-learning algorithms allow for the classification and clustering of data.
Such tools are helpful in the process of obtaining precise results. Some authors use several of
these tools in combination to ascertain which is the best for the study in question. Computer
tools are necessary to process the information obtained. They perform an essential task in
the sense that they help to obtain natural language information and translate or process the
data to be classified. Many authors use a wide range of mathematical analysis methods;
in our study, we could see that these statistical tools are useful to validate results for the
detection of depression from social media. All the studies explored in this review were
written in English, which is considered as the language of global scientific understanding.
However, some of these studies were designed to be applied among speakers of other
languages, such as Chinese, Thai, Korean, Arabic, and Portuguese.

6. Conclusions and Future Work

The objective of this review work was to identify all the tools necessary to detect
signs of depression via social media. Using social media along with computing tools
and increasingly efficient classification methods contributes to current efforts to detect
signs of depression or any other mental illness from sources close to patients. This is
important because, with the advance in technology, more and more people are using new
media to communicate and to share experiences in the treatment of mental illnesses. Some
of the studies we considered were applied in real environments and demonstrated the
benefit of the research’s application in real life situations. Depression diagnosis from social
media data is being widely explored around the world using a variety of networking sites,
datasets, linguistic feature extraction methods, machine-learning algorithms, computing
tools, and statistical analysis methods. The results obtained in most of the research works
indicate that the use of new digital tools related to mental health is an incentive to continue
investigating in this area. Finally, we believe that this work paves the way for further
exploration of initiatives for diagnosing other mental illnesses, such as anxiety, in the
sense that most of the symptoms presented in anxiety are also presented in depression.
Additionally, researchers can go beyond by exploring current efforts in the monitoring and
treatment of mental disorders using the Internet of Things.
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Abstract: Cardiovascular diseases (CVDs) carry significant morbidity and mortality and are associ-
ated with substantial economic burden on healthcare systems around the world. Coronary artery
disease, as one disease entity under the CVDs umbrella, had a prevalence of 7.2% among adults in
the United States and incurred a financial burden of 360 billion US dollars in the years 2016–2017.
The introduction of artificial intelligence (AI) and machine learning over the last two decades has
unlocked new dimensions in the field of cardiovascular medicine. From automatic interpretations of
heart rhythm disorders via smartwatches, to assisting in complex decision-making, AI has quickly
expanded its realms in medicine and has demonstrated itself as a promising tool in helping clinicians
guide treatment decisions. Understanding complex genetic interactions and developing clinical risk
prediction models, advanced cardiac imaging, and improving mortality outcomes are just a few
areas where AI has been applied in the domain of coronary artery disease. Through this review, we
sought to summarize the advances in AI relating to coronary artery disease, current limitations, and
future perspectives.

Keywords: artificial intelligence; coronary artery disease; major adverse cardiovascular events;
fractional flow reserve; cardiac computed tomography

1. Introduction

Clinically significant atherosclerosis of the coronary arteries, known as coronary artery
disease (CAD), is an endemic condition that is associated with significant morbidity and
mortality [1]. For instance, CAD is reported to have affected 20.1 million American adults
between 2015 and 2018 [2]. Current societal guidelines emphasize the importance of early
detection and risk stratification in the appropriate age and risk groups, with the goal of
implementation of goal-directed medical therapies that can alter the natural trajectory of
CAD to a less morbid course [3]. Traditional population-derived primary and secondary
prevention cardiovascular risk assessment tools (e.g., Framingham risk score, ASCVD,
TIMI score, GRACE score, etc.) have historically relied on patient-level data that are easily
retrievable and practical to utilize in the clinical setting. Despite their importance, such
tools are inherently limited by design due to relying on regression models that make
many mathematical assumptions that often do not hold in a real-world setting, such
as collinearity between variables and homogeneity of effects. The complex nature and
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multifactorial pathology of CAD make such regression-based tools less generalizable across
different populations.

Recently, the digitization of health records has improved access to large repositories of
clinical and imaging datasets for clinical care and research purposes. This is coupled with
advances in diagnostic tools that are available for the detection and quantification of CAD.
To that end, recent studies have highlighted the usefulness of these tools in enhancing risk
assessment and decision making through incorporation of different yet complementary
findings from these imaging modalities (e.g., quantitative and qualitative plaque features
on computed tomographic imaging of the coronary circulation, coupled with functional
and physiologic findings on stress-test imaging). In addition, there has been an increasing
interest in using the plethora of data in electronic health records and genomic data for
better risk assessment [4]. Such tools are being integrated in practice as complementary
methods to traditional tools [5–7].

Yet, despite the ever-increasing amounts of data, risk-prediction methods have been
historically limited by what was possible with traditional statistical tools. The concept
of Artificial Intelligence (AI) was introduced to mankind as early as the 1950s, with its
employment in medical sciences commencing in the 1970s [8]. AI has gained momentum
recently, fueled by an improvement in computational power, accumulation of data, and
cloud processing. With the attempt to transfer a significant portion of human intelligence
to machines, there has been a concerted effort aimed at harnessing the power of AI for
biomedical applications in the past two decades [9,10]. Machine learning (ML) is a subfield
of AI that involves the creation of algorithms that analyze large datasets without prior
assumptions and learn rules and patterns between variables to make predictions and
classifications [11]. On the other hand, deep learning (DL) is a subset of ML geared towards
image analysis and utilizes more intricate algorithms known as neural networks with
multiple deep, hidden layers. Specifically, while ML usually relies on structured data with
handcrafted features often in tabular form, DL algorithms can input both structured and
raw, unstructured data (e.g., images, video, and text) and extract their own features.

ML algorithms can incorporate a larger number of variables from different modalities,
including both patient-level clinical parameters as well as two- and three-dimensional
imaging data that take into account the multidimensional nonlinear interactions between
variables [11]. Implementing such techniques in healthcare mainly aims to improve the
accuracy of risk prediction and customize clinical decisions to each individual, which is the
overarching theme in the goal of achieving precision medicine. In this paper, we summarize
the recent advances in ML and current attempts at improving predictive analytics with
relevance to CAD. We also elucidate on the role of AI in genetics, the incremental role of AI
in improving post-procedure risk prediction and long-term mortality. Lastly, we discuss
the limitations and potential near-future applications of AI within cardiovascular medicine.

2. Integration of Genetics and AI in Cardiovascular Diseases

Over the last two decades, the emergence of technologies able to measure biological
processes at a large scale have resulted in an enormous influx of data. For instance, the
completion of the Human Genome Project has paved the way to design single-nucleotide
polymorphism (SNP) and mRNA microarrays, which can broadly test for millions of
genetic variants in a simple point-of-care test. This has paved the way for the emergence
of modern data-driven sciences such as genomics and other “omics” [12]. Genome-wide
association studies (GWASs) operate by simultaneous comparison of millions of SNPs
between diseased individuals and disease-free controls to detect a statistically significant
association between an SNP locus and a particular condition [12]. Erdmann et al. reported
that up until the year 2018, GWASs have successfully identified 163 distinct genetic loci
for SNPs that are associated with CAD [13]. The risk for expressing a complex trait like
CAD can be represented by a mathematical model that assumes a normal distribution of a
binary outcome (i.e., CAD or no CAD) and captures the aggregate influence of multiple
genetic variants that are predisposed to disease. Such a model is referred to as a polygenic
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risk score (PRS). PRSs were proposed early on to improve risk stratification in CAD risk
models, especially when combined with traditional cardiovascular risk factors. However,
the complex genetic architecture along with the multifactorial nature of CAD have been
major challenges in CAD risk prediction [14]. For instance, Kathiresan et al. built a
genetic risk score to predict major adverse cardiovascular events based on nine different
dyslipidemia-related SNPs previously identified in GWASs. Adding the genetic score
to a Cox proportional hazard model along with traditional risk factors did not improve
predictive accuracy as measured by the C statistic model; however, there was a significant
improvement in the net reclassification index, which accounts for correct movement of
categories (assigning high-risk for patients who developed the disease, and low-risk for
those who were disease-free) [15]. Brautbar et al. also suggested a genetic risk score to
predict coronary heart disease based on SNPs. Adding the genetic risk score to traditional
risk factors in a Cox proportional hazard model only modestly improved the area under
the curve (AUC) for prediction of coronary heart disease from 0.742 to 0.749 (∆ = 0.007;
95% CI, 0.004–0.013) [16]. ML and particularly DL algorithms are inherently designed to
extract patterns and associations from large-scale data, including clinical and genomic data.
Given the complexity and multifaceted nature of cardiovascular diseases in general, and
CAD in particular, an approach that integrates all these factors into a risk-stratification
model would be expected to better predict incident events than existent models [17].

Multiple studies have emphasized the role of ML in identifying genetic variants and
expression patterns associated with CAD from mRNA arrays using differential expression
analysis and protein–protein interaction networks [18,19]. For example, Zhang et al. used
ML to perform differential expression analysis on mRNA profiles from CAD patients
and healthy controls to identify a set of differentially expressed genes between the two
groups, then built a network representation of functional protein–protein interaction. The
top 20 genes in the network were identified using a maximal clique centrality (MCC)
algorithm. Finally, to test the performance, a logistic regression model was built using the
top five predictor genes to classify individuals into the presence or absence of CAD. The
model achieved an AUC of 0.9295 and 0.8674 in the training and internal validation sets
respectively [20].

Dogan et al. built an ensemble model of eight random-forest (RF) classifiers to predict
the risk of symptomatic CAD using genetic and epigenetic variables along with clinical
risk factors. The model was trained on a cohort derived from the Framingham heart
study (n = 1545) and utilized variables derived from genome-wide array chips to extract
epigenetic (DNA methylation loci) and genetic (SNP) profiles. The initial number of
available variables were 876,014 SNP and DNA methylation (CpG) loci, which required
multiple reduction steps, ending up with 4 CpG and 2 SNP predictors fed into the model
along with age and gender. The model predicted symptomatic CAD with an accuracy,
sensitivity, and specificity of 0.78, 0.75, and 0.80, respectively, in the internal validation
cohort (n = 142). For comparison, a similar ensemble model was built using clinical risk
factors only as predictor variables and had an accuracy, sensitivity, and specificity of 0.65,
0.42, and 0.89, respectively [21]. Pattarabanjird et al. tested multiple ML models to predict
anatomical CAD severity (extent of diameter stenosis) in a binary fashion using clinical
variables along with SNP loci. Quantitative coronary angiography and the Gensini score,
which is a summation score that quantifies the severity of CAD by accounting for the
segment-based most severe stenosis and the location of the stenosis within the coronary
arteries, were used to assess model performance. The best-performing model (Sequential
Neural Network; training set n = 325 and internal validation set n = 82) accurately classified
CAD severity with AUC of 0.84 in the validation set [22]. Similarly, Naushad et al. trained
ML models to predict the presence of CAD and the percentage of coronary diameter
stenosis using clinical and genetic variables. The best-performing model (an ensemble
model; training set n = 648) accurately predicted CAD using 11 variables (clinical and
genetic variants) with an AUC of 0.96 in the training set. The model also predicted the
percentage of diameter stenosis with a correlation of 82.5% with the actual stenosis assessed
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using the gold-standard invasive angiography. However, these models were not internally
nor externally validated [23].

Finally, the coronary artery calcium (CAC) score, calculated using the Agatston method
on noncontrast ECG-gated cardiac computed tomography, is an established strong predictor
of major adverse cardiovascular events in asymptomatic individuals. Genomic studies
have previously focused on identifying genetic loci linked to CAC [24,25]. Oguz et al.
suggested the use of ML algorithms to predict advanced CAC from SNP arrays and
clinical variables. They identified a set of SNPs that ranked the highest in predictive
importance and correlated with advanced CAC scores, defined as the 89th–99th percentile
CAC scores in the derivation and replication cohorts, and trained different RF models to
predict advanced CAC scores using clinical and genetic variables. Adding SNPs to clinical
variables significantly improved AUC from 0.61 ± 0.02 to 0.83 ± 0.01; (p < 0.001) [26] for
prediction of advanced CAC scores.

3. Risk Prediction Models and Imaging Modalities for Estimating Pretest Probability
of CAD

Traditionally, stratifying patients presenting with stable chest pain using pretest proba-
bility (PTP) estimates of CAD has been commonly used to help with decision-making
regarding downstream testing and the choice of an appropriate diagnostic modality.
Historically, the Diamond–Forrester model—developed using age, sex, and chest pain
characteristics—was used as a clinician’s risk stratification tool in predicting the PTP of
CAD [27]. However, numerous studies showed its limitation in overestimating PTP by
approximately threefold, especially in women [28]. This led to the development of the
updated Diamond–Forrester model (UDF) and the CAD consortium score [29–31]. These
scores, incorporating demographic and clinical risk factors, have been proven to be better
at predicting the risk of CAD. Therefore, improving the ability to predict CAD using more
accurate risk-assessment modeling is imperative, given the potential to reduce downstream
testing and associated costs. Using clinical and demographic features, ML models have
been employed to estimate the PTP of CAD [32–34]. In a recent multicenter cross-sectional
study, a deep neural network algorithm based on the facial profile of individuals was able
to achieve a higher performance than traditional risk scores in predicting PTP of CAD
(AUC for the ML model 0.730 vs. 0.623 for Diamond –Forrester and 0.652 for the CAD
consortium, p < 0.001) [35]. Though the study is limited by the lack of external validity and
low specificity (54%), such approaches can potentially lead to a paradigm change in CAD
management by facilitating earlier detection and initiation of primary prevention using
readily available parameters, such as an individual’s facial profile.

When available, a CAC score has been shown to add to the PTP of CAD, with a CAC
score of zero identifying low-risk patients who might not need additional testing [7,36].
ML models, combining clinical and imaging parameters, have been shown to have higher
predictive power than traditional risk scores when predicting the PTP of obstructive
CAD [37,38]. Al’Aref et al. included 25 clinical and demographic features to devise a ML
model which, when combined with the Agatston CAC score, fared better than the ML
model or CAD consortium score alone or in combination with the CAC score (AUC 0.881
for ML + CAC as compared to 0.866, 0.773, and 0.734 for the CAD consortium + CAC,
ML model, and CAD consortium respectively, p < 0.05) [38]. As expected, CAC, age, and
gender were the highest-ranked features in the model (Figure 1).
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Figure 1. Feature ranking in the machine-learning model developed by Al’Aref et al. based on
clinical and demographic factors (A) and when combined with the Agatston calcium score (B), for the
prediction of the presence of obstructive CAD on coronary CT angiography. A more positive SHAP
(Shapley additive explanation value) indicates higher importance of the variable in the machine-
learning model. Adapted with permission from Al’Aref et al. [38], Oxford University Press.

Various ML algorithms based on stress imaging, particularly single-photon emission
computed tomography (SPECT), have been devised to facilitate the prediction of CAD.
These models combined the clinical and demographic characteristics with the quantitative
variables, as evaluated via SPECT to better predict CAD compared with the visual interpre-
tation or quantitative variables alone [39–44]. More details about the parameters used to
develop these models have been provided in Section 4, and a summary of the study results
is included in Table 1.

Cardiac phase-space analysis is a novel noninvasive diagnostic platform that combines
advanced disciplines of mathematics and physics with ML [45]. Thoracic orthogonal
voltage gradient (OVG) signals from a patient are evaluated by cardiac phase-space analysis
to quantify physiological and mathematical features associated with CAD. The analysis
is performed at the point of care without the need for a change in physiologic status or
radiation. Initial multicenter results suggest that resting cardiac phase-space analysis may
have comparable diagnostic utility to functional tests currently used to assess CAD [46].

Finally, the assessment of regional wall motion abnormalities (RWMAs) on echocardio-
graphy has been associated with the presence of obstructive CAD, and as such can be useful
in helping clinicians with downstream decision-making [47]. Recently, a deep-learning
model developed by Kusunose et al. achieved performance similar to that of experienced
cardiologists in the assessment of RWMAs on echocardiography (AUC of 0.99 vs. 0.98,
p = 0.15) [48]. Other than the assessment of obstructive CAD, machine learning has found
its wide applicability in echocardiography to predict ventricular capacities, abnormal valvu-
lar function, as well as cardiac hemodynamics, the discussion of which is outside the scope
of this review paper [49–51].
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Table 1. Studies comparing ML models developed using SPECT variables with those using the qualitative or quantitative variables for prediction of CAD.

Study Center/Sample Size ML Technology Brief Description and Outcomes Result Limitations

Guner et al. [41]
2010

Retrospective
Single-center study

243 patients
Artificial neural networks

ML model trained from image data from
stress and difference (devised from rest
and stress maps) polar maps.
Outcome: ML model vs. expert
interpretation in the prediction of
obstructive (>70% stenosis) CAD

AUC 0.74 and 0.84 for ML and expert read,
no statistical difference found between

ML-trained model and expert read.

1. Small sample size
2. Limited availability of

software used.

Arsanjani et al. [44]
2013

Retrospective
Single-center study

1181 patients
Boosted ensemble

ML model using quantitative variables
(TPD, stress/rest perfusion change, TID)
and clinical variables (age, sex, and
post-ECG probability) created.
Outcome: ML vs. visual analysis and TPD
in prediction of obstructive CAD.

AUC: ML (quantitative + clinical − 0.94 )
> ML (quantitative, 0.90) > combined

supine/prone TPD − 0.88. Also, better
than experts (0.89 and 0.85 for two

different experts).

1. Dual isotope imaging protocol
used, leading to difficulty in
comparing rest and stress images.

2. No information was given on
localization of ischemia (didn’t
provide information about the
culprit vessel).

Arsanjani et al. [39]
2013

Retrospective
Single-center study

957 patients with no history
of CAD.

Support vector machines

ML model using quantitative and
functional variables derived from SPECT.
Outcome: ML model vs. quantitative and
visual analysis in prediction of obstructive
CAD or LAD stenosis > 50%.

AUC: ML (0.92) > TPD (0.90) > Expert
analysis (0.88 and 0.87 for two

different experts)

1. Limited generalizability (patients
with a history of CAD and valvular
disease were excluded).

2. Stenosis on CAG determined
qualitatively rather
than quantitatively.

Betancur et al. [43]
2018

Retrospective
Multicenter study

1638 patients
Convolutional neural networks

DL model developed from single-view
polar maps; trained and compared with
TPD for prediction of CAD.
Outcome: ML model vs. TPD for
prediction of obstructive CAD.

DL > TPD on per patient (AUC 0.80 vs.
0.78) and per vessel level (AUC 0.76 vs.
0.73) for prediction of obstructive CAD,

p < 0.01.

1. Stenosis on CAG determined
qualitatively rather than
quantitatively.

2. Only stress static images used to
train the algorithm.

Betancur et al. [40]
2018

Retrospective
Multicenter study

1160 patients with no history
of CAD

Convolutional neural networks

DL model developed to automatically
combine upright and supine MPI
polar maps.
Outcome: ML model vs. TPD for
prediction of obstructive CAD.

DL > TPD on per patient (AUC 0.81 vs.
0.78) and per vessel (AUC 0.77 vs. 0.73) for
prediction of obstructive CAD, p < 0.001

1. Stenosis on CAG
determined visually.

2. Only stress MPI images were taken.

Rahmani et al. [42]
2019

Retrospective
Single-center study

93 patients
Artificial neural networks

ML model created using clinical,
demographic, and polar-map data.
Outcome: ML model vs. expert
interpretation in prediction of obstructive
CAD and abnormal angiographic results.

Accuracy for ML vs. visual interpretation
for prediction of:

Obstructive CAD:85.7% vs. 65.0%
Abnormal angiographic results:

92.9 % vs. 81.7%

1. Small sample size
2. Patients with a high pretest

probability included, hence
possible over- and underestimation
of sensitivity and
specificity respectively.

CAG: coronary angiography; LAD: left anterior descending; MPI: myocardial perfusion imaging, TPD: total perfusion deficit, TID: transient ischemic dilation.
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4. Artificial Intelligence in Management of CAD in the Emergency Department

Chest pain is a common emergency department presentation, and distinguishing
cardiac from noncardiac pain causes is crucial for optimal management. Modalities such
as electrocardiography (ECG) serve as a quick way to recognize patterns associated with
unstable CAD, and in particular acute coronary syndromes (ACSs). Deep neural networks
have shown a consistent performance in image recognition, and models have hence been
devised to identify patterns related to CAD and myocardial infarction (MI) [52–54]. By
reducing interobserver variability and providing accurate results efficiently, this approach
holds the promise of improving workflow across healthcare systems, while helping patients
in areas of limited medical infrastructure and specialized care.

Cardiac biomarkers, such as high-sensitivity troponin, have been well-validated as
markers of myocardial ischemia and damage [55]. High-sensitivity troponin I (hs-cTnI)
assay forms the core of the ‘rule in and rule out’ clinical decision pathway as per ESC
2020 chest pain guidelines and 2021 ACC/AHA chest pain guidelines [36,56]. For instance,
a very low hs-cTnI at hospital admission or a negative one-hour delta troponin (in the
background of a low hs-cTnI value at admission) has a high negative predictive value
(>99%) for ACS [57–61]. On the other hand, a high admission hs-cTnI value or a significant
increase in values in an hour portends a high positive-predictive value (70–75%), warranting
additional downstream testing [56,62,63].

Using the strategy mentioned above, approximately one-third of the patients fall
in the ‘indeterminate’ zone. Diagnosis and management of this group is challenging,
necessitating an approach based on clinical history, pre-existing risk factors, serial hs-cTnI
trends, and further imaging. A recent ML model based on three clinical (age, sex, and
prior percutaneous coronary intervention) as well as levels of three biomarkers (hs-cTnI,
KIM-1, and adiponectin) demonstrated excellence in predicting obstructive CAD in the
validation cohort (AUC 0.86 for prediction of >50% diameter stenosis) [64]. Notably, the
model performed remarkably well in patients in the ‘indeterminate’ zone, with AUC of
0.88 and a positive predictive value of 93%, hence identifying patients who will benefit
from further testing.

The 2021 American College of Cardiology/American Heart Association (ACC/AHA)
chest pain guidelines advocate for the use of coronary CT angiography (CCTA) in
intermediate-risk patients presenting with acute chest pain who either have no known
history or a history of nonobstructive CAD (defined as coronary artery disease with less
than 50% diameter stenosis) [36]. Given the ability of CCTA to accurately define coronary
anatomy and extent/distribution of atherosclerotic plaque, it has been consistently shown
to be a useful noninvasive imaging modality for patient selection, particularly for those who
might require further invasive evaluation. However, interpretation of CCTA scans requires
expertise and is time-intensive. Therefore, automatic interpretation of CCTA, which can
lead to a significant reduction in the processing times, is highly desirable. ML algorithms
have recently been developed, achieving a 70–75% reduction in reading time compared to
that required for human interpretation (2.3 min for AI vs. 7.6–9.6 min for human readers).
Though the model described performed slightly lower than highly experienced readers in
interpreting CCTA (AUC 0.93 vs. 0.90 for human vs. AI, p < 0.05), when combined with
low-experience human readers, it augmented the reader’s ability to correctly reclassify
obstructive CAD (per-vessel net reclassification index (NRI) 0.07, p < 0.001) [65]. In addi-
tion, ML has been applied for various segmentation and classification tasks on cardiac CT
imaging, from automatic segmentation of calcified and noncalcified plaque to automated
calculation of the Agatston CAC score, and finally quantification of cardiac structures on
CT imaging (Figure 2) [66–73]. Therefore, the application of ML could provide reliable
results in real time, while bridging the dearth of experts in low-resource settings.
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Figure 2. ML-based fractional flow reserve from cardiac CT (CT-FFRML). Machine-learning-based
coronary plaque analysis quantifies atherosclerotic plaque into calcified and noncalcified components
(A,B). This is further integrated with other quantitative parameters (C) and transformed into 3-D images
of the vessels to give CT-FFRML (D), which has been shown to have a good correlation with invasive
fractional flow reserve (FFR—E). Adapted with permission from Von Knebel Doeberitz et al. [65], Elsevier.

Stress testing, which provides an estimate of myocardial perfusion and viability, has
been recommended as an alternative to CCTA in intermediate-risk chest pain patients [36].
Myocardial perfusion imaging, particularly SPECT, has been employed to recognize pa-
tients who might need an invasive evaluation, with a diagnostic sensitivity of 75–88%
and specificity of 60–79% [74–79]. SPECT can be evaluated qualitatively in terms of size,
severity, location, and reversibility of perfusion defect, and quantitatively, in terms of total
perfusion deficit (TPD), summed stress score (SSS), summed rest score (SRS), as well as
stress and rest volumes [80]. Automatically generated polar maps (representing radiotracer
distribution in a two-dimensional plane) after three-dimensional segmentation of the left
ventricle (LV) have been used as raw data for quantitative analysis. After the LV polar
map is divided into 17 segments, each of the segments is graded on a scale of 0–4 based
on the severity of ischemia. The scores are then summated to generate SSS and SRS [81].
Polar maps also provide information about the overall extent and magnitude of ischemia,
in terms of TPD [81,82]. These objective variables extracted from the quantitative analysis
offer an increased degree of reproducibility and can be incorporated into risk scores to pre-
dict mortality [82,83]. The diagnostic accuracy of qualitative and quantitative approaches
is comparable, as has been shown in numerous studies [84]. A deep convolutional neural
network-based model derived from polar maps (Figure 3) had a superior performance
compared to TPD in predicting obstructive coronary artery disease (the AUC for ML were
0.80 and 0.76 vs. 0.78 and 0.73 for TPD on a per-patient and per-vessel basis respectively,
p < 0.01). In addition to diagnosis, models to predict early revascularization (<90 days from
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SPECT) have been developed and have demonstrated better performance than individual
SPECT variables on a per-patient and a per-vessel level [85,86].
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Figure 3. Deep-learning model to predict obstructive CAD from polar maps. Raw polar maps and
extent polar maps (maps with abnormal pixels representing ischemia blackened out) are fed into deep
neural networks, with the extracted data used to calculate scores for individual vessels to predict the
probability of CAD. Adapted with permission from Betancur et al. [43], Elsevier.

5. Artificial Intelligence to Predict Functionally Obstructive CAD and Lesion-Specific
Ischemia—As a Gatekeeper to the Catheterization Laboratory

One of the inherent limitations of CCTA is its limited ability to predict the functional
significance of coronary stenosis. To overcome this shortcoming, CT-derived fractional flow
reserve (FFRCT) was developed based on the critical concept of computational fluid dynamics
(CFD), with numerous trials demonstrating its strong correlation with invasive fractional flow
reserve (FFR) as determined by invasive coronary angiography (ICA) [87–90]. Rabbat et al.
demonstrated that FFRCT added to CCTA safely deferred ICA in patients with CAD of
indeterminate hemodynamic significance. In addition, a high proportion of those who
underwent ICA were revascularized [91]. These studies and others led to FFRCT being
incorporated in the 2021 ACC/AHA chest pain guidelines in intermediate-risk patients
to detect lesion-specific ischemia in proximal or middle segments of the coronary arteries
and determined to have atherosclerotic plaque with 40% to 90% diameter stenosis [36].
Despite its excellent correlation, the off-site computation of FFRCT hampers its use in real
time, owing to the need for longer processing times [92]. To overcome this limitation and to
allow for quick computation of a value for the functional significance of a particular lesion,
novel ML approaches based on artery lumen segmentation [93], left ventricular myocardial
segmentation [94,95], and artery centerline tracking [96], have been proposed.

5.1. ML-Based CT-FFR Estimation and Diagnostic Accuracy

Based on the concept of artery lumen segmentation, the ML-based FFR estimation
(CT-FFRML) has generated significant interest in the past few years. The CT-FFRML model
was trained on 12,000 synthetically generated coronary geometric datasets and used deep
neural networks, allowing for automatic computation of FFR in real-time [93]. Coenen
et al. performed a multicenter, prospective study to evaluate the diagnostic performance of
CT-FFRML to predict lesion-specific ischemia, comparing it with traditional CCTA parame-
ters, with invasive FFR being the gold standard [97]. They demonstrated an excellent corre-

91



Healthcare 2022, 10, 232

lation between CT-FFRML and FFRCT (r = 0.997) and a superior performance of CT-FFRML
over traditional CCTA in predicting lesion-specific ischemia (AUC: 0.84 vs. 0.69, p < 0.001
on a per-vessel level). Since then, multiple retrospective studies have been performed to
evaluate the diagnostic accuracy of CT-FFRML, validated against the gold-standard inva-
sive FFR. They have further demonstrated superior diagnostic performance of CT-FFRML
over CTA stenosis severity and quantitative atherosclerotic plaque features derived from
CCTA [70,93,97–107].

To further highlight the incremental diagnostic value of CT-FFRML over anatomic
plaque features derived from CCTA in vessels with intermediate stenosis, several other
studies have been performed [99,102,103,106]. Tang et al. evaluated the diagnostic value
of CT-FFRML in predicting lesion-specific ischemia [103]. Based on a study sample of
122 vessels in 101 patients, CT-FFRML performed better than anatomic CCTA parameters
(AUC 0.96 for CT-FFRML vs. 0.63 for CCTA on a per-vessel basis p < 0.05).

5.2. Impact of Calcification Burden on the Performance of CT-FFRML

The impact of coronary calcification on the diagnostic performance of CCTA has been
well-established, with more extensive calcification limiting the ability of CCTA to evaluate
for the presence of obstructive CAD [108–110]. Multiple indices have been devised to
compute a CAC score, with the Agatston score, calcium volume, calcification remodeling
index (CRI), and segmental arc calcification method being common examples [111]. The
Agatston Score (AS) is the most widely validated approach, which summates the calcium
score (function of peak density and area of the lesion) of the individual lesions across
all coronary artery segments [112]. CRI provides a lesion-specific calcium estimate and
is calculated as a ratio of the cross-sectional luminal area of the most severely calcified
site to the proximal luminal area [113]. The segmental arc calcification method estimates
lesion-specific calcium burden by measuring the greatest circumferential extent of coronary
calcium, grading as nil (noncalcified), mild (0–90◦), moderate (90–180◦), and severe (>180◦)
calcification [110,114]. Recent studies have evaluated the performance of CT-FFRML with
varying calcification burden as assessed by the parameters mentioned above [97–99,104].
Tesche et al. did a retrospective analysis using 482 vessels in 314 patients to evaluate the
impact of calcifications on the performance of CT-FFRML [104]. They showed a statistically
significant decrease in discriminatory power of CT-FFRML, measured in terms of AUC with
increasing Agatston scores (AUC for CT-FFRML 0.85 and 0.81 in low–intermediate Agatston
score (1–400) and high Agatston score (>400) ranges respectively, p = 0.04).

Di Jiang et al. [98] evaluated the impact of calcification arc and CRI on the performance
of CT-FFRML. No statistically significant difference was found in the discriminatory power
of CT-FFRML with increasing calcification burden. In the proportion of patients where the
Agatston score was available, there was no difference in the diagnostic performance of
CT-FFRML across severity of calcification. The difference from Tesche et al. can be explained
by a lower mean Agatston score (288 vs. 492 and 138 vs. 187 at a per-patient and per-vessel
level, respectively) and smaller sample size (n = 150) for whom the Agatston score was
available, resulting in low power to detect a difference.

Furthermore, Koo et al. [99] carried out a similar study and found no impact of
increasing Agatston score on the performance of CT-FFRML. Interestingly, a sizeable
proportion of the sample had higher coronary calcification (mean Agatston score of 311 on
a per-vessel basis). More research in this area is needed in order to further validate the
diagnostic performance of CT-FFRML across varying degrees of coronary calcification.

5.3. CT-FFRML in Predicting Revascularization Events

CT-FFRML has been shown to be a better predictor than plaque features derived
from CCTA for the determination of the presence of lesion-specific ischemia, but whether
CT-FFRML influences the eventual treatment plan and outcomes (as guided by ICA-FFR)
remains an active area of investigation [115–118]. Qiao et al. demonstrated the added
benefit of CT-FFRML compared to relying on an anatomy-based strategy in patients with
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stable chest pain (reduction rate of ICA by 54.5% and 4.4% fewer revascularizations) [115].
Additionally, this study demonstrated that adding CT-FFRML to CCTA can decrease the rate
of unnecessary ICA by 35.2% (thereby increasing the proportion of revascularizations when
ICA is undertaken), truly acting as a gatekeeper to ICA. Furthermore, lower CT-FFRML was
associated with higher major adverse cardiovascular event (MACE) risk when compared
to diameter stenosis on CCTA (HR, 6.84 vs. 1.47) or ICA (HR, 6.84 vs. 1.84). Liu et al. found
a similar rate of MACE (2.9%) after revascularization based on either combining CCTA
stenosis ≥ 50% and CT-FFRML ≤ 0.8 or ICA stenosis ≥ 75% in a 2-year follow-up [116].
This study further highlighted the use of CT-FFRML as a gatekeeper to ICA with a positive
impact on lower healthcare costs.

CT-FFRML comes with its own set of shortcomings. The diagnostic performance of
the CT-FFRML model is lower, with the invasive FFR closely approaching the diagnostic
threshold of 0.8 [97,99,119]. Traditional statistical and DL approaches have shown that
stenosis severity; plaque characteristics, such as low-density, noncalcified plaque; and
remodeling index are independent predictors of lesion-specific ischemia that are not related
to CT-FFRML [120,121]. An integrated DL approach in the future that combines clinical
features, anatomical plaque characteristics, vessel features, and functional assessment could
potentially overcome this limitation.

6. Artificial Intelligence in the Field of Intracoronary Imaging

During ICA, intravascular ultrasound (IVUS) and optical coherence tomography (OCT)
have been widely adopted for coronary luminal imaging, and some of the main applications
involve assessment of plaque burden and optimization of stent placement [122]. IVUS uses
ultrasound waves to generate cross-sectional images of coronary vessels with axial and
lateral resolution ranging from 70–200 microns and 200–400 microns, respectively [122–124].
The penetration depth of IVUS is 10 mm, which allows for a complete cross-sectional
analysis of the coronary vessel walls [124]. IVUS can help describe plaque characteristics,
with high-risk plaques (plaques with large necrotic cores) appearing as areas of echo-
attenuation [125]. On the other hand, calcifications in the IVUS frame indicate a calcified
plaque, with heavily calcified plaque increasing the risk of stent underexpansion during
percutaneous coronary intervention (PCI) [126,127]. Virtual histology IVUS (VH-IVUS)
is another technique derived from radiofrequency data from IVUS, allowing for in vivo
assessment of plaque composition [128]. By characterizing plaque features and vessel
dimensions, IVUS has found its pre-procedural role in the quantitative and qualitative
assessment of atherosclerotic plaque as well as interventional planning, ranging from vessel
dimension assessment and evaluation of stent placement. Post-procedurally, IVUS can be
employed to visualize stent expansion, identify stent edge dissection, stent mal-apposition,
and confirm the presence of in-stent thrombosis in the right clinical context [129,130]. Given
the benefits, IVUS has been shown to optimize stent implantation and improve outcomes,
including revascularization, MACE, and mortality when used routinely in the cardiac
catheterization laboratory [130–132].

On the other hand, OCT works on the principle of near-infrared light waves, generat-
ing cross-sectional images with a much higher axial and lateral resolution of 10 microns and
20–40 microns, respectively [133]. This allows for a detailed view of the lumen–plaque inter-
face, providing accurate dimensions of the luminal area and better plaque characterization.
The vulnerability of a plaque is a function of the thickness of its fibrous cap, the size of the
necrotic core, and the presence of macrophages. A thin, fibrous cap; sizeable necrotic core;
and increased macrophages increase the risk of plaque rupture and subsequent ACS [113].
Given the high resolution provided by OCT, it is considered a gold-standard invasive
imaging modality for detecting thin-cap fibroatheroma (TCFA), which, pathologically, is
a precursor of vulnerable plaque and clinically proven to be an independent predictor of
MACE [134]. A significant drawback of OCT is its inherent low penetration depth (1–2 mm),
which makes IVUS a better modality for a full-thickness analysis of vessel wall [130].
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Though fascinating, IVUS and OCT have a low adoption rate in the US, being em-
ployed only at tertiary-care centers owing to cost, need for additional procedural time,
and the associated technical complexities [135,136]. By using deep-learning algorithms to
optimize the workflow associated with image acquisition and interpretation, ML has the
potential to reduce procedural costs and time required, which are the two major hindrances
to the widespread use of IVUS and OCT.

6.1. Artificial Intelligence to Optimize Peri-Intervention Workflow

To predict OCT-derived TCFA on IVUS images, Bae et al. created a ML model,
enrolling 517 patients who underwent ICA [137]. A total of 40,908 IVUS-OCT co-registered
sections in 517 coronary arteries were divided into training and testing sets in a ratio
of 4:1. An artificial-neural-network-based model using 17 features achieved the highest
performance with a sensitivity and specificity of 85 ± 4% and 79 ± 6%, respectively, and
good discriminatory power (AUC of 0.80 ± 0.08). Larger plaque burden, minimal diameter,
decreased lumen area, and increased lumen eccentricity were seen to be strongly associated
with OCT-derived TCFAs. Min et al. utilized a deep learning algorithm (densely connected
convolutional neural network) on 35,678 OCT frames to automatically detect TCFAs from
OCT images [138]. After the frames were interpreted for the presence/absence of TCFA,
data was fed into the algorithm to devise a deep-learning model. By achieving high
sensitivity and specificity of 88.7 ± 3.4% and 91.8 ± 2.0% on the test data, such deep-
learning models can significantly reduce processing times and allow for easy interpretation
when it comes to identifying a vulnerable high-risk plaque.

As mentioned earlier, IVUS can help characterize high-risk plaques, which appear as
areas of attenuation on IVUS frames due to the presence of a large necrotic core. Identifying
such lesions becomes imperative to reduce the incidence of complications such as periproce-
dural MI. To accurately classify plaque characteristics and to facilitate detection of high-risk
lesions, Cho et al. described a deep-learning algorithm to accurately differentiate IVUS
segments as attenuated or calcified, or plaque without attenuation or calcification [139].
A total 598 vessels in 598 patients were evaluated, and a DL model with five-fold cross-
validation was developed. The deep-learning model closely correlated with the expert read,
and correlation coefficients for calcification, attenuation, and no attenuation or calcification
were 0.79, 0.74, and 0.99, respectively (Figure 4).

Stent underexpansion is a frequently encountered entity that has been associated with
an increased risk of in-stent restenosis. Studies have demonstrated the postprocedural
minimum stent area (MSA) and IVUS-measured stent length to be independent predictors
for in-stent restenosis [130,140–143]. Min et al. devised a deep-learning model to predict
stent underexpansion based on pre-PCI IVUS frames [144]. They evaluated 618 coronary
lesions from 618 patients undergoing pre- and postprocedural IVUS and divided them into
training and testing sets in a 5:1 ratio. A convolutional neural network (CNN) model was
used to predict the poststenting stent area. Features extracted from the CNN were combined
with additional image-derived features via a boosted ensemble algorithm, which yielded
sensitivity and specificity of 68% and 98%, respectively, and an AUC of 0.95 to predict stent
underexpansion. The stent areas and volumes predicted via the CNN correlated well with
poststenting IVUS (r for stent area and volume 0.832 and 0.958, respectively). The most
important features predicting stent underexpansion were luminal area, external elastic
membrane (EEM) area (both at the reference and the target), and plaque area of the region
of interest.

6.2. Applications of Artificial Intelligence in Intra and Post-Intervention Workflow

Optimal stent expansion is vital to successful outcomes, with stent underexpansion
predisposing to stent restenosis and a greater stent expansion exposing the procedure
to a risk of stent edge dissection [130]. IVUS, by allowing direct visualization of vessel
architecture, can help in the earlier identification and management of these complications.
Nishi et al. developed a ML model to compute the luminal area and the vessel area
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accurately, as well as the stent area, which exhibited an excellent correlation between
ML-derived and expert-derived dimensions while dramatically reducing the time required
for segmentation of IVUS images (37 s) compared with expert analysis (30 h) [145].

Virtual histology IVUS (VH-IVUS) is a well-studied intracoronary imaging modality
used for in vivo visualization of high-risk plaques [146–149]. Zhang et al. devised a deep-
learning model to predict the location of high-risk plaques in nonculprit vessels in patients
who underwent IVUS at baseline and after one year [150]. Though large-scale validation is
required, the model predicted the occurrence of TCFAs, plaque burden >70%, and minimal
luminal area ≤4 mm2 reasonably well at a one-year follow-up on a per-lesion level.
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Figure 4. ML(A) vs. human (B) interpretations for plaque characterization for IVUS images. The
upper panel shows representation of plaque features along the long axis of the vessel (x-axis represents
the distance from ROI (region of interest) and y-axis represents the angular position (0–360◦) of the
plaque. The lower panel shows the plaque characterization on a cross-sectional view of the IVUS
frame. Attenuation, calcification, and regions without attenuation or calcification are represented by
red, white, and green respectively. Adapted with permission from Cho et al. [135], Elsevier.

7. Artificial Intelligence-Based Post-Procedure Risk Prediction Models

In addition to early detection and the institution of guideline-directed therapy in
the appropriate risk strata, accurate prediction of unheralded adverse events forms the
cornerstone for managing CAD. Identifying the high-risk target population can potentially
provide a window for aggressive risk factor modulation, thereby reducing mortality and
contributing towards better health at a population level. Multiple risk-prediction models
have been developed to predict in-hospital mortality and the long-term risk of MACE in
high-risk cohorts [151–158].

PCI is a relatively safe procedure, with a reported overall in-hospital mortality rate
of 1–2% [159]. The risk of complications increases with increasing patient morbidity, with
an incidence of technical difficulties and periprocedural complications 2.2 times higher
than in the average population [160]. The Mayo clinic risk score (MCRS) and New York
State risk score (NYSRS) were developed to predict in-hospital and 30-day mortality in
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patients undergoing PCI. Both scores performed equivalently well, showing an excellent
discriminative ability to identify patients at a higher risk for in-hospital and 30-day mortal-
ity [161]. They employed regression-based models, assuming a linear interplay between
patient variables and mortality outcomes. ML models have been recently developed to
potentially uncover complex and nonlinear relationships between multiple factors, hence
improving diagnostic accuracy over current models.

Zack et al. evaluated 11,709 patients to train two RF regression models—one using
52 demographic and clinical parameters to predict in-hospital mortality and the second
model also incorporating 358 discharge variables in addition to the 52 admission parameters
to predict 180-day cardiovascular mortality and 30-day heart failure rehospitalization [162].
They compared the model performances against logistic regression models trained using
the same variables. No significant difference was found between the RF model and logistic
regression in predicting in-hospital mortality (AUC 0.923 vs. 0.925, p = 0.84). The ML model
performed significantly better than the logistic regression model for prediction of 30-day
heart failure hospitalizations (AUC 0.899 vs. 0.846, p = 0.003) and 180-day cardiovascular
death (AUC 0.881 vs. 0.812, p = 0.02).

Al’Aref et al. [163] developed a supervised machine learning approach to predict
in-hospital mortality among patients undergoing PCI. Utilizing 479,804 patients from the
New York state registry, they utilized 49 clinical, angiographic, and periprocedural event
characteristics to create a ML model via adaptive boosting. It performed better than the
logistic regression model (AUC 0.927 for ML vs. 0.908 for logistic regression, p < 0.01). Age
and ejection fraction emerged as the most important variables predicting mortality.

Periprocedural bleeding is one of the most common complications of PCI and has
been linked to adverse in-hospital outcomes [164,165]. Current risk scores such as the
NCDR bleeding risk-prediction model and the simplified NCDR bleeding-risk score have
performed modestly well in identifying patients at a high risk of periprocedural bleed-
ing [166]. To improve the performance of the existing risk model, an ML-based model
was developed on 3,316,465 patients enrolled in the CathPCI registry [167]. In addition
to the 31 variables used in the existing model, 28 new variables were incorporated to
devise an integrated model via the gradient-boosting approach. The blended model using
ML had a higher discriminatory power than the existing model (C statistic 0.82 vs. 0.78,
p < 0.05) and improved the positive predictive value to 26.6%, compared with 21.5% for the
existent model.

One of the primary challenges faced in the PCI era is in-stent restenosis, which is linked
to neointimal proliferation due to vascular wall damage [168]. The incidence of ISR has been
estimated to be 20–40% for bare metallic stents and 10–15% for drug-eluting stents [168,169].
Smaller vessel size, increasing stent length, complex lesion morphology, diabetes mellitus,
and prior bypass surgery are risk factors for stent restenosis [169]. These factors have been
incorporated with other variables to devise risk models such as PRESTO 1, PRESTO 2,
and EVENT scores to provide an estimated risk of ISR [170,171]. These models have a
modest discriminatory power in predicting ISR, leaving room for improvement. A big-data
approach incorporated 68 variables relating to clinical, demographic, and angiographic
characteristics to devise a risk prediction model for ISR [172]. The ML model, when applied
post-PCI, achieved a higher discriminatory power (AUC for the precision recall curve was
0.45 vs. 0.31, 0.27, and 0.18 for PRESTO-1, PRESTO-2, and EVENT, respectively, p < 0.05)
to predict ISR at 12 months. Interestingly, post-PCI TIMI flow was one of the prominent
predictors of ISR, alongside diabetes mellitus and the presence of ≥2 vessel CAD. Though
the model requires external validation, given the small sample size of the population
(n = 263), the study yet again underscores the merit of ML in identifying crucial parameters
from a vast dataset to predict outcomes.

8. Artificial Intelligence-Based Long-Term Mortality and MACE Prediction Models

Prognostic modeling via ML has been validated with the use of electronic health records
(EHRs) integrated with clinical scores and imaging modalities to predict MACE [173–175].
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Utilizing the array of data available in EMR and identifying patterns based on clinical
course, ML models have been used to create a personalized treatment algorithm (ML4CAD)
for every patient, based on risk factors, past medical history, time present in the EMR
system, and medications. The illustrated model makes clinical decisions for patients based
on these factors and suggests a decision with an aim to increase prescription effectiveness,
evaluated in the terms of time from initial diagnosis to the first potential adverse event (time
to adverse event, TAE). The model had superior performance when compared to standard
of care, increasing the time to adverse event (TAE) from 4.56 to 5.66 years (24.3% increase),
hence furthering the idea of precision medicine [174,176].

Imaging findings, such as CAC score quantified from cardiac computed tomography,
are an independent risk factor adding to the traditional clinical risk factors in predicting long-
term risk of cardiovascular events [177–179]. Noncontrast CT imaging, other than providing
information on the CAC score, provides valuable measures such as epicardial adipose tissue
(EAT) volume, and EAT attenuation, all of which have been shown to provide additional
information regarding the long-term risk of cardiovascular disease [180–182]. Extracting these
pieces of data can be tedious and labor-intensive, and automated techniques can result in
more standardized evaluations in a more time-efficient manner.

Multiple ML techniques have been proposed to automatically evaluate CAC score
from dedicated cardiac and non-EKG gated chest CT scans [66,67,183–185]. ML techniques
incorporating CAC score and other imaging parameters have been shown to be a bet-
ter predictor than the traditional risk scores employed for cardiovascular disease risk
stratification [181,186–189]. An ensemble-boosting model developed by Nakanishi et al. in-
corporating a total of 77 clinical and imaging variables had a superior discriminatory power
for predicting coronary heart disease deaths than imaging and clinical data alone (AUC
for ML model: 0.845 compared to 0.821 and 0.781 for clinical data and CAC respectively,
p < 0.001) (Figure 5) [190].

Apart from CAC scoring and traditional CT metrics, the role of EAT volume and at-
tenuation in the prediction of future cardiovascular risk has been an active area of research.
Deep-learning approaches to automatically compute EAT volume and EAT attenuation
from CT have been developed, significantly reducing generation time from 15 min to
2 s [186]. Eisenberg et al. demonstrated an independent association between deep-learning-
derived EAT volume and attenuation with the risk of future MACE, defined as myocardial
infarction, late (>180 days) revascularization, and cardiac death (HR:1.35, p < 0.01 and 0.83,
p = 0.01, demonstrating a direct correlation with EAT volume and an inverse correla-
tion with EAT attenuation respectively) [187]. Subsequently, these parameters have been
combined with other physiologic and radiology variables to develop new deep-learning
approaches, which have further been shown to have a higher predictive value than the
traditional risk scores [186,189]. These have been summarized in Table 2.

Apart from its role in CAD diagnosis, CCTA has been shown to have an incremen-
tal prognostic value in terms of short- and long-term risk prediction. Results from the
CONFIRM registry validated two CCTA parameters, namely the number of proximal seg-
ments with stenosis > 50% and the number of proximal segments with mixed or calcified
plaque as important prognostic markers above the predictive value of the Framingham risk
score (FRS) [191–193].
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Figure 5. Variable importance as determined by the ML model for prediction of coronary heart
disease deaths. Abbreviations: CAC: coronary artery calcium; TAC: thoracic aortic calcification; AVC:
aortic valve calcification; MVC: mitral valve calcifications; LAD: left anterior descending; LCx: left
circumflex RCA: right coronary artery. Adapted with permission from Nakanishi et al. [190], Elsevier.
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Table 2. Studies evaluating the impact of coronary artery calcium score (CACS) among other variables in the prediction of mortality in patients with no history of
coronary artery disease.

Study Study Design/Sample Size ML Model Brief Description and Follow-Up Results Limitations

Eisenberg et al. [187]
2020

Prospective single-center study,
2068 asymptomatic patients Convolutional neural network

To check for impact of EAT volume
and EAT attenuation computed via
deep learning in prediction of MACE,
defined as defined as MI, late (>180
days) revascularization and
cardiac death.
Follow up: >14 years

Increased EAT volume (HR: 1.35) and
decreased EAT attenuation (HR 0.83)
independently associated with
MACE in addition to CACS (HR 1.25)
and ASCVD score (HR 1.03), p < 0.01
for all.

1. Study done on asymptomatic
patients; external validation
needed if applied on
symptomatic patients.

2. Previous-generation CT
scanners used (data collected
from 1998–2005).

Han et al. [188]
2020

Retrospective multicenter study,
86,155 asymptomatic patients Boosted ensemble

ML model with 35 clinical, 32 lab,
and 3 CACS parameters (CACS,
calcium volume, and calcium mass)
in prediction of all-cause mortality
Median follow up: 4.6 years

ML (0.82) > ASCVD score + CACS
(0.74) > Framingham risk score +
CACS (0.70)—reported as AUC in the
test set.
No statistical difference in the
performance in the validation set.

1. Retrospective
2. All-cause mortality reported

rather than specific
cardiac endpoints.

Nakanishi et al. [190]
2021

Multicenter observational study,
66,636 asymptomatic patients Boosted ensemble (Logitboost)

ML model incorporating 46 clinical
and 31 CT variables—CAC score,
extra coronary scores (not including
EAT) in prediction of cardiovascular
(CHD + stroke + CHF + other
circulatory diseases), and coronary
heart disease (CHD) deaths
Follow up: 10 years

1. For cardiovascular deaths:
AUC for ML (all) 0.845 >
ASCVD (0.821) > CAC
score (0.78).

2. For coronary heart disease
deaths: AUC for ML (all) 0.860
> ASCVD (0.835) > CAC
score (0.816).

1. Multiple CT variables,
including EAT, were not
available for some patients.

Commandeur et al. [186]
2020

Prospective single-center study,
1912 asymptomatic patients Boosted ensemble (XgBoost)

ML model using clinical variables,
plasma lipid panel measurements,
CAC, aortic calcium, and automated
EAT measures in prediction of MI
and cardiac deaths.
Median follow up: 14.5 years

1. ML model 0.82 > ASCVD risk
score 0.77 ~ CAC 0.77.

2. Age, ASCVD risk score, and
CACS were the three most
important features seen in
the model.

1. Overfitting; since small
number of events (<4%).

2. Study done on asymptomatic
patients; external validation
needed if applied on
symptomatic patients.

Tamarappoo et al. [189]
2021

Prospective single-center study,
1069 asymptomatic patients Boosted ensemble (XgBoost)

ML model using 12 variables from
ASCVD score, 5 CT parameters
(including EAT volume and
attenuation) and top 15 serum
biomarkers) to predict cardiac events
Mean follow up: 14.5 years

ML (0.81) > CAC (0.75) > ASCVD
(0.74).

1. Single-center study
2. Overfitting; given the small

number of cardiac events
during follow up (~2%)

ASCVD: atherosclerotic cardiovascular disease; CHF: congestive heart failure; EAT: epicardial adipose tissue; HR: hazard ratio; MI: myocardial infarction.
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A multitude of ML approaches have been described, combining imaging parameters
with clinical and demographic parameters for better prognostication of cardiovascular
outcomes [194–199] Including 10,030 patients with suspected CAD from the CONFIRM
registry, Motwani et al. utilized a boosting ensemble algorithm using 25 clinical and
44 CCTA parameters [195]. The ML algorithm performed better in predicting 5-year all-
cause mortality than CCTA segment stenosis score or FRS (AUC 0.79 for ML vs. 0.664 for
segment stenosis score and 0.61 for FRS, respectively, p < 0.001). More recently, models
incorporating high-risk plaque features with the traditional imaging and clinical parameters
have performed better than either of the parameters in isolation [196,197]. A review of
literature summarizing all the studies is presented in Table 3.

Although anatomical CT scores and plaque features provide useful diagnostic and
prognostic data, the complex interplay of factors at the molecular level, in addition to
patient-level characteristics leading to specific phenotypic manifestations in terms of plaque
burden and features, is not well-elucidated and remains an area of active research. In par-
ticular, elucidating important factors that “drive” the process of atherosclerotic plaque
formation and progression is not only vital from a therapeutic perspective, but it can also
improve risk-assessment strategies. Recent studies have demonstrated that coronary artery
inflammation inhibits lipid accumulation in the perivascular adipose tissue [200]. This
results in a higher attenuation of the affected perivascular area, identified on CCTA as the
fat attenuation index (FAI). FAI has been shown to be a sensitive marker of coronary in-
flammation, with higher FAI values (≥−70.1 HU) independently predicting cardiovascular
mortality [200,201]. A posthoc analysis of the CRISP-CT study showed an incremental
value of adding FAI to high-risk plaque characteristics, pointing towards a more signifi-
cant role of these precursor lesions in predicting patient outcomes [202]. A more recent
ML approach created a pericoronary fat ‘radiomic’ profile (FRP), identifying radiomic
variables predicting tissue inflammation, fibrosis, and vascularity on CCTA [203]. The
incorporation of FRP significantly improved the MACE predictive ability of the traditional
model (AUC for traditional + FRP 0.88 vs. 0.754 for the traditional model, p < 0.001).
Using a cut-off of 0.63, individuals in the high FRP group were at a higher risk of MACE
(HR = 10.84, p < 0.001). Importantly, Kaplan–Meir analysis showed an additional value of
FRP over high-risk plaque (HRP) characteristics in predicting long-term survival (HR for
the FRP-/HRP+ subgroup 5.97, p = 0.03 compared to 43.33 for the FRP+/HRP+ subgroup).
Such ‘radiotranscriptomic’ approaches incorporating molecular biology and radiology and
evaluating their interaction via artificial intelligence can help uncover deeper relationships
between metabolic pathways and clinical outcomes, helping to better understand the patho-
physiology and elements involved in the clinical progression of cardiovascular disease.
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Table 3. Summary of literature regarding mortality outcomes using CCTA data.

Study Study Design/Sample Size ML Brief Description and Outcomes Results Limitations

Motwani et al. [195]
2016

Multicenter prospective study,
10,030 patients with
suspected CAD

Boosted ensemble (LogitBoost)

25 clinical and 44 CCTA parameter used
to create ML model
Outcome: Prediction of 5-year ACM;
compared against clinical risk scores and
CCTA parameters.

AUC: ML (0.79) > Segment stenosis score
(SSS) (0.64) and FRS (0.61); p < 0.001.

1. Observational; concern for
selection bias

2. Cardiac-specific endpoints were
not defined, given the
data unavailability.

Hoshino et al. [198]
2016

Multicenter retrospective study,
220 patients with intermediate
LAD stenosis

Unsupervised
hierarchical clustering

Two clusters (CS1 and CS2) using 42
variables created via ML.
Outcome:

1. Relation between FAI and CCTA
defined clusters,

2. Prognostic value of ML-derived
clusters in combination with FAI.

1. Age, CS1 features (higher plaque
volume, remodeling index, higher
FAI amongst others), and FAI were
independent predictors of MACE.

2. Improved NRI with (FRS + CS1 +
FAI) as compared to FRS alone.

1. Retrospective, small size
2. Majority of vessels were LAD;

hence the study was restricted to a
specific population.

3. 40% cardiac events were non-LAD
revascularization; hence the results
were not generalizable.

Van Rosendael et al. [197]
2018

Multicenter prospective study,
8844 patients with
suspected CAD

Boosted ensemble

35 variables (SS and plaque composition
for 16 coronary segments and 3 additional
variables) compared with traditional
CT scores.
Outcome: ML vs. traditional CT scores in
predicting 5-year composite MI and death.

AUC for ML (0.77) > SSS (0.70)

1. No comparison with clinical
risk scores

2. Retrospective study with risk of
selection bias

Johnson et al. [194]
2019

Single-center retrospective study,
6892 patients K nearest neighbors

ML model (64 vessel-related features) vs.
CAD-RADS.
Outcome: Prediction of ACM,
CAD-related deaths. Also, decision to
start statin.

1. AUC for all-cause mortality
(0.77) > CAD-RADS (0.72); AUC for
CAD-related deaths—ML
(0.85) > CAD-RADS (0.79).

2. Significant increase in sensitivity
with ML model.

1. Retrospective study with limited
population diversity

2. Unblinded CCTA results that might
have affected event incidence

Johnson et al. [199]
2020

Single-center retrospective study,
6892 patients

ML model developed via
radiologist report.
Outcome: Prediction of ACM and
CAD-related mortality; compared against
FRS. Also, decision to start statin.

1. ACM: AUC for ML (0.85) > FRS
(0.79) CAD related deaths: AUC for
ML (0.87) > FRS (0.82)

2. Using ML, equally high sensitivity
but significant reduction in
unnecessary statin prescription
(AUC for ML 0.89 vs. FRS 0.75).

1. Retrospective study design
2. Concern for misclassification bias

due to incomplete follow-up

Tesche et al. [196]
2021

Single-center retrospective study,
361 patients with suspected and
confirmed CAD

Boosted ensemble (RUSBoost)

28 clinical, CCTA scores and adverse
plaque characteristics included.
Outcome: 5-year MACE prediction;
compared against FRS, CCTA scores and
adverse plaque features.

1. AUC for ML (0.96) > AS (0.84) >
FRS (0.76).

2. Important imaging parameters:
SSS, obstructive CAD of RCA.

3. Important clinical factors: age, FRS

1. Small sample size, retrospective
study design

2. Follow-up using medical records
3. No external validation to test

prognostic accuracy

ACM: all-cause mortality; AS: Agatston score; CAD-RADS: coronary artery disease reporting and data system; CS: cluster sample; FAI: fat attenuation index; FRS: Framingham risk
score; RCA: right coronary artery; SSS: segment stenosis score.
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9. Discussions

With significant developments occurring in the last decade in terms of data processing
and analytics, AI can provide new and sophisticated tools that could help us to better
understand disease processes, which ultimately should translate into better patient care
and outcomes (Figure 6). Nevertheless, AI comes with its own set of limitations. ML
models lack interpretability and suffer from the ‘black box’ problem [204]. ML models
based on neural networks and ensemble methods are inherently complex and are derived
from complicated mathematical algorithms. ‘Explainable (interpretable) machine learning’,
whereby simple approximations of the model are devised to make it more understandable,
is being developed to overcome the black box problem [205,206].
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Figure 6. Current applicability and future directions for AI in coronary artery disease.

Another limitation of ML encountered at the model-development phase is sampling
bias and lack of external validation [207,208]. ML learning models usually derive their
weights from large datasets. Datasets, particularly those derived from EHRs, might be
skewed and not representative of the entire population, leading to significant sampling bias
and limited generalizability. A few models have tried to address this problem by stratifying
the datasets at the model-development phase to ensure not to lose representation of any
subgroup and preserve the model’s generalizability. Nevertheless, randomized controlled
trials are needed to potentially overcome this bias and establish the model performance
against the standard clinical parameters. In addition, imputation methods such as MICE
have been used to address the missing data issue [209].

Furthermore, the creation of bigger datasets by pooling data from multiple hospital
systems has led to a lack of standardization of datasets, potentially compromising the
quality of analysis. Datasets might internally differ from each other because of the different
mechanisms used to generate them. For instance, one dataset might define the presence
of diabetes mellitus through ICD-10 codes, while another dataset might define it using
glycemic indices, such as the hemoglobin A1c. On a similar theme, ML models developed
by using imaging modalities deserve a special mention. For instance, differences can
exist at the level of image scanning (different scanner characteristics and vendors), image
quality (radiation dose, motion artifacts), and image processing (reconstruction filters,
post-processing) which can potentially lead to significant variability and differences of the
assimilated data. A prerequisite to the development of any ML model is the centralization
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of data, which is tedious given the different image processing algorithms employed at
various institutions. This lack of standardization needs to be addressed before AI can be
fully integrated into clinical practice.

Overfitting is another concern encountered during ML model development, which
occurs when the algorithm learns the data ‘too well’ and interprets the signal noise as
concepts [210]. This usually happens with smaller datasets and can lead to a lack of
external validity, despite high performance in the training and internal validation datasets.
A definite solution is k-fold cross-validation, whereby data is randomly divided into an
arbitrary k number of partitions. The model is trained using k − 1 number of data subsets
and tested on the remaining subset. This process is repeated k total number of times,
using different combinations of training and testing datasets to select the best model hyper-
parameters to yield the final model. This can potentially reduce noise and lead to better
generalizability of the model in the overall population.

Apart from the problems encountered at the model development and training phase,
there are a few noteworthy practical limitations to the implementation of ML within health-
care workflows. Firstly, unauthorized data access is an issue, as handling such large
amounts of data also poses a risk of leaking sensitive patient information, thereby violat-
ing patient confidentiality and privacy [211]. Furthermore, comparisons between various
machine-learning methods are difficult, given the different combinations of model param-
eters and different population characteristics used for in model development. Hence, it
becomes difficult for physicians to compare and choose one model over the other. Prospec-
tive future trials, comparing these models on the same dataset, are needed to select the
best algorithm fit for integration into routine clinical decision-making. Proper integration
of AI can only be achieved once these models are embedded within EHRs. However, the
full implementation and assimilation of developed AI models into EHRs can be a complex
issue, as it depends on organizational resources and patient-privacy policies. Furthermore,
available algorithms may be limited to off-the-shelf ML models, rather than more intricate
and complex neural networks, which is easier to implement in a real clinical setting. Yet,
a data-driven approach utilizing advanced analytic techniques can help clinicians and
patients to make informed decisions, improve care, and optimize workflow efficiency.

10. Conclusions

In conclusion, AI provides an unprecedented potential to transform healthcare and
enhance the current system’s ability to serve populations at large, while providing tools to
focus on individualized yet comprehensive and precise care.
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Abstract: Colorectal cancer is the leading cause of cancer-related deaths worldwide, and early
detection has proven to be an effective method for reducing mortality. The machine learning method
can be implemented to build a noninvasive stratifying tool that helps identify patients with potential
colorectal precancerous lesions (polyps). This study aimed to develop a noninvasive risk-stratified
tool for colorectal polyps in asymptomatic, healthy participants. A total of 20,129 consecutive
asymptomatic patients who underwent a health checkup between January 2005 and August 2007
were recruited. Positive relationships between noninvasive risk factors, such as age, Helicobacter pylori

infection, hypertension, gallbladder polyps/stone, and BMI and colorectal polyps were observed
(p < 0.0001), regardless of sex, whereas significant findings were noted in men with tooth disease
(p = 0.0053). A risk stratification tool was developed, for colorectal polyps, that considers annual
checkup results from noninvasive examinations. For the noninvasive stratified tool, the area under
the receiver operating characteristic curve (AUC) of obese females (males) aged <50 years was 91%
(83%). In elderly patients (>50 years old), the AUCs of the stratifying tools were >85%. Our results
indicate that the risk stratification tool can be built by using random forest and serve as an efficient
noninvasive tool to identify patients requiring colonoscopy.

Keywords: Helicobacter pylori infection; colorectal polyp; teeth disease; precancerous lesions; non-
invasive; risk stratifying tool; random forest

1. Introduction

Colorectal cancer (CRC) is the most common cancer worldwide and a significant public
health problem in developed countries [1,2]. Most CRCs arise from polyps considered
to be precancerous lesions, particularly adenomatous polyps [3–6], even though most
are asymptomatic. Removal of all precancerous lesions during endoscopy has been the
most effective method for preventing cancer development [6–8]. Colonoscopy is the most
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effective method for the search and removal of colorectal polyps. However, colonoscopy
is not only time consuming and costly but also has side effects. Previous studies have
reported several adverse events of colonoscopy, including perforation (0.005–0.085%) and
bleeding (0.0001–0.687%) [9]. These adverse events create health hazards for patients and
financial burdens for healthcare centers.

Furthermore, the increasing demand for colonoscopy drastically increases the work-
load of gastroenterology [10]. The increasing workload might result in undesired results
such as lower adenoma detection rates per colonoscopy [11] and longer waiting times for
colonoscopy [12]. As shown in [12], the median waiting time for the screening colonoscopy
is 210 days with the maximum waiting time equaling 631 days in Canada. Long waiting
times increases the patient’s mental burden and the risk of precancerous polyps’ evolve-
ment. Therefore, healthcare centers are actively searching for a risk stratification tool that
identifies patients who require colonoscopy using noninvasive examination results.

Hence, risk factors of noninvasive examination data for colorectal polyps, such as
gender, age, BMI, blood pressure, gallbladder (GB) polyp/stone, Helicobacter pylori infection,
and tooth disease (periodontal disease, chronic gingivitis, and chronic periodontitis), were
collected, and a machine learning method was implemented to build a risk stratification
tool for patients with colorectal polyps. Risk factors were selected based on previous
studies [13–17], which reported factors exhibiting some relationship with precancerous
polyps [18]. Data from 20,129 consecutive asymptomatic individuals who underwent a
health checkup were collected. To date, little is known about their association. Here, we
hypothesized that noninvasive risk factors may be associated with colorectal precancerous
lesions. Furthermore, we hypothesized that risk factors might vary from patients groups
with different demographic characteristics such as gender, age, weights, etc.

After identifying noninvasive risk factors and patient grouping criteria, a noninvasive
risk stratification tool was built in order to identify patients who need colonoscopy using a
machine learning method. Previous studies have investigated the possibility of identifying
patients at high risk for heart disease [19] and diabetes [20] using machine learning methods.
More recently, artificial intelligence approaches such as machine learning methods have
been used to build a risk stratification tool for different diseases [21]. Therefore, based on
the identified risk factors, a machine learning method was further employed to show that
the identified risk factors can serve as predictors of precancerous lesions.

To the best of our knowledge, this is the first investigation aimed at building a nonin-
vasive stratification tool based on risk factors from annual checkup data. This study aimed
to develop a simple, noninvasive, risk factor, and noninvasive risk stratification tool for
these asymptomatic populations to determine colorectal precancerous lesions.

2. Materials and Methods

2.1. Study Participants

In this retrospective study, 20,129 consecutive asymptomatic patients who under-
went a health checkup between January 2005 and August 2007 at Chang Gung Memorial
Hospital (approval number: 201601348B0, approved 2016/01) were recruited. This study
was approved by the Ethics Committee of the Institutional Review Board of Chang Gung
Memorial Hospital and conducted according to the ethical principles of the Declaration
of Helsinki, as reflected in the a priori approval by the institution’s human research com-
mittee. Written informed consent was obtained from all patients included in the study.
Our health checkup program included physical examination, chest radiography, electrocar-
diography, complete blood tests, biochemical laboratory tests, urine analysis, abdominal
ultrasonography, and colonoscopy. Exclusion criteria were patients who did not have
colonoscopy during the course of the health checkup or had incomplete colonoscopy due
to various reasons, such as poor bowel preparation or incomplete total colon inspection
and BMI > 35 kg/m2. Height and body weight, used to calculate BMI, were measured by
well-trained nurses. BMI ranges were underweight, under 18.5 kg/m2; normal weight,
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18.5–25 kg/m2; overweight, 25–30 kg/m2; and obese, >30 kg/m2. In our institution, the
C13 urea breath test was used to detect Helicobacter pylori infection [22].

2.2. Colonoscopy Procedure and Abdominal Ultrasonography

For bowel preparation, patients ingested 1.5–2 L of polyethylene glycol before the
procedure. All procedures were performed by experienced gastroenterologists. Endoscopic
findings were classified into two subgroups: polyp and polyp-free. GB polyps on ultra-
sonography showed fixed, hyperechoic material attached to the lumen of the GB, without
an acoustic shadow [23].

2.3. Risk Stratification Tool Building

As described in Section 2.1, all items in the annual check-up data are collected for this
research. Based on previous research [13–17], we selected risk factors from the following
categories: (1) patient’s demographic characteristics including age, sex, weight, and height;
(2) patient’s medical history including hypertension, diabetes, and Helicobacter pylori in-
fection; (3) colonoscopy diagnosis results including colorectal polyps, ulcerative colitis,
hemorrhoids, and intestinal hemorrhage, etc.; (4) abdominal ultrasonography diagnosis
including GB polyps and GB stones; (5) blood sample diagnosis results including fasting
blood glucose, total cholesterol, high and low-density lipoprotein (HDL and LDL), triglyc-
erides, etc.; (6) dental diagnosis results including periodontitis, periodontal disease, chronic
periodontitis, and chronic gingivitis. All diagnosis results are binary with respect to data
with 1 = positive diagnosed and 0 = otherwise. BMI is calculated based on the weight
of height of the patient. Furthermore, patients’ demographic data are dichotomized into
binary or categorical data. Age is dichotomized as over (1)/under (0) 50 years old, and BMI
is categorized as 0 (underweight (<18.5 kg/m2)), 1 (normal (18.5–25 kg/m2)), 2 (overweight
(25–30 kg/m2)), and 3 (obese (>30 kg/m2)).

Our overall risk stratification tool building procedure is summarized in Figure 1 and
the Heuristic.

Figure 1. Diagram for proposed Heuristic.

The Heuristic:

Step 1: Collect data from annual health check-ups. All risk factors are indexed from i = 1
. . . N, the value of the risk factor is xi, where there are N risk factors in total.

Step 2: Pre-screen with a z-test for two sample proportions with a significance level equal
to 0.05 is applied to select potential risk factors. Where the two sample proportions
are calculated as For all risk factor i,

phi = the proportion of patients who has colorectal polyps for patients with risk
factor xi = h − 1.

That is,

p1i = the proportion of patients who has colorectal polyps for patients with risk
factor xi = 0.
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p2i = the proportion of patients who has colorectal polyps for patients with risk
factor xi = 1.

Step 3: The null and alternative hypothesis is stated as below: Null Hypothesis: p1i = p2i =
. . . . phi

We record all risk factors which has a significantly different sample proportion
between patients with and without colorectal polyps.

Step 4: Logistics regression is applied for each risk factor to calculate the discriminability
for each risk factor. Based on the logistic regression, we identified the demographic
risk factors which can segregate patients into different sub-groups for the machine
learning process.

Step 5: Machine learning is applied to each sub-group to construct the risk stratification
tool.

Step 6: We output the system of models which consisted of multiple random forest models.
Step 7: Output our four-fold-cross validation.

2.4. Statistical Analyses

Statistical analyses, including receiver operating characteristic (ROC) curve, area
under ROC (AUC), multinomial logistic regression analyses, and z-test for two-sample
proportions, were conducted using SAS software (version 9.4; SAS Institute, Cary, NC,
USA). We use the two-sample z-test for the pre-screen tool since it is simple and efficient.
Researchers might consider another pre-screen method as well. Statistical significance was
set at p < 0.05. Simple logistic regression was applied when the independent risk factor was
binary (e.g., age), and multinomial logistic regression was applied when the independent
risk factor was categorical (e.g., BMI). The AUC was reported for each logistic regression.
Since underweight, overweight, and obesity groups were all considered abnormal, BMI
was treated as categorical instead of ordinal data. Tooth disease was identified if the patient
was diagnosed with periodontal disease, chronic periodontal disease, and/or chronic
gingivitis. GB equaled a score of one if GB polyps and stones were observed on abdominal
ultrasonography, whereas hypertension was based on the patient’s medical history and not
the onsite measurement of blood pressure.

2.5. Machine Learning Algorithm

A machine learning algorithm, random forest, was adopted by using Python to build
a risk stratification tool based on the risk factors identified from annual healthcare data.
Discriminability was represented by AUCs. We used 75% of the data to build the model
and 25% of the data to test the consistency of the model. The model building and testing
process was repeated four times (four-fold validation method). Adulqader et al. [14]
conducted a review on machine learning in healthcare. The authors point out the most
popular classification method among all machine learning algorithms including support
vector machine (SVM), random forest (RF), and Naïve Bayes. Previous studies [24–26]
also use annual health check-up data to develop a risk stratification tool to serve as a
screening tool for non-alcoholic fatty liver disease. Goldman et al. [25] use the decision-
tree-based approach, and Fialoke et al. [26] used several other methods along with the
decision-tree approach. We argue that since our risk factors are all binary data, a decision
tree-based method such as RF is the most suitable method. Our machine learning algorithm
is summarized as the following pseudo-code.

Machine Learning Algorithm (RF):

Step 1: Input all risk factors as vector X = <x1 . . . . . . xh> and the y = 1 if a patient
is diagnosed with colorectal polyps, and zero otherwise. Moreover, input the
demographic factors for aggregating patients into subgroups. Go to Step 2.

Step 2: Segregate all patients into subgroups. Index subgroups as k = 1 . . . N for N groups
in total. Let k =1 and go to Step 3.

Step 3: Input all risk factors X and y in the kth sub-group. Go to Step 4.
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Step 4: Input all data in with path_name = group k, with the following specification of
random foreackage in python. We selected the four-fold validation, thus 75% of
data will be randomly selected for modeling building and 25% will be reserved for
validation. For each run, the random forest will repeat four times for validation.
Output the model and go to Step 5. Branch criterion: gini index Number of
estimators (number of decision trees): 1000 Min_samples_leaf = 5 Class weight:
balanced Validation: Four-fold Calculate the following statistics: Specificity = True
negative/(true negative + false positive) Sensitivity = True positive/(true positive
+ false negative) Area Under Curve (AUC)

Step 5: Collected the outputted model and check if k = N, if not let k = k + 1 and go to
Step 3, otherwise end the algorithm.

It is worth noting that all parameters are subjected to test and modified for different
research topics. The parameters provided in the algorithm are the optimal parameters after
our testing trials.

3. Results

3.1. Statistical Analysis

A total of 20,129 patients were enrolled, including 11,570 (57.5%) men and 8559 (42.5%)
women, with a median age of 50 (range: 18–96) years, GB polyps/stones (3191, 15.85%), and
tooth disease (15,346, 76.24%), as shown in Table 1. In this study, the risk factors of colorectal
polyps were investigated. Each group was subdivided into two groups based on endoscopic
findings: polyp and polyp-free. Logistic regression analysis was performed after adjusting
for age, gender, BMI, GB polyp/stone, tooth disease, hypertension, and Helicobacter pylori
infection to determine independent predictors of colorectal polyps. The prevalence of
colorectal polyps was 27.08% (5450/20,129) and was associated with age, Helicobacter
pylori infection, hypertension, and BMI (underweight and overweight) regardless of sex
(p < 0.0001). Tooth disease only showed a significant difference in men (p = 0.0053), as
shown in Table 2.

Table 1. Participants’ clinical characteristics.

Total Number n, % 20,129

Gender Ratio of male to female (n/n) 11,570:8559
Polyp

Colorectal polyp (n, %) 5450, 27.08%
Gallbladder polyps (n, %) 2188, 10.87%
Gallbladder stone (n, %) 1106, 5.49%

Gallbladder problem 3191, 15.85%
Hypertension (n, %) 1684, 8.37%
Helicobacter pylori infection (n, %) 751, 3.73%
Tooth disease 15,346, 76.24%

Periodontal disease (n, %) 8917, 44.30%
Chronic gingivitis (n, %) 4168, 20.71%
Chronic periodontitis (n, %) 11,655, 57.90%

BMI
Underweight (n, %) 805, 4%
Normal (n, %) 9090, 45.16%
Overweight (n, %) 6046, 30.04%
Obesity (n, %) 4188, 20.81%

Age Median (range) 50 (18–96) years
Total cholesterol 2818, 14%
HDL 2617, 13%
Triglycerides 3452, 17%
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Table 2. Multinomial logistic regression analysis of variables for colorectal polyps.

Regardless of
Gender

Male Female

Parameters p-Value AUC p-Value AUC p-Value AUC

Age (>50 years = 1) <0.0001 0.5847 <0.0001 0.5906 <0.0001 0.5900

Helicobacter
pylori

(Yes = 1) <0.0001 0.5113 <0.0001 0.5104 <0.0001 0.5092

Hypertension (Yes = 1) <0.0001 0.5142 0.0029 0.5084 <0.0001 0.5240

Tooth disease Total 0.3734 0.503 0.0053 0.5118 0.1041 0.5086

Gallbladder (Yes = 1) <0.0001 0.514 0.002 0.5119 0.0185 0.5105

BMI

Underweight = 0 <0.0001

0.5604

0.0012

0.5389

<0.0001

0.5709Normal = 1 0.0055 0.1301 0.0341

Overweight = 2 <0.0001 0.0017 0.008

Obesity = 3

In Table 2, we find that the risk factors differ based on gender, age, and BMI. Therefore,
all patients were divided into sub-groups based on gender, age, and BMI. For each group,
risk factors for GB polyps, hypertension, tooth, disease, and Helicobacter pylori infection
were input as independent variables to predict colorectal polyps. In Table 2 we presented
the AUC of risk factors with p-values of the model and AUC from the logistics equations,
where the p-values are less than 0.1 for at least male or female. Results of total cholesterol,
high lipoprotein cholesterol, and triglycerides are excluded since their p-values are greater
than 0.1. As we can observe from Table 2, the observed significances (p-values) for risk
factors are different from male to female. Thus, we separate patients with their gender for
the machine learning stage. While in Table 2 we did not examine the p-value for different
BMI levels, previous literature suggests BMI might significantly relate to the evolvement
of colorectal polyps. For example, [27] found that overweight and underweight statuses
are significantly correlated with gut microbiota and metabolism. Jain et al. [28] found
that obesity significantly impacts metabolism and is accessible with colorectal cancer and
polyps. Hence, we also separate patients with their status of BMI.

Figures 2 and 3 further demonstrate the significance and positive or negative impacts
of each risk factor, respectively. In order to construct a risk stratification tool based on these
risk factors, a random forest machine learning method was employed. In our study, age,
Helicobacter pylori infection, and hypertension were all risk factors for colorectal polyps. A
forest chart was also constructed to present estimated odds ratios for each risk factor, as
shown in Figures 2 and 3. While traditional statistical methods such as logistic regression
have an AUC > 0.5, discriminability is not as high as healthcare centers may wish (0.5086–
0.5900). Therefore, a machine learning method is required to build a model with higher
discriminability. As shown in Figures 2 and 3, abnormal body mass, age, and Helicobacter
pylori are the most influential risk factors for colorectal polyps, regardless of the patient’s
gender. We also found that hypertension was a significant risk factor for colorectal polyps in
male patients. Moreover, the influence of different abnormal body masses was significantly
different between gender and age groups. Thus, we further divided patients according to
age, gender, and body mass to obtain 16 patient subgroups (2 × 2 × 4). Since risk factors
differ according to age and sex, a risk stratification model was built for each group of
patients. For each subgroup, a risk stratification tool was built via a machine learning
method. Building a patient-characteristic-specific risk stratification model by using the
machine learning method not only enhances the discriminability of the model but also
identifies a set of more precise risk factors for each patient group. Healthcare centers can
utilize these risk factors to precisely diagnose patients with colorectal polyps.

120



Healthcare 2022, 10, 169

 

Figure 2. Forest chart of colorectal polyps’ risk factors in female patients. Underweight = 0,
normal = 1, overweight = 2, and obesity = 3.

 

Figure 3. Forest chart of colorectal polyps’ risk factors in male patients. Underweight = 0, normal = 1,
overweight = 2, and obesity = 3.

3.2. Noninvasive Diagnostics Tool with Random Forests

Based on our results in Section 3.1, we separate all patients into 16 groups via their
age, gender, and BMI status. The random forest algorithm in Section 2.5 is applied to each
group, and validation results are summarized in Table 3. The input risk factors include
hypertension, chronic periodontitis, humanoids, Helicobacter pylori infection, GB stones and
polyps, total cholesterol, high-density lipoprotein, triglycerides, and diabetes. However,
not all risk factors are significant in the final model, and the performance of the stratification
model varied extensively. In women < 50 years old with a BMI > 30 kg/m2, the random
forest model’s discriminability (AUC = 91%) was high compared to that in other groups.
The discriminability of detecting colorectal polyps is >80% for both women and men who
are obese. The noninvasive detection tool has an AUC = 80% for underweight male who is
>50 years old. In general, the noninvasive colorectal polyp detection tool has a higher AUC
in patients with abnormal weight.
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Table 3. Noninvasive stratifying tool (random forests model).

Gender Age BMI Sensitivity Specificity AUC

Female

<50 years old

Normal 0.22 0.74 0.61

Overweight 0.09 0.83 0.76

Obese 0.14 0.79 0.91

Underweight 0.55 0.50 0.66

≥50 years old

Normal 0.35 0.66 0.68

Overweight 0.27 0.74 0.68

Obese 0.34 0.74 0.85

Underweight 0.05 0.67 0.79

Male

<50 years old

Normal 0.38 0.68 0.63

Overweight 0.39 0.59 0.68

Obese 0.29 0.67 0.83

Underweight 0.11 0.72 0.75

≥50 years old

Normal 0.56 0.47 0.67

Overweight 0.47 0.52 0.70

Obese 0.43 0.57 0.87

Underweight 0.28 0.65 0.80

Furthermore, important risk factors identified by the random forests were examined.
As shown in Table 3, in women aged >50 years and BMI > 18.5 kg/m2, the important risk
factors are hypertension, diabetes, and GB stones. In contrast, in women <50 years of age
and BMI >18.5 kg/m2, the important risk factors are GB stones and polyps. In men, for
those >50 years of age and not underweight, the important risk factors are hypertension,
diabetes, and high-density cholesterol. In men aged <50 years, the important risk factors
are total cholesterol and high-density cholesterol. As observed, GB polyps and stones are
important risk factors for predicting colorectal polyps in female patients.

4. Discussion

To the best of our knowledge, this is the first retrospective study to construct a non-
invasive stratification tool for colorectal polyps based on an extensive set of risk factors
identified by evaluating a possible association between colorectal polyps, GB polyps/stone,
and tooth disease in healthy individuals. In this study, the participants were divided
into two groups: polyp and polyp-free. Age, gender, BMI, GB polyps/stone, tooth dis-
ease (periodontal disease, chronic gingivitis, and chronic periodontitis), colorectal polyp,
hypertension, and Helicobacter pylori infection; and triglyceride, high-density lipoprotein
cholesterol, and total cholesterol were investigated. Upon disclosure, first, blood sugar
status was not included since participants are required to offer their clinical data before
checkup without the use of an invasive method such as “fingerstick” sampling to obtain the
blood sugar level; second, the final pathological report of polyps was not illustrated because
it was supposed that all polyps should be sampled for their nature to determine whether
participants’ potentially have colorectal polyps, which are considered to be precancerous
lesions [3–6].

An association was observed between the colorectal polyp group and age, Helicobacter
pylori infection, hypertension, and BMI regardless of gender (p < 0.0001). Colorectal polyps
(p = 0.0256) and BMI (overweight, p = 0.0111) were significantly different among female
patients. Age, Helicobacter pylori infection, and hypertension were common risk factors for
colorectal polyps.
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Regarding age, many studies have reported the association between age and colorectal
polyps [29,30], suggesting that CRC screening should be performed around the age of
50–60 years in the general population owing to >80% of CRCs being diagnosed over the
age of 60 years, which is consistent with our results [31–34].

Helicobacter pylori infection is highly associated with hyperplastic polyps [34–38],
fundic gland polyps [34], and colorectal polyps [16,39–42]. Physiological mechanisms are
still unclear, although Meira et al. [34] reported that Helicobacter pylori infection is associated
with chronic inflammation-induced DNA damage and increased levels of serum gastrin,
and Helicobacter pylori CagA status may be the cause of colonic neoplasm formation [43–46].

Metabolic syndrome is characterized by the presence of at least three of the follow-
ing five factors—abdominal obesity, elevated triglyceride levels, decreased high-density
lipoprotein cholesterol levels, hypertension, and high fasting glucose levels [47]—and
contributes to various diseases, including gastric neoplasm and colorectal neoplasm [48].
In our study, hypertension and BMI were significant across genders in our analysis, and as
mentioned before, noninvasive methods are available for easily obtaining factor data from
individuals before endoscopy. In our study, hypertension and BMI were both significantly
associated with the presence of colorectal polyps.

As discussed in [27], BMI statuses, both overweight and underweight, can alter gut
metabolism, and as [28] pointed out, the change in metabolism significantly relates to
colorectal cancer and polyps. We hypothesis that BMI is a significant indicator for different
colorectal health; therefore, the risk factor might change from one BMI status to another.
The results of AUC prove that our hypothesis is correct. For some BMI status, it is easier to
identify the patient with colorectal polyps and others are not. The risk factors also differ
from one BMI status to another.

The bulk of data has validated dental problems as a risk factor for colon neoplasm
development [15,49]. We surmise that periodontal disease may induce chronic inflamma-
tion, resulting in immune dysregulation, and alters gut microbiota, which could be one
possible pathway responsible for colorectal carcinogenesis [50–52]. It was also found that
GB polyps/stones are also related to colorectal polyps, consistent with recent studies [17,53].
This may be attributed to GB polyps/stones and colorectal polyps that share some risk
factors, such as obesity and metabolic syndrome [54].

In our study, there is no doubt that all aforementioned risk factors are noninvasive
indicators of colorectal polyp formation [48]. Our risk stratification tool, which is built
based on identified risk factors with a machine learning method, exhibits high sensitiv-
ities (70–80%) compared with that in noninvasive tools developed by previous studies
(60–70%) [55]. Other decision tree-based studies [25,26] build noninvasive stratification
tools using annual check-up data for non-alcoholic fatty liver obtained in AUC ranges from
85 to 87%. Compared with previous studies, the proposed model outperformed in several
subgroups, such as elder obsessive individuals.

The limitations of this study were as follows: (1) its retrospective nature; (2) it was
conducted at a single institution with a Taiwanese population; (3) our sigmoidoscopy is
conducted under anaesthetization. Thus, our dataset excluded patients with BMI > 35 due
to the protocol code of the anesthesiologist. Future researchers can build an RF model for
this subgroup or collect data of non-anesthetized sigmoidoscopy diagnostics.

5. Conclusions

In this research, we proposed a new approach for building a risk stratification tool for
colorectal polyps. First, we identified a set of promising risk factors using traditional statis-
tical analysis such as z-test and logistics regression. We find that risk factors significantly
differ for different genders, ages, and BMI statuses. Then, we separate patients with key
demographic characteristics, which we believe each subgroup has a different set of risk
factors. Then, we implement random forest to build a machine learning model to stratify
patients with and without colorectal polyps. Colonoscopy verification is warranted in those

123



Healthcare 2022, 10, 169

50 years of age or older, with hypertension, and infected with Helicobacter pylori. However,
colonoscopy verification is warranted in individuals with tooth diseases and GB polyps.

For obese females, GB polyps warrant further colonoscopy verification. For males
over age 50 and not underweight, hypertension is a strong indicator of possible colorectal
polyps. We also find that for either underweight or obese patients, the AUC is higher
than other groups. That is, abnormal weight is a strong indicator of health status, and
different health statuses should be modeled differently. This is verified by our design of
grouping patients with different demographic characteristics before building a machine
learning model.

Our risk stratification tool can help healthcare centers identify patients who need
further colonoscopy. This tool provides two major benefits: first, it helps clinicians conduct
colonoscopy and discover precancerous lesions earlier to prevent cancer; second, it reduces
the time and financial burden of healthcare centers in conducting unnecessary colonoscopies.

Author Contributions: C.L. conducted statistical analysis and created the machine learning algorithm
and contributed to the writing of the manuscript and revised the manuscript according to reviewers’
comments. C.-J.L. contributed to the implementation of the machine learning algorithm. T.-H.L.
contributed to data collection, data cleaning, and manuscript writing. C.-F.K., B.C.-J.P. and H.-T.C.
contributed to data cleaning, literature review, and identification of possible risk factors in this
study. C.-C.L. helped with data collection. T.-H.C. provided initial ideas and research directions and
finalized the manuscript. All authors contributed significantly to this study. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by grants from Chang Gung Memorial Hospital, Taoyuan,
Taiwan (CORPG3F0261).

Institutional Review Board Statement: This study was approved by the Ethics Committee of the
Institutional Review Board of Chang Gung Memorial Hospital and conducted according to the ethical
principles of the Declaration of Helsinki as reflected in the a priori approval by the institution’s
human research committee.

Informed Consent Statement: Patient consent was waived due to the retrospective nature of
the study.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. The data are not publicly available due to the protection of patients’ privacy
and restriction from the Ethics Committee of the Institutional Review Board of Chang Gung Memorial
Hospital.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65,
87–108. [CrossRef] [PubMed]

2. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer Incidence and
Mortality Worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [CrossRef]
[PubMed]

3. Calderwood, A.H.; Lasser, K.E.; Roy, H.K. Colon adenoma features and their impact on risk of future advanced adenomas and
colorectal cancer. World J. Gastrointest. Oncol. 2016, 8, 826–834. [CrossRef] [PubMed]

4. Schmitz, J.M.; Stolte, M. Gastric Polyps as Precancerous Lesions. Gastrointest. Endosc. Clin. N. Am. 1997, 7, 29–46. [CrossRef]
5. Zheng, E.; Ni, S.; Yu, Y.; Wang, Y.; Weng, X.; Zheng, L. Impact of gender and age on the occurrence of gastric polyps: Data analysis

of 69575 southeastern Chinese patients. Turk. J. Gastroenterol. 2015, 26, 474–479. [CrossRef]
6. Islam, R.S.; Patel, N.C.; Lam-Himlin, D.; Nguyen, C.C. Gastric Polyps: A Review of Clinical, Endoscopic, and Histopathologic

Features and Management Decisions. Gastroenterol. Hepatol. 2013, 9, 640–651.
7. Citarda, F.; Tomaselli, G.; Capocaccia, R.; Barcherini, S.; Crespi, M. The Italian Multicentre Study Group Efficacy in standard

clinical practice of colonoscopic polypectomy in reducing colorectal cancer incidence. Gut 2001, 48, 812–815. [CrossRef]
8. Carmack, S.W.; Genta, R.M.; Graham, D.Y.; Lauwers, G.Y. Management of gastric polyps: A pathology-based guide for

gastroenterologists. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 331–341. [CrossRef]
9. Kim, S.Y.; Kim, H.-S.; Park, H.J. Adverse events related to colonoscopy: Global trends and future challenges. World J. Gastroenterol.

2019, 25, 190–204. [CrossRef]

124



Healthcare 2022, 10, 169

10. Greenspan, M.; Prickett, E.; Melson, J. High Clinical Patient Workload Leads to Increased Premature Adenomatous Polyp
Surveillance Colonoscopy. Am. J. Gastroenterol. 2015, 110, S601. [CrossRef]

11. Almadi, M.; Sewitch, M.; Barkun, A.N.; Martel, M.; Joseph, L. Adenoma Detection Rates Decline with Increasing Procedural
Hours in an Endoscopist’s Workload. Can. J. Gastroenterol. Hepatol. 2015, 29, 304–308. [CrossRef]

12. Sey, M.S.L.; Gregor, J.; Adams, P.; Khanna, N.; Vinden, C.; Driman, D.; Chande, N. Wait Times for Diagnostic Colonoscopy among
Outpatients with Colorectal Cancer: A Comparison with Canadian Association of Gastroenterology Targets. Can. J. Gastroenterol.
2012, 26, 894–896. [CrossRef]

13. Cappell, M.S. The pathophysiology, clinical presentation, and diagnosis of colon cancer and adenomatous polyps. Med Clin. N.
Am. 2005, 89, 1–42. [CrossRef]

14. Ren, H.G.; Luu, H.N.; Cai, H.; Xiang, Y.B.; Steinwandel, M.; Gao, Y.T.; Hargreaves, M.; Zheng, W.; Blot, W.J.; Long, J.R.; et al. Oral
health and risk of colorectal cancer: Results from three cohort studies and a meta-analysis. Ann. Oncol. Off. J. Eur. Soc. Med.
Oncol. 2016, 27, 1329–1336. [CrossRef]

15. Momen-Heravi, F.; Babic, A.; Tworoger, S.S.; Zhang, L.; Wu, K.; Smith-Warner, S.A.; Ogino, S.; Chan, A.T.; Meyerhardt, J.;
Giovannucci, E.; et al. Periodontal disease, tooth loss and colorectal cancer risk: Results from the Nurses’ Health Study. Int. J.
Cancer 2017, 140, 646–652. [CrossRef]

16. Brim, H.; Zahaf, M.; Laiyemo, A.O.; Nouraie, M.; Pérez-Pérez, G.I.; Smoot, D.T.; Lee, E.; Razjouyan, H.; Ashktorab, H. Gastric
Helicobacter pylori infection associates with an increased risk of colorectal polyps in African Americans. BMC Cancer 2014, 14,
296. [CrossRef]

17. Liu, Y.L.; Wu, J.S.; Yang, Y.C.; Lu, F.H.; Lee, C.T.; Lin, W.J.; Chang, C.J. Gallbladder stones and gallbladder polyps associated with
increased risk of colorectal adenoma in men. J. Gastroenterol. Hepatol. 2018, 33, 800–806. [CrossRef]

18. Xiao, S.; Zhou, L. Gastric cancer: Metabolic and metabolomics perspectives (Review). Int. J. Oncol. 2017, 51, 5–17. [CrossRef]
19. Ford, I.; Robertson, M.; Komajda, M.; Böhm, M.; Borer, J.S.; Tavazzi, L.; Swedberg, K. Top ten risk factors for morbidity and

mortality in patients with chronic systolic heart failure and elevated heart rate: The SHIFT Risk Model. Int. J. Cardiol. 2015, 184,
163–169. [CrossRef]

20. Okada, H.; Fukui, M.; Tanaka, M.; Matsumoto, S.; Mineoka, Y.; Nakanishi, N.; Asano, M.; Yamazaki, M.; Hasegawa, G.; Nakamura,
N. Visit-to-Visit Blood Pressure Variability Is a Novel Risk Factor for the Development and Progression of Diabetic Nephropathy
in Patients with Type 2 Diabetes. Diabetes Care 2013, 36, 1908–1912. [CrossRef]

21. Khalilia, M.; Chakraborty, S.; Popescu, M. Predicting disease risks from highly imbalanced data using random forest. BMC Med
Inform. Decis. Mak. 2011, 11, 51. [CrossRef]

22. Graham, D.Y.; Miftahussurur, M. Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: A mini review. J. Adv.
Res. 2018, 13, 51–57. [CrossRef]

23. Andren-Sandberg, A. Diagnosis and management of gallbladder polyps. N. Am. J. Med. Sci. 2012, 4, 203–211. [CrossRef]
24. Abdulqader, D.M.; Abdulazeez, A.M.; Zeebaree, D.Q. Machine learning supervised algorithms of gene selection: A review. Mach.

Learn. 2020, 62, 233–244.
25. Goldman, O.; Ben-Assuli, O.; Rogowski, O.; Zeltser, D.; Shapira, I.; Berliner, S.; Zelber-Sagi, S.; Shenhar-Tsarfaty, S. Non-alcoholic

Fatty Liver and Liver Fibrosis Predictive Analytics: Risk Prediction and Machine Learning Techniques for Improved Preventive
Medicine. J. Med. Syst. 2021, 45, 22. [CrossRef]

26. Fialoke, S.; Malarstig, A.; Miller, M.R.; Dumitriu, A. Application of Machine Learning Methods to Predict Non-Alcoholic
Steatohepatitis (NASH) in Non-Alcoholic Fatty Liver (NAFL) Patients. AMIA Annu. Symp. Proc. 2018, 2018, 430–439.

27. Wan, Y.; Yuan, J.; Li, J.; Li, H.; Yin, K.; Wang, F.; Li, D. Overweight and underweight status are linked to specific gut microbiota
and intestinal tricarboxylic acid cycle intermediates. Clin. Nutr. 2020, 39, 3189–3198. [CrossRef]

28. Jain, R.; Pickens, C.A.; Fenton, J.I. The role of the lipidome in obesity-mediated colon cancer risk. J. Nutr. Biochem. 2018, 59, 1–9.
[CrossRef]

29. Cao, W.; Hou, G.; Zhang, X.; San, H.; Zheng, J. Potential risk factors related to the development of gastric polyps. Immunopharmacol.
Immunotoxicol. 2018, 40, 338–343. [CrossRef]

30. Chen, H.; Li, N.; Ren, J.; Feng, X.; Lyu, Z.; Wei, L.; Li, X.; Guo, L.; Zheng, Z.; Zou, S.; et al. Participation and yield of a
population-based colorectal cancer screening programme in China. Gut 2018, 68, 1450–1457. [CrossRef] [PubMed]

31. Hussein Kamareddine, M.; Ghosn, Y.; Karam, K.; Nader, A.A.; El-Mahmoud, A.; Bou-Ayash, N.; El-Khoury, M.; Farhat, S.
Adenoma Detection before and after the age of 50: A retrospective analysis of Lebanese outpatients. BMJ Open Gastroenterol. 2018,
5, 000253. [CrossRef] [PubMed]

32. Wolf, A.M.D.; Fontham, E.T.H.; Church, T.R.; Flowers, C.R.; Guerra, C.E.; LaMonte, S.J.; Etzioni, R.; McKenna, M.T.; Oeffinger,
K.C.; Shih, Y.-C.T.; et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer
Society. CA Cancer J. Clin. 2018, 68, 250–281. [CrossRef] [PubMed]

33. Schreuders, E.H.; Ruco, A.; Rabeneck, L.; Schoen, R.E.; Sung, J.J.Y.; Young, G.; Kuipers, E.J. Colorectal cancer screening: A global
overview of existing programmes. Gut 2015, 64, 1637–1649. [CrossRef] [PubMed]

34. Bevan, R.; Rutter, M.D. Colorectal Cancer Screening-Who, How, and When? Clin. Endosc. 2018, 51, 37–49. [CrossRef]
35. Kang, K.H.; Hwang, S.H.; Kim, N.; Kim, D.-H.; Kim, S.Y.; Hyun, J.J.; Jung, S.W.; Koo, J.S.; Jung, Y.K.; Yim, H.J.; et al. The Effect of

Helicobacter pylori Infection on Recurrence of Gastric Hyperplastic Polyp after Endoscopic Removal. Korean J. Gastroenterol. 2018,
71, 213–218. [CrossRef]

125



Healthcare 2022, 10, 169

36. Anjiki, H.; Mukaisho, K.-I.; Kadomoto, Y.; Doi, H.; Yoshikawa, K.; Nakayama, T.; Vo, D.T.-N.; Hattori, T.; Sugihara, H. Adeno-
carcinoma arising in multiple hyperplastic polyps in a patient with Helicobacter pylori infection and hypergastrinemia during
long-term proton pump inhibitor therapy. Clin. J. Gastroenterol. 2017, 10, 128–136. [CrossRef]

37. Markowski, A.R.; Markowska, A.; Guzinska-Ustymowicz, K. Pathophysiological and clinical aspects of gastric hyperplastic
polyps. World J. Gastroenterol. 2016, 22, 8883–8891. [CrossRef]

38. Togo, K.; Ueo, T.; Yonemasu, H.; Honda, H.; Ishida, T.; Tanabe, H.; Yao, K.; Iwashita, A.; Murakami, K. Two cases of adeno-
carcinoma occurring in sporadic fundic gland polyps observed by magnifying endoscopy with narrow band imaging. World J.
Gastroenterol. 2016, 22, 9028–9034. [CrossRef]

39. Tongtawee, T.; Simawaranon, T.; Wattanawongdon, W. Role of screening colonoscopy for colorectal tumors in Helicobacter
pylori-related chronic gastritis with MDM2 SNP309 G/G homozygous: A prospective cross-sectional study in Thailand. Turk. J.
Gastroenterol. 2018, 29, 555–560. [CrossRef]

40. Kumar, A.; Kim, M.; Lukin, D.J. Helicobacter pylori is associated with increased risk of serrated colonic polyps: Analysis of
serrated polyp risk factors. Indian J. Gastroenterol. 2018, 37, 235–242. [CrossRef]

41. Nam, J.H.; Hong, C.W.; Kim, B.C.; Shin, A.; Ryu, K.H.; Park, B.J.; Kim, B.; Sohn, D.K.; Han, K.S.; Kim, J.; et al. Helicobacter pylori
infection is an independent risk factor for colonic adenomatous neoplasms. Cancer Causes Control. 2017, 28, 107–115. [CrossRef]

42. Meira, L.B.; Bugni, J.M.; Green, S.L.; Lee, C.-W.; Pang, B.; Borenshtein, D.; Rickman, B.H.; Rogers, A.B.; Moroski-Erkul, C.A.;
McFaline, J.L.; et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J. Clin. Investig.
2008, 118, 2516–2525. [CrossRef]

43. Thorburn, C.M.; Friedman, G.D.; Dickinson, C.J.; Vogelman, J.H.; Orentreich, N.; Parsonnet, J. Gastrin and colorectal cancer: A
prospective study. Gastroenterology 1998, 115, 275–280. [CrossRef]

44. Georgopoulos, S.D.; Polymeros, D.; Triantafyllou, K.; Spiliadi, C.; Mentis, A.; Karamanolis, D.G.; Ladas, S.D. Hypergastrinemia Is
Associated with Increased Risk of Distal Colon Adenomas. Digestion 2006, 74, 42–46. [CrossRef]

45. Epplein, M.; Pawlita, M.; Michel, A.; Peek, R.M.; Cai, Q.; Blot, W.J. Helicobacter pylori Protein–Specific Antibodies and Risk of
Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1964–1974. [CrossRef]

46. Shmuely, H.; Passaro, D.; Figer, A.; Niv, Y.; Pitlik, S.; Samra, Z.; Koren, R.; Yahav, J. Relationship between Helicobacter pylori
CagA status and colorectal cancer. Am. J. Gastroenterol. 2001, 96, 3406–3410. [CrossRef]

47. Grundy, S.M.; Brewer, H.B.; Cleeman, J.I., Jr.; Smith, S.C., Jr.; Lenfant, C. Definition of metabolic syndrome: Report of the National
Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation
2004, 109, 433–438. [CrossRef]

48. Park, W.; Lee, H.; Kim, E.H.; Yoon, J.Y.; Park, J.C.; Shin, S.K.; Kil Lee, S.; Lee, Y.C.; Kim, W.H.; Noh, S.H. Metabolic syndrome is an
independent risk factor for synchronous colorectal neoplasm in patients with gastric neoplasm. J. Gastroenterol. Hepatol. 2012, 27,
1490–1497. [CrossRef]

49. Chou, S.H.; Tung, Y.C.; Wu, L.S.; Chang, C.J.; Kung, S.; Chu, P.H. Severity of chronic periodontitis and risk of gastrointestinal
cancers: A population-based follow-up study from Taiwan. Medicine 2018, 97, e11386. [CrossRef]

50. Lauritano, D.; Sbordone, L.; Nardone, M.; Iapichino, A.; Scapoli, L.; Carinci, F. Focus on periodontal disease and colorectal
carcinoma. Oral Implant. 2017, 10, 229–233. [CrossRef]

51. Gao, Z.; Guo, B.; Gao, R.; Zhu, Q.; Qin, H. Microbiota disbiosis is associated with colorectal cancer. Front. Microbiol. 2015, 6, 20.
[CrossRef] [PubMed]

52. Moutsopoulos, N.M.; Madianos, P.N. Low-Grade Inflammation in Chronic Infectious Diseases: Paradigm of Periodontal Infections.
Ann. N. Y. Acad. Sci. 2006, 1088, 251–264. [CrossRef] [PubMed]

53. Stergios, K.; Damaskos, C.; Frountzas, M.; Nikiteas, N.; Lalude, O. Can gallbladder polyps predict colorectal adenoma or even
neoplasia? A systematic review. Int. J. Surg. 2016, 33, 23–27. [CrossRef] [PubMed]

54. Lim, S.H.; Kim, D.H.; Park, M.J.; Kim, Y.S.; Kim, C.H.; Yim, J.Y.; Cho, K.R.; Kim, S.S.; Choi, S.H.; Kim, N.; et al. Is Metabolic
Syndrome One of the Risk Factors for Gallbladder Polyps Found by Ultrasonography during Health Screening? Gut Liver 2007, 1,
138–144. [CrossRef]

55. Tanwar, S.; Vijayalakshmi, S. Comparative Analysis and Proposal of Deep Learning Based Colorectal Cancer Polyps Classification
Technique. J. Comput. Theor. Nanosci. 2020, 17, 2354–2362. [CrossRef]

126



Citation: Carreras, J.; Nakamura, N.;

Hamoudi, R. Artificial Intelligence

Analysis of Gene Expression

Predicted the Overall Survival of

Mantle Cell Lymphoma and a Large

Pan-Cancer Series. Healthcare 2022,

10, 155. https://doi.org/10.3390/

healthcare10010155

Academic Editor: Mahmudur

Rahman

Received: 29 October 2021

Accepted: 12 January 2022

Published: 14 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

healthcare

Article

Artificial Intelligence Analysis of Gene Expression Predicted
the Overall Survival of Mantle Cell Lymphoma and a Large
Pan-Cancer Series

Joaquim Carreras 1,* , Naoya Nakamura 1 and Rifat Hamoudi 2,3

1 Department of Pathology, Faculty of Medicine, Tokai University School of Medicine, 143 Shimokasuya,
Isehara 259-1193, Japan; naoya@is.icc.u-tokai.ac.jp

2 Department of Clinical Sciences, College of Medicine, University of Sharjah,
Sharjah P.O. Box 27272, United Arab Emirates; rhamoudi@sharjah.ac.ae

3 Division of Surgery and Interventional Science, University College London, Gower Street,
London WC1E 6BT, UK

* Correspondence: joaquim.carreras@tokai-u.jp; Tel.: +81-463-931-121; Fax: +81-463-911-370

Abstract: Mantle cell lymphoma (MCL) is a subtype of mature B-cell non-Hodgkin lymphoma
characterized by a poor prognosis. First, we analyzed a series of 123 cases (GSE93291). An algorithm
using multilayer perceptron artificial neural network, radial basis function, gene set enrichment
analysis (GSEA), and conventional statistics, correlated 20,862 genes with 28 MCL prognostic genes
for dimensionality reduction, to predict the patients’ overall survival and highlight new markers.
As a result, 58 genes predicted survival with high accuracy (area under the curve = 0.9). Further
reduction identified 10 genes: KIF18A, YBX3, PEMT, GCNA, and POGLUT3 that associated with a
poor survival; and SELENOP, AMOTL2, IGFBP7, KCTD12, and ADGRG2 with a favorable survival.
Correlation with the proliferation index (Ki67) was also made. Interestingly, these genes, which
were related to cell cycle, apoptosis, and metabolism, also predicted the survival of diffuse large
B-cell lymphoma (GSE10846, n = 414), and a pan-cancer series of The Cancer Genome Atlas (TCGA,
n = 7289), which included the most relevant cancers (lung, breast, colorectal, prostate, stomach,
liver, etcetera). Secondly, survival was predicted using 10 oncology panels (transcriptome, cancer
progression and pathways, metabolic pathways, immuno-oncology, and host response), and TYMS

was highlighted. Finally, using machine learning, C5 tree and Bayesian network had the highest
accuracy for prediction and correlation with the LLMPP MCL35 proliferation assay and RGS1 was
made. In conclusion, artificial intelligence analysis predicted the overall survival of MCL with high
accuracy, and highlighted genes that predicted the survival of a large pan-cancer series.

Keywords: mantle cell lymphoma; gene expression; MCL35 assay; artificial intelligence; machine
learning; deep learning; artificial neural network; multilayer perceptron; immuno-oncology;
overall survival

1. Introduction

Mantle cell lymphoma (MCL) is a hematological neoplasia derived from B-lymphocytes,
and a subtype of non-Hodgkin lymphomas (NHL) [1]. MCL represents around 7% of adult
NHL, and has an incidence of four to eight cases per million people per year [2–6]. MCL
affects white men, with a median age at diagnosis of 65 years. The disease frequency
increases with age [7], and the incidence of this disease is on the rise in Western and
developed countries [7].

MCL is a B-cell lymphoma of small and irregular cells (centrocytes) [8]. The im-
munophenotype of the classic variant is characterized by the expression of B-cell markers
(CD19, CD20), CD5, SOX11, and cyclin D1 due to the characteristics translocation t(11; 14)
(q13; q32) between CCND1 and IGH locus [9–11]. MCL expresses high levels of IgM and
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IgD, with a lambda light chain restriction in 80% of the cases [8,12]. At diagnosis, most of
the patients present with an advanced disease, and lymphadenopathy. Primary extranodal
disease is found in 20% of cases, and the gastrointestinal site in the form of lymphomatous
polyposis is a characteristic location [13–15].

MCL has traditionally been considered a very aggressive and incurable lymphoma.
MCL is associated with a median survival of 3–5 years, with most patients not being cured
even with the newer therapeutic modalities [1,8,16]. The “leukemic” variant, which is
SOX11-negative, is clinically indolent [17]. Several studies have focused on the identifica-
tion of prognostic markers to identify patients with a higher probability of an aggressive
disease [18–27]. Among them, the International Prognostic Index (IPI), MCL International
Prognostic Index (MIPI), and proliferation index (Ki67) are extensively used [18,22]. The
pathobiology of MCL comprises several pathways, mechanisms, and target genes that
contribute to not only in the pathogenesis but also to aggressiveness and clinical evolution.
The major oncogenic driver is CCND1 gene of the cell cycle pathway. Other relevant genes
are involved in cell cycle (CCND2, CCND3, MYC), response to DNA damage (ATM, TP53),
chromatin modification (WHSC1, MLL2, MEF2B), apoptosis (BCL2, BIRC3, TLR2), and
NOTCH signaling (NOTCH1 and NOTCH2), NF-kB and PI3K/AKT signaling pathways,
among others [8,28–31].

Neural networks are a favored analytical method for numerous predictive data
mining applications because of their power, adaptability, and ease of usage. Predictive
neural networks are specially valuable in applications where the underlying process is
complex [32–43], such as biological systems [44]. Both the multilayer perceptron (MLP)
and radial basis function (RBF) network have a feedforward architecture, because the
connections in the network flow forward the input layer (predictors) to the output layer
(responses). The hidden layer contains unobservable nodes or units. The value of each
hidden unit is some function of the predictors. Both are supervised learning networks that
perform prediction and classification. Your choice of strategy will depend on the sort of
data and the level of complexity you look for to reveal; while the MLP strategy can discover
more complex connections, the RBF method is faster [32,33]. We have recently shown
that neural networks can predict the prognosis of diffuse large B-cell lymphoma (DLBCL)
and follicular lymphoma (FL) [35,37,45], and also can predict the different subtypes of
non-Hodgkin lymphomas with high accuracy [46]. In this research we focused on MCL and
the workflow algorithm was improved to handle this type of lymphoma more efficiently:
the neural networks not only predicted the overall survival outcome and identified the
most relevant genes, but the results were modulated by the inclusion of known prognostic
genes and immune oncology pathways.

The main aim of the work was to use artificial neural networks (ANN) analyses and
other machine learning techniques to analyze the gene expression of MCL and identify
relevant prognostic markers. The principal conclusion was that ANN provided a novel
analysis technique that not only confirmed known prognostic markers but also highlighted
new potential pathological mechanisms.

2. Materials and Methods

2.1. Hardware

All the analyses were performed on a desktop workstation using an AMD Ryzen 7,
3700X, 8-core, processor at 2.59 GHz, 16.0 GB RAM, and a Nvidia GeForce GTX 1650 Turing
architecture, 4 GB, GPU.

2.2. Software

Several software were used for data processing, preanalysis, full-analysis, and valida-
tion including EditPad Lite, Microsoft Excel, R, R Studio, IBM SPSS Statistic and Modeler,
GSEA, and JMP.

The details of the software were as follows:
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• EditPad Lite 8 (Just Great Software Co. Ltd., Rawai Phuket 83130, Thailand; page URL:
http://www.just-great-software.com/aboutjg.html (accessed on 29 August 2021));

• Microsoft Excel 2016 [(16.0.5173.1000) MSO (16.0.5173.1000) 64-bit, Microsoft K.K.,
Shinagawa, Tokyo, Japan; page URL: https://www.microsoft.com/ja-jp/microsoft-36
5/excel (accessed on 29 August 2021)];

• R 3.6.3 (page URL: https://www.r-project.org/ (accessed on 29 August 2021) [47]);
• R Studio 1.3.959 (R Studio, Boston, MA 02210, USA; page URL: https://www.rstudio.

com/products/rstudio/#rstudio-desktop (accessed on 29 August 2021));
• IBM SPSS Statistics 26 and Modeler 18 (IBM Japan Ltd., Tokyo 103-8510, Japan; page

URL: https://www.ibm.com/jp-ja/analytics/spss-statistics-software (accessed on 29
August 2021));

• Gene Set Enrichment Analysis (GSEA) 4.1.0 (UC San Diego, Broad Institute, Cam-
bridge, MA 02142, USA; page URL: http://www.gsea-msigdb.org/gsea/index.jsp (ac-
cessed on 29 August 2021) [48,49]); https://github.com/GSEA-MSigDB/gsea-desktop
(accessed on 8 December 2021);

• JMP Pro 14 Statistical Discovery (SAS Institute Inc., Cary, NC 27513-2414, USA; page
URL: https://www.jmp.com/ja_jp/home.html (accessed on 29 August 2021));

• Morpheus matrix visualization and analysis software (Broad Institute, Cambridge,
MA 02142, USA), https://software.broadinstitute.org/morpheus) (accessed on 29
November 2021);

• String (version 11, String consortium 2020) [19]; https://string-db.org/ (accessed on
29 November 2021).

2.3. Predictive Genes and Artificial Neural Network Analysis
2.3.1. Gene Expression Series of Mantle Cell Lymphoma

The gene expression data of the MCL series GSE93291 were downloaded from the
gene expression omnibus (GEO) database [50], which is located at the National Center for
Biotechnology Information (NCBI) repository [page URL: https://www.ncbi.nlm.nih.gov/
(accessed on 29 August 2021)]. This database was last updated on 25 March 2019 (contact
name: Professor Louis M. Staudt, National Cancer Institute, Lymphoid Malignancies
Branch laboratory, Bethesda, MD 20892, USA).

The study involved retrospective gene expression profiling of samples from patients
with MCL, confirmed by expert pathology consensus review. This series was created by
the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) [50]. These biopsies, with
tumor content ≥ 60%, were obtained from untreated patients, with no history of previous
lymphoma, who subsequently received a broad range of treatment regimens. The biopsies
contributing to the set included 80 biopsies described in Rosenwald et al. [51] (classified
based on established morphologic and immunophenotypic criteria, with overexpression
of cyclin D1 (CCND1) mRNA (in most cases, immunohistochemistry demonstrated over-
expression of cyclin D1 also on the protein level), 3.8 male/female ratio, median age of
62 years (range 38 to 93), multiagent treatment, and median survival 2.8 years) [51], along
with additional biopsies gathered from the clinical sites of the LLMPP. The treatments of the
patients was multiagent chemotherapy (R-CHOP, R-CHOP-like), six received no treatment,
and no information on treatment was available for two patients.

The gene expression array used in this series was the HG-U133 plus 2 platform
(GPL570, Affymetrix, Santa Clara, CA, USA). The GeneChip™ Human Genome U133
Plus 2.0 Array (#900466, ThermoFisher Scientific, Affymetrix Japan K.K., Tokyo, Japan),
which is the first and most comprehensive whole human genome array. It has a complete
coverage of the Human Genome U133 Set, plus 6500 additional genes for analysis of over
47,000 transcripts. The design and performance of the chip can be accessed at the following
webpage: https://www.thermofisher.com/order/catalog/product/900466 (accessed on 29
December 2021).

Total RNA from MCL specimens of frozen samples from 123 patients had been ex-
tracted using the FastTrack kit from Invitrogen (Thermo Fisher Scientific Corp., Waltham,
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MA 02451, USA), and biotinylated cRNA had been prepared according to the standard
Affymetrix protocol from 1 microg mRNA (Expression Analysis Technical Manual, 2001,
Affymetrix). The Affymetrix hybridization protocol was used: following fragmentation,
15 micrograms of cRNA were hybridized for 16 h at 45 ◦C on arrays from Affymetrix.
Arrays were washed and stained in the Affymetrix Fluidics Station 400. The Affymetrix
scanning protocol was used and the scanning had been performed by the Affymetrix
3000 scanner. The data had been analyzed with Microarray Suite version 5.0 (MA S 5.0)
using Affymetrix default analysis settings and global scaling as normalization method.
The trimmed mean target intensity of each array was arbitrarily set to 500. The data was
normalized and log2 transformed. The original series matrix files [50] provided by the
LLMPP were used for the artificial neural network analysis. The gene expression values
were collapsed to symbols applying the max probe values, using the GSEA software and
the gene cluster text file (*.gct) [52,53].

2.3.2. Identification of Prognostic Genes for Overall Survival

Eighty-six prognostic and pathogenic genes specific for mantle cell lymphoma (MCL)
were selected from previous publications [1,8,17,22,28–31,50].

Among these 86 genes, 28 genes with prognostic value for overall survival in this
GSE93291 series were selected. The selection depended on the presence of a significant
p value in the Kaplan–Meier with log-rank test, after finding adequate cut-off for the
stratification into low vs. high groups (Table 1).

Table 1. Prognostic and pathogenic genes of mantle cell lymphoma.

Genes (n = 86)

ADAMDEC1, ADGRG2, AKT1, AKT3, AMOTL2, ARID2, ATM, BCL2, BCL2L11, BCL6, BCOR,
BIRC3, BMI1, BORCS8_MEF2B, BTK, CARD11, CASP8, CCND1, CCND2, CCND3, CD5, CD79A,

CDK4, CDKN1B, CDKN2A, CDKN2C, CFLAR, CHEK1, CHEK2, CUL4A, CXCL12, CXCR4,
DAZAP1, GCNA, HNRNPH1, IGFBP7, ING1, KCTD12, KIF18A, KMT2C, KMT2D, LYN, MDM2,
MIR17HG, MKI67, MTOR, MYC, MYCN, NFKB1, NFKBIE, NOTCH1, NOTCH2, NSD2, PALLD,

PAX5, PDGFA, PEMT, PIK3CA, PIK3CD, POGLUT3, PTEN, PTK2, RAB13, RB1, RGS1, RPGRIP1L,
RRAS, SAMHD1, SELENOP, SMARCA2, SMARCA4, SMARCB1, SOX11, SYK, SYNE1, TAMM41,

TERT, TET2, TMEM176B, TNFAIP3, TP53, TRAF2, UBR5, XIAP, YBX3, and ZCCHC4
Eighty-six genes with predictive and pathogenic role in MCL were selected from the literature. These genes
were later tested for overall survival in the GSE93291 series. Only significant ones were chosen for the neural
network analysis.

The cut-offs were found using SPSS software on the collapsed to symbols gene ex-
pression values dataset (i.e., each gene had only one expression value). The visual binning
function created new variables based on grouping contiguous values into a limited number
of distinct categories. The cutpoints were created using equal percentiles, three cutpoints
and a width of 25%. After visualization of the overall survival plots with the Kaplan–Meier
and log-rank test, the most adequate cut-off value was identified. Then, the Cox regression
calculated the hazard-risk (contrast: indicator; reference category: first). Based on the p val-
ues (Table 2), the most relevant predictors for overall survival were MKI67 (p = 6.6 × 10−9,
hazard risk = 4.4), CDK4 (p = 3.2 × 10−8; HR = 4.0), CHEK1 (p = 0.2 × 10−5, HR = 3.0),
CCND1 (p = 0.4 × 10−5, HR = 3.1), and CDKN2C (p = 0.8 × 10−5, HR = 2.8). These genes
belonged to the cell cycle and apoptosis pathways.
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Table 2. Pathogenic genes of mantle cell lymphoma (GSE93291 series) (Method 1).

Gene Keyword Function

Correlation with the Overall
Survival of MCL

beta p HR

BCL2L11 Apoptosis B-cell apoptotic process 1.0 <0.01 2.7

BMI1
Regulation of gene

expression
Component of the Polycomb group (PcG) multiprotein PRC1-like

complex, negative regulation of gene expression, epigenetic −0.5 0.042 0.6

BORCS8_MEF2B Lysosomes BORC complex, role in lysosomes movement and localization at the cell
periphery −1.0 <0.01 0.4

CCND1 Cell cycle Positive regulation of G1/S transition of the mitotic cell cycle 1.1 <0.01 3.1

CCND2 Cell cycle, apoptosis Positive regulation of G1/S transition of the mitotic cell cycle, negative
regulation of apoptosis −0.7 0.018 0.5

CDK4 Cell cycle, apoptosis Negative regulation of G1/S transition of the mitotic cell cycle, positive
regulation of apoptotic process 1.4 <0.01 4.0

CDKN2A Cell cycle, NF-kB, apoptosis Negative regulation of G1/S transition of the mitotic cell cycle, negative
regulation of NF-kB, positive regulation of apoptotic process 1.0 <0.01 2.7

CDKN2C Cell cycle Negative regulation of G1/S transition of the mitotic cell cycle 1.0 <0.01 2.8

CHEK1
Cell cycle, DNA repair,

apoptosis
Positive regulation of cell cycle, DNA damage checkpoint and repair,

apoptosis 1.1 <0.01 3.0

CHEK2
Cell cycle, DNA repair,

apoptosis
Positive regulation of cell cycle, DNA damage checkpoint and repair,

apoptosis 0.8 <0.01 2.1

CXCL12 Chemotaxis, apoptosis Cell chemotaxis, defense response, negative regulation of apoptotic
process, DNA damage −0.6 0.014 0.5

DAZAP1
Cell differentiation and

proliferation
Cell differentiation, cell proliferation, positive regulation of mRNA

splicing 0.8 0.016 2.3

ING1 Cell cycle Negative regulation of cell growth, cooperates with TP53 −1.1 <0.01 0.3

MKI67 Cell proliferation rRNA transcription 1.5 <0.01 4.4

MYC Cell proliferation
Transcription factor that binds DNA and activates transcription of

growth-related genes (positive regulation of gene expression), negative
regulation of apoptotic process

0.9 <0.01 2.5

MYCN Gene expression Regulation of gene expression, DNA-binding −0.5 0.052 0.6

NOTCH1
Multiple negative

regulations
Affects the implementation of differentiation, proliferation, angiogenesis,

and apoptotic programs. Multiple negative regulations −0.8 <0.01 0.5

NOTCH2 Multiple regulations Affects the implementation of differentiation, proliferation and apoptotic
programs 0.6 0.020 1.8

NSD2 B-cell development
Histone methyltransferase, B-cell development (B1), and B2 activation,

humoral immune response, isotype class switch recombination, germinal
center formation

1.0 <0.01 2.7

PAX5 B-cell development The commitment of lymphoid progenitors to B-lymphocyte lineage,
promotes development of the mature B-cell stage. −0.7 0.010 0.5

PIK3CA ERBB2 signaling, apoptosis Cell migration, ERBB2 signaling pathway, negative regulation of
apoptosis, 0.5 0.042 1.7

PIK3CD
B-cell development and

function

Mediates immune responses. Contributes to B-cell development,
proliferation, migration, and function. Required for B-cell receptor (BCR)

signaling
0.5 0.025 1.7

PTEN
Cell cycle, tumor suppressor

gene Negative regulation of G1/S transition of the mitotic cell cycle −0.8 0.012 0.5

PTK2 Multiple regulations
Regulation of cell migration, adhesion, cell cycle progression, cell
proliferation, apoptosis, MAPK/ERK1 pathway, MDM2 and TP53

recruitment
0.5 0.035 1.7

RB1
Cell cycle, tumor suppressor

gene
Tumor suppressor that is a key regulator of the G1/S transition of the

cell cycle −0.5 0.043 0.6

SYNE1 Cytoskeleton Cytoskeleton-nuclear membrane anchor activity, maintaining of
subcellular spatial organization −0.6 <0.01 0.5

TERT
Telomerase, multiple

functions
Telomerase, negative regulation apoptosis, positive regulation G1/S

transition of the mitotic cell cycle, negative regulation of gene expression 0.7 <0.01 2.0

XIAP
Multiple functions,

regulation of caspases and
apoptosis

Multi-functional protein that regulates not only caspases and apoptosis,
but also modulates inflammatory signaling and immunity, copper

homeostasis, mitogenic kinase signaling, cell proliferation, as well as cell
invasion and metastasis

−0.8 <0.01 0.5

From an initial set of 86 genes with known pathogenic role in MCL, a final set of 28 genes were selected because
their predictive value for overall survival using a Kaplan–Meier and log-rank test in the GSE93291: P, p value; HR,
hazard risk. The gene information is based on UniProt [54], and Genecards [55].
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2.3.3. Description of the Basic Neural Network Architecture

The multilayer perceptron (MLP) analysis was performed as previously
described [35–37,45,56,57]. The architectures are shown in Figures 1–3, and the analy-
sis outline in Figure 4. The MLP procedure produces a predictive model for one or more
dependent (target) variables based on the values of the predictor variables. The MLP is
a feedforward architecture, the input layer contains the predictors (our gene expression
data), the hidden layer contains unobservable nodes or units, and the output layer contains
the target variables. The target variables were the overall survival outcome as dead vs.
alive, and the gene expression of each prognostic and pathogenic gene as a categorical
variable (high vs. low expression). Figure 5, on the top right side, shows the basic neural
network architecture. Of note, the basic architecture of the radial basis function (RBF) is
like the MLP, but only one hidden layer characterizes it. This research used a simple type of
artificial neural network, but solid enough to provide a “basic analysis unit” that conforms
a more complex analysis algorithm as shown in Figure 5. A thorough description is shown
in our recent publication of artificial analysis of gene expression data of diffuse large b-cell
lymphoma (DLBCL) and non-Hodgkin lymphomas [46,58].

2.3.4. Parameters of the Neural Network

A thorough description of the artificial neural network procedure is described in our
recent publication [58]. The predictors (covariates) were the 20,862 genes of the array.
The covariates were rescaled by default to improve network training. All rescaling was
performed based on the training data, even if a testing or holdout sample is defined.
The method for rescaling was the standardized (subtract the mean and divide by the
standard deviation (x-mean/s)). Other available methods for rescaling were the normalized
((x − min)/(max − min)), adjusted normalized ([2 × (x − min)/(max − min)] − 1), or none.
The cases were randomly assigned to the training set, testing set, and holdout according
to the relative number of cases, being 70%, 30%, and 0%, respectively. To avoid bias, each
individual neural network underwent a random assignation of the samples into the training
and testing sets.

The “best” architecture design for the analysis was searched and finally selected [58,59].
The architecture can be selected automatically (with a minimum number of units in the
hidden layer of 1 and a maximum of 50) or can be a custom architecture. A custom
architecture selection provides control over the hidden and output layers and can be most
useful when you know in advance what architecture you want or when you need to tweak
the results of the automatic architecture selection.

In a custom architecture, the number of hidden layers could be one or two. The
number of units of the hidden layer could be automatically computed or custom. The
activation function of the hidden layers was the hyperbolic tangent (γ(c) = tanh(c) = (ec −
e−c)/(ec + e−c)), or sigmoid (γ(c) = 1/(1 + e−c)).

The activation function of the output layer was the identity (γ(c) = c), softmax (γ(ck) =
exp(ck)/Σjexp(cj)), hyperbolic tangent, or sigmoid. Of note, the activation function chosen
for the output layer determined which rescaling methods were available. The rescaling of
scale dependent variables was standardized ((x − mean)/s), normalized ((x − min)/(max
− min)), adjusted normalized ([2 × (x − min)/(max − min)] − 1), or none.

Several types of training were available: the batch, online, and mini-batch. The
optimization algorithm included the scaled conjugate gradient, and gradient descent. The
training options were the following: initial lambda (0.0000005); initial sigma (0.00005);
interval center (0); and interval offset (±0.5).

The output included the network structure and network performance.
Several parameters displayed the network performance: model summary; classifi-

cation results; receiver operating characteristic ROC curve; cumulative gains chart; lift
chart; predicted by observed chart; and the independent variable importance analysis.
ROC analysis displayed a curve for each categorical dependent variable and category and
the area under each curve [35–37,45,46,56,57]. The predicting variables (predictors) were
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ranked according to their normalized importance for predicting the target (dependent)
variable and for determining the neural network. This analysis performed a sensitivity
analysis that is based on the combined training and testing samples or only on the training
sample if there is no testing sample [32,33,60].

The predicted value or category and the predicted pseudo-probability for each depen-
dent variable were saved. The synaptic weight estimates were exported to an XML file.

If it was necessary to replicate the results exactly, the same initialization value for the
random number generator, data order, and variable order should be used, in addition to
using the same procedure settings.

The setup of a radial basis function (RBF) is similar to the MLP. In a RBF, the activation
function for hidden layer was normalized or ordinary radial basis function. Figures 1 and 2
show the general architecture for MLP and RBF [32,33,60]. Figure 3 shows the sensitivity
analysis [32,33,60].

2.4. Gene Set Enrichment Analysis (GSEA)

GSEA is a method that determines whether a priori defined set of genes shows sta-
tistically concordant differences between two “biological” states (e.g., phenotypes) [48,49].
Three types of files were necessary to run the application: (1) the gene cluster text file
(*.gct) with the GSE93291 gene expression dataset; (2) the phenotype data as a categorical
class (e.g., dead/alive) file format (*.cls); and (3) the gene set database as a gene matrix file
format (*.gmx). The GSEA parameters were the following [37]: number of permutations
(1000); collapse to gene symbols; permutation type (phenotype); chip platform (GPL570,
HG-U133 Plus 2); enrichment statistic (weighted); metric for ranking genes (signal2noise);
gene list sorting mode (real); gene list ordering mode (descending); max size (500); and min
size (15) [37].

Figure 1. General architecture for multilayer perceptron (MLP) networks. A neural network is a
set of non-linear data modeling tools consisting of input layers plus one or two hidden layers. The
multilayer perceptron procedure is a feedforward architecture. In comparison to RBF, the MLP con
find more complex relationships but it is slower to compute. The MLP network is a function of one or
more predictors (also called inputs or independent variables) that minimizes the prediction error of
one or more target variables (also called outputs) [32,33,60].
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Figure 2. General architecture for radial basis function (RBF) networks. A radial basis function (RBF)
network is a feed-forward, supervised learning network with only one hidden layer, called the radial
basis function layer [32,33,60].

Figure 3. Sensitivity analysis. Independent variable importance analysis. Performs a sensitivity anal-
ysis, which computes the importance of each predictor in determining the neural network [32,33,60].
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Figure 4. Summary of the analysis methodology. The analysis was comprised of two methods, one
based on the analysis of 20,862 genes and a second based on 10 immuno-oncology panels. This
research used artificial neural networks and several machine learning techniques to identify genes
associated with the overall survival of the patients. Correlation with known MCL pathogenic genes
and the LLMPP MCL35 proliferation assay was also made.

2.5. Summary of the Research Analysis Algorithm

The algorithms for the analysis of the gene expression data of MCL are shown in
Figures 5–8.

2.5.1. Algorithm Based on the Input of 20,862 Genes (Method 1)

First, all the genes of the array were used as predictors (input layer) for the target
variables (output layer) of overall survival (dead/alive) and for the 28 genes with prognostic
value in MCL (high/low expression) using an artificial neural network. The neural network
included both a multilayer perceptron and a radial basis function analysis for each target
variable (Figure 5). In the output of each individual neural network, all the genes of the
array were ranked according to their normalized importance for predicting the target
variable. Then, the genes with a normalized importance above 70% were selected. In
addition, the normalized importance of all the neural networks were averaged, the genes
ranked according to the averaged normalized importance for prediction, and the top 1%
genes were selected. As a result, the initial set of 20,862 genes was reduced to a smaller
number (n = 1394).

Next, an MLP was performed using the 1394 genes as predictors (input layer) of the
overall survival outcome (dead/alive, output layer); this analysis was repeated 20 times,
and the top 4 MLPs with higher area under the curves were selected. The normalized
importance of each 1394 were averaged between the four results and ranked from higher to
lower values. Then, using multiple MLP analysis, the minimum number of genes (starting
from the one with higher normalized importance) that provided the highest area under the
curve was found (n = 58) (Figure 6).
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Figure 5. Artificial neural network analysis for the prediction of the overall survival of mantle cell
lymphoma (Method 1). From a start point of 20,862 genes, using several neural networks, a correlation
between the overall survival outcome and several mantle cell lymphoma pathogenic genes managed
to reduce to a final set of 10 genes. These 10 genes correlated with the survival of the patients, but also
with the proliferation index as expressed by MKI67 gene: MLP, multilayer perceptron; RBF, radial
basis function; OS, overall survival; DA, dead/alive; GSEA, gene set enrichment analysis; AUC, area
under the curve.
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Figure 6. Multilayer perceptron analysis using the selected 58 genes (Method 1 continuation). As
shown in Figure 4, the neural networks reduced the initial input of 20,862 genes to 58 predictive genes.
Next, the overall survival outcome (dead/alive) was predicted using 58 genes and a neural network.
Several parameters display the network performance: model summary; classification results; receiver
operating characteristic ROC curve; cumulative gains chart; lift chart; predicted by observed chart;
and the independent variable importance analysis. ROC analysis displays a curve for each categorical
dependent variable and category and the area under each curve [34–36,44,45,55,56]. The genes were
ranked according to their normalized importance for predicting the overall survival outcome as a
dichotomic variables (dead vs. alive). A GSEA analysis confirmed the association toward a dead
outcome. The characteristics of the network were as follows. Case processing: training n = 93 (76%);
testing n = 30 (24%). Units n = 58. Rescaling = standardized. Hidden layer: number = 1; units = 2;
activation function = hyperbolic tangent. Output layer: dependent variables = 1 (overall survival
outcome dead/alive); units = 2, activation function = softmax, error function = cross-entropy. Model
summary: training, cross-entropy error = 30.8, 14% of incorrect predictions; testing, cross-entropy
error = 14.5, 23% of incorrect predictions. Classification: training, 86% overall correct (93.8% alive,
82% dead); testing, 77% overall correct (82% alive, 74% dead). Area under the curve = 0.9. Top 10
most relevant genes were RAB13, ZFYVE19, FANCG, KIF18A, RPGRIP1L, YBX3, ZCCHC4, NCLN,
OLFM1, and PDZRN3. A complete description of the multilayer perceptron is present in our recent
publication (Carreras J. et al. Artificial Neural Networks Predicted the Overall Survival and Molecular
Subtypes of Diffuse Large B-Cell Lymphoma Using a Pan-cancer Immune-Oncology Panel. Cancers

2021, 13, 6384; https://doi.org/10.3390/cancers13246384) [58].

137



Healthcare 2022, 10, 155

Figure 7. Overall survival analysis (Method 1 continuation). Because of the neural network analysis
and dimensional reduction (Figures 4 and 5), a final set of 10 genes with overall survival relationship
was highlighted. These genes not only correlated with the clinical outcome but also with the
proliferation index, as expressed by MKI67. Of note, ki67 is a marker routinely used for prediction in
mantle cell lymphoma, and the most relevant marker of the LLMPP MCL35 proliferation assay.
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Figure 8. Artificial neural network analysis for predicting of the overall survival of mantle cell
lymphoma using several immune oncology panels (Method 2). Overall survival was predicted
using 10 immuno-oncology panels. After several multilayer perceptron analyses, a set of 125 genes
predicted the overall survival outcome (dead/alive) with high accuracy. Among the most relevant
genes, TYMS was highlighted. GSEA analysis had a sinusoidal-like, with some genes enriched
toward dead or alive survival outcomes.

Finally, a Cox regression for overall survival (backward conditional) reduced the
list to 19 genes. From these 19 genes, additional analyses included Kaplan–Meier with
log-rank test for overall survival using cutoffs (Figure 7), analysis of other types of cancer
(“pan-cancer analysis”) (Figures 9 and 10), other machine learning (Figures 11–13), and
immunohistochemistry for RGS1 (Figure 14).
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Figure 9. Overall survival in a pan-cancer series. The multilayer perceptron using the 20,862 genes
identified a final set of 19 genes with prognostic value in mantle cell lymphoma. As a start point of the
gene expression of the set of 19 genes and using a risk-score formula [36,46], we confirmed that these
genes also contributed to the overall survival of diffuse large B-cell lymphoma (DLBCL). Additionally,
these genes could also predict the overall survival of a pan-cancer series of 7289 cases from The
Cancer Genome Atlas (TCGA) program that included the most frequent human cancers. Of note, the
weight and direction of the overall survival association was different in each subtype of neoplasia.
Risk scores were calculated by multiplying the beta values of the multivariate Cox regression analysis
for overall survival of each gene with the values of the corresponding gene expressions, as previously
described [58].
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Figure 10. Overall survival in a pan cancer series.

141



Healthcare 2022, 10, 155

Figure 11. Bayesian network. A Bayesian network successfully modeled the overall survival outcome
(dead/alive) using the 19 genes, previously identified in the neural network analysis (Figure 5,
Method 1). The Bayesian network enables you to build a probability model by combining observed
and recorded evidence with “common-sense” real-world knowledge to establish the likelihood of
occurrences by using seemingly unlinked attributes. The node focuses on Tree Augmented Naïve
Bayes (TAN) and Markov Blanket networks that are primarily used for classification. This graphical
model shows the variables (nodes) and the probabilistic, or conditional, independencies between
them. The links of the network (arcs) may represent causal relationships, but the links do not necessary
represent direct cause and effect. This Bayesian network is used to calculate the probability of a patient
of being alive or dead, given the gene expression of 19 genes, if the probabilistic independencies
between the gene expression and the overall survival outcome as displayed on the graph hold true.
Bayesian networks are very robust in case of missing data.

2.5.2. Algorithm Based on the Input of 10 Immune Oncology Panels (Method 2)

In comparison to the first algorithm in which the whole genes of the array were used
(n = 20,862), this second algorithm used 9 different immune oncology panels as input
data (7817 genes in total) (Figure 8). Nine individual MLP analysis for the prediction of
overall survival outcome (dead/alive) were performed, and the genes with a normalized
importance above 70% in each panel were pooled (n = 125). A GSEA analysis confirmed the
association of these genes towards the dead or alive overall survival outcome (phenotype).
Next, an additional MLP analysis confirmed the prediction of the overall survival outcome
and ranked the 125 genes according to their normalized importance. The top genes were
later tested for conventional overall survival analysis.

2.6. Conventional Statistical Analyses

Traditional statistics calculated the overall survival analyses. Overall survival was
calculated from time of diagnosis to the last follow-up time, and recorded as alive or
dead (event), following the criteria of Cheson B. D. [61,62]. Comparison between groups
was performed using Kaplan–Meier analysis and the log-rank test. The Breslow and
Tarone–Ware tests were also used. The Cox regression (with the method enter or backward
conditional) was used to calculate the hazard-risks and the 95% confidence intervals. A
p value less than 0.05 was considered statistically significant.

In case of a neural network analysis, poor prognosis/survival corresponds to the
cases whose overall survival event was dead. In case of an overall survival analysis using
the Kaplan–Meier test, poor prognosis corresponds to the group with lower cumulative
survival proportion in the plot.
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Figure 12. C5.0 decision tree model. A decision tree successfully modeled the overall survival
outcome (dead/alive) using the 19 genes, previously identified in the neural network analysis
(Figure 5, Method 1). This model uses the C5.0 algorithm to build either a decision tree or a rule set. A
C5.0 model works by splitting the sample based on the field that provides the maximum information
gain. Each subsample defined by the first split is then split again, usually based on a different field,
and the process repeats until the subsamples cannot be split any further. Finally, the lowest-level
splits are reexamined, and those that do not contribute significantly to the value are removed. In
this model, the target field (variable) must be categorical (i.e., nominal or ordinal, such as de overall
survival outcome as dead vs. alive). The input fields (predictors) can be of any type (in our analysis,
the 19 genes were entered as quantitative gene expression). The C5.0 models are quite robust in the
presence of problems such as missing data and large numbers of input fields. The C5.0 tree shows
how using only the gene expression of 9 genes, the overall survival outcome as dead or alive can be
predicted with high accuracy.
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Figure 13. Addition of the MCL35 proliferation signature in a Bayesian network. A Bayesian network
modeling was performed using the highlighted genes of both Methods 1 (19 genes) and Methods
2 (15) with the previously identified prognostic genes of MCL of the LLMPP, the MCL35 signature.
Some of the most relevant genes are highlighted, in red for the bad, green for the good prognostic
genes, and their interrelationships (arrows).

Figure 14. Overall survival according to the immunohistochemical expression of RGS1.

2.7. Immunohistochemistry

The immunohistochemistry was performed using an automated piece of equipment,
Leica BOND-MAX stainer, following the manufacturer’s instructions and as previously
described [53,59,63–65]. The RGS1 primary antibody (rabbit polyclonal) was purchased
from Thermofisher [63]. The slides were digitalized using a Hamamatsu NanoZoomer
S360, scanned, and visualized using the NDP.veiw2 software.
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3. Results

3.1. Highlights

• Using 20,862 genes as a start point (input layers) (Method 1), several neural network
analyses correlated with the overall survival outcome and with known pathogenic
genes of MCL (output layers), and a final set of 19 genes with predictive value was
highlighted (Figure 5);

• This type of analysis was repeated focusing on 10 immune, cancer, and immuno-
oncology panels (Method 2), and 15 genes were highlighted (Figure 8);

• Other machine learning techniques were used to predict the overall survival
(Figures 11 and 12);

• The highlighted genes also predicted the overall survival of a pan-cancer series
(Figures 9, 10 and A1);

• The combination of both Methods 1 (19 genes) and 2 (15 genes) with the LLMPP
MCL35 assay (17) genes and analysis using several machine learning and neural
networks techniques predicted the overall survival outcome (dead vs. alive) with
high accuracy.

3.2. Prediction of Overall Survival Based on the 20,862 Genes of the Array (Method 1)

Dimensionality reduction refers to techniques for reducing the number of input vari-
ables in training data. Fewer input dimensions often mean correspondingly fewer pa-
rameters or a simpler architecture in the machine learning model, referred to as degrees
of freedom [66]. The input layer of 20,862 predicted the overall survival of mantle cell
lymphoma (MCL), using an analysis algorithm (Figure 5). The output variables (targets)
were the overall survival outcome as a dichotomous variable (dead/alive), and the 28 genes
(high/low expression) with prognostic relevance for the overall survival were confirmed
in the same series (Table 2). Tables A1 and A2 show the complete details of the artificial
neural networks. The multilayer perceptron (MLP) technique had better performance than
the radial basis function (RBF): comparing area under the curve, percentage of incorrect
predictions (testing set), and overall percentage of correct classification (testing set), for
MLP vs. RBF, the results were 0.85 ± 0.05 vs. 0.77 ± 0.09 (p = 0.000053), 15.3% ± 5.9 vs.
26.5% ± 10.2 (p = 0.000005), and 84.7% ± 5.9 vs. 73.5% ± 10.2 (p = 0.000005), respectively.
CCND1 was the best predicted gene; in the MLP analysis CCND1 had a percentage of
incorrect predictions in the testing set of 2.8%, the lowest value among all genes (Table A1).

From the initial 20,862 genes, the list was reduced to 1394 genes, and additional
multilayer perceptron analyses led to a set of 58 genes (Figure 6). The network performance
of the MLP with the input of 58 genes was “good”, with an area under the curve (AUC)
of 0.9. The genes were ranked based on their normalized importance for prediction, and
GSEA confirmed that most of these genes were associated with the death survival outcome
(Figure 6); the most relevant were KIF18A, FANCG, GCNA, YBX3, ZCCHC4, and DMTF1.

Based on the 58 genes, a subsequent multivariate Cox regression analysis, backward
conditional, highlighted a set of 19 genes (Table A3), and a final set of 10 genes was found
after using a cut-off and a Kaplan–Meier analysis for overall survival (Table 2). KIF18A,
YBX3, PEMT, GCNA, and POGLUT3 were associated with an unfavorable overall survival,
and SELENOP, AMOTL2, IGFBP7, KCTD12, and ADGRG2 to a favorable survival (Figure 6).
Finally, the 10 genes were correlated with the cell proliferation marker of MKI67, which is
one of the most relevant genes in the pathogenesis of MCL (Table 3). The cases with low
MKI67 were associated with high KCTD12, ADGRG2, SELENOP, and IGFBP7. However,
high MKI67 associated with high YBX3. Table A4 shows a multivariate analysis for overall
survival between MIK67 and the 10 genes using a Cox regression.

Therefore, the dimensionality/data reduction of the Methods 1 went from 20,862 initial
genes, to 1394, 58, 19, and the final 10 most relevant prognostic genes for overall survival of
MCL patients.
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Table 3. Kaplan–Meier analysis for prediction of overall survival outcome (Method 1).

m Gene Cut-Off
Log-Rank

p Value
Breslow
p Value

Hazard Risk
Correlation with High

MKI67, Odds Ratio (OR)
OR p Value

1 KIF18A 8.71 <0.001 <0.001 3.5 (2.1–5.8) 1.3 (0.6–3.0) 0.499
2 YBX3 11.83 0.001 0.002 2.3 (1.4–3.8) 2.3 (0.9–5.3) 0.056
3 PEMT 8.75 0.015 0.016 1.9 (1.1–3.1) 1.1 (0.5–2.5) 0.798
4 GCNA 7.66 0.037 0.137 1.8 (1.0–3.3) 2.1 (0.9–4.9) 0.077
5 POGLUT3 8.81 0.034 0.014 1.6 (1.0–2.5) 0.9 (0.4–1.7) 0.649

6 SELENOP 12.81 0.028 0.048 0.6 (0.4–0.9) 0.2 (0.1–0.5) 0.001
7 AMOTL2 8.99 0.039 0.029 0.5 (0.3–0.9) 0.5 (0.2–1.1) 0.068
8 IGFBP7 13.37 0.019 0.042 0.5 (0.3–0.9) 0.2 (0.1–0.4) <0.001
9 KCTD12 12.02 0.022 0.042 0.5 (0.3–0.9) 0.2 (0.1–0.5) 0.01
10 ADGRG2 9.95 <0.001 <0.001 0.3 (0.2–0.6) 0.2 (0.1–0.5) 0.001

This analysis is a univariate.

3.3. Prediction of Overall Survival Based on the Immuno-Oncology Panels (Method 2)

The prediction of the overall survival outcome was performed using another strat-
egy, based on nine different immune oncology pathways, multilayer perceptron neural
networks, GSEA, and Kapan–Meier analyses (Figure 8).

The characteristics and performance parameters of the neural networks are shown in
Table A5. The most predictive panels (pathways) were the autoimmune (AUC = 0.98), the
pan cancer human IO360 (AUC = 0.94), human inflammation (AUC = 0.89), pan cancer
(AUC = 0.89), and metabolic (AUC = 0.87). Interestingly, some pathways had a more
predictive power toward the dead than the alive outcome.

After selecting the genes with a normalized importance above 70% and merging, a final
set of 125 was identified. A GSEA on these 125 genes had a sinusoidal-like pattern, with
some genes associated toward poor (dead) and others to favorable (alive) overall survival.
The genes were ranked according to their normalized importance for prediction using a
multilayer perceptron analysis, and the top 15 genes were CD8B, CEACAM6, FABP5, CFB,
IL6ST, AHR, BST2, ROBO4, AR, ID1, PIK3CD, ITGAX, TYMS, CSF1, and PCK2 (normalized
importance >0.68). Among them, TYMS was highlighted, and this gene by itself managed
to predict the overall survival of the patients (Hazard risk (HR) = 3.2, 95% CI 2.0–5.0,
p = 8.9 × 10−7). Of note, high TYMS also correlated with high MIK67 expression (Fisher’s
exact test, p = 0.001).

In a multivariate Cox regression survival analysis including these top 15 genes as
quantitative variables, backward conditional method, in the last step (11) the significant
genes were TYMS (p < 0.001, HR = 2.6), AR (p = 0.012, HR = 1.5), and CSF1 (p = 0.049,
HR = 0.6).

3.4. Prediction of Overall Survival of a Pan-Cancer Series

The predictive value of the set of 19 genes, derived from neural network analysis and
dimensional reduction of the initial 20,862 genes (Figure 5, Method 1), was tested for the
prediction of a pan cancer series of 7289 cases from The Cancer Genome Atlas (TCGA)
database and GSE10846 dataset for diffuse large B-cell lymphoma (DLBCL). Using a risk-
score formula [36,46], a different overall survival of the patients was found, confirming
the pathological role of these genes in cancer (Figures 9 and 10, Table A6, Figure A1). In
overall high-risk versus low-risk cases, Cox regression hazard risk = 3.3 (95% CI 2.9–3.6),
p < 0.0001.

3.5. Prediction of Overall Survival Outcome Using other Machine Learning Techniques

The predictive value of the set of 19 genes (Method 1) as quantitative variables for the
overall survival outcome was modeled using other machine-learning techniques, including
logistic regression, Bayesian network, discriminant analysis, KNN algorithm, LSVM, tree-
AS, C5, CHAID, Quest, random, and C&R trees. Among them, the highest overall accuracy
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for prediction was achieved by the C5 tree (95%, 9 genes used), and Bayesian network (85%,
19 genes, Figures 11 and 12).

3.6. Combination of Method 1, Method 2, and the LLMPP MCL35 Prognostic Gene Signature

A machine learning and neural network modeling was performed using the high-
lighted genes of both Methods 1 (19 genes) and Methods 2 (15) with the previously iden-
tified prognostic genes of MCL of the LLMPP, the MCL35 signature [50,67–69]. All the
available artificial intelligence methods were tested, and high overall accuracy for predict-
ing was found for logistic regression (100%), Bayesian network (92%), discriminant analysis
(86%), CHAID (85%), C&R tree (85%), and SVM (81%) (Table 4, Figure 13).

Table 4. Machine learning and neural network analysis of the combined Methods 1 and 2 with the
MCL35 signature.

Model
Overall Accuracy for

Predicting the
Overall Survival

No. of Genes Used
in the Final Model

Gene Names

Logistic regression 100 50 All the 50

Bayesian network 92 50 All the 50

Discriminant 86 50 All the 50

CHAID 85 6
E2F2, GCNA, FMNL3,
POGLUT3, SELENOP,

and ZDHHC21

C&R tree 85 21

ADGRG2, CDC20,
CEACAM6, ESPL1,
FABP5, FAM83D,
FMNL3, GCNA,

GLIPR1, ID1, ITGAX,
KIF2C, MKI67, RGS1,
ROBO4, RPGRIP1L,
RRAS, SELENOP,

TAMM41, ZDHHC21,
and ZWINT

SVM 81 50 All the 50

KNN algorithm 78 50 All the 50

Neural network 76 50 All the 50

C5 76 3 ESPL1, RPGRIP1L,
and ZWINT

Quest 65 50 All the 50
In this analysis, several methods were tested, including C5, logistic regression, Bayesian network, discriminant
analysis, KNN algorithm, LSVM, random trees, SVM, Tree-AS, CHAID, Quest, C&R tree, and neural networks.
Among them, logistic regression and Bayesian network had the best overall accuracy for predicting the overall
survival (dead vs. alive). The analysis used a custom field (genes) assignment. The target variable was the
overall survival as a dichotomic (binary) variable (dead vs. alive). The inputs (predictive genes) were the most
relevant genes (n = 50) that were previously identified in the Methods 1 (n = 19), 2 (n = 15), and the MCL35
signature (n = 17), as follows: ADAMDEC1, ADGRG2, AHR, AMOTL2, AR, ATL1, BST2, CCNB2, CD8B, CDC20,
CDKN3, CEACAM6, CFB, CSF1, E2F2, ESPL1, FABP5, FAM83D, FMNL3, FOXM1, GCNA, GLIPR1, ID1, IGFBP7,
IL6ST, ITGAX, KCTD12, KIF18A, KIF2C, MKI67, NCAPG, PALLD, PCK2, PEMT, PIK3CD, POGLUT3, RAB13, RGS1,
ROBO4, RPGRIP1L, RRAS, SELENOP, TAMM41, TMEM176B, TOP2A, TYMS, YBX3, ZCCHC4, ZDHHC21, and
ZWINT. A total of 13 models were selected and ranked according to their overall accuracy for predicting the
overall survival. In the modeling, every possible combination of options was tested, and the best models were
saved. Of note, in the final models not all the genes were necessary or contributed to the model, and only the best
combinations were selected (e.g., 50 genes in the Bayesian network but only 6 in the CHAID tree).

3.7. Immunohistochemical Analysis of RGS1

RGS1 was identified as an MCL prognostic gene. It was present within the set of 19
in the last step of the first analysis algorithm (Figure 5) and the Cox regression (backward
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conditional). The prognostic association was tested by immunohistochemistry in a series of
11 cases of MCL from Tokai University. Among the different gene candidates, RGS1 was
selected because a reliable primary antibody for immunohistochemistry was available, and
we previously showed that high RGS1 protein expression correlated with poor prognosis in
diffuse large b-cell lymphoma [63]. The clinicopathological characteristics of this series was
the following: age (median, 72 years; range 41–82); male (9/11, 82%); lymph node and tonsil
biopsy (10/11, 91%); CD3-negative (100%); CD5-positive (10/11, 91%); CD20, CD10, Cyclin
D1 (CCND1) and BCL2-positive (100%); BCL6-positive (3/11, 27%); MUM-1(IRF4)-positive
(9/10, 90%); proliferation index (Ki67, 10–50%).

The RGS1 protein expression was evaluated as low and high, and correlated with the
overall survival of the patients (p = 0.048) (Figure 10). Nevertheless, no correlation was
found between RGS1 and the other clinicopathological characteristics.

4. Discussion

Mantle cell lymphoma is a hematological neoplasia that belongs to the group of
non-Hodgkin lymphomas (NHL) and it is derived from mature B-lymphocytes [16].

The postulated cell of origin in most of the cases is a naïve pregerminal center B-
cell of the mantle zone [1,9,16,17,46], because of the absence of somatic mutations in
the variable region of the heavy chain of immunoglobulin genes (IgVH). IgVH somatic
mutational status is a marker of the transition of a B-lymphocyte through a follicular
germinal center [70]. However, in 20–30% of the cases somatic hypermutation is found,
which suggests a postgerminal origin (marginal zone) [71], and these cases are associated
with a better prognosis [72]. Because of the aggressive clinical behavior of mantle cell
lymphoma, it is critical to find prognostic makers that will allow identifying the patients
who should receive more aggressive therapy.

Mantle cell lymphoma is characterized by increased cell division and replication,
decreased response to DNA damage, and enhanced cell survival (impaired apoptosis) [16].
Some of these pathways and genes correlate with prognosis. For instance, TP53 and
NOTCH1 mutations, overexpression of SOX11, and high proliferation index (Ki67 staining)
associate with a poor prognosis.

This research identified new prognostic markers using gene expression data. Dimen-
sionality reduction refers to techniques for reducing the number of input variables in
training data. Fewer input dimensions often mean correspondingly fewer parameters or a
simpler architecture in the machine learning model, referred to as degrees of freedom [66].
A neural network analysis correlated the 20,862 genes of the array with the overall survival
outcome (dead/alive), and ranked the genes according to their normalized importance
for prediction. Additionally, the analysis was enriched with the inclusion of 28 prognostic
genes, which were identified from the literature and later confirmed to have prognostic rele-
vance in this series (Table 1). Therefore, the input data of the neural network were solid and
resulted in the identification of potentially relevant new prognostic markers. Additionally,
the second type of neural network analysis was performed using several immune oncology
pathways, which provided a more supervised training and analysis. The fact that we found
a correlation of some of the highlighted genes with the expression of MKI67, a marker of
proliferation known to be critical in mantle cell lymphoma pathogenesis, suggests that the
identified new markers are also potentially relevant.

The highlighted genes influence apoptosis, angiogenesis, cell proliferation, and metabolic
processes. They contribute to hematological neoplasia or cancer (Table 5). Therefore, it is
expected that these genes also affect the progression of the pan cancer series.

148



Healthcare 2022, 10, 155

Table 5. Function and association of the highlighted genes in neoplasia.

Gene Function Role in Cancer

KIF18A Microtubule motor activity, role in mitosis Overexpressed in various types of cancer; inhibitors are
available [73]

YBX3
Translation repression, negative regulation of intrinsic

apoptosis signaling
Related to myelodysplastic syndromes and acute

myeloid leukemia [74]

PEMT
Negative regulation of cell proliferation, positive

regulation of lipoprotein metabolic process Critical role in breast cancer progression [75]

GCNA
Acidic repeat-containing protein, expressed in germ

cells (testis) Regulate genome stability [76,77]

POGLUT3
Protein glucosyltransferase, specifically targets

extracellular EGF repeats of proteins (NOTCH1 and
NOTCH3)

Related to glioblastoma multiforme tumorigenesis [78]

SELENOP Transport of selenium, response to oxidative stress Prostate cancer recurrence [79]

AMOTL2
Actin cytoskeleton organization, angiogenesis, cell

migration, Wnt-signaling pathway
Angiogenesis in pancreatic, and proliferation in lung

cancer [80,81]

IGFBP7
Cell adhesion, metabolic process (retinoic acid, cortisol),

regulation of cell growth Prognosis of acute lymphoblastic leukemia [82]

KCTD12 GABA-B receptors auxiliary subunit Proliferation in breast cancer [83]

ADGRG2 G protein-coupled receptor signaling pathway Tumor suppressor in endometrial cancer [84]

TYMS Regulation of mitotic cell cycle (G1/S transition) Association with non-Hodgkin lymphomas, prognosis
of pancreatic cancer [85,86]

The gene information is based on UniProt [54], and Genecards [55]. TYMs was highlighted in Method 2; the rest
of genes in Method 1.

It is important to point out that one could also use background information (e.g., pa-
tient age, sex, comorbidities, etc.) into the artificial neural network analyses. Incorporating
such information would have a large impact on the results. In this research, the target
was the prediction of the overall survival of patients based on the gene expression data
as proof of concept. In future analyses, background information will be incorporated in
MCL analysis, in a similar way as we have recently done in diffuse large b-cell lymphoma
(DLBCL) [35].

In addition to neural networks, other machine learning techniques were tested, and
the C5 tree and Bayesian networks had the best accuracy for predicting the overall survival
outcome. Of note, the type of analyses used do not necessarily represent direct cause and
effect, but the probabilistic or conditional independencies between the markers.

The recent advances in machine learning have led to many artificial intelligence (AI)
applications, which will produce autonomous systems. However, the effectiveness of these
systems is limited by the machine’s current inability to explain their decision and actions to
human users [87]. Therefore, explainable AI (XAI) will be essential to understand, trust,
and effectively managed AI machine partners [87]. In this research, the artificial neural
networks highlighted the most relevant genes according to their normalized importance
for predicting the overall survival of the patients. To make the results more explainable,
we performed serval additional machine learning techniques and conventional statistics to
understand the results. For future work, the explanation of algorithms will be developed.
Of note, in medicine, AI technologies can be clinically validated even when their function
cannot be understood by their operators [88].

Future research directions will be the validation of the methodology and highlighted
genes in other series of mantle cell lymphoma and non-Hodgkin lymphomas.

5. Conclusions

This research combined artificial neural networks, machine learning, and conventional
statistics to model the overall survival of mantle cell lymphoma and highlight pathogenic
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genes. Artificial intelligence is a promising field in the understanding of hematological
neoplasia, and other types of cancer.

Author Contributions: Conceptualization, J.C.; methodology, J.C.; validation, R.H.; formal analysis,
J.C.; writing—original draft preparation, J.C.; writing—review and editing, J.C.; supervision, N.N.;
funding acquisition, J.C. All authors have read and agreed to the published version of the manuscript.

Funding: Joaquim Carreras was funded by the Ministry of Education, Culture, Sports, Science and
Technology (MEXT) and the Japan Society for the Promotion of Science, grants KAKEN 15K19061
and 18K15100, and Tokai University School of Medicine, research incentive assistant plan 2021-B04.
Rifat Hamoudi was funded by Al-Jalila Foundation (grant number AJF2018090), and University of
Sharjah (grant number 1901090258).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board and the Ethics Committee
of Tokai University, School of Medicine (protocol code IRB14R-080 and IRB20-156).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study, according to a protocol approved by the National Cancer Institute institutional review board.

Data Availability Statement: The gene expression data (GEO data sets) were obtained from the
publicly available database of the NCBI resources webpage, located at https://www.ncbi.nlm.nih.
gov/gds (accessed on 15 August 2021).

Acknowledgments: I would like to thank all the researchers and colleagues that contributed to the
generation of the GSE93291, GSE10846, and The Cancer Genome Atlas (TCGA) program.

Conflicts of Interest: The authors declare no conflict of interest.

150



Healthcare 2022, 10, 155

Appendix A

Table A1. Multilayer Perceptron Neural Network Analysis of Mantle Cell Lymphoma (Method 1).

Gene

Num.
Genes

Top
70%

Case Processing Summary Network Layers Model Summary Classification
Area
under

the
Curve
(AUC)

Training Testing Input Hidden Output Training Testing Training (% Correct) Testing (% Correct)

Num. % Num. % Units Num. Units Num. Units

Cross
En-

tropy
Error

Incorrect
Predic-
tions

%

Training
Time

Cross
En-

tropy
Error

Incorrect
Predic-
tions

%

Observed 0 Observed 1 Overall Observed 0 Observed 1 Overall

Dead/Alive 80 84 68.3 39 31.7 20863 1 6 1 2 38.2 21.4 01:04.9 10.4 12.8 67.6 86 78.6 88.9 86.7 87.2 0.90
SYNE1 6 90 73.2 33 26.8 20862 1 12 1 2 38.5 18.9 01:05.8 8.8 9.1 59.3 90.5 81.1 66.7 96.3 90.9 0.86

DAZAP1 80 87 70.7 36 29.3 20862 1 11 1 2 32.0 14.9 01:06.3 6.4 5.6 64 93.5 85.1 83.3 96.7 94.4 0.92
MYCN 154 85 69.1 38 30.9 20862 1 8 1 2 37.5 27.1 01:01.5 14.4 13.2 36.4 85.7 72.9 66.7 93.1 86.8 0.82

CXCL12 56 87 70.7 36 29.3 20862 1 8 1 2 40.5 19.5 00:57.4 10.1 8.3 44 95.2 80.5 83.3 93.3 91.7 0.83
NOTCH2 20 84 68.3 39 31.7 20862 1 9 1 2 29.9 20.2 00:58.2 11.8 17.9 92.3 36.8 79.8 93.1 50 82.1 0.90

CDK4 47 87 70.7 36 29.3 20862 1 11 1 2 30.4 13.8 00:51.2 13.8 22.2 91.3 66.7 86.2 100 27.3 77.8 0.89
BMI1 25 93 85.6 30 24.4 20862 1 8 1 2 53.0 26.9 00:56.3 13.2 16.7 71.7 74.5 73.1 93.8 71.4 83.3 0.81
ING1 94 76 61.8 47 38.2 20862 1 10 1 2 36.3 17.1 00:52.7 22.7 27.7 50 93.1 82.9 30.8 88.2 72.3 0.76
NSD2 38 91 74 32 26 20862 1 9 1 2 43.0 20.9 01:04.7 15.1 15.6 82.4 75 79.1 91.7 80 84.4 0.86
PTK2 6 93 75.6 30 24.4 20862 1 13 1 2 40.2 16.1 01:07.3 7.9 10 97.1 43.5 83.9 91.3 85.7 90 0.85

PIK3CA 4 76 61.8 47 38.2 20862 1 10 1 2 26.4 13.2 00:52.4 17.7 12.8 94.8 61.1 86.8 94.3 66.7 87.2 0.88
CHEK1 86 91 74 32 26 20862 1 9 1 2 45.3 27.5 00:58.7 12.9 18.8 68.8 76.7 72.5 92.9 72.2 81.3 0.85
CHEK2 8 90 73.2 33 26.8 20862 1 10 1 2 39.8 18.9 01:07.6 13.0 15.2 77.3 84.8 81.1 83.3 86.7 84.8 0.88
PIK3CD 50 82 66.7 41 33.3 20862 1 10 1 2 17.6 11.0 01:08.1 14.6 14.6 90.9 86.8 89 90.9 78.9 85.4 0.96

XIAP 22 85 69.1 38 30.9 20862 1 12 1 2 40.2 18.8 00:49.9 17.7 23.7 83.7 78.6 81.2 85.7 64.7 76.3 0.87
PAX5 23 88 71.5 35 28.5 20862 1 7 1 2 45.3 27.3 00:55.2 13.0 8.6 20 93.7 72.7 50 100 91.4 0.75

BCL2L11 12 71 57.7 52 42.3 20862 1 5 1 2 29.9 19.7 00:50.1 24.2 23.1 92.6 41.2 80.3 94.9 23.1 76.9 0.82
BORCS8_MEF2B 12 85 69.1 38 30.9 20862 1 11 1 2 39.2 21.2 00:53.3 11.6 10.5 40.9 92.1 78.8 55.6 100 89.5 0.83

PTEN 86 84 68.3 39 31.7 20862 1 10 1 2 36.0 20.2 00:57.0 12.2 7.7 92.1 42.9 79.8 93.3 88.9 92.3 0.85
MYC 10 84 68.3 39 31.7 20862 1 9 1 2 28.9 16.7 00:56.2 14.2 20.5 87.7 68.4 83.3 96.4 36.4 79.5 0.90

CCND1 23 87 70.7 36 29.3 20862 1 8 1 2 38.3 23.0 01:03.5 6.7 2.8 92.3 31.8 77 96.4 100 97.2 0.89
MKI67 2 93 75.6 30 24.4 20862 1 10 1 2 40.2 20.4 01:04.6 11.7 16.7 78 81.4 79.6 85.7 81.3 83.3 0.89
CCND2 46 76 61.8 47 38.2 20862 1 9 1 2 32.4 21.1 00:54.9 17.7 14.9 90.7 50 78.9 92.3 50 85.1 0.84

CDKN2A 112 91 74 32 26 20862 1 14 1 2 22.0 9.9 00:53.6 11.3 21.9 94.4 73.7 90.1 91.3 44.4 78.1 0.93
CDKN2C 6 90 73.2 33 26.8 20862 1 8 1 2 46.7 26.7 00:58.1 13.5 15.2 67.4 78.7 73.3 89.5 78.6 84.8 0.85

TERT 205 82 66.7 41 33.3 20862 1 9 1 2 34.6 20.7 01:00.8 14.9 19.5 93.7 31.6 79.3 93.3 45.5 80.5 0.85
NOTCH1 15 85 69.1 38 30.9 20862 1 11 1 2 32.4 17.6 00:49.1 16.3 21.1 88.2 58.8 82.4 88.5 58.3 78.9 0.85

RB1 47 88 71.5 35 28.5 20862 1 12 1 2 48.9 27.3 00:56.3 14.3 17.1 65.1 80 72.7 78.9 87.5 82.9 0.83
Combined 18 91 74 32 26 20835 1 8 29 58 1348.9 25.7 01:22.2 525.3 29.4 - - 74.3 - - 70.6 -

Average 85.9 70.1 37.1 30.2 20861 1 9.6 - - 80.4 20.1 - 30.6 15.8 75.0 70.8 79.9 84.2 73.5 84.2 0.9

Input layer: standardized rescaling method for covariates. Hidden layer: hyperbolic tangent activation function. Output layer: softmax activation function, cross-entropy error function.
Model summary, training, one consecutive step(s) with no decrease in error (error computations are based on the testing sample) as stopping rule.
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Table A2. Radial Basis Function Neural Network Analysis of Mantle Cell Lymphoma (Method 1).

Gene

Num.
Genes

Top
70%

Case Processing Summary Network Layers Model Summary Classification
Area
under

the
Curve
(AUC)

Training Testing Input Hidden Output Training Testing Training (% Correct) Testing (% Correct)

Num. % Num. % Units Num. Units Num. Units
Sum of
Squares

Error

Incorrect
Predic-
tions

%

Training
Time

Sum of
Squares

Error

Incorrect
Predic-
tions

%

Observed 0 Observed 1 Overall Observed 0 Observed 1
Overall

%

Dead/Alive 37 92 74.8 31 25.2 20863 1 8 1 2 16.9 27.2 04:13.3 6.7 38.7 45.5 88.1 72.8 10.0 85.7 61.3 0.73
SYNE1 18 85 69.1 38 30.9 20862 1 8 1 2 10.4 17.6 02:46.3 7.4 23.7 40.9 96.8 82.4 27.3 96.3 76.3 0.79

DAZAP1 28 80 65 43 35 20862 1 6 1 2 8.2 16.3 02:24.1 3.1 9.3 81.8 84.5 83.8 100.0 88.2 90.7 0.93
MYCN 48 82 66.7 41 33.3 20862 1 6 1 2 11.1 20.7 02:32.2 7.4 31.7 30.0 95.2 79.3 9.1 90.0 68.3 0.78

CXCL12 50 82 66.7 41 33.3 20862 1 5 1 2 12.7 22.0 02:39.9 8.2 26.8 10.0 100.0 78.0 0.0 100.0 73.2 0.74
NOTCH2 29 92 74.8 31 25.2 20862 1 10 1 2 11.7 15.2 03:18.6 4.9 25.8 98.6 35.0 84.8 100.0 11.1 74.2 0.80

CDK4 16 82 66.7 41 33.3 20862 1 10 1 2 11.4 20.7 02:21.8 4.9 17.1 98.3 27.3 79.3 100.0 0.0 82.9 0.83
BMI1 41 90 73.2 33 26.8 20862 1 5 1 2 20.0 34.4 03:21.6 7.4 39.4 77.6 51.2 65.6 100.0 35.0 60.6 0.70
ING1 40 79 64.2 44 35.8 20862 1 4 1 2 14.8 26.6 02:14.7 7.6 22.7 0.0 100.0 73.4 0.0 100.0 77.3 0.60
NSD2 39 92 74.8 31 25.2 20862 1 10 1 2 13.6 20.7 03:11.6 4.1 9.7 85.7 72.1 79.3 85.7 94.1 90.3 0.88
PTK2 19 90 73.2 33 26.8 20862 1 3 1 2 16.2 24.4 03:15.7 5.8 24.2 100.0 0.0 75.6 100.0 0.0 75.8 0.64

PIK3CA 46 79 64.2 44 35.8 20862 1 8 1 2 12.5 24.1 02:23.1 7.7 25.0 93.3 21.1 75.9 100.0 0.0 75.0 0.74
CHEK1 51 92 74.8 31 25.2 20862 1 8 1 2 16.4 26.1 03:12.5 7.0 41.9 78.6 70.0 73.9 50.0 72.7 58.1 0.80
CHEK2 80 88 71.5 35 28.5 20862 1 9 1 2 13.5 25.0 02:57.1 5.9 22.9 59.1 90.9 75.0 66.7 88.2 77.1 0.86
PIK3CD 47 79 64.2 44 35.8 20862 1 3 1 2 12.1 20.3 02:15.3 8.0 27.3 66.7 90.7 79.7 63.3 92.9 72.9 0.83

XIAP 89 79 64.2 44 35.8 20862 1 8 1 2 10.7 17.7 02:20.4 11.0 43.2 88.4 75.0 82.3 66.7 47.8 56.8 0.80
PAX5 81 89 72.4 34 27.6 20862 1 9 1 2 14.5 24.7 02:55.3 6.0 26.5 13.0 97.0 75.3 0.0 96.2 73.5 0.71

BCL2L11 28 88 71.5 35 28.5 20862 1 8 1 2 10.9 14.8 02:51.2 4.1 14.3 100.0 43.5 85.2 96.4 42.9 85.7 0.86
BORCS8_MEF2B 41 86 69.9 37 30.1 20862 1 3 1 2 13.8 23.3 02:45.9 5.8 18.9 19.0 95.4 76.7 30.0 100.0 81.1 0.76

PTEN 23 92 74.8 31 25.2 20862 1 7 1 2 11.1 16.3 03:14.2 3.5 12.9 95.4 55.6 83.7 92.9 33.3 87.1 0.84
MYC 18 92 74.8 31 25.2 20862 1 9 1 2 9.8 16.3 03:31.2 4.1 25.8 91.8 52.6 83.7 95.0 36.4 74.2 0.90

CCND1 42 82 66.7 41 33.3 20862 1 10 1 2 11.2 19.5 02:29.4 6.0 26.8 88.3 59.1 80.5 87.9 12.5 73.2 0.81
MKI67 37 90 73.2 33 26.8 20862 1 10 1 2 12.6 21.1 03:00.8 5.0 21.2 88.0 67.5 78.9 78.6 78.9 78.8 0.89
CCND2 40 79 64.2 44 35.8 20862 1 4 1 2 12.3 24.1 02:14.5 7.6 25.0 100.0 0.0 75.9 100.0 0.0 75.0 0.74

CDKN2A 56 92 74.8 31 25.2 20862 1 6 1 2 14.1 20.7 03:02.7 5.0 25.8 97.2 15.0 79.3 100.0 0.0 74.2 0.73
CDKN2C 34 88 71.5 35 28.5 20862 1 9 1 2 17.6 21.6 02:50.9 8.9 34.3 86.8 72.0 78.4 58.3 81.8 65.7 0.78

TERT 58 79 64.2 44 35.8 20862 1 10 1 2 10.3 17.7 02:17.2 10.0 27.3 93.7 37.5 82.3 100.0 14.3 72.7 0.71
NOTCH1 71 79 64.2 44 35.8 20862 1 3 1 2 12.4 22.8 02:14.6 7.3 25.0 100.0 0.0 77.2 100.0 0.0 75.0 0.74

RB1 87 89 72.4 34 27.6 20862 1 2 1 2 22.2 47.2 02:55.3 8.7 55.9 100.0 0.0 52.8 100.0 0.0 44.1 0.49
Combined 87 93 75.6 30 24.4 20835 1 14 29 58 366.4 20.4 09:53.4 147.2 23.7 - - 79.6 - - 76.3 -

Average 86.0 69.9 37.0 30.1 20861 1 7.2 25.0 22.3 11.2 26.4 73.4 58.4 77.7 69.6 51.7 73.6 0.77

Input layer: standardized rescaling method for covariates. Hidden layer: softmax activation function. Output layer: identity activation function, sum of squares error function. Model
summary, testing, sum of square error (the number of hidden units is determined by the testing data criterion: The “best” number of hidden units is the one that yields the smallest error
in the testing data).
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Table A3. Multivariate Cox regression analysis for predicting overall survival outcome (Method 1).

Num Gene B SE Wald df p Value Hazard Risk
95.0% CI for HR

Lower Upper

1 KIF18A 2.7 0.3 58.3 1 <0.001 14.2 7.2 28.1
2 YBX3 0.8 0.2 19.0 1 <0.001 2.2 1.6 3.2
3 GCNA 0.9 0.2 14.6 1 <0.001 2.5 1.6 4.1
4 POGLUT3 1.2 0.3 13.4 1 <0.001 3.2 1.7 6.0
5 AMOTL2 0.9 0.3 10.1 1 0.001 2.5 1.4 4.3
6 RAB13 1.2 0.4 9.8 1 0.002 3.3 1.6 7.0
7 ZCCHC4 1.1 0.3 9.5 1 0.002 2.9 1.5 5.7
8 PEMT 0.6 0.2 8.4 1 0.004 1.9 1.2 2.8
9 RRAS 0.8 0.4 4.7 1 0.029 2.2 1.1 4.4
10 PALLD 0.6 0.3 3.9 1 0.048 1.8 1.0 3.1
11 ADAMDEC1 0.7 0.4 3.5 1 0.063 1.9 1.0 3.9
12 ADGRG2 0.4 0.2 2.8 1 0.094 1.5 0.9 2.3
13 IGFBP7 −1.5 0.3 20.3 1 <0.001 0.2 0.1 0.4
14 TMEM176B −1.6 0.4 18.9 1 <0.001 0.2 0.1 0.4
15 SELENOP −1.0 0.2 15.6 1 <0.001 0.4 0.2 0.6
16 RPGRIP1L −0.5 0.1 10.5 1 0.001 0.6 0.5 0.8
17 TAMM41 −0.8 0.3 7.5 1 0.006 0.4 0.3 0.8
18 KCTD12 −1.2 0.5 7.5 1 0.006 0.3 0.1 0.7
19 RGS1 −0.4 0.2 4.5 1 0.034 0.7 0.5 1.0

Cox regression, backward conditional.

Table A4. Multivariate Cox regression overall survival analysis between MKI67 and the 10 high-
lighted genes (Method 1).

Gene B SE Wald df Sig. HR
95.0% CI for HR

Lower Upper

MKI67 1.3 0.3 20.5 1 0.000 3.8 2.1 6.8
YBX3 0.9 0.3 11.3 1 0.001 2.6 1.5 4.4

SELENOP −0.5 0.3 3.0 1 0.085 0.6 0.3 1.1
POGLUT3 0.6 0.2 6.9 1 0.009 1.9 1.2 3.1
ADGRG2 −0.7 0.3 4.5 1 0.035 0.5 0.2 0.9

GCNA 0.8 0.3 5.3 1 0.021 2.2 1.1 4.2
KIF18A 1.5 0.3 26.6 1 0.000 4.3 2.5 7.6
PEMT 0.8 0.3 6.6 1 0.010 2.1 1.2 3.8

Multivariate Cox regression analysis, backward conditional. HR, hazard risk. Note: There are only 8 genes
because it is a multivariate Cox regression analysis with the backward conditional method. In this method, the
nonsignificant variables are eliminated.
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Table A5. Multilayer perceptron analysis of the immuno-oncology pathways (Method 2).

Pathway

Num.
Genes

Top
70%

Case Processing Summary Network Layers Model Summary Classification
Area
under

the
Curve
(AUC)

Training Testing Input Hidden Output Training Testing Training (% Correct) Testing (% Correct)

Num. % Num. % Units Num. Units Num. Units

Cross
En-

tropy
Error

Incorrect
Predic-
tions

%

Training
Time

Cross
En-

tropy
Error

Incorrect
Predic-
tions

%

Observed
Alive

Observed
Dead

Overall
Observed

Alive
Observed

Dead
Overall

%

Cancer
Transcriptome 13 84 68.3 39 31.7 1785 1 6 1 2 41.1 27.4 00:03.9 17.6 23.1 58.8 82.0 72.6 55.6 83.3 76.9 0.84

Pan Cancer
Human IO360 15 84 68.3 39 31.7 727 1 8 1 2 22.5 13.1 00:01.4 14.7 15.4 82.4 90.0 86.9 88.9 83.3 84.6 0.94

Pan Cancer
Immune Profiling 1 84 68.3 39 31.7 707 1 5 1 2 44.9 26.2 00:01.5 15.0 12.8 64.7 80.0 73.8 88.9 86.7 87.2 0.82

Pan Cancer
Progression 18 84 68.3 39 31.7 715 1 11 1 2 51.2 32.1 00:01.7 18.7 12.8 29.4 94.0 67.9 66.7 93.3 87.2 0.74
Pan Cancer
Pathways 6 84 68.3 39 31.7 712 1 8 1 2 36.9 21.4 00:01.8 16.8 15.4 67.6 86.0 78.6 77.8 86.7 84.6 0.89
Metabolic
Pathways 27 84 68.3 39 31.7 737 1 14 1 2 39.8 22.6 00:01.6 13.7 17.9 55.9 92.0 77.4 66.7 86.7 82.1 0.87
Immune

Exhaustion 12 84 68.3 39 31.7 720 1 10 1 2 47.2 31.0 00:01.6 18.2 17.9 50.0 82.0 69.0 66.7 86.7 82.1 0.79
Human

Inflammation 23 84 68.3 39 31.7 247 1 9 1 2 33.7 17.9 00:00.6 16.6 23.1 73.5 88.0 82.1 55.6 83.3 76.9 0.89
Host Response 8 84 68.3 39 31.7 747 1 9 1 2 41.1 21.4 00:01.6 18.1 20.5 67.6 86.0 78.6 66.7 83.3 79.5 0.83
Autoimmune 13 84 68.3 39 31.7 719 1 10 1 2 11.9 6.0 00:01.5 12.5 10.3 88.2 98.0 94.0 88.9 90.0 89.7 0.98

Organ
Transplantation 12 84 68.3 39 31.7 728 1 11 1 2 41.5 21.4 00:01.6 15.7 10.3 64.7 88.0 78.6 88.9 90.0 89.7 0.85

Input layer: standardized rescaling method for covariates. Hidden layer: hyperbolic tangent activation function. Output layer: softmax activation function, cross-entropy error function.
Model summary, training, one consecutive step(s) with no decrease in error (error computations are based on the testing sample) as stopping rule.

154



Healthcare 2022, 10, 155

Table A6. Overall survival of the pan cancer series using the risk-scores.

Subtype Overall Low-Risk High-Risk
K–M Log-Rank

p Value
Cox p Value Cox HR

95% CI for HR

Lower Higher

Breast 962 821 141 4.0 × 10−17 6.5 × 10−15 4.0 2.8 5.6
Lung 475 426 49 1.0 × 10−10 1.1 × 10−9 3.3 2.3 4.9

Prostate 497 446 51 1.5 × 10−4 2.0 × 10−3 9.2 2.3 37.2
Colorectal 466 415 51 1.4 × 10−5 3.3 × 10−5 2.9 1.7 4.8

Cervix 191 169 22 3.4 × 10−10 8.9 × 10−8 7.7 3.6 16.2
Stomach 440 293 147 2.6 × 10−4 3.1 × 10−4 1.8 1.3 2.4

Skin (melanoma) 335 177 158 3.2 × 10−10 1.3 × 10−9 2.6 1.9 3.5
Bladder 389 207 182 9.2 × 10−13 9.7 × 10−12 3.0 2.2 4.1
Ovary 247 217 30 0.6 × 10−5 1.5 × 10−5 2.9 1.8 4.6

DLBCL 414 289 125 3.3 × 10−16 1.5 × 10−14 3.3 2.5 4.5
Kidney 792 470 322 5.9 × 10−17 2.5 × 10−15 3.2 2.4 4.3

Uterus (endometrium) 247 214 33 5.5 × 10−11 2.4 × 10−8 7.4 3.7 15.0
Leukemia (AML) 149 115 34 1.9 × 10−14 7.0 × 10−12 5.5 3.4 9.0

Pancreas 176 109 67 0.4 × 10−5 9.0 × 10−6 2.6 1.7 3.9
Thyroid 489 434 55 9.9 × 10−12 6.4 × 10−7 17.4 5.6 53.5

Liver 361 197 164 6.7 × 10−10 4.0 × 10−9 3.0 2.1 4.3
CNS (GBM) 659 209 450 2.6 × 10−17 8.9 × 10−15 4.5 3.1 6.6

Overall 7289 5208 2081 2.8 × 10−178 2.5 × 10−159 3.3 2.9 3.6

K–M, Kapan–Meier; HR, hazard risk, DLBCL, diffuse large B-cell lymphoma; AML, acute myeloid leukemia; CNS,
central nervous system; GBM, glioblastoma multiforme. This analysis is univariate.

Figure A1. Differential gene expression of the set of 19 genes per cancer subtype. Based on a risk-
score formula and the gene expression of 19 genes, the overall survival for each risk-group could
be calculated. The contribution in the prognosis for each gene is shown on the right. This Figure is
complementary to Figure 9.
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Abstract: Improper neck postures and movements are the major causes of human neck-related
musculoskeletal disorders. To monitor, quantify, analyze, and detect the movements, remote and non-
invasive based methods are being developed for prevention and rehabilitation. The purpose of this
research is to provide a digital platform for analyzing the impact of human neck movements on the
neck musculoskeletal system. The secondary objective is to design a rehabilitation monitoring system
that brings accountability in the treatment prescribed, which is shown in the use-case model. To record
neck movements effectively, a Smart Neckband integrated with the Inertial Measurement Unit (IMU)
was designed. The initial task was to find a suitable position to locate the sensors embedded in the
Smart Neckband. IMU-based real-world kinematic data were captured from eight research subjects
and were used to extract kinetic data from the OpenSim simulation platform. A Random Forest
algorithm was trained using the kinetic data to predict the neck movements. The results obtained
correlated with the novel idea proposed in this paper of using the hyoid muscles to accurately detect
neck postures and movements. The innovative approach of integrating kinematic data and kinetic
data for analyzing neck postures and movements has been successfully demonstrated through the
efficient application in a rehabilitation use case with about 95% accuracy. This research study presents
a robust digital platform for the integration of kinematic and kinetic data that has enabled the design
of a context-aware neckband for the support in the treatment of neck musculoskeletal disorders.

Keywords: inertial measurement unit; kinematic data; kinetic data; musculoskeletal disorders; neck
movements; neck postures; OpenSim; random forest

1. Introduction

Enabling technology to monitor, measure, and manage human movements has been
an active area of research with a broad spectrum of applications ranging from medical
diagnostics, rehabilitation, sports, fitness, behavior analysis, and gait-based bio-metrics.
The historic landscape of research publications in the field has presented the use of vision-
based (video cameras), sensor-based (Inertial Measurement Units IMUs), infra-red, and
RADAR-based innovations to study human movement [1–4]. Quantitative analyses have
traditionally been carried out using either kinetic or kinematic data for various appli-
cations. Kinematic data are obtained using IMUs and have been used in the study of
musculoskeletal disorders (MSD) [5] and gait recognition. On the other hand, kinetic
data provide details of the force of the component in motion and help to analyze the
activation of muscles associated with the joint in motion [6]. Kinetic data are computed
from the signals obtained from a Kinesiologic Electromyography (KEMG) device and
are quantitative analyses for understanding muscle force and fatigue [7–9]. The moti-
vation for the research presented in this paper was to design a robust methodology to
integrate the kinetic and kinematic features for predictive analysis of human postures
and movements. IMUs are Micro-Electro-Mechanical-systems (MEMs)-based devices
that are widely used to develop wearable technologies [10]. IMU data have been inte-
grated earlier with several proprietaries and open-source-based simulation platforms for
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analysis and visualization of movement data [11–17]. Here, the integration of IMU with
OpenSim is presented, and it is currently a focus area in top research laboratories as
well. OpenSim is a free, open-source simulation and modeling tool developed at Stanford
University (https://opensim.stanford.edu/) (accessed on 9 November 2021). The built-in
feature-extraction functionalities and contributions by the community make OpenSim a
scalable and reliable tool for analyzing human movements. Besides presenting a step-wise
procedure to integrate IMU data with OpenSim, this paper presents a novel methodology
of combining kinetic and kinematic data for generating an insightful analysis of human
movements. OpenSim provides details of muscle activation and supports joint modeling of
kinetic and kinematic parameters. In the following subsections, the detailed methodology
is presented. The results and discussions that follow will highlight the significance and
applications of the proposed digital platform for movement analysis.

Motivation and Proposed Work

The goal of the proposed research is to present a methodology to measure and identify
the postures of the human neck for the prevention and rehabilitation of musculoskeletal
disorders of the cervical region. Improper neck postures due to sedentary lifestyles are a
significant cause of cervical spine dysfunction in all age groups ranging from children to the
elderly [18–27]. The neck region can also be affected due to improper neck postures that are
inherent in certain kinds of occupations. Other lifestyle-related activities, including sleeping
in the sitting position during travel, can trigger musculoskeletal problems around the neck.
The motivation for this research was to propose a novel methodology to prevent disorders
of the neck through timely detection and notifications [28]. A sensor-based Smart Neckband
that can precisely detect neck postures was designed to monitor and generate alert messages
as a preventive measure. This neckband can also be used to take measurements of the
range of motion of the neck regions during therapy and rehabilitation [28]. Research works
related to the use of sensors to track movements by obtaining kinematic data have been
presented extensively in the literature under the field called Actigraphy [29,30]. These
approaches have also been widely used for tracking movement through commercially
available wrist-worn fitness monitors. However, to identify the postures of the neck, there
are several challenges and limitations in only using kinematic data obtained using sensors.
Hence, we explored the possibility of integrating kinetic and kinematic data for better
accuracy in the detection of neck postures. In this paper, we present a robust integrated
platform for the predictive analysis of human neck postures and movements using kinetic
and kinematic data. In the following sections, the methods and materials used in this
research are presented.

2. Materials and Methods

There are various conventional methods for measuring or recording human neck
movements. Neck Range of Motion (N ROM) measuring instruments can be designed
with proximity sensors, and NROM can be calculated with local fixed points on the human
face with respect to human nose as center point. From nose to ears, the distance can be
calculated, and based on degrees of freedom, the NROM values can be obtained. Similarly,
there is another method, using video and biomarkers; in this method, biomarkers on the
human neck and simultaneous video recording can be used to track neck movements.
In continuation of these methods, our proposed model will help to find human neck
movements in the digital environment [31–35]. In this research, an IMU-based device is
used for acquiring the kinematic data of the neck, and the OpenSim simulation modeling
tool is used to generate the kinetic data of the corresponding neck movements. Predictive
analysis to detect neck postures from the kinetic and kinematic data is performed using
machine learning methods. Validation is shown using synthetic data.

162



Healthcare 2021, 9, 1755

2.1. Kinematic Data Acquisition Using Smart Neckband
2.1.1. IMU Neck Band

Inertial Measurement Unit (IMU) embedded in an elastic neckband captures the kine-
matic data required for the analysis. IMU devices are available in miniature sizes and
can be used to design wearable products. For this research, Metawear CPRO, an IMU
device developed at MBIENTLAB (https://mbientlab.com/metamotionc/) (accessed on
9 November 2021), has been used. It has on-chip memory, processing unit, accelerometer,
gyroscope sensor, magnetometer sensor, pressure sensor, and temperature sensor. In addi-
tion to these sensors, this device has inbuilt Bluetooth support to establish communication
with the associated mobile application or any Bluetooth device to transmit the device data.
This IMU device can stream data for 8–24 h continuously using a 3.3 V coin-sized battery
and is attached to a wearable band with an adjustable strap to fit it firmly around the neck.
This neckband, when integrated with the proposed predictive analysis, can be referred to
as a Smart Neckband for its context-aware functionalities. The primary use of this device
is to record neck movements [28]. The technical specifications of the device and built-in
sensors are given below:

o Weight: 5.66 g;
o Battery: 200 mAH coin battery;
o Usage modes: 8–24 h (stream), 2–48 h (log);
o Data Transfer: Bluetooth Low Energy Smart (BLE);
o Flash Memory: 8 MB.
o Built-in sensors:

Accelerometer:

Range: ±2, ±4, ±8, ±16 g;
Resolution: 16 bit;
Sampling Rate: 0.001 Hz–100 Hz stream–800 Hz log.

Gyrometer:

Range: ±125, ±250, ±500, ±1000, ±2000◦/s, Resolution: 16 bit;
Sampling Rate: 0.001 Hz–100 Hz stream–800 Hz log.

Magnetometer:

Range: ±1300 µT (x,y-axis), ±2500 µT (z-axis);
Resolution: 0.3 µT;
Sampling Rate: 0.001–25 Hz.

2.1.2. Mobile Application—MetaBase

In this research, an IMU-based device is used for acquiring the kinematic data of the
neck, and the OpenSim simulation modeling tool is used to generate the kinetic data of
the corresponding neck movements. Predictive analysis to detect neck postures from the
kinetic and kinematic data is performed using machine learning methods. In the following
sections, the methods and materials used in this research are presented.

2.1.3. Sensor Data Format

The IMU device has built-in sensors to record various kinematic aspects of the move-
ments. The format of the data captured by these sensors is given below:

• Accelerometer sensor: epoch(ms), -> time, elapsed(s), x(g), y(g), z(g);
• Gyroscope sensor: epoch(ms), -> time, elapsed(s), x(deg/s), y(deg/s), z(deg/s);
• Magnetometer: epoch (ms), -> time, elapsed(s), x(T), y(T), z(T), etc.

For the kinematic analysis of neck postures, dealt with in this research, the accelerome-
ter sensor data were sufficient. The accelerometer sensor was operated at 100 Hz frequency
with ±8 g. Figure 1 shows the kinematic data acquisition process using sensor system and
MetaBase mobile application.
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Figure 1. Kinematic data acquisition process.

2.2. Kinetic Data Generation Using the OpenSim-Based Neck Musculoskeletal Model

Electromyography (EMG) and Surface EMG (SEMG) are the standard methods for
muscle-related data acquisition for movement analysis. The kinetic data obtained from
EMG-based methods are accurate but are limited to laboratory-based studies. To carry
out movement analysis using both kinematic and kinetic data, a novel methodology has
been proposed in this paper. Here, we focus on the detection of postures of the neck using
an innovative approach. Instead of capturing kinetic data related to muscle activation
using any of the EMG-based methods, in the proposed approach, kinetic data of the
corresponding neck postures are generated using a Neck Musculoskeletal Simulation
Model. The Smart NeckBand captures the real-world kinematic data of the neck postures,
and these data are used to generate the corresponding kinetic data relating to the muscles
around the neck region using the OpenSim simulation tool.

2.2.1. OpenSim—Simulation Modeling Tool and Its Features

This is the most popular open-source tool used to create and study human mus-
culoskeletal models and provides extensive data on kinematics and kinetics of human
movement. Built-in functionalities such as Scale, Inverse Kinematics (IK), Inverse Dynam-
ics (ID), Residual Reduction (RR), Static Optimization (STO), Computed Muscle Control
(CMC), and Analyze provide support to extract all information related to the muscles,
tendons, joints kinetics, and kinematics. An overview of the functionalities of OpenSim
and the inbuilt tools is shown in Figure 2, and detailed information is made available by
the OpenSim contributors [36–39].

Built-In Tools and Its Features

1. Scale: In OpenSim, Scale is a built-in tool, which is used to create user-specific
musculoskeletal models, mainly used to adjust the dimensions of the skeletal system
in terms of Mass. In the Scale tool, we can adjust the Scale factors and static pose
weights. In this tool, we must give marker data for measurement as input. From the
scale, the output is the .osim file, which is the main source file.

2. Inverse Kinematics (IK): In OpenSim, Inverse Kinematics is a built-in tool, which is
used to generate the Inverse Kinematics of the musculoskeletal system concerning
joint movements. The input for this tool is three-dimensional coordinate data which
are in .trc file format (track row–column). This input file gives information about the
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joint movements with respect to time in three dimensions (x,y,z). Based on this input,
the IK tool will generate the motion; we can observe this in GUI—Graphical User
Interface in the OpenSim tool. The output of this tool is the .mot file, which consists of
information about the joint’s motion concerning time.

3. Inverse Dynamics (ID): The Inverse Dynamic tool (ID) is used to determine the net
forces and torques of joints, which are responsible for movement generation. IK tool
output, i.e., .mot file motion file and ground reaction forces data in the .xml format,
are fed to the ID tool as input sources. ID tool will perform the mass-dependent
acceleration functions and generate the forces based on the conventional F = ma
equation. The output of the ID tool is Inverse Dynamics.sto (ID-State storage file).

4. Residual Reduction (RR): It is a built-in tool that works like Forward Dynamics and
uses a tracking controller to follow kinematics extracted from the IK tool—nothing
but movements.

5. Static Optimization (STO): This tool helps to obtain muscle forces and activations at
each instance in time. For this tool, input will be a .mot file—motion file and generates
muscle forces and activations the format of .sto.

6. Computed Muscle Control (CMC): This tool is a major block in the OpenSim soft-
ware, which computes muscle excitations, joint movements such as kinematics, and
kinetics of each component present in the musculoskeletal model. This tool generates
.sto files for muscles, joints, and ligaments—active and passive fibers, power, length,
forces, accelerations, and positions, etc.

7. Analyze: This tool helps to analyze the model based on its simulation. If the duration
of the simulation is long in terms of time, the Opting Analyze tool is the best option
compared to the CMC tool. This tool helps to obtain accurate results in less time on
the already simulated use case.

 

–

—

’

—

—

—

Figure 2. Overview of OpenSim functionalities.

2.2.2. Neck Musculoskeletal Model

In this research, the neck musculoskeletal model developed by [40], shown in Figure 3,
was used. This is a fully flexible model for head and neck movements and versatile com-
pared to other models [41]. The neck region consists of cervical joints (C1–C7), sixty-four
muscles, and various associated tendons and ligaments. The hyoid muscles play a vital role
in supporting the neck movements and hence have a vital role in the proposed predictive
analysis [40,42–45]. The neck musculoskeletal model used in this research integrated the
hyoid muscles, and this was a big advantage for our experimental analysis. The kinetic
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data provided by OpenSim includes forces, length, power, and activation levels of joints,
muscles, and tendons. With the neck musculoskeletal model and research insights provided
by the team [40], we simulated kinetic data of the hyoid muscles for our research analy-
sis. The hyoid muscles are Digastric, Geniohyoid, Mylohyoid, Stylohyoid, Sternohyoid,

Thyrohyoid, Sterno_Thyroid, and Omohyoid, shown in green color in Figure 3.

–

–

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Hyoid muscles (in green color).

2.3. Experiments and Research Analysis

In general, the human neck has three degrees of freedom: a horizontal plane, a vertical
plane, and the rolling of the head. All other asymmetric movements of the neck are
variations and combinations of these three fundamental movements. At any point in time,
the neck will be in one of the following nine static positions called neck postures, or it can
move in any random order between these nine postures [28]. The nine static positions or
neck postures are mentioned below and shown in Figure 4:

—

’

’

’

− 
− –
− –
− –

Figure 4. Neck Postures (Nine Positions)—Subject. 1. Neck at Extreme Up (NU), 2. Neck at Extreme Down (ND), 3. Neck at
Extreme Right (NR), 4. Neck at Extreme Left (NL), 5. Neck at Right Up (NRU), 6. Neck at Right Down (NRD), 7. Neck at
Left Up (NLU), 8. Neck at Left Down (NLD), and 9. Neck in the Middle (NM).

The goal of the research presented in this paper is to design a methodology to detect
neck postures by training the machine learning algorithms using kinematic and kinetic data.
In this research, we used Random Forest, an ensemble learning method for prediction and
classification. The Smart Neckband captures the real-world data and integrates it with the
OpenSim simulation platform. To effectively capture the neck kinematics, an experimental
study was first carried out to determine the ideal location for the IMU device. The IMU
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device was fixed onto the elastic band, and the neckband could be worn in a manner that
located the IMU device either in front or at the back of the neck region.

2.3.1. Experimental Study for the Location of IMU

Initially, we approached thirty participants for this research work. As per the Dec-
laration of Helsinki, we guided all participants and informed them about the research
procedure. In this process, we raised a query related to participants’ health information,
particularly about their neck/cervical problems.

Condition: Participants should participate voluntarily and should not have under-
gone any surgery/treatment for the neck/cervical region.

With this statement, eighteen participants were withdrawn from their participation
due to their neck/cervical treatment history.

Among others, four participants were withdrawn during the research process due to
personal reasons.

Finally, eight volunteers participated actively. Before the beginning of this research,
once again, we made sure that volunteers never underwent any surgery/treatment for
their neck. All the volunteers gave written consent after being fully informed about the
research procedure. All the information gathered was based on the Declaration of Helsinki.
Participants’ physical attributes were tabulated in Table 1.

Table 1. Volunteers’ physical attributes.

Volunteers = 8

Attributes Means +/− SD Range

Age, year 39.5 +/− 17.6 27–52
Mass, kg 71 +/− 9.8 64–78

Height, m 1.45 +/− 0.09 1.38–1.52
Gender M/F 5/3

The subjects wore the neckband and participated in the research study. The partici-
pants were asked to keep their necks in the nine static positions for a duration ranging from
1 min to 2 min based on their comfort level. IMU data were recorded for all participants
for each of the nine neck postures with the sensor located at the FRONT side of the neck
region and similarly for the BACK side of the neck. Figure 5a shows the kinematic and
kinetic data extraction methods using the IMU device and OpenSim simulation model for
both the front and back of neck locations. Details of the dataset are presented in Table 2.

Table 2. Dataset quantitative parameters.

IMU—Device Placement Total Time Duration
Dataset

(After Pre-Processing)

A sensor placed at the front side 1080 s for
nine static positions

1080 × 5
time, acc(x,y,z), position

A sensor placed at the back side 1080 s for
nine static positions

1080 × 5
time, acc (x,y,z), position

Datasets were pre-processed and modularized based on the time stamp provided
by the sensor and labeled manually. The observations in the dataset were also validated
using the video footage of the corresponding experimental study. The quantity of the
dataset is good enough for the training and testing mechanism to predict the neck postures.
From each subject, 1080-time frames of information were generated, i.e., 1080 rows of
corresponding acceleration data were generated for nine positions. All together, eight
subjects’ data were merged into a dataset, which consisted of 8640 × 5 [rows × columns] of
data. As part of the pre-processing task, NaN’s (Not a Number) and NA’s (Not Available)
were interpreted, outliers were removed, and data were normalized.
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sented in Table 2. 
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(b)
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processing task, NaN’s (Not a Number) and NA’s (Not Avail-
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Figure 5. (a) IMU locations and corresponding musculoskeletal model; (b) IMU to OpenSim—data flow.

2.3.2. IMU Data Integration with OpenSim

• The IMU-based accelerometer sensor data format provides three-dimensional kine-
matic data (x,y,z).

• To export IMU kinematic data into the OpenSim simulation tool, mathematical and
functional analysis is required. In OpenSim, a file with the extension .trc (track row–
column) is used as an input file for the Inverse Kinematics (IK) tool, and this tool
provides joint movement data as a motion file with the extension mot’.

• The neck-skeletal model has seven sets of markers around the skull and cervical
region (four on the skull, one at the Sternum Jugular Notch, and two at the right and
left acromioclavicular joints). The marker Sternum Jugular Notch (SJN) is located
on the front side of the neck. The IMU-based kinematics data are mapped onto the
x,y,z coordinates of SJN. The other markers are calibrated according to the functional
movements. The .trc file contains the details of these markers, and it is the input file
for the Inverse Kinematics (IK), and the motion file (.mot) is obtained as the output.

• The information in this .mot file is fed as input to the Computed Muscle Control (CMC)
tool, which produces the data related to neck kinematics, kinetics, joints, muscles,
forces, etc.

• The functional integration of IMU data and OpenSim is shown in Figure 5b. Available
results were interpreted, outliers were removed, and data were normalized.

2.3.3. Smart Neckband—Comfort Level

We opted for cotton-material-based neck supportive bands, which are commercially
available in the market and flexible to fit around the neck with Velcro adjustments. Then,
we integrated the IMU device with the neckband. After finishing the research, we collected
feedback from the participants on the comfort level of wearing the Smart Neckband. Table 3
shows the feedback given by the subjects on wearing the Smart Neckband. Based on overall
feedback, we concluded that wearing this Neckband did not create any kind of disturbance
for the participants, and we strongly believe that they were happy to wear it; based on
their satisfaction, they had given ratings.
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Table 3. Participants’ feedback on wearing Smart Neckband.

Condition Sub 01 Sub 02 Sub 03 Sub 04 Sub 05 Sub 06 Sub 07 Sub 08

Any itching around the neck? X X X X X X X X

Is it comfortable to wear? X X X X X X X X

Is it easy to adjust to your neck
dimensions? X X X X X X X X

Is there any trouble/pain/discomfort
from wearing this Neckband? X X X X X X X X

Please give a rating for this Smart
Neckband out of 5 4 4 3.5 4.5 5 3.5 5 4.5

2.4. Predictive Analysis Using Machine-Learning Algorithms

The data collected by keeping the IMU device at the FRONTSIDE of the neck were
divided into training and testing data in the ratio of 75:25 and given as input to the machine-
learning algorithms to classify the nine static neck positions and to find the accuracy of the
classification. Similarly, the data collected by keeping the IMU device at the BACKSIDE of
the neck were processed.

2.4.1. Machine-Learning Algorithms Used in This Research

K-Nearest Neighbors (KNN): KNN is a supervised learning algorithm, which calcu-
lates the nearest distance of a similar object; this is why it is sometimes called a proximity
or closeness-finding algorithm [46,47].

Decision Trees (Iterative Dichotomiser 3 (ID3)): This is a supervised learning algo-
rithm, which uses Information Gain values to decide important contributing features to
classify the data [48,49].

Random Forest Algorithm: This is a supervised learning algorithm; it is a combi-
nation of multiple Decision Trees; this ensemble algorithm works for classification and
regression problems [50,51].

2.4.2. Algorithmic Responses—Result Analysis

Figure 6a shows the machine-learning algorithms’ responses. Among three algo-
rithms, the Random Forest algorithm has shown significant results in terms of classification
accuracy. Further, the Random-Forest-algorithm-based confusion matrix and performance
metrics were generated for the front and back location and are shown in Figure 6b,c. A total
of 100% accuracy was achieved for the front-location-based classification and 99% for the
back-location-based classification. From this research study, we can infer that the ideal
location for the IMU device during data capture is the front side of the neck. This inference
correlates with our decision to use the hyoid muscles located on the front side of the neck
for the accurate classification of neck postures. In this research paper, we proposed the idea
of generating kinetic data related to the hyoid muscles and using this data along with the
associated kinematic data to accurately detect neck posture using classification techniques.
This is presented in the following section.
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Figure 6. (a) Machine Learning algorithms—accuracy of the classification models; (b) confusion matrix—classification of
neck posture based on sensor position; (c) performance metrics.
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3. Results

3.1. Robust Integration of Kinematic and Kinetic Data

In this section, we first present the procedure to integrate kinematic and kinetic data
for the experiment analysis. Integrating the IMU-based kinematic data to the OpenSim
simulation modeling platform is a challenging step in the research domain [28].

3.2. Subject-Specific Neck Postures

In this research, we recorded and analyzed kinematic data for all the subjects. In this
section, we present the simulation-based neck posture of Subject ID: 04. The data collected
from all the other subjects were used in training and testing for the classification. Figure 7
shows the neck postures of Subject ID: 04 and the corresponding musculoskeletal postures
in OpenSim.

— —

 

—

Figure 7. Subject-specific neck postures with corresponding musculoskeletal postures in OpenSim.

3.3. OpenSim—Neck-Musculoskeletal-Model-Based Kinematic and Kinetic Data Analysis

OpenSim generates neck kinematics information based on input data: acceleration,
position, and velocity. We used the acceleration and position data to classify and predict
the human neck posture. From Figure 7, we can observe the response of the cervical joints
and other associated joints during the experimentation task.

The subjects changed the neck posture from one position to another after a time gap of
about 120 sec, and with a total of nine positions in the study, 1080 s of data were captured.
Figure 8a shows the variations in the neck acceleration concerning joint kinematics, and
similarly, Figure 8b shows the variations in the position of the neck. OpenSim-based IK tool
generates the movements (.mot) data, which are fed to the CMC tool as input and extracted
the kinetic data as an output. From the output data, we analyzed the neck joint movements
corresponding to neck positional changes. The CMC tool calculates the Body acceleration
and position data.. From this data, we observed that few joints and muscles excite high
for cetain neck movements, and few respond low for certain neck movements.From the
corresponding figures, we can observe the changes in the neck joint’s momentum.

There are eight important sets of hyoid muscles (shown in Figure 3), and many
other associated hyoid muscles are attached to the hyoid bone in the neck region. These
muscles help in providing free movement generation and flexibility to the neck [40,52].
The OpenSim CMC tool provides kinetic information such as forces, activation, lengths,
etc. Using the CMC tool, kinetic data were extracted for the corresponding kinematic data
that were captured and integrated with OpenSim. Here, the response of the tendon forces
of the neck hyoid muscles was analyzed, as shown in Figure 8c.
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Figure 8. (a) Kinematics—neck acceleration; (b) kinematics—neck position; (c) kinetics—tendon forces.

3.4. Predictive Analysis—Kinematics and Kinetics

Earlier, we covered various research works carried out on posture classification meth-
ods. In this process, we did not find any potential research works similar to this research.
In this respect, we observed that a few researchers performed posture prediction (hand
gestures, body position, sitting, standing, squats, etc.) using Machine and Deep Learn-
ing methods. They considered sensors-, video-, and markers-based datasets for posture
prediction. They achieved strong and accurate results using these methods [50,53–59].
In this research, we opted for Machine Learning algorithms for the prediction of neck
postures/movements.

We have observed the performance of the Machine Learning algorithms on the datasets
(Section 2.4) based on the performance metrics of the algorithms. We opted for the Random
Forest (RF) algorithm for posture prediction. RF was used to classify and predict the neck
posture based on the kinematics and kinetics data generated by OpenSim. The Random
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Forest algorithmic approach achieved 100% accuracy in the classification of neck postures
using neck acceleration and position data. These results are presented in Figure 9a,b.
Similarly, the Random Forest classifier predicted nine neck postures using the response
of the tendon force data of hyoid muscles and achieved 100% accuracy in the prediction.
The result of the kinetic tendon force classification is shown in Figure 9c.

—

–

 

— — —

—

Figure 9. (a) Kinematics—neck acceleration; (b) kinematics—neck position; (c) kinetics—tendon forces.

4. Validation—Use Case Model: A Predictive Model for Rehabilitation Monitoring
and Assessment Based on Neck Movements

4.1. Rehabilitation

Rehabilitation therapy for musculoskeletal disorders is normally prescribed by a
certified physiotherapist. Based on the severity of the injury, the treatment can involve heat,
cold, exercise, massage, and ultrasound methods. Exercise-based therapy is presented as a
use case to demonstrate the novelty of the research proposed in this paper.

4.2. Neck Movements

For the experimental study, the subject wore the neckband and performed the neck
movements as an activity in a random sequence. The sequences of movements were
randomly selected neck exercises performed over 2 min of the time frame. The subject ran-
domly moved his neck and head from one position to the other, and the following sequence
is one such instance: NM-NL-NM -NRU -NM-NLD-NM-NU-NM-NR-ND -NM-NLU-NM
(abbreviations mentioned in Section 2.3). The sequences varied for every experimental
trial. In this study, neck movements were captured using the Smart Neckband, and the
video recording was also performed simultaneously for sensor data segmentation and
validation purposes.

4.3. Rehabilitation Monitoring System—Methodology and Results

The entire workflow of the rehabilitation monitoring system is presented in Figure 10.
The complete structure of the rehabilitation monitoring system consists of two stages.

Stage 1: The workflow shows the details of how the proposed model is trained (based
on Section 2.3.3).

Stage 2: The trained model is used to identify the neck postures that define the movements.
The acquired sensor dataset consists of 1238 rows and 5 features (time, accelerometer

(x,y,z), movement) and is collected for 2 min. The video that was simultaneously recorded
was used to trim the dataset to align with the exact neck movement data. The neck
movement data were collected and saved with corresponding neck movement labels.
Forty-nine samples of kinematic data points of neck postures were segregated and labeled.
These labeled neck movements were exported into the OpenSim simulation tool, and
corresponding kinetic data were obtained. OpenSim-based built-in tools provide options
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for data-capturing relevant to joint kinematics, kinetics, active and passive fiber forces of
muscles and tendons, activation, lengths, velocity, power, etc. In this research, active-force
data of the hyoid muscle were obtained and used for further analysis. For training the
model, an integrated kinetic and kinematic dataset was used. The dataset comprised of
kinetic data of various neck static postures with labels, recorded by IMU, and corresponding
muscle activation forces of hyoid muscles was obtained from OpenSim.

—

 

Figure 10. Block diagram of the research workflow.

4.4. Observations

The model was trained using the Random Forest algorithm [18], which was used to
predict the classes of neck postures. Here, the output of neck movements is predicted in a
sequence based upon time frames. Figure 11 shows that there are nine classes mapped in a
circular shape. Each class represents one static neck posture point. The neck movement
from one posture to another is indicated with directed arrows and is labeled in Figure 10.

Actual Movements: NM-NLU-NM-ND-NR-NM-NU-NM-NLD-NRU-NM-NL-NM.
Instance 1: Actual movements show that the neck movement started from the Neck

Middle position to Neck Left Up and then came back to Neck Middle. Then, it moved from
Neck Middle to Neck Down, then to Neck Right, and from there to Neck Middle. Then,
it moved from Neck Up and then back to Neck Middle and then towards Neck Left Down.
From there, it moved to Neck Right Up then came back to Neck Middle. Finally, it moved
to Neck Left and came back to the Neck Middle position. The kinetic values of the force of
hyoid muscles during the movements were used as the training data.

Instance 1: NM-NLU-NM-ND-NR-NM-NU-NM-NLD-NRU-NM-NL-NM.
Predicted 1: NM-NLU-NM-ND-NR-NM-NU-NM-NM-NRU-NM-NL-NM.
Predicted movements show that 93.33% accuracy was achieved, and one neck move-

ment was wrongly predicted.
Similarly, as a test case, we verified different neck movements for different instances.

For instance, 10, we obtained 100%accuracy.
Instance 10: NM-NR-NL-NM-NR-NM-ND-NM-NU-NM-NR-NU-NM-NLD-NM.
Predicted 10: NM-NR-NL-NM-NR-NM-ND-NM-NU-NM-NR-NU-NM-NLD-NM.
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Figure 11. Rehabilitation scoring system.

4.5. Experimental Use Case—Rehabilitation Scoring System Using Synthetic Data

As a use case, a synthetic dataset was created to validate the proposed method. In this
process, the dataset was created based on sample neck movements related to basic exercise
patterns. These data were used to monitor and validate the rehabilitation scoring system.
Figure 12 shows a 10-day neck movement monitoring and validation process.

In this process, actual neck movements were recorded as NM-NM-NU-NU-NU-NU-

NU-NU-NM-NM-ND-ND-ND-NM-NM-NU-NU in a timeline. As indicated in Figure 11,
these movements were compared with day-wise trails. In a day, two trials were conducted,
and data were compared with actual movements. Based on these movements, rehabilitation
scoring can be calculated. In Table 4, the rehabilitation monitoring and assessment report
is summarized. Day-wise improvements are mentioned in Table 4. This result shows the
effectiveness of the proposed methodology. The scale for the assessment depends on the
rehabilitation scoring system shown in Figure 12.

Table 4. Rehabilitation monitoring and assessment—model analysis report.

No. of Days No. of Trails Rehabilitation Assessment Based on Movements

1 1 Problem: Neck Up movement needs to improve

2 Problem: Neck Up movement needs to improve

2 1 Problem: Neck Up movement needs to improve

2 Problem: Neck Up movement needs to improve

3 1 Problem: Neck Up movement—
slightly improved compared to previous day

2 Problem: Neck Up movement—same as the previous trial

4 1 Problem: Neck Up and Neck Down movements—
needs to improve

2 Problem: Neck Up movement needs to improve
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Table 4. Cont.

No. of Days No. of Trails Rehabilitation Assessment Based on Movements

5 1 Problem: Neck Up movement. Slightly improved

2 Problem: Neck Up movement. Good Improvement

6 1 Good Improvement

2 Good Improvement

7 1 Good Improvement

2 Good Improvement

8 1 Good Improvement

2 Good Improvement

9 1 Improved

2 Improved

10 1 Improved

2 Improved

4.6. State of the Art: Objective vs. Research Flow

The presented research work should fill the gap between conventional physio assis-
tive devices and technology. Recent advancements in artificial intelligence methods and
hardware devices can bring a novelty in the physiotherapy processes. In this aspect, this
research work can be the first approach to bring automation to the physiotherapy and
assessment system.

Obj. 1: The main purpose of this research is to provide a digital platform for analyzing
the impact of human neck movements on the neck musculoskeletal system.

Obj. 2: The second objective was to enable remote access to the therapist and to design
a rehabilitation monitoring system that brings accountability to the treatment prescribed.

Research Flow: Figure 13 shows the entire research flow, which signifies research object
1, which highlights building a digital platform for analyzing the human neck postures and
movements and their impact on the musculoskeletal system.

This research theme is offline-process-based, where we have to obtain IMU-based
neck movement data and manually have to feed them into OpenSim software to extract
the kinematics and kinetic data. These data are supplied to an AI engine; it predicts the
postures/movements. Based on movements observations, the physiotherapist can analyze
the patient’s condition. In terms of automation, these movement data feed to the AI
engine, which can predict the posture/ movements changes and generate the assessment
status. Based on this report, physiotherapists can analyze the patient’s condition and give
appropriate treatment or therapy. Based on technology limitations, we have performed the
entire research using an offline process. Based on advancements, we can fulfill Obj. 2 in
the future.

4.7. Future Scope

Advancements in technologies such as Machine Learning, Deep Learning, and Wear-
able Technologies will help to bring this innovation into the limelight in physiological
measuring instrumentation. As for this research, the Smart Neckband for real-time tracking
of human neck movements can be helpful to assist physiotherapists in rehabilitation. Based
on limitations, we have performed this research using an offline process; in the future,
advancements in technology can help to build a module that works in an online mode.
Based on the online working process, we can monitor patient conditions remotely. We
have performed significant work on a remote monitoring system for posture/movement
prediction [28]; this work can be extended to building a remote rehabilitation system that
will help physiotherapists in monitoring patients in a good manner.
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Figure 12. Synthetic dataset-based analysis of rehabilitation system.
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Figure 13. Research flow.

5. Conclusions

This paper presents a novel methodology to identify neck postures using kinetic and
kinematic data. Improper neck postures can lead to cervical neck pain and musculoskeletal
disorders. This research includes the design of a Smart Neckband consisting of an IMU
device that captures kinematic data of the neck postures and movements. The OpenSim
simulation tool and a neck musculoskeletal model were used to simulate the related kinetic
data for the classification of neck postures. The Machine Learning algorithms achieved
100% accuracy in the prediction of neck postures. In addition to this concept, an evidence-
based novel methodology is proposed for the prediction of neck movements to monitor
the therapy of neuro-musculoskeletal neck disorders or injuries. Kinematic and kinetic
data were integrated innovatively and used to train a model using the Random Forest
algorithm. A motivating use case was presented, and this application helped to increase
the potential of this innovation. The novel methodology proposed in this paper allows
patients to observe their neck movements and exercise patterns to understand how specific
exercises help in recovery from musculoskeletal injury. The proposed-technology-enabled
system provides valuable insights to physiotherapists in understanding the progress of the
patient’s condition. The future scope of this research is to embed the entire research work in
a single device; this can enable the therapist to have remote access and analyze the human
neck movements in an online mode. It also brings in the much-needed accountability to
verify if patients are following the recommended therapy. This rehabilitation monitoring
mechanism can also be used for remote assessment of musculoskeletal disorders.
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Abstract: Unilateral corneal indices and topography maps are routinely used in practice, however,
although there is consensus that fellow-eye asymmetry can be clinically significant, symmetry
studies are limited to local curvature and single-point thickness or elevation measures. To improve
our current practices, there is a need to devise algorithms for generating symmetry colormaps,
study and categorize their patterns, and develop reference ranges for new global discriminative
indices for identifying abnormal corneas. In this work, we test the feasibility of using the fellow
eye as the reference surface for studying elevation symmetry throughout the entire corneal surface
using 9230 raw Pentacam files from a population-based cohort of 4613 middle-aged adults. The
140 × 140 matrix of anterior elevation data in these files were handled with Python to subtract
matrices, create color-coded maps, and engineer features for machine learning. The most common
pattern was a monochrome circle (“flat”) denoting excellent mirror symmetry. Other discernible
patterns were named “tilt”, “cone”, and “four-leaf”. Clustering was done with different combinations
of features and various algorithms using Waikato Environment for Knowledge Analysis (WEKA).
Our proposed approach can identify cases that may appear normal in each eye individually but need
further testing. This work will be enhanced by including data of posterior elevation, thickness, and
common diagnostic indices.

Keywords: unsupervised machine learning; clustering; cornea; corneal topography; interocular
symmetry; corneal elevation; keratoconus

1. Introduction

The cornea is the dome-shaped layer of transparent tissue at the frontmost part of
the eye globe, and its main function is to provide 75% to 80% of the refractive power of
the eye [1–3]. In the frontal view, the cornea is almost circular in outline with a horizontal
diameter of about 11.0–12.0 mm horizontally and 10.0–11.0 mm vertically [3]. Given
the pivotal role of the cornea in vision, even small deviations from normal and subtle
imperfections in the transparency and shape of the cornea can disturb the quality of the
retinal image. Therefore, accurate measurement of various corneal properties such as its
curvature, thickness, and elevation is an integral part of a comprehensive eye exam.

Early attempts at describing the corneal shape date back to 1619 when Scheiner used
glass balls of known diameters to measure the curvature of the cornea [4]. Until quite
recently, the description of the corneal shape was limited to local metrics of the corneal
curvature as measured with manual keratometers and single-point measurements of the
corneal thickness with ultrasound pachymeters. Technological advances in ophthalmol-
ogy have provided us modern systems that perform computer analysis of photographs
taken from the entire surface of the cornea, and convert the data to color-coded contour
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maps [5]. Today, corneal topographic categories such as “round”, “oval”, “bow-tie”, and
“irregular”, that were originally described by Bogan et al. [6] in 1990 and further expanded
by Rabinowitz et al. [7] in 1996 are well known to practitioners. Since their introduction,
computerized imaging systems have greatly enhanced our understanding of the corneal
topography in normal and disease conditions. However, identifying corneal degenerative
changes in early subclinical stages remains a challenge [8,9], and there is an active area
of research to develop discriminative algorithms and finetune diagnostic criteria using
state-of-the-art corneal imaging systems.

The Pentacam (Oculus GmBH, Wetzlar, Germany) is a popular projection-based
anterior segment imaging device that utilizes a high-resolution Scheimpflug camera that
scans the anterior segment by rotating 360◦ around the center [10]. The system captures data
from 25,000 distinct elevation points within 2 s which are used to generate a 3-dimensional
virtual model of the anterior segment. Once image processing is complete, the user can
choose to review various maps and displays such as the sagittal curvature, pachymetry,
and elevation maps of the anterior and posterior cornea, which compose the default 4-map
display. Originally, the elevation of each point on the corneal surface is measured as its
distance from a reference plane tangent to the corneal apex. This is quite similar to terrain
topography, where elevation is defined as the distance above sea level. However, to make
subtle surface variations discernible, the displayed data is a recalculation of the raw data
to express the perpendicular distance from a sphere of variable diameter and position that
best fits each individual cornea.

Currently available diagnostic algorithms and classification systems are mainly based
on unilateral data [8,11–13]. Since there is wide variation in the normal population that
define their reference ranges, they have shown suboptimal performance in discriminat-
ing normal corneas from subclinical forms of disorders [14]. This is while measures of
normal fellow corneas are strongly correlated [15–17], contralateral eyes are highly symmet-
ric [18–22], and there is consensus that lack of symmetry should be interpreted as a red flag
warranting reevaluation or further testing [20,23–27]. Nonetheless, our understanding of
corneal symmetry is limited to single-point metrics (e.g., elevation at the apex, corneal thick-
ness at the thinnest point) and local indices (e.g., simulated keratometry in the steep and flat
axes); the color-coded patterns have not been classified or described, and no multi-feature
or global indices have been developed yet. Some other limitations of extant literature are
that studies were mostly clinic-based with small sample sizes of defined groups that are
not representative of the general population, and they used relative measures of elevation
displayed by the system rather than the actual elevation (height) data.

This study was designed as a proof-of-concept study for using fellow eyes as the
reference surface using raw Pentacam elevation data from a large population-based sample
(including normal and abnormal) with two main goals: (1) describe pancorneal symmetry
patterns observed in difference colormaps, and (2) cluster the data by applying machine
learning techniques. Proving the feasibility of this approach is the first step in creating a
novel diagnostic index for identifying cases with subtle changes and to assess longitudinal
changes in the same eye.

2. Materials and Methods

The proposal of this secondary data analysis study was reviewed and approved by the
Institutional Review Board of Morgan State University. The deidentified data was obtained
from the Shahroud Eye Cohort Study (ShECS) which is an observational cohort of adults
between the ages of 40 and 64 years at first enrollment [28,29]. To date, three phases of the
study have been completed at 5-year intervals. Of the 6311 Shahroud residents who were
invited to the study in 2009, 5190 participated (82.2% participation rate), completed the
interview, and had a comprehensive eye examination including anterior segment imaging
with the Pentacam. For this study, we used baseline data including the deidentified cohort
database (containing demographic variables including age and gender) and Pentacam
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elevation files directly exported from the device. The only inclusion criterion was having
both the right and left eye elevation files (bilateral cases).

Data management was done in the Anaconda3 platform using various packages of
Python version 3.7.4 in the Jupyter Notebook (server version 6.0.1). Waikato Environment
for Knowledge Analysis (WEKA) version 3.8.4 was used for unsupervised machine learning
and cluster analyses of the data and engineered features [30].

2.1. Creating Pancorneal Difference Matrices

For this step, first the IDs of right and left eyes were matched using Python’s fnmatch
function to identify cases with bilateral data. Then the 141 × 141 matrix of anterior elevation
values were extracted from each Pentacam elevation file. Each data point in the 141 × 141
anterior elevation matrix corresponds to an area of 0.1 × 0.1 mm; therefore, each matrix
provides a coverage of 14 × 14 mm centered on the corneal apex (x = 0, y = 0 coordinates).
The process for creating the fellow-eye difference matrices were relatively similar to what
has been described by Cavas-Martínez et al. [22] who assessed shape symmetry in a sample
of 33 normal cases. For each matched pair, the left eye matrix was rotated 180◦ around its
Y axis using the NumPy flip function to account for the mirror symmetry between fellow
eyes. Then, the right eye matrix was subtracted from the flipped left eye matrix. Figure 1
provides a schematic illustration of how the contralateral eye becomes the reference surface
when raw elevation data are subtracted to create a fellow-eye difference matrix.

 
     

 

Figure 1. Schematic presentation of using the contralateral cornea as the reference surface for
measuring elevation and assessing elevation symmetry between fellow eyes. Highly symmetric
corneas should fit each other, and hypothetically, there will be zero distance between them. The
higher the asymmetry, the bigger the area between the two surfaces.

2.2. Creating Elevation Difference Colormaps

The difference matrices created in the previous step were color-coded to 2-dimensional
colormaps. Using the Matplotlib and Seaborn packages, we assigned the spectral color
palette because it resembles the ones routinely used in corneal topography. As such, the
scale range was set from extreme negative (plotted in dark red) to extreme positive (plotted
in dark blue) and the center 0 point was plotted as bright yellow. Therefore, deviation from
the middle of the scale to either side could be illustrated with ascending darker colors.

2.3. Feature Engineering

To exclude extreme outliers in the corneal periphery that could be due to the effect
of the limbus, eyelids, nose shadow, pterygium, and/or data extrapolation, elevation
difference matrices were masked to only keep the data in the central 6.0 mm zone of the
cornea (2821 data points per case). This zone was further divided to four smaller concentric
zones with diameter sizes of 2.0, 3.0, 4.0, and 5.0 mm. The data within these five zones
(2-dimensional arrays) were then flattened to a single dimension using the flatten function
of NumPy and compiled into a single data frame in which there was one row of data per
participant, and the columns represented the coordinates of the 2-dimensional masked
matrix. The data in each row were summarized into their descriptive statistics including
skew, absolute skew, kurtosis, mean, standard deviation of the mean, absolute mean
(average of absolute means), median, absolute median, minimum, maximum, absolute
maximum (the larger of maximum and absolute minimum), range, and central 95% range.
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The sums of negative and positive elevation difference values (Figure 1) were used to
calculate the negative and positive volumes, respectively, as well as the sum of the two
volumes (Total Volume) and the absolute difference between the two volumes (Volume
Difference) as a measure of intraindividual asymmetry.

2.4. Cluster Analysis

In the next step, the data from difference matrices and their descriptive statistics
were used as features for unsupervised machine learning analysis in WEKA. Different
combinations were tested with different clustering algorithms such as the simple k-means
and the simple expectation-maximization (EM) algorithms, and in some iterations, principal
component analysis (PCA) was applied first for feature reduction. The outputs were
inspected and compared in terms of the distribution of cases within each cluster, number
of clusters, and the summary statistics of difference features.

2.5. Adding Other Indices

To make comparisons with the literature, we extracted the apical and minimum
corneal thickness, maximum (simulated keratometry at the steep meridian) and mean
(average of the keratometry in the steep and flat meridians) keratometry readings, and
corneal astigmatism and computed the absolute interocular difference for these continuous
variables. Pentacam also generates two categorical parameters, namely the quality specifi-
cation (QS) and the keratoconus score (KKS) for each examined eye, which indicate the
quality of the data and normality of the cornea, respectively. To examine the agreement
between our clustering results and Pentacam-assigned categories, these parameters were
extracted, recoded, and combined to create four bilateral categories with QS indicated as
OK (Tables S1 and S2).

3. Results

A total of 9303 Pentacam elevation files were available; 4670 right eyes and 4633 left
eyes. Matching the right and left data files by their study ID resulted in 4615 bilateral cases,
two of which were excluded due to insufficient data points (computations returned NULL),
and 4613 were included in the analysis. The mean age of this sample was 50.9 ± 6.3 years,
and 41% were male.

3.1. Symmetry Patterns in Colormaps

Figure 2 illustrates four different interocular elevation difference colormaps of the
same individual; the peripheral outliers were removed by masking the difference matrices
to the central 6.0 mm zone, and the overall visualization was improved by setting the scale
to ±70 µm and cropping the image.

In reviewing the color-maps generated from fellow-eye difference data, we found a
monochrome yellow circle to be the most common pattern showing that the interocular
difference is zero or very close to zero, and the fellow corneas fit nicely with very little or no
gap between them; this was named “flat” (Figure 3). Other commonly discernible patterns
of interocular difference colormaps were named “tilt”, “cone”, “4-leaf”, and “irregular”. As
illustrated in Figure 3, the pattern we named “tilt” demonstrated a semicircle of negative
values on one side and a semicircle of positive values on the other side, separated by a
yellow band (zero or near zero values). This pattern could be indicative of a difference
in the imaging or visual axis between fellow eyes, and one eye is off-axis. The “cone”
pattern would appear in cases where one cornea is steeper than the other, and the gap
between them increases from the center to the periphery; this is the pattern one would
expect to see in central keratoconus. The “4-leaf” pattern can be attributed to situations
where the cornea in one eye is steeper in a certain meridian and flatter in the perpendicular
meridian; these could be cases of direct symmetry especially in the presence of corneal
astigmatism. Symmetry patterns that did not fit any of these categories were assigned to
the “irregular” group.
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Figure 2. Fellow-eye elevation difference colormaps of a 53-year-old woman. The full 140 × 140
difference matrix using a ±100 µm scale (A) and a ±70 µm scale (B) show sharp contours in the
periphery which were eliminated by masking the central 6.0 mm (C) and cropping out the extra
data (D).

 

 

   
  

   
  

Figure 3. Sample 6.0 mm colormaps of common patterns observed in the elevation difference
colormaps. The same ±70 µm scale (shown in the middle) was applied to all colormaps. The
schematics on the right demonstrate how the fellow corneas fit in each category. In the flat pattern,
the fellow corneas fit well, and there is minimum distance between them. In the tilt pattern, half of
one cornea is below and the other half is above its fellow cornea. In the cone pattern, one cornea
is steeper that its fellow cornea, and the area between the two surfaces increases from the center
to the periphery. In the 4-leaf pattern, one cornea is steeper in a given meridian and flatter in the
perpendicular meridian compared to its fellow cornea.
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3.2. Data Exploration and Feature Engineering

Figure 4 illustrates the cumulative percentage of cases in which the minimum and
maximum interocular elevation difference (i.e., values of all data points) in each of the five
studied zones was within the specified range. For example, all data points in the central
2.0 mm zone were within ±5.0 µm in 88.4% of the cases, within ±10.0 µm in 96.0%, and
within ±15.0 µm in 97.6% of cases. In case of the central 3.0 mm zone, all data were within
±10.0 µm in 90.0% and within ±25.0 µm in % 97.6% of cases. In case of the central 6.0 mm,
all data were within ±60.0 µm in 90.0%, and within ±100.0 µm in 92.7% of cases.

 

  

 
 

−   −     

 
 

    

Figure 4. Cumulative percentage of cases that had all data points within a given range.

In the total sample of 4613 cases, mean elevation difference at the (0, 0) coordinates
was 0.04 ± 2.0 µm (central 95% range: 7.8 µm). The descriptive statistics (measures of
central tendency and variability) are summarized as their mean, standard deviation of
the mean, and the central 95% range in Table S3. Both the mean and variance of the data
increased in larger, more peripheral zones.

3.3. Unsupervised Machine Learning

tabref:healthcare-1512249-t001 and Figure 5 present the results of simple k-means
clustering in WEKA with the following attributes: the central 95% range in the 6.0 mm
zone and the absolute mean, standard deviation of the mean, and volume difference in the
central 3.0 mm zone. The full sample was grouped into three clusters with 3839 (83.2%) in
Cluster 1, 618 (13.4%) in Cluster 2, and 156 (3.4%) in Cluster 3; mean elevation difference at
the (0, 0) coordinates was −0.0005 ± 0.32 µm, −0.016 ± 0.29 µm, and 1.12 ± 10.76 µm in
Cluster 1, 2, and 3, respectively.

Table 1. WEKA output using simple k-means clustering. Attributes used in this model included the
central 95% range of the 6.0 mm zone and the mean, standard deviation of the mean, and volume
difference of the central 3.0 mm zone.

Attribute
Full

n = 4613
Cluster 1
n = 3839

Cluster 2
n = 618

Cluster 3
n = 156

Central 95% Range/6.0 mm 20.7 14.1 42.1 97.0
Absolute Mean/3.0 mm 0.8 0.6 1.2 4.5

Standard Deviation/3.0 mm 2.0 1.3 3.7 11.4
Volume Difference/3.0 mm 5.7 4.3 8.2 30.8

Clustering Model: k-means; Number of iterations: 30; Within cluster sum of squared errors: 34.2.
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Figure 5. WEKA visualization output using simple k-means clustering. Attributes used in this model included the central
95% range of the 6.0 mm zone and the mean, standard deviation of the mean, and volume difference of the central
3.0 mm zone.

Figure 6 illustrates the central 6.0 mm interocular elevation difference maps of three
random samples from each of the three clusters. In Cluster 1, the colormap pattern was
“flat” in all cases; the other patterns appeared in Cluster 2 with lighter colors and in Cluster
3 with darker colors.

 
 

 

 

 

 

Figure 6. Sample 6.0 mm colormaps of three random cases from each of the three clusters. The scale
in all colormaps is the ±70 µm scale shown on the right. These three clusters were created in using
the simple k-means clusterer in WEKA and the following attributes: central 95% range of the 6.0 mm
zone and the absolute mean, standard deviation of the mean, and volume difference of the central
3.0 mm zone. Cluster 1 corresponds with normal corneas and all maps showed the flat pattern. Other
patterns were observed in cluster 2 and 3, although the degree of asymmetry was greater in the
latter group.
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Table 2 summarizes the summary statistics of the interocular anterior elevation differ-
ences in the 3 clusters within the five studied central corneal zones. Overall, both the mean
and the spread of the values were smallest in Cluster 1 and highest in Cluster 3. They were
also higher in larger, more peripheral corneal zones within each cluster.

Table 2. Mean and standard deviation of summary statistics of anterior elevation difference (in µm)
between corresponding points on fellow eyes in the total sample and the three clusters within the
five concentric central corneal zones.

Zone Statistic
Full Sample

n = 4613
Cluster 1
n = 3839

Cluster 2
n = 618

Cluster 3
n = 156

2.0 mm

Abs-Mean 0.5 ± 2.1 0.3 ± 0.3 0.6 ± 0.6 3.5 ± 10.7
SD 1.3 ± 2.0 0.9 ± 0.4 2.2 ± 1.2 7.4 ± 8.1

Min −2.8 ± 3.6 −2.0 ± 1.1 −4.8 ± 2.6 −15.4 ± 11.4
Max 2.9 ± 6.1 2.0 ± 1.2 5.0 ± 3.2 17.2 ± 28.3

Range 5.7 ± 8.6 3.9 ± 1.6 9.8 ± 4.7 32.5 ± 34.3
Abs-Max 3.7 ± 6.5 2.5 ± 1.1 6.2 ± 3.0 21.9 ± 28.1

3.0 mm

Abs-Mean 0.8 ± 2.3 0.6 ± 0.5 1.2 ± 1.1 5.5 ± 11.2
SD 2.0 ± 3.1 1.3 ± 0.5 3.7 ± 1.5 12.5 ± 12.0

Min −4.8 ± 6.6 −3.2 ± 1.8 −8.7 ± 4.2 −28.0 ± 21.9
Max 2.9 ± 6.1 2.0 ± 1.2 5.0 ± 3.2 17.2 ± 28.3

Range 9.6 ± 14.3 6.4 ± 2.5 17.5 ± 6.7 57.6 ± 54.0
Abs-Max 6.3 ± 9.8 4.2 ± 1.8 11.1 ± 4.6 38.5 ± 38.3

4.0 mm

Abs-Mean 1.3 ± 2.8 0.9 ± 0.7 1.8 ± 1.6 8.0 ± 12.6
SD 2.9 ± 4.5 1.9 ± 0.9 5.6 ± 2.2 18.9 ± 16.3

Min −7.5 ± 10.5 −5.0 ± 2.9 −14.2 ± 7.0 −44.0 ± 34.2
Max 7.8 ± 15.4 5.0 ± 6.9 15.1 ± 16.5 46.7 ± 53.4

Range 15.3 ± 23.0 10.0 ± 7.4 29.3 ± 18.3 90.7 ± 76.1
Abs-Max 10.2 ± 16.5 6.8 ± 6.8 19.2 ± 16.0 60.7 ± 52.1

5.0 mm

Abs-Mean 1.8 ± 3.5 1.3 ± 1.1 2.6 ± 2.5 11.0 ± 14.4
SD 4.4 ± 6.9 2.8 ± 2.7 8.6 ± 6.0 26.9 ± 21.0

Min −11.1 ± 15.1 −7.3 ± 4.3 −21.7 ± 11.3 −63.3 ± 48.0
Max 13.6 ± 35.5 9.1 ± 27.1 26.8 ± 46.7 71.8 ± 78.3

Range 24.7 ± 43.3 16.4 ± 27.8 48.5 ± 48.4 135.1 ± 105
Abs-Max 17.4 ± 36.4 11.7 ± 26.8 33.8 ± 45.7 92.1 ± 75.3

6.0 mm

Abs-Mean 2.6 ± 4.7 1.9 ± 2.3 4.0 ± 5.0 14.0 ± 16.9
SD 7.3 ± 13.3 5.0 ± 9.6 13.8 ± 15.2 38.0 ± 28.2

Min −16.0 ± 20.9 −10.7 ± 6.4 −31.5 ± 18.1 −85.4 ± 64.6
Max 31.3 ± 92.6 23.8 ± 83.4 53.3 ± 109.0 129.6 ± 149.8

Range 47.3 ± 99.3 34.5 ± 84.3 84.7 ± 110.6 214.9 ± 175.5
Abs-Max 36.8 ± 92.4 27.6 ± 82.8 64.1 ± 106.7 154.4 ± 141.8

All p < 0.001; ANOVA comparing the mean in the three clusters. Abs-Mean: mean of absolute mean differences; SD:
standard deviation; Min: minimum; Max: maximum; Abs-Max: the larger of maximum and absolute minimum.

3.4. Assessing Clusters Using Parameters Other Than Elevation

Table 3 presents summary statistics of the studied corneal thickness and curvature
parameters in the right eyes, left eyes, and the absolute interocular difference in the total
sample (n = 4613) and the 3 clusters. Similar to elevation data, both the mean and spread
were smallest in Cluster 1 and highest in Cluster 3.

From the total sample of 4613, 571 cases had imaging errors (QS of 1 or 2, see Table S1)
in at least one eye, and they were excluded from the comparison with Pentacam normality
indices. As indicated in the top section of Table 4, of the 2975 cases in the Bilateral-
normal/QS-OK category (64.5% of the total sample), 2696 (90.6%) were in Cluster 1 (the
cluster with the least interocular differences). However, from this same category, 22 (0.7%)
were in Cluster 3 (the cluster with the highest levels of difference between fellow eyes).
Central 6.0 mm fellow-eye elevation difference maps of these cases are illustrated in
Tables 5 and 6. All 10 cases illustrated in Table 5 have 1.0 D or more interocular difference
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in corneal astigmatism; in 8 cases, the difference is 2.5 D or more. Cases #4 and #5 in Row
1 as well as case #4 in Row 2 also show considerable interocular differences in terms of
corneal thickness at the apex and thinnest point. Among the remaining 12 cases (Table 6),
all three cases in Row 3 have 2.5 D or more interocular difference in maximum keratometry,
and case #1 in Row 3 shows more than 30 µm corneal thickness difference between fellow
eyes. The four cases shown in Row 4 have 17 µm or more interocular thickness difference
either at the apex, the thinnest point, or both. Finally, the five cases in Row 5 have 13.0 µm
or more absolute maximum elevation difference.

Table 3. Mean ± standard deviation of the corneal thickness and curvature indices in the right end left eyes, and their
absolute interocular difference in the total sample and the three clusters.

Parameter
Total Cluster 1 Cluster 2 Cluster 3

p-Value *
n = 4613 n = 3839 n = 618 n = 156

Apical
Thickness (µm)

OD 529.9 ± 33.7 530.9 ± 32.0 527.6 ± 34.5 515.4 ± 59.2 <0.001
OS 530.6 ± 33.8 531.5 ± 32.2 527.9 ± 35.3 519.6 ± 55.4 <0.001

i-dif 9.6 ± 13.2 8.0 ± 6.4 11.4 ± 11.1 39.7 ± 51.7 <0.001

Minimum Thickness (µm)
OD 524.5 ± 37.0 526.6 ± 32.1 521.2 ± 34.7 486.6 ± 93.7 <0.001
OS 525.2 ± 35.6 527.2 ± 32.3 521.0 ± 35.9 493.5 ± 73.8 <0.001

i-dif 10.3 ± 20.0 8.1 ± 6.4 12.0 ± 12.1 56.8 ± 89.5 <0.001

Maximum Keratometry (D)
OD 44.2 ± 1.7 44.1 ± 1.6 44.5 ± 1.9 45.5 ± 3.2 <0.001
OS 44.2 ± 1.8 44.1 ± 1.6 44.6 ± 1.9 45.8 ± 3.8 <0.001

i-dif 0.5 ± 0.8 0.3 ± 0.3 0.7 ± 0.6 2.4 ± 3.2 <0.001

Mean Keratometry (D)
OD 43.7 ± 1.7 43.7 ± 1.5 43.8 ± 1.8 44.0 ± 3.3 0.017
OS 43.8 ± 1.7 43.7 ± 1.5 43.9 ± 1.8 44.3 ± 3.3 <0.001

i-dif 0.4 ± 0.6 0.3 ± 0.2 0.6 ± 0.5 2.3 ± 2.5 <0.001

Corneal Astigmatism (D)
OD 0.9 ± 1.1 0.8 ± 0.5 1.3 ± 1.1 3.0 ± 4.2 <0.001
OS 0.9 ± 1.1 0.8 ± 0.5 1.4 ± 1.3 3.0 ± 3.9 <0.001

i-dif 0.5 ± 1.1 0.4 ± 0.3 1.0 ± 1.1 3.3 ± 4.7 <0.001

* ANOVA comparing the mean in the three clusters. D: diopter; OD: right eyes; OS: left eyes; i-diff: absolute difference between fellow eyes.

Table 4. Frequency distribution of the combined corneal abnormality categories in the full sample and the three clusters,
and the mean (± standard deviation) interocular difference values of thickness and curvature measures.

Pentacam Category Parameter
Total Cluster 1 Cluster 2 Cluster 3

(n = 4613) (n = 3839) (n = 618) (n = 156)

Bilateral-normal
QS-OK

n 2975 (64.5%) 2696 (90.6%) 257 (8.6%) 22 (0.7%)
Ap-thick 8.2 ± 6.6 8.0 ± 6.2 10.0 ± 8.7 14.4 ± 10.3
Min-thick 8.3 ± 6.5 8.1 ± 6.2 9.9 ± 8.6 12.5 ± 10.7

MaxK 0.3 ± 0.3 0.3 ± 0.3 0.6 ± 0.6 0.9 ± 1.3
MeanK 0.3 ± 0.3 0.3 ± 0.2 0.4 ± 0.4 1.4 ± 1.2
Cor-ast 0.4 ± 0.5 0.3 ± 0.3 1.0 ± 1.0 1.9 ± 2.1

KS-abnormal
QS-OK

n 684 (14.8%) 512 (74.9%) 144 (21.1%) 28 (4.1%)
Ap-thick 9.5 ± 9.4 8.1 ± 6.7 11.4 ± 10.3 25.8 ± 22.1
Min-thick 10.0 ± 11.8 8.0 ± 6.5 11.9 ± 9.7 36.3 ± 37.6

MaxK 0.5 ± 1.0 0.4 ± 0.3 0.7 ± 0.7 2.3 ± 4.3
MeanK 0.5 ± 0.7 0.3 ± 0.2 0.7 ± 0.6 2.0 ± 2.2
Cor-ast 0.6 ± 1.3 0.4 ± 0.3 1.0 ± 1.1 3.3 ± 4.9

KCN-1-2
QS-OK

n 84 (1.8%) 30 (35.7%) 36 (42.9%) 18 (21.4%)
Ap-thick 15.8 ± 14.1 8.6 ± 7.3 14.9 ± 10.5 29.6 ± 19.0
Min-thick 16.9 ± 17.6 9.2 ± 7.2 14.4 ± 10.2 34.5 ± 27.6

MaxK 1.2 ± 1.1 0.6 ± 0.4 1.1 ± 0.9 2.3 ± 1.6
MeanK 0.9 ± 1.0 0.4 ± 0.3 0.9 ± 0.6 1.8 ± 1.6
Cor-ast 1.0 ± 1.0 0.5 ± 0.4 1.0 ± 1.0 1.7 ± 1.5
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Table 4. Cont.

Pentacam Category Parameter
Total Cluster 1 Cluster 2 Cluster 3

(n = 4613) (n = 3839) (n = 618) (n = 156)

KCN-3-4
QS-OK

n 10 (0.2%) 0 (0.0%) 4 (40.0%) 6 (60.0%)
Ap-thick 33.2 ± 34.1 16.0 ± 6.8 44.7 ± 40.9
Min-thick 29.4 ± 28.8 18.3 ± 9.8 36.8 ± 35.7

MaxK 3.7 ± 4.4 2.1 ± 0.8 4.8 ± 5.6
MeanK 3.2 ± 4.4 1.9 ± 0.5 4.0 ± 5.8
Cor-ast 1.7 ± 1.3 1.9 ± 0.9 1.6 ± 1.6

Ap-thick: apical thickness (µm); Min-thick: minimum thickness (µm); MaxK: keratometry in the steep meridian (diopter); MeanK: average
of keratometry in steep and flat meridians (diopter); Cor-ast: corneal astigmatism (diopter).

Table 5. Elevation difference colormaps of 10 Cluster 3 cases identified as bilaterally normal
by Pentacam.

Parameter 1 2 3 4 5

Row 1  

  

Δ
Δ
Δ
Δ
Δ

Δ
Δ
Δ
Δ
Δ

Δ

  

Δ
Δ
Δ
Δ
Δ

Δ
Δ
Δ
Δ
Δ

Δ

   

Δ
Δ
Δ
Δ
Δ

Δ
Δ
Δ
Δ
Δ

Δ

 

Δ
Δ
Δ
Δ
Δ

Δ
Δ
Δ
Δ
Δ

Δ

  

Δ
Δ
Δ
Δ
Δ

Δ
Δ
Δ
Δ
Δ

Δ

∆Ast 6.2 5.6 5.6 4.0 3.7
∆maxK 0.54 0.41 0.12 0.33 0.00
∆pAx 7.0 3.0 19.0 23.0 34.0

∆pThin 1.0 4.0 4.0 21.0 36.0
∆maxEle 12.0 17.0 23.0 13.0 18.0
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∆Ast 3.5 3.4 2.5 1.2 1.0
∆maxK 0.28 0.24 1.77 0.61 0.91
∆pAx 6.0 1.0 5.0 25.0 11.0

∆pThin 1.0 10.0 2.0 27.0 15.0
∆maxEle 12.0 12.0 7.0 27.0 14.0

Note: The scale in all colormaps is ±70 µm. ∆: interocular difference; Ast: anterior corneal astigmatism (diopter);
maxK: maximum keratometry (diopter); pAx: pachymetry at the apex (µm); pThin: pachymetry at the thinnest
point of the cornea (µm); maxEle: the larger of the maximum and absolute minimum elevation difference (µm).

Table 6. Colormaps of 12 cases in Cluster 3 that were identified as bilaterally normal by Pentacam.

Parameter 1 2 3 4 5
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∆Ast 0.5 0.7 0.6
∆maxK 5.11 3.27 2.61
∆pAx 35.0 3.0 22.0

∆pThin 31.0 2.0 25.0
∆maxEle 11.0 27.0 9.0
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Table 6. Cont.

Parameter 1 2 3 4 5
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∆Ast 0.2 0.1 0.1 0.9
∆maxK 0.06 0.70 0.68 0.00
∆pAx 22.0 22.0 20.0 19.0

∆pThin 1.0 20.0 17.0 19.0
∆maxEle 9.0 22.0 13.0 15.0
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∆Ast 0.4 0.2 0.3 0.2 0.4
∆maxK 0.54 0.70 0.06 0.34 0.06
∆pAx 9.0 0.0 10.0 14.0 7.0

∆pThin 8.0 1.0 10.0 12.0 7.0
∆maxEle 23.0 17.0 17.0 16.0 13.0

Note: ±70 µm scale. ∆: interocular difference; Ast: anterior corneal astigmatism (diopters); maxK: keratometry in
the steep meridian (diopters); pAx: pachymetry at the apex (µm); pThin: pachymetry at the thinnest point of the
cornea (µm); maxEle: the larger of the maximum and absolute minimum elevation difference in the central 2.0 mm
zone (µm).

4. Discussion

One of the main objectives of this study was to create fellow eye anterior elevation
difference colormaps and suggest descriptive names for discernible patterns. As expected,
the most common pattern was “flat” showing that the interocular difference is zero or
very close to zero and the fellow corneas fit nicely with very little or no gap between them
(Figure 3). The “tilt” pattern could be attributed to a difference in the imaging or visual
axis between fellow eyes; identifying this pattern could have implications in evaluating
strabismus, prescribing corrective eyeglasses, or, as suggested by Fathy et al. [31], in
screening for keratoconus. The “cone” pattern is expected in keratoconus, especially central
forms. The “4-leaf” pattern can be attributed to cases of direct symmetry especially in the
presence of corneal astigmatism; for these cases, creating fellow-eye difference matrices
without flipping the left eye matrix could return one of the other patterns. Although the
patterns of unilateral corneal topography maps have been studied and have accepted
nomenclature [6,7], to the best of our knowledge, this is the first study to examine fellow-
eye difference maps and give them descriptive names. Adding fellow-eye difference
displays to corneal imaging systems can facilitate interocular symmetry review for eye
care providers, and once they become familiar with the patterns and complete the learning
curve, the approach has the potential to become an integral part of a comprehensive eye
exam, especially for preoperative screening.

Recent studies of fellow-eye symmetry have looked at different corneal features and
parameters including corneal biometrics [27,32], higher order aberrations [33], and corneal
surface area [34]. A summary of the few studies that have examined anterior elevation
symmetry is presented in Table 7 [21,25,35–39]. These studies greatly vary by methodology
such as sample selection and size, the corneal topographer used for imaging, the reference
surface used for measuring elevation, and the choice of elevation measure.
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Table 7. Summary of fellow-eye symmetry studies reporting measures of anterior corneal elevation.

First Author
[Ref #]

Studied Sample
Reference

Surface
Anterior Elevation

Measure
Mean Interocular
Difference (µm)

Falavarjani [25] 275 normal Float BFS with auto diameter Maximum in the central 4.0 mm 2.2 (range, 0–21)

Durr * [21] 3835 normal Average BFS of all eyes Average elevation in the central
6.0 mm † Range ± 6.0

Saad * [35] 51 normal
32 KCN Default float BFS Maximum/at thinnest point Normal: 0.0 ± 0.0/0.0 ± 0.0

KCN: 0.02 ± 0.01/0.02 ± 0.01

Galletti [36]
177 normal

44 intermediate
121 KCN

No mention At thinnest corneal
location

Central 98% range
Normal: 4.0
KCN: 31.0

Naderan [37]
306 normal
68 suspect
446 KCN

8.0 mm BFS At thinnest point within the
central 3.0 mm

Normal: 1.3 ± 0.7
KCS: 5.5 ± 4.8

KCN: 14.0 ± 10.4

Henriquez [38]
341 normal

50 high ammetropia
294 KCN

8.0 mm BFS Maximum/at thinnest point Normal: 1.4 ± 1.4/1.1 ± 1.0
KCN: 10.3 ± 11.0/8.7 ± 9.9

Eppig [39] 68 normal
350 KCN No mention Elevation deviation Normal: 0.46 ± 0.39

KCN: 7.8 ± 7.4

Current Project 4615 general
population Raw data (the fellow eye)

Values and descriptive statistics
of all corresponding points in

the central 2.0–6.0 mm
See Tables 2 and 3

* Used Orbscan IIz; all other studies used Pentacam; † Constructed from the average of each point in the whole sample. BFS: best fit sphere;
KCN: keratoconus.

As summarized in Table 7, Falavarjani et al. [25] reported a mean interocular dif-
ference of 2.2 µm (range: 0 to 21.0 µm) and suggested that a difference greater than
17.4 µm (95th percentile) should be interpreted as a potential red flag. Their results can
be compared to our 4.0 mm data summarized in Table 2. The mean absolute maximum
(the larger of maximum and absolute minimum) was 6.8 ± 6.8 µm, 19.2 ± 16.0 µm, and
60.7 ± 52.1 µm in Clusters 1, 2, and 3, respectively, and 10.2 ± 16.5 µm in the total sample.
Therefore, the average of 2.2 µm reported in their study is even smaller than what was
observed for Cluster 1 (6.8 µm) which is the group with highest symmetry in our study.
This is mainly due to methodological differences; they only included healthy eyes and
calculated the interocular difference at only one single point (the maximum anterior) which
was measured from a spherical reference surface that may have been different between
fellow eyes.

The study by Durr et al. [21] was similar to ours in that they examined a large
population-based sample. Methodological differences included using Orbscan IIz, applying
exclusion criteria (no history of ocular disease, ocular surgery, or recent contact lens wear),
and using a reference surface based on the average best fit sphere of all right and left
eyes. The average anterior elevation difference in the 6.0 mm zone in their study ranged
within ±6.0 µm. Because of the methodological differences mentioned above, as well as
age differences between the samples of the two studies, their result is much smaller the
mean range of 27.6 µm observed for the 6.0 mm zone in Cluster 1 of our study (Table 2).

The other five reports summarized in Table 7 were clinic-based comparative studies,
that enrolled two or more sample groups, one being a normal control group and one a group
of keratoconus patients. Saad et al. [35] used the Orbscan IIz with the reference surface set
on the default float mode. Although the intergroup differences were statistically significant
(both p < 0.001), the mean interocular differences they observed in the maximum anterior
elevation and the anterior elevation at the thinnest point of the cornea (Table 7) were very
close to zero in both groups. Galletti et al. [36] and Eppig et al. [39] used the Pentacam; the
reference surface is not mentioned, but perhaps the default setting was used [40]. Galletti
et al. [36] included the absolute interocular difference of the anterior elevation at the thinnest
point. The central 90% range for this variable was 4.0 µm in the normal comparison
group and 31.0 µm in the group that was labelled as keratoconus based on Pentacam
diagnostic indices. Eppig et al. [39] examined another relative measure of anterior elevation
which looks at the difference in elevation values between measurements made with a
standard best fit sphere and an “enhanced” best fit sphere which is calculated from the
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9.0 mm central data minus the 4.0 mm around the thinnest point [41]. Naderan at al. [37]
appear to have set the device to use an 8.0 mm best fit sphere. The anterior elevation
measure they examined in their study is described as the “maximum at the thinnest
point” of the cornea “based on the data from the 3.0 mm annular corneal diameter ring”.
They found a mean absolute interocular difference of 1.3 ± 0.7 µm (0.0 –7.0 µm) in the
normal comparison group, 5.5 ± 4.8 µm (1.0–14.0 µm) in the keratoconus suspect group,
and 14.0 ± 10.4 µm (1.0–36.0 µm) in the keratoconus group. The interocular differences
observed by Henriquez et al. [37] were very similar to that reported by Naderan et al. [37].
In both cases, the interocular differences are far smaller than what was observed in our
study, which again, similar to the study by Falavarjani et al. [25], could be attributed to
methodological differences and the use of a variable reference surface.

This study (bottom row in Table 7) is novel in multiple ways. Firstly, the fellow
cornea was used as the reference surface (Figure 1). This was based on the hypothesis
that doing so would allow one to discern subtle interocular differences that may not be
obvious when comparing two separate elevation maps, especially if their measurements
are based on different reference surfaces. Secondly, the symmetry data was pancorneal
and not limited to one or two points. The number of corresponding data points in the
central 2.0 mm, 3.0 mm, 4.0 mm, and 5.0 mm of the cornea were 317, 709, 1257, and 1961,
respectively, and the central 6.0 mm was represented by 2821 data points. Thirdly, from the
subtraction matrix of each individual, multiple features representing their central tendency
and variability (skew, mean, central 95% range, total volume, etc.) in the 2.0–6.0 mm zones
of the cornea were engineered and used as attributes in machine learning and clustering
algorithms. Another strength of this study is its large population-based sample (n = 4613)
and inclusion of all cases.

Different combinations of a multitude of features were tested in different iterations
with WEKA. To maintain simplicity and allow comparison with other studies, the next
steps of the analyses were done with a 3-cluster output. As demonstrated in Table 2, both
the mean and the standard deviation (spread) of the summary statistics were significantly
different between the three groups; values were lowest in Cluster 1 (best symmetry) and
highest in Cluster 3 (least symmetry). A similar trend was observed when the three clusters
were compared in terms of corneal thickness and curvature indices (Table 3). This is because
corneal features are strongly correlated. In fact, elevation-based topographers, such as the
Pentacam, capture elevation data directly, while anterior and posterior corneal power data
are computed from the elevation data of their corresponding surface and corneal thickness
is the elevation distance between the two corneal surfaces.

A summary of interocular symmetry studies examining measures of corneal thickness
and curvature is presented in Table 8 [23,24,35,37–39,42–44]. Comparison of the values
shows that Cluster 1 corresponds with normal groups. As such, mean interocular differ-
ences in central and minimum corneal thickness were 8.0 µm and 8.1 µm in Cluster 1,
respectively, and they ranged between 4.3 µm and 11.0 µm in the normal groups of other
studies. In terms of maximum, minimum, and mean keratometry, all three values were
around 0.3 D in Cluster 1, and the range reported for the normal groups summarized
in Table 8 is between 0.2 D and 0.4 D. However, as demonstrated in Table 4, 11.7% of
Cluster 1 cases were red-flagged by Pentacam. Since their colormap patterns were “flat”,
this mismatch is probably due to the fact that only anterior corneal elevation data were
used for clustering, and therefore, abnormalities in the corneal thickness and posterior
corneal surface were overlooked. A similar comparison shows that Cluster 2 is comparable
to the keratoconus suspect group in the study by Naderan et al. [37]; other studies did
not have an intermediate or suspect group. In Cluster 3, mean interocular differences
were 41.1 µm and 58.3 µm for central and minimum corneal thickness, respectively, while
the values in keratoconus groups of other studies are in the range of 25.9–34.0 µm and
30.2–39.8 µm for central and minimum corneal thickness, respectively. The interocular
differences in maximum and mean keratometry readings are lower in Cluster 3 compared
to the keratoconus groups in other studies, and minimum keratometry is in the mid-range.
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Also, contrary to all other groups, the difference in minimum keratometry is higher than
that of maximum keratometry. The lack of agreement between Cluster 3 and other groups
is probably because the sample in our study was the general population and mirror sym-
metry was assumed. As such, there may be highly asymmetric cases (albeit clinically
normal) due to other reasons such as anisoastigmatism, anisorule, and/or direct symmetry
patterns [22,45].

Table 8. Summary of fellow-eye symmetry studies reporting measures of corneal thickness and power.

First Author
[Ref #]

Group
Corneal Thickness (µm) Simulated Keratometry (D)

Central Thinnest Steep Flat Mean Diff

Myrowitz * [23] normal - 8.0 ± 7.0 - - 0.5 ± 0.4 -

Khachikian [24] normal 8.8 ± 7.2 9.0 ± 8.3 - - - -

Henriquez [42] normal 10.2 ± 7.9 11.0 ± 8.2 0.3 ± 0.3 0.3 ± 0.2 - -
KCN 25.9 ± 24.1 30.2 ± 29.1 3.8 ± 4.2 2.7 ± 3.3 - -

Henriquez [38] normal 10.3 ± 7.9 11.0 ± 8.2 - - - -
KCN 25.9 ± 24.1 30.2 ± 29.1 - - - -

Dienes [43]
normal 5.6 ± 4.9 6.6 ± 5.3 0.4 ± 0.4 0.4 ± 0.4 - -
KCN 30.1 ± 35.8 39.7 ± 36.4 4.4 ± 5.1 2.7 ± 3.6 - -

Kovács [44]
normal 6.3 ± 6.9 6.9 ± 7.5 0.3 ± 0.2 0.3 ± 0.2 - -
KCN 29.9 ± 34.3 39.8 ± 29.1 3.3 ± 2.6 2.8 ± 3.1 - -

Naderan [37]
normal 4.3 ± 1.6 5.9 ± 2.2 0.3 ± 0.2 0.2 ± 0.2 0.2 ± 0.2 0.1 ± 0.1
suspect 12.8 ± 10.0 13.7 ± 10.9 1.0 ± 1.2 0.6 ± 0.8 0.7 ± 0.8 1.0 ± 0.8

KCN 29.4 ± 28.5 33.6 ± 33.2 4.3 ± 4.2 3.4 ± 3.7 3.7 ± 3.8 1.8 ± 1.5

Eppig [39] normal 6.0 ± 5.0 6.0 ± 5.0 - - 0.2 ± 0.2 0.4 ± 0.4
KCN 34.0 ± 30.0 37.0 ± 32.0 - - 3.8 ± 4.0 2.0 ± 1.7

Saad * [35]
normal 5.4 ± 4.9 6.0 ± 5.0 0.3 ± 0.3 0.4 ± 0.3 - 0.3 ± 0.3
KCN 33.9 ± 37.0 35.7 ± 34.5 4.1 ± 2.9 2.4 ± 2.9 - 2.1 ± 2.3

Current Project †
Cluster 1 8.0 ± 6.3 8.1 ± 6.4 0.3 ± 0.3 0.3 ± 0.3 0.3 ± 0.2 0.3 ± 0.3
Cluster 2 11.3 ± 10.5 11.9 ± 10.8 0.7 ± 0.7 0.8 ± 0.8 0.6 ± 0.5 1.0 ± 1.1
Cluster 3 41.1 ± 53.6 58.3 ± 92.5 2.5 ± 3.3 3.1 ± 3.8 2.3 ± 2.6 3.4 ± 4.9

* Used Orbscan IIz; all other studies used Pentacam. † Excluding 571 cases with quality error > 0 in either eye. See Table 3 for full
sample results.

Anisoastigmatism is defined as an interocular difference of 1.0 D or more in refractive
astigmatism [46–48]. The interocular difference in anterior corneal astigmatism was 3.4 D
in Cluster 3, but the range in the keratoconus groups of other studies is only 1.8–2.1 D
(Table 8). Twenty-two cases in Cluster 3 were found to be bilaterally normal by Pentacam’s
built-in algorithms (Table 4), and 10 of them had anisoastigmatism (Table 5). The common
discernable pattern in this group (Tables 5 and 6) was “tilt” (Figure 1) which can be due to
interocular differences in angle kappa or how the apex, line of sight, and measurement axis
line up [40] or a displaced apex [49]. One way to examine this is the interocular difference
in anterior elevation at (0, 0) coordinates; the mean of this index was −0.18 µm in this
subsample of 22 cases, 0.04 in the total sample, and 0.0 in Cluster 1. To control for such an
effect in future research, we will apply the iterative closest point transformation algorithm
described by Fathy et al. [31] before subtracting data on corresponding points.

As mentioned earlier, this study had certain limitations that need to be addressed in
the follow-up work. Firstly, despite the large sample size, the age range was limited to
40–64 years who might have higher levels of corneal irregularity than younger individu-
als [50]. In our future work, we will use data from a younger population-based cohort [51]
and/or the general sample from a clinical database. Secondly, since this was a preliminary
proof of concept study, clustering algorithms were provided with anterior elevation data
only; this can explain the false negative and false positive cases described above. Also,
to allow for simplicity and comparability, the number of clusters was limited to three. In
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future work, adding features derived from posterior elevation and thickness symmetry
and previously developed diagnostic indices along with a larger (or automated) number
of clusters could help improve the accuracy of the algorithm and facilitate classifying
symmetry patterns.

5. Patents

The concept behind this work is under patent protection by Morgan State University.
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Abstract: Dietary studies showed that dietary problems such as obesity are associated with other
chronic diseases, including hypertension, irregular blood sugar levels, and increased risk of heart
attacks. The primary cause of these problems is poor lifestyle choices and unhealthy dietary habits,
which are manageable using interactive mHealth apps. However, traditional dietary monitoring
systems using manual food logging suffer from imprecision, underreporting, time consumption, and
low adherence. Recent dietary monitoring systems tackle these challenges by automatic assessment
of dietary intake through machine learning methods. This survey discusses the best-performing
methodologies that have been developed so far for automatic food recognition and volume estimation.
Firstly, the paper presented the rationale of visual-based methods for food recognition. Then, the core
of the study is the presentation, discussion, and evaluation of these methods based on popular food
image databases. In this context, this study discusses the mobile applications that are implementing
these methods for automatic food logging. Our findings indicate that around 66.7% of surveyed
studies use visual features from deep neural networks for food recognition. Similarly, all surveyed
studies employed a variant of convolutional neural networks (CNN) for ingredient recognition due
to recent research interest. Finally, this survey ends with a discussion of potential applications of food
image analysis, existing research gaps, and open issues of this research area. Learning from unlabeled
image datasets in an unsupervised manner, catastrophic forgetting during continual learning, and
improving model transparency using explainable AI are potential areas of interest for future studies.

Keywords: food recognition; feature extraction; automatic diet monitoring; image analysis; volume
estimation; interactive segmentation; food datasets

1. Introduction

Despite recent advancements in medicine, the number of people affected by chronic
diseases is still large [1]. This rate is primarily due to their unhealthy lifestyles and irregular
eating patterns. As a result, obesity and weight issues are becoming increasingly common
around the globe. Some of the more notable diseases caused by obesity include hyper-
tension [2], blood sugar [3], cardiovascular diseases [4], and different kinds of cancers [5].
The main reported obesity issues are in developed and middle-income countries. In 2016,
1.9 billion adults 18 years and older were overweight, while 650 million were obese. With
time, children are also becoming affected by obesity at an alarming rate. According to
World Health Organization (WHO), over 340 million children and adolescents between 5
and 19 years were overweight or obese [6].

The prevalence of these alarming statistics poses a serious concern. However, de-
termining the effective remedial measures depends on different factors, ranging from a
person’s genetics to their lifestyle choices. To cope with chronic weight problems, people
often keep notes to track their dietary intake. In turn, dieticians require these records to
estimate a patient’s nutrient consumption. However, these methods pose a challenge for
users and dieticians, especially when they have to record time and estimate nutrients of
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diet intake [7]. For these reasons, recent research efforts have explored sophisticated vision-
based methods to automate the process of food recognition and volume estimation [8,9].
The advancement in smartphone applications and hardware resources has made this more
convenient, and present studies also show a higher retention rate of these mHealth apps
than traditional methods [10]. Recent advancements in machine learning methods have
further paved the way for more robust mHealth apps. Some dietary mobile applications
such as DietLens [11], DietCam [12], Im2Calories [13], etc. integrate their apps with AI
models for food recognition and ingredients detection to automate food logging. The
Dietcam app also estimates nutrients from smartphone camera pictures.

However, automatic food recognition using a smartphone camera in the real world
is considered a multi-dimensional problem, and the solution effectiveness depends upon
several factors. Firstly, the model can achieve optimal classification performance by training
with many food images for each class. Other than that, food recognition is a complex task
that involves several domain-specific challenges. There is no spatial layout information
that it can exploit like, in the case of the human body, the spatial relationship between
body parts. The head is always present over the trunk of the human body [14–16] and
feet towards the lower end. Similarly, the non-rigid structure of the food and intra-source
variations make it even more complicated to classify food items correctly as preparation
methods and cooking styles vary from region to region. Moreover, inter-class ambiguity
is also a source of potential recognition problems as different food items may look very
similar (e.g., soups). Moreover, in many dishes, some ingredients are concealed from view
that can limit the performance of food ingredient classification models.

In addition to this, image quality from the smartphone camera is dependent on
different types of cameras, lighting conditions, and orientations. As a result, the poor
performance of food recognition models is highly susceptible to image distortions.

Despite these challenges, many food images possess distinctive properties to distin-
guish one food type from another. Firstly, the visual representations of food images are of
fundamental importance as it significantly impacts classification performance. Therefore,
many food-recognition methods employ handcrafted features such as shape, color, texture,
and location. Recent techniques are using deep visual features for image representations.
Some of these methods implement a combination of handcrafted and deep visual features
for image feature representations. Secondly, for enhanced classification performance and
reduced computational complexity, an appropriate selection of attributes is essential for
removing redundant features from feature vectors. Finally, wisely selecting classification
techniques is crucial to address food recognition challenges effectively.

Similarly, manual logging of food volume is a tedious task and involves a high rate
of human error by as much as 30% [17–22]. Several solutions are proposed whose aim is
to estimate food volume from smartphone camera pictures. Previous studies [23] show
that using a mobile phone camera for food volume estimation increases the accuracy of
the estimation of calories. Some methods involve capturing a single image, while multiple
views are needed to determine accurate volume in other techniques. The food volume
estimation process involves the following two steps (1) multiple images or a single image
from a mobile camera is needed (2) computation of food volume from 3D construction or
calibration object. Regardless of other volume estimation tasks, food volume estimation
is a complex task with factors such as variations in shape and appearance due to various
shapes of food and eating conditions affecting its performance.

The following research paper aims to scrutinize state-of-the-art vision-based ap-
proaches for dietary assessment to give researchers a summary of this area. Figure 1
represents the detailed scope and taxonomy of our survey study. The contribution of this
survey is summarized as follows:

(1) The article briefly explores food databases for evaluating vision-based approaches
and performance measures to thoroughly investigate food recognition, ingredient
detection, and volume estimation methods.
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(2) It presents an extensive review of food recognition techniques, including traditional
methods with handcrafted features and modern deep-learning-based approaches.

(3) It provides deep insight into multi-label methods for food ingredient classification.
(4) This study surveyed most performing single-view and multi-view methods for food

volume estimation.
(5) This study presents existing mobile applications that implement these approaches

and other potential applications of vision-based methods in health care.
(6) The article analyzes open issues and suggests possible solutions to overcome the

limitations of the existing methodologies.

Figure 1. Scope and taxonomy of this survey paper.

It should be noted that the article is related to vision-based methods for food image
analysis and their applications in the field of healthcare currently being discussed in the
literature. However, the methodology of this article seeks to examine the systems more
broadly by describing their important aspects similar to narrative overview [24] instead of
a systematic review, some related works to the topic, or adopted search followed by a brief
discussion.

Section 1 has presented the introduction of the study. The rest of the article is organized
as follows. Sections 2 and 3 examine evaluation metrics and existing datasets. Section 4
examines feature extraction methods for food image representation including handcrafted
and deep visual features. In Sections 5 and 6, we presented the most performing classifiers
for food categorization and ingredient detection. Section 7 represents the food-volume-
estimation methods. In Section 8, we provide brief information about mobile applications
implementing these methods and other potential applications. Sections 9 and 10 summa-
rize statistical analysis and open issues. To conclude, we highlight our findings and future
works related to this topic.

2. Evaluation Metrics

2.1. Evaluation Metrics for Food Categorization

The performance of automatic food recognition models is highly dependent on the
correct mapping of food images into their respective categories. Therefore, confusion-
matrix and evaluation metrics play an essential role in determining the correctness of
food recognition models. Several metrics have been discussed in the literature, and their
appropriate selection depends on the requirements of specific applications. It has also been
observed that a classifier may perform well under one metric but poorly under another
metric. For example, in the context of an imbalanced food dataset, the data samples from
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one or more classes outnumber data samples from the remaining food classes. Then a
model trained on an imbalanced data set can have higher accuracy because of its good
performance on the majority classes despite having bad classification performance on
minority classes. Confusion matrix and other intrinsic metrics (Accuracy, Precision, Recall,
and F1-score) generally used for detailed comparisons are discussed in detail below.

2.1.1. Confusion Matrix

Confusion matrices are a widely used approach to summarize the performance of a
classification model in machine learning. In some cases, classification accuracy alone can
be misleading, especially when there are more than two classes in a dataset or if there were
an unequal number of observations present in food classes. Therefore, the confusion matrix
provides a clear picture of actual and predicted classes obtained by the classification model.
The confusion matrix is basically a two-dimensional matrix where each row represents an
example of an actual food class and each column represents a state of the predicted food
class. TP stands for true positive, TN represents the number of true negatives, FP is the
number of false positives, and FN represents false negatives in the confusion matrix shown
in Figure 2.

Figure 2. Confusion matrix.

2.1.2. Accuracy

The accuracy of a model determines whether the model is able to predict food classes
correctly or how well a certain model can generally perform. Equation (1) represents the
mathematical form of accuracy. However, accuracy cannot be used as a major performance
metric, as it does not serve the purpose when there is an imbalanced dataset. Therefore, we
have incorporated Precision, Recall, and F1 score to provide better insights into the results.

Accuracy =
(TP + FN)

(TP + FP + FN + TN)
× 100 (1)

Here TP refers to the true positive. True positive is an outcome where the model has
correctly predicted a positive class. For example, in the case of food recognition, it refers
to the food class that the model is trying to predict. TN refers to the true negatives: the
prediction is correct, and the actual value is negative. In the case of food recognition, it
refers to images from those food classes that the model is not trying to predict. FP refers
to the false positive, and FP prediction results are wrong. For example, in the case of
Food/NonFood recognition, FP refers to images that are non-food but are predicted as
food. FN refers to the false negatives. It refers to those data samples which are positive but
wrongly classified as negative class. For example, those food images that are classified as
non-food images by model.
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2.1.3. Precision

The Precision score can be defined as how often a model can correctly predict values
classified as positives. In simpler words, out of all predicted positive food classes, it
indicates what percentage is truly positive. This score is beneficial when the cost of false
positives is high. It is calculated by Equation (2).

Precision Score =
TP

(TP + FP)
(2)

2.1.4. Recall

Recall score identifies the model’s ability to correctly classify food classes. It deter-
mines out of total positive food classes what percentage is predicted positives. It provides
better insight when the cost of false negatives is high. It is computed by using Equation (3).

Recall =
TP

(TP + FN)
(3)

2.1.5. F1 Score

F1 score represents the harmonic mean of recall and precision score. It considers both
false positives and false negatives; therefore, it performs great on imbalanced datasets. It is
calculated by following Equation (4).

F1 Score =
(2 ∗ (Precision ∗ Recall))

Precision + Recall
(4)

2.2. Catastrophic Forgetting During Progressive Learning

Food datasets are open-ended due to the large variety of food dishes and different
preparation styles. There are no limitations and constraints on the number of classes, and
the model can progressively adapt domain variations in existing classes while learning
new food classes. However, catastrophic forgetting during progressive learning causes the
neural network to forget previous knowledge while learning new concepts. Catastrophic
forgetting measures compute the algorithm’s ability to retain previous concepts and knowl-
edge while learning new information. Kemker et al. [25] and Chaudry et al. [26] proposed
five measures of catastrophic forgetting to achieve this objective.

2.2.1. Intransigence

This refers to the difference in classification performance between the reference model
trained by batch learning technique and the model trained on feature vectors using incre-
mental learning protocol. The negative intransigence shows that incrementally learning a
new set of food classes improves performance. Equation (5) denotes its mathematical form.

lk = a∗k − ak,k (5)

2.2.2. Forgetting

This refers to the difference between the highest classification performance of a partic-
ular session in previous sessions and its classification performance in the current sessions.
Equation (6) computes the average forgetting of the network up to the kth session.

f k
j = max1∈{1,......,K−1} ai,j − a(k,j), j > k

Fk =
1

k−1 ∑
k−1
j=1 f k

j

(6)
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2.2.3. Base Session

This refers to the model’s ability to retain the knowledge of base food classes in current
sessions, as shown in Equation (7).

Ωbase =
1

k − 1 ∑
k
j=2

aj,1

aideal
(7)

2.2.4. New Session

This is the ability of a model to recall newly learned food classes, as shown in
Equation (8).

Ωnew =
1

k − 1 ∑
k
j=2 aj,j (8)

2.2.5. All Session

This refers to the retention of the previous food classes learned by the network when
learning new food classes, as computed by Equation (9).

Ωall =
1

k − 1 ∑
k
j=2

aj,all

aideal
(9)

2.3. Evaluation Metrics for Food Ingredient Classification

Similarly, food ingredient recognition is equally important for dietary assessment
applications. As food categorization is limited to the classification of generic food items
present in the food images, food ingredient recognition and classification provide deep
insights into the caloric content present in the food image. Therefore, food ingredient
recognition applications widely incorporate multi-label classification [27]. Since food
ingredient recognition is considered a multi-label problem as food images usually contain
more than one ingredient. Therefore, evaluation metrics generally used for multi-label
classification are different from traditional single-label classification. The following are the
performance metrics are used by food ingredient recognition models.

Consider xi, Yi with L number of labels as training datasets. Let us assume that MLC
is the training method and Zi = MLC(xi) is the output labels (ingredients) predicted by
the classification method.

2.3.1. Precision

Precision is the ratio of correctly predicted labels to the total number of actual labels,
averaged across all instances. Equation (10) represents precision for food ingredient
classification.

Precision =
1
N

N

∑
i=1

(

MLC(xi) ∩ Yi

MLC(xi)

)

(10)

2.3.2. Recall

Recall is computed by Equation (11). It is the ratio of correctly predicted labels to the
total number of predicted labels.

Recall =
1
N

N

∑
i=1

(

MLC(xi) ∩ Yi

MLC(Yi)

)

(11)

2.3.3. F1 Score

Finally, F1 score is the harmonic mean of the precision and recall. Equation (12)
represents the F1 score.

F1 Score =
1
N

N

∑
i=1

(

2 ∗ |MLC(xi) ∩ Yi|

|MLC(xi)| + |Yi|

)

(12)

206



Healthcare 2021, 9, 1676

2.4. Evaluation Metrics for Food Volume Estimation

Similarly, various studies related to food volume estimation use ground truth val-
ues to compare the accuracy of their proposed methods to determine the accurate food
volume [28–39]. Unfortunately, there is no dataset available to date for accurate mea-
surement of food volume. Nevertheless, the method proposed by [40] uses controlled
experiments that require participants to click images before and after their meal to com-
pute consumed calories, which are later compared with ground truth values. Similarly,
Ref. [41] incorporated different food models to determine the true volume; however, vari-
ous models failed to provide accurate information. Therefore, they implemented the water
displacement method, which requires a mean of three readings to find out the true volume.
Furthermore, most studies used the following equations to compute the relative error and
estimate the accuracy of the method

e =
∣

∣v − vapprox
∣

∣ (13)

where v is the actual volume and vapprox is the approximate volume

e =
1
N

∑
n
i=1

∣

∣wi − wg
∣

∣

wg
(14)

where N is the number of food items, wi is the estimated weight of the food item, and wg is
the ground truth value of the food.

3. Datasets Used for Food Recognition

Performance of feature extraction and classification techniques is highly dependent on
the detail-oriented collection of images, which, in our case, happen to be food images. As
consolidated large food image datasets, for example, UECFOOD-100, Food-101, UECFOOD-
256, UNCIT-FD1200, and UNCIT-FD889 are eventually used as benchmarks to collate
recognition performance of existing approaches with new classifiers. Such datasets can be
distinctive in terms of characteristics, such as the total number of images in a particular
dataset, cuisine type, and included food categories.

For instance, UECFOOD-100 contains 100 different sorts of food categories, and each
food category has a bounding box that indicates the location of the food item in the
photograph. Food categories in this dataset mainly belong to popular foods in Japan [42].
Similarly, UECFOOD-256 is another variant of UECFOOD-100. However, it differs in terms
of the number of images as it contains 256 food images of different kinds [42]. Food-101
contains 101,000 real-world images that are classified into 101 food categories. It includes
diverse yet visually similar food classes [43]. Similarly, the PFID food dataset is composed
of 1098 food images from 61 different categories. The PFID collection currently has three
instances of 101 fast foods [44]. UNCIT-FD1200 is composed of 4754 food images of
1200 types of dishes captured from actual meals. Each food plate is acquired multiple times,
and the overall dataset presents both geometric and photometric variability. Similarly,
UNICT-FD 889 dataset has 3583 images [45] of 889 different real food plates captured
using mobile devices in uncontrolled scenarios (e.g., different backgrounds and light
environmental conditions). Moreover, they capture each dish image in UNICT-FD899
multiple times to ensure geometric and photometric variability (changes in rotation, scale,
and point of view) [46].

Several datasets mainly consist of various food images collected through various
sources such as web crawlers and social media platforms such as Instagram, Flickr, and
Facebook. Furthermore, most of these datasets contain images of foods that are specific to
certain regions, such as Vireo-Food 172 [47] and ChineseFoodNet [48]. Both datasets contain
Chinese dishes. Similarly, Food-50 [49], Food-85 [49], Food log [50], UECFOOD-100 [42],
and UECFOOD-256 [43] contain Japanese Foods items. Turkish foods-15 [51] is limited
to Turkish food items only. Furthermore, the Pakistani Food Dataset [52] accommodates
Pakistani dishes, and the Indian Food Database incorporates Indian cuisines. In addition to
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this, few datasets only include fruits and vegetables like VegFru [53], Fruits 360 Dataset [54],
and FruitVeg-81 [55]. Furthermore, Table 1 provides a brief description about food image
datasets. Figure 3 shows the system flow and Figure 4 shows the sample images from the
food datasets.

Table 1. Food image datasets.

Authors Year Dataset Food Category Total # Images/Class Image Source

S. Godwin et al. [56] 2006 Wedge Shape foods dataset American Foods 3 categories Controlled environment

Chen et al. [44] 2009 PFID American Fast Foods 1038(61)
Fast food data captured in
multiple restaurants

Mariappan et al. [57] 2009 TADA
Artificial And
Generic Food 256(11) Controlled environment

Yanai et al. [49] 2010 Food-50 Japanese Foods 5000(50) Crawled from web

Hoashi et al. [49] 2010 Food-85 Japanese Foods 8500(85) Existing food databases

Miyazaki et al. [29] 2011 Foodlog Japanese Foods 6512(2000) Captured by users

Marc Bosch et al. [58] 2011 FNDDS American Foods 7000 Images of food accquired by users

Matsuda et al. [42] 2012 UECFOOD-100 Japanese Foods 14,361(100) Captured by mobile camera

Chen et al. [48] 2012 ChineseFoodNet Chinese dishes. 192,000(208) Gathered from web

M.-Y. Chen et al. [48] 2012 Chen Chinese Foods 5000/50 Crawled from the Internet

Bossard et al. [59] 2014 Food-101 American Foods 101,000(101) Crawled from web

L. Bossard et al. [59] 2014 ETHZ Food-101 American Foods 100,000(101) Crawled from web

Kawano et al. [43] 2014 UECFOOD-256 Japanese Foods 25,088(256) Captured by mobile camera

T. Stutz et al. [60] 2014 Rice dataset Generic (Rice) 1 food type Acquired from user

Farinella et al. [46] 2014 UNCIT-FD889 Italian Foods 3583 (899) Acquired with a smartphone

Meyers et al. [13] 2015 FOOD201-Segmented American Foods 12625 Manually annotated dataset

Xin Wang et al. [61] 2015 UPMC Food-101 Generic 100,000(101) Crawled from web

Cioccoa et al. [50] 2015 UNIMB 2015 Generic 2000(15)
Using a Samsung Galaxy
S3 smartphone

Shaobo Fang et al. [62] 2015 TADA(19 foods) American Foods 19 categories Controlled environment

Xu et al. [63] 2015 Dishes Chinese Restaurant Foods 117,504(3832) Download from dianping

Beijbom et al. [64] 2015 Menu-Match Generic Restaurant Food 646(41) Captured from social media

Zhou et al. [65] 2016 Food-975 Chinese Foods 37,785(975) Collected from restaurants

J. chen et al. [47] 2016 Vireo-Food 172 Chinese Foods 110,241(172) Downloaded from web

Cioccoa et al. [66] 2016 UNIMB 2016 Italian Foods 1027(73)
Captured from
dining tables

Hui Wu et al. [67] 2016 Food500 Generic 148,408(508) Crawled from web

Singla et al. [68] 2016 Food-11 Generic 16,643(11) Other food datasets

Farinella et al. [45] 2016 UNCIT-FD1200 Generic 4754(1200) Acquired using smartphone

Jaclyn Rich et al. [69] 2016 Instagram 800k Generic 808,964(43) Social Media

Liang et al. [70] 2017 ECUSTFD Generic 2978(19) Acquired using smartphone

Güngör et al. [51] 2017 Turkish-Foods-15 Turkish Dishes 7500/15 Collected from other datasets

Pandey et al. [71] 2017
Indian Food
Database Indian Foods 5000(50) Downloaded from web

Termritthikun et al. [72] 2017 THFood-50 Thai Foods 700/50 Downloaded from web

Ciocca et al. [73] 2017 FOOD524DB Generic 247,636(524) Existing food database

Hou et al. [53] 2017 VegFru Generic (Fruit and VEG) 160,731(292) Collected from search engine

Waltner et al. [55] 2017 FruitVeg-81 Generic (Fruit and VEG) 15,630(81) Collected using mobile phone

Muresan et al. [54] 2018 Generic (Fruits 360 Dataset) Fruit Dataset 71,125(103) Camera

Qing Yu et al. [74] 2018 FLD-469 Japanese Foods 209,700(469) Smart Phone camera

Kaur et al. [75] 2019 FoodX-251 Generic 158,000(251) Collected from web

Ghalib et al. [52] 2020 Pakistani Food Dataset Pakistani Dishes 4928(100) Crawled from web

Narayanan et al. [76] AI-Crowd Swiss Foods 25,389 Volunteer Users

Bolaños M. et al. [77] 2016 EgocentricFood Generic 5038(9)
Taken by a wearable
egocentric vision camera

E. Aguilar et al. [78] 2019 MAFood-121 Spanish Foods 21,175 Google search engine
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Figure 3. System Flow.

Figure 4. Sample images from few food datasets.

Therefore, it is evident from the survey that there is an immense need for broad and
generic food datasets for better food recognition and enhanced performance. This necessity
is because region-specific food items or datasets with fewer food categories can undermine
the accuracy and performance of classification and extraction methods.

4. Representation of Food Images

Feature extraction plays a vital role in automated food recognition applications due
to its noticeable impact on the recognition efficiency of an employed system. Feature
extractors methods extract different food image representations. The process of feature
extraction involves the identification of visual characteristics like color, shape, and texture.
The main objective of feature extraction is to reduce dimensionality space [79] and extract
more manageable groups from raw vectors of food images.

Moreover, selecting the right set of features ensures that relevant information is
extracted from input images to perform the desired task. We categorized the feature
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extraction techniques into two main types: hand-crafted and deep visual features. The
term ‘handcrafted’ refers to identifying relevant feature vectors of appropriate objects such
as shape, color, and texture. In contrast to that, the deep model provides state-of-the-art
performance due to automatic feature extraction through a series of connected layers. For
this reason, recent studies have adopted combinations of both hand-crafted and deep visual
features for food image representation.

4.1. Handcrafted Features

The existing literature exhibits a large number of methods to employ manually de-
signed or handcrafted features. Handcrafted features are properties obtained through
algorithms using help from information available in the image. Figure 5 categorizes the
handcrafted feature extraction methods. In the scenario of food image recognition, there is
variation among different food types in terms of texture, shape, and color.

Figure 5. Handcrafted feature extraction methods.

The term ‘texture’ refers to homogeneous visual patterns that do not result from single
colors such as sky and water [7]. Textural features usually consist of regularity, coarseness,
and/or frequency. Texture-based characteristics are classified into two classes, namely
statistical and transform-based models. Similarly, shape features attempt to quantify shape
in ways that agree with human intuition or aid in perception based on relative proximity to
well-known shapes. Based on the analysis, these shapes can be declared either perceptually
similar to human perception or different. Furthermore, extracted features should remain
consistent concerning rotation, location, and scaling (changing the object size) of an image.
Unlike shape and texture features, color features are prevalent for image retrieval and
classification because of their invariant properties concerning image translation, scaling,
and rotation. The key items of the color feature-extraction process are color quantization
and color space. Therefore, the resulting histogram is only discriminative when it projects
the input image is to the appropriate color space. Different methods are widely employed
for food classification, including hue, saturation, value (HSV); CIELab; red, green, and
blue (RGB); normalized RGB; opponent color spaces; color k-means clustering; bag of color
features; color patches; and color-based kernel. Although the color features from the food
images distinguish between different food items, due to intra-class similarity, these features
alone are not enough to accurately classify food images. For this reason, most researchers
have used color features in combination with other feature extraction methods.

Hoashi et al. [49] employed bag of features, color histogram, Gabor features, and
gradient histogram with multiple kernel learning for automatic food recognition of 85 dif-
ferent food categories. Similarly, Yang et al. [80] dealt with pairwise statistics between local
features for food recognition purposes using the PFID dataset. For real-time food image
recognition, Kawano and Yanai et al., 2014 [43] utilized handcrafted features such as color,
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histogram of oriented gradient (HoG), and Fisher Vector (FV). Moreover, the cloud-based
food recognition method proposed by Pouladzadeh et al., 2015 [81], involves features like
color, texture, size, shape, and Gabor filter. They evaluated their framework on single food
portions consisting of fruit and a single item of food. Furthermore, mobile food recognition
systems proposed by Kawano and Yanai, 2013 [82], and Oliveira et al., 2014 [83], also used
handcrafted features like color and texture. Table 2 summarizes the details of proposed
methods that employ handcrafted features for food recognition.

However, identification of food involves challenges due to varying recipes and pre-
sentation styles used to prepare food all around the globe, resulting in different feature
sets [84]. For instance, the shape and texture of a salad containing vegetables differ from
the shape and texture of a salad containing fruits. For this reason, we should optimize
the feature extraction process by extracting relevant visual information from food images.
Such data are present in general information descriptors, which are a collection of visual
descriptors that provide information about primary features like shape, color, texture, and
so forth. Some important descriptors used in existing studies include Gabor Filter, Local
Binary Patterns (LBP), Scale-invariant Feature Transform (SIFT), and color information to
extract features of food images [85]. These descriptors can be applied individually or in
combination with other descriptors for enhanced accuracy.

Table 2. Handcrafted features.

Reference Year Visual Features Dataset Recognition Type

Hoashi et al. [49] 2010

Bag-of-features (BoF),
Color histogram, Gabor features,
and gradient histogram
with Multiple Kernel learning.

Used for recognition
of 85 food categories

Automatic
food recognition

Yang et al. [80] 2010
Deals with
pair wise statistics
between local features

Pittsburgh
Food Image Dataset
(PFID)

Food recognition

kong and Tan [86] 2011 SIFT,
Guassian Region detector

Pittsburgh Food Image Dataset (PFID)
and dataset consisting of
food images collected
from local restaurants.

Regular shaped
foods recognition

Bosh et al. [85] 2011

Global feature classes: texture and color
Local features: local entropy color, local color,
Garbor filter, SIFT, Haar, Daisy descriptor,
Steerable filters and Tamura perceptual filter

Database consisting of
food images collected under controlled
conditions, from nutritional studies
conducted at
Prudue University [58]

Food recognition
and quantification

Zhang et al. [87] 2011 Color, SIFT, Shape, RGB histograms

Dataset came from online sources,
which includes three types of
cuisines, two dishes per cuisines were
represented by 76 images

Classification
of cuisines

Matsuda et al. [88] 2012

Gabor texture features,
Histogram of Oriented Gradient (HoG),
Bag-of-features of SIFT and CSFIT
with Spatial pyramid.

Food image dataset
containing 100 different
food categories.

Multiple
food images
recognition

Kawano and Yanai [82] 2013 Bag-of-features and color histogram, HOG
patch descriptor and color patch descriptor. -

Mobile food
recognition

Anthimopoulos et al. [89] 2014 Bag-of-features,
SIFT and HSV color space

Visual dataset consisting of 5000
food images organized
into 11 different classes

Food recognition
system for
diabetic patients

Tammachat and
Pantuwong [90] 2014 Bag-of-features (BoF) , Texture

and Color

Database consisting of 40 types of
Thai food consisting of 100 images
of each food type.

Food image
recognition

Pouladzadeh et al. [91] 2014 Graph cut, Color and Texture
Dataset consisting of 15 different
categories of fruits and food.

Food image
recognition
for calorie estimation

He et al. [92] 2014

Color, Texture, Dominant Color Descriptor (DCD),
Scalable Color Descriptor (SCD), SIFT,
Multi-scale Dense SIFT (MDSIFT),
Entropy-Based Categorization and Fractal Dimension
Estimation (EFD) and Gabor-Based Image
Decomposition and Fractal Dimension
Estimation (GFD)

Food image dataset containing
1453 images

Food image
analysis
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Table 2. Cont.

Reference Year Visual Features Dataset Recognition Type

Kawano and Yanai [43] 2014 Color, HoG and Fisher Vector UECFOOD-256 food image dataset
Real-time food
image recognition

Oliveira et al. [83] 2014 Color, Texture
Images were gathered using
mobile’s camera

Mobile Food
Recognition

Pouladzadeh et al. [81] 2015 Color, Texture, Size, Shape, Gabor filter

System was tested on single food
portions consisting of fruits and
single piece of food. 100 images were
chosen for training and 100 for
testing purposes.

Cloud-based
food recognition.

Farinella et al. [45] 2016 SIFT, Bag of Textons, PRICoLBP UNICT-FD1200 dataset. Food image recognition

Nonetheless, feature selection remains a complex task for food types that involve
mixed and prepared foods. Such food items are difficult to identify and are not easily
separable due to the proximity of ingredients in terms of color and texture features. In
contrast, the evolution of deep learning methods has remarkably reduced the use of
handcrafted features. This is due to their superior performance for both food categorization
and ingredient detection tasks. However, handcrafted methods for feature extraction may
still serve as the foundation for automated food recognition systems in the future.

4.2. Deep Visual Features

Recently, deep learning techniques have gained immense attention due to their su-
perior performance for image recognition and classification. The deep learning approach
is a sub-type of machine learning, and it trains more constructive neural networks. The
vital operation of deep learning approaches includes automatic feature extraction through
the sequence of connected layers leading up to a fully connected layer, which is eventually
responsible for classification. Moreover, in contrast to conventional methods, deep learn-
ing techniques show outstanding performance while processing large datasets and have
excellent classification potential [93,94].

Deep learning methods such as Convolutional Neural Networks (CNNs) [95], Deep
Convolutional Neural Networks (DCNNs) [96], Inception-v3 [97], and Ensemble net are
implemented by existing food recognition methods for feature extraction. Convolutional
Neural Networks are one of the widely used deep learning techniques in the area of
computer vision due to their impressive learning ability regarding visual data, and they
achieve higher accuracy than other conventional techniques [98]. The DCNN technique
gained popularity owing to its large-scale object recognition ability. It incorporates all
major object recognition procedures such as feature extraction, coding, and learning. There-
fore, DCNN is an adaptive approach for estimating adequate feature representation for
datasets [99]. Similarly, Inception-v3 is also a new deep convolutional neural network
technique introduced by Google. It is composed of small inception modules that are
capable of producing very deep networks. As a result, this model has proved to have
higher accuracy, decreased number of parameters, and computational cost in contrast to
other existing models. Likewise, Ensemble Net is a deep CNN-based architecture and is a
suitable method for extracting features. It is due to the outstanding performance of CNN
feature descriptors as compared to handcrafted features.

Asymmetric multi-task CNN and spatial pyramid CNN [100] provides highly discrim-
inative image representations. Jing et al. [47] proposed ARCH-D architecture for multi-class
multilabel food recognition, and their model provides feature vectors for both food category
and ingredient recognition. Although the feature vectors from multi-scale multi-view deep
network [101] has a very high dimension, they were successful in achieving state-of-art
performance. Ghalib et al. [52] proposed ARCIKELM for open-ended learning. They have
employed InceptionResnetV2 for feature extraction due to their superior performance over
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other deep feature extraction methods such as ResNet-50 and DenseNet201. Table 3 further
provides a brief description of deep visual features.

Table 3. Deep visual features.

Reference Year Features Dataset Recognition Type

Kawano and Yanai, [102] 2014 Fisher Vector and DCNN UECFOOD-100 and
100-class food Dataset Food image recognition

Yanai and Kawano, [96] 2015 DCNN UECFOOD-100
and UECFOOD- 256 Food image recognition

Christodoulidis et al. [103] 2015 CNN Manually annotated dataset
with 573 food items Food recognition

Pouladzadeh et al. [104] 2016 Graphcut and DCNN Database consisting of
10,000 high res images

Food recognition for
calorie measurement

Hassannejad et al. [105] 2016 Inception Food-101, UECFOOD-100
and UECFOOD-256 Food image recognition

Liu et al. [106] 2016 DCNN Food-101, UECFOOD-256 Mobile food image recognition

Chen and Ngo, [47] 2016 Arch-D Chinese Foods Ingredient recognition
and food categorization

Ciocca et al. [66] 2017 VGG UNIMIB 2016 Food recognition

Termritthikun et al. [72] 2017 NU-InNet THFOOD-50 Food recognition

Pandey et al. [71] 2017 AlexNet, GoogLeNet
and ResNet

ETH Food-101 and
Indian Food Image Database Food Recognition

Liu et al. [107] 2018 GoogleNet UECFOOD-100, UECFOOD-256
and Food-101

Food recognition
for dietary assessment

McAllister et al. [108] 2018 ResNet-152, GoogLeNet Food 5k, Food-11, RawFooT-DB
and Food-101 Food recognition

Martinel et al. [109] 2018 WISeR UECFOOD-100, UECFOOD-256
and Food-101 Food recognition

E. Aguilar et al. [110] 2018 AlexNet UNIMIB2016 Automatic food tray analysis

S. Horiguchi et al. [111] 2018 GoogleNet Built their own food dataset FoodLog Food image recognition

Gianluigi Ciocca et al. [112] 2018 ResNet50 Food 475 Food image recognition
and classification

B. Mandal et al. [113] 2019 SSGAN ETH Food-101 and Indian Food Dataset Food Recognition
of Partially Labeled Data

G.Ciocca et al. [114] 2020 GoogleNet, Inception-v3,
MobileNet-V2 and ResNet-50

Own dataset containing 20 different
food categories of fruit and
vegetables.

Food category recognition,
Food state recognition

L. Jiang et al. [115] 2020 VGGNet
UECFOOD-100, UECFOOD-256 and
introduced new
dataset based on FOOD-101.

Food recognition and dietary assesment

C. Liu et al. [116] 2020 VGGNet, ResNet Vireo-Food 172 Food ingredient recognition

H. Liang et al. [117] 2020 ChineseFoodNet and Vireo-Food 172 Chinese food recognition

H. Zhao et al. [118] 2020 VGGNet, ResNet and DenseNet UECFOOD-256 and Food-101 Mobile food recognition

G. A. Tahir and C. K. Loo [52] 2020 ResNet-50, DenseNet201
and InceptionResNet-V2

Pakistani Food Dataset, UECFOOD-100,
UECFOOD-256, FOOD-101 and PFID Food recognition

C. S. Won [119] 2020 ResNet50 UECFOOD-256, Food-101
and Vireo-Food 172

Fine grained
Food image recognition

Zhidong Shen et al. [120] 2020 Inception-v3, Inception-v4
Dataset was created including
hundreds and thousands of images
of several food categories

Food recognition
and nutrition estimation

5. Food Category Classification

The primary requirement of any food recognition system is accurate identification
and recognition of food components in the meal. Therefore, robust and precise food
classification methods are crucial for several health-related applications such as automated
dietary assessment, calorie estimation, and food journals. Image classification refers to
a machine learning technique that associates a set of unspecified objects with a subset
(class) learned by the classifier during the training phase. In the scenario of food image
classification, food images are used as input data to train the classifier. Hence, an ideal
classifier must recognize any food category explicitly included during the learning phase.
The accuracy of a classifier mainly depends on the quantity and quality of images, as there
are several variations in food images such as rotation, distortion, lightning distribution, and
so forth. In this section, we discuss classification techniques used by traditional approaches

213



Healthcare 2021, 9, 1676

that use handcrafted features. Following that, we analyzed state-of-the-art deep learning
models for food recognition.

5.1. Traditional Machine Learning Methods

Major classifiers used by several traditional approaches in the domain of food im-
age recognition include Support Vector Machines (SVM) [49], Multiple Kernel Learning
(MKL) [49] and K-Nearest Neighbor (KNN) [47]. It is due to their outstanding performance
as compared to other classification methods.

The food recognition method proposed by [121] employs color, SIFT, and texture
features to train the KNN classifier. In contrast to SVM, KNN achieved higher classification
accuracy, i.e., 70%, whereas the accuracy of the SVM classifier was only 57%. Similarly,
treatment of diabetic patients involves a daily insulin prandial dose to compensate for the
effect of a meal, and its estimation is a complex task with carbohydrate counting being a
key element. To assist patients in automating the process of counting CHO from images
captured from a camera, Anthimopoulos et al. [89] applied a bag-of-features model using
SIFT features. A linear SVM classifier trained on food images of 11 different food classes
acquired a classification accuracy of 78%.

Chen et al. [48], employed a multi-class SVM classifier for the identification of 50 dif-
ferent classes of Chinese food. It includes 100 food images in each category. However,
classification accuracy was only 62.7%. They further implemented a multi-class Adaboost
algorithm and increased their classification accuracy up to 68.3%. Furthermore, Bejibom
et al. [64] used LBP, color, SIFT, MR8, and HoG features to train an SVM image classifier.
They evaluated their work on two different datasets and achieved a classification accuracy
of 77.4% on the dataset presented by [48]; their classification accuracy was 51.2% when
applied to the menu-matched dataset. Table 4 summarizes classifiers implemented by
traditional classification methods along with their achieved classification accuracies.

Table 4. Traditional machine learning methods for food category classification.

Reference Year Classification Technique
Classification Accuracy

Top 1 Top 5

Hoashi et al. [49] 2010 Multiple Kernel Learning (MKL) Own Food Dataset = 62.5% N/A

Yang et al. [80] 2010 Support Vector Machine (SVM) PFID = 78.0% N/A

Kong and Tan [86] 2011 Multi-class SVM PFID = 84% N/A

Bosh et al. [85] 2011 Support Vector Machine (SVM)

Dataset collected = 86.1%
using nutritional
studies Conducted
at Prudue University

N/A

Zhang et al. [87] 2011 SVM regression with RBF kernel Own Food Dataset = 82.9% N/A

Matsuda et al. [88] 2012 Multiple Kernel Learning (MKL)
and Support Vector Machine (SVM) Own food Dataset = 55.8% N/A

Kawano and Yanai [82] 2013 Linear SVM and fast tookernel N/A 81.6%

Anthimopoulos et al. [89] 2014 Linear SVM Own Food Dataset = 78.0% N/A

Tammachat and
Pantuwong [90] 2014 Support Vector Machine (SVM) Own Food Dataset = 70.0% N/A

Pouladzadeh et al. [91] 2014 Support Vector Machine (SVM) Own Food Dataset = 95% N/A

He et al. [92] 2014 K-nearest Neighbors
and Vocabulary Trees Own Food Dataset = 64.5% N/A

Kawano and Yanai [43] 2014 One-vs-rest UECFOOD-256 = 50.1% UECFOOD-256 = 74.4%

Oliveira et al. [83] 2014 Support Vector Machine (SVM)
Own Food Dataset
Top 3 classification
achieved between 84 and 100%

N/A

Pouladzadeh et al. [81] 2015 Cloud-based Support Vector Machine Own Food Dataset = 94.5% N/A

Farinella et al. [45] 2016 Support Vector Machine (SVM) UNICT-FD1200 = 75.74% UNICT-FD1200 = 85.68%
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5.2. Deep Learning Models

Deep learning approaches have gained significant attention in the field of food recogni-
tion. This is due to their exceptional classification performance in comparison to traditional
approaches [48,64]. convolutional neural network (CNN), deep convolutional neural net-
work (DCNN), Ensemble Net, and Inception-v3 are some of the most prominent techniques
used as existing methods for food image recognition purposes.

Yanai and Kawano [102] employed a deep convolutional neural network (DCNN)
on three food datasets: Food-101, UECFOOD-256, and UECFOOD-100. They explored
the effectiveness of pre-training and fine-tuning a DCNN model using 100 images from
each food category obtained from each dataset. During evaluation, classification accu-
racy achieved was 78.77% for UECFOOD-100, 67.57% for UECFOOD-256, and 70.4% for
Food-101. Similarly, the study presented by [105] implemented Inception-v3 deep net-
work established by Google [97] on the same datasets, i.e., Food-101, UEC FOOD-100,
and UECFOOD-256. Classification accuracy achieved using fine-tuned model V3 was
greater than classification accuracy of the fine-tuned version of DCNN i.e., 88.28%, 81.45%,
and 76.17% for UECFOOD-100, UECFOOD-256, and Food-101, respectively. The food
recognition method proposed by [106] implemented a CNN-based approach using the
Inception model on the same three datasets.

Classification accuracy achieved was 77.4%, 76.3% and 54.7% for UECFOOD-100,
UECFOOD-256 and Food-101, respectively. Table 5 provides the overview of existing
food recognition methods based on deep learning approaches and their classification
performance.

Table 5. Deep learning models for food category classification.

Reference Year Classification Technique
Classification Performance

Top 1 Top 5

Yanai and Kawano [96] 2015 DCNN UECFOOD-100 = 78.8%
UECFOOD-256 = 67.6% N/A

Christodoulidis et al. [103] 2015 DCNN Own dataset = 84.9% N/A

Chen and Ngo [47] 2016 DCNN

Pouladzadeh et al. [104] 2016 DCNN + Graph cut Own dataset = 99% N/A

Hassannejad et al. [105] 2016 DCNN
ETH Food-101 = 88.3%
UECFOOD-100 = 81.5%
UECFOOD-256 = 76.2%

ETH Food-101 = 96.9%
UECFOOD-100 = 97.3%
UECFOOD-256 = 92.6%

Liu et al. [106] 2016 CNN UECFOOD-100 = 76.3%
Food-101 = 77.4%

UECFOOD-100 = 94.6%
Food-101 = 93.7%

Pandey et al. [71] 2017 Ensemble Net
ETH-Food101 = 72.1%
Indian Food = 73.5%
Database

ETH-Food101 = 91.6%
Indian Food = 94.4%
Database

Ciocca et al. [66] 2017 CNN UNIMIB 2016 = 78.3% N/A

Termritthikun et al. [72] 2017 CNN THFOOD-50 = 69.8% THFOOD-50 = 92.3%

McAllister et al. [108] 2018 CNN+ANN+SVM+
Random Forest

Food-5K = 99.4%
Food-11 = 91.3%
RawFooT-DB = 99.3%
Food-101 = 65.0%

N/A

Liu et al. [107] 2018 DCNN
UECFOOD-256 = 54.5%
UECFOOD-100 = 77.5%
Food 101 = 77.0%

UECFOOD-256 = 81.8%
UECFOOD-100 = 95.2%
Food 101 = 94.0%

Martinel et al. [109] 2018 DNN
UECFOOD-100 = 89.6%
UECFOOD-256 = 83.2%
Food-101 = 90.3%

UECFOOD-100 = 99.2%
UECFOOD-256 = 95.5%
Food-101 = 98.7%

E. Aguilar et al. [110] 2018 CNN+SVM UNIMIB 2016 = 90.0% N/A

Gianluigi Ciocca et al. [112] 2018 CNN Food-475 = 81.6% Food-475 = 95.5%
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Table 5. Cont.

Reference Year Classification Technique
Classification Performance

Top 1 Top 5

S. Horiguchi et al. [111] 2018

Sequential Personalized Classifier
(SPC) with
fixed-class and incremental
classification

FoodLog = 40.2%
(t251-t300)

FoodLog = 56.6%
(t251-t300)

B. Mandal et al. [113] 2019 Generative Adversarial Network ETH Food-101 = 75.3%
IndianFood Database = 85.3%

ETH Food-101 = 93.3%
Indian Food Database = 95.6%

Aguilar-Torres et al. [122] 2019 CNN based on ResNet-50 MAFood-121 = 81.62% N/A

Kaiz Merchant and Yash Pande [123] 2019 Inception V3 ETHZ Food-101 = 70.0% N/A

Mezgec, S. et al. [124] 2019 Deep Learning Own Food dataset = 93% N/A

L. Jiang et al. [115] 2020 DCNN (Faster R-CNN) FOOD20-with-bbx = 71.7% FOOD20-with-bbx = 93.1%

C. Liu et al., 2020 [116]

H. Zhao et al. [118] 2020 JDNet UECFOOD-256 = 84.0%
FOOD-101 = 91.2%

UECFOOD-256 = 96.2%
FOOD-101 = 98.8%

G. A. Tahir and C. K. Loo [52] 2020
Adaptive Reduced Class
Incremental Kernel Extreme
Learning Machine (ARCIKELM)

Food-101 = 87.3%
UECFOOD-100 = 88.7%
UECFOOD-256= 76.51%
PFID = 100%
Pakistani Food = 74.8%

N/A

C. S. Won [119] 2020 Three-scale CNN
UECFOOD-256 = 74.1%
Food 101 = 88.8%
Vireo-Food 172 = 91.3%

UECFOOD-256 = 93.2%
Food-101 = 98.1%
Vireo-Food 172 = 98.9%

Zhidong Shen et al. [120] 2020 CNN Own dataset = 85.0% N/A

Jiangpeng He et al. [125] 2020 18 layer ResNet Own dataset = 88.67% N/A

Eduardo Aguilar et al. [126] 2020 CNN Own dataset = 88.67% N/A

Dario Ortega Anderez et al. [127] 2020 CNN Own dataset = 97.10% N/A

G. Song et al. [128] 2020 CNN Web crawled dataset = 56.47% Web crawled dataset = 60.33

Limei Xiao et al. [129] 2021 CNN Own dataset = 97.42% N/A

Lixi Deng et al. [130] 2021 ResNet-50 School lunch dataset = 95.3% N/A

6. Food Ingredient Classification

Over the past few years, nutritional awareness among people has increased due to
their intolerance towards certain types of food, mild or severe obesity problems, or simply
interest in maintaining a healthy diet. This rise in nutritional awareness has also caused a
shift in the technological domain, as several mobile applications facilitate people in keeping
track of their diet. However, such applications hardly offer features for automated food
ingredient recognition.

For this purpose, several proposed models use multi-label learning for food ingredient
recognition. It can be defined [27] as the prediction of more than one output category
for each input sample. Therefore, food ingredient recognition is known as a multi-label
learning problem. Marc Bolanos et al. have deployed CNN as a multi-label predictor
to discover recipes in terms of the list of ingredients from food images [131]. Similarly,
Yunan Wang et al. [132] used multi-label learning for mixed dish recognition, as they
have no distinctive boundaries among them. Therefore, labeling bounding boxes for
each dish is a challenging task. Another system proposed by Amaia Salvador et al. [133]
regenerates recipes from provided food images along with cooking instructions. On the
other hand, Jingjing Chen and Chong-Wah Ngo [47] proposed deep architectures for food
ingredient recognition and food categorization and evaluated their proposed system on a
large Chinese food dataset with highly complex food images. Food ingredient recognition
is often overlooked and is a challenging task, as it requires training samples under different
cooking and cutting methods for robust recognition. Therefore, methods proposed by Chen
et al. [134] and J. Chen et al. [135] focus on food ingredient recognition. The authors Chen
et al. [134] deploy multi-relational graph convolutional network that was later evaluated
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on Chinese and Japanese food datasets, resulting in 36.7% for UECFOOD-100 and 48.8%
for VireoFood-172. However, Chen et al. [135] proposed DCNN based method for food
ingredient recognition and achieved Top 1 accuracy up to 86.91% and Top 5 accuracy up to
97.59% for Vireo Food-251.

Furthermore, Table 6 provides brief information about accuracy scores of proposed
systems along with methods and dataset used.

Table 6. Proposed methods for food ingredient classification.

Reference Year Dataset Method Recall Precision F1

Chen et al. [47] 2016
Vireo-Food 172

Arch-D
(Multi-task) - -

67.17% (Micro-F1)
47.18% (Macro-F1)

UECFOOD-100
Arch-D
(Multi-task) - -

82.06% (Micro-F1)
95.88% (Macro-F1)

Bolaños et al. [131] 2017

Food-101
ResNet50+
Ingredients 101 73.45% 88.11% 80.11%

Recipe 5k
ResNet50+
Recipe 5k 19.57% 38.93% 26.05%

Recipe 5k
Inception-v3+
Recipe 5k (Simplified) 42.77% 53.43% 47.51%

Wang, Yunan, et al. [132] 2019
Economic Rice

Inception-V4 + NS
(multi-scale) 71.90% 72.10% 71.40%

Economic Behoon
Inception-V4 + NS
(multi-scale) 77.60% 68.50% 69.70%

Salvador, Amaia, et al. [133] 2019 Recipe 1M
CNN
Auto-Encoder 75.47% 77.13% 48.61%

J. Chen et al. [135] 2021 VireoFood-172 DCNN - - 75.77% (Micro-F1)

7. Food Volume Estimation

Automated food volume assessment is a convoluted task involving various challenges.
Highly diverse and varying compositions of food, increasing varieties of ingredients, and
different methods of preparations are only some of the factors that need to be taken into
consideration. Furthermore, the quality of pictures taken for food volume estimation also
impacts the accuracy. Clear pictures taken in good lighting conditions would yield different
results compared to low-resolution or low-light images. Thus, far, several methods have
been proposed for accurate estimation of food volume ranging from simple techniques such
as pixel counting to complex methods such as 3D image reconstruction. They have been
broadly categorized as either ‘single image view’ or ‘multi-image/video view’ methods in
the subsequent sections. Figure 6 shows the types of food volume estimation methods.
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Figure 6. Food Volume Estimation Methods.

7.1. Single Image View Methods

Single-Image-View Methods for food volume estimation require only a single im-
age for food volume estimation. These methods are relatively more user-friendly than
‘multi-image view methods’ because they do not require multiple images from different
viewpoints. However, as a trade-off, most of the single-view methods are less accurate
in contrast to multi-view methods. Table 7 summarizes single view methods for volume
estimation. The following are a few common methods that use the single-view method for
food portion estimation:
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Table 7. Comparison of single-view methods for food volume estimation.

Reference Year Dataset Results (E: Error%) Technique

S. Fang [62] 2015 19 food items E: <6% 3D parameters and reference objects
to compute density for estimating
the weight of food item

Y. He [36] 2013 1453 food images E: 11% (beverages)
63%

“Integrated image segmentation
and identification system”

T. Miyazaki [29] 2011 6512 images E: 40% Linear estimation

Beijbom, O [64] 2015 646 images, with 1386 tagged food
items across 41 categories

E: 232 ± 7.2 Restaurant-specific food recognition
considers meal as a whole entry with
all of its nutrients details in DB to
solve the volume estimation problem
for the restaurant scenario.

Koichi Okamoto [31] 2016 20 kinds of Japanese Foods (60 test
image)

E: 21.30% Single-image-based food calorie esti-
mation system which uses reference
objects to determine food region and
quadratic curve estimation from the
2D size of foods to their calories

Pettitt, C [136] 2016 Test data from N:6 participants
who completed food diary during
pilot sudy by wear micro camera

E: 34% Wearable micro camera in conjunc-
tion with food dairies

Akpa Akpro Hip-
pocrate [34]

2016 119 food images E: 6.87% Image processing with cutlery

Jia, W. Y [35] 2012 224 pictures E: <10% 3D location of a circular feature from
a 2D image

Yang, Y. Q [33] 2011 72 images E: −3.55% Single digital image, plate reference

Huang, J [39] 2015 fruits (n:6) imaging processing

Yue, Y [41] 2012 6 food replicas E: Length (−1.18) A mathematical model based system
involves a camera, circular object in
a 3D space to compute food volume.

Zhang, W [38] 2015 15 different kinds of foods 85% Portion estimation by counting pix-
els

Rob Comber [137] 2016 6 different meals “Beef (E: −13.89 g, σ: 5.10 g),
scrambled egg (E: −9.11 g, σ:
8.29 g), Jam
sponge (E: −12.31 g, σ: 7.03 g)
and fish pie (E: −12.59 g, σ:
5.74 g). Mean: −9.58”

Visual Assessment

S. Fang [30] 2016 10 objects “3D geometric models
and depth images.”

Godwin, S. [56] 2006 Five portions of 9-inch cake, Seven
portions of pizza, Pies were 9 or
10 inches

E: 25% Estimated portion sizes using a ruler
and the adjustable wedge

Hernández, Tere-
sita [37]

2006 101 subjects, 5 foods E: 4.8% ± 1.8% Digital photographs printed onto a
poster.

Yang et al. [138] 2021 Virtual Food Dataset and Real
Food Dataset (RFD) (1500 images)

E: <9% on VFD, E: 11.6% and
20.1% on RFD.

Estimates volume by computing in-
ner product between the probability
vector from modified MobileNetV2
and the reference volume vector.

Graikos et al. [139] 2021 EPIC-KITCHENS and their own
food video datasets

46.32% average MAPE on 16
test foods and 36.90% average
MAPE on 6 combined meals.

Generate 3-dimensional point cloud
by using depth map, segmentation
mask and camera parameters. It
then approximates the volume with
points cloud-to-volume algorithm.

Lo, F.P.W et al. [140] 2019 Test dataset: 11 food items E: 15.32%. 3D point cloud completion from RGB
and depth images.
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7.1.1. Food Portion Estimation by Counting Pixels

This method utilizes pixel count in each relevant image section to estimate food
portion size. Studies [120] show that these methods are less complex than methods that
rely on 3D modeling. Despite its simplicity, it gives a good estimation of portion size, thus
making calculation of caloric content and nutritional facts easier.

7.1.2. Visual Similarities between Target Image and Dictionary of Food Images

This method estimates visual similarities between a given image and an existing food
image dictionary. It is used by many existing systems today [29], where the caloric and
nutrient contents in the food image dictionary are defined by dietary professionals to get a
better approximation. The method selects first ‘n’ images from the dictionary and calculates
the calorie content of the target image based on the average calorie content of dictionary
images.

7.1.3. 3D Modeling for Food Portion Estimation

This method projects a 3D model of food portions onto 2D space or uses 3D geometric
models for volume estimation. Generally, this method gives finer approximation in contrast
to the other methods for single-image-view methods.

7.1.4. Other Methods

Other methods for food-portion estimation include estimating portion sizes using
a ruler and adjustable wedge [56], mobile augmented reality, virtual reality [33], visual
assessment [137] feature extraction, and its matching [29,64].

7.2. Multi-Image View or Video Methods

Multi-Image view or video methods require multiple images for food portion esti-
mation. They are relatively more accurate than single-view-image methods. However,
multi-image methods are less user-friendly as they require multiple images from different
viewpoints in order to provide better results. Table 8 summarizes single-view methods for
volume estimation. The following are a few methods that use multi-image-view techniques
for food volume estimation.

Table 8. Comparison of multi-view methods for food volume estimation.

Reference Year Dataset Results (E: Error%) Technique

F. Zhu [141] 2010 3000 images E: 1%
19 food items (97.2%)

“Camera calibration step and a
3D volume reconstruction step”

Xu Chang [141] 2013 14 to 20 images for multi-view
method

E: 7.4% to 57.3% Multi-view volume estimation using
“Shape from Silhouettes”
to estimate the food portion size

Kong, Fanyu [12] 2015 6 food items 84–91% Multi-View RGB images for 3D recon-
struction to estimate the volume

Trevno, Roberto [142] 2015 120 students (n = 120 meals; 57
breakfast + 63 lunch)

74% (reliability) Digital Food Imaging Analysis (DFIA)

Jia, W. Y [143] 2014 100 food samples E: −2.80%
30%

ebutton is used for taking pictures, and
then portion size is calculated semi-
automatically by using computer soft-
ware

Xu, C [36] 2013 E: 10% 3D MODELLING AND POSE ESTIMA-
TION

Rhyner, D [144] 2016 6 meals 85.10% Multi-View RGB images, reference card
and 3D model for volume estimation

T. Stutz [60] 2014 Rice, blinded servings E: <33% Mobile Augmented Reality System
Makhsous et al. [145] 2020 8 food items tested 40% improvement in the ac-

curacy of volume estima-
tion as compared to manual
calculation.

Employs a mobile Structured Light Sys-
tem (SLS) to measure the food volume
and portion size of a dietary intake.

Yuan et al. [146] 2021 Test dataset: 6 food items E: 0.83 5.23%. 3D reconstruction from multi-view RGB
images.

Lo, F.P.W et al. [140] 2019 Test dataset: 11 food items E: 15.32%. 3D point cloud completion from RGB
and depth images.
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7.2.1. Food Volume Estimation Using 3D Geometric Models

This multi-image-view method uses a shape template method or 3D modeling for
portion size estimation. As a single shape template is not suitable for all food types, the use
of geometric models with correct food classification labels and segmentation masks in the
image is important to index food labels to their respective classes of predefined geometric
models. These can be used later for finding correct parameters of the selected geometric
model [28,40,41,56,62].

Moreover, in 3D modeling and pose estimation, models for food are constructed in
advance by using between 15 and 20 food images captured from several angles or a video
sequence. Finally, food volume is estimated by registering pose from 3D models to 2D
images [36].

7.2.2. Augmented Reality System for Food Volume Estimation

The use of augmented reality is also being widely used by researchers to estimate food
portion size. Many systems such as Eat AR make use of it for portion size estimation [60]
by developing prototypes to aid users. These prototypes generally require fiducial markers
or credit-card-sized objects for overlaying 3D forms. Finally, the volume of the overlaid
forms is computed using a signed volume estimation algorithm for closed 3D objects.

Similarly, the ‘Serv Ar’ augmented reality tool is used to provide guidance about
food serving size [147]. Many of these technologies are being used with object recognition
methods to identify food items and determine their caloric content. Similarly, methods
that use augmented reality in combination with other portion estimation techniques have
enhanced accuracy and much more interactive interfaces, resulting in a high retention rate.

7.2.3. Food Portion Estimation Using 3D Reconstruction (Dense Models)

Portion estimation by constructing dense 3D models usually requires multiple images
or a video segment [139]. Joachim Dehais et al. [148] have shown the use of two views
for volume estimation using 3D construction. In its first stage, the system learns about
the configuration of different views, followed by the construction of a dense 3D model
to extract the volume of each individual food item placed before it. Similarly, Wen Wu
et al. [32] studied the use of fast food videos for caloric estimation. Most of these methods
require images from different viewpoints, and for this reason, more advanced methods
such as 3D construction from accidental motion can be explored for food volume estimation
in the future.

7.3. Strengths and Weakness of the Food Volume Estimation Methods

Automatic food volume estimation method helps people to monitor their dietary
intake suffering from chronic diseases without any expert intervention. It gives a quick
result as compared to the traditional method which generally involves sending food images
to the dietitian. The traditional method involves continuous involvement of dietitians,
which makes it unworkable for dietitians to immediately respond to a large number of
patients. Conversely, automatic food volume estimation is not standardized, as there are no
existing guidelines by experts that refer to the error rate of these applications. Furthermore,
different volume estimation methods vary in terms of accuracy and usability. Most of
these methods are classified into two categories: single-image-view method and multiple-
image-view method. Single-view-image methods are more user friendly, but their accuracy
is compromised compared to multiple image view methods as it requires images from
different. Therefore, standard guidelines are required for food volume estimation, which
should include criteria for a balanced trade between features such as usability and accuracy,
and developed applications must be verified according to the standard guidelines. Figure 7
summarizes the strengths and weaknesses of food volume estimation methods.
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Figure 7. Strengths and weaknesses of automatic food estimation methods.

8. Existing and Potential Applications of Vision-Based Methods for Food Recognition
in Healthcare

We summarized the core applications of vision-based methods for food recognition in
the context of public policy and health care.

8.1. mHealth Apps for Dietary Assessment

Today, several mobile applications have been developed to monitor diet and help
users to choose healthier alternatives regarding food consumption. Initially, these mobile
applications were dependent on manually inputting food items by selecting from limited
food databases. Therefore, such applications were not very reliable as they were prone to
inaccuracies in dietary assessment, mainly extending from limited exposure to numerous
food categories. With the advancement in the area of food image recognition, a large
number of mHealth applications for dietary assessment use images to recognize food
categories. For this purpose, existing mobile applications use different combinations
of traditional and deep visual feature extraction, and classification methods for food
recognition described earlier in Sections 3 and 4. Aizawa et al. [149] developed a mobile
app food log, which uses traditional feature-extraction methods such as color, Bag of
Features, and SIFT and uses an Adaboost classifier for classification purposes. Similarly,
Ravi et al. [150] proposed the ‘FoodCam’ application, which uses traditional methods for
feature extraction (LBP and RGB color features) and SVM for classification. Alternatively,
Meyers et al. [13] employed a deep visual technique (GoogleNet CNN model) for feature
extraction and classification purposes. Similarly, the Food Tracker app proposed by Jiang
et al. [151] uses a deep convolutional neural network for feature extraction and classification.
Furthermore, G. A. Tahir and C. K. Loo [52] utilized deep visual methods such as ResNet-50,
DenseNet201, and InceptionResNet-V2 for feature extraction and Adaptive Reduced Class
Incremental Kernel Extreme Learning Machine (ARCIKELM) as a classification method for
their mobile application “My Diet Cam”. Table 9 summarizes existing mobile applications
in terms of feature extraction and classification methods used. Based on these deep
visual method combinations, food recognition accuracies differ for various existing mobile
applications. Therefore, apps with higher food recognition and classification accuracies
gain more popularity. These apps tend to ease the dietary assessment process. Figure 8
shows the mobile application by Ravi et al. [150].
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Table 9. Summary of feature extraction and classification methods used by existing mobile applications.

Reference Year
Application
Name

Food
Segmentation

Feature Extraction
Method

Classification
Method

Aizawa et al. [149] 2013 FoodLog No Color, SIFT and
Bag of Features

Adaboost
Classifier

Oliveira et al. [83] 2014 - Yes Color and Texture Support Vector Machine (SVM)

Probst et al. [152] 2015 - - SIFT, LBP and Color Linear SVM

Meyers et al. [13] 2015 Im2Calories Yes GoogleNet CNN GoogleNet CNN model

Ravi et al. [150] 2015 FoodCam No HoG, LBP and
RGB Color Features Linear SVM

Waltner et al. [55] 2017 - Yes RGB, HSV and
LAB Color values

Random Forest
Classifier

Mezgec and Seljak [153] 2017 - - NutriNet NutriNet

Pouladzadeh et al. [154] 2017 - Yes CNN Caffe
Framework

Waltner et al. [155] 2017 - Yes CNN CNN

Ming et al. [11] 2018 DietLens - ResNet-50 CNN ResNet-50 CNN

Jiang et al. [151] 2018 - Yes
Colors, Lines,
Points, SIFTand
Texture Features

Reverse Image Search
(RIS) and Text Mining

Jianing Sun et al. [156] 2019 Food Tracker Yes DCNN DCNN

G. A. Tahir
and C.K. Loo [52] 2020 MyDietCam Yes

ResNet-50,
DenseNet201
and Inception
ResNet-V2

Adaptive Reduced
Class Incremental
Kernel Extreme
Learning Machine
(ARCIKELM)

8.2. Harnessing Vision-Based Method to Measure Nutrient Intake during COVID-19

As the COVID-19 is a leading global challenge across the world, maintaining good
nutritional status is mandatory for keeping good health to fight against the virus. Automatic
vision-based methods for volume estimation and food image recognition in these nutrition
tracking apps can assist patients in objectively measuring the nutrient intake of vital
vitamins required for boosting the immune system.

8.3. Life’s Simple 7

Life’s Simple 7 health score is recently introduced based on modifiable health factors
that contribute to heart health. Physical activity, non-smoking status, healthy diet, and body
mass index are four modifiable health behaviors in this score. The other three modifiable
factors are biological. They include blood pressure, fasting glucose, and cholesterol details.
Besides cardiovascular health, Life’s Simple 7 also relates to other health conditions such
as venous thromboembolism, cognitive health, atherosclerosis, etc. As dietary intake plays
a vital role in computing Life’s Simple 7, manually measuring these factors and then
calculating a Life’s Simple 7 score is a very tedious process. This makes it very difficult
for both middle-aged patients and elderly patients to keep track of their health. So vision-
based methods can play an important role in automating the diet score. However, there are
no current studies that have explored this research direction.
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Figure 8. The application provides the top prediction result. This picture is taken from the study of
Ghalib et al., 2020 (permission has been obtained from original author).

8.4. Enforcing Eating Ban on Public Places during COVID-19 Pandemic or Other
Restricted Places

Vision-based food recognition can automate the enforcement of an eating ban at
public places by automatically detecting foods from CCTV and wearable cameras to curb
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the spread of the virus. Similarly, vision-based food recognition coupled with CCTV or
wearable cameras and smart apps automate the enforcement of eating bans at workplaces,
laboratories, etc.

8.5. Monitoring Malnutrition in Low-Income Countries

Coupling vision-based methods with wearable cameras can automatically detect foods
from egocentric images with reasonable accuracy while reducing the burden of processing
big data and addressing the user’s privacy concerns. Egocentric images acquired from
these cameras are important to study diet and lifestyle, especially in low-income countries
with a high malnutrition rate. For example, Jia et al. [157] focused on gathering image data
from wearable cameras and discriminating between food/non-food classes based on their
tag from the CNN to study human diets. Similarly, Chen et al. [158] studied malnutrition
in low- and middle-income countries by using the wearable device e-button.

8.6. Food Image Analysis from Social Media

We are in the era of social media, and food is a basic necessity of life, a great deal
of content on social media platforms is related to food items. User’s of these platforms
frequently share new recipes, new methods of cooking, food pictures after restaurant
check-in. Researchers have exploited this data on social media platforms for analyzing
dietary intake. For example, Mejova et al. [159] studied food images from foursquare and
Instagram to analyze the food consumption pattern in the USA. Similarly, food images on
social media platforms are of different cultures. These images can be crawled and then
combined together to prepare a large food database.

8.7. Food Quality Assessment

Evaluating fruit quality and freshness at the marketplace and at the user end is of
increasing interest as opposed to accessing quality at the time of manufacturing. Efforts
to date have focused on accessing the quality of foods using vision-based methods. For
example, Ismail et al. have contributed an Apple-NDDA dataset [160] that consists of
defective and non-defective apple images for food quality assessment.

9. Statistical Analysis

We provide a statistical analysis of our study based on the articles and conference
proceedings gathered to write this survey paper. We surveyed research studies up to 2020
from various reputed sources: IEEE, Elsevier, ACM, and Web of Sciences. Figure 9 shows
a pie chart of the distribution of surveyed food databases according to the country to
which the food dishes belong. In it, generic databases are those that contain food dishes of
multiple countries. We summarized the surveyed studies in two main categories: studies
using handcrafted features, and studies using visual feature representation from convolu-
tional neural networks (CNN), as shown in Figure 10. As discussed in Section 7, volume
estimation methods require a single view or multiple images from different viewpoints.
We presented a pie chart as shown in Figure 11 that describes the percentage of studies
we surveyed according to the number of image viewpoints required to estimate food
volume. For ingredient detection, all included studies used CNN due to recent interest
in this extension. Similarly, for studies that have implemented mobile applications, the
piechart in Figure 12 shows that 46.2% of applications implement CNN for food recognition
while remaining mobile applications from surveyed studies are implementing traditional
methods for feature extraction.
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Figure 9. Percentage of datasets summarized according to the types of food. Generic refers to the
multi-cultural dataset.

Figure 10. Percentage of studies summarized according to the type of feature extraction methods.

Figure 11. Volume estimation methods using single images vs. multiple images.
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Figure 12. Percentage of studies summarized according to the type of methods employed for feature
extraction from food images and the category of classifier used for food image analysis in a mobile
application.

10. Open Issues

This study highlighted open issues based on the survey papers and the authors’
first-hand experience with existing methodologies.

10.1. Unsupervised Learning from Unlabelled Dataset

Preparing a large comprehensive annotated data is still a challenge, as manually
annotating a dataset is a difficult task with many challenges. Due to the large variety of food
dishes, different styles of preparation, etc., it is difficult for an expert dietician to correctly
label all the foods, especially in the preparation of a multi-culture food database. Similarly,
it involves high costs and a large number of working hours to prepare such a dataset.
Recent advancements in contrastive learning have opened a new research paradigm of
unsupervised learning. Methods based on contrastive learning such as SimCLR [161] and
SwAV [162] do not require labeled datasets and seem to be interesting potential areas of
research that future works in food recognition should exploit.

10.2. Continual Learning

Food datasets are open-ended, and there is no cap on the number of dishes. So the
network must adapt to continuously evolving datasets. All of these properties of food
datasets have made them a strong use case for continual learning methods. One of the
principal challenges in continuous learning methods is catastrophic forgetting. Catastrophic
forgetting refers to completely or abruptly forgetting previously learned information while
learning new classes. Many neural networks are susceptible to forgetting during continual
learning. It is a prime hindrance in achieving the objective of continuously evolving
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networks similarly to those of humans. Hence, researchers should also study catastrophic
forgetting in the context of food databases.

10.3. Explainability

Although there have been numerous attempts, including activation methods, SHAP
values [163], and distillation methods, there is still a research gap in the context of food
recognition. As food recognition has many domain-specific challenges such as intraclass
variations, and non-rigid structure, visualization of the reasoning behind model predictions
is vital to trust its decisions. Recently, unsupervised clustering methods [164] are exploited
to explain model predictions by distilling knowledge into surrogate models. They provide
similar images to test images for explaining prediction results. Explaining prediction
results by showing images similar to test images seems more friendly as users do not need
any specific domain knowledge to understand these results.

11. Discussion

Our research provides deep insight into computer vision-based approaches for dietary
assessment. It focuses on both traditional and deep learning methodologies for feature
extraction and classification methods used for food image recognition and single- and multi-
view methods for volume estimation. Similarly, this survey also explores and compares
current food image datasets in detail, as vision-based techniques are highly dependent on
a comprehensive collection of food images. In contrast to previous research work, such as
work by Mohammad A. Sobhi et al. [165], Min, Weiqing, et al. [166], our survey scrutinizes
traditional and current deep visual approaches for feature extraction and classification to
enhance clarity in terms of their performance and feasibility. Unlike existing surveys, our
survey emphasizes existing solutions developed for food ingredient recognition through
multi-label learning. We also reviewed existing computer-based food volume estimation
methods in detail, as they have reduced dietitians’ and experts’ intervention and can
accurately determine the portion size of the food in contrast to the self-estimation. Finally,
our research study also explores real-world applications using the prior methodologies for
dietary assessment purposes.

11.1. Findings

Our findings indicate that the ultimate performance of traditional and deep visual
techniques depends on the type of dataset used. This has been observed from the datasets
included from the studies explored in this survey (as shown in Table 1); the three most
commonly used datasets were UECFOOD-256 [43], UECFOOD-100 [42], and Food-101 [59].
UECFOOD-256 (25,088 images and 256 classes) and UECFOOD-100 (14,361 images and
100 classes of food) are Japanese food datasets consisting of Japanese food images captured
by users, whereas Food-101(101,000 images and 101 classes) is an American fast food dataset
containing images crawled from several websites. However, these widely used datasets are
region-specific. Therefore, there is an immense need for generic food datasets for excluding
regional bias from experimental results. In addition, it is also evident from this survey
that deep visual techniques have replaced traditional machine learning methodologies
for food image recognition. As per our survey, systems proposed after the year 2015
mainly use deep learning technologies for food classification purposes. This is due to their
phenomenal classification performance. In the context of classification performance of deep
visual techniques, for food–non-food classification, McAllister et al., 2018 [108] (99.4%),
and Pouladzadeh et al., 2016 [104] (99%), achieved the highest top 1 classification accuracy.
Pouladzadeh et al., 2016 [104], used DCNN and Graph cut on their proposed dataset,
whereas McAllister et al., 2018 [108], used CNN, ANN, SVM, and random forest on the
food 5k dataset. Table 5 further compares classification accuracies of proposed deep visual
models. Recent advancements and exceptional performance of food image classification
methods have now led researchers to explore food images from a much deeper perspective
in terms of retrieval and classification of food ingredients from food images. Therefore,
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we have also explored several proposed solutions for food ingredient recognition and
classification. According to our survey, the system proposed by Chen et al., 2016 [47],
has achieved the highest F1 score, i.e., 95.88% macro-F1 and 82.06% micro-F1, using the
Arch-D method on the UECFOOD-100 dataset (as shown in Table 6). Similarly, automatic
food volume estimation methods have reduced dietitians’ and experts’ intervention and
can accurately determine the portion size of the food in contrast to the self-estimation for
food volume estimation. Single-view methods involve capturing a single image, while
multi-views require multiple images to determine accurate food volumes. The results in
Table 8 show that multi-view methods are mostly better than single-view methods.

Finally, food category recognition, ingredient classification, and volume estimation
techniques helped provide an automatic dietary assessment with reduced human interven-
tion in mHealth apps. For this purpose, we have also surveyed several mobile applications
that employ deep learning methods for dietary assessment.

11.2. Limitations and Future Research Challenges

Despite enhanced performance and classification accuracy, food image recognition and
volume estimation through vision-based approaches may continue to present interesting
future research challenges. This is because the performance of the methodologies used for
food image identification is highly dependent on the source of images in a particular food
dataset. Although a growing number of food categories are being incorporated into food
image datasets such as UECFOOD-256 [43], Food 85 [49], and Food201-segmented [13],
there is still an immense need for generalized, comprehensive datasets for better perfor-
mance evaluation and benchmarking. Moreover, we observed that datasets with a large
number of food images significantly positively impact classification accuracy. However,
keeping these large image datasets updated is another challenge, especially since different
types of foods are being prepared every day.

In addition to this, progressive learning during the classification phase is vital for
food image datasets due to the continuous arrival of new concepts and domain variation
within existing concepts. Similarly, developing frameworks interpretable by highlighting
the contribution of the area of interest will improve the overall human trust level on a
solution in a real-world environment.

Following food recognition, food volume estimation is a particularly complex and
challenging assignment since food items have large variations in shape, texture, and
appearances. Our article categorized food portion estimation methods into single-view
and multi-view methods. Multi-view methods are more accurate; however, most of these
methods also require calibration objects each time and images from different viewpoints,
which makes the usability of these solutions tedious for elderly users.

Finally, there is a need to design and develop solutions that can respond to situations
ethically. In our context, this refers to the removal of any biases concerning region-specific
food preferences. It will help to ensure transparency in existing models.

12. Conclusions

In this work, we explored a broad spectrum of vision-based methods that are specif-
ically tailored for food image recognition and volume estimation. In practice, the food
recognition process incorporates four tasks: acquiring food images from the corresponding
food datasets, feature extraction using handcrafted or deep visual, selection of relevant
extracted features, and finally, appropriate selection of classification technique using ei-
ther traditional machine learning approach or deep learning models followed by food
ingredient classification to provide better insight of nutrient information. The findings
of surveyed studies have shown that 38.1% of datasets are generic, which includes multi-
cultural food dishes. Similarly, 46.2% of surveyed applications implemented CNN for food
recognition, while 45.2% of mobile applications have implemented traditional methods for
feature extraction. For ingredient detection, several studies used CNN due to its superior
performance and recent interest. In addition, 34.5% of techniques for volume estimation
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require multiple images, while the remaining methods used a single image to estimate
food volume.

Despite impeccable performance exhibited by state-of-the-art approaches, there exist
several limitations and challenges. There is an immense need for comprehensive datasets
for benchmarking and performance evaluation of these models, as incorporating large food
image datasets improves the overall performance. Consequently, when dealing with open-
ended and dynamic food datasets, the classifier must be capable of open-ended continuous
learning. However, existing methods have several bottlenecks, which undermine the
food-recognition ability when it comes to open-ended learning, as proposed methods are
prone to catastrophic forgetting. They tend to forget previous knowledge extracted from
images while learning new information. Such methods work well only for fixed food image
datasets. Moreover, our findings indicate that proposed techniques for food ingredient
classification still struggle with performance issues when applied to prepared and mixed
food items. Survey findings further indicate that CNN models employed for visual feature
extraction require labeled datasets for fine-tuning and training. Preparing a labeled food
dataset is a difficult task due to the large variety of food dishes. To tackle this problem,
unsupervised methods based on contrastive learning seem to have good research potential.

Similarly, automatic food portion estimation methods are categorized into two major
categories: single-view-image methods and multi-view-image methods. As discussed
earlier, most of multi-view image methods are more accurate than single view methods,
but multi-view-image methods require complex processing and images from different
angles, resulting in a reduced user retention rate. Furthermore, most of the single and
multi-view methods require calibration objects each time, which has made the usability of
these solutions tedious for elderly patients.

Therefore, there is substantial room for innovative health care and dietary assessment
applications that can integrate wearable devices with a smartphone to revolutionize this
research area. Moreover, dietary assessment systems should address these challenges to
provide better insights into effective health maintenance and chronic disease prevention.
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Abstract: Acute kidney injury (AKI) is a common complication of hospitalization that greatly and
negatively affects the short-term and long-term outcomes of patients. Current guidelines use serum
creatinine level and urine output rate for defining AKI and as the staging criteria of AKI. However,
because they are not sensitive or specific markers of AKI, clinicians find it difficult to predict the
occurrence of AKI and prescribe timely treatment. Advances in computing technology have led to the
recent use of machine learning and artificial intelligence in AKI prediction, recent research reported
that by using electronic health records (EHR) the AKI prediction via machine-learning models can
reach AUROC over 0.80, in some studies even reach 0.93. Our review begins with the background
and history of the definition of AKI, and the evolution of AKI risk factors and prediction models
is also appraised. Then, we summarize the current evidence regarding the application of e-alert
systems and machine-learning models in AKI prediction.

Keywords: artificial intelligence; machine learning; acute kidney injury; prediction model

1. Introduction

Acute kidney injury (AKI), defined as increased serum creatinine level or decreased
urine output, is the most common and adverse complication of hospitalization in pa-
tients [1]. The incidence of AKI among inpatients ranges from 5% to 10%, and it ranges
from 20% to 70% among patients admitted to an intensive care unit (ICU) [2–5]. AKI inci-
dence varies by clinical condition; approximately 20% of patients with Stevens–Johnson
syndrome or toxic epidermal necrolysis developed AKI, and 56% of patients with severe
sepsis developed AKI. Among patients who have undergone surgery, AKI incidence varies
by the type of operation, ranging from 25% for trauma surgery to as high as 50% for cardiac
or aortic surgery [6,7]. Although the quality of medication data and the effectiveness of
treatment have greatly improved recently, the incidence of AKI has continually increased,
possibly due to the aging population and rising comorbidities, such as diabetes mellitus
and hypertension.

After an initial AKI episode, the risk of chronic kidney disease (CKD), long-term
dialysis and mortality are significantly increased in the affected patients [8–14]. According
to a previous meta-analysis, patients with AKI had higher risks of CKD, end-stage renal
disease (ESRD), and mortality than patients without AKI; the hazard ratios were 8.8, 3.1,
and 2.0, respectively [10]. Among patients with AKI, those with dialysis-dependent AKI
had even poorer renal outcomes than patients with non-dialysis-dependent AKI [14,15].
Although investigators had identified that patients with hypertension or diabetes mel-
litus, those requiring readmission for cardiovascular disease or sepsis, those receiving
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cardiovascular surgery or neurosurgery, and those taking nephrotoxic agents (nonsteroidal
anti-inflammatory drugs, radiocontrast, hydroxyethyl starch, and nephrotoxic antimicro-
bials) were prone to experience AKI [16–18]. No accurate tool has been established for
identifying patients at risk of AKI and for predicting AKI occurrence. At the same time,
patients only exhibit imperceptible signs of AKI or even exhibit no clinical symptoms in the
early stages of AKI. Once oliguria, hematuria, or anasarca is present, patients may already
have considerable parenchymal injury and require renal replacement therapy. Although
research on novel biomarkers has increased in recent years, advances in clinical informatics,
artificial intelligence (AI), and machine learning may enable the development of additional
approaches for the prediction and estimation of AKI risk through the processing of elec-
tronic medical records (EMRs) [19]. In this article, we review the progress in the application
of machine learning systems for AKI risk prediction.

1.1. AKI Definition

The definition of AKI has evolved over the past few decades, ranging from the ini-
tial Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease (RIFLE)
classification and the Acute Kidney Injury Network (AKIN) criteria to the most recent
Kidney Disease Improving Global Outcome (KDIGO) guidelines [1,20,21]. The KDIGO
guidelines have been the most widely used definition of AKI over the past decade, and ac-
cording to these guidelines, AKI is divided into stages by severity on the basis of increasing
serum creatinine level and urine output rate data. However, the serum creatinine level
and urine output rate are not sensitive or specific markers of AKI. The interpretation of
changes in renal function is prone to error when conducted on the basis of serum creatinine
level. First, because creatinine is not only glomerular-filtered but also secreted by tubules,
creatinine clearance overestimates the true GFR, especially in cases of decreased renal
function [22,23]. Second, serum creatinine level is influenced by muscle mass (creatinine is
a product of muscle catabolism), diet (a protein-rich diet results in higher serum creatinine
level), and drugs (for example, trimethoprim and cimetidine interfere with the tubular
secretion of creatinine) [24,25]. Third, the production of muscular creatine is influenced by
disease status; for example, it is lower and greater in severe hepatic disease and rhabdomy-
olysis, respectively [22,26]. Lastly, serum creatinine level is not significantly elevated until
48 h after renal injury, and delayed elevation detrimentally affects the timely identification
of renal injury [27,28]. Although urine output rate may reflect renal function decline in
a timelier manner, it is still affected by the patient’s volemic status and is influenced by
diuretic treatment.

Because both serum creatinine level and urine output rate are nonspecific and inac-
curate markers of AKI, multiple novel biomarkers have been investigated for predicting
or diagnosing AKI in a timely manner. The following novel biomarkers have been identi-
fied for the early detection of AKI: cystatin C, neutrophil gelatinase-associated lipocalin,
kidney injury molecule 1, liver type fatty-acid binding protein, urine angiotensinogen
(AGT), and calprotectin. Chen and colleagues reported that serum cystatin C, urine NGAL,
and serum interleukin-18 (IL-18) played valuable roles in the early detection of AKI in
a cardiac care unit (CCU) and that the areas under the receiver operating characteristic
curve (AUROCs) of serum cystatin C, urine NGAL, and serum IL-18 for AKI prediction
were 0.895, 0.886, and 0.841, respectively. Multiple regression analysis indicated that urine
NGAL, serum IL-18, and sodium levels at CCU admission were independent risk factors
for 6-month mortality. Among these factors, urine NGAL had the highest discriminatory
power, and the Youden index indicated that it yielded the most accurate prediction of
patient mortality [29]. Some studies have described pseudo-worsening renal failure (also
termed pseudo-AKI), which is a common clinical condition in patients with cardiorenal
syndrome in which increases in serum creatinine level are induced by diuretic treatment
rather than by tubular necrosis or interstitial nephritis. These studies have suggested that
the novel biomarker calprotectin can distinguish a true AKI episode from a pseudoepisode
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of diuretics-related AKI [30,31]. Chang et al. aptly reported that calprotectin had an
excellent AUROC of 0.946 for predicting intrinsic AKI [32].

Although the novel AKI biomarkers identified in recent studies have greatly im-
proved and enabled the earlier detection of AKI, many difficulties remain in applying
these biomarkers in clinical settings. Vanmassenhove and colleagues noted that the early
diagnosis of AKI by using novel serum and urinary biomarkers remains cumbersome,
especially in settings in which the timing and etiology of AKI are not well defined [33].
Another difficulty is that tests for novel biomarkers are not widely commercially available
or can be expensive and repeat examinations may be required during the process of AKI
diagnosis. Moreover, Marx et al. concluded that it is almost impossible to depend on one
universal serum or urine biomarker to determine the risk, diagnosis, severity, and outcome
of AKI and to discriminate between etiologies of AKI and monitor its course [34]. AKI is a
nonuniform, complex condition with a wide spectrum of causes and pathophysiological
mechanisms; therefore, the requirement of several biomarkers or marker panels that cover
different aspects of AKI seems reasonable for standardizing diagnoses [34,35]. However,
examining multiple novel biomarkers or evaluating the patient’s condition by using marker
panels may further increase the costs of predicting or diagnosing AKI early and accurately.
Therefore, the most cost-effective method appears to be identifying which patients with
AKI are at high risk before arranging a biomarker examination for them.

1.2. AKI Risk Factors and Risk Scores

Some studies that have focused on identifying significant risk factors for AKI have
determined that both patient susceptibilities and exposure are crucial in AKI develop-
ment. Patient susceptibilities include age, gender, race, and comorbidities. Among all
comorbidities, CKD has been identified as a major risk factor for AKI due to its associ-
ated loss of autoregulation, loss of renal reserve, and susceptibility to nephrotoxic agents.
Moreover, diabetes mellitus, hypertension, cardiovascular disease, hyperuricemia, obesity,
and liver disease have all been reported as risk factors for AKI [19,36,37]. Exposure to
sepsis, nephrotoxic agents, surgical intervention, and shock have been identified as contrib-
utors to AKI [16,17]. A multicenter international cross-sectional AKI–EPI study reported
that sepsis, hypovolemia, and nephrotoxic drug exposure were the three most frequently
reported etiologies of AKI in patients with a critical illness [16]. The incidence of AKI
may be higher among patients with poor physical condition after certain exposure; for
example, an aging patient may have a higher risk of AKI after cardiac surgery. However,
AKI risk differs by the physical condition and nephrotoxic exposure; this renders accurate
risk assessment challenging.

After the risk factors for AKI were identified, investigators began focusing on estab-
lishing a risk score by using a combination of independent AKI predictors, assessment of
relative impact, and external validation. A precise risk prediction score must be able to
identify at-risk patients and guide physicians in preventing, diagnosing, and treating the
disease. Different scoring systems have been constructed for assessing the risk of AKI in
specific groups of patients; these prediction models include age, gender, baseline renal
function, and comorbidities, and specific predictors can be added depending on surgery
type, medication, and procedure-related data.

The Mehran risk score was proposed in 2004 for analyzing the risk of AKI and the
requirement of renal replacement therapy in patients with postpercutaneous coronary
intervention; according to later external validation conducted in 2016, the system exhibited
adequate performance for predicting contrast-induced nephropathy in patients with acute
coronary syndrome who underwent coronary angiography [38,39]. Large cohort studies
have revealed that surgery is a major cause of AKI, and the AKI incidence rate ranges
from 25% for trauma surgery to as high as 50% for cardiac or aortic surgery [6,7,40].
Additionally, cardiac surgery is associated with the highest AKI incidence among all types
of surgery, ranging from 2% to 50%, and the dialysis-dependent rate is 1% to 6% [41,42];
therefore, it is unsurprising that several prediction models have been established for AKI
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risk identification in patients who plan to undergo cardiac surgery. The earliest scoring
system EuroSCORE is based on European multicenter data published in 1999, and the
2010 Value of Age, Creatinine, and Ejection Fraction (ACEF) score is also based on data
from European databases [43,44]. The short-term risk (Society of Thoracic Surgeons, STS)
score was created in 2008 by using data from the national database of the American Society
of Thoracic Surgery; this score is used to evaluate adult preoperative cardiac surgery risk,
and professionals have retained and modified this prediction model [45,46]. In an externally
validated study, 196 patients received mitral valve repair, and their STS and ACEF scores
were compared; the STS renal failure score was the most accurate for predicting stage 2
and 3 AKI. Additionally, that study found that ACEF scores exhibited an AUROC similar
to that of STS renal failure scores across all AKI predictions (ACEF and STS score AUROCs:
0.758 and 0.797, respectively), but the ACEF score includes only three prediction factors:
age, creatinine, and ejection fraction; thus, the ACEF score is more convenient for clinical
physicians [41]. In another study that compared the preoperative risk models of AKI in
isolated coronary artery bypass grafting surgery, the EuroSCORE II, STS score, and ACEF
score all performed adequately for predicting stage 3 AKI; additionally, the ACEF score
exhibited satisfactory discriminatory power for predicting postoperative AKI, with an
AUROC of 0.781 [47].

Besides the comorbidities and acute illness conditions, race and epidemiology factors
also showed their impact on AKI incidence according to previous studies. Mathioudakis
and his colleagues had reported that blacks had a 50% higher age- and sex-adjusted odds of
AKI compared to whites (odds ratio: 1.51; 95% CI 1.37–1.66) based on the national databases
of the U.S. This association between the black race and increased risk of AKI persisted after
additional adjustment for multiple AKI-related risk factors [48]. In 2013, a meta-analysis
focused on AKI incidence worldwide reported that the pooled rate of AKI according to
KDIGO criteria showed a difference around the world. According to geographic regions of
the world and patterns of country economies and latitude, the pooled rate of AKI appeared
higher in South versus North America (29.6% versus 24.5%), Southern versus Northern
Europe (31.5% versus 14.7%), and South versus Western or Eastern Asia (23.7% versus
16.7% versus 14.7%). The pooled rate of AKI appeared higher in studies from countries
located south versus north of the equator (27.0% versus 22.6%), in addition, this study also
revealed that the AKI incidence was high in countries that spent >10% versus ≤5% GDP
on total health expenditure (25.2% versus 14.5%) [49].

Considering the influence of race and epidemiology on AKI incidence, some investiga-
tors have validated their scores against data from their country’s health insurance research
database to achieve high prediction performance. An example is the ADVANCIS score,
which is used to predict AKI in patients who receive percutaneous coronary intervention
(PCI) for coronary artery disease; the score was validated against data from Taiwan’s
National Health Insurance Research Database. The ADVANCIS score uses eight clinical
parameters (age, diabetes mellitus, ventilator use, prior AKI, number of intervened vessels,
CKD, IABP use, and cardiogenic shock), and the score ranges from 0 to 22; additionally,
an ADVANCIS score of ≥6 is associated with higher in-hospital mortality risk [50]. In ad-
dition to modifying risk prediction models in accordance with epidemiological factors,
researchers have included novel biomarkers as prediction factors in some modern AKI pre-
diction score systems and have assessed the association between biomarkers and patients’
clinical information. Zhou et al. established a prediction score of AKI in patients with acute
decompensated heart failure by setting urine NGAL and urine AGT as risk factors [51].

Although various scoring systems have been established to address different clinical
conditions, most prediction models can perform only as single-point AKI prediction models,
such as predicting AKI incidence after a specific type of surgery or before the use of a
contrast agent, making it difficult to reflect changes in real-time. Furthermore, some of
these scoring systems cover several factors, including baseline condition, clinical data,
and novel biomarkers, making them too complex for clinical use. With the development
of information technology, some hospitals have integrated these prediction systems into
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their medical informatics systems (MISs), and these clinical risk assessment tools have been
increasingly used because they enable the automated analysis of data. Because race, genes,
disease prevalence, and medication differ between countries, the combined use of an MIS
and risk prediction scores potentially enable the use of data from local databases to assess
the risks of AKI and the requirement of renal replacement therapy.

1.3. From Automated Electronic Alerts to AI

As MISs become more popular, systems that provide automated electronic alerts
(e-alerts) have become increasingly feasible; in such a system, the electronic records and
clinical information of patients are analyzed using an algorithm that predicts whether
early or subclinical AKI is present [52]. These systems are expected to aid patient care by
making clinical evaluation and treatment timelier. Park and his colleagues had investigated
an AKI alert system with automated nephrologist consultation in which clinicians could
generate automated consultations to the nephrology division while patient’s serum creati-
nine concentration elevation of at least 1.5-fold or 0.3 mg/dL from baseline. This study
reported that the early consultation with a nephrologist was greater (adjusted OR, 6.13;
95% CI, 4.80–7.82) and odds of a severe AKI event were reduced (adjusted OR, 0.75; 95%
CI, 0.64–0.89) after introducing the e-alert system. However, mortality was not affected
(adjusted HR, 1.07; 95% CI, 0.68–1.68) [53]. Another study used an e-alert system in ICU
patients, clinician received a “pop-up” message while the e-alert system screened the serum
creatinine data and detected possible AKI events following the KDIGO criteria definition.
Although the sensitivity, specificity, Youden Index and accuracy of the AKI e-alert system
were 99.8, 97.7, 97.5 and 98.1%, respectively, in this study, and the prevalence of diagnosis
AKI and the prevalence of nephrology consultation in the e-alert group was higher than
that in the non-e-alert group. There was no significant difference in the prevalence of
dialysis, rehabilitation of renal function, or death in the two groups [54]. In 2017, a sys-
temic review concluded that an e-alerts system neither reduced mortality (odds ratio [OR],
1.05; 95% CI, 0.84–1.31) nor reduced the incidence of dialysis treatment (OR, 1.20; 95% CI,
0.91–1.57) [55,56]. All six studies included in this meta-analysis used only serum creatinine
change as the trigger for e-alerts, and serum creatinine change is neither a sensitive nor
specific marker of kidney injury, as mentioned in the preceding paragraph. Beyond the
limitation of serum creatinine as an AKI marker, e-alerts systems face challenges when
used in patients without baseline renal function and those with CKD who have higher
baseline creatinine levels and more significant changes in renal function following small
changes in creatinine level; a wide variety of further care is provided by clinicians to
patients after the receipt of e-alerts. To prescribe standardized and evidence-based clini-
cal care after the receipt of e-alerts, a care bundle was built. The most recent guidelines
prescribe no specific management options for AKI, and the treatment strategy is mainly
supportive. In critically ill patients, the occurrence and severity of AKI were reduced
following adherence to KDIGO guidelines detailing the management of fluids, avoidance
of nephrotoxins, monitoring of serum creatinine levels and hemodynamics, and referral
to a specialist. Several studies have reported a decrease in hospital-acquired AKI and
AKI-associated mortality and hospitalization days when the e-alert system was combined
with a care bundle, the patient’s history was analyzed, the patient’s urine samples were
tested, a clinical diagnosis of AKI was established, the course of treatment and testing was
planned, and advice was sought from a nephrologist [57–59]. Machine-learning algorithms
are in high demand and require large volumes of data. With large EMR databases and
powerful computing hardware, scholars have extended the application of machine learning.
Recently, AI has also been applied with various machine-learning algorithms, especially
deep neural networks.
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2. Methods

In order to get a closer look at the investigating of machine-learning studies on AKI
prediction, we searched PubMed for clinical trials and conference abstracts discussing
how machine learning and AI can be used to predict AKI. Online literature searches
of the PubMed database were performed, and the database search was last updated
on 1 December 2020. The search strategy targeted published clinical trials, including
conference abstracts that described the use of machine learning for predicting AKI in adults.
The search strategy and results are detailed in Supplementary Table S1. Two investigators
(T.H. Lee and J.J. Chen) independently evaluated the titles and abstracts of the retrieved
studies, and articles were excluded upon initial screening if their titles or abstracts indicated
that they were clearly irrelevant to the objective of the current study. Full-text reviews were
then performed for the articles deemed potentially relevant to assess their eligibility for
inclusion. The study inclusion criteria were as follows: (i) a study population consisting of
adults and the study having a prospective or retrospective design and (ii) AKI prediction
through machine learning. Case series and reports, conference abstracts, comments on
other studies, and review articles were excluded.

3. Results

In total, 31 studies reported the discriminating ability of machine learning for predict-
ing AKI (Table 1).

As shown in Table 1, the included studies predicted AKI adequately, some studies
had AUROC > 0.8, and the study conducted by Koola et al. had the highest AUROC of
0.93 in logistic regression. The models outperformed diagnosis through novel biomark-
ers. Machine-learning models that were used to predict AKI had four to 57 covariates.
These covariates were epidemiological factors, comorbidities, laboratory data, medications,
and surgery types. We summarize the most commonly used covariates in these machine-
learning prediction models in Figure 1. In the 31 studies, the five most commonly used
covariates were creatinine, age, blood pressure, gender, and diabetes mellitus. Among
these 31 studies, eight studies focused on patients’ undergoing surgery (surgeries were
cardiac or aortic surgeries in five studies), and the most commonly used covariates in
surgical patients are illustrated in Figure 2; the five most common used covariates were
gender, body mass index, age, creatinine, and surgery type.

In Table 2, we summarized the method of feature selection, data splitting and machine
learning algorithm choices in enrolled studies. Different performances on predicting AKI
by using different machine learning algorithms were also listed in this table. More than
half of the enrolled studies used LASSO, XGBoost, or other feature selection methods to
choose the covariates for machine learning, but some studies chose covariates according to
clinical experience or previous reports.
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Figure 1. Covariates are most commonly used in machine-learning prediction models in the enrolled studies. The covariates
are grouped by type. ACEi: angiotensin converting enzyme inhibitor; ARB: angiotensin receptor blocker; AST: aspartate
aminotransferase; BMI: body mass index; BUN: blood urea nitrogen; CKD: chronic kidney disease; LVEF: left ventricle
ejection fraction; WBC: white blood cell count.

Figure 2. Covariates are most commonly used in machine-learning prediction models in enrolled surgical studies. The co-
variates are grouped by type. BMI: body mass index; LVEF: left ventricle ejection fraction.
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Table 1. Summary of machine-learning studies on acute kidney injury (AKI) prediction.

Scheme Year Design Population
AKI

Definition
Timing of AKI

AKI Incidence
(%)

Patient
Number

External
Validation

Continuous
Prediction

Kate et al. [60] 2016 retrospective medical and surgical AKIN during hospitalization 8.9% 25,521 no no
Thottakkara et al. [61] 2016 retrospective surgical KDIGO post operation 36.0% 50,318 no no

Davis et al. [62] 2017 retrospective medical and surgical KDIGO during hospitalization 6.8% 2003 no no
Cheng et al. [63] 2018 retrospective medical and surgical KDIGO during hospitalization 9.0% 60,534 no no

Ibrahim et al. [64] 2018 prospective PCI KDIGO pre and post intervention 4.8% 889 no no

Koola et al. [65] 2018 retrospective medical and surgical KDIGO during hospitalization NR
(41.6% HRS) 504 no no

Koyner et al. [66] 2018 retrospective medical and surgical KDIGO 24 h post admission 14.4% 121,158 no no
Huang et al. [67] 2018 retrospective PCI KDIGO during hospitalization 7.4% 947,091 no no

Lin et al. [68] 2019 retrospective ICU KDIGO during hospitalization 14% 19,044 no no
Simonov et al. [69] 2019 retrospective medical and surgical KDIGO 24 h post admission 11.4–19.1% 169,859 yes no
Huang et al. [70] 2019 retrospective PCI AKIN pre and post intervention 6.4% 2,076,694 no no

Tomašev et al. [71] 2019 retrospective medical and surgical KDIGO during hospitalization 13.4% 703,782 no yes
Adhikari et al. [72] 2019 retrospective surgical KDIGO post operation 46.0% 2901 no no
Flechet et al. [73] 2019 prospective ICU KDIGO during hospitalization 12% † 252 no no
Parreco et al. [74] 2019 retrospective medical and surgical KDIGO during hospitalization 5.6% 151,098 no no

Xu et al. [75] 2019 retrospective medical and surgical KDIGO during hospitalization NR 58,976 no no
Tran et al. [76] 2019 prospective burn KDIGO during hospitalization 50.0% 50 no no

Zhang et al. [77] 2019 retrospective ICU KDIGO 24 h post admission 58.1% 6682 no no
Zimmerman et al. [78] 2019 retrospective ICU KDIGO 72 h post admission 16.5% 46,000 no no

Rashidi et al. [79] 2020 retrospective
and prospective burn and trauma KDIGO 1st week post ICU

admission 50.0% 101 no no

Zhou et al. [80] 2020 retrospective TAAAR NR post operation 12.7% 212 no no
Martinez et al. [81] 2020 retrospective medical and surgical KDIGO emergency department 7.9% 59,792 no no

Lei et al. [82] 2020 retrospective TAAR KDIGO post operation 72.6% 897 no no
Lei et al. [83] 2020 retrospective hepatectomy KDIGO post operation 6.6% 1173 no no
Qu et al. [84] 2020 retrospective acute pancreatitis KDIGO during hospitalization 24.0% 334 no no

Tseng et al. [85] 2020 retrospective Cardiac surgery KDIGO post operation 24.3% 671 no no
Sun et al. [86] 2020 retrospective PCI KDIGO during hospitalization 15.1% 1495 no no

Churpek et al. [87] 2020 retrospective medical and surgical KDIGO during hospitalization 14.3% 495,971 yes no
Hsu et al. [88] 2020 retrospective medical and surgical KDIGO Community acquired AKI 8.4% 234,867 no no

Penny-Dimri et al. [89] 2020 retrospective Cardiac surgery Other * post operation 6.5% 97,964 no no
Li et al. [90] 2020 retrospective Cardiac surgery KDIGO post operation 37.5% 5533 no no

* The AKI definition in this study was as follows: (1) new postoperative and in-hospital serum creatinine level > 200 mmol/L AND a doubling or greater increase in creatinine over the baseline preoperative
value AND the patient did not require preoperative renal replacement therapy; and (2) a new inhospital requirement for renal replacement therapy. † Only reported the percentage of AKI stage 2 and stage 3.
AKI: acute kidney injury; ICU: intensive care unit; PCI: percutaneous coronary intervention; TAAR: total aortic arch replacement; TAAAR: thoracoabdominal aortic aneurysm repair.
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Table 2. Summary of data processing and performance of machine-learning algorithm in enrolled studies.

Study Feature Selection Algorithm Feature Selection Method Data Splitting Machine Learning Algorithm AUROC

Kate et al. [60] NR NR ten-fold cross-validation

naïve Bayes 0.654
SVM 0.621

decision trees 0.639
logistic regression 0.660

Thottakkara et al. [61] LASSO embedded method
training data (70%); validation

(30%)

naïve Bayes 0.819
generalized additive model 0.858

logistic regression 0.853
support vector machine 0.857

Davis et al. [62]
according to clinical experience

or previous report NR five-fold cross-validation

random forest 0.73
neural network 0.72

naïve Bayes 0.69
logistic regression 0.78

Cheng et al. [63] according to clinical experience
or previous report NR ten-fold cross-validation

random forest 0.765
AdaBoostM1 0.751

logistic regression 0.763
Ibrahim et al. [64] LASSO embedded method Monte Carlo cross-validation logistic regression 0.79

Koola et al. [65] LASSO embedded method five-fold cross-validation

logistic regression 0.93
naïve Bayes; 0.73

support vector machines; 0.90
random forest; 0.91

gradient boosting 0.88
Koyner et al. [66] tree-based method embedded method ten-fold cross-validation gradient boosting 0.9

Huang et al. [67] XGBoost and LASSO embedded method
training data (70%); validation

(30%)
gradient boost; 0.728

logistic regression 0.717

Lin et al. [68] according to clinical experience
or previous report NR five-fold cross-validation SVM 0.86

Simonov et al. [69] according to clinical experience
or previous report NR training data (67%); validation

(33%) discrete-time logistic regression 0.74

Huang et al. [70]
stepwise backward selection,
LASSO, premutation-based

selection
embedded method training (50%); validation (50%) generalized additive model 0.777

Tomašev et al. [71] L1 regularization embedded method training (80%); validation (5%);
calibration (5%); test (10%) recurrent neural network 0.934
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Table 2. Cont.

Study Feature Selection Algorithm Feature Selection Method Data Splitting Machine Learning Algorithm AUROC

Adhikari et al. [72] F-test filter method five-fold cross-validation random forest 0.86

Flechet et al. [73] according to clinical experience
or previous report NR NR random forest 0.78

Parreco et al. [74] NR NR NR
gradient boosting; 0.834
logistic regression; 0.827

deep learning 0.817
Xu et al. [75] gradient boosting embedded method five-fold cross-validation gradient boosting 0.749

Tran et al. [76] NR NR Scikit-learn cross validation k-nearest neighbor 0.92
Zhang et al. [77] XGBoost embedded method bootstrap validation gradient boosting 0.86

Zimmerman et al. [78] logistic regression embedded method five-fold cross-validation
logistic regression 0.783

random forest 0.779
neural network 0.796

Rashidi et al. [79] according to clinical experience
or previous report NR Scikit-learn cross validation recurrent neural network 0.92

Zhou et al. [80] NR NR five-fold cross-validation

logistic regression 0.73
linear kernel SVM 0.84

Gaussian kernel SVM 0.77
random forest 0.89

Martinez et al. [81] LASSO embedded method ten-fold cross-validation random forest not provided

Lei et al. [82] NR NR training data (70%); validation
(30%) Gradient boosting 0.8

Lei et al. [82] NR NR
training data (70%); validation

(30%)

Gradient boosting 0.772
Light gradient boosted machine 0.725

random forest 0.662
DecisionTree 0.628

Qu et al. [84] NR NR ten-fold cross-validation

random forest 0.821
classification and regression tree 0.8033

logistic regression 0.8728
extreme gradient boosting 0.9193

Tseng et al. [85] tree-based method embedded method five-fold cross-validation
random forest 0.839

random forest with extreme gradient
boosting 0.843

Sun et al. [86] Boruta algorithm wrapper method ten-fold cross-validation
random forest 0.82

logistic regression; 0.69
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Table 2. Cont.

Study Feature Selection Algorithm Feature Selection Method Data Splitting Machine Learning Algorithm AUROC

Churpek et al. [87] gradient boosting embedded method ten-fold cross-validation gradient boosted machine 0.72
Hsu et al. [88] XGBoost and LASSO embedded method five-fold cross-validation logistic regression; 0.767

Penny-Dimri et al. [89] tree-based method embedded method five-fold cross-validation
logistic regression; 0.77

gradient boosted machine 0.78
neural networks 0.77

Li et al. [90] LASSO embedded method ten-fold cross-validation Bayesian networks 0.736

AUROC: area under the receiver operating characteristic curve; LASSO: least absolute shrinkage and selection operator; NR: not reported; SAPS: simplified acute physiology score; SVM: support vector machine;
XGB: eXtreme Gradient Boostin.
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4. Discussion

Among these 31 studies, there were several studies that are worth addressing. By re-
viewing these studies, we found that most of these studies lacked external validation,
which implies that the results cannot be extended to other populations. Two studies per-
formed external validation. Simonov and colleagues established a real-time AKI prediction
model by using an electronic health record (EHR) dataset of 169,859 hospital admissions in
three hospitals. The training dataset contained the data of 60,701 patients, and the internal
validation dataset contained the data of 30,599 patients from the same hospitals; external
validation was performed with the data sets of 43,534 and 35,025 patients from two other
hospitals. The incidence of AKI was similar in the training and external validation datasets
(19.1% and 18.9%, respectively). Discrete-time logistic regression was used to train the
model, a total of 35 covariates were included in the fully adjusted models, and the AUROCs
for predict sustained AKI, dialysis, and death were 0.77 (95% CI, 0.76–0.78), 0.79 (95% CI,
0.73–0.85), and 0.69 (95% CI, 0.67–0.72), respectively [69,91]. This real-time prediction
model was based on large cohorts including patients requiring hospitalization and those in
surgical and ICU settings, and the external validation of this model was performed using
the data from two other institutions, with high predictive performance found across the
three diverse care settings; the subsequent prospective cohort study indicated that the
clinical alert system based on this prediction model was successfully integrated into the
EHR system [91]. However, this real-time prediction model still had several limitations.
First, patients whose creatinine levels were ≥4 were excluded during the development
of this prediction model, but the risk and incidence of AKI and dialysis requirements are
especially high in this population. Second, this prediction model did not include urine out-
put, one of the most sensitive markers of AKI, and thus, could delay diagnosis in patients
who already had oliguria but had increased serum creatinine levels. Third, more than 30
covariates were included in this prediction model; some of these covariates are infrequently
checked laboratory data, such as bicarbonate and chloride levels. Moreover, as mentioned
in this report, only the model containing time-updated laboratory values had similar per-
formance in predicting AKI, sustained AKI, dialysis, and death. Unless all of these items
are regularly checked in the ICU, it is difficult to evaluate AKI risk in a timely manner.
Another study that performed external validation was published by Churpek et al., the data
of 48,463 admissions were included in training and internal validation datasets, and the
data of 447,508 admissions were used for external validation. The AUROC for predicting
development AKI within 48 h was 0.72 for the internal validation cohort and the ARUROC
of the two external validation cohorts were 0.67, 0.69, whereas the AUROC for predicting
the receipt of renal replacement therapy within 48 h was 0.95. However, this study had a
similar limitation to that of the study by Simonov et al.; the study excluded patients with
serum creatinine concentration over 3.0 mg/dL on admission [87]. Higher creatinine levels
and chronic kidney disease are known risk factors for AKI. It is unfortunate that the only
two studies with external validation coincidentally excluded the high-risk population from
the beginning.

In addition to the lack of external validation, most of the enrolled studies only pre-
dicted AKI risk at a single time point and could not provide continual predictions. Given
that patients’ clinical conditions change from time to time, using laboratory, medication,
and vital sign data at a single time point to perform single-point AKI risk prediction
may not reflect the real-time changes of patients. One study investigated continuous
risk prediction by using novel neural network algorithms. Such algorithms can process
time-series data to produce time-dependent forecasts rather than forecasts that depend
on summary data, as is the case in traditional methods. Tomašev et al. used the recurrent
neural network to demonstrate a deep-learning approach for the continuous prediction of
AKI; the approach was based on recent work on modeling adverse events from EHRs. That
study was based on data provided by the United States Department of Veterans Affairs; the
data were the data of 703,782 adult patients across 1243 health care facilities in the United
States. By analyzing 6-hourly EHR data during hospitalization, the model predicted 55.8%
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of all inpatient episodes of AKI and 90.2% of all AKIs that required subsequent dialysis.
The AUROC of predicting AKI within 24-, 48-, and 72-h time windows was 0.934, 0.921
and 0.914, respectively [71]. However, the high discriminative power of this system for
AKI prediction derived from a large manipulated and processed dataset; the total number
of independent entries in the dataset was approximately 6 billion according to the authors,
which means that data cleaning and processing were difficult and had been executed by
experts in data science. External validation of this successful result may be difficult due
to the differing EHR systems, clinical pathways, treatments, and examination frequencies.
Therefore, it may be crucial to establish an AI-assisted prediction model on the basis of
a hospital’s unique clinical practices. Although real-time prediction was not performed,
another study attempted to use time-series variables to improve risk prediction. Before
this investigation, most postoperative AKI prediction models were based on preoperative
variables. Adhikari et al. published MySurgeryRisk, a machine-learning algorithm that
uses random forests to predict the postoperative AKI risk within the 3 and 7 days after
surgery and the overall AKI risk. The data of 2911 patients who underwent surgery were
internally validated. By combining intraoperative physiological time-series covariates
with preoperative variables, machine-learning prediction models achieved an AUROC
of 0.86 for predicting 7-day postoperative AKI outcomes, and AUROC was 0.84 when
only the preoperative covariates of the same cohort were used. That study confirmed that
postoperative AKI prediction had higher sensitivity and specificity when machine learning
was applied for the dynamic incorporation of intraoperative data [72].

Most of the enrolled studies used independent cohorts; it is challenging to evaluate
whether machine learning truly improved AKI risk prediction compared with the original
statistics. Under this consideration, Huang et al. used the same cohort and candidate
variables that were used to develop the Cath/PCI Registry AKI model as well as the data
from the American College of Cardiology National Cardiovascular Data Registry collected
in 1694 hospitals. That retrospective study analyzed 947,091 patients receiving PCI and
concluded that the risk prediction model containing 13 variables (age, prior heart failure,
cardiogenic shock within 24 h, cardiac arrest within 24 h, diabetes mellitus, coronary artery
disease, heart failure within 2 weeks, preprocedure GFR and hemoglobulin, admission
source, body mass index, elective or emergency PCI, and preprocedure left ventricular
ejection fraction), which was validated using the generalized additive model, performed
adequately, with an AUROC of 0.752 (95% CI, 0.749–0.754) and performed more highly
than the original Cath/PCI Registry AKI model (AUROC, 0.711; 95% CI, 0.708–0.714). This
machine-learning model also had a significantly wider predictive range than the Cath/PCI
Registry AKI model did (25.3% vs. 21.6%, p < 0.001) and was more accurate than that
model in stratifying patient risk for AKI [67].

Although machine-learning algorithms may not have matured yet and still have
several limitations, they have already shown impressive performance and sensitivity in the
early detection of AKI, giving clinicians useful information regarding further adverse events
and long-term prognosis. By reviewing studies focused on the application of machine
learning to AKI prediction, we showed that machine-learning algorithms have had a high
performance for AKI prediction not only in inpatients but also in the surgical population.
To date, whether the use of machine-learning algorithms for the earlier prediction of
AKI risk can truly improve the prognosis of AKI remains questionable, but its ability on
predicting AKI is recognized.

5. Conclusions

AKI is the most common and adverse potential complication of hospitalization, and it
has a considerable negative impact on short-term and long-term patient outcomes. Al-
though current guidelines use serum creatinine level and urine output rate for defining
AKI and as the staging criteria of AKI, these markers are not sensitive or specific for AKI.
With the advances in techniques, digitization of MISs and EHRs can provide more and
timing information from patients’ underlying disease to real-time vital sign variability
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which increases the performance and sensitivity of machine-learning algorithms. Current
studies reported that the AUROC of machine-learning algorithms on AKI prediction can
be over 0.80. However, most of the studies were retrospective analyses and lacked external
validation which implicated the results of the proposed models cannot be generalized
outside the experimental population, and the variability of EHRs across hospitals may limit
the widespread use of these prediction models. Besides, even though the MISs and EHRs
provide continuous clinical records of patients but only one study performed continual risk
prediction by using the recurrent neural network with a deep-learning approach, and only
one study used time-series covariates to improve risk discrimination demonstrating that
the use of machine learning to address large datasets is not popularized and continuous
prediction of AKI via machine-learning algorithms still needs to be improved. Considering
that the influencing factors, clinical and laboratory parameters might change over the
hospitalization, the longitudinal evaluation to predict AKI continuously might be the
next challenge of application of machine learning on AKI prediction. When the machine
learning algorithms can provide real-time informatics of AKI prediction by dealing with
complex databased of EHR, it might be worthwhile to look forward to the combination of
machine-learning algorithms and e-alert systems. At that time, by using these machine-
learning algorithms but not only serum creatinine level, e-alert systems will have a chance
to provide more accurate and earlier alarm of AKI which might improve the prognosis of
AKI after combining with the care bundle.
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Abstract: The prevalence rate for childhood asthma and its associated risk factors vary significantly
across countries and regions. In the case of Morocco, the scarcity of available medical data makes
scientific research on diseases such as asthma very challenging. In this paper, we build machine
learning models to predict the occurrence of childhood asthma using data from a prospective
study of 202 children with and without asthma. The association between different factors and
asthma diagnosis is first assessed using a Chi-squared test. Then, predictive models such as logistic
regression analysis, decision trees, random forest and support vector machine are used to explore
the relationship between childhood asthma and the various risk factors. First, data were pre-
processed using a Chi-squared feature selection, 19 out of the 36 factors were found to be significantly
associated (p-value < 0.05) with childhood asthma; these include: history of atopic diseases in the
family, presence of mites, cold air, strong odors and mold in the child’s environment, mode of birth,
breastfeeding and early life habits and exposures. For asthma prediction, random forest yielded the
best predictive performance (accuracy = 84.9%), followed by logistic regression (accuracy = 82.57%),
support vector machine (accuracy = 82.5%) and decision trees (accuracy = 75.19%). The decision tree
model has the advantage of being easily interpreted. This study identified important maternal and
prenatal risk factors for childhood asthma, the majority of which are avoidable. Appropriate steps
are needed to raise awareness about the prenatal risk factors.

Keywords: asthma; machine learning; prediction; risk factors; environment; prevention; pediatrics

1. Introduction

Asthma is the most common chronic disease among children in the world. It is a
multi-factorial disease caused by a chronic inflammation of the airways. This chronic
respiratory condition is characterized by several persistent symptoms, including cough,
wheeze, dyspnea, and chest tightness. According to the world health organization, asthma
affected 262 million people and was responsible for 461,000 deaths worldwide in 2019 [1,2].
Globally, asthma affects approximately 334 million people per year and 14% of the world’s
children experience asthma symptoms [3]. Even though the prevalence of childhood asthma
varies between countries across the world, studies have shown that asthma prevalence
is increasing at a high rate in developing countries [4], especially in densely populated
areas [5]. In contrast, many developed countries have managed to slow down the increasing
rate of asthma prevalence among their populations [6]. In Morocco, asthma is much more
prevalent in children than in adults. The prevalence rate of asthma in children between the
ages of 13 and 14 is 20%, whereas for adults, it varies between 15% and 17% [7]. Given the
complex nature of this disease, several factors can be responsible for the increasing rate of
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childhood asthma prevalence, including genetic predisposition factors [4], environmental
factors [8], prenatal and postnatal factors as well as the other factors related to the health
of the mother during pregnancy and delivery periods. Studies have shown that the
mother’s overall health during pregnancy in the prenatal period is significantly associated
with developing asthma in the early years of childhood [9]. In fact, studies have shown
that maternal diseases during pregnancy such as diabetes, atopic diseases, asthma and
hypertension increase the risk of asthma for the child [10]. Moreover, other studies have
also shown that forceps-assisted deliveries, maternal smoking during pregnancy, and low
birth weight may also present significant risk factors for childhood asthma [10–12]. On
the other hand, it was shown in [13] that frequent maternal exposure to farm animals
during pregnancy can help prevent childhood asthma [14]. In the case of Morocco, the
non-availability of medical data due to patients’ privacy and the lack of electronic health
records makes scientific research on diseases such as asthma very challenging and limited.
However, because of the increasing prevalence of asthma among the pediatric population,
focused efforts must be dedicated to providing a better understanding of the disease and
thus elaborate better prevention and management strategies for childhood asthma. In
this study, we utilize data from the Ibn Sina Hospital Center (CHUIS) to contribute to the
assessment of the Asthma situation in Morocco. We first investigate perinatal, prenatal,
postnatal and environmental risk factors for asthma, using patient data. We then use
machine learning models to predict the occurrence of childhood asthma and to quantify
the importance of the identified risk factors. It is worth pointing out that previous studies
have focused on statistical methods to infer associations between asthma and risk factors.

2. Materials and Methods

In this section, we describe the process followed in our study (Figure 1). One of the
main goals of this work is to lay the ground for future work on uncovering asthma risk
factors in Morocco. Thus, we use a Moroccan data set.

Figure 1. Flow chart of the study.

2.1. Data Collection

A case-control study of 202 children was previously conducted in the Ibn Sina Hospital
Center (CHUIS). A dataset resulted from this study and was made available to us for
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analysis. The study consists of children with (N = 101) and without (N = 101) asthma.
The data collection was conducted over a period of 4 months, from May to September
2018. The age of the children included in the study varies from 7 months to 12 years.
The data collection took place in the pneumology, allergology and infectiology service
at the Children’s Hospital in Rabat. The doctors participating in the study interviewed
the child’s mother in the local language (Moroccan dialect). The questions used for the
interviews were designed by pediatricians to gather information about prenatal, perinatal
and postnatal periods, as well as factors that are potentially associated with childhood
asthma, including family history, environment, and other exposure features during early
childhood (first two years of life). All variables were binary categorical.

2.2. Inclusion Criteria

The inclusion criteria used by the medical doctors for data collection are as follows:

• Age range: this ranges from 7 months to 12 years.
• Place of residence: only patients living in the city of Rabat or its outskirts were

included in the study.
• Confirmed asthma diagnosis: the diagnosis was based on a clinical examination by

a pediatrician who assessed tangible symptoms such as wheezing, chest tightness,
difficulty in breathing induced by physical exercise and dry coughs, especially at night.

2.3. Data Analysis

Data were analyzed using the R software. First, we started with a primary feature
selection using a Chi-squared test. This bivariate analysis allowed to assess the association
between the response variable and the other variables in the dataset. Variables associations
with p-value < 0.05 were considered to be significant risk factors for childhood asthma.
For the modeling part, we partitioned the data into two subsets: 80% for training and
20% for testing. Second, we performed logistic regression. We used backward stepwise
logistic regression to select the final model where only significant variables (p-value < 0.05)
were retained in the final model. In order to identify the best model for predicting child-
hood asthma, we also built predictive models based on Decision Tree and Random forest
techniques. Then, we used both the training and the testing data sets to compare the
performance of the different models and identify the model that better predicts childhood
asthma diagnosis. To evaluate the predictive ability of the different models, we used
different performance metrics, namely accuracy, F1 scores, AUC-ROC, sensitivity (the false
positive, Sn) and specificity (the false negative, Sp).

3. Results

Table 1 displays descriptive characteristics and the association between prenatal,
perinatal, postnatal factors and childhood asthma, measured by the Chi-squared test of
independence. The history of having maternal atopic tendencies and environmental factors
such as cold air, strong odors, reported dust mites, pollen, mold in the child’s environment
and having pets (during the prenatal, perinatal and postnatal periods) were all significantly
associated with childhood asthma (p-values < 0.05). Other significant factors are related to
the mother’s state of health, including consumption of “antibiotics/paracetamol” during
pregnancy, a cesarean mode of birth, maternal overweight during pregnancy and a paternal
age of more than 34 years at the child’s birth. In the postnatal period and early childhood,
other features were also significant predictors for asthma; these include breastfeeding,
dietary diversity when the child is aged between 4 and 6 months and also when the child is
aged over 6 months. Overweight and the use of antibiotics by the child in the first two years
were also significantly associated with childhood asthma in the bivariate analysis.
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Table 1. Descriptive characteristics and results of Chi-squared test of independence for the study sample.

Characteristics (n = 202)
Children with Asthma

(N = 101, 50%)
Children without Asthma

(N = 101, 50%)
Chi-Square Test

(p-Value)

Factors related to family history

Maternal atopy 28 (84.85%) 5 (15.15%) 1.263 × 10−5

Paternal atopy 17 (65.38%) 9 (34.62%) 0.09361

History of an atopic disease in brothers or sisters 9 (56.25%) 7 (43.75%) 0.6032

Personal atopic dermatitis 13 (61.90%) 8 (0.3809524) 0.2502

Factors related to the child environment

Reported dust mites in the child environment 31 (96.87%) 1 (3.13%) 8.089 × 10−9

Reported pets (cats) in the child environment 7 (77.78%) 2 (22.22%) 0.08897

Reported pollen in the child environment 13 (0.7222222) 5 (27.78%) 0.04875

Reported mold in the child environment 12 (85.71%) 2 (14.20%) 0.005719

Reported cold airflow in the child environment 15 (83.34%) 3 (16.67%) 0.003115

Reported respiratory infections in family members (cold) 23 (76.67%) 7 ( 23.34%) 0.001589

Reported respiratory infections in family members (flu) 15 (62.50%) 9 (37.5%) 0.1931

Reported respiratory infections in family members (sinusitis) 5 (83.34%) 1 (16.67%) 0.09819

Prenatal, Perinatal and postnatal factors

Maternal age ≤ 25 years 33 (76.75%) 10 (23.26%) 8.027 × 10−5

Maternal age ≥ 35 years 5 (62.5%) 3 (37.50%) 0.4717

Paternal age ≤ 24 years (62.50%) (37.50%) 0.4717

Paternal age ≥ 34 years 22 (%) 7 (%) 0.002679

Maternal obesity during pregnancy 15 (75%) 5 (25%) 0.01878

Maternal anxiety during pregnancy 16 (69.57%) 7 (30.43%) 0.04674

Exposure to secondhand smoking during pregnancy 25 (56.82%) 19 (43.18%) 0.3076

Consumption of antibiotics/paracetamol during pregnancy 9 (90%) 1 (10%) 0.009641

Underweight child 9 (75%) 3 (25%) 0.07483

Overweight child 15 (68.18%) 7 (31.81%) 0.07149

Prematurity 5 (62.50%) 3 (37.50%) 0.4717

Cesarian mode of birth 59 (60.83%) 38 (39.17%) 0.003177

Breastfeeding 55 (38.73%) 87 (61.27%) 8.876 × 10−7

dietary diversity for children aged between 4 and 6 months 21 (37.50%) 35 ( 62.50%) 0.02816

dietary diversity for children aged more than 6 months 80 (54.79%) 66 (45.20%) 0.02816

Factors related to early childhood

Overweight during the first 2 years 11 (78.57%) 3 (21.43%) 0.02705

Consumption of antibiotics during first 2 years 32 (74.42%) 11 ( 25.58%) 0.0003174

Exposure to pollution in the first two years 14 (60.87%) 9 (39.13%) 0.2693

3.1. Logistic Regression

Despite its name, logistic regression (LR) is a classification model rather than a regres-
sion model. It is an efficient method for binary and linear classification. For a model with
two predictors, x1 and x2, and one binary (Bernoulli) response variable Y, the probability
for Y = 1, denoted as p = P(Y = 1), is expressed as

p =
1

1 + e−(b0+b1x1+b2x2)
(1)

where b0 + b1x1 + b2x2 are parameters of the model. LR is the transformation of a linear
regression using the Sigmoid function to restrict the value of p to be between 0 and 1.
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Table 2 displays the multivariate odds ratios (OR) and the confidence intervals
(2.5–97.5%) obtained by the statistical analysis of the logistic regression model. Envi-
ronmental factors, including reported dust mites and the cold airflow in the child’s environ-
ment were the most significant factors in predicting childhood asthma. The chances
of having asthma were approximately a hundred times higher among children who
were born in environments with a reported presence of mites (adjusted OR = 101.23,
95% CI = 13.39–2271.27) and 21 times higher in an environment with a persistent cold
airflow (adjusted OR = 21.62, 95% CI = 2.18–335.19). Having family members with cold (ad-
justed OR = 5.98, 95% CI = 1.32–31.15) and flu (adjusted OR = 11.61, 95% CI = 2.31–76.33)
in the environment of the child during the neonatal period also increases the chances
of childhood asthma. Among mothers who reported having a history of an atopic dis-
ease, the odds of having childhood asthma were approximately nineteen-fold higher
(adjusted OR = 19.04, 95% CI = 3.83–126.39). Parents age at birth was also a relevant factor
to predict childhood asthma. A maternal age that is above 35 years (adjusted OR = 53.13,
95% CI = 4.24–850.82) or below 25 years (adjusted OR = 7.19, 95% CI = 1.81–33.17) as well
as a paternal age that is above 34 years (adjusted OR = 13.50, 95% CI = 2.66–84.79) were
found to be highly associated with childhood asthma in this model. The mode of birth was
also an important factor in predicting childhood asthma, where the chances of developing
asthma were almost seven-fold higher among children who were delivered via a cesarean
section (adjusted OR = 6.77, 95% CI = 2.12–25.75). Breastfeeding in the first two years
(adjusted OR = 0.03, 95% CI = 0.01–0.12) and diversifying the baby’s diet between 4 and
6 months of age (adjusted OR = 0.35, 95% CI = 0.09–1.24) were found to be protective
against childhood asthma.

Table 2. Association of prenatal factors with childhood asthma using univariate logistic regression.

Variable OR 2.5% 97.5%

Maternal atopy 19.04 3.83 126.39

Reported dust mites in the child’s environment 101.23 13.39 2271.27

Maternal age ≤ 25 years 7.19 1.81 33.17

Maternal age ≥ 35 years 53.13 4.24 850.82

Cold air in the child environment 21.62 2.18 335.19

Respiratory infections in family members (cold) 5.98 1.32 31.15

Respiratory infections in family members (flu) 11.61 2.31 76.33

Paternal age ≥ 34 years 13.50 2.66 84.79

Cesarean mode of birth 6.77 2.12 25.75

Breastfeeding in the first two years 0.03 0.01 0.12

Dietary diversity for children aged between 4 and 6 months 0.35 0.09 1.24

3.2. Decision Tree Model

Decision trees are one of the most popular non-parametric supervised learning meth-
ods for classification and regression. The goal of a decision tree is to create a model that
predicts a targeted value by learning simple decision rules from the data features. For
decision trees, internal nodes denote a test on an attribute, the branch represents an out-
come of the test, and the leaf node holds a class label. In our case, we built a decision
tree classifier using the features selected based on the Chi-squared test. When training the
model, the metric used to perform the splits is the Gini’s Diversity Index (GDI), which is a
measure of the node’s impurity. The size of the tree was determined by setting a minimum
of 10 observations per leaf node. Each node shows respectively:

• The predicted class (‘Asthma’ or ‘Not asthma’).
• The predicted probability of asthma diagnosis.
• The percentage of observations in the node.
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The decision tree in Figure 2 indicates that the most influential attribute in determining
childhood asthma is the reported ‘presence of dust mites in the child’s environment’.

For the decision tree interpretation, the first question asked is ’ are there any reported
dust mites in the child’s environment?’. If the answer is yes, the model verifies if the
patient’s mother has reported having a history of atopic diseases. If the answer is no,
the model verifies if the mother had a cesarean mode of birth, if the answer is now yes,
the decision tree classifies the case as non-asthmatic. Similarly, all the tree branches are
interpreted in the same manner.

Figure 2. The obtained decision tree model-based classifier.

3.3. Random Forest Model

Random forest is a very effective ensemble learning technique that combines many
classifiers to provide solutions to complex problems. After using decision trees, we decided
to use random forest, which consists of many decision trees. The ’forest’ of trees generated
by the random forest algorithm is trained through bagging or bootstrap aggregating. In-
creasing the number of trees increases the precision of the outcome and reduces overfitting.
In this work, we used 100 trees to ’grow’ the forest (using a full feature set). The number
of features randomly selected to perform each split was set to be the square root of the
number of features, which is a typical choice. Since in this study, we have 36 features in
total, the number of features that are randomly selected at each node is set to 6 features.
The variable importance is computed using the mean decrease in the Gini index. Table 3
shows the 19 most important risk factors associated with childhood asthma.
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Table 3. Variable importance using a random forest model.

Variable Mean Decrease Gini

Breastfeeding 9.49

Reported dust mites in the child’s environment 9.37

Maternal atopy 4.93

Cesarean mode of birth 4.18

Maternal age of ≤25 years 3.99

Antibiotic use during the first 2 years 3.59

Respiratory infections in family members (cold) 3.41

Paternal age of ≤25 years 2.85

Maternal obesity during pregnancy 2.05

Respiratory infections in family members (flu) 1.89

Consumption of antibiotics/paracetamol during pregnancy 1.77

Dietary diversity for children aged between 4 months and 6 months old 1.72

Dietary diversity for children aged more than 6 months 1.62

Cold airflow in the child environment 1.57

Strong odors in the child’s environment 1.39

Overweight in the first 2 years 1.27

Pollen in the child environment 1.14

Mold in the child environment 0.99

Maternal age of ≥35 years 0.82

3.4. Support Vector Machine

Support vector machine is a machine learning technique that relies on kernel functions
to provide the best fit to observed data [15]. It aims to map a high-dimensional feature
space to the considered output. Different kernel functions can be adopted [16]. In this work,
we assume a Gaussian kernel function. Hence, the prediction takes in the following form

Ŷ =
m

∑
i=1

θi exp(
− ‖ X − xi ‖

2

γ
), (2)

where X = [X1, . . . , Xp], xi is the value of the feature vector that corresponds to the ith
observation, m is the number of observations, γ is a tuning parameter, and the θi’s can be
computed based on the cost function by evaluating the difference between the predicted
values and the real values of pollutants’ concentrations, to a threshold ǫ [17].

Table 4 describes the obtained results when the SVM model is adopted. It is shown
that SVM did not bypass logistic regression and random forest but still yielded better
results than decision trees.

3.5. Comparison of Performance of Models

In terms of predictive ability, the random forest yielded the best performance. It
provided the most accurate results when predicting childhood asthma; it correctly classified
87.8% of the cases when applied to the test data set. The decision tree model has correctly
classified 85.3% of the test cases. The decision tree identified “Asthma” cases with 91.30%
sensitivity and “Not asthma” cases with 78% specificity. When evaluated on the test data
set, the logistic regression model performed with an accuracy of 85.36%, a sensitivity of
83% and a 83% specificity (see Table 4). To settle the ambiguous results of the contest
between logistic regression and decision trees. We compute a 10-fold cross validation
and F1 scores, and we display an AUC-ROC for each one of our models. The average
accuracy for 10-folds cross validation showed that random forest outperformed logistic
regression and SVM. On the other hand, decision trees scored the lowest accuracy, but are
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still helpful in terms of interpretability. Although random forest yielded the best accuracy
results, it is evident from the plot in Figure 3 that the AUC for the logistic regression ROC
curve is higher than that for random forest and decision trees. This means that logistic
regression did a better job of classifying the positive class in the dataset. One may ask why
the AUC for logistic regression is better than that of random forest, when random forest
“seems” to outperform logistic regression with respect to accuracy. Our answer would
be that accuracy is computed at the threshold value of 0.5. While AUC is computed by
adding all the “accuracies” computed for all the possible threshold values. ROC can be
seen as an average (expected value) of those accuracies when they are computed for all
threshold values.

Figure 3. Models’ ROC curve.

Table 4. Performance comparison of different prediction models.

Performance Metrics Logistic Regression Decision Tree Random Forest SVM

F1 score (y = Asthmatic) 0.89 0.87 0.86 0.81

F1 score (y = Not Asthmatic) 0.83 0.82 0.89 0.80

Accuracy (%) 85.36 85.3 87.8 80

Average accuracy for 10-fold cross validation (%) 82.57 75.19 84.9 82.5

Sensitivity, Sn (%) 83 91 87 67

Specificity, Sp (%) 88 78 88 94

4. Discussion

In the present study, we found that environmental factors, prenatal maternal expo-
sures, complications during pregnancy, perinatal and postnatal personal exposures, along
with other factors related to parental histories of atopy, can significantly increase the risk
of asthma prevalence in pre-schooled children (children under 7 years old). As observed
in previous studies [18,19], maternal histories of atopy were associated with an increased
risk of childhood asthma. In this study, approximately 23.76% of the interviewed mothers
reported having a history of an atopic disease. This study found that parental age at birth
is significantly associated with the prevalence of asthma in 7-year-old children. Indeed, a
maternal age higher than 35 years or lower than 24 were associated with high risks of child-
hood asthma, while a paternal age higher than 35 years was also associated with high risks
of developing childhood asthma. For instance, 21.78% of asthma cases reported a paternal
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age under 24 years. In previous studies, young maternal age and young paternal age were
found associated with various child outcomes, including asthma prevalence in offspring;
our results indicate that also maternal and paternal age of ≥35 years could be risk factors
for childhood asthma [20–22]. In another study, using data from the Swedish Medical Birth
register [23], results have shown that a decreased risk of asthma prevalence in childhood
is associated with an increasing paternal age; this result was also confirmed in [22]. The
difference in our results may reflect contrasting adverse factors related to behavioral, social
and lifestyle agents that can characterize a middle income country such as Morocco[24]. In
line with many studies [25–28], our results indicate that reported environmental factors
such as cold airflow, strong odors, reported dust mites, pollen, mold and having pets in the
neonatal period are significantly associated with the prevalence of childhood asthma. In
this study, approximately 30.69% of asthma cases reported dust mites in their environments,
12.87% reported the presence of pollen in their surroundings, 11.88% reported the presence
of mold in their surroundings and 6.93% stated an exposure to strong odors. In addition to
these environmental factors, 22.77% of asthma cases reported that at least one family mem-
ber had a respiratory infection (cold) in the neonatal period. Consuming antibiotics and/or
paracetamol during pregnancy also was found to increase the risk of childhood asthma.
Different studies provided supporting results; in [29], the authors showed that exposure
to antibiotics during pregnancy was significantly associated with a small increased risk
of asthma in pre-schooled children [28,29]. Different studies indicate that antibiotic use
can have long-term altering effects on the vaginal bacterial flora, which may have adverse
impacts on the health outcomes of the child [30,31]. Moreover, we also found that maternal
obesity during pregnancy is significantly associated with asthma prevalence in children.
Concerning the mode of birth, evidence for the health risks related to the perinatal period
is accumulating. Children born via a cesarean delivery are at higher risks of developing
autoimmune diseases such as asthma and allergies [32–35]. Our results also confirm a
highly significant association between a cesarean mode of delivery and the increased risks
of asthma prevalence. In our study 58.42% of children who developed asthma in their
early childhood were born via a cesarean section. Furthermore, early childhood is also
considered as a critical period for the occurrence of many risk factors related to environ-
mental exposure and lifestyle habits. Although breastfeeding and delivery mode appear
to modify the risk of childhood allergic outcomes, it is unclear whether they have the
potential to attenuate or intensify the risk associated with developing asthma in offspring
[34]. However, in our study, postnatal factors such as breastfeeding and dietary diversity
between 4 months and 6 months old were found to be significantly associated with asthma
prevalence among children. For instance, 45.54% of children who developed asthma did
not receive maternal breastfeeding, and only 20% of patients had diverse nutrition between
4 months and 6 months old.

There are also some limitations to this study. Since the data set provided to us was
obtained from a case-control study, the presence of selection bias and recall bias was a
major concern. The study site, Ibn Sina childrens hospital, is an almost free of charge
university hospital that cares for the local community coming from Rabat-Salé-Temara
agglomeration, which is characterized by major social differences across and within areas.
Although unlikely, there is also a possibility that cases and controls from places outside the
hospital’s service area may have come to the hospital for care hence resulting in selection
bias. The outcome, i.e., child’s asthma status, was determined clinically by the primary
care physician, but exposure data were self-reported. Differential recall of exposures by
mothers of children with asthma as compared to mothers of children without asthma could
result in differential misclassification (recall) bias. Such type of bias is more common in
case-control studies of children with severe medical conditions such as birth defects, and
hence less likely to have occurred in our study. Furthermore, the study was designed
to ask respondents about different types of exposures; thus, it is unlikely for mothers of
children with asthma to remember exactly the prenatal exposures. However, to minimize
interviewer bias, the researcher who interviewed study participants was blinded to the
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asthma status of the child. Nonetheless, interviewer bias in face-to-face studies is difficult
to eliminate completely. Prenatal exposure to pets was not measured objectively and may
have resulted in misclassification errors. Obtaining access to medical data sets is very
challenging due to patients’ privacy and the lack of electronic health records. The current
study was performed at one regional hospital, where we were only able to obtain access to
data of 202 patients. Larger scale studies are needed to improve prediction performance
and generalize our results beyond the regional nature of our study.

5. Conclusions

The findings of this study emphasize the potential importance of assessing prenatal,
perinatal and postnatal risk factors associated with childhood asthma. In order to reduce
the risks of developing childhood asthma in our population, the results from this study can
provide relevant support for further use when elaborating the right prevention strategies
regarding prenatal and during pregnancy care. Moreover, the risk factors identified in this
study can help us predict children that are prone to develop asthma in the early stages of
life and thereby allow a secure set of interventions that could prevent them from developing
the disease and thus help them lead a healthy and normal childhood.

Author Contributions: Conceptualization, Z.J., I.G. and M.G.; methodology, Z.J. and I.G.; formal
analysis, Z.J.; validation, M.G. and C.M.; investigation, Z.J.; resources, M.E.H. and C.M.; writing—
original draft preparation, Z.J. and I.G.; writing—review and editing, Z.J., I.G. and M.G.; supervision,
M.G.; project administration, M.G.; funding acquisition, M.G. All authors have read and agreed to
the published version of the manuscript.

Funding: The work presented in this paper was carried out within the MoreAir project, which is
partly funded by the Belgium Ministry of cooperation through the VLIR UOS program under grant
MA2017TEA446A101.

Acknowledgments: We thank the pediatric department of the Ibn Sina hospital for their support
and collaboration.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, or in the decision to publish the results.

References

1. WHO. Asthma Fact Sheet. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/asthma (accessed on
3 May 2021).

2. Wadden, D.; Farrell, J.; Smith, M.J.; Twells, L.K.; Gao, Z. Maternal history of asthma modifies the risk of childhood persistent
asthma associated with maternal age at birth: Results from a large prospective cohort in Canada. J. Asthma 2021, 58, 38–45.
[CrossRef] [PubMed]

3. Flanigan, C.; Sheikh, A.; Nwaru, B.I. Prenatal maternal psychosocial stress and risk of asthma and allergy in their offspring:
Protocol for a systematic review and meta-analysis. NPJ Prim. Care Respir. Med. 2016, 26, 16021. [CrossRef]

4. Yang, H.J. Impact of perinatal environmental tobacco smoke on the development of childhood allergic diseases. Korean J. Pediatr.
2016, 59, 319. [CrossRef] [PubMed]

5. Asher, M.I. Recent perspectives on global epidemiology of asthma in childhood. Allergol. Immunopathol. 2010, 38, 83–87.
[CrossRef] [PubMed]

6. Martino, D.; Prescott, S. Epigenetics and prenatal influences on asthma and allergic airways disease. Chest 2011, 139, 640–647.
[CrossRef] [PubMed]

7. Nafti, S.; Taright, S.; El Ftouh, M.; Yassine, N.; Benkheder, A.; Bouacha, H.; Fakhfakh, H.; Ali-Khoudja, M.; Texier, N.;
El Hasnaoui, A. Prevalence of asthma in North Africa: the Asthma Insights and Reality in the Maghreb (AIRMAG) study.
Respir. Med. 2009, 103, S2–S11. [CrossRef]

8. Subbarao, P.; Becker, A.; Brook, J.R.; Daley, D.; Mandhane, P.J.; Miller, E.G.; Turvey, E.S.; Sears, M.R. Epidemiology of asthma:
Risk factors for development. Expert Rev. Clin. Immunol. 2009, 5, 77–95. [CrossRef] [PubMed]

9. Kashanian, M.; Mohtashami, S.S.; Bemanian, M.H.; Moosavi, S.A.J.; Moradi Lakeh, M. Evaluation of the associations between
childhood asthma and prenatal and perinatal factors. International J. Gynecol. Obstet. 2017, 137, 290–294. [CrossRef] [PubMed]

10. Oliveti, J.F.; Kercsmar, C.M.; Redline, S. Pre-and perinatal risk factors for asthma in inner city African-American children. Am. J.
Epidemiol. 1996, 143, 570–577. [CrossRef] [PubMed]

266



Healthcare 2021, 9, 1464

11. Midodzi, W.K.; Rowe, B.H.; Majaesic, C.M.; Saunders, L.D.; Senthilselvan, A. Early life factors associated with incidence of
physician-diagnosed asthma in preschool children: Results from the Canadian Early Childhood Development cohort study.
J. Asthma 2010, 47, 7–13. [CrossRef] [PubMed]

12. Davidson, R.; Roberts, S.E.; Wotton, C.J.; Goldacre, M.J. Influence of maternal and perinatal factors on subsequent hospitalisation
for asthma in children: Evidence from the Oxford record linkage study. BMC Pulm. Med. 2010, 10, 14. [CrossRef] [PubMed]

13. Douwes, J.; Cheng, S.; Travier, N.; Cohet, C.; Niesink, A.; McKenzie, J.; Cunningham, C.; Le Gros, G.; von Mutius, E.; Pearce, N.
Farm exposure in utero may protect against asthma, hay fever and eczema. Eur. Respir. J. 2008, 32, 603–611. [CrossRef] [PubMed]

14. Arif, A.A.; Veri, S.D. The association of prenatal risk factors with childhood asthma. J. Asthma 2019, 56, 1056–1061. [CrossRef]
[PubMed]

15. Gryech, I.; Ghogho, M.; Elhammouti, H.; Sbihi, N.; Kobbane, A. Machine learning for air quality prediction using meteorological
and traffic related features. J. Ambient. Intell. Smart Environ. Prepr. 2020, 12, 379–391. [CrossRef]

16. Vidnerová, P.; Neruda, R. Sensor Data Air Pollution Prediction by Kernel Models. In Proceedings of the 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), Cartagena, Colombia, 16–19 May 2016; pp. 666–673.
[CrossRef]

17. Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [CrossRef]
18. Illi, S.; Weber, J.; Zutavern, A.; Genuneit, J.; Schierl, R.; Strunz-Lehner, C.; von Mutius, E. Perinatal influences on the development

of asthma and atopy in childhood. Ann. Allergy Asthma Immunol. 2014, 112, 132–139. [CrossRef] [PubMed]
19. Jaakkola, J.J.; Nafstad, P.; Magnus, P. Environmental tobacco smoke, parental atopy, and childhood asthma. Environ. Health

Perspect. 2001, 109, 579–582. [CrossRef]
20. Laerum, B.N.; Svanes, C.; Wentzel-Larsen, T.; Gulsvik, A.; Torén, K.; Norrman, E.; Gíslason, T.; Janson, C.; Omenaas, E. Young

maternal age at delivery is associated with asthma in adult offspring. Respir. Med. 2007, 101, 1431–1438. [CrossRef] [PubMed]
21. Sherriff, A.; Peters, T.J.; Henderson, J.; Strachan, D. Risk factor associations with wheezing patterns in children followed

longitudinally from birth to 3(1/2) years. Int. J. Epidemiol. 2001, 30, 1473–1484. [CrossRef] [PubMed]
22. Thomsen, A.M.L.; Ehrenstein, V.; Riis, A.H.; Toft, G.; Mikkelsen, E.M.; Olsen, J. The potential impact of paternal age on risk of

asthma in childhood: A study within the Danish National Birth Cohort. Respir. Med. 2018, 137, 30–34. [CrossRef] [PubMed]
23. Almqvist, C.; Olsson, H.; Ullemar, V.; D’Onofrio, B.M.; Frans, E.; Lundholm, C. Association between parental age and asthma in a

population-based register study. J. Allergy Clin. Immunol. 2015, 136, 1103–1105.e2. [CrossRef] [PubMed]
24. Gryech I, Ben-Aboud Y, Guermah B, Sbihi N, Ghogho M, Kobbane A. MoreAir: A Low-Cost Urban Air Pollution Monitoring

System. Sensors 2020, 20, 998. [CrossRef] [PubMed]
25. Castro-Rodriguez, J.A.; Forno, E.; Rodriguez-Martinez, C.E.; Celedón, J.C. Risk and protective factors for childhood asthma:

What is the evidence? J. Allergy Clin. Immunol. Pract. 2016, 4, 1111–1122. [CrossRef]
26. Segura, N.; Fraj, J.; Cubero, J.; Sobrevía, M.; Lezaun, A.; Ferrer, L.; Sebastián, A.; Colás, C. Mould and grass pollen allergy as risk

factors for childhood asthma in Zaragoza, Spain. Allergol. Immunopathol. 2016, 44, 455–460. [CrossRef]
27. Celedón, J.C.; Milton, D.K.; Ramsey, C.D.; Litonjua, A.A.; Ryan, L.; Platts-Mills, T.A.; Gold, D.R. Exposure to dust mite allergen

and endotoxin in early life and asthma and atopy in childhood. J. Allergy Clin. Immunol. 2007, 120, 144–149. [CrossRef]
28. Murrison, L.B.; Brandt, E.B.; Myers, J.B.; Hershey, G.K.K. Environmental exposures and mechanisms in allergy and asthma

development. J. Clin. Investig. 2019, 129, 1504–1515. [CrossRef] [PubMed]
29. Mulder, B.; Pouwels, K.B.; Schuiling-Veninga, C.C.M.; Bos, H.J.; De Vries, T.W.; Jick, S.S.; Hak, E. Antibiotic use during pregnancy

and asthma in preschool children: The influence of confounding. Clin. Exp. Allergy 2016, 46, 1214–1226. [CrossRef] [PubMed]
30. McKeever, T.M.; Lewis, S.A.; Smith, C.; Hubbard, R. The importance of prenatal exposures on the development of allergic disease:

A birth cohort study using the West Midlands General Practice Database. Am. J. Respir. Crit. Care Med. 2002, 166, 827–832.
[CrossRef] [PubMed]

31. Kuo, C.H.; Kuo, H.F.; Huang, C.H.; Yang, S.N.; Lee, M.S.; Hung, C.H. Early life exposure to antibiotics and the risk of childhood
allergic diseases: An update from the perspective of the hygiene hypothesis. J. Microbiol. Immunol. Infect. 2013, 46, 320–329.
[CrossRef] [PubMed]

32. Bager, P.; Wohlfahrt, J.; Westergaard, T. Caesarean delivery and risk of atopy and allergic disesase: Meta-analyses. Clin. Exp.
Allergy 2008, 38, 634–642. [CrossRef] [PubMed]

33. Thavagnanam, S.; Fleming, J.; Bromley, A.; Shields, M.D.; Cardwell, C.R. A meta-analysis of the association between Caesarean
section and childhood asthma. Clin. Exp. Allergy 2008, 38, 629–633. [CrossRef] [PubMed]

34. Sitarik, A.R.; Kasmikha, N.S.; Kim, H.; Wegienka, G.; Havstad, S.; Ownby, D.; Zoratti, E.; Johnson, C.C. Breast-feeding and
delivery mode modify the association between maternal atopy and childhood allergic outcomes. J. Allergy Clin. Immunol. 2018,
142, 2002–2004. [CrossRef] [PubMed]

35. Pluymen, L.P.; Smit, H.A.; Wijga, A.H.; Gehring, U.; De Jongste, J.C.; Van Rossem, L. Cesarean delivery, overweight throughout
childhood, and blood pressure in adolescence. J. Pediatr. 2016, 179, 111–117. [CrossRef] [PubMed]

267





healthcare

Review

Sensor-Based Fall Risk Assessment: A Survey

Guangyang Zhao 1 , Liming Chen 2 and Huansheng Ning 1,*

Citation: Zhao, G.; Chen, L.; Ning, H.

Sensor-Based Fall Risk Assessment: A

Survey. Healthcare 2021, 9, 1448.

https://doi.org/10.3390/

healthcare9111448

Academic Editor: Mahmudur

Rahman

Received: 17 September 2021

Accepted: 21 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer and Communication Engineering, University of Science and Technology Beijing,
Beijing 100089, China; g20198892@xs.ustb.edu.cn

2 School of Computing, University of Ulster, Newtownabbey BT37 0QB, UK; l.chen@ulster.ac.uk
* Correspondence: ninghuansheng@ustb.edu.cn

Abstract: Fall is a major problem leading to serious injuries in geriatric populations. Sensor-based fall
risk assessment is one of the emerging technologies to identify people with high fall risk by sensors, so
as to implement fall prevention measures. Research on this domain has recently made great progress,
attracting the growing attention of researchers from medicine and engineering. However, there is a
lack of studies on this topic which elaborate the state of the art. This paper presents a comprehensive
survey to discuss the development and current status of various aspects of sensor-based fall risk
assessment. Firstly, we present the principles of fall risk assessment. Secondly, we show knowledge
of fall risk monitoring techniques, including wearable sensor based and non-wearable sensor based.
After that we discuss features which are extracted from sensors in fall risk assessment. Then we
review the major methods of fall risk modeling and assessment. We also discuss some challenges
and promising directions in this field at last.

Keywords: fall risk assessment; fall prediction; gait monitoring; sensor

1. Introduction

Aging population has become a common problem for major countries in the world.
Compared with young people, falls are more likely to occur in the elderly. In some
countries, such as the United States, falls have become a leading cause of death due to
injuries in people over 65 [1]. In addition to physical damage, the elderly people with a
history of falls may have greater psychological stress and a narrow scope of daily living
activities, resulting in worse quality of life. Furthermore, the resulting personal and social
expenditure is a large amount. Therefore, reducing the incidence of falls in the elderly
is a matter of great significance. Fall risk assessment is one of the emerging promising
technologies for the above goal.

In our opinion, “fall risk” refers to whether a person is prone to falling. This is how
most work defines “fall risk” in our reviewed articles. They analyzed the relationship
between gait characteristics and fall risk in combination with fall history in the past or fall
status in the future. The items “fall detection” and “fall prediction” (fall risk assessment)
are often confused. They are protective measures from different perspectives. Fall detection
aims at detecting the occurrence of fall event in time so that treatment or protection during
fall (e.g., air cells at waist) can be carried out right away. It is an “afterwards approach”.
Unlike fall detection, fall risk assessment is a “beforehand approach”. It tries to identify
elderly people at high fall risk. Then targeted preventive measures can be taken before the
“real fall” happens. This kind of technology has a remarkable social and economic worth.
It has received growing attention due to the great progress of sensing, communication and
data processing technologies in recent years.

Fall risk assessment is a complicated process based on detection and analysis of factors
leading to falls. There are many factors leading to falls, and they have been divided into
two categories: external and internal [2]. External factors refer to environmental factors
such as room layout, road conditions, to name but a few. Existing studies focus more
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on internal factors. Internal factors refer to self status, including physical, cognitive and
psychological. Older age has been shown to be related to falls, because aging can lead to
instability in walking posture [3]. Sarcopenia is a syndrome highly relevant to falls [4].
It is a condition characterized by decreased muscle mass, muscle strength and physical
performance. Sensory disturbance is another important factor related to falls [5], such as
visual impairment and hearing impairment. In addition, medication, stroke, depression
and postural hypotension are also internal factors. According to reviewed papers, there are
scale-based and sensor-based approaches to detect and analyze internal factors.

The fall risk scale is an important tool in fall risk assessment. Scale-based assessment is
suitable for most internal factors. Researchers fill out the scale through inquiry, observation
and measurement. There are many scales for fall risk assessment. The most commonly
used are the Berg Balance Scale [6], Tinetti Balance Scale [7], STRATIFY [8], and so on.
Different scales are suitable for different situations. For example, STRATIFY was used only
for elderly hospitalized patients [9]. Several reviews about scale-based fall risk assessment
have been published over the years. A systematic review in 2018 by Park [9] paid attention
to the quantitative analysis of the predictive validity of scales. The author pointed out
that combining two assessment tools was more effective than using a single tool due to
more factors were contained. Another review in 2018 by Ruggieri and colleagues [10]
focused entirely on the setting, language, pathology and psychometric properties of scales.
Together these papers have provided a comprehensive overview on the scales used in fall
risk assessment. Given the existing works, we do not review research on the scale-based ap-
proach. It is necessary to point out that, while the scale-based approach is comprehensible
and low-cost, it suffers from being subjective.

In recent years, technologies like sensing, efficient wireless communication and data
processing have made significant progress. The advances and maturity of above mentioned
technologies make a lot of researchers try to realize fall risk assessment by sensors. Sensor-
based approaches focus on characteristics of kinematics and kinetics of a person. It tries
to assess one’s fall risk through motion state. Compared to the scale-based approach,
the sensor-based approach is more objective, and at the same time, easy to implement.
Sensor-based fall risk assessment is a complicated process that can be roughly characterized
by four steps. These steps include (1) to select and fix wearable sensors to the subjects or
deploy non-wearable sensors to environments to monitor the motion of the subjects, (2) to
make the participants walk by rules and collect and transmit data that is obtained by the
sensors, (3) to preprocess the data collected and choose or develop algorithms to establish
models, (4) to use the model in last step to assess the relationship between gait status and
fall risk using sensor data as input.

Compared to the number of surveys in scale-based fall risk assessment, there is a lack
of comprehensive overviews on the latest development of sensor-based fall risk assessment.
Considering this, a systematic survey will be of high value. It can inform the researchers
of the current status and future promising directions. This survey aims at presenting a
comprehensive overview on the state of the art of sensor-based fall risk assessment. It will
cover the life cycle of the approach and provide descriptions and comparisons of various
methods to highlight their advantages and disadvantages. In this survey, we review related
works based on the order from monitoring to features to modeling and assessment. After
the introduction, the organization of this article is as follows. In Section 2, we investigate
the monitoring techniques used in sensor-based fall risk assessment. We then discuss about
features in sensor-based fall risk assessment in Section 3. In Section 4, We review major
modeling techniques and present comparison of these techniques. In Section 5, we provide
insights into existing challenges of fall risk assessment. Potential future research directions
of this field are listed in Section 6. The survey is concluded in Section 7.

2. Fall Risk Monitoring

A wide range of sensors, including inertial sensors like accelerometers and gyroscopes,
pressure sensors, and infrared sensors, to name but a few, are used in fall risk assessment.
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These various sensors have different types, functions, output signals, and technical princi-
ples. They can be classified as wearable sensors and non-wearable sensors according to the
way they are deployed. Wearable sensors are the most commonly used. In the following
we present the common practice in sensor-based fall risk assessment.

2.1. Wearable Sensors

Wearable sensors are sensors which are directly or indirectly fixed to human body, and
they generate signals when the user moves or performs other activities. Wearable sensors
can be embedded into daily objects like belts and shoes or directly fixed to the body. They
can monitor movement status or physiological information when properly worn by users.

Inertial sensors and pressure sensors are the most frequently used wearable sensors in
fall risk assessment. Inertial sensors mainly include accelerometers and gyroscopes. They
are suitable for monitoring body motions. In Figure 1, we show a graphic example of leg
flexion and extension angle during walking, which was obtained in our real application.
Generally, inertial sensors are fixed to different body parts to obtain different motion
features and pressure sensors are embedded into insoles. Howcroft et al. [11] placed tri-
axial accelerometers on head, lower back and left and right shanks of older individuals
under single-task and dual-task conditions to identify the optimal sensor combination,
placement and modeling approaches for fall risk assessment. In addition, participants
were required to wear pressure-sensing insoles. Accelerometer-based features used in this
study were maximum, mean, and standard deviation of acceleration for different axes,
cadence, stride time, fast Fourier transform (FFT) Quartile, ratio of even to odd harmonics
(REOH), and maximum Lyapunov exponent (MLE). For pressure-sensing insoles, they
derived features like center of pressure (CoP) path, temporal features such as stride time
symmetry index between left and right limbs and impulse from the total force-time curve.
The results indicated that multi-layer perceptron had a better performance than naïve
Bayesian and support vector machine. In single-task fall risk classification, head sensor-
based models had the best performance. Accelerometers were placed on lower limb (ankle,
shank, etc.) to obtain spatiotemporal gait features like gait speed [11,12]. Doheny et al. [13]
used tri-axial accelerometers on the thigh to record the process from sitting to standing
during the five-times-sit-to-stand test. Weiss et al. [14] asked 107 Parkinson’s patients to
fix a small three-axis accelerometer to the lower back for three days respectively. Their
walking quantity and quality were determined. Pressure sensors are effective for recording
the changes in the plantar pressure of the human body during walking. It is an ideal
assessment tool for postural stability. The study in [15] assessed fall risk of workers in the
construction industry by changes of biomechanical gait stability features based on wearable
insoles with pressure sensors. According to these reviewed articles, accelerometers are the
most frequently used and practical wearable sensor category.
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ers in the construction industry by changes of biomechanical gait stability features based 
on wearable insoles with pressure sensors. According to these reviewed articles, accel-
erometers are the most frequently used and practical wearable sensor category. 

 
Figure 1. The angle curve of leg flexion and extension in the vertical direction during walking. The 
red line represents the left leg, and the black dotted line represents the right leg. 

Figure 1. The angle curve of leg flexion and extension in the vertical direction during walking. The
red line represents the left leg, and the black dotted line represents the right leg.
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The human walking process can be regarded as several consecutive repetitive gait
cycles. Generally, a gait cycle refers to the process of walking from the same foot’s toe-
off/heel-strike to the next toe-off/heel-strike. A gait cycle can also be divided into a swing
phase and a stance phase. This means that each cycle can be recognized by detecting the
flag events like heel-strike in the gait process, the gait motion can be segmented, and the
features can be further extracted. Take a gait cycle of the right foot as an example. The
time from the first toe off (right Toe-Off) to the first heel landing on the ground (right
Heel-Strike) is the swing phase of the right foot. Then the right foot supports the weight,
and the left foot enters the swing phase. It is the stance phase of the right foot until the next
right Toe-Off. To detect the flag gait events, peak detection algorithms are useful [16,17].
They achieve this function by detecting repeated peaks of acceleration or angular velocity
during gait.

Kinematic data of the human body is useful for knowing about gait status and fall
risk assessment. It is usually obtained by inertial sensors. However, there are some types
of errors in practice, which makes it challenging to obtain accurate motion information.
The mounting error is an important error in applications of inertial sensors due to the
misalignment from the inertial frame (sensor coordinate frame) and the global frame (body
frame). Chen et al. [16] proposed a method for mounting error calibration. The method
can determine the orientation of inertial frame with respect to the global frame. The results
showed that it corrected the mounting error greatly. The integration drift is another kind of
common errors in practice of inertial sensors. It comes from the accumulated signal noise
in the process of integrating acceleration into velocity or angular velocity into angular
displacement. Filters like Butterworth filter [18], Kalman filter [19] are usually used to
eliminate the integration drift.

2.2. Non-Wearable Sensors

Pressure sensors can be either wearable or non-wearable. In addition to embedding to
insoles or shoes, pressure sensors also can be used in treadmill or pressure platform like
Wii balance board [20].

Infrared sensors and laser sensors are the most frequently used ones of non-wearable
sensors. Nishiguchi et al. [21] developed a device that was based on an infrared laser sensor
(laser range finder) to assess stepping performance. Further a new index “stepping response
score” was created to assess fall risk of community-dwelling elderly individuals. The
infrared laser sensor in this research was used to measure spatial and temporal parameters
of steps by detecting position and motion of both legs.

Microsoft Kinect is often used in gait analysis and further for fall prevention. It consists
of RGB cameras and infrared sensitive cameras and can produce depth images. Dubois
et al. [22] proposed a system based on Microsoft Kinect camera to help preventing falls
of the elderly people. They extracted three gait spatiotemporal features from the vertical
displacement of the center of mass of the subject. The features are step length, step duration
and gait speed. The features were compared to those obtained by the carpet. The results
showed that their approach of gait analysis was effective. However, they did not further
use this approach for fall risk assessment. Stone et al. [23] compared gait measurements by
Kinect to those using a web-camera based system and those from a Vicon motion capture
system. The results showed good agreements among them and confirmed the effectiveness
of Kinect for passive fall risk assessment.

Infrared or laser sensors have the advantage of being precise. However, they suffer
from many other issues. For example, the clothes worn by the subjects may affect the
reflection of infrared rays, and multiple devices may be required due to limited field of
view of sensors. This will raise the cost. Moreover, it usually requires participants to walk
within a limited area which it can see. Compared to this kind of sensor, wearable sensors
are cheaper and easier to deploy. Furthermore, wearable sensors are more flexible whether
they are directly secured on body or embedded in clothes. Nevertheless, wearable sensor-
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based fall risk assessment still suffers from issues like size, battery, and data transmission,
to name but a few.

In the procedure of fall risk assessment, participants will be required to do assessment
tasks. The most commonly used one is steady walking on the treadmill or ground. In
addition, the Timed Up and Go (TUG) test [24] is often combined with sensors to assess
fall risk. It measures the time it takes for the elderly to stand up and walk and then come
back and sit down. The traditional TUG test is single-task. Research has found that the
dual-task test results are better [25]. The five-times-sit-to-stand test (FTSS) is another test
used for assessing fall risk. The time to finish this test is measured to indicate fall risk [13].

3. Sensor-Based Features for Fall Risk Characterization

In sensor-based fall risk assessment, features are extracted from sensor signals to
quantify one’s gait or posture characteristics. For most studies, it is necessary to iden-
tify each gait cycle by algorithms. Then the measurement values are calculated for each
step. For instance, the gait speed of each step can be obtained by integrating the accel-
eration value obtained from accelerometers. Our survey do not focus on algorithms for
identifying gait cycles or raw signals from sensors but concentrates on features extracted
finally. In the following we summarize the common features according to their described
gait characteristics.

3.1. Gait Intensity

Number of steps in a period is often used to reflect whether the participant is vigorous
over a period of time. Cadence is the value of the number of steps divided by walking
time. It reflects the intensity of gait. Too low or too high cadence during walking indicates
abnormal gait patterns. Too low cadence may be related to freezing gait, and too high
cadence may be related to festinating gait. These two abnormal gait patterns have been
identified as highly correlated to fall incidents [26,27].

3.2. Gait Variability

Time-related features are useful in fall risk assessment. They include step time, stride
time, stance time, and swing time during walking, single support time, double support
time and so forth. Gait variability refers to the fluctuation in the value of a feature from one
step to another [28]. These time-related features can quantify gait variability by computing
average variance or standard deviation or coefficient of variation of them [29]. Hausdorff
et al. [30] used the standard deviation of each participant’s stride time and swing time
to quantify gait variability. They placed force-sensitive insoles in participants’ shoes to
identify each stride. Then those required time-related features are determined for each
stride by algorithms. The gait variability was further quantified by calculating the standard
deviation of those features. The results showed that these two measures of gait variability
were predictive of future falls, and the possibility of falling is positively correlated with the
degree of gait variability. Generally, higher variability of gait means higher fall risk [31].
In addition to time-related features, trunk acceleration is also suitable for quantifying
the variability of human gait [32]. The authors in [32] used standard deviation of trunk
acceleration to measure gait variability under inclined conditions.

3.3. Gait Stability

Stability of gait is another important indicator for assessing fall risk. Gait stability is
close to gait variability but not equal to it. Gait stability refers to the ability of maintaining
gait stable when walking under small perturbations or recovering from an external pertur-
bation. Hollman et al. [33] used variability of velocity from stride to stride to quantify gait
stability. GAITRite is responsible for measuring the spatiotemporal parameters required for
this study. The study was to examine whether gait stability differ in older adults compared
with young adults during normal walking and walking while performing cognitive tasks.
The results indicated that variability of velocity from stride to stride was greater during
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dual task walking, and dual task walking had a larger impact on the older adults than
young adults. Therefore, walking with cognitive tasks may increase the gait instability and
risk of falls. In addition to linear statistics, non-linear measures like maximum Lyapunov
exponent (λs) are also used in stability assessment [32]. Local dynamic stability (LDS) is
based on λs, which can be calculated by Rosenstein’s algorithm [34]. LDS is a nonlinear
parameter which is derived from dynamic system theory to assess gait stability. There is a
negative correlation between LDS and maximum Lyapunov exponent. When λs increases,
LDS decreases and fall risk increases.

3.4. Postural Stability

Postural stability refers to the ability of maintaining body stable when standing.
Melzer et al. [35] measured the postural stability of subjects in wide stance and narrow
stance to find differences between fallers and non-fallers. The features were based on
center of pressure (COP), which included COP path length, elliptical area, COP velocity,
medio-lateral (ML) sway length, and antero-posterior sway length. The results indicated
that there were no significant differences between two groups when standing in wide
stance. Significant differences emerged when subjects standing in narrow stance. Fallers
had significant higher values of COP path length, elliptical area, COP velocity, and ML
sway length in various conditions which included eyes open, eyes closed, and eyes open
while standing on the foam.

3.5. Gait Symmetry

Gait symmetry reflects the control of the lower limbs on both sides during walking.
Jiang et al. [36] pointed out that gait symmetry as well as gait stability is important for
fall risk assessment. There are four frequently used methods to measure gait symmetry,
namely symmetry ratio, symmetry index, gait asymmetry, and symmetry angle [37]. They
are showed in Table 1. Symmetry ratio index has been used in clinical measurement of gait
symmetry but has a low sensitivity [38]. The symmetry index is a symmetry evaluation
standard based on ground reaction forces proposed by Robinson et al. [39]. Gait asymmetry
is a logarithmic transform of symmetry ratio. In [40], the authors evaluated the degree of
asymmetry by comparing the swing time of the legs on both sides. Symmetry angle was
proposed by Zifchock et al. [41]. Zifchock certified that symmetry angle is highly correlated
with symmetry index. This suggest that symmetry angle may be a good substitute for
symmetry index.

Table 1. Calculation formula of gait symmetry.

Measurement Abbreviation Calculation Formula

Symmetry ratio index RI

(

1 − xr
xl

)

∗ 100%

Symmetry index SI
|xr−xl |

0.5(xr+xl)
∗ 100%

Gait asymmetry GA ln
(

xr
xl

)

∗ 100%

Symmetry angle SA 45◦− tan−1( xr
xl
)

90◦ ∗ 100%
xr and xl : values of specific features for right and left limbs.

Among these four measures, there is no recognized standard for assessing gait sym-
metry. Patterson et al. [37] analyzed and compared these four measures for stroke patients
and normal people. Stroke patients were at high risk of falls. They used five features
including step length, swing time, stance time, double support time and ratio of swing time
to stance time in the above four equations respectively. Analysis results suggested that no
equation performed better in distinguishing stroke patients. On the contrary, different gait
features have a more significant impact on the results. However, symmetry ratio may be
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more interpretable than the others. Therefore, the authors recommended symmetry ratio
as a candidate standardization.

3.6. Gait Smoothness

Gait smoothness is associated with the quality of walking control. It reflects the
continuousness of walking. It is usually measured by harmonic ratio. Harmonic ratio is a
frequency feature in fall risk assessment. It is the ratio between the sum of the magnitudes
of the even to the odd harmonics over a single stride. A higher value of harmonic ratio
indicates smoother gait when walking. Parkinson’s patients and stroke patients usually
perform poorly in smoothness. Low smoothness may lead to falls. Doi et al. [42] used
harmonic ratio of trunk acceleration to predict falls of elderly based on prospective research
method. In this study, researchers calculated the harmonic ratio of acceleration of upper
and lower trunk by digital Fourier transformation in each direction. The results indicated
that the harmonic ratio of upper trunk acceleration was independently associated with
incidence of falls in a year. It was confirmed by ROC curve analysis that the harmonic ratio
of upper trunk acceleration had high specificity for predicting potential future falls.

4. Fall Risk Modeling and Assessment Approaches

4.1. Conventional Machine Learning

The mainstream modeling approaches in sensor-based fall risk assessment are related
to machine learning techniques. Conventional machine learning approaches for fall risk
modeling and assessment can be classified into two categories: discriminative and gen-
erative. Discriminative models are to find a decision boundary through which samples
are divided into corresponding categories. Discriminative models mainly include linear
regression, logistic regression, linear discriminant analysis, Support Vector Machine (SVM),
to name but a few. Generative models are to learn the boundary of each category instead
of the single decision boundary. Generative modeling approaches include Naïve Bayesian
classifier, k-Nearest Neighbor (KNN), Dynamic Bayesian Network (DBN) and so on. In
the following, we cover the frequently used conventional machine learning approaches in
sensor-based fall risk assessment.

4.1.1. Discriminative Modeling Approaches

Perhaps the most frequently used discriminative modeling approach is regression
which includes linear regression and logistic regression. Linear regression is a regression
analysis method that uses linear regression equations to model the relationship between
independent variables and dependent variables. Liu et al. [43] used multiple linear re-
gression to map features which derived from accelerometer data to the number of falls in
the past one year. In this research, a triaxial accelerometer was mounted on participants’
waist. There were 126 features extracted from the acceleration data of 68 subjects and
a discriminant classifier was established according to an applied threshold value. The
classifier obtained an accuracy of 97% in identifying multiple-fall fallers, and the accuracy
in estimating the number of falls in the last year was 71%. This study is a retrospective
analysis to explore the relationship between gait status and fall history. Therefore, its
result cannot be directly used in predicting future falls. Nevertheless, it may be used as a
reference in prospective studies.

Compared to linear regression, logistic regression is more commonly used. Logistic
regression converges the output range from the real number domain to [0, 1] through
sigmoid function. It is used in binary classification problem and more robust than linear
regression. Doheny et al. [13] applied the five-times-sit-to-stand test to obtain acceleration
data by an accelerometer attached to the lateral thigh to identify each sit-to-stand-to-sit
phase and sit-to-stand and stand-to-sit processes. Another accelerometer was attached to
the sternum to capture trunk acceleration. Participants were 39 elderly people, 19 of whom
had a history of falls. Logistic regression was used to classify the participants based on
their status. There were totally 70 accelerometer-derived features which were the mean and
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variation of the root-mean-squared amplitude, jerk and Spectral Edge Frequency (SEF) of
the acceleration during each section of the assessment. Four features were finally selected
for modeling based on test-retest reliability of each feature. Their model’s accuracy was
74.4%, specificity was 80.0% and sensitivity was 68.7%. It is worth mentioning that the
number of participants was relatively small. It may lead to overfitting of the model.

Support Vector Machine is another discriminative modeling technique which is a kind
of generalized linear classifier for binary classification. SVM finds a hyperplane to classify
two categories, and the hyperplane needs to be as far away as possible from the nearest
element of each category. Greene et al. [44] applied a body-worn inertial sensor (SHIMMER)
which was attached to the lower back of participants and pressure data was obtained by
a Tactex S4 HD pressure mat. The root mean square amplitude of the medio-lateral and
the anterior-posterior acceleration was measured for quantifying postural sway of each
direction. For frequency domain, the spectral edge frequency and the spectral entropy (H)
were calculated for acceleration and angular velocity signals. SVM was used to distinguish
between fallers and non-fallers and obtained a mean classification accuracy greater than
70%. The result was better than that of using Berg Balance Scale (BBS) as a comparison.

Discriminative approaches are used to model conditional probability and find the
optimal boundary between different categories. It pays more attention to the differences
between different categories than the characteristics of the sample data itself. Compared to
generative modeling, it can work by less computing resource and samples and has better
predicting performance in most practical cases.

4.1.2. Generative Modeling Approaches

Naïve Bayesian classifier may be the simplest generative modeling approach. It has
been used with satisfying results for fall risk assessment [11,12,45,46]. Naïve Bayesian clas-
sifier is based on Bayes theorem and assumes that the features are conditional independent
of each other. This assumption will lead to the decline of classification accuracy when the
correlation among features is large. K-Nearest Neighbor is another generative modeling
approach that can be used in fall risk assessment [46,47]. KNN method determines the
category of the samples to be divided according to the category of the nearest one or several
samples. The disadvantage of KNN is the large amount of calculation, because for each
sample to be classified, the distance from itself to all known samples must be calculated.

Bayesian Network (BN) is a type of graphical model to describe the dependency
relationship between data variables. Dynamic Bayesian Network is an extention of BN. It
can represent the evolution of variables over time. Cuaya et al. [48] built two DBN models
for predicting falls in next six months. One feature set was established under the guidance
of experts from the Human Motion Analysis Laboratory of the INR. Another one was
founded on the feature set automatically selected by forward sequential selection (FSS)
algorithm. The expert-guided model showed slight advantages over the model applying
FSS. However, considering the small sample size, a conclusion that expert-guided feature
selection is better than FSS cannot be made.

4.2. Deep Learning

Neural networks are based on perceptron, so neural networks are sometimes called
multi-layer perceptron, namely Artificial Neural Networks (ANN). Deep learning is the
general name of pattern analysis methods based on ANN. The neural network layer in ANN
can be divided into three categories: input layer, hidden layer and output layer. Generally
speaking, all middle layers are hidden layers. Basically, deep learning approaches can
be divided into two categories: supervised learning and semi-supervised/unsupervised
learning. However, most studies of fall risk assessment using deep learning are based on
supervised learning. There are few studies using semi-supervised or unsupervised learning
approaches. Therefore, we focus on the applications of supervised learning approaches in
fall risk assessment.
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Deep neural networks (DNN) are composed of a large number of simple processing
modules named “neurons”. These “neurons” are distributed in separate layers and their
common task is calculating the “activation function” of the weighted sum of their inputs.
DNNs have the ability to learn directly on the raw data, so as to reduce the demand
for feature engineering. Full connected DNNs are suitable for most classification tasks
theoretically. However, they are rarely used in practice due to demand for large amount
of data.

Nait Aicha et al. [49] used a dataset which consists of acceleration data from 296 older
people. They compared Convolutional Neural Networks (CNN), Long Short-Term Memory
(LSTM), a combination of them and a base model which used biomechanical features in
single-task learning and multi-task learning respectively. The results indicated that deep
learning methods perform better in identifying subjects and assessing fall risk with gender
and age as auxiliary tasks when doing multi-task learning.

Recurrent Neural Networks (RNN) are neural networks with sequence data as input.
LSTM and Bi-directional long short-term memory (BiLSTM) are the most common RNNs
for studies of fall risk assessment. Meyer et al. [50] analyzed a variety of machine learning
models and feature sets for fall risk assessment of patients with multiple sclerosis. For
conventional machine learning methods which were logistic regression, SVM, decision
tree, KNN and ensemble binary statistical classification models in this study, feature
sets manually calculated from accelerometer data were used. Deep learning methods do
not require features to be manually calculated. Deep leaning models can take raw data
as input, extract features automatically and finish the classification task. In this study,
BiLSTM which combines forward LSTM with backward LSTM was used. BiLSTM is based
on Recurrent Neural Network. In discriminating patients with a fall history from those
without, BiLSTM obtained an accuracy of 86% and an AUC of 0.88. It performed better than
all conventional machine learning methods used in this study. It is worth mentioning that
BiLSTM may be better than LSTM when considering retrospective fall status classification
as an intermediate step in prospective fall risk assessment.

Recurrent Neural Networks are suitable for sequence data, which leads to frequent use.
Tunca et al. [51] explored LSTM for fall risk assessment as well. LSTM is sequence-to-label
classifier that can operate on sequence data directly. Considering that the existing research
on fall risk assessment and gait analysis has accumulated valuable domain knowledge,
this study attempted to combine the domain knowledge inherent in the spatio-temporal
gait features with LSTM. Sequences of spatio-temporal gait features from a sensor-based
system were used as input. Data samples consisted of four-dimensional sequences whose
length are ten. Four dimensions were stride length, clearance, stance time and swing time.
The length was due to 10 strides in a window which was used for data augmentation. In
addition to sequence data, another LSTM model was trained by raw data to determine
whether the model can implicitly learn the required features. The results showed that
LSTM with sequences of gait features achieved an accuracy of 89% on a validation set and
92.1% on a separate test set.

Convolutional Neural Networks are feedforward neural networks with convolutional
calculation. Although most applications of CNNs are related to pictures, they can handle
most grid-like data. Time series data commonly used in fall risk assessment can be con-
sidered as one-dimensional grid-like data. Savadkoohi et al. [52] used a one-dimensional
CNN with force plate time series data. Their network consists of three convolutional
layers, a max pooling layer and a global average pooling layer. The authors used only two
convolutional layers before the max pooling layer to minimize the information loss. Global
average pooling was used to reduce the possibility of overfitting.

4.3. Knowledge-Driven Model

In addition to data-driven models mentioned in above two sections, there have been
a small quantity attempts to perform fall risk assessment by knowledge-driven models.
Farseeing Fall Risk Assessment Tool (FRAT-up) introduced in [53] is based on probabilistic
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rules, generated automatically from a light ontology. FRAT-up is based on an assumption
that the total fall risk of a person is determined by the contributions of the risk factors
related to falls. The system takes the characteristics of a subject in terms of risk factors. As
output FRAT-up provides an estimation of the fall risk.

Compared to data-driven models, knowledge-driven models may be not applicable
to sensor-based fall risk assessment.

A comparison between different fall risk modeling approaches is showed in Table 2.

Table 2. The comparison of fall risk modeling approaches.

Conventional Machine Learning Deep Learning

Model type Logistic regression, SVM, KNN, HMM CNN, LSTM, BiLSTM
Advantage More friendly to small sample size, cheaper, more interpretable Higher accuracy, no need for engineering

Disadvantage Lack of scalability More expensive, hard to understand

5. Challenges

This survey analyzed literatures about sensor-based fall risk assessment, including
sensors themselves, features extracted from sensor data and modeling approaches. There
are still some challenges needed to focus on and they are listed below.

5.1. Optimal Sensor Placement

Different parts of human body show different motion characteristics in the process of
walking. Fixing sensors on various body parts can obtain various types of data and extract
various gait features. For example, sensors attached to thighs can monitor the process
of sit-to-stand. Many body positions have been tested. However, researchers have not
reached a consensus on the optimal position of sensors for the work of assessing fall risk.

5.2. Better Task for Risk Assessment of Falling

In the step of motion monitoring and data collecting of fall risk assessment, subjects
are required to perform a task. It may be walking on flat ground, walking on the slope,
Five-Times-Sit-to-Stand. In addition to single-task, dual-task walking has been used in
some studies. However, dual-task walking does not significantly help to improve the
performance of the model for fall risk assessment. It is important to find tasks that can
better characterize human gait.

5.3. Insufficient Sample Size

In most studies we reviewed, the sample size is usually small. Many studies included
no more than 100 subjects, and due to the requirement of long and intensive follow-up
period, the final sample size may be smaller. In addition, the continuous tracking of a
large number of subjects is also a costly work. Too little total sample size may lead to
overfitting of the final model. Too few positive samples relative to total sample size may
lead to distorted models.

6. Future Directions

6.1. More Robust Feature Construction

Feature selection is a commonly used approach of feature dimensionality reduction.
It can simplify our final model and reduce the overfitting of model. Compared with
automated feature selection, the extraction of raw feature set depends more on manually
operating. Therefore, more effective feature selection approaches are important for feature
construction before modeling. In addition, knowledge in other fields like physiatry may
help find the categories of raw features which are more closely associated with falls. Most
studies today focus on motion signals of human. In fact, physiological signals can also
reflect human’s status. Feature construction based on physiological signals may be also a
future direction.

278



Healthcare 2021, 9, 1448

6.2. Public Database of Various Datasets

Based on the extensive literature search, we found that the studies focus much on
the way sensors are placed and how to design tasks before building a model. Authors
acquire data in various ways: Types and position of sensors, tasks that paticipants should
do, sampling frequency, extracted features, to name but a few. Building a public database
with these various datasets acquired by different ways could help compare and reuse
the results.

6.3. Daily-Life Monitoring System

Most studies are carried out in laboratories or clinical environments. Professionals are
in need and data acquisition is inflexible. Moreover, participants who go to lab may feel
nervous when doing the task required so that they show a motion pattern which is different
from the usual one. Therefore, developing an daily-life continuously gait monitoring
system is important. In order to make elderly people continuously use the gait system, it
cannot be intrusive and clumsy, and user-friendly design should be under consideration to
make users comfortable with it. The wireless Inertial Measurement Unit (IMU) is a good
choice due to its small size and convenience of data transmission. Embedding sensors into
daily clothes is a new developing direction. Rosa et al. [54] developed an electric insole
based system. It transferred data collected to user’s smartphone in real time. And the
smartphone further transferred the data to backend server to analyze. The smartphone
itself also can be used for fall risk assessment due to the sensors it contains. Nishiguchi
et al. [55] developed a mobile phone application to validate its capacity to quantify gait
features. However, there are issues when using smartphone as the tool to assess fall risk.
For example, people carry their smartphones in different places (bags, pockets, etc.), which
may affect the assessment process of mobile phone.

7. Conclusions

Fall risk assessment has become a promising direction in the health industry. The
development of various disciplines, e.g., machine learning, sensor networks and wireless
communications, has jointly promoted the progress in this field. In this work, a survey of
fall risk assessment based on sensors has been presented. We first introduced principles
and methodology of this field. Then we reviewed monitoring, modeling and assessment
of fall risk respectively. In particular we identified characteristics of above aspects and
reviewed each individual field by category. At last, we discussed the existing challenges
and promising directions in this field.
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Abstract: Obstructive sleep apnea (OSA) is a common, chronic, sleep-related breathing disorder
characterized by partial or complete airway obstruction in sleep. The gold standard diagnosis method
is polysomnography, which estimates disease severity through the Apnea-Hypopnea Index (AHI).
However, this is expensive and not widely accessible to the public. For effective screening, this
work implements machine learning algorithms for classification of OSA. The model is trained with
routinely acquired clinical data of 1479 records from the Wisconsin Sleep Cohort dataset. Extracted
features from the electronic health records include patient demographics, laboratory blood reports,
physical measurements, habitual sleep history, comorbidities, and general health questionnaire
scores. For distinguishing between OSA and non-OSA patients, feature selection methods reveal the
primary important predictors as waist-to-height ratio, waist circumference, neck circumference, body-
mass index, lipid accumulation product, excessive daytime sleepiness, daily snoring frequency and
snoring volume. Optimal hyperparameters were selected using a hybrid tuning method consisting of
Bayesian Optimization and Genetic Algorithms through a five-fold cross-validation strategy. Support
vector machines achieved the highest evaluation scores with accuracy: 68.06%, sensitivity: 88.76%,
specificity: 40.74%, F1-score: 75.96%, PPV: 66.36% and NPV: 73.33%. We conclude that routine clinical
data can be useful in prioritization of patient referral for further sleep studies.

Keywords: electronic health records; machine learning; obstructive; polysomnography; prediction;
sleep apnea

1. Introduction

Sleep research is of pertinence due to its fundamental role in ensuring health and
wellbeing, and as cited by the American Psychiatrist Allan Hobson “Sleep is of the brain,
by the brain and for the brain” [1]. Sleep disorders are impairments of sleep architecture
(consisting of sleep stages) and disrupts psycho-physical health leading to the development
of a host of diseases. More than a billion adults globally between the ages of 30 to 69 years
suffer from obstructive sleep apnea (OSA), the most common type of sleep-disordered
breathing. 936 million of them suffer mild to moderate symptoms and 425 million suffer
from moderate to severe symptoms. The highest concentration of these individuals can
be found in China, followed by India, Brazil, United States of America, Pakistan, Russia,
Nigeria, Germany, France and Japan [2].

OSA causes temporary lapses in breath when the upper airway at the back of the
throat becomes partially or completely blocked during sleep. This can lead to fragmented
sleep since the individuals need to be conscious enough to wake up and reopen their
airway to resume breathing and sleep and this poor quality of sleep results in sleepiness,
fatigue and considerable physiological and psychological distress. Some of the common
symptoms that can help identify the disorder is disrupted breathing, excessive daytime
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sleepiness (EDS), morning headaches, irritability, limited attention span, snoring and dry
mouth [3]. Untreated OSA has been associated with many health conditions such as
obesity, cardiovascular and metabolic disorders, in addition to reduced quality of life and
depression [4].

To diagnose OSA, polysomnography (PSG) conducted in a sleep laboratory is usu-
ally considered as the gold reference standard. PSG monitors and records several body
functions during sleep. If there are more than 15 obstructive respiratory events per hour
of sleep, then no other symptoms are needed. The PSG test defines an apnea-hypopnea
index (AHI) based on the criteria above. Severity grading varies, but typically mild OSA
is defined by an AHI of 5 ≤ 15, moderate OSA by AHI between 16 ≤ 29, and severe by
AHI ≥ 30. This method has several limitations: (i) it is expensive and time-consuming
and requires medical supervision and in addition to being confined within a hospital or
clinical setting, (ii) the sleep environment will be altered and does not represent the natural
sleep context of the individual, and (iii) it cannot be implemented over a long time, being
limited to a span of few days. There are other tests such as the multiple sleep latency
test (MSLT), maintenance of wakefulness test (MWT), CPAP titration test, all of which
are conducted in a controlled environment, typically following the PSG. Home sleep tests
are a limited PSG which can be taken at home allowing it to be in the patient’s natural
environment but it cannot determine sleep stages or other parameters which puts them at
a major disadvantage. Self-assessment methods like sleep questionnaires and sleep diaries
are an alternative inexpensive method which preserves the normal sleep environment but
are highly subjective. Furthermore, sleep questionnaires are subject to bias due to patient
reluctance in disclosing sensitive private information, or as a consequence of diminished
awareness about the implications of potential sleep disorders. Sleep diaries contains more
pertinent information as it is filled over a longer period of time, but has the same underlying
issues as sleep questionnaires [5].

Accounting for these considerations, it is integral to develop easy-to-use and cheap
accurate screening tools that can easily monitor disturbances in the population at a rela-
tively low cost. In today’s increasingly digital world, there is a large amount of health data
generated by different sources such as real-time physiological data from connected wear-
ables, electronic health records (EHR), insurance claims and social media posts. Artificial
intelligence, more specifically machine learning (ML) is emerging as a powerful tool in
healthcare to mine available patient data and build powerful diagnostic frameworks [6].
This paradigm is gaining momentum in the area of OSA classification with two of the
aforementioned sources: physiological data and EHR.

Physiological data can be derived from electroencephalogram [7], electrocardiogram
or photoplethysmogram readings acquired either during PSG or through consumer-grade
wearable devices [8]. In general, the former type of data collected in sleep labs with
a ground truth respiratory signal achieve noticeably better performance with any ML
algorithms. While actigraphy studies are attractive owing to its applicability in community
based populations, it is inherently challenging to achieve comparable OSA screening
performances as those from sleep lab studies. This is a consequence of occurrences such as
noise, motion artifacts or other disturbances (such as battery depletion, missing data, loose
skin contact, etc.). Researchers have also developed smartphone sensor based application
for sleep apnea monitoring [9] and presented contact-less sleep disorder detection using
sonar techniques [10]. The physiological monitoring modalities have the common issue of
requiring additional obtrusive monitoring apparatus or expert supervision, which brings
to the forefront the alternative approach of using routinely acquired electronic health
records to perform screening. In can be surmised that sleep physiological data such as
pulse oximetry and sleep stage duration have considerable predictive ability, but are not
readily available, as the expensive, time consuming and labor intensive nature of PSG limits
regular monitoring and diagnosis [11,12]. Moreover, the variability in performance of such
solutions over an extended period of time within a community based setting conveys a
relatively low level of overall reliability.
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The use of digital health records and machine learning techniques trained on Big Data
publicly available can allow for the transfer the knowledge representation to generalized
cases. These tests would be more accurate in identifying patients with a higher pretest
probability of OSA and can rule out OSA in low-risk patients, due to the high volume,
veracity, velocity, variety and value provided by the datasets [4]. There are multiple
successful studies leveraging EHRs to implement effective disease prediction models
in literature [13]. A study conducted using EHRs from over 1 million outpatient visits
from over 500,000 patients at a major academic medical referral center in China, was
used to create an AI-based diagnostic system for detection of pediatric diseases with an
accuracy in the ranges of 90–95% for multiple disease categories [14]. Although traditionally
predictive modelling techniques require custom datasets, with specific variables limit the
scope of the applicability, especially with large feature variables, recent developments in
artificial intelligence address these challenges [15]. Predictive modeling with electronic
health records using the “transfer learning” approach has shown to accurately predict
medical events from multiple clinics without being site specific [16]. Moreover, with
the creation of flexible standardized clinical data representation formats like FHIR (Fast
HealthCare Interoperability Resources), any developed models can be integrated into
clinical systems [17]. One of the primary advantages of such models would be the ability
to contribute to a wider population health paradigm using the routine biomarkers and
patient profiles in hospitals to screen and preemptively identify at risk individuals for care.
These screening methods reduce the need for patients to undergo either obtrusive tests
such as PSG to even identify sleep disorders, or remote patient monitoring systems using
wearables, although these approaches do have their value in screening within consumer
lifestyle management applications. There is a significant cost reduction to both the clinics
and patients in the deployment of clinical screening algorithms, as they would not be as
expensive as PSG, and allows for consideration of patients who do not have wearable
devices as well. Most literature in this intersecting area of patient health records, Big
Data and deep learning focus on prediction of mortality, cardiovascular risks, diabetes
and pulmonary conditions. A systematic review of recent developments in deep learning
methods and their clinical outcomes with the utilization electronic health records can
be observed in [18]. Their study reiterates that general conditions such as suicide risk,
future disease predictions, readmission probability prediction, heart failure prediction and
hospital stay duration estimation are the actively researched areas.

The experiments in [19] saw the deployment of a learning algorithm to distinguish
cases of diagnosed OSA and non-cases using EHR ICD-codes across six health systems in
the United States. A cohort study of adults in Canada was conducted as follows in [20],
where an algorithm trained on administrative data and ICD-codes found a high degree
of specificity in identifying patients with OSA. A super sparse linear integer model was
developed in [21], by training the model on self-reported symptoms, self-reported medical
information, demographics and comorbidities data to screen for OSA cases with consider-
ably success. Another study [22] focused on developing a support vector machine-based
prediction model using 2 to 6 features collected at clinical visits to identify patients with
AHI index at 3 cut offs. The model was fivefold-cross validated and had balanced perfor-
mance measures in the 70% range. It outperformed the Berlin Questionnaire, NoSAS score
and Supersparse Linear Integer model for the age category for men below 65 years of age.
The primary limitations between the clinical data trained models are due to oversampling
of the target class (i.e., more sleep apnea cases than control group), lack of generalizability
(due to limited data features), and relatively high false alarms for OSA [23]. In clinics
where PSG is not possible, or there is no sleep data available, medical staff still screen using
self-reported questionnaires during patient visits [24]. There is room for improvement, es-
pecially considering boosting algorithms as their ability to uncover non-linear patterns are
unparalleled, even given large number of features, and make this process much easier [25].

This work presents and attempts to answer this question: “Is it possible to develop
machine learning models from EHR that are as effective as those developed using sleep
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physiological parameters for preemptive OSA detection?”. There exist no comparative
studies between both approaches which empirically validates the quality of using routinely
available clinical data to screen for OSA patients. The proposed work implements ensem-
ble and traditional machine learning models to screen for OSA patients using routinely
collected clinical information from the Wisconsin Sleep Cohort (WSC) dataset [26]. WSC
includes overnight physiological measurements, and laboratory blood tests conducted in
the following morning in a fasting state. In addition to the standard features used for OSA
screening in literature, we consider an expanded range of questionnaire data, lipid profile,
glucose, blood pressure, creatinine, uric acid, and clinical surrogate markers. In total,
56 continuous and categorical covariates are initially selected, the the feature dimension
narrowed systematically based on multiple feature selection methods according to their
relative impacts on the models’ performance. Furthermore, the performance of all the
implemented ML models are evaluated and compared in both the EHR and the sleep
physiology experiments.

The contributions of this work are as follows:

• Implementation and evaluation of ensemble and traditional machine learning with an
expanded feature set of routinely available clinical data available through EHRs.

• Comparison and subsequent validation of machine learning models trained on EHR data
against physiological sleep parameters for screening of OSA in the same population.

This paper is organized as follows: Section 2 details the methodology, Section 3
presents the results, Section 4 discusses the findings, and Section 5 concludes the work
with directions for future research.

2. Materials and Methods

As shown in Figure 1, the proposed methodology composes of the following five steps:
(i) preprocessing, (ii) feature selection, (iii) model development, (iv) hyperparameter tuning
and (v) evaluation. This process is conducted for the EHR as well as for the physiological
parameters acquired from the same population in the WSC dataset.

Figure 1. High level view of the proposed methodology.

OSA is a multi-factorial condition, as it can manifest alongside patients with other
conditions such as metabolic, cardiovascular, and mental health disorders. Blood biomark-
ers can therefore be indicative of the condition or a closely associated co-morbidity, such
as heart disease and metabolic dysregulation. These biomarkers include fasting plasma
glucose, triglycerides, and uric acid [27]. The presence of one or the other comorbidities
does not always necessarily indicate OSA, however in recent literature clinical surrogate
markers reflective of particular conditions have shown considerable association with sus-
pected OSA. Clinical surrogate markers exhibit more sensitive responses to minor changes
in patient pathophysiology, and are generally more cost-effective to measure than complete
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laboratory analysis [28]. Thus, we derive 4 markers, Triglyceride glucose (TyG) index,
Lipid Accumulation Product (LAP), Visceral Adipose Index (VAI) and the Waist-Height
Ratio (WHrt), and observe their value in discriminating between OSA and non-OSA
patients [29]. Ref. [30] reports LAP, VAI and TyG were reliable surrogate markers for
identifying metabolic syndrome in middle-aged and elderly Chinese population. TyG
was independently associated with increased OSA risk, as it is a reliable marker of insulin
resistance, comprising of glucose intolerance, dyslipidemia, and hypertension [31]. This
relationship is observed as insulin resistance increases due to the intermittent periods of
asphyxia, hypoxia and sleep depivation caused due to OSA [32].

The Wisconsin Sleep Cohort (WSC) from University of Wisconsin-Madison is a
study of 1500 participants having the causes, consequences and natural history of sleep
disorders [26]. Fifty-six total features are extracted and categorized into demographics,
anthropometry, blood tests, derived clinical markers, general health questionnaires, self-
reported history, polysomnography derived parameters, as presented in Tables A1–A8
respectively within Appendix A. The dataset contains 2570 records of the 1500 participants
assessed at four-year intervals, where each participant can have up to five records in the
study. The total number of participants/patients is denoted by np, and the total number
of health records is denoted by nr. The demographics included age, sex, race, alcohol
and smoking habits. The anthropometric features included patient height, weight, BMI,
waist circumference, and neck circumference. The laboratory blood test results were ob-
tained the morning following the overnight sleep study in a fasting state. The profiles
are of fasting plasma glucose, HDL-C, LDL-C, total cholesterol, creatinine, uric acid, sys-
tolic and diastolic blood pressure. The self-reported history consisted of general health
status, existing medical conditions and sleep symptoms, which were acquired through
self-administered questionnaires. Finally, polysomnography derived parameters included
objective information about sleep stages, sleep duration, AHI events, and oxygen saturation
levels. To compare model discriminability when trained with clinical data features and
PSG parameters, they are used exclusively to implement independent models.

An eighteen channel PSG system (Grass instruments model 78; Quincy, MA, USA)
was used to record sleep state with electroencephalography, electrooculography, and elec-
tromyography [33]. Breathing, nasal and oral airflow, and oxyhemoglobin saturation were
assessed respectively using respiratory inductance plethysmography (Respitrace; Ambula-
tory Monitoring, Ardsley, NY), thermocouples (ProTec, Hendersonville, TN and Validyne
Engineering Corp pressure transducer, Northridge, CA) and pulse oximetry (Ohmeda
Biox 3740; Englewood, CO, USA) [33]. Every 30 s of the PSG recordings were scored in
terms of sleep stage and apnea and hypopnea events by trained technicians according to
conventional standards [34,35]. Cessation of airflow for ≥10 s and discernible reduction in
breathing expressed as a sum of chest and abdominal excursions with a oxyhemoglobin
saturation decrease of ≥4% defined apnea and hypopnea events respectively [33].

The dataset was examined for missing values for deletion or imputation. Little’s
MCAR (Missing Completely at Random Test) confirmed the null hypothesis (p > 0.05)
that the pattern of missing values did not have any significant relationship with the rest
of the data [36]. As such, imputation would not be an effective approach, due to the
large number of missing values in the records relative to the total size of the dataset itself.
Thus, listwise deletion was employed to remove entire records where the clinical features
of interest values were missing, or had a numeric value of 0 where domain knowledge
states it is not possible (e.g., fasting plasma glucose, triglycerides). Continuous variables
and categorical variables were handled separately, due to their differing mathematical
characteristics. Continuous variables were scaled using the standardization technique to
distribute the values around a mean with unit standard deviation. Categorical variables
were converted into one-hot encoded vectors equal to the number of unique categories for
each column using dummy variables.

The data records were split on a participant level into a training-validation set con-
sisting of distinct patients (np = 752) and a hold-out testing set of (np = 188) patients.
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The cleaned dataset had (nr = 1479) records, where (nr = 853) records exhibited OSA
and (nr = 626) did not have OSA. This was done as a single patient can have multiple
records in the dataset, and records repeating across the both training set and testing set will
introduce data leakage.For the development of both the EHR and PSG data based models,
the same training-validation and hold-out sets are used. All subsequent analysis that are
part of steps (i)–(iv) in the methodology is conducted using the training-validation split,
and step (v) is applicable for the hold-out testing set.

The populations were split at the threshold of AHI = 5 for the total of 56 features.
In all following analysis, p-values < 0.05 are the cut-off for statistical significance. We
applied the Shapiro-Wilk test of normality [37] to the populations, and note deviation
from Gaussian distribution. Hence, we apply the Mann Whitney U-Test [38], which is
distribution agnostic, to the continuous variables. Only self-reported sleep latency, LDL-C,
total cholesterol, creatinine, Horne Ostberg score, State-Trait anxiety scores, non-REM
sleep duration, and percentage of sleep stage 3&4 had p-values > 0.05. The average age
is above 50 for both populations, and it is more probable that some of the patients may
be facing onset of age-related diseases and increasing risk of OSA [39]. However, despite
the aging, the overall population appears to be healthy, without much severity in any
present comorbidities.

For categorical variables, we apply Chi Square with Bonferroni-Adjusted-p-value, as
post-hoc testing can reduce false positives when multiple category levels are involved.
No Yates correction was employed, to yield conservatives in the obtained p-values [40].
The demographic is heavily skewed towards the Caucasian ethnicity. Other perceived
differences are in distribution of sexes (more men), occurrences of previous heart attacks,
hypertension issues, angina, coronary, diabetes, arthritis, congestive heart failure, existing
apnea and excessive daytime sleepiness along with snore volume being relatively higher
among the OSA group. In terms of lifestyle, alcohol consumption and smoking is fairly
similar between the two populations.

Feature selection was conducted using only the training-validation set. To mitigate
possible selection bias and reduce redundancy, consistently highly ranking common fea-
tures across all feature selection methods are chosen. We run two variations of this approach
to ascertain the relative importance of all features. The intersection of the top two and
top twenty features from each method is taken in the two cases respectively. The lower
and upper bounds for the top features experiment is decided based on the distribution of
the feature importance scores. To be more specific, many features have approximately the
same impact on the AHI values, and we demarcate the two points where the differences
between subsequent scores are the highest.

In the feature selection process for the clinical data, biological plausibility and their
effective values during correlation with OSA were considered as well [41]. Automated
step-wise procedures were avoided in favor of manual feature selection to ensure that
the predictions made by the model can remain interpretable by medical professionals,
if needed.

Pearson’s correlation coefficient estimates coefficients between the output class and
each of the predictor features signifying the strength and nature of the relationship between
the two [42]. The coefficient is distributed between −1 and +1, where the former is total
negative correlation, and the latter is total positive correlation. 0 indicates no linear correla-
tion between the variables. We select the continuous features with positive and negative
correlation as per this method to capture linear relationships, as shown in Figure 2. The
coefficient estimation does not assume normality, but does assume finite variance and
finite covariance as per the central limit theorem. Kendall’s Tau correlation coefficient is
a non-parametric test for measuring degree of association between the output class and
predictor features applicable for categorical variables [42]. It is more robust to outliers and
operates on the principles of comparing concordant and discordant pairs for ordinal vari-
ables. The most impactful categorical features are selected, as shown in Figure 3. Extremely
Randomized Trees Classifier is a method where a number of randomized decision trees are
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fitted on subsets of the dataset [43]. Each decision tree results in a different model that has
been trained with a different set of features. The relative importance of each feature on the
classification performance of AHI is quantified as per the Gini index, as shown by Figure 4.
We apply the Mutual Information technique to ensure that all strong associations, even
non-linear between the continuous and categorical features with respect to the output class
of OSA have been effectively captured [44]. Information gain measures the reduction in
entropy of predictor features by partitioning a dataset according to the output classes. The
entropy quantifies the probability distribution of observations in the dataset belonging to
positive or negative class. Higher information gain suggests higher dependency between a
feature and a specific output, while 0 suggests both are independent of each other. This
method accepts continuous and categorical variables, and is able to capture both linear and
non-linear relationships, as shown in Figure 5.

The final feature set in the top two-features per method consisted of a total of 8 features:
waist circumference, neck circumference, daily snoring frequency, snoring volume, EDS,
BMI, Whrt, and weight. The final features in the top twenty-feature per method consisted
of the following 11 features in addition to the previous 8 features: fasting plasma glucose,
LAP, uric acid, VAI, hypertension, heart attack comorbidity, TyG, triglycerides, systolic
blood pressure and age.

In the feature selection process for the PSG parameters, all the variables were con-
tinuous. Thus, Kendall’s Tau was excluded, and the feature rankings from Pearson’s
Correlation Coefficient, Extremely Randomized Trees Classifier, and Mutual Information
are shown in Figures 6–8 respectively. Unlike the clinical data features, where multiple fea-
tures had relatively similar influences on the dependent AHI variable, the most important
parameters from PSG are the mean desaturation percentage, and minimum level of oxygen
saturation. This is expected as the apnea-hypopnea events are scored using the changes in
breathing and airflow.

Figure 2. Clinical features ordered as per Pearson’s Correlation Coefficient.
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Figure 3. Clinical features ordered as per Kendall’s Tau.

Figure 4. Clinical features ordered as per Extremely Randomized Trees.
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Figure 5. Clinical features ordered as per Mutual Information.

Figure 6. PSG features ordered as per Pearson’s Correlation Coefficient.
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Figure 7. PSG features ordered as per Extremely Randomized Trees.

Figure 8. PSG features ordered as per Mutual Information.

The final feature set in the top two-features per method derived from oximetry con-
sisted of a total of two features: mean oxygen desaturation percentage, and minimum
level of oxygen saturation. The final feature set in the top fifteen-features per method
derived from oximetry c in the top fifteen features consisted of the following 4 features
in addition to the previous 2 features: sleep duration with oxygen saturation percentage
below 90%, REM sleep latency, average oxygen desaturation of apnea-hypopnea event and
mean oxygen desaturation duration.

Ensemble methods include “bagging” (e.g., Random Forest algorithm) and “boosting”
methods (e.g., Extreme Gradient Boosting technique). Ensemble machine learning methods
such as gradient boosting iteratively combines a set of weak base classification models to
construct a strong learner. Gradient boosting techniques are currently being employed to
attain state-of-the-art results in clinical applications [45,46]. Gradient boosting techniques
sequentially minimize the residual error of preceding learners. The variation in individual
base learner configuration is expected to capture different relationships in the data distri-
bution. Its integration into a unified prediction model is similar to the concept of collecting
various expert opinions on an initial prognosis, aggregating and making a final decision.
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Extreme gradient boosting (XGB) [47] utilizes the gradient boosting framework, with
the algorithmic enhancements of regularization, sparsity awareness, weighted quantile
sketch and internal cross-validation. Light gradient booting machine (LGBM) [48] is another
variant, where the key difference is in its implementation of vertical decision tree growth
and gradient-based One-Side Sampling strategy. LGBM grows tree in a leaf-wise manner, as
opposed to level-wise, thereby is capable of reducing delta loss more drastically. CatBoost
(CB) [49] is yet another variant of gradient boosting, with the refinement strategies of
symmetric tree implementation, ordered target statistics and ordered boosting to minimize
prediction shift with categorical variables.

The traditional machine learning models of k-Nearest Neighbours (kNN), Support
Vector (SVM) Machines and Logistic Regression (LR) are used as baseline to benchmark
the performance of the ensemble techniques [50]. KNN is non-parametric learning algo-
rithm which distributes similar instances in the same proximity defined by the Euclidean
distance, and classifies new unknown instances by majority vote of their k nearest instance
neighbours. SVM is an algorithm that performs prediction by optimally separating the
data instances of different classes in an n dimensional space using a hyperplane and its
associated support vectors. LR is an extended case of the classic linear regression method,
in which one or more independent input variables predicts the probability of occurrence of
a binary output variable.

We applied a hybrid hyperparameter tuning approach by combining a Bayesian Opti-
mization variant for global search, and a genetic algorithm for local search. The methods
were Tree-structured Parzen estimator (TPE) [51] and Covariance matrix adaptation evo-
lution strategy (CMA-ES) [52] respectively. TPE constructs a probability model of the
specified objective function, and identifies the ideal hyperparameters, and CMA-ES itera-
tively samples candidate solutions using a derivative free approach. The parameters and
instantiation values for both the algorithms are based on the work presented in [53]. The
optimization criteria was the aggregate cross-validation F1-score of the training-validation
set in order to achieve a balanced screening system.

3. Results

All analysis were conducted using Python 3.7.12 on a workstation operating a Linux
OS with 24 GB RAM, Intel Quad-Core Xeon CPU (2.3GHz), and Tesla K80 GPU (12 GB
VRAM). The Python libraries used are mentioned in the subsequent paragraph.

Data was processed with numpy 1.19.5 [54] and pandas 1.1.5 [55]. Statistical methods
and correlation tests were performed using scipy 1.4.1 [56]. Gradient boosting models
were constructed using the standard xgboost 0.90 [47], lightgbm 2.2.3 [48] and catboost
1.0.0 [49] libraries. Baseline machine learning models were constructed using scikit-learn
1.0.0 [57]. Visualizations were made using seaborn 0.11.2 [58] and matplotlib 3.2.2 [59].
Hyperparameter tuning was performed using the Optuna 2.10.0 library [53].

The following metrics are used to ascertain the performance quality of the gradient
boosting models through a 5-fold cross-validation approach: accuracy (Acc), sensitivity
(Sen), specificity (Sp), positive prediction value (PPV), negative prediction value (NPV),
F1-Score, and Area Under Curve (AUC). Accuracy is the proportion of correct predictions
across the total test dataset. Sensitivity is the proportion of OSA patients correctly identified
as positive and specificity is the proportion of non-OSA patients correctly identified as
negative. Positive prediction value is the probability of positive cases correctly being OSA
patients, and negative prediction value is the probability of negative cases correctly being
non-OSA patients. The F1-score measures the balance between positive predictive value
(cause of type-1 errors) and sensitivity (cause of type-2 errors). Area Under Curve denotes
the trade-off between sensitivity and specificity, with the cut-off value identified using the
Youden index.

All reported metrics of the EHR trained and oximetry trained models are obtained through
evaluation on the hold-out test data in Tables 1–5. The best hyperparameters used to generate
the reported results in Tables 1 and 4 are provided in Tables A9 and A10 respectively.
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It is observed that the oximetry related parameters exhibit a considerably better perfor-
mance for detecting OSA across all metrics with its increased impact evident particularly
on specificity, as evident by Table 3. These features are capable of finding patterns whilst
remaining fairly stable in small amounts of data as well, which may required for data
constrained environments. Since trained specialists perform annotation of an apnea or
hypopnea event based on the nature of respiration and oxygen levels, it is expected that
the respective physiological parameters reflecting this are much more effective. However,
in non-monitored, community-based conditions where patient apnea events are classi-
fied by automated algorithms through portable medical devices, smartphones or smart
watches, the efficacy of alternate parameters needs to be examined further. Despite these
observations, we can surmise that the routinely collected clinical features of waist circum-
ference, neck circumference, BMI, and weight along with the self-reported symptoms of
EDS, snoring frequency and snoring volume and derived clinical surrogate markers of
lipid accumulation product and Waist-Height ratio have utility in identification of OSA.
Thereby, in comparison with overnight pulse oximetry, use of electronic health records is a
viable alternative, albeit for early risk screening and prioritization of OSA patients.

Table 1. Classification performance measures across ensemble and traditional models for 8 EHR
features.

Model Acc% Sen% Sp% F1-Score% PPV% NPV% AUC%

XGB 68.05 79.20 53.33 73.82 69.11 66.05 66.30
LGBM 67.41 74.15 58.52 72.13 70.21 63.20 66.33

CB 67.41 83.14 46.65 74.37 67.27 67.74 64.09
RF 68.05 77.52 55.55 73.40 69.69 65.22 66.54

kNN 67.09 77.00 54.00 72.67 68.84 64.03 65.55
LR 67.73 80.89 50.37 74.00 68.24 66.66 65.63

SVM 68.06 88.76 40.74 75.96 66.38 73.33 64.75

Table 2. Classification performance measures across ensemble and traditional models for 19 EHR
features.

Model Acc% Sen% Sp% F1-Score% PPV% NPV% AUC%

XGB 69.64 78.65 57.77 74.66 71.65 67.24 64.66
LGBM 68.37 73.60 61.48 72.57 71.58 63.84 67.53

CB 69.00 77.52 57.77 74.00 70.76 66.60 67.65
RF 65.81 73.03 56.30 70.84 68.78 61.30 64.66

kNN 63.25 69.10 55.55 68.14 67.21 57.69 62.32
LR 67.41 74.15 58.51 72.13 70.21 63.20 66.33

SVM 65.17 77.53 49.63 71.54 66.90 62.04 63.30

Table 3. Classification performance measures across ensemble and traditional models for 2 PSG
features.

Model Acc% Sen% Sp% F1-Score% PPV% NPV% AUC%

XGB 82.74 88.00 76.15 85.06 82.35 83.33 82.05
LGBM 83.04 87.42 77.48 85.20 83.08 83.00 82.97

CB 83.63 89.00 76.82 85.85 83.00 84.67 83.00
RF 83.63 87.43 78.80 85.64 84.00 83.20 83.12

kNN 82.74 88.48 75.50 85.13 82.03 83.82 82.00
LR 81.87 82.77 80.79 81.76 84.49 78.71 81.17

SVM 83.04 86.91 78.15 85.13 83.42 82.51 82.52
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Table 4. Classification performance measures across ensemble and traditional models for 6 PSG
features.

Model Acc% Sen% Sp% F1-Score% PPV% NPV% AUC%

XGB 83.92 89.53 76.82 86.14 83.00 85.30 83.17
LGBM 83.33 88.50 76.82 85.56 82.84 84.05 82.65

CB 84.21 89.53 77.50 86.36 83.41 85.40 83.50
RF 84.50 89.53 78.14 86.60 83.82 85.50 86.58

kNN 83.33 88.00 77.48 85.50 83.17 83.57 82.72
LR 83.62 86.91 79.47 85.56 84.26 82.75 83.19

SVM 83.33 86.91 78.80 85.34 83.83 82.63 85.34

Table 5. A comparison of recent works developed for EHR-based screening of OSA through machine learning.

Source Dataset Features Approach Sen% Sp%

This work WSC (np = 940) waist-to-height ratio, waist circumference, SVM 88.76 40.74
neck circumference, BMI, EDS, LAP,

daily snoring frequency and snoring volume
[21] Private (np = 1922) age, hypertension, BMI and sex SLIM 64.20 77.00
[22] Private (np = 6875) waist circumference and age SVM 74.14 74.71
[60] Private (np = 279) waist circumference, frequency of falling asleep, SVM 80.33 86.96

subnasale to stomion length, hypertension,
snoring volume, and fatigue severity score

[61] Private (np = 313) BMI, ESS, and number of apneas SVM 44.7 -

4. Discussion

The primary motivation behind the application of ensemble gradient boosting algo-
rithms in this work was an attempt to capturing higher dimensional interactions in the data,
as a consequence of the multifactorial nature of OSA. The performance of the SVM, LR, and
KNN baseline models are relatively similar to the performance of boosting (CatBoost, XGB
and LGBM) and bagging (RF) algorithms with the top 8 features as presented in Table 1.
Interestingly, the ensemble models do not fare significantly better than the traditional mod-
els in either the EHR or PSG case. For the 8 feature case, the sensitivity, F1-score and NPV
of the SVM is the highest, while LGBM has higher specificity, PPV and AUC. CB has the
second highest sensitivity and F1-score. For the 19-feature case, the XGB model performs
the best across the metrics of accuracy, sensitivity, F1-score, PPV, and NPV while LGBM still
retains the highest specificity. SVM has the second highest sensitivity but its performance
across the other metrics is not as comparable. However, as the number of features increase,
roughly a factor of two in this case, the overall performance begins to decrease as presented
in Table 2. The F1-score, a robust metric of reliability is consistently higher for the ensemble
techniques in the 19 feature case. It is possible that in the case of non-linear relationships,
ensemble learning can learn more complex relations from relatively small amounts of data
(∼1000 samples). The intention behind selecting the most important 8 EHR features then
extending to 19 EHR features, is to observe whether an increase in the number of EHR
features with association to OSA can improve the specificity of detection. We note that
age, triglycerides, and the existing conditions of hypertension and previous heart attack
exhibit the ability to predict OSA, but it does not increase the rate of detection among the
population sample available for this work. Since the focus of this work is identifying the
model giving rise to the highest sensitivity for screening with the most impactful features,
even at the expense of specificity, the SVM is most applicable. When we compare the EHR
performance metrics to the PSG case, the disparity is evident in favor of the latter. As the
number of features are increased in the PSG case, all metrics across all models exhibit a
modest increase in performance. In both the 2 feature and 6 feature experiment, the CB
model emerges as the best method, followed by RF. It is possible that in the EHR case
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that multiple features are related with each other, and there is underlying redundancy,
which does not contribute towards the knowledge representation learned by the models.
In contrast, the addition of more PSG features might be providing extra information, which
enables the models with an improved representational understanding of the relationship
between these predictors and OSA severity.

One of our contributions are in the expansion of the initial feature dimensions to
56 EHR parameters, consisting of a combination of medical history, comorbidities, clinical
measurements, laboratory blood tests and self-reported symptoms. Most existing works
only consider for waist circumference, neck circumference, BMI and age as the feature
set, which may not completely represent the populations at risk of OSA. Risk factors
underlying the decision remain poorly understood, therefore adding multiple dimensions,
can potentially reduce the unnecessary referrals and account for the typically missing
screening of patients with sleep apnea and minimal snoring. We additionally evaluate the
role of LDL-C, HDL-C, fasting plasma glucose, uric acid and derived clinical surrogate
markers of Whrt, LAP, VAI and TyG in predicting OSA, within a machine learning context.
With the incorporation of additional features, we attempted to rectify the high false positive
rate by increasing model specificity through holistic consideration of a complete patient
medical history. Gradient boosting methods were applied with the intentions of reducing
bias, improving generalization ability and reducing overfitting. Regardless, these models
exhibit only marginal superiority over traditional methods such as SVM.

Waist, neck circumference and EDS have been long established as vital indicators
for OSA susceptibility, and results of feature selection methods are in agreement. It is
important to note that abdominal obesity is not the same as peripheral obesity. Waist
circumference depends on the fatty tissues in the peritoneum, and thus, the abdominal
obesity, which is known to affect upper airway functioning, a consistent symptom of
OSA [62].

Frequent snoring was detected during feature selection as yet another pertinent feature
for OSA prediction, and is part of the minimal feature set for the trained models. Although
experts in [63] advise caution in the interpretation of snoring symptoms for assessing
sleep apnea, they state it can be reliable when used in conjunction with additional clinical
and physical readings, which is the case in our presented work. While the features of
insomnia and daytime sleepiness (quantified by ESS) were included in feature selection,
they only showed a marginal association with OSA, as opposed to the stipulations of [64,65],
respectively. This can be explained by the overall minimal OSA severity levels of the dataset
population used in this work.

Patient laboratory blood tests and clinical surrogate markers were introduced as auxil-
iary biomarker features and its value in improving the model discernibility for classification
of OSA was studied. In the case where 19 features were utilized for training, fasting plasma
glucose, uric acid, and LAP (dependent on on waist circumference to triglycerides ratios)
showed correlation with OSA in a similar fashion to traditionally expected indicators such
as EDS and BMI. Additionally, the clinical markers of systolic blood pressure, VAI, and
TyG are also present. These biomarkers are associated with OSA, and is in concordance
with prior literature. Although the models were not able to utilize all biomarkers relevant
to OSA with equal effectiveness, the possible reasons for the findings and variations in this
work are worth mentioning.

Fasting plasma glucose is arguably the strongest blood biomarker feature, ranking
consistently highly behind the physical measurements and snoring features across all the
feature selection methods. This is expected given its relation with sleep quality and the
effect of fragmented sleep on metabolic dysregulation which causes elevated glucose levels
in the body, as reported in [66]. For some patients, the presence of insulin resistance/glucose
irregularity, overlaps with the OSA symptoms of upper airway narrowing and decrease
reduced dilator muscle contraction. Interestingly, glucose irregularity in a sleep disordered
population of males has been shown in [67] to be independent of obesity and diabetes,
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indicating a strong correlation with OSA severity. From the findings of [68], OSA was
independently associated with decreased insulin sensitivity in a female population as well.

In this work, uric acid emerged as a viable secondary predictor for OSA. This is likely
due to hyperuricemia, which is an excess of uric acid levels, has been reported to be signifi-
cantly associated with OSA as well as obesity and overnight oxygen desaturation severity.

As hypothesized, it appears the Whrt and VAI and LAP indices prove to be useful
indicated as well. This is expected since fat distribution, visceral fat, and body composition
increases the risk of anatomical irregularities common among OSA patients, and this is
stated in [69].

The VAI feature can be useful as a secondary risk factor; likely due to visceral fat being
a consequence of OSA adversely influencing the systemic inflammation of the body, as
observed by [70].

TyG was used as a predictor in this work, and the findings parallel the results of [71]
where TyG had a noticeable independent correlation with OSA in both non-obese and
non-diabetic patients.

Recent studies reveal the capability of sleep architecture, in terms of sleep stages and
sleep duration, in producing effective technology enabled screening of sleep disorders.
Sleep architecture is estimated by leveraging wearable sensors or smartwatches with ma-
chine learning methods and its effect on OSA screening is observed in [72,73]. Specifically,
stage 1 and stage 3 sleep exhibited anomalous behavior in the case of OSA patients, as
stated in [74–76]. Interestingly, the findings of our presented work does not reveal strong
predictive powers when using the features of sleep stages (stage 1, stage 2, stage 3 and
REM) as well as sleep duration metrics. This could be because OSA does not always
reflect the same changes across all stages of sleep for all individuals, due to variations in
pathophysiological factors such as airway collapsibility, muscle responsiveness, arousal
thresholds, and stable ventilation. These points arise as substantial inconsistencies when
conducting sleep experiments on populations with different demographical composition
in terms of age, gender or ethnicity, as noted in [77,78]. This brings to light the need of
extended monitoring to accurately confirm the severity of OSA in patients using sleep
staging approaches as well.

The demographics in the dataset used in this work did not have many extreme cases
of OSA, and the severities seem to be fairly imbalanced, in favor of mild and moderate
cases. Despite the relatively older ages of the population (average age 58.02 ± 8.04), OSA
outcomes and associated medical conditions were not severe. A long-term study focusing
on the same population as they age to analyze the OSA predictors and symptoms can likely
reveal useful insights about the impact of lifestyle, and the potential consequences of other
physiological and physical features. The OSA patient distribution was skewed towards
men in this dataset. It could be due to the fact that women are generally less susceptible an
OSA. As mentioned in [79], female hormones increases upper airway dilator muscle tone,
and reduces the risk of pharangeal collapse (upper airway collapse), a major issue among
OSA patients.

The presented work builds upon the findings reported previously in [21,22,60,61],
which prove the feasibility of utilizing clinical information to screen for OSA patients
and prioritize them for further sleep studies. Our models were able to predict clinical
cases of OSA with reasonable accuracy, sensitivity and specificity, and is competitive
with the recent electronic health record based prediction studies, as shown in Table 5.
Consistent limitations in previous works include relatively fewer clinical parameters, high
false positive rate, and demographic constraints. We observe that our proposed SVM model
achieved the highest sensitivity among the existing works, with a specificity trade-off, in
order to achieve a greater screening efficiency.

We further provide evidence that routinely clinical information can be effective in clas-
sification of OSA in a population health monitoring context. From the oximetry features, it
can be said that desaturation severity, which consider the duration of apnea and hypopneas
and the severity of breathing cessations may be more strongly related with daytime sleepi-
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ness and other symptoms than AHI or ODI [65,80]. Results suggest that oximetry data
estimated using wearables, can be leveraged in conjunction with patient EHR to improve
the detection rate, decrease false positives, and identify patients with risk of OSA. To enable
continuous monitoring, another method would be to integrate personal health devices
such as glucometers, in addition to the wearable data, as varying levels of glucose can
indicate issues with metabolic issues concurrent with OSA complications. By considering
all facets of an individual’s health, from associated comorbidities, to treatment and risk
factors, machine learning models can reasonably indicate effective. By prioritizing patients
based on symptom severity, physicians can verify which cases are urgent, and which cases
are false alarms. The incorporation of specialist feedback can enable a continuous active
learning process to continuously train and retrain the model for better predictability.

The limitations of these works are as follows. Low specificity when model is trained
with EHR data, similar to previous works in this domain, as indicated by Table 5. Majority
of the patients participating in the Wisconsin Sleep study have reported some symptoms of
OSA. This leads to the prevalence being higher in this dataset than the general public, and
there likely may be only minimal differences between the non-OSA and OSA populations.
Furthermore, most cases in the mild severity category, where they may not be necessarily
chronic, but perhaps intermittent and only exacerbated by underlying comorbidities.
The Wisconsin Sleep Study was conducted over a span of 10 years with a single patient
having up to five different entries, and as noted previously [39] increasing age is typically
correlated with higher prevalence as well. The dataset used is saturated with the Caucasian
demographic, which could hinder its applicability to other races.

5. Conclusions

Routinely available clinical information such as patient questionnaires responses
and anthropometry can be used to develop screening obstructive sleep apnea (OSA)
classification models. However, its relative effectiveness in comparison with models
trained with physiological oximetry has not been established till this work. The purpose
of this study was to incorporate additional clinical parameters such as laboratory blood
tests, clinical surrogate markers and history of comorbidities for training machine learning
models and empirically validate its performance against models trained on oximetry
measures acquired from the same population. This study proposes a SVM for classifying
OSA patients at the cut-off of apnea-hypopnea index ≥5 and achieved accuracy: 68.06%,
sensitivity: 88.76%, specificity: 40.74%, F1-score: 75.96%, PPV: 66.36% and NPV: 73.33%,
which is competitive with existing research. The findings of this study demonstrate the
potential of screening models for the early detection of individuals with high pretest OSA
possibility using routinely collected clinical parameters. To address the limitations of this
work, a large-scale prospective study is likely needed to assess the performance of the
proposed screening model on the general population.
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Abbreviations

The following abbreviations are used in this manuscript:
AHI Apnea Hypopnea Index
ACC Accuracy
AUC Area Under Curve
BMI Body-Mass Index
CB Catboost Algorithm
CMA-ES Covariance Matrix Adaptation Evolution Strategy
EDS Excessive Daytime Sleepiness
ESS Epworth Sleepiness Scale
EHR Electronic Health Records
LAP Lipid Accumulation Product
kNN K-Nearest Neighbours
LGBM Light Gradient Boosting
LR Logistic Regression
ML Machine Learning
MSLT Multiple Sleep Latency Test
MWT Maintenance of Wakefulness Test
NPV Negative Predictive Value
OSA Obstructive Sleep Apnea
PPV Positive Predictive Value
PSG Polysomnography
RF Random Forest
SEN Sensitivity
SLIM Supersparse Linear Integer Model
SP Specificity
SVM Support Vector Machines
TPE Tree-structured Parzen Estimator
WSC Wisconsin Sleep Cohort
VAI Visceral Adiposity Index
XGB Extreme Gradient Boosting

Appendix A

The complete code to reproduce this work and further details regarding the results
of the statistical tests, participant IDs for training-validation and hold-out testing set split,
and additional model pipeline configurations is available at https://github.com/jayrmh/
EHRWSC, accessed on 8 October 2021.

Table A1. Demographic characteristics of cohort expressed as mean ± standard deviation.

Demographics Overall OSA (≥5) No OSA (≤5)
nr = 1479 nr = 853 nr = 626

AHI (/h) 12.26 ± 15.21 19.7 ± 16.33 2.03 ± 1.41
Age (y/o) 58.20 ± 8.04 59.483 ± 7.78 56.67 ± 8.12
Sex (%Male) 787 (53.2) 494 (57.81) 293 (46.08)
Race (%Caucasian) 1430 (96.68) 825 (96.71) 605 (96.65)
Alcohol (%Yes) 1080 (73.00) 619 (72.56) 461 (73.64)
Smoking (%Yes) 740 (50.00) 427 (50.00) 313 (50.00)

Table A2. Anthropometric characteristics of cohort expressed as mean ± standard deviation.

Anthropometric Overall OSA (≥5) No OSA (≤5)
nr = 1479 nr = 853 nr = 626

Height (cm) 169.04 ± 9.24 169 ± 9.19 168.70 ± 9.30
Weight (kg) 90.05 ± 20.50 95.27 ± 20.27 82.94 ±18.58
BMI (kg/m2) 31.54 ± 7.05 33.33 ± 7.29 29.09 ± 5.91
Neck Circumference (cm) 38.58 ± 4.04 39.53 ± 3.83 37.30 ± 3.966
Waist Circumference (cm) 99.89 ± 16.06 104.56 ± 15.25 93.55 ± 14.93
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Table A3. Blood test profile characteristics of cohort expressed as mean ± standard deviation.

Blood Tests Overall OSA (≥5) No OSA (≤5)
nr = 1479 nr = 853 nr = 626

Height (cm) 169.04 ± 9.24 169 ± 9.19 168.70 ± 9.30
Weight (kg) 90.05 ± 20.50 95.27 ± 20.27 82.94 ±18.58
BMI (kg/m2) 31.54 ± 7.05 33.33 ± 7.29 29.09 ± 5.91
Neck Circumference (cm) 38.58 ± 4.04 39.53 ± 3.83 37.30 ± 3.966
Waist Circumference (cm) 99.89 ± 16.06 104.56 ± 15.25 93.55 ± 14.93

Table A4. Clinical surrogate marker characteristics of cohort expressed as mean ± standard deviation.

Clinical Surrogate Markers Overall OSA (≥5) No OSA (≤5)
nr = 1479 nr = 853 nr = 626

TyG 8.73 ± 0.60 8.82 ± 0.06 8.60 ± 0.58
LAP 340.12 ± 258.60 392.36 ± 268.20 268.92 ± 226.462
VAI 3.83 ± 3.07 4.21 ± 3.32 3.31 ± 2.66
Whrt 0.59 ± 0.09 0.61 ± 0.09 0.55 ± 0.08

Table A5. General health characteristics of cohort expressed as mean ± standard deviation.

General Health Overall OSA (≥5) No OSA (≤5)
nr = 1479 nr = 853 nr = 626

Zung Depression Scale 39.73 ± 8.13 40.07 ± 8.02 39.27 ±8.25
Horne Ostberg Score 62.40 ± 9.56 62.48 ± 9.84 62.25 ± 9.18
Epworth Sleepiness Scale 8.84 ± 4.17 9.22 ± 4.20 8.31 ± 4.08
State Anxiety Score 27.20 ± 6.91 27.11 ± 6.96 27.32 ±6.84
Trait Anxiety Score 31.67 ± 8.23 31.58 ± 8.15 31.76 ±8.33

Table A6. Comorbidities characteristics of cohort expressed as mean ± standard deviation.

Comorbidities Overall OSA (≥5) No OSA (≤5)
nr = 1479 nr = 853 nr = 626

Heart Attack (%yes) 61 (4.12) 50 (6.00) 11 (1.75)
Hypertension (%yes) 531 (36.00) 357 (41.80) 174 (27.79)
Arrhythmia (%yes) 203 (13.72) 126 (14.77) 77 (12.30)
Angina (%yes) 45 (3.40) 34 (4.00) 11 (1.75)
Coronary (%yes) 106 (7.16) 76 (8.90) 30 (4.79)
Atherosclerosis (%yes) 28 (1.90) 14 (1.64) 14 (2.23)
Congestive Heart Failure (%yes) 14 (0.09) 13 (0.16) 1 (1.52)
Asthma (%yes) 263 (17.70) 162 (18.99) 101 (16.13)
Emphysema (%yes) 24 (1.62) 13 (1.52) 11 (1.75)
Diabetes (%yes) 166 (11.22) 119 (13.95) 47 (7.50)
Stroke (%yes) 28 (1.90) 19 (2.22) 9 (1.43)
Thyroid (%yes) 195 (13.18) 112 (13.13) 83 (13.25)
Arthritis (%yes) 460 (31.10) 302 (35.40) 158 (25.23)
Sleep Apnea (%yes) 187 (12.64) 123 (14.42) 64 (10.22)
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Table A7. Self-reported sleep characteristics of cohort expressed as mean ± standard deviation.

Sleep History Overall OSA (≥5) No OSA (≤5)
nr = 1479 nr = 853 nr = 626

Excessive Daytime Sleepiness 314 (21.23) 195 (22.86) 119 (19.00)
Sleep Latency (min) 14.78 ± 12.96 14.56 ± 11.51 15.13 ± 14.71
Trouble Falling Back to Sleep (%sometimes) 533 (36.03) 312 (36.57) 221 (35.30)
Feeling Not Rested (%rarely) 488 (33.00) 273 (32.00) 215 (34.34)
Waking Up Too Early (%rarely) 527 (35.63) 309 (36.22) 218 (24.82)
Waking Up Repeatedly (%rarely) 417 (28.19) 240 (28.13) 177 (28.27)
Difficulty Falling Asleep (%rarely) 612 (41.37) 358 (41.96) 254 (40.57)
Difficulty Waking Up (%rarely) 568 (38.40) 329 (38.56) 239 (38.17)
Frequency of Nightmares (%rarely) 666 (45.00) 393 (46.07) 273(43.61)
Frequency of Snoring (%every night) 393 (26.67) 300 (35.18) 93 (14.85)
Snoring Volume (%talkingvolume) 426 (28.80) 238 (30.03) 188 (28.00)
Sleep Satisfaction (%mostly) 1019 (68.89) 590 (69.16) 429 (68.53)

Table A8. PSG-derived oximetry characteristics of cohort expressed as mean ± standard deviation.

Oximetry Overall OSA (≥5) No OSA (≤5)
nr = 1479 nr = 853 nr = 626

Sleep Efficiency (%) 80.64 ± 10.16 79.67 ± 10.33 81.96±9.78
Sleep Latency (min) 12.63 ± 14.77 12.15 ± 14.91 13.30 ± 14.56
Average Oxygen Saturation (%) 95.32 ± 1.56 94.88 ± 1.58 95.90 ± 1.33
Minimum Oxygen Saturation (%) 85.00 ± 7.47 82.14 ± 7.72 88.89 ± 4.93
Average Oxygen Desaturation 4.54 ± 1.23 5.06 ± 1.35 3.83 ± 0.44
of Apnea-Hypopnea Event (%)
Average Duration (s) 35.32 ± 8.58 33.85 ± 7.37 37.32 ± 9.65
of Apnea-Hypopnea Event
Total Sleep Duration (min) 368.32 ± 57.45 364.12 ± 58.00 374.08 ± 56.22
REM Sleep Duration (min) 61.70 ± 25.92 58.35 ± 25.12 66.27 ± 26.30
REM Sleep Percentage (%) 16.51 ± 5.91 15.79 ±5.76 17.50 ±5.98
REM Latency (min) 123.40 ± 73.82 127.51 ± 76.06 117.96 ± 70.33
NREM Sleep Duration (min) 306.62 ± 47.65 305.75 ± 48.20 307.80 ± 46.90
Stage I and II Sleep Percentage (%) 76.21 ± 9.49 77.23 ± 9.31 74.82 ± 9.56
Stage III and IV Sleep Percentage (%) 7.26 ± 7.87 6.97±7.49 7.66 ±8.35
Wake After Sleep Onset (min) 68.89 ± 40.47 72.931 ± 40.93 63.38 ± 39.21
Sleep Duration Percentage 1.92 ± 8.16 2.94 ± 9.88 0.53 ± 4.56
with Oxygen Saturation below 90% (%)

Table A9. Optimal hyperparameters for all ML models attained through tuning for the 8 feature
EHR experiment.

Model Hyperparameters

XGB booster: dart
lambda: 8.44 × 10−5

alpha: 1.36 × 10−8

max_depth: 4
eta: 0.604

gamma: 0.630
grow_policy: depthwise
sample_type: weighted
normalize_type: forest

rate_drop: 0.758
skip_drop: 5.32 × 10−7
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Table A9. Cont.

Model Hyperparameters

LGBM booster: gbtree
lambda: 4.18 × 10−8

alpha: 0.166
max_depth: 2

eta: 0.005
gamma: 0.007

grow_policy: lossguide

CB objective: logloss
colsample_bylevel: 0.055

depth: 9
boosting_type: ordered
bootstrap_type: MVS

RF n_estimators: 610
max_depth: 35

min_samples_leaf: 55
min_samples_split: 56

kNN leaf_size: 70
n_neighbors: 37

LR C: 0.007

SVM kernel: rbf
gamma: 0.24

C: 0.148

Table A10. Optimal hyperparameters for all ML models attained through tuning for 6 feature
PSG experiment.

Model Hyperparameters

XGB booster: dart
lambda: 0.0006
alpha: 0.0003
max_depth: 4

eta: 0.009
gamma: 3.838 × 10−5

grow_policy: depthwise
sample_type: weighted

normalize_type: tree
rate_drop: 1.2 × 10−8

skip_drop: 0.0005

LGBM booster: gbtree
lambda: 4.23 × 10−6

alpha: 3.76 × 10−7

max_depth: 2
eta: 1.14 × 10−8

gamma: 0.914
grow_policy: depthwise
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Table A10. Cont.

Model Hyperparameters

CB objective: crossentropy
colsample_bylevel: 0.099

depth: 4
boosting_type: ordered

bootstrap_type: Bernoulli

RF n_estimators: 350
max_depth: 79

min_samples_leaf: 7
min_samples_split: 10

kNN leaf_size: 60
n_neighbors: 63

LR C: 2010.58

SVM kernel: linear
gamma: 5.68

C: 1.657
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Abstract: Social media sites, dubbed patient online reviews (POR), have been proposed as new
methods for assessing patient satisfaction and monitoring quality of care. However, the unstructured
nature of POR data derived from social media creates a number of challenges. The objectives of
this research were to identify service quality (SERVQUAL) dimensions automatically from hospi-
tal Facebook reviews using a machine learning classifier, and to examine their associations with
patient dissatisfaction. From January 2017 to December 2019, empirical research was conducted in
which POR were gathered from the official Facebook page of Malaysian public hospitals. To find
SERVQUAL dimensions in POR, a machine learning topic classification utilising supervised learning
was developed, and this study’s objective was established using logistic regression analysis. It was
discovered that 73.5% of patients were satisfied with the public hospital service, whereas 26.5% were
dissatisfied. SERVQUAL dimensions identified were 13.2% reviews of tangible, 68.9% of reliability,
6.8% of responsiveness, 19.5% of assurance, and 64.3% of empathy. After controlling for hospital
variables, all SERVQUAL dimensions except tangible and assurance were shown to be significantly
related with patient dissatisfaction (reliability, p < 0.001; responsiveness, p = 0.016; and empathy,
p < 0.001). Rural hospitals had a higher probability of patient dissatisfaction (p < 0.001). Therefore,
POR, assisted by machine learning technologies, provided a pragmatic and feasible way for capturing
patient perceptions of care quality and supplementing conventional patient satisfaction surveys.
The findings offer critical information that will assist healthcare authorities in capitalising on POR by
monitoring and evaluating the quality of services in real time.

Keywords: patient satisfaction; service quality; SERVQUAL; Facebook; machine learning; patient
online review; Malaysia

1. Introduction

The World Health Organization (WHO) stresses that substandard care wastes signifi-
cant resources and jeopardises public health by degrading human capital and decreasing
productivity. Thus, in addition to providing effective coverage of essential health services
and financial security in each country, delivering high-quality care or service is important
in achieving the Universal Health Coverage goal [1]. At the core of delivering high-quality
care is a dedication to person-centered care. Communities must be engaged in the design,
implementation, and ongoing evaluation of health services to ensure that they meet local
health needs. Also, striking a balance between patient expectations and quality improve-
ment initiatives is important, since it influences patient safety, survival, and long-term
health [2]. According to a systematic analysis, poor healthcare quality was the main factor
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leading to an increase in deaths from cardiovascular disease, neonatal trauma, and commu-
nicable illnesses [3]. As healthcare prepares for the Industrial Revolution 4.0 by becoming
more patient-centered and value-driven, quality management systems must include ef-
forts to understand and respect patients’ interests, desires, and values. Because such
reports can only be generated by patients, it is critical to create systems for monitoring
patient experiences and to promote their use on an individual and communal level [4,5].
Patient tperception and satisfaction have been a key component of patient-centered care
since the early 1990s and have been incorporated into healthcare quality of care assess-
ment. Healthcare administrators that aim for excellence consider patient perception while
creating strategies for improving treatment quality [6].

Service quality (SERVQUAL) is a commonly used technique for evaluating the qual-
ity of service in a wide variety of service environments, sectors, and nations [7]. Because the
model encompasses five dimensions—tangible, reliability, responsiveness, empathy,
and assurance—it efficiently measures customer service needs and perceptions [8].

SERVQUAL, Hospital Consumer Assessment of Healthcare Providers and Systems
(HCAHPS), and other traditional patient satisfaction surveys are the product of years of
evaluative analysis, are performed and evaluated in a methodical manner, and may evoke
a wide variety of answers from patients [9,10]. However, traditional patient or public
surveys used to assess the quality of healthcare services are time and resource intensive,
require considerable time between hospital admission and report disclosure, frequently
result in a failure to identify the underlying causes of concern, and introduce response
and selection bias [11,12]. The disconnect between conventional surveys and patient
perceptions and treatment quality underscored the need for developing new data sources
for assessing patient perceptions and care quality [13]. Technological innovation is essential
for creating new ways for rapidly assessing the quality of services at an affordable cost.
Therefore, social media platforms, which are often referred to as patient online reviews
(POR), have been suggested as a new way for gauging patient satisfaction and monitoring
treatment quality [14,15].

There have been small number of POR studies in contrast to its exponential
growth [16,17]. While it has been demonstrated that Facebook and other social media plat-
forms can improve health outcomes through health education and information [18,19] and
can be beneficial during public health crises [20,21], other studies have examined specific
features of social media platforms such as reviews and ratings and their relationship to pa-
tient satisfaction and hospital quality measures [16]. For example, Facebook offers a review
feature that allows users to leave narrative assessments and evaluate the performance of
companies and institutions on their Facebook pages. Numerous studies have discovered
a weak to moderate correlation between Facebook evaluations and traditional patient
satisfaction survey metrics [22–25], while another study discovered a link between clinical
quality indicators such as reduced re-admission rates and higher Facebook ratings [26].
According to recent research, hospitals with an active Facebook page had a higher number
of “likes,” a greater percentage of patients ready to refer the hospital, and a higher overall
satisfaction score [27]. Additional study on the patient viewpoint and its relationship to
hospital patients’ total Facebook ratings discovered associations with a variety of issues,
including wait times, treatment effectiveness, and communication [28]. With an increas-
ing number of patients asking and freely sharing hospital evaluations on social media,
feedback data may supplement conventional patient satisfaction surveys [14,27].

However, the unstructured nature of POR data collected from social media presents
several difficulties, including data cleaning and processing. While this may be accom-
plished manually via human input, the process is lengthy, and the method’s validity and
reliability are often questioned [29]. A systematic evaluation of POR was proposed to
accelerate the processing of large-scale online data review using sophisticated analytical
techniques such as machine learning [16]. Consequently, a machine learning approach for
classifying service quality themes or subjects based on unstructured social media data has
the potential to significantly improve healthcare quality of care [30,31].
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Additionally, the population’s fondness for social media has led many healthcare
institutions to use their country’s most popular social media platforms for online commu-
nication and engagement with the public. According to a national survey conducted in
Taiwan, Facebook has a high level of penetration and popularity in the country, which may
be one of the reasons why more than half of Taiwan’s hospitals have established an official
Facebook profile [32]. Facebook is also a critical component of Malaysian social media use.
According to a 2020 survey, 91.7 percent of Malaysian internet users utilised Facebook,
and the site is projected to continue to be the country’s most popular social network-
ing site [33]. Given the popularity of Facebook in Malaysia and its expanding usage in
healthcare, this study’s first task was to assess the frequency of SERVQUAL dimensions in
Facebook reviews of Malaysian public hospitals using a machine learning classifier and
prevalence of hospital patient satisfaction. The second was to seek to establish relationships
between SERVQUAL qualities and hospital patient dissatisfaction as expressed in Facebook
reviews. POR analyzed using a machine learning algorithm may have value in assisting all
key healthcare stakeholders in making decisions to enhance the quality of care delivered in
Malaysia.

2. Related Work

2.1. Patient Satisfaction

Intellectuals have been assessing hospital patient satisfaction for years, using a range
of methodologies and conceptual frameworks. An earlier study showed that patients
with moderate expectations reported the highest levels of satisfaction, whereas those
with excessive expectations reported the lowest levels of satisfaction [34]. When patients’
expectations were met in terms of health care delivery, they reported satisfaction with
such services [35]. Since those early attempts, the number of factors linked with patient
satisfaction have increased dramatically and vary between research [36,37]. However,
one systematic review found that two significant determinants of patient satisfaction were
variables affecting the healthcare provider and patient characteristics [35]. Across studies,
that study found that provider-related variables were the strongest predictor of patient
satisfaction. There were nine identified determinants of healthcare services: technical care,
interpersonal care, physical environment, accessibility, availability, financial resources,
organisational characteristics, continuity of treatment, and care result. Research that
examined the physical environment in relation to patient satisfaction ratings on social
media discovered that environmental variables such as parking, cleanliness, and waiting
rooms all contributed to patient satisfaction [38]. Another POR research showed that
comments on the efficacy of treatment, communication, and diagnostic quality were most
strongly linked with patients’ overall ratings [28]. A comprehensive assessment of patient
satisfaction confirmed the results, revealing that interpersonal skills and technical care
features had the most positive associations with service-related factors [35].

Patient characteristics such as age, gender, education, socioeconomic status,
marital status, race, religion, geographic characteristics, frequency of visits, length of
stay, health status, personality, and expectations were all investigated to ascertain their as-
sociations with patient satisfaction [35]. Hospital characteristics such as location and rural
regions were shown to be positively associated with patient discontent [39], even though an-
other study found rural residents were satisfied with healthcare services [40].
Additionally, the size and type of hospital services influenced patient satisfaction [15,41].
Previously, it was believed that people would be more unhappy with a service that dealt
with a greater number of patients and a bigger office. However, in a comprehensive
assessment of patient satisfaction, these associations were modest and inconsistent [35].
Therefore, the research concluded that it may be worthwhile to attempt to build patient
satisfaction using health care quality indicators and observe how individuals increase their
satisfaction with health services. SERVQUAL and HCAHPS are two examples of systematic
surveys that assess healthcare quality of care. The findings of patient satisfaction surveys
may be very helpful for both healthcare professionals and patients. They aid healthcare
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providers in finding areas in which their services might be improved. Increased patient sat-
isfaction with healthcare services boosts public hospital responsiveness [42]. Additionally,
it enables policymakers to understand patient needs and therefore create strategic plans
for more effective and high-quality services. According to studies, satisfied patients are
more likely to follow their physicians’ recommendations for treatment and follow-up visits,
resulting in better health outcomes and hospital recommendations to others [35].

2.2. Social Media Data and Machine Learning

Social media data are often massive and present several difficulties, including data
cleansing, data processing, and developing a theoretical model of social media content
quality. While this may be accomplished manually via human input, the procedure is time
consuming, labour intensive, and the validity and reliability of the technique are often
questioned [29]. A comprehensive analysis of POR established and recommended the use of
advanced analytical methods such as machine learning to accelerate the processing of huge
amounts of online review data [16]. Additionally, the systematic review recommended
doing an in-depth examination of the contents of online reviews rather than just comparing
structured data to social media ratings. Monitoring service quality through hospital social
media platforms may assist all stakeholders in detecting quality issues and minimising the
need for expensive and time-consuming surveys. Despite their rarity, research on Facebook
content analysis demonstrates a correlation between social media quality domains and
traditional hospital quality metrics [23,28,43,44].

The word “themes” or “text classification” refers to the process of grouping to-
gether a collection of textual messages according on their content. Machine learning
enables automatic topic analysis via the application of various algorithms that are clas-
sified as supervised and unsupervised learning. The existence of labels in the subset of
training data distinguishes these two main categories [45]. Along with input features,
supervised machine learning makes use of predefined output features. The algorithms
attempt to forecast and classify the predefined feature, and their accuracy and misclassifi-
cation, as well as other performance metrics, are determined by the counts of the predeter-
mined feature that are correctly predicted or classified, or that are incorrectly predicted or
classified. Manual classification is a technique that is often used in supervised learning.
Numerous studies have utilised this approach to deduce the topics of contention in
POR [11,12,28,46–48].

On the other hand, unsupervised learning is pattern recognition that does not need the
usage of a target feature. Unsupervised algorithms identify unlabeled data’s underlying
groupings and then label each value. Topic modelling is a technique for automatically
identifying topics within a given remark, with the most often used approach being La-
tent Dirichlet Allocation (LDA). Numerous studies have utilised the technique to elicit
information on the themes or subjects of discussion in POR [49–54].

According to prior research, POR often addressed issues such as appointment
scheduling, wait times, the efficiency of the healthcare system, and interpersonal
quality [12,28,46,50]. However, other topics such as communication, technological ele-
ments, treatment effectiveness, patient safety, environment, and hospital expenses were
recognised as significant concerns [13,38,52,53]. Further study of hospitals in the United
States revealed that the variables most significantly linked with patients’ overall ratings or
satisfaction included waiting times, treatment effectiveness, communication, diagnostic
quality, environmental cleanliness, and economic concerns [28]. Comparable research
utilising the Consumer Assessment of Healthcare Providers and Systems (CAHPS) Dental
Plan Survey [55] and Press Ganey [56] corroborated the result. Other research discovered
that the issues discussed in the dissatisfaction survey mirrored the often-discussed topics
of appointment access and wait time [46]. Additionally, patient discontent was often
related to personnel, punctuality, and diagnostic problems, while satisfaction was signifi-
cantly related to interpersonal and technical brilliance [52]. However, Yelp review research
discovered that patient satisfaction was related to interpersonal quality of surgical care,

310



Healthcare 2021, 9, 1369

while dissatisfaction was related to insurance, billing, and the cost of the hospital visit [50].
Another study examined National Health Service (NHS) tweets using the SERVQUAL
model and found that the aspects of responsiveness and assurance were often addressed in
negative narratives, while empathy was completely positive [53]. It is unsurprising that
some subjects elicited more negative annotations than others, particularly comments about
time, money, or pain, which are unlikely to be related to patient satisfaction [12].

2.3. Proposed Work

Given the exponential growth of social media in Malaysia and Southeast Asia, it is
critical to use technology to improve healthcare services. Meanwhile, although Facebook is
a popular social media platform, there has been very little study on machine learning and
quality measures using Facebook data [28,57,58]. Given Facebook’s popularity in Malaysia
and its growing usage in healthcare, this research seeks to fill a void by investigating
whether patient comments in Facebook Reviews can be categorised into SERVQUAL topics,
and determining their association with patient satisfaction.

Additionally, this research used supervised machine learning to classify topics. Con-
ventional patient satisfaction surveys have several disadvantages, and social media has
been proposed as a potential substitute for evaluating patient satisfaction and mood in real
time. According to a systematic review of the use of natural language processing (NLP) and
machine learning (ML) to process and analyse patient experience data, manual classifica-
tion of free text comments remains the ‘gold standard’ method of analysis and is currently
the only way to ensure that all pertinent patient comments are coded and analysed [29].
Additionally, the analysis showed that patient inputs produced via free-text supplements to
structured questionnaires such as SERVQUAL and HCAHPS were stable in nature, making
them an appealing source of data for supervised learning. Numerous studies have utilised
supervised machine learning to categorise POR themes [28,47,48,57,59–61]. Moreover,
we suggested that SERVQUAL dimensions be used to train our machine learning topic
classifier. Previous research has classified themes or subjects in POR using structured
patient questionnaires such as SERVQUAL [53,62], CAHPS Dental Plan Survey [55] and
HCAHPS [50]. The potential results may be compared with those obtained via traditional
surveys of patient satisfaction or treatment quality.

Nevertheless, the current body of evidence is still limited, owing to a scarcity of
sophisticated statistical studies linking patient satisfaction or hospital quality indicators.
A systematic review suggested that more empirical research on POR be conducted using
pertinent hypotheses, rigorous design, and data analytics [16]. Thus, this study should go
beyond basic descriptive analysis and include the testing of theory-based hypotheses to
offer additional policy implications and understanding. Previously published research has
utilised analysis of variance (ANOVA) [55], various regression analytical tests [12,52,54,58],
Pearson correlation [50,57] or Spearman’s rank correlation [57,63]. As such, this research
seeks to examine variables related with patient dissatisfaction using rigorous statistical
techniques such as regression analysis.

3. Materials and Methods

This research was cross-sectional in design and took place between March 2020 and
May 2021. To achieve an equilibrium between subject homogeneity and generalizability of
the findings, this research comprised only government hospitals. Universal sampling was
utilsed as the sample technique.

3.1. Facebook Data

WebHarvy Scraping Software (SysNucleus, Kochi, India) was used to gather data
on Facebook reviews from the official Facebook pages of public hospitals in Malaysia
from January 2017 to December 2019. First, via the Ministry of Health official website,
any webpage link of a public hospital website was sought to be identified. Then a link to
the hospital’s official Facebook page inside the hospital’s web page was sought. If there
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was no link to the hospital’s official Facebook page on the hospital’s website, the search
was continued on the Facebook platform. When an official hospital Facebook page was
discovered, the information was confirmed by utilising the hospital’s official website’s URL,
contacting hospital officials, or using this study’s operational definition for a legitimate
hospital Facebook page. An ‘official hospital Facebook page’ was defined as one with a
‘verified tick’ [64] or one with the hospital’s official name (RASMI in the Malay language)
included in the Facebook page’s name or in the description of the site. All data gathered
from the official Facebook page was kept in a pro forma checklist. The Facebook accounts
of hospital departments, health institutions/agencies (such as the Ministry of Health
(MOH) or the Institute of Medical Research), non-governmental organizations (NGOs)
and long-term care facilities were omitted. These methods of searching have also been
used in previous studies [23,24,64]. Malaysia is a multilingual country with a rich variety
of languages and dialects. Malay is the national language, while English is the second
language. Therefore, reviews were gathered in only those languages. To guarantee that the
data language was appropriate and standardised for analysis, a group of junior doctors
examined and corrected any spelling and grammatical errors in online reviews written in
Malay and English. Then, data in Malay language were manually translated into English
for further research by junior doctors. All data were kept in a local database that was
encrypted and accessible only to the research team.

3.2. Machine Learning Topics Classification

To serve as a “gold standard” for machine learning classifiers, a labeled data set was
generated through manual coding. The categorisation was based on the five-dimensional
SERVQUAL theoretical notion [8,65]. These categories were: (1) tangible—the appearance
of physical facilities, equipment, and healthcare personnel; (2) reliability—the ability to
perform the promised services accurately and reliably; (3) responsiveness—the willing-
ness to assist the customer and provide prompt service; (4) assurance—the employee’s
knowledge and courtesy, as well as their ability to inspire trust and confidence; and (5)
empathy—the ability to empathise with the customer. Two hospital quality managers or
SERVQUAL domain experts were assigned to perform initial “open” coding on batches
of three hundred Facebook reviews based on the MOH SERVQUAL patient satisfaction
survey and other SERVQUAL surveys from previous studies aimed at establishing the
source of the coding standard. Intercoder reliability was then determined using a randomly
chosen subsample of three hundred Facebook reviews. The raters separately coded the
reliability subsample. Inter-rater agreement was determined using Cohen’s Kappa (k)
values for each SERVQUAL dimension. The agreement between the coding of tangible
(Cohen’s k = 0.885, p < 0.001), empathy (Cohen’s k = 0.875, p < 0.001), reliability (Cohen’s
k = 0.736, p < 0.001), and responsiveness (Cohen’s k = 0.72, p < 0.001) was high, but the
agreement for assurance (Cohen’s k = 0.626, p < 0.001) was moderate. Cohen’s k coefficient
was 0.769 on average in all dimensions. The machine learning classifier was then trained
on a sample of nine hundred manually labelled Facebook reviews.

The machine learning technique analysed the characteristics of the individual phrases
used in the Facebook reviews, and used this data to build a topic classifier. First, the labeled
dataset was pre-processed to remove URLs, numerals, punctuation marks, stop words and
simplifying words using a lemmatization technique (e.g., treating as a treat). Following
that, the weights of terms were calculated using the term frequency-inverse document
frequency (TF-IDF) approach, which demonstrated their significance to the documents and
corpus. Figure 1 explains the Natural Language Processing (NLP) techniques used in the
text preprocessing phase.
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Figure 1. Text Preprocessing using natural language processing (NLP) techniques.

Iterative stratification was used to divide randomly labelled data into 80% for training
and 20% for testing. Several multi-label classifier techniques were trained for topic clas-
sification, including binary relevance, label powerset, classifier chains, RAkEL (Random
k-labELsets), MLkNN (multi-label k-Nearest Neighbor), and BRkNN (Binary Relevance k-
NN). For each method, three main classifiers were trained: naive Bayes (NB), support vector
machine (SVM), and logistic regression (LR). These classifiers are all widely used methods
and have been shown to perform well on text classification tasks [29,31,66]. Multiple la-
bel classifiers were evaluated using the scikit-multilearn module in Python [67]. Finally,
the various classifiers were evaluated using 5-fold cross-validation.

The 5-fold cross-validation revealed that the machine learning algorithms’ F1-score
performance varied between 0.69 and 0.76, suggesting that the models accurately classi-
fied the reviews. When different models and classifiers were compared, it was shown
that the SVM model with classifier chains multi-label method had the highest accuracy
(0.215) and F1-score (0.757). Additionally, the model had the lowest hamming loss (0.273).
Hamming loss is a key performance metric in topic classification models since it mea-
sures the percentage of erroneous projected class labels. As a consequence, the machine
learning classifier was trained using the chains classifier technique on the SVM model.
The performance metrics for supervised machine learning with 5-fold cross-validation are
summarised in Table 1. The proposed methodology general architecture is depicted in
Figure 2.

Table 1. Overall ML models performance with 5-fold cross-validation.

Multilabel Classifier Model Accuracy Recall Precision F1-Score Hamming Loss

Binary
Relevance NB 0.147 0.761 0.701 0.730 0.315

SVM 0.211 0.763 0.745 0.754 0.278
LR 0.193 0.775 0.732 0.753 0.285

Label Powerset NB 0.130 0.896 0.633 0.741 0.349
SVM 0.166 0.799 0.679 0.734 0.323
LR 0.158 0.825 0.669 0.739 0.326

Chains
Classifier NB 0.149 0.756 0.705 0.730 0.313

SVM 0.215 0.761 0.753 0.757 0.273
LR 0.191 0.770 0.727 0.748 0.290

RAkEL NB 0.157 0.749 0.699 0.722 0.322
SVM 0.186 0.764 0.724 0.743 0.295
LR 0.180 0.765 0.726 0.745 0.293

MLkNN N/A 0.140 0.737 0.697 0.715 0.327
BRkNN N/A 0.157 0.648 0.732 0.687 0.330

NB, naive Bayes; SVM, support vector machine; LR, logistic regression.
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Figure 2. General architecture of proposed methodology in this study.

3.3. Outcome: Patient Dissatisfaction

Facebook review is a feature that allows people to leave narrative reviews on or-
ganisations’ and companies’ Facebook profiles. Since its debut in 2013, the Facebook
review section has been included into the Facebook pages of many hospitals. Patients and
their relatives have gradually begun to make use of it. Previously, Facebook utilised
a five-star rating system until early 2018, when it switched to a binary rating system
named “Recommends” or “Doesn’t Recommend.” This simplified the review process for
users. As is the case with other social media platforms, Facebook ratings provide insight
on how people feel about healthcare services. Customer recommendations were collected
from hospital Facebook pages to determine patient satisfaction. Patient dissatisfaction
was characterised as non-recommendation in the Facebook Review section, and patient
satisfaction as recommendation. Any recommendation made outside of the Facebook
review area was ignored.

3.4. Statistical Analysis

Due to the non-normal distribution of the data, medians (interquartile range [IQR])
were used for numerical data, and frequencies and percentages for categorical variables in
the statistical analysis. Binary logistic regression analysis was used to evaluate the associa-
tions between patient dissatisfaction and multiple factors. Confounding variables included
hospital characteristics (region, bed count, urban or rural location, and type of hospital),
as well as Facebook page characteristics such as previous star ratings, acceptable hospital
information on the Facebook page, and administrator reaction in the Facebook review
area. These characteristics, according to previous research, were linked with patient sat-
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isfaction [12]. The data were examined to determine whether findings were statistically
significant with a p value less than 0.05. All statistical tests were verified and found to be
valid. Hosmer and Lemeshow tests were used to verify the model fitness, as well as the
area under the receiver operating characteristic (ROC) curve. SPSS software version 26 was
used to analyse the data (IBM Corp, Armonk, NY, USA).

4. Results

4.1. Hospital and Facebook Characteristics

In Malaysia, 63.7% of the 135 public hospitals have a Facebook page, with 48 of them
accepting customer feedback through Facebook Review. Except for the western part of
Malaysia, every region has at least 10 hospitals with a Facebook review function: 37.5%
of tertiary hospitals, 8.3% of secondary hospitals, and 54.2% of primary hospitals all have
Facebook review sections. The majority of these hospitals are located in cities, with an
average of 730 beds. The average number of reviews on each hospital’s Facebook page was
15.5 (27.5), with a previous star rating of 5.00 (1.65).

4.2. Facebook Reviews and Patient Satisfaction

A total of 3025 Facebook reviews were collected, with 1200 being used for machine
learning training and the rest for association analysis. More Facebook reviews were seen at
hospitals in the western (50.5%) and northern (21.5%) areas. Furthermore, urban hospitals
accounted for 87.2% of all assessments, tertiary institutions for 88.8%, and the median
bed count was 730. The average previous star rating on Facebook in terms of Facebook
characteristics was 4.70 (1.5). The majority of Facebook reviews provided sufficient infor-
mation about the hospital yet received little to no response from hospital management.
Most notably, this study discovered that 73.5% were satisfied with the public hospital
service, whereas 26.5% were dissatisfied. Table 2 describes hospital Facebook review
characteristics.

Table 2. Hospital Facebook review characteristics (n = 1825).

Variable n (%) Median (IQR)

Hospital Features
Region East Coast 189 (10.4)

North 393 (21.5)
West 922 (50.5)
South 178 (9.8)

East Malaysia 143 (7.8)
Location Rural 234 (12.8)

Urban 1591 (87.2)
Hospital Type Primary 125 (6.8)

Secondary 80 (4.4)
Tertiary 1620 (88.8)

Beds 730 (563)
Facebook Features

Previous Facebook Star Ratings 4.70 (1.5)
Admin Response No 1651 (90.5)

Yes 174 (9.5)
Adequate Hospital Information No 1651 (90.5)

Yes 174 (9.5)
Patient Satisfaction Dissatisfied 483 (26.5)

Satisfied 1342 (73.5)

4.3. Classification of SERVQUAL Dimensions

Using the machine learning topics classification, there were 13.2% reviews with a
tangible dimension, 68.9% reviews of reliability, 6.8% reviews of responsiveness, 19.5% re-
views of assurance, and 64.3% reviews of empathy. The overall SERVQUAL dimensions
are presented in Figure 3.
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Figure 3. SERVQUAL dimensions classified by machine learning classifier (n = 1825).

4.4. Factors Associated with Patient Dissatisfaction

To assist MOH and key stakeholders in identifying areas for improvement, binary
logistic regression was utilised, with patient dissatisfaction as the primary outcome.
When compared with East Malaysia, a univariate study of hospital variables indicated that
the three regions were related with patient dissatisfaction: West Coast (Crude OR = 2.11;
95% CI: 1.35–3.30; p = 0.001), East Coast (Crude OR = 0.63; 95% CI: 0.41–0.96; p = 0.031),
and South (Crude OR = 2.38; 95% CI: 1.49–3.80; p = 0.001). In addition, patient dissatis-
faction was linked to rural hospitals (Crude OR = 1.87; 95% CI: 1.40–2.49; p < 0.001) and
tertiary hospitals (Crude OR = 0.65; 95% CI: 0.44–0.96; p = 0.030). Moreover, a relationship
was discovered between previous Facebook star ratings and patient dissatisfaction (Crude
OR = 0.86; 95% CI: 0.80–0.93; p < 0.001). Reliability (Crude OR = 1.52; 95% CI: 1.20–1.92;
p = 0.001), responsiveness (Crude OR = 2.10; 95% CI: 1.45–3.04; p = 0.001), and empathy
(Crude OR = 1.57; 95% CI:1.25–1.97; p = 0.001) were all significantly associated with pa-
tient dissatisfaction. The univariate study of hospital and Facebook features, as well as
SERVQUAL in relation to patient dissatisfaction, is summarised in Table 3.

Table 3. Factors associated with patient dissatisfaction in univariate analysis (n = 1825).

Variables Crude OR 95% CI p-Value *

(Lower, Upper)

Hospital Features
Region East Malaysia Ref

East Coast 0.63 0.41, 0.96 0.031
North 1.08 0.75, 1.55 0.695
West 2.11 1.35, 3.30 0.001
South 2.38 1.49, 3.80 <0.001

Location Urban Ref
Rural 1.87 1.40, 2.49 <0.001

Hospital Type Primary Ref
Secondary 0.97 0.54, 1.76 0.924

Tertiary 0.65 0.44, 0.96 0.030
Beds 1.00 1.00, 1.00 0.275
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Table 3. Cont.

Variables Crude OR 95% CI p-Value *

(Lower, Upper)

Facebook Features
Admin Response to Review No Ref

Yes 1.24 0.88, 1.75 0.210
Adequate Hosp Info No Ref

Yes 0.80 0.53, 1.22 0.306
Facebook Star Ratings 0.86 0.80, 0.93 <0.001

SERVQUAL
Tangible No Ref

Yes 1.25 0.93, 1.69 0.137
Reliability No Ref

Yes 1.52 1.20, 1.92 0.001
Responsiveness No Ref

Yes 2.10 1.45, 3.04 <0.001
Assurance No Ref

Yes 0.96 0.74, 1.25 0.766
Empathy No Ref

Yes 1.57 1.25, 1.97 <0.001

* Simple logistic regression.

In multivariate analysis, variables with a p-value less than 0.25 in univariate anal-
ysis were chosen throughout the model selection phase. Forward LR, backward LR,
and manual selection methods were used to create a parsimonious model. The final model
included hospital location and SERVQUAL dimensions other than tangible and assurance.
When chosen SERVQUAL dimensions were controlled, hospitals situated in rural areas
had a 100% higher likelihood of patient dissatisfaction compared with hospitals located
in urban areas (95% CI:1.49–2.68; p < 0.001). Most importantly, when other variables
were adjusted, reliability had a 113% higher likelihood of patient dissatisfaction (95% CI:
1.63–2.78; p < 0.001), responsiveness had a 61% higher likelihood of patient dissatisfaction
(95% CI:1.09–2.38; p = 0.016), and empathy had a 108% higher likelihood of patient dis-
satisfaction (95% CI:1.63–2.69; p < 0.001). There was no interaction and multicollinearity
in the multivariate model. The model’s fitness was also satisfactory, as verified by the
Hosmer and Lemeshow Test (p = 0.875), 73.5% of the classification table, and 61.7% of the
area under the receiver operating characteristic (ROC) curve (p < 0.001). Table 4 details the
multivariate analysis.

Table 4. Factors associated with patient dissatisfaction in multivariable analysis (n = 1825).

Variable Adjusted Adjusted 95% CI p-Value *

OR (Lower, Upper)

Location Urban Ref
Rural 2.00 1.49, 2.68 <0.001

Reliability No Ref
Yes 2.13 1.63, 2.78 <0.001

Responsive No Ref
Yes 1.61 1.09, 2.38 0.016

Empathy No Ref
Yes 2.08 1.61, 2.69 <0.001

* Multiple logistic regression, constant = −2.180, forward LR, backward LR and manual selection methods were
applied, no significant interaction or multicollinearity. Hosmer and Lemeshow test = 0.875, classification table =
73.5%, area under the operating curve (ROC) = 61.7% (p < 0.001).
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5. Discussion

POR influences patient preferences, emphasising the critical role of patient-centered
health care and changing the system. The research is a critical first step in developing
a strategy for utilising social media data in Malaysia, as well as a first effort to monitor
public views of healthcare services using a novel data source. This is the first study to
use automated computer methods to assess topics from online hospital evaluations and
to characterise the content of narrative online hospital reviews in Malaysia. According to
the machine learning classifier, the SERVQUAL dimension with the greatest frequency
was reliability, followed by empathy. The reliability dimension was often concerned with
appointment scheduling, punctuality, the healthcare system’s efficacy, and the capability to
keep accurate data.

Meanwhile, the problem of empathy related specifically to staff attention and helpful-
ness, an understanding of patient requirements, convenient hospital hours, and a commit-
ment to the patient’s best interests. These findings supported previous studies indicating
that online reviews often emphasise time promise, healthcare system efficiency, and inter-
personal quality [11,12,28,46,50]. However, additional topics were identified in the POR
as major concerns, including communication, therapeutic effectiveness and patient safety,
the environment, and hospital costs [13,38,52,53]. Moreover, most online patients reported
satisfaction with the treatments provided by Malaysian hospitals. The findings supported
comprehensive studies of patient online evaluations, which showed that the majority of
patients were satisfied with their healthcare providers and would recommend them to
family and friends [16,68].

Patient satisfaction surveys assist health care workers in identifying opportunities for
service improvement. Additionally, they enable authorities to understand patient needs
and create strategic plans for more effective and high-quality services [35]. This study
found that hospital characteristics such as location in the western and southern regions,
as well as rural locations, were associated with patient dissatisfaction. This was supported
by African research [39], despite the fact that an Asian survey found rural residents to be
generally satisfied with healthcare services [40]. Additionally, the size and type of hospital
services had an effect on patient satisfaction [15,41]. Previously, it was believed that people
would be more unhappy with a service that dealt with a greater number of patients and a
bigger practice. However, this study found a negative correlation between tertiary centre
and patient dissatisfaction, suggesting that patients were pleased with the service given by
bigger types of hospitals, owing to the comprehensive healthcare services provided.

Interpersonal skills (empathy) were shown to be a major factor in increased patient
satisfaction [35,69,70]. In this study, the empathy component was shown to be positively
associated with patient dissatisfaction. The finding was confirmed by a social media
study performed in China [13] and research conducted on the NHS Choices website [71],
both of which revealed further negative comments regarding the doctor–patient connection,
nurse service, roughness, and apathy. Moreover, a comparative study of POR in China and
the United States found that the majority of complaints addressed the doctor’s or hospital
staff’s bedside demeanour [51]. However, data from NHS Twitter showed that patients
expressed a high degree of satisfaction with the empathy component of healthcare [53].
Physicians and nurses were assessed on their interactions with patients and their family
or friends, including their friendliness, honesty, concern, compassion, empathy, kindness,
civility, and respect for patient preferences [35,70]. Patients who were satisfied with physi-
cians’ affective behaviours were more likely to recommend them to others, according to
research performed at a Scottish NHS trust [72].

Another area in which Malaysian public hospitals might improve is their reliabil-
ity. A positive and statistically significant relationship was found between reliability
and patient dissatisfaction in public hospitals. It is unsurprising that the majority of
patient complaints or dissatisfaction voiced through POR concerned time commitment,
appointment or follow-up access, and service inefficiencies [12,13,28,46,51]. Patient sat-
isfaction was positively linked with ease of access to the hospital, convenient location,
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a streamlined admission and discharge procedure, and an efficient appointment system [35].
According to one study, scheduling convenience and adequate follow-up may help reduce
patient dissatisfaction [54]. Additionally, local research has shown that the “lean” strategy
may be effectively utilised to improve hospital reliability [73].

Responsiveness was defined as the willingness of healthcare professionals and
providers to assist and give timely service to clients. A positive and statistically significant
connection was found between responsiveness and patient dissatisfaction. Similar findings
have been reported in earlier local research [74,75] as well as in international SERVQUAL
studies [10,76]. Additionally, experimental research of the perceived SERVQUAL model
using tweets from the NHS UK found that people expressed their dissatisfaction with
responsiveness more than with other elements [53]. Patient satisfaction was shown to be
positively linked with reduced wait times and quick treatment in a systematic study [35].
A comprehensive study showed that a wait time of more than 17 min decreased the
probability of obtaining a good rating status [54].

Although this research discovered no significant connections between assurance and
tangible dimensions with patient dissatisfaction, it is worth highlighting the dimensions’
predictive value in POR. The quality of technical care was closely related to elements of
assurance such as human competency, professionalism, and confidentiality [35]. Moreover,
it pertained to the services’ compliance with clinical diagnostic and treatment standards
and recommendations. Numerous studies have found an association between assurance-
related topics and patient satisfaction, including treatment effectiveness, diagnostic quality,
and treatment side effects, utilising theme analysis of social media data [28,77]. Meanwhile,
a study comparing POR in China and the United States found that both nations’ citizens
were dissatisfied with medical treatment [51]. Previously, it was thought that those who
felt they had been treated unfairly were less satisfied with health care services. However,
since some patients were unable to evaluate the technical quality of therapy due to their
limited comprehension, they may have replaced their judgement for the sense of how nice
and caring health professionals were toward them [35].

The physical environment was another important factor influencing patient satisfac-
tion. Patient satisfaction was expected to be related to the pleasantness of the environ-
ment, cleanliness, noise level, food service, toilet comfort, clarity of signs and instructions,
layout of equipment and facilities, and parking. Few studies have shown that patient
satisfaction is influenced by attractive facilities, environmental cleanliness, and design-
related factors [28,38,40,46]. However, further research showed that patients were unhappy
with aspects of the hospital atmosphere based on their online assessments [46,53,61,69].
Malaysia’s government has spent millions of ringgits in a series of Malaysia Plans aimed
at enhancing public hospital facilities and services and building new hospitals [78]. As a
result, hospital clients appreciate the upgrade and improvement of public hospital assets
on social media.

These findings have a number of implications for many aspects of hospital quality
of care. To begin, quality-of-care metrics and patient satisfaction can be monitored and
evaluated in real time by using hospital Facebook reviews and machine learning algorithms.
The method used in this study enables policymakers to make use of social media data rather
than more expensive national questionnaire surveys. Moreover, there is no comparable
open-standard research of patient satisfaction in Malaysia’s public and private sectors.
While the Ministry of Health prefers the SERVQUAL questionnaire, private hospitals may
develop their own or adhere to an international standard. As a result, Facebook reviews
may serve as a new barometer of patient satisfaction in each of these domains. Additionally,
Facebook reviews are straightforward and accessible, reducing obstacles to obtaining
information about hospital quality and helping hospitals in addressing quality-of-service
problems while also alerting hospitals to possible patient safety concerns. While social
media ratings are untested and unregulated, traditional patient satisfaction surveys have
been validated and tested. By including additional hospital quality metrics on hospital
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Facebook pages and critical information such as the official status of the Facebook site and
the exact Facebook addresses, the validity of Facebook data will be increased [23].

Furthermore, this research has highlighted three SERVQUAL characteristics, namely re-
liability, responsiveness, and empathy, that need additional attention and improvement
on the part of Malaysian healthcare authorities. Enhancing interpersonal skills training,
especially for medical students, ongoing training for health professionals in the workplace,
and lean model adaption will substantially enhance the quality of treatment that is currently
lacking [79,80]. However, health authorities must realise that the findings are unlikely to
be representative of the whole population served by hospitals. Rather than that, this study
of service quality issues should be seen as a complement to more traditional data collection
efforts and as an effective early warning system for hospital quality management.

Future Works and Limitations

Future study should concentrate on improving the efficacy of machine learning classi-
fiers and collecting a bigger dataset of POR, including those from the Malaysian private sec-
tor. Second, further research is required to establish the relationship between POR and other
hospital quality or clinical outcome measures, as earlier studies have done [11,12,43,63,81].
Additionally, future research may incorporate additional social media platforms (e.g.,
Twitter, Instagram, Tik-Tok, etc.) with specific adjustments such as a focus on the youth
population (targeted audience), common public health topics discussed on social media
platforms (depression, vaccination, cyberbullying, etc.), as well as identifying popular
hashtags related to public health issues. The data collected from various social media
platforms may offer healthcare agencies with a unique viewpoint on patients and may be
utilised as a real-time public health surveillance system.

This research has a number of limitations. Due to the cross-sectional nature of the re-
search, the possibility of a causal connection in our findings cannot be ruled out. Moreover,
almost one-third of public hospitals posted feedback on Facebook. Incorporating unautho-
rised Facebook pages for public hospitals may have a contrasting impact. Additionally,
the research dataset is considered small-scale in comparison to other POR research, due to
Malaysia’s small population and the relatively recent adoption of POR in the Malaysian
healthcare sector. Malaysians, on the other hand, have a high rate of internet usage,
which continues to grow year after year, thus a surge of POR about healthcare services
may be expected over the next few years. Additionally, the main limitation was the time
needed for content analysis and manual coding. Comprehensive reading and classification
of datasets remains the gold standard for building machine learning-based topic classifiers
and is the only way to ensure that all essential comments are coded [29]. However, it is
time consuming, and in text classification, increasing the diversity of comments lowers the
ability of the machine learning system to properly recognise the remark. However, if social
media input becomes more prevalent, manual coding may become problematic owing
to time constraints, and topic modelling may be a viable alternative. Topic modelling
using Latent Dirichlet Allocation (LDA) may aid in determining how well the results fit
the themes chosen by domain experts, and this unsupervised approach will allow the
identification of previously undiscovered topics [82].

6. Conclusions

Patient online reviews offer healthcare authorities a practical, low-cost, and accessible
way of collecting information about the quality of care they deliver. Healthcare officials
have long considered how to include POR into citizen-government engagement and pol-
icymaking in order to create evidence-based reporting. Despite scholars’ focus on the
potential for POR data to assist in decision making, methods for realising this potential
have been very restricted, often fragmentary, and non-standardised. This research sug-
gested a systematic method for integrating POR data in order to analyse and monitor
patient perceptions of the service quality at Malaysian public hospitals. Automatically clas-
sifying Facebook reviews into SERVQUAL dimensions using machine learning minimised
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human interference and selection bias in the study. Classification performance was verified,
with an emphasis on the criticality of collecting reliable quality of care topic sets using the
SERVQUAL model, and used to grasp the context of Facebook reviews. Despite the fact
that the majority of POR were found to be satisfied with the hospital service, this study
highlighted SERVQUAL dimensions of reliability, responsiveness, and empathy as areas
for quality-of-care improvement in Malaysian public hospitals. Additionally, public hospi-
tal service in rural areas was associated with patient dissatisfaction. The results provide
important insights that will aid healthcare officials and authorities in capitalising on the
opportunities of POR by monitoring and assessing services’ quality in order to make
rapid improvements. Furthermore, the findings of traditional patient satisfaction surveys
may be routinely supplemented with data from POR to continually improve and create
high-quality healthcare services.
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Abstract: Medical records scoring is important in a health care system. Artificial intelligence (AI)
with projection word embeddings has been validated in its performance disease coding tasks,
which maintain the vocabulary diversity of open internet databases and the medical terminology
understanding of electronic health records (EHRs). We considered that an AI-enhanced system might
be also applied to automatically score medical records. This study aimed to develop a series of deep
learning models (DLMs) and validated their performance in medical records scoring task. We also
analyzed the practical value of the best model. We used the admission medical records from the Tri-
Services General Hospital during January 2016 to May 2020, which were scored by our visiting staffs
with different levels from different departments. The medical records were scored ranged 0 to 10. All
samples were divided into a training set (n = 74,959) and testing set (n = 152,730) based on time, which
were used to train and validate the DLMs, respectively. The mean absolute error (MAE) was used to
evaluate each DLM performance. In original AI medical record scoring, the predicted score by BERT
architecture is closer to the actual reviewer score than the projection word embedding and LSTM
architecture. The original MAE is 0.84 ± 0.27 using the BERT model, and the MAE is 1.00 ± 0.32
using the LSTM model. Linear mixed model can be used to improve the model performance, and
the adjusted predicted score was closer compared to the original score. However, the project word
embedding with the LSTM model (0.66 ± 0.39) provided better performance compared to BERT
(0.70 ± 0.33) after linear mixed model enhancement (p < 0.001). In addition to comparing different
architectures to score the medical records, this study further uses a mixed linear model to successfully
adjust the AI medical record score to make it closer to the actual physician’s score.

Keywords: medical records scoring; projection word embedding; long short-term memory; bidirec-
tional encoder representations from transformers; artificial intelligence; natural language processing;
electronic health records
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1. Introduction

With the increasing advancement of technology, the data amount generated by humans
is growing explosively [1]. Effectively taking advantage of these growing data may bring
valuable information, which many successful cases from different industries [2] have
already proved. However, the majority of these data are not structured [3], which cannot be
directly used by traditional analytical methods. At the same time, it is expected to employ
new algorithms to use these data to allow for stronger decision-making capacity [4,5]. In
recent years, with the breakthrough developments of the deep neural network in diverse
fields, we are already capable of directly analyzing data in the forms of videos, texts, and
voices. Hence, the focus of researches is now to develop applications to solve practical
problems.

The medical system is an important field that is very suitable to develop the above-
mentioned applications. Medical knowledge is accumulating quickly, making it more and
more possible for doctors to have knowledge gaps [6], which may cause misdiagnoses and,
thus, urgently need to be solved [7]. Computer-aided diagnosis systems have been greatly
developed in recent years, aiming to solve this problem, yet unsuccessfully so far [8]. This
is probably because the majority of medical data are non-structural data [9]; take cancer, for
example, where about 96% of cancer diagnoses are made from pathological section reports,
the data of which, however, are recorded in text descriptions and videos [10]. Thus, it is
difficult for traditional models to link these original non-structural data with diagnosis
information directly. With the advancement of artificial intelligence (AI) technology, the
new generation of computer-aided diagnosis systems is expected to make great contribu-
tions to the intellectualization of medical systems. It can further eliminate human errors
to increase the quality of medical care [11]. In 2012, AlexNet was the ILSVRC champion,
leading the 3rd AI revolution [12]. Since then, more powerful deep learning models have
been developed, such as VGGNet [13], Inception Net [14], ResNet [15], DenseNet [16], etc.
This revolution led by deep learning has made enormous progress in image recognition
tasks, driving breakthroughs in related research. Computer-aided diagnosis tools built
based on deep learning technology have led to an increase in medical care quality [11].
Examples include lymph node metastasis detection [17], diabetic retinopathy detection [18],
skin cancer classification [19], pneumonia detection [20], bleeding identification [21], etc.
There have been over 300 studies (mostly in the last 2 years) using such technologies in
medical image analysis [22]. It is worth mentioning that the most impressive capacity of
deep learning technology is automatic feature extraction. With the precondition of a large
database for annotation, it has been proven to reach, or even surpass, the level of human
experts [15,23,24].

The current method to use a large amount of information from medical records is to
code through recognition by experts and according to ICD (The International Statistical
Classification of Diseases and Related Health Problems). This work is not only necessary
for our national health insurance declaration system but may also be used in disease mon-
itoring, hospital management, clinical studies, and policy planning. However, artificial
classification is not only expensive but is also time-inefficient, which is the most important.
For example, in disease monitoring, since the outbreak of infectious disease will cause
large casualties [25], many countries have developed their disease monitoring systems
specifically aiming at contagious diseases, such as the Real-time Outbreak and Disease
Surveillance (RODS) system [26]. To ensure time efficiency, this system stipulates emer-
gency physicians to input data within required time limits when identifying notifiable
diseases, making it hard to be promoted to other diseases. With the advancement of data
science, it has been universally expected that an automatic disease interpretation model can
be developed to solve the high-cost and time-inefficient problems of artificial interpretation.

Due to the popularization of medical records electronization, a great number of studies
have attempted to use this information for text mining and ICD code classification. The cur-
rent technology primarily uses a bag-of-words model to standardize text medical records,
then uses a support vector machine (SVM), random forest tree, and other classifiers for
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diagnosis classification [27–31]. However, previous studies have found that these methods
were incapable of accurate diagnosis classification because of the particularity and diversity
of clinical terms, where synonyms need to be properly processed before data preprocess-
ing [10]. A complete medical dictionary integrates the currently recommended forms of
clinical terms; yet, it is almost impossible due to the complexity of clinical terms. There-
fore, traditional automatic classification programs can hardly make significant progress.
In addition, the bag-of-words model treats different characters as different features and
counts the number of features in one article. Although this makes it possible to use a
dictionary to handle the synonym problem, similar characters would be considered two
different features. Thus, the number of features integrated by the bag-of-words model
will be strikingly huge, causing a curse of dimensionality when classified by subsequent
classifiers, leading to inefficiency and slow progress of traditional algorithms.

Other than classification efficiency, the greatest challenge for traditional algorithms
is new diseases. For instance, there was an H1N1 outbreak in 2009, with related cases
that had never been recorded before 2008. Traditional classification algorithms are com-
pletely unable to perform proper classification of newly emerged words [27–31]. This
disadvantage makes it absolutely impossible for traditional methods to reach full automa-
tion. Regarding this issue, we proposed word embedding as a technical breakthrough
in disease classification. Since the 20th century, word embedding has been an important
technology to allow computers to understand the semantic meaning further. Its core logic
is hoping to characterize every single word into a vector in high-dimensional space and
expecting similar vectors for similar characters/words to express semantic meaning [32,33].
The word2vec published by the Google team in 2013 is considered the most important
breakthrough in recent word embedding studies. It has been verified to allow similar
characters to have very high cosine similarity and very close Euclidean distance in vector
space [34]. However, this technology has a disadvantage that, once applied, it converts an
article into an unequal matrix, making it inapplicable for traditional classifiers, such as SVM
and random forest trees. A general solution is to average or weighted average the word
vector of all characters in an article as semanteme [35]. However, from the MultiGenre NLI
(MultiNLI) Corpus competition release by the natural language research team of Stanford
(https://nlp.stanford.edu/projects/snli/), we can still see that combining modern AI tech-
nology gives better efficiency to models. Language processing conducts analysis mostly
based on Recurrent Neural Network (RNN) or Convolutional Neural Network (CNN).
Its core principle is to use convolutional layer (does not have memory but can gradually
integrate surrounding single-character information in higher-order features, requires more
layers) or Long Short-Term Memory Unit (has short- and long-term memory, thus needing
fewer layers) for feature extraction and is able to process information in matrix form [36].
CNN has become the primary method in all computer vision competitions. Its reason
for success is a fuzzy matching technique of convolutional layer, allowing for integrating
similar image features. We will be able to change the convolutional layer from recognizing
similar image features to recognizing similar vocabularies through certain designs. Hence,
CNN has been applied in text mining, such as semantic classification [37], short sentence
searching [38], and chapter analysis [39], and has shown considerably good efficiency. In
the most recent study, Bidirectional Encoder Representations from Transformers (BERT), de-
veloped by Google, has swept all kinds of natural language process competitions [40]. Yet,
its core is still good work/sentence/paragraph embedding. Generally speaking, combining
good embedding technology with modern deep learning neural networks is undoubtedly
the best option for current natural language processing tasks.

Our team has already applied it in disease classification of discharge record sum-
maries and proved that it compared with traditional models. AI model with combined
word embedding model and CNN reduces 30% error rate in disease classification tasks,
makes modeling easier by avoiding troublesome text integration preprocessing, and learns
external language resources through unmonitored learning to integrate similarity among
clinical clauses [41]. However, although the combination of word embedding and CNN
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is better in disease classification tasks than traditional methods, its accuracy still cannot
be compared with humans. One of the reasons is the error in understanding the seman-
tic meaning. Therefore, improving the word embedding model’s understanding of the
meaning of medical terms might increase its subsequent analytical efficiency [42]. There
are two studies that have evaluated the application of word embedding models trained by
different resources on biomedical NLP and found EHR-trained word embedding could
better capture semantic property [43,44]. On the other hand, external data resources have a
neglected advantage in that the vocabulary diversity of external internet data resources is
far more than that of internal task database. This advantage will greatly affect real disease
coding tasks. Hence, an embedded training process needs to be developed to maintain the
vocabulary diversity of internet resources and medical terms’ understanding of the internal
task database. A recent word embedding comparison study showed that EHR-trained work
embedding could usually better capture medical semantic meaning [43]. Even the research
team of abroad Mayo Clinic uses an EHR with a large amount of data. The total number
of words is only about 100,000, the vocabulary diversity of which is still far less than the
external database [43,44]. This is due to the lack of some rare diseases and periodic diseases,
such as the 2003 SARS outbreak and the 2009 H1N1 outbreak. Therefore, EHR-trained
word embedding models are unable to include enough vocabulary. For this reason, our
team developed a projection word embedding model that has the vocabulary diversity of
Wikipedia/PubMed, as well as an understanding of medical terms in EHR [45].

A medical record is a historical record and also the foundation of a patient’s medical
care. It records the patient’s conditions, reasons, results of examinations/tests, treatment
methods, and results during care processes. It integrates and analyzes patients’ related
information, presents the executive ground of medical decisions, and even affects national
health policy. The basic purpose of medical records is to remind oneself or other medical
care colleagues of a patient’s daily conditions and attending physician’s current thoughts.
When medical treatment is being performed, the medical record serves as the communi-
cation tool among physicians and means for continuous treatment. In other words, the
medical record is the only text material that records a patient’s conditions and focuses on
all medical care personnel. A medical record is an index of medical care quality reflecting a
physician’s clinical thinking and diagnostic basis. It serves as the reference for learning,
research, and education. Meanwhile, it also serves as the evidence for medical disputes to
clarify the attribution of liabilities. The medical record is the foundation of patient care as
it records the contents of patient care provided by medical personnel. Thus, all results ob-
tained from observation or examination can be found on the medical record. Therefore, any
change in the patient’s condition can be found from the medical record so that the patient’s
current condition can be evaluated for suitable treatments. Moreover, communication with
a patient should also be included in the medical record so that medical personnel can learn
the patient’s expectations on the treatment, resulting in a closer doctor-patient relationship.
For other professionals, a detailed medical record saves a lot of communication time and
avoids misunderstanding or missing the patient’s previous conditions that may lead to
mistreatment.

The content of medical records also has legal effects. It is the basis of insurance benefits
and even affects national health policy. For example, public health studies usually need to
include case information under national health insurance, and, through studying a large
number of medical records, such studies can help public health researchers and medical
officials to establish more suitable public health decisions and administrative rules that
protect the rights and interests of both doctors and patients. Clinical decision-making
guides formulated by many specialized medical associations also used information from
medical records. The implicit demographic information from these medical records is also
collected at the national level and published as national health demographic information
to compare with other countries so as to serve as a way to communicate and learn from
each other for mutual benefits.
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In this study, as shown in the graphical abstract, a scoring database was established
by experts performing scoring on medical records. An AI model was trained to learn
experts’ scoring logics so as to screen high-quality medical record summaries. In contrast,
the database made up of which will have the chance to promote the establishment of
other subsequent AI models, improve model accuracy, and serve as a teaching example to
improve medical education efficiency.

2. Method

2.1. Data Source

In this study, inpatient medical records from Tri-Service General Hospital from 1
January 2016 to 31 December 2019 were used as the basic database, which was ethically
approved by institutional review board (IRB NO. A202005104). Physicians of different
levels from different departments were invited for medical records summary scoring. Scor-
ing dimensions include different indexes, based on clinical writing standards, it contains
12 scoring items from each detailed structure of the QNOTE scale’s inpatient record, in-
cluding chief of complaint, history of the present illness, problem list, past medical history,
medications, adverse drug reactions and allergies, social and family history, review of
systems, physical findings, assessment, plan of care, and follow-up information. The
completeness of each item’s record, as well as the 5 structures (completeness, correctness,
concordance, plausibility, and currency) of electronic medical records’ examination in-
formation, are evaluated in 5 levels of the Likert scale: strongly disagree, disagree, no
comment (not agree nor disagree), agree, and strongly agree. Specialists from different
departments were required to review 227,689 medical records and preliminarily score them
on a 10-point Likert scale based on the average of above 5 structures. These scores were
then used as the training target of the AI model to represent medical record writing quality.
All samples were divided into a training set (n = 74,959) and testing set (n = 152,730) based
on time, and then they were evaluated by different departments. Data of the testing set
was compared with the actual scores for analysis, and MAE from the Likert scale was used
as the evaluation index for model performance. In the end, the aforementioned model
was applied in Tri-Service General Hospital. A medical record auto-scoring system was
established in the hospital so as to screen high-quality medical records for future teaching
and research studies.

2.2. AI Algorithm

The collected medical records and various writing quality indicators can be used for
artificial intelligence model training. The model architecture uses the word embedding
and LSTM model developed by our team. The word embedding also uses the projection
word embedding comparison table to perform single-character conversion mathematical
vectors and uses the entire input article as the input matrix. We used projection word
embedding to construct a deep convolutional network model to enable the network to
integrate the transformed semantic vectors and extract written medical records based on
different word combinations. First, we used the word embedding comparison table trained
by Wikipedia and PubMed library, and then we used EHR to perform projection word
embedding training. Next, we connected the converted text matrix in parallel so that the
network can refer to two different word embedding sources simultaneously. In addition,
we used different word embeddings separately as conversion sources to compare their
effects on prediction performance.

2.2.1. Long Short-Term Memory (LSTM)

In RNN, the output can be given back to the network as input, thereby creating a loop
structure. RNNs are trained through backpropagation. In the process of backpropagation,
RNN will encounter the problem of vanishing gradient. We use the gradient to update the
weight of the neural network. The problem of vanishing gradient is when the gradient
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shrinks as it propagates backwards in time. Therefore, the layers that obtain small gradients
will not learn but will, instead, cause the network to have short-term memory.

The LSTM architecture was introduced by Hochreiter and Schmidhuber [46] to al-
leviate the problem of vanishing gradients. LSTMs can use a mechanism called gates to
learn long-term dependencies. These gates can learn which information in the sequence is
important to keep or discard. LSTMs have three gates: input, forget, and output. This is
the core of the LSTM model, where pointwise addition and multiplication are performed
to add or delete information from the memory. These operations are performed using the
input and forget gate of the LSTM block, which also contains the output “tanh” activation
function. In addition to using the original architecture and model parameters, the other
settings are Epochs = 20, Batch size = 300, and Learning rate = 0.001.

2.2.2. Bidirectional Encoder Representation from Transformers (BERT)

Other than the original word embedding and LSTM architecture, BERT architecture
was also used for feature extraction. BERT is a recent attention-based model with a
bidirectional Transformer network that was pre-trained on a large corpus. This pre-trained
model is then effectively used to solve various language tasks with fine-tuning [40,47].
In brief terms, the task-specific BERT architecture represents input text as sequential
tokens. The input representation is generated with the sum of the token embeddings, the
segmentation embeddings and the position embeddings [40]. For a classification task, the
first word in the sequence is a unique token which is denoted with [CLS]. An encoder layer
is followed with a fully-connected layer at the [CLS] position. Finally, a softmax layer is
used as the aggregator for classification purposes [47]. If the NLP task has pair of sentences
as in question-answer case, the sentence pairs may be separated with another special token
[SEP]. BERT multilingual base model (cased) is used as transfer feature learning, and other
parameters are set to Epochs = 30, Batch size = 32, and Learning rate = 0.00001.

Through these two methods, we can enable the network to learn the semantic mean-
ings of different individual characters. We can also let the network learn from different
texts, such as from Wikipedia and PubMed. Then, through EHR for Fine-tune retraining,
the BERT architecture that has finished learning only needs to change from predicting its
context output to predicting the categories of multiple medical record quality dimensions;
then, it can be trained with medical record information.

2.3. Linear Mixed Model Function for Medical Records Scoring Prediction

Suppose data are collected from m independent groups of observations (called clusters
or subjects in longitudinal data).

Ym = XmBm + em. (1)

Here, Ym is an n × 1 vector of the dependent variable for patient m, and Xi is an n × q
matrix of all the independent variables for patient m. Bm is a q × 1 unknown vector of
regression coefficients, and em is an n × 1 vector of residuals. This results in a multi-level
mixed model with random effects for all samples, which is expressed as

Y = XB + Zu + e, (2)

where Z is a matrix of known constants included in the information of the independent
variables with random effects, and u is a matrix of random effects for all patients.

The best linear unbiased prediction (BLUP) is important for predicting the medical
record score in each patient, and it can be calculated by following the steps in [48].

Ym is an n × 1 vector of the dependent variable for patient m, and Xi is an n × q matrix
of all independent variables for patient m. Moreover, Zm is an n × p matrix of independent
variables with random effects for patient m. These matrices contain the observed data and
are defined as
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Ym =









y1,m
y2,m
. . .

yn,m









, Xm =









1 x1,1,m . . . x1,q−1,m
1 x2,1,m . . . x2,q−1,m

. . . . . . . . . . . .
x1 xn,1,m . . . xn,q−1,m









, Zm =









1 x1,1,m . . . x1,p−1,m
1 x2,1,m . . . x2,p−1,m

. . . . . . . . . . . .
x1 xn,1,m . . . xn,p−1,m









. (3)

After building the prediction tool, we have the G matrix, B vector and σ2. G is
a variance co-variance matrix of the random effects (p × p), and B is the fixed effect
coefficients vector (q × 1). σ2 is the variance of the residuals. We can calculate a matrix
R (n × n) using

G =









τ2
1 τ12 . . . τ1p

τ12 τ2
2 . . . τ2p

. . . . . . . . . . . .
τ1p τ2p . . . τ2

p









, B =









b0
b1
. . .

bq−1









, R = σ2 In×n =









σ2 0 . . . 0
0 σ2 . . . 0

. . . . . . . . . . . .
0 0 . . . σ2









. (4)

If the independence assumption holds (i.e.,
[

u
e

]

∼ N

([

0
0

]

,
[

G 0
0 R

])

), then

we can calculate the variance co-variance matrix (Σm) of Ym using

Σm = ZmGZT
m + R. (5)

Finally, the BLUP of the random effect in patient m can be estimated using

BLUPm = GZT
mΣ−1

m (Ym − XmB). (6)

We can estimate the regression coefficients (Bm) in patient m based on the above result,
and Bm can be used to predict the disease progression. Bm can be calculated using

Bm = B + BLUPm (7)

Note that this calculation cannot make direct forecasts without the co-variable values.
Thus, the co-variables information at the time of interest must be generated. We propose
two methods for generating this information: (1) assume consistency between the last
time and the time of interest and (2) predict the linear expectations. We will assess these
methods in our analysis. Unquestionably, clinicians can use the most reasonable values
based on their judgment to predict the co-variables at the time of interest. In summary, we
can combine this method with population information to predict the medical record score.

2.4. Evaluation Criteria

We evaluated the generalization performance of each model in the training and testing
samples. Mean absolute error (MAE) were used to compare the performance of the models,
as follows:

MAE =
∑

N
i=1|yi − ŷi|

N
. (8)

3. Results

The research scheme is shown in Figure 1, where a total of 227,689 medical records
were scored by experts. In AI model training, the medical records were divided into the
training set and testing set based on year, where 74,959 records were used to establish BERT
and LSTM models, and 152,730 records were used to test record scoring. LMM was then
employed to modify BERT and LSTM to establish another two models. In the end, MAE
was used to compare the four models’ efficiencies in predicting medical record scores.
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p

Figure 1. Training and testing sets generation. Schematic of the data set creation and analysis strategy, which was devised
to assure a robust and reliable data set for training and testing of the network. Once a medical records data were placed in
one of the data sets, that individual’s data were used only in that set, avoiding ‘cross-contamination’ among the training
and testing sets. The details of the flow chart and how each of the data sets was used are described in the Methods.

Table 1 shows the distribution of medical records in different departments. It can be
seen that 74,959 records were included for modeling, and then 152,730 records were used
for prediction. The average score from experts was 7.24 ± 1.02 for the training set and
7.67 ± 0.84 for the testing set; after BERT and LSTM modeling of medical record scoring,
the average score of BERT prediction in the testing set was 7.47 ± 0.89, and 7.15 ± 1.05 for
LSTM. After training through the BERT and LSTM models, the artificial intelligence model
had already scored the medical records.

Table 1. Medical records distribution and scoring in the training set and testing set of different departments.

Training Set (n = 74,959) Testing Set (n = 152,730) p-Value

Department <0.001 *
General surgery 4843 (6.5%) 10,504 (6.9%)
Pleural surgery 1932 (2.6%) 3472 (2.3%)
Cardiovascular surgery 3904 (5.2%) 8319 (5.4%)
Colorectal & rectal surgery 491 (0.7%) 3479 (2.3%)
Urology surgery 1330 (1.8%) 3313 (2.2%)
Pediatric Surgery 99 (0.1%) 85 (0.1%)
Plastic surgery 1748 (2.3%) 4009 (2.6%)
Pulmonary Medicine 10,268 (13.7%) 19,065 (12.5%)
Cardiology 2723 (3.6%) 4765 (3.1%)
Nephrology 2473 (3.3%) 3749 (2.5%)
Blood Oncology 9257 (12.3%) 17,110 (11.2%)
Endocrine and metabolic 839 (1.1%) 1477 (1.0%)
Gastroenterology 3861 (5.2%) 7372 (4.8%)
Rheumatism, immunology and allergy 1247 (1.7%) 2624 (1.7%)
Trauma 756 (1.0%) 940 (0.6%)
Infection and Tropical Medicine 3701 (4.9%) 8488 (5.6%)
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Table 1. Cont.

Training Set (n = 74,959) Testing Set (n = 152,730) p-Value

Psychiatric department 6531 (8.7%) 14,331 (9.4%)
Neurological department 3159 (4.2%) 7374 (4.8%)
Pediatric department 1138 (1.5%) 2474 (1.6%)
Dental department 1223 (1.6%) 2483 (1.6%)
Surgery department 607 (0.8%) 817 (0.5%)
Dermatology department 5 (0.0%) 109 (0.1%)
ENT department 2388 (3.2%) 3907 (2.6%)
Radiology 40 (0.1%) 175 (0.1%)
Emergency department 0 (0.0%) 300 (0.2%)
Family and Community Medicine 188 (0.3%) 655 (0.4%)
Nuclear Medicine Department 144 (0.2%) 153 (0.1%)
Neurosurgery 3219 (4.3%) 6937 (4.5%)
Orthopedic department 3482 (4.6%) 7876 (5.2%)
Obstetrics and Gynecology 1766 (2.4%) 3222 (2.1%)
Ophthalmology department 607 (0.8%) 903 (0.6%)
Rehabilitation department 990 (1.3%) 2243 (1.5%)
Experts’ scores 7.24 ± 1.02 7.67 ± 0.84 <0.001 *
BERT prediction score 7.47 ± 0.89
LSTM prediction score 7.15 ± 1.05

*: p-value < 0.05.

Our team’s projection word embedding model allowed the model to have both the
vocabulary diversity of Wikipedia/PubMed and an understanding of medical terms in
EHR. The concept of projection word embedding used the results of our previous studies, a
concept in linear algebra that projects through matrix multiplication to allow all coordinates
to convert into a new coordinate system. Such conversion changes the correlation of certain
points while at the same time maintaining all current coordinates. In addition to the
original projection word embedding and LSTM architecture, we attempted to use BERT
architecture for feature extraction. BERT stands for Bidirectional Encoder Representations
from Transformers, the elementary unit of BERT architecture is the encoder’s Multi-Head
Self-Attention Layer in the transformer. In contrast, the overall architecture of BERT is
stacked by a bidirectional Transformer Encoder Layer. As shown in Table 2, in general, on
the ground of experts’ scoring, the trained scoring model BERT had a prediction score of
7.49 ± 0.28. In contrast, LSTM had 7.17 ± 0.31; after modification by the linear mixed model
(LMM), BERT’s and LSTM’s prediction scores were 7.36 ± 0.56 and 7.33 ± 0.65, respectively.
After layering different departments, such as internal medicine, surgery, obstetrics, and
pediatrics, it can be learned that BERT all had higher prediction scores than LSTM, while,
after LMM modification, all LSTM prediction scores increased. Through further looking
into different departments, it was found that most departments’ BERT prediction scores
were higher than that of LSTM, and the latter increased after LMM modification.

Table 2. BERT and LSTM original prediction scores and LMM-modified scores.

Experts’ Scores
BERT Prediction
Scores

LSTM Prediction
Scores

LMM-Modified
BERT Prediction
Scores

LMM-Modified
LSTM Prediction
Scores

Overall 7.69 ± 0.64 7.49 ± 0.28 7.17 ± 0.31 7.36 ± 0.56 7.33 ± 0.65
Internal medicine 7.49 ± 0.66 7.37 ± 0.21 7.01 ± 0.20 7.14 ± 0.56 7.08 ± 0.65
Surgery 7.78 ± 0.55 7.49 ± 0.22 7.16 ± 0.17 7.54 ± 0.43 7.54 ± 0.51
Obstetrics and pediatrics 8.08 ± 0.69 7.68 ± 0.31 7.37 ± 0.31 7.70 ± 0.61 7.68 ± 0.79
Other departments 7.76 ± 0.60 7.57 ± 0.33 7.32 ± 0.40 7.39 ± 0.53 7.37 ± 0.61
Department
General surgery 7.69 ± 0.74 7.48 ± 0.53 7.26 ± 0.28 7.45 ± 0.56 7.45 ± 0.57
Pleural surgery 7.87 ± 0.25 7.55 ± 0.35 7.22 ± 0.16 7.55 ± 0.43 7.64 ± 0.48
Cardiovascular surgery 7.73 ± 0.56 7.38 ± 0.37 7.01 ± 0.05 7.34 ± 0.17 7.35 ± 0.34
Colorectal & rectal surgery 7.92 ± 0.18 7.73 ± 0.37 7.22 ± 0.16 7.87 ± 0.35 7.97 ± 0.40
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Table 2. Cont.

Experts’ Scores
BERT Prediction
Scores

LSTM Prediction
Scores

LMM-Modified
BERT Prediction
Scores

LMM-Modified
LSTM Prediction
Scores

Urology surgery 7.76 ± 0.18 7.48 ± 0.29 7.14 ± 0.09 7.54 ± 0.25 7.48 ± 0.37
Pediatric Surgery 6.16 ± NA 6.86 ± 0.50 7.09 ± NA 6.86 ± NA 6.65 ± NA
Plastic surgery 7.98 ± 0.08 7.58 ± 0.32 7.20 ± 0.15 7.65 ± 0.23 7.65 ± 0.29
Pulmonary Medicine 7.58 ± 0.83 7.30 ± 0.57 6.98 ± 0.19 7.26 ± 0.58 7.22 ± 0.65
Cardiology 7.19 ± 0.97 7.02 ± 0.64 6.99 ± 0.08 6.83 ± 0.68 6.75 ± 0.73
Nephrology 8.13 ± 0.69 7.54 ± 0.55 7.12 ± 0.06 7.42 ± 0.47 7.39 ± 0.60
Blood Oncology 7.21 ± 0.55 6.89 ± 0.50 6.71 ± 0.16 6.77 ± 0.52 6.71 ± 0.74
Endocrine and metabolic 7.64 ± 0.26 7.38 ± 0.35 7.17 ± 0.04 7.35 ± 0.44 7.25 ± 0.55
Gastroenterology 7.19 ± 0.25 7.15 ± 0.26 6.96 ± 0.12 7.16 ± 0.30 7.09 ± 0.33
Rheumatism, immunology and
allergy 7.79 ± 0.21 7.33 ± 0.32 6.98 ± 0.14 7.29 ± 0.17 7.19 ± 0.22

Trauma 7.84 ± 1.32 7.39 ± 0.57 7.18 ± 0.02 7.21 ± 0.35 7.14 ± 0.47
Infection and Tropical Medicine 7.33 ± 0.53 7.09 ± 0.57 6.98 ± 0.07 6.94 ± 0.74 6.89 ± 0.87
Psychiatric department 8.41 ± 0.48 8.08 ± 0.47 8.00 ± 0.16 7.94 ± 0.59 7.94 ± 0.67
Neurological department 7.89 ± 0.24 7.62 ± 0.23 7.39 ± 0.06 7.60 ± 0.18 7.63 ± 0.25
Pediatric department 7.91 ± 0.85 7.51 ± 0.66 7.14 ± 0.10 7.52 ± 0.66 7.48 ± 0.93
Dental department 7.95 ± 0.25 7.05 ± 0.52 6.53 ± 0.09 6.89 ± 0.04 6.76 ± 0.04
Surgery department 7.81 ± NA 7.40 ± 0.26 7.14 ± NA 7.33 ± NA 7.25 ± NA
Dermatology department 8.58 ± NA 7.67 ± 0.64 6.83 ± NA 7.73 ± NA 7.85 ± NA
ENT department 7.37 ± 0.49 7.36 ± 0.38 7.29 ± 0.15 7.32 ± 0.47 7.37 ± 0.54
Radiology 6.85 ± NA 6.70 ± 0.17 6.67 ± NA 6.51 ± NA 6.57 ± NA
Family and Community Medicine 7.37 ± 0.41 7.19 ± 0.61 7.29 ± 0.09 6.91 ± 0.80 6.90 ± 1.15
Nuclear Medicine Department 8.76 ± NA 8.01 ± 0.45 7.54 ± NA 7.83 ± NA 8.02 ± NA
Neurosurgery 7.95 ± 0.49 7.59 ± 0.56 7.12 ± 0.07 7.78 ± 0.63 7.78 ± 0.75
Orthopedic department 7.38 ± 0.40 7.21 ± 0.34 7.09 ± 0.09 7.14 ± 0.38 7.11 ± 0.44
Obstetrics and Gynecology 8.31 ± 0.34 7.96 ± 0.41 7.67 ± 0.23 7.95 ± 0.49 7.96 ± 0.51
Ophthalmology department 7.86 ± 0.19 7.65 ± 0.26 7.56 ± 0.06 7.54 ± 0.27 7.53 ± 0.33
Rehabilitation department 8.06 ± 0.59 7.63 ± 0.41 7.29 ± 0.16 7.61 ± 0.25 7.51 ± 0.37

It can be learned from Table 3 that, when reviewer physicians’ scores and AI scores
were calculated using mean absolute error (MAE), both BERT and LSTM AI scores were
0.6~1.3 points lower than reviewer physicians’ scores; thus, the linear mixed model (LMM)
was introduced for modification, thereby reducing the score difference to 0.3~1 points,
showing a significant reduction (p < 0.001) in score difference. The reason for the modifica-
tion using LMM is that an ordinary linear regression contains only two influencing factors:
fixed effect and noise. The latter is a random factor not considered in our model, while the
former are those predictable factors that can also be completely divided. The AI scoring of
medical records after modification by LMM is also more realistic. After department layer-
ing, it was found that, in some departments, LMM-modified MAE was not significantly
reduced comparing with the original MAE. Hence, experts’ scores were made into a heat
map (Figure 2), where it was found that some groups of scoring physicians and scored
physicians had closer scores, and were separately analyzed. In Table 4, medical record
prediction scores and MAE are analyzed from Block A to H, respectively, and, except for
block F, most blocks had similar record scores with previous results, and the MAE of LSTM
prediction scores significantly reduced (p < 0.05) after LMM modification.

Table 3. The difference between the original AI/LMM-modified score and the expert score.

Original MAE a LMM-modified MAE b p-Value

Overall
BERT 0.84 ± 0.27 0.70 ± 0.33 <0.001 *
LSTM 1.00 ± 0.32 0.66 ± 0.39 <0.001 *

Internal medicine BERT 0.82 ± 0.27 0.66 ± 0.37 0.007 *
LSTM 0.96 ± 0.32 0.63 ± 0.41 <0.001 *

Surgery BERT 0.86 ± 0.24 0.72 ± 0.25 0.011 *
LSTM 1.04 ± 0.25 0.67 ± 0.30 <0.001 *

Obstetrics and pediatrics BERT 1.05 ± 0.30 0.82 ± 0.32 0.069
LSTM 1.21 ± 0.31 0.74 ± 0.44 <0.001 *
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Table 3. Cont.

Original MAE a LMM-modified MAE b p-Value

Other departments BERT 0.79 ± 0.26 0.70 ± 0.35 0.142
LSTM 0.96 ± 0.35 0.67 ± 0.41 <0.001 *

Department
General surgery BERT 0.80 ± 0.21 0.75 ± 0.15 0.645

LSTM 1.03 ± 0.20 0.72 ± 0.12 0.003 *
Pleural surgery BERT 0.72 ± 0.10 0.49 ± 0.26 0.200

LSTM 0.91 ± 0.20 0.38 ± 0.27 0.100
Cardiovascular surgery BERT 0.88 ± 0.26 0.86 ± 0.42 0.589

LSTM 1.09 ± 0.39 0.79 ± 0.51 0.065
Colorectal & rectal surgery BERT 0.74 ± 0.12 0.61 ± 0.25 0.686

LSTM 0.97 ± 0.10 0.57 ± 0.34 0.057
Urology surgery BERT 0.73 ± 0.06 0.67 ± 0.10 0.318

LSTM 0.93 ± 0.10 0.63 ± 0.20 0.002 *
Plastic surgery BERT 0.76 ± 0.05 0.59 ± 0.15 0.057

LSTM 0.97 ± 0.08 0.52 ± 0.22 0.029 *
Pulmonary Medicine BERT 0.94 ± 0.32 0.69 ± 0.29 0.040 *

LSTM 1.14 ± 0.36 0.65 ± 0.27 0.002 *
Cardiology BERT 1.01 ± 0.41 0.75 ± 0.33 0.136

LSTM 1.12 ± 0.34 0.74 ± 0.34 0.024 *
Nephrology BERT 0.89 ± 0.29 0.89 ± 0.41 0.841

LSTM 1.22 ± 0.47 0.82 ± 0.49 0.222
Blood Oncology BERT 0.85 ± 0.21 0.66 ± 0.23 0.130

LSTM 0.91 ± 0.22 0.72 ± 0.28 0.195
Endocrine and metabolic BERT 0.82 ± 0.03 0.68 ± 0.16 0.343

LSTM 0.95 ± 0.09 0.63 ± 0.23 0.114
Gastroenterology BERT 0.60 ± 0.11 0.42 ± 0.20 0.050 *

LSTM 0.66 ± 0.17 0.37 ± 0.23 0.015 *
Rheumatism, immunology and allergy BERT 0.74 ± 0.11 0.69 ± 0.13 0.548

LSTM 1.02 ± 0.15 0.70 ± 0.16 0.032 *
Trauma BERT 1.08 ± 0.22 0.88 ± 0.70 1.000

LSTM 1.19 ± 0.63 0.84 ± 0.72 0.667
Infection and Tropical Medicine BERT 0.69 ± 0.17 0.66 ± 0.81 0.028 *

LSTM 0.78 ± 0.26 0.63 ± 0.91 0.028 *
Psychiatric department BERT 0.73 ± 0.26 0.59 ± 0.47 0.328

LSTM 1.03 ± 0.29 0.52 ± 0.54 0.028 *
Neurological department BERT 0.72 ± 0.06 0.56 ± 0.06 0.002 *

LSTM 0.82 ± 0.09 0.44 ± 0.11 0.002 *
Pediatric department BERT 1.18 ± 0.35 0.95 ± 0.33 0.328

LSTM 1.36 ± 0.30 0.90 ± 0.49 0.007 *
Dental department BERT 0.96 ± 0.10 1.12 ± 0.24 0.400

LSTM 1.52 ± 0.19 1.23 ± 0.23 0.400
ENT department BERT 0.73 ± 0.13 0.53 ± 0.17 0.024 *

LSTM 0.78 ± 0.15 0.46 ± 0.20 <0.001 *
Family and Community Medicine BERT 0.75 ± 0.06 0.74 ± 0.43 0.700

LSTM 0.80 ± 0.05 0.81 ± 0.62 0.700
Neurosurgery BERT 1.12 ± 0.28 0.80 ± 0.10 0.002 *

LSTM 1.21 ± 0.30 0.77 ± 0.14 0.002 *
Orthopedic department BERT 0.78 ± 0.34 0.71 ± 0.38 0.630

LSTM 0.92 ± 0.28 0.68 ± 0.42 0.089
Obstetrics and Gynecology BERT 0.88 ± 0.03 0.64 ± 0.24 0.009 *

LSTM 1.02 ± 0.19 0.53 ± 0.28 0.004 *
Ophthalmology department BERT 0.56 ± 0.17 0.55 ± 0.26 0.690

LSTM 0.60 ± 0.09 0.57 ± 0.30 0.222
Rehabilitation department BERT 0.88 ± 0.12 0.77 ± 0.22 0.180

LSTM 1.06 ± 0.38 0.77 ± 0.38 0.180
a Original MAE: Expert’s score—BERT/LSTM prediction score. b LMM-modified MAE: Expert’s score—LMM-modified BERT/LSTM
prediction score. *: p-value < 0.05.
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Table 4. Experts’ scores, BERT and LSTM prediction scores, and MAE of different blocks.

Block
Experts’
Score (a)

BERT
Score (b)

LSTM
Score (c)

p-Value

LMM-
Modified

BERT
Score (d)

LMM-
Modified

LSTM
Score (e)

p-Value |a-b| # |a-d| # p-Value |a-c| # |a-e| # p-Value

A 7.44 ± 0.66 7.35 ± 0.17 6.99 ± 0.17 <0.001 * 7.08 ± 0.56 7.02 ± 0.66 0.626 0.83 ± 0.27 0.66 ± 0.38 0.008 * 0.97 ± 0.33 0.63 ± 0.43 <0.001 *
B 7.35 ± 0.51 7.43 ± 0.06 7.32 ± 0.17 0.087 7.32 ± 0.47 7.38 ± 0.54 0.824 0.7 ± 0.13 0.51 ± 0.17 0.013 * 0.76 ± 0.16 0.45 ± 0.2 0.002 *
C 7.88 ± 0.14 7.56 ± 0.09 7.4 ± 0.1 0.016 * 7.59 ± 0.18 7.63 ± 0.24 0.740 0.69 ± 0.03 0.54 ± 0.1 0.005 * 0.77 ± 0.08 0.41 ± 0.14 <0.001 *
D 7.94 ± 1 7.43 ± 0.19 7.13 ± 0.08 0.005 * 7.57 ± 0.6 7.61 ± 0.84 0.932 1.29 ± 0.29 0.88 ± 0.31 0.042 * 1.44 ± 0.3 0.74 ± 0.35 0.004 *
E 7.74 ± 0.91 7.51 ± 0.08 6.98 ± 0.18 <0.001 * 7.19 ± 0.45 7.12 ± 0.56 0.772 1.05 ± 0.33 0.85 ± 0.4 0.227 1.25 ± 0.41 0.8 ± 0.35 0.016 *
F 7.3 ± 0.63 6.97 ± 0.24 6.61 ± 0.17 0.004 * 6.75 ± 0.54 6.69 ± 0.74 0.874 0.88 ± 0.22 0.73 ± 0.28 0.258 1 ± 0.27 0.78 ± 0.3 0.154
G 7.76 ± 0.15 7.46 ± 0.08 7.08 ± 0.11 <0.001 * 7.52 ± 0.25 7.46 ± 0.37 0.707 0.69 ± 0.08 0.63 ± 0.12 0.238 0.93 ± 0.12 0.6 ± 0.2 0.003 *
H 8.41 ± 0.47 8.1 ± 0.06 8.05 ± 0.18 0.436 7.93 ± 0.59 7.95 ± 0.67 0.962 0.71 ± 0.23 0.58 ± 0.48 0.489 1 ± 0.3 0.51 ± 0.55 0.045 *

#: The mean absolute error (MAE), the absolute value of the original score minus the predicted score. *: p-value < 0.05.
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Figure 2. Heat map of medical record scores from scoring and scored physicians. X-axis: physicians who wrote the medical
Figure 2. Heat map of medical record scores from scoring and scored physicians. X-axis: physicians who wrote the medical
records; Y-axis: scoring physicians and their departments. A redder grid means record scoring physicians give a higher
score to record writing physicians. There are clusters in some areas; thus, we put out some blocks and observe the block (A
to H) characteristics in Table 4.

In spite of this, we were still unable to identify the reason why the MAE of certain
departments had no significant reduction after LMM modification. Thus, heat map analysis
was performed on LMM-modified LSTM prediction scores. Figure 3 shows that some
reviewers’ LMM-modified LSTM prediction scores had relatively greater MAE. After
grouping using LMM modified MAE (Grade-LMM modified LSTM), experts’ scores were
close among groups, but BERT and LSTM prediction scores were lower than the original
experts’ scores. In Figure 4, We further using MAE to evaluate model efficiency, and then
comparing MAE (|Grade—LMM modified BERT|, |Grade—LMM modified BERT|) of
LMM-modified BERT or LSTM with the MAE (|Grade—BERT|, |Grade—LSTM|) of
the original BERT or LSTM, it was found MAE was effectively reduced through LMM
modification in Q1~Q3, but not in Q4. Thus, it is suspected that some scoring physicians in
Q4 may have scored incorrectly.

Figure 3. MAE heat map of LMM-modified LSTM prediction scores from scoring and scored physicians. X-axis: physicians
who wrote the medical records; Y-axis: scoring physicians and their departments. By subtracting the MAE of the original
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score from the LMM modified LSTM prediction score, and using the MAE and coring physicians to conduct a heat map
analysis, it can be found that some reviewer scores are on the high side.

 

(A) 

(B) 

Figure 4. Using LMM modified MAE (Grade-LMM modified LSTM) for interquartile range grouping. (A): Compare the
scores of Experts, BERT and LSTM. Y-axis: medical record scores, X-axis: Experts’ score, BERT prediction score, LSTM
prediction score. (B): Compare the original MAE with the LMM modified MAE. Y-axis: mean absolute error (MAE), X-axis:
|Grade—BERT|, |Grade—LMM modified BERT|, |Grade—LSTM|, |Grade—LMM modified BERT| for model efficiency
evaluation. The LMM modified MAE (Grade-LMM modified LSTM) is grouped by interquartile range and divided into Q1,
Q2, Q3, and Q4.
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4. Discussion

In this study, the projection word embedding model was used to develop an AI
system to evaluate the writing quality of inpatient medical records. The AI system is
already capable of accurate classification to level 3 ICD-10 coding, combined with results
from previous studies. Since level 3 coding is already at the disease level, subsequent
coding will all just be remarks (such as location), and reaching such a level will allow
for the possibility of full automation of common disease classification tasks, as well as
extraction of disease features from other medical descriptions, through this algorithm. In
addition to the original word embedding and LSTM architecture, BERT architecture was
also employed to extract disease features for medical record scoring. LMM was further
used for modification to get AI scores closer to actual reviewer physicians’ scores. Moreover,
it was also identified that some physicians over-scored medical records. If these scoring
standards can be improved in the future, a better medical writing quality could be expected.

In addition, why is the quality of medical record writing so important? Because the
medical record is the historical record of the patient’s health care; it is also the basis of
care, and its content records the patient’s condition during the care process, the reason and
result of the inspection, and the treatment method and result. In recent studies, it is feasible
to use electronic health records (EHR) to predict disease risk, such as atrial fibrillation
(AF) [49], coronary heart disease in patients with hypertension [50], fall risk [51], multiple
sclerosis disease [52], and cervical cancer [53]. Over the past two decades, the investigation
of genetic variation underlying disease susceptibility has increased considerably. Most
notably, genome-wide association studies (GWAS) have investigated tens of millions of
single-nucleotide polymorphisms (SNPs) for associations with complex diseases. However,
results from numerous GWAS have revealed that the majority of statistically significantly
associated genetic variants have small effects [54] and may not be predictive of disease
risks [55], and many diseases are associated with tens of thousands of genetic variants [56].
These findings have led to the resurgence of the polygenic risk score (PRS), an aggregate
measure of many genetic variants weighted by their individual effects on a given phenotype.
However, epidemiologic studies are expensive and complex to run, which raises the
question of whether a PRS could be developed and applied in a clinical setting using
genetic data that are more readily available. Recently, some scholars proposed new ideas
for developing and implementing PRS predictions using biobank-linked EHR data [57].

For the medical records scoring system, this not only saves doctors the time for scoring
medical records but also can get feedback immediately after the writing is completed to
improve the quality of medical record writing. In the past research, clinicians spent 3.7 h
per day, or 37% of their work day, on EHR [58]. There was a marked reduction in EHR time
with both clinician and resident seniority. Despite this improvement, the total time spent
on EHR remained exceedingly high amongst even the most experienced physicians [58].
The significance of an increasing shift towards EHR is a growing paradigm that cannot be
understated, particularly in the current era of healthcare, and there is increasing scrutiny
on documentation [59,60]. These increased demands can lead to EHR fatigue and physician
burnout. In a survey of a general internal medicine group, 38% reported feeling burnt out,
with 60% citing high documentation pressure and 50% describing too much EHR time at
home [61]. Burnout has been linked to an increased risk of resident’s wellbeing [62].

There are still some limitations for electronic medical records. First, this scoring system
can only be used in our hospital because the medical record system of different hospitals
do not talk to each other. Second, entering data into an EHR requires a doctor to spend a lot
of time doing so, leading to most physicians experiencing burnout symptoms due to EMR-
related workloads. Third, cyber-attacks are a perennial concern for EHRs. It is, therefore,
imperative that cybersecurity is continually enhanced. Fourth, timing discrepancies occur
in EHRs, and they can lead to serious clinical consequences.

In summary, combining projection word embedding and LSTM with LMM can give
better prediction scores. This system can be used to assist medical record scoring so that
young physicians can get immediate writing feedback, so as to improve the quality of
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medical record writing in my country and let the public, Medical units, and insurance
units can all get better help. In the future, it may be possible to actively introduce such
technologies into hospitals to achieve personalized precision medicine.
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Abstract: In this paper, we utilize the Internet big data tool, namely Baidu Index, to predict the
development trend of the new coronavirus pneumonia epidemic to obtain further data. By selecting
appropriate keywords, we can collect the data of COVID-19 cases in China between 1 January 2020
and 1 April 2020. After preprocessing the data set, the optimal sub-data set can be obtained by using
random forest feature selection method. The optimization results of the seven hyperparameters of the
LightGBM model by grid search, random search and Bayesian optimization algorithms are compared.
The experimental results show that applying the data set obtained from the Baidu Index to the
Bayesian-optimized LightGBM model can better predict the growth of the number of patients with
new coronary pneumonias, and also help people to make accurate judgments to the development
trend of the new coronary pneumonia.

Keywords: COVID-19; Baidu index; random forest; bayesian optimization; LightGBM

1. Introduction

During the outbreak of infectious diseases, social media is usually the most active
platform for the exchange of information on infectious disease, and the information released
is often of good real-time. Using Internet information to predict the epidemic situation of
infectious diseases is one of the current research hotspots. L. Lu et al. used Baidu index
and micro-index to conduct a comparative study on influenza surveillance in China [1].
J. H. Lu, School of Public Health, Sun Yat-sen University, and others studied the use of
Internet search queries or social media data to monitor the temporal and spatial trends
of the Avian Influenza (H7N9) in China, and the results show that the number of H7N9
cases is positively correlated with Baidu Index and Weibo Index search results in space and
time [2]. J. X. Feng of the University of South Georgia and others studied the impact of
Chinese social networks on the Middle East Respiratory Syndrome Coronavirus and Avian
Influenza [3]. Mutual relations prove the effectiveness of using social media to predict
infectious diseases. H. G. Gu et al. collected data on cases of H7N9 avian influenza in the
Chinese urban population through the Internet, as well as geographic and meteorological
data during the same period, and established a disease risk early warning model for
human infection with H7N9 avian influenza, which can identify the high risk areas of avian
influenza outbreaks and issue an early warning [4]. However, in these studies, most of the
search process of network data adopts manual empirical methods to select keywords for
search, and the choice of keywords often has a greater impact on search results.

At present, the focus of the world’s attention is mainly on the changes in the epidemic
situation of the new type of coronary pneumonia. During the four months after the
outbreak of the new type of coronavirus in Wuhan, Hubei in December 2019, the epidemic
information was widely disseminated on social media such as Baidu, Sina, 360, Sogou,
WeChat and QQ. Google, Weibo, Zhihu, Dingxiangyuan, Twitter, Facebook, etc. also
released a lot of information about the new coronavirus epidemic, especially through the
Google platform to spread to the world. On 31 March 2019, Google launched a project
called “COVID-19 Public Datasets” to provide a public database related to the epidemic
and open it to the public for free, which means that people can freely access and analyze
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relevant data and information [5]. How to use this information to predict the spread of
the new type of coronary pneumonia in time is an urgent research topic. Currently, X.
M. Zhao and others have proposed to use big data retrospective technology to study the
spreading trend and epidemic control of the new coronary pneumonia [6]. B. McCall et al.
used artificial intelligence methods to predict the new type of coronary pneumonia, thereby
protecting medical staff and controlling the spread of the epidemic [7]. These studies
are still in the preliminary stage, and the use of network data and prediction of the new
coronary pneumonia are not yet ideal.

In this article, we consider that the amount of data indexed by Baidu is large enough for
us to use. Based on this, we use the first feature in the search index, namely Baidu index [8],
to study the prediction of the epidemic of new coronary pneumonia. We collected data on
COVID-19 cases in China from 1 January 2020 to 1 April 2020, and used the random forest
feature selection method to select the optimal sub-data set, and used grid search, random
search and the Bayesian optimization algorithm optimizes the 7 hyperparameters of the
LightGBM (light gradient boosting machine) model. The results show that the application
of the data set obtained from the Baidu index to the Bayesian-optimized LightGBM model
can better predict the growth of the number of patients with new coronary pneumonia.

This paper is organized as follows. In Section 2, we introduce the data set and analysis
method used in detail. Baidu index search and actual case results are compared in time
and space, and the impact of keywords and selected index in Baidu index search on the
results is analyzed. Model structure, data set preprocessing methods, tuning algorithm, etc.
are also introduced in detail. In Section 3, the experimental results are showed and related
discussions are presented. Finally, the conclusion is drawn in Section 4.

2. Materials and Methods

2.1. COVID-19 Dataset

In order to standardize prevention and treatment, on 11 February 2020, the World
Health Organization named the pneumonia caused by the new coronavirus as “COVID-19”
(Corona Virus Disease 2019). In this study, we first obtain the data of COVID-19 cases that
occurred in China from 1 January 2020 to 1 April 2020 by searching the COVID-19 Public
Datasets on the Google platform, mainly including diagnosis number and death toll, and
use them as actual data. These data are released by the Centers for Disease Control (CDC),
so we identify these data as CDC data , namely the CDC-Diagnosis and CDC-Death toll
mentioned in this paper. Then, we can collect keywords related to COVID-19 through
commonly used social networking sites, such as Baidu, Sina, 360, Sogou, WeChat, QQ,
Google, Weibo, Zhihu, Dingxiangyuan, Twitter, Facebook, etc., And form a keyword library.
Then use the Baidu index platform (http://index.baidu.com, (accessed on 1 April 2020))
to retrieve relevant keywords, and use the statistics of the average daily search volume of
relevant Chinese keywords as social network mining data for prediction. In this article,
this part of the data is identified as Baidu index data.

By searching for the name and clinical symptoms of new coronavirus pneumonia
on social networking sites, we can get the following keywords: new coronavirus, fever,
dry cough, fatigue, dyspnea and cough. Using the Baidu index platform to retrieve the
above keywords, we can get the average daily search volume of each keyword from
1 January 2020 to 1 April 2020, that is, Baidu index data. Table 1 shows part of the data of
the CDC data set and the Baidu index data set. See Appendix A for all the data.
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Table 1. Partial data from CDC and Baidu Index search.

Date

Data Source CDC-

Diagnosis

Baidu-

New Coronavirus

Baidu-

Fever

Baidu-

Dry Cough

Baidu-

Fatigue

Baidu-

Dyspnea

Baidu-

Cough

CDC-

Death Toll

1 January 2020 0 0 4001 1100 256 481 5885 0
2 January 2020 0 0 4323 1206 278 602 6448 0
3 January 2020 1 0 4212 1173 262 654 6392 0
4 January 2020 0 0 4309 1109 270 621 6570 0
5 January 2020 5 0 4327 1118 271 591 6564 0
6 January 2020 0 0 4324 1226 310 693 6404 0
7 January 2020 0 0 3920 1175 288 633 5875 0
8 January 2020 0 0 3803 1124 272 622 5354 0
9 January 2020 0 8812 3693 1131 270 579 5182 0
10 January 2020 0 2032 3700 1095 263 535 5022 0
11 January 2020 0 2879 3478 1083 237 498 5033 1
12 January 2020 0 1445 3364 1067 252 474 5011 1
13 January 2020 0 1515 3573 1118 278 494 4418 1
14 January 2020 0 4846 3479 1133 266 528 4359 1
15 January 2020 0 4191 3241 1097 245 512 4355 2

Note: CDC = Centers of Disease Control.

2.1.1. Time and Space Comparative Analysis of Baidu Index Search and Actual Cases

Based on the data obtained during the data collection phase, we have drawn the
trend graph of CDC data and Baidu Index data over time, as shown in Figure 1. From
Figure 1a–g, it can be seen that the keyword “dry cough” is the most commonly used
keyword when Chinese netizens search for symptoms of new coronavirus pneumonia,
followed by fever, dyspnea, and fatigue. We can see that in the Baidu index method, the
keywords “new coronavirus” and “dry cough” are the best choices. The extracted data has
the best spatio-temporal positive correlation with the actual number of cases. Through
website search, we can find that these two keywords mainly appear in the columns of Baidu
Baike and Baidu Health Pharmacopoeia. Therefore, it is recommended to search these two
columns first when choosing keywords in the future. On the other hand, it can also be seen
that the Baidu index method is used to predict the change trend of the new coronavirus
pneumonia. If the keywords are not selected properly, not only will the accuracy of the
prediction be low, but sometimes it may even make it impossible to predict in advance.

In addition, we can see that the CDC diagnosis number and Baidu index data have
peak times, so we can compare the correlation between the Baidu index data and the
CDC-Diagnosis number from the perspective of the first peak generation time and the time
difference, which are shown in Table 2. From the comparative analysis of Figure 1 and
Table 2, we can draw the following conclusions. The actual number of new coronavirus
pneumonia cases in China reached its highest value on 12 February 2020, which was 15,152,
while the Baidu Index data all reach their peak before this date, and the average value of
the first peak time difference between the Baidu Index data based on the six keywords and
the newly diagnosed CDC is 18 days. This is mainly because during the outbreak of the
COVID-19, people like to discuss the it on social media networks. The information released
on the new crown epidemic is often of good real-time. The CDC data collection comes from
the national infectious disease surveillance system, where the pneumonia often requires a
longer diagnosis process from onset to diagnosis, usually 7–14 days.
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a normal state. It is further verified that the data distribution has a large skewness, and
further data conversion is needed to make it conform to the normal distribution.

Diagnosis Numbers Distribution
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Figure 2. Original diagnosis numbers distribution diagram.
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Figure 3. Original diagnosis numbers Q-Q diagram.

Figure 4 shows the relationship between Diagnosis Numbers and other attributes.
It can be seen from the figure that the attributes in the data set are basically positively
correlated with the attributes of Diagnosis Numbers. Figure 5 shows the relationship
between all attributes, which can be represented by a heat map. The heat map uses different
colors to intuitively show the relationship between different attributes, which is a very
simple way of data interpretation. The values in the figure are calculated using Pearson’s
correlation coefficient. The calculation formula of Pearson’s correlation coefficient is

r(X, Y) =
Cov(X, Y)

√

Var[X]Var[Y]
. (1)

It can be seen from the heat map that the attribute of month is negatively correlated
with Diagnosis Numbers. It can be seen from the above analysis that the collected data set
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has a certain influence on Diagnosis Numbers and can be used for the numerical prediction
of Diagnosis Numbers.
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2.2. RF-BOA-LightGBM

As a new cutting-edge technology, predictive models based on machine learning
have been widely used in various fields of medicine. For example, Y. D. Zhang et al.
proposed a new attention network model, namely ANC (attention network for COVID-19)
model, which can diagnose COVID-19 more effectively and accurately [9]. X. Zhang et al.
enhanced the deep learning network AlexNet to achieve a more effective classification of
new coronary pneumonia [10]. Here, we consider using the RF-BOA-LightGBM (random
forest-Bayesian optimization algorithm-light gradient boosting machine) model to predict
the development trend of the COVID-19.

2.2.1. Model Structure

Figure 6 shows the model structure used in this article. After collecting the data,
you need to perform a simple processing on the data, so that this model can “learn” the
data. Then build the LightGBM model for training, but due to the many parameters of
LightGBM, the effect of using the default parameters to train the data set in this article is not
necessarily good, so three hyperparameter tuning algorithms are introduced here to adjust
the model parameters of LightGBM Perform tuning. After finding a combination of model
parameters suitable for the data set in this article, the training prediction is carried out.

Figure 6. RF-BOA-LightGBM structure. BOA = Bayesian optimization algorithm.

349



Healthcare 2021, 9, 1172

2.2.2. Dataset Preprocessing

In order to enable the model to fully learn the data obtained from the Baidu Index
COVID-19 vaccine, this article first made great efforts to preprocess the data. It can be seen
from the foregoing that the distribution of the data in this paper presents a similar normal
distribution. Therefore, this article first performs logarithmic transformation on the data to
make the data satisfy the normal distribution. The data conversion formula is

y = logc(1 + λx). (2)

Then, deal with the missing data in the data set and delete the samples with missing
values (there are not many samples with missing values, which has little effect on the
results). Subsequently, the date is divided into three attributes: year, month, and day,
and the year attribute is deleted (the year attribute is a fixed value and has little effect
on the result), which avoids the problem that the model cannot directly process the date.
Finally, the maximum and minimum normalization method is used to integrate the data
into (0, 1) range data, which eliminates the influence between samples of different orders
of magnitude. The maximum and minimum normalization formula is as follows

Xnorm =
X − Xmin

Xmax − Xmin
. (3)

The distribution graph and Q-Q graph of the processed data are shown in Figures 7 and 8
respectively. As can be seen from the figure, the data has basically satisfied the
normal distribution.

Figure 7. Distribution of diagnosis numbers after data conversion.

This data set contains feature data related to the number of new crowns, irrelevant
feature data and related but redundant feature data. In the face of complex faults, it
is no longer possible to accurately obtain the number of new crowns by relying only
on expert experience and simple correlation analysis to perform feature selection work.
Important features, so this article uses random forest (RF) out-of-bag estimation to rank
the importance of new crown-related features. The random forest is used to select the
features of the data set, and the features that have little influence on the prediction results
are eliminated.
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Figure 8. Diagnosis numbers Q-Q diagram after data conversion.

RF is a combined classifier based on decision trees, which can be used for feature
selection [11]. RF uses the Bagging method to randomly and repeatably extract samples
from the original sample set for classifier training. About 1/3 of the sample data will not be
selected [12]. This data is called Out of Bag (OOB). When calculating the importance of a
certain feature, use the OOB data as the base learner after the test set to test the training, and
the test error rate is recorded as the out-of-bag error (errOOB). Add noise to the important
features to be calculated in the OOB sample, and recalculate errOOB again. The average
test error of all base learners is calculated by using the average accuracy decrease rate
(MDA) as an indicator for feature importance calculation, namely

MDA =
1
n

n

∑
t=1

(

err OOBt − errOOB′
t
)

, (4)

where n is the number of base learners, errOOB is the out-of-bag error after adding noise.
The more the MDA index decreases, the more the corresponding feature has a greater

impact on the prediction result, and the higher its importance. This feature importance
calculation method is called random forest out-of-bag estimation. According to this method,
the importance of fault-related features is ranked and feature selection is performed.

2.2.3. Tuning Algorithm

For the LightGBM model, there are many internal hyperparameters that affect the
prediction results. However, if the value of the hyperparameter used is the default value,
this hyperparameter combination may not be the optimal hyperparameter combination
for the new coronavirus number prediction data set [13]. Therefore, this paper introduces
three tuning algorithms, namely grid search, random search, and Bayesian optimization,
to optimize some important hyperparameters of LightGBM [14]. Before adjusting the
parameters of LightGBM, the optimization range of hyperparameters is generally set first.
These three algorithms are briefly described below.

Grid search divides the search range into grid shapes, and adjusts the parameters
according to the set step to train the model until all possible combination parameters are
verified, and finally the parameter combination that gives the best result is output [15].
Because the different prediction results of the data in each group of hyperparameter combi-
nations are also different, when the hyperparameter combination is relatively large and the
search range is relatively large, the optimization speed of the grid search is very slow.
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Random search is similar to grid search, but it does not verify all possible parameter
combinations like grid search, but randomly combines the random value of each parameter,
so the speed of random search is faster than that of Grid search [16]. However, random
search may also miss the parameter combination that maximizes the prediction result.

Bayesian optimization algorithm(BOA) can quickly find the optimal parameters for
the problem to be solved based on historical experience [17]. The main problem scenarios
for Bayesian optimization are

X∗ = argmax f (x)(x ∈ S), (5)

where x is the parameter to be optimized, S is the candidate set of x variable, that is, the set
of possible values of parameter x. The target selects an x from the set S such that the value
of f (x) is the largest or smallest. Here, the specific formula of f (x) may not be known,
that is, the black box function. But you can choose an x, and get the value of f (x) through
experiment or observation [18].

BOA has two core processes, a priori function (PF) and acquisition function (AC).
The acquisition function is also called the efficiency function. Under the framework of
Bayesian decision theory, many collection functions can be interpreted as evaluating the
expected loss associated with f at point x, and then usually selecting the point with the
lowest expected loss [19]. PF mainly uses Gaussian process regression, AC mainly uses
these methods including EI (expected improvement), PI (probability of improvement) and
UCB (upper confidence bound), and this article uses the EI function. The EI function can
find out the global optimum without falling into the local optimum. The collection function
is as follows

u(x) = max
(

0, f ′ − f (x)
)

, (6)

where f is the collection function,and f (x) is the optimized performance indicator.
The final collection function for variable x is

aEI(x) = E[u(x) | x, D] =
∫ f ′

−∞
( f ′ − f )N( f ; u(x), K(x, x))d f

= ( f ′ − u(x))Φ
(

f l ; u(x), K(x, x)
)

+ K(x, x)
)

N( f ′; u(x), K(x, x)).
(7)

The calculation shows that the point corresponding to the maximum value of aEI is
the best point. There are two components in Formula (7). To maximize the value of it, you
need to optimize the left and right parts at the same time, that is, the left side needs to
reduce the µ(x) as much as possible, and the right side needs to increase the variance (or
covariance) K(x, x) as small as possible. It is a typical theory on issues such as exploration
and exploitation.

Upper confidence bound (UCB) can be simply understood as the upper confidence
boundary. It is usually described by maximizing f instead of minimizing f . But in the case
of minimization, the collection function will take the following form

aUCB(x) = u(x)− βσ(x), (8)

where β > 0 is a strategy parameter, and σ(x) =
√

K(x, x) is the boundary standard
deviation of f (x). Similarly, UCB also includes exploitation (u(x)) and exploration ((x)
modes. It can converge to the global optimal value under certain conditions.

Table 3 shows the hyperparameter combinations selected in this article and the corre-
sponding descriptions.
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Table 3. The LightGBM hyperparameters selected in this article and their functions.

Parameter Style Search Scope Effect

learn_rate float (0.001, 0.3) improve accuracy
max_depth int (3, 10) prevent overfitting
num_leaves int (3, 1024) improve accuracy

min_data_in_leaf int (0, 80) prevent overfitting
feature_fraction float (0.2, 0.9) accelerate
bagging_fraction float (0.2, 0.9) accelerate

lambda_l1 float (0, 10) prevent overfitting

2.2.4. LightGBM

LightGBM is an open source decision tree-based gradient boosting framework pro-
posed by Microsoft. As an improved version of Gradient Boosting, it has the characteristics
of high accuracy, high training efficiency, support for parallelism and GPU, small memory
required, and ability to handle large-scale data [20].

According to the different generation methods of the base learner, integrated learning
can be divided into parallel learning and serial learning. As the most typical representative
of serial learning, Boosting algorithm can be divided into Adaboost and Gradient Boosting.
The main difference between them is that the former improves the model by increasing
the weight of misclassified data points, while the latter improves the model by calculating
negative gradients. The core idea of Gradient Boosting is to use the negative gradient of
the loss function to approximate the value of the current model f (x) = f j−1(x) to replace
the residual. Suppose the training sample is i (i = 1, 2, . . . , n), the number of iterations is j
(j = 1, 2, . . . , m), and the loss function is L(yi, f (xi)), then the negative gradient rij can be
expressed as

rij = −

[

∂L(yi, f (xi))

∂ f (xi)

]

f (x)= f j−1(x)
. (9)

Use the base learner hj(x) to fit the negative gradient r of the loss function, and find
the best fit value rj that minimizes the loss function

rj = arg min L
(

yi, f j−1(xi) + rhj(xi)
)

. (10)

Model update:
| f j(x) = f j−1(x) + rjhj(x). (11)

Gradient Boosting generates a base learner in each round of iteration. Through
multiple rounds of iteration, the final strong learner F(x) is the base learner generated in
each round and obtained by linear addition:

F(x) = fm(x) (12)

As an improved lightweight Gradient Boosting algorithm, the core ideas of LightGBM
are: histogram algorithm, leaf growth strategy with depth limitation, direct support for
category features, histogram feature optimization, multithreading optimization, and cache
hit rate optimization. The first two features effectively control the complexity of the model
and realize the lightweight of the algorithm, so this article is particularly concerned.

The histogram algorithm discretizes continuous floating-point features into L integers
to construct a histogram with a width of L. When traversing the data, use the discretized
value as an index to accumulate statistics in the histogram. After traversing the data once,
the histogram accumulates the necessary statistics, and then find the optimal split point
from the discrete values of the histogram .

The traditional leaf growth strategy can split the leaves of the same layer at the same
time. In fact, the splitting gain of many leaves is low and there is no need to split, which
brings a lot of unnecessary expenses. For this, LightGBM uses a more efficient leaf growth
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strategy: each time it searches for the leaf with the largest split gain from all the current
leaves to split, and sets a maximum depth limit. While ensuring high efficiency, it also
prevents the model from overfitting.

3. Results and Discussion

3.1. Performance Predictor

All models are cross-validated and the coefficient of determination (R2), mean absolute
error (MAE), relative absolute error (RAE), relative square root error (RRSE), root mean
square error (RMSE) are calculated, as shown below

R2(y, ŷ) =

√

√

√

√1 −
∑

n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 , (13)

RMSE(y, ŷ) =

√

1
n

n

∑
i=1

yi − ŷ2
i , (14)

MAE(y, ŷ) =
1
n

n

∑
i=1

|yi − ŷi|, (15)

RAE(y, ŷ) =

√

∑
n
i=1|yi − ŷi|

∑
n
i=1|yi − ȳ|

, (16)

RRSE(y, ŷ) =

√

√

√

√

∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 , (17)

where y represents the true value, ŷ represents the predicted value, ȳ represents the average
value of the true value and n is the number of test sets.

3.2. Experiment Results

Figure 9 shows the result of feature selection using random deep forest, and the
features are output in descending order of importance. It can be seen from the figure that
Death Toll has the greatest impact on Diagnosis Numbers, while the attribute of Month has
the least impact. Finally, we selected the 7 most influential attributes for the prediction of
Diagnosis Numbers.

According to the optimal parameter set of the model, the Diagnosis Numbers predic-
tion model of COVID-19 is constructed. In this paper, LightGBM, GridSearch-LightGBM,
RandomSearch-LightGBM, and BOA-LightGBM models are used for Diagnosis Numbers
prediction. Table 4 shows the specific values of the optimal parameter combinations found
by the three tuning algorithms.

Table 4. Specific parameter values found by three tuning algorithms.

Parameter GridSearch RandomSearch BOA

learn_rate 0.632 0.828 0.355
max_depth 7 8 5
num_leaves 225 237 249

min_data_in_leaf 33 27 30
feature_fraction 0.7 0.7 0.8
bagging_fraction 0.7 0.7 0.8

lambda_l1 2.34 3.45 1.80
Note: BOA = Bayesian optimization algorithm.
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Figure 9. Feature selection results.

Table 5 shows the evaluation indicators of the prediction results of the four mod-
els. The prediction results of the model are evaluated by R2, RMSE, MAE, RAE, RRSE
evaluation indicators. It can be seen from the values of the five evaluation indicators
that the results of BOA-LightGBM are better than the former. RandomSearch-LightGBM
and GridSearch-LightGBM have their own advantages and disadvantages. It can also be
seen that the default hyperparameters of LightGBM are not suitable for the prediction of
Diagnosis Numbers of COVID-19 in this article. From the approximate prediction effect,
BOA-LightGBM can better analyze the relationship between historical data and can effec-
tively predict the value of Diagnosis Numbers of COVID-19, which proves the superiority
of the model.

Table 5. Model evaluation index.

Models R2 RMSE MAE RAE RRSE

LightGBM 0.820 354.945 138.939 0.535 0.424
GridSearch-LightGBM 0.865 311.918 145.266 0.548 0.368

RandomSearch-
LightGBM 0.861 316.217 137.621 0.533 0.373

BOA-LightGBM 0.879 295.686 124.911 0.508 0.348
Note: GBM, gradient boosting machine; BOA, Bayesian optimization algorithm; R2, coefficient of determination;
RMSE, root mean square error; MAE, mean absolute error; RAE, relative absolute error; RRSE, relative square
root error.

Figure 10 is a line chart of the four algorithms to predict Diagnosis Numbers, and only
part of the data is taken on the abscissa. The prediction effect of the model can be seen
more intuitively from the line graph. It can be seen from the figure that in most cases, the
BOA-LightGBM model can better fit the fluctuation trend of Diagnosis Numbers at some
points, and the predicted value is very close to the actual value. In the figure, the points
predicted by GridSearch-LightGBM are basically covered, so they are not shown in the
figure, which just shows that the prediction results are not very prominent. Sometimes the
prediction value of LightGBM is better than other models, but most of them are inferior
to other models. So comprehensively, the BOA-LightGBM model is more in line with the
changing trend of real values.
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Figure 10. Comparison of predicted and true values of the four models. BOA, Bayesian optimization
algorithm; GBM, gradient boosting machine;.

4. Conclusions

This study uses the Internet big data tool-Baidu Index to predict the development
trend of the new coronavirus pneumonia epidemic to obtain data. By selecting appropriate
keywords, data on COVID-19 cases in China from 1 January 2020 to 1 April 2020 are
collected. After preprocessing the data set, the random forest feature selection method is
used to obtain the optimal sub-data set. After comparing and analyzing the optimization
results of the seven hyperparameters of the LightGBM model with the three optimization
algorithms of grid search, random search, and Bayesian optimization. It is concluded that
applying the data set obtained from the Baidu Index to the Bayesian-optimized LightGBM
model can better predict the increase in the number of new coronary pneumonias, and it is
a good aid to predict the new number of new coronary pneumonia in the future medical
structure effect.
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Appendix A. Datasets from CDC and Baidu Index Search

Table A1. Datasets from CDC and Baidu Index search.

Date

Data Source CDC-

Diagnosis

Baidu-

New Coronavirus

Baidu-

Fever

Baidu-

Dry Cough

Baidu-

Fatigue

Baidu-

Dyspnea

Baidu-

Cough

CDC-

Death Toll

1 January 2020 0 0 4001 1100 256 481 5885 0
2 January 2020 0 0 4323 1206 278 602 6448 0
3 January 2020 1 0 4212 1173 262 654 6392 0
4 January 2020 0 0 4309 1109 270 621 6570 0
5 January 2020 5 0 4327 1118 271 591 6564 0
6 January 2020 0 0 4324 1226 310 693 6404 0
7 January 2020 0 0 3920 1175 288 633 5875 0
8 January 2020 0 0 3803 1124 272 622 5354 0
9 January 2020 0 8812 3693 1131 270 579 5182 0
10 January 2020 0 2032 3700 1095 263 535 5022 0
11 January 2020 0 2879 3478 1083 237 498 5033 1
12 January 2020 0 1445 3364 1067 252 474 5011 1
13 January 2020 0 1515 3573 1118 278 494 4418 1
14 January 2020 0 4846 3479 1133 266 528 4359 1
15 January 2020 0 4191 3241 1097 245 512 4355 2
16 January 2020 0 5174 3230 1100 267 546 4220 2
17 January 2020 4 7713 3247 1114 254 521 4008 2
18 January 2020 17 7754 3271 1060 228 492 4218 2
19 January 2020 36 29,003 3418 1182 253 548 4323 2
20 January 2020 151 266,892 4064 3684 609 1090 5324 2
21 January 2020 77 659,926 5474 10,162 1106 2073 7260 2
22 January 2020 149 852,363 6782 21,967 1711 3125 8751 3
23 January 2020 131 1,374,253 9151 26,393 3141 4840 10,229 11
24 January 2020 259 1,469,947 8108 21,718 3162 4511 9059 41
25 January 2020 688 2,330,851 10029 24,100 3253 5922 12798 56
26 January 2020 769 2,150,021 10552 20,635 3117 5779 12677 80
27 January 2020 1771 1,816,430 9406 15,323 2152 4572 11,547 106
28 January 2020 1459 2,227,942 9091 15,115 2296 4087 11,185 132
29 January 2020 1737 1,503,255 9350 13,783 2088 3940 11,351 170
30 January 2020 1982 1,372,206 9287 12,574 1943 3541 10,786 213
31 January 2020 2102 1,390,560 8855 12,974 1876 3702 10,584 259
1 February 2020 2590 1,334,127 8108 11,425 1620 2952 9741 304
2 February 2020 2829 1,374,154 7682 10,981 1491 3162 9750 361
3 February 2020 3235 1,277,132 7258 10,683 1365 2949 8517 425
4 February 2020 3887 1,244,048 6602 9504 1293 2626 7258 490
5 February 2020 3694 1,209,808 6213 8763 1349 2380 7434 563
6 February 2020 3143 1,943,197 5736 8305 1295 2179 8043 636
7 February 2020 3399 1,643,941 5789 9236 1292 2488 7261 722
8 February 2020 2656 1,185,978 5126 7287 1183 2131 6718 811
9 February 2020 3062 1,142,892 5220 8719 1187 2004 8173 908
10 February 2020 2478 1,158,302 5450 8585 1212 1946 8948 1016
11 February 2020 2015 1,061,433 4814 7421 1239 1901 8641 1113
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Table A1. Cont.

Date

Data Source CDC-

Diagnosis

Baidu-

New Coronavirus

Baidu-

Fever

Baidu-

Dry Cough

Baidu-

Fatigue

Baidu-

Dyspnea

Baidu-

Cough

CDC-

Death Toll

12 February 2020 15,152 1,050,392 4590 5971 1163 1922 7908 1367
13 February 2020 5090 1,277,024 4745 6436 1125 2049 8076 1380
14 February 2020 2641 1,069,203 4140 5339 1126 1830 7197 1523
15 February 2020 2009 948,165 3295 4537 1018 1456 6452 1596
16 February 2020 2048 904,431 2994 3953 942 1205 5461 1770
17 February 2020 1886 920,373 3454 4025 1046 1406 6542 1868
18 February 2020 1749 840,490 3274 3652 1056 1278 6889 2004
19 February 2020 394 784,784 3327 3530 1038 1315 6848 2118
20 February 2020 889 800,960 3035 3071 1012 1345 6552 2236
21 February 2020 397 776,563 3003 3244 935 1269 6467 2345
22 February 2020 648 636,594 2663 3003 949 1179 5606 2442
23 February 2020 409 622,095 2777 2771 978 1172 5218 2592
24 February 2020 508 634,391 3234 2695 1025 1286 5940 2663
25 February 2020 406 550,484 3066 2550 964 1260 5462 2715
26 February 2020 433 482,726 2850 2468 896 1202 5451 2744
27 February 2020 327 478,822 2835 2403 819 1165 5354 2788
28 February 2020 427 486,394 2660 2285 845 1195 5425 2835
29 February 2020 573 496,289 2420 2213 750 1133 4655 2870
1 March 2020 202 482,280 2244 2070 686 1151 4458 2912
2 March 2020 125 441,914 2468 2123 785 1176 5326 2943
3 March 2020 119 393,118 2223 1955 755 1143 4741 2981
4 March 2020 139 441,921 2264 1970 765 1163 4967 3012
5 March 2020 143 414,142 2122 1789 680 1140 5157 3042
6 March 2020 99 376,106 2111 1658 694 1112 5186 3070
7 March 2020 44 369,780 1877 1539 723 1072 4196 3097
8 March 2020 40 368,916 1759 1480 646 1052 3993 3119
9 March 2020 19 359,426 2017 1414 687 1133 5547 3136
10 March 2020 24 335,711 1792 1288 635 1085 4164 3158
11 March 2020 15 337,491 1911 1413 633 1049 4331 3169
12 March 2020 8 353,167 1891 1575 686 1088 3967 3176
13 March 2020 11 353,857 1906 1756 641 1119 3269 3189
14 March 2020 20 332,215 1745 1358 601 1042 2788 3199
15 March 2020 16 364,033 1721 1486 657 1037 2732 3213
16 March 2020 21 324,566 1985 1555 759 1087 3845 3226
17 March 2020 13 300,185 1885 1546 673 1068 3022 3237
18 March 2020 34 295,536 1920 1491 696 1052 3198 3245
19 March 2020 39 282,990 1724 1355 663 1057 2742 3248
20 March 2020 41 300,183 1779 1227 621 1036 2705 3255
21 March 2020 46 299,291 1734 1308 641 1006 2577 3261
22 March 2020 39 285,191 1736 1102 672 1027 2829 3270
23 March 2020 78 280,841 1855 1391 704 1102 3018 3277
24 March 2020 47 278,221 1830 1457 704 1052 3215 3281
25 March 2020 67 259,091 1810 1308 656 1045 3446 3287
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Table A1. Cont.

Date

Data Source CDC-

Diagnosis

Baidu-

New Coronavirus

Baidu-

Fever

Baidu-

Dry Cough

Baidu-

Fatigue

Baidu-

Dyspnea

Baidu-

Cough

CDC-

Death Toll

26 March 2020 55 261,957 1839 1094 655 1091 3114 3292
27 March 2020 54 279,082 1645 1129 592 1061 2780 3295
28 March 2020 45 264,664 1525 1065 476 998 2480 3300
29 March 2020 31 265,761 1562 1096 490 961 2364 3304
30 March 2020 48 264,442 1725 1094 601 1031 3021 3305
31 March 2020 36 239,272 1772 1071 535 1007 2676 3312
1 April 2020 35 243,582 1569 1080 565 1013 2676 3318

Note: CDC = Centers of Disease Control.
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Abstract: The COVID-19 pandemic has been a worldwide catastrophe. Its impact, not only economi-
cally, but also socially and in terms of human lives, was unexpected. Each of the many mechanisms
to fight the contagiousness of the illness has been proven to be extremely important. One of the most
important mechanisms is the use of facemasks. However, the wearing the facemasks incorrectly
makes this prevention method useless. Artificial Intelligence (AI) and especially facial recognition
techniques can be used to detect misuses and reduce virus transmission, especially indoors. In this
paper, we present an intelligent method to automatically detect when facemasks are being worn
incorrectly in real-time scenarios. Our proposal uses Convolutional Neural Networks (CNN) with
transfer learning to detect not only if a mask is used or not, but also other errors that are usually
not taken into account but that may contribute to the virus spreading. The main problem that we
have detected is that there is currently no training set for this task. It is for this reason that we have
requested the participation of citizens by taking different selfies through an app and placing the
mask in different positions. Thus, we have been able to solve this problem. The results show that the
accuracy achieved with transfer learning slightly improves the accuracy achieved with convolutional
neural networks. Finally, we have also developed an Android-app demo that validates the proposal
in real scenarios.

Keywords: facemask-wearing condition; transfer learning; convolutional neural network; deep
learning; facial recognition; COVID-19

1. Introduction

1.1. Motivation

In December 2019, cases of pneumonia of unknown origin appeared in Wuhan, Hubei,
China, the clinical symptoms of which were very similar to pneumonia of viral origin.
In the first group of infected people, it was determined that it was a zoonotic infection,
that is, a viral transmission from animals to humans [1]. Due to the taking of samples
from the lower respiratory tract, employing the RT-PCR technique in real-time, genome
sequencing was carried out. This fact allowed us to clarify the taxonomy of this virus. New
Coronavirus 2019 (2019-nCoV) was the name that was assigned to it.

Different studies have shown the spread by aerosols and fomites of SARS-CoV-2
among humans. In addition, it has been demonstrated that the virus can be spread even
before the appearance of symptoms, referring to asymptomatic patients who are carriers
of the virus, which implies that they can spread it without showing any symptoms of the
disease. This fact has caused the rapid evolution and expansion of the pandemic. Due to
the rapid spread of the virus, the World Health Organization (WHO) declared COVID-19 a
public health emergency of international concern [2]. According to the WHO, as of 2 May
2021, there have been 151,803,822 confirmed cases of COVID-19, including 3,186,538 deaths.

The first symptoms found in this new coronavirus were coughing, fevers, and respira-
tory distress. However, with the progress of studies, other identifying symptoms of this
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virus have been determined. According to an update in March 2020 by the Council of State
and Territorial Epidemiologists (CSTE), the loss of smell and taste was added as one of
the compatible and most characteristic symptoms of this virus [3]. Moreover, in several
studies, it has been shown that the pandemic has affected us mentally, not only because of
the consequences left by the virus once the patient has recovered, but also because of the
restrictions to which we have been subjected to reduce the transmission of SARS-CoV-2.

Mental health is associated with both demographic and psychosocial factors that,
during this pandemic, cause a higher predisposition in some people to suffer these types of
problems. The psychiatric disorders associated with this pandemic are usually stress, emo-
tional disorders, depression, anxiety, sleeping problems, panic attacks, among others [4].

In addition to the symptoms of COVID-19, its rapid transmission between humans
has been the object of study. According to studies, the contagion rate is higher in closed
spaces without ventilation. This fact is because viral particles are capable of traveling in
microdroplets (<10 µm), also called aerosols. These aerosols are produced by the human
being when we speak, sing, laugh, etc. In addition, their speed increases with the force of
the flow, for example, when we run or shout. What happens is that the largest drops fall to
the ground, however, its nucleus (where the virus particle is located) is suspended in the
air and is capable of being inhaled by another person, producing a possible infection [5,6].

Due to the transmission of the virus by air, many countries have introduced the mask
as a mandatory use for protection against possible infections. With the use of the mask,
the morbidity of COVID-19 and its associated mortality has been reduced. In addition,
medical care has been reduced, preventing health systems from collapsing [7]. In addition,
the use of the mask together with social distancing has managed to flatten the epidemic
curve. The masks have the following two main functions: on the one hand, to prevent
the viral particles that travel in the aerosol from being transmitted between the general
population when coughing, speaking, sneezing, etc. On the other hand, the material from
which the mask is made allows the volatile particles to be filtered from the air. In addition,
the use of the mask has been of great help in preventing asymptomatic patients from
infecting the rest of the general population [8]. Recent studies show that surgical masks
effectively reduce the emission of viral particles. Coronavirus was detected in 30 and 40%
of samples collected in participants without face masks, but no virus in droplets or aerosols
was detected in participants with face masks. This study was conducted on exhaled air
samples of SARS-CoV and MERS-CoV from infected patients and the findings indicate that
surgical masks effectively reduce the emission of viral particles [9].

The recommendations of the Centers for Disease Control and Prevention (CDC) [10,11]
indicate that while wearing the surgical mask, on exhalation, the air from the nose and
mouth leaves with a high velocity and is directed frontally. The particles are relatively
thick, between 3 and 8 microns (1 micron = 0.001 mm), and impact directly on the inside of
the mask. Even if air escapes through the edges, bacteria, or other particles, do not escape
since, due to their thickness, they are not able to follow the flow lines of the air that leaves
the edges as long as the adjustment is correct.

The proper use of masks requires strict adherence to general hygiene measures, among
which adequate coverage of the mouth and nose, avoiding gaps between the face and
the mask, stands out. A partial, incorrect, or asymmetric fit poses a high risk for the
transmission of infection [12].

It is due to the great importance of the use of masks that it is necessary to control their
correct use. This fact leads to an increase in the control methods of non-pharmaceutical
products that allow reducing the transmission of the virus [13]. For this reason, methods
based on Artificial Intelligence (AI) have taken on great relevance, which allows a more
exhaustive control over mask use in public spaces or areas with large population concurrence.

1.2. The Aim of the Study

Our objective is to study the application of Machine Learning techniques to distinguish
whether a person is wearing a mask properly. Therefore, this project must take into account
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not only the presence or absence of a mask, but also its proper use, meaning, and being able
to distinguish when it is well placed and when it is not. It offers detection and warning
regarding multiple possibilities of placement errors that, without this application, would
be hard for a person to notice. Although one of the most obvious mistakes is the use of
the mask under the nose, there are others, such as the use of the mask over glasses, which
are more difficult to detect, but no less important, or the poor fitting of the mask to the
face. For the development of this application, deep learning techniques have been used
to recognize people’s faces and proper mask use. For this aim, we need a solid training
set that allows us to achieve good accuracy and reduce bias. Since there is no training set
available for this task, one of the challenges of the project has been its creation.

1.3. Related Work

Due to the serious threat of the COVID-19 pandemic, novel solutions to optimize
the incorrect use of prevention mechanisms are a hot topic. AI is one of the most useful
techniques in adapting problems such as image classification to different situations. In
this subsection, we are going to describe the most relevant works about AI and COVID-19
technical solutions.

AI and CNN solutions can solve problems by detecting patterns in images. Authors
such as Chung et al., in [14], have developed an application integrated with the mobile
phone capable of recognizing and classifying plants through the use of images using
InceptionV3 CNN [15]. They have also implemented a prototype for identifying tree
species with which real-time classification is performed remotely.

However, the current pandemic situation produced by SARS-CoV-2, in which we find
ourselves, has led various authors to try to improve the control of the spread of the virus
by developing applications to control the use of masks. Although, indeed, in previous
years, authors such as Nieto-Rodriguez et al. had already developed this type of system
to deal with other epidemics. Nieto-Rodriguez et al. in 2015 [16] developed a real-time
image processing system in VGA resolution reaching 10 fps. VGA resolution allows the
object to be 5 m from the camera to distinguish faces or masks. The system was developed
to control the use of masks by medical personnel within operating rooms. In this way, an
alarm goes off when the health personnel do not carry it because its use is mandatory.

Nevertheless, it has been in the last two years that the number of publications related
to these AI systems has skyrocketed due to the critical situation we are facing.

Chen et al., in [17], have developed a mobile application that allows us to determine
the service life of a facemask, indicating what period it is in, in addition to telling us what
its level of effectiveness is after a period of use. To do this, they use microphotographs by
extracting four characteristics of gray, employing co-occurrence matrices (GLCM) from
the microphotographs of the facial mask. Using KNN, three results are obtained. The
precision of these is 82.87% (macro measurements). The precision of “normal use” and
“not recommended” reaches 92.00 and 92.59%.

Nonetheless, the need to control the overcrowding of people who wear or do not wear
masks in public spaces has increased in importance in recent years.

Nagrath et al., in [18], have developed a design that can differentiate between the use of
a facial mask or not. To perform real-time mask detection, they have used the MobileNetV2
architecture [19] as the framework for the classifier, together with the SSDMNV2 approach,
which uses the single-shot multi-box detector as a face detector. By these means, they
propose to use deep learning TensorFlow, Keras, and OpenCV to detect face masks. The
precision of this study is 92.64% and it has an F1 score of 0.93. Mata, in [20], created a CNN
model to be able to differentiate which people use a mask and which do not. It is based on
a deep learning technique using an image or a video stream.

In a study carried out by Jauhari et al., in [21], the aim was to detect facial patterns to
be able to detect the presence of facial masks in images. For this, it was based on Single
Board Computer (SBC) Raspberry Pi. A face detection system based on the Viola Jones
method was used to obtain efficient, fast, and accurate results. This method allows the
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adjustment of the cascade classifier to determine the area of the face in the image. The
precision of this study is 90.9%. Sen et al., in [22], through the sequence of images and
video, have developed a system capable of differentiating between people who wear face
masks from those who do not. They use a MobileNetV2 model [19] along with python’s
PyTorch and OpenCV for mask detection. The model has an accuracy of 79.24%. At the
same time, an entry system to public places, which differentiates people who wear a mask
from those who do not, has been proposed by Balaji et al. in [23]. In addition, this system
has an alarm that emits a beep with a red or green tone to alert if a person is not wearing a
mask. A Raspberry-PI camera is used to capture the video and transform it into images for
further processing.

Recent studies show the applicability of these types of applications. Kurlekar et al.,
in [24], have developed a system that can be integrated with offices, airports, and public
places in general. With their application, they can detect face masks in static images as well
as in real-time videos. To do this, they used Computer Vision concepts and Deep Learning,
using OpenCV and Keras/TensorFlow. Sakshi et al., in [25], using Keras/TensorFlow,
developed a face mask detector. The architecture on which it was based is MobileNetV2 [19].
The model has been trained with several variations to ensure that the system can identify
face masks in real time through video or still images. The final objective is, through
Computer Vision, to implement the model in areas of high population density, health care
areas, educational institutions, etc.

In 2020, Cheng et al., in [26], proved that the detection of the use of masks was
important in stopping the spread of the virus. With the use of YOLO v3-tiny, it has proven
to be suitable for the real-time detection of mask use. Plus, it is small, fast, and suitable for
mobile hardware deployment, as well as real-time detection. Loey et al., in [27], developed
a hybrid system for the detection of face masks. They selected three data sets. The simulated
masked face data set, the real-world masked face set, and the tagged faces in nature. The
design of this study is composed of Resnet-50 [28], for the feature extraction component.
A second component for the classification of face masks is used by this system based on
Support Vector Machines (SVM) and a joint algorithm for the mask classification process.
The precision of the system is 99.49%, 99.64%, and 100%, respectively, for each of the data
sets studied.

In addition to the need to be able to detect the use or not of a mask, the detection of
when it is used in a wrong way due to its incorrect positioning is of great relevance. This
misuse significantly reduces its effectiveness against the virus. For this reason, several
authors, in addition to detecting its presence or absence, have focused on detecting its
correct or incorrect placement. In 2020, Rudraraju et al., in [29], developed an application
based on two steps. On the one hand, it detected the use or non-use of a facial mask. After
detecting a mask, it distinguished between its correct or incorrect use. To do so, it relies
on fog computing. Two nodes are used to process the video sequencing. Each fog node
implements two MobileNet models [19]. For face detection, Haar cascade classifiers are
used. Streaming takes place locally at each fog gateway without relying on the Internet. In
this way, only the mask is allowed to enter the room and only if the mask is well placed.
The accuracy of this system is around 90%.

Wang et al. 2021, in [30], using hybrid machine learning techniques, proposed to
detect the use of masks using a two-stage approach. In the first stage, the user wearing
a face mask is detected using the Faster RCNN and InceptionV2 [15] structure model.
The second step is directed to a stage of verification of real face masks implemented by a
classifier through a learning system. The general accuracy for simple scenarios is 97.32%,
while for more complex scenarios it is 91.13%.

Smart Screening and Disinfection Walkthrough Gate (SSDWG) was created by Hussain
et al. in 2021 [31]. It is a low-cost, fast and effective virus spread detection and control
system based on IoT, for all places of entry. In addition to registering body temperature
through temperature sensors that do not require physical contact, the system is also capable
of differentiating people who wear face masks from those who do not. For the classification,
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it was also added not only if they were wearing a mask but also their correct use. For this
classification, VGG-16, MobileNetV2 [19], InceptionV3 [15], ResNet-50 [28], and CNN have
been compared using a transfer learning approach. The use or non-use of the mask was
implemented through deep learning in real time. The obtained precision was 99.81 and
99.6% using VGG-16 and MobileNetV2, respectively. In addition, the classification of the
type of mask, either N-95 or surgical masks, has also been implemented. Qin et al., in [32],
using super-resolution and classification networks (SRCNet), with the training from the
Medical Masks database, have developed a method to identify the presence or absence
of a mask. This method, in addition, is capable of identifying the most frequent error of
its misuse, such as wearing the mask under the nose. The algorithm used is based on the
following four steps: image pre-processing, face detection and cropping, super-resolution
images, and mask detection. The precision achieved with the use of this methodology is
98.70%. Table 1 summarizes the different works presented in this section.

Table 1. Summary of the related works.

1st Author [ref] Date
Type of

Detection
Face

Detector
Classification

Model
Software
Library

Best
Accuracy

Nagrath [18] March
2021

mask/
no mask

Single shot
multibox MobileNetV2 TensorFlow,

OpenCV 92.64%

Mata [20] April
2021

mask/
no mask

Image Data
Generator CNN TensorFlow,

OpenCV 60%

Jauhari [21] March
2021

mask/
no mask

Cascade
Viola Jones AdaBoost Python 90.9%

Sen [22] February
2021

mask/
no mask - MobileNetV2 PyTorch, OpenCV 79.2%

Balaji [23] 2021 mask/
no mask

Viola-Jones
detector VGG-16 CNN TensorFlow,

OpenCV 96%

Kurlekar [24] April
2021

mask/
no mask - CNN TensorFlow,

OpenCV, Caffe -

Sakshi [25] March
2021

mask/
no mask - MobileNetV2 TensorFlow, Keras 99%

Cheng [26] 2020 mask/
no mask

YOLO v3
-tiny CNN + SVM - -

Loey [27] January
2021

mask/
no mask YOLO v3 Resnet50 + SVM - 99.5%

Rudraraju [29] September
2020

mask/
no mask/
nose out

Haar
cascade
classifier

MobileNet OpenCV, Keras 90%

Wang [30] January
2021

mask/
no mask/
nose out

Fast RCNN InceptionV2 OpenCV, Matlab 91.1%

Hussain [31] April
2021

mask/
no mask/
nose out

YOLO v3

VGG-16,
MobileNetV2,
InceptionV3,

ResNet50

Keras 99.8%

Qin [32] September 2020
mask/

no mask/
nose out

Multitask
Cascaded CNN SRCNet Matlab 98.7%

The rest of the paper is structured as follows. In Section 2, materials and methods, we
explain how we obtained the training data, how they are labeled, and the details of the
intelligent system. In Section 3, the results are shown and described. Section 4 includes the
discussion and, finally, Section 5, shows the conclusion along with future work.
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2. Materials and Methods

This section describes the methods used in solving the problem. Our system is divided
into 5 phases. Each one of the first five points in this section corresponds to these phases.
In the last section, the system validation is described.

2.1. Obtaining the Data Set

The main objective of this paper is to identify mask placement errors using machine
learning techniques. The drawback of machine learning is the need of a properly labeled
training set.

Most of the works related to mask detection have chosen to use a synthetic corpus [33].
The idea consists in drawing, on the image of a face, the drawing of a mask. This method
has been very useful in detecting if a mask is being used. However, the problem that
interests us is much more complex. We want to detect small problems with the placement
of the mask. The synthetic corpus would not work for our problem.

To tackle the problem, we decided to resort to citizen collaboration. We developed an
application, shown in Figure 1, for mobile phones, which asked users to place the mask in
different positions and take a selfie. The application was published on Google Play [34]
and we went to the media to disseminate it [35]. The application was downloaded by more
than 500 users during the summer of 2020 and about 3200 images were obtained, with a
resolution of 360 × 480, half of them from the front and the other half from the side.

Figure 1. Application in Google Play for the acquisition of the training set.

2.2. Labeling

The labeling was carried out by a nursing group from the hospital of Ontinyent. To
speed up the work, an Android application was developed that allowed us to label 12 types
of problems as well as the location where the problem was evident. Figure 2 shows this
application, with an image from the front and another from the side. The labels were: 1—
mask incorrectly extended, 2—non-symmetrical placement, 3—incorrectly bent in the nasal
part, 4—adjusted below the bridge of the nose, 5—glasses placed under the mask, 6—neck
adjustment greater than 1 cm, 7—with a beard, the use of a mask is not recommended,
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8—incorrectly placed rubber band, 9—lateral gap greater than 1 cm, 10—exposed nose,
11—without a mask, 12—others.

Figure 2. Application for the labeling of the training set.

Table 2 shows the statistics of the labeling process. Up to three errors could be
indicated in each image. With the correct mask, 24.5% of the images were labeled, with an
error of 55.9%; with two, 15.0%; and with three, 4.5%.

Table 2. Statistics of the labeling process.

Front Image Side Image

1st Error 2nd Error 3rd Error 1st Error 2nd Error 3rd Error

Correct 518 0 0 476 0 0
without a mask 350 0 0 328 0 0

adjusted below the bridge of the nose 284 74 12 261 67 12
mask incorrectly extended 247 192 58 210 104 21

exposed nose 245 1 0 218 2 0
non-symmetrical placement 108 54 15 56 10 0
lateral gap greater than 1 cm 85 21 0 92 24 1

glasses placed under the mask 82 10 1 77 9 0
incorrectly placed rubber band 81 40 6 98 47 6

incorrectly bent in the nasal part 71 11 1 68 8 0
neck adjustment greater than 1 cm 25 9 2 34 12 2

with a beard, mask is not
recommended 12 0 0 11 0 0

The application asked the user to take two selfies; one from the front and the other
from the side of the face. As can be seen in Table 2, some errors were better detected
from the side, such as “incorrectly placed rubber band” or “lateral gap greater than 1 cm”.
However, it was decided that the side angle selfie would not be used given the user’s great

367



Healthcare 2021, 9, 1050

difficulty in taking them. In fact, almost 10% of the side photographs were poorly framed
and had to be discarded.

In this project, we will focus on the 5 most frequent problems (see Figure 3). To
achieve this, some errors have been eliminated, such as “incorrectly placed rubber band”
and “neck adjustment greater than 1 cm”. Others, such as “adjusted below the bridge of
the nose” and “incorrect nasal bend” have been joined into a single type: “bad adjustment
of nasal bridge”.

Figure 3. Example of samples of the 6 categories detected once cut.

Only the images from the front and that also only present one type of problem, or
none, will be used. These images have been divided into two sets, 1000 for training and
194 for validation.

It is important to highlight that there is high subjectivity in the labeling of the data set.
Determining that the mask is perfectly fitted is relative. Some tests carried out show how
two experts evaluating the same set provided a difference in up to 10% of the labels.

2.3. Facial Detection and Cropping

When obtaining the data set, the volunteers were asked to place their faces on a
template. However, these indications were not followed very strictly. To normalize this
situation, it has been decided to perform face detection, to eliminate the edges of the image
without relevant information. Rapid Object Detection Using a Boosted Cascade of Simple
Features [36] was adopted for facial detection, which has been shown to perform well in
obtaining facial areas.

2.4. Classification

Recently, machine learning has experienced a breakthrough thanks to the emergence
of Deep Learning. More specifically, CNN are the main ones responsible for this revolution.
A convolutional network is structured hierarchically. The first layers are responsible for
extracting generic features from the image such as edges or textures. The following layers
use these previous characteristics to search for more specific characteristics. This process is
continued for several layers until it is possible to detect characteristics with a high semantic
value such as the detection of eyes or nose. Finally, a conventional neural network is used
to perform the classification.
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Although CNNs are widely used in natural language or audio processing tasks, several
studies show that their use have obtained the best results in image recognition tasks. These
results make the use of CNN in our problem, a natural choice. Nevertheless, in machine
learning, obtaining the data set is the most complex part. The most common is having
little data.

A widely used technique to obtain the most out of the data set is Data Augmenta-
tion [37]. It consists of making small modifications to the images such as small rotations,
translations, and zooming in the input images to increase the variability of the training
set. After several experiments, we verified that translation and zoom operations did not
improve the results. We think it may be because the face is already cropped in the images.
Finally, the training dataset was randomly rotated in a range of [−5◦, 5◦] and with a
horizontal flip.

When few training samples are available, the Transfer Learning technique is quite
useful. This method is based on using a model that was previously trained on a large data
set, usually in a large-scale image classification task. This model will be used to customize
this model for our task.

Transfer Learning is applied in two phases. First, we use the convolutional layers from
the original model for feature extraction. The last layers, where the images are classified,
are replaced to fix our problem. In the first phase the convolutional layers are fixed, only
the classification layers are trained. In the second phase, known as fine tuning, all layers
are unlocked, and the system is retrained. In this way, the extraction of characteristics fits
our task.

We have, nowadays, a great variety of convolutional networks with dozens of layers al-
ready trained at our disposal. We can highlight MobileNet [19], Inception [15], ResNet [28],
VGG [37], and Xception [38]. All these networks have been trained with the ImageNet
corpus [39], a large data set with more than 14 million images where 20,000 different objects
are recognized.

2.5. Decision System

This section proposes a decision system to detect, in real situations, errors in the use
of masks. Depending on these errors, the system acts in the following different ways: by
alerting errors, asking the user to solve the problem, etc.

The block diagram of the system is depicted in Figure 4. There are four different
actors that constitute our proposal. The first one is the face detection module. This module
presents a computer vision solution for face detection in real time. The second one regards
classifying. The classifying module receives the input from the face detection module.
Then, based on the system explained in the previous section, the classifying stage detects
the errors in the facemask placement. The error and situation analysis module is included
in third place. This module is an algorithm that evaluates the error given by the classifying
system to select the most appropriate action. This is explained later in this section. The
actuator module interacts with all the previous ones to create the warning or thanks the
person for their correct use of the facemask.

Now, the only module that we need to specify is the decision system. Figure 5 shows
the flow diagram of the algorithm. First, the warning level is initialized. Then, the module
waits for an output, which is the probability of having a facemask placement error. When
the module receives the output from the classifying module, it analyzes the predicted
class with the highest probability, that is, the predicted error. Some error classes are more
important than others, in which case they will be labeled as serious. For the most important
errors, such as no mask detected, the system should ask the user to wear a mask, raise
an alert, and block the entrance to the place if necessary. Some other errors are low-risk
errors, which can be solved with a warning message to the user. When this happens, the
face recognition module has to be started again. However, if there are continuous errors
with the mask, due to the fact that the user does not want to wear it correctly, that would
be treated as a serious error.
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Figure 4. Block diagram of the system.

Figure 5. Flow diagram of the decision algorithm.

2.6. System Validation

To validate that the proposed method can be used in real situations, a real-time
demonstration on a mobile application has been developed. The application has been
developed on Android and can be downloaded from Google Play [40].

The device must be placed at the entrance of a public place, such as a hospital or
educational center. Using the camera, the presence of a face will be detected, to isolate
the area of interest as indicated in Section 2.3. Using a voice message, it will be indicated
if a facemask-wearing problem is detected. Otherwise, the user will be thanked for its
correct use.

Given the limited resources of a mobile device, it was decided to use a small and
fast model. Specifically, MobileNet V2 [19] is used. As shown in the next section, very
competitive results can be obtained using only 14 MB of device memory. As will also
be depicted in the next section, some types of problems are not detected satisfactorily
(specifically, “overlapping with glasses” and “bad lateral adjustment”). For this reason,
these types of detection have not been included in the demonstration.

3. Results

To validate the proposal, we have carried out the experiments described in this section.
Firstly, input images were down-sampled to 224 × 224. The Adam method was adopted
as the optimizer. The network was trained for 20 epochs with an initial learning rate
of 10–4 and with a learning rate dropping factor of 0.9. The batch size was 32. Transfer
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learning was applied for fine-tuning the same parameters, except the learning rate reduced
to 10–5. The OpenCV and TensorFlow libraries were used. The link [41] shows the Python
code used in each experiment.

3.1. Convolutional Neural Networks

We start by testing a traditional convolutional network. The results are shown in
Figure 6. The two upper curves correspond to accuracy and the lower ones to loss. The
following four convolutional layers have been used: 32 of 3 × 3, 44 of 5 × 5, 128 of 5 × 5,
and 128 of 3 × 3. In each layer max-pooling (2 × 2) and ReLU activation function is used.
For classification, 3 dense layers of 512, 256, and 6 neurons are used.

Figure 6. Accuracy and Loss for CNN model for training and validation set.

Figure 7 shows the Confusion Matrix obtained in the validation set. Each row of
the matrix represents the instances in an actual class, while each column represents the
instances in a predicted class. See Figure 3 for more detail on the categories. Therefore, the
diagonal shows the samples that are correctly classified. For example, in this experiment,
there are 25 samples labelled as “NO MASK”. There are 23 samples that have been correctly
classified, one as “NOSE OUT”, and another as “CORRECT”.

Figure 7. Confusion Matrix for CNN model in the validation set.

In this case, we can confirm that there is a high accuracy except for in the “GLASSES”
and “FIT SIDE” classes. “GLASSES” corresponds to “overlapping with glasses”, “N. BRIDGE”
to “bad adjustment of the nasal bridge”, and “FIT SIDE” to “bad lateral adjustment”.
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3.2. Transfer Learning

To illustrate the advantages of using Transfer Learning as the facemask-wearing
condition identification network, we compare the more relevant models, including Mo-
bileNetV2 [19], Xception [38], InceptionV3 [15], ResNet-50 [28], NASNet, and VGG19 [37].
We compare features such as network size, the number of parameters, depth, and accu-
racy for both our task and the ImageNet task, as shown in Table 3. The first and the
second rows represent the first experiment described in this section, with and without data
augmentation. The rest of the rows are the different models of Transfer Learning with
Data Augmentation. Depth refers to the topological depth of the network. This includes
activation layers, batch normalization layers, etc. ImageNet accuracy refers to the accuracy
obtained in the ImageNet task [42]. Figure 6 shows the accuracy of the transfer learning
models. As can be seen in Figures 6 and 8, the precision is very noisy, varying greatly from
one epoch to the next. In order to better compare the results, the accuracy shown in Table 3
corresponds to the average of the last three epochs.

Table 3. Comparison of the results obtained from the different models used.

Model Size Parameters Depth Accuracy
ImageNet
Accuracy

CNN without data aug 32 MB 8.5 M 15 0.763 -
CNN 32 MB 8.5 M 15 0.797 -

MobileNet V2 14 MB 3.5 M 88 0.812 0.713
Xception 88 MB 22.9 M 126 0.802 0.790

InceptionV3 92 MB 23.9 M 159 0.819 0.779
ResNet-50 98 MB 25.6 M - 0.742 0.749

NASNetLarge 343 MB 88,9 M - 0.799 0.825
VGG16 528 MB 138.4 M 23 0.834 0.713

For each of the indicated models, their feature extraction layers have been used. After
these, a layer of averagePooling2D is added and two dense layers of 512 and 6 neurons.
The training is carried out in two phases. On epochs 1 to 20, the transfer model is locked
and only the classification layers are trained. On epochs 21 to 40, fine-tuning is performed,
unlocking learning of all the layers. Other configuration details are described in the
Training details. Figure 8 shows the evolution of training for each model. The two upper
curves correspond to accuracy and the lower ones to loss. The best results are obtained
with VGG16. An improvement of 5% is observed for the results obtained with CNN.

If we analyze these results in more detail using the confusion matrix (Figure 9), we
can observe how some kinds of errors such as “GLASSES” and “FIT SIDE” present lower
accuracy than the others. However, the mislabeled samples have been reduced from the
CNN experiment. Consequently, the accuracy is improved with this model.

Table 4 shows the classification results obtained, in the validation set, for each of the
classes using the VGG16 model.
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Figure 8. Accuracy for several Transfer Learning models for training and validation set.

Figure 9. Confusion Matrix for VGG16 model in the validation set.
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Table 4. Classification results for VGG16 model in the validation set.

Precision Recall F1-Score

GLASSES 0.56 0.63 0.59
FIT SIDE 0.73 0.67 0.70

NOSE OUT 0.93 0.90 0.91
CORRECT 0.87 0.88 0.87
N.BRIDGE 0.75 0.75 0.75
NO MASK 1.00 1.00 1.00

total 0.84 0.85 0.85

4. Discussion

Due to the great general concern in society about the pandemic caused by the new
virus called SARS-CoV-2 and with it, the need to use masks, many authors have developed
different applications to detect the presence or absence mask as well as their proper use. In
Table 1, different projects are presented with the main objective of developing applications
capable of detecting masks.

While our best results’ precision is, at first glance, lower than most of the related work,
our system analyzes a more complex problem, and the lowered accuracy is due to this fact.
By simplifying our results to “MASK” and “NO MASK”, our accuracy increases to 100%,
as can be seen in Figure 9, as the 25 “NO MASK” samples are classified correctly, and all
the other samples are classified as one of the “MASK” classes, even if the exact errors are
not always detected.

By simplifying our results to “NOSE OUT”, “NO MASK”, and “CORRECT” we can
also use the confusion matrix shows in Figure 9. In this case, the classes “GLASSES”, “FIT
SIDE”, and “N.BRIDGE” are unified with “CORRECT”. If we obtain the new confusion
matrix and perform the calculations, the new precision obtained is 97.4%. This result is
comparable to those obtained in [29–32] and could be improved with specific training for
these three classes.

On the one hand, references [18–27] developed a mask detection system that can dif-
ferentiate between the presence or absence of a mask. On the other hand, references [29–32]
are also able to detect if the nose is outside the mask. This circumstance would reveal an
incorrect use of the mask, but as has been discussed in this project, it is only one of the
possible incorrect uses.

In the case of our study, a system has been developed that is capable of detecting
not only the presence or absence of the mask, but also different placement errors that
current systems are not capable of detecting, such as the mask being placed below the
nose, incorrect placement due to the use of glasses, that the nasal bridge of the mask is not
correctly adjusted, or that the mask is too wide for the person, causing lateral gaps where
the virus can easily enter.

To do this, different CNN-based deep learning techniques have been tested. However,
the use of data augmentation does not appear to offer significant improvements, possibly
due to the way the images are cropped. The transfer learning technique has been used to
try to alleviate training shortages. We have tested the current most successful models. The
results vary depending on the network used. The VGG16 model presents the best results
(83.4% precision). This shows us that the knowledge of image processing can be used in
the problem of detecting the correct use of the face mask. As library software, we have
used OpenCV and TensorFlow. In addition, our system can detect with great precision
other errors not usually considered in the placement of masks that have been mentioned
above. By ignoring these errors, this misuse can help spread the virus.

Although in the labeling part of the corpus, more mask wearing problems were
considered, in the present study we work with five types of errors. With the easiest of
these to detect, such as the “no mask” or “nose out” errors, we have obtained a precision of
100 and 93%, respectively. The detection of an “incorrect adjustment of nasal bridge” error
has a success rate of 75% and “incorrect lateral adjustment” a success rate of 73%. The type
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of error with the worst results is “overlapping with glasses” with 56%. This bad result may
be due to a lack of examples in the training set.

Finally, in addition to studying the system, a mobile application has been developed.
This application is accessible to all citizens and can be used to see the mistakes made
regarding the placement of the mask in situ. In this case, as a classificatory model, we
use MobileNetV2. This is because it demands fewer resources than others that were
tested in this project and, thanks to this, it can be implemented in real time on current
mobile phones, which is a requirement of our demonstration. Moreover, although the error
detection precision is decreased, it is still high enough to be able to use the application to
detect errors in the misplacing of a mask.

5. Conclusions

Identifying mask misuse is challenging. The limitation in the data sets is the main
challenge. Data sets on mask wearing status are generally small and only identify the
presence of masks. To solve the problem, we have carried out a campaign to collect images
through an app, appealing to citizen participation. The samples obtained have been labeled
by a group of health experts.

To our knowledge, no studies have been conducted on the identification of different
misuses of masks through deep learning. The study carried out from [29–32] only detected
the most obvious error, consisting of wearing the mask under the nose. Our proposal is
capable of detecting, in addition to the previous mentioned issue, other types of problems,
which occur very frequently. Even many of the users are unaware that they are using the
mask incorrectly. However, we have not been able to detect other types of problems, such
as (“incorrect lateral adjustment” and “glasses underneath”). For these cases, it is necessary
to find an alternative approach or increase the number of training samples.

To validate that our proposal can be used in real situations, a real-time demonstration,
an Android application, has been developed. It can be downloaded from Google Play [40].
The system is made to detect errors through the use of selfies. For this reason, for errors of
bad lateral placement such as the crossing of rubbers, it would be good to teach the system
to detect it with a lateral image. Although there really is a significant problem, it should
be taken into account that a bad lateral adjustment indirectly causes an alteration in the
frontal positioning of the mask, which can be detected with a frontal image. In this case,
the system can be improved gathering more samples and teaching the system to detect,
among other alterations, the crossing of the rubbers laterally.

The results support the possibility of its use in real circumstances, which makes it
possible to prevent the spread of the pandemic. In future works, we want to enhance the
study including other kinds of mask wearing problems and study the inclusion of other
types of inputs to improve the accuracy of the “GLASSES” and “FIT SIDE” classes. On
the other hand, and despite the fact that the application is capable of detecting different
anomalies, it may be necessary to teach the system to differentiate between different
components that currently make up the mask. This is because they have become another
complement to our clothing. Many of the masks have sequins, other drawings ranging
from simple squares to drawn smiles. An improvement in the system would be to verify
that the application can detect these modified masks just as it does with surgical and FP2.

Furthermore, this system could be applied to different networks and scenarios. We
could apply this to Smart Cities or Industrial Internet of Things environments to prevent
security issues and decide when an alert should be raised.
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Abstract: The precise segmentation of brain tumor images is a vital step towards accurate diagnosis
and effective treatment of brain tumors. Magnetic Resonance Imaging (MRI) can generate brain
images without tissue damage or skull artifacts, providing important discriminant information for
clinicians in the study of brain tumors and other brain diseases. In this paper, we survey the field of
brain tumor MRI images segmentation. Firstly, we present the commonly used databases. Then, we
summarize multi-modal brain tumor MRI image segmentation methods, which are divided into three
categories: conventional segmentation methods, segmentation methods based on classical machine
learning methods, and segmentation methods based on deep learning methods. The principles,
structures, advantages and disadvantages of typical algorithms in each method are summarized.
Finally, we analyze the challenges, and suggest a prospect for future development trends.

Keywords: image segmentation; brain tumor; magnetic resonance imaging; multi-modality

1. Introduction

Brain tumors can grow in cerebral vessels, nerves, brain appendages and other in-
tracranial tissues, which seriously threaten the life and health of patients. MRI plays an
important role in the diagnosis and treatment of brain tumors. It is the most widely used
imaging method in brain tumor detection and clinical treatment. MRI has no radiation, no
injury, and no bone artifact in the human body [1]. As a multi-parameter imaging method,
MRI has high resolution in soft tissue [2]. Through the acquisition of brain image detail
information, we can accurately judge the pathological and histomorphological changes
to optimize the segmentation results, which is helpful to the extraction of lesions and the
treatment of tumors [3]. In MRI, images of different modes can be obtained according to
the difference of transverse relaxation time and longitudinal relaxation time, and images
of different modes have specificity in the image information. For example, T1-weighted
imaging sequence (T1) can better display the anatomical structure of various brain tissues.
T1-weighted Contrast-enhanced (T1C) imaging sequence can observe the boundary in-
formation of brain tumors more clearly. T2-weighted imaging sequences (T2) enhance
the lesion area and are often used to identify lesions and determine tumor type. Fluid
Attenuated Inversion Recovery (FLAIR) inhibited intracranial cerebrospinal fluid and
was able to better detect high signal information in the lesion area [4]. In the process of
diagnosis and treatment of brain tumors, accurate segmentation of brain tumor MR images
is particularly important. According to different degrees of human intervention, it can be
divided into artificial segmentation, semi-automatic segmentation and automatic segmen-
tation. Traditionally artificial segmentation has high accuracy, but it is time-consuming and
laborious, and subject to the subjective judgment of doctors. In addition, this method also
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requires experts to have both related brain tumor image knowledge and other professional
knowledge of anatomy [5]. Therefore, researchers have done tremendous work on how
to improve the accuracy and efficiency of brain tumor MR image segmentation by using
semi-automatic segmentation and automatic segmentation. In brain images, the amount
of information that can be expressed by single-mode MR images is limited, which cannot
give accurate auxiliary information to doctors. The combination of different modal images
can achieve complementary information between images [6] to obtain the morphological
and pathological information of brain tumors. The result of the algorithm segmentation
needs to be compared with the result drawn by the doctor manually, so it is at most the
same as the result of the doctor’s manual segmentation. This not only saves doctors a lot
of time, but also provides them with important reference information, which can assist in
the diagnosis and treatment of brain tumors. Generally, the tumor segmentation process is
shown in Figure 1.

 

Figure 1. The flow chart of tumor segmentation.

This paper attempts to summarize the existing methods of brain tumor MR image
segmentation. Firstly, this paper briefly introduces the database of brain tumor segmen-
tation commonly used in brain tumor segmentation. Then, we introduce the basic ideas,
network architecture, representative solutions, advantages and disadvantages of different
methods. In addition, this paper compares the segmentation results of typical methods on
BraTs database and clinical data. Finally, this paper analyzes the challenges faced by brain
tumor MR image segmentation, and suggests prospects for development and direction.

2. Databases and Evaluation Measures

In the segmentation of brain tumor MR images, most research is based on public
databases, and a smaller part on clinical data. After researchers obtain the results of image
segmentation, they need to evaluate them. The evaluation of segmentation results can be
divided into subjective evaluation and objective evaluation. Subjective evaluation needs to
invest a lot of human and material resources, the evaluators rely on experience, and there
is no standard answer. The subjective evaluation results of different people are generally
different, and those of the same person at different times are also different. Therefore,
objective evaluation measures that can be recognized by most people are particularly
important in the study of brain tumor MR image segmentation.

2.1. Evaluation Measures Commonly Used

After continuous development and improvement, commonly used segmentation
evaluation indicators are as follows: Dice Similarity Coefficient (DSC) [7], Jaccard Similarity
(JS) [8], True Positive Rate (TPR) [9], Positive Predictive Value (PPV) [10] and Hausdorff
Distance (HD) [11]. In order to obtain the evaluation measures introduced, we need to use
the ground truths and actual segmentation results for calculation. The ground truth is an
image formed by medical experts directly delineating the boundary of the relevant area
of the lesion [12], and it is a standard that is unanimously recognized by researchers. The
actual segmentation is the result of algorithm segmentation. Figure 2 shows the comparison
between ground truth and the actual segmentation.
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Figure 2. The comparison of actual segmentation and ground truth.

In the Figure 2, T1 and T0 represent the tumor area and background area of the ground
truth, and P1 and P0 represent the tumor region and background region of the actual
segmentation result.

The value of DSC is between [0, 1]. When DSC is equal to 0, the segmentation result is
the worst. On the contrary, when DSC is equal to 1, the segmentation result is the most
accurate [7], and DSC [13] is computed as follows:

DSC(P1, T1) =
2|P1 ∩ T1|

|P1|+ |T1|
(1)

JS value is obtained by the intersection of the actual segmentation result and the
ground truth and the ratio of their union, and the definition [14] is as follows:

JS(P1, T1) =
|P1 ∩ T1|

|P1 ∪ T1|
=

|P1 ∩ T1|

|P1| − |P1 ∩ T1|+ |T1|
(2)

TPR is obtained from the segmentation result of the algorithm and the ratio of the
overlap part of ground truth to ground truth [9]. The definition of true positive rate [15] is
as follows:

TPR(P1, T1) =
|P1 ∩ T1|

|T1|
(3)

Positive Predictive Value (PPV) is also called Precision. The Positive Predictive Value
is obtained by the ratio of the result correctly segmented by the algorithm to the result
segmented by the algorithm. The definition [10] is as follows:

PPV(P1, T1) =
|P1 ∩ T1|

|P1|
(4)

The definition of Hausdorff Distance (HD) is as follows:

HD(P1, T1) = MAX{h(P1, T1), h(T1, P1)} (5)

h(A, B) = max
ai∈A

min
bj∈B

‖ai − bj‖ can be obtained from set A and set B, h(A, B) is the one-way

Hausdorff distance from set A to set B, ai means the i-th point in set A, bj means the j-th
point in set B, and ‖ai − bj‖ means the distance between the point ai and bj [11].

2.2. Databases Commonly Used

The database commonly used for brain tumor segmentation is the BraTs (Brain Tumor
Segmentation) database, and a small number of studies are based on clinical databases.
This paper mainly introduces the BraTs2013, BraTs2015, BraTs2017, BraTs2018, BraTs2019,
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BraTs2020 and some clinical databases. The relevant data information involved in this
paper are shown in Table 1.

Table 1. Commonly used databases.

Database Image Information
Number of

Training Data
Number of Test

Data

With Ground Truth
Testing Method

Data Size
(mm3)Training Data Test Data

BraTs2013 T1, T1C, T2, FLAIR 20 10 Yes Yes Offline 240 × 240 × 155
BraTs2015 T1, T1C, T2, FLAIR 285 110 Yes Yes Offline 240 × 240 × 155
BraTs2017 T1, T1C, T2, FLAIR 285 66 Yes Yes Offline 240 × 240 × 155
BraTs2018 T1, T1C, T2, FLAIR 285 - Yes No Online 240 × 240 × 155
BraTs2019 T1, T1C, T2, FLAIR 335 - Yes No Online 240 × 240 × 155
BraTs2020 T1, T1C, T2, FLAIR 369 - Yes No Online 240 × 240 × 155

Clinical database T1, T1C, T2, FLAIR - - Yes Yes Offline -

From Table 1, we can see that BraTs database contains four modes: T1, T1C, T2 and
Flair. All image sizes are 240 mm × 240 mm × 155 mm. Before 2018, BraTs database had
training data and test data, which could be tested offline. However, since 2018, there is no
test data in the database and online testing is required.

2.2.1. BraTs Database

BraTs database is provided by MICCAI (Medical Image Computing and Computer
Assisted Intervention) conference. This is the official database for the brain tumor MR image
segmentation challenge held by the conference, and is also widely used by researchers
engaged in brain tumor MR image segmentation. Since the challenge was held in 2012, the
BraTs database has been updated every year. The URL of BraTs database mentioned in this
paper is as follows:

BraTs2013 (from https://www.smir.ch/BRATS/Start2013, accessed on 21 May 2021),
BraTs2015 (from https://www.smir.ch/BRATS/Start2015, accessed on 21 May 2021),
BraTs2017 (from https://www.med.upenn.edu/sbia/brats2017/data.html, accessed on 21
May 2021),
BraTs2018 (from https://www.med.upenn.edu/sbia/brats2018/data.html, accessed on 21
May 2021),
BraTs2019 (from https://www.med.upenn.edu/cbica/brats2019/data.html, accessed on
21 May 2021),
BraTs2020 (from https://www.med.upenn.edu/cbica/brats2020/data.html, accessed on
21 May 2021).

In recent years, there have been a large number of studies on BraTs series databases.
Table 2 shows some of these research results.

Table 2. Results of studies using BraTs series database in recent years.

Database Method
Evaluation Measure: DSC

Whole Tumor Core Tumor Enhance Tumor

BRATS 2013

Tustison et al. [16] 0.871 0.781 0.741
Pereira et al. [17] 0.83 0.78 0.73
Havaei et al. [18] 0.86 0.77 0.73
Shen et al. [19] 0.87 0.82 0.75
Zhao et al. [20] 0.81 0.65 0.61

P Bhagat et al. [21] 0.81 0.54 0.61
Hu K et al. [22] 0.86 0.77 0.70

Zhou Z et al. [12] 0.87 0.72 0.70
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Table 2. Cont.

Database Method
Evaluation Measure: DSC

Whole Tumor Core Tumor Enhance Tumor

BRATS 2015

Casamitjana et al. [23] 0.917 0.836 0.768
Kamnitsas et al. [24] 0.901 0.754 0.728

Tseng et al. [25] 0.852 0.683 0.688
Liu et al. [26] 0.87 0.62 0.68

Iqbal et al. [27] 0.87 0.86 0.79
Li H et al. [28] 0.890 0.733 0.726
Hu K et al. [22] 0.87 0.76 0.75

BRATS 2017

Beers et al. [29] 0.882 0.732 0.730
Shaikh et al. [30] 0.89 0.84 0.78
Isensee et al. [31] 0.858 0.775 0.647
Zhou T et al. [32] 0.885 0.846 0.734
Po Y K et al. [33] 0.903 0.744 0.780

Wang G et al. [34] 0.874 0.783 0.775

BRATS 2018

Wang G et al. [34] 0.908 0.869 0.807
Subhashis B et al. [35] 0.902 0.872 0.824

Zhou C et al. [36] 0.908 0.858 0.811
HuA R et al. [37] 0.876 0.795 0.736
Zhang J et al. [38] 0.876 0.810 0.773
U Baid et al. [39] 0.848 0.769 0.668

BRATS 2019

Yogananda C et al. [40] 0.901 0.844 0.801
Li X et al. [41] 0.886 0.813 0.771

Wu P et al. [42] 0.891 0.817 0.757
Zhao Y et al. [43] 0.883 0.861 0.810

R Agravat et al. [44] 0.92 0.90 0.79
Cheng G et al. [45] 0.905 0.820 0.764

Ieva A et al. [46] 0.878 0.732 0.699

BRATS 2020

Lucas F et al. [47] 0.889 0.841 0.814
Henry T et al. [48] 0.89 0.84 0.79
Silva C et al. [49] 0.886 0.830 0.790

Anand V et al. [50] 0.850 0.815 0.775
Qamar S et al. [51] 0.875 0.837 0.795

Jia H et al. [52] 0.913 0.855 0.788
Lyu C et al. [53] 0.873 0.836 0.821

Among the work based on BraTs2013 database, Shen et al. [19] obtained good results
in the segmentation of the whole tumor and its sub-regions by using the proposed structure
of one subsample and three up-samples to extract stratified features. (The network diagram
is shown in Figure 3a). Zhou Z et al. [12] proposed a 3D convolution pyramid module,
which is a 3D dense connection architecture that can fuse multi-scale context information.
This method performs well in whole tumor segmentation.

In the work based on BraTs2015 database, Iqbal et al. [27] added jump connection
and interpolation operation on the basis of Segnet (the network diagram is shown in
Figure 3d), which enhanced the segmentation effect of core tumor and enhanced tumor. In
the whole tumor segmentation, Casamitjana et al. [23] proposed a method that uses two
paths to collect low-resolution and high-resolution features from the input image, and the
segmentation effect is better than with other methods.
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c

Figure 3. Network structure diagrams of better performing methods. (a) is the structure diagram of a sub sample and
three up sampling structures proposed by Shen et al. [19]; (b) is the structure diagram of a 3D U-Net model combined
with a priori knowledge of lesions proposed by Po et al. [26]; (c) is the structure diagram of the method of adding dense
connections to the encoding part of the three tier codec architecture by R Agrava et al. [44]; (d) is the structure diagram of
adding jump connection and interpolation operation on the basis of Segnet proposed by Iqbal et al. [27]; (e) is the structure
diagram of a multi plane convolutional neural network proposed by Subhashis B et al. [35]; (f) is the structure diagram of
hybrid high-resolution and nonlocal feature network (h2nf net) proposed by Jia h et al. [52].

In the research work based on BraTs2017 database, Po et al. [26] proposed a 3D U-Net
model combined with prior knowledge of lesions. Using the original image to generate
a group of patients with lesion heat map, then the generated map is employed to locate
the target area. (The network diagram is shown in Figure 3b). Experiments show that
this method is more effective than other methods in tumor overall segmentation and
enhancement segmentation.

In the research work based on BraTs2018 database, Subhashis B et al. [35] proposed
a multi-plane convolution neural network for brain tumor MR image segmentation from
different anatomical planes (The network diagram is shown in Figure 3e), which showed
good performance in the segmentation of whole tumor, core tumor and enhanced tumor.

In the research work based on BraTs2019 database, the method of adding dense
connection to encoder part of three-layer codec architecture (The network diagram is
shown in Figure 3c) proposed by R Agrava et al. [44], which has the highest precision
in the segmentation of whole tumor and core tumor. In the segmentation of enhanced
tumor, the deep convolution neural network improved by Zhao Y et al. [43] has the best
segmentation effect.

In the research work based on BraTs2020 database, the Hybrid High-resolution and
Non-local Feature Network (H2NF-Net) proposed by Jia H et al. [52] uses a single and
cascaded HNF-Net to segment different brain tumor regions. Combine the prediction
results as the final segmentation result. (The network diagram is shown in Figure 3f). This
method works well in whole tumor and core tumor segmentation tasks. In enhanced tumor
segmentation, a tumor region segmentation model that combines a two-stage codec with
regularization and attention mechanism proposed by Lyu C et al. [53] works well.

2.2.2. Clinical Database

Clinical data of MR brain tumor images are collected by the hospital with the permis-
sion of the patients during their treatment. The collected MR brain images are used by
doctors to judge the condition of patients and propose reasonable and effective treatment
plans. Because of patient privacy and ethical issues, researchers are not allowed to use
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such data for research without permission from patients and hospitals. In recent years, the
comparison of segmentation results based on clinical database is shown in Table 3.

Table 3. Comparison of segmentation results based on clinical databases in recent years.

Method Data Sources Data Volume
Evaluation Measure: DSC

Whole Tumor Core Tumor Enhance Tumor

Hua R et al. [37] Local hospital 28 patients 0.864 0.804 0.722
U Baid et al. [39] Local hospital 40 patients 0.924 0.901 0.813
Ieva A et al. [46] Local hospital 105 patients 0.87 0.71 0.68
Shen Y et al. [54] Local hospital 105 patients 0.894 0.790 0.653
Zhao Z et al. [55] Local hospital 184 patients 0.785 - -

Because the clinical data of each hospital is collected in different stages from different
patients, and the equipment conditions used to collect the data are also different, it is
impractical to compare the segmentation performance of these works. From the experi-
mental results alone, the improved 3D U-Net scheme proposed by U Baid et al. [44] has
higher segmentation accuracy in whole tumor, core tumor and enhanced tumor. The model
consists of contraction path and expansion path. The shrinking path mainly captures the
context, and the expanding path realizes the target location. The loss function, activation
function and data enhancement are also considered. Therefore, each segmentation measure
is increased.

3. Methods of Brain Tumor MR Image Segmentation

Segmentation methods of brain tumor MR image are mainly divided into three cate-
gories according to different segmentation principles: traditional segmentation methods,
traditional machine learning-based segmentation methods and deep learning-based seg-
mentation methods. Each category includes a variety of specific segmentation algorithms,
as shown in Figure 4.

：

 

Figure 4. Brain tumor MR image segmentation methods.

3.1. Traditional Brain Tumor Segmentation Methods

According to the different theories and emphases, the traditional segmentation methods
can be generally divided into four categories: threshold based segmentation, region-based
segmentation, fuzzy theory based segmentation and edge detection based segmentation [56].
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3.1.1. Segmentation Methods Based on Threshold

Threshold-based segmentation is the simplest method. First, it is assumed that the
pixels within a range belong to the same category [57]. Brain tumor images can be divided
into target region and background region by setting an appropriate threshold. Different
thresholds can also be set to divide the tumor into multiple regions. After continuous
research and development, the accuracy of threshold segmentation has been greatly im-
proved. Wang Y P et al. proposed an improved threshold segmentation algorithm. The
method improves the noise sensitivity in threshold segmentation by using local infor-
mation of pixel neighborhood [58]. Foladivanda et al. proposed an adaptive threshold
segmentation method. The method can effectively overcome the problem of uneven gray,
and enhance the contrast of images, and effectively improve the DSC and JS measure of
MR image segmentation of the brain tumor [59].

The segmentation method based on threshold is relatively simple, and the quality
of segmentation results almost entirely depends on the size of threshold, so the selection
of threshold is very important. Moreover, the threshold segmentation method can only
segment simple images, and it is difficult to deal with complex images.

3.1.2. Segmentation Methods Based on Region

Common region-based segmentation methods include watershed algorithm and
region-growing algorithm.

Watershed algorithm is a segmentation method based on mathematical morphology.
In this algorithm, the image to be processed is compared to the terrain in geography, and
the elevation of terrain is represented by the gray value of the pixel. The local minimum and
its adjacent area are called the ponding basin. It is assumed that there are water permeable
holes at each local minimum. With the increase of infiltration water, the ponding basin
will be gradually submerged. Blocking the flow of water from a stagnant basin to a nearby
basin is called a dam. When the water level reaches the peak, the infiltration process ends.
These dams are called watersheds. Kaleem et al. [60] proposed a watershed segmentation
method guided by setting internal or external markers to calculate the morphological
gradient of the input image and internal and external markers of the original image. Then
they use watershed transform to obtain the segmentation results. Rajini N et al. [61]
proposed a method combining threshold segmentation and watershed. First, the image
was segmented by threshold method, and then the segmented image was segmented by
watershed algorithm. The experiment proved that the segmentation results obtained by
this method were more accurate than those obtained by one of the two methods alone,
with the average TPR measure higher than 90%.

The segmentation algorithm based on watershed can obtain a complete closed curve
and provide contour information for subsequent processing, whereas the watershed algo-
rithm is influenced by noise and easy to over segment.

The region growing algorithm draws all the pixel points conforming to the criterion
into the same region via formulating a criterion, so as to achieve pixel segmentation. This
kind of segmentation method has the following characteristics: (1) Each pixel must be in a
certain region, and the pixels in the region must be connected, and must meet certain similar
conditions; (2) different regions are disjoint, and two different regions cannot have the
same property. Qusay et al. [62] proposed an automatic seed region growth method, which
can automatically set the initial value of seeds, avoid the defects of manual interaction, and
improve the efficiency of image segmentation.

The region-based segmentation method has the characteristics of simple calculation
and high accuracy, which can extract better regional features and is more suitable for
segmentation of small targets. However, it is sensitive to noise and easy to make holes in
the extracted region.
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3.1.3. Segmentation Methods Based on Fuzzy Theory

The segmentation methods based on fuzzy theory have also been highly valued. In
brain tumor MR image segmentation, the most widely used Fuzzy theory algorithm is
Fuzzy C-means clustering (FCM) [63]. Muneer K et al. [64] obtained the K-FCM method
through the combination of FCM algorithm and K-means algorithm. The experiment
proved that, compared with FCM, K-FCM showed higher accuracy in brain tumor MR
image segmentation and could reduce the computational complexity. Guo Y et al. [65]
proposed a Neutrosophic C-Means (NCM) algorithm based on fuzzy C-means and neutral
set framework. The algorithm introduced distance constraint into the objective function to
solve the problem of insufficient prior knowledge and achieved satisfactory segmentation
results. On the basis of Super-pixel fuzzy clustering and the lattice Boltzmann method,
Asieh et al. [66] proposed a level set method that can automatically segment brain tumors,
which has strong robustness to image intensity and noise.

The segmentation method based on fuzzy theory can effectively solve the problem of
incomplete image information, imprecision, and so on. It has strong compatibility and can
be used in combination with other methods, but it is difficult to deal with large-scale data
due to its large amount of computation and high time complexity.

3.1.4. Segmentation Methods Based on Edge Detection

The segmentation principle based on edge detection and target contour achieves
segmentation by obtaining the edge of the target region and then obtaining the contour of
the target region. Common detection operators for edge detection include Roberts operator,
Sobel operator, Canny operator and Prewitt operator [67]. Jayanthi et al. [68] integrated
FCM into the active contour model. The initial contour of the model is automatically
selected by FCM, which reduces the human–computer interaction. Moreover, the problem
of the unclear edge contour and uneven intensity in MR images was improved. The average
DSC measure of segmentation by this method reached 81%.

Compared with other traditional segmentation methods, the segmentation method
based on edge detection pays attention to the edge information of the image and links
the edges into contours, and the anti-noise performance is stronger. But the anti-noise
performance is negatively correlated with accuracy, that is, the better the anti-noise per-
formance, the lower the accuracy. On the contrary, improved accuracy will reduce the
anti-noise performance.

3.2. Segmentation Methods of Brain Tumor MR Images Based on Traditional Machine Learning

Brain tumor segmentation methods based on traditional machine learning use prede-
fined features to train the classification model. Generally, they are divided into two levels:
organizational level and pixel level. At the organizational level, the classifier needs to
determine which kind of organizational structure each feature belongs to, and at the pixel
level the classifier needs to determine which category each pixel belongs to. Traditional
Machine Learning algorithms mainly include K-Nearest Neighbors (KNN) [69], Support
Vector Machine (SVM) [70], Random Forest (RF) [71], Dictionary Learning (DL) [72], etc.

Havaei et al. [69] regarded each brain as a separate database and used the KNN
algorithm for segmentation. They obtained very accurate results, and the segmentation
time of each brain image is only one minute, which improves the efficiency of segmentation.
Llner F et al. [70] used SVM to segment brain tumors, taking into account the changing
characteristics of signal intensity and other features of brain tumor MR images. The TPR
measure of this method for LGG reached 83%, and the accuracy measure for HGG reached
91%. Sher et al. [73] first segmented the image by the Otsu method and K-means clustering,
then extracted the features by discrete wavelet transformation, and finally reduced the
feature dimension by the PCA algorithm to obtain the best features for SVM classification.
The experimental results show that the sensitivity and specificity of the scheme can reach
more than 90%. Vaishnavee et al. [74] used a proximal support vector machine (PSVM). The
method uses equation constraints to solve the primary linear equations, which simplifies
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the original problem of solving convex quadratic programming. The experiment shows that
PSVM is more accurate than SVM in MR image segmentation of brain tumor. Wu et al. [75]
proposed a method to first segment the image into super-voxels, then segment the tumor
using MRF, estimate the likelihood function at the same time, and extract the features using
a multistage wavelet filter. Nabizadeh et al. [76] proposed an automatic segmentation
algorithm based on texture and contour. Firstly, the initial points were determined and the
machine learning classifier was trained by the initial points. Mahmood et al. [71] proposed
an automatic segmentation algorithm based on RF. This algorithm uses several important
features such as image intensity, gradient and entropy to generate multiple classifiers,
and classifies pixels in multispectral brain MR images by combining the results to obtain
segmentation results. Selvathi et al. [77] increased the weight of the wrongly classified
samples and decreased the weight of the correctly classified samples in the training process.
Then the classifier gives new weights to the samples to ensure that the weights of all
decision trees are positively correlated with their classification ability. Finally, the input of
the improved RF consists of two parts: the image intensity feature and the original image
feature extracted by curve and wavelet transformation. Experimental results show that the
accuracy of the improved RF scheme is 3% higher than that of the original RF algorithm.
Reza et al. [78] studied the correlation of image minimization features from the perspective
of image features, effectively selected features, and finally classified features in multimodal
MR images through RF. Compared with the RF algorithm alone, the proposed method can
improve the DSC, PPV and TPR measure simultaneously. Meier et al. [79] trained a specific
random forest classifier by semi-supervised learning. It takes image segmentation as a
classification task and effectively combines the preoperative and postoperative MR image
information to improve the postoperative brain tumor segmentation. The PPV and ME
measure obtained by this method were 93% and 2.4%, respectively. Dictionary learning
is a kind of learning method for simulating dictionary lookup. The dictionary itself is set
as dictionary matrix, and the method used is sparse matrix. The process of dictionary
lookup is obtained by multiplying the sparse matrix and dictionary matrix, and then the
dictionary matrix and sparse matrix are optimized to minimize the error between the value
searched and the original data. Chen et al. [72] transformed the super-pixel feature into a
high-dimensional feature space. According to the different error values of different regions
when the dictionary was modeling brain tumors, the segmentation of brain tumor MR
images was realized and the segmentation accuracy was improved. Li [80] proposed a
multi dictionary fuzzy learning algorithm based on dictionary learning. This algorithm
effectively combines dictionary learning with fuzzy algorithm, and fully considers the
differences between the target region and the background, as well as the consistency within
the target region. This method can describe the gray and texture information of different
regions of the image, and segment the image quickly and accurately.

The traditional machine learning algorithm is better than many traditional segmen-
tation algorithms in algorithmic performance, but there are many shortcomings when
it is used in brain tumor MR image segmentation. For example, the KNN algorithm is
simple to implement, and the prediction accuracy of the brain tumor region is relatively
high, but the calculation is relatively large [69]. The support vector machine has strong
theory, and the final result is determined by several support vectors. The calculation is
relatively simple and the generalization ability is strong, but it has higher requirements
concerning the selection of parameters and kernel function [70]. Random forest can solve
the problem of over-segmentation well, process multiple types of data, and has good
anti-noise performance. It can parallel operation and shorten the operation time, but it
has a poor effect on low-dimensional tumor data processing [71]. The algorithm based
on dictionary learning is similar to the idea of dimensionality reduction, both of which
reduce the computing complexity and speed up the computing speed, but also have higher
requirements for tumor data [72].
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3.3. Segmentation Methods of Brain Tumor MR Images Based on Deep Learning

According to different network frameworks, the brain MR image segmentation
method is based on deep learning and can be divided into that based on Convolutional
Neural network (Convolutional Neural Networks, CNN) of the brain MR image segmenta-
tion method, and that based on the Convolutional Neural network (Fully Convolutional
Networks, FCN) MR image segmentation method of brain tumors and the brain MR image
segmentation method, based on the encoder and decoder.

3.3.1. Segmentation Methods of Brain Tumor MR Images Based on CNN

Convolutional neural network belongs to the category of neural network, and its
weight sharing mechanism greatly reduces the model complexity. Convolutional neural
network (the network diagram is shown in Figure 5a) can directly take the image as the
input, automatically extract the features, and has a high degree of invariance to the image
translation, scaling and other changes. In recent years, a series of Network models based on
convolutional neural Network [81], such as Network in Network [82], VGG [83], Google-
Net [84], Res-Net [85], etc., have been widely used in medical image segmentation. Among
them, the VGG network has a strong ability to extract features and can guarantee the
convergence in the case of fewer training times. However, as the deepening of the network
will cause gradient explosion and gradient disappearance, the optimization effect will start
to deteriorate when the network depth exceeds a certain range.

In order to solve the problem of network degradation, He et al. [85] proposed deep
Residual Network (ResNet), which achieved good results in the segmentation task [86];
Anand et al. [50] combined the 3D convolutional neural network with dense connection, pre-
trained the model, and then initialized the model with the weight obtained. This method
improved the DSC measure in the segmentation task of brain tumor MR images. Havaei
et al. [18] constructed a cascaded dual path CNN, which took the output characteristic
graph of CNN in the first stage as the additional input of CNN in the second stage. This
method can effectively obtain rich background information and get better segmentation
results. Lai et al. [87] reduced the tail of the original image by 98% firstly, corrected the
bias field by using n4itk, then pre-segmented it by multi classification CNN, and finally
obtained the final segmentation result by median filtering. The algorithm improves the
DSC and PPV of segmentation significantly. Salehi et al. [6] proposed a convolutional
neural network technology based on automatic context (Auto-Nets) to indirectly learn 3D
image information by means of 2D convolution. This method uses 2D convolution in axial,
coronal and sagittal MR images respectively to avoid complex 3D convolution operations in
segmentation (The network diagram is shown in Figure 5c). Hussain et al. [88] established
a correlation architecture composed of a parallel CNN layer and a linear CNN layer by
adding an induction structure. This structure has achieved good results in brain tumor
MR image segmentation, especially in enhancing the DSC measure to 90%. Kamnitsas
et al. [24] trained 3D brain tumor images and then carried out conditional random field
post-processing to obtain smoother results. Saouli et al. [89] designed a sequential CNN
architecture and proposed that an end-to-end incremental network can simultaneously
develop and train CNN models (the network diagram is shown in Figure 5g). The average
DSC measure obtained by this method is 88%. Hu K et al. [22] proposed a more hierarchical
convolution based Neural Network (Multi-Cascaded Convolutional Neural Network,
MCCNN) and fully connected conditional random fields (CRFs), combined with the brain
tumor segmentation method, Firstly, the brain tumor is roughly segmented by multi
classification convolution neural network, and then fine segmented by fully connected
random field according to the rough segmentation results, so as to achieve the effect of
batch segmentation and improve the accuracy. The segmentation algorithm based on CNN
can automatically extract features and process high-dimensional data, but it is easy to lose
information in the process of pooling, and its interpretability is poor.
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Figure 5. Network structure diagrams of some classical methods and improved methods. (a) is the classic CNN network
model; (b) is the classic FCN network model; (c) is the structure diagram of a convolutional neural network technology
based on automatic context (Auto-Nets) proposed by Salehi et al. [6]; (d) is the classic Encoder-Decoder network model;
(e) is the structure diagram of a fully convolutional neural network with feature reuse module and feature integration
module (f2fcn) proposed by Xue et al. [90]; (f) is the structure diagram of a robust neural network algorithm based on u-net
proposed by isensee et al. [31]; (g) is the structure diagram of a sequential CNN architecture proposed by saouli et al. [89];
(h) is the structure diagram of attention residual U-net proposed by Zhang et al. [38]; (i) is a structural diagram of 3D dense
connection combined with feature pyramid proposed by Zhou et al. [12].

3.3.2. Segmentation Methods of Brain Tumor MR Images Based on FCN

Compared with pixel-level classification, image-level classification and regression
tasks are more suitable for using the CNN structure, because they both expect to obtain a
probable value for image classification. For semantic segmentation of images, FCN works
better. FCN has no requirement on the size of the input image, and there will be an up
sampling process at the last convolution layer. This process can get the same result as
the input image size, predicting each pixel while retaining the spatial information in the
input image, so as to achieve the pixel classification. In simple terms, FCN is a method to
classify and segment images at the pixel level. Therefore, the semantic segmentation model
based on FCN is more in line with the requirements of medical image segmentation. Zhao
et al. [20] proposed a combination of FCN with CRF for brain tumor segmentation. The
method trains two-dimensional slices in axial, coronal and sagittal directions respectively,
and then uses fusion strategy to combine segmented brain tumor images. Compared with
the traditional segmentation methods, the segmentation speed is faster and the efficiency
is higher. Xue et al. [90] proposed a fully convolutional neural network with feature
reuse module and feature integration module (f2fcn). It reuses the features of different
layers, and uses the feature integration module to eliminate the possible noise and enhance
the fusion between different layers (the network diagram is shown in Figure 5e). The
DSC and PPV obtained by this method are high. Zhou et al. [91] proposed a 3D atomic
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convolution feature pyramid to enhance the discrimination ability of the model, which is
used to segment tumors of different sizes. Then, an improvement is made on the original
basis [12], a 3D dense connection architecture is proposed, and a new feature pyramid
module is designed by using 3D convolution (the network diagram is shown in Figure 5i).
This module is used to fuse multi-scale context to improve the accuracy of segmentation.
Liu et al. [26] proposed a Dilated Convolution optimization structure (DCR) based on
Resnet-50, which can effectively extract local and global features, and this method can
improve the segmentation PPV measure to 92%. The segmentation algorithm based on
FCN can predict the category of each pixel, transform the image classification level to the
semantic level, retain the position information in the original image, and obtain a result
with the same size as the input image. However, the algorithm has low computational
efficiency, takes up a lot of memory space, and the receptive field is relatively small.

3.3.3. Segmentation Methods of Brain Tumor MR Images Based on Encoder-Decoder Structure

The encoder-decoder structure is generally composed of an encoder and a decoder.
The encoder trains and learns the input image through a neural network to obtain its
characteristic map. The function of the decoder is to mark the category of each pixel
after the encoder provides the feature map, so as to achieve the segmentation effect. In
the segmentation tasks based on encoder-decoder structure, the structure of encoders is
generally similar, mostly derived from the network structure of classification tasks, such as
VGG, etc. The purpose of doing this is to obtain the weight parameters of network training
through the training of a large database. Therefore, the difference of the decoder reflects
the difference of the whole network to a large extent, and is also the key factor affecting the
segmentation effect.

Badrinarayanan et al. [92] proposed the SegNet model. Compared with other models,
this model has a deeper layer and has better performance in semantic segmentation of
pixels. The encoder part of the model consists of a 13 layer vgg-16 network, and can
remember the position information of the largest pixel in the encoding phase. In the
decoder, the low resolution input features are up sampled to get the segmentation results.
The U-Net model based on FCN is a kind of widely used brain tumor segmentation model,
in which the network structure is also made up of an encoder and a decoder, and a U-Net
network jump connection will code paths, used to get the characteristics of the figure to the
decoding path to the corresponding position, in order to get the characteristics of the direct
sampling under the coding phase into the decoding stage, thus learning more detailed
characteristics. Chen et al. [93] proposed a multi-level deep network, which can obtain
image multi-level information by adding auxiliary classifiers on Multi-Level Deep Medical
(MLDM) and U-Net, so as to realize image segmentation. The results of DSC, PPV and
TPR were 83%, 73% and 85%, respectively. In order to reduce the semantic gap between
the feature mapping of encoder and decoder networks, Zhou et al. [94] proposed a variety
of nested dense connection methods to connect the encoder and decoder networks. Alom
et al. [95] proposed a recursive neural network and a recursive residual convolutional
neural network based on U-Net. The experimental results show that the performance of
the two kinds of network segmentation combined with U-Net is better than that of U-Net
alone. Zhang et al. [38] introduced the attention mechanism and residual network into the
traditional U-Net network and proposed an attention residual U-Net (the network diagram
is shown in Figure 5h), which improved the segmentation performance of brain tumor
MR images. Milletari et al. [96] proposed the V-Net model on the basis of the 3D U-Net
model, which extended the original U-Net model by using a 3D convolution check. Hua
et al. [37] cascaded V-Net and used the method of segmentation of the whole tumor first
into sub-regions of the tumor; the accuracy of segmentation is higher than that of direct
V-Net segmentation. Cicek et al. [97] proposed a 3D U-Net model to learn the features of
sparse annotated volume images. On the basis of 3D U-Net, Heet et al. [98] added a Hybrid
Dilated Convolution (HDC) module to increase the sensory field of neurons, overcoming
the restriction that multi-scale feature extraction requires deep neural networks. Using
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shallow neural networks can reduce the number of model parameters and reduce the
computational complexity. Tsenget et al. [25] proposed one with the depth of the layer
cross-modal convolution encoder/decoder structure, in combination with MR image data
of different modalities, and at the same time using the weighted and multi-stage training
methods to solve the problem of unbalanced data; compared with the traditional U-Net
structure, the methods of DSC, TPR and PPV measure are improved. Isensee et al. [31]
improved the U-Net network model and designed a robust neural network algorithm,
which prevented overfitting by expanding the amount of data (the network diagram is
shown in Figure 5f). This algorithm improved the TPR measure to 91%; Haichun et al. [28]
cleverly applied the improved full convolutional neural network structure to the U-Net
model and proposed a novel end-to-end brain tumor segmentation method. In this method,
an up-hop connection structure was designed between the encoding path and decoding
path to enhance the information flow. Jia et al. [99] constructed a HNF network based
on the parallel multi-scale fusion (PMF) module, and proposed a three-dimensional high-
resolution and non-local feature network (HNF-NET) for multi parameter MR imaging,
which can generate strong high-resolution feature representation and aggregate multi-scale
context information. The expectation maximization attention (EMA) module is introduced
to extract more relevant features and reduce redundant features. The DSC and HD of
the whole tumor are 91.1% and 4.13%, respectively. The segmentation algorithm based
on encoder-decoder can combine high-resolution and low-resolution information, and
can recognize features from multiple scales, but there is only a short connection between
the encoding process and the decoding process, and the connection between the two is
obviously insufficient.

3.4. Summary and Analysis

This paper summarizes the existing traditional machine learning based and deep
learning based brain tumor MR image segmentation methods and reviews the researchers’
work in the field. It is not difficult to find that deep learning methods and techniques
gradually occupy a dominant position in the field of brain tumor MR image segmentation.
In the past few years, an end-to-end CNNS method and a U-Net network with codec
function for brain tumor MR image segmentation have been most widely used. However,
even if similar network architectures are used, the results are not identical [100,101], because
data preprocessing can increase the segmentation accuracy without changing the network
architecture, and can enhance the generalization ability of the network. Therefore, almost
all the research has carried out data preprocessing. By comparing the segmentation
performance of various methods, this paper finds that each type of method can solve some
of the problems in segmentation. However, there are deficiencies in generalization. For
example, brain tumor segmentation based on traditional methods is mostly simple and
easy to implement, but it is difficult to process complex images, and the segmentation
accuracy is generally low. Segmentation methods based on traditional machine learning
are theoretically easy to understand, but it is difficult to process big data. Segmentation
methods based on deep learning can extract the deep information from the image, but their
interpretability is poor. The advantages and disadvantages of the brain tumor MR image
segmentation method described in this paper are shown in Table 4.
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Table 4. Advantages and disadvantages of various brain tumor MR image segmentation methods.

Method Advantage Disadvantage

Traditional
segmentation

methods

Segmentation method based
on threshold [57,58]

Easy to implement,
Fast in calculation

Low accuracy,
Meaningless for small images

Segmentation method based
on Region [61,62]

Simple calculation,
High accuracy,

Can operate in parallel

Sensitive to noise,
Easy to produce cavity,

Volume effect,
Easy to oversplit

Segmentation method based
on fuzzy theory [63,66]

Low image requirements,
Sensitive to parameters,

Lack of theory,
Imperfect system,

Long time consuming
Segmentation method based
on edge monitoring [67,68]

Strong anti noise ability,
Fast detection speed

Contradiction between noise,
resistance and accuracy

Segmentation
method based on

traditional
machine learning

Segmentation method based
on KNN algorithm [69]

Simple,
High precision,

Effective noise reduction

Data correlation required,
Large amount of calculation

Segmentation method based
on random forest [71,78]

Strong fitting ability,
Strong anti noise ability,

Fast in calculation,
balance data differences

Many features are required,
Easy to lose information

Segmentation method based
on support vector machine

[73,74]

Easy to fit,
Strong theoretical,
Easy to calculate

Sensitive to kernel function,
Low precision in multitasking

Segmentation method based
on dictionary learning [72,80]

Fast operation speed,
good performance High requirements for data,

Segmentation
method based on

deep learning

Segmentation method based
on CNN [18,50]

Shared convolution kernel,
Automatic feature extraction

Weak interpretability,
Easily lost information,

Existence of local convergence

Segmentation method based
on FCN [26,91]

Image size is not required,
Classify each pixel

Efficiency is not real-time,
Insensitive to details,

Lack of spatial consistency

Segmentation method based
on encoder and decoder

[92,93]

Multiscale feature recognition,
Combined with high and low

resolution information,
Restore pixel position information

Insufficient contact between
encoder and decoder,

A large number of parameters,
Slow computing speed

In recent years, there has been more and more research into brain tumor MR image
segmentation. However, the DSC measure of brain tumor segmentation is only about
0.9, which due to the complexity of the brain tumor MR image and the limitation of the
segmentation algorithm. In addition, there are many other challenges in the research field
of brain tumor MR image segmentation, such as the generalization ability of segmentation
algorithms. Most of the existing segmentation algorithms are for a single lesion, and it
is difficult to generalize these to brain tumors with different conditions or even other
lesions. The proportion of brain tumor background in the MR image is too large, and the
proportion of tumor target region (especially the subregion of brain tumor) is too small, so
it is difficult to locate accurately and effectively in the segmentation process. MR images of
brain tumors are multimodal data. If the multimodal information is not handled properly,
the information between images will be confused, which can lead to no improvement, or
even a reduction in segmentation accuracy. Currently, many studies on brain tumor MR
image segmentation are only at the theoretical stage, unable to meet the needs of medical
staff and difficult to be applied in clinical practice. Deep learning has gradually become the
mainstream method in brain tumor MR image segmentation. However, as a supervised
learning method, deep learning relies too much on ground truth, but manual labeling is
extremely difficult.
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4. Future Research Directions

Through studying and summarizing the existing segmentation methods, this pa-
per looks forward to future research directions from four aspects: data acquisition and
processing, feature extraction, calculation methods and clinical application.

In recent years, with the continuous development of medical imaging, MR images of
brain tumors are playing an increasingly important role in the diagnosis and treatment
of brain tumors. Traditional research is mostly based on the calculation and analysis of
unit point and small sample data. If the data of different institutions can be integrated and
utilized, the accuracy of tumor segmentation will be greatly improved [102]. However, it is
still a great challenge to find a general method to deal with all changes of brain MR images
from different institutions and MRI scanners. Therefore, how to make full use of multi-site
and multi center data [103] will become an area worthy of attention.

Deep learning has an ability to learn features, high efficiency in extracting features,
can set the number of network layers, can be mapped to any function in theory, and
can solve more complex problems. As long as there are enough brain tumor MR image
data, we can obtain ideal results and good portability, which can be used in Tensorflow,
Pytorch and other frameworks. Therefore, deep learning based methods will continue to
be active in brain tumor MR image segmentation. However, how to improve the feature
expression ability of the network is the key problem in improving the performance of the
segmentation network.

With the development of artificial intelligence theories and methods, there are many
efficient network architectures in the field of computer vision. How to reasonably migrate
these architectures to brain tumor MR image segmentation tasks, such as using mask
RCNN network [104] in image retrieval and blendmark network [105] in the instance
segmentation task, to improve the detection and location ability of brain tumor and its sub
regions, is a direction worth exploring.

At present, the mainstream supervised brain tumor MR image segmentation methods
have limited databases and are highly dependent on ground truth, while manual labeling
is extremely complex. Therefore, how to segment brain tumor MR images accurately
through unsupervised learning without labels, and weakly supervised learning with a
small number of labels or coarse-grained labels, or to ensure that supervised methods have
unsupervised learning ability, will become a hot research direction.

With the proposal of the issue of “combining scientific research with practical prob-
lems”, as well as continuous interdisciplinary collision and integration, cooperation be-
tween clinicians and computer scientists in the field of medical imaging is becoming more
and more important, i.e., scientific research should meet the clinical needs of the hospital.
Therefore, in the research into brain tumor MR image segmentation, how to combine
clinical information, such as the deep fusion of brain tumor pathology, disease symptoms
and MR image at the feature level, etc., will be an important research direction.
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Abstract: The development and implementation of artificial intelligence (AI) applications in health
care contexts is a concurrent research and management question. Especially for hospitals, the expec-
tations regarding improved efficiency and effectiveness by the introduction of novel AI applications
are huge. However, experiences with real-life AI use cases are still scarce. As a first step towards
structuring and comparing such experiences, this paper is presenting a comparative approach from
nine European hospitals and eleven different use cases with possible application areas and benefits
of hospital AI technologies. This is structured as a current review and opinion article from a diverse
range of researchers and health care professionals. This contributes to important improvement
options also for pandemic crises challenges, e.g., the current COVID-19 situation. The expected
advantages as well as challenges regarding data protection, privacy, or human acceptance are re-
ported. Altogether, the diversity of application cases is a core characteristic of AI applications in
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hospitals, and this requires a specific approach for successful implementation in the health care sector.
This can include specialized solutions for hospitals regarding human–computer interaction, data
management, and communication in AI implementation projects.

Keywords: COVID-19; artificial intelligence; uses cases; European hospitals; benefits

1. Introduction

Research into applications of artificial intelligence (AI) in health care and within
hospitals is a crucial area of innovation [1]. Smart health care with the support of AI
technologies, such as Machine Learning (ML), is needed due to specific challenges in the
provision of medical support in European countries as well as in the rest of the world. It is
not only the outbreak of the COVID-19 pandemic that reveals the current problems and
challenges facing European hospitals. The success in the science of medicine in the last
decades has had the effect of patients becoming older, frailer, and multi-morbid due to a
longer lifetime expectation [2].

This is accompanied by the fact that medical care and diseases are becoming increas-
ingly complex. Due to this medical complexity, medical personnel are becoming more and
more specialized, which cannot in general be fully provided for by smaller hospitals in
rural areas. Added to this is the demographic change already emerging in Europe, e.g.,
the population of over 80-year-olds in the EU27 will double from 6.1% in 2020 to 12.5% in
2060 [3]. Hence, more older people with their specific health problems will use the health
care system. In contrast to this, the number of young well-trained medical personnel is
currently decreasing and a shortage of skilled personnel, such as doctors and nurses, is
already emerging in many European nations [4].

The challenges of the simultaneous increase of older and multi-morbid patients with
complex diseases and the shortage of skilled personnel are also hampered by the increasing
economic constraints on hospitals. An increase in chronic diseases due to aging populations
and shortage of medical specialists results in resource scarcity and medical sustainability
challenges. In order not to endanger the living and health standards of the European
nations it will be necessary to develop applied AI-solutions to relieve the burden of
increased workload as well as being instrumental to deliver efficient, effective, and high-
quality health care.

Adaptability and agility at hospitals are major prerequisites in this context, and
narrowing the application of AI to optimization solely does miss the point in many cases.
By opening a wider range of actionable options, from personalized medical diagnosis and
treatment to choices in care, sourcing, and logistics areas, AI applications will provide
more important support avenues than efficiency enhancements only [5,6]. In addition,
multiple benefits regarding the ongoing COVID-19 pandemic can also be expected and
should be further explored, especially regarding data analysis and preventing unnecessary
patient contact for health care personnel in hospitals as centres of the fight against the viral
disease [7].

AI can also contribute to the fight against pandemics as COVID-19, helping hospitals
focus resources on pandemic patient’s treatments in the current as well as possible future
situations. In this sense, most AI applications are directed at contactless analysis, diagnosis,
and treatment (e.g., self-treatment and prevention), reducing the number of personal
contacts and hospital visits, therefore reducing the potential spread of COVID-19 and
other viral pandemics. AI in particular offers great potential for improving medical care
and supporting the medical staff. The state of the art and the challenges regarding AI
applications in hospitals and the health care sector are described for specific application
areas in Figure 1.
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Figure 1. Interrelation structure of AI application areas for AI in hospitals.

With regards to the introduction of AI applications in hospitals, two specific questions
arise, with the answers to them as the central contributions of this paper: First, what are
the requirements and hospital setups for AI applications? To this end, the authors carried
out a survey of different European hospitals and identified relevant projects in this field.
As a result, the main fields of application of AI for hospitals are found as care, diagnosis,
and logistics. The hospitals surveyed saw the greatest medical and economical potential
in these three areas through the use of AI. Building on this, the paper outlines altogether
11 use cases in 9 hospitals across Europe, informing how AI can contribute to agility and
efficiency in hospitals, improving health care from the resource efficiency as well as the
service quality and choice side, aligned with the core hospital workflow and value adding
processes. The second question is: How can a basic structure for the different AI use cases
be established to avoid the mistake of developing isolated solutions that are difficult to
transfer across hospitals? The authors propose three basics support areas which help to
ensure a holistic approach to AI application implementation and transfer within the paper.

The paper is structured as follows: The following section is outlining the applied use
case methodology for the analysis presented. The next section is describing the specific
use case descriptions and expectations of hospitals towards AI applications. The following
section presents a discussion regarding possible benefits and challenges as well as concept
items such as human–computer interaction and medical data space concepts to overcome
the challenges posed by AI applications in the hospital context. The final section provides
an outlook towards future developments and challenges for AI applications in hospitals.

2. Use Case Methodology

The first step to identify the current challenges and areas of interest of European
hospitals was to create a survey. The survey was carried out to obtain a differentiated
view of the needs of European hospitals. Specifics were requested, such as country, type,
number of patients and beds, and the main health care areas. In addition, hospital decision-
makers identified specific areas of application and presented the focus and expected output
of the utility of AI. The following Table 1 outlines the specific setup of these hospital
characteristics for the institutions included in the survey.
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Table 1. Included survey and case study hospitals in Europe.

Hospital
Type/Inpatient per Year/Outpatient per

Year/Beds 1 Main Health Area(s)
Specific Application Areas (AA)/Focus on

(F)/Expected Output (EO)

University Hospital of Bern (Switzerland) Public/6000/737,830/64 (2018) 2 The University Clinic for Obstetrics and
Gynecology of Inselspital

AA: Diagnosis
F: Fetal state assessment during labor

EO: AI-based decision support system for fetal state
assessment during labor. The solution can assist

obstetricians in accurately assessing the fetal state in
clinical practice during labor.

Kuopio University Hospital (Finland) Public/99,000/517,000/590 (2019) 3 All branches

AA: Diagnosis
F: Finding new diagnostic and treatment methods, for

coronary artery disease.
EO: An AI-based decision support system for selecting
those patients among suspected CAD who benefit from

further imaging.

Hospital of Bozen (Italy) Public/25,064/737,830/697 (2018) 4 All branches

AA: Care
F: Rheumatological diseases and diabetes

EO: An intelligent tool able to support the definition and
scheduling of the different laboratory tests, medical

examinations and hospitalization.

La Fe University Hospital (Spain) Public/45,062/148,702/1004 (2019) 5
Management of

Chronicity (Integrated Care) and Active
and Healthy Aging

AA: Care
F: Strategic initiatives on integrated care for patients with

complex chronic and/or oncological conditions
EO: An intelligent tool able to improve the management

of chronic patients and to characterize the use of
resources throughout chronic patients’ healthcare,

reducing the economic burden for hospitals.

Federico II University of Naples (Italy) Public/n.a./365,000/1000 (2019) 6 Arterial hypertension on the
cardiovascular system

AA: Care
F: Arterial hypertension with particular reference to

ischemia heart disease
EO: Development of diagnostic and therapeutic

methodologies in the field of cardiac rehabilitation;
development of remote monitoring systems

(telemedicine) for patients with high cardiovascular risk.
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Table 1. Cont.

Hospital
Type/Inpatient per Year/Outpatient per

Year/Beds 1 Main Health Area(s)
Specific Application Areas (AA)/Focus on

(F)/Expected Output (EO)

Orton Ltd., The Private Unit Helsinki
Univ.Hospital (Finland) Private/2000/22,000/40 7

Orthopedics, neurosurgery, cancer
treatment, pain medicine and

rehabilitation

AA: Care
F: Ethical, rehabilitation and preventive care

EO: Developing new tools for the treatment and
rehabilitation of musculoskeletal disorders and

other conditions.

Odense University Hospital (Denmark) Public/104,229/1,104,229/1038 (2019) 8 All branches

AA: Logistics
F: Future of health care in mind, incorporating innovative

clinical and logistical technologies.
EO: To serve as a test bed for new medical technology,

including an extensive use of robotics and AI.

Bayındır Hospital (Turkey) Private/11,284/252,995/131 (2019) 9 All branches

AA: Logistics
F: Materials management and scheduling

EO: Optimizing resource allocation and medical
materials planning, reducing operational costs and

patient waiting times

University Hospital Essen
(Germany) Public/50,000/195,000/1300 (2019) 10 Genetic medicine, immunology, oncology,

cardiovascular medicine and transplants

AA: Logistics//F: Care operations with materials
management and supply//EO: Digitalized, patient- and
employee-oriented organization. To minimize time spent

for the nurses on documentation and administrative
tasks to allow more time for direct patient care.

1 Data from hospital sources. Definitions might differ due to national data regulations. 2 University Hospital of Bern: http://www.frauenheilkunde.insel.ch/de/ueber-die-klinik, accessed on 2 October
2020. 3 Kuopio University Hospital: https://www.psshp.fi/web/en/organisation/operations-and-tasks, accessed on 2 October 2020. 4 Südtiroler Sanitätsbetrieb: https://www.sabes.it/de/578.asp,
accessed on 2 October 2020. 5 La Fe University Hospital: Hospital activity report, 2019. 6 Federico II University of Naples. 7 Orton Ltd. University Hospital. 8 Odense University Hospital: https:
//en.ouh.dk/about-ouh/key-figures, accessed on 2 October 2020. 9 Bayındır Hospital. 10 Universitätsklinikum Essen: https://www.uk-essen.de, accessed on 2 October 2020.
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The framework situations for the outlined AI use cases are characterized by their specific
hospital setup in a broad multitude of European hospitals. By means of surveys carried out
in the hospitals participating in this analysis, different health care personnel have provided
systematic answers to a structured questionnaire dealing with relevant aspects to the study.
The hospitals where asked to detail current practical problems in different areas, how are they
currently managing these problems, ways and mechanisms to improve in these areas by means
of AI, and relevant KPIs determining qualitative and quantitative improvements related to
the adoption of the AI application. As a result, after extracting the information from these
surveys, use cases could be drafted for the different health institutions, based on real and actual
needs and opportunities. Societies require an effective and efficient health care system and
especially hospitals as nodes in a network of actors providing high-quality services, resources
and serving patients. The following table summarizes the main expectations as stated by the
health organizations in the survey (see Table 2).

From the expectations, a total of 11 use cases in different health areas has been
envisioned. It turns out that three particular fields are of specific interest to the hospitals
surveyed: diagnosis, care and logistics.

In the field of diagnosis, clinical decisions still mostly depend on the application
of clinical practice guidelines, instead of being based on the use of automatic decision
support tools that exploit the increasing availability of medical data from molecular assays,
electronic health records, clinical and pathological images, and wearable connected sen-
sors. Nowadays, clinicians face enormous challenges in reconciling heterogeneous clinical
data and exploiting the information content to make optimal decisions when assessing
a disease or its progression, and this situation has become more evident in the midst of
the global COVID-19 pandemic. Thus, there is an urgent need to develop smart decision
support systems, which assist clinicians in making rapid and precise diagnostic decisions
through the combination of multiple data sources. AI-based methodologies for medical
diagnosis and medical decision support have gained attention in the recent years as these
systems hold promise to automate the diagnosis and triage processes, thus optimizing and
accelerating the referral process especially in urgent and critical cases. Recently, state-of-
the-art examples demonstrated that software based on AI can be used in clinical practice to
improve decision-making and to achieve fast and accurate databased diagnosis of various
pathologies. In particular, AI has been proven particularly helpful in areas where the
diagnostic information is already digitized, such as: for detection of cancers based on
molecular, genomic, and radiological data [8], making individual prognosis in psychiatry
using neuroimaging [9,10] identifying strokes from computed tomography scans [11],
assessing the risk of sudden cardiac death or other heart diseases based on electrocardio-
grams and cardiac magnetic resonance images [12,13], classifying skin lesions from skin
images [14], finding indicators of diabetic retinopathy in eye images [15], and detect pheno-
types that correlate with rare genetic diseases from patient facial photos [16]. The change in
clinical practice through and by the means of technological innovation is today decisively
enabling health care systems to face to the continuous economic, socio-demographic and
epidemiological pressures [17]. However, technological innovation, although important
and central, must be carefully examined and accompanied to ensure that it really corre-
sponds to effective social innovation. As addressed by MedTech Europe, developing AI
systems and algorithms for healthcare settings requires specific skillsets which are in short
supply, and investment in education and training of professionals involved (e.g., data
scientists, practitioners, software engineers, clinical engineers), is mandatory [18].
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Table 2. Included survey and case study hospitals in Europe.

Heath Organization Current Problems and Approach Vision on Potential Application of AI Expected Improvement—KPIs

University Hospital of Bern, Department of
Obstetrics and Gynecology

Fetal assessment based on Cardiotocography (CTG)
or electronic fetal monitoring (EFM) limitations.

Their vision is to develop a medical decision support
system, which can assist obstetricians in accurately

assessing the fetal state in clinical practice during labor.

Improvement of decision-making can improve fetal
outcomes after delivery and avoid unnecessary medical
interventions and their health implications for mother
and fetus, as well as their economic implications. The
KPIs of the AI application are:

• Fetal outcomes, measured by clinical adaptation
(APGAR score) and hypoxia (measured by arterial
pH),

• Invasive interventions for prematurely ending the
delivery process, such as instrumental delivery or
cesarean section,

• Economical costs of delivery.

Kuopio University Hospital

Currently, the diagnosis of coronary heart disease
has changed towards the non-invasive imaging,
which has led to increasing number of patients
scheduled to CCTA. Interpretation of CCTA is
affected by the image quality, experience of the

doctor and by other issues, which can in terms lead
to unnecessary repeated or additive diagnostic

imaging.

The motivation is to develop an automatic AI-based
analysis system for the coronary computed tomography
angiography (CCTA): To enhance diagnostic accuracy of

CCTA and to guide clinical decision making.
Interpretation of CCTA will be systematically guided by

the standard AI-based analysis system.

The patients need only one diagnostic method and the
workflow of the interpretation of CCTA become more
fluent. Relevant KPIs are:

• Increased number of CCTA imaging in one center,
• Improved patient convenience, safety and decreased

health care costs,
• Improved effectiveness leads to shorter waiting

times and shortened queues.

Hospital of Bozen Limitations on healthcare resources management
and chronic care pathways definition

AI tools to support the definition and scheduling of the
different laboratory tests, medical examinations and

hospitalization which affect STHA patients, personnel,
equipment and resources inside and outside the

hospital and located in multiple areas of the
geographical territory of its responsibility

Ease the management of healthcare resources with a
particular focus on rheumatological diseases and
diabetes as chronic diseases. Relevant KPIs are:

Decrease waiting time to access to scheduled medical
examinations and labor tests,

Average cost to provide the healthcare services to the
chronic care population,

Quality of the medical treatment, e.g., percentage of
re-hospitalized patients.

La Fe University Hospital

Chronic diseases (CDs) represent the major cost of
morbidity and mortality and lead to 86% of all

deaths. In Europe, these account for more than 75%
of the healthcare burden with a cost for the

economy of €700 billion per year.

AI will help to: Improve the management of chronic
conditions and multimorbidity in the face of aging

population and its implication on public health; Contain
the impact and global burden of chronic conditions,

multimorbidity and frailty on individual quality of life
and on healthcare systems; Strength the clinical
management of complex chronic conditions and

multimorbidity having a better understanding of the
individual prognosis and disease evolution, and

targeting personalized interventions.

Optimization of resources and the clinical flow of
chronic patients at Hospital. Relevant KPIs are:
Efficiency on the allocation and consumption

of resources,
Right assignment of chronic patient to care pathway,

Decrease in turnaround time,
Selection of right pathway,

Avoidable episodes of care inadequate use.
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Table 2. Cont.

Heath Organization Current Problems and Approach Vision on Potential Application of AI Expected Improvement—KPIs

Federico II University of Naples

Today CVD is the leading cause of death in Europe;
presently 47% of all deaths in Europe and 40% of all
deaths in the European Union (EU) are attributable
to CVD. This means that across Europe as a whole 4
million deaths per year currently occur due to CVD,

of which 1.9 million are in the European Union

Use of AI may help clinicians in problem solving and
patient’s management. AI process may be used to
improve process of health care management with

specific regards to resource allocation,
patient management.

Rapid assessment of correct management strategy.
Relevant KPIs are:

Improvement of timeliness in critical event treatment,
Reduction of ambulatorial visits,

Forecasting of avoidable critical conditions.

Odense University Hospital
Maintain high quality treatment for our patients in a
demographic development scenario and increasing

chronic conditions

Need to rely on AI and robots to ensure quality level
and improve security in repetitive tasks, while

alleviating staffing challenges.

Optimize handling of transports and logistics.
Relevant KIPs are:

Improve timing for transportation of patients
or samples.

Release of staffing resources to other tasks/areas. As
well as an improved working environment for staff.
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In the field of care, AI for health has shown great potential to improve healthcare
efficiency, considering the relationship between health factors, including service and man-
agement, and ICT factors that include sensors, networks, data resources, platforms, ap-
plications and solutions [19]. For the hospital facilities, AI is one of the most powerful
technologies from the perspectives of data, computing power and algorithms. Research
in Health 4.0 has been conducted in an interdisciplinary way with a diversified set of
applications and functionalities and in terms of its implementation, it has been more com-
monly found in hospitals’ information flows, especially the ones related to healthcare
treatments [20]. In this context, it is also necessary to consider and to assess the prevailing
opinions and expectations among stakeholders regarding ICT health solutions, such as the
improvement of factors that affect quality of life, quality of health care, patient’s knowledge,
monetary aspects, or data security and privacy [21]. Although the research trend in the field
of chronic care is to keep a continuous monitoring of each patient (promoting continuity
of health and social care), tools to identify chronic patients and analyze the use of health
services (care pathways) that they perform do not exist yet, and in addition there are no AI
models that facilitate the design of integrated care pathways. There is clear evidence of the
relevance of organization and management of the technological issue in the health care,
concept further reinforced on the light of recent COVID-19 pandemic. Assessment, supply,
prioritization, appropriate usage, and exploitation are indeed not a trivial duty, and the
final success of any health process is widely affected by technology management issues.

In the field of logistics, AI can be applied in the forms of optimizing ML algorithms for
scheduling and transportation planning [22–24]. This has not been extended to AI-led prog-
nosis applications at least with empirical testing. The currently existing industry standard
draws on manual processes to plan and optimize resource use. Software applications are
being widely used in hospitals for this problem area, such as ORBIS, Medico or M-KIS that
rely on an old architecture and non-intelligent, manual interaction with users. Even spe-
cialized software modules such as myMedis support the whole process of OR management
and related resource planning but still do not use AI-based technology and thus are not
able to cope with rising complexity in resource planning optimization [25–27]. It has been
reported that AI adoption by key stakeholders such as doctors remains low [28], and that
existing applications do not cater enough to the specific needs of human stakeholders that
are supposed to interact with the systems [29]. Accordingly, a focus on human–computer
interaction (HCI) spanning pre-design, design and post-design phases as well as catering
to user, system, task, and interaction characteristics [30] holds the potential to increase AI
adoption and user satisfaction [31]. While expertise in HCI has been developed in the fields
of computer science [32,33], it has not been systematically applied to the hospital context.

3. Use Cases Descriptions and Expectations

In the field of diagnosis, we propose to advance the methods that intelligently utilize
heterogeneous data from various sources and novel AI-based methods for supporting
medical diagnosis and decision making inside clinics. More specifically, we propose
to increase the utilization of AI-based methods in four selected use cases: diagnosing
coronary artery disease (CAD), assessing fetal state during labor, diagnosing epidermolysis
bullosa (a rare genetic disease) and diagnosing arrhythmias automatically. All the use
cases provide heterogeneous data, which at the same time is a challenge for the medical
experts to handle and on the other hand provide a possibility for the rise of novel AI-
based methods in supporting diagnosis and clinical decision-making. AI-based methods
also enable detection of factors in medical diagnosis that are unnoticeable for humans.
Collaboration between technical and medical experts is crucial to co-create such tools to
be used in clinics that are highly acceptable, highly deployed, and provide real value for
patients, doctors and societies.

407



Healthcare 2021, 9, 961

3.1. Use Case 1: Coronary Artery Disease Diagnosis

Among all routinely available diagnostic tests, coronary CT angiography (CCTA) has
the highest sensitivity (95–99%) for detection of coronary artery disease (CAD), with a
specificity of 64–83%, and it has recently set up as the first-hand diagnostic tool for stabile
chest pain. However, after CCTA there are still several patients for whom the diagnosis and
reason for symptoms remains unclear and further imaging studies (myocardial perfusion
and/or invasive coronary angiography) are needed to decide the best way of the treatment.
Training a ML algorithm to recognize those cases for whom further imaging is likely
to provide essential information among the unclear cases with suspected CAD would
improve the cost-efficiency and logistic of the diagnosis of chest pain patients. In other
words, the aim would be to develop a tool for evaluating the risk of the patient to have
prognostic CAD for customized clinical decision-making. The number of the patients with
suspected CAD transmitted to hospital for diagnostic imaging is likely to grow in the future
worldwide due to recently published clinical guidelines emphasizing the use of CCTA. For
the study, a number of contemporary CCTA studies imaged and essential clinical data (age,
sex, cardiovascular risk factors and medication) could be used to train a machine-learning
algorithm such as Disease State Index (DSI), which is a method to quantify the probability
to belonging to a certain disease population, originally developed to support clinicians in
diagnosing Alzheimer’s Disease [34].

3.2. Use Case 2: AI Based Automatic Arrhythmia Analysis

Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated
with significant morbidity and adverse outcomes (stroke, heart failure, death). Overall,
AF is associated with five-fold greater risk of stroke. Anticoagulation therapy has been
demonstrated to reduce AF-related stroke risk significantly. Paroxysmal AF (PAF) is a self-
terminating recurrent form of AF. The diagnosis of PAF is often tricky since PAF episodes
can be short in duration, asymptomatic and the episode incidence can be low. It is estimated
that the stroke causes total costs of EUR 45 billion/year across Europe. In European
countries, 1.5 million peoples are diagnosed with stroke every year, 9 million are living
with stroke and it is responsible for 9% (0.4 million) of all deaths in EU [2]. Cryptogenic
stroke (CS) and transient Ischemic Attack (TIA) patients and cardiac surgery patients are
the three most clinically significant patient groups where PAF is often underdiagnosed. In
this use case, state of the art AI-based arrhythmia analysis algorithms are developed for
PAF-screening in patients with TIA or cryptogenic stroke and detection of post-operative
atrial fibrillation in cardiac surgery patients. AI-based automatic arrhythmia analysis
implemented in wearable sensors enables longer monitoring time with improved patient
usability and still requires minimal effort from healthcare professionals. Developing novel,
AI-based non-invasive methods for PAF screening, using simple wearable ECG or PPG
measurement would lead to increasing rate of PAF diagnosis in cardiac surgery, CS and TIA
patients. These monitoring methods will be easily exploitable and inexpensive. The timely
diagnosis of PAF has an important impact since anticoagulation may save the patient’s life
or prevent stroke-related disabilities such as paralysis, aphasia and chronic pain. There is a
high-cost saving potential, since one prevented stroke can save EUR 20,000 of direct medical
costs and more than EUR 100,000 of indirect costs (disability-adjusted life years lost).

3.3. Use Case 3: Fetal State Assessment during Labour

Cardiotocography (CTG), also known as electronic fetal monitoring (EFM), is used
for fetal assessment before and during labour and largely replaced the use of intermittent
heart rate auscultation. Visual interpretation of CTG traces is characterized today by a
great inter- and intra-observer variability with low specificity. EFM has been shown to
lead to unnecessary medical interventions such as caesarean section and vaginal-operative
deliveries, with the associated health consequences and economic costs. The low speci-
ficity for identifying fetal hypoxia can be partially interpreted in the context of observer
variability. CTG recording is widely performed for fetal assessment during delivery and
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has become routine in most hospitals worldwide. A software program connected to the
electrodes of the electronic fetal monitoring system (EFM) registers fetal and maternal data
such as fetal heart rate and its variations, maternal heart rate, uterine contractions and
fetal movements. Currently, the most specific available CTG interpretation system is the
FIGO (Fédération Internationale de Gynécologie et d’Obstétrique) classification, which is
most commonly used worldwide [35]. Fetal outcomes after delivery are being measured
by assessing following two parameters: (1) arterial pH directly after birth (blood from the
umbilical cord); (2) APGAR score assessment at 1, 5 and 10 min after delivery. This not only
offers information about the fetal state, but also gives observer (obstetricians and midwives)
direct feedback about previous CTG interpretation during delivery as well as prediction
of fetal hypoxia/acidosis. An arterial pH under 7.15 is considered to be pathologic and
is a direct indicator of fetal hypoxia. An APGAR score under 7, measured 5 min after
delivery is also considered to be pathologic. APGAR as scoring system based on five fetal
features—appearance, pulse, grimace, activity and respiration—providing information
about the status of the new-born after delivery [36]. Considering the problematic of ob-
server variability, four scenarios are possible when CTG interpretation is performed by
obstetricians or midwives: (1) normal CTG, normal outcomes (pH/APGAR); (2) patho-
logical CTG, normal outcomes (pH/APGAR); (3) normal CTG, pathological outcomes
(pH/APGAR); (4) pathological CTG, pathological outcomes (pH/APGAR). By introducing
AI interpretation, the purpose is to improve scenario 2 and 3, which will in most cases lead
to avoidance of surgical interventions, since the main problem of CTG is specificity; or
to performing interventions at moments where one would otherwise refrain from doing
so (version 3). The AI system could provide feedback when fetal asphyxia is expected
(pH < 7.15 or APGAR at 5 min < 7), as well as warnings, if applicable. The proposed AI
(or ensemble of several AI instances) would help in removing the existing great inter- and
intra-observer variability and would lead to a direct and positive impact on effectiveness
and efficiency through: (1) decrease of unnecessary caesarean section and instrumental
delivery; (2) increase of specificity for identifying fetal hypoxia; (3) decrease of unnecessary
health costs derived from unnecessary surgical procedures.

3.4. Use Case 4: Diagnosis in Epidermolysis Bullosa, a Rare Genetic Disease

In Europe, a disease is considered rare when it affects less than 1 in 2000 people. There
are more than 7000 rare diseases (RDs) worldwide, about 80% of them has a genetic origin
and approximately 75% affect children. RDs are estimated to affect 350 million people
globally [37]. In better-resourced countries, correct diagnosis of rare genetic diseases takes
on average between 5.5 and 7.5 years. In Europe and United States, nearly half of the first
diagnoses are only partially correct. The deployment of effective diagnostic procedures is
hampered by the underestimation of the true disease frequency (owing to the lack of RDs’
awareness) and by an insufficient knowledge of the disease pathophysiology and natural
history combined with the paucity of validated disease-specific biomarkers. Epidermolysis
bullosa (EB) is a group of inherited, genetic diseases in which the skin (and the mucous
membranes) is very fragile and forms severe, chronic blisters and lesions after even minor
frictions or trauma. This rare genetic disorder affects all genders, ethnic and racial groups
and determines either an early death or a long-term debilitating and life-threatening
condition, since the severe blistering and associated scarring and deformities result in poor
quality of life and reduce life expectancy. In the world there are about 500,000 persons
affected by this disease and 36,000 in the European Union (EU). EB can be classified into
four major subtypes, such as dystrophic EB (DEB), junctional EB (JEB), EB simplex (EBS),
and Kindler Syndrome depending on the gene mutations and the level of skin cleavage [38].
Within the subtypes, EB has different severity levels and clinical manifestations. There is
an urgent need to develop efficient methods for the early diagnosis of the EB subtype, the
prediction of the disease progression and, consequently, the selection of individualized,
precision therapeutic strategies. In this endeavour, “omics technologies”, as genomic
analysis by means of next generation sequencing (NGS), have recently found applications in
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the diagnosis, molecular subtyping, and follow-up prediction of EB. Information retrieved
from these technologies represents a substantial increase in the amount of data that can
be used to support EB patients, provided that advanced computational methods are
available for their integrative and combinatorial analysis. In this use case, state-of-the-art
AI algorithms are developed and applied for supporting early diagnosis, sub-classification,
and therapeutic stratification of EB, as an example of rare genetic disease. In particular,
AI-based methods will be applied to the integrative analysis of biological (genomics,
molecular, immunological, and images) and epidemiological (medical records) data with
the aim to: (1) support disease and disease subtype diagnosis; (2) identify distinctive
features (genomic lesions, proteins, and immunological states) associated to disease severity
(biomarkers) for the prediction of disease progression; (3) detect molecular signatures for
guiding patient stratification for novel means of treatment (precision therapeutics). ML
algorithms can be trained to integrate phenotypic and clinical data for the prioritization of
disease-related genes and mutations, for the prediction of the pathogenicity and disease
clinical relevance of genetic variants, and for the identification of pathogenic variant
combinations. Furthermore, AI-based methods could be used for disease comprehension
and therapeutic target selection by unravelling the affected genetic and molecular players
and pathways. AI and ML can be applied to detect anomalies in gene expression and to
correlate transcriptional patterns with molecular mechanisms and clinical phenotypes, to
learn low frequency patterns, and to deliver automated class attribution [37]. Results from
these analyzes would facilitate the recommendation of optimal treatment approaches and
the identification of reliable biomarkers of normal versus pathogenic states and of response
to therapeutics interventions. AI methods focusing on removing the existing limitations
in the correct diagnosis of EB subtypes and in the prediction of the clinical course of EB
patients might achieve at least the same average accuracy as medical doctors following
the latest consensus reclassification of inherited EB. The AI-based integrative analysis of
biological and medical data will have a direct and positive impact on effectiveness and
efficiency through: (1) decrease in the time needed for the diagnosis of the correct EB
subtype and the stratification of the patient for the most effective therapeutic treatment;
(2) increase in the number and efficacy of diagnostic and prognostic biomarker; (3) increase
in the efficacy of selection criteria to identify patients who will benefit from ex vivo gene
therapy; (4) decrease of unnecessary life-threatening conditions and health costs derived
from delayed diagnosis and treatment administration.

In the field of care, AI will be applied in four other use cases: to improve the manage-
ment and decision support process, specifically in the chronic care pathway and resources
characterization, simulation of demand and prognosis, adverse events identification and
prevention, chronic resources management support tool and monitoring of the recovery
process. Novel innovative tools for simulation and prognosis would become available,
projecting the demand in terms of health resources for a given characteristic population
in a territory, considering temporary projections of frailty condition of population and
patients. As for recovery monitoring, contactless determination of vital signs will suppose
an advanced functional aspect by monitoring of all patients and not only critical cases.
Patients will benefit from reduced restrictions due to cables and devices. In addition, there
is a time saving for nursing staff, as they do not have to put the devices on the patient and
disinfect them. Regarding prevention of adverse critical conditions, the proposed approach
relies on the analysis of the entire temporal series of vital signs by means of deep neural
networks and hybrid approaches.

3.5. Use Case 5: AI Chronic Management and Decision Support Engine

According to the data of the World Health Organization (WHO), respiratory diseases
together with cardiovascular diseases are leading causes of death and disability in the
world. Considering this premise, the use of case will focus on the analysis of data from
chronic patients diagnosed with one of these four common pathologies: COPD, asthma,
coronary heart disease (e.g., heart attack) and cerebrovascular disease (e.g., stroke). The
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objective would be to apply AI in the clinical context of chronic care to characterize the
pathways and resources used, as well as anticipate the demand of resources in order to
optimize the economic costs. ML could be then used to analyze data of patients related
to clinical parameters (e.g., laboratory tests), use of resources (e.g., hospitalizations), so-
ciodemographic data (e.g., age, gender), and quality of life, among others. The AI engine
would be able to support two analysis processes: the chronic care pathway and resources
characterization (stratify patients by degree of frailty and map pathways), and resources
demand simulation and prognosis (according to each pathway/patient strata).

3.6. Use Case 6: Chronic Resources Management Support Tool

As stated by the surveyed hospitals, efficient and effective scheduling of the resources
is a challenge for most hospitals. Possible resources to be scheduled are patients’ beds,
material, medicament and assistance kit, medical equipment (e.g., diagnostic machines)
or operating theatres. The goal would be to automatically schedule the usage of the
considered resources as well as to measure and improve quantitative KPIs considered
relevant for the most significant hospital metrics, e.g., cost, service level, delivery time,
resource utilization, etc. To achieve this objective it is necessary to carry out the following
activities: (1) translating hospital needs, often presented in a medical language, in technical
concepts; (2) define the scheduling problem to be tackled by the intelligent algorithm
and input data; (3) development an intelligent algorithm to automatically schedule the
usage of resources and to measure quantitative KPIs over time; (4) test and validation of
the intelligent algorithm using real datasets with the aim to fine-tune the procedures and
selection rules implemented in the algorithm; (5) continuous learning of the intelligent
algorithm by its utilization, performances and evolution of the surrounding environment.

3.7. Use Case 7: Adverse Events Identification and Prevention

Clinicians require support in the identification and prevention of adverse clinical
conditions (ACC), as well as in identifying the main related care pathways. The technology
could support the clinician in the automatic identification of ACC, such as a reaction to
a new drug assumed by the patient after a change of her/his treatment plan. The AI
tools could analyze data caught by vital signs monitoring systems, such as heart rate,
pressure, body temperature and other data coming from the patient, such as information
inferred by dialog systems based on natural language processing that would periodically
interact with the patient to identify specific symptoms. Additionally, the tools would
be able to support clinical staff in case a change within the care pathway is needed due.
The objective would be to identify and forecast ACC for patients with non-communicable
chronic diseases, particularly referring to cardiovascular diseases, by using AI. Models and
tools for the automatic identification of ACC would be preliminarily realized adopting
retrospective data and classic ML algorithms using current guidelines on the management
of diseases of interest. Such models and tools, however, could be continuously improved,
following a continuous learning approach. Successively, the prevention of ACC could be
attempted by advanced classification systems, based on a combination of deep learning
and reinforcement learning approaches that will analyze time series data concerning the
patient condition evolution at different stages of the care pathway.

3.8. Use Case 8: Monitoring of the Recovery Process

Monitoring of the recovery process is a key hospital process. In order to achieve a high,
continuous quality, vital parameters have to be monitored constantly. Vital parameters
such as the heart rate or the respiration rate are key indicators for the current health status,
urgent emergencies and the recovery process. Especially, persons with chronic diseases
benefit from a continuous monitoring. In areas such as operation theatres or ICUs, there is a
high coverage, whereas in normal wards or floors there is little to no coverage. The objective
would be to remote determination of vital parameters such as heart rate and respiration rate
for an improved recovery monitoring in a patient friendly method especially for chronic
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diseases. This could be realized by optical sensors with remote working mode and AI
algorithms such as CNNs, BNNs or adaptive optical flow. To achieve the objective it is
necessary to carry out the following activities: (1) identifying of optimal positioning of
optical sensors within the hospital; (2) analysis of algorithms of remote vital parameter
determination in clinical environments; (3) transfer and implementation of algorithms to
the clinical setting; (4) evaluation of algorithms in clinical setting by means of reference
systems, which would stayed synchronized; (5) interface protocol for transmission of vital
parameters to central processing unit in the hospital. It should be guaranteed that only this
meta data are transferred but not the raw data, thus protecting the privacy of the patients.

In the field of logistics, AI can be implemented for example in three different use cases
as described below. The main focus is the optimization of resource use. It is expected that
AI will help to better predict material consumption and needs in the whole process. Besides
material consumption, transport planning is a further focus point in the field of logistics.

3.9. Use Case 9: Material Consumption Recognition and Prognosis

Currently, in the University Hospital in Essen as well as many other hospitals in
Europe the documentation of used materials with hospital patients is a non-digital paper-
pencil process consuming a lot of human work time. Therefore, digital improvements
regarding automated capture system for material consumption are a prominent request in
hospitals and addressed in this use case. Together with an industry partner an innovative
care trolley is developed with a camera system and the complementary AI-based software
using ML to recognize the consumed objects with patient processes automatically. User
interaction can be implemented according to current state-of-the-art concepts. It will
provide a data recognition and prognosis tool relating actual material consumption to
patient cases and therefore enabling a bottom-up planning and prognosis for optimized
procurement and logistics in hospitals.

3.10. Use Case 10: Optimization of Human-Robot Teams in Hospital Logistics Operations

Odense’s University Hospital (OUH) will benefit from a reactive AI-based resource
management and scheduling system for material transport logistic operations. The main
goal is to improve upon current task management systems with the inclusion of an AI-
driven optimized scheduler that will be able to oversee all the available robots and to
plan, schedule and assign tasks to the relevant hospital workforce, mainly logistic robots
but also employees. The proposed task management software will have several functions
and therefore will contain several different conceptual elements: (1) an automated task-
generation system, based on Reinforcement Learning (RL) algorithm, that analyzes the
relationship between room use and materials requirements to predict what will be needed
where and when based on past experience; (2) a scheduling element that knows what
transport resources are available to it, their status and where they are; and can create
an optimal schedule out of transport requests generated from user input or the task
generation above; (3) a reactive planning element that will rework the schedule regularly,
e.g., either every hour or when new on-demand transport requests are received; (4) a
transport optimizing element that analyzes the efficiency of the transport and adjusts
scheduling parameters to produce maximal transport for minimal energy use and minimal
task requests to humans; (5) a route generator element that creates efficient routes for the
robots and sends these to robots with their new tasks, in accordance with the schedule,
coupled with a route status analyzer which takes input from sensors on the robots and
around the hospital to determine the location of any blockages; (6) A sensory data analyzer
that can use incoming data from various infrastructure sources to inform the decision-
making elements, e.g., use of elevator position to inform the route generator or use of smart
cameras that can measure room occupancy for the task generator; (7) A representation of
(a) task criticality, i.e., planned, urgent and critical in emergency situations, (b) the current
status of the material flow, (c) the robots (name, capabilities, location, current task and
status) and (d) item transport requests (also available in a form readable by humans);
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(8) and a supervision element that will be utilized to identify and criticize any suboptimal
decisions made by the scheduler and provide feedback that will be used as input for
a reinforcement learning sub-component. Task and material flow reports collected and
shared by the hospital service and logistics departments of OUH, currently exceeding
555,000 entries describing various material flow logistic cases, i.e., transfer of medication,
healthcare equipment and samples, will provide a variety of types of inputs and tasks. The
system could automatically obtain information from various hospital software sources,
e.g., human workforce positions provided by the proposed event-based messaging system
by updating and adapting the current emergency messaging solution elevator status and
sensors in the hospital.

3.11. Use Case 11: Co-Development and Evaluation

Bayındır Hospital Söğütözü in Ankara is one of the three high-capacity hospitals that
belongs to Bayındır Healthcare Group. Bayındır Healthcare Group have three hospitals,
one medical center and seven dental clinics. All healthcare facilities material management
system can be centrally monitored and controlled. This provides an additional opportunity
to study the impact of planned AI implementations over multi-location inventory systems.
The hospital has specific experiences and requirements regarding healthcare logistics. It has
an existing barcode scanning system for collecting healthcare and inventory information
that aggregates centrally for the planning the availability of medical supplies and logistics
management. However, the hospital may still benefit from a new picture recognition and
AI-based system in terms of time savings, reductions in human error, and an increase the
safety by reducing the contact between the healthcare staff and patients. Furthermore,
material management and operation room scheduling are highly interrelated in practice.
Using the OR schedules to trigger the purchase of perioperative materials is expected to
further reduce inventory costs and increase operational efficiency compared to indepen-
dent material management systems [39]. In a comparison to standalone applications of
automated inventory tracking, predictive logistics, and cognitive automation, an additional
understanding of the impact of integrated AI applications on healthcare logistics operations
will bring several challenges, including data storage and management, data exchange,
security and privacy, and integrated decision-making.

4. Discussion: Benefits and Challenges for AI in Hospitals

The specific benefits and data as well as AI application challenges are presented and
discussed in this section, based on the outlined case studies and additionally directed
towards the contribution against pandemic situations, such as COVID-19.

The use cases presented in Table 3 are distinguished by specific aspects often related
to the area of interest, e.g., diagnosis, care, treatment, logistics or rehabilitation, or to the
targeted goals, e.g., increase the efficiency of a certain health care process, improve its qual-
ity, or increase the service level. However, the detailed description of the aforementioned
case studies suggests how all the involved hospitals are affected by common challenges
and potential barriers to the adoption of AI to their healthcare processes on regular basis.
In particular, it is possible to define three main issues which should be properly managed
to ensure an efficient and effective adoption of AI tools and techniques in the healthcare
delivery processes which distinguish European hospitals. The first aspect to be considered
is the human acceptance and the real adoption of AI solutions in hospitals. The resistance to
automated and partially obscure tools which offer assistance in several healthcare services
is a major obstacle to overcome. Leveraging such tools in traditional diagnosis, care and
treatment processes is useful but often distinguished by a low level of trust, in particular
by doctors and medical personnel. Furthermore, the usage of such AI solutions should not
increase the complexity or time required to complete certain medical process, therefore
offering an adequate and well-designed interaction with human adopters. The second
challenge to be tackled to foster the adoption of AI in European hospitals is the proper
management of medical data. This information is distinguished by some features which
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make their storage and usage much more sensitive than other data typically collected in
digital environments.

However, as COVID-19 dramatically revealed, the value beyond medical data is huge.
In particular, the opportunity to systematically collect data concerning the patient con-
ditions, made diagnosis, performed treatments and defined care offer to the hospitals of
the future the chance to significantly increase the efficacy and efficiency of the healthcare
services delivered. The last area involved by AI structural adoption in European hospitals
deals with technology selection and ethics. The former includes the complex and inter-
related process of selecting a novel technology for its adoption in healthcare services, as
represented by the solutions based on AI algorithms. The assessment of the most appropri-
ate AI based technology to be adopted to ease diagnosis, treatment or care activities is a
complex and distinguished by uncertain and multiple feasible outcomes with different and
contrasting scenarios. The latter deals with the ethical aspects involved in the adoption of
AI tools and techniques, from machine based medical decision to personalized treatments,
from sharing of personal health data to acceptance of robot medical personnel. Finally,
a latter aspect concerning the challenges of adopting AI in hospitals necessarily has to
be mentioned, e.g., the appropriate involvement of adequate stakeholders. Indeed, this
last issue is of fundamental importance to ensure the real usage of AI-based solutions in
daily hospital activities by doctors, acceptance of renovated treatments and procedures by
patients as well as commitment by local administrators to this modern form of health care
assistance. Therefore, the process of stakeholder commitment is of paramount importance
and should be adequately planned and implemented. Considering all the abovementioned
challenges and potential obstacles, the following paragraphs propose possible solutions to
overcome these difficulties, to ensure the adoption of AI solutions in European hospitals
and maximizing the efficacy of the innovation provided. In particular, the proposed actions
are grouped into three categories, human–computer interaction, medical data space, and
guidebook and ethics. The linkage between these transversal activities with the application
areas proposed in the manuscript is presented in the following Figure 2.

 

Figure 2. Linkage between transversal activities and application areas for AI adoption in Euro-
pean hospitals.

414



Healthcare 2021, 9, 961

Table 3. AI Use Cases, AI Methods and Outcomes.

Use Case Objectives AI Method Data Available Defined Outcomes
Contributions against
Pandemic Situations

Diagnosis
(1) MDS for Coronary Artery

Disease (CAD) diagnosis

The aim of this study is to train a
ML algorithm to distinguish

patients with suspected CAD to
those who benefit from further

imaging studies and to those who
don’t. In other words, to evaluate

the risk of the patient to have
prognostic CAD for customized

clinical decision-making.

Disease State Index (DSI), which
is a method to quantify the

probability to belonging to a
certain disease population,

originally developed to support
clinicians in diagnosing

Alzheimer’s Disease [34]. It is
designed to be ‘disease-agnostic’,
so that it can be used equally well
for other diseases, provided that

data are available.

For the study, a number of
contemporary CCTA studies
imaged in Kuopio University

Hospital (KUH) as well as ECG,
myocardial perfusion, invasive
coronary angiography imaging
and essential clinical data (age,

sex and other demographic data,
medical history, cardiovascular
risk factors and medication) are
gathered from existing clinical

databases in KUH.

Algorithms and AI solutions for
doctors supporting clinical

decision making in
CAD diagnosis.

Reduction of visits to the
hospital, which increases the
patient and personnel safety.

Diagnosis
(2) AI based automatic

arrhythmia analysis

In this use case, state-of-the-art
artificial intelligence (AI) based
arrhythmia analysis algorithms
are developed and integrated

into wearable sensors.
Development of novel AI-based
arrhythmia monitoring system

aims to improve
arrhythmia detection:

Enable longer non-invasive
monitoring time.

State-of-the-art AI based
arrhythmia analysis algorithms
are developed and utilized to

atrial fibrillation (AF) screening
in patients with transient
ischemic attack (TIA) or

cryptogenic stroke (CS) and
detection of post-operative atrial

fibrillation in cardiac surgery
patients. Used methods: neural
networks, deep learning, ML.

6000 24 h Holter recordings with
arrhythmia annotations.

Wearable sensor database: 700
patients (300 patients with AF

episodes) with wearable sensors.
New: TIA/CS database is

collected: 48h home monitoring
of simultaneous wearable PPG
and ECG-recordings from 100

TIA/CS patients.

Developed AF-screening solution
will enable long arrythmia

monitoring time and increased
rate of AF diagnosis. Wearable
sensors offer improved patient

usability and AI assisted
arrythmia diagnosis requires

minimal effort from healthcare
professionals; AF diagnosis has

important impact to patient itself,
since anticoagulation may save

the patient’s life (prevent
cardioembolic stroke). Cost

saving potential: one prevented
stroke can save 120,000€

to society.

Reduction of visits to the hospital,
which increases the patient safety.
Possibility to assess arrythmia of

corona patients remotely.
Increases patient and

personnel safety.

Diagnosis
(3) Medical decision support
system for fetal assessment

during labor

Improving fetal assessment with
accurate prediction of fetal
hypoxia and reduction of

caesarean and instrumental
delivery rates. Develop an

AI-powered clinical decision
support system.

Ensemble methods (e.g., stacking
and blending) combining

Explainable AI (aka XAI), neural
networks (e.g., CNN and RNN),
and gradient boosting techniques

(e.g., XGBoost)

The maternity ward of the
Department for Obstetrics and
Gynecology in the University

Hospital of Bern will provide a
dataset of cardiotocographic
(CTG) recordings. It includes

physiological data such as
maternal heart rate, fetal heart
rate, contraction strength. The

dataset is labelled by MDs.

The AI will focus on removing
the existing great inter- and

intra-observer variability while
achieving at least the same

average accuracy as medical
doctors following the “Updated

2015 FIGO Intrapartum Fetal
Monitoring Guidelines”. The

integration of our AI-powered
system should lead to a direct

and positive impact on
effectiveness and efficiency.

Assisting personnel in diagnosis
with AI in a situation where there

are not enough experienced
personnel available due to

the tpandemic.
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Table 3. Cont.

Use Case Objectives AI Method Data Available Defined Outcomes
Contributions against
Pandemic Situations

Diagnosis
(4) Diagnosis in Epidermolysis
bullosa, a rare genetic disease

To support disease prediction
and diagnosis through the

integration of extensive
biological data (images,

genomics, molecular) and
epidemiological (immunological,
clinical, demographic, lifestyles)

to identify genomic lesions,
proteins and immune-logical

states associated (biomarkers).

ML algorithms will be trained to
integrate phenotypic and clinical

data to improve accurate
prediction of progress of

Epidermolysis bullosa. AI-based
methods will also be used for
disease comprehension and

therapeutic target selection by
unravelling the affected genetic

and molecular players
and pathways.

This use case will exploit data,
competencies, and facilities of the
Modena EB-Hub, the center for
diagnosis, research, assistance

and development of innovative
therapies created in January 2020

at the General Hospital
of Modena.

Definition of AI-based decision
support systems to expedite

diagnosis, correct misdiagnosis,
diagnose previously

undiagnosed, and stratify EB
patients for advance therapeutic

intervention through the
integrative analysis of clinical
phenotypes and patient health
records, genetic information,
molecular levels, biochemical

fingerprints and patient images.

Assisting doctors’ in the
diagnostic process during the

pandemic, when the resources to
be used for diagnosis is limited.
Maintaining normal procedures

of diagnosing other health
problems during the pandemic.

Care
(5) Chronic care pathway and

resources characterization,
simulation of demand

and prognosis.

AI techniques applied to analyze
the pathways of chronic care

patients providing simulation
and prediction capacities about
the demand of use of hospital

services and resources

ML techniques (neuronal
networks; LSTM; statistics

predictions modeling; random
forest; decision trees). AI

adjustment to chronic care
attention, prototype testing,

application evaluation (KPI).

Historical clinical records for
patients with chronic diseases.

Data about care plans and use of
hospital services and resources
(pathways) made by this group
of patients based on degree of
frailty. Macro parameters from

population (estimate
demand/prognosis)

AI agent and tool for
dimensioning demand of

resources, including prognosis
and simulation, both at

individual and population level.
Intelligent assistant for

redefinition/optimization of
care plans

Reduction of the transmission
risks by being able to re-organize

the pathways according to
pandemic context.

Care
(6) Critical Conditions

identification and prevention

Identification and prevention of
critical conditions: Analysis of

vital signs, automatic recognition
of symptoms (e.g., skin rash,

mood change) and direct
interaction with patients.

Machine Learning Techniques
such as DNN, Reinforcement
Learning, Natural Language

Processing and Statistical
Methods.Adjustment chronic

care, prototype, evaluation (KPI).

Test of algorithms in hospital of
Bozen with either live settings or
retrospective data. Retrospective

data as heart rate, respiration
rate, oxygen saturation and blood
pressure. Moreover, general data
such as age, sex, weight, height

and other diseases.

AI tool for critical conditions
identification and prevention

along the chronic care pathway

Control of patients with
COVID-19 confined to their

homes, before variations in their
critical conditions.

Increase in patient and family
safety, especially in patients with

COVID-19 who live alone.

Care
(7) Intelligent resources

management

An intelligent algorithm is
developed to efficiently manage

the scheduling of
hospital resources.

Evolutive, self-learning and
auto-adaptive techniques focused
on chronic care, prototype testing,

validation through KPI.

Hospital models of processes for
resource utilization. Information:

processes, cost, service level,
delivery time, resource

utilization, medical
personnel qualification.

Scheduling planning tool for
optimal management of hospital
care resources for patients with

chronic diseases.

Reduction the transmission risks.
Better planning of resources in

compatibility with
pandemic demand.

Care
(8) Monitoring of the

recovery process

Remote determination of vital
parameters such as heart rate and
respiration rate for an improved

recovery monitoring.

Methods in the Area of computer
vision and ML i.e., CNN, BNN,
adaptive optical flow, SVM etc.

Recordings from lab situations
available; more data will be

generated within the Fraunhofer
InHaus-Centre, Test of

algorithms in hospital of Bozen

Software for vital parameters.
Transfer to hospital environment;

continuous monitoring; fast
obstacle identification; safe

solution; contactless

Reduction the transmission risks
in professionals by reducing

contact with monitored admitted
patients with COVID-19.
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Table 3. Cont.

Use Case Objectives AI Method Data Available Defined Outcomes
Contributions against
Pandemic Situations

Logistics
(9) Material consumption
recognition and prognosis

Develop an automatic material
documentation on the care

wagon or the material store in the
nursing ward based on computer
vision. A material consumption
prognoses is developed with the

derived data.

ML (computer vision, CNN):
Used materials are matched with
patient cases and their diagnoses
and treatments. Thus, it is known
which and how many materials

are needed by the individual
patient cases.

- Material lists
- Master and movement data of

the materials (order history)
- Demographic patient data

(gender, age, weight, etc.)
- Patient treatment history
- Automatic stock updates for

all materials on wagon

- Automatic material
documentation and transport

- Transparent material
consumption for individual
patient cases

- Specified case cost calculation
- Higher planning reliability for

material orders
- Immediate reaction to

material shortage

- Improved forecasting for
pandemic related
uncertanities

- Dynamic management of
limited material (such as
masks, protective visors and
clothing, antiseptics, etc.) by
predicting patients’
disease trajectory

Logistics
(10) Optimizing

logistic operations

Optimize the internal logistics
operations of the hospital by
considering both manual and

automatic transport in a resource
management and scheduling

framework. Generate
recommendations for how to
improve manual and robotic

logistics, based on gathered data.

Reinforcement learning
(multi-agent motion and

path planning)

- Hospital maps
- Data (sensor data, operational

data) from robots operating at
the hospital

- Data from the hospitals
material management system

- Generating data from current
hospital sensor infrastructure

- Knowledge about areas that
are frequented by visitors or
patients probably infected
with COVID-19

- Status reports for certain
characteristics of automated
and manual logistics operations

- Recommendations for
optimization of
material transport

- Better understanding of the
events leading up to an
incident report (e.g., materials
arrived late, or robot stopped
unexpectedly)

- Facilitate future integration of
robotic solutions in hospitals

- Automatic avoidance of
infections areas (e.g., areas
frequented by visitors)

- Decreasing transmission risks
to healthcare providers by
minimizing the
patient contact.

- Optimal management of
critical resources such as
Intensive Care Unit
(ICU) beds.

Logistics
(11) Co-development

and evaluation

Integration of optimization of
internal logistics operations and

material consumption

Predictive analytics and
cognitive automation

- Material lists
- Master and movement data of

the materials
- Demographic patient data
- Patient treatment database
- Availability of

healthcare resources

- Adaption routines and
experiences, e.g., comparison
of material recognition with
barcode system (already
existing, comparative case)

- Management of resources in
multi-location setting

- Centralized planning of
material consumption
and shortage

- Optimal
assignment/scheduling of
critical resources (healthcare
personnel, ICU, operation
rooms, etc.)
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Human–Computer-Interaction: Despite progress in the field of health care data analytics,
resulting in more and more prototypes and technical advancement, actual adoption by key
stakeholders such as doctors remains low [28,29]. This aspect will rise in relevance when
the respective systems increase in intelligence and analytical capability. Accordingly, an
increased focus on human–computer interaction spanning pre-design, design and post-
design phases as well as catering to user, system, task and interaction characteristics [30]
holds the potential to increase AI adoption and user satisfaction in clinical practice [31].

Medical Data Space: In addition, data connections in a Medical Data Space (MDS)
with distributed AI applications will help to share resources and to support specially
and severely affected regions and hospitals. In additions, overall data transparency and
analysis will help to fight virus outbreaks earlier through faster detection and containment
options due to AI analysis. The Medical Data Space (MDS) is a specialization of the
International Data Space (IDS), which provides a trustworthy, secure and cross-domain
data space allowing to build an economy of data between companies of all domains and
sizes. IDS was the result of R&D activities in 2015 and is now actively promoted through
the Industrial Data Space Association. It is in cooperation with the OPC foundation, the
FIWARE foundation and the Industrial Value Chain Initiative and the Platform Industry 4.0.
The IDS and thus the MDS define an architecture of data providers and consumers, which
are linked through connectors forming the data space. The architecture is defined in the IDS
document describing the layers of the architecture model which in turn describe the key
components necessary to realize a data space [40]. The first prototype has been presented in
2018 at the Hannover fair. The MDS concept targets the connectivity of local data spaces in
hospitals for analytics and the application of AI-based algorithms for research or hospital
internal use. Therefore, special services are necessary to not only store and manage the
transfer of medical data securely and maintaining the sovereignty of the data owner, but
it must additionally conform to requirements on anonymity and protection of personal
medical data sets. Here, the element of value-added services for the data space becomes
relevant enabling pseudonymization and anonymization features in the process.

Medical data of patients is a highly sensitive and therefore regulated asset which
requires handling in a secure and protected environment. The Medical Data Space (MDS)
builds upon the international data space to deliver a secured, controlled data storage and
processing environment to build an economy of data between providers and consumers
retaining sovereignty and control. The MDS extends this to address the additional medical
constraints. They key concept in MDS is the trusted connector which links both parties and
enforces the security and privacy policies defined. In addition to access management the
MDS architecture introduces data-processing services (data-apps) which can preprocess
data before or after transfer. As AI-driven smart hospitals rely basically on data targets
the connectivity of local data spaces in hospitals for analytics and the application of
AI-based algorithms for research or hospital internal will be used. Therefore, special
services are necessary to not only store and manage the transfer of medical data securely
and maintaining the sovereignty of the data owner, but it must additionally conform
to requirements on anonymity and protection of personal medical data sets. Here the
element of value-added services (data-apps) for the data space becomes relevant enabling
specifically pseudonymization and anonymization features in the process. In future works,
we plan to demonstrate that medical data space technology can provide the foundation for
the development and deployment of novel AI and data management data-apps. Specifically,
a pilot program for the analysis and management of in-hospital cardiac patient intervention
treatment with the goal of understanding and analyzing several key factors that impact
the ability and capacity of a hospital to provide treatment. The location for this future
installation will be the Evaggelismos Hospital in Athens.

Guidebook and Ethics: There is clear evidence of the relevance of organization and
management of the technological issue in the health care, concept further reinforced on the
light of recent COVID-19 pandemic [41]. Assessment, supply, prioritization, appropriate
usage and exploitation are indeed not trivial duties, and the final success of any health
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process is widely affected by technology management issues. In the modern re-setting
of health-care delivery via technology innovation, data driven management, health tech-
nology assessment, clinical practice guidelines as well as medical leadership are the main
topics that have to be addressed [42]. Knowledge management and technology innovation
with their continuously growing potentiality can indeed transversally represent the answer
to the demand of efficacy and efficiency of the system. Furthermore, great expectations are
placed in information and communication technologies (ICT) with their contribution in the
development of eHealth and closely in AI with its paramount applications in the various
sectors of medical practice and public health. The change in clinical practice through and
by means of the injection of technological innovation is today decisive to make the health
and care systems able to face to the continuous economic, socio-demographic and epi-
demiological pressures [17]. However, technological innovation, although important and
central, must be carefully examined and accompanied to ensure that it really corresponds to
effective social innovation [43]. Furthermore, as really recently underlined by a joint report
of EIT Health and McKinsey [44]. AI has indeed many potentialities for the improvement
in care outcomes, patient experience and access to healthcare services. AI is thought to
increase productivity and the efficiency of care delivery and allow healthcare systems to
provide more and better care to more people. Finally, it can support the faster delivery of
care, mainly by accelerating diagnosis time, and help healthcare systems manage popu-
lation health more proactively, dynamically allocating resources to where they can have
the largest impact and need. As addressed by MedTech Europe, developing AI systems
and algorithms for healthcare settings requires specific skillsets which are in short supply,
and investment in education and training of professionals involved (e.g., data scientists,
practitioners, software engineers, clinical engineers), is mandatory [18].

Ethical issues are a major hurdle to full-scale AI application use as many cases might
bring about risks such as wrong diagnosis or deviant therapy, as well as dissent among
personnel due to different opinions regarding correct AI analysis and advice. Therefore,
not only HCI issues but also human-human interaction and collaboration issues and ethical
questions to be solved and communicated among people first of all before AI can contribute
according to the full potential in health care.

5. Outlook

AI will play a significant role in future hospital health care systems. Applications
such as ML will further advance the development of processes in several fields inside the
hospital, of which we focus in medical diagnosis, logistics and care in this article. Important
obstacles remain, such as regulations, integrations to the Electronic Health Record (EHR),
standardization, medical devices certificates, training professionals, costs, updates—but
this is manageable. It is important to stress that AI applications will not replace human
clinicians but help them to concentrate on important human-related processes and to make
correct diagnoses with less analysis and decision time. This hopefully provides them with
time and focus to support patients from a specific human perspective. As a result of the
developments in computational power and algorithmic advancements, combined with
digitalization and improvements in data collection methods and storage technologies,
the healthcare sector today is supported by AI, ML and robotics as never before in the
history of medicine. Besides monitoring large-scale medical trends, these new technologies
also allow measurement of individual risks based on predictions from big data analysis.
AI has a key function in the healthcare management of the future. Research has already
proven the game changing potential of AI in various fields of healthcare, such as those
outlined in the use cases in this article. AI-based methods have been successfully developed
to address several healthcare logistics problems such as appointment planning, patient
and resources scheduling, resource utilization, and predicting demand for emergency
departments, intensive care units, or ambulances [45]. In addition, there already exist
a number of research studies which suggest that AI can perform at least as good as
humans at basic healthcare functions, such as diagnosis. Today, malignant tumors are
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spotted more successfully by algorithms than humans [46]. As a consequence of rapid
technological advancements, combined with ML’s enhanced ability to transform data into
insight, many of the medical tasks previously limited to humans are expected to be taken
on by algorithms [47]. However, there are several reasons why it will take a long time
before AI might take over comprehensive fields of activity from humans in hospitals and
healthcare: recent developments show that AI systems will not replace humans on a large
scale, but rather will support them in their efforts of patient care. Progressing into future
times, healthcare specialists can switch to tasks and job designs focusing on unique human
skills such as empathy and care. One risk within this development might be the position of
healthcare providers who are unable or refuse to work in collaboration with AI applications,
endangering their contributions and jobs. The most important obstacle regarding AI
applications in healthcare are not the capabilities or benefits of the technologies themselves,
but their applicability in medical practice. Widespread use of AI systems requires approval
by regulating institutions, integration with existing systems, sufficient standardization
with similar products, training of healthcare professionals, and solutions regarding issues
of data privacy and security. These challenges will eventually be solved, but it will take
significant time and resources [46]. The COVID-19 crisis has revealed the challenges for
healthcare systems—also for future pandemic situations. This increased attention to the
potential of AI in healthcare as one means of pandemic management and prevention. Major
challenges in responding to COVID-19, such as managing limited healthcare resources,
developing personalized treatment plans, or predicting virus spread rates, can be addressed
by recent developments in AI and ML. Wynants et al. [48] have already listed 31 prediction
models in a review of early studies of COVID-19. The prospective post-COVID-19 era in
preparation for future pandemic events will likely feature advanced healthcare solutions in
combination with operation research modeling [49]—and AI will be a crucial part of it as
outlined in this paper with 11 use case studies from European hospitals. The challenges
connected to such AI applications such as data management (HCI) have to be addressed
soon in order to prepare hospitals for future challenges, e.g., pandemic situations [50]. This
is a core challenge for health care management science and the implication for hospital
practice in order to apply the full potential of AI and ML to health care systems [51].
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Abstract: A relationship exists between metabolic syndrome (MetS) and human bone health; however,
whether the combination of demographic, lifestyle, and socioeconomic factors that are associated
with MetS development also simultaneously affects bone density remains unclear. Using a machine
learning approach, the current study aimed to estimate the usefulness of predicting bone mass
loss using these potentially related factors. The present study included a sample of 23,497 adults
who routinely visited a health screening center at a large health center at least once during each of
three 3-year stages (i.e., 2006–2008, 2009–2011, and 2012–2014). The demographic, socioeconomic,
lifestyle characteristics, body mass index (BMI), and MetS scoring index recorded during the first
3-year stage were used to predict the subsequent occurrence of osteopenia using a non-concurrence
design. A concurrent prediction was also performed using the features recorded from the same
3-year stage as the predicted outcome. Machine learning algorithms, including logistic regression
(LR), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost),
were applied to build predictive models using a unique feature set. The area under the receiver
operating characteristic curve (AUC), accuracy, sensitivity, specificity, precision, and F1 score were
used to evaluate the predictive performances of the models. The XGBoost model presented the best
predictive performance among the non-concurrence models. This study suggests that the ensemble
learning model with a MetS severity score can be used to predict the progression of osteopenia. The
inclusion of an individual’s features into a predictive model over time is suggested for future studies.

Keywords: osteopenia; metabolic syndrome; socioeconomic status; lifestyle; machine learning

1. Introduction

Osteoporosis is a systemic bone disease and an important public health problem
because it increases the incidence and mortality of fractures and significantly increases the
risk of fracture-related medical expenses [1–3]. A recent review study reported that the
economic burden of osteoporosis-related fractures was significant, costing approximately
USD 17.9 billion and GBP 4 billion per annum in the USA and UK, respectively [4]. In
Taiwan, the prevalence of osteoporosis among the population older than 50 years increased
from 17.4% in 2001 to 25.0% in 2011 [5] Approximately one-quarter of individuals older
than 65 years who have been diagnosed with osteoporosis have experienced a spine or hip
fracture [6].

Several physical factors have been associated with osteoporosis, including abdom-
inal obesity, high blood pressure, dyslipidemia, and glucose metabolism abnormalities,
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which are all considered to be components of metabolic syndrome (MetS). Cardiovascular
diseases (CVDs) have been linked to reduced bone mineral density (BMD), osteoporosis,
and osteopenia [7–10]. While MetS may play a potential role in the development of osteo-
porosis, further research is needed to obtain hard data to support the hypothesis. Previous
studies have identified similar risk factors and pathophysiological mechanisms underlying
the development of both osteoporosis and atherosclerotic CVDs. There are suggestions
that common underlying pathways, such as disturbed calcium homeostasis, induction of
inflammatory response, and oxidative stress, are shared by the two conditions. It has been
suggested that the two conditions share underlying pathways linking components of MetS
as well as the coupling process of bone formation and bone reabsorption [11,12]. Evidence
suggests that consideration should be given to the correction of MetS for the prevention of
osteoporotic fractures [13]. Potential factors that affect MetS development have included
demographic factors (including age, sex, and living area) and lifestyle behaviors (includ-
ing smoking, alcohol consumption, diet, and physical activity) [14,15]. Socioeconomic
status (SES) components, including income, occupation, and education, are also closely
related to CVD development and metabolic indicators [15–17]. Previous analyses may
have been limited by the lack of inclusion of social and lifestyle covariate factors, which
may reduce the explanatory power of these analyses. To clarify the causal relationship
between bone density and MetS, a prospective longitudinal study should be performed,
and during the investigation, sex, age, ethnicity, lifestyle, and eating habits should not be
overlooked [13,18].

For decades, artificial intelligence has been applied to the identification of risk factors
or groups at risk of developing osteoporosis. The burden on health systems, the economy,
and society could be lessened through the use of an artificial intelligence model to predict
risk groups [19–22]. A comprehensive and low-cost method could be developed to facilitate
the use of predictive models during health examinations, especially for developing coun-
tries or rural areas. However, most predictions for osteoporosis have been modeled using
information for participants who have primarily been female or in specific age groups.
Predictive tools should be developed to perform similarly across various populations,
including greater numbers of participants across a large age range, which has not been
the case for existing predictive models [22]. Additionally, few studies have performed
predictive models to identify the risk for osteopenia, which represents an earlier stage of
bone disorders, and to identify those at risk of osteopenia that may be useful for promoting
overall bone health, especially among younger populations.

To better understand the relationship between MetS and human bone health, de-
termining whether the underlying demographic, lifestyle, and socioeconomic causes of
MetS also affect bone density is critical. Our study aimed to explore a comprehensive
approach applicable to a wider population. Recent studies have reported that MetS sever-
ity scores can serve as useful indicators to assess the potential risk factors for subclinical
conditions and can facilitate the development of prevention strategies during the early
stages of disease development [23,24]. To our knowledge, no study has previously de-
veloped a disease prediction model that combines demographic, lifestyle, and SES with
MetS score indicators. Except for the two types of research that we reported [15,21], most
studies [14,16–20] conducted a cross-section (i.e., concurrence) approach to modeling the
potential risks associated with bone health. A non-concurrence study examining these
factors can be used to investigate the causal relationship between these factors and bone
health. Using a machine learning approach, this study developed a model to predict the
loss of adult bone mass among a Taiwanese population using MetS severity scores and
individual risk factors.

2. Materials and Methods

2.1. Data Source

Data were obtained and analyzed from a membership-oriented private institute, a
Major Health Screening Center in Taiwan. With four clinic locations around the country,
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the center provides periodic health examinations to approximately 600 thousand mem-
bers. A detailed description of the data collection and analysis of the resulting Major
Longitudinal Health-check-up-based Population Database (MJLPD) is described in detail
elsewhere [25,26].

In consideration of various ethical issues within the data, the protocol of this study was
evaluated and approved by the National Taiwan University Research Ethics Committee
(NTU-REC 201911EM012) and the Major Health Screening Center.

2.2. Study Sample

Participants over 20 years of age who had undergone at least one standard health screen-
ing at the Center in each of three three-year stages/periods (i.e., 2006–2008, 2009–2011, and
2012–2014) from 2006 to 2014 were used to conduct the longitudinal study. All participants
lacking BMD examination data or who were diagnosed with osteopenia or osteoporosis
(T score < −1) at baseline (i.e., 2006–2008) were excluded from the study. For participants
who had undergone multiple screenings within the three-year period, the last examination
period was selected for the analysis. As a result, three questionnaires and examination
measurements for each participant were collected during the nine-year period. A final
total of 23,497 participants (13,012 males and 10,485 females) met the inclusion criteria and
were used as our study dataset. Among the included study population, 1402 and 1805
participants were diagnosed with either osteopenia or osteoporosis during the second and
third stages, respectively. Due to a relatively low positive rate, the dataset was analyzed
using a random under-sampling (1:1 match) approach while applying machine learning
models to mitigate the imbalance problem. A flow chart of the data collection process used
to identify the study participants and define the analysis dataset is shown in Figure 1.

score < −1) at baseline (i.e., 2006

Figure 1. Flow chart of the data collection process used to identify study participants and define the analysis dataset.

2.3. Response Variables

The measurement of BMD in this study was primarily performed using a Lunar DPX-L
density meter, which measures dual-energy X-ray absorption (Liberty Corp., Madison,
WI, USA). Using the National Health and Nutrition Examination Survey as a reference
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population, gender-specific T scores were calculated, and osteoporosis was defined as a
T score below −2.5 standard deviations (SDs) relative to the average population value,
whereas a T score between −1.0 and −2.5 SDs was defined as low BMD (referred to as
osteopenia), and a T score above −1.0 SD was defined as normal [27]. All BMD reports were
independently reviewed and coded by trained research physicians. Bone measurements
taken at the spine were given priority, followed by hip bones and wrist bones, and the
results of all measurement sites were considered by physicians. In conducting the study
of the effects of risk factors on bone health over an extended period, we collected the
indicators of ongoing osteopenia or osteoporosis status among those who developed these
disorders during the study period and were not diagnosed with bone disorders at baseline.
Using −1.0 SD as the cutoff point in the current longitudinal study, individual BMD was
treated as a dichotomous variable. The measured outcome was defined as the occurrence
of bone illness, as diagnosed during the second and/or third stages for those with BMD
values higher than −1.0 SD during the baseline measurement.

2.4. Explanatory Variables

Each of the study participants completed a self-administered questionnaire during
screening to obtain socio-demographic characteristics and lifestyle habit information. Data
collected included sex, age (classified into 20–39 years, 40–64 years, and 65 or more years),
four aspects of SES (i.e., marriage, education, income, and occupation), as well as nine well-
documented lifestyle habits, constituting related risk factors in past studies. Hormones,
steroids, and thyroid-related treatment drugs used by patients were cataloged.

Body mass index (BMI, kg/m2) is considered a risk factor for osteopenia and was
included as a continuous variable in our analysis. Using the same databases reported in
previous research [24], by back-transforming the standardized scores derived from the
aforementioned equations, a covariance matrix was obtained with the MetS severity scores,
calculated using waist circumference, fasting plasma glucose, systolic blood pressure,
fasting triglycerides (TG), and high-density lipoprotein (HDL). First, the individual values
of the five components were standardized and converted to a Z score. A confirmatory
factor analysis approach was then followed to derive the score based on the five MS
components, with a weighted contribution for each of the components to a latent MetS
factor being determined based on both specific age ranges and genders. In the present
study, a higher score denotes that a person has a more severe MetS condition, whereas
lower scores indicate the lack of MetS.

Classification of the SES of participants was divided into three levels of educa-
tional attainment. Occupation was classified as unemployed, manager/owner, and non-
management employee. Marriage classification was labeled as married or unmarried.
Some lifestyle habits, estimated quantitatively by frequency, were classified into three
levels for smoking, alcohol consumption, sugar-sweetened consumption, physical activity,
and sleeping. Other habits, such as betel nut chewing, vegetarian diet, dairy intake, taking
calcium supplements, and related medical treatments such as hormones, steroids, and
thyroid-associated medications, were classified dichotomously.

2.5. Study Design

The physical and biochemical aspects, demographic, socioeconomic, and lifestyle
characteristics of the study participants at baseline and those associated with participants
who developed osteopenia or osteoporosis over the following two stages were described.
In the longitudinal study, the causal relationships were analyzed using a non-concurrent
design. The lifestyle characteristics, demographic, socioeconomic, and, as well as BMI and
MetS scores from the first stage were used as the features recorded during the following
two stages. The factors used to predict the occurrence of osteopenia or osteoporosis for
the second and third stages were those identified during the initial stage. A concurrent
prediction was also performed during the second and third stages using each individual’s
features from the stage being examined.
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2.6. Feature Selection and Machine Learning

All features missing greater than 30% of values were excluded from the analysis. The
missing values for the remaining features were replaced by using a multiple imputation
technique. A multivariate imputation via chained equations (MICE) module was used in
the R package to perform the data imputation. To identify the effects of important features
on the development of osteopenia, we applied the random forest (RF) algorithm with
10 times repeated 10-fold cross-validation to select robust significant features from the
training/validation (80/20) dataset, which utilized a mixture of numerical and categorical
features. Both the features and the cutoff points associated with each feature were randomly
chosen before each training model. Thus, the sequence of feature importance could differ
during each model. Then, we averaged the ten lists of feature importance to obtain a
robust selected feature list. The results demonstrated that the independent variables for
forecasting the prediction included 17 of the 24 analyzed features, which were selected as
a selected features dataset for further machine learning and model evaluation. The MetS
score and BMI played the most important roles among the selected features (Table 1).

Table 1. Robust feature importance ranking list.

Feature Rank Relative Importance

MetS score 1 1.000
Body mass index 2 0.959

Age 3 0.253
Education 4 0.243

Sweetened beverage 5 0.216
Milk intake 6 0.207

Income 7 0.194
Physical activity 8 0.187

Sleep 9 0.184
Occupation 10 0.162

Cheese intake 11 0.154
Sex 12 0.151

Smoke 13 0.133
Alcohol 14 0.127

Vitamin C/E intake 15 0.105
Calcium intake 16 0.103
Marital status 17 0.102

In this study, four well-accepted machine learning algorithms, including logistic
regression (LR), extreme gradient boosting (XGBoost), RF, and support vector machine
(SVM), were applied to develop the concurrence and non-concurrence predictive models.
A 10-fold cross-validation and grid search were used to determine the parameters of the
four predictive models for the tuning of hyperparameters while training the model using
the defined dataset. Using bootstrapping and 10-fold validation, the best scores were used
to define the parameters for the predictive models. The test of a dataset with 80/20, which
was a separated dataset from the preceding datasets, was used to avoid the development
of an over-fitting model. Subsequently, 10 iterations of a receiver operating characteristic
curve (ROC) analysis were employed on the randomized datasets to obtain the best area
under the ROC curve (AUC). All machine learning analyses were performed using Python
Software (Foundation and Python Language Reference, version 3.7.3, Beaverton, OR, USA).
The libraries of Scikit-Learn 0.23.2 were implemented and used to confirm these models.
The process used for feature selection and machine learning is shown in Figure 2.
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Figure 2. The process of feature selection and the application of machine learning algorithms.

2.7. Model Evaluation

The model’s discrimination was measured. In this study, discrimination refers to
the predictive effectiveness of the model in determining between participants with and
without osteopenia. In each model, the discriminatory power was analyzed based on the
AUC, while the ROC curves used were determined by plotting the true positive fraction
against the false positives. For each cutoff score, the specificity (maximum subsequent
sum) and sensitivity (optimal values) were calculated.

Furthermore, accuracy, precision, and F1 score evaluation indicators from the con-
fusion matrix were used to analyze the relationship between the actual values and the
predicted values for osteopenia. The precision–recall curve (PRC) was also generated to
determine the tradeoff between precision and recall at different thresholds. Precision–recall
is a useful measure of the success of prediction when classes are imbalanced. In the im-
balanced data, the false-positive rate tends to stay at small values due to the low positive
rate. Thus, ROC becomes less informative for the model performance in this situation. On
the other hand, the PRC baseline is varied by the value of the positive rate, and PRC is
performed by switching from false positives to precision, which provides more valuable
information. A high AUC represents both high recall (i.e., sensitivity) and high precision,
where high precision is associated with a low false-positive rate, and high recall relates to a
low false-negative rate. F1 was calculated as 2 × precision × recall/(precision + recall),
which is the harmonic mean of precision and recall. A larger F1 score indicates a more
accurate model.

3. Results

Lifestyle habits, sociodemographic factors, and biochemical and physical examination
items over the three study stages are presented in Table 2. Osteopenia occurrence rates
during the second stage in men and women were 7.3% and 4.3%, respectively. An increase
to 8.3% and 6.9% in the occurrence of osteopenia was observed during the third stage. Par-
ticipants with relatively low SES, adverse habits (e.g., smoking and alcohol consumption),
low sleep hours, and a vegetarian diet and who were taking related medicines during the
initial baseline stage had a higher occurrence of osteopenia during the subsequent stages.
Compared with the participants at baseline, the average BMI of those who developed
osteopenia in subsequent stages was relatively low. The participants who went on to
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develop osteopenia had a lower MetS score (−0.22) in the subsequent stages compared
with the average score (0.09) for the entire population at baseline.

Table 2. Explanatory variables related to osteopenia over the three study stages.

Characteristics
Participants in 2006–2008 Osteopenia in 2009–2011 Osteopenia in 2012–2014

n (%) n (%) n (%)

Sex
Male 13,012 (55.4) 953 (7.3) 1080 (8.3)

Female 10,485 (44.8) 449 (4.3) 725 (6.9)
Age (yrs)

20–39 11,055 (47.0) 240 (2.9) 176 (3.0)
40–64 11,781 (50.1) 1029 (7.2) 1404 (8.7)
≥65 661 (2.8) 133 (14.0) 225 (16.4)

Marital status
Unmarried 5163 (23.3) 211 (4.7) 258 (6.5)

Married 16,956 (76.7) 1100 (6.3) 1386 (7.8)
Education (yrs)

<12 2178 (9.4) 289 (13.6) 346 (16.5)
12–15 10,529 (45.6) 635 (6.2) 777 (7.9)
≥16 10,397 (45.0) 444 (4.2) 586 (5.5)

Income (NTD/yr)
<400,000 2676 (12.4) 226 (9.0) 297 (12.1)

400,000–799,999 5797 (26.8) 332 (6.4) 403 (8.4)
>800,000 13,174 (60.9) 699 (5.0) 899 (6.4)

Occupation
Unemployed 3707 (17.5) 284 (7.5) 422 (10.8)

Managed 2562 (11.7) 150 (5.5) 183 (6.6)
Non-managed 15,557 (71.3) 815 (5.4) 970 (6.6)

Smoke (pack/day)
None 18,545 (82.2) 1062 (5.6) 1503 (7.6)
≤1 3177 (14.1) 181 (6.6) 196 (7.6)
>1 839 (3.7) 71 (10.4) 57 (8.9)

Alcohol (cup/day)
None 18,601 (83.9) 1041 (5.7) 1477 (7.6)

1 1726 (7.8) 94 (5.5) 140 (7.6)
≥2 1847 (8.3) 129 (7.2) 140 (7.8)

Chewing betel nut
No 21,521 (93.8) 1208 (5.7) 1659 (7.6)
Yes 1428 (6.2) 93 (8.1) 102 (8.5)

Physical activity (hrs/wk)
<1 9042 (39.6) 503 (5.4) 552 (6.7)
1–6 12,805 (56.1) 573 (6.1) 801 (7.8)
≥7 987 (4.3) 126 (7.3) 197 (10.8)

Sleep (hrs/day)
<6 4523 (20.1) 369 (7.0) 524 (8.9)
6 16,467 (73.2) 676 (5.9) 845 (7.3)
≥7 1506 (6.7) 312 (5.1) 388 (6.9)

Vegetarian diet
Yes 592 (2.5) 56 (8.2) 271 (7.9)
No 22,774 (97.5) 1330 (5.9) 1534 (7.6)

Sweetened beverage
(cup/wk)

None 7148 (30.8) 707 (7.2) 996 (8.8)
1–6 10,981 (47.3) 483 (5.0) 560 (6.4)
≥7 5067 (21.8) 176 (4.9) 189 (6.5)

Milk intake (cup/wk)
None 11,545 (49.9) 701 (6.0) 871 (7.6)
1–6 9491 (41.0) 505 (5.6) 679 (7.2)
≥7 2093 (9.0) 158 (7.4) 187 (9.3)
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Table 2. Cont.

Characteristics
Participants in 2006–2008 Osteopenia in 2009–2011 Osteopenia in 2012–2014

n (%) n (%) n (%)

Cheese intake (slice/wk)
None 13,276 (57.5) 824 (6.3) 1119 (8.4)
1–6 9390 (40.7) 503 (5.3) 581 (6.4)
≥7 430 (1.9) 33 (6.3) 32 (6.9)

Vitamin C, E intake
Yes 4180 (17.8) 175 (4.8) 271 (7.9)
No 19,312 (82.2) 1227 (6.2) 1534 (7.6)

Calcium intake
Yes 3990 (17.0) 326 (8.6) 403 (12.0)
No 19,502 (93.0) 1076 (5.5) 1402 (7.0)

Hypertension medicine
Yes 1399 (6.0) 138 (7.1) 226 (9.3)
No 22,093 (94.0) 1264 (5.9) 1579 (7.5)

Diabetes medicine
Yes 440 (1.9) 47 (7.1) 72 (8.5)
No 23,052 (98.1) 1355 (5.9) 1733 (7.7)

Thyroid medicine
Yes 252 (1.1) 21 (6.5) 27 (7.3)
No 23,240 (98.9) 1381 (6.0) 1778 (7.7)

Lipidemia medicine
Yes 400 (1.7) 35 (5.7) 68 (8.1)
No 23,092 (98.3) 1367 (6.0) 1737 (7.7)

Hormone medicine
Yes 272 (1.2) 18 (7.9) 15 (7.1)
No 23,220 (98.8) 1384 (5.9) 1790 (7.7)

Body mass index (sd) 23.25 (3.41) 22.79 (3.09) 22.85 (3.07)
MetS score (sd) 0.09 (1.02) −0.22 (0.99) −0.22 (0.94)

The study utilized four machine learning models (i.e., LR, XGBoost, RF, and SVM)
to predict osteopenia. The predictive models were corroborated using optimal parame-
ters for each model through a grid search. The ROC and PRC curves of the generated
machine learning models for the concurrence and non-concurrence designs are shown in
Figures 3 and 4.

The differences between the models were more distinct when using baseline features
to predict osteopenia during the second stage than when using the baseline features to
predict osteopenia during the third stage. The performances of the models for predicting
osteopenia occurrence during the second stage according to baseline features are shown
in Table 3.

The AUC values for LR, XGBoost, RF, and SVM in the non-concurrence and con-
currence models were 0.726 and 0.745, 0.753 and 0.721, 0.693 and 0.687, and 0.723 and
0.712, respectively. The F1 scores for the four algorithms in the non-concurrence and
concurrence models were 0.668 and 0.689, 0.723 and 0.686, 0.656 and 0.633, and 0.688 and
0.676, respectively. Among all predictive models, the XGBoost model had the highest
AUC value. Except for the LR models, most of the non-concurrence models demonstrated
better predictive performance than the concomitant concurrence models. Although the
concurrence LR model was associated with high AUC and PRC values of 0.745 and 0.774,
respectively, the other indicators were relatively poor. The performance of the predictive
models for identifying osteopenia occurrence during the third stage showed a similar
pattern, with poorer performances than the models used to predict occurrence during the
second stage (Table 4).
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Figure 3. ROC and PRC curves for the machine learning models with concurrence designs.
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Figure 4. ROC and PRC curves for machine learning models with non-concurrence designs.

Table 3. Model predictions of osteopenia in the second stage (2009–2011) using concurrent and non-concurrent features.

Logistic Regression XGBoost Random Forest SVM

Non-
Concurrent

Concurrent
Non-

Concurrent
Concurrent

Non-
Concurrent

Concurrent
Non-

Concurrent
Concurrent

Sensitivity 0.682 0.684 0.733 0.678 0.663 0.636 0.736 0.702
Specificity 0.648 0.681 0.689 0.672 0.623 0.636 0.575 0.632
Accuracy 0.665 0.683 0.711 0.675 0.643 0.636 0.658 0.667
Precision 0.655 0.694 0.713 0.694 0.650 0.631 0.646 0.651

ROC 0.726 0.745 0.753 0.721 0.693 0.687 0.723 0.712
PRC 0.728 0.774 0.750 0.708 0.696 0.697 0.742 0.720
F1 0.668 0.689 0.723 0.686 0.656 0.633 0.688 0.676

SVM: support vector machine; XGBoost: extreme gradient boosting; ROC: receiver operating characteristic curve; PRC: precision–recall
curve; Non-concurrence indicates the prediction using the individual features from the first stage (2006–2008).
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Table 4. Model predictions of osteopenia in the third stage (2012–2014) using concurrent and non-concurrent features.

Logistic Regression XGBoost Random Forest SVM

Non-
Concurrent

Concurrent
Non-

Concurrent
Concurrent

Non-
Concurrent

Concurrent
Non-

Concurrent
Concurrent

Sensitivity 0.704 0.698 0.745 0.662 0.680 0.672 0.751 0.698
Specificity 0.646 0.620 0.633 0.657 0.622 0.660 0.600 0.627
Accuracy 0.673 0.657 0.686 0.659 0.650 0.666 0.669 0.661
Precision 0.640 0.628 0.645 0.639 0.617 0.645 0.624 0.632

ROC 0.715 0.710 0.723 0.721 0.698 0.705 0.707 0.706
PRC 0.669 0.665 0.673 0.680 0.633 0.662 0.660 0.654
F1 0.670 0.661 0.691 0.650 0.647 0.658 0.681 0.663

SVM: support vector machine; XGBoost: extreme gradient boosting; ROC: receiver operating characteristic curve; PRC: precision–recall
curve; Non-concurrence indicates the prediction using the individual features from the first stage (2006–2008).

4. Discussion

Most previous studies have been conducted using a concurrence design, also known
as cross-sectional design, which does not allow for the assessment of causal relationships
between risk factors and BMD. By initially selecting participants without osteopenia and us-
ing a prospective dataset, the present study indicates that non-concurrent models resulted
in better predictive performance and are more suitable for this empirical purpose than
concurrent models while the optimal algorithm (i.e., XGBoost) is being applied. Therefore,
further investigation remains necessary to verify these findings, especially for chronic
disorders such as osteopenia or osteoporosis. In addition to BMI, the MetS severity score is
identified as the dominant predictor of osteopenia in the present study. Though a relation-
ship has been explored between MetS and bone health, some confusion may arise from the
traditional Adult Treatment Panel criteria, such as whether individuals with two high-level
MetS components have a lower CVD risk than in those with slightly elevated levels above
the criteria in three or more components. Due to the limitations in the traditional MetS
criteria, we instead developed the models with a MetS severity score to provide valuable
evidence for healthcare societies. Additionally, the study found better predictive perfor-
mance for the second stage than for the third stage, which implies that the selected features
are suitable for predicting osteopenia occurrence over the short-term period of three years
but may not be suitable for predictions over a longer period. It could be justified that there
would be less effects of health outcomes because of even early socioeconomic or behavioral
conditions since these conditions may have changed overtime due to certain personal or
heath issues. In the past, risk calculators, such as the web-based Fracture Risk Assessment
Tool (FRAX®) algorithm, have enabled the assessment of an individual’s fracture risk using
clinical risk factors, such as age and alcohol consumption [28]. A prediction of osteopenia
using easily measured risk factors may alert practitioners to the condition of an individual’s
bone health during the early stages of bone disease and may enhance the performance
of osteoporosis prevention or avoid the occurrence of future fractures. Our findings may
encourage health institutes to provide prevention strategies to those who are potential
osteopenia patients, which will lead to better bone health in over one thousand people or
the possibility of avoiding deterioration in advance for the study participants. The results
for a field with limited research provide pertinent and comprehensive information to those
who seek to identify the most suitable model in bone mass loss for decision-making.

Predictive algorithms can serve as diagnostic screening tests to stratify patient pop-
ulations by risk and to allow for more discrete decision-making [29]. Since screening is
intended to guide interventions, high accuracy and precision testing is required. We ap-
plied four machine learning algorithms to the construction of predictive models. Generally,
RF and XGBoost are ensemble learning models, and LR represents the basic machine learn-
ing model, while SVM is widely used as a predictor. As previously discussed, ensemble
learning models, specifically the XGBoost model, was found to have higher prediction capa-
bilities and lower risks of overfitting than the others, which can provide greater benefits to
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decision-makers who are looking for more suitable models for the prediction of healthcare
demands [30]. Cruz et al. conducted a review study and summarized the different per-
formances of various machine learning-based diagnostic models for osteoporosis among
25 studies, taking into account the artificial intelligence method applied, the number of risk
factors included in the model, the number of patients evaluated, the country associated
with the evaluation, and the proportions of each sex in the study population [22]. The study
noted that most of the proposed systems can be very useful for the medical community,
provided that analysis is not restricted to specific groups and that a spectrum of input
variables is included. To the best of our knowledge, this study is the first to develop
and compare various machine learning models to predict early bone mass loss that also
considers socioeconomic and lifestyle conditions, in addition to MetS indicators.

Compared with linear-based models, neural networks constitute flexible nonlinear
systems and may be more suitable for the prediction of outcomes when the associations
between the variables are nonlinear, complex, and multidimensional, as is done when
assessing the relationships among variables in complex biological systems [31]. Using
neural networks, de Cos Juez et al. studied the influence of diet and lifestyle on BMD
values in postmenopausal women. A questionnaire examining nutritional habits and
lifestyles was used, resulting in 39 variables, such as calcium intake, protein intake, number
of pregnancies, height, and BMI, for each respondent [19]. They found that these variables
influenced the progression of osteoporosis. However, collecting all possible individual
predictors can be difficult, and not all predictors apply to routine disease prevention. To
reduce the number of input variables required to obtain an accurate predictive model,
the researchers further processed the identified variables using genetic algorithms, which
resulted in a model that demonstrated better performance. To test the performance of the
algorithm, we performed artificial neural network models utilizing the same dataset via
the machine learning module in the SAS Viya Plus package (Linux® for x64, SAS Institute
Inc., Cary, NC, USA). The results showed similar performance (e.g., AUC = 0.732 for the
non-concurrence model for the second stage) as that obtained for the present LR model.
However, the current performance of the predictive models developed in the present
study still has room for improvement. In particular, there are even lower (AUC < 0.65)
performances when only the two most significant features (i.e., MetS score and BMI) are
being used to predict. Other than the modelling strategy that the study used, there are
several different algorithms (e.g., gradient boosting machine, decision tree, etc.), samplings,
and feature selections such as data-driven approaches [32–34] that have been developed.
As we performed additional analyses under varying approaches, the results showed that
the synthetic minority oversampling technique could be used to optimize the performance
of machine learning (Tables S1–S3). Future studies with the approach may be applicable.
However, caution should be exercised to prevent adding increased uncertainty, especially in
regard to a sample with a small number of examples of a minority class or a non-continuous
feature space [35]. Additionally, Loke et al. studied the association between MetS and
BMD and found that the correlation had a very different effect among men than among
women [18]. Despite considering the effects of sex and age and using sex- and age-based
MetS severity scores in the present study, subgroup analyses stratified by sex and age
might provide more information in future studies.

Various issues, including patient self-selection, confounding due to various indi-
cations, and the inconsistent availability of outcome data, can result in the inadvertent
introduction of bias in machine learning-based predictions [29]. The present study has
some limitations that must be addressed. First, although the use of several medications
was considered, information regarding some treatments related to BMD was not available,
including treatments associated with chronic renal insufficiency, bone metabolic illness,
chronic hepatopathy, and neoplasia. A recent study suggested that genomic data can be
used to develop a predictive model for BMD using a machine learning approach [36].
However, genotypic variables were not collected in our study, which may have impacted
the performance of bone mass prediction models. Additionally, the issues of information
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loss and selection bias raised by the under-sampling method and imputation procedure
cannot be ignored. Finally, the concept of social mobility refers to the degree of SES stability
or change in the trajectory of an individual’s life course itself. Therefore, exposure to
socioeconomic or behavioral adversities during the course of life increases an individual’s
long-term risk. The accumulation of risk models advocates that increased exposure, du-
ration, and severity to adverse events during the life course increase the risk of disease
development [37]. The development of a life course approach has been suggested to de-
velop a better understanding of how a reciprocal relationship between affected factors and
health changes over different life stages [38].

5. Conclusions

The study found that an individual’s MetS severity score, BMI, and socioeconomic
and lifestyle indicators could be used as tools to predict the progression of bone density
health using an ensemble learning model. The prediction of osteopenia using easily
measured risk factors may alert a physician to the precarious condition of an individual’s
bone health during the early stages of bone disease and may enhance the performance of
preventative measures to avoid osteoporosis or further fractures, reducing the economic
burdens associated with related diseases. Our findings can provide guidance for health care
providers when designing health promotion measures for specific populations. However,
to reflect real-world conditions, the inclusion of an individual’s specific features into a
predictive model, including changes that occur over time, is suggested for future studies.
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Abstract: Brain structure segmentation on magnetic resonance (MR) images is important for various
clinical applications. It has been automatically performed by using fully convolutional networks.
However, it suffers from the class imbalance problem. To address this problem, we investigated
how loss weighting strategies work for brain structure segmentation tasks with different class
imbalance situations on MR images. In this study, we adopted segmentation tasks of the cerebrum,
cerebellum, brainstem, and blood vessels from MR cisternography and angiography images as the
target segmentation tasks. We used a U-net architecture with cross-entropy and Dice loss functions
as a baseline and evaluated the effect of the following loss weighting strategies: inverse frequency
weighting, median inverse frequency weighting, focal weighting, distance map-based weighting,
and distance penalty term-based weighting. In the experiments, the Dice loss function with focal
weighting showed the best performance and had a high average Dice score of 92.8% in the binary-
class segmentation tasks, while the cross-entropy loss functions with distance map-based weighting
achieved the Dice score of up to 93.1% in the multi-class segmentation tasks. The results suggested
that the distance map-based and the focal weightings could boost the performance of cross-entropy
and Dice loss functions in class imbalanced segmentation tasks, respectively.

Keywords: brain structure segmentation; fully convolutional networks; class imbalance; loss weight-
ing; magnetic resonance images

1. Introduction

Brain structure segmentation on magnetic resonance (MR) images is an essential
technique for measuring, visualizing, and evaluating brain morphology. It is used for
diagnosis support of psychiatric and neurodegenerative diseases, brain development
analysis, and surgical planning and navigation [1,2]. It is manually performed in practice,
but manual segmentation is a very laborious task and is subject to intra- and inter-operator
variability [1]. Thus, it is desirable to provide an automatic accurate segmentation of brain
structures. The most successful state-of-the-art approach for automated segmentation is a
fully convolutional network (FCN) [3]. It enables pixel-wise segmentation in an end-to-
end manner. Since it was proposed by Long et al. [3] in 2015, it has been improved for
medical image segmentation [4,5] and applied to brain structure segmentation tasks [6].
However, it is often biased towards the majority (large-size) classes and suffers from low
segmentation performance on the minority (small-size) classes due to a high imbalance
between background and foreground classes in medical images. To address this problem,
which is commonly known as the class imbalance, there are two types of approaches:
data-level approaches and algorithm-level approaches [7,8].
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Data-level approaches mainly alleviate the class imbalance by undersampling the
majority classes [9] and oversampling the minority classes [10]. However, the majority
undersampling limits the information of available data for training and the minority
oversampling can lead to overfitting. On the other hand, algorithm-level approaches
address the class imbalance by improving algorithms for training. The most common
approach is improving loss functions. The improvement of loss functions can be carried
out by using new evaluation metrics for loss function or weighting loss functions to enhance
the importance of minority classes in the training process. Thus far, various types of loss
functions [11–17] and loss weighting strategies [4,18–25] have been proposed to alleviate
the class imbalance problem. They can be applied for any medical image segmentation
tasks in a plug-and-play fashion [26]. However, it is unclear which loss function and
weighting strategy should be used in different situations. Thus, it is important to reveal
weighted loss functions which can enhance the capability of FCNs in brain structure
segmentation tasks.

In related works, Ma et al. [26] performed a systematic study of the utility of 20 loss
functions on typical segmentation tasks using public datasets and evaluated the perfor-
mance of these loss functions in the imbalanced segmentation tasks. Moreover, Ma et al. [27]
compared and evaluated the boundary-based loss functions, which minimize the distance
between boundaries of ground-truth and predicted segmentation labels, in an empirical
study. Yeung et al. [28] focused on compound loss functions, combining Dice and cross-
entropy-based losses with a modulating factor of focal loss function [19] and evaluated
what compound loss functions were effective to handle class imbalance problems. As
shown in these related works, the effect of loss functions varies according to the situation
of segmentation tasks (e.g., medical images used for segmentation, the number and size of
segmentation target objects, and the degree of class imbalance). However, how the loss
functions work for different segmentation targets remains undiscussed, although their
accuracies were evaluated in the related works.

We test the effect of weighted loss functions in different situations of imbalanced
brain structure segmentation tasks, including binary- and multi-class segmentation tasks.
Especially, in this study, we focus on weighting strategies of loss functions, defined based on
class frequency, predictive probability, and distance map, and aim to investigate and discuss
how the loss weightings affect the performance of FCNs in brain structure segmentation
tasks with different class imbalances.

2. Materials and Methods

2.1. Segmentation Target

In this study, we adopted a segmentation task of brain structures, including the cere-
brum, cerebellum, brainstem, and blood vessels, on MR images. As for MR images, we
used MR cisternography (MRC) and MR angiography (MRA) images (Figure 1). MRC im-
ages, i.e., heavily T2-weighted images, can clearly represent brain surface and cerebral sulci
due to the high intensity of cerebrospinal fluid, whereas MRA images can highlight blood
vessels. In our group, we used MRC and MRA as clinical routine MR sequences because of
the ease of segmentation processing, and segmented brain parenchyma on MRC images
and blood vessels on MRA images for the planning and navigation of neurosurgeries. The
brain structures have different features in the MR images. The cerebrum is the largest part
of the brain and has a low-level foreground–background imbalance in the MRC images.
Its surface, i.e., cerebral sulci, has a bit more of a complex shape. The cerebellum is the
second largest part of the brain and is located under the cerebrum. It can be considered a
middle-level imbalanced target. The brainstem is a small part of the brain and is located
between the cerebrum and the spinal cord. It has a high foreground–background imbal-
ance. The brain parenchyma, i.e., the cerebrum, cerebellum, and brainstem, appears in
much the same location in every MRC image volume, although its size and shape have
individual differences. Its surface can be clearly visualized in MRC images due to high
signal intensity of the cerebrospinal fluid around it. On the other hand, blood vessels have
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varying locations and shapes and appear as small white spots in MRA images. Thus, they
are considered a hard-to-segment target with the high foreground–background imbalance,
although they are clearly visualized in MRA images. We used the segmentation targets to
fundamentally evaluate the effect of loss weightings on the FCN-based segmentation of
different brain structures.

 

Figure 1. MR images used in this study.

2.2. Network Architecture

As an FCN architecture, we adopted a 2D U-net [4], which is one of the most pop-
ular FCN architectures for medical image segmentation. Figure 2 shows the network
architecture used in this study. The U-net architecture, which consists of a symmetrical
encoder–decoder architecture with skip connections, has been often adopted as a baseline
FCN architecture for various medical image segmentation tasks. Many different variants
of the U-net architecture have been proposed according to different medical image segmen-
tation tasks, and moreover, a 3D U-net architecture [5] has been introduced for volumetric
medical image segmentation. However, training the 3D U-net on full input MR image
volumes is usually impractical due to memory limitations of the graphical processing
unit (GPU). In the case of the MR image volumes used in this study, it would require
at least more than 150 GB of GPU memory, which far exceeds the memory of prevalent
GPUs. To overcome the memory limitation, approaches to train 3D FCNs on resized or
cropped MR image volumes have been proposed. However, resizing MR image volumes
to a smaller size may cause the loss of information on segmentation targets, whereas a
patch-based approach [5,29] that crops MR image volumes requires the tuning of more
hyperparameters (i.e., patch size), which may affect segmentation performance. Thus,
in this study, we decided to use the simple 2D U-net architecture to reduce other factors
affecting the results as much as possible.

2.3. Loss Functions

As shown in the related works [26–28], loss functions are an important factor for
handling the class imbalance. Existing loss functions for FCN-based segmentation can be
divided into four categories: distribution-based loss, region-based loss, boundary-based
loss, and compound loss [26]. Distribution-based loss functions measure the dissimilarity
between two distributions based on cross-entropy. Region-based loss functions quantify
the mismatch or the overlap between two regions. Dice loss function [11,12] is the most
common loss function in this category. Boundary-based loss functions measure the distance
between two boundaries. Euclidean distance [16] or Hausdorff distance [17] metrics can be
used for loss functions in this category. Compound loss functions are defined as the combi-
nations among the distribution-, region-, and boundary-based loss functions [15,28,30–32].
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Figure 2. FCN architecture. Each box represents a set of feature maps. The number of feature maps is denoted on the top or
bottom of each box.

As described in [26], most of the distribution-based and region-based loss functions
can be considered as the variants of cross-entropy and Dice loss functions, respectively.
Moreover, boundary-based loss functions, which are formally defined in a region-based
way, have similarities to the Dice loss function. Therefore, as most of the loss functions
are based on the cross-entropy and Dice loss functions, we decided to use these two loss
functions in this study. The cross-entropy loss LCE and the Dice loss LDice are defined as

LCE = −
1
N

C

∑
c=1

N

∑
i=1

gi,c log pi,c, (1)

LDice= 1 − 2 ∑
C
c=1 ∑

N
i=1 gi,c pi,c

2 ∑
C
c=1 ∑

N
i=1 gi,c pi,c+∑

C
c=1 ∑

N
i=1(1−gi,c)pi,c+∑

C
c=1 ∑

N
i=1 gi,c(1−pi,c)

= 1 − 2 ∑
C
c=1 ∑

N
i=1 gi,c pi,c

∑
C
c=1 ∑

N
i=1 gi,c+∑

C
c=1 ∑

N
i=1 pi,c

,
(2)

where gi,c and pi,c are the ground-truth label and the predicted segmentation probability of
class c at pixel i, respectively. N and C are the numbers of pixels and classes in images for a
training dataset, respectively.

2.4. Loss Weighting Strategies

In highly imbalanced segmentation tasks, FCNs are likely to ignore small-size fore-
ground classes in the training process, which results in the low segmentation accuracy
of the foreground classes. This is what is called the class imbalance problem and can
be alleviated by weighting the loss of small-size foreground classes. In this study, we
adopted five loss weighting strategies defined based on different factors of class frequency,
predictive probability, and distance map. Table 1 indicates the overview of weighted loss
functions used in this study. The details of loss weightings are described below.
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Table 1. Overview of the weighted loss functions.

Baseline Loss Functions Weighting Strategies Weighted Loss Functions

Cross-entropy loss
function LCE

Class frequency-based weighting

Inverse frequency weighting LInverse
CE = − 1

N

C
∑

c=1
WInverse

c

N
∑

i=1
gi,c log pi,c

Inverse median weighting LMedian
CE = − 1

N

C
∑

c=1
WMedian

c

N
∑

i=1
gi,c log pi,c

Predictive probability-based
weighting Focal weighting LFocal

CE = − 1
N

C
∑

c=1

N
∑

i=1
WFocal

i,c gi,c log pi,c

Distance map-based weighting
Distance transform map-based weighting LDTM

CE = − 1
N

C
∑

c=1

N
∑

i=1
WDTM

c gi,c log pi,c

Distance penalty term-based weighting LDPT
CE = − 1

N

C
∑

c=1

N
∑

i=1
WDPT

c gi,c log pi,c

Dice lossfunction LDice

Class frequency-based weighting
Inverse frequency weighting LInverse

Dice = 1 − 2 ∑
C
c=1 WInverse

c ∑
N
i=1 gi,c pi,c

∑
C
c=1 WInverse

c ∑
N
i=1(gi,c+pi,c)

Inverse median weighting LMedian
Dice = 1 − 2 ∑

C
c=1 WMedian

c ∑
N
i=1 gi,c pi,c

∑
C
c=1 WMedian

c ∑
N
i=1(gi,c+pi,c)

Predictive probability-based
weighting Focal weighting LFocal

Dice = 1 −
2 ∑

C
c=1 ∑

N
i=1 WFocal

i,c gi,c pi,c

∑
C
c=1 ∑

N
i=1 WFocal

i,c (gi,c+pi,c)

Distance map-based weighting
Distance transform map-based weighting LDTM

Dice = 1−
(

2
C
∑

c=1

N
∑

i=1
gi,c pi,c

)

/
(

2
C
∑

c=1

N
∑

i=1
gi,c pi,c +

C
∑

c=1

N
∑

i=1
WDTM

c (1 − gi,c)pi,c +
C
∑

c=1

N
∑

i=1
WDTM

c gi,c(1 − pi,c)

)

Distance penalty term-based weighting LDPT
Dice = 1 −

(

2
C
∑

c=1

N
∑

i=1
gi,c pi,c

)

/
(

2
C
∑

c=1

N
∑

i=1
gi,c pi,c +

C
∑

c=1

N
∑

i=1
WDPT

c (1 − gi,c)pi,c +
C
∑

c=1

N
∑

i=1
WDPT

c gi,c(1 − pi,c)

)
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2.4.1. Inverse Frequency Weighting

Inverse frequency weighting [24], which is one of the most common weighting strate-
gies, is a method for weighting each class based on the class frequency. The weight is
inversely proportional to the number of pixels. The smaller the size of target objects is, the
higher the weight of them becomes. The inverse frequency weight WInverse

c in class c is
defined by

WInverse
c =

1
(

∑
N
i=1 gi,c

)α , (3)

where α is a power parameter. In this study, we used α = 1 for the cross-entropy loss
function and α = 2 for the Dice loss function. The Dice loss function weighted by the
inverse of square frequency is known as generalized Dice loss function [24].

2.4.2. Inverse Median Frequency Weighting

Inverse median frequency weighting [18] is a frequency-based weighting as with
the inverse frequency weighting. The inverse median frequency weight WMedian

c is com-
puted as

Fc =
∑

N
i=1 gi,c

N
, (4)

WMedian
c =

median(Fc)

Fc
, (5)

where Fc is the normalized frequency of class c and median(·) denotes a function returning
the median value of input data.

2.4.3. Focal Weighting

Focal weighting [19] is a method for putting more focus on hard-to-classify class
pixels based on predictive probability. It gives a higher weight to class pixels with lower
prediction confidence and reduces the loss assigned to well-classified pixels during the
training process. The focal weighting WFocal

i,c is defined by

WFocal
i,c = (1 − pi,c)

γ, (6)

where γ is called a focusing parameter. In this study, we used γ = 2 for cross-entropy loss
function as in [19] and γ = 1 for Dice loss function as in [25]. Note that for simplification,
here, we did not consider the balancing factor α used in [19].

2.4.4. Distance Transform Map-Based Weighting

Distance transform map (DTM), which is computed as the Euclidean distance from the
boundary of target objects, is used in the distance-based loss functions [16,17]. Figure 3b
shows an example of DTM. DTM-based weighting can be performed by multiplying
prediction errors by the DTM. This weighting assigns higher weights to the pixels which
are more distant from the boundary of ground-truth labels. Here, we defined the DTM-
based weight WDTM

c as

DTMc =

{

0, x ∈ ∂Gc

inf
y∈∂Gc

||x − y||2, others (7)

WDTM
c = 1 + DTMc, (8)

where DTMc is the distance transform map in class c, and ∂Gc denotes the boundary of
ground-truth label in class c. ||x − y||2 denotes the Euclidean distance between pixels x
and y in images.
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Figure 3. Distance maps for loss weighting. (a) Label image, (b) distance transform map, and (c) distance penalty term.

2.4.5. Distance Penalty Term-Based Weighting

Distance penalty term (DPT) is a distance map for weighting hard-to-segment bound-
ary regions [20], in contrast to the DTM. Let DPTc be the distance penalty term in class
c. Then, DPTc is defined as the inverse of the DTMc, and thus, it puts higher weights on
the pixels closer to the boundary of ground-truth labels in contrast with the DTM-based
weighting. Figure 3c shows an example of DPT. As with the DTM-based weighting, DPT-
based weighting penalizes prediction errors with the DPT. The DPT-based weight WDPT

c is
defined by

WDPT
c = 1 + DPTc. (9)

We used the cross-entropy and Dice loss functions weighted by the above five weight-
ing strategies. Table 1 summarizes the weighted loss functions used in this study. As for
the weighted Dice loss functions, LInverse

Dice , LMedian
Dice , and LFocal

Dice put their weights on both the
numerator and denominator terms as in [24], while LDTM

Dice and LDPT
Dice assign their weights to

the false positive (i.e.,
C
∑

c=1

N
∑

i=1
(1 − gi,c)pi,c) and false negative (i.e.,

C
∑

c=1

N
∑

i=1
gi,c(1 − pi,c)) terms

in the denominator.

2.5. Evaluation of Loss Weighting Strategies
2.5.1. Dataset

We used the MR images of 84 patients with unruptured cerebral aneurysms, which
were imaged with MRC and time-of-flight MRA sequences on a 3.0 T scanner (Signa HDxt
3.0 T, GE Healthcare, WI, USA) at the University of Tokyo Hospital, Tokyo, Japan. The
MR image volumes had 144–190 slices of 512 × 512 pixels with an in-plane resolution of
0.47 × 0.47 mm2 and a slice thickness of 1.00 mm. As a preprocessing step, the MR images
were normalized to have a mean of 0 and a standard deviation of 1. The dataset consisting
of 84 cases was divided into the following three subsets: training (60 cases), validation
(4 cases), and test subsets (20 cases).

The ground-truth-labeled images for training and testing were manually created by
using an open-source software for medical image processing (3D Slicer, Brigham and
Women’s Hospital, MA, USA); the cerebrum, cerebellum, and brainstem were annotated
on MRC images, while blood vessels were annotated on MRA images. The manual
annotation was performed by a biomedical engineer and a neurosurgeon. Table 2 indicates

the frequency
(

Fc =
N
∑

i=1
gi,c/N

)

of the foreground classes (the cerebrum, cerebellum,

brainstem, and blood vessels) in the training subsets. The cerebrum was the most frequent
in the foreground classes, followed by the cerebellum, brainstem, and blood vessels.
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Table 2. Frequency of the foreground classes in the training subset (n = 60).

Cerebrum Cerebellum Brainstem Blood Vessels

Frequency 0.096 0.012 0.003 0.001

2.5.2. Segmentation Tasks

The goal of this work was to study the effect of loss weightings in different class
imbalance situations. Thus, we evaluated the effect of loss weightings on both binary- and
multi-class segmentation tasks. Table 3 indicates the overview of the training datasets in
the binary- and multi-class segmentation tasks.

Table 3. Training datasets in binary- and multi-class segmentation tasks. BG, CR, CL, BS, and BV
stand for background, cerebrum, cerebellum, brainstem, and blood vessels, respectively.

Dataset Ratio 1

Binary-class segmentation tasks
Dataset 1: Cerebrum BG : CR = 9 : 1
Dataset 2: Cerebellum BG : CL = 86 : 1
Dataset 3: Brainstem BG : BS = 352 : 1
Dataset 4: Blood vessels BG : BV = 749 : 1

Multi-class segmentation tasks
Dataset 1: Three classes BG : CR : BV = 677 : 72 : 1
Dataset 2: Four classes BG : CR : CL : BV = 668 : 72 : 9 : 1
Dataset 3: Five classes BG : CR : CL : BS : BV = 666 : 72 : 9 : 2 : 1

1 Ratio of the number of labeled voxels between foreground classes in each training dataset.

Binary-class segmentation tasks: To test how the effect of loss weightings varies ac-
cording to the size of a foreground class in binary-class segmentation tasks, we evaluated
the segmentation performance on the binary-class segmentation task for each of the fore-
ground classes. Note that the binary-class segmentation tasks for the cerebrum, cerebellum,
and brainstem were performed using MRC images, whereas the binary-class segmentation
for blood vessels was performed using MRA images.

Multi-class segmentation tasks: To test how the effect of loss weightings varies accord-
ing to the imbalance of foreground classes in multi-class segmentation tasks, we evaluated
the segmentation performance on the three-, four-, and five-class segmentation tasks; the
three, four, and five classes include the foreground classes of (cerebrum, blood vessels),
(cerebrum, cerebellum, blood vessels), and (cerebrum, cerebellum, brainstem, blood ves-
sels), respectively. Note that the multi-class segmentation tasks were performed using
multi-modal MR images which included MRC and MRA images.

2.5.3. Network Training Procedure

In the binary- and multi-class segmentation tasks, we trained the FCN model on each
training dataset using the cross-entropy and Dice loss functions with or without the loss
weightings. The FCN model was trained from scratch for 30 epochs with the Adam optimization
algorithm [33] (α (learning rate) = {1e − 3, 1e − 4, and 1e − 5}, β1 = 0.9, β2 = 0.999, and
epsilon = 1e − 7) and a batch size of 5 in each training process. For testing, we used the
best trained model in the set {learning rate, epoch} = {1e − 3, 10}, {1e − 3, 20}, {1e − 3, 30},
{1e − 4, 10}, {1e − 4, 20}, {1e − 4, 30}, {1e − 5, 10}, {1e − 5, 20}, and {1e − 5, 30} because
the condition for good training convergence, especially learning rate and number of epochs,
was different according to the loss weightings.

The FCN model with the weighted loss functions were implemented by using Keras
with Tensorflow backend, and the training and prediction were performed on an Ubuntu
16.04 PC (CPU: Intel Xeon Gold 5222 3.80 GHz, RAM: 384 GB) with NVIDIA Quadro
RTX8000 GPU cards for deep learning.
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2.5.4. Evaluation Metrics

To quantitatively evaluate the segmentation performance, we adopted the Dice sim-
ilarity coefficient (DSC), surface DSC (SDSC) [34], average symmetric surface distance
(ASD), and Hausdorff distance (HD). The DSC and SDSC, overlap-based metrics, can be
used for evaluating the region overlaps; the DSC measures the overlap of whole regions
between ground-truth and predicted labels, whereas the SDSC measures the overlap of the
two surface regions. The DSC was calculated by

DSC =
2|G ∩ P|
|G|+ |P|

, (10)

where G and P denote the regions of ground-truth and predicted labels, respectively. The
SDSC was calculated by

SDSC =

∣

∣

∣
∂G ∩ B(τ)

∂P

∣

∣

∣
+
∣

∣

∣
∂P ∩ B(τ)

∂G

∣

∣

∣

|∂G|+ |∂P|
, (11)

where ∂G and ∂P denote the boundaries of ground-truth and predicted labels, respec-
tively. B(τ)

∂G , B(τ)
∂P ⊂ R

3 are the border regions of ground-truth and predicted label sur-

faces at tolerance τ, which are defined as B(τ)
∂G =

{
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3
∣

∣∃y ∈ ∂G,
∣

∣

∣

∣x − y
∣

∣

∣

∣≤ τ
}

and

B(τ)
∂P =

{

x ∈ R
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∣

∣∃y ∈ ∂P,
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∣

∣

∣x − y
∣

∣

∣

∣≤ τ
}

, respectively [26,34]. We here used τ = 1 mm as
in [26].

The ASD and HD, boundary distance-based metrics, can be used for evaluating the
surface errors; ASD measures the average surface distance between ground-truth and
predicted labels, whereas HD measures the max surface distance between them. The ASD
was calculated by

ASD =
∑x∈∂G D(x, ∂P) + ∑y∈∂G D(y, ∂G)

|∂G|+ |∂P|
, (12)

where D(a, A) denote the minimum Euclidean distance from a voxel a to a set of voxels A.
The HD was calculated by

HD = max
{

max
x∈∂G

D(x, ∂P), max
y∈∂P

D(y, ∂G)

}

. (13)

As for HD, in this study, 95th-percentile HD (95HD) was used, as in [27].
When the segmentation accuracy increases, the overlap-based and the boundary

distance-based metrics approach 1 and 0, respectively. The evaluation metrics was imple-
mented using the open-source code, which is available at [35].

Furthermore, we used a rank score, which was defined based on [36], to comprehen-
sively evaluate which loss weightings worked well based on the above metrics, as in [26].
The rank score was computed according to the following steps:

Step 1. Performance assessment per case: compute metrics mi
(

lossj, classk, casel
)

(i = 1, . . . , Nm) of all loss functions lossj (j = 1, . . . , 12) for all classes
classk (k = 1, . . . , Nc) in all test cases casel (l = 1, . . . , 20), where Nm and Nc are
the number of metrics and classes, respectively. Note that in this case, we used four
metrics mi ∈ {DSC, SDSC, ASD, 95HD} and a total of twelve loss functions, in-
cluding cross-entropy and Dice loss functions with no weighting, Inverse, Median,
Focal, DTM, and DPT weightings.

Step 2. Statistical tests: perform Wilcoxon signed-rank pairwise statistical tests between

all loss functions with the values mi
(

lossj, classk, casel
)

− mi

(

loss′j, classk, casel

)

.

Step 3. Significance scoring: compute a significance score sik
(

lossj
)

for loss functions
lossj, classes classk, and metrics mi. sik

(

lossj
)

equals the number of loss functions

447



Healthcare 2021, 9, 938

performing significantly worse than lossj according to the statistical tests (p < 0.05,
not adjusted for multiplicity).

Step 4. Rank score computing: compute the final rank score R
(

lossj
)

of each loss function
from the mean significance score of all classes and metrics in each of the binary-
and multi-class segmentation tasks by the following equation:

R
(

lossj
)

=
1

Nm × Nc

Nm

∑
i=1

Nc

∑
k=1

sik
(

lossj
)

. (14)

3. Results

We compared the results of loss weightings (inverse frequency weighting (Inverse),
inverse median frequency weighting (Median), focal weighting (Focal), distance transform
map-based weighting (DTM), and distance penalty term-based weighting (DPT)) with those
of no weighting (N/A). The statistical difference between N/A and each loss weighting
was evaluated by the Wilcoxon signed-rank test. A p-value less than 0.05 was considered
significant. Subsequently, we comprehensively evaluated the effect of loss weightings by
using the rank scores.

3.1. Binary-Class Segmentation Tasks

Table 4 summarizes all the results in the binary-class segmentation tasks. Figure 4
shows the violin plots of the Dice scores. As for cross-entropy loss function, Inverse and
Median provided worse results than N/A in any segmentation tasks. Focal, DTM, and DPT
tended to improve the surface accuracy in the highly imbalanced segmentation tasks (i.e.,
segmentation of brainstem and blood vessels) although the improvement was not statisti-
cally significant. As for Dice loss function, Inverse and Median significantly improved the
segmentation accuracy in the highly imbalanced segmentation tasks, compared with N/A.
Focal tended to provide better results than N/A in all the binary-class segmentation tasks.
The distance map-based weightings (i.e., DTM and DPT) worked well in the segmentation
of brain parenchyma, but they were ineffective in the segmentation of blood vessels.

Table 4. Segmentation results of no weighting (N/A), inverse frequency weighting (Inverse), inverse
median frequency weighting (Median), focal weighting (Focal), distance transform map-based weight-
ing (DTM), and distance penalty term-based weighting (DPT) in binary-class segmentation tasks:
Dice similarity coefficient (DSC), surface DSC (SDSC), average symmetric surface distance (ASD)
(mm), and 95th-percentile Hausdorff distance (95HD) (mm). (a) Dataset 1: cerebrum, (b) Dataset 2:
cerebellum, (c) Dataset 3: brainstem, and (d) Dataset 4: blood vessels. The results of background
class are excluded in this table. Compared with the results of N/A, the significantly better and worse
results are shown in bold and italic, respectively (Wilcoxon signed-rank test, p < 0.05, not adjusted
for multiplicity).

Loss Function Weighting DSC SDSC ASD 95HD

(a) Dataset 1: Cerebrum

Cross entropy

N/A 0.987 0.991 0.064 0.287
Inverse 0.970 0.941 0.424 3.504
Median 0.981 0.983 0.135 0.565

Focal 0.986 0.989 0.073 0.397
DTM 0.986 0.990 0.069 0.378
DPT 0.987 0.992 0.059 0.328

Dice

N/A 0.986 0.988 0.102 0.381
Inverse 0.984 0.986 0.275 0.495
Median 0.985 0.990 0.234 0.425

Focal 0.988 0.993 0.054 0.308
DTM 0.987 0.991 0.061 0.364
DPT 0.987 0.992 0.066 0.341
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Table 4. Cont.

Loss Function Weighting DSC SDSC ASD 95HD

(b) Dataset 2: Cerebellum

Cross entropy

N/A 0.978 0.981 0.088 0.669
Inverse 0.954 0.922 0.411 1.755
Median 0.950 0.904 0.525 2.539

Focal 0.976 0.976 0.166 2.430
DTM 0.978 0.978 0.104 0.729
DPT 0.978 0.980 0.089 0.713

Dice

N/A 0.976 0.973 0.221 1.048
Inverse 0.965 0.940 1.934 1.975
Median 0.968 0.950 2.037 4.568

Focal 0.977 0.980 0.101 0.686
DTM 0.974 0.972 0.153 0.878
DPT 0.976 0.975 0.184 2.331

(c) Dataset 3: Brainstem

Cross entropy

N/A 0.963 0.940 0.501 4.676
Inverse 0.933 0.874 1.024 8.518
Median 0.922 0.849 0.849 6.510

Focal 0.962 0.947 0.239 1.362
DTM 0.965 0.951 0.280 1.204
DPT 0.965 0.946 0.425 3.478

Dice

N/A 0.923 0.824 8.880 156.912
Inverse 0.953 0.921 0.476 4.770
Median 0.954 0.926 0.421 3.365

Focal 0.963 0.949 0.241 1.905
DTM 0.961 0.939 0.332 4.268
DPT 0.957 0.936 0.318 1.646

(d) Dataset 4: Blood vessels

Cross entropy

N/A 0.785 0.809 1.415 12.947
Inverse 0.642 0.700 2.008 16.978
Median 0.647 0.690 2.222 18.620

Focal 0.783 0.812 1.351 12.353
DTM 0.786 0.821 1.419 12.243
DPT 0.784 0.824 1.361 12.340

Dice

N/A 0.704 0.767 1.996 16.026
Inverse 0.786 0.826 1.385 13.364
Median 0.768 0.794 1.627 14.597

Focal 0.785 0.812 1.518 13.104
DTM 0.725 0.754 2.400 19.281
DPT 0.648 0.627 5.999 40.077
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 𝑝 < 0.05  𝑝 < 0.01  𝑝 < 0.001
Figure 4. Violin plots of the segmentation results (Dice similarity coefficients) of no weighting (N/A), inverse frequency
weighting (Inverse), inverse median frequency weighting (Median), focal weighting (Focal), distance transform map-based
weighting (DTM), and distance penalty term-based weighting (DPT) in binary-class segmentation tasks. (a) Dataset 1:
cerebrum, (b) Dataset 2: cerebellum, (c) Dataset 3: brainstem, and (d) Dataset 4: blood vessels. Compared with the results
of N/A, the significantly worse and better results are shown in black and red, respectively (Wilcoxon signed-rank test,
* p < 0.05, ** p < 0.01, and *** p < 0.001, not adjusted for multiplicity).

Figure 5 visualizes an example of the segmentation results of blood vessels, which are
the highly imbalanced class, in the binary-class segmentation task. As for the cross-entropy
loss function, N/A had difficulty in segmenting the upper blood vessels. Both Inverse and
Median allowed the FCN to extract most of the upper blood vessels which N/A failed
to segment, but obviously increased the overextraction. Focal provided almost the same
result as N/A. Both DTM and DPT extracted the wider region of blood vessels than N/A.
As for the Dice loss function, N/A had false negatives in the upper blood vessels as with
the cross-entropy loss function. It also provided a few more false positives. The class
frequency-based weightings, especially Inverse, improved the false positives as well as the
false negatives. Focal provided better results than N/A, although it was not so much as
Inverse. The results of the distance map-based weightings, especially DPT, were worse
than that of N/A.
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Figure 5. Visualization of the segmentation results of blood vessels in the binary-class segmentation task. (a) No weighting,
(b) Inverse frequency weighting, (c) Inverse median frequency weighting, (d) Focal weighting, (e) Distance transform
map-based weighting, and (f) Distance penalty term-based weighting.

3.2. Multi-Class Segmentation Tasks

Table 5 summarizes all the results in the multi-class segmentation tasks. Figure 6
shows the violin plots of the Dice scores. As for the cross-entropy loss function, Inverse and
Median, as in the binary-class segmentation tasks, worsened the results in any multi-class
segmentation tasks. The results of Focal, especially surface accuracies, were equivalent to
or better than those of N/A in almost all the tasks. In the distance map-based weighting,
DPT worked well for improvement of segmentation accuracy. As for the Dice loss function,
Inverse and Median significantly improved the segmentation accuracy of blood vessels,
which were a very high-level imbalanced class, in any multi-class segmentation tasks.
However, Inverse also significantly worsened the segmentation accuracy of the cerebrum
and cerebellum, which were relatively large-size targets. Focal provided better results than
N/A for almost all the segmentation targets. The distance map-based weightings showed
inconsistent results between the multi-class segmentation tasks.
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Table 5. Segmentation results of no weighting (N/A), inverse frequency weighting (Inverse), inverse median frequency weighting (Median), focal weighting (Focal), distance transform
map-based weighting (DTM), and distance penalty term-based weighting (DPT) in the multi-class segmentation tasks: Dice similarity coefficient (DSC), surface DSC (SDSC), average
symmetric surface distance (ASD), and 95th-percentile Hausdorff distance (95HD). (a) Dataset 1: three classes, (b) Dataset 2: four classes, and (c) Dataset 3: five classes. The results of
background class are excluded in this table. Compared with the results of N/A, the significantly better and worse results are shown in bold and italic, respectively (Wilcoxon signed-rank
test, p < 0.05, not adjusted for multiplicity).

(a) Dataset 1: Three Classes

Loss Function Weighting
Cerebrum Blood Vessels

DSC SDSC ASD 95HD DSC SDSC ASD 95HD

Cross entropy

N/A 0.979 0.965 0.507 5.635 0.778 0.810 1.926 17.142
Inverse 0.967 0.956 0.265 1.256 0.618 0.662 2.448 20.272
Median 0.970 0.969 0.239 1.273 0.675 0.740 1.901 17.298

Focal 0.979 0.989 0.093 0.585 0.796 0.843 1.195 12.933
DTM 0.979 0.989 0.092 0.585 0.788 0.848 1.097 10.539
DPT 0.984 0.992 0.069 0.492 0.795 0.836 1.198 11.321

Dice

N/A 0.985 0.990 0.266 0.445 0.771 0.833 1.225 11.276
Inverse 0.896 0.634 2.290 17.436 0.800 0.842 1.177 11.325
Median 0.985 0.986 0.109 0.479 0.809 0.848 1.172 11.654

Focal 0.985 0.984 0.147 0.415 0.780 0.821 1.525 14.393
DTM 0.984 0.991 0.068 0.492 0.760 0.817 1.354 11.769
DPT 0.986 0.992 0.245 0.408 0.759 0.816 1.346 12.316

(b) Dataset 2: Four classes

Loss Function Weighting
Cerebrum Cerebellum Blood Vessels

DSC SDSC ASD 95HD DSC SDSC ASD 95HD DSC SDSC ASD 95HD

Cross entropy

N/A 0.985 0.994 0.057 0.469 0.978 0.981 0.082 0.670 0.792 0.834 1.209 11.215

Inverse 0.966 0.963 0.221 1.015 0.939 0.890 0.472 1.911 0.623 0.668 2.375 19.928
Median 0.970 0.968 0.221 1.009 0.954 0.938 0.279 1.397 0.674 0.738 1.860 17.051

Focal 0.980 0.990 0.087 0.575 0.979 0.982 0.082 0.635 0.783 0.836 1.168 11.228
DTM 0.986 0.994 0.059 0.408 0.977 0.979 0.142 2.019 0.781 0.827 1.247 11.639
DPT 0.982 0.992 0.069 0.505 0.980 0.986 0.065 0.579 0.791 0.842 1.138 11.197

Dice

N/A 0.986 0.993 0.060 0.338 0.975 0.971 0.329 2.370 0.766 0.821 1.246 11.110
Inverse 0.163 0.066 18.575 81.644 0.960 0.949 0.314 3.939 0.799 0.840 1.192 12.014
Median 0.980 0.984 0.155 0.524 0.973 0.972 0.234 2.578 0.780 0.818 1.306 12.029

Focal 0.987 0.994 0.052 0.352 0.980 0.986 0.067 0.543 0.791 0.834 1.233 11.518
DTM 0.971 0.963 0.198 1.061 0.956 0.933 0.449 3.654 0.610 0.630 5.309 34.425
DPT 0.985 0.992 0.064 0.505 0.978 0.981 0.085 0.593 0.786 0.827 1.289 12.360
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Table 5. Cont.

(c) Dataset 3: Five classes

Loss Function Weighting
Cerebrum Cerebellum

DSC SDSC ASD 95HD DSC SDSC ASD 95HD

Cross entropy

N/A 0.981 0.991 0.083 0.552 0.977 0.980 0.127 0.855

Inverse 0.971 0.973 0.179 0.846 0.950 0.926 0.346 1.492
Median 0.979 0.987 0.104 0.609 0.958 0.949 0.253 1.252

Focal 0.985 0.993 0.060 0.469 0.979 0.984 0.107 0.634
DTM 0.980 0.990 0.085 0.552 0.979 0.982 0.093 0.898
DPT 0.982 0.993 0.069 0.502 0.980 0.985 0.070 0.624

Dice

N/A 0.986 0.993 0.074 0.338 0.977 0.982 0.084 0.618
Inverse 0.000 0.000 - - 0.955 0.946 0.221 1.405
Median 0.984 0.988 0.107 0.502 0.974 0.975 0.171 1.164

Focal 0.987 0.995 0.052 0.291 0.980 0.986 0.065 0.567
DTM 0.986 0.993 0.068 0.361 0.978 0.983 0.082 0.608
DPT 0.985 0.992 0.098 0.445 0.974 0.977 0.095 0.747

Loss Function Weighting
Brainstem Blood Vessels

DSC SDSC ASD 95HD DSC SDSC ASD 95HD

Cross entropy

N/A 0.961 0.942 0.266 2.083 0.790 0.846 1.084 10.471
Inverse 0.944 0.937 0.371 1.302 0.712 0.778 1.524 14.184
Median 0.949 0.928 0.415 1.528 0.686 0.721 1.920 17.233

Focal 0.962 0.947 0.267 1.495 0.782 0.830 1.263 12.068
DTM 0.966 0.946 0.291 2.362 0.783 0.840 1.163 11.097
DPT 0.964 0.952 0.203 1.343 0.797 0.855 1.059 10.703

Dice

N/A 0.960 0.934 0.389 2.174 0.774 0.828 1.234 11.574
Inverse 0.961 0.941 0.391 2.374 0.801 0.836 1.196 12.002
Median 0.962 0.941 0.344 2.329 0.788 0.829 1.200 10.648

Focal 0.963 0.952 0.235 1.262 0.783 0.828 1.300 12.835
DTM 0.964 0.944 0.217 1.288 0.773 0.831 1.221 11.280
DPT 0.960 0.929 0.394 3.759 0.757 0.801 1.869 18.269

453



Healthcare 2021, 9, 938

 𝑝 < 0.05  𝑝 <0.01  𝑝 < 0.001
Figure 6. Violin plots of the segmentation results (Dice similarity coefficients) of no weighting (N/A), inverse frequency
weighting (Inverse), inverse median frequency weighting (Median), focal weighting (Focal), distance transform map-based
weighting (DTM), and distance penalty term-based weighting (DPT) in multi-class segmentation tasks. (a) Dataset 1: three
classes, (b) Dataset 2: four classes, and (c) Dataset 3: five classes. Compared with the results of N/A, the significantly
worse and better results are shown in black and red, respectively (Wilcoxon signed-rank test, * p < 0.05, ** p < 0.01, and
*** p < 0.001, not adjusted for multiplicity).

Figure 7 visualizes an example of the segmentation results in the five-class segmenta-
tion task. It shows the false positive and false negative labels as well as the predicted labels.
False positives were likely to appear around the surface of the cerebrum, cerebellum, and
brainstem, while false negatives tended to appear in the upper part of blood vessels. As for
the cross-entropy loss function, Inverse and Median reduced the false negatives, but more
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than that, they greatly increased the false positives. Focal worked well for a reduction in
the false positives, although it did not reduce the false negatives. The results of the distance
map-based weightings showed that DPT was a little effective in reducing the false positives
and false negatives. As for Dice loss function, Inverse reduced the false negatives in blood
vessels, although it failed to segment the whole cerebrum. Median worked to reduce the
false negatives in blood vessels, as with Inverse. Focal slightly reduced the false positives.
DTM and DPT seemed to provide almost the same results as N/A.

Figure 7. Visualization of the segmentation results in the five-class segmentation task. (a) No weighting, (b) inverse frequency
weighting, (c) inverse median frequency weighting, (d) focal weighting, (e) distance transform map-based weighting, and
(f) distance penalty term-based weighting. The segmentation results include the predicted results (left), the false positives
(middle), and the false negatives (right). Note that in the result of Dice loss function with inverse frequency weighting, there
are no true positive voxels in the cerebrum class and most of the background region were overestimated as the cerebrum
class, but the false positives and false negatives in the cerebrum class were excluded from the figure for better visualization.
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3.3. Rank Scoring

Table 6 indicates the ranking results of loss weightings in the binary- and multi-class
segmentation tasks. The distance map-based weightings for cross-entropy loss function and
the predictive-probability weighting for Dice loss function tended to have high rank scores
in both the binary- and multi-class segmentation tasks. In the binary-class segmentation
tasks, the Dice loss function with Focal showed the best ranking result. It actually obtained
a high average DSC and SDSC of 92.8% and 93.3%, respectively. Compared with no
weighting, it improved the DSC and SDSC values of all tasks by 0.2–8.1% and 0.5–12.5%,
respectively. In the multi-class segmentation tasks, the cross-entropy loss function with
DPT had the highest rank score, followed by the Dice loss function with Focal. In the
five-class segmentation task, DPT achieved the highest average DSC and SDSC values of
93.1% and 94.6%, respectively.

Table 6. Ranking results of no weighting (N/A), inverse frequency weighting (Inverse), inverse median frequency weighting
(Median), focal weighting (Focal), distance transform map-based weighting (DTM), and distance penalty term-based
weighting (DPT) in (a) binary-class segmentation tasks and (b) multi-class segmentation tasks. The best results are shown in
bold. The rank is determined based on the rank scores of segmentation results on all datasets.

(a) Binary-Class Segmentation Tasks

Loss Function Weighting

Rank Score

RankDataset 1:
Cerebrum

Dataset 2:
Cerebellum

Dataset 3:
Brainstem

Dataset 4:
Blood Vessels

All

Cross entropy

N/A 5.25 7.25 3.25 6.00 5.44 4
Inverse 0.00 2.25 1.25 1.25 1.19 11
Median 1.50 0.75 0.50 0.75 0.88 12

Focal 3.50 4.00 6.00 6.00 4.88 5
DTM 4.25 6.25 6.50 6.00 5.75 2
DPT 5.5 6.25 4.50 6.00 5.56 3

Dice

N/A 2.75 4.00 0.00 2.50 2.31 10
Inverse 1.75 1.50 3.00 5.50 2.94 8
Median 1.75 1.00 3.50 3.75 2.50 9

Focal 8.5 4.50 6.50 4.75 6.06 1
DTM 4.5 4.25 4.25 1.75 3.69 6
DPT 5.25 4.00 4.00 0.00 3.31 7

(b) Multi-class segmentation tasks

Loss Function Weighting

Rank Score

RankDataset 1:
Three Classes

Dataset 2:
Four Classes

Dataset 3: Five Classes All

Cross entropy

N/A 1.50 5.75 4.13 4.08 6
Inverse 0.63 0.83 0.81 0.78 12
Median 1.25 1.92 0.81 1.28 11

Focal 4.88 4.67 4.19 4.50 4
DTM 5.63 5.25 3.69 4.64 3
DPT 6.75 6.17 6.63 6.50 1

Dice

N/A 4.63 4.58 3.69 4.19 5
Inverse 2.88 2.17 1.38 1.97 10
Median 6.00 3.67 2.56 3.69 8

Focal 3.63 7.50 6.75 6.31 2
DTM 4.63 0.67 4.75 3.36 9
DPT 4.88 4.67 2.44 3.72 7

4. Discussion

We evaluated the effect of loss weightings on the segmentation of the cerebrum,
cerebellum, brainstem, and blood vessels from the MR images. From the segmentation
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results with the non-weighted loss functions, we found that the segmentation errors of
the cerebrum, cerebellum, and brainstem, including false positives and false negatives,
were concentrated at the edges of them, whereas the segmentation errors of blood vessels,
especially false negatives, appeared in the upper part of them. This is probably because the
edges of brain parenchyma or the upper blood vessels were variable according to the cases
and the FCN was biased toward training image features on easier-to-segment majority
regions. Thus, in order to improve the brain structure segmentation, it would be important
to make the FCN focus on training image features around the edge of brain parenchyma
and in the upper part of blood vessels by loss weightings. We discuss the effect of loss
weightings based on the results in the binary- and multi-class segmentation tasks below.
Subsequently, we also discuss the limitations of this study.

4.1. Binary-Class Segmentation Tasks

As for the cross-entropy loss function, the class frequency-based weightings (Inverse
and Median) greatly increased false positives. They assign a lower uniform weight to the
loss of larger-size classes, i.e., background class in the case of binary-class segmentation
tasks. They gave a low uniform weight to low-confidence background pixels near the
edge of the foreground, which would result in a large increase in false positives on the
low-confidence background pixels, although they could also help reduce false negatives.
On the other hand, the predictive probability- and the distance map-based weightings
tended to improve the surface accuracy of highly imbalanced classes, i.e., the brainstem and
blood vessels. Different from the class frequency-based weighting, they assign a different
weight to each pixel. Using such pixel-wise weights instead of uniform weights may be
appropriate for imbalanced segmentation because FCNs do not focus equally on all the
pixels of the same class during training. The predictive-probability-based weighting (Focal)
gives higher weights to pixels with lower prediction confidences based on the predictive
probability and helps correct pixels misclassified with low prediction confidence, whereas
the distance map-based weightings (DTM and DPT) define pixel-wise weights based on
the distance from the edge of ground-truth labels and help correct surface segmentation
errors. Thus, it is considered that these loss weightings could correct the surface error
because pixels around the edge of foreground class were subject to be misclassified with
low prediction confidence in the highly imbalanced segmentation tasks.

As for the Dice loss function, the class frequency-based weightings significantly
improved the accuracy in the highly imbalanced segmentation tasks, although they did
not work well for the cross-entropy loss function. They assigned the weight to both
the denominator and numerator for the Dice loss function, which would allow the FCN
to reduce false negatives without increasing false positives. The predictive probability-
based weighting, which showed the best performance in Table 6, worked well for the
low- and middle-level imbalanced segmentation tasks as well as the highly imbalanced
segmentation tasks. This can be explained by the fact that the FCN with the Dice loss
function had more pixels misclassified with low prediction confidence in the low- and
middle-level imbalanced segmentation tasks, compared with that of the cross-entropy loss
function. Additionally, the distance map-based weightings tended to improve the surface
accuracy in the brain parenchyma segmentation. However, they were ineffective in the
segmentation task of blood vessels. As shown in [16], in the case of the segmentation of
objects which have variable locations and shapes, they might be able to work stably by
using a scheduling strategy, i.e., gradually increasing the weight to the mismatched region
with the training epochs.

4.2. Multi-Class Segmentation Tasks

The binary-class segmentation tasks included the class imbalance problem between
background and foreground classes, whereas the multi-class segmentation tasks, which
deal with two or more foreground classes, included the class imbalance problems not
only between background and foreground classes but also among foreground classes.
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However, the results in the multi-class segmentation tasks showed similar tendencies to
those in the binary-class segmentation tasks, although some of them were affected by the
foreground–foreground class imbalance.

The class frequency-based weightings failed to improve the segmentation performance
of the FCN with the cross-entropy loss function in any multi-class segmentation tasks
because they greatly increased false positives by assigning an extremely low weight to the
background pixels. For the Dice loss function, they also worked negatively for the low- and
middle-level imbalanced classes. Especially in the five-class segmentation task, Inverse
could not segment the cerebrum at all due to the foreground–foreground class imbalance.
However, it also provided the best DSC value for blood vessels. Thus, the class frequency-
based weightings could work well for only objects with very high imbalance because
of their extreme weighting in any segmentation tasks. The predictive probability-based
weighting totally worked well for both the cross-entropy and Dice loss functions. These
results suggested that despite the foreground–foreground class imbalance, it could enable
FCNs to focus on the pixels misclassified with low prediction confidence, i.e., hard-to-
segment pixels, by considering the predictive probability. As well, the distance map-based
weightings tended to provide good segmentation results for the cross-entropy loss function.
In particular, the cross-entropy loss function with DPT achieved the best performance as
indicated in Table 6b. However, the distance map-based weightings provided unstable
segmentation results for the Dice loss function. In this study, although we designed the Dice
loss function with the distance map-based weightings by multiplying the false positive and
false negative terms in the denominator by the weights, using a scheduling strategy might
make the effect of the distance map-based weightings more stable, as mentioned above.

Therefore, the cross-entropy loss function with DPT and the Dice loss function with
Focal achieved relatively high accuracy in any segmentation targets and tasks, but some
other weightings outperformed their weightings according to segmentation targets. For
example, the Dice loss function with Inverse provided better DSC and SDSC results for
blood vessels than that with Focal. Therefore, in this study, we focused on the unary
weighted loss functions instead of compound loss functions, but considering the difference
of features in loss weightings, the combination of different weighted loss functions might
lead to the further improvement of segmentation performance.

4.3. Limitations

For limitations of this work, we adopted the segmentation of brain parenchyma and
blood vessels on MRC and MRA images, which is performed as a routine work in our group.
However, the effect of loss weightings might depend on segmentation targets and tasks,
although the results in this study reflected the features of loss weightings. Considering
a wider range of applications, we should test the loss weightings in other brain structure
segmentation tasks (e.g., the segmentation of white matter, gray matter, and cerebrospinal
fluid on T1-weighted MR images). Second, we used the 2D U-Net architecture to investigate
the effect of loss weightings with less hyperparameters. However, we would need to test
3D FCNs with the weighted loss functions, because they have been applied for volumetric
brain structure segmentation. Moreover, we set default parameters for loss weightings
(e.g., the focusing parameter for focal weighting) based on the previous studies, but tuning
such parameters would enable the performance improvement of FCNs. Furthermore, in
this study, we focused on segmenting brain structures, including blood vessels, from the
MR images of patients with cerebral aneurysms, but considering the clinical practice, it
would be desired to automatically detect the location of aneurysms, as in [37], in addition
to the segmentation.

5. Conclusions

This paper investigated how the loss weightings work for FCN-based brain structure
segmentation on MR images in different class imbalance situations. Using the 2D U-Net
with cross-entropy or Dice loss functions as a baseline network, we tested the five loss
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weightings, which were defined based on class frequency, predictive probability, and
distance map, in the binary- and multi-class brain structure segmentation on MRC and
MRA images. From the experimental results, we found that the cross-entropy loss function
with the distance map-based weightings, especially distance penalty term-based weighting,
and the Dice loss function with the predictive probability-based weighting could stably
provide good segmentation results. In the binary-class segmentation tasks, the Dice loss
function with focal weighting showed the best performance and achieved a high average
DSC of 92.8%, whereas in the multi-class segmentation tasks, the cross-entropy loss function
with distance penalty term-based weighting provided the best performance. It achieved
the highest average DSC of 93.1% in the five-class segmentation task. We also found that
their weighted loss functions were relatively robust to the foreground–foreground class
imbalance as well as the background–foreground class imbalance. In other words, the
experimental results suggested that they could work well in the situations of both binary-
and multi-class segmentation. Therefore, it may be effective to use the distance penalty
term-based weighting in the cross-entropy loss function and the focal weighting in the Dice
loss function. We believe that these findings would help to select weighting strategies for
loss functions or design advanced loss weighting strategies.

In future work, for clinical application, we will address the detection and segmentation
of a diseased area that is more highly imbalanced, such as a cerebral aneurysm, as well
as its surrounding structures, by using the loss weighting strategies. Moreover, we will
design compound loss functions (i.e., combination among the loss weightings) and further
investigate the effect of them for different brain structure segmentation tasks.
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Abstract: Early detection of Alzheimer’s disease (AD) is crucial to preserve cognitive functions
and provide the opportunity for patients to enter clinical trials. In recent years, some studies have
reported that features related to the signal and texture of MRI images can be an effective biomarker
of AD. To test these claims, a study was conducted using T2 maps, a sequence not previously studied,
of 40 patients with mild cognitive impairment (MCI) from the Alzheimer’s Disease Neuroimaging
Initiative database, who either progressed to AD (18) or remained stable (22). From these maps, the
mean value and absolute difference of 37 signal and texture imaging features for 40 contralateral pairs
of regions were measured. We used seven machine learning methods to analyze whether, by adding
these imaging features to the neuropsychological studies currently used for diagnosis, we could
more accurately identify patients who will progress to AD. The predictive models improved with the
addition of signal and texture features. Additionally, features related to the signal and texture of the
images were much more relevant than volumetric ones. Our results suggest that contralateral signal
and texture features should be further investigated as potential biomarkers for the prediction of AD.

Keywords: ADNI; Alzheimer’s disease; mild cognitive impairment; MRI biomarkers; signal; T2
maps; texture

1. Introduction

Neurodegenerative diseases are a common and growing cause of mortality and mor-
bidity, in which structural and chemical changes in the nervous system lead to the loss
of neurons and progressive decline in multiple areas of functioning, including cognition,
communication skills, and the ability to carry out daily activities [1]. Alzheimer’s disease
(AD) is the most common of these conditions, having an accumulation of amyloid-beta
protein fragments outside neurons and hyperphosphorylated tau tangles within neurons as
its hallmark pathology [2]. Over 110 years ago, Alois Alzheimer first described the disease
that bears his name, characterizing it by deficits in memory, impairment in verbal commu-
nication, visuospatial disorders, and changes in personality such as depression [3,4]. By
2010, 35.6 million people worldwide had dementia; 60–80% of these cases were attributed
to AD. However, the most alarming aspect is that a 225% increase in the number of patients
with this disease is expected worldwide by mid-century, forcing countries to allocate more
resources to this population and expanding the need for more caregivers [5].

Given this scenario, emphasis has been placed on predicting who will experience
AD, since an early diagnosis allows patients to enroll in clinical trials, which could help
to slow the progression of the disease, better preserve cognitive functions, and provide
economic and emotional benefits for both caregivers and patients [6–8]. For this reason,
since 1988, with Barry Reisberg’s mild cognitive impairment definition (MCI), researchers
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have focused on distinguishing subjects with MCI who progress to AD from those who
do not. MCI represents a transitional state between normal cognition and dementia, as
it indicates cognitive deficits, including impairments that could be related to memory
(amnestic MCI) or other cognitive abilities (non-amnestic MCI); even though not all MCI
subjects progress to AD and some eventually revert to cognitive normalcy, subjects with
MCI have an increased risk of developing AD [9,10].

The first criteria for diagnosing AD was created in 1984 by the National Institute of
Neurological and Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s
Disease and Related Disorders Association (ADRDA); since then, the criteria have not
changed substantially [11]. Briefly, they consist of neuropsychological tests that measure
cognitive decline and symptoms of the disease, such as the Mini-Mental State Exami-
nation (MMSE) to detect cognitive decline [12], Boston Naming Test (BNT) to measure
language disorders [13], Geriatric Depression Scale (GDS) to identify depression [14], and
the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS) to assess cognitive
and non-cognitive function characteristics in people with AD [15]. In 2011, these criteria
were revised due to the advances in the understanding of the disease. It was concluded
that an AD diagnosis needed the same evidence as with the previous criteria, with the
addition of one in five proposed biomarkers as potential support, one of them being an
atrophy in the temporal lobes visualized by magnetic resonance imaging (MRI) [16].

Recently, signal- and texture-related features extracted from MRI scans and selected
machine learning techniques have emerged as possible novel markers of AD [17]. In
addition, studies of the progression of AD showed that highly asymmetrical contralateral
hippocampi and amygdala may indicate an early and accelerated deterioration [18].

This work focuses on the study of the MCI to AD progression in the interest of
achieving early detection of AD. Previously, we have proposed new biomarkers for AD
from neuropsychological data, laboratory assays, and signal and texture features from
T1-sequences, such as the magnetization-prepared rapid acquisition with gradient echo
(MP-RAGE) [19]. Subsequently, we analyzed in a preliminary conference paper signal-
and texture-related features from hippocampal T2 maps, finding 11 features significantly
different between stable and non-stable MCI subjects. Volumetric information was non-
significant, and all but one of the machine learning methods improved their accuracy for
AD prediction by adding the signal- and texture-related features to the neuropsychological
studies [20]. It is worth commenting that, to our knowledge, T2 maps have not been
studied by other researchers for this purpose. Nevertheless, they have been used to detect
other diseases such as hepatic fibrosis and acute or chronic heart failure [21,22].

The main objective in this study was to determine the predictive power of signal- and
texture-related features extracted from T2 maps using all the 40 contralateral pairs available
in ADNI images using both a univariate and a multivariate analysis between patients with
MCI who progress to AD and those who remain stable.

2. Materials and Methods

2.1. Data

Data used in the preparation of this article were obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, Positron Emission Tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression
of MCI and early AD. For up-to-date information, see www.adni-info.org.

Dual fast spin-echo images, one weighted to proton density (PD) and one to T2,
and MP-RAGE images available up to April 2020 were retrieved from ADNI [23]. Ad-
ditionally, segmentation maps for the MP-RAGE images generated through automatic
whole-brain segmentations using multi-atlas propagation with enhanced registration were
also downloaded [24].
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2.2. Subject Inclusion

The experiment included only the baseline information from subjects with a baseline
MCI diagnosis, between 70 and 80 years old, with available sex and years of education
information and who also had the aforementioned images and segmentation map available.
One subject was eliminated from the study due to poor image quality. From these, the 18
subjects who had their first AD diagnosis 2 years after their baseline visit were regarded as
progressers (MCIp), while the 22 subjects who never had an AD diagnosis and participated
in the study for at least 5 years were labeled as stable (MCIs). Patients who did not meet
either the MCIp or the MCIs criteria were excluded from the study.

Table 1 details the demographic characteristics of the population. There was no
significant difference in age and years of education between groups when tested using the
Wilcoxon rank-sum test nor a significant difference in male/female proportion under a chi-
squared test. MCI and AD diagnoses were determined as defined by ADNI guidelines [25].

Table 1. Demography of the population.

Group of Study Total MCIs MCIp p-Value

Subjects (males) 40 (32) 22 (18) 18 (14) 1.000
Years of age 75.3 ± 3.0 75.3 ± 3.2 75.2 ± 2.9 0.924

Years of education 15.7 ± 3.0 15.8 ± 3.1 15.6 ± 2.9 0.879
Mean value ± standard deviation; p-value of the chi-squared test (male/female proportion) or Wilcoxon rank-sum
test (age and education).

2.3. MRI Processing

After the three types of images and the segmentation map were downloaded from the
ADNI database for every subject, T2 maps were generated, and their 83 anatomical regions
were segmented. In order to generate the T2 maps, we used the dual fast spin-echo images,
namely, the PD- and T2-weighted images, each with a different echo time. As shown in (1),
the T2 value for the ith voxel can be calculated by fitting the measured signal intensity S at
each echo time TE to a mono-exponential decay function [26]:

Sa(i) = S0e−TEa/T2(i) (1)

where S0 is the signal intensity at zero TE. From there, and working with the signal from
the PD- and T2-weighted images (Sa and Sb, respectively), we obtain (2)

T2(i) =
TEb − TEa

ln(Sa(i))− ln(Sb(i))
(2)

where T2(i) is the T2 value for the ith voxel, TEb and TEa represent the echo time of the T2-
and PD-weighted images, respectively, and Sa(i) and Sb(i) represent the signal value of the
ith voxel for the PD- and T2-weighted images, respectively.

To extract relevant features, it was necessary to perform a segmentation of the T2
maps. The segmentations maps downloaded from ADNI were specifically constructed
for the MP-RAGE images; therefore, a registration process was required to apply these
segmentation maps to the T2 maps. Spin-echo and MP-RAGE images were obtained in the
same imaging session; hence, images were almost identical except for differences caused
by any head movement. Using ITK [27], we performed a rigid registration between the
T2 maps and their MP-RAGE counterparts using the itkVersorRigid3DTransform function
with the Mattes mutual information metric, a regular step gradient descent optimizer, and
a linear interpolator. Quality of the registration was confirmed visually.

2.4. Feature Extraction

Each anatomical region was measured for a set of 38 features: volume, 28 features
related to signal distribution (e.g., energy, kurtosis, and skewness), and 9 texture-related
features (e.g., mass scatter and compactness of the intensity projection map). Then, we
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proceeded to calculate the absolute difference and mean of each signal and texture mea-
surement between contralateral regions. The final database consisted of the difference and
mean features of 40 contralateral pairs, and 3 regions had no counterpart: brainstem (spans
the midline), corpus callosum, and third ventricle. In total, there were 2960 features related
to either the signal or texture of the T2 maps, plus the volume of the 83 regions.

2.5. Statistical Analysis

We performed a univariate and a multivariate analysis. For the former, we compared
the features with the Wilcoxon rank-sum test. Then, to control the false-positive detection
rate and adjust the p-values for multiple comparisons, a Benjamini–Hochberg procedure
was used, and q-values were obtained [28]. A feature was determined significantly different
between groups if a q-value lower than 0.05 was found.

We used FRESA.CAD Binary Classification Benchmarking, an R package that performs
systematic comparisons between machine learning methods, to perform the multivariate
analysis [29–31]. The methods included were: bootstrapped stage-wise model selection
(BSWiMS), k-nearest neighbors (KNN) with BSWiMS features, least absolute shrinkage
and selection operator (LASSO), random forest (RF), recursive partitioning and regression
trees (RPART), support vector machines (SVM) with minimum-Redundancy-Maximum-
Relavance (mRMR) method, and the ensemble of these methods (ENS). We performed a
100-fold cross-validation strategy, where the training sample was constructed by randomly
selecting 80% of the subjects while the rest were kept for validation. For this study, we
focused mainly on accuracy, sensitivity, specificity, balanced error, and the area under the
receiver operating characteristic curve (ROC AUC) with a 95% confidence interval (CI).

Furthermore, in order to find the features with the highest predictive potential, we
evaluated the ability of several feature-selection algorithms—integrated discrimination
improvement (IDI), Kendall correlation, LASSO, mRMR, net reclassification improvement
(NRI), RF, RPART, t-student test, and Wilcoxon test—in their ability to select the best set of
features for several classifiers: KNN, naïve Bayes, nearest centroid with normalized root
sum square distance and Spearman correlation distance, RF, and SVM. These classifiers
were analyzed using the same cross-validations strategy.

2.6. Experiment Design

In order to find the predictive power of the features related to signal and texture,
we performed two different experiments. The first one included the total scores from
eight neuropsychology studies that are used for the diagnosis of AD, namely, MMSE, BNT,
GDS, ADAS with 11 items (ADAS-11), and ADNI summary scores related with executive
function, visuospatial functioning, language, and memory [32–34]. The second experiment
included these 8 scores in addition to the most significant features in the univariate analysis
extracted from the T2 maps.

3. Results

3.1. Univariate Analysis for Neuropsychological Studies and Volumes

The univariate analysis for the eight neuropsychological tests yielded three of them
as significant: ADNI memory test (p-value = 7.765 × 10−4), ADAS-11 (p-value = 0.004)
and MMSE (p-value = 0.025). Only the first two remained significant after the Benjamini–
Hochberg procedure was run with the rest of the neuropsychological tests. Regarding the
volumetric information, only one feature was found to be significant under the Wilcoxon
rank-sum test: the right amygdala (p-value = 0.034).

3.2. Univariate Analysis for Signal and Texture Features

Of the 2960 signal and texture features, 140 were significantly different between
classes, 89 mean values and 51 absolute differences. However, after adjusting for multiple
comparisons using the Benjamini–Hochberg method, none of these remained significant.
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Table 2 shows the 25 features with the lowest p-values. It is worth noting that 11 of them
belong to the hippocampus.

Table 2. Significant features by their q-value of β′
1j.

Rank Feature Modality Brain Region p-Value

1 Value at 25% a Difference Superior frontal gyrus 1.52 × 10−4

2 Mass Scatter YY b Difference Hippocampus 5.51 × 10−4

3 σ at 90% central value a Mean Hippocampus 0.001
4 ICV at 90% central value a Mean Hippocampus 0.002

5 Probability of value being lower
than 2σ a Difference Lateral ventricle, temporal horn 0.002

6 Entropy a Mean Hippocampus 0.002
7 Energy a Mean Hippocampus 0.002
8 Value at 75% a Mean Hippocampus 0.003
9 Skewness a Mean Subcallosal area 0.004

10 Energy a Mean Subcallosal area 0.004
11 Mass Scatter YY b Difference Cerebellum 0.004
12 Value at 5% a Difference Superior frontal gyrus 0.004
13 µ signal a Mean Hippocampus 0.004
14 µ at 90% central value a Mean Hippocampus 0.005
15 Entropy a Mean Subcallosal area 0.005
16 Value at 95% a Mean Hippocampus 0.006
17 Kurtosis a Mean Hippocampus 0.006
18 Precision range a Mean Hippocampus 0.006
19 Precision range a Mean Insula 0.006
20 Value at 99.99% a Difference Anterior orbital gyrus 0.007

21 ICV at 90% central value a Mean Lateral occipitotemporal gyrus, gyrus
fusiformis 0.008

22 Probability of value being
greater than 3σ a Mean Cingulate gyrus, posterior part 0.008

23 Energy a Mean Cingulate gyrus, posterior part 0.008
24 Value at 25% a Difference Putamen 0.008

25 Probability of value being
greater than 3σ a Difference Lateral ventricles, temporal horn 0.008

a Features related to the signal distribution of the image; b Features related to the texture of the image.

3.3. Multivariate Analysis for Neuropsychological Studies

The prediction results for the different machine learning techniques considering only
neuropsychological tests are shown in Table 3. The features most frequently found in the
predictive models were the total scores from the ADNI memory test and the ADAS-11. The
machine learning technique with the best results was LASSO, with an accuracy of 0.675
and an ROC AUC of 0.727. However, it is worth noting that confidence intervals overlap,
implying no real difference between methods.

Table 3. Results for the multivariate analysis with neuropsychological tests.

Accuracy ROC AUC Specificity Sensitivity Balanced Error
Technique Mean CI Mean CI Mean CI Mean CI Mean CI

BSWIMS 0.500 0.338–0.662 0.558 0.380–0.736 0.273 0.107–0.502 0.778 0.524–0.936 0.475 0.341–0.613
ENS 0.650 0.483–0.794 0.649 0.472–0.826 0.636 0.407–0.828 0.667 0.410–0.867 0.347 0.198–0.513
KNN 0.625 0.458–0.773 0.674 0.504–0.845 0.500 0.282–0.718 0.778 0.524–0.936 0.361 0.225–0.509

LASSO 0.675 0.509–0.814 0.727 0.567–0.888 0.636 0.407–0.828 0.722 0.465–0.903 0.321 0.177–0.469
RF 0.650 0.483–0.794 0.657 0.507–0.806 0.591 0.364–0.793 0.722 0.465–0.903 0.343 0.200–0.494

RPART 0.650 0.483–0.794 0.638 0.483–0.793 0.682 0.451–0.861 0.611 0.357–0.827 0.353 0.208–0.506
SVM 0.650 0.483–0.794 0.652 0.499–0.804 0.636 0.407–0.828 0.667 0.410–0.867 0.350 0.201–0.504

3.4. Multivariate Analysis for Neuropsychological Studies and Imaging Features

In order to include only relevant features in the selection pool to be used for each
classifier, we proceeded to take the most relevant characteristics, that is, those with the
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lowest p-value of the univariate analyses. Twelve volumes (~15%; 12/83) and 148 features
related to signal and texture (~5%; 148/2960) were considered. All eight neuropsychological
tests were also included.

Table 4 shows the results obtained with each of the seven machine learning techniques
for the experiment with neuropsychological information, volumetric information, and
signal- and texture-related information. Comparing those results with the ones found in
Table 3, it can be seen that all methods had a higher average score in accuracy and ROC
AUC, except for RPART. Furthermore, we can notice that the specificity, sensitivity, and
balanced error were improved. Sensitivity measures the proportion of positives that are
correctly identified, and specificity measures the proportion of negatives that are correctly
identified. Figure 1 shows the ROC of the most relevant machine learning methods for
this experiment.

Figure 1. ROC AUC curves on the imaging features and neuropsychological test scores analysis.
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Table 4. Results for neuropsychological and imaging features experiment.

Accuracy ROC AUC Specificity Sensitivity Balanced Error
Technique Mean CI Mean CI Mean CI Mean CI Mean CI

BSWIMS 0.775 0.615–0.892 0.732 0.553–0.911 0.773 0.546–0.922 0.778 0.524–0.936 0.223 0.100–0.359
ENS 0.750 0.588–0.873 0.824 0.681–0.968 0.773 0.546–0.922 0.722 0.465–0.903 0.250 0.124–0.398
KNN 0.675 0.509–0.814 0.721 0.550–0.892 0.727 0.498–0.893 0.611 0.357–0.827 0.330 0.191–0.482

LASSO 0.675 0.509–0.814 0.773 0.610–0.936 0.636 0.407–0.828 0.722 0.465–0.903 0.321 0.177–0.477
RF 0.775 0.615–0.892 0.770 0.636–0.905 0.818 0.597–0.948 0.722 0.465–0.903 0.225 0.101–0.360

RPART 0.500 0.338–0.662 0.513 0.348–0.677 0.454 0.244–0.678 0.555 0.308–0.785 0.499 0.343–0.653
SVM 0.750 0.588–0.873 0.742 0.603–0.882 0.818 0.597–0.948 0.667 0.410–0.867 0.255 0.127–0.401

As previously mentioned, we were also interested in finding out which specific
features were more relevant in predicting the progression from MCI to AD. From the nine
feature selection methods that were compared, the absolute difference in the Mass Scatter
YY in the hippocampus, a feature related to the texture of the T2 map, was found among
the six most frequent features in all of them. That is, after all feature selection methods
were paired with each classifier, the frequency in which each feature was selected in the
final model was computed, and this particular feature was at least the sixth most frequently
selected feature every time. Similarly, the absolute difference of the value at 25% in the
superior frontal gyrus, a feature related to the signal of the T2 map, was in the top-six
in eight of the nine feature selection methods. Additionally, ADNI’s memory test and
ADAS-11 were in the top-6 in seven and six methods, respectively. Regarding volumetric
information, only in the RPART method were volumes found within the 50 most frequent
features. The RPART methods used on average 9.67 features per model.

4. Discussion

The present study showed that the signal and texture features extracted from T2 maps
could be used in conjunction with information from neuropsychological studies for the
prediction of AD. To reach this conclusion, we compared the accuracy, sensitivity, specificity,
balanced error, and ROC AUC for each of the different machine learning techniques
between the experiment without imaging information and the one that included it. In
general, and for all metrics, there was an improvement in the different techniques by
adding this information. Another important aspect to highlight is that the presence of
volumes in the prediction models was inconsequential.

In a review of MRI texture analyses with machine learning techniques [17], many
studies performed classification and prediction of AD. Even though these studies in-
cluded a greater number of subjects, the vast majority of them focused specifically on the
hippocampal region and used only one machine learning technique. Additionally, they
used T1-sequences, while this study focused on T2 maps of the whole brain segmented
into 40 contralateral regions. Furthermore, we were able to pinpoint specific features by
performing an exhaustive feature selection analysis.

The reduction in the volume of the hippocampus was one of the first biomarkers for
AD classification [35]. Later, studies have reported that the texture of the hippocampus com-
pared to its volume predicts earlier and more effectively the progression to AD [20,36,37].
In this study, the contralateral difference in a texture-related feature measured in the
hippocampi was the most frequently selected feature, and several other signal- and texture-
related features from the hippocampus were found to be most relevant under the univari-
ate analysis.

However, we were able to identify other regions of the brain as potential sources for
novel biomarkers of the MCI to AD progression process. For example, the contralateral
difference in a signal-related feature measured in the superior frontal gyrus was the second
most frequently selected feature, and that same feature yielded the lowest p-value when the
univariate analysis was run. Similarly, signal- and texture-related features measured in the
lateral ventricle, the subcallosal area, and cerebellum had some of the lowest p-values from
the univariate analysis and were found to be frequently selected by the different feature
selection methods.
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This study has several limitations; for example, we only focused on 28 features related
to the signal distribution and nine to the texture of the image. However, the results we
obtained motivate us to follow the recommendations of The Image Biomarker Standard-
ization Initiative [38] in search for features that can improve our models. Additionally,
the inclusion criteria forced us to work with a small population, a potential cause for the
lack of significant features after the p-value correction in the univariate analysis; we intend
to run further experiments with a larger dataset derived from more relaxed inclusion
criteria. Lastly, we believe this work drives further analyses and experimentation, the most
important being the inclusion of information from two different MRI sequences to enhance
the models.

5. Conclusions

T2 maps segmented into 83 anatomical brain regions from 40 subjects with MCI who
either progressed to AD or remained stable were analyzed and contralateral features related
to the signal and texture of the maps were extracted. We identified that the contralateral
difference in a texture-related feature (the absolute differences in Mass Scatter YY) extracted
from the hippocampi and the contralateral difference of a signal-related feature (the signal
value at 25%) extracted from the superior frontal gyrus were the most relevant features
for the task of classifying between MCIp and MCIs subjects under both a univariate and a
multivariate analysis. In general, signal- and texture-related features enhanced the MCI
to AD predictive power of models that used information from neuropsychological tests,
such as ADAS-11 and ADNI’s memory test. Furthermore, we found that signal and texture
information is more relevant for this task than mere volumetric information. These results
suggest that contralateral signal- and texture-related information extracted from T2 maps
should continue to be explored in the search for better MCI-to-AD predictive models.
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Abstract: Sleep apnea is a sleep disorder that affects a large population. This disorder can cause or
augment the exposure to cardiovascular dysfunction, stroke, diabetes, and poor productivity. The
polysomnography (PSG) test, which is the gold standard for sleep apnea detection, is expensive,
inconvenient, and unavailable to the population at large. This calls for more friendly and accessible
solutions for diagnosing sleep apnea. In this paper, we examine how sleep apnea is detected clinically,
and how a combination of advances in embedded systems and machine learning can help make its di-
agnosis easier, more affordable, and accessible. We present the relevance of machine learning in sleep
apnea detection, and a study of the recent advances in the aforementioned area. The review covers
research based on machine learning, deep learning, and sensor fusion, and focuses on the following
facets of sleep apnea detection: (i) type of sensors used for data collection, (ii) feature engineering
approaches applied on the data (iii) classifiers used for sleep apnea detection/classification. We also
analyze the challenges in the design of sleep apnea detection systems, based on the literature survey.

Keywords: sleep apnea; machine learning; deep learning; wearable systems

1. Introduction

Sleep apnea is a sleep disorder in which a sleeping person’s breathing is disturbed. It
is prevalent in adults as well as a small percentage of the juvenile population [1]. Subjects
suffering from sleep apnea undergo periods of no or shallow breathing during their
sleep. The former condition in which breathing stops temporarily is referred to as apnea,
while the latter condition of periods of shallow breathing or airflow reduction is called
hypopnea. Clinical comorbidities can result from either condition and, therefore, both
are detrimental to a person’s well-being [2]. The physiological symptoms of sleep apnea
include snoring, gasping for air during sleep, waking up with dry mouth and, in general,
low sleep quality, thereby leading to low attention, insomnia, decrease in cognitive skills,
accidents, memory loss and depression. In addition to the low quality of life caused by
sleep deprivation and fatigue, sleep apnea may also lead to severe issues such as diabetes,
cardiovascular problems, hypertension, neurological issues, and liver problems. Due to the
global prevalence of sleep apnea as well as the direct and indirect long-term problems it
brings about, it is important to diagnose and treat this condition. In this paper, we review
the recent state-of-the-art research in the application of machine learning for sleep apnea
detection. The review covers the parameters and sensors used, and feature engineering
approaches for enabling sleep apnea detection using machine learning.

There are three types of sleep apnea:

• Obstructive sleep apnea (OSA) occurs due to improper functioning of the upper
respiratory tract. When the muscles of the hard palate in the back of the throat
that supports that soft palate relax, the soft palate blocks the passage of air to the
respiratory system. This leads to stoppage of breathing for short durations [3].
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• Central sleep apnea (CSA) occurs when the brain fails to generate or transmit signals
that control breathing muscles. This leads to short durations of time when the subject
does not breathe at all.

• Complex sleep apnea syndrome is manifested with central apnea persisting even after
obstructive events have disappeared with PAP therapy [4].

Javaheri et al. [3] describe the etiological risk factors for sleep apnea and its con-
sequences. In this paper, we describe the recent research in the application of machine
learning for sleep apnea detection. Figure 1 presents the distribution of the number of
papers selected for this study from 2003 through 2021. The technical focus of this study
includes the following facets of sleep apnea detection: (i) type of sensors used for data
collection, (ii) feature engineering approaches applied on the data, and (iii) classifiers used
for sleep apnea detection/classification.

 

 

 

 

Figure 1. Year-wise Distribution of Papers.

This paper is organized as follows: In Section 2, we briefly explain how sleep apnea
is diagnosed, and the biomedical parameters along with their derivatives that aid in the
process. Subsequently, we examine the drawbacks of the standard tests for sleep apnea
detection, and reason the need for leveraging on the advances in machine learning and
wearable device technologies for the same. Section 3 details the recent studies on intelligent
sleep apnea detection mechanisms using classic machine learning and deep learning based
solutions, using single markers as well as sensor/feature fusion. Section 4 outlines the
recent studies in sleep apnea detection using machine learning on data generated by
environmental sensors and the significance of including features related health profiles,
during classifier training. We conclude our paper with our observations on the various
factors that influence the performance of machine learning classifiers for sleep apnea
detection.

2. Background

2.1. Diagnosis of Sleep Apnea

Clinical manifestations of sleep apnea conditions include variations in oxygen satura-
tion levels, respiratory effort, and heart rate. Gottlieb et al. [5] describes the pathophysiol-
ogy, assessment and treatment of obstructive sleep apnea. The PSG test is the gold standard
in the diagnosis of this condition [1]. This test is conducted in dedicated sleep labs under
the supervision of trained personnel. It is time consuming, and requires subjects to be
connected to instruments measuring various biomedical and physiological parameters.
The test monitors upper airway flow, respiratory effort, and biomedical and physiological
parameters such as electroencephalogram (EEG), electrocardiogram (ECG), and oxygen
saturation (SPO2) [1]. EEG helps detect electrical activity in the brain and related disorders.
This is measured using an EEG machine. ECG analyzes the rhythm of heartbeats and blood
flow to the heart muscles and is measured using an ECG machine or a single lead ECG.
SPO2 indicates the measure of oxygen in the blood. A pulse oximeter is used to measure
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SPO2. In addition, thoracic and abdominal signals as well as acoustic signals generated by
respiratory effort or snoring can also aid in the detection of sleep apnea.

Various parameters useful in the diagnosis of sleep apnea can be derived from the
above-mentioned signals. Analysis of ECG yields Heart Rate Variability (HRV), ECG
derived respiration (EDR), Cardiopulmonary coupling (CPC), and Ballistocardiography
(BCG) parameters.

• HRV measures the variation in the time interval between consecutive heartbeats,
known as the R-R interval. Previous research shows that variation in R-R interval is a
symptom of apneic events, and hence can provide the physiological basis of using R-R
series to detect OSA. Analyzing HRV, however, poses certain challenges. This includes
special attention to signal quality and elimination of background noise, along with
using a sensitive R-wave detection algorithm. Furthermore, interpretation of HRV is
difficult in patients who have atrial fibrillation or those with irregular heartbeats [6].

• Instantaneous Heart Rate (IHR) is the number of times the heart would beat if succes-
sive R-R intervals were constant.

• EDR measures respiratory activity from ECG. An explanation of the relation between
EDR and ECG is given in [7]. The respiratory effort causes changes in the position of
the ECG electrodes, which in turn affects the amplitude of the ECG signals. EDR is the
surrogate respiration signal derived from the amplitude variations of the ECG signals.
There are several techniques to derive EDR from ECG [8].

• CPC quantifies the degree of coherent coupling between HRV and variations of the
R-wave amplitude caused by modulation of the respiratory tidal volume. CPC can
be of high or low frequency coupling (HFC, LFC); the former is indicative of stable
sleep, while the latter is associated with sleep instability. A special characteristic of
LFC, so-called elevated LFC, can be used to detect periods of apnea and hypopnea [9].

• Ballistocardiography (BCG) is a noninvasive method based on the measurement of
body motion (body movements such as displacement, velocity, and acceleration),
generated by the ejection of blood by the heart, at each cardiac cycle. This is measured
using devices that can measure the body recoil force produced as a result of ejection
of blood [10].

• A parameter that may be related to HRV is Pulse Rate Variability (PRV), which is
measured from photoplethysmography (PPG) sensors [11]. PPG sensors use a light
source and a photodetector on the skin to characterize blood circulation.

Oxygen Desaturation Index (ODI) is a metric derived from SPO2, which represents
the number of times the oxygen level in blood falls for more than 10 s, divided by the
number of sleep hours. ODI is defined as the number of times that oxygen desaturation
was ≥3% per hour of sleep [12].

The above mentioned parameters are used to infer certain measures to ascertain the
presence of sleep apnea, such as:

• Apnea–hypopnea index (AHI) [13] is the number of times one has apnea or hypopnea
during one night, divided by the hours of sleep. In other words, AHI score is the
number of apnea and hypopnea events per hour of sleep. The severity of sleep apnea is
determined based on the AHI score as follows: normal (AHI < 5), mild (5 ≤ AHI < 15),
moderate (15 ≤ AHI < 30), and severe (AHI ≥ 30).

• Respiratory Disturbance Index (RDI) factor counts the number of times respiratory
difficulties disturb one’s sleep. This includes, in addition to apneic and hypopneic
events, respiratory effort-related arousals (RERA). RERA is the number of arousals
from sleep resulting from increased respiratory effort. RDI is expressed as:

• RDI = (Number of apneas + Number of hypopneas + Number of RERAs)/sleep hours.

2.2. The Need for More Accessible Detection Mechanisms—Sensors to the Aid

While the PSG test is the gold standard in sleep apnea diagnosis, its availability, cost,
requirement of trained staff, and limited capacity at sleep centers make it inaccessible to
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the common man, and sleep apnea is often undiagnosed or underdiagnosed, until the
subject starts showing symptoms of long-term impact. Studies show that the percentage
of elderly population in the world is increasing. Due to changing lifestyles, the number
of elderly people living alone is also increasing. This has resulted in the emergence of
geriatric healthcare homes, with round-the–the-clock staff support, albeit with high costs
of maintenance. Technological advances in sensors, low power embedded systems, and
machine learning have paved the way for more affordable and intelligent healthcare homes,
with automatic monitoring of the subjects’ vital parameters [14]. One of the possibilities of
such a system is the detection of sleep apnea.

Recent advances in sensing technologies have enabled the continuous collection of
various vital parameters that can lead to monitoring sleep quality in multiple ways. The use
of sensors to detect sleep apnea is a widely researched area, and the application of machine
learning techniques to detect apneic conditions has been found to be accurate and reliable.
The parameters used to detect sleep apnea, such as ECG and SPO2, their derivatives such as
HRV, BCG, ODI, thoracic and abdominal signals, pressure, and sound [15], can be obtained
from biomedical sensors, environmental sensors or vision-based systems.

• Biosensors allow sensing of vital parameters. For example, ECG sensors enable the
detection of HRV and R-R intervals through signal analysis. They also enable the
deduction of variations in QRS (Q wave, R wave, S wave) amplitude of ECG signals
and ECG derived respiration. A variant of the ECG sensor, the single lead ECG
sensor, is designed to be used with wearable devices. SPO2 sensors measure oxygen
saturation levels in the blood. Barometric sensors measure blood pressure.

• Environmental sensors include those that can monitor the surroundings of the subject
under study. For example, sound sensors allow nocturnal sound analysis by capturing
snoring via microphones. Sounds and sound patterns during inhalation and exhalation
will be different from normal when the upper respiratory tract is compromised. Inertial
motion unit (IMU) sensors allow deriving the position of the sleeping subject. Sensors
are also placed under the bed to enable non-intrusive monitoring.

• Vision based systems allow capturing of images through image and/or video feeds.
Analysis of the images and video frames enables determination of the sleeping position
of the subject under study.

Leelaarporn et al. [14] provide a comprehensive review of the utilization of sensors
in four different areas of smart living, including sleep monitoring. Recent research trends
in the area of sleep monitoring using several types of algorithms on pulse oximetry, ECG,
sounds and respiration data are described in [16]. Flemons et al. [17] studies the utility of
portable monitors in diagnosing sleep apnea in adults.

3. Machine Learning in Sleep Apnea Detection Based on Biomedical Markers in
Wearable Devices

Machine learning applies mathematical modelling to detect or predict anomalies or
patterns, to discover new knowledge from datasets. A model trained on a given dataset
is used to classify new data. Machine learning can be supervised, unsupervised, or
reinforcement learning [18]. Supervised learning algorithms take a labelled dataset as input
and output a hypothesis that best fits the labelled dataset. A labelled dataset provides
the algorithm with an outcome variable for each record in the dataset. Unsupervised
learning algorithms do not have a labelled dataset for classifier training; rather, they
detect patterns in the dataset to form clusters of similar records. Reinforcement learning
has a feedback ingredient that incorporates reward points for records that get correctly
classified, which substantiates classifier training. While there have been studies that uses
spectral/waveform analysis of signals for sleep apnea detection [19–21], the ability of
machine learning classifiers to learn from input datasets and generalize for future data
makes it a reliable approach in this area of research. Most studies on sleep apnea detection
rely on supervised learning.
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The common set of parameters that is used to detect sleep apnea was explained
in a previous section. Biomedical informaticians have used various machine learning
techniques to predict the accuracy of sleep apnea diagnosis using these aforementioned
parameters. Of late, the effectiveness of ensemble classifiers and deep learning techniques
has also been investigated. The features used for sleep apnea detection could be reported
directly from sensors, or extracted from various sensor observations. There has also
been extensive research into utilizing observations from one or more of these sensors
using data fusion to detect sleep disorders. Studies also include the impact of extracting
statistical, time and frequency domain features from the parameters, and performing
dimensionality reduction to downsize the feature vectors on the classifier performance.
In the following sections, we look at how classic machine learning, deep learning, and
sensor fusion techniques have been applied to detect sleep apnea. Deep learning can
be considered as a specialized segment of machine learning; however, the manner in
which feature engineering is accomplished differs greatly from each other. A snapshot of
recent research on sleep apnea detection using machine learning and deep learning with
biomedical sensors is presented in Table A1.

3.1. Classic Machine Learning Based Solutions

This section presents an overview of recent research in sleep apnea detection using
classic machine learning techniques. In many research papers, single biomedical markers,
such as SPO2, ECG, EOG, or EEG, have been used for the detection of sleep apnea. Among
these, most studies focus on using SPO2 and ECG signals because of their correlation
with apneic events—research shows that heart rate and systolic blood pressure increase
in response to apneic events [22]. For example, in [12], SPO2 signals are used for OSA
detection. During feature engineering, ODI, total time below saturation levels (tsa), and
other six features were extracted from SPO2. Various variants of decision tree (DT) clas-
sifiers were used to obtain an accuracy of 93%. In [23] too, pulse oximeter parameters
are used for sleep apnea detection. PPG measurements were obtained from SPO2 sensor
and analyzed to derive heart rate and breathing effort information. The best classification
performance of 87% was obtained when the Linear Discriminant Analysis was used on
SPO2 features and the PPG features were combined. Another study that makes use of
PPG measurements extracted from SPO2 readings is [24], in which statistical and time
domain SPO2 and PPG features were extracted around SPO2 drops and averaged per
patient. The impact of using SPO2 and PPG features on OSA detection was analyzed here.
Three SPO2 based features and two PPG features were selected for training a support
vector machine (SVM) classifier. Unlike [23], it was found that the classifier based on SPO2
features along with the subjects’ age yielded 77.7% accuracy, while the PPG features did
not have any impact on the classifier performance. This research highlights that age is also
a clear confounding parameter because of its correlation with cardiovascular health, and
using age alone for OSA detection can yield a reasonable accuracy. In [25], four machine
learning models are evaluated, to not just detect apnea but also ascertain its severity using
only SPO2 information obtained at the patient’s home. A three-step process comprising
feature extraction, feature selection, and classifier evaluation was conducted. A total of 16
features were extracted from SPO2 spanning statistical, spectral, and nonlinear domains,
in addition to ODI, which were input to a Fast Correlation Based Filter feature selection
algorithm. An AdaBoost model built with linear discriminants as base classifiers gave the
best apnea severity classification accuracy. In [13], Mostafa et al. analyzes SPO2 signals
from two public datasets using Deep Belief Network (DBN). The analysis shows that while
the accuracy increases with the increasing number of hidden neurons, the increase is mini-
mal, which may not justify the trade-off between classifier performance and processing
requirements. Another study that detects sleep apnea conditions employs seven features
and SVM [26]. This work not only detects but also corrects apneic events via a smart
pillow. The setup consists of a wearable device with a pulse oximeter, a smartphone, and
an adjustable pillow. The pulse oximeter on a wearable device senses the SPO2 signal and
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transmits it to a smart phone. The smartphone detects the SPO2 desaturation events and
issues a pillow adjustment command. The adjustable pillow adjusts its shape and height
according to the command. The adjustment effect is further monitored and evaluated by
the pulse oximeter, providing a closed-loop feedback system between monitoring and
corrective actions. Wrist band-mobile and mobile-pillow communication is over Bluetooth.
A review of approaches for detecting sleep apnea specifically using pulse oximetry data is
provided in [27].

ECG is another parameter that is commonly used in the detection of sleep apnea.
Hassan et al. [28] compare various machine learning classifiers on a dataset generated
by a single lead ECG sensor. Statistical moment-based and empirical mode decompo-
sition features were extracted from the raw data. Post feature extraction, Naive Bayes,
k-nearest neighbor (kNN), neural network, AdaBoost, Bagging, random forest, extreme
learning machine (ELM), discriminant analysis (DA) and restricted Boltzmann machine
were compared for performance. ELM gave the best accuracy of 83.77%. A dataset based
on single-lead ECG was used in [29] as well to detect sleep apnea. In this study, segments
of ECG signals were fed into dual-tree complex wavelet transform (DTCWT) to generate
frequency sub-bands. Three statistical features—variance, skewness, and kurtosis—were
extracted from the DTCWT output and analyzed to determine their suitability in detecting
sleep apnea. LogitBoost gave an accuracy of 84.4%. Other classifiers analyzed include
DA, kNN, Artificial Neural Network (ANN), ELM, SVM, AdaBoost and Bagging. ECG
signals have also been used not just for the detection of sleep apnea, but also to determine
its type [20].

Previous research indicates that parameters derived from ECG such as IHR, HRV,
BCG, and CPC, have also been used as markers for training classifiers to detect sleep apnea.
For example, certain studies [30,31] indicate that HRV measures have a great potential
to boost OSA detection. Khandoker et al. [32] highlight the effectiveness of using HRV
and EDR with an SVM classifier to attain 100% accuracy in the detection of apneic events.
This study also uses SVM to estimate the relative severity of OSA. In [33], kNN, quadratic
discriminant analysis (QDA) and SVM were applied on statistical measures of HRV. de
Chazal et al. [34] use HRV, EDR, and CPC, obtained from single lead ECG signals, for
sleep apnea detection. The analysis in this study shows that CPC features along with
the time-domain-based HRV parameters gave the best classification performance, with
an accuracy of 89.8%. The classifier algorithm used was multiple logistic discrimination.
In [35], 24 time and frequency domain features are extracted from ECG signals. This
included time domain features such as mean, median, standard deviation, and mode
for each NN interval series, and frequency domain features such as normalized power
in various frequency ranges, and the vegetative balance index. Feature selection was
performed by discarding redundant features, leading to nine features being used for
training decision trees, discriminant analysis, logistic regression, support vector machines,
variation of kNN, and ensemble learning classifiers. Seo et al. [36] study sleep quality and
stability assessment using sleep questionnaires and ECG. Respiratory and CPC parameters
were extracted from ECG signals, and results found a significant correlation between AHI
and CPC. Studies related to sleep analysis using EEG signals include [37,38].

3.2. Deep Learning Based Solutions

Deep learning techniques such as Deep Neural Network (DNN), Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM)
are being increasingly used for diagnosing sleep apnea, both on single markers as well as
with sensor/feature fusion. Feature engineering and selection is crucial to the performance
of intelligent solutions, especially in the biomedical domain [39]. One of the advantages
of using deep learning is that they have the capability to learn relevant features from
the raw data, using neurons, convolution and pooling layers. For example, Li et al. [40]
argue that that while feature engineering is essential for improving the performance of
classifiers, it often depends on human expertise which can tend to be subjective. In this
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study, unsupervised learning algorithms with sparse auto-encoders were used to learn
features from ECG signals, to decouple the dependency of subjective human expertise
on crucial feature engineering aspects. Classification was carried out using SVM and
ANN, and the classification performance was refined using decision fusion and Hidden
Markov Model (HMM). The accuracy obtained was 85% and the sensitivity was 88.9%.
Another study that performs algorithmic extraction of features is [41]. In this, a single
electrooculogram (EOG) signal was used to perform automatic sleep scoring. A three-layer
DBN with 500, 200, and 100 neurons was used for feature extraction and label prediction.
The predicted labels and original labels were used to train an HMM model. The average
accuracy of the DBN–HMM model was 83.3%. This study attempts to establish that DBN
can extract features by itself without manual intervention. Novák et al. [31] study how
LSTM can enable the detection of temporal dependencies in features relevant to sleep
apnea detection.

Wang et al. [42] use ECG signals for sleep apnea detection. R-R intervals and R-peak
amplitudes were extracted from ECG signals, and time window ANN was applied for
classification. The accuracy obtained was 87.3%. Mostafa et al. [13] describe a method to
detect sleep apnea using SPO2 by calculating the AHI score. The deep learning algorithm
used was DBN. Performance analysis was performed on two public datasets [43,44] with
SPO2 values. Pathinarupothi et al. [15] detail the use of LSTM-RNN for the detection of
sleep apnea severity and explores the relation between IHR and SPO2 towards this. The
research shows that OSA severity detection can be solely based on either IHR or SPO2
signals.

In [45], IHR is used as the sole marker for sleep apnea detection. This paper argues
that using only IHR and its derivatives can provide 85% accuracy at best, with simple
classification algorithms for classifying minute-to-minute apnea. Therefore, LSTM–RNN
was employed for the identification of sleep apnea and its severity. Various configurations
of LSTM–RNN, post feature extraction and selection, were used for training, which yielded
99.99% accuracy in detecting sleep apnea. Erdenebayar et al. [22] describe a comparative
study of the performance of deep learning classifiers on ECG signals—the classifiers are
Deep Neural Network (DNN), 1D CNN, 2D CNN, RNN, LSTM and gated-recurrent unit
model (GRU). The 1D CNN and GRU models were the best performing with an accuracy
and recall of 99%. Other studies include [46–48].

3.3. Sensor/Feature Fusion Techniques

Extensive study has been performed to estimate the effectiveness of sensor or feature
fusion techniques to detect sleep apnea. This involves the concurrent use of two or more
parameters originating from different sources and performing classification based on the
values of all these parameters. For example, Memis et al. [49] apply feature-level fusion
of ECG and SPO2 signals. The temporal information from the ECG and SPO2 signals
was fed as input to Naïve Bayes, kNN, and SVM classifiers. SVM gave the best accuracy
of 96.64%. Xie et al. [50] also explores ensembles and data fusion over ECG and SPO2
signals. When analyzed separately, the research finds that SPO2 features can detect apneic
episodes better than ECG features. Various classifier combinations trained on select features
from SPO2 and ECG were then analyzed for performance. Feature extraction yielded
111 ECG and 39 SPO2 features, from which 8 ECG and 31 SPO2 features were selected
for classifier training. The base classifiers were combined using maximum probability,
average probability, product of probability and majority voting. Garde et al. [11] extract
time-domain and frequency-domain features from SPO2 and PRV, and applies Logistic
Regression to detect apnea/hypopnea events.

In [51], Prabha et al. make use of HRV and Respiratory Rate Variability (RRV) from
ECG and respiratory effort signals (RES), respectively. A decision making system which
fuses time-domain features from HRV and RRV signals, by combining their outputs with
empirically calculated weights, produced an accuracy of 100%. The weight associated
with time-domain HRV features was considerably higher than that of time-domain RRV
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features, which indicates that HRV has a higher correlation with sleep apnea detection than
RRV, although the latter may be complementing the former. This analysis concludes that
the time-domain features of HRV and RRV provide sufficient information to detect OSA.
Other related studies include [52,53].

4. Other Solutions

In addition to devices that measure biomedical parameters, studies show the applica-
tion of environmental sensors/devices such as microphones and cameras to ascertain the
presence of sleep apnea. Literature also shows the application of health profiles to detect
apnea and predict the AHI values to classify the severity of apneic events. Examples of
such studies are summarized below.

4.1. Using Environmental Sensors

Sleep apnea detection can be performed with externally mounted devices or ambient
sensors, other than biomedical sensors. One such technique for sleep apnea detection
is based on smartphones. Camcı et al. [54] use sonar waves generated by smart phones,
which give information about chest movements, to detect sleep apnea. The accuracy of
the system was found to be dependent on the subject’s change of sleep position. Other
techniques such as placing a microphone close to the subject’s nose and mouth were found
to be obtrusive and impacting the sleep behavior of the subjects [55,56]. Another technique
relies on the use of a 3D time-of-flight camera, which records the subject’s respiratory
motion [57]. The signals pertaining to respiratory movement of abdominal muscles are
analyzed to monitor sleep stages and detect apnea. Davidovich et al. [58] propose a novel
algorithm for sleep apnea screening with a contact-free system based on a piezo-electric
sensor. The setup consisted of a piezo-electric sensor, which recorded a combination of
gross body motion, rib cage movements, and the cardioballistic effect. The specificity and
sensitivity were found to be 89% and 88%, respectively.

Hafezi et al. [59] estimate sleep apnea severity from tracheal movements via an
accelerometer attached to the participant’s suprasternal notch. 7 morphological features
were extracted from tracheal movements, on which a deep learning classifier using a
combination of CNN and LSTM, was applied. However, this method requires wearing a
patch which may be inconvenient to the subjects.

In [60], Wang et al. propose a sleep breathing monitoring mattress which utilizes the
ultra-wideband (UWB) physiological sensing technique. The UWB physiological sensing is
accomplished via a series of very narrow and low power pulses over wideband. If apnea is
detected, the head of the mattress is lifted up to increase blood oxygen saturation and ease
the apneic condition. The methodology involved dataset collection using signals recorded
from the experiment using Fast Fourier Transform (FFT), feature extraction using Principal
Component Analysis (PCA) and classification using kNN, AdaBoost, DT, and SVM. kNN
produced better results than the rest of the classifiers.

In [56], acoustic signals placed on the ceiling above the patient’s bed, were used.
Subjects were classified into four sleep apnea severity groups according to their AHI.
A two-stage filtering process to remove various unwanted noises and purify the sleep
breathing sounds was applied. A total of 23 temporal and spectral features of the audio
signal were extracted, which included the mel frequency, cepstral coefficients (MFCCs),
spectral flux, and zero crossing rate. Logistic regression, SVM, DNN with 2 hidden layers
were applied for classification.

In [61], machine learning models (kNN, AdaBoost, and DT) are applied on data
generated by UWB sensors for sleep apnea detection. The experimental setup consists
of a sleep breathing monitoring mattress which utilizes the UWB physiological sensing
technique. The mattress also has a mechanism to lift up the head on detection of apneic
events.

Avcı et al. [62] use abdominal, nasal, and chest respiratory signals and applied en-
semble classifiers such as AdaBoost, random forest and random subspace to detect sleep
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apnea. Feature extraction and dimensionality reduction via PCA was performed to yield a
best-case accuracy of 98.68%. Table A2 provides a snapshot of studies that apply machine
learning to data generated by environmental sensors for sleep apnea detection. Ozdemir
et al. In [63], a fully automatic apnea detection algorithm along with an early warning
system to predict apneic events, is described. The algorithm also works on nasal respira-
tory airflow signals, on which feature extraction was performed. Subsequently, Randomly
Select and Compute (RANSAC) algorithm was used for feature reduction on the original
39 features, and the set of features that is not significant for OSA detection is listed. SVM,
kNN, and linear regression for classification are compared for learning and prediction of
OSA episodes. The solution produced an accuracy of 87.6% of and sensitivity of 91.3%.
Another study that makes use of airflow sensing signals for sleep apnea detection and
classification of apnea severity is [55]. A total of 17 features from overnight airflow sensing
samples were extracted, and fed into DNNs with various combinations of hidden layers
and activation nodes per layer. The algorithm used the tanh activation function alongside
the softmax classifier. Diagnosis of sleep apnea was performed using AHI threshold values
of 5, 15, and 30 events/hour. The severity classification logic classified patients into four
groups—no apnea, mild apnea, moderate apnea, and severe apnea. The best accuracy that
DNN gave was 92.69%.

In [64], sleep data and 3D facial scans were used as features. The data collected
was pre-processed for pose alignment and hole filling and analyzed using Matlab’s deep
learning framework. The model thus generated was tuned for performance and used
for classification. The accuracy reported was 69%. However, this method requires facial
images of the subject, which restricts the subject’s degree of freedom while sleeping. Other
studies in the area that use non-biomedical parameters include [65–67].

Non-wearable techniques for sleep apnea detection have certain advantages and dis-
advantages when compared with wearable devices. For example, wearable devices for
sleep apnea detection have to be small in form factor and light-weight, while non-wearable
techniques such as BCG-embedded beds or camera based systems do not have restric-
tions on their size or form factor. Another characteristic of comparison between wearable
and non-wearable techniques is power consumption. Minimizing power consumption
enables the wearable device to be on battery power for longer durations, which reduces
the overhead of charging the devices. Power consumption of such devices occurs in three
activities—sensing, processing, and communication. These three functions have to be
optimized for energy saving to enable the device to be worn for long periods of time
without recharging. In contrast, non-wearable devices can be connected to the main power
supply, and hence need not be designed for optimized power consumption. One significant
factor that affects the accuracy of sleep apnea detection in both techniques, is the place-
ment of the sensors. Wearable devices allow round-the-clock monitoring of parameters
since it does not restrict the parameter collection to a certain geographical region under
study. However, non-wearable devices are sensitive to the sensing range of the devices.
Environmental sensor-based systems also sometimes tend to be intrusive—for example,
placing a microphone close to a subject’s face while sleeping could be uncomfortable for
him/her. Camera-based systems may tend to be expensive and have higher power and
bandwidth requirements. Due to all these aspects, wearable devices may be conducive
to at-home sleep monitoring, while non-wearable techniques may be applied in hospital
environments where the mobility of the subjects is more constrained.

4.2. Health Profiles for the Detection of Sleep Apnea

There has been research that highlights the significance of including a subject’s health
profile in the diagnosis of sleep apnea and its severity. Mencar et al. [68] use 19 features
including heart disease, diabetes, gender, BMI, age, smoking, hypertension and snoring, to
explore methods to classify sleep apnea severity. Classification algorithms are applied to
classify the severity of sleep apnea, and regression methods are applied to predict the AHI
values. In another work, Ustun et al. [69] argue that medical information of subjects would
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be more suited to diagnose sleep apnea than real time sleep related symptoms. Features
such as age, gender, BMI, presence of hypertension, history of heart failure, stroke, asthma,
smoking, and snoring were used to train the classifiers. Seven classifiers including variants
of Logistic regression, DT, and SVM were compared with a new machine learning model
named SLIM (Supersparse Linear Integer Models). SLIM is a linear classification model
for creating medical scoring systems, and this gave a sensitivity of 64.2% and specificity of
77%. The study supports the use of simple models with good generalization capabilities,
especially for medical applications where datasets are prone to overfitting.

5. Discussion and Conclusions

In this study, we briefly summed up the causes and risks associated with sleep apnea,
and the drawbacks of the related diagnostic processes. We outlined the parameters that
help detect apneic events. Subsequently, we examined the application of machine learning
in sleep apnea detection, with focus on wearable systems. We summarized the recent
research that demonstrates feature engineering techniques and efficient use of classic
machine learning, deep learning, and sensor/feature fusion algorithms to detect sleep
apnea, and in some cases, classify its severity, using biomedical markers such as ECG, EEG
and SPO2. The paper also briefly looked at the application of environmental sensors and
information in subjects’ health profiles to ascertain the presence of sleep apnea.

From our analysis, an observation is that machine learning algorithms applied to
datasets in the literature survey, produce varying degrees of accuracy. This indicates that
the performance of the algorithms depends on various factors such as:

(i) Data collection modalities

Factors such as type of sensors, their placement, and frequency and sensitivity of
measurements, affect the training of machine learning classifiers. Among the various
biomedical parameters that aid in the detection of sleep apnea, we observe that the most
common of them are those from ECG, SPO2, and EEG signals. The drawback of using ECG
is that the signals generated by three leads or more require a resting ECG or an ECG Holter
monitor, which may be restrictive for the subject under study because of the placement of
leads. Single lead ECG can be embedded within wearable devices; however, the accuracy of
such devices is less than those with multilead devices. Collection of EEG data also requires
the subjects to wear a headgear while sleeping, which may cause inconvenience. SPO2
sensors, such as single lead ECG sensors, can be embedded within wearable devices and,
in combination with the demographic information of subjects, has been proven to provide
good results in the detection of sleep apnea. Environmental sensors may constrain the
subjects to a certain area under observation while sleeping (such as bed-embedded BCG
sensors). Some may introduce noise in the data collection, for example, acoustic sensors
are prone to errors from ambient noise.

(ii) Dataset characteristics

Characteristics of data such as its distribution and dataset features, along with the pre-
processing that has been applied to it also influences the efficiency of supervised training
techniques. For a classifier to be well-trained, the dataset it trains on must be balanced.
In the case of sleep apnea, it has to be ensured that the number of apneic events in the
dataset are comparable with that of non-apneic events. In the absence of this, the classifier
gets trained for the majority classes and misclassifies the minority classes. Additionally,
appropriate data pre-processing techniques and feature engineering should be performed
to fine tune the classifier training.

(iii) Labelling techniques

Training machine learning models for sleep apnea detection using supervised learning
techniques, requires annotation of the records in the sleep dataset. Some of the standards
used in sleep stage scoring from sleep study reports are the Rechtschaffen and Kales
standard (R&K) [70] and American Academy of Sleep Medicine (AASM) [71]. In practice,
apneic events are annotated manually by domain experts. The process involves correlation
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of the subject’s biomedical and physiological history with the sleep data, while adhering to
the guidelines set forth by the standards. The dependency of annotation on the standards
and subjective domain expertise may limit the generalization capability of the trained
model.

The capability of a wearable device or an end-to-end system to store data for analysis,
raise alarms on detection of abnormalities, and generate reports long-term is prudent, and
especially useful in the context of geriatric care homes. Today, there are commercial devices
that synchronize collected data to a smartphone periodically; however, a drawback of such
a system is that at any given time, the device can be paired with only a single smartphone.
The ability to support data collection and analysis at a central location would be especially
beneficial in geriatric healthcare, where elderly people are saved the effort required to
access and view their own reports.
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Appendix A

Table A1. Machine/deep learning based sleep apnea detection using biomedical sensors.

Reference Year
Subject

Demographics
Signal
Used

Classifiers
Applied

Feature Engineering Approach Accuracy

[22] 2019 65 male, 21
female ECG

DNN, 1D CNN,
2D CNN, RNN,
LSTM, Gated
recurrent unit

Performed by deep learning algorithms.
For example, while using CNN, feature
map was extracted using filter kernels

by the convolution layer.
Dimensionality reduction was

performed by the pooling layer.

Accuracy:
99.0%

[40] 2018 Apnea-ECG @ ECG DNN, HMM
SVM, ANN

Sparse auto-encoders was used to learn
features via unsupervised learning.

Accuracy:
85%;

[42] 2019 Apnea-ECG @ ECG Time window
ANN

R-R intervals and R-peak amplitudes
were extracted from ECG signals.

Further, 6 time domain and 6 frequency
domain features from R-R interval, and

6 frequency domain features from
R-peak amplitudes were extracted.

Accuracy:
87.3%

[34] 2016 Apnea-ECG @ ECG Multiple logistic
discrimination

Features extracted included RR-interval,
EDR, CPC and their derivatives.

Accuracy:
89.8%
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Table A1. Cont.

Reference Year
Subject

Demographics
Signal
Used

Classifiers
Applied

Feature Engineering Approach Accuracy

[31] 2008 Apnea-ECG @ ECG LSTM, ANN and
Elman Network

Feature extracted include: Time domain
HRV parameters such as RMSSD

(square root of mean squared
differences of successive NN intervals),
R-R mean (mean of R-R interval length)
and NN50 (number of intervals longer
than 50 ms) and frequency domain HRV
features such as Low Frequency/High
Frequency (LF/HF) ratio, total power
for analyzed interval, Low Frequency
(LF), High Frequency (HF), Very Low
Frequency (VLF), normalized LF and

normalized HF.

Accuracy:
82.1%

[33] 2010
5 male, 12
female, 26

years–67 years
ECG kNN, QDA, SVM

Median, inter-quartile difference (75th
and 25th percentile), and mean absolute

deviations of the R-R intervals were
computed for each epoch.

Accuracy:
90%

[28] 2015 Apnea-ECG @ ECG

Naive Bayes,
kNN, ANN,
AdaBoost,

Bagging, Random
Forest, ELM, DA,

Restricted
Boltzmann
Machine

Statistical features such as mean,
variance, skewness and kurtosis of the

ECG signals were extracted.

Accuracy:
83.77%

[26] 2013 40 subjects SPO2 SVM

For each detected SPO2 desaturation
event, extract 7 features from a window

of 150 s from the starting point of the
SPO2 desaturation. Features extracted

include no. of desaturation events,
speed of decline in SPO2, in addition to
statistical measures such as minimum
and standard deviation of the SPO2

values.

Accuracy:
93.5%

[51] 2017 32 subjects, 18
to 75 years

ECG,
RES SVM

Time domain features (such as mean
NN interval, standard deviation of NN
interval, mean heart rate, RMSSD) and

frequency domain (peak frequency,
absolute power, relative power) features
from HRV and RRV from ECG and RES,

respectively, were computed.

Accuracy:
100%

[29] 2017 Apnea-ECG @ ECG

DA, kNN, ANN,
ELM, SVM,
AdaBoost,
Bagging,

LogitBoost

Skewness, variance and kurtosis were
extracted and used for classifier

training.

Accuracy:
84.4%

[49] 2017 Apnea-ECG @ ECG,
SPO2

Naïve Bayes,
kNN, SVM

Uses concatenation of temporal
information from ECG and SPO2

signals.

Accuracy:
96.64%
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Table A1. Cont.

Reference Year
Subject

Demographics
Signal
Used

Classifiers
Applied

Feature Engineering Approach Accuracy

[50] 2012 UCD # ECG,
SPO2

Adaboost,
Decision Trees

Time domain features from SPO2,
which measure the regularity,

variability, and complexity of a time
series, were extracted. From ECG,

HRV and EDR-based features in both
time and spectral domains were

extracted.

Accuracy:
82%

[12] 2010 Apnea-ECG @ SPO2
Various variants
of Decision tree

classifiers

ODI indices from SPO2 were
computed.

Accuracy:
93%

[15] 2017 Apnea-ECG @ ECG,
SPO2 LSTM-RNN Feature extraction was performed by

LSTM.
Accuracy:

92.1%

[13] 2017 UCD #,
Apnea-ECG @ SPO2 DBN Feature extraction was by DBN.

Accuracies:
85.36% and

97.64%,
respectively

for the 2
datasets

[32] 2009

(1) Apnea-ECG
@

(2) UCD #
(3) 83 subjects;

with mean +/−
standard

deviation age of
55.6 +/− 10.7

yrs

ECG SVM

Feature extraction from HRV and
EDR, using wavelet decomposition

was performed. Feature selection was
performed using a hill climbing

algorithm. 14 HRV and 14 EDR were
selected for classifier training.

Accuracy:
100%

[11] 2016
160 children (87

male, 59
female)

SPO2 Logistic
Regression

Time and frequency domain features
from SPO2 and pulse rate variability

were used for classifier training.
-

[23] 2017 52 subjects SPO2
Linear

Discriminant
Analysis

Features from SPO2 (such as number
of desaturations > 3%, spread of SPO2,
minimum and average of SPO2), PPG

and PPG derived respiration were
extracted for classifier training.

Accuracy:
87%

[35] 2020 Apnea-ECG @ ECG

Decision trees,
DA, logistic

regression, SVM,
kNN, ensemble

learning

24 time and frequency domain
features were extracted. Feature

selection by discarding redundant
features, which resulted in a set of 9

features for classifier training

Accuracy:
98.7%

[52] 2020 Not specified

Respiration,
SpO2,

heartrate,
3-ACC
signals

Gaussian
Naïve-Bayes,
ANN, kNN

Dataset was collected and labelled per
AASM’s sleep apnea judgement

criteria. A train:test ratio of 8:2 was
used. 5-fold cross-validation was
applied. The hyper-parameters of

each machine learning algorithm were
set by using the average of five

cross-validation data sets.

Accuracy:
95%
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Table A1. Cont.

Reference Year
Subject

Demographics
Signal Used

Classifiers
Applied

Feature Engineering Approach Accuracy

[53] 2017 1983 subjects
Demographic
information,

EEG

Random Forest,
XGBoost, and
Light Gradient

Boosting Machine

A total of 36 features were
extracted from demographic
information and EEG signals,

including frequency and
percentage of every sleep stage,

time in bed, total sleep time, sleep
efficiency and total number of
one-step transitions overnight.
Data imbalance was corrected

using SMOTE analysis and feature
selection was performed using

statistical analysis.

Area under
the curve:

0.9128

[46] 2019 SHHS (NSRR)
%

Raw
physiological

respiratory
signals

LSTM

LSTM was used to automatically
learn and extract relevant features,
and detect potential sleep apnea
events. Direct respiration signals
gave better accuracy than derived

their signals such as EDR

Accuracy:
70%

(approx.)

[47] 2020 Apnea-ECG @ ECG
Logistic

Regression, SVM
and 1D CNN

Time domain and frequency
domain features of R-R interval

were extracted for training logistic
regression and SVM classifiers.
There was no need for feature

engineering with 1D CNN.

Accuracy:
88.23%

[48] 2020 MESA (NSRR) * Respiratory
signals

CNN, Markov
Chain Features learned by CNN. Accuracy:

80.78%

[24] 2019 975 subjects SPO2 SVM

Extracted features include simple
time-domain (e.g., amplitude and
length of desaturation), statistical
(e.g., minimum and mean SpO2
value) and desaturation severity
(e.g., area below SpO2 baseline)
and quasi periodicity features

(e.g., phase rectified signal
averaging (PRSA)).

Accuracy:
77.7%

[41] 2015
SleepEDF
Database

[Expanded] ~
EOG DBN Feature extraction was performed

by DBN.
Accuracy:

83.3%

[25] 2019
320 subjects,
age 54.8 +/−

13.5 years
SPO2

Linear
Discriminant

Analysis, Logistic
regression,

Bayesian Multi
Layer Perceptron,

AdaBoost

Time domain features that
characterize central tendency,
dispersion, asymmetry, and

peakedness of a given time series,
frequency domain features such as

PSD of SPO2 signals, ODI3 and
non-linear measures were

computed.

[45] 2017 Apnea-ECG @ ECG LSTM-RNN

Continuous time series IHR
measurements were converted to
a series of feature vectors, for each

beat window.

Accuracy:
99.99%

@ Apnea-ECG: 70 ECG signal recordings extracted from PSG recordings with a 16-bit resolution, a sampling rate of 100 Hz [43,72]. # St.
Vincent’s University Hospital/University College Dublin (UCD) Sleep Apnea Database: 21 males, 4 females; age 28 years—68 years [44]. %
SHHS dataset Sleep Heart Health Study: The dataset consists of 5804 adults of age 40 and older. A subset consisting of 1008 female and
1092 male patients with mean age 62.5 ± 12.6 (standard deviation) years was used in the study cited [73]. * MESA (NSRR): 6814 subjects;
age 45 years–84 years [74]. ~ SleepEDF Database [Expanded] 20 subjects; age 25 year–34 years [75].
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Table A2. Machine/deep learning based sleep apnea detection using environmental sensors.

Reference Year
Subject

Demographics
Signal Used

Classification
Approach

Methodology Accuracy

[59] 2020 Ages 18–85
years

Tracheal
movements CNN+LSTM

Recorded tracheal movements
were filtered using a bandpass
filter with cut-off frequencies of
0.1 Hz and 25 Hz. Time-series

sliding windowing technique with
a window size of 10 s was applied.

21 morphological features were
extracted from each window.

Accuracy:
84%

[64] 2018 39 male, 30
female adults Facial images CNN

Involved data collection,
pre-processing, model generation

and tuning, and classification,
using Matlab based deep learning

framework

Accuracy:
69%

[60] 2019

5 subjects
simulating
sleep apnea
conditions

UWB signals
AdBoost,

Decision tree,
SVM, kNN

Accuracy:
98%

[54] 2017

4 subjects
simulating
sleep apnea
conditions

Accelerometer
and sonar

waves from
smart phones

kNN, CART

Mean, variance and range for
accelerometer data and the noise

level were extracted, and
subsequently, no. of breaths per

minute was calculated.

Accuracy:
97.7%

[58] 2016
77 male, 19

female
23–88 years

Piezo-electric
sensor Signal analysis

Gross body motion, rib cage
movements, and cardioballistic

effect was recorded by the
piezoelectric sensor. Time and

frequency domain features were
extracted from motion, respiratory

rate and inter-beat intervals, to
calculate AHI.

-

[56] 2018

120 subjects,
including 3

children and 4
adolescents

Acoustic
signals from
microphone
placed at a

distance of 1.7
m above the
subject’s bed

Logistic
regression,
SVM, DNN

with 2 hidden
layers

Several temporal and spectral
characteristics of audio signals

such as the mel frequency cepstral
coefficients (MFCCs), spectral flux,

and zero crossing rate were
extracted.

Accuracy:
92.5%

[55] 2018 MrOS [TBD]

Airflow signals
from a

thermistor
placed in front

of the nose

SVM, AdaBoost,
Regression,

Deep Neural
Networks

Seventeen time domain features
were extracted from airflow

signals, after subsampling and
filtering.

Accuracy:
92.69%

[63] 2016 6 subjects
Nasal

respiratory
airflow signals

SVM, kNN,
Linear

Regression for
Classfication

15 time-series features of OSA
periods such as mean, variance,
minimum, maximum, median

values of signals were extracted.
Minimum, maximum, average

inspiration/expiration amplitudes
and durations of nasal airflow

signal were also extracted. Feature
reduction was performed using

RANSAC algorithm.

Accuracy:
87.6%
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Table A2. Cont.

Reference Year
Subject

Demographics
Signal Used

Classification
Approach

Methodology Accuracy

[62] 2015 Apnea-ECG

Abdominal,
chest and nasal

respiratory
signals

AdaBoost,
Random Forest

and Random
Subspace

Wavelet transform based on
feature extraction methods are

applied on 1 min length
respiration signals.

Accuracy:
98.68%

[61] 2015
3 male, 1 female

Age 48 ± 6.9
years

Reflect pulses
from Impulse

Radio
Ultra-Wide

Band (IR-UWB)
radar panel

Linear
Discriminant

Normal and apnea epochs were
extracted from the IR-UWB data.

15 statistical features were derived
from these extracted epochs.

Accuracy:
73%

[65] 2020
9 subjects

Age 65 years or
more

Signals from
pressure

sensitive mat

Temporal
convolutional

network (TCN),
bidirectional

LSTM

Data pre-processing included
occupancy extraction, bandpass

filtering, signal combination,
concatenation and normalization.

TCN and bidirectional LSTM
approaches were compared with

SVM and threshold based
approaches.

Accuracy:
95.1%

[66] 2020
4 male, 4 female
Age 25 years–55

years

Respiratory
signals from

accelerometer
and pressure
transducer

CNN

Sliding window approach was
used for signal processing.

Proposes a system of continuous
monitoring of breath, from an

accelerometer-based device worn
around the subject.

Accuracy:
88%

[67] 2019 20 adults Speech signals Random Forest

Offline detection of OSA using
speech/voice analysis. This is
based on the fact that speech

properties of OSA patients are
altered. Feature extraction was
performed on audio files using

Random Forest feature selection
and Mann–Whitney U test

ranking.

Accuracy:
87.5%
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Abstract: (1) Objectives: We aimed to identify clusters of physical frailty and cognitive impairment
in a population of older primary care patients and correlate these clusters with their associated
comorbidities. (2) Methods: We used a latent class analysis (LCA) as the clustering technique
to separate different stages of mild cognitive impairment (MCI) and physical frailty into clusters;
the differences were assessed by using a multinomial logistic regression model. (3) Results: Four
clusters (latent classes) were identified: (1) highly functional (the mean and SD of the “frailty” test
0.58 ± 0.72 and the Mini-Mental State Examination (MMSE) test 27.42 ± 1.5), (2) cognitive impairment
(0.97 ± 0.78 and 21.94 ± 1.95), (3) cognitive frailty (3.48 ± 1.12 and 19.14 ± 2.30), and (4) physical
frailty (3.61 ± 0.77 and 24.89 ± 1.81). (4) Discussion: The comorbidity patterns distinguishing the
clusters depend on the degree of development of cardiometabolic disorders in combination with
advancing age. The physical frailty phenotype is likely to exist separately from the cognitive frailty
phenotype and includes common musculoskeletal diseases.

Keywords: multimorbidity; primary care; physical frailty; cognitive impairment; latent cluster analysis

1. Introduction

Population aging is a global trend in EU countries [1]. Accompanying this trend is an
increase in the number of individuals with multimorbidity (a coexistence of two or more
chronic diseases in the same person) and who are showing functional decline, which poses
new challenges to healthcare systems, such as high requirements for utilizing healthcare
services and long-term care, in particular.

Epidemiologic studies have indicated that multimorbidity increases with age and is
associated with a deterioration in mental health and low physical, cognitive, and social
functioning [2–4]. These observations support our current understanding of the devel-
opment of common diseases of aging, such as diabetes type 2 (diabetes), cardiovascular
disease (CVD), Alzheimer‘s dementia, and some types of cancer, as being an integrative
part of the aging process [5]. Although, it has been realized that the extent to which
these diseases and functional organ impairments are expressed vary between individ-
uals, reflecting interindividual differences in rates of aging, so that the real (biological)
age may fall behind or outpace the chronological age [6]. The causes and mediators of
such differences are mostly unknown. According to today’s prevailing theory of aging,
inflammaging, a variety of stimuli operating at cellular and subcellular levels in the body,
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contribute to low-grade inflammation as the main driver in the acceleration of aging and
the development of age-related diseases [7]. Fat tissue redistribution, which occurs with
aging and is clinically visible as the abdominal type of obesity, in particular when it is
combined with overnutrition and general overweight/obesity, may substantially contribute
to inflammation and metabolic disorders associated with aging and the development of
cardiometabolic age-related diseases, such as metabolic syndrome, diabetes, and CVD.
Cerebral small-vessel disease, recognized as a pathologic mechanism underlying non-
Alzheimer‘s cognitive disorders, is considered a part of inflammaging and reflective of the
overwhelming influence of metabolic and inflammatory stimuli on pathologic changes in
the brain vasculature [8].

An age-related decline in physical and cognitive capabilities can be best described by
applying the concepts of physical frailty and mild cognitive impairment (MCI). Both con-
ditions have been proven to independently increase the risk of negative health outcomes,
including falls, disability, dementia, hospitalization, institutionalization, and death [9].
Frailty is considered a manifestation of reduced homeostatic reserves in many vital systems
that govern neuroendocrine, energy-metabolic, and inflammation-immunologic mecha-
nisms [10]. The transition from a prefrailty to frailty state takes place in parallel with the
progression of pathophysiologic disorders, when it becomes increasingly less possible to
reverse this syndrome [11,12]. The concept of MCI has been introduced to define a stage of
cognitive decline between normal cognition and dementia that can be objectively measured
but is still not severe enough to affect the activities of daily living [13]. Although MCI is
associated with an increased risk for developing dementia, without additional complemen-
tary variables, this measure is not powerful enough to accurately predict dementia [14,15].

Emerging evidence indicates that these two disorders, physical frailty and cognitive
impairment, often coexist and mutually interact, thus increasing the risk of each condition
for poor health outcomes [16,17]. Although the evidence suggests that these disorders
share many risk factors and mechanisms, the knowledge of common pathophysiologic
pathways is still low, mainly because these disorders have been studied separately so far
as independent entities [18,19].

A new entity, termed cognitive frailty, defined as the coexistence of prefrailty or frailty
with MCI, has been established by the international consensus group with the aim to
facilitate research on cognitive impairment that is caused by deteriorating physical health,
thus distinguishing physical from neurodegenerative causes of cognitive impairment [20].

It is becoming increasingly apparent that the dynamic interplay between chronic
diseases and functional impairments, which are modulated by genetic, behavioral, and
environmental factors, as well as by applied treatments, directs the rates of age-related
decline in physical and cognitive performance [21]. Although prospective epidemiologic
studies indicate that physical frailty may be a driver of cognitive impairment, and that the
opposite is less likely to occur, our knowledge concerning the exact clustering patterns of
physical frailty and cognitive impairment and of their dynamics of change in the aging
population is poor [17,22]. There is an increasing expert consensus that screening for
cognitive impairment should be performed in all older prefrail and frail individuals with
multimorbidity [17,18].

The recent shift in research on multimorbidity from disease counting to disease
clustering has revealed disease patterns that could be based on common pathophysiologic
pathways [23–25]. The aim of the present study was to identify clusters of physical frailty
and MCI in a population of older primary care patients and to correlate the identified
clusters with comorbidities and chronological age. Differences among clusters in degrees
of functional declinemay reflect interindividual differences in rates of aging. Identified
clusters will relate these differences to the level of the development of age-related diseases
and functional organ impairments, more precisely reflecting the aging process than by
using chronologic age alone [6].
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2. Methods

2.1. Study Design and Participants

A cross-sectional study and retrospective analysis of the selected data used from
primary care (PC) electronic health records (eHRs) were conducted in 2018 in an academic
General Practice (GP) facility in the town of Osijek (currently around 60,000 inhabitants),
the administrative center of Eastern Croatia. Due to the poor economic situation in this
area, negative demographic trends and population aging have taken place, which has led
to a high burden of chronic diseases; higher than this is the average in Croatia.

The analysis included 263 older (≥60 years) ambulatory PC patients who were enrolled
at their regular visits or were invited for an interview. According to several rules of thumb,
the sample size of 250 participants was sufficiently large to show statistical significance
for less complicated latent class analysis (LCA) models, which was the critical analytical
method used in this study [26–28].

The fact that patients were recruited from one GP facility did not hamper the repre-
sentativeness of the sample, because older people living in the area have similar living
conditions and are generally of a lower socioeconomic status. A good match with the gen-
eral population was ensured by the fact that, in Croatia, the general population has good
access to PC services, and almost all inhabitants are registered on the lists of PC physicians.
The data collection from a single practice may even have some advantages by ensuring the
uniformity of the diagnostic criteria and terminology that is used in communication with
patients and during the diagnostic process. The fact that it was an academic GP facility
ensured that the data was collected by a skilled and knowledgeable PC physician, which
could guarantee the high level of data accuracy.

Of approximately 2000 patients registered in this GP facility, about a quarter were
older individuals, and about a half of them entered the study. We used for analysis
only community-dwelling patients to whom preventive measures, if applied, may still be
beneficial and not those in home care programs or in institutions. The exclusion criteria
were also acute medical conditions, exacerbations of chronic conditions, and diagnoses of
psychosis or dementia. Excluded from the study were also several patients with incomplete
health records. We already have two papers published using the same dataset. In the
first published paper, an unsupervised learning algorithm, k-means, was applied on the
data obtained from 159 patients who were enrolled first to identify clusters of numerical
variables indicating mental disorders, cognitive impairment, physical frailty, and laboratory
tests [29]. Information on diagnoses of chronic diseases and some functional and sensory
organ impairments was used to complement the description of these clusters. When the
data collection was finished, we applied the supervised latent class analysis (LCA) model
on the full-sized sample of 263 patients to identify individuals with different stages of
cognitive impairment and physical frailty who showed a tendency to cluster together [30].
In that paper, we presented the first part of the complex analysis, where we assessed
how membership in a cluster is influenced by performances on tests of mental disorders,
anxiety, and depression and by specific cognitive test tasks. In this paper, we presented the
second part of the analysis, where we analyzed the differences among clusters concerning
comorbidities and functional/sensory organ impairments.

2.2. Data Collection

The selection of variables that were used for analysis was based on knowledge and
data availability. Data were collected from eHRs on the number and types of diagnoses of
chronic diseases, the total number of prescribed medications and the number of medications
with an effect on mental functions, and on laboratory tests that are routinely performed
in PC to check patients‘ health status and which indicate metabolic disturbances and
the status of inflammation and nutrition. Diagnoses of chronic diseases were recorded
according to the international disease coding system (ICD-10). The laboratory test results
were used from chronic disease surveillance programs and preventive check-ups and were
not older than a year. The systematic way of data recording in these platforms has ensured
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a high level of data completeness. Only in a few cases was data missing, indicating the
C-reactive protein or glomerular filtration rate, and these patients were excluded from
the analysis. The laboratory test results were assessed according to appropriateness for
participants’ age and health status by comparing them with the laboratory reference values
and recommendations from the international guidelines for managing common chronic
conditions [31,32]. Information on functional/sensory organ impairments was gathered
from eHRs and by patient interviews. Anthropometric measures, BMI (body mass index),
a measure of general nutrition, waist circumference (a measure of abdominal obesity), and
the mid-arm circumference (a measure of muscle mass loss) were performed during patient
visits to add to the information on the nutritional and health status of participants who
were recruited to the study [33].

To determine the level of physical frailty of participants, we used the Fried phenotypic
model, which is the best-validated of available, similar measures [34]. Based on five
criteria, weight loss, slow walking speed, weak grip strength (measured by the handgrip
dynamometer), a subjective feeling of exhaustion, and reduced activity, this model indicates
whether an individual is prefrail (1 to 2 positive criteria), frail (≥3 positive criteria), or
robust (no one positive criterion).

For measuring MCI, as a component of the cognitive frailty phenotype, the interna-
tional consensus group recommended the Clinical Dementia Rating Scale [20]. To screen
participants for MCI in this study, we used the Mini-Mental State Examination (MMSE)
test, which has been broadly validated also in the elderly Croatian population [35]. This
test consists of several domains, indicating either memory-related or non-memory-related
(executive) functions. The MMSE cut-offs were adjusted for the participants’ level of educa-
tion based on the MMSE cut-off values for the Croatian population. This cut-off was 24/25
(of the maximum 30) for screening among older individuals in the general population and
26/27 for screening among those with a higher level of education (defined as ≥14 years of
education). The MMSE test is more sensitive for diagnosing severe cognitive impairment
(scores ≤ 17) than for distinguishing between cognitively healthy individuals and those
with MCI and cannot distinguish between different types of dementia (Alzheimer’s type
vs. vascular type).

Information on the sociodemographic characteristics and medical history of the par-
ticipants are presented in Supplementary Materials. The numerical variables are presented
as the mean and the standard deviation (SD) or as the median and the interquartile range
(Supplementary Materials Table S1). The categorical variables are presented with the
absolute numbers and frequencies (%) (Supplementary Materials Table S2).

2.3. Statistical Analysis

The LCA method was used to identify subgroups, latent classes, as statistically dis-
tinct and clinically meaningful patterns that optimally comprehend the heterogeneity of
participants in the sample regarding their achievements on the MMSE test and the Fried
frailty score [30,36].

Differences in distributions of numerical variables among the clusters were analyzed
using the one-way analysis of variance (ANOVA) or Kruskal–Wallis rank sum test, de-
pending on whether numerical variables showed a normal distribution. This analysis
was followed by the Games-Howell post hoc test. Differences in the categorical variables
were assessed using the chi-square (χ2) test and Fisher‘s exact test, where appropriate. Bar
diagrams were used to visualize the distributions of those categorical variables for which
differences among the clusters reached statistical significance.

To assess how the examined variables are associated with membership in a cluster, we
used a multinomial logistic regression (MLR) model from R statistics. A cluster consisting
of individuals with the best cognitive and physical performances was used as a control. We
analyzed the impact of age and gender on clusters‘ membership in a separate MLR model.
Four other models were created to show the impact on clusters‘ membership of (1) the
level of comorbidity, presented with variables indicating the number of comorbidities and
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functional/sensory organ impairments and the number of prescribed medications and
medications with an effect on mental functions, (2) the health-related status, presented with
variables indicating anthropometric measures and laboratory tests, (3) particular diagnoses
of chronic diseases, and (4) functional/sensory organ impairments. Before generating these
models, we checked all numerical variables in the input on collinearity, using a simple
linear correlation analysis, and on multicollinearity, using the variance inflation factor
(VIF) as an indicator. Variables with a high level of collinearity were not included in the
models. In the third and the fourth models, only variables that were shown significant in
the analysis of the differences entered the model. The AIC (Akaike Information Criterion)
was used to measure the quality of the model’s predictive performance [37].

3. Results

Members of the first cluster showed better cognitive and physical performance than
members of the other three clusters. This cluster was therefore termed highly functional
(HF). In members of the second cluster, the performance on the MMSE test was decreased,
but the physical performance was good (low average frailty score); the cluster was therefore
termed cognitive impairment (CI). The third cluster was termed cognitive frailty (CF), as
members of this cluster showed low physical performance (increased average frailty score)
and low cognitive performance (decreased average score on the MMSE test). Finally, the
fourth cluster was termed physical frailty (PhyF), as its members had low physical perfor-
mance (similar to members of the CF cluster) but well-preserved cognitive performance
(Table 1).

Table 1. Average scores on the frailty and MMSE tests and average age across the clusters. Division of members of the
clusters according to gender.

Cluster
Number of

Patients (M:F)
Average Score

± SD *
p-Value

(Post-Hoc)
Age (Year)

Average ± SD
p-Value

(Post-Hoc)

Frailty

HF 161
(62:99)

0.58
(0.721)

<0.001
HF < CI, CF, PhyF

69.40
(5.455)

<0.001
HF < CI, CF, PhyF

CI 63
(22:41)

0.97
(0.782)

<0.001
CI < CF, PhyF

72.33
(6.611)

<0.001
CI > HF < CF

CF 21
(6:15)

3.48
(1.123)

<0.001
CF > CI, HF

78.62
(5.792)

<0.001
CF > CI, HF

PhyF 18
(1:17)

3.61
(0.777)

<0.001
PhyF > CI, HF

74.72
(6.515)

<0.001
PhyF > HF

Total 263 1.11
(1.286)

71.20
(6.434)

MMSE

HF 161 27.42
(1.556)

<0.001
HF > CI, CF, PhyF

CI 63 21.94
(1.958)

<0.001
CI > CF < PhyF

CF 21 19.14
(2.308)

<0.001
CIF > CI, HF, PhyF

PhyF 18 24.89
(1.811)

<0.001
PhyF > CI, CF < HF

Total 263 25.27
(3.398)

Note: HF: highly functional, CI: cognitive impairment, CF: cognitive frailty, and PhyF: physical frailty. * Higher scores on the frailty test
indicate a higher level of physical frailty, whereas higher scores on the MMSE test indicate a higher level of cognitive function. The results
of the post hoc test are represented by a formulation like the cluster combinations HF < CI HF < CF and HF < PhyF CI are significantly
different from each other.

Table 1 also shows that individuals in the HF cluster are younger than those in other
clusters, whereas those in the CF cluster are significantly older than those in CI. Individuals
in the PhyF cluster are older than those in the CI cluster and younger than those in the
CF cluster, but the differences are not significant. There were no significant differences in
the distributions by gender (M:F) within the clusters, except for the PhyF cluster, in which
women were dominant (17:1) (χ2 test, p < 0.05).

497



Healthcare 2021, 9, 891

Table 2 shows that the PhyF cluster contains only frail individuals and that the CF
cluster contains a high proportion of frail individuals and a smaller proportion of prefrail
individuals. In contrast to these clusters, in the CI and HF clusters, a prevalent proportion
of the individuals is prefrail (44.1% and 68.3%, respectively), and none are frail.

Table 2. Division of members of the clusters according to their frailty status and MCI diagnosis.

Within Clusters
p-Value * All

HF CI CF PhyF

Prefrail
N 71 43 3 0 <0.001 117

% within a cluster 44.1% 68.3% 14.3% 0.0% 44.5%

Frail
N 1 0 18 18 <0.001 37

% within a cluster 0.6% 0.0% 85.7% 100.0% 14.1%

MCI **
N 18 47 19 7 <0.001 91

% within a cluster 11.1% 74.6% 90.5% 38.9% 34.6%

All 161
100.0%

63
100.0%

21
100.0%

18
100.0%

263
100.0%

Note: HF: highly functional, CI: cognitive impairment, CF: cognitive frailty, and PhyF: physical frailty. * Pearson chi-square or Fisher’s
Exact test, where appropriate. ** MMSE cut-offs for mild cognitive impairment (MCI) adjusted for level of education; levels in the Croatian
population ≥65 years were set at ≤24 for education level <14 years and at ≤26 for education level ≥14 years.

The majority of individuals in clusters characterized by decreased cognitive function
had MCI (74.6% in the CI cluster and 90.5% in the CF cluster, respectively), whereas this
proportion was much smaller in the other two clusters (11.1% in the HF cluster vs. 38.9%
in the PhyF cluster).

Table 3 shows that clusters in which frailty individuals are dominant (the PhyF and CF
clusters), compared to clusters in which individuals are at the stage of prefrailty (the HF and
CI clusters), have a higher number of chronic disease diagnoses and prescribed medications,
including medications affecting mental functions. The highest number of individuals with
functional/sensory organ disorders are allocated to the cluster representing the physical
frailty phenotype (the PhyF cluster).

Table 3. Differences among individuals in the clusters in the level of comorbidity.

Variable

Median (Interquartile Range)
Mean ± SD * p-Value ** Games-Howell Post

Hoc Test
HF CI CF PhyF

Total number of diagnoses 3.00
(2.00)

3.00
(2.00)

3.84
(2.19) *

4.67
(1.88) * 0.0006 PhyF > HF

PhyF > CI

Total number of prescribed medications 3.00
(3.00)

3.00
(3.00)

4.10
(1.97) *

5.17
(2.12) * 0.005 PhyF > HF

PhyF > CI
Total number of medications with effect on

mental functions
3.00

(2.00)
2.00

(2.00)
3.10

(1.45) *
4.17

(1.62) * 0.01
PhyF > HF
PhyF > CI

Total number of sensory/functional disorders 2.00
(1.00)

1.00
(1.00)

2.00
(1.05) *

3.00
(1.00) 0.009

PhyF > HF
PhyF > CI
PhyF > CF

Note: p-values shown in bold are significant (significance level = 0.05). *—values of mean ± SD were used when Shapiro-Wilk’s test
confirmed the normality, **—non-parametric Kruskal-Wallis rank sum test was applied. The results of the GW post hoc test are represented
by a formulation like the cluster combinations PhyF > HF and PhyF > CI are significantly different from each other.

Individuals in the CF cluster, in whom the cognitive frailty phenotype is dominant,
had the lowest values for the variables indicating mid-arm circumference, HDL cholesterol,
hemoglobin, erythrocyte count, and glomerular filtration rate (a marker of renal function)
(Table 4).
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Table 4. Differences among individuals in the clusters in the health status described with anthropometric measures and
laboratory tests.

Variable

Median (Interquartile Range)
Mean ± SD * p-Value ** Games-Howell Post

Hoc Test
HF CI CF PhyF

BMI (kg/m2)
29.73
(5.58)

30.35
(4.45) *

28.13
(4.83)*

28.53
(4.85) 0.19

Waist circumference (cm) 99.0
(16.00)

101.70
(11.47)*

94.53
(11.18) *

96.61
(16.86)* 0.12

Mid-arm circumference (cm) 32.00
(3.00)

31.59
(3.63) *

28.79
(3.12) *

30.25
(2.75) 0.003

CF < HF
CF < CI

Fasting glucose (mmol/L) 5.50
(1.60)

5.90
(1.65)

5.30
(1.20)

5.70
(1.95) 0.18

Total cholesterol (mmol/L) 5.76
(1.35) *

5.75
(1.24) *

5.93
(1.37) *

6.23
(1.53) * 0.21 **

LDL cholesterol (mmol/L) 3.60
(1.40)

3.46
(1.06) *

3.46
(1.06) *

3.93
(1.32) * 0.55

HDL cholesterol (mmol/L) 1.40
(0.40)

1.30
(0.45)

1.22
(0.31) *

1.59
(0.37) * 0.01 PhyF > CF

Triglycerides (mmol/L) 1.70
(0.90)

1.80
(0.95)

1.50
(0.55)

1.40
(0.60) 0.10

Glomerular filtration rate (mL/min/1,73 m2)
90.43

(25.50) *
86.08

(29.07) *
67.53

(20.69) *
71.72

(24.08) * 0.0001 **
CF < HF
CF < CI

PhyF < HF

C-reactive protein (mg/L) 2.20
(3.20)

2.20
(3.25)

2.40
(4.85)

1.60
(2.10) 0.94

Hemoglobin (g/L) 138.00
(15.00)

137.00
(15.00)

130.60
(12.11) *

132.20
(22.80) * 0.03 CF < HF

Erythrocyte count (x 1012/L)
4.62

(0.43) *
4.56

(0.34) *
4.33

(0.40) *
4.62

(0.42) 0.03 CF < HF

Note: p-values shown in bold are significant (significance level = 0.05). *—values of mean ± SD were used when Shapiro-Wilk’s test
confirmed the normality, **—non-parametric Kruskal-Wallis rank sum test was applied. The results of the GW post hoc test are represented
by a formulation like the cluster combinations CF < HF and CF < CI are significantly different from each other.

It can be seen in Table 5 that the diagnoses of chronic diseases with the most impact for
distinguishing comorbidity profiles among the clusters include chronic heart disease, coro-
nary artery disease, upper gastrointestinal tract disorders, osteoporosis, osteoarthritis, low
back pain, and anxiety/depression. Of the functional/sensory organ disorders, significant
differences among the clusters were shown for falls, walking difficulties, and chronic pain.
The proportion of individuals with three or more diagnoses of chronic diseases (indicating
the status multimorbidity) in particular clusters is as follows: 55.9% (HF), 47.6% (CI), 78.9%
(CF), and 88.9% (PhyF).

Table 5. Differences among individuals in the clusters in particular diagnoses of chronic diseases and functional/sensory
organ impairments.

Diagnosis p-Value Diagnosis p-Value

Hypertension 0.14 Osteoporosis (confirmed) 0.005
Diabetes mellitus type 2 0.078 Severe osteoarthritis 0.078

Chronic obstructive pulmonary disease 1.00 * Low back pain 0.008
Asthma or allergic rhinitis 0.575 Parkinson‘s disease 0.384 *

Chronic heart disease (failure) 0.005 * Urogenital diseases 0.178
Coronary artery disease 0.039 The thyroid gland dysfunctions 0.317
Cerebrovascular disease 0.401 Anxiety/depression 0.011
Periphery artery disease 0.052 * Incontinent and other urinary bladder disorders 0.078 *

Upper gastrointestinal tract disorders 0.030 Significant visual loss 0.378

Chronic hepatic disorders 1.00 * Registered hearing impairment or communication
difficulties due to hearing loss 0.116

Malignant disease 0.203 Experienced falls <0.001
Chronic pain complaints 0.008 Walking with support or visible impaired <0.001

≥3 Dg of chronic diseases <0.001

Note: Fisher’s exact test (marked with *, when participants in a cluster < 5% or N ≤ 10). p-values shown in bold are significant (significance
level = 0.05).
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Figure 1 shows that participants with the diagnosis of chronic heart disease are mostly
allocated to the third (CF) cluster, then to the second (CI) cluster and the fourth (PhyF)
cluster. Participants diagnosed with coronary artery disease are mostly allocated to cluster
3 (CF) and then to cluster 4 (PhyF). The diagnosis of upper gastrointestinal tract disorders
is more prevalent in clusters that are marked by physical frailty (the CF and PhyF clusters)
than in the other two clusters (the HF and CI clusters). In fact, upper gastrointestinal tract
disorders are mostly present in cluster 4 (PhyF). The diagnoses of osteoporosis and low
back pain (syndroma lumbale) are mostly present in cluster 4 (PhyF), whereas the diagnosis
of osteoarthritis is more prevalent in clusters CF and PhyF than in the other two clusters
(HF and CI). The frequency of the diagnosis of anxiety/depression is relatively high in all
clusters, but the highest frequency for this diagnosis is found in cluster 4 (PhyF).

 

Figure 1. Graphical presentation of the differences among clusters in the diagnoses of chronic diseases and func-
tional/sensory organ impairments.
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Most participants who experienced falls were allocated to clusters 3 (CF) and 4 (PhyF).
Those in cluster 4 (PhyF), more often than those in the cluster 3 (CF), experienced falls with
bone fractures. Subjective walking difficulties were expressed mostly by participants in
clusters 3 (CF) and 4 (PhyF). Chronic pain was a hallmark of cluster 4 (PhyF).

The MLR model presented in Table 6 shows that increased age had an impact on
memberships to all three pathologic clusters (CI, CF, and PhyF). The gender imbalance
only had an impact on the PhyF cluster.

Table 6. A multinomial logistic regression model indicating differences in the clinical profiles of
individuals in the clusters according to their age and gender.

Cluster CI Cluster CF Cluster PhyF

z-Value OR z-Value OR z-Value OR

Gender = male −2.29 0.17
(0.05–0.60)

Age 3.46 1.09
(1.05–1.15) 4.96 1.29

(1.19–1.40) 3.75 1.19
(1.10–1.28)

As shown in Tables 7–10, the variables that best characterize cluster 2 (CI) as compared
to the control cluster 1 (HF) included increased fasting blood glucose, increased hemoglobin,
and the diagnosis of chronic heart disease.

Table 7. A multinomial logistic regression model indicating the differences in the levels of comor-
bidities among individuals in the clusters.

Cluster CI Cluster CF Cluster PhyF

z-Value OR z-Value OR z-Value OR

Total number of
sensory/functional disorders −1.92 0.72

(0.64–1.51) 2.92 2.34
(1.45–3.78)

Table 8. A multinomial logistic regression model indicating the differences in their health status,
defined by anthropometric measures and laboratory tests, among individuals in the clusters.

Cluster CI Cluster CF Cluster PhyF

z-Value OR z-Value OR z-Value OR

HDL cholesterol −2.11 0.12
(0.02–0.63)

Fasting glucose 2.64 1.23
(1.10–1.40)

Mid arm circumference −2.15 0.84
(0.73–0.96)

Glomerular filtration rate −2.35 0.97
(0.96–0.99) −2.37 0.97

(0.95–0.99)

Haemoglobin 3.04 1.06
(1.03–1.09)

Table 9. A multinomial logistic regression model indicating the differences in their health status,
defined by particular diagnoses of chronic diseases, among individuals in the clusters.

Cluster CI Cluster CF Cluster PhyF

z-Value OR z-Value OR z-Value OR

Chronic heart disease
(failure) = yes 2.20 4.78

(1.49–15.35) 1.89 5.05
(1.23–20.77)

Dg of osteoporosis
(confirmed) = yes 2.24 4.30

(1.47–12.54)
Dg of anxiety/depression
(excluding psychosis and

dementias) = yes
2.10 4.17

(1.36–12.73)
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Table 10. A multinomial logistic regression model indicating the differences in their health status,
defined by particular functional/sensory organ impairments, among individuals in the clusters.

Cluster CI Cluster CF Cluster PhyF

z-Value OR z-Value OR z-Value OR

Complaints on chronic pain = yes 2.19 3.57
(1.37–9.30)

Experienced falls = yes 2.70 5.03
(1.88–13.47)

Walking with support or visible
impaired = yes 3.89 18.89

(5.45–65.53) 2.83 8.93
(2.50–31.92)

Having decreased values for HDL cholesterol, mid-arm circumference, and glomerular
filtration rate (a measure of decreased renal function), together with walking difficulties
and the diagnosis of chronic heart disease, increased the probability of belonging to cluster
3 (CF).

The most prominent clinical characteristics of cluster 4 (PhyF) included decreased
renal function, as indicated by the variable glomerular filtration rate, and the highest rate
of functional/sensory organ impairments—in particular, including chronic pain, walking
difficulties, and falls. Of comorbidities specifically associated with cluster 4 (PhyF) were
diagnoses of osteoporosis and anxious–depressive disorders.

4. Discussion

The identified clusters (latent classes) represent patterns of two main age-related func-
tional disorders, physical frailty and cognitive impairment, that most optimally describe
the functional heterogeneity of older, ambulatory PC patients. Indeed, trajectories for
rates of aging have not yet been identified; therefore, dividing an older population into
such clusters can show individuals who share similar levels of risk for some negative
health outcomes [5]. An assessment of the possible at-risk individuals in the clusters were
described by many sociodemographic and health-related characteristics. As there is no
adequate research framework for investigating multimorbidity, this method can be applied
to manage older patients with multimorbidity in a more integral manner than is currently
possible when chronic diseases are considered as independent entities [38,39].

Overall, it can be said that HF and CI clusters represent the early stages of frailty
(all individuals are robust or prefrail) and CF and PhyF clusters, in which cognitive
frailty and physical frailty phenotypes are dominant and represent the final pathways
in the development of frailty. Accordingly, individuals in the two latter clusters are
generally older, present with more chronic conditions, and use more medications than
individuals in the two former clusters. These results support evidence suggesting that the
accumulation of comorbidities with age, together with the effect of polypharmacy that
accompanies it, governs the transitions of an individual’s health status to states of greater
frailty and disability [22,40,41]. It is important to know how older persons in a population
are distributed into these clusters, because only when multimorbidity is combined with
frailty does it significantly increase the vulnerability of older persons for different stressors,
predisposing them to increased mortality [41].

Differences between the CI and CF clusters in the rates of cognitive performance,
together with the switch in participation from the dominant participation of prefrail to
the dominant participation of frail individuals, between these two clusters support the
evidence indicating that cognitive performance progressively declines across the frailty
states and that, in prefrail individuals, cognitive impairment is an early sign of comorbidity-
related cerebral involvement [22]. Moreover, this result supports the knowledge indicating
that the likelihood of adopting the cognitive frailty phenotype strongly depends on an
advancement in age [20].

While the effect of age is obviously important for functional decline to develop, the ef-
fect of pre-existing health conditions and behavioral coping strategies may direct the course
of the pathophysiology disorders, either towards the development of the physical frailty
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phenotype or the cognitive frailty phenotype. A better understanding of these external
influences could improve our capabilities to cope with the modifiable factors that accelerate
aging. To reveal if there is a well-functioning group among very old (80+) individuals
corresponding with the course of aging, termed as successful aging, only a large-scale study
could give an answer [5]. These statements can better come to one‘s senses if analyzing
clusters separately from each other or in comparison to each other. Thus, individuals in the
HF cluster are the youngest and healthiest. However, they are not wholly free from chronic
medical conditions. The moderate presence of prefrail individuals in this cluster (44.1%)
can be considered as what Strandberg called “primary frailty” (a vicious cycle in which
mild frailty precedes and potentiates the development of most comorbidities) [42]. This
stage of frailty, in individuals in the HF cluster, can be explained by increased BMI and
waist circumference values, indicating overweightness in combination with the abdominal
type of obesity. Important to know in these terms is that the global pandemic of obesity, also
affecting the older part of the population, can modify the expression of frailty, which was
originally viewed as a state of the body shrinking [34,43]. The abdominal type of obesity
represents a sign of ectopic fat accumulation and is detrimental to the development of age-
related diseases by contributing to increased systemic inflammation [7]. In muscles, this
ectopic fat storage is associated with muscle wasting and weakness, reducing the physical
performance in obese individuals [43]. Obesity can further contribute to the development
of frailty by acting through obesity-related comorbidities, such as anxious–depressive
disorders and chronic lumbar pain, as also indicated by our results, by mechanisms such
as reduced mobility and motivation for activities [44].

A comparison of the HF and CI clusters has shown that these clusters share many
clinical characteristics, such as the number of chronic diseases and prescribed medications,
fairly justified anthropometric indices of obesity, and relatively good renal function. It is
expected, as these two clusters represent the early stages of frailty. Yet, they differ from
each other in that the individuals in the CI cluster are significantly older and have worse
CV profiles, the characteristics of which include higher rates of diabetes and chronic heart
disease, longer diabetes duration, and worse diabetes control, as indicated by higher fasting
serum glucose (chronic hyperglycemia). Based on its worse cardiometabolic profile, the CI
cluster exhibits higher rates of prefrail individuals than the HF cluster (68.3% vs. 44.1%). It
is due to the fact that both diabetes and CVD are considered a part of inflammaging and are
also closely associated with frailty [45,46]. By putting these results into a broader context
of inflammaging, then a wide range of comorbidities with a common pathophysiologic
background, that may precede or overlap with CVD, also contribute to the close association
of CVD with frailty [47,48].

According to the inflammaging theory, metabolic and inflammatory factors, by acting
over time in a vicious cycle, may intensify cardiometabolic comorbidities [5,7]. Differences
between the CI cluster and the HF cluster in expressing cognitive impairment (74.6% vs.
11.1% of the members with MCI and a decreased average MMSE score in the CI cluster
but not in the HF cluster) can also be viewed in this context. In this case, the cerebral
small-vessel disease is thought to be that structural correlate of the brain that makes a
link between the intensification of cardiometabolic disorders and worsening of cognitive
function [8].

Further, in the same context, our results indicate that individuals in the CF cluster,
who are significantly older than those in the CI cluster, also have more CVD. This worse
CV profile can explain the higher frailty rate and worse MMSE score of individuals in the
CF cluster. A prominent feature of this profile is the markedly decreased renal function,
which, in the CF cluster but not in the CI cluster, reached the level of chronic kidney
disease (glomerular filtration rates <60 mL/min/1.73 m2) [31]. Impaired renal function is a
common and concomitant disorder of CVD and cardiometabolic conditions and associated
with increased inflammation and the risk of developing malnutrition, sarcopenia (muscle
wasting), and frailty [49,50]. All these conditions were found to overlap in the geriatric
population, and sarcopenia is increasingly being considered a marker of frailty [51,52].
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What else matters when considering the effect of chronic renal impairment on de-
veloping the cognitive frailty phenotype, as our results and evidence indicate is the level
of this impairment and of the burden of associated disorders [53]. In this regard, indi-
viduals in the CF cluster have significantly lower renal function and a higher burden of
CVD than individuals in the CI cluster and are also characterized with higher levels of
inflammation/malnutrition, as indicated with low HDL cholesterol and a higher level of
muscle loss (sarcopenia), as indicated by the lower mid-arm circumference [33,54]. This
pathophysiologic background, associated with inflammation–malnutrition and sarcopenia,
may underlie the fully developed frailty state in individuals in the CF cluster.

As underscored by our results, individuals in the CF cluster do not differ significantly
from those in the PhyF cluster in age, the level of comorbidity and medicalization, and the
degree of renal function decline, but they are, nevertheless, characterized by significant
cognitive impairment, while individuals in the cluster PhyF are not. Therefore, chronic
kidney disease must coexist with some higher degree of CVD expression for cognitive
impairment to occur. This conclusion arises from the results indicating that there is a
difference between these two clusters in the level of the expression of CVD (including
diagnoses of chronic heart disease and coronary artery disease), this level being higher in
the CF than in the HF cluster. At higher levels of CV comorbidities, we would expect that
the level of inflammation also increases, governing the development of clinically significant
malnutrition and muscle loss [55]. According to the inflammaging theory, accelerated
cerebral small-vessel disease is a result of the action of intensive cardiometabolic factors
and increased inflammation on the cerebral vasculature or of the long duration of these
factors [8].

We could not show that there are variations in the levels of inflammation among
the clusters, but the real reason could be the limited scope of the laboratory tests used
in the study. It is becoming increasingly clear that the commonly used inflammatory
marker, CRP, also used in this study, is not suitable for all clinical situations and that
only a set of variables, indicating related and overlapping disorders, would be effective
for detecting variations in the levels of inflammation in older population groups [56]. In
case our hypothesis is true, the total burden of cardiometabolic disorders and the level
of inflammation/malnutrition and muscle loss would be a better correlate of decreased
cognitive function and the presence of a cognitive frailty phenotype than just decreased
renal function. Evidence that the coexistence of kidney and heart diseases, relative to the
stages of progression of these disorders, contributes to the development of malnutrition,
inflammation, frailty, and cognitive impairment is scarce, however, since these disorders
have only been examined separately as two independent disorders [57,58].

What else would be important, is an interplay between different disorders and the
dynamics of progression, which only could be assessed by longitudinal examinations.
According to some observations, if frailty develops before cognitive impairment, dementia
will not develop, in contrast to what happens when cognitive impairment continues to
progress in parallel with an advancement in the frailty status [59].

This is likely to be indicated, although indirectly, by our results showing that a disease
pattern that specifically marks the PhyF cluster and that can be used to help explain the
physical frailty phenotype, a hallmark of this cluster, is markedly different from the co-
morbidity patterns of clusters that are characterized with significant cognitive impairment
(the CI and CF clusters). A disease pattern that typically marks the PhyF cluster includes
the highest expression of functional/sensory organ impairments, especially concerning
those that are known to accompany musculoskeletal diseases, such as walking difficulties,
chronic pain, and falls; common musculoskeletal diseases (in particular, osteoporosis and
lower back pain); and mental disorders (anxiety and depression). In addition, only in this
cluster does gender imbalance play a significant role in cluster membership, with women
being dominant.

Like our findings, other evidence also suggests that musculoskeletal diseases are more
prevalent in women than in men and, in particular, in older women with multimorbid-
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ity [60]. Musculoskeletal diseases have been recognized as a leading cause of physical
disability and associated with chronic pain and frailty [61,62]. When integrating several
pieces of this evidence, there is indication of a close association between chronic pain and
mental disorders, anxiety, and depression and that mental disorders usually coexist with
musculoskeletal diseases in comorbidity patterns [60,63]. Older persons with chronic pain
experience and anxiety and depression use opioid analgesics or psychotropic medications
more often than others [64]. These medications might contribute to the higher expression
of functional organ impairments and the development of the physical frailty phenotype in
individuals in the PhyF cluster [65].

Although individuals in the CF and PhyF clusters share similar levels of comorbid-
ity of chronic diseases and medications prescription and, in particular, the diagnosis of
osteoarthritis was recorded at higher rates in these clusters than in clusters where frailty
is in early stages (the HF and CI clusters), which could contribute to higher levels of
inflammation in the CF and PhyF clusters, the hallmark of the PhyF cluster, as indicated
by our results, includes a combination of musculoskeletal disorders—in particular, osteo-
porosis and low back pain syndrome, with anxiety and depression—associated with the
domination of female gender [66]. In this regard, the description of the clinical profile of
individuals in the PhyF cluster integrates several pieces of evidence, indicating that women
are more prone than men to anxiety/depression, multimorbidity, musculoskeletal diseases,
and frailty [62,67,68]. There are opinions that a higher psychological vulnerability is the
common proxy for developing musculoskeletal diseases and frailty in older women, with
inadequate coping mechanisms and obesity having mediating roles [68].

As indicated by our results, objectively visible or subjectively experienced walking
difficulties may serve as a simple sign for recognizing older, frail individuals, regardless of
their cognitive function status.

5. Strengths and Limitations

In this study, we presented an innovative approach of how to select older people in
the population based on the levels of physical frailty and cognitive impairment, considered
together, as clusters, which approach, to some extent, reflects differences in the rates of
aging and could be important from a prognostic perspective. However, this study also
had some limitations that did not allow generalization of the results. These limitations
included the low number of participants, especially the small number of individuals in the
clusters indicating physical frailty and cognitive frailty phenotypes, which represent the
final pathways in the development of frailty. The small size of these clusters may partly
be a consequence of the participants‘ recruitment bias, due to the fact that many frail and
immobile persons were not covered by the study. In addition, very old persons (old 80
years and more) were mostly uninvolved, which may have impaired the real picture of
the distribution of functional impairments among older people in the community. Further
limitations included a low sensitivity of the applied MMSE test for detecting early signs
of cognitive impairment and the lack of some variables indicating inflammation, because
they were not recorded in the electronic health records.

6. Conclusions

This study aimed to identify clusters of physical frailty and cognitive impairment in a
population of older (≥60), ambulatory, primary care patients. A comorbidity pattern that
may distinguish the clusters depends on the degree of development of cardiometabolic
disorders in combination with advancing age. The physical frailty phenotype is likely to
exist separately from the cognitive frailty phenotype. A distinction between the two is
likely to be related to variations in the expression of CVD and musculoskeletal diseases
and to a gender-related predisposition for chronic diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/healthcare9070891/s1, Table S1. Descriptive statistics of numerical variables; Table S2.
Descriptive statistics of categorical variables.
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Abstract: The need for non-face-to-face online health care has emerged through the era of “untact”.
However, there is a lack of standardization work and research cases on the exercise effect of immersive
content. In this study, the possibility of the exercise effect of VR e-sports among e-sports cases were
presented through a visual algorithm analysis. In addition, the evaluation criteria were established.
The research method compares and analyzes e-sports cases and VR e-sports cases by applying
existing evaluation research cases. It also sets up a new evaluation standard. As for the analysis
result, the device immersion method and interaction range were set through an algorithm analysis;
FOV and frame immersion were set through typification; the user recognition method and interaction
method were set through the visual diagram. Then, each derived result value was quantified and a
new evaluation criterion was proposed.

Keywords: VR; virtual reality; VR e-sports; AI; immersive content; visual algorithm; visual system;
online health care; game

1. Introduction

The COVID-19 pandemic has not only brought confusion and control to reciprocal
exchanges, as well as the entire society and economy, but also is causing mentally and
physically serious illnesses. In particular, one of the causes is the absence of exercise, along
with limited physical activities. With the prolongation of the pandemic, however, these
have increasingly emerged as serious issues, whose resolution will require different non-
contact approaches to activity and alternative environments [1]. A new coinage, “ontact,”
was made amidst these changes [2]. It is a concept of adding “on,” which represents
connecting to the outside world online, to “untact,” which means non-contact. That is, it is
an online in-person approach, emerging as a new flow, following the extended spread of
the COVID-19 pandemic in 2020. Living in an era when people live to be 100 years old,
modern people concern themselves with health and make efforts to keep their health in
their busy daily life. Health care has now become an essential element in such a life [3].
After the outbreak of COVID-19, our daily lives have halted, and our physical activities
restricted. In addition, functional restoration of the body for respiratory improvement after
eradication of the virus is important, and in that respect, rehabilitation plays an important
role in acute COVID-19 management [4]. As a way to overcome this crisis, interest in
personal health care-type immersive contents based on physical exercise is increasing.
Games or e-sports [5] are essential to the culture of indulging in leisure and pleasure, even
briefly, to keep physical health and release mental stress. In recent years, e-sports have
settled down as part of play culture among most of the young generation and formed a
global fandom culture [6].

E-sports is a method of online communication over the Internet through screen devices,
generally in the form of games. Recently, it has also established itself as a sport through
the competitive structure, and it can be expanded from a culture of enjoying alone to a
“health care”-type sport that experiences and communicates through an online network
and achieves goals based on physical exercise.
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Therefore health care-type immersive content has huge expandability as indoor sports
fit for the “ontact” trend amidst the COVID-19 pandemic. There are various types of games
according to devices, including mobile games, representative RPG games on a PC, home
console games, and VR games. VR e-sports as an extended concept are part of the newly
emerging extended reality (XR) culture.

In other words, VR e-sports are not only a fun game, but also has a higher screen
scalability than existing e-sports and an excellent sense of immersion through interaction
with the human body and the device. In addition, VR e-sports, which have been expanded
to AR and MR, have sufficient potential for development as personal health care-type
immersive content based on physical exercise. Therefore, it seems that VR game-type
health care that is revitalized to meet the needs of the times is necessary. However, most of
the currently distributed health care products are monitor-based, one-way products, and
the standard for the exercise effect has not been established. In particular, from a technical
point of view, it is a method of following the actions shown through a small frame monitor
and checking the user’s actions using sense. Most of them are focused on the operation
method rather than the fun, so we think the immersion is also significantly lower. From
an academic point of view, there are no academic research results or empirical evaluation
standards for its effectiveness, and it is true that public awareness of how to use it is still
lacking. In addition, in the case of virtual reality devices that have been continuously
developed in recent years, the standardization process for the resulting values has not been
established, and the operating system through “VISION” has not been clearly established.

Recently, the importance of physical activity has been highlighted in preparation for
the post-COVID-19 era. Therefore, it suggests the possibility of safe, diverse and fun online
e-sports health care in terms of prevention and rehabilitation. In the process, we intend to
expand the fun elements of e-sports and the possibility of substituting physical activity
through VR e-sports. In other words, by proposing a new evaluation tool that can measure
the impact of VR e-sports on physical activity as a role of prevention and rehabilitation
during a specific pandemic, the direction of realistic health care to be produced in the
future is presented and the evaluation necessary to verify its effectiveness. The purpose of
this study is to present a tool.

Findings about various forms of health care-type immersive content have been recently
published overseas in the fields of medicine and fitness, for example the “Superpower
Glass Intervention” project based on Google Glass, whose VR-based effects were tested for
the behavioral analysis and treatment of autistic children [7]. A case study applied VR to
the treatment of lumbar pain [8]. In another case, VR gaming technologies were applied
and proven effective for the relief of pain in physical therapy [9]. Additionally, a study case
on the rehabilitation efficacy of VR through comparison of virtual reality rehabilitation and
conventional rehabilitation in Parkinson’s disease [10].

In addition, studies on osteoporosis in patients with Down’s syndrome [11] and
studies on various health-related side effects caused by sarcopenia [12] remind us once
again how important health and rehabilitation are in our lives.

A Korean smart health care company, Omni C&S, incorporated VR technologies into its
smart health care solution OMNIFITMindcare, which helps to manage mental health [13].
Another South Korean company, Kakao VX, made a home exercise equipment called
“VR Smart Home Training” and developed a variety of content, including OhShape [14].
Samsung announced a VR health care solution to help users exercise at home by themselves
by connecting their avatars to artificial intelligence. Health-related research and devices
are launched in various forms.

These are, however, at the experimentation stage. Research is being conducted on clear
standardized methods to measure exercise or its effects with a lack of public awareness
of them. Basically, how do you get users to engage? Under what conditions can exercise
continue? How to build an evaluation of the effectiveness of home health care without
environmental risk factors? etc., are presented as research questions. In this study, we
intend to propose a new evaluation method to verify the experience method of general
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health care products. In addition, there is a need for methodology to examine their
sustainability, since they are for health care practices by oneself at home. The present study,
thus, proposed an analysis framework to test exercise effects, based on a methodology
of applying and keeping gaming methods to such health care-type immersive content
through the comparison analysis of e-sports and VR e-sports, as well as the result values of
visualization of algorithms established in the research process. The findings of the study
may serve as a guide for developers to apply to the UI/UX of immersive devices and as
a humanistic guidebook for users to understand a method of experiencing and enjoying
extended reality. The investigator employed such research methods as examining various
research cases and visualizing a cognitive system built by immersive devices and physical
activities in an algorithm form. Results values were used to propose an analysis framework
to test exercise effects. An experiment was conducted to quantify differences in physical
activities between the game rules of e-sports and those of VR e-sports, and to examine their
efficiency as exercise effects through qualitative assessment.

After visualizing an operating algorithm between an immersive device and its user,
the investigator used the result values as an analysis framework to compare and assess
e-sports and VR e-sports in exercise effects. By introducing “ontact” cases in preparation of
the post-COVID-19 era, the present study proposed a way of managing personal health, as
well as finding joy in daily life. It will serve as a safety net to maintain our daily life in a
never-ending war against another virus.

2. Theoretical Background

2.1. Case Study

Recently, many research cases related to health care have been published due to
COVID-19 and are being commercialized. Most products deliver information visually
through a 2D-based monitor. It is a way to compete and immerse yourself by recognizing
the user’s motion and interacting with the character in the screen to verify and score the
exercise effect. In this context, the operating method of e-sports is very similar. Sit at a
table and use a 2D monitor to control and immerse in the movement of the character you
control and compete with your opponent online. The interest in e-sports is evident from
the recent various humanistic research cases, and academic research efforts are emerging
as well as technological developments. Given the periodic characteristics of today in a
mix of virtualism and reality, there is a need to investigate the structural understanding
and visual perception process of “vision” or looking at an object. The meanings of vision
are expanding with mobility added to the basic screen forms, including VR, AR, MR,
and physical computing in a wearable [15] method, which allows one to wear a device
on the body and secure a direct view. New spaces of vision mediated in this way are
post-Cartesian, post-perspective, and post-physical, but still remain within the limits
of frames on a screen [16]. Visual illusionism represents the history of reproduction
around presence from Giotto, before the law of perspective, to da Vinci that began to
use the law of perspective in full scale [17]. Making an algorithm for the stages of visual
information processing, including sense, perception, and cognition, in a visual system fit
for the digital era involves the ability [18] to recognize and distinguish visual stimuli and
understanding stimuli from the connection of previous experiences and perceptions, rather
than responding to various human senses. It is also to sublimate it as a role and value of
culture, through the academic interpretation of technological development.

Vision requests the interpretation and insight of a subject that is “cognitive,” rather
than a simple physical act of “seeing” by the dictionary definition [19]. When an observer
sees an object through his or her eyes, it is necessary to obtain information from the
visual characteristics of the object, categorize it, classify it, and select it. [20]. The figure
illustrates that the human visual structure is recognized through various devices and leads
to physical activities. Analyzing such a process and turning it into an algorithm through
e-sports are required in the development of various devices, in addition to immersive
content. As a recent study on e-sports, there have been studies on e-sports user behavior
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and development of e-sports measures [21]. There was various research, including the
one [22] on the effects of physical activities in virtual reality, in “Experience on Demand”
by Jeremy Bailenson. Health care-related research on neurological disorders and strokes
examined cases of overcoming lumbar pain through virtual reality and reported that it
reduced pain [23]. Another research used VR therapy to treat arachnophobia. Hoffman
and Peterson published a research paper in the medical journal, PAIN in 2000, reporting
that virtual reality reduced pain more than general games with the distraction technique
in “Spider World” [24]. Other researchers analyzed the visual system. Hal Foster (2012)
presented his study on the modern visual system in his “Vision and Visuality” [25]. Jeong
Jeong-ju (2014) published a “Study on the Expansion of Communication in Media Art with
the Window Metaphor” [26]. Lim Sang Guk and Kim Chee Yong (2018) proposed a digital
visual system fit for the 21st century in their “Study on Changes to Digital Visuality in
the 21st Century,” based on Lacan’s “notion of the real gaze” [27]. Still others conducted
research on algorithms related to the visual system. In his “Study on the Visualization
Methods of Poetry with Algorithm-Based Modeling,” Kim Ju-seop (2013) used “poetry” to
turn images into algorithms [28]. Kim Min-seok, Choi Woo-seong, and Jeong Sun-yeong
(2018) published “Design and Implementation of an Algorithm Visualization-Based Cluster
Analysis Learning System” [29]. Lim Sang Guk (2020) built “An HMB-Based Interactive
Immersive Media Algorithm with L-System” [30].

Developed by Aristid Lindenmayer in 1968, the parallel rewriting system, “L-System”
was introduced into computer graphics by Alvy Ray Smith in 1984. Today, it serves useful
purposes in the procedural modeling of plant growth, among other things [31]. Using
L-System, Kim Ju-seop (2013) proposed a method of recreating each poem in the form
of an organic tree in nature, reflecting their unique characteristics in the digital space by
limiting the text scope to the literary genre of “poetry,” using algorithm-based modeling
(procedural modeling). Kim Ju-seop (2013) offered a special explanation that L-System
consisted of symbols and rules that replace symbols. Park Jin-wan visualized and presented
Korean genealogy in “Visual Genealogy” to create a new story, rather than functionality
or aesthetics [32]. Lim Sang Guk (2020) visualized cases of immersive content devices
recently used across various fields through the analysis of their visual systems based on
image categorization and text listing. He was able to understand the characteristics of
media and methods of seeing by the period and offer a guide for UI/UX analysis in media
development, based on comparison results.

2.2. Study Case of Visual Algorithm Realization

The investigator had to visualize or categorize a visual system to build a visual al-
gorithm needed in the present study, and further, how to recognize and utilize visual
information into images in the process of visual information processing, including sense,
perception, and cognition in relations between diverse devices and users. Therefore, a
method for algorithmizing the visual system was established, and the cases were inves-
tigated. To date, there is no evaluation tool that can analyze and verify the digital visual
system. However, in this study, we would like to propose a tool for visual system analysis
through various cases priority, this paper intends to utilize the following four types of
representative papers. In one of such research cases, Jeong Jeong-ju (2014) proposed a
traditional Cartesian visual system [33] that divided the traditional visual system into three
types, including perspective, camera obscura, and panorama, in “Study on the Expansion
of Communication in Media Art with the Window Metaphor.” In his “Vision and Visuality,”
Hal Foster (2012) introduced a case of the notion of the real gaze for a visual system about
Lacan’s “gaze” under the traditional Cartesian visual system. Crary insisted on a need for
observers recognizing vision that had nothing to do with an “act of looking” [34]. Lacan
maintained that the “Cartesian visual model” should inevitably be replaced with a new
visual model capable of containing a sense mechanism via the nerves [35]. Based on these
arguments, Lim Sang Guk (2017) in his “Study on the Characteristics of Visuality Changes
and the Expansion of Digital Frames in the 21st Century,” in addition to Lim Sang Guk and
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Kim Chee Yong (2018) in their “Study on Changes to Digital Visuality in the 21st Century
based on Lacan’s Notion of the Real Gaze,” reorganized the human visual system into a
digital visual system of the 21st century and visualized it into a “notion of the real gaze” by
using Lacan’s “notion of the real gaze”. An example of the research case of “Construction
of HMD-based interactive immersive media algorithm using L-System” by Im Sang-guk
(2020) is given. Among them, let us look at the research results of Im Sang-guk (2017), Im
Sang-guk, and Kim Kim-yong (2018), which are research cases on changes in the visual
system. The result is shown in Figure 1. As seen in Figure 1, the above-mentioned research
cases defined the modern visual system of four elements, including perspective, camera
obscura, gaze, and panorama, based on the “notion of the real gaze”.

 

Figure 1. Lacan’s “notion of the real gaze”.

In Figure 1, the notion of the real gaze is a visualized image of a dual visual system in
a digital device. The “window” at the center is an “image screen” showing images. That
is, screens in perspective are considered as “windows” to figure out an object by viewers
as the origin of the term perspective, which means “seeing through” other spaces beyond
the screen, suggests [36]. Viewers look at the apex (vanishing point) on the right through
a window from the left side. However, in Lacan’s viewpoint, “gaze“ represents another
eye to look at viewers. On the other hand, on a digital visual system, viewers look at
moving images (character) on a liquid crystal display, rather than a vanishing point in the
traditional perspective. Such images are virtual images reproduced by the computer. This
relationship leads to the formation of interactions between viewers and devices. As a study
related to text visualization of images, Kim Ju-seop (2013) reported that character strings in
L-System worked as a series of orders to draw Figure 2, based on algorithms. That is, it is
“F -> F [+F] F”. In character strings of current rules, all “F” symbols are replaced with “F
[+F] F”. As this rule is applied twice, it expands into the next character string.

Figure 2. Example of branch generation using L-System.

Following “F -> F [+F] F -> F [+F] F [+F [+F] F] F [+F] F,” geometric meanings were
granted to each symbol:

• F: drawing ‘_’ clockwise at the current position;
• +: changing the direction at 45 degrees counterclockwise;
• [: saving the current position;
• ]: returning to the position saved last.
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In this context, as if implementing an image through a string, we intend to apply the
method of reconstructing text algorithmically through an image to this study. Figure 3
presents a case of applying users’ HMD-based cognitive process to L-System and turning
the process into an algorithm in the rewriting method of character strings with a VR device
in Lim Sang Guk (2020)’s “An HMB-Based Interactive Immersive Media Algorithm with
L-System.” The process of users looking at an HMD device is sequenced in texts, and
problems with the process, including dizziness and difficult cognition, are checked out in
the regeneration process of images to figure out the process of viewers communicating
with information images. As seen in these two research cases, cognition relations between
devices and viewers were turned into a visual algorithm through the interpretation of
images, based on a system of visualizing texts or rewriting character strings.

 
 
 
 

 

Figure 3. HMD visual system algorithm using L-System.

The next case categorized the visual systems of various immersive devices and visu-
alized them through the “notion of the real gaze”. As seen in Table 1, recently launched
immersive devices were listed according to the degree of immersion in the monitoring
method of single frames generally used.

Table 1. Image tangible and visual illustration of realistic content cases.
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In the enjoyment of e-sports, the basic key is the duration of exercise to generate
personal exercise ability effects. You need to exercise consistently for a long period in
order to experience the effects. In this sense, immersion is an essential element in exercise
effects. In relations between devices and users, a frame is a basic component of vision and
important element to enhance immersion. The physical size of a frame works to increase
immersion, expand the scope of vision, and maximize movement in the users’ enjoyment of
e-sports. In other words, there are clear differences in effectiveness between single frames
on the monitor screen for immersion, movement of gaze, and activity of the body, and
360-degree spaces for complete immersion and expandability of gaze.

A VR device, HMD, creates a 360-degree space by blocking a gaze in a complete real
space. Although it excels in immersion, it can have limits in physical activities. Users
have to enjoy a game on the original spot, since they have no visual field secured in a real
space. Of device cases proposed as solutions, AR and MR have the greatest advantage
of allowing users to enjoy virtual images together in a real space. The expandability of
frames represents a physical field of view. As its scope expands, immersion enhances
and exercise effects are maximized. In this context, the cases in Table 1 were examined to
figure out changes to users’ visual frames. A field of view of approximately 90◦ is created
for a single frame, and one of approximately 180~270◦ is created for an extended frame.
Body movements are shown in a limited manner, according to the scope of field of view.
VR, on the other hand, maximizes immersion with a full 360◦ space. Users are, however,
restricted for their physical activities, due to the blockage of real spaces, which points to
a disadvantage that they have to stand still or sit down to play a game. Unlike VR, AR
allows users to play a game, while looking at a real space in a 360◦ space. In AR, exercise
effects are maximized, as users are allowed to move their hands and move around easily.
Furthermore, it can function as a media-based tool. In AR, however, augmented images
are narrow within the limited media frame size of a field of view, thus lowering immersion.
MR supplements the disadvantages of VR and AR and highlights their advantages. Users
can secure a field of view of 360◦ and move their bodies freely, which suggests that MR can
serve as a media-based exercise machine.

2.3. Interactive Visual Algorithm Visualization Research Case

One of the characteristics of the vision perspective in the digital era of the 21st century
is a dual visual system. As seen in Table 1 above, the human vision system moves toward
a three-dimensional system beyond a two-dimensional one. In this digital convergence era,
various realities coexist together including actual reality, virtual reality, and augmented
reality. In other words, the recent converged media is characterized by mutual commu-
nication and interactions between users and their devices, through optical seek-through
and display-based interactive methods. As illustrated in Figure 4, the most important
part in this mutual interactive method is the perception of the body through physical
computing or the kinetic and tracking principle. Following the development of media,
viewers’ bodies have been a central research subject in various aspects. The keyword of
viewer participation in works through the body is the biggest interest of contemporary
artists and a characteristic of digital art in the field of digital art. The bodies of viewers
represent their interactive natural ego in works and are considered as subjects of perception
in the traditional concept of cognition. Now, people have to see and feel with their bodies
in the sense of vision with the simple perspective of visual frames replaced by the body
perception perspective of frames.
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Figure 4. Principles of physical computing.

In his study “An HMB-Based Interactive Immersive Media Algorithm with L-System,”
Lim Sang Guk (2020) classified interactive immersive media into three types in Table 2.
They are “inter-media people,” “communion,” and “in-media people” types. In the first
“inter-media people” type, viewers look at a monitor and act accordingly, and their acts
are recognized through kinetic sensors and trigger the reactions of images on the screen.
Viewers interact with the monitor through camera sensors detecting their physical move-
ments, recognize it visually, and move along with it. In their movements, they form ties
with characters on the screen and interact with them through their visual body cognition.
In the next “communion” type, viewers touch the screen themselves. Unlike the objective
“inter-media people” type, the “communion” type involves tactile interactions through
direct body touches. Viewers touch the monitor screen directly and move accordingly,
feeling reactions on the touch screen themselves. There are huge differences in the amount
of exercise, according to frame sizes and degree of relationship with the screen. This type
enhances viewers’ immersion further. In the last “in-media people” type, viewers interact
with a work by moving their bodies in it. That is, they become a part of the work. The
scope of frames builds a three-dimensional space, and viewers increase their activity level
through their body movements and maximize their immersion.

Table 2. Three cases of interactive type.

(1) Hive “Iris” 2012 (2) Air-Screen Interactive 7.5 m2 2013 (3) Rodrigo Carvalho “Break Down” 2014

   

These research cases show that the digital visual systems of the 21st century are based
on moving images and viewers’ participation. With the involvement of a medium called
the computer, based on interactions, an interactive dual visual system is built. Viewers
identify with beings (characters) in the media by moving themselves at a position facing
a work. Then, they develop their tactile sense by touching the media (touch screen),
being divided into two subjects (viewers in reality and virtual viewers in the media) and
becoming immersed at the boundary (screen). Lastly, they walk into a work and become
the work (subject) itself. Table 3 shows outcomes of reproducing interactive case analysis
results in Lacan’s visual plate.
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Table 3. Interactive visual plate.

Cross-Human Humanoid Sympathetic Humanoid in the Media

Interactive Case

    

Interactive type

   

Visual plate

   

These findings indicate that the scope of frames was limited in viewers’ relationships
with a screen facing them, given the amount of exercise according to the fields of view,
immersion, and activity scope of viewers facing a work in the “inter-media people” type. In
the “in-media people type,” the amount of exercise increased, according to the expanding
frames, widening fields of view, and rising utilization rate of spaces.

3. Analysis Method

3.1. Analysis Targets and Applicable Devices

The present study proposed and applied an analysis method based on these various
research cases. It needed objects of analysis and devices to be applied to test the exercise
effects of e-sports and VR e-sports, and to propose plans for their vitalization. In other
words, the study needed to undergo a process of textualizing and visualizing connections
in the cognition method of “vision-body” between various devices and users. This was
followed by quantifying results values and testing through qualitative evaluation. Based on
the research cases above, the study then proposed objects and frameworks of analysis. First,
the objects of analysis in the study included three of the most popular games in the e-sports
industry of South Korea and three of the most popular games in VR e-sports. As seen in
Table 4, the top three popular games in e-sports in the nation were “League of Legends,”
“Battleground,” and “StarCraft: Remastered.” The top three popular games in VR e-sports
were “VR Beat Saber,” “VR Dragon Flight”, and the MR e-sports game, “HADO”.

The cases of e-sports in the nation are basically divided between mobile games, based
on a smartphone, and RPG games, based on a PC. The present study focused on PC games
with great frame expandability. The cases of VR e-sports selected in the study included the
HMD-based VR game “Beat Saber,” the special force VR game “ Dragon Flight” version,
and the MR-based game “HADO”.

Second, devices related to the objects of analysis were applied based on the cases of
immersive devices in Table 5. That is, the characteristics of five representative immersive
devices in their instructions were categorized in relations between users and their devices.
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Table 4. Analysis target.

E-sports
League of Legends Battleground StarCraft: Remastered

     

VR e-sports
VR Beat Saber VR Dragon Flight VR HADO

     

Table 5. Immersive device case.

Single Frame Extension Frame VR AR MR

       

Third, relationships in the cognition method of “vision-body” between users and
their devices in the game management method were applied to L-System, based on the
objects of analysis and immersive devices to propose an analysis framework. This process
was described in the rewriting method of character strings. Based on the algorithm
analysis frameworks in Kim Ju-seop’s (2013) “Study on the Visualization Methods of
Poetry through Algorithm-Based Modeling” and Lim Sang Guk’s (2020) “An HMB-Based
Interactive Immersive Media Algorithm with L-System,” the visual cognition processes of
objects of analysis, devices, and users were turned into algorithms through texts.

Fourth, the texts that were turned into algorithms were categorized into visual images
and the “notion of the real gaze” based on the “notion of the real gaze” proposed in “Study
on Changes to Digital Visuality in the 21st Century, based on Lacan’s Notion of the Real
Gaze” of Lim Sang Guk and Kim Chee Yong (2018). Result values of fields of view were
obtained to test immersion based on the scope of the image frames.

Fifth, the study digitized body movements seen through interactive relations between
users and their devices and tested users’ exercise effects in their utilization of objects
of analysis and devices. That is, it digitized the utilization scope of spaces, based on
the movement degree and travel scope of users’ eyes, hands, feet, and bodies in the
gaming method.

3.2. Proposed Experiment Method and Analysis Tool

The study applied the analysis frameworks for the experimentation methods according
to the analysis methods in Figure 5.

As seen in Table 5, the analysis framework used in the experimentation method
underwent the process of A, B, C, and D, which involved selecting objects of analysis,
applying them to L-System, and turning them into algorithms, based on texts in the
rewriting method of character strings, categorizing them into images through algorithm
analysis, and turning them into “notion of the real gaze”. This process generated the result
values of user experiences and exercise effects in e-sports and VR e-sports.
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Figure 5. Experiment method model.

Based on the analysis frameworks of A, B, C, and D above, the study proposed analysis
criteria for result values to be generated. The criteria would cover result values under each
analysis framework and tests of exercise immersion, scope, and effects in e-sports and VR
e-sports. Under the framework of “A” for objects of analysis, killer content and devices
were selected to be used in e-sports and VR e-sports, based on cases needed to measure
fun and exercise effects for exercise persistence, as discussed above. The framework of
“B” for the textualization of algorithms found rules of various devices in users’ cognition
process and grounds for users’ immersion and fun, based on their characteristics. The
framework of “C” for categorization expressed relationships between users and their
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devices in images and measured their immersion and scope of activities, based on fields
of view through their frames. Users’ amounts of exercise were also measured, according
to the scope of their space utilization and methods of content management, based on
the categorization of characteristics of killer content and devices into images. The final
framework of “D” for “notion of the real gaze” offered some grounds to predict UI/UX
according to users’ immersion and interactive management with their devices, as well as
the cognition methods of their bodies. Based on the outcomes, the study proposed a guide
to predict killer content to be created and methods for users to utilize their devices. The
analysis criteria can be found in Table 6.

Table 6. Analysis tools and standards for experimentation.

Analysis
Tool

A. Analysis
Object

B. Algorithm C. Typification D. Diagram of Gaze

Analysis
standard

A.
Immersive

Device

B-1. Device immersion
method

C-1. FOV
D-1. User recognition

method

Visual Auditory Tactile 90 120 180 360 Eyes Hands Foot Body

B-2. Interaction range C-2. Frame immersion D-2. Interaction method

x Y z xyz
C-2a. Cross-human humanoid

Eyes Hands Foot BodyC-2b. Sympathetic
C-2c. Humanoid in the media

Seeing is a process of an observer looking at an object with his or her eyes, obtaining
information from its visual characteristics, categorizing and classifying it, and making
a choice [37]. Wong (1994) reported that shapes, sizes, positions, and colors accounted
for the most important parts in the visualization of conceptual elements through one’s
eyes [38]. According to Stephen, sizes, shapes, spaces, and colors of visual elements are
very important comparison elements [39]. In this context, it is possible to check which
sensory organs are used by users in their devices for immersion under “B” of turning
relationships between users and their devices into algorithms, based on texts, according
to the criteria of experimental evaluation in Table 6. It is also possible to measure their
scope of activities by tracing their body movements moving from the x-axis to the y-axis or
traveling along the x-, y-, and z-axes in their interactions with their devices. Under “C,” it
is possible to categorize instructions between users and their devices into visual images
and visualize the degree of their frame utilization in checking their fields of view and uses
of their devices. In VR HMD, a field of view (FOV) is important because it plays a big
part in increasing the sense of reality in virtual reality. After the visual system of camera
obscura, panoramas expanded the physical sensory experiences of subjects in realistic and
verified spaces established by the law of principle based on the effects of technological
reproduction [40].

Human eyeballs have an average of 110 FOV. An experiment can help to obtain FOV,
secure FOV, and promote communion with a device to check user’s immersion. Under “D”
of the “notion of the real gaze” between users and their devices, it is possible to visualize
which process is used by users to communicate and commune with which sensory organs
through which body parts. The result values can be used to predict the efficiency and
measurement criteria of exercise effects. The evaluation criteria in Table 6 were used as
analysis frameworks in the experiment of the study. Additionally, the scientific numerical
range for measuring the effects of e-sports and VR e-sports exercise is defined as shown in
Table 7.
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Table 7. Numericalization method for measuring exercise effect.

Numericalization
Tool

Digitization Method Numericalization Range

B-1. Device
immersion method

Visual
Depending on the level of

physical use
1~5

Auditory

Tactile

B-2. Interaction range
X-Y Depending on the scope of

the interaction
1~10

X-Y-Z

C-1. FOV

90◦

According to the line of sight
90◦~360◦

120◦

180◦

360◦

C-2. Frame
immersion

C-2a. Cross-human humanoid
Steps 1 to 3 depending on the

device and the degree of immersion
of the human body

C-2b. Sympathetic

C-2c. Humanoid in the media

D-1. User recognition
method

1. Eyes

According to the range of body use
1~4

2. Hands

3. Feet

4. Body

D-2. Interaction
method

1. Eyes

2. Hands

3. Feet

4. Body

3.3. Experiment Method

In the experiment, an experiment model was built based on these analysis frameworks
and applied to the e-sports and VR e-sports to be analyzed. A database was built with the
result values to propose an automation system to apply various devices and provide their
result values.

Based on the database, the study demonstrated that VR e-sports had practical effects
on exercise abilities and proposed a text algorithm to detect FOV and the scope of physical
activities in the process of categorizing images and turning them into “notions of the real
gaze”. Figure 6 shows the overall flow chart of an algorithm to detect exercise abilities in
the proposed immersive content. As seen in this flow chart, the analysis framework to be
applied to the experiment was divided into “B-1” of the device immersion methods (visual,
auditory, and tactile) and “B-2” of the scope of interactions (X, Y, Z, and XYZ) in “B” of
algorithms. In “C” of categorization, it was classified into “C-1” of FOV (90, 120, 180, and
360◦) and “C-2” of frame immersion (cross-human humanoid, sympathetic, and humanoid
in the media). In “D” of the “notion of the real gaze,” it was tested with “D-1” of users’
cognition methods (eyes, hands, feet, and bodies) and “D-2” of interaction methods (eyes,
hands, feet, and bodies). These testing methods can help to predict the persistence and
efficiency of exercise over time, based on result values.
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Figure 6. Flow chart of sensory content exercise ability detection algorithm.
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4. Experimental Results and Discussion

4.1. B. Text Algorithm Analysis
4.1.1. E-Sports Field

Among the subjects of the experiment analysis, “Battleground” in the field of e-sports
was analyzed with a text algorithm from the viewpoint of the user’s visual experience. The
results are shown in Figure 7. As shown in the experimental results, the user establishes
a communication relationship with the character displayed on the monitor screen and
thinks that he and the character are the same. In addition, the sense of immersion is
enhanced through mouse control. Due to the nature of the e-sports field, athletes immerse
themselves in the characters moving on the monitor screen through a visual method. It
is also connected to the tactile sense through mouse control. Additionally, the sound is
transmitted through the headset as an auditory sensory experience. These results reveal
the processes of how the user is immersed through the relationship with the device, and
the result is to be subdivided into numerical values.

➀

➁

➂

➃

➄

➅

➀

➁

➂

➃

➄

➅

➀

➁

➂

Figure 7. Example of experimental result of “text algorithm analysis” in the e-sports field.

In the above results, we looked at the experimental results of “Battleground” in the
field of e-sports, used as an experiment tool. Based on the results, the following case
analysis was conducted. The result is shown in the following Table 8 text algorithm
analysis result in e-sports field.

Based on the above experiment results, let us analyze the results of (B-1) the device
immersion method about “Battleground” in the e-sports field. The feeling of immersion
is formed from the eyes of users 1© and 5© and the movement of the character in 2©. In
addition, immersion is formed in the movements of the 3© and 6© mouse controls and the
2© character. Therefore, if the device immersion method is subdivided into visual, auditory,

and tactile senses, it can be seen that the visual parts of 1©, 5©, and 2© and the tactile parts
of 3©, 6©, and 2© form a sense of immersion. In addition, the user’s headset creates an
immersive feeling in the auditory part. In order to quantify these results, the degree of
immersion in sight, hearing, and tactile sense based on 5© is expressed as a number, and
the results are shown in Figure 8. The rest of the cases were also tested in the same way.
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Table 8. Text algorithm analysis result in e-sports field.

Analysis Target
E-Sports

Text Algorithm

 

➀

➁

➂

➃

➄

➅

➀

➁

➂

➃

➄

➅

➀

➁

➂

a. League of Legends (LoL)

1©. The player looks at the screen.
2©. The player sees the virtual character through the monitor in reality.
3©. The player reproduces the movement of a virtual character using a mouse in reality.
4©. The computer reproduces the movement of the character on the screen through a

mouse controlled by the player.
5©. The player sees the movement of the character reproduced by the computer.
6©. The player interacts with his mouse control, while watching the movement of the

character reproduced by the computer.

➀

➁

➂

➃

➄

➅

 

➀

➁

➂

➃

➄

➅

➀

➁

➂

b. Battleground

1©. The player looks at the screen.
2©. The player sees the virtual character through the monitor in reality.
3©. The player reproduces the movement of a virtual character using a mouse in reality.
4©. The computer reproduces the movement of the character on the screen through a

mouse controlled by the player.
5©. The player sees the movement of the character reproduced by the computer.
6©. The player interacts with the mouse control, while simultaneously watching the

movement of the character reproduced by the computer.

 

➃

➄

➅

➀ ➄ ➁

➂ ➅

➁

➀ ➄ ➁

➂ ➅ ➁

➄

c. StarCraft: Remastered

1©. The player looks at the screen.
2©. The player sees the virtual character through the monitor in reality.
3©. The player reproduces the movement of a virtual character using a mouse in reality.
4©. The computer reproduces the movement of the character on the screen through a

mouse controlled by the player.
5©. The player sees the movement of the character reproduced by the computer.
6©. The player interacts with the mouse control, while simultaneously watching the

movement of the character reproduced by the computer.

➃

➄

➅

➀ ➄ ➁

➂ ➅

➁

➀ ➄ ➁

➂ ➅ ➁

➄

 

Figure 8. B-1 device immersion method test result.

The analysis targets A. League of Legends (LoL), B. Battleground, and C. StarCraft:
Remastered all experience through the same operating system, and the results are the same.
In other words, vision is the largest, and next, a sense of immersion is formed through a
controller using mouse manipulation. Next is B-2; let us look at the range of interactions
in Figure 7. Basically, it is an experience method shown in “Battleground” in the field of
e-sports. First of all, the user is seated. Therefore, since the monitor screen to be viewed is
flat, the user’s gaze forms an interactive range following the movement of the character
from the x-axis to the y-axis. In addition, it can be seen that the interaction of the mouse
movement occurs only in a fixed position of the controller device. Therefore, based on 10, it
can be seen that the range of interaction between the visual and mouse controller is mostly
limited to the X-axis and Y-axis. In other words, it can be seen that the visual perception
method on the monitor screen and the sense of immersion in mouse operation are flat, in
that it is a 2D space. In addition, the same experimental results were found in League of
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Legends (LoL) and “StarCraft: Remastered” in the e-sports field. The results are shown in
Figure 9. Other cases were also tested in the same way.

Figure 9. B-2 interaction range experiment results.

4.1.2. VR E-Sports Field

The next experiment analyzes the “Dragon Fly” in the field of VR E-sports, among the
analysis targets with a text algorithm from the viewpoint of the user’s visual experience.
The results are shown in Figure 10 below. As can be seen from the experimental results, the
user establishes a consensus between the character in the game and the user through the
HMD and considers himself and the character as one. In addition, the sense of immersion
is accelerated through game devices (weapons). Due to the nature of the VR e-sports
field, players actually experience their physical movements in a 360-degree screen. The
characters in the game are immersed in a complete virtual space through a visual method
and connected with a tactile sense through a game device (weapon). The headset sound
also accelerates your auditory immersion.

 

Figure 10. Example of experimental result of “text algorithm analysis” in the VR e-sports field.

Let us analyze the final result, based on the experiment result of “Dragonfly” in the
field of VR e-sports that was used as an experiment tool earlier. The following Table 9
shows the result of text algorithm analysis in the field of VR e-sports.
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Table 9. VR e-sports text algorithm analysis result.

Analysis Target VR E-Sports Text Algorithm

 

➀

➁

➂

➃

➄

➀

➁

➂

➃

➄

➅

➀

➁

➂

➃

➄

➅

➀ ➂ ➁ ➂

➄

➂

➀ ➂

➁ ➄

➀ ➂

➁

➄ ➂ ➅

➀ ➂ ➁

➄ ➅

a. Beat Saber

1©. The player looks at the screen.
2©. The player sees the virtual character through the media (HMD).
3©. The player sees the movement of the character in the virtual through the media (HMD).
4©. The player sees the movement of the character in the virtual reproduced by the computer.
5©. The player interacts and moves with the player’s body according to the movement of the

character in the virtual reproduced by the computer.

➀

➁

➂

➃

➄

 

➀

➁

➂

➃

➄

char

➅

➀

➁

➂

➃

➄

➅

➀ ➂ ➁ ➂

➄

➂

➀ ➂

➁ ➄

➀ ➂

➁

➄ ➂ ➅

➀ ➂ ➁

➄ ➅

b. Dragonfly

1©. The player looks at the screen.
2©. The player sees the virtual character through the media (HMD).
3©. The player sees the movement of the character in the virtual through the media (HMD).
4©. The player sees the movement of the character in the virtual reproduced by the computer.
5©. The player interacts and moves with the player’s body according to the movement of the

character in the virtual reproduced by the computer.
6©. The player interacts with the movement of the character reproduced by the computer and

communicates with other players through movement.

➀

➁

➂

➃

➄

➀

➁

➂

➃

➄

➅

 

➀

➁

➂

➃

➄

➅

➀ ➂ ➁ ➂

➄

➂

➀ ➂

➁ ➄

➀ ➂

➁

➄ ➂ ➅

➀ ➂ ➁

➄ ➅

c. HADO

1©. The player looks at the screen.
2©. The player sees the virtual image (character) and reality at the same time through the

media (HMD).
3©. The player sees the motion of the virtual image (character) reproduced by the computer and

the opponent in reality at the same time.
4©. The movement of the player is recognized by the computer and reproduced as an image

(character) in the virtual. It also shows the opponent’s movement in reality at the same time.
5©. The player interacts with the player’s body according to the motion of the virtual image

(character) reproduced by the computer and moves with the opponent’s movement in reality.
6©. Athletes interact with fellow (team) players, while interacting with the movement of images

(characters) reproduced by a computer. Communicate through movement.

Based on the above experiment results, B-1, “save bits” in the VR e-sports field,
analyzing the results of the device immersion method creates a sense of immersion in the
visual parts of the user in 1© and 3© and the movement of the character in 2© and 3©. In
addition, immersion is formed through interaction between the movement of user 5© and
movement of character 3©. Therefore, subdividing into visual, auditory, and tactile senses,
it can be seen that the sense of immersion is formed through the visual parts of 1©, 3©,
and 2© and the movement of the user’s body in 5©. In other words, the tactile sense of
immersion is formed through the movement of the body. In addition, a sense of immersion
is formed in the auditory part through the user’s headset.

In addition, the auditory part plays a large role in the game operation characteristics
of Beat Saber, which has a strong musical element. Next, let us look at the analysis of
“Dragon Fly”. Immersion is formed from the user’s gaze in 1© and 3© and the movement
of the character in 2©. In addition, immersion is formed through interaction between
the movement of user 5© and movement of character 3©. In addition, with number 6©,
immersion is also formed through communication with other users. Therefore, let us look
at it by subdividing it into sight, hearing, and touch. It can be seen that immersion is
formed through communication with the character through the visual parts of 1©, 3©, and
2©, the body movement in 5©, and the relationship with other users in 6©. In other words,

the characteristic of “Dragon Fly” appeared that the tactile sense of immersion was formed
through the movement of the body.

In addition, immersion is being formed in the auditory part through the user’s headset.
Finally, looking at the analysis of HADO, immersion is formed from the user’s perspective
in 1© and 3© and the movement of the character in 2©. The characteristic part is that
in HADO; the other user is seen along with the character image in 3© and 4©. In other
words, a virtual image and another user in reality are simultaneously visible through visual
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communication. In addition, in step 5©, communication through the movement of the
character and the movement of the other user plays a large role. In addition, in step 6©,
visual and tactile communication relationships are formed through communication with
fellow teams, along with the movement of the virtual character and the other user. In order
to quantify these results, the degree of immersion in visual, auditory, and tactile sensations,
based on 5©, was expressed as a number. The results are shown in Figure 11.

➀ ➂ ➁

➂ ➃

➄

➅

➄

 

Figure 11. B-1 device immersion method test result.

Next, let us look at the “B-2” interaction range in Figure 11. First, in the experience
method shown in Beat Saber, the monitor screen viewed by the user is completely immer-
sive in a 360-degree three-dimensional space through the HMD, but the user is fixed in
place to experience it. Therefore, the interaction range of the user’s gaze appears narrowly
along the movement of the character from the x-axis to the y-axis. However, it can be seen
that the user’s body moves up and down, left and right freely, and through interaction with
the controller, there is a lot of movement of the user’s whole body, such as the hands and
feet. Next, in the experience method shown in Dragonfly, the monitor screen viewed by
the user is 360 degrees through the HMD, and a complete immersion is formed. However,
unlike Beat Saber, users can move their body. Through communication with other users,
the interaction of the body movement and device immersion is better than Beat Saber.
However, in that the real space is blocked, due to the nature of the HMD, the inconvenience
of moving appears as a disadvantage to the interaction.

Finally, in HADO, there is no restriction on the movement of users, in that they can see
both real and virtual images using the AR method. In addition, it can be seen that not only
the interaction between the device and the user, but also the communication through the
team and the competitive relationship with the other team expands the sense of immersion.
Therefore, on the basis of 10, the range of visual interaction, device interaction, and user
interaction could be analyzed by subdividing into X-axis, Y-axis and X-axis, Y-axis, Z-
axis. In other words, in the interaction between the user and the device, there was a lot
of body movement, due to the characteristics of the music and user interaction method
of Beat Saber. However, when using the HMD, movement was formed only in a fixed
position by blocking the eyes of the real space. In Dragonfly, interaction was additionally
formed through communication between users. However, the movement of the body
was limited, due to the blocking of reality by the HMD. However, in HADO, it can be
seen that interaction is maximized through a game method that utilizes the relationship
between users and the characteristic that real space and virtual images coexist. Therefore,
the numerical values of the results are shown in Figure 12 below.
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Figure 12. B-2 interaction range experiment results.

4.2. C. Typing Analysis

The result of categorization based on the features of the frame appearing in the field
of e-sports and VR e-sports is shown in Table 10 below.

Table 10. Visualization of the analysis target frame.

Analysis Target Frame Format

E-sport     
League of Legends (LoL) Battleground StarCraft: Remastered

   

VR e-sport
     

Beat Saber Dragonfly HADO

  

According to David Bodwell’s discussion, the frame was interpreted as a boundary
concept of a domain called “a rectangular border that influences the degree to which the
size of the situation in the screen is controlled and understood” [41]. This means the
concept of a boundary between a formal and physical concept and a spatial category as
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an object in which a certain method or image is represented [42]. As can be seen from the
above results, “League of Legends (LoL)”, “Battleground”, and “StarCraft: Remastered”
in e-sports all appear in the same typology. The reason for this is basically that e-sports
are played in front of a monitor. Therefore, players play games from a two-dimensional
perspective of a monitor device and experience in reality through virtual images and visual
interactions. According to Habert Zettle, the expansion of the aspect ratio as a horizontal
aspect ratio from 4:3 to 16:9 is intended to satisfy human visual needs. It has been said
that this may be because the human field of view is longer horizontally than vertically,
and human life is made more horizontally than vertically [43]. Therefore, the sense of
immersion may vary, depending on the size of the frame, but the method of operating
in front of the monitor frame is the same. On the other hand, in the field of VR e-sports,
“Beat Saber” and “Dragonfly” showed the same typification, and in “HADO”, different
types of typification appeared. The reason is that “Beat Saber” and “Dragonfly” use HMD-
based devices to completely block reality and experience a 360-degree virtual space in the
visual. However, the disadvantage is that the user’s visual reality is blocked, and the body
movement is not free. However, there is a difference in that “HADO” uses a device that
uses AR. That is, by augmenting a virtual image in a real space and visually showing it,
the reality and the virtual can be seen at the same time. In this respect, the advantage is
that users can move freely and be more immersed in the game. As a result, the feeling of
immersion increases when the monitor frame is enlarged or the viewing angle is visually
expanded, rather than the feeling of immersion felt in the way of using a single monitor.
Therefore, through these features, it can be seen that the user’s sense of immersion or
interaction may vary, depending on which device is used.

Table 10 shows the “C-1” FOV range experiment and “C-2”. Let us look at the frame
immersion experiment results. The FOV, or field of view, plays an important role in
enhancing the user’s sense of immersion. Therefore, the larger the viewing angle, the
higher the sense of immersion. This is also the case in “C-2”. In the frame immersion
experiment, the feeling of immersion changed according to the interaction method between
the device and the user. The way users interact with each other by touching them with
their hands or entering a virtual space creates a greater sense of immersion than users
who only visually look at the monitor. Therefore, through the experimental results, the
sense of immersion between the analysis cases was quantified. Results can be seen in
Figures 13 and 14.

 

Figure 13. C-1 FOV range test result. 
Figure 13. C-1 FOV range test result.
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Figure 14. C-2 frame immersion test result.

As can be seen from the results, perception of an object is from grasping the features
of the external structure to recognize the morphological features of the proposed structure.
Therefore, the expansion of the frame is the creation of a perceptual range in which the
eye and the object to be seen are recognized as the processes of change appearing in the
physical size, and the visual border as the visible limit area is determined. As shown in the
above result, League of Legends, Battleground, and StarCraft: Remastered are formed from
a 90 to a 120◦ viewing angle. However, in Beat Saber, Dragonfly, and HADO, the viewing
angle was formed from 90 to 360◦. Therefore, the result is that the sense of immersion is
higher in d, e, and f. That is, it can be said that the user’s body movement is proportional
to the visual range and the frame range of the device. Therefore, it can be said that the
greater the range of physical activity of the user or the distance of visual movement, the
greater the exercise effect. On the other hand, Beat Saber and Dragonfly visually block
reality, and movement may be limited because the user can only move in a virtual space.
However, HADO can see the real space and the virtual space at the same time, so it can be
said that the user’s physical activity and immersion are the most among the six cases.

In Figure 14, C-2 frame immersion can also be seen in the experimental results. In step
1, “C-2a,” the cross-human humanoid method, the user only looks at the monitor device.
In step 2, “C-2b,” the sympathetic method is a form in which the user interacts with the
monitor device. Finally, in step 3, “C-2c,” the humanoid in the media method is a form in
which the user interacts with the device through physical communication, so it can be said
that the most immersive and physical activities are experienced. Looking at the results, in
the first stage including League of Legends, Battleground, and StarCraft: Remastered, a
cross-human humanoid method was shown. In Beat Saber, Dragonfly, and HADO, not
only the 1st stage but also the 2nd and 3rd stages are visible. In particular, HADO shows
the highest level of immersion and user activity among the three features.

4.3. D. Image of Gaze

Table 11 shows the gaze image of the target based on the features of the frame appear-
ing in the field of e-sports and VR e-sports.
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Table 11. Image of the target’s gaze.

a. League of Legends b. Battleground
c. StarCraft:
Remastered

d. Beat Saber e. Dragonfly f. HADO
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The process of visualizing a target’s gaze is a visual representation of a text algorithm
in a form that graphically describes the visual system between the device and the user.
Therefore, the simpler the image structure, the simpler the visual system, and the more
complex the visual system, the more processes the images overlap. Looking at the results
above, in League of Legends, Battle ground, and StarCraft: Remastered, the image of the
gaze is the basic visual structure of the “gaze,” and the relationship between the user and
the device are facing each other.

On the other hand, in Beat Saber and Dragonfly, the visual system forms a dual visual
system in the virtual space, and it can be seen that the center of the user’s gaze exists in
the virtual space. In addition, in HADO, it can be seen that not only the visual system, but
also the user’s body is in the virtual space. Therefore, it can be seen that the user’s gaze
and physical activity are immersed in the virtual space as it goes from a. to f. Based on this
conclusion, the “D-1” user recognition method, and “D2,” let us look at the results of the
interaction method. The results can be seen in Figure 15.

Figure 15. D-1. user recognition method and D-2. interaction method experimental results.

In Figure 15, “D-1” user recognition method and “D-2” interaction method can be
found through the experimental results. In the cognitive method, apply a number from 1
to 4 in the order of eyes, hands, feet, and body. Considering that the eye is 1, it is judged
that the degree of immersion has increased when both the eye and the hand are recognized
at the same time. Therefore, 6 experimental cases are classified into “D-1” and “D-2,” and
the result of the experiment increases from a to f, as shown above. The results of “D-1” and
“D-2” are the same.

5. Conclusions

Following the outbreak of COVID-19, modern people have developed a need for
a variety of health care content that they can enjoy safely at home. Their expectations
and needs for immersive content are especially growing. A prominent need is found
for killer content to satisfy both fun and health in today’s reality where people suffer a
lack of physical activity. There have been diverse efforts to develop such content devices,
but empirical analysis framework and tests of exercise effects are still in shortage and far
from standardization. Thus, the present study set out to propose an analysis framework
for e-sports equipped with both entertainment and sports elements and demonstrate the
possibilities of VR e-sports.

The experiment results of the study show that analysis data of immersion and exercise
abilities was generated between users and their devices in six research cases of e-sports
and VR e-sports. Close relationships between users and their devices were found through
text algorithm analysis under “B,” and the results were used to digitize “B-1” of device
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immersion methods and “B-2” of scope of interactions. Under “C” of categorization, the
study measured and digitized “C-1” of FOV and “C-2” of frame immersion and obtained
the independent result values of each device. Under “D” of “notion of the real gaze,” the
study segmented “D-1” of users’ cognition methods and “D2” of interaction methods by
the body part, identified physical characteristics according to the degree of immersion, and
digitized the results. The final results were put in a diagram in Table 12.

Table 12. Final experiment result.

A. Analysis Target

a. League of
Legends

b. Battle-
ground

c. StarCraft:
Remastered

d. Beat
Saber

e. Dragonfly f. HADO

         

B. Text
algo-
rithm

analysis

B-1. Device
immersion

Visual 4.5 4.5 4.5 3 3.5 4.8
Auditory 2 2 2 3 2 2
Tactile 3 3 3 3 4 4.5

B-2. Interaction
range

X-Y 10 10 10 4 6 10
X-Y-Z 2 2 2 1 5 8

C. Typifi-
cation

C-1. FOV

90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦
120◦ 120◦ 120◦ 120◦ 120◦ 120◦ 120◦
180◦ - - - 180◦ 180◦ 180◦
360◦ - - - 360◦ 360◦ 360◦

C-2. Frame
immersion

C-2a.
Cross-
human
humanoid

1 1 1 1 1 1

C-2b.
Sympathetic - - - 2 2 2
C-2c.
Humanoid
in the media

- - - 3 3 3

D.
Diagram
of gaze

D-1. User
recognition
method

1. Eyes 1 1 1 1 1 1
2. Hands 2 2 2 2 2 2
3. Feet - - - 3 3 3
4. Body - - - 4 4 4

D-2. Interaction
method

1. Eyes 1 1 1 1 1 1
2. Hands 2 2 2 2 2 2
3. Feet - - - 3 3 3
4. Body - - - 4 4 4

These findings show that under “A” of objects of analysis, a variety of devices were
used, based on game content in League of Legends, Battleground, StarCraft: Remastered,
Beat Saber, Dragon Flight, and HADO. That is, while a, b, and c were managed in a way
of visualizing planar frames on the monitor, d, e, and f used immersive content devices
that were recently attracting attention and featured three-dimensional visual frames in
360 degrees. In particular, d and e offer excellent visual immersion by blocking a real space
completely, but a lot of inconvenience is created, due to the reality that has been blocked.
On the other hand, f can be managed in AR or MR to supplement this disadvantage, having
great potential for utilization in the future. In the experiment results, the visual system
between users and their devices was turned into an algorithm, based on texts under “B” of
algorithm analysis. The results were used to digitize the results values of “B-1” of device
immersion methods (visual, auditory, and tactile), according to the characteristics of each
device. The result values indicate that immersion was great in visual parts overall. Moving
from a to f, users increased their utilization of devices through their movements, based on
their tactile part as much as their visual part, growing their physical activity level. Under
“B-2” of scope of interactions, the study compared the X-, Y- and X-, Y-, and Z-axes in
the scope of movements in physical activities, based on devices. Users used a device in a
fixed position and managed their movements on the X, Y-axis in most cases in a, b, and c.
However, in d, e, and f, they moved along the X-, Y-, and Z-axes by standing up to move
around spaces and moving their arms and legs. In f, featuring a mixed reality between the
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real and virtual worlds, users were very active with their movements and had no limits in
their scope of activities.

Under “C” of categorization, the study digitized “C-1” of FOV values in a process
of turning text algorithms between users and their devices into images to figure them
out more easily. Broader FOV meant higher immersion and expanded scope of physical
activities. The result values show that users’ maximum FOV was within a scope of 90∼120◦

in a, b, and c, and that an FOV of 360◦ was basically created in d, e, and f. Allowing users
to perceive reality freely, f especially maximized the scope of FOV. Under “C-2” of frame
immersion, analysis was conducted in further segments of “C-2a,” cross-human humanoid,
“C-2b,” sympathetic, and “C-2c,” humanoids in the media. Result values would vary
according to whether there were physical contacts in relationships between users and their
devices. Users would experience greater immersion when entering a virtual space and
communicating with their devices by touching the screen, than when simply looking at
the monitor screen. The outcome was in the form of “C-2a” in a, b, and c, in which users
had no physical contact at all with the monitor screen offering virtual images. Both “C-2b”
and “C-2c” were found in d, e, and f that were managed through users touching the screen
and moving their bodies. Moving from d through e to f, users engaged in more active
communication with their devices and experienced greater immersion and physical activity
competence according to their movements and device operation methods.

Under “D” of “notion of the real gaze,” the study turned the characteristics of the
experimentation process into visual algorithms. Any devices can be visualized through
“notion of the real gaze” in the visualization process of information. The result values were
used to digitize “D-1” of users’ cognition methods. They showed in which body parts
the users had the greatest immersion in their devices through their eyes, hands, feet, and
bodies, and in which parts they exhibited the highest activity. In a, b, and c, they were
mostly managed through eyes and hands with physical movements immensely focused
on visual parts. However, in d, e, and f, users were able to move their bodies through the
movement of their feet, as well as their eyes and hands. In f, their body activity performed
with the greatest excellence and induced decisive immersion in users. Moving from a to
f, users recorded increasingly higher physical utilization and had immersion through the
movement of their entire bodies, instead of physical parts. In “D2” of interaction methods,
a, b, and c enabled communication through eyes and hands, whereas d, e, and f allowed
users to interact with their devices through the movement of their feet and bodies, as well
as their eyes and hands.

As a result, the results of using the analysis tool among A. analysis targets a. League
of Legends, b. Battle Ground, c. StarCraft: Remastered, d. Beat Save, e. Dragon Fly, and
f. HADO. It was found that the most effective example of the value was f. HADO. Based
on these results, the form of realistic health care to be produced in the future requires a
structure that has high frame scalability and can compete or cooperate with others online.
In addition, it can be conveniently used at home, and exercise prevention and rehabilitation
effect through safety, space expandability, and excellent immersion are considered to
be great.

The present study mentioned a need for immersive content and research in the field
of health care during the COVID-19 era, analyzing various immersive content in related
research and identified an analysis framework to measure exercise abilities. The findings
are presented in Table 13. The study put in various devices, conducted an experiment
with an analysis framework, and tested their effects through digitization in the process of
A-B-C-D.
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Table 13. Realistic content exercise effect verification tool.

Analysis Method Analysis Tool Numericalization Process

A. Analysis target

B. Text algorithm analysis

B-1. Device immersion
method

Visual
Auditory
Tactile

B-2. Interaction range X-Y
X-Y-Z

C. Typification

C-1. FOV

90◦

120◦

180◦

360◦

C-2. Frame immersion
C-2a. Cross-human humanoid
C-2b. Sympathetic
C-2c. Humanoids in the media

D. Image of gaze

D-1. User recognition method

1. Eyes
2. Hands
3. Feet
4. Body

D-2. Interaction method

1. Eyes
2. Hands
3. Feet
4. Body

The present study offered a set of criteria to analyze and understand immersive content
that was further diversified and advanced. It is difficult to evaluate various devices with
a simple technical approach. Because the human body connectivity of recent immersive
devices is very high. Therefore, evaluation criteria suitable for the new digital visual system
and criteria for verifying various devices are presented in this research paper. Until now,
there is no clear health care product through VR technology in the health care field.

However, we are living in an era in which modern life patterns are changing and global
epidemics appear. Recently, research on safe immersive devices to be used and revived
in anticipation of a new virtual space called metaverse has already begun. Therefore, it
is expected that the psychological and physical evaluation criteria for future health care
products will be newly presented through this study. It is expanded from the current
2D-based visual system to a 360-degree 3D-based visual system. That is, an extended
evaluation standard from the UI/UX perspective between humans and media is formed. In
addition, various health care products using VR and AR formats can be produced. Finally,
even if a pandemic such as COVID-19 recurs, it is expected that anyone from the elderly
to children can enjoy exercise and prepare for prevention and rehabilitation through a
safe, convenient, and fun way at home. In addition, I hope that this research paper will
serve as a guide in producing products with both fun and exercise effects in the process
of producing home health care products in the future. The study also raised a need for
additional researches with many practical experiments and clearer and more effective
researches, based on collaboration with medical and health care professionals. Everyone
hopes that this will be the last virus crisis. If another one happens in the future, they will
hopefully come up with wiser measures than the current situation and convey messages of
overcoming and hope, rather than frustration and fear to the lives of modern people.
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Abstract: Post-analysis of predictive models fosters their application in practice, as domain experts
want to understand the logic behind them. In epidemiology, methods explaining sophisticated
models facilitate the usage of up-to-date tools, especially in the high-dimensional predictor space.
Investigating how model performance varies for subjects with different conditions is one of the
important parts of post-analysis. This paper presents a model-independent approach for post-
analysis, aiming to reveal those subjects’ conditions that lead to low or high model performance,
compared to the average level on the whole sample. Conditions of interest are presented in the
form of rules generated by a multi-objective evolutionary algorithm (MOGA). In this study, Lasso
logistic regression (LLR) was trained to predict cardiovascular death by 2016 using the data from
the 1984–1989 examination within the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD),
which contained 2682 subjects and 950 preselected predictors. After 50 independent runs of five-
fold cross-validation, the model performance collected for each subject was used to generate rules
describing “easy” and “difficult” cases. LLR with 61 selected predictors, on average, achieved 72.53%
accuracy on the whole sample. However, during post-analysis, three categories of subjects were
discovered: “Easy” cases with an LLR accuracy of 95.84%, “difficult” cases with an LLR accuracy
of 48.11%, and the remaining cases with an LLR accuracy of 71.00%. Moreover, the rule analysis
showed that medication was one of the main confusing factors that led to lower model performance.
The proposed approach provides insightful information about subjects’ conditions that complicate
predictive modeling.

Keywords: post-analysis of data-driven models; rule design; multi-objective optimization; model
performance; prediction of cardiovascular death

1. Introduction

The increasing volume of data collected and the expanding computational resources
dictate current trends in data-driven modeling [1]. It is no longer surprising that models
outperform human experts in many areas [2]. Yet this high performance goes hand-in-hand
with significant growth in model complexity. This tendency results in greater intricacy
of the use of data-driven models in the medical domain, where model interpretability
is of primary importance [3]. While predicting diseases, one may even choose to use
less accurate “white box” models (easily interpretable with a simple structure), such as
decision trees or rules, rather than to unpack “black box” models (hardly interpretable
with a complex structure) [4,5].

To address the growing complexity of data-driven models and to understand the
non-trivial logic behind their decisions, a number of methods for post-analysis have
been proposed recently [6]. Some of them apply local approximations with simpler but
interpretable models [7], while others estimate feature importance using permutation
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techniques [8]; additionally, they search for influential samples that greatly affect model
parameters [9]. Alternatively, there are methods applied while generating a model that
aim to find a trade-off between model accuracy and complexity [10]. At this stage, optimal
sampling techniques or model structures that lead to higher accuracy and lower complexity
might be determined [11,12].

In this study, we addressed a particular question of model post-analysis, i.e., the
conditions in the sample that lead to higher or lower model performance. To answer
this question in the low-dimensional predictor space, error heatmaps can be used, since
they allow the visualization and identification of subpopulations with high and low error
rates considering one or two predictors [13]. Then, decision trees inherently perform
error analysis, as their terminal nodes contain subpopulations—whose characteristics are
discovered by moving up the tree—and model performance is easily estimated for each
terminal node [14]. Moreover, stratification is widely used when comparing the model
performance of different subpopulations (men vs. women, young vs. old, with vs. without
a particular condition), which may positively affect model predictive ability compared
to training on combined samples [15]. However, these approaches are not suitable for
multivariate error analysis in the high-dimensional predictor space. Alternatively, an
“unreliability” score, proposed by Myers et al. [16], is individually applied for each subject,
and its high values indicate decreased model accuracy. This approach requires additional
analysis of cases with high unreliability to extract knowledge about “difficult” subjects.

Taking into account the limitations of the existing studies, in the presented epidemio-
logical example we revealed “easy” and “difficult” cases for the model when it operated
in the high-dimensional predictor space. Particularly, we trained Lasso logistic regression
(LLR) to predict cardiovascular death using data from the Kuopio Ischemic Heart Disease
Risk Factor Study (KIHD) [17]. After validating the model, we generated a set of compact
rules that covered samples with extremely high or low model performance. Generally
speaking, this paper presents the model-independent approach for post-analysis and shows
that this approach not only reveals when the model predictions are less reliable, but also
finds out from which perspectives the model requires improvement and what kind of
new samples might be collected to bring more information into “difficult” regions of the
predictor space. Although we did not have a specific hypothesis to test, this exploratory
post-analysis yielded interesting findings.

2. Materials and Methods

2.1. KIHD: Baseline Cohort

The data utilized in the current study were collected in 1984–1989 in the city of Kuopio
and the surrounding area in Eastern Finland, whose population was recorded to have one
of the highest rates of coronary heart disease [17,18]. The KIHD study is an ongoing project,
where the study outcomes are derived from the national registers annually.

The baseline examinations (1984–1989) comprised 2682 randomly selected middle-
aged men (42–60 years old), whose health state was carefully described with thousands of
physiological, clinical, biochemical, psychological, and socioeconomic measurements. As a
starting point, 950 predictors were preselected by the domain expert to perform predictive
modeling. In our experiments, the outcome variable was “death from a cardiovascular
disease by 2016” referring to codes I00–I99 of the 10th International Classification of
Diseases (ICD 10) [19]. Before training a predictive model, preprocessing was applied
(Figure 1). Every time we trained the model, the predictors were normalized to the interval
(0, 1) using the scaler fitted on the training data.
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Figure 1. Preprocessing the sample from the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD): “cvd” corresponds
to “cardiovascular death by 2016”, while “no cvd” corresponds to “no cardiovascular death (alive) by 2016”. The nearest
neighbor imputation technique implemented by Troyanskaya et al. was utilized [20].

2.2. Multi-Objective Rule Design for the Model Post-Analysis

Let us consider a dataset of n subjects described with m predictors each: X =
{

x(1), x(2), . . . , x(n)
}

, where x(i) ∈ R
m, i = 1, n, and an outcome variable: y =

{

y(1), y(2), . . . , y(n)
}

, where y(i) ∈ {0, 1}. In the context of epidemiological data, y(i) = 0

and y(i) = 1 designate “negative” and “positive” regarding a diagnosis. The sample

(X, y) =
{(

x(1), y(1)
)

,
(

x(2), y(2)
)

, . . . ,
(

x(n), y(n)
)}

is used to train a model that per-

forms mapping f : x(i) 7−→ y(i) , i.e., predicts a value of y(i) for a given vector of predic-
tors x(i).

In this study, we applied an LLR model, since in our previous experiments, it demon-
strated the highest performance on the KIHD data [21]. LLR describes a relationship
between a linear combination of predictors and the probability of having a disease in the
form of a sigmoid function, P(y = 1|x) = 1/1 + exp(−(ω0 + ω1x1 + . . . + ωmxm)), as a traditional
logistic regression model does [22]. However, LLR is a penalized regression, whose cost
function includes an L1-regularization term ‖ ω ‖1 in addition to the cross-entropy error

∑
n
i=1 log

(

1 + exp
(

−y(i)·
〈

ω, x(i)
〉))

[23]:

min
ω

‖ ω ‖1 + C·∑
n
i=1 log

(

1 + exp
(

−y(i)·
〈

ω, x(i)
〉))

(1)

where C defines a shrinkage parameter (the regularization amount) equal to 0.15 in
this study.

If P(y(i) = 1|x(i)) ≥ α, then, y(i) = 1; otherwise, y(i) = 0. For the imbalanced sample,
a cutoff value α requires adjustment (this typically equals 0.5 for the balanced sample);
therefore, α is defined as a proportion of “positive” cases in the training sample.

To estimate the model performance on the test data, we executed 50 independent runs
of a k-fold cross-validation with stratification, where k = 5. LLR was implemented using
the scikit-learn library [24]. In each run, we collected the true values of y(i) and the model
outcomes on the test data to calculate the number of times the predictions were correct
and wrong for each subject. Then, for “positive” cases, we produced the amount of true
positive (TP) and false negative (FN) predictions: TPi and FNi; for “negative” cases, we
calculated the number of true negative (TN) and false positive (FP) predictions: TNi and
FPi. This model evaluation served as a basis for further analysis, aiming to reveal groups
of “easy” and “difficult” cases.

Usually, the model performance is described with statistics averaged over the whole
sample. These aggregated values are helpful when comparing models, but they do not
reflect the distribution of errors in the space of predictors. In other words, the model
performance varies for different subjects and we might be more or less confident in the
correctness of predictions depending on the subject’s characteristics. Therefore, we propose
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an approach to automatically generate a set of rules that represent the conditions leading
to higher or lower model performance compared to the average level.

Let rule denote a set of concurrent conditions “xj equals aj”:

rule = (x1 = a1) and (x2 = a2) . . . and
(

xj = aj
)

and . . . =
⋂

j∈J
(xj = aj), (2)

where aj is a particular level (category) of a predictor xj and J contains indices of pre-
dictors included in the rule. To define levels aj, we first need to introduce categories
for each predictor xj based on its distribution. For dichotomous variables, as well as
for ordinal or continuous variables with fewer than eight different values in the sam-
ple, i.e.,

∣

∣xj
∣

∣ < 8: aj ∈
{

0, 1, . . . , max
(

xj
)}

. For ordinal or continuous variables with
eight and more possible values, i.e.,

∣

∣xj
∣

∣ ≥ 8, we introduce Nbins intervals using the k-
means clustering method, Nbins = 4. Each interval corresponds to a particular level of xj:
[

xj
lower0 , xj

upper0
]

→ 0, . . . ,
[

xj
lower(Nbins−1) , xj

upper(Nbins−1)
]

→ (Nbins − 1) .
Then, to generate rules of interest, i.e., to select predictors xj and to define their levels

aj, we solve two three-objective optimization problems:
Problem 1 (3): To define rules that describe subgroups of subjects with the maximum

true positive rate (TPR) and true negative rate (TNR) (i.e., “easy cases”):







TPR(rule) → max
TNR(rule) → max

Nsubjects(rule) → max
(3)

Problem 2 (4): To define rules that describe subgroups of subjects with the minimum
TPR and TNR (i.e., “difficult cases”):







TPR(rule) → min
TNR(rule) → min

Nsubjects(rule) → max
(4)

In both problems, the third criterion is used to maximize the number of subjects
covered by the rule, which aims to find as general a pattern as possible.

To solve the multi-objective Problems (3) and (4), we apply the Non-dominated Sorting
Genetic Algorithm III (NSGA III), which is a stochastic optimization algorithm operating
with a population of solutions whose quality improves during the search [25]. NSGA
III is based on a Pareto-dominance idea and returns a set of nondominated solutions (in
our case, a set of rules), of which one cannot be preferred over another. Each solution
in the population is coded with a binary string, a so called “chromosome”, and genetic
operators such as selection, crossover, and mutation are applied to binary strings so that
new solutions with better values of objective criteria are produced. Figure 2 explains how
a binary coding is used to represent rules (2):

𝑟𝑢𝑙𝑒 = (𝑥ଵ = 𝑎ଵ) 𝑎𝑛𝑑 (𝑥ଶ = 𝑎ଶ) … 𝑎𝑛𝑑 ൫𝑥 = 𝑎൯ 𝑎𝑛𝑑 … = ⋂ (𝑥 =∈ 𝑎),𝑎 𝑥 𝐽𝑎𝑥ห𝑥ห ൏ 8 𝑎 ∈ ሼ0, 1, … , max (𝑥)ሽห𝑥ห ≥ 8 𝑁௦𝑁௦ = 4 𝑥ൣ𝑥௪బ , 𝑥௨బ൧ → 0, … , ൣ𝑥௪(ಿ್ೞషభ) , 𝑥௨(ಿ್ೞషభ)൧ → (𝑁௦ െ 1)𝑥𝑎

ቐ 𝑇𝑃𝑅(𝑟𝑢𝑙𝑒) → max 𝑇𝑁𝑅(𝑟𝑢𝑙𝑒) → max𝑁௦௨௧௦(𝑟𝑢𝑙𝑒) → max
ቐ 𝑇𝑃𝑅(𝑟𝑢𝑙𝑒) → min 𝑇𝑁𝑅(𝑟𝑢𝑙𝑒) → min𝑁௦௨௧௦(𝑟𝑢𝑙𝑒) → max

 

𝑛௧௦ 𝑎 𝑛௩௦𝑥 𝑥 𝑛௧௦ =ඃlogଶ(𝑛௩௦  1)ඇ 𝑎  (𝑛௩௦  1) 𝑥

Figure 2. The binary representation of a rule. Parts of a binary string consecutively code the predictors’
levels or their absence in the rule.

The number of bits nbits
j to code aj depends on the amount of levels nlevels

j intro-

duced for xj, plus one additional level, meaning the absence of xj in the rule: nbits
j =

⌈

log2

(

nlevels
j + 1

)⌉

. If, after decoding, aj >

(

nlevels
j + 1

)

, this also means the absence of xj

in the rule.
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In this study, we used NSGA III implemented in the Platypus package [26]. Table 1
contains the algorithm settings.

Table 1. The Non-dominated Sorting Genetic Algorithm III (NSGA III) settings used in the experiment.

Setting (Parameter) Names Setting (Parameter) Values

Selection Tournament selection with a tournament size of 2

Crossover Half-uniform crossover

Mutation Bin-flip mutation

Solution representation Binary code → Gray code

M-objective problem 3

Outer divisions, pout 20

Inner divisions, pin 0

Reference points, H H =

(

M + pout − 1
pout

)

+

(

M + pin − 1
pin

)

= 231

Population size The smallest multiple of four greater than H, i.e., 232

Generations 200

Probability distribution for initializing
solutions in the starting population

P
(

xj is not included in the rule
)

= 0.95

P
(

xj is included in the rule
)

= 0.05

Given the stochastic nature of NSGA III, we ran the algorithm 25 times for each
problem, i.e., Problem 1 and 2 (3, 4), and then combined the final populations from all of
the runs. Figure 3 summarizes the pipeline described; the source code might be found on
GitHub [27].

→𝑀 𝑝௨௧𝑝𝐻 𝐻 = ൬𝑀  𝑝௨௧ െ 1𝑝௨௧ ൰  ൬𝑀  𝑝 െ 1𝑝 ൰ = 231𝐻
𝑃൫𝑥  is not included in the rule൯ = 0.95𝑃൫𝑥  is included in the rule൯ = 0.05

 

Figure 3. The pipeline implemented in this study. In several independent runs of cross-validation, the model performance
was estimated using the test data and the results were collected for further analysis. Discretization was applied to continuous
predictors to define their levels (categories) used for generating rules. NSGA III found combinations of predictors and their
values describing “easy” cases, i.e., subgroups of subjects with a large number of true positive (TP) and true negative (TN)
predictions, and “difficult” cases, i.e., subgroups of subjects with a large number of false positive (FP) and false negative
(FN) predictions.

In general, any multi-objective evolutionary algorithm (MOGA) might be applied in
the proposed approach (Figure 3); therefore, the overall time complexity depends on the
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optimization algorithm used. Time complexities of different MOGAs are discussed in the
article by Curry and Dagli [28].

Lastly, from all generated rules that excessively describe subgroups of different sizes
with various levels of TPR and TNR, we selected the final set of rules meeting the follow-
ing criteria:

1. There are at least Supp subjects covered by the rule (the minimum rule support):
Supp = 30.

2. The difference between TPR and TNR does not exceed γ·max(TPR(rule), TNR(rule))):
γ = 0.1 (the rule is equally valid for “positive” and “negative” cases).

3. The average model accuracy for subjects covered by the rule is either lower than
αdi f f or higher than αeasy (to define “difficult” and “easy” cases correspondingly):
αdi f f = 50%, αeasy = 95%.

From a practical point of view, the final set of rules allowed us to reveal the conditions
(subjects’ features) that lead to higher or lower model performance, compared to the
average level. First, this knowledge is helpful for revising the sample and collecting new
data. Second, using these rules, we can introduce four categories of subjects: “easy” cases
that are covered only by the rules with Accuracy(rule) ≥ αeasy; “difficult” cases that are
covered only by the rules with Accuracy(rule) ≤ αdi f f ; “ambiguous” cases that are covered
by the rules with Accuracy(rule) ≥ αeasy and the rules with Accuracy(rule) ≤ αdi f f ; “not
covered cases” that are covered by none of the rules. Applying the final set of rules
to unseen data and categorizing samples in such a way provides us with additional
information about the probability of wrong predictions and allows us to be more or less
confident in the model outcome.

3. Results

First, we trained the LLR model predicting cardiovascular death in 50 runs of five-fold
cross-validation and estimated the model performance on the test data: accuracy = 72.527%,
TPR = 72.485%, and TNR = 72.552%. Despite splitting the data into the training and test
samples randomly, for some subjects the correctness of the model predictions did not
vary across the multiple runs: the model outcome was always (or in most of the runs)
either right or wrong. To generate rules that would reveal the conditions of “easy” and
“difficult” cases, we used a preprocessed set of predictors: we filtered out predictors that
were not selected by LLR in at least one run. Thus, in the further analysis, 191 predictors
were involved.

Next, after 25 independent runs of NSGA III, we ended up with 4355 rules for
Problem 1 (3) and 4583 rules for Problem 2 (4). Figure S1 in the Supplementary Mate-
rials presents these initial sets of rules in the criterion space TPR–TNR.

Then, we selected the final set of rules using criteria 1–3 from Section 2.2 and, as a
result, we obtained 43 rules representing “easy” cases, for which the model accuracy was
higher than αeasy = 95%, and 39 rules that represent “difficult” cases, for which the model
accuracy was lower than αdi f f = 50%. These particular threshold values were chosen
to reveal the subjects’ characteristics that lead to the extremely high and extremely low
model accuracy, provided that the accuracy for the remaining “ambiguous” and “non-
covered” cases is close to the model accuracy on the whole sample. We also aimed to
have the number of “non-covered” cases along with “ambiguous” cases at least lower
than half of the sample. Thus, the selected 82 rules divided the KIHD sample into four
categories, whose characteristics, with respect to the model accuracy and the number of
subjects, are given in Table 2. Moreover, to support our choice, a description of subjects’
categories obtained for other αeasy and αdi f f is presented in the Supplementary Materials
(Figures S2 and S3).
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Table 2. Four categories of subjects in the KIHD sample after applying the final set of rules. The “Accuracy, %” columns
represent the mean accuracy estimated in 50 runs of five-fold cross-validation. “The number of cases” columns contain the
absolute number of subjects, with the percentage of the whole sample in parentheses.

Accuracy, % The Number of Cases

Easy Difficult
Ambiguous and

Non-Covered
Easy Difficult Ambiguous Non-Covered

No cvd 95.73 46.76 66.55 414 264 91 373
Cvd 96.28 50.17 76.05 100 172 31 378

Overall 95.84 48.11 71.00 514 (28.20%) 436 (23.92%) 122 (6.69%) 751 (41.20%)

To visualize the groups of subjects covered by the final set of rules, we introduced an
82-dimentional rule space, where each dimension defined whether a subject was covered by
the rule or not. These binary vectors were used by t-SNE (t-Distributed Stochastic Neighbor
Embedding) to project subjects into the two-dimensional space [29]. Figure 4 illustrates
the “easy”, “difficult”, and “ambiguous” cases and how the model accuracy changes for
different clusters of subjects. These clusters mean that, within two large groups of “easy”
and “difficult” cases, there are different conditions leading to an increase or decrease in
model performance.

 

Figure 4. The KIHD subjects mapped from the 82-dimentional rule space onto the plane. This figure contains the subjects
covered by the final set of rules. A separating line between “easy” and “difficult” cases was drawn by a support vector
machine [30], and then borders between clusters were defined using the k-means method [31]. The overall model accuracy,
true positive rate (TPR), and true negative rate (TNR) within clusters averaged over 50 independent runs of five-fold
cross-validation, as well as the number of subjects who died by 2016 (“cvd”) and stayed alive by 2016 (“no cvd”), are given
for each cluster.
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In general, the results can be analyzed from two perspectives. First, we may pay
attention to the rules that describe a particular subject and make conclusions at the subject
level about the predictors that make it “easy” or “difficult” for the model. Second, we may
carry out analysis at the rule level by reviewing the combinations of predictors and their
values that commonly lead to “easy” or “difficult” cases. For example, the two following
rules describe “difficult” cases:

(AMIHIST = no) and (BLPRESMED = yes) and (DIUR = yes) and (ISCHAEMIA = no),
Nsubjects = 38, TPR = 45.18% and TNR = 42.95%,

(5)

where AMIHIST is “Myocardial infarction in the past”, BLPRESMED is “Drug for blood
pressure in last 7 days”, DIUR is “Diuretics”, and ISCHAEMIA is “Ischemia in exercise
stress test”.

(SMOHIST = no) and (PRESCRIP = yes) and (WAGE = yes) and (54 ≤ AGE ≤ 55),
Nsubjects = 86, TPR = 48.00% and TNR = 45.45%,

(6)

where SMOHIST is “Smoking history, ever,” PRESCRIP is “Drugs prescribed by a doctor in
last 7 days”, WAGE is “Salary: wages (if retired, then no)”, and AGE is “Age, years”.

What is interesting is that, in both groups, the subjects took medication. However, the
first group had neither myocardial infarction in the past nor ischemia in exercise stress test,
i.e., rule (5), and the second group had never smoked, i.e., rule (6). This implies that, in
these rules, medication works as a factor that confuses the model for both the “cvd” and
“no cvd” groups.

Lastly, to generalize the analysis of predictors and to extract the most important
ones from the whole final set of rules, for each predictor, we calculated the number of
unique “easy”, “difficult”, and “ambiguous” subjects covered by the rules that contain
this predictor. Figure 5 presents the 50 most important predictors and their levels from
the final set of rules. As can be noted, the same predictors with the same values might be
involved in the rules that describe “easy” and “difficult” cases. For example, “ISCHAEMIA
= no” in most of the cases corresponds to “easy” subjects (11.41% of the whole sample),
but it also relates to “difficult” subjects (3.68% of the whole sample). On the contrary,
the predictors “PRESCRIP = no” and “PGLINHIB = no” refer to “easy” subjects, whereas
“PRESCRIP = yes” and “PGLINHIB = yes” correspond to “difficult” subjects. Moreover,
“SELFMED = no” and “PGLIMED = no” only describe “easy” subjects.

Thus, these results support our previous conclusion about the role of medication in
model performance: Its presence adversely affects both TPR and TNR [32].
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Figure 5. The 50 most important predictors and their values extracted from the final set of rules for the Lasso logistic
regression (LLR) model using the KIHD sample. The numbers in parentheses are the weight coefficients in the LLR model
for the corresponding predictors: Some of these variables were not selected as important for LLR, but they were important
for analyzing “easy” and “difficult” cases.
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4. Discussion

Typically, model performance is evaluated using the whole sample, which gives
its average estimate. Yet it remains unclear for which samples the model is prone to
making right predictions and for which samples its predictions are likely to be wrong.
The high-dimensional predictor space commonly makes the analysis of results even more
complicated. Therefore, in this study, we proposed an approach that enabled us to generate
a set of rules that explain which samples were “easy” (predictions were more accurate) or
“difficult” (predictions were less accurate) for the LLR model, trained and tested on the
high-dimensional epidemiological data.

Since the average level of accuracy achieved by LLR was only 72.5% when predicting
cardiovascular death for subjects from the KIHD cohort, the additional post-analysis was
aimed at revealing those subjects’ features that lead to high or low model performance.
First, the knowledge about “difficult” subjects might be helpful for revising the sample, as
they are the first candidates for double-checking. Moreover, collecting new samples, if it
takes place, with characteristics corresponding to “difficult” cases might increase the model
performance by bringing more information to the poorly modeled areas of the predictor
space. Then, applying the set of rules to unseen data provides more confidence in the
model predictions if new samples are categorized as “easy” cases. Knowing the weak spots
of the model is of the utmost importance for clinical applications, where additional tests
should be performed for “difficult” cases to avoid wrong predictions.

Moreover, as a well-interpretable tool, rules explicitly report the logic behind decision
making while analyzing each subject, which is especially valuable for medicine. At the
same time, when extracting the most important predictors from the final set of rules, we
generalized the results at the whole sample level and obtained common patterns. Thus,
in the KIHD sample, taking no medication (prescribed or non-prescribed drugs, drugs
for back or joint pain, drugs for blood pressure, prostaglandin synthetase inhibitors or
pain killers, diuretics, and beta-blockers), absence of other diseases (kidney stones, colitis,
chronic bronchitis, gallbladder disease, migraine, and restricted mobility), and a high
standard of living defined by socioeconomic predictors (having a color television, a video
recorder, and/or a dishwasher and using a car or a taxi in winter) are common traits
of “easy” cases for the LLR model when predicting cardiovascular death. Conversely,
“difficult” cases included subjects who had taken medication (prescribed drugs, drugs
for back or joint pain, drugs for blood pressure, drugs for hypertension, prostaglandin
synthetase inhibitors or pain killers, and diuretics) [32].

Although in this study, the approach proposed was applied for LLR post-analysis, it is
model-independent and might be useful for better understanding of any model behavior,
which is especially helpful when “black box” models are trained on high-dimensional
data. Such post-analysis is also useful for “white box” models, because variables that are
important for making predictions differ from variables that are informative for describing
“easy” and “difficult” cases.

The main limitation of this study is that all of our findings are applicable to the
KIHD cohort, but they cannot be extrapolated to other populations. To make more general
conclusions, e.g., about the role of medication in predicting cardiovascular death, we
need to perform the same analysis for other populations, and then check if there are rules
and variables similar for different populations. Additionally, since this post-analysis was
applied to a particular data-driven model with a certain prediction horizon, for other
models or different prediction horizons the analysis should be re-run.

Despite these limitations, the approach proposed is useful for many epidemiological
studies, as the model accuracy has been reported to be far from 100% [33–36]. “Difficult”
cases should be identified so that clinicians can revise the model predictions and use
their expertise when the model is likely to make a mistake. This approach, i.e., when
the model is augmented with the human expertise in some cases, corresponds to the
philosophy of responsible machine learning (and responsible artificial intelligence, in
general), which is being discussed by researchers nowadays [37]. Thus, such post-analysis
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is extremely important from a practical perspective, as it supports model deployment in a
“responsible” way.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/healthcare9070792/s1, Figure S1: The initial sets of rules generated when solving Problems 1
and 2. Each point corresponds to one rule in the criterion space TPR-TNR, wherein color indicates
the number of subjects covered by the rule. Figure S2: The overall accuracy for “easy”, “difficult”,
“ambiguous” and “non-covered” subjects averaged over 50 runs of 5-fold cross-validation for dif-
ferent values of the thresholds α_easy and α_diff. Figure S3: The percentage of “easy”, “difficult”,
“ambiguous”, and “non-covered” subjects of the whole KIHD sample.
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Abstract: Background: Parkinson’s Disease (PD) is a chronic neurodegenerative disorder that has
been ranked second after Alzheimer’s disease worldwide. Early diagnosis of PD is crucial to combat
against PD to allow patients to deal with it properly. However, there is no medical test(s) available
to diagnose PD conclusively. Therefore, computer-aided diagnosis (CAD) systems offered a better
solution to make the necessary data-driven decisions and assist the physician. Numerous studies
were conducted to propose CAD to diagnose PD in the early stages. No comprehensive reviews
have been conducted to summarize the role of AI tools to combat PD. Objective: The study aimed
to explore and summarize the applications of neural networks to diagnose PD. Methods: PRISMA
Extension for Scoping Reviews (PRISMA-ScR) was followed to conduct this scoping review. To
identify the relevant studies, both medical databases (e.g., PubMed) and technical databases (IEEE)
were searched. Three reviewers carried out the study selection and extracted the data from the
included studies independently. Then, the narrative approach was adopted to synthesis the extracted
data. Results: Out of 1061 studies, 91 studies satisfied the eligibility criteria in this review. About
half of the included studies have implemented artificial neural networks to diagnose PD. Numerous
studies included focused on the freezing of gait (FoG). Biomedical voice and signal datasets were the
most commonly used data types to develop and validate these models. However, MRI- and CT-scan
images were also utilized in the included studies. Conclusion: Neural networks play an integral and
substantial role in combating PD. Many possible applications of neural networks were identified in
this review, however, most of them are limited up to research purposes.

Keywords: Parkinson’s disease; neural network; deep learning; classification

1. Introduction

1.1. Background

The human brain is the primary controller part of the human body. Any minor
damage to any of its parts will severely affect other organs—one of its adverse effects
is Parkinson’s disease (PD) [1]. “PD is a chronic and progressive neurodegenerative
disease” [2], and it occurs mainly in people over 50 years old [3]. Its symptoms start slowly
and increase over time. PD symptoms are characterized such as motor and nonmotor [4].
Motor symptoms include movement disorders, shaking, walking issues [5], stiffness, and
postural instability [6], while nonmotor symptoms including cognitive dysfunction, mood
disorder [7], depression, and anxiety [8].

Parkinson’s is the second worse neurodegenerative disease worldwide after
Alzheimer’s disease. In 2019, its incident rate ranged from 40.37 to 53.89 per
100,000 population per year in the US alone [9]. Diagnosis of PD in an early stage is
an important issue to mitigate its complications. However, no medical test is available to
diagnose it in the early stages conclusively. In a traditional clinical setup, the physician
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will ask the patient to perform some mental and physical tasks (e.g., moving and walk-
ing around) [10] or take the magnetic resonance imaging (MRI) and/or Positron emission
tomography–computed tomography (PET/CT) scan of the brain. However, it is challenging
to differentiate PD from other neurological disorders, and it depends on the radiologist’s
experience to distinguish and identify it precisely. Therefore, a computer-aided diagnosis
(CAD) system helps the radiologist interpret MRI scans. In 2003, the authors of [7] made
a CAD system to monitor body acceleration to detect the freezing of gait in PD patients.

Several studies were conducted to implement machine learning approaches to detect
PD and differentiate it from other common neurological diseases. Feature engineering is
the difficult part of deploying such systems, and it is expensive to identify the relevant
features in the data. When automatic feature extraction methods and techniques (CNN,
RNN) were proposed, most researchers used deep learning and neural network to detect
PD due to automatic feature extraction, learning more complex patterns, and high accuracy.
Therefore, this scoping review aims to explore and summarize the applications of deep
learning and neural network in PD diagnosis.

1.2. Research Problem and Objectives

The scope of this paper is limited to the detection of Parkinson’s disease (PD) in the
early stage using neural networks. The patient dataset such as electronic health record
(EHR) and medical image can be analyzed using neural network (NN) features; in partic-
ular, patient’s data can undergo many processes; analysis, segmentation, augmentation,
scaling, normalization, sampling, aggregation, and sifting, in order to obtain accurate
prediction that assists healthcare ecosystem and stakeholders in the healthcare domain.
Many studies have been recently conducted to address and propose a solution to mitigate
and prevent neurodegenerative disorders such as PD. However, most of these studies
and research are dispersed. Therefore, summarizing NN technologies’ involvement in
resolving challenges related to PD is needed; an appropriate summarization allows new
researchers to understand the current role of neural networks against PD. It will open
new opportunities for researchers to have the necessary base that allows them to build on
instead of starting from ground zero.

Many studies have been carried out to cover AI techniques that have been used to
mitigate and prevent PD [11–14]. These approaches are conducted in reviews or surveys
that generally focus on artificial intelligence (AI) applications such as patient diagnosis,
epidemiological monitoring, and drug and vaccine discovery [15]. Nevertheless, a massive
number of research papers are constantly being published, which has overwhelmed elec-
tronic databases. Therefore, it is necessary to carry out an updated review that focuses on
the uses of neural networks in PD prevention.

This review aims to identify and illustrate neural network technology’s role in detect-
ing PD early, based on the following aspects: (1) identifying the role of neural networks in
PD detection, (2) highlighting the recent algorithms applied on PD datasets, (3) observing
dataset types, (4) categorizing the type of PD based on symptoms, (5) investigating the
best results achieved by the research community, and (6) providing a recommendation for
researchers and healthcare individuals. The outcome can be used in the healthcare sector as
guidance for developers who consider neural network’s utilization to improve the public
health capability as a response to PD.

2. Methodology

We carried out a scoping review to explore the evidence on neural network’s applica-
tion in diagnosing Parkinson’s disease in a structured manner. In this section, we listed
the details of the adopted methodology to conduct this review. For this purpose, PRISMA
Extension for Scoping Reviews (PRISMA-ScR) [16] was used for this scoping review.
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2.1. Search Strategy
2.1.1. Search Sources

We selected five bibliographic databases (PubMed, IEEE, ACM, ScienceDirect, and
Google Scholar) to retrieve the research studies relevant to the topic. We scanned only
100 articles from Google Scholar; these articles were chosen after scanning based on their
relevance to fit this paper. The backward and forward reference checking lists were not
performed due to the sufficient number of included studies. The search process was
performed from 24 February to 1 March 2021.

2.1.2. Search Terms

In the present review, we considered two different search terms based on popula-
tion and intervention. Given the population of “Parkinson’s disease” and intervention
of “deep learning”, the search strategy was conducted as follows: ((“Parkinson’s disease”
OR “Parkinson*” OR “Parkinsonism” OR “paralysis agitans” OR “shaking palsy”) AND
(“ artificial intelligence* “ OR “ machine learning” OR “ neural network*” OR “ deep learn-
ing” OR “natural language processing” OR “neural network*” OR “supervised learning”
OR “unsupervised learning” OR “ensemble learning” OR “reinforcement learning”)) total
retrieved studies in (Appendix A).

2.2. Study Eligibility Criteria

This study aims to summarize and review the application/use of deep learning,
particularly in diagnosing Parkinson’s disease. Therefore, only the following studies were
eligible to satisfy the below criteria: a deep learning approach or technique introduced
or developed that primarily focused on diagnosing Parkinson’s disease. Further, some
constraints on the types of publication and the language of the studies were made. Only
studies published in English between 2018 and 2021 are selected, and only peer-reviewed
articles, conference proceedings, reports, theses, dissertations were admitted. Reviews,
conference abstracts, commentaries, proposals, editorials were excluded. The details of
exclusion and inclusion for study selection are listed in Table 1.

Table 1. Inclusion and exclusion criteria.

Criteria Specified Criteria

Inclusion

• Studies that aim to diagnose Parkinson’s using deep learning
technique or approach

• Studies that published from 2018 onwards
• Empirical studies only
• Only written in English

Exclusion

• Abstract
• Review including an overview, scoping review, etc.
• Non-English studies
• Non-peer-reviewed articles

2.3. Study Selection

The study selection process was conducted in two stages (screening title and abstracts
of retrieved studies and screening full text of the studies selected in the first stage). In the
first stage, the first reviewer, MA, independently screened all the retrieved studies’ titles
and abstracts; due to time constraints, the second reviewer, US, and the third reviewer, KD,
reviewed the first half and second half of the complete set of articles, respectively. The
Rayyan software, a web-based systematic review tool, was employed for screening title
and abstract [17]. In the second stage, the first reviewer, MA, performed the first stage’s
full-text screening of the identified studies. Any disagreement between reviewers was
resolved through consensus and discussion.
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2.4. Data Extraction and Data Synthesis

To extract the study-specific information and data, an extraction form was created and
tested by eight included studies (Appendix B). MA and US undertook the data extraction,
and the data were extracted to the excel sheet to summarize the following: general char-
acteristic of included studies (e.g., country, types, and year of publication), aim/purpose
of the study, type of Parkinson’s disease, branch/type neural network, type of validation,
performance metrics, the dataset used to train and test the model, number of Parkinson’s
and healthy samples, type of dataset, size of the dataset, data collection device or sensor,
and dataset source. We used the narrative approach to synthesis the extracted data.

3. Results

3.1. Search Results

In total, 1061 studies were retrieved by searching through 5 recognized E-Databases.
Then, 190 (17.90%) were removed due to duplication, while 871 (82.09%) went through
title and abstract screening; in this screening, we excluded 598 (56.36%) studies due to
various reasons, as shown in Figure 1. The remaining 273 (25.73%) studies went through
the full-text screening, and 181 (17.05%) studies were excluded, as detailed in Figure 1. In
total, 91(8.67%) studies were included in this review.

Figure 1. PRISMA chart.

3.2. General Description of the Included Studies

As shown in Table 2, the included citations were published in more than 30 different
countries, as shown in Figure 2, about 13 studies from the US (14.13%), followed by
9 studies from China and India (9.78%) (Figure 3). This shows that numerous papers were
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published in the last 3 years; for instance, 30 papers (32.60%) were published in 2019 and
2020. More than half (56.2%) of the included studies were conference papers. However,
most conference papers (n = 18) were published in 2018, and 2020, respectively, and only
(n = 16) conferences article were reported in 2019. In addition, (n = 39) journal articles were
published in last few years: (n = 10) in 2018; (n = 14) in 2019; (n = 12) in 2020; and (n = 3)
in 2021.

Table 2. General characteristics of the included studies (n = 91).

Characteristics Studies, n (%) Ref.

Year of publication

2021: 4 (4.34) [6,18–20]
2020: 30 (32.60) [21–51]
2019: 30 (32.60) [4,52–85]
2018: 28 (30.43) [3,86–105]

Country

US: 13 (14.13) [18,27,29,57,61,65,74,82,87,88,92,95,104]
China: 9 (9.78) [33,40,52,53,66,67,85,89,90]
India: 9 (9.78) [3,31,37,50,51,55,60,63,105]
Canada: 6 (6.52) [35,38,45,46,83,93]
UK: 4 (5.43) [48,58,62,103]
Korea: 4 (4.34) [30,41,56,98]
Turkey: 4 (4.34) [4,36,77,101]
Brazil: 3 (3.26) [75,97,102]
Australia: 3 (3.26) [20,42,100]
Italy: 3 (3.26) [21,49,96]
Spain: 3 (3.26) [76,91,94]
Greece: 2(2.17) [54,99]
Bangladesh: 2 (2.17) [44,59]
Japan: 2 (2.17) [6,72]
Lebanon: 2 (2.17) [68,69]
Malaysia: 2 (2.17) [39,84]
Germany: 2 (2.17) [71,79]
Morocco: 2 (2.17) [23,25]
Saudi Arabia: 2 (2.17) [28,80]
Singapore: 2 (2.17) [32,81]
Belgium: 1 (1.08) [43]
Colombia: 1 (1.08) [70]
France: 1 (1.08) [47]
Lithuania: 1 (1.08) [22]
Netherlands: 1 (1.08) [78]
Pakistan: 1 (1.08) [86]
Palestine: 1 (1.08) [73]
Portugal: 1 (1.08) [64]
Russia: 1(1.08) [26]
Slovakia: 1 (1.08) [19]
Romania: 1 (1.08) [24]
Egypt: 1 (1.08) [34]

Type of publication
Conference: 52 (56.52) [3,18,21–27,29–31,36,44–51,53–61,63–66,68–

71,74,77,79,81–89,92,95,96,99–105]

Journal article: 39(42.39) [4,6,19,20,28,32–35,37–43,52,62,67,72,73,75,
76,78,80,90,91,93,94,97,98]
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Figure 2. Number of publications for each country.

Figure 3. Type of publication and year.

3.3. Description of Detection Techniques

The study’s primary aim is to investigate the role of neural networks in the diagnosis
of PD. We classified neural networks into five well-known algorithms used in the in-
cluded studies: CNNs, RNNs, FNNs, ANNs, and other NNs. Around half of the included
studies used convolution neural networks (n = 37); afterward, other neural networks
(n = 31) were implemented in the included studies, followed by artificial neural networks
(ANNs) (n = 10), recurrent neural networks (RNNs) (n = 9), and fuzzy neural networks
(FNNs), as shown in Table 3. In the end, the most imitated neural network architec-
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ture in the included studies was LSTM (n = 11) [6,34,36,38,40,65,70,74,77,80,83], VGG
(n = 3) [18,27,58], and DNN (n = 6) [34,35,60,91,92,103]. Recently, with the developments
of new techniques such as convolutional neural network [101] and transfer learning [63],
deep learning gained significant advances in the computer vision tasks, e.g., ImageNet [77].
Therefore, most of the studies used different imaging data to diagnose PD, such as MRI
(n = 12) [41,47,54,56,58,66,72,78,82,86,90,95] and handwritten images (n = 9) [3,19,25,30,69,
75,101,102], as well as PET and CT imaging (n = 6) [28,59,67,71,88,90] and DaTscan imaging
(n = 4) [54,76,99,103]. However, CNN and transfer learning techniques were not limited to
imaging data; they also learn complex features from voices and signal data [29]. Numer-
ous studies used the biomedical voice (n = 21) [4,6,22,23,29,33,44,48,50,52,53,55,60,61,73,74,
84,93,100,104,105] and biometric signal (n = 14) [26,31,34,36,45,46,57,62,64,65,68,89,96,98];
a few of the included studies used EEG and EMG signals (n = 5) [32,39,51,83,85].

As shown in Figure 4, some studies target specific symptoms of PD, such as freezing
of gait, vocal impairment, and tremor disorder. A more limited number of included studies
proposed a deep learning approach to detect tremor disorder (n = 5) and vocal impairment
(n = 13). However, various studies used the deep learning technique to diagnosis PD
(n = 50), in general, and freezing of gait (FoG) (n = 23), in particular.

Figure 4. Different symptoms of Parkinson’s disease in the included studies.

As reported in Table 3, the neural network is divided into five main branches (CNN,
RNN, ANN, FNN, NN); all types of subclassification techniques are listed as backbone
model; moreover, we noticed that LSTM was heavily used in a different study (n = 11),
followed by none deep learning classifier SVM (n = 8); however, we have reported SVM in
this review because many studies used neural networks to perform data extraction, but the
classification was handled by the machine learning classifier such as SVM; hence, DNN
was used and reported in (n = 6), and a predefined model such as VGG was used in (n = 3);
other types of algorithms that were used rarely depended on each of the studies’ design or
achieved a remarkable result.
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Table 3. Description of PD detection techniques (n = 91).

Characteristics Studies, n

Type of PD
symptoms

PD: 49 FoG: 23 Vocal impairments:13 Tremor disorder: 5 Vocal impairments
and FoG:1

Dataset Source Public:57 Private:31 NA: 3

Type of Dataset
MRI: 12 DaTscan: 4
PET&CT images:6

Handwriting Images: 9
Biomedical Voice:21 Biometric signal: 14 EEG and EMG: 5 VGRF time series: 4

Video: 4

Neural Network

CNN: 37
RNN:9

ANN: 10
FNN:4

Other NN: 31

Model Backbone
LSTM: 11
SVM: 8

DNN: 4
VGG: 4

Autoencoders
(AE): 2

DCNN: 2
MLPs: 2

Inception v3: 1
AlexNet: = 1

RestNet: 1
U-Net:1

WGAN: 1
ASE: 1
SSAE: 1

LSVRC: 1
DNMLDM: 1

DPRNN: 1

LRNN: 1
MTL: 1
GCN: 1

GS-RNN: 1
NR-LBP: 1

TCN: 1

OPF: 1
FRP: 1

FCNN: 1
EFMMOneR: 1

Encoder-Decoder
DBN: 1

MOGA: 1
BiLSTM: 1

SSM-PCA: 1
SNN: 1

Training dataset Volume ≥80%: 20 ≥70%: 19 ≥60%: 5 ≥50%: 3 ≥40%: 1 NA: 43

Testing dataset Volume ≥50%: 3 ≥40%: 1 ≥30%: 6 ≥20%: 18 ≥10%:8 ≥5%: 2 NA: 53

Validation Method 10-FCV: 29 5-FCV: 12 LOSO: 3
LOPO: 2

LOOCV: 2
3-FCV: 2

4-FCV: 1
6-FCV: 1
7-FCV: 1
8-FCV: 1

Holdout: 1 NA: 36

Evaluation Metrics Accuracy: 56 Recall/Sensitivity: 35 Specificity: 24 Precision: 16 F1-Score: 7 AUC: 8

Developed software Diagnosis dashboard: 1
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In most of the studies, the dataset was divided into three parts training, testing, and
validation due to the limited number of studies that divided the datasets only into the
training set and validation set, as presented in Table 3. We reported only the training and
testing datasets. Furthermore, most of the experiments (n = 21) used ≥80%) volume of
the training dataset, and (n = 9) used (≥70%). However, only few experiments provided
less volume of the training dataset, as seen in (n = 5) used (≥60%) and (n = 3), (n = 1) used
(≥50%), (≥40%), respectively. However, (n = 43) of the studies did not mention the volume
of the training dataset. In addition, the volume of the testing dataset is not clarified in most
of the studies; we noticed that (n = 53) did not specify the volume of the testing dataset
that was used during the experiment; however, the volume of (≥20%) was mostly used in
(n = 18), followed by (≥10%) that were mentioned in (n = 9), and the volume of (≥30%)
was observed in (n = 6). The testing dataset is usually used in low volume, compared to
the training dataset; however, we noticed that half of the dataset (≥50%) was used only in
(n = 3). In addition, low volumes of testing dataset, i.e., (≥5%) and (≥40%), are reported in
(n = 2) and (n = 1), respectively.

The validation method is highly considered in this review; we have reported all
the studies’ validation mechanisms. The most common K-fold cross validation (K-FCV)
methods used are the tenfold cross-validation, which was used in (n = 30), followed by
fivefold cross-validation in (n = 12), whereas fewer K-FCV methods were reported as
threefold cross-validation, fourfold cross-validation, sixfold cross-validation, sevenfold
cross-validation, and eightfold cross-validation in (n = 2), (n = 1), (n = 1), (n = 1), and
(n = 1), respectively. Furthermore, other validation methods such as LOSO, LOPO, LOOCV,
and holdout were rarely used, and are reported in (n = 3), (n = 2), (n = 2), and (n = 1),
respectively. However, (n = 36) did not mention any type of validation method within
their experiments.

Various evaluation metrics used to check each model’s performance and accuracy
are the most commonly used metrics to calculate the model’s efficiency in predicting the
result based on the testing dataset. In (n = 57), the accuracy of the models was reported.
On the other hand, along with the accuracy, other evaluation methods were used, such
as recall/sensitivity that was reported in (n = 36), followed by specificity in (n = 24)
and precision (n = 17); however, few studies (n = 8) used area under the curve (AUC)
as an evaluation metric.

During summarization of all (n = 91) results, unfortunately, we did not come across
any empirical validation/real-life implementation in any hospital. Moreover, from the
(n = 91) studies, we only found one study that developed diagnosis software that identified
any neurological disorders such as PD and that can be employed in the medical center [51].

3.4. Dataset Description
3.4.1. Public Dataset

As discussed, an earlier total number of the public dataset (n = 57), Table 4, summa-
rized the most used (n = 36) public available dataset sources and repositories (n = 36),
e.g., Parkinson Progression Markers Initiative database (PPMI), UCI database repo, and
PhysioNet; these were the most used datasets to develop and validate the AI models. Other
public dataset sources used by the included studies were as follows: Kaggle, HandPD,
DaphNet, the NTUA Parkinson Dataset, Neurovoz corpus, PC-GITA database, etc.

Table 4 only provides a sample of the public datasets used within the included studies.
As seen, the number of males in the PD sample is higher than the number of females,
and the number of males in healthy control is higher than the number of females in most
cases. Furthermore, different types of hardware devices were used to collect the dataset;
we have noticed that most of the data are in the form of images collected with different
devices, starting from hospital imaging device including MRI, CT, DaTscan and ending
with smartphone images that were used to capture handwriting or drawing of the PD
samples (n = 28) and (n = 4) for recording video.
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Table 4. Public dataset descriptions.

Dataset Source/Host Used Device/Sensor
Number of PD Patient

Number of
Healthy Control Ref.

Male Female Male Female

Public

PhysioNet (n = 4) 16 sensors
s under each foot 8 per foot 59 34 40 32 [21,49,55,81]

The University of California,
Irvine Machine Learning repository

UCI (n = 10)
NA 84 40 23 41 [3,4,23,33,44,53,55,60,

84,105]

Neurovoz corpus NA 32 20 27 29 [74]

PPMI (Parkinson Progression
Markers Initiative) database

(n = 14)
MRI Machine 129 57 [20,28,41,47,59,66,67,

76,82,86,88,90,94,95]

The NTUA Parkinson Dataset
(n = 1) DaTscan and MRI Machine 55 23 [99]

PC-GITA database
(n = 1) Professional audio card 25 25 25 25 [50]

Department of Neurology in
Cerrahpasa Faculty of Medicine,

Istanbul University
(n = 1)

Wacom Cintiq 12WX
graphics tablet 57 15 [101]

HandPD dataset
Botucatu Medical School, São Paulo

State University
(n = 2)

Smartphone Camera 59 15 6 12 [19,102]

Daphnet Dataset
University of California,

Irvine Machine Learning repository
(n = 2)

sensor was attached to a belt
and above the ankle
and above the knee

7 3 NA NA [62,65]

Parkinsons drawing spirals
and waves

Kaggle

Tablet for capture
the drawing 27 28 [30,101]

Biometric signal and time-sensor-based dataset were collected using the digital key-
board or sensor/accelerometer (n = 16) attached to the PD and healthy control sample
or placed at a different angle to measure the severity of the freezing gait or the tremor.
Moreover, devices such as a high-quality standalone microphone or smartphone were
used to collect the biomedical voice dataset, and (n = 15) reported a public vocal dataset.
Moreover, in the public dataset, only (n = 11) reported the gender of PD and healthy control
sample, and only (n = 5) studies identified each sample’s mean age.

3.4.2. Private Dataset

As mentioned, the earlier total number of private datasets (n = 31) is shown in Table 5.
We summarized the dataset that was clearly explained within studies (n = 5). This dataset
was collected and labeled in different entities such as hospitals, universities, and research
centers. The number of PD and healthy control samples are reported, including gender.
Table 5 only provides a sample of the private datasets used within the included studies.
The number of males in the PD sample is higher than the number of females, whereas
the number of females in health control is higher than the number of males. Furthermore,
different types of hardware devices were used to collect the dataset; we have noticed that
most of the data were in the form of images collected with different devices, starting from
hospital imaging device including MRI, CT, DaTscan and ending with smartphone images
that were used to capture handwriting or drawing of the PD samples (n = 11).
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Table 5. Private dataset descriptions.

Dataset Source/Host Used Device/Sensor
Number of PD Patient Number of Healthy Control

Ref.
Male Female Male Female

Private

Wearable Bio mechatronics
Laboratory at Western University

wearable assistive devices for
suppressing tremor 13 NA NA [46]

Pacific Parkinsons
Research Centre (PPRC)”

wearable headset
with 27 electrodes to capture

the EEG signals.
10 10 11 9 [83]

Hospital at Sun Yat-sen University 64-electrode Geodesic Sensor
Net (Electrical Geodesics Inc.) 25 15 18 12 [85]

RMIT University,
Melbourne, Australia Apple iPhone 6S plus® 41 40 [100]

n/A Digital software keyboard 18 15 [79]

Biometric signal and time-serious-based dataset were collected using the digital key-
board or sensor/accelerometer (n = 14) attached to the PD and healthy control sample
or placed at a different angle to measure the severity of the freezing gait or the tremor.
Moreover, devices such as a high-quality standalone microphone or smartphone were
used to collect the biomedical voice dataset, and (n = 6) reported a private vocal dataset.
Moreover, in the private dataset, only (n = 4) reported the gender of PD and healthy control
sample, and only (n = 4) studies identified each sample’s mean age.

4. Discussion

4.1. Principal Findings

Although this study focuses on identifying and addressing deep learning and neu-
ral network application to detect Parkinson’s disease in the early stage, we found some
proposed models show promising results and can be employed in hospitals. This review
provides recommendations for professional healthcare and researchers based on the in-
cluded studies’ outcomes. Moreover, we noticed that five studies [21,37,49,55,81] used
the Vertical Ground Reaction (VGRF) dataset, which was obtained from PhysioNet hub to
train the classification models including fuzzy neural networks (FNNs), stacked 2D CNNs,
deep neural networks (DNNs), artificial neural networks (ANNs), and neighborhood rep-
resentation local binary pattern (NR-LBP). However, DNN in [49] surprisingly achieved
outstanding results for early detection of PD using the VGRF dataset, compared to the
other studies.

Furthermore, for imaging dataset including MRI, PET CT, and DaTSCAN were mainly
obtained from Parkinson Progression Markers Initiative (PPMI) to train classifier, as seen
in [20,28,41,47,59,66,67,76,82,86,88,90,94,95]; hence, among all studies, CNN in [20] and
FNN in [28] achieved an outstanding result for image classification.

We found that most of the biomedical voice measurements dataset was obtained from
the University of California (UCI) Irvine Machine Learning repository; in [53,84] and [23],
the same dataset is used; however, 19 achieved outstanding result using the sequential
model in a deep neural network for detection PD based on voice measurement. In [33,44],
and [4], the same voice measurement datasets with 756 instances and 754 attributes were
used to identify PD, and the autoencoder neural network in [33] achieved better results
than other studies.

Electroencephalograph (EEG) dataset was obtained from a different source and used
in five studies [32,38,51,83,85]. In [38,83], we found that long short-term memory (LSTM)
achieved outstanding results, indicating the best option to deal with EEG data. On the other
hand, seven studies [3,19,25,27,40,69,101,102] focused on the classification of handwriting
image to identify PD in the early stage, and we found that outstanding results were
achieved in ANN + SVM in [3], dual-path RNN (DPRNN) in [40], and CNN + Optimum-
Path Forest (OPF) in [102], respectively.

As mentioned earlier, the detection of PD using a neural network is not an easier
task than other types of diseases because PD symptoms (vocal disorder, tremor disorder,
freezing gait disorder) are inconsistent, and it is difficult to collect data concerning the
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type of the device. Therefore, many public repositories mainly focus on collecting and
process certain types of datasets. Moreover, based on our findings, we can conclude that
the sequential model in DNN and autoencoder neural network proved to be suitable
models for PD detection from speech. Moreover, DNN is recommended to identify PD
from VGFR data. Additionally, CNN is still on top for medical image classification such as
MRI, PET/CT, and DaTSCAN. Moreover, the FNN shows significant results in classifying
a medical image. On the other hand, in regard to images of handwritings, we found that
ANN with machine learning classifier SVM had a remarkable result for the identification
of PD from handwriting.

Based on the findings of this review, we can highlight the most used repositories that
contain PD public datasets for the research community as follows: (1) UCI Repository
of Machine Learning Database, University of California; (2) PhysioNet Laboratory for
Computational Physiology, Massachusetts Institute of Technology; (3) Parkinson’s Progres-
sion Markers Initiative (PPMI); (4) Pacific Parkinson’s Research Institute; and (5) Botucatu
Medical School, São Paulo State University, Brazil.

4.2. Strengths and Limitations
4.2.1. Strengths

This review covered deep learning neural network techniques used for PD detection
regardless of the characteristics, country, and study design. We claim that this review
is a comprehensive study of neural network approaches used for PD detection. It will
help researchers to understand how neural network is used efficiently for detecting PD in
early stages. Compared with other reviews [106–108] that do not focus on PD disease, this
review is unique in its field because it describes and summarizes features of the identified
neural network models, datasets, available repository, type of PD evaluation, validation,
and research implication. Moreover, this review is different from the previously mentioned
reviews by following the latest version of PRISMA-ScR [16]. Unlike other reviews, we
retrieved the studies from the most popular computer science and healthcare database to
determine the most relevant studies possible.

4.2.2. Limitations

In the beginning, we carried out a primary search from 2015 to 2021 through the
five selected databases, and we retrieved a massive number of studies. Therefore, we
limited our search to the period between 2018 to 2021. Due to that, we may have missed
some significant studies. Due to many studies that we included (n = 92), backward and
forward reference checking was not performed in this review. PD is an extensive topic
and divided into many types of diseases, including various symptoms. Therefore, we may
have missed categorizing some diseases from a clinical perspective.

4.3. Practical and Research Implications

Although this review investigates the neural networks used to detect Parkinson’s
disease (PD), some applications could significantly mitigate this neurodegenerative disor-
der. Nowadays, computer-aided diagnosis systems are essential because they are less
time consuming and more user friendly. For example, the authors of [51] designed
a GUI system that physicians may use for fast diagnosis of Parkinson’s disease in its
early stages. Researchers can also use the system to continue their future research on dis-
ease diagnosis, especially neurodegenerative disorders. The system will show the patient’s
disease progression and help clinicians monitor the disease in its early stages.

Furthermore, the system can differentiate between PD patients and healthy subjects
and compare various parameters (EEG, EMG, MRI/PET scan). In both PD and control
subjects, the model can detect the region of dopamine output in the substantia nigra. As
a result, the proposed model would be a novel solution containing all of the PD detection
parameters in a single window, which would be extremely useful for disease monitoring.
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In the included studies [6,18,19,30,61,75,87,91,92,96,98,101], clinicians could obtain
PD Patient data in telemonitoring using devices such as tablets and smartphones. It is
a promising solution because they can increase monitoring frequency without putting
a strain on professional resources during the COVID-19 pandemic. However, the cost of
training and testing the detection algorithm on a smartphone was too high; thus, the results
were measured on a remote server and then transferred to the computer.

Clinical studies can refer to a video recorded for the patient while performing physical
activities such as a PD bed test. As mentioned, in [18,43,70,87], a neural network was
able to identify the symptoms of PD through a video sample of the patient. In the future,
the clinical studies may analyze any video recorded in the hospital for other patients, for
example, during therapy sessions, and predict if this patient is suspected of having PD in
the future.

5. Conclusions

This scoping review summarized studies by investigating the use of neural networks,
specifically deep learning algorithms, for early diagnosis of PD based on various data
collected from different public and private sources (91 studies), including medical image,
biomedical voice, and sensor signal, for both PD and healthy control samples. Included
studies were categorized into different groups based on the neural network model, type
of PD symptoms, and type of dataset. Additionally, the most used dataset and best
performance model were highlighted based on the detection of particular symptoms of
PD in this review. All technical experiment methods were reported, including submodel,
dataset volume, training, testing, evaluation metrics, and validation type. We indicated
any real-time implementation used in each hospital or university setting, and based on this
review, we recommended particular suggestions for healthcare professionals. Future work
could be a meta-analysis to examine each study and provide a comprehensive comparison
between them in terms of quality.
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FoG Freezing of gait
NA Not Available
MRI Magnetic Resonance Imaging
PET Positron emission tomography
CT Computerized tomography
EEG Electroencephalogram
EMG Electromyography
VGRF Vertical Ground Reaction Force
CNN Convolutional Neural Network
RNN Recurrent Neural Network
ANN Artificial Neural Network
FNN Fuzzy Neural Network
NN Neural Network
DBN Deep belief network
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MOGA Multi-Objective Genetic Algorithm
BiLSTM Bidirectional Long short-term memory
LSTM Long short-term memory
OPF Optimum-Path Forest
FRP Fuzzy Recurrence Plot
DCNN Deep Convolutional Neural Network
FCNN Fully Connected-Neural Network
DNN Deep Neural Network
EFMMOneR Fuzzy Minmax Neural Network with The One R Attribute Evaluator
LRNN Layer Recurrent Neural Network
MTL Multi-Task Learning
GCN Graph Convolutional Network
GS-RNN Gradient Stabilized Recurrent Neural Network
NR-LBP Neighborhood Representation Local Binary Pattern
TCN Temporal Convolutional Neural network
WGAN Wasserstein Generative Adversarial Networks
SAE Stacked Auto Encoder
SSAE Stacked Sparse Auto-Encoder
LSVRC Large Scale Visual Recognition Challenge
DNMLDM Deep Neural Mapping Large Margin Distribution Machine
MLP Multiple Layer Perceptron
SVM Support Vector Machine
SSM-PCA Scaled Subprofile Modeling Using Principal Component Analysis
SNN Siamese Neural Network
FCV Fold-Cross Validation
LOOCV Leave-One-Out Cross-Validation
LOSO Leave One Subject Out
AUC Area Under Curve

Appendix A

Table A1. Used search terms and total number of retrieved studies per database.

Database Name Used Research Terms
Number of

Retrieved Studies

PubMed

(“Parkinson’s Disease” OR “Parkinson*” OR “Parkinsonism” OR “paralysis agitans”
OR “shaking palsy”) AND (“artificial intelligence “ OR “ machine learning” OR “

neural network*” OR “ Deep learning” OR “natural language processing” OR “Neural
network*” OR “supervised learning” OR “unsupervised learning” OR “ensemble

learning” OR “reinforcement learning”)

549

IEEE

“Parkinson’s Disease” OR “Parkinson*” OR “Parkinsonism” OR “paralysis agitans”
OR “shaking palsy” AND “artificial intelligence” OR “machine learning” OR “neural

network*” OR “Deep learning” OR “natural language processing” OR “Neural
network*” OR “supervised learning” OR “unsupervised learning” OR “ensemble

learning” OR “reinforcement learning”

303

ACM

(“Parkinson’s Disease” OR “Parkinson*” OR “Parkinsonism” OR “paralysis agitans”
OR “shaking palsy”) AND (“artificial intelligence” OR “machine learning” OR “neural

network*” OR “Deep learning” OR “natural language processing” OR “Neural
network*” OR “supervised learning” OR “unsupervised learning” OR “ensemble

learning” OR “reinforcement learning”)

19

Science Direct
(“Parkinson’s Disease” OR “Parkinson” OR “Parkinsonism” OR “paralysis agitans”

OR “shaking palsy”) AND (“artificial intelligence” OR “machine learning” OR “neural
network” OR “Deep learning”)

151

Google Scholar

(“Parkinson’s Disease” OR “Parkinson*” OR “Parkinsonism” OR “paralysis agitans”
OR “shaking palsy”) AND (“ artificial intelligence “ OR “ machine learning” OR “

neural network *” OR “ Deep learning” OR “natural language processing” OR
“Neural network*” OR “supervised learning” OR “unsupervised learning” OR

“ensemble learning” OR “reinforcement learning”)

39

Total studies 2018–2021 1061
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Appendix B

Table A2. Data extraction form.

Concept Definition

Study Characteristics

Author The first author of the study.

Year Submission The year in which the study was submitted.

Country of publication The country where the study was published.

Publication type The paper type (i.e., peer-reviewed, conference or preprint).

AI technique characteristics

Purpose/use of AI What are the applications or uses of AI in diagnosis of Parkinson (e.g., diagnosis,
classification, and detection)?

AI branches The branches/areas that were used (e.g., traditional machine learning, deep learning,
natural language processing).

AI models/algorithms The specific AI models or algorithms that were used (e.g., Decision tree, Random
forest, Convolutional neural network).

Dataset Characteristics

Data sources Source of data that were used for the development and validation of
AI models/algorithms (e.g., public databases, clinical settings, government sources).

Data types Type of data that were used for the development and validation of AI
models/algorithms (e.g., radiology images, biological data, laboratory data).

Dataset size The total number of data that were used for the development and validation of AI
models/algorithms.

Type of validation How the dataset was split/used to develop and test the proposed models/algorithms
(e.g., Train-test split, K-fold cross-validation, External validation).

Proportion of training set Percentage of the training set of the total dataset.

Proportion of validation set Percentage of validation set of the total dataset.

Proportion of test set Percentage of the test set of the total dataset.

Type of device The device used to collect the data (e.g., accelerometer, smartphone, etc.)

At-risk group The number of Parkinson’s participants included in the study.

Control group The number of healthy participants included in the study

References

1. Alissa, M. Parkinson’s Disease Diagnosis Using Deep Learning. arXiv 2021, arXiv:2101.05631.
2. Burke, R.E.; O’Malley, K. Axon degeneration in Parkinson’s disease. Exp. Neurol. 2013, 246, 72–83. [CrossRef]
3. Ranjan, A.; Swetapadma, A. An Intelligent Computing Based Approach for Parkinson Disease Detection. In Proceedings of the

Proceedings of 2018 2nd International Conference on Advances in Electronics, Computers and Communications, ICAECC 2018,
Bangalore, India, 9–10 February 2018. [CrossRef]

4. Gunduz, H. Deep Learning-Based Parkinson’s Disease Classification Using Vocal Feature Sets. IEEE Access 2019, 7, 115540–115551.
[CrossRef]

5. “GBD Compare” Data Visualizations. Available online: https://vizhub.healthdata.org/gbd-compare/ (accessed on 26 May 2021).
6. Quan, C.; Ren, K.; Luo, Z. A Deep Learning Based Method for Parkinson’s Disease Detection Using Dynamic Features of Speech.

IEEE Access 2021, 9, 10239–10252. [CrossRef]
7. Rana, A.Q.; Ahmed, U.S.; Chaudry, Z.M.; Vasan, S. Parkinson’s disease: A review of non-motor symptoms. Expert Rev. Neurother.

2015, 15, 549–562. [CrossRef]
8. Sveinbjornsdottir, S. The clinical symptoms of Parkinson’s disease. J. Neurochem. 2016, 139, 318–324. [CrossRef]
9. “Diagnosis Parkinson’s Disease” NHS Choices. Available online: https://www.nhs.uk/conditions/parkinsons-disease/

diagnosis/ (accessed on 26 May 2021).
10. Parkinson’s Disease Information Page. National Institute of Neurological Disorders and Stroke; U.S. Department of Health and

Human Services: Washington, DC, USA, 2020.

565



Healthcare 2021, 9, 740
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Abstract: Most patients face expensive healthcare management after coronary artery bypass grafting
(CABG) surgery, which brings a substantial financial burden to the government. The National Health
Insurance Research Database (NHIRD) is a complete database containing over 99% of individuals’
medical information in Taiwan. Our research used the latest data that selected patients who accepted
their first CABG surgery between January 2014 and December 2017 (n = 12,945) to predict which
factors will affect medical expenses, and built the prediction model using different machine learning
algorithms. After analysis, our result showed that the surgical expenditure (X4) and 1-year medical
expenditure before the CABG operation (X14), and the number of hemodialysis (X15), were the
key factors affecting the 1-year medical expenses of CABG patients after discharge. Furthermore,
the XGBoost and SVR methods are both the best predictive models. Thus, our research suggests
enhancing the healthcare management for patients with kidney-related diseases to avoid costly
complications. We provide helpful information for medical management, which may decrease health
insurance burdens in the future.

Keywords: National Health Insurance Research Database; NHIRD; CABG; machine learning; medical
expenditure predict; feature selection

1. Introduction

Coronary artery bypass grafting (CABG) is the most common cardiac surgery to
treat patients with severe coronary artery circulation blockages. After CABG, the patient
will have the following two different situations: one is gradual recovery, the other is
due to the complications that lead the patient to rehospitalization again [1]. Therefore,
readmission is an essential outcome of CABG surgery, and it has a high incidence in
30 and 90 days [2–4]. Furthermore, it is a severe problem because it is directly related
to the medical expenses that patients and hospitals must incur, substantially increasing
healthcare costs and bringing a vast economic budget. However, the expenditure after
CABG surgery remains poorly predicted. The various studies point out preoperative
comorbidities, multiple complications, and medical expenses are essential variables that
can affect the survival of CABG surgery patients [5–7].

This research used the National Health Insurance Research Database (NHIRD) to
delineate this issue. It has been used widely and diversely in many academic studies [8].
Thus, the research results of NHIRD gradually become an indicator for clinical decisions,
no matter in physicians or the government.
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There are three aims in this research. First, we would use feature selection to identify
the essential variables that affect postoperative expenditures. Secondly, we would use
different feature selection methods to rank the essential variables. Last, we use different
machine learning methods to build an appropriate medical expenditure prediction model
for patients who underwent CABG. The information could effectively reduce medical ex-
penditures, improve the quality of healthcare institutions, and provide essential references
for medical management policy advice.

2. Materials and Methods

2.1. Data Source

Taiwan’s NHIRD has been built since 1995 and the coverage rate is about nearly
99%. NHIRD provides Taiwanese personal medical information, including primary demo-
graphic data and previous diseases. In addition, the NHIRD also covered all actual and
most extensive healthcare data, including patients’ original outpatient, inpatient record,
treatment, expenditure, diagnosis code, and admission dates. The codes were based on the
International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM); the
10th Revision was added to the database on 1 January 2016. This study was designed as a
population-based study on 23 million national health insurance beneficiaries enrolled in
Taiwan [9]. NHIRD provides a comprehensive long-term follow-up of all claimed records
for the benefit of the NHI program. All personal information was anonymized and deiden-
tified in NHIRD. Thus, Fu-Jen University’s ethics institutional review board in Taiwan was
exempted from ethical review (C108121), and the requirement to obtain informed consent
was waived.

2.2. Study Population

This research selected the patients who had accepted CABG surgery (procedure codes
68023A, 68023B, 68024A, 68024B, 68025A, 68025B) between 1 January 2014 and 31 December
2017, from the Taiwan NHIRD (n = 13,078). The date of newly CABG surgery is the index
date. There were 133 patients that were not eligible for the study. To ensure that this
study was only included the cases that received CABG operation for the first time, patients
who had CABG surgery before the initial surgery year (n = 81) were excluded, and we
also excluded the patients who were under 18 years old (n = 21) and missing information
(n = 31) in this research. After excluding those unqualified patients for this study, 12,945
latest CABG surgery patients were included in our research from 1 January 2014 to 31
December 2017, and all followed up until 31 December 2018 (Figure 1).

2.3. Comorbidities and Risk Factors

The baseline characteristic variables in this study included sex (male/female), age,
Charlson comorbidity index (CCI), and CHA2DS2-VAS scores [10,11]. Each patient’s
comorbidities could be traced to the date before the CABG surgery (2002–2013). The co-
morbidities included diabetes mellitus (DM), hypertension, hyperlipidemia, myocardial
infarction (MI), liver cirrhosis, congestive heart failure (CHF), coronary artery disease
(CAD), peripheral vascular disease (PVD), acute pancreatitis, malignant dysrhythmia,
atrial fibrillation (AF), transient ischemic attack (TIA), chronic kidney disease (CKD), acute
coronary syndrome (ACS), chronic obstructive pulmonary disease (COPD), stroke, can-
cer, acute kidney failure (AKF), major bleeding, intracranial bleeding, end-stage renal
disease (ESRD), and renal disease. Hospital reginal characteristics were as follows: hos-
pital area type, hospital accreditation (medical center/non-medical center), and hospital
ownership (public/private). The vessel numbers of percutaneous coronary intervention
(PCI), hemodialysis, peritoneal dialysis, blood transfusion (94001C, 94002C, 4013C, 94015C,
94003C), and mechanical ventilation uses (57001B, 57002B, 57003B) in one year before
surgery and during the corresponding surgery are also the risk factors in this study.
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Figure 1. Flowchart of the patients who underwent the first CABG surgery between 2014 and 2017.

2.4. Variable and Outcome Definitions

This study used the total surgical expenditures of the corresponding CABG surgery
and the patient’s medical expenditures in the previous year as predictive variables. The
total surgical expenditures of each patient were calculated by the claimed records, including
examination, anesthesia, treatment, drug, operation-related expenses, and other medical
services during CABG hospitalization.

To define the primary outcome, this research used one-year cumulative expenditures
after discharge to reflect the medical expenditures as primary outcomes. Therefore, we
added up the total expense on outpatients and hospitalization after discharged for one
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year, and this variable is a prediction variable (Y) (Figure 2). All expenses are identified in
New Taiwan dollars (NT$).

 

Figure 2. The definition of three different medical expenses associated with CABG surgery.

2.5. Feature Selection and Prediction Models Implementation

When doctors make clinical decisions, they must review the patient’s past medical
records and current examination results one by one. This not only consumes time for
searching, but also slows down the speed to make precise decisions immediately. Thus,
feature selection (FS) is an essential preprocessing step before model prediction. By calcu-
lating different machine learning algorithms, removing irrelevant factors, we could reduce
errors in clinical decisions and improve accuracy [12,13].

Medical expense is a continuous variable. Therefore, linear regression (LR) is often
used for continuous numerical estimation, a model established by finding the relationship
between the independent and dependent variables. In the training set, this research used
five kinds of machine learning, including LR, classification and regression tree (CART),
support vector regression (SVR), multi-variate adaptive regression splines (MARS), and
XGBoost (extreme gradient boosting) to train by selecting the relevant features for medical
expense prediction. In order to avoid overfitting, in the training process, we used five-fold
cross-validation.

In more detail, we partitioned the training data into five stratified subsets, 80% of
training data were used for training, and 20% of training data were used for validation.
Subsequently, we repeated the above processes five times, each subset was used once as
a validation dataset. After that, we obtained the average estimated results and used five
different indicators to evaluate each prediction model.

2.5.1. Linear Regression (LR)

Linear regression is the association between the dependent variable and one or more
independent variables. Through the establishment of the regression model, the variable (y)
can be predicted. Before building a prediction model, data must be a normally distributed.

2.5.2. Classification and Regression Tree (CART)

CART can solve the regression and classification problem of multi-dimensional output.
It is a kind of flow diagram tree structure; each node was the attribute variable. The branch
is a test outcome, and the tree leaves present classification [14]. The method of CART for
selection criteria is to use the Gini index. The Gini index is a measure of inequality, and
it is usually used to measure income imbalance and can be used to measure any uneven
distribution. A number between 0 and 1. 0 is entirely equal, and 1 is entirely unequal.

2.5.3. Support Vector Regression (SVR)

The main algorithm of SVM is the “kernel”. When data cannot be linearly divided into
lower dimensions, the kernel can transfer them to a higher dimensional divided linearly.
SVR is an extension of SVM. In order to solve the problem of nonlinear, SVR is the model
for considering the risk of structural, minimizing the generalization error, and maximizing
hyper-plane margin to reduce the tolerated error [15,16].
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2.5.4. Multi-variate Adaptive Regression Splines (MARS)

Friedman proposed the MARS method in 1991 [17]. MARS is a non-parametric
regression and flexible model, and it has consisted of the weighted sum of the basis splines
piecewise polynomial functions. The optimal variable is hidden in the high-dimensional
data. Through variable interactions, MARS can find the best variable easier [18].

2.5.5. XGBoost (Extreme Gradient Boosting)

XGBoost methods were proposed by Chen et al. in 2016 [19]. It is an ensemble method
based on decision tree methods. The framework in this method is gradient boosting, and
model builds are sequential. Therefore, it can minimize errors, maximize models’ performance,
and reduce tree construction time. The central idea in XGBoost is to make a new model to
correct the errors in the previous training model, then make the prediction [20].

2.6. Validation Index

This study used different machine learning methods for the prediction of one-year
medical expenses after discharge. The validation index of the model was the reference data for
determining the quality and accuracy of the model, which depended on the model attributes.

In order to evaluate the performance of the model, this study used five different
indicators to measure the prediction result, which was widely and easily understood.
These five performance metrics represented the following three different types: absolute
error, scaled error, and percentage error. The absolute error group contained the mean
absolute error (MAE) and root mean squared error (RMSE), mean square error (MSE), mean
absolute scaled error (MASE), and the group of percentage error includes mean absolute
percentage error (MAPE) [21,22].

The mathematical formula of these statistical validation metrics for evaluating the
models was demonstrated as follows in Table 1.

Table 1. Error measures for the performance metrics equations.

Type of Error Metrics Equations

Absolute error

MAE Mean absolute error 1
n

n
∑
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∣

∣

∣

(

ai − bi
)∣

∣
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RMSE Root mean square error
√

1
n

n
∑

i=1

(

ai − bi
)2

Scaled error

MSE Mean square error 1
n
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MASE Mean absolute scaled error 1
n

n
∑

i=1

|ai−bi|
1

n−1 ∑
n
i=2|ai−bi |

Percentage error MAPE Mean absolute percentage error 1
n

n
∑

i=1
(| ai−bi

bi |) × 100

The indicators were frequently and widely used as a performance index among
different prediction models [23]. The lower the deviation, the better the accuracy of the
prediction model.

MAPE is one of the most popular indicators to use. If MAPE < 0.1, model has high
accurate discrimination; 0.11 ≤ MAPE < 0.2, model has good discrimination; 0.21 ≤ MAPE
< 0.50, model has acceptable discrimination; MAPE > 0.51, model is an inaccurate [23–25].

The above indicators were used to measure the prediction error in each model. Where
n was the total amount of patients, b presented the actual medical expense, a represented
the predicted medical expense.

2.7. Statistical Analysis

This research selected new CABG patients between 2014 and 2017, which was based
on the disease’s demographic characteristics and history. All results were expressed as the
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number and percentages, N (%), for categorical variables. Means with standard deviation
were presented as mean ± SD for continuous variables.

2.7.1. Hardware Equipment

MOHW provides an environment for data analysis, the main analyzed computer CPU
is intel i7-8700, the main host memory is 128 GB, the brand of system disk type is Western
Digital (WD10EZEX) 1T.

Research data were provided from NHIRD, which is the largest volume of data in
Taiwan. All analysis data will be stored in the other replacement hard disks (disk type: WD
(DC HC310) 6T), which will be kept by the Health and Welfare Data Science Center (HWDC).

2.7.2. Software

Patient data extraction was implemented in SAS version 9.4 (SAS Institute INC., Cary,
NC, USA). Variable selection and model establishment is based on the relevant R statistical
software (250 Northern Ave, Boston, MA 02210, R studio 3.6.1; https://www.rstudio.com/
products/rstudio/). We used R package “stats”, “e1071”, “earth”, “rpart”, “XGBoost” to
construct the prediction models LR, CART, SVR, MARS, and XGBoost, respectively.

3. Results

3.1. Demographic Characteristics of Study Population

A total of 12,945 new CABG surgery patients was selected from 1 January 2014 to 31
December 2017. The patient’s demographic characteristics and comorbidities are shown in
Table 2. We analyzed 44 variables that possibly affected one-year medical expenses after
discharge (Y). In the baseline factors, the patients’ age (X1) was 63.72 ± 10.65 years, the
distribution in gender (X40) was 9,917 (76.61%) and 3,028 (23.39%) for males and females,
respectively. CHA2DS (X2) was 3.29 ± 1.95 points, the score of CCI (X3) was 4.23 ± 2.82,
and whether the patient had a significant illness (X41) was 16.28%. The factors during the
CABG surgery (surgical variables) contained the following: surgical expenditure (X4) was
547,037 ± 436,611 (thousand NTD$), length of stay (X5) was 20.30 ± 12.02 days, blood
transfusion (X6) was 7.94 ± 9.29 bags, mechanical ventilation use (X7) was 4.67 ± 15.55
days, the average of anastomosis was 2.40 ± 0.80 vessels (X8) and the average of PCI
vessels (X9) was 1.19 ± 0.44.

Table 2. Demographic data of new CABG patients in NHIRD from 2014 to 2017.

Variables Mean ± SD

Y One-year medical expenditure after discharge
(thousand NTD$) 906,693 ± 710,020

Baseline

X1 Age 63.72 ± 10.65

X2 CHA2DS score 3.29 ± 1.95

X3 CCI score 4.23 ± 2.82
Surgical variables

X4 Surgical expenditure(thousand NTD$) 547,037 ± 436,611

X5 Length of stay (LOS) 20.30 ± 12.02

X6 Blood transfusion, (Bag) 7.94 ± 9.29

X7 Mechanical ventilation, (Day) 4.67 ± 15.55

X8 Anastomosis vessels 2.40 ± 0.80

X9 The number of PCI vessels 1.19 ± 0.44
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Table 2. Cont.

Variables Mean ± SD

One year before surgery

X10 Hospitalization 1.02 ± 1.31

X11 ED visits 1.27 ± 0.67

X12 Blood transfusion, (Bag) 4.08 ± 3.89

X13 Mechanical ventilation 4.74 ± 11.44

X14 Medical expenditure (thousand NTD$) 169,699 ± 247,396

X15 The number of HD Dialysis 11.96 ± 5.01

X16 The number of PD Dialysis 10.65 ± 2.91

X17 The number of PCI vessels 1.73 ± 1.13
Comorbidities N (%)

X18 Diabetes mellitus 8142 (62.9)

X19 Hypertension 6370 (49.21)

X20 Hyperlipidemia 10,273 (79.36)

X21 Myocardial infarct 5132 (39.64)

X22 Liver cirrhosis 367 (2.84)

X23 Congestive heart failure 6687 (51.66)

X24 Coronary artery disease 12,047 (93.06)

X25 Peripheral vascular disease 2977 (23)

X26 Acute pancreatitis 432 (3.34)

X27 Malignant dysrhythmia 763 (5.89)

X28 Atrial fibrillation 1366 (10.55)

X29 Transient ischemic attack 4139 (31.97)

X30 Chronic kidney disease 3812 (29.45)

X31 Acute coronary syndrome 7384 (57.04)

X32 Chronic obstructive pulmonary disease 5036 (38.9)

X33 Stroke 4125 (31.87)

X34 Cancer 838 (6.47)

X35 Acute kidney failure 1514 (11.7)

X36 Major bleeding 3019 (23.32)

X37 Intracranial bleeding 357 (2.76)

X38 End stage renal disease 830 (6.41)

X39 Renal disease 3731 (28.82)
Baseline

X40

Gender

Male 9917 (76.61)

Female 3028 (23.39)

X41 Major illness 2108 (16.28)
Hospital Variables

X42

Hospital Area Type

Central 1958 (15.13)

Northern 8039 (62.10)

Southern 2659 (20.54)

Eastern 289 (2.23)
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Table 2. Cont.

Variables Mean ± SD

X43

Hospital ownership

Public 4558 (35.21)

Private 8387 (64.79)

X44

Hospital accreditation

Medical center 8012 (61.89)

Non-medcial center 4933 (38.11)
Abbreviations: CCIS: Charlson comorbidity index score; SD: standard deviation; ED: emergency department;
MI: myocardial infarct; CHF: congestive heart failure; CAD: coronary artery disease; PVD: peripheral vascular
disease; AF: atrial fibrillation; TIA: transient ischemic attack; CKD: chronic kidney disease; ACS: acute coronary
syndrome; COPD: chronic obstructive pulmonary disease; AKF: acute kidney failure; DM: diabetes mellitus;
ESRD: end-stage renal disease.

The variables about one year before surgery were the average of hospitalization (X10),
emergency department visits (X11; 1.27 ± 0.67), blood transfusion (X12; 4.08 ± 3.89 bags),
mechanical ventilation (X13; 4.74 ± 11.44 days), medical expenditure (X14; 169,699 ± 247,396
thousand NTD$), hemodialysis (X15; 11.96 ± 5.01), peritoneal dialysis (X16; 10.65 ± 2.91),
and 1.73 ± 1.13 PCI vessels (X17).

The comorbidities variables included the following: X18 diabetes mellitus (DM; 62.9%),
X19 hypertension (49.21%), X20 hyperlipidemia (79.36%), X21 myocardial infarct (MI;
39.64%), X22 liver cirrhosis (2.84%), X23 congestive heart failure (CHF; 51.66%), X24
coronary artery disease (CAD; 93.06%), X25 peripheral vascular disease (PVD; 23%), X26
acute pancreatitis (3.34%), X27 malignant dysrhythmia (5.89%), X28 atrial fibrillation
(10.55%), X29 transient ischemic attack (TIA; 31.97%), X30 chronic kidney disease (CKD;
29.45%), X31 acute coronary syndrome (ACS; 57.04%), X32 chronic obstructive pulmonary
disease (COPD; 38.9%), X33 stroke (31.87%), X34 cancer (6.47%), X35 acute kidney failure
(AKF; 11.7%), X36 major bleeding (23.32%), X37 intracranial bleeding (2.76%), X38 end-stage
renal disease (ESRD; 6.41%) and X39 renal disease (28.82%).

X42 to X44 were hospital variables. The hospital area type (X42) was 15.13%, 62.10%,
20.54%, and 2.23% in central, northern, southern, and eastern, respectively. X43, differ-
ent hospital ownership was 35.21% in public and 64.79 in private hospitals. Hospital
accreditation (X44) was 61.89% in a medical center, and the non-medical center was 38.11%.

3.2. The Ranking Number of Feature Selection on CABG

After feature selection, we ranked the importance of each variable among different
machine learning models that can provide helpful information for model building. Every
algorithm has a different calculation. Thus, the variables selected were also different. For
example, to determine the relative risk factors about the one-year medical expense after
discharge, each important variable could provide helpful information through different
feature selection methods. Huang et al. [5] point out that using fewer features was more
efficient in model building.

This research used 44 variables [4,5,7,26–31], which depended on the physician’s
clinical experience and literature review. Moreover, it used five different machine learning
methods to predict after filtering factors, the highest score (10 points) was the most crucial
factor, which will be the first on the rank; on the other hand, the lowest predictor was
ranked the last (1 point). We listed the ranking degree and average in each variable in the
following Table 3.
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Table 3. Importance ranking for each predictor of medical expense, by using five different machine learning methods.

Variables LR SVR CART MARS XGBoost Average

X1 Age 1 0 0 0 5 1.2
X2 CHA2DS score 0 1 2 0 1 0.8
X3 CCI score 0 6 4 0 0 2

X30 Chronic kidney disease 0 7 6 0 8 4.2
X35 AKF 0 2 0 0 0 0.4
X38 ESRD 2 3 1 0 3 1.8
X39 Renal Disease 0 5 5 0 0 2
X44 Major illness 3 4 0 0 0 1.4

Surgical variables

X4 Surgical expenditure 10 10 10 9 10 9.8
X6 Blood transfusion 0 0 3 0 2 1
X7 Mechanical ventilation 0 0 7 0 6 2.6

One year before surgery

X12 Blood transfusion 4 0 0 0 4 1.6
X13 Mechanical ventilation 5 0 0 0 0 1
X14 Medical expenditure 8 9 9 10 9 9
X15 The number of HD Dialysis 9 8 8 8 7 8
X16 The number of PD Dialysis 6 0 0 0 0 1.2
X17 The number of PCI vessels 7 0 0 0 0 1.4

After screenings and analyses, the variable with a higher score was selected as the
predicted value in this research. Through the calculation of different machine learning
algorithms, each variable will have a different relative importance rank.

In the LR model, the most crucial variable was the surgical expenditure (X4). The
other two variables, HD dialysis (X15) and medical expenditure (X14), were both from one
year before surgery. Therefore, the top three essential variables of SVR, CART, and MARS
are the same as LR. However, for XGBoost, the top two essential variables are still X4 and
X14, and the third most important variable was CKD. Therefore, the essential variable in
the LR, CART, SVR, MARS, and XGBoost models was surgical expenditure (X4; average
point 9.8 points) and one-year medical expenditure before surgery (X14; average point:
9 points), and the number of HD (X15; average point: 8 points).

In general, we knew these three variables (X4, X14, X15) could affect one-year medical
expenditures after discharge in CABG patients.

In order to clarify and simplify the predictors, we averaged the scores in each impor-
tant variable for more equality, as shown in Figure 3. The result depicts the variables that
possibly affect one-year medical expenditure after discharge.

The top five critical variables were surgical expenditure (X4), the one-year factors be-
fore surgery, medical expenditure (X14), the number of HD, CKD (X30), and the mechanical
ventilation use during the CABG surgery (X7).

3.3. Performance of 5 Different Prediction Models

After the feature selection, we performed LR, CART, SVR, MARS, XGBoost prediction
models. Then, to identify the lowest value in each indicator, we evaluated the following
metrics: MAE, MSE, MASE, MAPE, and MAPE. For example, from the overall results in
Table 4, after feature selection by CART and after XGBoost was used to make a prediction,
MSE (0.0490) and RMSE (0.2214) were the lowest values.
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Figure 3. The average score after feature selection using five methods.

Table 4. Performance evaluation of prediction models after feature selection.

FS Methods ML Method MAE MSE MASE RMSE MAPE

LR (10 variables)

LR 0.1965 0.0813 0.3120 0.2851 0.0143

SVR 0.1381 0.0580 0.2192 0.2407 0.0100

MARS 0.1663 0.0591 0.2640 0.2431 0.0121

CART 0.2024 0.0815 0.3214 0.2855 0.0148

XGBoost 0.1458 0.0491 0.2315 0.2216 0.0106

SVR (10 variables)

LR 0.1987 0.0743 0.3155 0.2725 0.0145

SVR 0.1345 0.0542 0.2136 0.2328 0.0097

MARS 0.1652 0.0587 0.2623 0.2422 0.0120

CART 0.2024 0.0815 0.3214 0.2855 0.0148

XGBoost 0.1449 0.0491 0.2300 0.2216 0.0105

CART (10 variables)

LR 0.2002 0.0749 0.3178 0.2738 0.0146

SVR 0.1354 0.0544 0.2149 0.2331 0.0098

MARS 0.1652 0.0587 0.2623 0.2422 0.0120

CART 0.2024 0.0815 0.3214 0.2855 0.0148

XGBoost 0.1433 0.0490 0.2275 0.2214 0.0104

MARS (3variables)

LR 0.2070 0.0794 0.3287 0.2818 0.0151

SVR 0.1302 0.0532 0.2067 0.2307 0.0094

MARS 0.1667 0.0593 0.2647 0.2436 0.0121

CART 0.2024 0.0815 0.3214 0.2855 0.0148

XGBoost 0.1466 0.0499 0.2328 0.2233 0.0107
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Table 4. Cont.

FS Methods ML Method MAE MSE MASE RMSE MAPE

XGBoost
(10 variables)

LR 0.1985 0.0739 0.3151 0.2719 0.0145

SVR 0.1344 0.0540 0.2134 0.2324 0.0097

MARS 0.1652 0.0586 0.2622 0.2420 0.0120

CART 0.2024 0.0815 0.3214 0.2855 0.0148

XGBoost 0.1443 0.0492 0.2292 0.2218 0.0105
Abbreviations: LR: linear regression; SVR: support vector regression; CART: classification and regression tree;
MARS: multi-variate adaptive regression splines; AUC: area under the curve; XGBoost: extreme gradient boosting;
FS: feature selection; ML: machine learning.

We used the variables that were selected by MARS and SVR to build the prediction
model. There were three indicators to show the lowest value, namely, MAE (0.1302), MASE
(0.2067), and MAPE (0.0094). Thus, MARS only selected three variables and used SVR to
make the best predictive model in this research compared to other combined methods.

4. Discussion

NHIRD provides a lot of medical information, and each patient could be traced for a
long follow-up time. Therefore, we used NHIRD to make the medical expense prediction.
The latest year of the NHIRD database is 2018. Therefore, we selected new CABG surgery
patients between 2014 and 2017. The primary purpose of our study was to evaluate which
factors could predict the one-year medical expenses after discharge of CABG patients, and
build an expense prediction model. Most research discusses mortality, readmission, and the
relationship between diseases and surgery [1,4,5,15,28,32–34]. However, only a few studies
explored medical expenses, even forecasting. For example, Mehaffey et al. in 2018 [29],
analyzed that each additional complication would cause an exponential cost increase.
Baciewicz et al. in 2018 [28] referred that because sicker patients needed a high blood
transfusion, it led to the increased expense. From the above results, we could know that the
baseline variables, including age (X1), CHA2DS score (X2), CCI score (X3), CKD (X30), AKF
(X35), ESRD (X38), renal disease (X39), major illness (X44), the variables one year before
surgery (total medical expense (X14), blood transfusion (X12), mechanical ventilation use
(X13), the number of HD (X15), PD (X16), and PCI vessels (X17)), the surgical variables
(surgical expenditure (X4), blood transfusion (X6) and mechanical ventilation use (X7)), all
positively influenced one-year medical expense after discharge.

In this study, we used multiple stages to analyze and predict the one-year medical
expense after discharge. First, we used the feature selection method to find the essential
variables that affect the medical expense. Secondly, after finding out the important variables,
we selected five different machine learning models to build a prediction model and evaluate
the performance. Besides, through feature selection, we found the folowing several exciting
variables: CKD (X30), AKF (X35), ESRD (X38), and renal disease (X39). Although they are
all associated with the renal condition, those variables do not have an exceptionally high
ranking that is easy to be overlooked, they are topics worthy of further study. For example,
Chou et al. [35] in 2014 evaluated that dialysis patients who underwent CABG surgery
had better survival than PCI surgery; Chen et al. [36] analyzed that dialysis is associated
with higher risk and mortality with CABG patients. Furthermore, Liao et al. [7] found that
ESRD patients have a higher medical expense after CABG surgery. From the above results,
it could be known that for kidney disease patients who accepted their first CABG surgery,
a one-year expense after discharge would be relatively high.

The medical expenditure in preoperative one-year (X4), surgical expense (X14), and
the number of HD were the most critical medical expense predictors. Furthermore, after
the predictions model was built, we could use the 3 or 10 variables selected by MARS
or CART, respectively, to apply SVR and XGBoost methods and achieve a better medical
expense prediction model.
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5. Conclusions

Our study developed a multiple-stage model to evaluate the one-year medical ex-
pense after discharge for those first-time CABG patients. Our model could find that the
corresponding operation variables could predict one-year medical expenditure after CABG.
Furthermore, postoperative complications will increase the medical expense [28]. In our
results, we found that patients with kidney problems, including previous HD, PD, ESRD,
renal disease, and CAD, all have a high connection with the forecast medical expenses after
CABG surgery. Therefore, hospitals should enhance healthcare management on specific
disease prevention, especially the CABG patients with kidney-related diseases.

Our study suggests that the SVR and XGBoost models are an adequate tool to make
a medical expense prediction model, through MARS and CART feature selection. The
research can bring the benefits of providing the references for medical management with
specific diseases that could reduce the expense through effective control, and the govern-
ment’s burdens could also be decreased.
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Abstract: Coronary artery bypass surgery grafting (CABG) is a commonly efficient treatment for
coronary artery disease patients. Even if we know the underlying disease, and advancing age is
related to survival, there is no research using the one year before surgery and operation-associated
factors as predicting elements. This research used different machine-learning methods to select the
features and predict older adults’ survival (more than 65 years old). This nationwide population-
based cohort study used the National Health Insurance Research Database (NHIRD), the largest and
most complete dataset in Taiwan. We extracted the data of older patients who had received their
first CABG surgery criteria between January 2008 and December 2009 (n = 3728), and we used five
different machine-learning methods to select the features and predict survival rates. The results show
that, without variable selection, XGBoost had the best predictive ability. Upon selecting XGBoost
and adding the CHA2DS score, acute pancreatitis, and acute kidney failure for further predictive
analysis, MARS had the best prediction performance, and it only needed 10 variables. This study’s
advantages are that it is innovative and useful for clinical decision making, and machine learning
could achieve better prediction with fewer variables. If we could predict patients’ survival risk before
a CABG operation, early prevention and disease management would be possible.

Keywords: National Health Insurance Research Database; NHIRD; older adults; CABG; machine
learning; overall survival prediction; feature selection

1. Introduction

Advancing age leads to markedly increasing coronary artery disease (CAD), a common
heart disease and the leading global cause of mortality [1], significantly increasing the
global healthcare burden [2]. Coronary artery bypass grafting (CABG) is an efficient
treatment for patients with CAD in myocardial revascularization [3]. The risk of CABG
surgery is approximately 1–3%. CABG is also high-cost surgery [4]. In recent years, various
studies evaluated CABG risk on survival rate, medical cost, and follow-up of different
CAD treatment strategies [3–8].

However, there is no complete research using an extensive database to build an
integral machine-learning model for predicting and evaluating which risk factors could
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preoperatively affect older adults’ survival rate. Thus, this research used the National
Health Insurance Research Database (NHIRD), with a sufficiently large data sample of
Taiwan, which provided all real and large healthcare data, including patients’ original
clinical records, treatments, inhospital expenditures, and diagnosis codes. In addition to
the patients’ basic characteristics and disease history, we used variables before one year
and during the operation as predictive indicators. Therefore, if we could predict patients’
mortality risk before a CABG operation, take early prevention and disease management
for those high-risk patients would be possible. Our studies used multistage selection,
which contains feature-searching methods and prediction-model development based on
logistic regression (LGR), random forest (RF), classification regression tree (CART), extreme
gradient boosting (XGBoost), and multivariate adaptive regression splines (MARS). The
model receives as input several preoperative medical factors and their characteristics. To
find the correct factors that affect the outcomes and reduce distortion, model performance
relies on feature selection (Nguyen, 2010).

There were three purposes of this retrospective population-based study. The first
research object was to analyze older adults’ survival rate after CABG surgery within a
10-year follow-up. Second, we used different feature-selection methods to investigate
which risk factors were crucial variables that could affect survival. Lastly, we aimed to
determine the best prediction survival model for older adults receiving CABG procedures,
and to identify the associated factors in the prediction model that determine surgery
risk factors.

2. Materials and Methods

2.1. Data Source

There are around 23 million people in Taiwan. The National Health Insurance Re-
search Database (NHIRD) enrolls nearly 99% of Taiwanese enrollees in the National Health
Insurance (NHI) program [9]. NHIRD contains the personal information of patients who
participate in the NHI program, including outpatient and inpatient information, and surgi-
cal procedure codes, and it enables the continuous tracking of all claimed records from each
patient. The diagnosed codes were International Classification of Diseases, Ninth Revision;
Clinical Modification (ICD-9-CM); the Tenth Revision (ICD-10-CM) in Taiwan was fully
adopted from 1 January 2016. According to the abovementioned advantages, the NHIRD
provides complete and comprehensive long-term follow-up for each patient. Demographic
ID information in NHIRD was anonymized and deidentified. This study was exempted
from a full ethical review by the Fu Jen Catholic University ethics institutional review
board in Taiwan (C108121), and the requirement to obtain informed consent was waived.

2.2. Study Population

To understand the important factors that affect older patients’ survival rate after CABG
surgery, this retrospective cohort study enrolled patients over 65 years old from 1 January
2008 to 31 December 2009, from the NHIRD, Taiwan. We selected patients who had first
undergone CABG operation (the operation code of only one anastomosis vessel is 68023A
and 68023B, 68024A and 68024B are 2 vessels, and 68025A and 68025B are 3 diseased
vessels). CABG’s initial surgery date was used as the index date to ensure that this study
focused on older individuals; patients under 65 years old (n = 3533) were excluded. We
also excluded those who had had CABG surgery before the index year (between 2002
and 2007; n = 39), had died in the hospital (n = 434), and those with missing information
(n = 5). According to these criteria, a total of 4162 patients undergoing CABG surgery were
divided into two groups, dead and alive patients ≥65 years old, between 1 January 2008
and 31 December 2009 (Figure 1).
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Figure 1. Patient selection and further analysis of 3728 older adult patients who had undergone first-time coronary artery
bypass surgery grafting (CABG) between 2008 and 2009.

2.3. Comorbidities and Variable Definitions

In this research, the baseline characteristic variables were sex, Charlson comorbidity
index (CCI) score, number of anastomosis vessels, and patient comorbidities (Supple-
mentary Materials) including: hypertension, hyperlipidemia, diabetes mellitus (DM),
congestive heart failure (CHF), peripheral vascular disease (PVD), coronary artery dis-
ease (CAD), chronic obstructive pulmonary disease (COPD), myocardial infarction (M),
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chronic kidney disease (CKD), end-stage renal disease (ESRD), and stroke. Blood trans-
fusion (94001C, 94002C, 4013C, 94015C, 94003C), mechanical ventilation (57001B, 57002B,
57003B) in the preoperative one year, and CHA2DS2-VASc score [10,11] were also included.
CHA2DS2-VAS was calculated for each research patient using a history of hypertension,
diabetes mellitus, congestive heart failure, and vascular disease. Age between 65 and
74 years old, and female gender were 1 point. Two points were assigned for a history
of ischemic stroke and transient ischemic attack (ICD-9-CM codes: 433–438; ICD-10-CM:
I63.0–9, G45.9) or age ≥ 75 years old.

The date of comorbidities was defined as the date before the index date, which could
be traced back to 2002–2007. Primary outcomes were overall survival rate of older adults
after the CABG procedure, and cause of death was provided by the NHIRD death registry
data. Patients in this study were all followed up from the index date until the date of death
or the end of the research (31 December 2018).

2.4. Feature-Selection and Machine-Learning Prediction Models

The hospital must update each patient’s information every day. After long-term
accumulation, much medical information is accumulated. We also used the NHIRD to
determine key factors that affect the survival of older adults from the first CABG surgery.
The medical records contained numerous items. Therefore, before making predictions,
features were reduced through feature selection (FS), an essential preprocessing step [12].

However, models have different abilities to predict survival. Some studies used ma-
chine methods for an early diagnosis of bipolar disorder, prostate-cancer-specific survival,
erectile dysfunction, CKD, and medical cost [13–17]. This research used multiple-stage
selection methods to uncover potential collinearity among variable subsets and evaluate the
response variable’s predictive performance. After that, we used a fivefold cross-validation
process to verify the model of LGR, RF, CART, XGBoost, and MARS (for classification
or continuous variables) to compare the predicted performance with all variables and
evaluate the classification results after feature selection per classification method [18,19].
The classification model’s performance indicators were mean accuracy, kappa, sensitivity,
specificity, and area under the ROC curve (AUC). The evaluation performance of the
AUC value was defined by Hosmer et al. [17]: AUC ≥ 0.9, outstanding discrimination;
0.8 ≤ AUC < 0.9, good discrimination; 0.7 ≤ AUC < 0.8, acceptable/fair discrimination;
0.6 ≤ AUC < 0.7, poor discrimination; and AUC < 0.6, no discrimination [13]. The greater
the accuracy, sensitivity, specificity, and kappa values are, the better the model is.

In this research, we used five different machine-learning methods to construct predic-
tive models and conducted the best feature selection for evaluating the mortality of the
CABG patients.

2.4.1. LGR

Logistic regression is a classical prediction method suitable for predicting general
binary classification problems. The central concept of LGR is the natural logarithm of
an odds ratio by logit [20]. It is used to analyze the relationship between dependent and
independent variables. The predicted variable Y has only two possibilities: yes (1) and
no (0).

2.4.2. RF

Random forest (RF) is an ensemble method, and the classifier in the original RF
algorithm is a classification and regression tree (CART) that is based on the bagging
algorithm and bootstrap aggregation. It randomly selects variables to split when the CART
tree grows [21]. The out-of-bag (OOB) error of random forest is the average error of each
weak sample using an approximate test error to measure performance [22]. Lastly, each
tree was based on node impurity to improve the amplitude of the random forest and find
out the importance of variables.
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2.4.3. MARS

MARS is a nonparametric statistical method developed by physicist Friedman et al.
(1991) [23]. It is flexible regression processing that can automatically create a criterion
model and separate linear-regression slopes to process multiple complex data and establish
prediction models.

Approximated nonlinearity is adopted using separate linear-regression slopes in dif-
ferent intervals of the independent variable space. For the best MARS model, the first stage
uses a forward algorithm to construct many possible basic functions and corresponding
knots to initially overfit the data. We used the generalized cross-validation criterion (GCV)
to generate the best combination in the second stage [22].

MARS can also use dummy variables to deal with missing values, and it does not
need to assume the distribution of demand functions and errors.

2.4.4. CART

Breiman et al. developed the classification and regression-tree algorithm in 1984 [24].
In the process of the CART algorithm, a series of rules are generated through recursion.
First, CART builds a maximal tree to divide the two subsets into left and right through
binary splits, and calculates the impurity by using the Gini index under each attribute
segmentation. Nodes and leaf nodes start from the root during analysis. The smallest Gini
index is used to determine segmented attributes and values. Then, the parent node can
divide two exclusive children from each node, and iteratively calculate until the whole
decision tree stops growing and is constructed [22].

2.4.5. XGBoost

The algorithm applied by XGBoost is a gradient-boosting decision tree (GBDT) that
can be used for both classification and regression problems [25]. The greedy method
optimizes the maximal gain of the objective function during the construction of each tree
layer. The idea of the algorithm is to continuously add trees and perform feature splitting
to grow a tree. Each time a tree is added, it learns a new function to fit the residual of the
last prediction.

Lastly, multiple learners are added together to make the final prediction, and the
accuracy rate is higher than that of a single one. To solve overfitting, XGBoost controls
the complexity of the model by using regularization terms, and objective function op-
timization uses the second derivative of the Taylor expansion loss function to compute
pseudoresiduals [22].

2.5. Statistical Analysis

Both cohorts were stratified into two groups (dead and alive) and compared using
Pearson’s chi-squared tests for categorical variables. Demographic data at baseline pre-
sented numbers and percentages as n (%). Independent sample t-tests assessed continuous
variables as means and standard deviations (mean ± SD) to compare the difference. All
significance thresholds were associated with 2-tailed p values < 0.05. Data extraction was
performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). Variable selection
and model establishment was carried out with R statistical software (R studio 3.5.1;
http://www.r-project.org (accessed on 12 January 2021)).

3. Results

3.1. Demographic Characteristics of Study Population

The demographic data and comorbidities of the patients who accepted their first
CABG surgery are listed in Table 1. We included ≥65 year-old adults who had fulfilled the
criteria from 1 January 2008, to 31 December 2009, in the Taiwan NHIRD. The dead group
was 2272 (69.98%), and the alive group was 1456 (71.09%). In comparison, male patients
had higher mortality than that of female patients.
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Table 1. Demographic features of older CABG adults in Taiwan from 2008 to 2009.

Variables
≥65 Dead
(n = 2272)

≥65 Alive
(n = 1456)

p-Value

n % n %

Sex
Female 682 30.02 421 28.91 0.471
Male 1590 69.98 1035 71.09

Age, mean (SD), y 74.30 (5.60) 71.27 (4.78) <0.001
Follow up years, Mean (SD) 4.42(3.14) 10.05 (0.57) <0.001

Follow up years, Median 4.22 10.02 -
CHA2DS score, mean (SD) 4.21 (1.67) 3.30 (1.57) <0.001

Comorbidities

DM 1477 65.01 739 50.76 <0.0001
Hypertension 624 27.46 379 26.03 0.335

Hyperlipidemia 1522 66.99 1056 72.53 <0.001
MI 1182 52.02 560 38.46 <0.001

Liver cirrhosis 50 2.2 10 0.69 <0.001
CHF 1385 60.96 563 38.67 <0.001
CAD 2222 97.8 1435 98.56 0.098
PVD 541 23.81 248 17.03 <0.0001

Acute pancreatitis 43 1.89 21 1.44 0.301
Malignant dysrhythmia 104 4.58 58 3.98 0.385

Intracranial bleeding 53 2.33 14 0.96 0.002
AF 348 15.32 159 10.92 <0.001
TIA 951 41.86 424 29.12 <0.0001
CKD 572 25.18 129 8.86 <0.0001
ACS 1490 65.58 810 55.63 <0.0001

COPD 1043 45.91 558 38.32 <0.0001
Stroke 947 41.68 423 29.05 <0.0001
Cancer 164 7.22 66 4.53 <0.001

CCIS scores 0 75 3.3 139 9.55 <0.0001
1 269 11.84 330 22.66
2 383 16.86 362 24.86
3 424 18.66 239 16.41
4 341 15.01 165 11.33
5 275 12.1 115 7.9

6+ 505 22.23 106 7.28
Mean (SD) 3.86 (2.40) 2.59 (1.93) <0.0001

Surgical Variables

Anastomosis vessels, mean (SD) 2.64 (0.72) 2.79 (0.77) <0.001
Length of stay (LOS), mean (SD) 25.59 (14.77) 18.29 (9.15) <0.001

Blood transfusion, (Bag), mean (SD) 10.89 (14.68) 7.23 (5.31) <0.001
Mechanical ventilation, (Day), mean (SD) 7.16 (13.90) 2.76 (3.09) <0.001

Surgical cost 611,701 (488,753) 394,843 (165,389) <0.001

One Year Before Surgery

Outpatient visits, mean (SD) 37.70 (23.34) 32.36 (20.13) <0.001
Hospitalization, mean (SD) 1.91 (1.34) 1.45 (0.82) <0.001

ED visits, mean (SD) 58 2.55 14 0.96 <0.001
Blood transfusion, (Bag), mean (SD) 3.83 (3.69) 4.09 (4.87) 0.636

Mechanical ventilation, (Day), mean (SD) 5.55 (13.48) 3.93 (4.05) 0.373
Medical cost (related cardiology

department), mean (SD) (thousand NT$) 81,957 (107,098) 60,969 (80,674) <0.0001

Medical cost (thousand NT$) 155,186 (197087) 91,439 (98,235) <0.0001
CCIS = Charlson comorbidity index score; SD: standard deviation; ED: Emergency departmen; MI: Myocardial
infarct; CHF: Congestive heart failure; CAD: Coronary artery disease; PVD: Peripheral vascular disease; AF:
Atrial fibrillation; TIA: Transient ischemic attack; CKD: Chronic kidney disease; ACS: Acute coronary syndrome;
COPD: Chronic obstructive pulmonary disease ; AKF: Acute kidney failure ; DM: Diabetes mellitus.

590



Healthcare 2021, 9, 547

Statistically significant results were demonstrated for the dead and alive groups. The
mean follow-up periods were 4.42 ± 3.14 and 10.05 ± 0.57 years (p < 0.001), respectively, and
the other data were as follows, as described in the brackets: CHA2DS score (4.21 ± 1.67
vs. 3.30 ± 1.57, p < 0.001), diabetes (65.01 vs. 50.76, p < 0.001), myocardial infarction
(52.02 vs. 38.46, p < 0.001), liver cirrhosis (2.2 vs. 0.69, p < 0.001), peripheral vascular disease
(PVD; 23.81 vs. 17.03, p < 0.001), congestive heart failure (CHF; 60.96 vs. 38.67, p < 0.001), in-
tracranial bleeding (2.33 vs. 0.96, p = 0.002), atrial fibrillation (AF; 15.32 vs. 10.92, p < 0.001),
transient ischemic attack (TIA; 41.86 vs. 29.12, p ≤ 0.001), chronic kidney disease (CKD;
25.18 vs. 8.86, p ≤ 0.001), acute coronary syndrome (ACS; 65.58 vs. 55.63, p < 0.001), chronic
obstructive pulmonary disease (COPD; 45.91 vs. 38.32, p < 0.001), stroke (41.68 vs. 29.05,
p < 0.001), cancer (7.22 vs. 4.53, p < 0.001) and CCI scores (3.86 ± 2.40 vs. 2.59 ± 1.93,
p < 0.001).

The surgical variables were significantly different in terms of cost (TWD 611,701 ±
488,753 vs. TWD 394,843 ± 165,389, p < 0.001), the average diameter of anastomosis vessels
(2.64 ± 0.72 vs. 2.79 ± 0.77, p < 0.0001), the length of stay (25.59 ± 14.77 vs. 18.29 ± 9.15,
p < 0.001), blood transfusion (10.89 ± 14.68 vs. 7.23 ± 5.31, p < 0.001), and mechanical
ventilation (7.16 ± 13.90 vs. 2.76 ± 3.09, p < 0.001). In addition, variables of 1 year
before surgery, such as the mean number of outpatient department visits (37.70 ± 23.34
vs. 32.36 ± 20.13, p < 0.001), emergency department visits (2.55 vs. 0.96, p = 0.0006),
hospitalization visits (1.91 ± 1.34 vs. 1.45 ± 0.82, p < 0.0001), the mean bag of blood
transfusion (13.34 vs. 4.60, p = 0.0006), the length of mechanical ventilation (11.09 vs. 3.85,
p < 0.001), and medical cost (155,186 ± 197,087 vs. 91,439 ± 98,235, p < 0.001), were also
statistically significantly different between the dead and alive groups of older adults who
had undergone first CABG surgery.

3.2. Results of Feature Selection on CABG

To determine which risk factors could predict survival among older CABG patients,
we used different feature-selection methods to determine them. Ranking first was the most
important. A total of 72 variables were included in this study, and each variable had its
ranking in 5 different methods after filtering (Table 2)—the studied characteristics included
surgical, recent 1-year variables, and the patient’s baseline. LGR selected 17 variables. RF
selected a total of 11 variables. CART chose nine variables. XGBoost and MARS both
selected seven variables. Among those methods, LOS, CHA2DS2 score, and CKD were
only selected by CART. CART, XGBoost, and MARS all selected the risk factors of surgical
cost, patient’s age, renal disease, and CCI score as essential variables.

Table 2. Ranking of essential variables of older CABG adults.

Variables
LGR

(17 Variables)
RF

(11 Variables)
CART

(9 Variables)
MARS

(7 Variables)
XGBoost

(7 Variables)

Surgical Variables

Blood transfusion, (Bag), mean 1
Length of stay (LOS), mean 4

Surgical cost 3 1 1

One Year Before Surgery

ED visits, mean 4 6
Outpatient visits, mean 15
Hospitalization, mean 3

Mechanical ventilation, (Day), mean 16 7 7
Blood transfusion, (Bag), mean 1

Medical cost 8 6
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Table 2. Cont.

Variables
LGR

(17 Variables)
RF

(11 Variables)
CART

(9 Variables)
MARS

(7 Variables)
XGBoost

(7 Variables)

Baseline

Age 11 5 3 2
CHF 7 4 6 5
CKD 7
ACS 12
CAD 2

CCI score 9 2 3
COPD 11
PVD 14

Diabetes mellitus 5 5
Renal disease 1 4 4
Major illness 8

Ischemic stroke 3
CHA2DS2 scores 2

Ulcer disease 17 7
Hypertension 6

Hyperlipidemia 2
AKF 13

Acute pancreatitis 10
Connective tissue disease 9 8

Moderate or severe renal disease 5 9 6
Moderate or severe liver disease 10

Through different variable-selection algorithm methods, we could make predictions
with these variable combinations.

3.3. Performance of Different Prediction Models

Lastly, we used the results of different feature-selection methods and nonfeature
selection to produce five different prediction models: LGR, RF, CART, MARS, and XGBoost.
In order to predict survival, the ability of each model was an independent validation
dataset. The results showed that, without variable selection (72 variables), the predictive
ability of XGBoost was the best (accuracy: 0.7225) among the five models (as shown in
Table 3). LGR, RF, and CART individually used 17,119 variables. XGBoost had the best
predictive ability (accuracy: 0.7131) and only required seven variables. The best forecasting
ability among these five methods was logistic regression (accuracy: 0.7184). We also added
three risk factors to the variable selections of XGBoost and MARS—CHA2DS score, acute
pancreatitis, and AKF—for further predictive analysis. Adding these three variables can
improve the ability of prediction models. Overall, the feature-selection method opted for
XGBoost, with surgical cost, CCI scores, age, renal disease, diabetes, CHF, ulcer disease, and
three risk factors (AKF, acute pancreatitis, and CHA2DS2-VAS score). The average accuracy
for MARS was 0.7225; MARS was ranked as the best and only needed ten variables.

Table 3. Performance evaluation of prediction models on nonselection and after feature selection.

Method Accuracy Kappa Sensitivity Specificity AUC

Overall
(72 variables)

LGR 0.7198 0.4427 0.6711 0.7939 0.7926
RF 0.7077 0.3965 0.7355 0.6655 0.7784

MARS 0.7104 0.4294 0.6444 0.8108 0.7890
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.7225 0.4394 0.7044 0.7500 0.7934
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Table 3. Cont.

Method Accuracy Kappa Sensitivity Specificity AUC

LGR selection
(17 variables)

LGR 0.6179 0.2752 0.4888 0.8141 0.6981
RF 0.6260 0.2829 0.5177 0.7905 0.6912

MARS 0.6219 0.2771 0.5088 0.7939 0.6917
CART 0.5911 0.2292 0.4533 0.8006 0.6576

XGBoost 0.6246 0.2845 0.5044 0.8074 0.6977

RF selection
(11 variables)

LGR 0.6876 0.3960 0.5866 0.8412 0.7784
RF 0.6916 0.3937 0.6244 0.7939 0.7637

MARS 0.6890 0.3817 0.6444 0.7567 0.7675
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.6983 0.4161 0.5977 0.8513 0.7790

CART selection
(9 variables)

LGR 0.7091 0.4009 0.7311 0.6756 0.7624
RF 0.6554 0.3464 0.5200 0.8614 0.7557

MARS 0.7091 0.3954 0.7488 0.6486 0.7653
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.7131 0.4062 0.7444 0.6655 0.7652

MARS selection
(7 variables)

LGR 0.6876 0.3960 0.5866 0.8412 0.7784
RF 0.6916 0.3937 0.6244 0.7939 0.7637

MARS 0.6890 0.3817 0.6444 0.7567 0.7675
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.6983 0.4161 0.5977 0.8513 0.7790

XGBoost
selection

(7 variables)

LGR 0.7184 0.4186 0.7444 0.6790 0.7739
RF 0.6903 0.3800 0.6600 0.7364 0.7453

MARS 0.7131 0.4096 0.7333 0.6824 0.7683
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.7104 0.4212 0.6733 0.7668 0.7763

XGBoost
selection

and 3 risk factors
(10 variables)

LGR 0.6890 0.3937 0.6044 0.8175 0.7807
RF 0.7037 0.4008 0.6911 0.7229 0.7727

MARS 0.7225 0.4233 0.7600 0.6665 0.7831
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.6970 0.4069 0.6200 0.8141 0.7845

MARS selection
and 3 risk factors

(10 variables)

LGR 0.6916 0.3964 0.6155 0.8074 0.7780
RF 0.6836 0.3806 0.6088 0.7972 0.7629

MARS 0.7024 0.3998 0.6844 0.7297 0.7722
CART 0.6930 0.3360 0.8111 0.5135 0.7031

XGBoost 0.7077 0.4190 0.6600 0.7804 0.7806
Abbreviations: LGR: logistic regression; RF: random forest; CART: classification and regression tree; MARS:
multivariate adaptive regression splines; AUC: area under the curve; XGBoost: extreme gradient boosting.

4. Discussion

This population-based cohort study was based on NHIRD, which is the largest ob-
servational database from Taiwan. The strengths of using NHIRD are as follows: (1) it
included various individual medical information; (2) each patient could be tracked for a
long-term follow-up; (3) it could show current diagnostic and therapeutic modes in the real
world. The purpose of the research was to find the risk factors that could predict survival
rates with different combinations of feature-selection methods and prediction models. We
evaluated the survival to discharge and risks factors of older adults after the first CABG
from 2008 to 2009 and followed up to 10 years. Our study showed that, without variable
selection, XGBoost had the best predictive ability. By selecting XGBoost and adding the
CHA2DS score, acute pancreatitis, and acute kidney failure for further predictive analysis,
MARS had the best prediction performance and only needed 10 variables.

Previously, most studies focused on chronic or vascular diseases that had been ac-
quired before the CABG surgery [26]. No known study investigated using preoperative and
perioperative variables as predictor factors for long-term survival probability. A previous
history of DM and CKD is a decisive risk factor for cardiovascular diseases, such as CAD
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and CHF. In part, most are contributed from aging [5,27,28], MI, AF, chronic renal failure,
abnormal renal function, and renal failure have higher mortality after CABG [6,26,29–31].
Liu et al. found that ≥65 age, the female sex, diabetes, congenital heart disease, hyper-
tension on Levels 2 and 3, and using private insurance contributed to a higher risk of
readmission [1]. The score of CHA2DS2-VASc was employed as a risk-measurement tool;
it was recorded in treatment guidelines for stroke prevention and is a factor for predicting
stroke. Tian et al. suggest that CHA2DS2-VASc score should be on the clinical applica-
tion [10]. This study demonstrated two significant findings: first, preoperative 1-year and
perioperative variables are significant predictors. Second, after applying machine-learning
variable screening and prediction methods, it is clearer to identify which variables could
affect survival. Furthermore, we could also use fewer factors to achieve good predictive
ability. Our study’s limitations are the lack of clinical lab data, such as family history, and
detailed health-check values.

5. Conclusions

On the basis of our research, we developed multiple-stage frameworks to build a
survival model for predicting the mortality of older adults who had undergone their
first CABG. The advantages of this study are that it is innovative and practical in clinical
research. Furthermore, we could achieve better prediction with only 10 variables. This
could help clinicians make decisions more quickly and encourage patients towards earlier
healthcare management.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/healthcare9050547/s1, ICD-9-CM and ICD-10-CM codes used for diagnosis in this study.

Author Contributions: Conceptualization, T.-S.L., S.-J.L. and M.C.; data curation, Y.-C.H.; formal
analysis, Y.-C.H.; methodology, Y.-C.H. and M.C.; project administration, T.-S.L., S.-J.L. and M.C.;
software, Y.-C.H.; supervision, T.-S.L.; validation, T.-S.L., S.-J.L. and M.C.; writing—original draft,
Y.-C.H.; writing—review and editing, Y.-C.H., S.-J.L. and Y.-N.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of Fu Jen Catholic
University (protocol code C108121; date of approval, 5 March 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data presented in this study are not available on request from the
corresponding author. Due to the General Data Protection Regulation, the data presented in this
research are not publicly available.

Acknowledgments: The authors would like to thank the editor and the reviewers for their valuable
comments. The authors sincerely appreciate NHIRD, which was provided by the Ministry of Health
and Welfare.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, G.; Zhang, Y.; Zhang, W.; Hu, L.; Lv, T.; Cheng, H.; Hu, Y.; Huang, J. Risk Prediction Model of Readmission after Coronary
Artery Bypass Grafting (CABG) in China. Res. Sq. 2020. [CrossRef]

2. Malmberg, M.; Gunn, J.; Rautava, P.; Sipilä, J.; Kytö, V. Outcome of Acute Myocardial Infarction Versus Stable Coronary Artery
Disease Patients Treated with Coronary Bypass Surgery. Ann. Med. 2021, 53, 70–77. [CrossRef] [PubMed]

3. Chang, Y.-C.; Chiang, J.-H.; Lay, I.-S.; Lee, Y.-C. Increased Risk of Coronary Artery Disease in People with a Previous Diagnosis of
Carpal Tunnel Syndrome: A Nationwide Retrospective Population-Based Case-Control Study. BioMed Res. Int. 2019, 2019, 1–8.
[CrossRef] [PubMed]

4. Lee, T.-S.; Li, S.-J.; Jiang, Y.; Shia, B.-C.; Chen, M. Cost Analysis of Coronary Artery Bypass Grafting Surgery under Single-Payer
Reimbursement in Taiwan. Int. J. Appl. Sci. Eng. 2020, 17, 419–428. [CrossRef]

594



Healthcare 2021, 9, 547

5. Chen, S.-W.; Chang, C.-H.; Lin, Y.-S.; Wu, V.C.-C.; Chen, D.-Y.; Tsai, F.-C.; Hung, M.-J.; Chu, P.-H.; Lin, P.-J.; Chen, T.-H. Effect of
Dialysis Dependence and Duration on Post-Coronary Artery Bypass Grafting Outcomes in Patients with Chronic Kidney Disease:
A Nationwide Cohort Study in Asia. Int. J. Cardiol. 2016, 223, 65–71. [CrossRef] [PubMed]

6. Chou, C.-L.; Hsieh, T.-C.; Wang, C.-H.; Hung, T.-H.; Lai, Y.-H.; Chen, Y.-Y.; Lin, Y.-L.; Kuo, C.-H.; Wu, Y.-J.; Fang, T.-C. Long-term
Outcomes of Dialysis Patients After Coronary Revascularization: A Population-based Cohort Study in Taiwan. Arch. Med. Res.
2014, 45, 188–194. [CrossRef]

7. Milojevic, M.; Head, S.J.; Parasca, C.A.; Serruys, P.W.; Mohr, F.W.; Morice, M.-C.; Mack, M.J.; Ståhle, E.; Feldman, T.E.; Dawkins,
K.D.; et al. Causes of Death Following PCI Versus CABG in Complex CAD. J. Am. Coll. Cardiol. 2016, 67, 42–55. [CrossRef]

8. Zhang, Z.; Kolm, P.; Grau-Sepulveda, M.V.; Ponirakis, A.; O’Brien, S.M.; Klein, L.W.; Shaw, R.E.; McKay, C.; Shahian, D.M.;
Grover, F.L.; et al. Cost-Effectiveness of Revascularization Strategies. J. Am. Coll. Cardiol. 2015, 65, 1–11. [CrossRef]

9. Kuo, C.-S.; Lu, C.-W.; Chang, Y.-K.; Yang, K.-C.; Hung, S.-H.; Yang, M.-C.; Chang, H.-H.; Huang, C.-T.; Hsu, C.-C.; Huang, K.-C.
Effectiveness of 23-Valent Pneumococcal Polysaccharide Vaccine on Diabetic Elderly. Medicine 2016, 95, e4064. [CrossRef]

10. Tian, Y.; Yang, C.; Liu, H. CHA2DS2-VASc Score as Predictor of Ischemic Stroke in Patients Undergoing Coronary Artery Bypass
Grafting and Percutaneous Coronary Intervention. Sci. Rep. 2017, 7, 1–7. [CrossRef]

11. Yin, L.; Ling, X.; Zhang, Y.; Shen, H.; Min, J.; Xi, W.; Wang, J.; Wang, Z. CHADS2 and CHA2DS2-VASc Scoring Systems for
Predicting Atrial Fibrillation following Cardiac Valve Surgery. PLoS ONE 2015, 10, e0123858. [CrossRef]
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