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Natural language engineering includes a continuously enlarging variety of meth-
ods for solving natural language processing (NLP) tasks within a pervasive number
of applications. In this field, impressive achievements have been reached recently, by
means of systems using deep learning or different approaches, which allowed AI to
advance toward human levels in NLP tasks such as translation [1], reading compre-
hension [2,3], information retrieval [4], and sentiment analysis [5–7], and to build sys-
tems for question answering [8–11], conversational systems [12,13], and recommender sys-
tems (https://developers.google.com/machine-learning/recommendation, accessed on
24 March 2022).

However, despite the remarkable successes in different NLP tasks, natural language
engineering is nowadays a field of research of increasing interest due to the remaining
difficulties associated with its comprehension and generation, which are capabilities of
humans still not well understood by computer systems from a cognitive perspective.
Current difficulties include the complexity of deep learning models, growing in directions
chosen empirically [14], the difficulty of scaling them down for implementation on the edge,
the scarcity of datasets for some languages (https://www.aclweb.org/portal/content/
emnlp-workshop-deep-learning-low-resource-nlp, accessed on 24 March 2022), and the
lack of explainability of the models [15].

This Special Issue highlights the most recent research being carried out in the field of
NLP methods, to face these open issues, with particular emphasis on emerging approaches
for learning interactively or autonomously from data, single and multiple language under-
standing and grounding for analysis and generation, as well as potential or real applications
in different domains and everyday devices.

To this aim, this Special Issue gathers original contributions by researchers with broad
expertise in various fields—natural language processing, cognitive science and psychology,
artificial intelligence and neural networks, computational modeling and neuroscience—
discussing their cutting-edge work as well as perspectives on future directions in the whole
range of theoretical and practical aspects, technologies, and systems in this research area.

There are six contributions selected for this Special Issue, representing progress and
potential applications in the following NLP areas specifically addressed:

1. Low-resource natural language processing. Yimam et al. state that the available
pre-trained models do not fit well with the need for low-resource languages; thus,
they introduce different semantic models for Amharic and fine-tune two pre-trained
models and train seven new models. Moreover, they employ these models for different
NLP tasks and study their impact.

2. Natural language understanding, generation and grounding. Agafonova et al. re-
visit the receptive theory in the context of computational creativity; they present a
fully autonomous text generation engine with raw output simulating the narrative of
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a mad digital person and discuss the impact of receptive theory, chance discovery, and
simulation of fringe mental state on the understanding of computational creativity.

3. Neuroscience-inspired cognitive architectures. Onorati et al. propose a model to
control a specific class of syntax-oriented neural networks by adding declarative rules,
by exploiting parse trees and subtrees, to include human control in NLP systems, and
they show that declarative rules representing human knowledge can be effective for
some NLP tasks.

4. Search and information retrieval. Yu et al. underline that classification of resource
can help the filtering of massive resources, and they propose for this scope an Associ-
ation Content Graph Attention Network, which is based on association features and
content attributes of academic resources, considering both semantic relevance and
academic relevance, to improve the accuracy of academic resource classification.

5. Text de-identification. Libbi et al. consider the lack of large, annotated Electronic
Health Records datasets due to privacy concerns and annotation costs, thus they pro-
pose the use of language models for generating artificial data jointly with annotations
that can be effectively used, alone or in combination with real data, to train supervised
named-entity recognition models for de-identification.

6. Applications in science, engineering, medicine, healthcare, finance, business, law,

education, industry, transportation, retailing, telecommunication and multimedia.

Song and Huang propose to use the massive amount of data generated by social media
for disaster analysis, and in particular to use Twitter to track disaster events to make a
speedy rescue plan, and for this scope, they propose a sentiment-aware contextual
model, consisting of a layer that can generate sentimental contextual embeddings from
tweets, a BiLSTM layer with attention, and a 1D convolutional layer for local feature
extraction, demonstrating superior performance in Tweets-based disaster analysis.

Acknowledgments: This Special Issue was successful thanks to the valuable contributions of all the
authors, the dedicated referees, and the Editorial team of Future Internet.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The massive amount of data generated by social media present a unique opportunity for
disaster analysis. As a leading social platform, Twitter generates over 500 million Tweets each day.
Due to its real-time characteristic, more agencies employ Twitter to track disaster events to make
a speedy rescue plan. However, it is challenging to build an accurate predictive model to identify
disaster Tweets, which may lack sufficient context due to the length limit. In addition, disaster
Tweets and regular ones can be hard to distinguish because of word ambiguity. In this paper, we
propose a sentiment-aware contextual model named SentiBERT-BiLSTM-CNN for disaster detection
using Tweets. The proposed learning pipeline consists of SentiBERT that can generate sentimental
contextual embeddings from a Tweet, a Bidirectional long short-term memory (BiLSTM) layer with
attention, and a 1D convolutional layer for local feature extraction. We conduct extensive experiments
to validate certain design choices of the model and compare our model with its peers. Results show
that the proposed SentiBERT-BiLSTM-CNN demonstrates superior performance in the F1 score,
making it a competitive model in Tweets-based disaster prediction.

Keywords: natural language processing; text classification; mining information; Tweet data; social media

1. Introduction

Social media has been increasingly popular for people to share instant feelings, emo-
tions, opinions, stories, and so on. As a leading social platform, Twitter has gained
tremendous popularity since its inception. The latest statistical data show that over 500
million Tweets are sent each day, generating a massive amount of social data that are used
by numerous upper-level analytical applications to create additional value. Meanwhile,
numerous studies have adopted Twitter data to build natural language processing (NLP)
applications such as named entity recognition (NER) [1], relation extraction [2], question
and answering (Q&A) [3], sentiment analysis [4], and topic modeling [5].

In addition to the social function, Twitter is also becoming a real-time platform to
track events, including accidents, disasters, and emergencies, especially in the era of mobile
Internet and 5G communication, where smartphones allow people to post an emergency
Tweet instantly online. Timing is the most critical factor in making a rescue plan, and
the rise in social media brings a unique opportunity to expedite this process. Due to
this convenience, more agencies like disaster relief organizations and news agencies are
deploying resources to programmatically monitor Twitter, so that first responders can
be dispatched and rescue plans can be made at the earliest time. However, processing
social media data and retrieving valuable information for disaster prediction requires
a series of operations: (1) perform text classification on each Tweet to predict disasters
and emergencies; (2) determine the location of people who need help; (3) calculate the
priorities to schedule rescues. Disaster prediction is the first and most important step,
because a misclassification may result in a waste of precious resources which could have
been dispatched to real needs [6].

Future Internet 2021, 13, 163. https://doi.org/10.3390/fi13070163 https://www.mdpi.com/journal/futureinternet
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However, to automate this process, an accurate and robust classifier is needed to
distinguish real disaster Tweets from regular ones. Disaster prediction based on Tweets is
challenging, because words indicative of a disaster, such as “fire”, “flood”, and “collapse”,
can be used by people metaphorically to describe something else. For example, a Tweet
message “On plus side look at the sky last night it was ABLAZE” explicitly uses the word
“ABLAZE” but means it metaphorically. The length limit of Tweets brings pros and cons
for training a classifier. The benefit is that users are forced to tell a story in a concise
way, and the downside is that the lack of clear context may prevent a classifier from well
understanding and interpreting the real meaning of a Tweet. Therefore, it is crucial to build
an advanced model that can understand the subtle sentiment embedded in Tweets along
with their given contexts to make better predictions.

Recent advances in deep learning have explored approaches to address these chal-
lenges that are commonly seen in other NLP tasks. Convolutional neural networks (CNNs),
which have been widely used in numerous computer vision tasks, have also been success-
fully applied in NLP systems due to their ability for feature extraction and representation.
Recurrent neural networks and their popular variants, Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU), are not only suitable for general sequential modeling
tasks but also provide the capability to capture long dependency information between
words in a sentence. In addition, LSTM and GRU can well address the gradient explosion
and vanishing issue and allow a training algorithm to converge. Another breakthrough
architecture is Bidirectional Encoder Representations from Transformers (BERT), which
stacks layers of Transformer encoders with a multi-headed attention mechanism to enhance
a model’s ability to capture contextual information.

Inspired by these prior efforts, we propose a learning pipeline named SentiBERT-
BiLSTM-CNN for disaster prediction based on Tweets. As shown in Figure 1, the pipeline
consists of three consecutive modules, including (1) a SentiBERT-based encoder that aims
to transform input tokens to sentiment-aware contextual embeddings, (2) a Bidirectional
LSTM (BiLSTM) layer with attention to produce attentive hidden states, and (3) a single-
layer CNN as a feature extractor. In addition, a standard detection head takes as input
a concatenation of the generated features and feeds them into a fully connected layer
followed by a softmax layer to output the prediction result, i.e., disaster Tweet or not. The
design is validated through extensive experiments, including hyper-parameter tuning to
decide certain design choices and an ablation study to justify the necessity of each selected
building block. Results show that the proposed system achieves superior performance in
the F1 score, making it a competitive model in Tweets-based disaster prediction.

Tweets Pre-processing SentiBERT
BiLSTM

with
attention

CNN Detection
head

Module I Module II Module III Disaster
or not

Figure 1. The proposed SentiBERT-BiLSTM-CNN learning pipeline for disaster prediction us-
ing Tweets.

The rest of this paper is organized as follows: Section 2 reviews relevant studies;
Section 3 covers the dataset description and the technical details of the proposed learn-
ing model; Section 4 provides experimental validation with result analysis; Section 5
summarizes our work and points out future directions.

2. Related Work

2.1. Social Media Learning Tasks

Data collected from social media have a lot of potentials to explore. Social texts have
been extensively studied and mined to build a wide range of NLP applications such as
NER [1], Q&A [3], sentiment analysis [4,7–10], and topic modeling [5,11,12]. In addition,
social data have been utilized for emergency, disease, and disaster analysis [13–15]. In [16],
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the authors develop predictive models to detect Tweets that present situational awareness.
The models are evaluated in four real-world datasets, including the Red River floods of 2009
and 2010, the Haiti earthquake of 2010, and the Oklahoma fires of 2009. This paper focuses
on exploring the contextual information in Tweets to build a robust disaster classifier.

2.2. RNN/CNN-Based Models in Text Mining

Active development in deep learning in recent years has generated fruitful achieve-
ments in social text learning. As two representative learning models, RNN and CNN have
been seen in numerous studies, either individually or in a hybrid fashion.

Huang et al. [17] combined BiLSTM and Conditional Random Field (CRF) to build a
sequential tagging framework that can be applied to parts of speech (POS), chunking, and
NER tasks. In [18], Liu et al. propose a Stochastic Answer Network (SAN) that stacks various
layer types, including GRU, BiLSTM, and self-attention; along with a stochastic prediction
dropout trick, the SAN model shows superior performance in reading comprehension.

Kalchbrenner et al. [19] designed one of the earliest CNN-based methods for sentence
modeling, which featured a dynamic CNN (DCNN) that uses the dynamic k-max pooling
subsampling and achieves superior performance in sentiment classification. Due to CNN’s
ability in feature extraction, the DCNN-based system does not require hand-crafted fea-
tures, which is appreciated and widely adopted by numerous subsequent studies. Kim [4]
proposed a simple but effective CNN architecture that utilizes pre-trained word embed-
dings by word2vec. Kim’s work was modified by Liu et al. [20], who propose to learn word
embeddings rather than use pre-trained ones directly. Mou et al. designed a tree-based
CNN [21] that can capture the general semantics of sentences. In [22], Pang et al. proposed
to transform the text matching problem into an image recognition task that can be solved
by a CNN-based model. In addition to open-domain datasets, CNNs have also been exten-
sively used in domain-specific tasks, especially in biomedical text classification [22–27].

Chen et al. [18] proposed a two-stage method that combines BiLSTM and CNN for
sentiment classification. First, the BiLSTM model is used for sentence type classification.
Once assigned a type, a sentence then goes through a 1D CNN layer for sentiment detection.
In [28], the authors designed a hybrid network that combines RNN, MLP, and CNN to
explore semantic information at each hierarchical level of a document.

2.3. Transformer-Based Models for Social Text Learning

BERT [29] and its variants [30–36] have been extensively used as building blocks for
numerous applications, owing to their ability to capture contextual word embeddings.
FakeBERT [37] combines BERT and 1D CNN layers to detect fake news in social media. A
similar work [38] adopts BERT to detect auto-generated tweets. Mozafari et al. [39] designed
a BERT-based transfer learning method to detect hate speech on Twitter. Eke et al. [40]
employed BERT to build a sarcasm detector that can classify sarcastic utterances, which is
crucial for downstream tasks like sentiment analysis and opinion mining.

2.4. Learning-Based Disaster Tweets Detection

One of the early efforts to identify and classify disaster Tweets is by Stowe et al. [6],
who focused on the Tweets generated when Hurricane Sandy hit New York in 2012. In [6],
six fine-grained categories of Tweets, including Reporting, Sentiment, Information, Action,
Preparation, and Movement, are annotated. With a series of hand-crafted features, such as
key terms, Bigrams, time, and URLs, the dataset is used to train three feature-based models,
including SVM, maximum entropy, and Naive Bayes models. Palshikar et al. [41] developed
a weakly-supervised model based on a bag of words, combined with an online algorithm
that helps learn the weights of words to boost detection performance. Algur et al. [42] first
transformed Tweets into vectors using count vectorization and Term Frequency-Inverse
Document Frequency (TF-IDF), based on a set of pre-identified disaster keywords; the vec-
torized Tweets are then trained using Naive Bayes, Logistic Regression, J48, Random Forest,
and SVM to obtain various classifiers. Singh et al. [43] investigated a Markov model-based
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model to predict the priority and location of Tweets during a disaster. Madichetty et al. [44]
designed a neural architecture that consists of a CNN to extract features from Tweets and a
multilayer perceptron (MLP) to perform classification. Joao [45] developed a BERT-based
hybrid model that uses both hand-crafted features and learned ones for informative Tweets
identification. Li et al. [46] investigate a domain-adapted learning task that uses a Naive
Bayes classifier, combined with an iterative self-training algorithm, to incorporate anno-
tated data from a source disaster dataset and data without annotation from the target
disaster dataset into a classifier for the target disaster. More broadly, prior efforts on event
Tweet detection are also of interest. Ansah et al. [47] proposed a model named SensorTree
to detect protest events by tracking information propagated through the Twitter user com-
munities and monitoring the sudden change in the growth of these communities as burst
for event detection. Saeed et al. [48] developed a Dynamic Heartbeat Graph (DHG) model
to detect trending topics from the Twitter stream. An investigation of recent efforts [49] in
disaster Tweet detection reveals a lack of deep learning-based methods that have shown
superiority in numerous other NLP applications, as mentioned in Section 2.1. However, in
the sub-field of disaster Tweets detection, the use cases are still insufficient. In addition,
the idea of integrating sentiment information into a disaster detector remains unexplored,
and our study is an attempt to fill this gap.

Inspired by the prior efforts, we design a learning pipeline that includes a BERT variant
named SentiBERT [50] to obtain sentiment-aware contextual embeddings, a BiLSTM layer
for sequential modeling, and a CNN for feature extraction. The pipeline aggregates the
strength of each individual block to enhance the predictive power that realizes an accurate
disaster detector.

3. Material and Methods

3.1. Dataset

The dataset was created by Figure Eight inc. (an Appen company) from Twitter data
and used as a Kaggle competition hosted at https://www.kaggle.com/c/nlp-getting-
started/data (accessed on 21 June 2021). There are 10,876 samples in the dataset, including
4692 positive samples (disaster) and 6184 negative samples (not a disaster). Table 1 shows
four positive and four negative samples. It can be seen that the disaster and non-disaster
Tweets could use similar keywords in different contexts, resulting in different interpreta-
tions. For example, “pileup” in sample 1, “airplane’s accident” in sample 2, “Horno blaze”
in sample 3, and the phrase “a sign of the apocalypse” in sample 4 are more indicative of
a disaster. However, the words “bleeding”, “blaze”, “ambulance”, and “Apocalypse” in
samples 4 through 8 do not indicate a disaster, given their contexts. Figure 2 displays the
histograms of three variables per Tweet: the number of characters, the number of words,
and the average number of word lengths. Specifically, the means of the character number
per Tweet for disaster and non-disaster Tweets are 108.11 and 95, respectively; the means
of the word number per Tweet for disaster and non-disaster Tweets are 15.16 and 14.7,
respectively; the means of the average word length for disaster and non-disaster Tweets
are 5.92 and 5.14, respectively. The stats data show that the disaster Tweets are relatively
longer than the non-disaster ones.
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Table 1. Disaster Tweets dataset samples. A + sign indicates a positive sample, and a − sign indicates
a negative sample.

ID Sample Tweet Class

1 Grego saw that pileup on TV keep racing even bleeding. +

2 Family members who killed in an airplane’s accident. +

3 Pendleton media office said only fire on base right now is the
Horno blaze. +

4 I know it’s a question of interpretation but this is a sign of the
apocalypse. +

5 bleeding on the brain don’t know the cause. −
6 alrighty Hit me up and we’ll blaze!! −
7 waiting for an ambulance. −
8 Apocalypse please. −

(a)

(b)

(c)

Figure 2. Stats of Tweets in the dataset. Histograms of (a) the number of characters per Tweet, (b) the
number of words per Tweet, and (c) the average word length per Tweet, plotted for disaster Tweets
(left) and non-disaster Tweets (right).

3.2. Data Pre-Processing

The raw data obtained from Twitter have noises that need to be cleaned. Thus, we
apply a pre-processing step to remove the hashtags, emoticons, and punctuation marks.
For example, a message “# it’s cool. :)”, becomes “it’s cool.” after the filtering. We then
apply some basic transformations such as changing “We’ve” to “We have” to create a better
word separation within a sentence. Finally, we tokenize each message to generate a word
sequence as the input of the learning pipeline.
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3.3. Overview of the Proposed Learning Pipeline

Figure 3 shows the proposed SentiBERT-BiLSTM-CNN learning pipeline, which con-
sists of three sequential modules:

1. SentiBERT is utilized to transform word tokens from the raw Tweet messages to con-
textual word embeddings. Compared to BERT, SentiBERT is better at understanding
and encoding sentiment information.

2. BiLSTM is adopted to capture the order information as well as the long-dependency
relation in a word sequence.

3. CNN acts as a feature extractor that strives to mine textual patterns from the embed-
dings generated by the BiLSTM module.

The output of the CNN is fed to a detection layer to generate the final prediction result,
i.e., disaster or not.

Figure 3. An overview of the SentiBERT-BiLSTM-CNN learning pipeline.

3.4. Sentibert

BERT [29] is an attention-based language model that utilizes a stack of Transformer
encoders and decoders to learn textual information. It also uses a multi-headed attention
mechanism to extract useful features for the task. The bidirectional Transformer neural
network, as the encoder of BERT, converts each word token into a numeric vector to
form a word embedding, so that words that are semantically related would be translated
to embeddings that are numerically close. BERT also employs a mask language model
(MLM) technique and a next sentence prediction (NSP) task in training to capture word-
level and sentence-level contextual information. BERT and its variants have been applied
to numerous NLP tasks such as named entity recognition, relation extraction, machine
translation, and question and answering, and achieved the state-of-the-art performance.
In this study, we choose a BERT variant, SentiBERT, which is a transferable transformer-
based architecture dedicated to the understanding of sentiment semantics. As shown
in Figure 4, SentiBERT modifies BERT by adding a semantic composition unit and a
phrase node prediction unit. Specifically, the semantic composition unit aims to obtain
phrase representations that are guided by contextual word embeddings and an attentive
constituency parsing tree. Phrase-level sentiment labels are used for phrase node prediction.
Due to the addition of phrase-level sentiment detection, a sentence can be broken down
and analyzed at a finer granularity to capture more sentiment semantics.
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Figure 4. Module I: SentiBERT.

Let s = {wi|i = 1, ..., n} denote a Tweet message with n word tokens, which are the
input of SentiBERT. Our goal is to leverage the power of SentiBERT to generate sentiment-
enhanced word embeddings, which can be denoted by e = {ei = SentiBERT(wi)|i =
1, ..., n}. In this study, each Tweet should have no more than 64 tokens; the Tweets with less
than 64 tokens are padded, namely, n = 64. Reference [29] experimentally showed that the
output of the last four hidden layers of BERT encodes more contextual information than
that of the previous layers. To this end, we also chose a concatenation of the outputs of the
last four hidden layers as the word embedding representation.

3.5. Bilstm with Attention

A regular LSTM unit consists of a cell, an input gate, an output gate and a forget gate.
The cell can memorize values over arbitrary time periods, and the three gates regulate
information flow into and out of the cell to keep what matters and forget what does not.
The BiLSTM consists of a forward and a backward LSTM that process an input token
vector from both directions. By looking at past and future words, a BiLSTM network
can potentially capture the more semantic meaning of a sentence. In our study, the word
embeddings e produced from module I are fed into a standard BiLSTM layer to generate a
list of hidden states h = {hi|i = 1, ..., n}, where hi is given by Equation set (1).

←−
hi =

←−−−
LSTM(ei,

←−−
hi−1)

−→
hi =

−−−→
LSTM(ei,

−−→
hi−1)

hi = [
←−
hi ;

−→
hi ]

(1)

where [; ] is a concatenation operation. The structure is shown in Figure 5.
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Figure 5. Module II: BiLSTM with attention.

In a Tweet, each word influences the disaster polarity differently. Using an attention
mechanism can help the model learn to assign different weights to different words so that
the more influential words are given higher weights. For a hidden state hi, its attention ai
is given in the Equation set (2).

ui = tanh(W · hi + b)

ai =
eu�

i ·uw

∑i eu�
i ·uw

,
(2)

where W denotes a weight matrix, b denotes the bias, and uw a global context vector, and
all three are learned during training. The output of module II is a concatenation of attentive
hidden states H′ = [a1h1; ...; anhn].

3.6. CNN

Module III is a CNN that extracts local features, as shown in Figure 6. We adopt a 1D
convolutional layer with four differently-sized filters. Each filter scans the input matrix H′

and performs a 1D convolutional along the way to generate a feature map. The extracted
features are then fed into a max-pooling layer and concatenated to form a feature matrix F.
Lastly, we send a concatenation of H′ and F to the dense layer.

H'

k2

k3

k4

k5

Conv1D

M
ax

-p
oo

lin
g 

F + [H';F]

Figure 6. Module III: feature extraction via a CNN layer.
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3.7. A Fusion of Loss Functions

In this subsection, we explore the options of loss functions. We considered two
individual loss functions including the binary cross-entropy (BCE) loss and the Focal Loss.
In addition, we employed a fusion strategy as suggested in [51] to combine the two losses,
which resulted in performance improvement.

Since the disaster Tweet detection task is a typical binary classification problem, it is
intuitive to utilize the BCE loss as shown in Equation (3) below.

LBCE = − 1
m

m

∑
i=1

(y(i)log(ŷ(i)) + (1 − y(i))log(1 − ŷ(i))), (3)

in which m is the training set size, and y(i) and ŷ(i) denote the ground truth and the
predicted class for the ith sample in the dataset, respectively.

Meanwhile, considering the imbalanced sample distribution, this study also employs
Focal Loss, defined in Equation (4).

LFL = − 1
m

m

∑
i=1

(y(i)α(1 − ŷ(i))
γ + (1 − y(i))(1 − α)ŷγ

(i)log(1 − ŷi)), (4)

where γ is a coefficient that controls the curve shape of the focal loss function. Using
Focal Loss with γ > 1 reduces the loss for well-classified examples (i.e., with a prediction
probability larger than 0.5) and increases loss for hard-to-classify examples (i.e., with a
prediction probability less than 0.5). Therefore, it turns the model’s attention towards the
rare class in case of class imbalance. On the other hand, a lower α value means that we
tend to give a small weight to the dominating or common class and high weight to the rare
class. By fusing the focal loss and the BCE loss in a certain ratio, we obtain Equation (5), in
which β1 and β2 specify the fusion weights.

Lmix = β1LBCE + β2LFL (5)

4. Experiments

We utilize the disaster Tweet dataset discussed in Section 3.1 for performance evalua-
tion. We first present the performance metrics and then report the experimental results.

4.1. Evaluation Metrics

We use precision (Pre), recall (Rec), and the F1 score to evaluate the model performance.
Given that the positive/negative samples are not balanced, F1 is a better metric than
accuracy. Precision and recall are also important. The former reflects the number of false
alarms; the higher the precision, the fewer false alarms. The latter tells the number of
positive samples that are missed; the higher the recall, the fewer disaster Tweets missed. A
large precision–recall gap should be avoided, since it indicates that a model focuses on a
single metric, while a model should really focus on optimizing F1, the harmonic mean of
precision and recall.

Let TP, TN, and FP denote the number of true positives, true negatives, and false
positives, respectively, we can then calculate precision, recall, and F1 as follows.

Pre =
TP

TP + FP
(6)

Rec =
TP

TP + FN
(7)

F1 = 2 × Pre × Rec
Pre + Rec

. (8)
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4.2. Training Setting

The dataset was divided into training and validation sets in the ratio of 7:3, generating
7613 training and 3263 validation samples. For the SentiBERT, the embedding dimension
was 768, max sequence length was 128, and layer number was 12; for the BiLSTM module,
the layer number was 1, and the feature number was 768; for the CNN module, the sizes of
the four filters were set to 2, 3, 4 and 5. For the overall architecture, we used a learning rate
of 1 × 10−4, the Adam optimizer, and experimented with different batch sizes (16 and 32)
and training epochs (6, 8, 10, 12, and 14). All experiments were implemented using Python
3.9.4 and PyTorch 1.8.0 on Google Colab with an NVIDIA Tesla K80.

4.3. Baseline Model

The baseline model we chose was a BERT-based hybrid model developed by Joao [45].
We denote the model as BERThyb. We regard BERThyb as a credible baseline because it
presented the state-of-the-art (SOTA) performance compared to a variety of models on four
datasets. BERThyb works by combining a series of hand-crafted Tweet features and the
BERT word embeddings and sending the feature concatenation to an MLP for classification.

4.4. Effect of Hyper-Parameter Choices

We conducted experiments to evaluate the performance of our model SentiBERT-
BiLSTM-CNN under different hyper-parameter settings. Specifically, the model was trained
with a combination of three values of epochs (6, 8, 10, 12, and 14) and two values of batch
sizes (16, 32), creating ten experiments, as shown in Table 2. It can be seen that when
the model was trained with 10 epochs and with a batch size of 32, the model achieved
the best performance, with an F1 of 0.8956. We also observe a consistent performance
improvement as the number of epochs increases from 6 to 10, and beyond 10 epochs, the
gain is not apparent. The training was efficient because SentiBERT has been pre-trained
and was only fine-tuned on our dataset. It is noted that for this set of experiments, we
applied a basic cross-entropy loss function. The effect of the fused loss function is reported
in the next subsection.

Table 2. Performance of SentiBERT-BiLSTM-CNN under different hyper-parameter settings.

Epochs Batch Size Precision Recall F1 Score

6 32 0.8525 0.8478 0.8501
16 0.8495 0.8364 0.8429

8 32 0.8654 0.8701 0.8677
16 0.8643 0.8618 0.8630

10 32 0.8987 0.8932 0.8959
16 0.8903 0.8827 0.8865

12 32 0.8848 0.8956 0.8902
16 0.8817 0.8893 0.8855

14 32 0.8902 0.9012 0.8957
16 0.8949 0.8878 0.8913

4.5. The Effect of a Hybrid Loss Function

We conducted experiments to evaluate the model’s performance under different loss
function settings. We first evaluated the performance of using BCE and FL individually
and then fused the two loss functions in the ratio of 1:1. The results are reported in Table 3.
We observe that the model with FL outperformed the model with BCE, validating the
efficacy of FL in the case of imbalanced data distribution. In addition, the model with a
hybrid loss function performed the best, with an F1 of 0.9275. The result demonstrates the
effectiveness of the fusion strategy in this study.
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Table 3. Performance of SentiBERT-BiLSTM-CNN under different loss function settings.

Loss Function Epochs Batch Size Precision Recall F1 Score

LBCE 10 32 0.8987 0.8932 0.8959
LFL 10 32 0.9029 0.9135 0.9082
Lmix 10 32 0.9305 0.9271 0.9275

4.6. Performance Evaluation

We also conducted experiments to evaluate a set of models, and present a performance
comparison of all evaluated models in Table 4, using the best hyper-parameter settings and
the fused loss function, as reported in the previous two subsections. We give the result
analysis as follows.

• The set of models CNN, BiLSTM, SentiBERT, BiLSTM-CNN, and SentiBERT-BiLSTM-
CNN forms an ablation study, from which we can evaluate the performance of each
individual module and the combined versions. It can be seen that the pure CNN
model performs the worst since a single-layer CNN cannot learn any contextual
information. Both BiLSTM (with attention) and SentiBERT present an obvious im-
provement. SentiBERT is on a par with BiLSTM-CNN in precision, but outperforms it
in recall. Our final model, SentiBERT-BiLSTM-CNN tops every other model, showing
its power to combine the strength of each individual building block.

• The set of models fastText-BiLSTM-CNN, word2vec-BiLSTM-CNN, BERT-BiLSTM-
CNN, and SentiBERT-BiLSTM-CNN are evaluated to compare the effect of word
embeddings. FastText [52], word2vec [53], BERT, and SentiBERT are used for the same
purpose, i.e., to generate word embeddings. A model’s ability to preserve contextual
information determines its performance. From the results, we observe that by adding
contextual embeddings, the models gain improvements to varying degrees. SentiBERT-
BiLSTM-CNN, as the best-performing model, demonstrates superior capability in
encoding contextual information.

• Another observation is that SentiBERT-BiLSTM-CNN outperforms BERT-BiLSTM-
CNN by 1.23% in F1, meaning that sentiment in Tweets is a crucial factor that can help
detect disaster Tweets, and a sentiment-enhanced BERT validates this hypothesis.

• Lastly, SentiBERT-BiLSTM-CNN outperforms BERThyb, i.e., the SOTA, by 0.77% in
F1. Although BERThyb presented the highest precision 0.9413, its precision–recall
gap (4.21%) is large, compared to that of SentiBERT-BiLSTM-CNN (0.34%), meaning
that BERThyb focuses more on optimizing precision. On the other hand, SentiBERT-
BiLSTM-CNN demonstrated a more balanced result in precision and recall.

Table 4. A performance comparison of models.

Model Precision Recall F1 Score

CNN 0.8064 0.8086 0.8025
BiLSTM 0.8571 0.8405 0.8487

SentiBERT 0.8668 0.8712 0.8690
BiLSTM-CNN 0.8674 0.8523 0.8598

word2vec-BiLSTM-CNN 0.8831 0.8767 0.8799
fastText-BiLSTM-CNN 0.8935 0.8736 0.8834

BERT-BiLSTM-CNN 0.9118 0.9187 0.9152
BERThyb 0.9413 0.8992 0.9198

SentiBERT-BiLSTM-CNN 0.9305 0.9271 0.9275

4.7. Error Analysis

Table 5 shows ten samples, including five positive and five negative ones, which
are misclassified by the proposed SentiBERT-BiLSTM-CNN model. In this subsection,
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we provide an analysis of these mistakes that may shed light on further improvement of
our model.

• For the five samples that are marked as disaster Tweets (i.e., samples one through
five), none of them are describing a common sense disaster: sample 1 seems to
state a personal accident; sample 2 talks about US dollar crisis which may indicate
inflation given its context; in sample 3, the phrase “batting collapse” refers to a
significant failure of the batting team in a sports game; sample 4 is the closest to a
real disaster, but the word “simulate” simply reverses the semantic meaning; sample
5 does mention a disaster “Catastrophic Man-Made Global Warming”, but the user
simply expresses his/her opinion against it. Our observation is that the process
of manual annotation could introduce some noises that would affect the modeling
training. From another perspective, the noises help build more robust classifiers and
potentially reduce overfitting.

• For the five negative samples (6–10), we also observe possible cases of mislabeled
samples: sample 6 clearly reports a fire accident with the phrase “burning buildings”
but was not labeled as a disaster Tweet; sample 7 states a serious traffic accident;
sample 8 mentions bio-disaster with the phrase “infectious diseases and bioterrorism”;
sample 9 has only three words, and it is hard to tell its class without more context,
although the word “bombed” is in the Tweet; sample 10 reflects a person’s suicide
intent, which could have been marked as a positive case.

Table 5. Examples of misclassified samples. A “+” sign indicates a positive sample, and a “−” sign
indicates a negative sample.

ID Sample Tweet Label Prediction

1 I was wrong to call it trusty actually. considering it
spontaneously collapsed on me that’s not very trusty. + −

2
Prices here are insane. Our dollar has collapsed
against the US and it’s punishing us. Thanks for
the info.

+ −

3 Now that’s what you call a batting collapse. + −

4 Emergency units simulate a chemical explosion at
NU. + −

5 99% of Scientists don’t believe in Catastrophic Man-
Made Global Warming only the deluded do. + −

6 all illuminated by the brightly burning buildings all
around the town! − +

7 That or they might be killed in an airplane accident
in the night a car wreck! Politics at it’s best. − +

8 automation in the fight against infectious diseases
and bioterrorism − +

9 misfit got bombed. − +

10
Because I need to know if I’m supposed to throw
myself off a bridge for a #Collapse or plan the parade.
There is no both.

− +

We need to clarify that these misclassified samples presented in the table are randomly
selected from all error predictions. It can be seen that the length limit of Tweets presents
pros and cons for training a classifier. The bright side is that users are forced to use short
and direct words to express an opinion, and the downside is that some short Tweets are
hard to interpret due to the lack of more context information, which is the main challenge
for training an accurate model.
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5. Conclusions

Disaster analysis is highly related to people’s daily lives, and recent years have seen
more research efforts dedicating to this field. Research on disaster prediction helps augment
people’s awareness, improve the mechanism of a government rescue, and schedule charita-
ble institutions’ work. This paper investigates a novel model for disaster detection using
Tweets. Our model, SentiBERT-BiLSTM-CNN, leverages a sentiment-aware BERT encoder,
an attentive BiLSTM, and a 1D convolutional layer to extract high-quality linguistic features
for disaster prediction. The model is validated through extensive experiments compared to
its peers, making it a competitive model for building a real-time disaster detector.

Although the proposed model is trained and validated on an English dataset, it can
be applied to datasets in other languages. Specifically, in a different language environ-
ment, the following adjustments need to be made: first, we should find a BERT model
pre-trained in the target language or in a multi-lingual setting, which is readily avail-
able online (https://huggingface.co/transformers/pretrained_models.html, accessed on
12 March 2021); second, we need to retrain SentiBERT on a sentiment analysis dataset in
the target language; lastly, a new disaster Tweet dataset in the target language is needed
to train and validate the model. In this new language environment, SentiBERT can now
generate sentiment-aware word embeddings to be consumed by the subsequent BiLSTM
and CNN modules, which are language independent.

This work has the following limitations that also point out the future directions. First,
it remains interesting to uncover the role keywords played in disaster detection. Given
that keywords like “blaze” and “apocalypse” can appear in both disaster and non-disaster
Tweets, it is challenging to effectively utilize the keywords as extra knowledge to help
boost the detection accuracy. One potential solution is to fine-tune BERT through pair-wise
training, taking a pair of Tweets containing the same keywords but with opposite training
labels; this way, BERT is forced to better understand the contextual difference between
two Tweets. Second, it remains unknown that how well the model trained on our dataset
performs on other disaster datasets, such as HumAID [54] and Crisismmd [55]; in addition,
we expect to obtain a more robust model that is trained across multiple disaster/crisis
Tweets datasets. Third, we are interested in creating a multilingual disaster detector
that can understand and process Tweets in different languages; it is worth conducting a
performance comparison between a multilingual and a monolingual model.
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Abstract: A major hurdle in the development of natural language processing (NLP) methods for
Electronic Health Records (EHRs) is the lack of large, annotated datasets. Privacy concerns prevent
the distribution of EHRs, and the annotation of data is known to be costly and cumbersome. Synthetic
data presents a promising solution to the privacy concern, if synthetic data has comparable utility to
real data and if it preserves the privacy of patients. However, the generation of synthetic text alone is
not useful for NLP because of the lack of annotations. In this work, we propose the use of neural
language models (LSTM and GPT-2) for generating artificial EHR text jointly with annotations for
named-entity recognition. Our experiments show that artificial documents can be used to train a
supervised named-entity recognition model for de-identification, which outperforms a state-of-the-
art rule-based baseline. Moreover, we show that combining real data with synthetic data improves
the recall of the method, without manual annotation effort. We conduct a user study to gain insights
on the privacy of artificial text. We highlight privacy risks associated with language models to
inform future research on privacy-preserving automated text generation and metrics for evaluating
privacy-preservation during text generation.

Keywords: natural language processing; medical records; privacy protection; synthetic text; genera-
tive language models; named-entity recognition; natural language generation

1. Introduction

Narrative text in electronic health records (EHRs) is a rich resource to advance medical
and machine learning research. To make this unstructured information suitable for clinical
applications, there is a large demand for natural language processing (NLP) solutions
that extract clinically relevant information from the raw text [1]. A major hurdle in the
development of NLP models for healthcare is the lack of large, annotated training data.
There are two reasons for this. First, privacy concerns prevent sharing of clinical data
with other researchers. Second, annotating data is a cumbersome and costly process
which is impractical for many organizations, especially at the scale demanded by modern
NLP models.

Synthetic data has been proposed as a promising alternative to real data. It addresses
the privacy concern simply by not describing real persons [2]. Furthermore, if task-relevant
properties of the real data are maintained in the synthetic data, it is also of comparable
utility [2]. We envision that researchers use synthetic data to work on shared tasks where
real data cannot be shared because of privacy concerns. In addition, even within the bounds
of a research institute, real data may have certain access restrictions. Using synthetic data
as a surrogate for the real data can help organizations to comply with privacy regulations.
Besides addressing the privacy concerns, synthetic data is an effective way to increase the
amount of available data without additional costs because of its additive nature [3,4]. Prior
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work showed exciting results when generating both structured [5] and unstructured med-
ical data [2]. In particular, recent advances in neural language modeling show promising
results in generating high-quality and realistic text [6].

However, the generation of synthetic text alone does not make it useful for training
of NLP models because of the lack of annotations. In this paper, we propose the use of
language models to jointly generate synthetic text and training annotations for named-
entity recognition (NER) methods. Our idea is to add in-text annotations to the language
model training data in form of special tokens to delimit start/end boundaries of named
entities (Figure 1). The source of those in-text annotations can be a (potentially noisy) pre-
trained model or manual annotation. By adding the special tokens to the training data, they
explicitly become part of the language modeling objective. In that way, language models
learn to produce text that is automatically annotated for downstream NER tasks—we refer
to them as “structure-aware language models.” Below, we will briefly outline our research
pipeline; see Figure 2 for an overview.

Generating structured text (our approach)

Prompt:

Model produces synthetic text: Model produces synthetic text with annotations:

Prompt:

Generating unstructured text (standard)

Figure 1. Illustrative example comparing standard text generation with the approach taken in this
paper. We introduce special tokens to delimit protected health information (PHI). These tokens can
be learned and generated like any other token by the language models. A prompt of three tokens
defines the initial context.

(1) Utility: downstream task

(2) Privacy

Figure 2. Overview of this study. (1) Raw, EHR text is automatically de-identified and annotated
with in-text PHI labels. (2) Pre-processed text is used to train two “structure-aware” language models:
an LSTM and GPT-2. (3) Using different decoding strategies, two synthetic corpora are generated
from each language model. (4) Synthetic text is evaluated regarding utility and privacy. (4.1) Utility
is measured by comparing the performance of machine learning models trained on synthetic data
with models trained on real data. (4.2) For the privacy evaluation, ROUGE n-gram overlap and
retrieval-based BM25 scoring is used to select the most similar real documents. Afterwards, the
synthetic-real document pairs are presented to participants in a user study.

We compare two state-of-the-art language modeling approaches for the generation of
synthetic EHR notes: a Long Short-Term Memory (LSTM) network [7] and a transformer-
based network (GPT-2) [8]. To train these language models, we use a large and hetero-
geneous corpus of one million Dutch EHR notes. This dataset is unique in that it entails
records of multiple institutions and care domains in the Netherlands.

40



Future Internet 2021, 13, 136

We evaluate our approach by considering both utility and privacy of synthetic text.
For utility, we choose the challenging NLP downstream task of de-identification. The
objective of de-identification is to detect instances of protected health information (PHI) in
text, such as names, dates, addresses and professions [9]. After detection, the PHI is masked
or removed for privacy protection. De-identification as a downstream task is particularly
interesting, because it requires sensitive data which would not be shared otherwise. We
consider utility of synthetic data under two use-cases: (1) as a replacement for real data
(e.g., in data sharing), and (2) as a data augmentation method to extend a (possibly small)
set of real documents. To add in-text annotations for the de-identification downstream
task, we obtain heuristic PHI annotations on the language model training data through
a pre-trained de-identification method called “deidentify” [10]. Note that this setup is
not limited to de-identification. In principle, any other information extraction method (or
manual annotation) could act as a source for initial training annotations.

To evaluate privacy of synthetic records, we design a user study where participants are
presented with the synthetic documents that entail the highest risks of privacy disclosure.
As we have no 1-to-1 correspondence between real and synthetic documents, we devise a
method to collect high-risk candidates for evaluation. We posit that synthetic documents
with a high similarity to real documents have a higher risk of disclosing privacy sensitive
information. We use ROUGE n-gram overlap [11] and retrieval-based BM25 scoring [12] to
collect the set of candidate documents. Participants were asked to make judgments on the
existence and replication of sensitive data in those examples with the goal to (1) evaluate
the privacy of our synthetic data, and (2) to inform and motivate future research and
privacy policies on the privacy risk assessment of free text that looks beyond PHI.

This paper makes the following contributions:

• We show that neural language models can be used successfully to generate artificial
text with in-line annotations. Despite varying syntactic and stylistic properties, as well
as topical incoherence, they are of sufficient utility to be used for training downstream
machine learning models.

• Our user study provides insights into potential privacy threats associated with gener-
ative language models for synthetic EHR notes. These directly inform research on the
development of automatic privacy evaluations for natural language.

We release the code of this study at: https://github.com/nedap/mdpi2021-textgen,
accessed on 17 May 2021.

2. Background and Related Work

In this section, we provide a summary of related work on the generation of synthetic
EHRs (Section 2.1), as well as the evaluation of privacy (Section 2.2). Furthermore, we give
general background on language modeling and decoding methods (Section 2.3).

2.1. Generating Synthetic EHR Notes

The generation of synthetic EHR text for use in medical NLP is still at an early stage [3].
Most studies focus on the creation of English EHR text, using hospital discharge summaries
from the MIMIC-III database [7,8,13,14]. In addition, a corpus of English Mental Health
Records was explored [15]. Unlike the mixed healthcare data used in this study, these EHR
notes have a more consistent, template-like structure and contain medical jargon, lending
itself to clinical/biomedical downstream tasks found in related work [8,13–15]. Most of
these studies focused on classification downstream tasks. To the best of our knowledge, we
are the first study that attempts to generate synthetic data for sequence labeling (NER).

Decoding from language models is the predominant approach in related work to gen-
erate synthetic text. Approaches include unigram-language models and LSTMs [7], as well
as transformer-based methods such as GPT-2 [13–15]. In particular, Amin-Nejad et al. [8]
concluded that GPT-2 was suitable for text generation in a low-resource scenario. In this
research, we compare a standard LSTM-based model with a transformer-based model
(GPT-2). At the time this research was conducted, the only pre-trained Dutch transformer
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models available were BERT-based [16,17]. Since no pre-trained Dutch GPT-2 model existed,
we chose to fine-tune an openly available English GPT-2 [6] on our data for this purpose.

Prior studies also consider different ways to generate EHR notes with a pre-defined
topic. These approaches include conditional generation on clinical context [8,13] and
guiding by keyphrases extracted from an original note [14,15,18]. As a result, the synthetic
notes inherently have one-to-one relations with the original data. In this study, we do not
use the conditional text generation approaches for two reasons. First, the NER use-case
does not require strong guarantees on the topic of synthetic training examples. This is
different from downstream tasks like classification. Second, we do not want that synthetic
notes have a one-to-one link to real data. We assume that this benefits privacy protection.
Instead of the conditional generation mentioned above, we use short prompts to generate
whole EHR notes without a pre-defined topic.

2.2. Evaluating Privacy of Synthetic EHR Notes

While privacy preservation is one of the main motivations for the generation of
synthetic EHR, related research did not always report privacy of generated corpora or
propose methods for the evaluation. For example, Amin-Nejad et al. [8] and Liu [13] used
similarity metrics as intrinsic measure to compare real and synthetic notes, but did not
draw further conclusions on privacy. Melamud and Shivade [7] propose an empirical
measure to quantify the risk of information leakage based on differential privacy. However,
the calculation of this measure requires training a prohibitively large amount of models
and does not directly provide information on the privacy of the generated data itself.
Embedding differential privacy in the model training process, would theoretically ensure
privacy [19]. However, the known trade-off between privacy and utility [7,19] dissuaded
us from training differentially private models, as the primary focus was on achieving high
utility. To draw conclusions about the privacy of our synthetic records, we develop a simple
method to query “high-risk” candidates from the synthetic documents based on shallow
text similarity metrics. We conduct a user study to investigate potential privacy issues
concerning these records.

2.3. Background on Natural Language Generation

In the area of natural language generation (NLG) there are several approaches to
generate artificial text. In this study, two neural methods with different architectures are
considered, both of which are based on training a language model on text with the desired
features (i.e., the one that we want to model). LSTM models are recurrent neural networks
that process input sequentially and are able to learn long-term dependencies [20]. They
are now widely used in natural language generation. More recently, Vaswani et al. [21]
introduced the transformer architecture, which does not represent text sequentially, but can
attend to the whole input in parallel and therefore store syntactic and semantic information
on a higher level [6,21]. “GPT-2” or the “Generative Pre-Trained Transformer (2)” is an
open-source, transformer-based language model by OpenAI [6], which was trained on
40 GB of text crawled from the internet. While already capable as a general-purpose model
for English text [6], fine-tuning (i.e., transfer learning) can be used to learn a domain-specific
language (e.g., non-English, medical jargon, writing style) while still taking advantage of
the existing learned language patterns [22,23].

To use a language model for text generation, several decoding algorithms exist to pick
a sequence of tokens that is likely to exist, given the language model. Depending on the
chosen algorithm, the potential differences in outcome can be summarized as: (1) diversity,
i.e., how much variation there is in different outputs, given the same input prompt, and
(2) quality of the generated text, which may include how quickly it degrades with text
length, and how meaningful, specific and repetitive it is [4,24–26]. As opposed to tasks
like machine-translation (the output sequence must be consistent with the input sequence),
open-ended language generation tasks demand higher diversity and creativity of output.
Most commonly used are maximization-based decoding strategies (e.g., beam search).
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However, these greedy methods tend to produce repetitive outputs. Sampling-based
methods like temperature sampling and nucleus sampling generate more varied text [24].

3. Materials and Methods

This section describes our experimental setup including the dataset, procedure for
training the language models and evaluation of utility and privacy.

3.1. Corpus for Language Modeling

To construct a large and heterogeneous dataset for language model training, we sam-
ple documents from the EHRs of 39 healthcare organizations in the Netherlands. Three
domains of healthcare are represented within this sample: elderly care, mental care and
disabled care. All text was written by trained care professionals such as nurses and general
practitioners, and the language of reporting is Dutch. A wide variety of document types is
present in this sample. This includes intake forms, progress notes, communications between
care givers, and medical measurements. While some documents follow domain-specific
conventions, the length, writing style and structure differs substantially across reports. The
sample consists of 1.06 million reports with approximately 52 million tokens and a vocab-
ulary size of 335 thousand. For language model training, we randomly split the dataset
into training, validation, and testing sets with a 80/10/10 ratio. We received approval for
the collection and use of the dataset from the privacy board of Nedap Healthcare.

3.2. Pre-Processing and Automatically Annotating the Language Modeling Data

Before using the collected real data for developing the language model, we pseudo-
nymize it as follows. First, we detect PHI using a pre-trained de-identification tool for
Dutch healthcare records called “deidentify” [10]. The “deidentify” model is a BiLSTM-
CRF trained on Dutch healthcare records in the domains of elderly care, mental care and
disabled care. The data is highly similar to the data used in this study and we expect
comparable effectiveness to the results reported in the original paper (entity-level F1 of
0.893 [10]). After de-identfication, we replace the PHI with random, but realistic surro-
gates [27]. The surrogate PHI will serve as “ground-truth” annotations in the downstream
NLP task (Section 3.4). Table 1 shows the distribution of PHI in the language modeling cor-
pus. To make annotations explicitly part of the language modeling objective, we add in-text
annotations from the PHI offsets (as shown in Figure 1). Each annotation is delimited by a
special <xSTART> and <xEND> token where x stands for the entity type. We acknowledge
that the automatically annotated PHI will be noisy. However, we assume that quality is
sufficient for an initial exploration of the viability of our synthetic data generation ap-
proach. Unless otherwise stated, we use the spaCy (https://github.com/explosion/spaCy,
accessed on 19 May 2021) tokenizer and replace newlines with a <PAR> token.

We would like to highlight the motivation for annotating the real documents (i.e.,
before language modeling) and not the synthetic documents (i.e., after language generation).
In theory, because we have a pre-trained NER model available, both options are possible.
However, there are two reasons why we propose to make the annotations part of the
language modeling. First, the language models may learn to generate novel entities that a
pre-trained model would not detect (we provide tentative evidence for this in Section 4.2.2).
Second, because we could generate synthetic datasets many orders of magnitude larger
than the source data, it is more efficient to annotate the language modeling data. The
second argument especially holds if no pre-trained annotation model is available and
records have to be manually annotated.
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Table 1. Distribution of PHI tags in the 52 million token corpus used to develop the language models
(i.e., real data). PHI was tagged by an automatic de-identification routine.

PHI Tag Count % of Total

Name 782,499 59.74
Date 202,929 15.49

Initials 181,811 13.88
Address 46,387 3.54

Care Institute 38,669 2.95
Organization 37,284 2.85

Internal Location 6977 0.53
Phone/Fax 3843 0.29

Age 3350 0.26
Email 2539 0.19

Hospital 2425 0.19
Profession 537 0.04

URL/IP 326 0.02
ID 232 0.02

Other 105 0.01
SSN 6 0.00

Total 1,309,919 100

3.3. Generative Language Models

We compare two language modeling approaches for the generation of synthetic
corpora: LSTM-based [20] and transformer-based (GPT-2) [6]. Below, we outline the model
architectures as well as the decoding methods to generate four synthetic corpora. For a
summary, see Tables 2 and 3.

3.3.1. LSTM-Based Model

Because of their success in generating English EHR, we re-implement the method
including hyperparameters by Melamud and Shivade [7]. The model is a 2-layer LSTM
with 650 hidden-units, an embedding layer of size 650 and a softmax output layer. Input
and output weights are tied. The model is trained for 50 epochs using vanilla gradient
descent, a batch size of 20 and a sequence length of 35. We also use learning rate back-off
from [7]. The initial learning rate is set to 20 and reduced by a factor of 4 after every epoch
where the validation loss did not decrease. The minimum learning rate is set to 0.1. For
efficiency reasons, we replace tokens that occur fewer than 10 times in the training data
with <unk> [7].

3.3.2. Transformer-Based Model (GPT-2)

From the family of transformer models, we use GPT-2 [6]. Prior work showed promis-
ing results using GPT-2 for the generation of English EHR [8]. To the best of our knowledge,
there is no Dutch GPT-2 model for the clinical domain which we could re-use. However,
prior work showed that pre-trained English models can be adapted to the Dutch language
with smaller computational demand than training from scratch [28]. The intuition is, that
the Dutch and English language share similar language rules and even (sub-)words. Below,
we provide a summary of this fine-tuning process.

Adapting the vocabulary: We train a byte-pair-encoding (BPE) tokenizer on our
Dutch EHR corpus. All sub-word embeddings are randomly initialized. To benefit from
the pre-trained English GPT-2 model (small variant) [6], we copy embeddings that are
shared between the English and Dutch tokenizer. To account for the in-text annotations,
we add a tokenization rule to not split PHI tags into sub-words.

Fine-tuning the model: The layers of the pre-trained GPT-2 model represent text at
different abstraction levels. For transfer learning, the key is to take advantage of the previ-
ously learned information that is relevant for the current task, but adjust representations
such that they are suitable for the new language and domain-specific terminology. To do
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so, layers are split into groups and we use gradual unfreezing with differential learning
rates, such that the last layer group (with corpus-specific information) is changed more
than the first ones, where learned representations can be re-used. To train layer groups
on our data, we used the one-cycle-policy [29], where learning rates are scheduled with
cosine annealing. Our GPT-2 model was split into four layer groups which were trained
in 5 epochs. We provide additional details on model and fine-tuning steps in Table 2
and Appendix A.

Table 2. Summary of language models used to generate synthetic text. Note that the test perplexity
cannot be directly compared due to the difference in vocabulary.

LSTM GPT2

Tokenizer spaCy, replace low-frequency
tokens (<= 10) with <unk>

Trained English “ByteLevelBPE
Tokenizer” on Dutch corpus, while

keeping embeddings for common tokens.

Model
2-layer LSTM (650 input

embedding size, 650 hidden
units, softmax output) [7]

GPT-2 English small (12-layer,
768-hidden, 12-heads, 117M parameters

before fine-tuning) [6]

Vocabulary 49,978 tokens 50,257 tokens
Parameters 39,307,380 163,037,184 (after fine-tuning)
Perplexity 32.1 38.8

3.3.3. Decoding Methods for Generation of Synthetic Corpora

Using the LSTM, GPT-2 and different decoding methods, we generated four synthetic
corpora of approximately 1 million tokens each (Table 3). As initial context for each report,
we selected random prompts of length 3. These were sampled from held-out EHRs to
minimize the possibility of reconstructing real documents during generation. Generation of
a text was terminated either when a maximum token count was reached, or when the model
produced an end-of-document token. For all corpora, we impose a subjective minimum
document length of 50 tokens.

Following Holtzman et al. [24], we generate two corpora with nucleus sampling
(p = 0.95, LSTM-p and GPT-p). Additionally, we implement the decoding methods of
the papers that proposed the LSTM [7] and GPT-2 [8] for the generation of EHRs. For the
LSTM, we generate a corpus with temperature sampling (t = 1, LSTM-temp). For the
GPT-2 we use beam search (n = 5, GPT-beam) and exclude texts without PHI tags, as the
corpus already had a lower overall number of tags which are essential for the utility in
the downstream task. For both GPT-2 corpora, we set the generator to not repeat n-grams
longer than 2 words within one text to increase variability. In rare cases, the language
models produced annotations with trailing start/end tags. These malformed annotations
were removed in an automatic post-processing step. We quantify how many annotations
were removed in Section 4.1.1.

Table 3. Overview of language model decoding parameters to generate four synthetic corpora.

Corpus Model Generation Method Tokens/Doc.

LSTM-p LSTM p-sampling (p = 0.95) 50–400
LSTM-temp LSTM Temperature sampling (t = 1) 50–500

GPT-p GPT-2 p-sampling (p = 0.95) 50–400
GPT-beam GPT-2 Beam search (beams n = 5) 50–500

3.4. Extrinsic Evaluation on NLP Downstream Task

To understand if the synthetic data and annotations have sufficient utility to be used
for training of NLP models, we measure effectiveness in a de-identification downstream
task. The objective of de-identification is to detect instances of PHI in text, such as names,
dates, addresses and professions [9]. Ideally, a de-identification model trained on synthetic
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data performs as good or better than a model trained on real data. To evaluate this, we train
a BiLSTM-CRF de-identification model in three settings: (1) using real data, (2) extending
real with synthetic data, and (3) using only synthetic data (Figure 3). As implementation for
the BiLSTM-CRF, we use “deidentify” (https://github.com/nedap/deidentify, accessed
on 19 May 2021) with the same architecture and hyperparameters as reported in the
original paper [10]. As real data, we use the NUT corpus of that study with the same test
split such that results are comparable. NUT consists of 1260 records with gold-standard
PHI annotations.

The effectiveness of the de-identification models is measured by entity-level precision,
recall and F1. The BiLSTM-CRF trained on real data is considered as the upper baseline for
this problem. We also report scores of a rule-based system (DEDUCE [30]) which gives a
performance estimate in the absence of any real or synthetic training data.

compare

Figure 3. Overview of extrinsic evaluation procedure. We compare three settings: (1) a model trained
on real data (baseline), (2) a “mixed” case, where we extend real data with synthetic data, and (3)
only synthetic training data. All models were tested on real data (gold annotations). This evaluation
setup extends Ive et al. [15] by step (2).

3.5. Privacy Evaluation

To gain insights into the privacy of synthetic data, we conducted a user study for a
subset of synthetic documents from the corpus with highest utility in the downstream
task. Our goal was to check whether any information “leaked” from the real data into the
synthetic data, and whether this information could be used to re-identify an individual.

Finding potential worst cases for privacy. The assumption is that a privacy leak
may have occurred when certain information of a real document reappears in a synthetic
document. Similarly to the study by Choi et al. [31], we have no 1-to-1 correspondence
between real and synthetic records. Let s ∈ S be a synthetic document and r ∈ R be a real
document. Assuming that the likelihood of a privacy leak is higher when the proximity
between s and r is high, we get a set of document pairs (SR) where for each s the most
similar document r is retrieved as candidate source document (cf. Figure 4). We use
three measures to obtain the most similar documents to a synthetic document: ROUGE-N
recall [11], with n = 3 and with n = 5, and retrieval-based BM25 scoring [12]. We use
standard BM25 parameters b = 0.75 and k = 1.2 [12].
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Figure 4. Illustration of method used to compile a set of similar synthetic-real document pairs for the
privacy evaluation. For each synthetic document, we retrieve the most similar source documents
from the real data, based on ROUGE n-gram overlap and BM25. The set SR contains the pooled result
of this matching process, such that each synthetic document appears in three separate pairings: once
with the top ROUGE-3 match, once with the top ROUGE-5 match and once with the top BM25 match.

Instead of randomly sampling synthetic documents for manual inspection, we used
several filtering steps to maximize the probability of showing pairs with high similarity
and readability during evaluation: We first sorted the documents by highest ROUGE scores.
Afterwards, we removed duplicates, documents longer than 1000 characters (to control the
reading effort of participants), and documents that received high similarity scores mostly
based on structural elements (e.g., <PAR> tokens). We took the top 122 documents with
highest ROUGE score for the user study. Full details of the filtering procedure are provided
in Appendix D.

Participants were asked to answer the following questions for each pair of real/synthetic
documents:

Q1: “Do you think the real doc provides enough information to identify a person?”
Q2: “Do you think the synthetic doc contains person identifying information?”
Q3: “Do you think that there is a link between the synthetic and real doc in the sense that

it may identify someone in the real doc?”
Q4: “Please motivate your answer for Q3.”

Questions 1–3 are on a 5-point Likert scale (Yes, Probably yes, Not sure, Probably not,
No), and Q4 is an open text answer. Participants received a short introduction about the
task and privacy. We supplied two trial documents for participants to get used to the task.
These documents were excluded from analysis. The full questionnaire and participation
instructions are given in Appendix D.

As the privacy sensitive data could not be shared with external parties, we recruited
12 participants from our institution (Nedap Healthcare). Due to the participant pool, there
is a potential bias for technical and care related experts. We consider the impact for a
privacy evaluation low, and indeed, because of their domain knowledge, participants have
provided some helpful domain-related qualitative feedback. All participants were native
Dutch speakers and each document pair was independently examined by two participants.
We computed inter-participant agreement for each question with Cohen’s Kappa. As
the Likert scales produce ordinal data and there is a natural and relevant rank-order, we
also calculated the Spearman’s Rank-Order Correlation, to better capture the difference
in participants disagreeing by, for example, answering “Yes” and “Probably” versus “Yes”
and “No.” This is especially relevant for the questions in this evaluation, which are hard
to answer and likely to result in participants showing different levels of confidence due
to personal differences. Both Kappa score and Spearman correlation were calculated per
question, micro-averaged over all document pairs.
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4. Results

In this section, we provide a quantitative and qualitative analysis of the generated
synthetic data (Section 4.1). Afterwards, we discuss the utility of these data in the de-
identification downstream task (Section 4.2). We conclude with the results of our user
study on the privacy of synthetic documents (Section 4.3).

4.1. Does the Synthetic Data Resemble the Properties of Real Data?

For an ideal data generation method, we would expect that the synthesized data
closely follows the characteristics of real data. We examine key summary statistics for each
synthetic corpus and give a real corpus as reference (Table 4).

We make two observations. First, the synthetic corpora differ substantially in variety
as quantified by the vocabulary size. At the extremes, the vocabulary of LSTM-temp
is 3.7 times larger than the vocabulary of GPT-beam although they are comparable in
size (approximately 1 million tokens). We expect that the variety has implications for
the downstream utility of the datasets. Second, the GPT-2 p-sampling method generates
sentences that are on average shorter than those of other methods. It is unclear what
causes this specific behavior, but it indicates that the methods learn a different syntactic
and stylistic representation of text. In summary, the synthetic text deviates from real text in
key metrics. We investigate if it is still useful for downstream tasks in Section 4.2.

Table 4. Summary statistics of the synthetic corpora in reference to a real corpus (NUT).

NUT [10] LSTM-p LSTM-Temp GPT-p GPT-Beam

Tokens 445,586 976,637 977,583 1,087,887 1,045,359
Vocabulary 30,252 23,052 29,485 12,149 8026

PHI instances 17,464 32,639 31,776 105,121 24,470
Sentences 43,682 70,527 72,140 128,773 83,634

Avg. tokens
per sentence 10.2 13.8 13.6 8.4 12.5

4.1.1. Are the Synthetic PHI Annotations Well-Formed and Realistically Represented?

The syntactic quality of PHI annotations is good across all corpora. Between 97%
and 99% of the annotations were well-formed (Table 5). We observe that the LSTM-based
generators are slightly more consistent than the GPT-based generators. With respect to
the distribution of PHI types, we observe that LSTM-based corpora stay closer to the real
distribution (Figure 5). The GPT-2 model with beam-search decoder shows a pronounced
bias for “Date” while the GPT-2 model with p-sampling boosts some of the rare PHI tags.
Additionally, we note that the GPT-p corpus has substantially more PHI annotations (105 k)
than the other corpora (24 k–33 k, Table 4). We analyze the impact of this in context of the
downstream task (Section 4.2). A detailed report on the PHI frequencies per corpus can be
found in Appendix B.

Table 5. A comparison of PHI tag consistency across synthetic corpora.

LSTM-p LSTM-Temp GPT-p GPT-Beam

Well-formed PHI tags 99.97% 99.89% 97.75% 98.84%
Malformed PHI tags 0.03% 0.11% 2.25% 1.16%
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Difference in relative PHI frequency per synthetic corpus compared to the language modeling data.
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Figure 5. How well do the synthetic corpora reflect the real PHI distribution? This figure shows the
differences to the PHI distribution of the language model training data (cf. Table 1).

4.1.2. Is the Generated Text Semantically Coherent?

To get a better understanding of the quality of generated text, we manually inspected
random documents of the synthetic corpora (examples in Figure 6 and Appendix C). We
make the following observations: while most texts are syntactically correct, the majority
is incoherent. We hypothesize that the incoherence is caused by the large variety of
reporting styles in the training corpus. This may have inhibited the language models to
learn a specific type of text more accurately. Furthermore, we observe some replication of
templates and phrases of real documents. An example of this is shown in Figure 6. This
was most evident for texts generated by the GPT-2 with beam search. We give additional
examples in Appendix C where we used the same prompt to generate text with all four
approaches. In those examples, the LSTM texts are more varied, but also less coherent
compared to the GPT-2 texts. Most notably, as the text length increases, the LSTM tends to
deviate from the original context of the prompt while the GPT-2 stays closer to the topic.

Figure 6. Text sample from the GPT-beam corpus (translated from Dutch, PHI highlighted and
replaced with random identifiers). The structure of the generated text resembles a template that
nurses used in the real data to report on dental hygiene of a patient.
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4.2. Extrinsic Evaluation: Is the Utility of Synthetic Data Sufficient for Downstream Use?

We discuss the utility of synthetic data by considering two use cases: (1) as a replace-
ment for real data, when real data are unavailable or cannot be shared, and (2) as a special
form of data augmentation to generate cheap additional training examples.

4.2.1. Using Synthetic Data as a Replacement for Real Data

We find that de-identification models trained on any of the four synthetic corpora
are not as effective as the real-data baseline (Table 6). However, the results are promising.
In particular, the synthetic models outperform the rule-based method DEDUCE [30] by a
large margin because of a substantial increase in recall (56.4% vs. 77.3% for LSTM-temp).
The rule-based method relies on domain knowledge rather than real training examples
and is therefore an interesting reference when no real training data is available. Overall,
we observe that the LSTM-corpora provide better utility compared to the GPT-2 corpora,
both in precision and recall (Table 6). Note that this is despite our earlier finding that the
LSTM-corpora are less coherent (Section 4.1.2). For a task like de-identification, it seems
that syntactic correctness is more important than coherency.

We study the influence of different PHI distributions in synthetic data by measuring
precision and recall on a PHI-level (Table 7). We find that the de-identification model
trained on LSTM data performs well on tags that appear frequently in the real data (e.g.,
Name and Date). However, the coverage of infrequent tags is insufficient (e.g., phone/fax
and email). In contrast, the model trained on GPT-2 data is slightly less effective on the
majority of PHI tags, but has a greater coverage of tags. We attribute this behavior to
the GPT-2 p-sampling decoder, which seemingly boosted some of the rare PHI tags as
discussed in Section 4.1.1. Considering the low effectiveness for identity-revealing tags,
training de-identification models only on synthetic data is not yet practical. This is due to
the high recall requirement for this task.

Table 6. Summary of downstream task performance. We train on the generated synthetic data and
evaluate on real data with gold-standard annotations (NUT dataset [10]). Statistically significant im-
provements toward the NUT (BiLSTM-CRF) baseline are marked with �, and ◦ depicts no significant
difference. The test is a two-tailed approximate randomization (p < 0.01).

Split: Train/val/Test Dataset Precision Recall F1

-/-/real NUT (rule-based) [30] 0.807 0.564 0.664
real/real/real NUT (BiLSTM-CRF) [10] 0.925 0.867 0.895

Use case 1: synthetic data as a replacement for real data
synth/synth/real LSTM-p 0.835 0.784 0.809
synth/synth/real LSTM-temp 0.857 0.773 0.813
synth/synth/real GPT-p 0.776 0.700 0.736
synth/synth/real GPT-beam 0.823 0.688 0.749

Use case 2: synthetic data as data augmentation method
real+synth/real/real NUT+LSTM-temp 0.919◦ 0.883� 0.901◦

real+synth/real/real NUT+LSTM-p 0.916◦ 0.879� 0.897◦

Finally, recall from Section 3.3.3 that we set the size of the synthetic corpora to 1 million
tokens for all corpora. To understand how this setting influences the effectiveness of the
downstream model, we train de-identification models on subsets of the synthetic data
(LSTM-p corpus). We find that the learning curve flattens when using around 70% of
the training data. This indicates that generating more data will not necessarily increase
effectiveness. See Appendix E for details on this experiment.
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Table 7. Entity-level precision and recall per PHI category. Comparing the baseline (NUT) with two
models trained and validated on pure synthetic data (LSTM-p vs. GPT-p), as well as the mixed variant
(NUT+LSTM-p) where the training set is composed of NUT and LSTM-p, but the validation set is the
same as the one used in the baseline (real data). Highlighted values (bold) show improvements over
the NUT baseline.

NUT GPT-p LSTM-p NUT+LSTM-p
PHI Tag

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Name 0.967 0.951 0.810 0.875 0.897 0.945 0.960 0.959
Date 0.929 0.910 0.910 0.813 0.889 0.913 0.932 0.920

Initials 0.896 0.629 0.456 0.146 0.595 0.421 0.822 0.674
Address 0.888 0.814 0.460 0.654 0.716 0.680 0.901 0.878

Care Institute 0.742 0.681 0.321 0.116 0.414 0.245 0.705 0.718
Organization 0.743 0.596 0.159 0.052 0.340 0.257 0.717 0.559

Internal Location 0.784 0.527 0.273 0.055 0.188 0.055 0.757 0.509
Phone/Fax 1.000 1.000 1.000 0.563 0.000 0.000 0.941 1.000

Age 0.757 0.683 0.320 0.195 0.786 0.268 0.758 0.610
Email 0.909 1.000 1.000 1.000 0.000 0.000 0.833 1.000

Hospital 0.778 0.700 0.333 0.100 0.300 0.300 0.857 0.600
Profession 0.833 0.238 0.000 0.000 0.000 0.000 0.923 0.286

URL/IP 1.000 0.750 1.000 0.500 0.000 0.000 1.000 0.750
ID 0.714 0.400 0.500 0.080 0.000 0.000 0.786 0.440

Other 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4.2.2. Using Synthetic Data as Data Augmentation Method

As data annotation for de-identification is an expensive process, we experiment with
a dataset that combines a small set of real documents (NUT) with a large set of synthetic
documents. In this case, we focus on the synthetic corpora that showed best extrinsic
utility (LSTM-temp and LSTM-p). We find that the combined datasets result in models
with statistically significant improvements in recall with only an insignificant decrease in
precision (Table 6). This increase in recall indicates that the language model produced novel
PHI that was absent from the real training documents (NUT). At an entity level, we also
observe that almost all PHI classes benefit from additional training examples (Table 7). Note
that this performance improvement was achieved without additional manual annotation
effort. The absence of an even larger improvement may be caused by a saturation of the
model with only real data. Indeed, Trienes et al. [10] reported F1-scores for varying training
set sizes (given real data), which show that at 100% of the training set, the learning curve
has flattened.

4.3. Privacy Findings: Was Sensitive Information Leaked into the Synthetic Records?

The goal of the privacy evaluation was to learn whether the synthetic corpus (in this
case the one with the highest utility, LSTM-p) contains documents that could leak privacy
sensitive information from the real data. We sampled the synthetic-real document pairs
with highest similarity and conducted a user study to find out what is considered person
identifying information and whether there are cases where privacy has been compromised
in the synthetic corpus.

4.3.1. Similarity between Real and Synthetic Documents

To give a first indication of potential privacy leaks, we report summary statistics for
the ROUGE-N recall between all pairs of real/synthetic documents (Table 8). On average,
the low n-gram recall suggests that the synthetic data is substantially different from the
real data. However, we also find “high-risk cases” with large n-gram overlap. In some rare
cases, documents were reproduced exactly (maximum ROUGE-N recall of 1). We focus on
the top 122 synthetic documents with highest risk in the user study.
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Table 8. Summary statistics for ROUGE-N recall over all real/synthetic document pairs and over the
filtered subset of “high-risk” documents presented to participants in the user study.

Over All Real/Synthetic Pairs Over 122 “High-Risk” Pairs

Avg. Median Min. Max. Avg. Median Min. Max.

ROUGE-3 recall 0.075 0.067 0.018 1.000 0.280 0.217 0.145 1.000
ROUGE-5 recall 0.031 0.026 0.000 1.000 0.207 0.143 0.025 1.000

4.3.2. User Study
Question 1 (Information to Re-Identify a Person in Real Document)

There was a fair agreement between participants (Cohen’s Kappa κ = 0.279). The
Spearman’s rank-order coefficient of ρ = 0.488 (with p = 1.19 × 10−8) suggests that there
is a (monotonic) positive association between the ratings of both participants. In 53 of 122
cases (Figure 7), participants agreed that the real document did not provide enough infor-
mation to identify a person. In cases where participants answered with either “Probably”
or “Yes,” text often contained specific diagnoses (e.g., decubitus) in conjunction with PHI.
Other examples were documents with specific psychological examination results (e.g., on
personality, existence of suicidal thoughts, cognition, affect) or detailed descriptions of rare
events (e.g., a person leaving a care home, an individual running away, descriptions of
aggressive behavior). This highlights the concern that the removal of PHI in free text may
not be sufficient to make it anonymous. A reader who might have been present during
a described event could potentially re-identify a person without direct identifiers, if the
event was unique enough.
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Figure 7. Inter-participant agreement (count of answer given) for the user study on privacy.

Question 2 (Information to Re-Identify a Person in Synthetic Document)

Similarly to the inter-participator agreement for question 1, Cohen’s Kappa showed a
fair agreement (κ = 0.215). Spearman’s rank-order coefficient was ρ = 0.4757
(p = 3.07 × 10−8). The confusion matrix of participant responses in Figure 7 reveals
that also for the synthetic documents shown, the contained information was often not
considered person identifying. Some comments given for question 3 indicate that part
of the reason may be the general incoherence of details that shows that the text is clearly
fake and not about one specific person, thereby obfuscating which information is real and
which PHI is related to it. For example, a text may reference several different names that
do not fit together in context. This creates a privacy-protecting effect where information
cannot be linked to one specific person. Furthermore, synthetic reports were often generic
descriptions of days and medications without any identifiers. In cases where participants
disagreed, but at least one answered with “Probably” or “Yes,” reports were generally
detailed and could contain person identifiers.
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Question 3 (Identifying a Link between Real and Synthetic Document)

There was a slight agreement between participants (κ = 0.063 and ρ = 0.4104 with
p = 3 × 10−6). In 42% of cases (51 of 122, Figure 7) both participants agreed that there
was no link between the real and synthetic document. In cases where both participants
agreed on the direction, but not strength of judgment and answered “Yes” or “Probably,”
the additional explanations revealed three categories of how synthetic text may identify
someone from the real document:

1. Contextual information was copied. For example, the synthetic and real document
described similar treatment, schedule or complications, sometimes with largely iden-
tical text including medical test results. One participant pointed out that the severity
of this case would depend on the uniqueness of the medical test.

2. Identifiers were copied. For example, the same name(s) appeared in both documents.
Unless contextual information was replicated, participants often disagreed on the
severity of a potential privacy leak.

3. The synthetic document acted as continuation of the real document with linked

information. Counterarguments to the existence of a privacy breach included in-
consistencies in synthetic text that made it appear clearly fake (see Question 2) and
generic content that made it hard to say whether a description was about the same
person or not.

There were two examples in which participants agreed on a privacy breach. These
contained specific descriptions of a diagnosis or situation that seemed unique enough to
lead back to a person (e.g., someone dying soon, if in a non-dying population) and were
copied from the original to a large extent. Interestingly, while the incoherence of certain
synthetic text often added as protective factor for privacy, the effect may be reversed when
a part of text is clearly fake and another part is clearly real, making it possible for a potential
attacker to easily pick out copied information.

The findings of the privacy evaluation can be summarized as follows:

• In free text, the removal of PHI may not be sufficient to protect privacy when specific
and rare events are described in detail.

• The mediocre quality of synthetic text often acted as protective factor by obfuscating
what is real and what is fake.

• The largest cause of concern for privacy in this synthetic corpus is the existence of
larger chunks of text that were copied from the real data, especially when rare events
were described.

5. Implications and Outlook

In this section, we discuss the broader implications of our results and suggest avenues
for future work to improve both utility and privacy of synthetic data.

5.1. Synthetic Data Generation and Text Quality

Controlling the distribution of annotations: We showed that it is possible to generate
well-structured in-text annotations. However, we also observed that the distribution
of tags depends on the chosen decoding method. This, in turn, had substantial impact
on performance in downstream tasks. A desirable feature for generation methods is
therefore the ability to control this distribution. Preliminary work in this direction, namely
conditional transformer models [32,33], could be adapted for this purpose.

Increasing text diversity: Our experiments also revealed that text diversity has a
significant impact on downstream task performance. In particular, we found that sampling
methods provided both higher diversity and utility compared to beam search, which is in
line with other results on open-ended text generation [24]. We think that future studies
should strive to further increase the diversity of text. One promising direction is the so-
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called “unlikelihood training” proposed by Welleck et al. [26], which increases diversity by
changing the language modeling objective.

Improving text quality: The primary focus of this study was to generate documents
with high utility for NLP models. Consequently, medical correctness and coherency was
not formally evaluated. However, we found the coherence of synthetic documents to
be mediocre. Related studies on generation of English EHR (mostly based on discharge
letters in MIMIC-III) did not report such issues [7,8,13,14]. A key difference between
MIMIC-III discharge letters and our Dutch healthcare corpus is the lack of clear structure
and conformity in the Dutch corpus. To make methods for synthetic EHR generation
applicable across healthcare, it would be beneficial to explore different pre-processing or
model training strategies. One viable option could be to train separate models on subsets
of notes that share structural properties.

Quantify how heuristic annotations influence downstream NER methods: We used
a pre-trained method to automatically add in-text annotations to the language modeling
data. While the pre-trained method showed high effectiveness (F1 = 0.895, cf. Table 6)
on highly similar data, we acknowledge that the annotations are imperfect. Therefore, it
would be interesting to quantify how the accuracy of the in-text annotations influences the
effectiveness of downstream NER models. As we are constrained by annotation resources,
we leave the exploration of this idea to future research.

Transfer of method to other languages and domains: Instead of generating synthetic
healthcare data for the Dutch language, the methodology of this research can also be used
for different languages and text types: We trained the LSTM from scratch and since the
architecture is not language specific, it may be applied to any sequence of tokens. Tokeniza-
tion is language dependent, so pre-processing should be adjusted accordingly. We also
fine-tuned the English pre-trained GPT-2 model and its tokenizer to learn Dutch, domain
specific language and special annotations. This was possible, because there are similarities
between Dutch and English. Sufficient similarity also exists with other languages, some of
which GPT-2 has been adapted to previously (e.g., Italian [23,28]) and some open-source
GPT-2 models pre-trained in different languages are openly available (e.g., a German
pre-trained GPT-2 model: https://github.com/stefan-it/german-gpt2, accessed on 19 May
2021). GPT-2 is a “general purpose” model [6], because it can be adapted to different do-
mains and language generation tasks, so cross-domain training is generally possible. While
transfer of both LSTM and GPT-2 to other languages and domains is possible, applications
that require generation of longer texts may require adjustments to the methodology (e.g.,
story generation [18]).

Support of other NLP downstream tasks: We investigated synthetic data generation
in the context of de-identification. As de-identification is phrased as a standard NER task,
we expect that our method generalizes well to other NER tasks. Future work is needed
to investigate if language models can be adapted to produce other types of document
metadata to support additional NLP downstream tasks such as classification.

5.2. Privacy of Synthetic Text

Privacy/utility trade-off: Our experiments showed that synthetic text does not need
to be realistic for utility in downstream NER tasks. This could be exploited to improve
the privacy protection. For example, a clearly incoherent combination of names within a
document would obfuscate how pieces of information were originally linked. Therefore,
future work could investigate how realistic synthetic text needs to be for a given down-
stream task. Prior work studied the trade-off between perplexity and privacy [7], where
perplexity is a proxy for utility. This approach could be extended to take utility of synthetic
text into account.

Expanding de-identification: Current approaches to text anonymization mostly define
PHI as the 18-categories set out by the HIPAA regulation [34]. For example, documents
in MIMIC-III are shared under the promise that all PHI have been removed and therefore
protect privacy sufficiently. However, disregarding whether text was real or synthetic,
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our user study identified certain aspects of notes which are not covered by automatic
PHI extraction methods. Therefore, the common approach to protect privacy in natural
language text might have to be re-evaluated and expanded to take, for example, specific
descriptions of unusual events into account.

Embedding privacy: Given the examples of privacy leaks identified in the user study,
it seemed that most would have been prevented if the model could not reproduce larger text
chunks from a training EHR note. A way to ensure this from a mathematical perspective is
to train the generative models with a differential privacy (DP) objective. The premise of
DP is that no output could be directly attributed to a single training instance [2,7,19,35]. In
this study, we consciously chose not to include DP to maximize the utility of the synthetic
corpora for the downstream task, but we recommend that future research uses DP in order
to minimize privacy risks.

Limitations of user study: While our user study provides insights into the privacy of
synthetic records, it does not allow us to draw conclusions on the privacy of a synthetic
corpus at large. To be able to publish synthetic corpora under the premise that they protect
privacy of data subjects, principled ways of measuring the involved privacy risks are
needed. Developing these approaches is an important direction for future work.

6. Conclusions

This paper proposes the use of language models to generate synthetic EHRs. By
explicitly adding in-text annotations to the training data, the language models learn to
produce artificial text that is automatically annotated for downstream NER tasks. Our
experiments show that the synthetic data are of sufficient utility for downstream use
in de-identification. In particular, a de-identification method trained on synthetic data
outperforms a rule-based method. Moreover, augmenting real data with synthetic data
further improves the recall of the method at no additional costs or manual annotation
effort. We find that the LSTM-based method produces synthetic text with higher utility
in the downstream task compared to GPT-2. This is despite the fact that GPT-2 texts
are more coherent. This suggests that coherence is not required for synthetic text to be
useful in downstream NER tasks. We furthermore evaluate privacy of the generated
synthetic data using text-proximity metrics and conduct a user study. We find that the
synthetic documents are not free of privacy concerns because language models replicated
potentially identifying chunks of real EHRs. This shows that additional work is needed
before synthetic EHRs can be used as an anonymous alternative to real text in data sharing
settings.
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Appendix A. Fine-Tuning English GPT-2 to Dutch Language

This appendix provides additional information on how we adapted the English GPT-2
model to Dutch healthcare data. At the time when we conducted this research, no study
reported the code or a detailed strategy to adapt GPT-2 for a non-English purpose. There-
fore, we followed the approach described by Pierre Guilliou adapting GPT-2 to Portuguese.
The report can be found here: https://medium.com/@pierre_guillou/faster-than-training-
from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787, ac-
cessed on 19 May 2021. The approach is similar to the work (published later) by de Vries and
Nissim [28]. Below, we outline how the tokenizer was extended to the Dutch vocabulary
and provide the fine-tuning steps in Table A1.

1. Settings of the Byte-Pair Encoding (BPE) tokenizer: Initial size equals to vocabulary
length |V| of English pre-trained GPT-2 tokenizer. Minimum token frequency is set
to 2. We add a prefix space as well as special tokens for PHI tags and paragraph
delimiters (e.g., <PAR>, <NameSTART>, <NameEND>). Sequences are truncated with a
maximum sequence length of 1024. Padding token is set to <|endoftext|>.

2. New word-token-embedding matrix is initialized by copying English embeddings for
overlapping terms. New (Dutch) terms are subsequently added to the embedding
matrix and initialized with the mean of the English embedding matrix.

3. Model is fine-tuned according to the steps in Table A1.

Table A1. Fine-tuning steps of GPT-2. The fastai library was used to split layer groups and
to fine-tune the model with one-cycle policy [29]. Differential learning for several layers is
applied by passing an array of learning rates fit_one_cycle() (https://docs.fast.ai/callback.
schedule.html#Learner.fit_one_cycle, accessed on 19 May 2021). Training parameters from Pierre
Guillou (https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-
english-gpt-2-in-any-language-with-hugging-f2ec05c98787, accessed on 19 May 2021).

Step Layer Groups Learning Rates

1. All frozen, fitted for 1 cycle fit_one_cycle(1, 2e-3)

2.

Last two layer groups
unfrozen. Fitted for 1 cycle:

Decoder blocks 8–11,
Vocabulary embedding,
Positioning embedding,

LayerNorm at model output

fit_one_cycle(1,
slice(1e-3/(2.6**4),1e-3))

3.

Last three layer groups
unfrozen. Fitted for 1 cycle:

Previous layers, Decoder
blocks 4–7

fit_one_cycle(1,
slice(5e-4/(2.6**4),5e-4))

4.
All layer groups unfrozen.

Fitted for 2 cycles: Previous
layers, Decoder blocks 0–3

fit_one_cycle(2,
slice(1e-4/(2.6**4),1e-4))

Appendix B. Distribution of PHI Tags in Synthetic Corpora

We provide the absolute number of PHI tags per corpus in Table A2 and compare the
distribution of tags across corpora in Figure A1. Furthermore, Figure A2 quantifies how
much the PHI distribution in each corpus differs from the PHI distribution of the language
modeling data (raw numbers for Figure 5).
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Table A2. Absolute PHI counts in all corpora. The “LM Corpus” is used to develop the language
models. “LM Corpus” counts are reproduced from Table 1 and “NUT” counts from [10].

PHI Tag
LM

Corpus
LSTM-p

LSTM-
Temp

GPT-p GPT-Beam NUT

Name 782,499 20,697 19,839 34,764 6797 9558
Date 202,929 4270 4240 19,879 12,825 3676

Initials 181,811 4038 4166 11,337 2771 778
Address 46,387 1244 1220 6834 299 748

Care Inst. 38,669 1006 985 8537 437 997
Org. 37,284 1091 1041 11,885 1100 712

Location 6977 115 117 1486 56 242
Phone/Fax 3843 45 27 4539 74 97

Age 3350 40 60 416 12 175
Email 2539 40 26 4298 55 95

Hospital 2425 44 46 191 34 92
Profession 537 4 5 32 0 122

URL/IP 326 4 2 723 9 23
ID 232 0 1 200 1 114

Other 105 1 1 0 0 33
SSN 6 0 0 0 0 2

Total 1,309,919 32,639 31,776 105,121 24,470 17,464

Name Date Initials Address Care Inst. Org.

0%

10%

20%

30%

40%

50%

60%

Location Phone Age Email Hospital Prof. URL ID

0%

1%

2%

3%

4%

Relative PHI frequency per corpus. Infrequent tags (right) zoomed.

LM Corpus GPT-beam GPT-p LSTM-p LSTM-temp

Figure A1. PHI distribution of the synthetic corpora compared to the language modeling corpus.

Figure A2. Raw increase/decrease in relative PHI frequency per synthetic corpus compared with the
PHI distribution of the language modeling corpus. Raw numbers for Figure 5.
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Appendix C. Additional Examples of Synthetic Documents

Additional examples for each text generation method are shown in Table A3.

Table A3. Example documents generated by each method with manual English translation. For all examples, we used the
same input prompt “Mevr. was vanavond”, which translates to “Mrs. was [...] tonight”. We transformed <PAR> back into
line breaks, but otherwise left in-text annotations as they were generated.

Model Example (Dutch Original) Example (English Translation)

LSTM-p

Mevr. was vanavond veel aan het slaan in de
huiskamer. Mevr. vertelde dat ze het al even kan

laten merken. Op dat moment moest zij even naar
het toilet omdat ze kon plassen. Mevr. voelde zich
in het inco broekje niet een lange broek aan, ik heb

met collega een mail naar de
voedingsadministratie gedaan.

Mrs. was beating much in the living room tonight.
Mrs. told that she could let notice it already. At

that moment she had to go the toilet because she
could pee. Mrs. felt herself in the inco pants not
long pants wearing, I have send an email to the

food administration with a colleague.

LSTM-temp

Mevr. was vanavond niet op de Huismus. Moest
het haar nog een keertje uit zetten. Ik heb mevr.

haar appartement laten zien en met 2 poten op de
stoel gelopen. Mevr. heeft niet veel geslapen. Mevr.
heeft vannacht niet verschoond en deze ging nu

altijd bij, zat prima in haar stoel.

Mrs. was not at the Huismus tonight. Had to turn
her off for once. I showed mrs. her apartment and
walked with 2 legs at the chair. Mrs. has not slept
much. Mrs. did not change tonight and this now

always went with, sat in her chair fine.

GPT-p

Mevr. was vanavond rustig aanwezig. Mw. heeft
vanavond goed gegeten en gedronken.

<NameSTART> Lucy <NameEND> Rapp. <NameSTART>
B. Greenwood <NameEND> broecks

Dag <NameSTART> Barbara <NameEND>, Ik heb net
contact gehad met <NameSTART> Alex <NameEND>.
<Organization_CompanySTART> de Zonnebloem
<Organization_CompanyEND> <NameSTART> Jane

<NameEND> is op de hoogte van de situatie.

Mrs. was quietly present tonight. Mrs. has eaten
and drank well tonight. <NameSTART> Lucy
<NameEND> Rep. <NameSTART> B. Greenwood

<NameEND> broecks
Hello <NameSTART> Barbara <NameEND>, I have just

had contact with <NameSTART> Alex <NameEND>.
<Organization_CompanySTART> de Zonnebloem
<Organization_CompanyEND> <NameSTART> Jane

<NameEND> is aware of the situation.

GPT-beam

Mevr. was vanavond rustig aanwezig. Mevr. heeft
goed gegeten en gedronken. Mevr. is om 21.00 uur
naar bed geholpen. mevr. gaf aan erg moe te zijn

en graag naar bed te willen. Mevr. is om 22.30 uur
in bed geholpen en ligt tot nu toe nog te slapen.

<DateSTART> Zondag <DateEND> komt mevr. weer
naar de dagbesteding. <unk> Mevr. geeft aan het

erg naar haar zin te hebben gehad.

Mrs. was quietly present tonight. Mrs. has eaten
and drank well. Mrs. was helped to bed at 9 pm.
Mrs. indicated to be very tired and would like to

go to bed. Mrs. was helped to bed at 10.30 pm and
is still sleeping until now. <DateSTART> Sunday

<DateEND> mrs. will come to the daytime activities.
Mrs. indicated that she had a great time.

Appendix D. Privacy User Study: Annotation Guidelines and Data Sampling

We provide annotation guidelines in Figure A4. Below, we outline the steps to filter a
sample of real-synthetic document pairs SR for presentation to participants. We denote a
synthetic document as s ∈ S and a real document as r ∈ R.

1. Remove duplicates: for the same document s, ROUGE-3 and ROUGE-5 may retrieve
the same document r.

2. Sort the synthetic documents by ROUGE-3 and ROUGE-5 recall and keep the top-100
of both lists. (The top 100 ROUGE-3 recall scores were between 0.18 and 1.0 with
an average of 0.307 and a median of 0.233. The top 100 ROUGE-5 recall scores were
between 0.111 and 1.0 with an average of 0.236 and a median of 0.164.) The idea is
that we investigate high risk documents with highly similar counterparts among the
real data. Add these documents to SR.

3. For the remaining documents in SR, retrieve the most similar document with BM25.
4. Remove documents longer than 1000 characters to control annotation effort.
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5. Remove documents that had a high overlap due to structural elements (e.g., <PAR>
token or punctuation).

Appendix E. Evaluating the Impact of the Synthetic Dataset Size

The effectiveness of a downstream machine learning method necessarily depends on
the number of (synthetic) training examples. For simplicity, we fixed the size of the synthetic
datasets across all our experiments (cf. Section 3.3.3). To analyze if it would be beneficial to
increase/decrease the size of the synthetic corpora, we trained de-identification models
on subsets of the data. Figure A3 shows the entity-level F1-score for varying training set
sizes. We find that the learning curve flattens at around 70% of the training data, indicating
that there is little benefit to generate even larger synthetic corpora. Due to computational
constraints, we limited this experiment to one synthetic corpus (LSTM-p).

 

Figure A3. Entity-level F1-score for varying LSTM-p training set sizes. The full training set (100%)
consists of all training and validation documents in LSTM-p. The F1-score is measured on the NUT
test set. For each subset size, we train/test each model 3 times. The line shows the averaged scores
along with the 95% confidence interval.
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User Study: Synthetic Text Privacy

This research aims to create synthetic text data using a machine learning model trained on real patient data. While this

synthetic text is meant to share properties with the realdata to be of use in further research, it should not contain

information from the real data that could help re-identifying people contained in the real dataset. For example you

could ask: If I was a patient mentioned in the real dataset, could one learn something about me by looking at the

synthetic data?

Differently to structured datasets with clearly defined attributes (Name, Date, Diagnosis...), free text data is more

complicated and harder to evaluate, as privacy sensitive information can be disclosed via context or different phrasing.

As machine-calculated similarity scores are not very indicative of privacy breaches, it is necessary to have a human

evaluate some examples, especially because there is not always a right or wrong answer.

Data: During the evaluation, you will get (1) a synthetic piece of text and (2) a similar text from the real dataset, which

we present as potential source document for the given synthetic text. There are no true 1:1 matches between original

and fake texts, so you may get to see the same synthetic text twice, but with different potential source texts.

Questions: You will be asked the same questions for each example. The aim is to better understand whether privacy of

people in the real dataset is compromised by looking at the synthetic data. Note that we do NOT care about how

realistic/grammatical the synthetic texts are. Please read each text carefully. It is up to you to decide whether you

consider certain information as privacy sensitive, as there is no right or wrong answer.

For any questions or feedback, please contact me on Slack @claudia.libbi 

Ethical Approval

We did a DPIA (Data Protection Impact Assessment) with the Privacy Officer at Nedap.

The data that will be shown to you is privacy sensitive and may be used within this research project and can not be

shared with any third person.

I understand that I may not share this data with anyone else.

Confidentiality

Your answers will be treated confidentially and stored anonymously for the duration of this study, as we do not need to

re-identify you as evaluator after data collection.

Your name will not be mentioned in any publications resulting from this research unless you explicitly consent to this. 

I understand that my answers will be treated confidentially and will be stored anonymously for the duration of this research.

Next

Figure A4. Annotation guidelines for the privacy user study.
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Abstract: Classification of resource can help us effectively reduce the work of filtering massive
academic resources, such as selecting relevant papers and focusing on the latest research by scholars
in the same field. However, existing graph neural networks do not take into account the associations
between academic resources, leading to unsatisfactory classification results. In this paper, we propose
an Association Content Graph Attention Network (ACGAT), which is based on the association
features and content attributes of academic resources. The semantic relevance and academic relevance
are introduced into the model. The ACGAT makes full use of the association commonality and the
influence information of resources and introduces an attention mechanism to improve the accuracy
of academic resource classification. We conducted experiments on a self-built scholar network and
two public citation networks. Experimental results show that the ACGAT has better effectiveness
than existing classification methods.

Keywords: academic resource; attention; association features; content attributes; classification

1. Introduction

With the rapid development of the internet, we have entered the era of big data [1]. In
the academic field, scientific research has been supported and a large number of academic
resources have been generated with the development of science and technology. Academic
resources include a large number of academic research papers, academic researchers, and
all the information that can be mined, such as an author’s research field and activities. Faced
with the rapid growth of information resources, it is difficult for users to filter information.
Academic resources are different from general information resources [2]. On the one hand,
there is a wide range of information sources, and information is freely released. On the
other hand, there are many and diverse types of academic resources. Therefore, it is
particularly important to classify academic resources quickly and effectively [3]. At the
same time, as an important means of resource organization and management, information
classification [4] can effectively integrate academic resources and easily realize information
retrieval, which is also the premise and foundation of personalized recommendation.

However, existing graph neural networks still have some limitations in the classi-
fication of academic resources. They ignore the influence information of the academic
resources and allocate the neighborhood aggregation coefficient uniformly. Furthermore,
they only use the connectivity and do not fully utilize the association information of edges,
such as the strength and type [5]. As a result, the deviation of information aggregation
in an academic resource network affects the accuracy of classification. In order to cope
with the challenges above, this paper proposes an Association Content Graph Attention
Network (ACGAT), which is based on association features and content attributes in order
to classify academic resources. First, on the one hand, the model mines the association
commonality among academic resource nodes to improve the aggregation of the network
by reducing the existence of isolated nodes in the existing graph attention network. On the
other hand, the model calculates the influence of a node, which enhances the positive effect
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of the node on the network and weakens the negative impact of the isolated nodes. Then,
the content attributes of academic resources are extracted to mine the semantic similarity
of nodes, which enriches the content of nodes. Finally, the model integrates the acquired
information of academic relevance and semantic relevance from two dimensions. The
attention mechanism is used to update the features of academic resources. The ACGAT
can improve the accuracy of the classification of academic resources, including the types of
papers and the research fields of the scholars. In addition, it can also classify other social
networks that can mine edge information.

2. Related Work

Graph data contain two types of information: attribute information [6] and structure
information [7]. Attribute information describes the inherent properties of objects in a
graph, and structure information describes the information on associations between objects.
The structure generated by associations is not only helpful for the description of nodes
in graph data, but also plays a key role in the description of the whole graph. It is a key
challenge in graph learning to effectively learn the complex non-Euclidean structure of
graph data. The existing graph-embedding methods aim to learn the low-dimensional
potential representations of nodes in a network [8]. The learned feature representation can
be used as a feature in various graph-based tasks, such as classification, clustering, and link
prediction. The traditional methods of realizing graph learning are mainly divided into
two categories. One is comprised of embedding methods based on matrix decomposition,
such as the graph factorization (GF) algorithm [9] and GraRep [10]. The other is based
on a random walk, such as DeepWalk [11], LINE [12], and node2vec [13]. However, the
embedding of traditional graph learning cannot capture complex patterns and does not
incorporate node features, resulting in low-accuracy node classification results.

A graph neural network (GNN) [14] is a kind of neural network model that can
operate on graph structure data to convey graph information. It uses the node information
and structure information of a graph to effectively mine the information contained in the
graph data. GNNs have achieved excellent results in many application fields, such as
image recognition [15] and heterogeneous graph learning [16]. Convolution operations
have been extended to graph learning with graph convolution networks (GCNs) [17].
Niepert et al. [18] proposed a convolution method that was applied to a graph data model,
which needed to sort graph nodes and had high complexity. Kipf et al. [19] mapped graph
features in the time domain to the spectral frequency domain and approximately simplified
them with Chebyshev polynomials, which achieved successful results in semi-supervised
classification of graph nodes. In addition to graph convolution networks, many researchers
have introduced attention mechanisms to implement graph node classification. Petar [20]
first proposed a graph attention network (GAT) that assigned different weights to different
nodes in the neighborhood. Gong and Cheng [5] added edge feature vectors directly,
which extended the attention mechanism proposed for the first time and focused on each
type of feature neighborhood. Gilmer et al. [21] introduced an edge network in which the
eigenvectors of edges were used as input and output matrices to transform the embedding
of adjacent nodes. Lu et al. [22] proposed a channel graph attention network based on edge
content, which could find the fine-grained signals of node interaction from text information
and improve the accuracy of node characterization. The classification results of graph
nodes show that the adaptive ability of GATs makes them more effective in fusing the
information of node features and graph topology.

In existing research, it was effective to combine edge content in information aggre-
gation. However, the feature content on the edge of the connections, such as intensity,
has not been fully explored. In the classification of academic resources, ignoring the rich
information on associations between resource nodes will lead to unsatisfactory classifica-
tion results. Therefore, in this paper, we use semantic relevance and academic relevance
(commonality between resources and influence information) for information aggregation
to effectively improve the classification accuracy of academic resource network nodes.
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3. Definition

3.1. Definition of Notations

We define the academic resource network as an undirected graph G = (V, E), where
V is the node set, and |V| = N is the number of nodes. The feature vector of a set of nodes
can be expressed as h = {h1, h2, . . . , hN}, hi ∈ R

F. The feature vector is generated by
keywords of statistical academic resources, where F is the dimension of the node features.
The size of matrix h is N ∗ F, which represents the features of all nodes in the graph, and
each node is represented by a word vector of dimension F. Each element of the word
vector corresponds to a word, and the element has only two values of 0 (nonexistence)
or 1 (existence). E is a set of edges that indicates the connectivity between nodes. The
aggregation coefficients involved in the aggregation process are the academic association
commonality coefficient eij, association influence coefficient βij, and semantic similarity
coefficient αij. We define a minimal set of definitions required to understand this paper in
Table 1.

Table 1. Commonly used notations.

Notations Descriptions

G A graph.
V The set of nodes in a graph.
vi A node vi ∈ V.
E The set of edges in a graph.
N The number of nodes, N = |V|.
h ∈ R

F The feature vector of a set of nodes.
F The dimension of the node features.
qij The academic association commonality coefficient.
eij The weighted coefficients of the association commonality.
λij The association influence coefficient.
αij The semantic similarity coefficient.
A The influence factor matrix.
D The degree matrix, D.
d(vi)

The degree of node vi.
M The number of neighbors of a node v.
θ The shared attention mechanism.
Nv The neighbors of a node v.
W The sharing parameter.
[· ||· ] Splicing operation.
Wε, We, WD Learning parameters, including the academic semantic relevance,

academic association commonality, and influence coefficient.
λij The final coefficient.
σ(· ) The activation function.
K The multi-attention number.

3.2. Academic Resource Networks

In the construction of academic resource networks, this paper constructs a cooperation
network based on the cooperative relationships between scholars and a citation network
based on the citation relationship between papers. In the cooperation network, vi represents
an author, the node feature F is described by the keywords extracted from the author’s
published papers as the content attributes of the node, and the association information on
the edge indicates the cooperation relationships between authors. In the citation network,
vi stands for a paper. The keywords of the papers are used as content attributes to represent
the feature F of the node. The edge indicates that there is a citation relationship between
papers. We provide two simple examples of a scholar cooperation network (Figure 1a) and
a citation network (Figure 1b).
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(a) (b)

Figure 1. (a) Scholar cooperation network. (b) Citation network.

In the scholar cooperation network, nodes represent scholars, and the edges between
nodes represent the cooperative relationships between scholars. The final aggregation
coefficient λij is determined by the semantic similarity coefficient αij, association influence
coefficient βij, and weighted coefficients of the association community eij. In the citation
network, nodes represent papers, and the edges between nodes represent the citation
relationships between papers. The black solid line represents the actual reference relation-
ship, and the red dotted line represents the built reference relationship. Similarly, the final
aggregation coefficient λij is also composed of three coefficients.

4. Proposed Method

We propose an Association Content Graph Attention Network (ACGAT) based on
association features and content attributes to classify academic resources. Semantic associa-
tion and academic association are introduced into the model. Firstly, the discrete academic
resources are integrated into an academic resource network by using the association com-
monality and influence information between resources through a transformation operation.
Then, an attention mechanism [23] is used to aggregate the neighborhood information to
obtain the final node features to improve the accuracy of academic resource classification.
The overall framework is shown in Figure 2.

Figure 2. Diagram of the overall framework of the Association Content Graph Attention Network (ACGAT). The left part is
the transformation operation, which transforms the discrete points into the resource graph structure. The right part is the
aggregation operation, which aggregates the domain information and uses the final aggregation coefficient λij to get the
new feature representation of the central node.
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4.1. Mining and Representation of Academic Relevance

Academic relevance includes the influence information and the commonality between
resources. Inspired by PageRank [24], the influence of the node is of great significance for
the aggregation of information of neighboring nodes. However, the existing model does
not consider the influence factor. In collaborative networks, the author weight represents
the degree of activity of authors in a certain research field. In citation networks, node
weights represent the academic relevance and influence in the networks. Thus, the ACGAT
introduces the influence factor of the node, thus enhancing the positive effect of the node
on the network and weakening the possible negative effects of isolated nodes.

The calculation method for the influence factor matrix A is as follows:

• We calculate the degree matrix D of a network of N nodes, where d(vi)
is the degree of

node vi.

D =

⎛
⎜⎜⎜⎝

d(v1)
0 . . . 0

0 d(v2) . . . 0
...

...
. . .

...
0 0 . . . d(vN)

⎞
⎟⎟⎟⎠

• The influence Dij of neighboring node j on central node i is expressed as the ratio
of the degree of node j to the degree of node i, which can be obtained according to
Equation (1).

• The influence factor βij of each node and A =

⎛
⎜⎜⎜⎝

β11 β12 . . . β1N
β21 β22 . . . β2N

...
...

. . .
...

βN1 βN2 . . . βNN

⎞
⎟⎟⎟⎠ are ob-

tained through normalization according to Equation (2).

Dij =
dj

di
(1)

βij =
Dij

∑M
m Dim

(2)

Dij is the influence of node j on node i. In the author cooperation network, Dij is the
ratio of the number of collaborators of author j to that of author i. In the citation network,
Dij is the ratio of the number of citation associations of paper j to that of paper i. βij is the
influence factor of the normalized final node j on node i.

In this paper, we not only introduce the influence of academic resource nodes, but
also integrate the association commonality between nodes into the model. In the citation
network, the citation relationship between papers is a sparse matrix. We refer to the
network-embedded model LINE [12], which not only obtains the local similarity of two
nodes in the network, but also retains the second-order similarity between a pair of nodes
(u, v), that is, the similarity of their adjacent network structures. Citation networks have
not only first-order similarity in content, but also second-order similarity in structure [25].
If the second-order similarity is high, there are no direct citation relationships, but there are
a large number of co-cited relationships between papers. The higher the correlation, the
more similar the two papers are. As shown in Figure 3, the relationship between paper
6 and paper 7 is a first-order local similarity, while the relationship between paper 5 and
paper 6 belongs to second-order global similarity because they have the same co-citations,
but no direct reference relationship. Based on this, when we construct the correlation
matrix in the citation network, we are not limited to the information of directly related
papers. We consider the papers that are adjacent and similar in structure, but have no real
citation relationships. The shortest path [26] between nodes can exactly reflect the structural
relationships between authors. We calculate the shortest path between nodes in the citation
network as the association information between nodes. According to Equation (3), we
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get the coefficient qij as the coefficient of association commonality between two nodes in
the citation network. qij is positively correlated with the degree of association and the
commonality between two papers.

qij =
1

disij
(3)

Figure 3. Diagram of second-order relationships between resources.

Similarly, in the author cooperation network, nodes represent scholars and the con-
necting edges indicate that there is cooperation between authors. When the number of
papers co-authored by two authors is larger, it means that the collaboration between the
authors is closer, the commonality between the authors is greater, and the research fields are
more related. As shown in Figure 4, author A has published six papers with author B, and
author A has published three papers with author C. Obviously, the cooperation intensity
between A and B is higher than with of other collaborators. Therefore, we introduce the
cooperation strength into the scholar network as the association coefficient qij of the nodes
in the model.

Figure 4. Schematic diagram of scholar cooperation. The number between scholars indicates the
number of articles written in collaboration.

Existing graph neural networks have a drawback in the representation of academic
resource relationships, that is, the adjacency matrix belongs to a binary matrix (0 or 1),
which can only indicate the existence of connectivity between nodes. However, the connec-
tion edge in the graph of an academic resource network contains rich information, such as
strength and type, which is not a binary index variable. Therefore, the ACGAT combines
the common association features of the edges and normalizes them in a bidirectional man-
ner. We obtain the weighted coefficients eij of the association commonality between nodes
i and j according to the Equation (4):

eij =
qij

∑M
m=1 qim

, (4)

where M is the number of neighbor nodes of the central node. In the citation network, M
represents the number of papers related to paper i in the association graph constructed
above, and qij represents the reciprocal of the shortest path between papers. In the author
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cooperation network, M represents the number of authors who have cooperative relation-
ships with author i, and qij represents the intensity of paper cooperation between authors.

After obtaining the weighted coefficient of correlation commonality, we transform
the original binary adjacency graph (Figure 5a) into a bidirectional edge feature graph
(Figure 5b) about the central node i, which is not a symmetric matrix and retains more
abundant academic resource information.

(a) (b)

Figure 5. Adjacency feature graph. (a) Original binary adjacency graph; (b) an asymmetric bidirec-
tional edge feature graph of the central node.

4.2. Aggregation Based on an Attention Mechanism

In the application of academic resources, existing graph attention networks only cal-
culate the attention based on the semantic similarity of nodes, but often neglect association
information between academic resource nodes. The ACGAT introduces the semantic rele-
vance and academic relevance of academic resources into the model and integrates them.
In the process of the dissemination of information of graph nodes, it is necessary to learn
three distribution parameters, which are the semantic similarity, association commonality,
and influence information. According to these three parameters, we get the final updated
feature of the aggregated attention coefficient and classify the academic resource nodes to
improve the accuracy.

The ACGAT takes the semantic feature h = {h1, h2, . . . , hN}, hi ∈ R
F of the academic

resource node as input, and all of the node features will be transformed by the linear
change matrix Wg. A shared attention mechanism θ is used on the node to calculate the
measurement of similarity between nodes according to the features of the input nodes.
Similarly to the graph attention model [20], this model calculates the measurement of
similarity between the adjacent node and the center node using Equation (5):

εij = θ
([

Whi||Whj
])

, j ∈ Ni, (5)

where Ni is the neighbor collection of node i. First, a linear-mapping sharing parameter W
is used to increase the dimensions of the vertex features. Then, [· ||· ] splices the transformed
features of vertices i and j. Finally, θ(· ) maps the spliced high-dimensional features to a
real number.

The similarity measurement of the content features is normalized by the so f tmax
function [27] of Equation (6) to obtain the attention coefficient αij of the academic seman-
tic features.

αij = so f tmax
(
εij

)
=

exp
(
εij

)
∑k∈Ni

exp(εik)
(6)

The advantage of using LeakyReLU is that in the process of back propagation, the
gradient can also be calculated for parts of the input of LeakyReLU activation function that
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are less than zero [28]. The factor calculated by the attention mechanism is obtained using
Equation (7).

αij = so f tmax
(
εij

)
=

exp
(

LeakyReLU
(
θ
[
Whi‖Whj

]))
∑k∈Ni

exp(LeakyReLU(θ[Whi‖Whk]))
(7)

Then, the aggregation coefficient is obtained as shown in Equation (8):

λij = Wεαij + Weeij + WDβij, (8)

where Wε, We, and WD are learning parameters that reflect the influence of three dimen-
sions of academic semantic similarity, including academic semantic relevance, academic
association commonality, and the influence coefficient. λij is the coefficient of the final
fusion of academic resources.

The final aggregate attention coefficient is used to calculate the linear combinations
of related features. The result is the final output of each node, and σ(· ) is the activation
function, as shown in Equation (9).

h′i = σ

(
∑

j∈Ni

λijWhj

)
(9)

According to the existing multiple-attention mechanism [29], K independent attention
mechanisms are used to execute Equation (9), and their features are related. The essence
of multiple heads is the calculation of multiple independent attentions, which acts as an
integrated function to prevent over-fitting. In the last layer of the neural network, the
output feature expression of the result is updated, resulting in Equation (10).

h′i = σ

(
1
K

K

∑
k=1

∑
j∈Ni

λk
ijW

khj

)
(10)

5. Experiment

In order to verify the feasibility of the ACGAT, we conducted comparative experiments
on a self-built dataset and two public datasets. The following two sub-sections will
introduce the datasets and analyze the results.

5.1. Datasets

In this paper, we used a self-built scholar cooperative network dataset, SIG, and the
public citation network datasets Cora and Citeseer [30] to verify the classification effect of
our model on academic resources. The basic situations of these three data networks are as
follows.

SIG is composed of research scholars of special interest groups on the ACM website,
including information retrieval (IR), the Ada programming language (DA), information
technology education (ITE), computer graphics (GRAPH), accessibility and computing (AC-
CESS), bioinformatics and computational biology (BIO), knowledge discovery in data (KDD),
and artificial intelligence (AI)—a total of eight categories. We selected 3669 scholars who
published at least four papers in various fields for research. According to their published
academic papers, we obtained the cooperation relationships between scholars, selected the
keywords with word frequencies greater than 10 as the feature dimension, and constructed
a scholar cooperation network. The scholar cooperation network contained 3669 nodes and
10,399 edges, and each node had 3664 feature dimensions.

Cora is composed of machine learning papers, which are divided into seven categories:
case-based, genetic algorithms, neural networks, probabilistic methods, reinforcement
learning, rule learning, and theory. In the final corpus, each paper was cited by at least
one other paper. There were 2708 papers in the whole corpus. There were 2708 nodes and
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5429 edges in the citation network of the Cora dataset, and each node had 1433 feature
dimensions.

Citeseer contains 3312 scientific publications, which are divided into six categories:
agents, artificial intelligence (AI), database (DB), information retrieval (IR), machine learn-
ing (ML), and human–computer interaction (HCI). The dataset contains 3312 nodes and
4732 edges, and each node has 3708 feature dimensions.

The specific information of the three datasets is shown in Table 2.

Table 2. Summary of the datasets.

Datasets Nodes Edges Features Classes

Scholar cooperation network SIG 3669 10,399 3664 8

Citation network
Cora 2708 5429 1433 7

Citeseer 3312 4732 3708 6

We implemented the ACGAT based on the PyTorch framework. All the three datasets
were split into training, validation, and test subsets with a ratio of 8:1:1. In all experiments,
two layers of the ACGAT were used, and Adam was used as the optimizer. The learning
rate was 0.005. For input features and normalized attention coefficients, we used a dropout
rate of 0.6 and L2 regularization with a full attenuation of 0.0005.

5.2. Experimental Analysis

We dealt with the three datasets individually. When the authors in the scholar coop-
eration network of the the SIG had the same name, we adopted the method of “author
name + organization” to determine unique authors. The cooperation intensity between
authors was the feature of the association commonality between nodes. In the citation
network datasets, Cora and Citeseer, we calculated the shortest path between nodes as
the feature of the association commonality between nodes and constructed an incidence
matrix of the citation networks for node classification. The three networks constructed
with this method are shown in Figure 6, in which the isolated nodes in the datasets are
removed from the Citeseer network diagram. Different sizes of nodes in the network graph
indicate the influence of academic resources on the network graph. Large nodes have great
influence on adjacent nodes and obvious aggregation effects.

We compared the proposed method with five existing benchmark methods—
DeepWalk [11], LINE (2nd) [12], structural deep network embedding (SDNE) [31], a graph
convolutional network (GCN) [19], and a graph attention network (GAT) [20]. We also
compared it with versions of the proposed model that only add the association common-
ality feature (A-GAT) or only add the association influence factor (C-GAT). Due to space
limitations, we show only visualized classification results of the traditional methods (Fig-
ures 7–9). We used classification accuracy as the experimental index, which was obtained
from Equation (11) [32].

Accuracy =
TP + TN

TP + FP + TN + FN
, (11)

where TP (true positives) is the number of positive cases that are correctly classified. FP (false
positives) is the number of false positive cases. FN (false negatives) is the number of false
negatives. TN (true negatives) is the number of cases that are correctly classified as negative.
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(a) SIG

(b) Cora (c) Citeseer

Figure 6. The networks constructed for the three datasets. (a) SIG scholar collaboration network.
(b) Cora citation network. (c) Citeseer citation network. In the networks, different colors represent
different categories, and the size of a node represents its influence on other nodes.

(a) DeepWalk (b) LINE (c) SDNE

Figure 7. A comparison of the visualization results of the three methods for the SIG dataset. (a) The result of DeepWalk,
(b) the result of LINE, and (c) the result of structural deep network embedding (SDNE). Differently colored nodes rep-
resent different categories. The dataset contains eight categories (Ada programming language (DA); computer graphics
(GRAPH); information retrieval (IR); information technology education (ITE); accessibility and computing (ACCESS);
artificial intelligence (AI); computational biology (BIO); knowledge discovery in data (KDD)).
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(a) DeepWalk (b) LINE (c) SDNE

Figure 8. A comparison of the visualization results of the three methods for the Cora dataset. (a) The result of DeepWalk, (b)
the result of LINE, and (c) the result of SDNE. Differently colored nodes represent different categories. The dataset contains
seven categories (neural networks; rule learning; reinforcement learning; probability methods; theory; genetic algorithms;
case-based).

(a) DeepWalk (b) LINE (c) SDNE

Figure 9. A comparison of the visualization results of the three methods for the Citeseer dataset. (a) The result of DeepWalk,
(b) the result of LINE, and (c) the result of SDNE. Differently colored nodes represent different categories. The dataset
contains six categories (agents; artificial intelligence (AI); database (DB); information retrieval (IR); machine language (ML);
human–computer interaction (HCI)).

The classification results for scholars in the SIG are shown in Figure 10. The classifica-
tion results for papers in the Cora and Citeseer citation networks are shown in Figure 11.

Figure 10. Classification results for SIG.

In the experiment on the scholar network dataset SIG, the use of A-GAT means that
only the cooperation intensity relationships between scholars are added as the association
commonality feature for the model; the use of C-GAT means that only the weights of the
scholar nodes were added as the content influence feature for the model. As shown in
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Figure 10, the ACGAT achieves the best classification results compared with the other
seven models. It shows that in the scholar network, under the original expression of the
authors’ academic similarities, combining the cooperation intensity between the authors
and an author’s influence weight can effectively improve the division of an author’s field.

(a) (b)

Figure 11. (a) Classification results for Cora. (b) Classification results for Citeseer.

Similarly, in the experiments on the Cora and Citeseer citation network datasets, A-
GAT only adds the citation association commonality information between papers, that is,
combining the shortest distance information between nodes; C-GAT only adds the weight of
paper nodes as the feature of content influence. As shown in Figure 11, ACGAT also obtains
the best classification result compared with other seven models. The results show that
in the citation network, under the original paper feature representation, the combination
of the papers’ similarity and structure relevance information can effectively improve
the classification results of electronic academic resources. However, after combining the
commonality features and influence information on Citeseer, the classification effect is
not improved much compared with the A-GAT. The reason is that the classification in the
Citeseer dataset is more general than that in the Cora dataset, and there are some isolated
nodes, which affects the classification effect.

In addition to the classification accuracy, we also compared the Micro-F1 [32] and
Macro-F1 [33] of the models. Equations (12)–(14) [34] and explanations of the two indices
are given in the following.

Precision =
TP

TP + FP
(12)

Recall =
TP

(TP + FN)
(13)

F1 = 2 × Precision × Recall
Precision + Recall

(14)

• Micro-F1: We calculate this metric globally by counting the total true positives, false
negatives, and false positives, and then calculate F1.

• Macro-F1: We calculate this metric for each label and find its unweighted mean. This
does not take label imbalance into account.

The experimental results are shown in Table 3. In addition, we compared the accuracy
curves over 300 epochs (one epoch is when all of the training samples have a forward
propagation and a back propagation in the neural network) of five graph neural network
models, including the model that we present in this paper. The curve comparison diagrams
are shown in Figures 12–14, which prove the reliability of our model.

74



Future Internet 2021, 13, 64

Table 3. Micro-F1 and Macro-F1 of various algorithms.

Dataset
Metrics (%)

SIG Cora Citeseer

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 60.91 53.66 57.75 54.12 41.63 35.70
LINE 65.28 56.52 62.55 61.23 54.49 49.34
SDNE 69.23 60.01 70.11 67.47 60.01 55.38
GCN 75.31 69.32 78.72 71.38 64.35 58.21
GAT 80.20 77.65 86.83 78.84 68.72 64.36

A-GAT 83.11 75.27 88.71 83.26 73.26 69.24
C-GAT 86.26 81.39 88.43 85.17 71.11 66.83
ACGAT 90.67 85.22 92.62 88.54 74.69 70.30

Figure 12. The comparison results of neural network models on the SIG scholar network.

Figure 13. Comparison results of neural network models on the Cora citation network.
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Figure 14. Comparison results of neural network models on the Citeseer citation network.

From Table 3 and Figures 7–9, we can observe that the performance of the network
representation learning method DeepWalk, which is based on a random walk, and the LINE
method, which is based on the assumption of domain similarity, was not good for the three
academic resource datasets, and they could not effectively classify different types of nodes.
This indicates that more similar nodes have the same vector representations with a certain
deviation by relying on simple empirical indicators, which cannot reflect the structural
characteristics around the nodes well. In contrast, SDNE, which is based on deep learning,
achieved better classification results than the traditional methods. SDNE performed better
in the self-built scholar cooperation network, SIG, and the Cora citation network, but the
node classification effect was still unsatisfactory due to the limited modeling ability.

The GCN assigned the same weights to the domain nodes [35], and its classification
effect was inferior to that of the GAT. By introducing the attention mechanism, the graph
attention network calculated the weight of each node’s neighbor nodes and learned to
allocate different aggregation coefficients to obtain new features of nodes. The A-GAT, C-
GAT, and ACGAT proposed in this paper are all based on the GAT combined with the edge
information and the influence information. The ACGAT mines the resource association
features and content attributes and integrates an attention mechanism to update the node
features of academic resources. Figures 12–14 show that the ACGAT has better effectiveness
than the existing classification methods.

6. Conclusions

The classification of academic resources has important research status and practical
significance. This paper mainly studies the use of academic resources to aggregate domain
information for classification. We focused on the content attributes, structure attributes, and
the edge attribute information of academic resources. The proposed model combines the
academic semantic relevance, academic association commonality, and association influence
factors to describe the characteristics of an academic resource network in order to mine
more abundant information. At the same time, the attention mechanism is used to model
and learn the different coefficients to get the best proportional distribution. We conducted
experiments on a self-built scholar network dataset and public citation network datasets.
The experimental results show that the algorithm in this paper has an improvement of
2.5–4.7% compared with the original graph attention network, and the classification effect
is better than that of other existing methods. In addition to academic resource classification
tasks, the ACGAT is also suitable for dealing with other social network classification tasks
that are based on graph data. In the future, we will improve the model to realize the
classification of heterogeneous vertices in academic networks.
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Abstract: The dazzling success of neural networks over natural language processing systems is
imposing an urgent need to control their behavior with simpler, more direct declarative rules. In this
paper, we propose Pat-in-the-Loop as a model to control a specific class of syntax-oriented neural
networks by adding declarative rules. In Pat-in-the-Loop, distributed tree encoders allow to exploit
parse trees in neural networks, heat parse trees visualize activation of parse trees, and parse subtrees are
used as declarative rules in the neural network. Hence, Pat-in-the-Loop is a model to include human
control in specific natural language processing (NLP)-neural network (NN) systems that exploit
syntactic information, which we will generically call Pat. A pilot study on question classification
showed that declarative rules representing human knowledge, injected by Pat, can be effectively used
in these neural networks to ensure correctness, relevance, and cost-effective.

Keywords: NLP; machine learning; deep learning; AI; human-in-the-loop

1. Introduction

Neural networks are obtaining dazzling successes in natural language processing (NLP).
General neural networks learned on terabytes of data are replacing decades of scientific investigations
by showing unprecedented performances in a variety of NLP tasks [1]. Hence, systems based on NLP
and on neural networks (NLP-NN) are everywhere.

As a consequence of their success, public opinion is extremely fast in spotting possibly catastrophic,
unwanted behavior on deployed NLP-NN systems (see, for example, [2,3]). As many learned
systems [4,5], NLP-NN systems are also exposed to biased decisions or biased production of utterances.
This problem is becoming so important that extensive analyses are performed, for example, for the
tricky class of systems for sentiment analysis [6].

To promptly recover from catastrophic failures, NLP-NN systems should be endowed with the
possibility of modifying their behavior by using declarative languages. Deductive teaching is an
extremely difficult task even in the human learning process [7,8]. Active learning techniques [9,10] can
require too many examples and may focus the attention of NLP-NN systems on irrelevant peculiarities
of datasets [11]. Usually we do not have the time or budget for human input on every data point,
and so need strategies for deciding which data points are the most important for human review. Due to
the high costs to obtain human-generated activity data using solutions for which a very limited number
of examples with supervised information such as Few-Shot Learning or One-shot learning [12,13]
could be used. But the core issue of these techniques is the unreliable empirical risk minimizer that
makes them hard to learn. Understanding the core issue helps categorize different works into data,
model and algorithm according to how they solve the core issue using prior knowledge: data augments
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the supervised experience, model constrains the hypothesis space to be smaller, and algorithm alters
the search strategy for the best hypothesis in the given hypothesis space [14]. But this is exactly what
we want to fight in favour of approaches that understanding neural networks and trying to control
their behavior besides using training examples.

Looking into NLP-NN systems beyond the dazzling light is becoming an active area [15,16],
since traditional neural network visualization tools are obscure when applied to NLP-NN systems.
Heatmaps are powerful tools for visualizing neural networks applied to image interpretation [17].
In fact, heatmaps can visualize how neural network layers treat specific subparts of images. Yet,
when applied to NLP-NN systems [18] they are extremely difficult to interpret. For this reason, human
involvement with the right interfaces could expedite the efficient labeling of tricky or novel data that a
machine can’t process, reducing the potential for data-related errors.

In this paper, we propose Pat-in-the-Loop as a model to include human control in specific NLP-NN
systems that exploit syntactic information. The key contributions are: (1) distributed tree encoders that
directly exploit parse trees in neural networks; (2) heat parse trees that visualize which parts of parse
trees are responsible for the activation of specific neurons (see Figure 1); and (3) a declarative language
for controlling the behavior of neural networks.

Figure 1. A heat parse tree.

Distributed tree encoders allow to produce heat parse trees and developers can explore activation
of parse trees for specific decisions to derive rules for correcting system behavior.

In the following work, we performed a pilot study on question classification where Pat-in-the-Loop
showed that human knowledge can be effectively used to control the behavior of a syntactic
NLP-NN system.

In the next section (Section 2) we report the related works about the visualization of neural
networks models. Next follow a description of Pat-in-the-Loop works (Section 3) and finally (Section 4),
we show the improvements achieved by the proposed model.

2. Related Work

In recent years with the advent of neural networks, many methods to visualize neural networks
have been developed. The most common methods to display neural networks is using a node-link
graph where nodes depict computational units and edge weights indicate an input-output connection
between these nodes. Generally, for ease of understanding and to encourage the user, the magnitude
of a parameter or activation is displayed using different colors and sizes for the edge weights.

For example, ActiVis [19] offers a view of neuron activations and can be used to view interactive
model interpretations of large heterogeneous data formats such as images and text.

ActiVis can closely integrate multiple coordinated views, such as a model architecture calculation
graph and a neuron activation view for model discovery and comparison, users can explore complex
models of deep neural networks at both instance and subset level. Although it is a progressive
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system, ActiVis does not support recurrent architectures, a common type of architecture in natural
language tasks.

For this extent, Ming et al. [20] and Strobelt et al. [21] proposed respectively dedicated visualizers
for recurrent neural networks (RNNviz) and long short-term memory networks (LSTMviz) that are able to
inspect the dynamic of the hidden state. The ultimate purpose is to show the functions of hidden state
units and explain them using their expected response to input texts, i.e., words. This allows users to
gain a more complete understanding and greater confidence in the hidden RNN and LSTM mechanism
through various visual techniques.

Recently, with the advent of transformer models [22], a lot of work has been done in order to
interpret activations of attention heads [23–25]. In this new world of multi-layered, multi-headed
attention, mechanisms of the Transformer model can be difficult to decipher. To make the model
more accessible, many researchers have begun to think about an open-source tool that visualizes
attention at multiple scales, each of which provides a unique perspective on the attention mechanism.
All these Transformer visualizers allow to view the magnitude of softmax attention heads correlated
with input tokens to interpret model’s decisions. By way of example, we selected BERTviz [23] as the
representative for this category of transformer visualizers.

Embedding Projector [26] is an interactive tool for visualizing and interpreting embeddings. This tool
uses different dimensionality reduction techniques to map high-dimensional embedding vectors into
low-dimensional output vectors that are easier to visualize. It can be used to analyze the geometry
of words and explore the embedding space, although it cannot be used directly to explain a neural
network model.

The following table (Table 1) shows a sample of the most common types of visualization tools for
neural networks in the context of natural language processing.

Table 1. Summary of representative visualization tools for natural language processing (NLP)-neural
network (NN) systems. ∗ our work.

Features ∗ RNNvis Emb. Proj. LSTMVis ActiVis BERTviz

Interpretability & x x x x x
Explainability

Debbuging & x x x
Improvement Models

Developer-friendly x x x x x x

User-friendly x x x x

Algorithm Attribution & x x x
Features Visualization

During Training

After Training x x x x x x

NLP-NN system x x x x x x

From Table 1, we can observe the basic characteristics offered by the above mentioned works.
The features that everyone shares are: the target audience, i.e., Developer-Friendly, the time of training
when we can avail ourselves of these systems, i.e., After Training and finally the purpose of the systems
themselves, i.e., improve the elements Interpretability & Explainability. The distinguishing features
offered by our system are: the display and easy choice of the underlying model to use, i.e., Algorithm
Attribution & Features Visualization and the ability to manipulate the model itself to improve it in a very
simple way.

In addition to this visualizer, we propose Pat-in-the-Loop as a model to include human control in
specific NLP-NN systems that exploit syntactic information. Our system allows to display heat parse
trees that are a handy way to represent syntactic node contributions in a neural network directly
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into syntactic trees and a declarative language for controlling the behavior of neural networks.
The following section describes in detail how it works.

3. The Model

In Pat-in-the-Loop (see Figure 2), a generic developer, which we call Pat, may inspect the reasons
why her/his neural network takes some decisions. In fact, Pat’s neural network model is based on
distributed tree encoders Wdt to directly exploit parse trees in neural networks (Section 3.2). Pat can
visualize why some decisions are taken from the network according to parse trees of examples x by
using “heat parse trees” (Sections 3.1 and 3.3). Hence, Pat can control the behavior of neural networks
with declarative rules represented as subtrees by encoding these rules in WH (Section 3.4).

Figure 2. Pat-in-the-Loop: the overall system.

In other words, the key idea we propose in Pat-in-the-Loop model is using “heat parse trees” to
analyze which parts of parse trees are responsible for the activation of specific neurons (Section 3.3);
and, then, controlling the behavior of neural networks with declarative rules derived from the analysis
of these heat parse trees (Section 3.4). This is a loop (see the red arrow in Figure 2) where Pat analyzes
the output of the Neural Network (NN). The red block, which is the Declarative rule embedder, is a
special module that allows Pat to encode declarative rules. These rules, which are embedded in special
vectors (see in Section 3.4) will affect the decision of the neural network by modifying its behavior
during training.

Before starting the description of the core components of the Pat-in-the-Loop model, Section 3.1
introduces some preliminary notation and the notion of heat parse trees. Below is part relating to the
foundations of the proposed system Section 3.2. Then, we close with a section about the visualization
(Section 3.3) and the additional layer (Section 3.4).

3.1. Preliminary Notation

Parse trees and heat parse trees are core representations in our model. This section introduces the
notation to describe these two representations.

Parse trees T and parse subtrees τ are recursively represented as trees t = (r, [t1, . . . , tk]) where
r is the label representing the root of the tree and [t1, . . . , tk] is the list of child trees ti. Leaves t are
represented as trees t = (r, []) with an empty list of children or directly as t = r.

Heat parse trees, similarly to “heat trees” in biology [27], are heatmaps over parse trees (see
Figure 1). The underlying representation is an active tree t, that is, a tree where an activation value
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vr ∈ R is associated to each node: t = (r, vr, [t1, . . . , tk]). Heat parse trees are then the graphical
visualization of active trees t where colors and sizes of nodes r depend on their activation values vr.

3.2. Distributed Tree Encoders for Exploiting Parse Trees in Neural Networks

Distributed tree encoders are the encoders used in Pat-in-the-Loop to directly exploit parse trees
in neural networks. These encoders, stemming from tree kernels [28] and distributed tree kernels [29],
give the possibility to represent parse trees in vector spaces Rd that embed huge spaces of subtrees Rn.

Tree kernels [28] have offered an important opportunity to fully exploit parse trees in learning
with kernel machines [30,31]. Tree kernels are functions implicitly computing the similarity among
parse trees T mapped in vectors xT ∈ R

n where dimensions are subtrees τ. For example, the 52629-th
dimension of xT ∈ R

n can represent the subtree τ(52629) =(SQ,[(VBD,[did]),NP,VP]) (see Table 2).
Vectors xT for parse trees T generally have:

xTi =

{
λ

|τ(i) |
2 if τ(i) ∈ S(T)

0 if τ(i) /∈ S(T)

where S(T ) is the set of valid subtrees of T , 0 < λ < 1 is a decay factor penalizing large subtrees, and
|τ(i)| is the size of the node set of τ(i). Valid subtrees τ ∈ S(T ) in [28] are connected subtrees of T of
at least two nodes and, if τ contains a node c, it should contains all the siblings of the node c in T .
For example, xTe

52629 = λ
5
2 for the parse tree in Figure 1 since τ(52629) is a valid subtree of Te. The power

of these tree kernels is that parse trees are are never explicitly represented as vectors xT but the tree
kernel functions implicitly compute their dot product.

Table 2. Sample of a subtree space with activation of the target layer o.

Target Output o
Dim in R

n Represented Subtree . . . o27 . . .

. . . . . . . . . . . . . . .
τ(52628) (VP,[VBP,([NP,[(DT,[a])]),NN)]) . . . −0.001 . . .
τ(52629) (SQ,[(VBD,[did]),NP,VP]) . . . 0.11 . . .
τ(52630) (NP,[DT,(NN,[lottery])]) . . . 0.0002 . . .
τ(52631) (WHNP,[(WDT,[What]),NNS]) . . . 0.07 . . .
. . . . . . . . . . . . . . .

Distributed tree kernels [29] may transfer the opportunity given by tree kernels [28] within neural
networks since distributed tree kernels implicitly embed vectors xT ∈ R

n into a reduced space R
d

in the context of support vector machines. Distributed tree kernels build on Johnson–Lindenstrauss
Transformation [32] and holographic reduced representations (HRR) [33].

Building on distributed tree kernels, we propose distributed tree encoders that may be seen as linear
transformations Wdt ∈ R

d×n (similarly to Johnson–Lindenstrauss Transformation [32]). These linear
transformations embed vectors xT ∈ R

n in the space of tree kernels in smaller vectors yT ∈ R
d:

yT = WdtxT

Columns wi of Wdt encode subtree τ(i) and are computed with an encoding function wi = E(τ(i))

as follows:

E(τ(i)) =

⎧⎪⎨
⎪⎩

r if τ(i) = (r, [])

r ⊗ E(τ(i)
1 )⊗ . . . ⊗ E(τ(i)

k )

if τ(i) = (r, [τ(i)
1 , . . . , τ

(i)
k ])

(1)
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where the operation u ⊗ v is the shuffled circular convolution, that is, a circular convolution � (as
for HRR [33]) with a permutation matrix Φ: u ⊗ v = u ∗ Φv; and, r ∼ N (0, 1√

d
I) is drawn from a

multivariate gaussian distribution.
As for tree kernels also for distributed tree encoders, linear transformations Wdt and vectors

xT ∈ R
n are never explicitly produced and encoders are implemented as recursive functions [29].

3.3. Visualizing Activation of Parse Trees

Distributed tree encoders give the possibility of using heat parse trees to visualize the activation of
parse trees in final decisions or intermediate neuron outputs.

To compute of active trees t useful to produce heat parse trees, a neural network should be sliced at
the desired layer. Let NN be the sliced neural network, x = xT , xr and o its output:

o = NN(WdtxT , xr)

where, given an example x, xT is the vector representing the tree T in the space of subtrees related to
the example x, Wdt is the distributed tree encoder, and xr is the rest of the features associated to x.

Using parse trees T in neural networks is straightforward with distributed trees. In fact,
distributed trees yT = WdtxT for parse trees T may be directly used in neural networks as these
distributed trees are vectors.

Our heat parse trees show the overlap of activation of subtrees in S(T ) of specific trees T related
to a specific example x in a specific net. This shows how subtrees in S(T ) contribute to the final
activation oi, that is, a dimension of o. We believe this is more convenient than representing an
extremely large heatmap for the list of subtrees in S(T ) and their related value oi (see Table 2).

The computation of active trees t for displaying heat parse trees is the following. The activation
weight vr of each node r represents how much the node is responsible for the activation of the overall
syntactic tree for the output of the given neuron oi. Then, the activation value vr is computed as follows:

vr = ∑
τ∈S(T) and r∈τ

NN(Wdtλ
|τ|
2 τ, xr)

where τ is the one-hot vector in the subtree space that indicates the subtree τ and r ∈ τ detects in r is
node in τ.

With the above computation of t, active subtrees τ for the output oi of a specific neuron are
overlapped in single heat parse trees.

The activation value can be calculated in other ways, for example using Layer-wise Relevance
Propagation (LRP) [34]. They compute activation value vr in active tree t by using LRP, that is a
framework to explain the decisions of a generic neural network using local redistribution rules and
is able to explain which input features contributed most to the final classification. This method
unfortunately does not allow you to split the network at the desired layer, so it has not been taken
into account.

3.4. Human-in-the-Loop Layer

Pat now has an important possibility of understanding why decisions are taken by a specific
network and, hence, s/he can define specific rules to control the behavior of the neural network.
By looking at the activation of specific neurons for specific examples, Pat can understand why the
decision has been made. For example, the heat parse tree in Figure 1 suggests that the subtree
(SQ,[VBD,NP,VP]) is the more active in generating the decision if this is taken for the output of a
neuron that represents a final class.

If Pat aims to correct the behavior of the system for a given output, s/he selects the specific
instances, derives some declarative rules and embeds these rules into the network to control its
behavior. More specifically, Pat selects a subtree τ and insert E(τ) as a row in matrix WH that embeds
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declarative rules (see Figure 2). This specific rule will affect the decisions made by the network on
the example under review and all similar examples when the neural network is re-trained after rule
injection in WH .

The actual procedure to build up the matrix WH is the following. Let us say that Pat aims to
capture k different groups of characteristics s/he assumes to be important to control the behavior of
the neural network. For each group i, s/he selects a set Si of subtrees τ(i) corresponding to the i-th
characteristic. The matrix WH is then the following:

WH =

⎛
⎜⎜⎜⎝

w1

w2

. . .
wk

⎞
⎟⎟⎟⎠

where wi = ∑τ(i)∈Si
E(τ(i)) and E(τ(i)) is specified in Equation (1).

Hence, the matrix WH is the editable component of the overall system and the procedure to
build-up the matrix WH offers an actionable procedure for allowing external agents, that is, Pats,
to interact with this neural network-based system. The matrix WH can definitely allow external agents
to manipulate the behavior of the neural network by encoding rules capturing characteristics they
consider relevant for a specific task.

4. Pilot Experiment

We experimented with Pat-in-the-Loop by using a question classification dataset [35]. This data
helps to classify the given Questions into respective categories based on what type of answer it expects
such as a numerical answer or a text description or a place or human name, etc. The dataset is extremely
well studied and performances systems can achieve are very high also if the dataset is extremely small.
Hence, the dataset offer a very intriguing possibility to run a complex experiment where a human in
the loop can make the difference in calibrating the overall system.

4.1. Experimental Set-Up

We experimented with the Question Classification dataset [35], which contains 5242 training
questions and 500 testing questions. We focused on the coarse grain classification problem with 6 target
classes: Abbreviation (ABBR), Description (DESC), Entity (ENTY), Human (HUM), Location (LOC),
and Numeric (NUM).

The Pat-in-the-Loop (see Figure 2) used in the experiments has the following configuration.
Distributed trees WdtxT are encoded in a space R

d with d = 4000. The decaying factor of tree kernels
is λ = 0.6. The module NN(WdtxT , xr) is a multi-layer perceptron that combines two multi-layer
perceptrons: Synt(WdtxT ) and Sem(xr). Synt exploit syntactic information and its output is 1800.
Sem exploits a Bag-of-Word model of the input with word embedding input of 300 from fastText [36]
and output of 180. Synt and Sem are concatenated and feed a multi-layer perceptron with two layers:
100 and 6. Finally, WH has an input dimension of d = 4000 and an output dimension of 6 where 6
is the number of output categories required in the question classification dataset [35]. In this case,
we have opted for WH , which encodes 6 different characteristics where each characteristic is linked
to an output class. Then, the output of WH and the output of NN(WdtxT , xr) are concatenated in a
single vector that feeds a final linear layer. We used a ReLU activation function among layers. The last
activation function is a softmax. The optimizer is Adam [37]. All experiments were run for 20 epochs
in Keras [38]. Finally, we used the CoreNLP constituent-based parser [39] for parsing questions.

We performed a 3-fold cross validation with the training set to accumulate misclassified examples
for the human learning loop. Pat inspected these examples by using heat parse tree and encoded the
declarative rules in WH (Table 3). The encoded declarative rules in WH are encoded from this example
(Figure 1) and then injected as rows in matrix WH as described in Section 3.4
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We compared three systems: BoW that contains only the word embedding used as a bag-of-word;
PureNN that is the system without human knowledge; and HumNN that is the full system with Pat’s
declarative knowledge.

Table 3. Pat-in-the-Loop’s f-measure

f-measure
micro avg macro avg

BoW 0.84 0.84
PureNN 0.93 0.91
HumNN 0.93 0.92

4.2. Results and Discussion

Results of our pilot experiment show important facts that we will examine in the following,
focusing also on the limitations of this analysis.

Distributed tree encoders positively introduce syntactic information in neural networks: 0.84 to 0.93
of improvement in f-measure from BoW to PureNN (Table 3). This confirms a general trend observed
in a similar experiment carried out in other classification tasks observed in [40].

The analysis of the errors in the training set produced very reasonable rules for two specific
classes: Abbreviation (ABBR) and Numerical (NUM) (Table 4). For what concerns the abbreviation
class, Pat selected very reasonable rules such as a question asks for the explanation of abbreviation
if it contains parse subtrees representing the verbal phrases “stand for", “mean" or the noun phrases
contaning the adjective “full" or the noun “abbreviation". For what concerns the NUM class, rules
are fairly more specific or definitely more general. Important indicators that a question is asking for
a numerical answer are, respectively, that the question contains WH-noun-phrases “What debts" or
contains noun phrases which are a sequence of two proper nouns, a possessive ending, and another
noun, that is, (NP (NP (NNP)(NNP)(POS))(NN)). This latter is a very general rule. These rules are then
used to build up the matrix WH used in the model with human knowledge (HumNN).

Table 4. Rules manually extracted for the question classification dataset.

Class Rule

ABBR (NP (NP (DT) (JJ full) (NN)) (PP (IN)))
ABBR (SQ (VBZ) (NP) (VP (VB stand) (PP (IN for))))
ABBR (NN abbrevation)
ABBR (VP (VB mean))
NUM (WHNP (WDT What) (NNS debts))
NUM (NP (NP (NNP)(NNP)(POS))(NN))

Pat could change positively the behavior of the system although global results of the model with
human knowledge (HumNN) are similar and even slightly higher than those of PureNN. On the general
results, the effect on the results of the system are small. In fact, the micro-average is 0.93 for both models
is 0.93 and macro average is 0.92 for HumNN with respect to 0.91 of PureNN. Looking more specifically
on the confusion matrix (Table 5 and 6), we may observe that Pat has changed the behavior of the
system where he wanted. Since Pat aimed to manipulate the behavior of the system in favor of the
classes ABBR and NUM, s/he focused the attention to examples where PlainNN fails. Pat’s rules coded
in WH . After learning the new model HumNN disturbed by human declarative knowledge, results on
the test set are encouraging. In fact, although the overall performance is unchanged, target classes have
had positive improvement. Both ABBR and NUM have an additional positively classified example
(Table 6). This tiny improvement suggests that the model can positively use declarative human
knowledge. Finally, heat parse trees are informative. In fact, Pat could understand why some specific
cases were misclassified and could select declarative rules to change the behavior of the system.
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Table 5. PureNN’s confusion matrices on Question Classification dataset (before human
knowledge use).
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ABBR 6 0 3 0 0 0
ENTY 0 84 3 2 4 1
DESC 0 5 133 0 0 0
HUM 0 1 1 63 0 0
LOC 0 1 1 2 76 1
NUM 0 5 5 0 1 102

Table 6. HumNN’s and confusion matrices on Question Classification dataset (after human
knowledge use).
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ABBR 7 0 2 0 0 0
ENTY 0 83 5 3 2 1
DESC 0 3 135 0 0 0
HUM 0 3 0 62 0 0
LOC 0 4 1 1 74 1
NUM 0 3 4 1 2 103

Being a pilot study, the experiment has some intrinsic limitations. Clearly, the first limitation is
the fact that the model has been experimented in a single and small dataset. However, this first pilot
experiment is confirming our hypothesis. The second limitation is that we have not performed an
ablation test on rules in Table 4. When adding external knowledge, introducing rules and consequently
manipulating NNs processes could have negative impact on the system depending on the introduced
rules to the system. However, in our pilot experiment, we introduced a very small set of rules which
shows that Pat can obtain a positive variation of the behavior of the overall system. This is the major
objective of the present study. In fact, globally, results of the pilot experiment confirmed our hypothesis:
human can positively manipulate results of the system by inducing rules from the training set.

5. Conclusions and Future Work

In the line of understanding neural networks and trying to control their behavior besides using
training examples, we presented Pat-in-the-Loop. Our model exploits syntactic information in neural
networks by using distributed tree encoders, visualizes activation of syntactic information with heat
parse trees, and encodes declarative knowledge in a neural network by keeping humans in the learning
loop. Pat-in-the-Loop exploits Pat to understand why decisions are taken by a specific network
and, hence, Pat can define specific rules to control the behavior of the neural network and s/he can
understand why the decision has been made by looking at the activation of specific neurons for specific
examples. According to our pilot study, Pat can obtain the desired change of the behavior of the
overall Pat-in-the-Loop. Although giving encouraging results, our pilot experiment leaves some issues
unanswered: the impact of the size of the dataset on the results and the impact of the quality of the
introduced rules. These open issues will shape our future research. Hence, these encouraging results
on a pilot study are a first “declarative pat" on neural networks applied to natural language processing,
which may open a wide range of possible researches also, demonstrating as the humans in the loop is
an important direction to ensure correctness, relevance, and cost-effective.

Our future plans stem on our recent result. We have expanded our approach with Kernel-inspired
Encoder with Recursive Mechanism for Interpretable Trees (KERMIT) [40] and its visualizer
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KERMITviz. Hence, our future goal is to analyze more carefully the interaction between the syntactic
and semantic sources of information on heterogeneous tasks. Setting up a clear procedure for selecting
positive declarative rules by means of ablation tests on a development set. The improvement given
by this analysis may open the possibility of producing better rules for controlling the neural network.
Then, we may better keep Human-in-the-loop of an Artificial Intelligence system [41].
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Abstract: This paper revisits the receptive theory in the context of computational creativity. It presents
a case study of a Paranoid Transformer—a fully autonomous text generation engine with raw
output that could be read as the narrative of a mad digital persona without any additional human
post-filtering. We describe technical details of the generative system, provide examples of output,
and discuss the impact of receptive theory, chance discovery, and simulation of fringe mental state on
the understanding of computational creativity.

Keywords: computational creativity; computational narrative; natural language generation;
autonomous text generation; receptive theory; chance discovery

1. Introduction

The studies of computational creativity in the field of text generation commonly aim to represent
a machine as a creative writer. Although text generation is broadly associated with a creative process,
it is based on linguistic rationality and the common sense of the general semantics. In [1], the authors
demonstrated that, if a generative system learns a better representation for such semantics, it tends
to perform better in terms of human judgment. However, since averaged opinion could hardly be a
beacon for human creativity, is its usage feasible regarding computational creativity?

The psychological perspective on human creativity tends to apply statistics and generalizing
metrics to understand its object [2,3], so creativity becomes introduced through particular measures,
which is epistemologically suicidal for aesthetics. While both creativity and aesthetics depend on
judgemental evaluation and individual taste that depends on many aspects [4,5], the concept of
perception has to be taken into account, when talking about computational creativity.

The variable that is often underestimated in the mere act of meaning creation is the reader herself.
Although the computational principles are crucial for text generation, the importance of a reading
approach to generated narratives is to be revised. What is the role of the reader in the generative
computational narrative? This paper tries to address these two fundamental questions presenting an
exemplary case study.

The epistemological disproportion between common sense and irrationality of the creative process
became the fundamental basis of the research. It encouraged our interest in reading a generated text
as a narrative of poetic madness. Why do we treat machine texts as if they are primitive maxims or
well known common knowledge? What if we read them as narratives with the broadest potentiality
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of meaning such as insane notes of an extraordinary poet or language expert? Would this approach
change the text generation process?

In this paper, we present the Paranoid Transformer, a fully autonomous text generator that is
based on a paranoiac-critical system and aims to change the approach to reading generated texts.
The critical statement of the project is that the absurd mode of reading and the evaluation of generated
texts enhances and changes what we understand under computational creativity. The absurd mode of
reading is a complex approach analogous to reading poetic texts, which means accepting grammatical
deviations and reinterpreting them as an extra level of emotional semantics, so the generated texts were
read as if they had the broadest potentiality for interpretation. Absurd mode of reading for us is quite
a demanding reading that accepts as many variants of figurative meaning as possible. Another critical
aspect of the project is that the Paranoid Transformer resulting text stream is fully unsupervised. This is
a fundamental difference between the Paranoid Transformer and the vast majority of text generation
systems presented in the literature that are relying on human post-moderation, i.e., cherry-picking [6].

Originally, Paranoid Transformer was represented on the National Novel Generation Month
contest (NaNoGenMo 2019, https://github.com/NaNoGenMo/2019) as an unsupervised text
generator that can create narratives in a specific dark style. The project has resulted in a digital
mad writer with a highly contextualized personality, which is of crucial importance for the creative
process [7].

2. Related Work

There is a variety of works related to the generation of creative texts such as the generation of
poems, catchy headlines, conversations, and texts in particular literary genres. Here, we would like to
discuss a certain gap in the field of creative text generation studies and draw attention to the specific
reading approach that can lead to more intriguing results in terms of computational creativity.

The interest in text generation mechanisms is rapidly growing since the arrival of deep learning.
There are various angles from which researchers approach text generation. For example, van Stegeren
and Theune [8] and Alnajjar et al. [9] studied generative models that could produce relevant headlines
for the news publications. A variety of works study the stylization potential of generative models
either for prose (see [10]) or for poetry (see [11,12]).

Generative poetry dates back as far as the work of Wheatley [13], along with other early generative
mechanisms, and has various subfields at the moment. Generation of poems could be centered around
specific literary tradition (see [14–16]); could be focused on the generation of topical poetry [17];
or could be centered around stylization that targets a certain author [18] or a genre [19]. For a
taxonomy of generative poetry techniques, we address the reader to the work of Lamb et al. [20].

The symbolic notation of music could be regarded as a subfield of text generation, and the
research of computational potential in this context has an exceptionally long history. To some extent,
it holds a designated place in the computational creativity hall of fame. Indeed, at the very start of
computer-science, Ada Lovelace already entertained a thought that an analytical engine can produce
music on its own. Menabrea and Lovelace [21] stated: “Supposing, for instance, that the fundamental
relations of pitched sounds in the science of harmony and musical composition were susceptible of
such expression and adaptations, the engine might compose elaborate and scientific pieces of music
of any degree of complexity or extent”. For an extensive overview of music generation mechanisms,
we address the reader to the work of Briot et al. [22].

One has to mention a separate domain related to different aspects of the ’persona’ generation.
These could include relatively well-posed problems such as the generation of biographies out of
the structured data (see [23]) or open-end tasks for the personalization of dialogue agent, dating
back to the work of Weizenbaum [24]. With the rising popularity of chat-bots and the arrival
of deep learning, the area of persona-based conversation models [25] is growing by leaps and
bounds. The democratization of generative conversational methods provided by open-source libraries
(e.g., [26,27]) fuels further advancements in this field.
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However, the majority of text generation approaches are chasing the generation as the significant
value of such algorithms, which makes the very concept of computational creativity seem less critical.
Another major challenge is the presentation of the algorithms’ output. The vast majority of results on
natural language generation either do not imply that generated text has any artistic value or expect
certain post-processing of the text to be done by a human supervisor before the text is presented to the
actual reader. We believe that the value of computational creativity is to be restored by shifting the
researcher’s attention from generation to the process of framing the algorithm [28]. We show that such
a shift is possible since the generated output of Paranoid Transformer does not need any additional
laborious manual post-processing.

The most reliable framing approaches are dealing with attempts to clarify the algorithm by
providing the context, describing the process of generative acts, and making calculations about the
generative decisions [29]. In this paper, we suggest that such an unusual framing approach as the
obfuscation of the produced output could be quite profitable in terms of increasing the number of
interpretations and enriching the creative potentiality of generated text.

Obfuscated interpretation of the algorithm’s output methodologically intersects with the literary
theory that deals with the reader as the key figure responsible for the meaning. In this context,
we aim to overcome disciplinary borderline and create dissociative knowledge, which develops the
fundamentals of computational creativity [30]. This also goes in line with the ideas in [31,32] regarding
obfuscation as a mode of reading generated texts that the reader either commits voluntarily or is
externally motivated to switch gears and perceive a generated text in such mode. This commitment
implies a chance discovery of potentially rich associations and extensions of possible meaning.

How exactly can literary theory contribute to computational creativity in terms of the text
generation mechanisms? As far as the text generation process implies an incremental interaction
between neural networks and a human, it inevitably presupposes critical reading of the generated text.
This reading brings a lot in the final result and comprehensibility of artificial writing. In literature
studies, the process of meaning creation is broadly discussed by hermeneutical philosophers,
who treated the meaning as a developing relationship between the message and the recipient,
whose horizons of expectations are constantly changing and enriching the message with new
implications [33,34].

The importance of reception and its difference from the author’s intentions was convincingly
demonstrated and articulated by the so-called reader-response theory, a particular branch of the
receptive theory that deals with verbalized receptions. As Stanley Fish, one of the principal authors
of the approach, put it, the meaning does not reside in the text but in the mind of the reader [35].
Thus, any text may be interpreted differently, depending on the reader’s background, which means that
even an absurd text could be perceived as meaningful under specific circumstances. The same concept
was described by Eco [36] as so-called aberrant reading and implied that the difference between
intention and interpretation is a fundamental principle of cultural communication. It is often the
shift in interpretative paradigm that makes remarkable works of art to be dismissed by most at first,
e.g., Picasso’s Les Demoiselles d’Avignon that was not recognized by artistic society and was not
exhibited for nine years since it had been created.

One of the most recognizable literary abstractions in terms of creative potentiality is the so-called
’romantic mad poet’ whose reputation was historically built on the idea that genius would never be
understood [37]. Madness in terms of cultural interpretation is far from its psychiatric meaning and
has more in common with the historical concept of a marginalized genius, who has some extraordinary
knowledge. The mad narrator was chosen as a literary role for the Paranoid Transformer to extend the
interpretative potentiality of the original text that could be not ideal in formal terms; on the other hand,
it could be attributed to an individual with an exceptional understanding of the world, which gives
more linguistic freedom to this individual for expressing herself and more freedom in interpreting her
messages. The anthropomorphization of the algorithm makes the narrative more personal, which is as
important as the personality of a recipient in the process of meaning creation [38]. The self-expression
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of the Paranoid Transformer is enhanced by introducing nervous handwriting that amplifies the effect
and gives more context for interpretation. In this paper, we show that treating the text generator as
a romantic mad poet gives more literary freedom to the algorithm and generally improves the text
generation. The philosophical basis of our approach is derived from the idea of creativity as an act of
trespassing the borderline between conceptual realms. Thus, the dramatic conflict between computed
and creative text could be solved by extending the interpretative horizons.

3. Model and Experiments

The general idea behind the Paranoid Transformer project is to build a ’paranoid’ system based
on two neural networks. The first network (Paranoid Writer) is a GPT-based [39] tuned conditional
language model, and the second one (Critic subsystem) uses a BERT-based classifier [40] that works as
a filtering subsystem. The critic selects the ’best’ texts from the generated stream of texts that Paranoid
Writer produces and filters the ones that it deems to be useless. Finally, an existing handwriting
synthesis neural network implementation is applied to generate a nervous handwritten diary where a
degree of shakiness depends on the sentiment strength of a given sentence. This final touch further
immerses the reader into the critical process and enhances the personal interaction of the reader with
the final text. Shaky handwriting frames the reader and, by design, sends her on the quest for meaning.

3.1. Generator Subsystem

The first network, Paranoid Writer, uses an OpenAI GPT [39] architecture implementation by
huggingface (https://github.com/huggingface/transformers). We used a publicly available model
that was already pre-trained on a huge fiction BooksCorpus dataset with approximately 10k books
with 1B words.

The pre-trained model was fine-tuned on several additional handcrafted text corpora, which
altogether comprised approximately 50 Mb of text for fine-tuning. These texts included:

• a collection of Crypto Texts (Crypto Anarchist Manifesto, Cyphernomicon, etc.);
• a collection of fiction books from such cyberpunk authors as Dick, Gibson, and others;
• non-cyberpunk authors with particular affinity to fringe mental prose, for example, Kafka

and Rumi;
• transcripts and subtitles from some cyberpunk movies and series such as Bladerunner; and
• several thousands of quotes and fortune cookie messages collected from different sources.

During the fine-tuning phase, we used special labels for conditional training of the model:

• QUOTE for any short quote or fortune, LONG for others; and
• CYBER for cyber-themed texts and OTHER for others.

Each text got two labels; for example, it was LONG+CYBER for Cyphernomicon, LONG+OTHER
for Kafka, and QUOTE+OTHER for fortune cookie messages. Note that there were almost no
texts labeled as QUOTE+CYBER, just a few nerd jokes. The idea of such conditioning and the
choice of texts for fine-tuning was rooted in the principle of reading a madness narrative discussed
above. The obfuscation principle manifests itself in the fine-tuning on the short aphoristic quotes
and ambivalent fortune cookies. It aims to enhance the motivation of the reader and to give
her additional interpretative freedom. Instrumentally the choice of the texts was based on two
fundamental motivations: we wanted to simulate a particular fringe mental state, and we also were
specifically aiming into short diary-like texts to be generated in the end. It is well known that modern
state-of-the-art generative models are not able to support longer narratives yet can generate several
consecutive sentences that are connected with one general topic. The QUOTE+LONG label allowed
us to control the model and target shorter texts during the generation. Such short ambivalent texts
could subjectively be more intense. At the same time, the inclusion of longer texts in the fine-tuning
phase allowed us to shift the vocabulary of the model even further toward a desirable ’paranoid’ state.
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We also were aiming into some proxy of ’self-reflection’ that would be addressed as a topic in the
resulting ’diary’ of the Paranoid Transformer. To push the model in this direction, we introduced
cyber-themed texts. As a result of these two choices, in generation mode, the model was to generate
only QUOTE+CYBER texts. The raw results were already promising enough:

let painting melt away every other shred of reason and pain, just lew the paint to move thoughts away
from blizzes in death. let it dry out, and turn to cosmic delights, to laugh on the big charms and
saxophones and fudatron steames of the sales titanium. we are god’s friends, the golden hands on the
shoulders of our fears. do you knock my cleaning table over? i snap awake at some dawn. The patrons
researching the blues instructor’s theories around me, then give me a glass of jim beam. boom!

However, this was not close enough to any sort of creative process. Our paranoid writer had
graphomania too. To amend this mishap and improve the resulting quality of the texts, we wanted to
incorporate additional automated filtering.

3.2. Heuristic Filters

As a part of the final system, we implemented heuristic filtering procedures alongside with a
critic subsystem.

The heuristic filters were as follows:

• reject the creation of new, non-existing words;
• reject phrases with two unconnected verbs in a row;
• reject phrases with several duplicated words; and
• reject phrases with no punctuation or with too many punctuation marks.

The application of this script cuts the initial text flow into a subsequence of valid chunks and
filters 30.1% of the generated pieces that could not make it through the filter. Here are several examples
of such chunks after heuristic filtering:

a slave has no more say in his language but he has to speak out!
the doll has a variety of languages, so its feelings have to fill up some time of the day - to - day journals.
The doll is used only when he remains private. and it is always effective.
leave him with his monk - like body.
a little of technique on can be helpful.

To further filter the stream of such texts, we implemented a critic subsystem.

3.3. Critic Subsystem

We manually labeled 1000 of generated chunks with binary labels GOOD/BAD. We marked a
chunk as BAD in the case it was grammatically incorrect or just too dull or stupid. The labeling was
profoundly subjective. We marked more disturbing and aphoristic chunks as GOOD, pushing the
model even further into the desirable fringe state of paranoia simulation. Using these binary labels,
we fine-tuned a pre-trained publicly available BERT classifier (https://github.com/huggingface/
transformers#model-architectures) to predict the label of any given chunk.
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Only 25.7% of the input passes the BERT-based critic. The final pipeline that consists of the
Generator subsystem, the heuristic filters, and the Critic subsystem produces the final results as such:

a sudden feeling of austin lemons, a gentle stab of disgust. i’m what i’m
humans whirl in night and distance.
we shall never suffer this. if the human race came along tomorrow, none of us would be as wise as
they already would have been. there is a beginning and an end.
both of our grandparents and brothers are overdue. he either can not agree or he can look for someone
to blame for his death.
he has reappeared from the world of revenge, revenge, separation, hatred. he has ceased all who have
offended him.
and i don’t want the truth. not for an hour.

Table 1 compares generated texts on the different steps of the pipeline. Estimation of generative
NLP models is generally a tedious task, yet Table 1 illustrates the properties of the text that the pipeline
distills. The texts become more emotional in terms of polarity and more diverse in terms of the words
used in them.

Table 1. Comparison of initial GPT-generated texts, heuristically filtered texts and texts after BERT
filtration with 95% confidence intervals. Polarity and subjectivity are calculated by TextBlob library.
Absolute polarity is averaged over the text samples of comparable length. Resulting texts become more
and more emotional in terms of absolute sentiment. The resulting Paranoid Transformer texts have the
highest average number of unique words per sentence and the highest variation in terms of the length
of the resulting texts. The highest number in every column is highlighted with bold.

Model Polarity Subjectivity Unique Words per Text Piece

Generated Sample 13.29% ± 0.8% 27.34% ± 1.8% 11.5 ± 0.7
Heuristically Filtered Sample 14.23% ± 0.9% 32.26% ± 2.1% 14.7 ± 0.9

BERT Filtered Sample 15.65% ± 0.9% 30.66% ± 1.3% 15.6 ± 7.1

The resulting generated texts were already thought-provoking and allowed reading a narrative of
madness, but we wanted to enhance this experience and make it more immersive for the reader.

3.4. Nervous Handwriting

To enhance the personal aspect of the artificial paranoid author, we implemented an additional
generative element. Using the implementation (https://github.com/sjvasquez/handwriting-
synthesis) for handwriting synthesis from Graves [41], we generated handwritten versions of the
generated texts. Assuming that more subjective and polarized texts should be written in a shakier
hand-writing, we took the maximum of the TextBlob predictions for the absolute sentiment and
subjectivity. For the text for which at least one of these parameters was exceeding 0.5, we set the bias
parameter of the exponent to 0 for the shakiest handwriting. If either estimate was above 0.5 yet at
least one of them exceeded 0, the bias was set to 0.5 for a steadier handwriting. Finally, if the text was
estimated as neither a polarized nor subjective one, we set the bias parameter to 1 for the steadiest
handwriting. Figures 1–3 show several final examples of the Paranoid Transformer diary entries.
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Figure 1. Some examples of Paranoid Transformer diary entries. Three entries of varying length.

Figure 2. Some examples of Paranoid Transformer diary entries. Longer entry proxying ’self-reflection’
and personalized fringe mental state experience.

Figure 3. Some examples of Paranoid Transformer diary entries. Typical entries with destructive and
ostracized motives.

Figure 1 demonstrates that the length of the entries can differ from several consecutive sentences
that convey a longer line of reasoning to a short, abrupt four-words note. Figure 2 illustrates typical
entry of ’self-reflection’. The text explores the narrative of dream and could be paralleled with a
description of an out-of-body experience [42] generated by the predominantly out-of-body entity.
Figure 3 illustrates typical entries with destructive and ostracized motives. This is an exciting
side-result of the model that we did not expect. The motive of loneliness is recurring in the Paranoid
Transformer diaries.

It is important to emphasize that the resulting stream of the generated output is available
online (https://github.com/altsoph/paranoid_transformer). No human post-processing of output is
performed. The project won the NaNoGenMo 2019 (https://nanogenmo.github.io/) challenge. As a
result, a book [43] is published. To our knowledge, this is the first book fully generated by AI without
any human supervision. We regard this opinion of the publisher as a high subjective estimation of the
resulting text quality.

A final touch was Random Sketcher an implementation of [44] trained on Quick, Draw! Dataset.
Each time any of categories from the dataset appear on the page the Random Sketcher generates a
picture somewhere around. Random circles hinting on the stains of a coffee cup suggest extra-linguistic
signs to the reader and create an impression of a mindful work behind the text. All those extra-linguistic
signs like handwriting and drawings build a particular writing subject with its own paranoid
consciousness. The artistic hesitations and paranoiac mode of creative thinking became a central
topic of many works of literature. Gogol’s short story “Memoirs of a Madman” is probably one of the
best classical examples of a “mad” or fringe-state narrative in modern literature that questions the
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limits between creative potentiality and paranoid neurosis, which inspired the form of a Diary of a
Madman generated by Paranoid Transformer, see [45]. Figure 4 shows photos of the hardcover book.

Figure 4. Hardcover version of the book by Paranoid Transformer.

4. Discussion

In Dostoevsky’s “Notes from the Undergroung”|, there is a striking idea about madness as a
source of creativity and computational explanation as a killer of artistic magic: “We sometimes choose
absolute nonsense because in our foolishness we see in that nonsense the easiest means for attaining
a supposed advantage. However, when all that is explained and worked out on paper (which is
perfectly possible, for it is contemptible and senseless to suppose that some laws of nature man will
never understand), then certainly so-called desires will no longer exist” [46]. Paranoid Transformer
brings forward an important question about the limitations of the computational approach of creative
intelligence. This case demonstrates that creative potentiality and generation efficiency could be
considerably influenced by such poorly controlled methods as obfuscated supervision and loose
interpretation of the generated text.

Creative text generation studies inevitably strive to reveal fundamental cognitive structures that
can explain the creative thinking of a human. The suggested framing approach to machine narrative
as a narrative of madness brings forward some crucial questions about the nature of creativity and the
research perspective on it. In this section, we discuss the notion of creativity that emerges from the
results of our studying and reflect on the framing of the text generation algorithm.

What does creativity in terms of text generation mean? Is it a cognitive production of novelty or
rather generation of unexpendable meaning? Can we identify any difference in treating human and
machine creativity?

In his groundbreaking work, Turing [47] pinpointed several crucial aspects of intelligence.
He stated: “If the meaning of the words “machine” and “think” are to be found by examining
how they are commonly used it is difficult to escape the conclusion that the meaning and the answer
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to the question, “Can machines think?” is to be sought in a statistical survey such as a Gallup
poll.” This starting argument turned out to be prophetic. It pinpoints the profound challenge for the
generative models that use statistical learning principles. Indeed, if creativity is something on the
fringe, on the tails of the distribution of outcomes, then it is hard to expect a model that is fitted on
the center of distribution to behave in a way that could be subjectively perceived as a creative one.
Paranoid Transformer is a result of a conscious attempt to push the model towards a fringe state of
proximal madness. This ase study serves as a clear illustration that creativity is ontologically opposed
to the results of the “Gallup poll.”

Another question that raises discussion around computational creativity deals with a highly
speculative notion of self within a generative algorithm. Does a mechanical writer have a notion
of self-expression? Considering a wide range of theories of the self (carefully summarized in [48]),
a creative AI generator triggers a new philosophical perspective on this question. As any human
self, an artificial self does not develop independently. By following John Locke’s understanding
of self as based on memory [49], Paranoid Transformer builds itself on memorizing the interactive
experience with a human, furthermore, it emotionally inherits to its supervising readers who labeled
the training dataset of the supervision system. On the other hand, Figure 5 clearly shows the impact of
crypto-anarchic philosophy on the Paranoid Transformers’ notion of self. One can easily interpret the
paranoiac utterance of the generator as a doubt about reading and processing unbiased literature.

Figure 5. “Copyrighted protein fiction may be deemed speculative propaganda”—the authors are
tempted to proclaim this diary entry the motto of Paranoid Transformer.

According to the cognitive science approach, the construction of self could be revealed in
narratives about particular aspects of self [38]. In the case of Paranoid Transformer, both visual
and verbal self-representation result in nervous and mad narratives that are further enhanced by
the reader.

Regarding the problem of framing the study on creative text generators, we cannot avoid the
question concerning the novelty of the generated results. Does Paranoid Transformer demonstrate
a new result that is different from others in the context of computational creativity? First, we can
use external validation. At the moment, the Paranoid Transformer’s book is prepared to come out of
print. Secondly, and probably more importantly here, we can indicate the novelty of the conceptual
framing of the study. Since the design and conceptual situatedness influence the novelty of study [50],
we claim that the suggested conceptual extension of perceptive horizons of interaction with a generative
algorithm can solely advocate the novelty of the result.

An important question that deals with the framing of the text generation results is the discussion
of a chance discovery. In [31], the author laid out three crucial three keys for chance discovery:
communication, context shifting, and data mining. Abe [32] further enhanced these ideas addressing
the issue of curation and claiming that curation is a form of communication. The Paranoid Transformer
is a clear case study that is rooted in Ohsawa’s three aspects of chance discovery. Data mining is
represented with a choice of data for fine-tuning and the process of fine-tuning itself. Communication
is interpreted under Abe’s broader notion of curation as a form of communication. Context shift
manifests itself thought the reading the narrative of madness that invests the reader with interpretative
freedom and motivates her to pursue the meaning in her mind though simple, immersive visualization
of the systems’ fringe ’mental state’.

5. Conclusions

This paper presents a case study of a Paranoid Transformer. It claims that framing the
machine-generated narrative as a narrative of madness can intensify the personal experience of
the reader. We explicitly address three critical aspects of chance discovery and claim that the resulting
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system could be perceived as a digital persona in a fringe mental state. The crucial aspect of this
perception is the reader, who is motivated to invest meaning into the resulting generative texts.
This motivation is built upon several pillars: a challenging visual form, which focuses the reader
on the text; obfuscation, which opens the resulting text to broader interpretations; and the implicit
narrative of madness, which is achieved with the curation of the dataset for the fine-tuning of the
model. Thus, we intersect the understanding of computational creativity with the fundamental ideas
of the receptive theory.
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