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Preface to ”Entropy in Image Analysis III”

Image analysis basically refers to any extraction of information from images, including those

contained in large and complex datasets, such as the collections used for biometric identification or

the sets of satellite surveys employed in the monitoring of Earth’s climate changes. Image analysis is

also necessary when providing methods for hiding information. When images play a major role in

data transmission, it is imperative to protect them. Therefore, increasingly sophisticated algorithms,

supported by artificial intelligence methods, are indispensable in the encryption and decryption of

images, as they are up-to-date with their secure transmission. In addition to the extraction and

encryption of information, another task for image analysis is related to the computer vision, where

there are many applications that can only be properly managed using computers. These assorted

scenarios tell us that “image analysis” is not just what we can imagine by taking our human vision

system as a model; it is all the bulk of methods that computers use at present and the body of

knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to

their artificial intelligence. In fact, the articles published in this book evidence that encryption and

decryption, neural networks and machine learning are the leitmotifs of advanced image analysis.

The guest editor hopes that the readers can receive, from the published articles, fruitful hints and

inspiration for future research and publications, for which the Topical Collection “Entropy in Image

Analysis” could provide a proper publication place.

Amelia Carolina Sparavigna

Editor
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Image analysis basically refers to any extraction of information from images, which
can be as simple as QR codes required in logistics and digital certifications or related to large
and complex datasets, such as the collections of images used for biometric identification or
the sets of satellite surveys employed in the monitoring of Earth’s climate changes. At the
same time, image analysis is necessary for providing methods for hiding information too.
When images are playing a major role in data transmission, it is imperative to protect
them. Therefore, increasingly sophisticated algorithms, supported by specific artificial
intelligence methods as well, are indispensable in encryption and decryption of images for
being up to date with secure performances in their transmission.

Regarding the image analysis involved in computer vision, we are generally used to
comparing it with the human visual system and its ability of extracting high-level and rele-
vant information. However, we currently have many applications which can be properly
managed only by means of computers. Let us consider, for instance, the face recognition
applied to find a profile in a huge database. This is an impossible task for humans alone,
but computers are turning it into a possible one. Consequently, “image analysis” is not just
what we can imagine by taking as a model our human vision system; it is all the bulk of
methods that computers are using today in several multivariate applications and the body
of knowledge that they will be able to manage, in future, in a totally unsupervised manner
thanks to their artificial intelligence.

Together with encryption and decryption, the use of neural networks and machine
learning is one of the leitmotifs contained in the articles proposed in this Special Issue, such
as in the previously published Issues regarding Entropy in Image Analysis.

Let us describe the articles of the Issue shortly.
In [1], the problem of tomographic image reconstruction is addressed. In the proposed

method, an extended class of power-divergence measures, which are including a large set
of distances and relative entropy measures, are involved in an iterative reconstruction algo-
rithm. The authors introduced in the method a system of nonlinear differential equations
based on Lyapunov functions. Actually, the resulting iterative algorithm proposed in [1] rep-
resents a natural extension of the maximum-likelihood expectation-maximization method.

As told before, the secure transmission of digital images in the current network and big
data environment is one of the main tasks of image analysis. This is the problem considered
in Ref. [2]. In their article, the authors propose a security-enhanced image communication
scheme, requiring cellular neural network (CNN) and cryptanalysis. The features of CNN
are applied to create pseudorandom sequences which are used in the image encryption.
By means of a plain image, the cipher image is obtained in the CNN-based sequence. In [2],
cryptanalysis demonstrates the safety of the performance.

In [3], modified Hilbert space-filling curves, related to rectangles and cuboids, are ap-
plied in an entropy coding of images and for video compression. By means of these Hilbert
curves, an efficient run-length-based entropy coding has been developed, which is suitable
for a series of high-efficiency image compression algorithms. As observed by authors, the
2-D Hilbert curves are defined on squares while subband image compression requires
rectangles of arbitrary sizes. In [3], the authors provide details about the construction of
the required modified 2-D Hilbert curves and 3-D cuboids.

Entropy 2021, 23, 1648. https://doi.org/10.3390/e23121648 https://www.mdpi.com/journal/entropy
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The word “retinex” comes from “retina” and “cortex”, since both the eyes and brain are
involved in human vision. Then, in image analysis, retinex methods are those which mimic
how human beings perceive their surrounding environment. In [4], we find proposed
a retinex fast algorithm to enhance low-light images in order to restore the information
which is hidden by low illuminance. The experimental results proposed in [4] demonstrate
that the images, enhanced by the proposed retinex method, have better performance with
respect to those obtained by means of other state-of-the-art methods.

As asserted in [5], automated video surveillance systems are offering today some
solutions to avoid any human intervention, which could result in inefficient tasks. In this
framework, properly devised methods and models are strictly necessary. If we need a
crowd surveillance, for instance, it is fundamental to analyze the human crowd behavior
(HCB) by means of systems possessing robust feature extraction methods and reliable
decision-making classifiers. In [5], the authors describe an approach based on a particles
force model for multi-person tracking, the performance of which has been tested on publicly
available benchmark datasets.

In [6], we find the methodology referred to as full waveform inversion (FWI) applied to
subsurface investigations. This methodology is commonly used in the petroleum industry,
mainly to characterize oil reservoirs. The authors of [6] propose the addition of a relative
entropy in the formalism of FWI. In the article, the authors show some features of this
entropy and propose three different ways to add information through it in the inverse
problem. This prior information, conveyed by the addition of entropy relative to FWI, can
provide a result with better resolution.

Diagnostic radiography designates a technical mode of acquiring medical images by
means of X-rays. In the used devices, an electron beam is converted into X-rays by means
of a target material. As a result of the mechanisms of emission, the field intensity towards
the cathode is larger than the intensity towards the anode. This is the so-called anode heel
effect, addressed in [7], intended to cause a non-uniform image quality. The purpose of
the study proposed in [7] is that of evaluating the non-uniformity in digital radiographs.
The author is also giving a novel method, based on circular step-wedge phantom and
normalized mutual information, which outperforms the conventional visible ratio metrics.

In Ref. [8], we can find again the problem of image security. According to the proposed
discussion, hyperchaotic image encryption is the method which is today generally used
to secure images. In this framework, article [8] is proposing a novel encryption scheme
based on multiple bit permutation and diffusion (MBPD). The method is described in
detail, starting from a four-dimensional hyperchaotic system with Lyapunov exponents
and ending with permutation and diffusion. After experiments, it is concluded that
MBPD can effectively resist different types of attacks with better performance than popular
encryption methods.

A computerized tomography (CT) scan is a medical imaging technique which com-
bines a series of X-ray images taken from different angles around the body, processing them
to create cross-sectional images (slices) of it. In [9] we can find CT scan used to evidence
the spleen injuries, and an automated method based on machine learning for processing
it. In fact, computer-assisted diagnosis systems exist for other conditions, but for spleen
injuries the current methodology is based on detecting them by manual inspection. The re-
sults proposed by [9] suggest that a quantitative computerized analysis of spleen injuries
can help in providing a faster triage (with a consequent improvement of patient outcomes).

In [10], we can find another method addressing the protection of digital information,
in particular the digital visual information. The method is based on a six-dimensional
hyper-chaotic encryption scheme and a three-dimensional transformed Zigzag diffusion
with RNA operation. With respect to the previous literature, the specificity of the method
proposed in [10] is in its focusing on the encryption of color images. The encryption starts
with three pseudo-random matrices generated from a 6D hyper-chaotic system. It continues
with a permutation and a transformation by means of Zigzag diffusion. The final step

2
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is RNA conversion. Experiments show that the proposed encryption has high resistance
against generally used attacks.

The fractional calculus, made by means of operators of non-integer order, is mainly
used in the area of nonlinear and chaotic systems. In [11], we can find it in a fractional-order
hyperchaotic system applied to secure communication, in particular for the encryption of
color images. Experiments reported in [11] are supporting the method as cryptographically
secure in general. However, the method can be broken in some cases. Therefore, the final
suggestion given by authors is that algorithm designers have to pay some specific attention
in securing this kind of cryptosystems.

Article [12] explains that, to encrypt/decrypt images, most researchers are using
chaotic systems, whereas others prefer non-chaotic methods. In [12], a new encryption
algorithm is proposed, which combines a non-chaotic Newton-Raphson’s method with
a hyperchaotic two-dimensional map of a general Bischi-Naimzadah duopoly system.
The multiple security experiments made for measuring the efficiency of the method (among
which we find entropy analysis) show that the proposed algorithm possesses a good
security efficiency.

In concluding the review of the Issue, a great interest in image encryption and de-
cryption has been demonstrated. However, as shown by the different topics and problems
addressed in the other published articles, the research field of image analysis is quite larger
and variegated and not solely limited to problems of cryptanalysis. Therefore, the guest
editor hopes that the readers can receive, from these published articles, fruitful hints and
inspirations for future research and publications, of which the Topical Collection “Entropy
in Image Analysis” (https://www.mdpi.com/journal/entropy/special_issues/entropy_
image_TC, accessed on 5 December 2021) could represent the proper publication place.
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Abstract: The problem of tomographic image reconstruction can be reduced to an optimization
problem of finding unknown pixel values subject to minimizing the difference between the measured
and forward projections. Iterative image reconstruction algorithms provide significant improvements
over transform methods in computed tomography. In this paper, we present an extended class of
power-divergence measures (PDMs), which includes a large set of distance and relative entropy
measures, and propose an iterative reconstruction algorithm based on the extended PDM (EPDM)
as an objective function for the optimization strategy. For this purpose, we introduce a system of
nonlinear differential equations whose Lyapunov function is equivalent to the EPDM. Then, we
derive an iterative formula by multiplicative discretization of the continuous-time system. Since
the parameterized EPDM family includes the Kullback–Leibler divergence, the resulting iterative
algorithm is a natural extension of the maximum-likelihood expectation-maximization (MLEM)
method. We conducted image reconstruction experiments using noisy projection data and found that
the proposed algorithm outperformed MLEM and could reconstruct high-quality images that were
robust to measured noise by properly selecting parameters.

Keywords: power-divergence measure; computed tomography; iterative reconstruction; maximum-
likelihood expectation-maximization method; continuous-time image reconstruction

1. Introduction

Image reconstruction in computed tomography (CT) is the process of estimating un-
known density images from measured projections. When the system of a tomographic
inverse problem is ill-posed, iterative reconstruction algorithms [1,2] based on the opti-
mization strategy provide significant improvements over transform methods, including
the filtered back-projection [3,4] (FBP) procedure. In recent years, iterative reconstruction
has received much attention because of its ability to reduce radiation doses [5–9] in X-ray
CT. Iterative algorithms implemented in, e.g., the algebraic reconstruction technique [1],
maximum-likelihood expectation-maximization [10] (MLEM) method, and multiplicative
algebraic reconstruction technique, have been used for reconstructing CT images. The
MLEM algorithm, which is the most popular method used in emission CT and is derived
for the maximum likelihood estimation of a Poisson distribution, reconstructs high-quality
images even for noisy projection data, but it is slow to converge [11–14] under iteration.
The ordered-subsets EM algorithm [11], in which the EM iteration is performed in each
subset by dividing the projection into subsets or blocks, is known to be useful for acceler-
ating MLEM [13,15,16]. However, divergence or oscillation of solutions may occur in the
iterative process when the subset balance is not satisfied. Because of the high quality of

Entropy 2021, 23, 1005. https://doi.org/10.3390/e23081005 https://www.mdpi.com/journal/entropy
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image reconstruction afforded by the MLEM algorithm, improved MLEM methods have
been presented for accelerating convergence. Some schemes accelerate the convergence rate
by increasing a relaxation parameter or the step-size in iterative operations [14,17,18] or by
introducing a parameter with a power exponent related to the projection for controlling
the noise model [19,20]. However, no theory has explained the divergence and oscillation
phenomena affecting solutions when the step-size parameter is large.

The convergence of iterative solutions and the quality of images are governed by the
underlying objective function that has to be minimized. Hence, the base objective function
is one of the most important decisions when designing an iterative algorithm. In this paper,
we present an extended class of power-divergence measures [21–24] (PDMs) and derive a
novel iterative algorithm based on the minimization of the extended PDM (EPDM) as an
objective function for the optimization strategy. Let us define the parameterized function
Φγ,α(p, q) of vectors p and q with nonnegative elements pi and qi, respectively, as

Φγ,α(p, q) := ∑
i

∫ qi

pi

sγ − pγ
i

sγα
ds (1)

where γ and α indicate positive and nonnegative parameters, respectively. The extension
is performed by incorporating the parameter α in the conventional class of PDMs, which
includes a large set of distance and relative entropy measures. By fixing the parameter
α = 1, Φγ,1 gives the family of PDMs with a single parameter γ. Therefore, the measure
coincides with the Kullback–Leibler (KL), or relative entropy, divergence [25] if γ = 1,
Neyman’s χ2 distance if γ = 2, and the generalized Hellinger distance otherwise. Moreover,
it corresponds to the squared L2 norm when γ = 1 and α = 0 and the reverse KL-divergence
when γ = 1 and α = 2. Thus, the parameters γ and α provide a smooth connection among
the forward and reverse KL-divergences, the Hellinger distance, the χ2 distance, and the
L2 distance and can control the trade-off between robustness and asymptotic efficiency of
the estimators, in a similar way as in other families of distance measures [26–29].

By exploiting the vectors p and q in Equation (1) as the measured and forward pro-
jections, respectively, for the tomographic inverse problem, it is expected that we can
create a high-performance iterative reconstruction algorithm thanks to the high degree of
freedom. For constructing this novel iterative algorithm, we introduce a nonlinear differ-
ential equation whose numerical discretization is equivalent to the iterative system. The
purpose of applying a dynamical method [30–35] to tomographic inverse problems [36–39]
is as follows: it enables us to prove the stability of the equilibrium corresponding to the
desired solution of the system of differential equations by using the Lyapunov stability
theorem [40] if a proper Lyapunov function can be found; then, since the step-size used to
discretize the set of differential equations corresponds to the relaxation or scaling parame-
ter of the system of difference equations, a family of iterative algorithms incorporating a
parameter for acceleration is naturally derived. Moreover, it provides a methodology for
systematically designing a new iterative reconstruction algorithm based on optimization of
an objective function depending on the features of the image to be reconstructed.

Since the EPDM family includes the KL-divergence, the resulting iterative algorithm
with power exponents corresponding to the parameters γ and α is a natural extension of
the MLEM method with (γ, α) = (1, 1). The convergence of solutions to the continuous
analog of the proposed iterative algorithm is theoretically shown using the EPDM as a
Lyapunov function when the tomographic inverse problem is consistent.

We conducted image reconstruction experiments using numerical and physical phan-
toms with noisy projections and found that the proposed algorithm outperformed the
conventional MLEM method with respect to reconstructing high-quality images that are
robust to measured noise when selecting a set of proper parameter values.
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2. Definitions and Notations

Image reconstruction is a problem of obtaining unknown pixel values x ∈ RJ
+ satisfying

y = Ax + δ (2)

where y ∈ RI
+, A ∈ RI×J

+ , and δ ∈ RI denote the measured projection, projection operator,
and noise, respectively, with R+ representing the set of nonnegative real numbers. When
the system in Equation (2) without noise, i.e., δ = 0, has a solution e ∈ RJ

+, it is consistent;
otherwise, it is inconsistent. The tomographic inverse problem can be reduced to one of
finding x, which can be accomplished using an optimization approach such as an iterative
method or a continuous-time system by minimizing an objective function.

Here, we introduce the notation that will be used below. The superscript � stands
for the transpose of a matrix or vector, θk indicates the kth element of the vector θ, Θi
and Θij indicate the ith row vector and the element in the ith row and jth column of the
matrix Θ, respectively, Log(θ) and Exp(θ) are, respectively, the vector-valued functions
Log(θ) := (log(θ1), log(θ2), . . . , log(θi))

� and Exp(θ) := (exp(θ1), exp(θ2), . . . , exp(θi))
�

of each element in vector θ = (θ1, θ2, . . . , θi)
�, and diag(θ) indicates the diagonal matrix in

which the diagonal entries are the elements of the vector θ.

3. Proposed System

3.1. Definition

The proposed methods for obtaining a solution to the tomographic inverse problem
can be described as an iterative algorithm and dynamical system.

We present an iterative reconstruction method with a relaxation or scaling parameter
h > 0:

zj(n + 1) = zj(n)
(

f j(z(n))
)h (3)

with

f j(w) :=

I

∑
i=1

Aij

(
yi

(Aiw)α

)γ

I

∑
i=1

Aij

(
Aiw

(Aiw)α

)γ
(4)

for j = 1, 2, . . . , J and n = 0, 1, 2, . . . , N − 1, where γ > 0, α ≥ 0, and z(0) = z0 ∈ RJ
++, with

R++ representing the set of positive real numbers. The accompanying system derived from
a continuous analog based on the dynamical method is described by a dynamical system:

dxj(t)
dt

= xj(t) log
(

fj(x(t))
)

(5)

for j = 1, 2, . . . , J at t ≥ 0, where the function f j is in Equation (4) and x(0) = z0. The
system in Equation (5) can be equivalently written as

dx(t)
dt

= X
(

Log(A� Exp(γ(Log(y)− α Log(Ax(t)))))

−Log(A� Exp(γ(1 − α)Log(Ax(t))))
)

(6)

where X := diag(x). The iterative formula in Equation (3) is obtained by discretizing the
differential equation of Equation (5) by using the multiplicative Euler method [41,42] with
a step-size of h. Note that the iterative formula in Equation (3) with h = 1 is equivalent to
the algorithm presented by Zeng [19] when γ = 1, to the algorithm in Reference [20] when
α = 1, and to the MLEM algorithm when (γ, α) = (1, 1).

7



Entropy 2021, 23, 1005

We apply the proposed divergence in Equation (1) to the tomographic objective
function consisting of measured and forward projections. Namely, we define

V(x) := Φγ,α(y, Ax) =
I

∑
i=1

∫ Aix

yi

sγ − yγ
i

sγα
ds (7)

which can be written as

V(x) =
I

∑
i=1

∫ Aix

yi

sγ − yγ
i

s
ds

=
1
γ

I

∑
i=1

yγ
i

(
log

(
yi

Aix

)γ

+

(
Aix
yi

)γ

− 1
)

if γα = 1;

V(x) =
I

∑
i=1

∫ Aix

yi

sγ − yγ
i

s1+γ
ds

=
1
γ

I

∑
i=1

log
(

Aix
yi

)γ

+

(
yi

Aix

)γ

− 1

if γα = 1 + γ; and

V(x) =
I

∑
i=1

∫ Aix

yi

sγ − yγ
i

sγα
ds

=
I

∑
i=1

1
1 − γα

y1+γ(1−α)
i

(
1 −

(
Aix
yi

)1−γα
)

+
1

1 + γ(1 − α)
y1+γ(1−α)

i

((
Aix
yi

)1+γ(1−α)

− 1

)

otherwise.

3.2. Theoretical Results

This section provides a theoretical result on the dynamical system defined in the
preceding section. We show that any solution to the continuous analog converges to
the desired solution of the system in Equation (2) with δ = 0 when the inverse problem
is consistent.

Theorem 1. Assume there exists e ∈ RJ
++ satisfying y = Ae. Then, e is an equilibrium observed

in the continuous-time system in Equation (6) and is asymptotically stable.

Proof. We see that e is an equilibrium of the system and the solutions to the system are
in RJ

++ because the initial state value at t = 0 belongs to RJ
++ and the flow cannot pass

through the invariant subspace xj = 0 for j = 1, 2, . . . , J in the state space according to the
uniqueness of solutions for the initial value problem. The nonnegative function V(x) of
xj > 0 in Equation (7) is well-defined as a candidate of a Lyapunov function. Then, we
have the derivative of V along the solutions to Equation (6):

dV
dt

(x)
∣∣∣∣
(6)

= −
I

∑
i=1

((
yi

(Aix)α

)γ

− (Aix)γ(1−α)

)
Ai

dx
dt

= −(ξ − ζ)�X(Log(ξ)− Log(ζ)) (8)

≤ 0

8
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where

ξ := A� Exp(γ(Log(y)− α Log(Ax)))

ζ := A� Exp(γ(1 − α)Log(Ax)).

Therefore, V is a Lyapunov function and the equilibrium e is asymptotically stable.

This theorem guarantees that the proposed difference system in Equation (3) as a
first-order approximation to the differential equation in Equation (6) has a stable fixed
point e when the chosen step-size h is sufficiently small to ensure numerical stability.

4. Experimental Results and Discussion

We will illustrate the effectiveness of the extended MLEM algorithm based on the EPDM
family in Equation (3) with the parameter set (γ, α) (in what follows, the iterative algorithm
except for MLEM with (γ, α) = (1, 1) is referred to as PDEM) by using examples from
numerical and physical CT experiments. The proposed systems were executed using a 6-core
processor and computing tools provided by MATLAB (MathWorks, Natick, MA, USA).

We set h = 1 and a constant initial value z0
j for j = 1, 2, . . . , J. Note that variation of

h is out of the scope of this paper, although setting h > 1 would accelerate convergence.
In addition, in the numerical simulation, the PDEM algorithm in Equation (3) with h = 1
as a simple forward Euler discretization qualitatively approximates the solutions to the
differential equation in Equation (6), which were calculated by a standard MATLAB ODE
solver ode113 implementing a variable step-size variable order method.

4.1. Reconstruction Using Numerical Phantom

We used a numerical phantom image consisting of e ∈ [0, 1]J with 128 × 128 pixels
(J = 16,384), as shown in Figure 1. For our experiment, a Shepp–Logan phantom [43],
which is a popular test image for developing reconstruction algorithms, was modified
by changing the density values for ellipses so that the resulting image had better visual
perception with high contrast. The noise-free and noisy projections y ∈ RI

+ derived from
the phantom image were, respectively, simulated using Equation (2) without and with δ
denoting white Gaussian noise such that the signal-to-noise ratio (SNR) was 30 dB and
by setting the number of view angles and detector bins to 180 and 184 (I = 33,120) with
180-degree sampling.

Figure 1. Image of numerical phantom.

For directly evaluating the quality of the reconstructed images, we defined functions
for comparing the reconstructed image compared against the true image, e, as

Dj(z) := |ej − zj| (9)

9
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for j = 1, 2, . . . , J and

E(z) := ||e − z||2 =

(
J

∑
j=1

(
Dj(z)

)2
) 1

2

. (10)

First, we considered the case of a noise-free projection. Figure 2 shows the evaluation
functions E(z(n)) of the iterative points z(n) for MLEM and PDEM with the sets of pa-
rameters (γ, α) being (0.3, 1.2), (0.5, 1.2), (0.8, 1.2), and (1.3, 1.2) for n = 0, 1, 2, . . . , 200. All
algorithms monotonically decreased the evaluation function, as supported by the theoreti-
cal result that the solutions of the continuous analog converge to the true value. Indeed,
another experiment confirmed that the monotonic decrease continued as the number of
iterations exceeded 200 iterations. We can see that PDEM with the parameter set (1.3, 1.2)
reduces the evaluation function much more than MLEM does. To put it another way,
the PDEM algorithm takes less computation time than MLEM for obtaining the same
evaluation values.

E
(z
(n
))

�

0 20 40 60 80 100 120 140 160 180 200

101

n �

Figure 2. Evaluation functions for MLEM and PDEM algorithms at each iteration in the experiment
using numerical phantom with noise-free projection. Note that because the values of PDEM with
(γ, α) = (0.8, 1.2) and MLEM are very similar, the plotted points for PDEM are almost invisible.

Figure 3 shows contour plots of the evaluation values on a logarithmic scale,
log10(E(z(N))) for N = 50, 100, and 200, in the parameter plane (γ, α). The parame-
ters γ and α were, respectively, sampled from 0.1 to 1.5 and 0 to 1.4 with a sampling
interval of 0.1. We can see that, at least in the range examined, the evaluation function
becomes smaller as the values of γ ≥ 1 and α ≥ 1 increase.
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Figure 3. Contour plots of evaluation functions log10(E(z(N))) with N being (a) 50, (b) 100, and (c) 200
using numerical phantom with noise-free projections. The white dot indicates the position of MLEM.
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Figure 4 illustrates images reconstructed by MLEM and PDEM with (γ, α) = (1.3, 1.2)
at the 200th iteration and the corresponding subtraction images Dj(z(200)) (displayed in
the range from 0 to 0.2) at every jth pixel, for j = 1, 2, . . . , J. By comparing the values of the
subtraction between MLEM and PDEM, e.g., the edges of the high-density objects in the
image, we can see that PDEM produces high-quality reconstructions, as is quantitatively
indicated by its small evaluation value between the reconstructed and phantom images.

MLEM PDEM

Figure 4. Reconstructed images (upper panel) and images of the subtraction (lower panel) for
MLEM and PDEM with (γ, α) = (1.3, 1.2) at 200th iteration using numerical phantom with noise-
free projection.

Next, let us consider the effect of the measured noise. Figure 5 is a graph of the
evaluation E(z(n)) as a function of iteration number n with n = 0, 1, 2, . . . , 200. Given noisy
projection data, the algorithm with each parameter set decreases the evaluation function
in the early iterations. However, the time course does not show a monotonic decrease in
further iterations. Similar characteristics are known to exist and have been considered for
the alternative MLEM [19] that is described as Equation (3) with γ = 1. We can see that a set
of parameters (γ, α) exists at which the PDEM algorithm reduces the evaluation function
more than MLEM does for any iteration number. Additionally, the smallest value of the
evaluation function among the iteration numbers for a fixed set of the parameters becomes
smaller with decreasing γ in the set {0.3, 0.5, 0.8, 1, 1.3} considered for this example. The
parameter dependence of the evaluation function is clearly visible in contour plots of
Figure 6, showing the values of log10(E(z(N))) for N = 50, 100, and 200 in the parameter
plane. When designing a parameterized PDEM algorithm, a relatively large value of α
and a small value of γ compared with the reference values of (γ, α) = (1, 1) provide
the best performance in early and sufficient iterations, respectively. The best choices of
(γ, α) depending on the termination iteration number are approximately (0.8, 1.2) at the
50th iteration, (0.5, 1.2) at the 100th iteration, and (0.3, 1.2) at the 200th iteration. The
evaluation values under these conditions are indicated in Table 1, showing that PDEM
with each parameter set gives a smaller value than MLEM does. The reconstructed images
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and subtraction images (displayed in the range from 0 to 0.3) are shown in Figure 7. The
figure reveals lots of artifacts in the reconstructed image due to the presence of noise in
the measured projection. In terms of a quantitative evaluation, the structural similarity
index measure [44] (SSIM) between the reconstructed and the true images was calculated
and summarized in Table 2. A higher value of SSIM, which is a perception-based quality
metric, provides higher image quality. By comparing the images reconstructed by MLEM
and PDEM at the 100th and 200th iterations (see Figure 7 and Table 2), we can see that the
PDEM with a proper set of parameters is able to reconstruct high-quality images while
reducing the effects of noise in the projections, which means that PDEM is more robust to
noise than MLEM.
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Figure 5. Evaluation functions for MLEM and PDEM algorithms at each iteration in the experiment
using numerical phantom with noisy projection.

Table 1. Values of the evaluation function for MLEM and PDEM with (γ, α) equal to (0.8, 1.2) at
50th iteration, (0.5, 1.2) at 100th iteration, and (0.3, 1.2) at 200th iteration in the experiment using
numerical phantom with noisy projection.

N
E(z(N))

MLEM PDEM with (γ, α)

50 6.44 6.29 (0.8, 1.2)
100 6.65 5.85 (0.5, 1.2)
200 7.86 5.70 (0.3, 1.2)
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Figure 6. Contour plots of evaluation functions log10(E(z(N))) with N equal to (a) 50, (b) 100, and
(c) 200 in the experiment using numerical phantom with noisy projection. The white dot indicates
the position of MLEM.
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MLEM PDEM

(a)

(b)

Figure 7. Cont.
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MLEM PDEM

(c)

Figure 7. Reconstructed images (upper panel) and subtraction images (lower panel) for MLEM
and PDEM with (γ, α) equal to (a) (0.8, 1.2) at 50th iteration, (b) (0.5, 1.2) at 100th iteration, and
(c) (0.3, 1.2) at 200th iteration in the experiment using numerical phantom with noisy projection.

Table 2. SSIM for MLEM and PDEM with the same parameters, as shown in Table 1 at Nth iteration
in the experiment using numerical phantom with noisy projection.

N
SSIM

MLEM PDEM with (γ, α)

50 0.651 0.689 (0.8, 1.2)
100 0.581 0.726 (0.5, 1.2)
200 0.531 0.772 (0.3, 1.2)

4.2. Reconstruction Using Physical Phantom

A physical experiment was carried out to further validate the effectiveness of the
proposed method, although the true image is not available for a quantitative evaluation.
The projections were physically acquired from an X-ray CT scanner (Canon Medical
Systems, Tochigi, Japan) with a body-simulated phantom [45] (Kyoto Kagaku, Kyoto,
Japan) using 80 kVp tube voltage, 30 mA tube current, and an exposure time of 0.75 s per
rotation. Figure 8 represents the sinogram, a two-dimensional array of data containing the
projections y ∈ RI

+, with I = 430,200 (956 acquisition bins and 450 projection directions
in 180 degrees) and a reconstructed image created by FBP using a Shepp–Logan filter
with J = 454,276 (674 × 674 pixels). Images reconstructed by MLEM and PDEM with
(γ, α) = (0.5, 1.2) are shown in Figure 9. The parameter values were referred to as the
results of the numerical phantom with noisy projection. Figure 10, which shows the
density profiles along horizontal lines (indicated by white) in the reconstructed images of
Figures 8b and 9, verifies that the PDEM has a lower density deviation on a flat distribution
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of the X-ray absorption in the physical phantom than either MLEM or FBP. The parameter
values of the power exponents in the PDEM algorithm make it more robust to noise in
spite of the higher noise level due to the low-dose X-ray exposure condition. This fact
implies that the proposed method contributes to reducing patient doses during X-ray CT
examinations in clinical practice by adjusting the parameter values depending on the noise
levels of the projection data.

(a) (b)

Figure 8. (a) Sinogram and (b) reconstructed image by FBP in the experiment using physical phantom.

(a) (b)

Figure 9. Reconstructed images for (a) MLEM and (b) PDEM with (γ, α) = (0.5, 1.2) at 200th iteration
in the experiment using physical phantom.
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Figure 10. Density profiles for (a) FBP, (b) MLEM, and (c) PDEM of reconstructed images along
horizontal line with L = 674 × 224 and � = 1, 2, . . . , 674.

5. Conclusions

We presented an extension of the PDM family with two parameters, γ and α, and
proposed a novel iterative algorithm based on minimization of the divergence measure
as an objective function of the reconstructed images. The theoretical results show the
convergence of solutions to the continuous analog of the iterative algorithm owing to the
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objective function decreasing as the time proceeds. Numerical experiments illustrated that
the proposed algorithm, which is considered to be an extended MLEM with two power
exponents γ and α, has advantages over MLEM, which is the most popular and suitable
iterative method of image reconstruction from noisy measured projections. The algorithm
is of practical importance because its image quality is superior to that of MLEM. Our
results suggest that a larger value of α accelerates convergence and a smaller value of γ
improves its robustness to measured noise. An investigation of the direct relation between
the parameter variation in the EPDM family and the quality of images reconstructed
by the proposed algorithm based on minimization of the EPDM is a future work to be
considered. Moreover, we will use techniques such as machine learning to determine the
most appropriate parameter depending on the noise level of the projections, number of
projections, number of pixels, etc.
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Abstract: In the current network and big data environment, the secure transmission of digital images
is facing huge challenges. The use of some methodologies in artificial intelligence to enhance its
security is extremely cutting-edge and also a development trend. To this end, this paper proposes a
security-enhanced image communication scheme based on cellular neural network (CNN) under
cryptanalysis. First, the complex characteristics of CNN are used to create pseudorandom sequences
for image encryption. Then, a plain image is sequentially confused, permuted and diffused to get the
cipher image by these CNN-based sequences. Based on cryptanalysis theory, a security-enhanced
algorithm structure and relevant steps are detailed. Theoretical analysis and experimental results
both demonstrate its safety performance. Moreover, the structure of image cipher can effectively
resist various common attacks in cryptography. Therefore, the image communication scheme based
on CNN proposed in this paper is a competitive security technology method.

Keywords: secure communication; image encryption; chaos; cellular neural network

1. Introduction

With the rapid development of cloud computing, big data, blockchain and other
emerging technologies, the privacy and sharing of messages provides convenience for
people in their work and daily lives [1–4]. However, the convenience also threatens the
security of cyberspace [5–8]. In particular, as a significant transmission medium, digital
images may include a lot of personal privacy, confidential information and other important
data, so their privacy protection gets more attention [9–12]. Encryption technology is
a common means to assure the security of digital images, and has been widely used
in various fields of digital image security [13–17]. Currently, there exist many mature
block encryption schemes that are widely used in text encryption and these schemes
have brilliant effects [18,19]. Nevertheless, due to the uniqueness of the image, such
as being two-dimensional, redundancy and a strong correlation of two adjacent pixels,
traditional text encryption faces severe challenges [20–22]. Moreover, the problem of real-
time transmission should be considered in image encryption to improve the communication
performance [9,23,24]. Therefore, it is quite necessary to study the new technologies and
methods of image encryption.

In current international studies, digital image encryption is a research hotspot [25–27].
Various mechanisms and methods are introduced to enhance the security of algorithms [28,29].
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In 2015, the authors of [16] proposed a multibiometric template protection scheme based
on fuzzy commitment and a chaos-based system, as well as a security analysis method
of unimodal biometrics leakage. The chaos-based system is used to encrypt the dual iris
feature vectors. The experimental results show that the security of BCH ECC (1,023,123,170)
based on multibiometrics template is improved from 80.53 bits to 167.80 bits. In 2017, the
authors of [30] designed a special image encryption scheme based on the second-order
Henon mapping hyperchaos and the fifth-order CNN. Experimental results show that
the scheme features high security and is suitable to spread in the network. At the same
time, in [31] a new image encryption method was proposed, based on the biological DNA
sequences operation and the third-order CNN. The method could effectively enhance the
plaintext sensitivity and features large key space and high security. In 2019, the authors
of [17] proposed a new privacy protection encryption mechanism for medical systems
based on the Internet of Things. Experimental results show that the encryption mechanism
is robust and effective to protect the privacy of patients. In 2020, Zhang and Zhang [32]
used the Chen chaos-based system and two-dimensional logistic mapping to propose a
multi-image encryption system based on bitplane and chaos. The experiment also proved
its high efficiency. At the same time, in [15] a new and effective color image cryptosystem
was proposed. The experimental results show that the cryptosystem has high security
efficiency and can be effectively applied to the IoHT framework of secure medical image
transmission. In summary, more and more theories and technological achievements have
been made in digital image encryption. However, in current studies, most digital images are
regarded as a two-dimensional matrix to encrypt, meaning that only the spatial domain is
processed [6,33–35]. However, two defects were exposed: (1) Some encryption algorithms
have security flaws and are not associated with plaintext, so it is difficult for them to
resist chosen-plaintext attack (CPA); (2) The cost of attacking the encryption algorithm is
relatively low because chaos-based systems are relatively simple.

Aimed at solving the existing problems, we put forward a digital image encryption
algorithm based on CNN in this paper. On the one hand, a CNN chaos-based system
is selected to generate a chaos-based key sequence. The CNN chaos-based system has
more complex behavioral characteristics, so it has better security performance than other
encryption systems. On the other hand, the scheme adopts the security mechanism of
generating a chaos-based key sequence by plaintext correlation. Therefore, compared with
other encryption schemes based on a CNN chaos-based system, it effectively enhances
the ability to resist CPA. Theoretical analysis and experimental results show that the
proposed algorithm can effectively enhance the confusion, diffusion and avalanche effect
of encryption. Therefore, the image encryption algorithm based on CNN is reliable.

2. Correlation Theory

The idea of a cellular neural network (CNN) was conceived by Chua and Yang in
1988 [34]. The basic units of CNN are called cells, and each cell is a nonlinear first-order
circuit which is composed of a linear resistor, a linear capacitor and a voltage-controlled
current source [36,37].

In order to make the mathematical model of CNN more comprehensible, a simplified
CNN cell model is adopted:

dxj

dt
= −xj + Aj pj + Go + Gs + Ij (1)

where j is used as a cell marker, xj represents the state variable, Aj represents a constant
number, Ij represents the threshold value, Gs and Go separately represent the linear combi-
nation of the state variables of the cell and the output value of the connecting cell, and pj
represents the output of the cell.
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The fourth-order fully interconnected CNN equation can be defined as follows:

⎧⎪⎨
⎪⎩

dxj
dt = −xj + Aj pj +

4
∑

k=1;k �=j
Ajk pj +

4
∑

k=1
Sjkxk + Ij

pj = 0.5
∣∣xj + 1

∣∣− 0.5
∣∣xj − 1

∣∣ (2)

where S represents a matrix of j × k, Aj and Ij both represent a matrix of j × 1,
Ajk = 0(j �= k, j = 1, 2, 3, 4; k = 1, 2, 3, 4) and it can be described by the equation of state in
Equation (2) [38]: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= −x3 − εx4

dx2

dt
= 2x2 + x3

dx3

dt
= 14x1 − 14x2

dx4

dt
= 200p4 + 100x1 − 100x4

(3)

where ε is the control parameter of the CNN model, which can control the size and quantity
of Lyapunov exponents, and the range of values for ε is 0 to 2. At this moment, the system
is in a chaos-based state, and four aperiodic chaos-based sequences can be generated
from it, which are very sensitive to the initial conditions x1(0), x2(0), x3(0) and x4(0).
By calculating the Lyapunov exponents of Equation (3), it can be seen that the Lyapunov
exponents of the four chaos-based sequences tend to 42.8487, 2.0230, −0.0230 and −49.0391,
respectively, two of which are positive. Therefore, the CNN model is a hyperchaotic system,
and the Lyapunov exponents are shown in Figure 1. When the initial values of x1(0), x2(0),
x3(0) and x4(0) are 0.2, 0.2, 0.2 and 0.2, respectively, we use the fourth-order Runge–Kutta
algorithm with the step size of h = 0.005 to get the two-dimensional chaos-based attractor,
as shown in Figure 2a–d and the three-dimensional chaos-based attractor, as shown in
Figure 2e–h.

(a) (b) (c)

Figure 1. Lyapunov exponents spectrum. The exponents tend to 42.8487, 2.0230 and −0.0230, and −49.0391, as can be seen
in (a–c), respectively.

(a) (b) (c) (d)

Figure 2. Cont.
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(e) (f) (g) (h)

Figure 2. Chaos-based attractors generated by the fourth-order CNN: (a) x1, x2; (b) x1, x3; (c) x1, x4; (d) x2, x4; (e) x1, x2, x3;
(f) x1, x2, x4; (g) x1, x3, x4; (h) x4, x3, x2.

3. The Proposed Encryption Algorithm

The encryption algorithm of chaos-based image usually adopts the classical structure
“permutation–diffusion” [39,40]. However, due to the lack of security, a chaos-based image
encryption algorithm based on a “confusion–permutation–diffusion” structure is proposed
in this paper [35].

The encryption and decryption processes are shown in Figure 3. IEA-CNN represents
the image encryption algorithm based on a cellular neural network, IDA-CNN represents
the image decryption algorithm based on a cellular neural network. In order to enhance
the ability to resist CPA, the image encryption system of this paper adopts the security
mechanisms of chaos-based key sequences produced by plaintext association and ciphertext
feedback diffusion encryption. The specific steps of the encryption algorithm are given
as follows:

Step 1: Preprocessing Sequences
The secret key of the image encryption algorithm contains the Message-Digest Al-

gorithm 5 (MD5) value of plain image, the initial value of the fourth-order CNN and the
controlling parameters. The MD5 can be used to disturb the initial value key parameters
of CNN chaos; so that the key sequence changes with different plain images, the specific
treatment methods are calculated using the following formulas:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′1(0) = x1(0) + (m1 ⊕ m2 ⊕ m3 ⊕ m4 )/256

x′2(0) = x2(0) + (m5 ⊕ m6 ⊕ m7 ⊕ m8 )/256

x′3(0) = x3(0) + (m9 ⊕ m10 ⊕ m11 ⊕ m12)/256

x′4(0) = x4(0) + (m13 ⊕ m14 ⊕ m15 ⊕ m16)/256

(4)

where ⊕ is bitwise XOR operation, x1(0), x2(0), x3(0) and x4(0) are the initial values of the
fourth-order CNN key parameters; x1

′(0), x2
′(0), x3

′(0) and x4
′(0) are the initial values

updated after the disturbance from MD5. Obviously, the new initial values will change with
the different plain images. Then, a preprocessing operation is adopted for the chaos-based
sequences. The generating methods of obfuscated sequences are shown as follows:

⎧⎪⎪⎨
⎪⎪⎩

real_X = [x1; x2; x3; x4]

Kc
′ = f loor( mod (real_X × 1010, 256))

Kc = reshape
(
Kc

′, H, W
) (5)

where real_X is composed of four sequences produced by the fourth-order CNN chaos-
based system. The sequences diagram of four sequences generated by chaos-based map-
ping of the fourth-order CNN is shown in Figure 4. The size of Kc is equal to H × W, H
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and W are pixel rows and pixel columns of the plain images for image confusion. The
generating method of permutation sequences is shown as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

seq_H = x2(1, 1 : H)

seq_W = x3(2, 1 : 8 × W)

[value1, Kpr] = sort(seq_H)

[value2, Kpc] = sort(seq_W)

(6)

where sort is the sorting function of array elements; x2 represents a two-dimensional se-
quence of real_X; x3 represents the three-dimensional sequence of real_X; seq_H represents
the chaos-based sequence of length H extracted from x2; real_W represents the chaos-based
sequence of length 8 × W extracted from x3; Kpr means that the pixel row is generated by
the sorting function and the length is H; Kpc means that the pixel column is generated by
the sorting function and the length is 8 × W; value1 and value2 are the sorted chaos-based
sequence values.

The generating method of diffusion sequences is shown as follows:⎧⎨
⎩ Kd = mod( f loor([x1, x3, x2, x4]× 105), 256)

Kd
′ = mod( f loor([x3, x4, x1, x2]× 105), 256)

(7)

where the lengths of Kd and Kd
′ are H × W, and the key sequences of Kd and Kd

′ are used
for diffusion.

Step 2: Confusion
The key sequence Kc is used to obfuscate the plain image P. The image can be

visualized and hidden to get the obfuscated image I1, the method is shown as follows:

I1(i) = Kc(i)⊕ P(i), i = (1, 2, · · · , H × W) (8)

Step 3: Permutation
The key sequences Kpr(i) and Kpc(j) are used to replace the pixels in I1 to get I3,

the method is shown as follows:⎧⎨
⎩ I2= swap

(
I1
(
:, Kpc(i)

)
, I1(:, i)

)
I3= swap

(
I2
(
Kpr(j), :

)
, I2(j, :)

) (9)

where swap function is used to swap the values of two pixels. The number of bit level rows
is equal to the number of pixel level rows, and the number of bit level columns is equal to
8 times the number of pixel level columns, thus, i = 1, 2, · · · , H and j = 1, 2, · · · , 8 × W. I2
and I3 are the images after double bit column transform and row transform permutation,
respectively.

Step 4: Diffusion
All the ciphertext pixels in I3 are diffused dynamically. Kd and K′

d are used for the
image diffusion operation to generate the final ciphertext image C.

The first ciphertext pixel C(1) is generated, and the diffusion encryption equation is
shown as follows: ⎧⎪⎨

⎪⎩
C(1) = I3(1)⊕ Kd(1)⊕ (sum(1)+̇Kd

′(1))

sum(1) =
L
∑

i=1
I3(i)

(10)

where the operator +̇ can be defined as a+̇b Δ
= mod(a + b, 256), I3(1) is the first pixel of

the permutation image I3, Kd(1) and Kd
′(1) are the first element of the diffusion encryption

sequences, and sum(1) represents the sum of all pixels of the permutation image I3.
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Then ciphertext pixel C(i) is produced and its diffusion formula is shown as follows:⎧⎨
⎩ C(i) = I3(i)⊕ (C(i − 1)+̇Kd(i))⊕ (sum(i)+̇Kd

′(i))

sum(i) = sum(i − 1)− I3(i)
(11)

where i = 2, 3, . . . , L and the i represents the ith pixel of the permutation image I3. C(i − 1)
is the (i− 1)th ciphertext pixel. sum(i) is the sum of the (L− i+ 1) pixels of the permutation
image I3. According to Equation (11), starting from the second ciphertext pixel C(2),
the cipher image C is generated by computing iteratively C(i), i in {1, 2, · · · , L}, until the
Lth ciphertext C(L) is generated.

Decryption is the inverse process of encryption, whose process is first confusion, then
permutation, and finally diffusion. While the decryption process is to first reverse diffuse
the encrypted image, then reverse permutate the reverse diffuse image, and finally reverse
confuse the reverse permutation image to get the decrypted image. When the decryption
key and the encryption key are matched, the image can be restored correctly. However,
when the decryption key is not equal to the encryption key, even if there is a small error,
the correct image cannot be decrypted.

Figure 3. Principle and mechanism of image encryption and decryption.
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Figure 4. Sequence diagram of the fourth-order CNN.

4. Experimental Verification and Discussion

In the analysis of the experimental results, we use MATLAB 2020b to simulate and
validate the proposed image encryption system which is executed on a PC with Windows
10 64 bit operating system, Intel (R) Core (TM) i7-8250 CPU @ 1.60 GHz 1.80 GHz processor
and 8 GB memory. In order to prove the effectiveness and practicability of the proposed
image encryption scheme, we selected the images from “USC-SIPI Image Database” and
“Ground Truth Database” as the test images [41,42].
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4.1. Key Space Analysis

In the encryption system, the range of valid value of key can be expressed by key
space. The image encryption algorithm designed in this paper uses a fourth-order CNN
system and the secret key parameters involved are the initial values of the fourth-order
CNN chaos-based system x1(0), x2(0), x3(0), x4(0). Because the computer precision used
in experimental simulation is 10−15, the size of this part of encryption system key space
is (1015)4 = 1060 ≈ 2199. Considering that MD5 of 128 bits can also be used as part of the
secret key, the total secret key space 2327 and the encryption system can resist the exhaustive
attack effectively [43,44].

4.2. Nist 800-22 Test

The NIST 800-22 test is an internationally recognized random number test. It consists
of 16 different tests. As long as the 16 test results are greater than or equal to 0.001,
the random array can be considered to be qualified. In this test, we divide the generated
3,000,000 bits of byte stream data into 10 segments of 300,000 bits. The Kc, Kpr, Kpc, Kd
and K′

d sequences needed in encryption passed the test successfully, and the test results
of the K′

d sequence are shown in Table 1. The experimental results show that the random
numbers generated by our algorithm fully conform to the international standard, and have
strong randomness.

Table 1. NIST-800-22 test results.

Statistical Tests
p-Values

Result
Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7 Seq8 Seq9 Seq10

ApproximateEntropy Text 0.8094 0.1941 0.0781 0.3518 0.4390 0.3812 0.4203 0.1690 0.1884 0.0589 Successful

BlockFrequency Text 0.9347 0.2822 0.9547 0.0925 0.6961 0.4518 0.1352 0.4160 0.3816 0.1934 Successful

CumulativeSums Text-1 0.7034 0.9290 0.7701 0.4770 0.0354 0.6270 0.4488 0.2083 0.4378 0.5493 Successful

CumulativeSums Text-2 0.8561 0.9968 0.8754 0.7377 0.0426 0.2912 0.2621 0.1019 0.3783 0.1853 Successful

FFT Text 0.9732 0.9066 0.4508 0.2911 0.4921 0.1912 0.8145 0.4508 0.0226 0.1359 Successful

Frequency Text 0.8666 0.8408 0.9040 0.4541 0.0235 0.6507 0.7674 0.1743 0.9330 0.5541 Successful

LinearComplexity Text 0.2833 0.8136 0.5262 0.2415 0.6749 0.4776 0.9849 0.2676 0.8014 0.3305 Successful

LongestRun Text 0.3615 0.2823 0.5065 0.4150 0.7894 0.7386 0.0683 0.1561 0.5800 0.2138 Successful

OverlappingTemplate Text 0.2713 0.8537 0.8457 0.6464 0.2555 0.1803 0.4144 0.9091 0.7819 0.7349 Successful

Rank Text 0.6985 0.1675 0.6198 0.2927 0.5757 0.3860 0.3147 0.8761 0.3737 0.2093 Successful

Runs Text 0.6066 0.6691 0.6771 0.2721 0.3432 0.1041 0.5789 0.7783 0.6718 0.6011 Successful

Serial Text-1 0.0096 0.8837 0.0110 0.5441 0.1669 0.0331 0.8454 0.1955 0.7045 0.6886 Successful

Serial Text-2 0.1784 0.6697 0.2170 0.5832 0.0293 0.3877 0.9621 0.4920 0.7287 0.5582 Successful

4.3. Histogram Analysis

There are three channels—R, G and B—in color images; the abscissa of the histogram
containing these three channels reflects the statistical characteristics of the distribution
of every pixel [45,46]. Different plain images and cipher images, as well as their relevant
histograms, are shown in Figure 5. The experimental results show that the pixel values
of the R, G and B channels of color cipher image are almost uniformly distributed, so the
influence of statistical analysis is greatly eliminated [47,48].
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Figure 5. The histograms of images before and after encryption: (a) plain image of “Zhong shan”; (b) histogram of the
plain image of “Zhong shan”; (c) cipher image of “Zhong shan”; (d) histogram of the cipher image of “Zhong shan”;
(e) plain image of “Greenlake10”; (f) histogram of the plain image of “Greenlake10”; (g) cipher image of “Greenlake10”;
(h) histogram of the cipher image of “Greenlake10”; (i) plain image of “Greenlake13”; (j) histogram of the plain image of
“Greenlake13”; (k) cipher image of “Greenlake13”; (l) histogram of the cipher image of “Greenlake13”; (m) plain image
of “Greenlake47”; (n) histogram of the plain image of “Greenlake47”; (o) cipher image of “Greenlake47”; (p) histogram of
cipher image of “Greenlake47”.

4.4. Correlation Analysis

For the plain image, the correlation between adjacent pixels is strong [49,50]. Gray
value of a pixel tends to be close to the gray values of its adjacent pixels. Therefore,
the attacker can speculate about the gray value of a pixel from the gray value of its adjacent
pixels [51,52]. An encryption system with good performance should satisfy the requirement
that adjacent pixels of cipher image have low correlation coefficients to each other in order
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to resist the statistical attack. Correlation coefficients are commonly used to measure the
correlation of two pixels and the calculations of it are defined as [53,54]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(x) = 1
N

N
∑

i=1
xi

D(x) = 1
N

N
∑

i=1
(xi − E(x))2

cov(x, y) = 1
N

N
∑

i=1
(xi − E(x))(yi − E(y))

γxy = cov(x,y)√
D(x)×

√
D(y)

(12)

where the gray value of every pixel is represented by x and y, while E(x) represents the
mean value, D(x) represents the variance, cov(x, y) represents the covariance and γxy
represents the correlation coefficients.

The correlation coefficients before and after encryption of the selected image are
shown in Table 2 where “Anti-Diag”. represents the correlation coefficient in the anti-
diagonal direction. Figure 6 shows the correlation of plain image and cipher image in
horizontal, vertical, diagonal and anti-diagonal directions. It can be seen that there is no
obvious correlation between adjacent pixels of a cipher image. Therefore, the cipher images
encrypted by the algorithm designed in this paper have high security and can resist the
statistical analysis [55].

Table 2. Correlation coefficients of two adjacent pixels.

Pictures
Plain Image Cipher Image

Vert. Horiz. Diag. Anti-Diag. Vert. Horiz. Diag. Anti-Diag.

7.1.02.tiff 0.9480 0.9429 0.9113 0.9456 −0.0021 0.0303 0.0087 −0.0002

7.1.09.tiff 0.9309 0.9654 0.9208 0.9207 −0.0083 −0.0257 −0.0354 −0.0225

5.1.12.tiff 0.9709 0.9608 0.9429 0.9403 −0.0256 −0.0035 0.0040 −0.0157

5.2.10.tiff 0.9415 0.9364 0.9032 0.9015 0.0032 0.0163 −0.0069 −0.0107

4.5. Sensitivity Analysis

Key sensitivity is an essential indicator of the security of the encryption system. It
represents the difference in the decryption results when the same cipher image is decrypted
with slightly different keys. For the sake of detecting the susceptibility of the scheme to the
key, the first three sequences generated by the initial key are superimposed and combined
into a color map, and the minimum precision of x1(0) is 10−15. The initial key x1(0) is
perturbed with the minimum precision to generate four new sequences, and the first three
new sequences are superimposed and combined into a new color map. The two color
images are differentiated to get the difference image and the histogram corresponding
to the difference image. The initial key x2(0) is processed in the same way, as shown in
Figure 7. By adding 10−3 to the initial key x1(0), four sequences are obtained through
cellular neural chaos, and these four sequences are compared with the four sequences
generated by no change of x1(0), as shown in Figure 8. It can be seen from Figures 7 and 8
that the encryption system designed in this paper has high security and strong sensitivity
to keys, which increases the difficulty for attackers to decipher the cipher image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Correlation coefficients distribution map of plain image and cipher image of “7.1.02.tiff”: (a) “7.1.02.tiff” plain
image horizontal correlation; (b) “7.1.02.tiff” plain image is vertical correlation; (c) “7.1.02.tiff” plain image diagonal
correlation; (d) “7.1.02.tiff” plain image against angular direction correlation; (e) “7.1.02.tiff” cipher image horizontal
correlation; (f) “7.1.02.tiff” cipher image vertical correlation; (g) “7.1.02.tiff” cipher image diagonal correlation; (h) “7.1.02.tiff”
cipher image inverse diagonal correlation.
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Figure 7. The key sensitivity test: (a) x1(0), x2(0), x3(0), x4(0); (b) x1(0) + 10−15, x2(0), x3(0), x4(0); (c) Difference image
after key perturbation; (d) Difference histogram after key perturbation; (e) x1(0), x2(0), x3(0), x4(0); (f) x1(0), x2(0) +
10−15, x3(0), x4(0); (g) Difference image after key perturbation; (h) Difference histogram after key perturbation.
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Figure 8. Comparison of four sequences (a–d) before and after key x1(0) perturbation.

Plaintext sensitivity is also one of the important indexes of encryption system security,
which indicates the ability of encryption system to resist the differential attack. A secure
encryption system should be highly sensitive to plain image. The Number of Pixels Change
Rate (NPCR) and Unified Average Changing Intensity (UACI) can be used to represent the
difference between two plain images with one pixel difference. The calculation formula
is [56]: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
NPCR = 1

H×W × H
∑

i=1

W
∑

j=1
D(i, j)× 100%

UACI = 1
H×W × H

∑
i=1

W
∑

j=1

|v1(i,j)−v2(i,j)|
255 × 100%

(13)

where D(i, j) =

{
0, v1(i, j) = v2(i, j)

1, v1(i, j) �= v2(i, j)
. v1(i, j) and v2(i, j) denote the pixel values at posi-

tions v1 and v2. For a digital image with a gray level of 256, 99.6094% and 33.4635% are
ideal values of the NPCR and UACI, respectively.

Firstly, select a pixel from the “Lena” gray image randomly so that we can obtain a
new image by changing its pixel value. Then, the two gray images which differ by only
one pixel are each encrypted to obtain two ciphertext images. Finally, the NPCR and UACI
values of the two encrypted images are obtained and the above operations will be repeated
50 times to obtain 50 groups of NPCR and UACI values. The NPCR and UACI average
values of the gray images are shown in Table 3.

31



Entropy 2021, 23, 1000

Table 3. NPCR and UACI.

Pictures NPCR (99.6094%) UACI (33.4635%)

1.2.04.tiff 99.6093% 33.5974%

1.2.07.tiff 99.6078% 33.5580%

1.2.08.tiff 99.6154% 33.5209%

5.1.11.tiff 99.5544% 33.4018%

The NPCR and UACI values obtained each time are shown in Figure 9. The NPCR
and UACI average values are very close to the theoretical value. Therefore, the encryption
system designed in this paper is extremely sensitive to both plain images and keys. The en-
cryption algorithm designed in this study is safer and can resist the differential attack.

(a) (b)

Figure 9. NPCR (a) and UACI (b).

4.6. Information Entropy Analysis

The degree of the randomness of the system can be expressed by information entropy.
The information entropy of the image is positively correlated with the encryption effect.
The larger the information entropy is, the better effect the encryption will have. The formula
of information entropy is defined as [57]:

H(n) = −
G−1

∑
i=0

−1P(ni)log2P(ni) (14)

where G represents the number of gray level values of the image and P(ni) the frequency
of pixels with gray value i. The range of gray value of an image with a gray level of 256 is
[0, 255], and 8 is its ideal information entropy. When the value of information entropy is
closer to 8, the image encryption has better effect [58].

Table 4 shows the information entropy before and after image encryption. The infor-
mation entropy of the cipher image is very close to the theoretical value of information
entropy. It is proven that the pixel value distribution of the cipher image is highly ran-
dom and the encryption effect is better. Therefore, the algorithm can effectively resist the
information entropy attack [33].
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Table 4. Information entropy of the plain image and cipher image.

Pictures Plain Image Cipher Image

7.1.02.tiff 4.0045 7.9993

5.1.11.tiff 6.4523 7.9970

5.1.12.tiff 6.7057 7.9972

5.2.10.tiff 5.7056 7.9992

4.7. Psnr and Ssim

Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM) are often used to
reflect the encryption quality. PSNR is essentially the same as the Mean Square Error (MSE)
and can be obtained by MSE. The calculation formula is [59]:

⎧⎪⎨
⎪⎩

MSE = 1
H×W

H
∑

i=1

W
∑

j=1
(P(i, j)− C(i, j))2

PSNR = 10 × log10

(
Q2

MSE

) (15)

where the height and width of the image are represented by H and W, respectively, the pixel
level of the image is represented by Q, the plain image pixels are represented by P(i, j),
and the cipher image pixels are represented by C(i, j). SSIM is defined as [59]:

SSIM(p, c)=

(
2μpμc+(0.01L)2

)(
2σpc+(0.03L)2

)
(

u2
p+u2

c+(0.01L)2
)(

σ2
p+σ2

c +(0.03L)2
) (16)

where the average values of the plain image P and the cipher image C are denoted by up
and uc, respectively. The variance of the plain image and the cipher image denoted by σ2

p

and σ2
c indicates that the covariance of the plain image and the cipher image represented by

σpc. (0.01L)2 and (0.03L)2 are used as constant numbers to maintain stability. L represents
the dynamic range of pixel values.

The range of SSIM is from −1 to 1. When the two images are the same, SSIM is 1.
The smaller the PSNR and SSIM are, the better the encryption quality is. Tables 5 and 6
show the encryption quality of the proposed scheme and the classic encryption schemes in
recent years.

Table 5. PSNR of cipher image with different algorithms.

Pictures This Paper Ref. [1] Ref. [60] Ref. [28]

7.1.02.tiff 8.9518 9.1033 8.9731 8.9801

5.2.10.tiff 8.7620 8.7684 8.7660 8.7621

5.1.13.tiff 4.9032 4.9585 4.9168 4.9141

5.2.08.tiff 9.6225 9.6389 9.6378 9.6198
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Table 6. SSIM of cipher image based on different algorithms.

Pictures This Paper Ref. [1] Ref. [60] Ref. [28]

7.1.02.tiff 0.0102 0.0108 0.0103 0.0109

5.1.11.tiff 0.0101 0.0099 0.0101 0.0109

5.2.10.tiff 0.0087 0.0098 0.0100 0.0091

5.1.13.tiff 0.0037 0.0057 0.0085 0.0067

The experimental results show that the PSNR and SSIM values obtained by the
proposed algorithm are lower than those of other proposed approaches. Therefore, this
encryption scheme has certain advantages, and the image encryption quality is high.

4.8. Robust Noise Analysis

Robustness means that the system still has certain performance under interference
or at random. Image robustness refers to the fact that the image still has a certain degree
of fidelity after undergoing various signal processing or attacks. The image can still be
recognized, with low distortion. Add 20% salt-and-pepper noise and 80 × 80 occlusion
noise to the cipher image “Figure 5a”. The experimental results are shown in the figure
below [34,60,61].

It can be seen from Figure 10 that the decrypted images can still be easily identified
with high fidelity after noise is added to the cipher image, which indicates the robustness
of the image encryption system that can resist noise attacks.

(a) (b)

(c) (d)

Figure 10. (a) Salt-and-pepper noise cipher image; (b) Occlusion noise cipher image; (c) Decryption
of cipher image with salt-and-pepper noise; (d) Decryption of cipher image with occlusion noise.

5. Conclusions

This paper proposes a security-enhanced image communication scheme based on
CNN under the cryptanalysis. First, the complex characteristics of CNN are used to
generate some sequences. Then, a plain image and these CNN-based sequences are
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confused, permuted and diffused to get the cipher image. Utilizing the complex dynamics
of CNN can effectively enhance the confusion, diffusion and avalanche of encryption.
Theoretical analysis and experimental results both demonstrate its safety performance.
From the perspective of cryptanalysis, the structure of an image cipher can effectively resist
various common attacks. Therefore, the image communication scheme based on CNN
proposed in this paper is a competitive security technology method.
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Abstract: In our previous work, by combining the Hilbert scan with the symbol grouping method,
efficient run-length-based entropy coding was developed, and high-efficiency image compression
algorithms based on the entropy coding were obtained. However, the 2-D Hilbert curves, which
are a critical part of the above-mentioned entropy coding, are defined on squares with the side
length being the powers of 2, i.e., 2n, while a subband is normally a rectangle of arbitrary sizes. It is
not straightforward to modify the Hilbert curve from squares of side lengths of 2n to an arbitrary
rectangle. In this short article, we provide the details of constructing the modified 2-D Hilbert curve
of arbitrary rectangle sizes. Furthermore, we extend the method from a 2-D rectangle to a 3-D cuboid.
The 3-D modified Hilbert curves are used in a novel 3-D transform video compression algorithm
that employs the run-length-based entropy coding. Additionally, the modified 2-D and 3-D Hilbert
curves introduced in this short article could be useful for some unknown applications in the future.

Keywords: scan route; Hilbert curve; run-length-based entropy coding; image and video compression

1. Introduction

Entropy coding plays a critical role in data compression, such as image and video
compression, etc. Two commonly used algorithms for entropy coding are Huffman cod-
ing [1] and arithmetic coding [2]. In terms of compression efficiency, arithmetic coding is
preferred. However, arithmetic coding has a higher computational complexity because it
requires multiplication and division during the coding process. To resolve the complexity
issue, approximations are used in binary arithmetic coding algorithms, such as [3–5], etc.
These binary arithmetic coding algorithms are practical algorithms because the coding
of a multiple symbol source can always be converted to coding of a sequence of binary
symbol sources. For example, in image compression, the bit-plane coding method [6] and
the symbol grouping coding method [7,8] eventually convert the quantized coefficients to
binaries to code.

Although the existing binary arithmetic coding algorithms solved the computational
complexity issue, it is still not computationally efficient in extremely low entropy conditions
because arithmetic coding algorithms encode symbols one by one. For example, to code
a binary source with the probabilities p = 0.999 for the symbol “0” and 1 − p = 0.001 for
the symbol “1”, arithmetic coding needs to code 999 “0”s on average before it codes a “1”.
On the other hand, run-length-based entropy coding [7,8] is much more computationally
efficient for low-entropy coding situations, as it does not need to code the “0”s one by one.
Note, low-entropy sources are very common in compression. For example, in subband
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image compression, most of the quantized coefficients in a subband are zeros. The positions
of the non-zero coefficients in a subband normally form an extremely low-entropy source.

For non-stationary binary sources, the binary arithmetic coding algorithms use proba-
bility estimators to adapt to the probability variations; whereas the run-length-based en-
tropy coding uses the symbol grouping method to handle non-stationary binary sources [7].
For coding 2-dimensional (and higher-dimensional) subband coefficient arrays, binary
arithmetic coding can estimate the probabilities from the coded adjacent coefficients in
different spatial directions (context modeling). However, for the run-length-based binary
entropy coding, the 2-D coefficient array needs to be scanned into a 1-D array before the
run-length coding can be performed. As a result, for run-length-based binary entropy
coding, exploiting probability estimations in different spatial directions on the 2-D array
before scanning is very difficult. Thus, to achieving coding efficiency, variations in the
original 2-D signal need to be maximumly kept into the scanned 1-D array, which requires
that nearby elements in the 2-D array are still nearby in the 1-D scanned array. Ideally,
adjacent elements in the 2-D array are required to be adjacent elements in the 1-D scanned
array, which is impossible, as can be easily shown. However, different scan routes lead to
different scatterings of the 2-D nearby elements. Thus, scan routes with small scattering
are desired. The Hilbert curve [9,10] is such a route.

Figure 1 shows a 2-D Hilbert curve. As can be seen, the Hilbert curve tries to keep the
2k × 2k (k = 1, 2, . . .) elements in the 2-D array together in the scanned 1-D array. In fact,
the locality-preserving feature of the Hilbert curve has been extensively studied [10–13].
Thus, using the Hilbert curve scan route, the variations within a 2-D subband coefficient
array are greatly kept into the 1-D scanned coefficient array. Indeed, combining the Hilbert
scan with the symbol grouping method, an efficient entropy coding was achieved, and
high-efficiency image compression algorithms were obtained [7,8]. However, 2-D Hilbert
curves are defined on a square of sizes 2i × 2i (i = 1, 2, . . .) [9,14]. In other words, not only
the array shape is a square, but also the side length of the square can only be the powers of
2, i.e., 2i. Yet, a subband is normally a rectangle of arbitrary sizes. It is not straightforward
to modify the Hilbert curve from the 2i × 2i squares to an arbitrary rectangle. In [7,8],
details of this modification are not provided.

In this short article, we provide the details of constructing the modified 2-D Hilbert
curve of arbitrary rectangle sizes. Furthermore, we extend the method from a 2-D rectangle
to a 3-D cuboid. The entropy coding in the 3-D transform video compression algorithm
introduced in [15] uses the 3-D Hilbert curve. Test results show that the algorithm is
promising. However, the original 3-D Hilbert curve is defined on a cube of side length of
power of 2, i.e., size 2i × 2i × 2i (i = 1, 2, . . .) [16]. Because the 3-D modified Hilbert curves
for cuboids were not available at the time, videos were cropped to the size of 1024 × 1024
for testing the algorithm prototype in [15]. The extension from a 2-D rectangle to a 3-D
cuboid makes the prototype proposed in [15] a practical video compression algorithm that
accommodates arbitrary rectangle video sizes. Further, Hilbert curves have been widely
used in many applications, such as image data encryption, query, and retrieval [17,18], etc.
Extending the original Hilbert curves to arbitrary size rectangles and cuboids could be
useful for some unknown applications in the future.

2. Two- and Three-Dimensional Modified Hilbert Curves

2.1. The 2-D Modified Hilbert Curve

The original 2-D Hilbert curve connects a square array of the size of 2i × 2i. We denote
it as the ith order Hilbert curve. Hilbert curves of orders i = 1, i = 2, and i = 3 are
respectively shown in Figure 1a–c. There is an important property of the Hilbert curve. As
can be seen from Figure 1a–c, the starting and the ending points (green and red points in
the graphs) are always on one side of the 2i × 2i square. Since the starting and the ending
points are at the ends of one side of the Hilbert curve square, a Hilbert curve of any order i
can easily be represented by a square with labeled starting and ending points like Figure
1d, when the internal structure does not need to be shown.
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Figure 1. 2-D Hilbert curve properties. (a–c) are, respectively, the 1st order, the 2nd order, and
the 3rd order Hilbert curves. (d) A simple notation to represent the ith order 2-D Hilbert curve.
(e) Construction of the (i + 1)th order Hilbert curve from the ith order Hilbert curve. (f) Reduction
of 2i points on the height H for the (i + 1)th order Hilbert curve. (g) Increasing of 2i points on the
height H for the (i + 1)th order Hilbert curve.

Now, we can show that an (i + 1)th order Hilbert curve can be easily constructed from
four ith order Hilbert curves. First, replace the 4 points in the 1st order Hilbert curve in
Figure 1a with four ith order Hilbert curves whose starting and ending points are arranged
as indicated in Figure 1e; then, connect the ending points and starting points of the ith

Hilbert curves orderly as indicated in Figure 1e, and the (i + 1)th order Hilbert curve is
constructed. With the 1st order Hilbert curve provided by Figure 1a and the method of
constructing the (i + 1)th order Hilbert curve from the ith Hilbert curve, we can construct
the Hilbert curve of any order by mathematical induction.

Now, our task is to construct a scanning route that is close to the Hilbert curve for a
2-D array of size W × H, where W and H are the element numbers along the vertical and
horizontal direction, respectively.

The basic idea is to divide the W × H rectangle array into N small square arrays of the
size 2in × 2in , n = 1, 2, . . . , N, and i1 ≥ i2 ≥ . . . ≥ iN . For example, a 12× 8 rectangle array
can be divided into three 2in × 2in square arrays with i1 = 3 and i2 = i3 = 2. Apparently,
within each square, an (in)

th order Hilbert curve can be easily constructed as shown in
Figure 2a. By appropriately arranging the directions of each Hilbert curve, the 3 Hilbert
curves are connected to form the desired route, as shown in Figure 2b.

To form a route close to the Hilbert curve, there are two requirements. First, the
largest in needs to be selected in order, i.e., select the largest i1 first, then the largest i2, . . . ,
etc. Without this restriction, the constructed curves may deviate from the Hilbert curve
significantly. As an extreme example, for the 12 × 8 = 96 points in Figure 2, one can simply
choose i1 = i2 = . . . = i96 = 0, i.e., use the 96 points as 96 small square arrays. In this
case, there are too many possible routes. Most of them are not close to the Hilbert curve at
all, for example, the raster scan. Secondly, the ending point of the Hilbert curve in the nth

square must be adjacent to the starting point of the Hilbert curve of the (n + 1)th square,
like the example shown in Figure 2b. For design convenience, the first requirement may
not be satisfied strictly sometimes. However, the second requirement must be satisfied.
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Figure 2. Construction of the 2-D modified Hilbert curve for the array size 12 × 8. (a) Three Hilbert curves are constructed
for the 3 divided 2in × 2in sub-square arrays. (b) By selecting appropriate directions for each of the 3 Hilbert curves and
connecting the 3 Hilbert curves, the modified 2-D Hilbert curve is constructed.

Figure 3. Illustration of the 2-D Modified Hilbert curve construction procedures on a W × H rectangle
array, where W ≥ H.

Based on the above observations, the procedures of our design method are provided as
follows (note, the method is not unique). Without loss of generality, we consider rectangle
arrays with W ≥ H:

1. Find integer m1 such that 2 × 2m1 > W and 2m1 ≤ W.
2. Construct a modified Hilbert curve within the sub-rectangle S1 of size 2m1 × H. S1

is a special rectangle with the width being 2m1 . The starting and the ending points
of S1 need to be at the ends of the S1’s top width, as indicated in Figure 3. The
construction details for this step is provided shortly. (Note, we use “width” and
“height” to represent the number of elements in the two orthogonal directions of a
rectangle array throughout the paper. They are not the geometric lengths. Do not get
confused with the illustrating diagrams used in the paper.)

3. Once the modified Hilbert curve for the rectangle array S1 is constructed, the con-
struction of the remaining rectangle array S2 goes back to step (1) with the starting
and the ending points indicated in Figure 3. However, the array size of S2 is less than
half of the original W × H rectangle.

4. By iterating steps 1 to 3, the subsequent remaining S2’s become smaller and smaller
very quickly, with speed faster than 0.5k, where k is the iteration number. The iteration
stops when the remaining S2 is of size 2l × H′, and the construction is complete. Note,
a size of 2l × H′ can always be achieved because the smallest H′ can be 1.
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Note, when iterating the three steps 1 to 3, if for S2, the height H is larger than W − 2m1

like the situation shown in Figure 3, then H plays the role of the width W for the new
iteration on S2 because we assumed the initial condition of W ≥ H for each iteration. In
this case, the design route changes direction because it is always along the width direction,
see Figure 3. If for S2 the height H is still smaller than W − 2m1 , the iteration continues
along the same design route direction. In the following example, we show a specific design
to provide a more intuitive understanding of the procedures.

Suppose we want to design a modified 2-D Hilbert curve for a practical size of
W = 1920/8 = 240 and H = 1080/8 = 135, which is the subband size from the 8 × 8
subband decomposition on a 1920 × 1080 image, the standard HDTV size. Following the
design procedures:

Iteration 1: m1 = 7, and sub-rectangle arrays S1 and S2 for the 1st iteration are:
S1st iteration

1 = 128 × 135, S1st iteration
2 = 112 × 135, as shown in Figure 4a.

Iteration 2: Because H = 135 > 112 = W − 2m1 , the 135 side of S1st iteration
2 needs to be

the width for the 2nd iteration. Then, for the second iteration on the 112× 135 array, m2 = 7,
the starting (green) point and the ending (red) point are aligned vertically, changing the
design route direction, see Figure 4b. The resulting sub-rectangle arrays S1 and S2 for the
2nd iteration are S2nd

1 = 112 × 128, S2nd
2 = 112 × 7, as shown in Figure 4b.

Iteration 3: Because 112 > 7 = 135 − 2m2 , the 112 side of S2nd
2 needs to be the width in

the 3rd iteration. Then, for the 3rd iteration on the 112 × 7 array, m3 = 6, and the starting
(green) point and the ending (red) point are aligned horizontally, changing the design route
direction again, see Figure 4c. The resulting sub-rectangles S1 and S2 for the 3rd iteration
are: S3rd

1 = 64 × 7, S3rd
2 = 48 × 7, see Figure 4c. Note, S3rd

2 = S4th
1 + S5th

1 in Figure 4c.
Iteration 4: Because 7 < 48 = 112 − 2m3 , the 48 side of S3rd

2 is still the width for the 4th

iteration. Thus, for the 4th iteration on S3rd
2 = 48 × 7, m4 = 5, the starting (green) point and

the ending (red) point are still aligned horizontally, with no design route direction change.
The resulting sub-rectangles S1 and S2 for the 4th iteration are: S4th

1 = 32 × 7, S4th
2 = 16 × 7,

see Figure 4c. Note, S4th
2 = S5th

1 in Figure 4c.
Iteration 5: Similar to Iteration 4, no change of the design route direction is needed.

However, the width for the 5th iteration is 16 = 24. By selecting m4 = 4, S5th
1 = 16 × 7, and

S5th
2 = 0 × 7, the design completes as indicated in Figure 4c.

Now we go back to provide the details of step 2 of the design procedures. In other
words, we need to design a modified Hilbert curve for a rectangle with the width being
2m1 and the height being H. There are three possible situations, (A) H < 2m1 , (B) H > 2m1 ,
and (C) H = 2m1 . Condition (C) is trivial, where the sub-rectangle is a 2m1 × 2m1 square,
and the construction is simply the original Hilbert curve.

Condition (A) H < 2m1 :
We start from the (m1)

th order Hilbert curve, whose height is 2m1 . Thus, we need to
reduce the height by ΔH = 2m1 − H. Recall that an integer B can be converted into its
binary format bsbs−1 . . . b1b0, i.e., B can be decomposed as

B = bs2s + bs−12s−1 + . . . + b121 + b020, (1)

where the bi’s are either 0 or 1. Decomposing ΔH using (1), we can perform a reduction of
ΔH step by step, with each step achieving a reduction of 2i points. For example, suppose
ΔH = 13. Then, from (1), we have ΔH = 8 + 4 + 1, i.e., b3 = 1, b2 = 1, b1 = 0, and b0 = 1.
Thus, we need to reduce 8 points, 4 points, and 1 point on H to achieve the total reduction
of ΔH = 13 points.

To perform a reduction of 2i points, first, a reduction of 2i points on the (i + 1)th order
Hilbert curve is straightforward. By inspection, it can be seen that the top two sub-squares
in Figure 1e can be removed, leading to Figure 1f. Then, a reduction of 2i points on the
(i + 1)th order Hilbert curve is achieved.
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Figure 4. The example of designing the 2-D modified Hilbert curve for the 240 × 135 array: (a) the
1st iteration, (b) the 2nd iteration, and (c) the 3rd, 4th, and the 5th iteration.

Next, we observe the following property: For an opening-toward-top Hilbert curve
of any order, the bottom sub-Hilbert curves always have the same opening-toward-top
orientation. As an example, in Figure 5a, a 4th order opening-toward-top Hilbert curve is
plotted. The 4th order Hilbert curve can be represented using the structure of Figure 5b,
i.e., the main structure is an opening-toward-top 1st order Hilbert curve with 4 sub-curves,
which are four 3rd order Hilbert curves denoted by four small shaded squares. As just
described above, the removal of the top two sub-squares, or, equivalently, a reduction
of 8 points in H in this case, can be easily achieved. Now, it is important to observe
from Figure 5b that the bottom two shaded squares, i.e., the bottom two 3rd order sub-
Hilbert curves, are also opening-toward-top Hilbert curves. When the original 4th order
Hilbert curve is represented using the structure of Figure 5c, for each of the bottom two
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opening-toward-up 3rd order sub-Hilbert curves, the removal of the top two sub-squares,
or equivalently a reduction of 4 points on H in this case, can be achieved. Similarly, it can
be seen from Figure 5a,d that reductions of 2 points and 1 point on H can be achieved.

Figure 6 shows a specific example of how the 4th order Hilbert curve is reduced by
ΔH = 13 = 8 + 4 + 1. In Figure 5a, the original 4th order H = 16 Hilbert curve is shown.
Reductions on H by 8, 4, and 1 in each step are respectively shown in Figure 6a–c. After all
the sub-reductions are completed, the total reduction of ΔH = 13 is achieved in Figure 6d.

Figure 5. (a) The 4th order 2-D Hilbert curve; The 4th order 2-D Hilbert curve represented using (b) four 3rd order sub-curves;
(c) sixteen 2nd order sub-curves; and (d) sixty-four 1st order sub-curves.

Figure 6. The specific example of reducing H from 16 to 3, i.e., ΔH = 13. (a) The modified curve by
an 8-point reduction on H of the 4th order Hilbert curve shown in Figure 5a; (b) a further reduction
of 4 points on (a); (c) a further reduction of 1 point on (b); (d) the final result of a total reduction of
ΔH = 13 points on the 4th order Hilbert curve is achieved.

Condition (B) H > 2m1 :
We need to increase the height by ΔH = H − 2m1 . Note, since 2 × 2m1 > W ≥ H,

ΔH = H − 2m1 < 2 × 2m1 − 2m1 = 2m1 < H, i.e., ΔH < H. Thus, similar to condition (A),
ΔH is decomposed by (1), and we can increase H by 2i points in each step because the
increase in height by 2i points on the (i + 1)th order Hilbert curve can be achieved using
the modification from Figure 1e–g.

With the height of the (m1)
th order Hilbert curve reduced or increased to H, procedure

2 of the iterative design method described earlier is performed. The modified 2-D Hilbert
curve on a W × H rectangle array using the iterative design procedures is completed.

To provide more intuitions, the 2-D modified Hilbert curves of sizes 27 × 17, 27 × 18,
and 27 × 19, constructed using the proposed method, are shown in Figure 7. In addition,
the MATLAB codes implementing the proposed method are available in [19]. As can be
easily checked, the algorithm runs reasonably fast, and the results can be obtained instantly.
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Figure 7. The modified 2-D Hilbert curves of sizes (a) 27× 17, (b) 27× 18, and (c) 27× 19, constructed
using the proposed method.

2.2. The 3-D Modified Hilbert Curve

In [15], the binary run-length-based symbol grouping entropy coding method is used
in video compression. For the 3-D transform video compression algorithm introduced
in [15], conventional motion compensation is not used in order to improve the computa-
tional complexity. Instead, a 4-band SCWP transform [20] is performed along the time
dimension. In other words, the first step of the video compression algorithm is a 3-D
transform. Thus, the transformed coefficients are 3-D subband arrays.

In entropy coding of the quantized 3-D subband coefficient arrays, the 3-D Hilbert
curve scan was used to maximally keep the correlations in the 3-D subband into the 1-D
scanned array. Because the original 3-D Hilbert curves are for cubes of side length 2i, in [15],
the 1920 × 1080 test videos were cropped to a size of 1024 × 1024 for testing. Apparently,
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to accommodate an arbitrary rectangle video size, the original 3-D Hilbert curve needs to
be modified. Below, we extend the modification method introduced in Section 2.1 for 2-D
arrays to 3-D conditions. The 3-D arrays are of size W × H × D, where W and H are the
width and height of the cuboid array, D is the third dimension denoting the depth here,
which corresponds to the time dimension of the input video.

The depth D of the 3-D decomposed subband is determined by the parameter “group
of pictures” (GOP), which is normally selected to be the powers of 2. As a result, the depths
D are also the powers of 2, i.e., D = 2d, d = 0, 1, 2, . . . For example, the GOP used in [15]
was 32, which leads to the depths D of the 3-D subbands being 8, 4, 2, or 1 (for details,
please refer to [15]). Furthermore, compared with W and H, D is normally much smaller in
our case.

We begin from the original 3-D Hilbert curve. Again, we denote a 3-D Hilbert curve
of size 2i × 2i × 2i, the ith order 3-D Hilbert curve. Figure 8a,b, respectively, show the 1st

order and the 2nd order 3-D Hilbert curve. Similar to the 2-D situation, the starting and the
ending points of any order 3-D Hilbert curves are at the two ends of one side of the cube.
Therefore, as shown in Figure 8c, when the internal structure is not needed, a 3-D Hilbert
curve of any order i can be represented by a cube with the starting and ending points
labeled. With this simple and intuitive representation, the construction of the (i + 1)th

order 3-D Hilbert curve from the ith order 3-D Hilbert curve can be easily demonstrated by
Figure 8d. By mathematical induction, given (1) the 1st order 3-D Hilbert curve and (2) the
method of constructing the (i + 1)th order 3-D Hilbert curve from the ith order 3-D Hilbert
curve, the 3-D Hilbert curve of any order can be constructed.

Without loss of generality, assume W ≥ H. As mentioned in our application, D is the
powers of 2 and is normally much smaller than W and H. In other words, the modified 3-D
Hilbert curve is of size W × H × D = W × H × 2d, and D is much smaller than W and H.
Exploiting these features, the extension to 3-D from 2-D can borrow the 2-D construction
procedures introduced in Section 2.1 as follows.

First, consider the situation where W and H are multiples of D, i.e., the cuboid of size
W × H × D = (cD)× (rD)× D, where W = cD, H = rD, c and r are integers. In this case,
we can directly extend the 2-D construction method to 3-D construction. To see that, the
dth order original 2-D Hilbert curve is compared with the dth order original 3-D Hilbert
curve in Figure 9a,b. Because the D × D × D cube is the smallest construction block for
the 3-D curve and the D × D square is the smallest construction block for the 2-D curve,
the 3-D construction of size W × H × D = (cD)× (rD)× D can directly borrow the 2-D
construction structure of size W × H = (cD)× (rD). Figure 9c,d intuitively show the 2-D
to 3-D extension by comparing the 2-D Hilbert curve of size 2D × 2D with the modified
3-D Hilbert curve of size 2D × 2D × D.

Next, we consider the situation where W and H are not multiples of D, but W ≥ D.
In this case, we can still borrow the 2-D construction structure, i.e., use the 2-D iterative
route similar to Figures 3 and 4c for the height-width (W-H) surface of the 3-D cuboid.
This is similar to what we performed in Figure 9c,d, where W and H are multiples of
D. The difference is that, in this case, ΔH is not a multiple of D. In this case, we need
to consider the non-zero terms in ΔH = ∑ bi2i that are smaller than D, i.e., the 2i < D
terms. The 2i ≥ D terms are multiples of D, which is the situation previously considered.
The 2i < D terms in ΔH, however, need to be handled on the 3-D cubes at the bottom.
For example, if in Figure 9d we want to construct a modified 3-D Hilbert curve of size
2D × 1.5D × D instead of 2D × 2D × D, then the bottom cubes in Figure 9d need to be
reduced by 0.5D = 2d−1 points to achieve H = 1.5D.

Therefore, we need to consider adding or reducing 2i points on the D × D × D =
2d × 2d × 2d cube, where 0 ≤ i ≤ d − 1. This is not difficult. (1) Similar to the 2-D situation,
observe in Figure 10a that the bottom 4 sub-cubes (sub-Hilbert curves) are of the same
opening-toward-top orientation as its original 3-D Hilbert curve because they all have the
starting and ending points at the top surface of the cube. (2) For the 3-D Hilbert curve of
size 2d × 2d × 2d, indicated in Figure 10a, reducing and increasing 2d−1 points on H can be
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achieved by Figure 10b,c respectively. Combining (1) and (2) above, reducing or increasing
2i (0 ≤ i ≤ d − 1) points on H can be achieved on a 3-D Hilbert curve of size 2d × 2d × 2d.

Figure 8. 3-D Hilbert curve properties. (a,b) are respectively the 1st order and the 2nd order 3-D Hilbert curves. (c) A simple
notation to represent the ith order 3-D Hilbert curve. (d) Construction of the (i + 1)th order Hilbert curve from the ith order
Hilbert curve.

Figure 9. Extension of the 2-D construction to 3-D construction for size (cD)× (rD)× D, where c and r are integers. (a) The
smallest construction block for 2-D, the D × D square. (b) The smallest construction block for 3-D, the D × D × D. cube.
(c) The 2D × 2D size 2-D Hilbert curve, constructed from the 2-D smallest construction block. (d) The 2D × 2D × D size 3-D
Hilbert curve, constructed from the 3-D smallest construction block borrowing the 2-D construction structure of (c).

Figure 10. Point increasing and reducing operations on the (i + 1)th order 3-D Hilbert curve. (a) The (i + 1)th order 3-D
Hilbert curve. (b) The i points are reduced on H. (c) The i points are increased on H. (d) The situation where i points need
to be increased in a different direction.
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Figure 11. The modified 3-D Hilbert curve of size 9 × 6 × 4, constructed using the proposed method.

Finally, during the 3-D construction described above, for the height-width (W-H)
surface of the 3-D cuboid, we can exploit the 2-D iterative route similar to Figures 3 and 4c
as long as W ≥ D is satisfied for the remaining S2’s in the W-H surface. For example, we
can realize the modified 3-D Hilbert curve for the size of 240× 135× 8 following exactly the
2-D route shown in Figure 4c, which was used for constructing the 240 × 135 2-D modified
Hilbert curve. Nevertheless, a construction may end up with a residue S2 on the W-H
surface, whose height and width are both smaller than D. For example, using the above
method to construct the modified 3-D Hilbert curve of the size 243 × 135 × 8, we end up
with a residue cuboid of size 3 × 7 × 8. Then, the 2-D Figure 3 iterative procedure cannot
proceed for the W-H surface anymore. We have to consider the situation of constructing a
modified 3-D Hilbert curve of the size W × H × D with D = 2d > W ≥ H.

However, in the 3-D transform video application, D is very small. As mentioned
above, in [15], the maximum D = 8 even if the GOP used is 32. When D = 8, the maximum
residue cuboid is only 7 × 7 × 8, which is very small. For such tiny residue cuboids,
using some other routes, such as the raster scan, would not lead to any noticeable effect
on the final video compression results. On the other hand, the design for the situation of
D = 2d > W ≥ H is complex, and thus, for the application of coding the 3-D transformed
coefficients in video compression, we can just use a simple scan route for the residue
cuboids with D > W ≥ H. We implemented in MATLAB such 3-D extension with small
D > W ≥ H residue cuboid connected using the raster scan, which is available at [19].
Figure 11 shows a modified 3-D Hilbert curve of size 9 × 6 × 4 (i.e., D = 22) produced by
MATLAB codes.

We will not lengthily go into the design on the condition D = 2d > W ≥ H. For com-
pleteness, we only briefly describe that the design is possible using similar ideas we have
used up to now. Note, there can be some other methods to handle the D = 2d > W ≥ H
situation because the design method is not unique.

For the D = 2d > W ≥ H situation, first, consider the situation where either W or H is
a power of 2. Without loss of generality, assume H = 2h. Observe that the sizes W × H × D,
D × H × W, . . . , etc., i.e., all the 6 permutations, are the same for our curve construction
task. In order to exploit our previously developed construction techniques, we need to
change the roles of W, H, and D. Because D is the longest side, we need to use D = 2d as
the width. Since H = 2h < D, use H as the depth. Then, the construction finishes nicely in
one step.

For the more difficult situation, where both W and H are not powers of 2, decompose
the shortest side H into a sum of 2i using equation (1): H = 2h0 + 2h1 + . . . + 2hn , where
h0 > h1 . . . > hn (h0 corresponds to the most significant bit, i.e., 2h0 > 1

2 H). Then, the con-
struction on the D × W × 2h0 = 2d × W × 2h0 cuboid is immediately achieved as described
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above. To increase the thickness from 2h0 to H, the point-increasing operation needs to be
along the direction as illustrated in Figure 10d. For the 4 length-increased sub-cubes at
the back in Figure 10d, the bottom 2 sub-cubes can use the point-increasing operation we
already used, i.e., the one from Figure 10a to Figure 10c, but the top 2 sub-cubes need to use
a different point-increasing structure, which is skipped here. We may also need to perform
multiple point-increasing operations and then perform a point-decreasing operation to
achieve the desired value H, and the operations need to be performed individually for
the sub-cubes at the back of the D × W × 2h0 cuboid. The sizes of the sub-cubes can be
different depending upon the W value. As a result, the implementation is complex. We
will not go into the details further since currently, there is no immediate application.

3. Conclusions and the Near Future Work

We have shown the method of modifying the 2-D Hilbert curve to fit an arbitrary
W × H rectangle array and the method of modifying the 3-D Hilbert curve to fit a cuboid
array of size W × H × 2d. These modified Hilbert curves can be used in entropy coding for
image and video compression. Furthermore, since the construction of the modified 2-D
and 3-D Hilbert curves is not straightforward, the methods presented in this short article
could be useful for some unknown applications in the future.

The 2-D modified Hilbert curve has already been used in the run-length-based sym-
bol grouping entropy coding method for lossy and lossless image compression. High
compression efficiency is achieved, as shown in [7,8].

Because of using the 3-D Hilbert curve, the video compression algorithm prototype
introduced in [15] only tested videos with the cropped size of 1024 × 1024, although some
promising results were shown. On applying the 3-D modified Hilbert curve for coding to
the 3-D subband coefficients so that the algorithm can handle arbitrary video sizes, together
with some other fine tunings, we are completing the video compression algorithm very
soon. We will systematically compare the performances of the new video compression
algorithm with state-of-the-art video compression algorithms, such as HEVC, etc., in terms
of compromise between complexity and compression efficiency. From the preliminary test
results shown in [15], we expect that the final completed video compression algorithm
using the 3-D modified Hilbert curve developed in this paper will be competitive to
state-of-the-art video compression algorithms in certain important situations, such as the
compression at the high video quality.
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Abstract: We proposed the Retinex-based fast algorithm (RBFA) to achieve low-light image enhance-
ment in this paper, which can restore information that is covered by low illuminance. The proposed
algorithm consists of the following parts. Firstly, we convert the low-light image from the RGB
(red, green, blue) color space to the HSV (hue, saturation, value) color space and use the linear
function to stretch the original gray level dynamic range of the V component. Then, we estimate
the illumination image via adaptive gamma correction and use the Retinex model to achieve the
brightness enhancement. After that, we further stretch the gray level dynamic range to avoid low
image contrast. Finally, we design another mapping function to achieve color saturation correction
and convert the enhanced image from the HSV color space to the RGB color space after which we can
obtain the clear image. The experimental results show that the enhanced images with the proposed
method have better qualitative and quantitative evaluations and lower computational complexity
than other state-of-the-art methods.

Keywords: Retinex; image enhancement; gamma correction; low-light image; HSV color space

1. Introduction

Images captured with a camera in weakly illuminated environments are often de-
graded. For example, these types of images with low contrast and low light, reduce
visibility. The object and detail information cannot be captured, which can reduce the
performance of image-based analysis systems, such as computer vision systems, image
processing systems and intelligent traffic analysis systems [1–3].

In order to address the above problems, a great number of low-light image enhance-
ment methods have been proposed. Generally, the existing methods can be divided into
three categories, namely the HE-based (histogram equalization) algorithm, Retinex-based
algorithm and non-linear transformation [4–6]. The HE-based algorithm is the simplest
method; the main idea of this method is to adjust illuminance by equalizing the histogram
of the input low-light image. To address the shortage of conventional HE algorithms, over
enhancement and loss of detail information, a great number of improved and HE-based
methods have been proposed, such as contrast-limited equalization (CLAHE), bi-histogram
equalization with a plateau limit (BHE), exposure-based sub-image histogram equalization
(ESIHE) and exposure-based multi-histogram equalization contrast enhancement for non-
uniform illumination images (EMHE) [7–12]. However, HE-based methods neglect the
noise hidden in the dark region of low-light images. The Retinex model is a color percep-
tion model of human vision, which consists of illumination and reflectance [13,14]. The aim
of Retinex-based algorithms is to estimate the right illumination image or reflectance image
from its degraded image by different filters to achieve low brightness enhancement [15,16].
Some classic algorithms are single-scale Retinex (SSR) and multi-scale Retinex (MSR). In
order to solve color distortion, multi-scale Retinex with color restoration (MSRCR) was
proposed, which introduced color restoration in multi-scale Retinex. After that, some im-
proved algorithms introduced different types of filters to replace the traditional Gaussian
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filter, such as the improved Gaussian filter, improved guided filter, bright-pass filter and so
on [17–19]. Even though image texture details can be restored well via the Retinex-based
method, the halo effect is introduced into enhanced images. Common non-linear functions
are gamma correction, sigmoid transfer function and logarithmic transfer function [20–22];
these types of methods are pixel-wise operations for natural low-light images. Compared
with other non-linear functions, the gamma transfer function is wildly used in the field of
image processing, but the limitation of gamma correction is that if the parameter γ is too
small, it will amplify the noise of the target image; by contrast, if the parameter γ is close
to 1, satisfactory enhanced results will not be obtained. Therefore, estimating a suitable γ
value is the key to obtaining satisfactory enhanced results.

In this paper, we utilize the gamma transfer function to estimate the illumination and
achieve brightness enhancement via the Retinex model. The enhanced image achieves
satisfactory light enhancement and global brightness equalization; thus, our method can
restore more information than other methods. The final experimental results show that
compared with other state-of-the-art methods, the enhanced images through our algorithm
have better qualitative and quantitative evaluations. Some examples of natural low-light
images and enhanced images with the proposed RBFA method are shown in Figure 1. All
low-light images in Figure 1 were captured by the authors of this paper.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 1. Top row (a–c): natural low-light images, bottom row (d–f): enhanced images with our
proposed RBFA method.

The rest of this paper is organized as follows: Section 2 describes the corresponding
works of the proposed algorithm in this paper. In Section 3, the details of the proposed
method are introduced. Section 4 presents the comparative experiment results with other
state-of-the-art methods and describes the computational complexity comparison. The
work is concluded in Section 5.

2. Related Work

We introduce the Retinex model, gamma correction and HSV color space in this
section, which construct the basis of our method.

2.1. Retinex Model

The classical Retinex model assumes that the observed image consists of reflectance
and illumination. The Retinex model can be expressed as follows [23].

H = R • L (1)

where H is the observed image, R and L represent the reflectance and the illumination
of the image, respectively. The operator ‘•’ denotes the multiplication. In this paper, we
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utilize the logarithmic transformation to reduce computational complexity. We can obtain
the following expression.

log(H) = log(R•L) (2)

Finally, we can obtain Equation (3) to estimate the reflectance in the HSV color space.

log(R) = log(V)− log(L) (3)

2.2. Gamma Correction

The gamma transfer function is wildly used in the field of image processing, and the
corresponding gamma transfer function can be expressed as follows [24,25].

g(x, y) = u(x, y)γ (4)

where g(x, y) denotes the gray level of the enhanced image at pixel location (x, y), u(x, y)
is the gray level of the input low-light image at pixel location (x, y), and γ represents the
parameter of the gamma transfer function. The shape of the gamma transfer function can
be affected by parameter γ; the influence of different values of γ is shown in Figure 2.

Figure 2. The shapes of gamma functions with different γ values.

According to the Figure 2, we can see that the enhanced gray level increases monoton-
ically with decreased parameter γ; if we want to achieve a higher value of the gray level,
we have to let the size of parameter γ fall within the range from 0 to 1. Contrastingly, the
enhanced gray level decreases monotonically with increased parameter γ.

2.3. HSV Color Space

The HSV color space consists of a hue component (H), saturation component (S) and
value component (V) [26,27]. The value component represents the brightness intensity of
the image. The advantage of the HSV color space is that any component can be adjusted
without affecting each other [28]; more specifically, the input image is transferred from the
RGB (red, green, blue) color space to the HSV color space, which can eliminate the strong
color correlation of the image in the RGB color space. Therefore, this work is based on the
HSV color space [29]. Commonly, image enhancement in RGB color space need to process
R, G and B, three components, but we only need to process the V component in this work.
Therefore, this will greatly reduce the image processing time.

3. Our Approach

The details of proposed algorithm are described in this section. Based on the descrip-
tions in Section 2.2, in this work we only focus on the V component to adjust the brightness
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of the low-light image; the flowchart of the proposed method is shown in Figure 3. We
choose an image named “Arno” to illustrate the enhancement process of the proposed
method, the processing of image enhancement and corresponding histograms are shown
in Figure 4.

 

Figure 3. The flowchart of the proposed method.

    

(a) input image (b) original V component (c) brightness adjustment (d) dynamic range expansion 

    

(e) original S component (f) adjusted S component (g) enhanced image (h) reference image 

Figure 4. Low-light image enhancement process and corresponding grayscale histograms.

In our method, we use gamma correction to estimate the illumination and the Retinex
model to achieve brightness enhancement. Compared with using filters to estimate the
illumination, using gamma correction to estimate the illumination can effectively reduce
the computational time. The key to gamma correction is to compute the value of the gamma
parameter; the details of the gamma parameter determined are described as follows.
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3.1. Brightness Enhancement

The gray levels of a low-light image are mainly concentrated in the low gray level
area, and the dynamic range of low gray levels is very narrow. Combing Figure 2, we
can see that the higher the gray level dynamic range of the input image, the higher the
gray level dynamic range of the output image. Therefore, we use linear enhancement to
stretch the gray level dynamic range before gamma correction, and we make the value of
the stretched gray level fall within the range of (0, 1) to prevent over-enhancement. The
used linear function in this paper can be expressed as follows.

Vmax = max(V(x, y)) (5)

V1(x, y) =
1

Vmax
∗ V(x, y) (6)

where Vmax denotes the maximum pixel value of V component, max(.) denotes take
the maximum value of V(x, y), V(x, y) is the pixel value of the original V component at
location (x, y), V1(x, y) is the enhanced pixel value at location (x, y) and ‘∗’ represents
the multiplication.

The maximum value of the low-light image is usually lower than 1; we can infer that
1

Vmax > 1, so this linear function can stretch the dynamic range of the low-light image, and
we also can obtain that V1(x, y) ≤ 1.

After the gray level dynamic range is stretched, we adopt gamma correction to es-
timate illumination. For a low-light image, the lower the brightness intensity, the lower
the gray level. Therefore, we take this feature into consideration. First, based on the
global histogram, we compute the mean gray level value, which can reflect the overall
brightness level to a certain extent. The corresponding computational formula is expressed
as Equation (7), and we can obtain the mean gray level value via this equation.

m =
∑L

i=0 P(i) ∗ i

∑L
i=0 P(i)

(7)

where m is the mean value of gray levels, L denotes the maximum value of gray levels of
an image and P(i) is the histogram of gray level i.

In this paper, we assume that the gray levels more than zero and less than m+ 1 are the
extreme low gray levels. In fact, this part of the gray level is the key to determine the mean
gray level of the low-light image. Based on the above descriptions, we design a formula
to convert the gray level of this part into a constant, and use this constant to compute the
gamma value. The corresponding transfer formula is expressed as Equation (8).

c = ∑m
i=1 P(i) ∗ i

128 ∗ ∑m
i=1 P(i)

(8)

where c is the value of conversion result and c is a positive number. Low-light images
may have similar mean values, which will lead to similar c values. In order to enlarge the
difference of c values among different images, we use the following expression to enlarge
c values.

c1 =
1

1 + e−c (9)

where c1 represents the enlarged c value. In addition, we also think that the focus of
brightness enhancement lies in the low gray level area rather than the high gray level area.
Therefore, we take the distribution of the low gray level as one of the important bases for
estimating the gamma value. In order to calculate the distribution of the low gray level,
the cumulative distribution function (CDF) is used to calculate the distribution of the gray
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level in this part. In this paper, we consider the gray level less than 128 to be the low gray
level area.

cd f (j) =
j

∑
0

pd f (i) (10)

pd f (i) =
p(i)

M ∗ N
(11) (11)

where p(i) is the number of pixels that have gray level i, M and N are the length and width
of the image, j is the threshold point of CDF and we set j equals to 128. Then we weigh the
CDF value with the c1 value to obtain the gamma parameter value.

γ = w ∗ c1 + (1 − w) ∗ cd f (12)

where γ represents the gamma parameter, w is the weighted value and equals to 0.48.
Combining Equations (4), (6) and (12), we can get the final expression as follows.

VL(x, y) = V1(x, y)w∗c1+(1−w)∗cd f (13)

where VL(x, y) denotes the pixel location (x, y) of illumination image. Combing
Equations (3) and (13), we can get the reflectance, and it is shown as follows.

log(R) = log(V)− log(VL) (14)

We get the enhanced V component as follows:

VE = exp(log(V)− log(VL)) (15)

The enhanced V component and corresponding histogram are shown in Figure 4c.

3.2. Dynamic Range Expansion

After brightness enhancement, the pixel values are easily concentrated in the higher
gray level range, which leads to the grayscale dynamic range becoming narrow with low
contrast in the enhanced image. We can adjust the contrast of the image by enlarging the V
component gray level [30,31]. In order to avoid pixels values concentrated in the higher
gray level range, we use a piecewise function to further stretch the gray level dynamic
range to achieve dynamic range expansion. The corresponding expression can be expressed
as follows.

VE′(x, y) =

{
VE(x, y), VE(x, y) ≥ 0.5

2 ∗ (VE(x, y))2, VE(x, y) < 0.5
(16)

The dynamic range enlarged V component and corresponding histogram are shown in
Figure 4d.

3.3. Saturation Adjustment

In addition to brightness, the color saturation also directly affects the visual experience.
In the HSV color space, the mean value of the S component and V component of a clear
image should be approximately equal [32,33]. However, with the adjustment of brightness,
the mean value of the V component changes greatly, which affects the image color. Based
on the mean difference between the V component and the S component, Formula (20) is
designed to adjust the S component. The details of our method are described as follows.
Firstly, we use Equation (17) to compute the mean difference between the V component
and S component.

VES = VE′mean − Smean (17)
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where VES is the mean difference, VE′mean is the mean value of enhanced V component
and Smean is the mean value of S component. The expression used to compute VE′mean is
shown below.

VE′mean =
∑i

0 VE′(i) ∗ i
M ∗ N

(18)

where i denotes the gray level, and VE′(i) is the number of pixels that have gray level i.
M and N are the length and width of the image. Similiarly, we can get Equation (19) to
compute the Smean.

Smean =
∑i

0 S(i) ∗ i
M ∗ N

(19)

where i denotes the gray level, S(i) is the number of pixels that have gray level i. From the
above description, we adjust the S component value to reduce the mean difference value
between the VE’ component and S component to achieve the purpose of color saturation
adjustment. After VES is obtained, we use it to adjust the S component. According to
Section 2.2, if we want to enlarge the value of the S component, we have to ensure that
the gamma parameter lies in the range (0,1). On the contrary, we need to ensure that the
parameter value is greater than 1 to reduce the value of the S component. Therefore, we
use Equation (20) to achieve this step.

S1(x, y) = S(x, y)1+(−1)2−n∗(|VES|2+|VES|), n =

{
0 VES < 0
1 VES ≥ 0

(20)

where S1(x, y) denotes the pixel location (x, y) of the adjusted S component, and S(x, y)
is the pixel location (x, y) of the original S component. According to Equation (17), we
can see that if VES < 0, we know that VEmean < Smean, so we need to reduce the
value of the S component. Meanwhile, from Equation (20) we know that n = 0 and
1 + (−1)2−n ∗

(
|VES|2 + |VES|

)
> 1, then we get S1(x, y) < S(x, y). Similarly, we can

see that when VES > 0, we also can get S1(x, y) > S(x, y). The original S component
and corresponding histogram are shown in Figure 4e and the adjusted S component and
corresponding histogram are shown in Figure 4f.

4. Comparative Experiment and Discussion

This section describes the comparative experiment with the existing methods and
experimental results. The comparative methods used include the LECARM algorithm [34],
FFM algorithm [7], LIME algorithm [17], AFEM algorithm [1], JIEP algorithm [15] and
SDD algorithm [35]. All comparative experiments are performed in MATLAB R2020b on
a PC running Windows 10 with an Intel (R) Core (TM) i7-10875H CPU @ 2.30 GHz and
16 GB of RAM. Due to the length limitation of this paper, we use 10 images to illustrate
the comparative results; the reference images are shown in Figure 5. All test images
and reference images come from the public MEF dataset [36], which, in total, include 24
low-light images.

(a) (b) (c) (d) (e) 

Figure 5. Cont.
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(f) (g) (h) (i) (j) 

Figure 5. Reference images (a–j).

4.1. Computational Time Comparison

We test the time consumed for different algorithms to process different size images,
and the test results are shown in Table 1.

Table 1. Time cost of different methods.

Image Size 100 × 100 700 × 700 1300 × 1300 1900 × 1900 2500 × 2500 3100 × 3100 3700 × 3700 4300 × 4300

LECARM 0.151 0.396 0.707 1.234 1.934 2.823 3.951 5.398
AFEM 0.048 0.204 0.566 1.136 2.014 3.075 4.674 5.959
LIME 0.030 0.124 0.394 0.825 1.437 2.203 3.209 4.363
FFM 0.182 5.043 17.071 36.819 65.744 95.577 142.183 197.190
SDD 0.222 8.882 34.930 79.808 139.754 209.301 345.587 526.162
JIEP 0.079 3.565 13.332 29.159 45.297 55.327 82.677 120.519

Proposed 0.013 0.071 0.249 0.519 0.909 1.419 2.076 2.804

In Table 1, the shortest times are highlighted in bold case values, and the second-
shortest times are highlighted with underlined values. Table 1 shows that the proposed
method takes the shortest time for processing each image due to the lowest computational
complexity, in comparison to both the FFM method and SDD method, which consume
the longer time. We also can learn that JIEP’s time consumption is higher than the AFEM
method and less than the FFM method. The time consumptions of AFEM, LECARM and
LIME are similar because of the same computational complexity. Generally, the proposed
RBFA algorithm consumes the least time on average, and the processing speed of the image
is the fastest.

We made the data in Table 1 into a line chart to analyze the computational comparison
of different methods as shown in Figure 6. Figure 6 shows that the computational complex-
ity of the proposed method RBFA is O(N), and it is the lowest among all the methods, in
comparison to SDD’s computational complexity, which is the highest. The computational
complexity of the SDD method is O(N2), which results in the SDD method costing more
time on image processing. The computational complexity of both the FFM method and
JIEP method are O(NlogN), but the time increment of the FFM method is higher than the
JIEP method. The computation complexity of AFEM, LECARM, LIME and the proposed
method MFGC are O(N); although the computational complexity is the same, the time
increment of the proposed algorithm is the smallest with the same amount of data, proving
that the proposed method has the lowest computational complexity.

4.2. Visual Comparison

Although the results of the LECARM method preserve the original hue and saturation
and have a higher brightness intensity of each image, this algorithm easily results in
non-uniform global light, further decreasing the visual experience, such as in the mid
area of Figures 7–10, which have higher illumination than other areas. The SDD method
results show that there are some regions that become blurred, such as in the middle area of
Figures 10 and 11. From the enhanced images, we can see that the performance of FFM is
unstable, because some results of the FFM method are inadequate brightness enhancement,
for instance, the whole area of Figures 12 and 13. From the results of the JIEP method, we
can see that this algorithm is focused on normal under exposure and does not perform
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well in extreme low illuminance regions, such as in the middle region of Figure 8 and the
bottom region of Figure 14. It is clear that the results of the LIME method show uneven
brightness and over-enhancement in some areas, such as the lower middle area of Figure 10,
middle area of Figures 14 and 15 and the wall in the Figure 16. The results of the AFEM
algorithm are not satisfactory because the brightness increment is too small to restore the
details covered with dark regions, such as the bottom area of Figures 14 and 16. As we
can see, the results of the proposed RBFA method achieved the global brightness balance
after enhancement via the proposed method; the color retained is more natural than the
other methods.

 
Figure 6. Result of computational complexity comparison.

    
(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 7. Comparing enhanced results of Arno with different methods. (a) Input image, (b) enhanced with LECARM,
(c) enhanced with FFM, (d) enhanced with LIME, (e) enhanced with AFEM, (f) enhanced with JIEP, (g) enhanced with SDD,
(h) enhanced with proposed RBFA method.
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(e) (f) (g) (h) 

Figure 8. Comparing the enhanced results of Room with different methods. (a) Input image, (b) enhanced with LECARM,
(c) enhanced with FFM, (d) enhanced with LIME, (e) enhanced with AFEM, (f) enhanced with JIEP, (g) enhanced with SDD,
(h) enhanced with proposed RBFA method.

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 9. Comparing enhanced results of Farmhouse with different methods. (a) Input image, (b) enhanced with LECARM,
(c) enhanced with FFM, (d) enhanced with LIME, (e) enhanced with AFEM, (f) enhanced with JIEP, (g) enhanced with SDD,
(h) enhanced with proposed RBFA method.

    
(a) (b) (c) (d) ( ) ( ) ( ) ( )

    
(e) (f) (g) (h) 

Figure 10. Comparing enhanced results of House with different methods. (a) Input image, (b) enhanced with LECARM,
(c) enhanced with FFM, (d) enhanced with LIME, (e) enhanced with AFEM, (f) enhanced with JIEP, (g) enhanced with SDD,
(h) enhanced with the proposed RBFA method.
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.    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 11. Comparing enhanced results of Cru with different methods. (a) Input image, (b) enhanced with LECARM,
(c) enhanced with FFM, (d) enhanced with LIME, (e) enhanced with AFEM, (f) enhanced with JIEP, (g) enhanced with SDD,
(h) enhanced with proposed RBFA method.

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 12. Comparing enhanced results of Office with different methods. (a) Input image, (b) enhanced with LECARM,
(c) enhanced with FFM, (d) enhanced with LIME, (e) enhanced with AFEM, (f) enhanced with JIEP, (g) enhanced with SDD,
(h) enhanced with proposed RBFA method.

4.3. Objective Assessment

Because human eyes often lose some details when we observe a picture, we choose one
no-reference image quality assessment metric (perception-based image quality evaluator
(PIQE)), three full reference image quality measure metrics (mean-squared error (MSE),
structural similarity (SSIM), and peak signal-to-noise ratio (PSNR)) and lightness order
error (LOE) to measure the quality of the enhanced images. The results of the different qual-
ity measure methods are shown in Table 2; these values represent the average value. The
best scores are highlighted in bold case values, and the second-best scores are highlighted
with underline values.

We can see from Table 2 that the proposed method obtained the best score four times
and second-best score once. As shown in Table 2, the PIQE values of different methods fall
within the range from 38.601 to 51.457, which means that the quality of all enhanced images
is very similar and close, and the enhanced images via the proposed method obtained the
best score. The smaller the LOE value, the more natural the enhancement effect. We can see
that the LOE value of the proposed method is the best. This also means that the naturalness
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of the preservation of the proposed method is efficient. MSE is calculated by taking the
average of the square of the difference between the reference image and enhanced image;
the smaller the value is, the higher the similarity between the reference image and the
enhanced image. The result of the proposed method is only 4.59 lower than the best LIME
result. SSIM assesses the visual impact of three characteristics of an image: luminance,
contrast and structure. The bigger the SSIM value, the higher the image quality; we see
that the enhanced image via the proposed method preserved the highest similarity to the
reference image. We know that the PSNR value of the proposed method is also the highest,
which means that our method is useful for low-light image enhancement. Generally, the
image quality enhanced by the proposed method is better than other comparative methods.

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 13. Comparing enhanced results of Door with different methods. (a) Input image, (b) enhanced with LECARM,
(c) enhanced with FFM, (d) enhanced with LIME, (e) enhanced with AFEM, (f) enhanced with JIEP, (g) enhanced with SDD,
(h) enhanced with proposed RBFA method.

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 14. Comparing enhanced results of Capitol with different methods. (a) Input image, (b) enhanced with LECARM,
(c) enhanced with FFM, (d) enhanced with LIME, (e) enhanced with AFEM, (f) enhanced with JIEP, (g) enhanced with SDD,
(h) enhanced with proposed RBFA method.
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(e) (f) (g) (h) 

Figure 15. Comparing enhanced results of Venice with different methods. (a) Input image, (b) enhanced with LECARM,
(c) enhanced with FFM, (d) enhanced with LIME, (e) enhanced with AFEM, (f) enhanced with JIEP, (g) enhanced with SDD,
(h) enhanced with proposed RBFA method.

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 16. Comparing enhanced results of Venice with different methods. (a) Input image, (b) enhanced with LECARM, (c)
Enhanced with FFM, (d) enhanced with LIME, (e) enhanced with AFEM, (f) enhanced with JIEP, (g) enhanced with SDD,
(h) enhanced with proposed RBFA method.

Table 2. Results of image quality measure metrics with different methods.

Metrics LECARM AFEM FFM JIEP LIME SDD Proposed

PIQE 39.818 39.809 42.884 40.072 42.705 51.457 38.601
LOE 415.594 253.646 291.906 296.568 749.862 493.806 7.660
MSE 3777.2175 2021.305 2823.849 2241.768 1153.584 1617.479 1158.174
SSIM 0.531 0.747 0.709 0.732 0.739 0.751 0.753
PSNR 12.504 16.350 14.464 15.847 18.136 17.511 18.258

5. Conclusions

We proposed the Retinex-based fast enhancement method in this paper. This method
can address uneven brightness and greatly improve the brightness of low-light areas. The
proposed method is more efficient. In general, the proposed RBFA algorithm performance
is better than other state-of-the-art methods, combining the results of the comparative exper-
iment, computational complexity comparison and quality assessment. In other words, the
proposed RBFA method is a simple and efficient low-light image-enhancement algorithm.
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Abstract: To prevent disasters and to control and supervise crowds, automated video surveillance
has become indispensable. In today’s complex and crowded environments, manual surveillance and
monitoring systems are inefficient, labor intensive, and unwieldy. Automated video surveillance
systems offer promising solutions, but challenges remain. One of the major challenges is the extraction
of true foregrounds of pixels representing humans only. Furthermore, to accurately understand and
interpret crowd behavior, human crowd behavior (HCB) systems require robust feature extraction
methods, along with powerful and reliable decision-making classifiers. In this paper, we describe our
approach to these issues by presenting a novel Particles Force Model for multi-person tracking, a
vigorous fusion of global and local descriptors, along with a robust improved entropy classifier for
detecting and interpreting crowd behavior. In the proposed model, necessary preprocessing steps
are followed by the application of a first distance algorithm for the removal of background clutter;
true-foreground elements are then extracted via a Particles Force Model. The detected human forms
are then counted by labeling and performing cluster estimation, using a K-nearest neighbors search
algorithm. After that, the location of all the human silhouettes is fixed and, using the Jaccard similarity
index and normalized cross-correlation as a cost function, multi-person tracking is performed. For
HCB detection, we introduced human crowd contour extraction as a global feature and a particles
gradient motion (PGD) descriptor, along with geometrical and speeded up robust features (SURF)
for local features. After features were extracted, we applied bat optimization for optimal features,
which also works as a pre-classifier. Finally, we introduced a robust improved entropy classifier
for decision making and automated crowd behavior detection in smart surveillance systems. We
evaluated the performance of our proposed system on a publicly available benchmark PETS2009 and
UMN dataset. Experimental results show that our system performed better compared to existing
well-known state-of-the-art methods by achieving higher accuracy rates. The proposed system can
be deployed to great benefit in numerous public places, such as airports, shopping malls, city centers,
and train stations to control, supervise, and protect crowds.

Keywords: bat optimization; human crowd behavior (HCB); improved entropy (IE); Jaccard similar-
ity; multi-person counting; particles gradient motion (PGM); speeded up robust features (SURF)

1. Introduction

Multi-person tracking is currently one of the most essential and challenging research
topics in the computer vision community [1–9]. Because of the common availability of high-
quality low-cost video cameras and considering the inefficiency of manual surveillance and
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monitoring systems, automated video surveillance is now essential for today’s crowded and
complex environments. To monitor, control, and protect crowds, accurate information about
numbers plays a vital role in operational and security efficiencies [10–16]. The counting and
tracking of many persons is a challenging problem [17–25] due to occlusions, the constant
displacement of people, different perspectives and behaviors, varying illumination levels,
and because, as the crowd gets bigger, the allocation of pixels per person decreases.

A primary concern in surveillance and monitoring systems is to identify human crowd
behaviors and supervise the crowd to prevent disasters and unforeseen events [26–34].
The analysis of human behavior in crowded scenes is one of the most important and
challenging areas in current research [35–43]. Traditional visual surveillance systems that
depend purely on manpower to analyze videos is inefficient because of the enormous
number of cameras and screens that require monitoring, human fatigue due to time spent
on lengthy monitoring periods, paucity of essential fore-knowledge and training in what
to look for, and also because of the colossal amount of video data that is generated per day.
Such issues necessitate an automated visual surveillance system that can reliably detect,
isolate, analyze, identify, and alert responders to unusual events in real time. Automated
surveillance systems seek to detect human behaviors automatically in crowded scenes, and
it has many potential applications, such as security, care of the elderly and infirm, traffic
monitoring, inspection tasks, military applications, robotic vision, sports analysis, video
surveillance, and pedestrian traffic monitoring [44–52].

In this research article, we propose a robust new particles-based approach for multi-
person counting and tracking, which addresses the problematic fact that, as the density
of a crowd increases, the number of pixels allocated per human decreases. By using our
particles-based approach, we were able to count and track multiple persons in crowded
scenes and efficiently deal with occlusions, arbitrary movements, and overlaps. We also
propose a new approach for crowd behavior detection using an improved entropy classifier
based on the fusion of global and local descriptors extraction. First of all, we applied
pre-processing steps on extracted video frames for noise removal, edge detection, and
contrast adjustment, then human/non-human detection was performed using multi-level
thresholding and morphological operations. We applied a distance algorithm for human
silhouette extraction. After that, our work involved two facets: (i) multi-people tracking
and (ii) crowd behavior detection. In the multi-person tracking phase, we first verified the
extracted silhouettes by a particles force model, then we converted extracted foreground
objects into particles, and, using physics phenomena of the mutually interacting particles
force model, non-human objects were discarded. As every extracted human silhouette is a
collection of particles, by treating groups of particles that make one silhouette as a cluster,
we performed labeling and cluster estimation using a K-nearest neighbors search algorithm
to count the persons. We then fixed the human silhouettes with a unique integer ID, and,
using normalized cross correlation as a cost function and the Jaccard similarity index, multi-
person tracking was performed. However, for crowd behavior detection, we used a fusion
of global and local descriptors, that is, after foreground extraction, we extracted a human
crowd contour as a global descriptor and a particles gradient motion (PGM) descriptor,
along with geometric and speeded up robust features (SURF) as local descriptors. Using
this fusion of global and local descriptors, bat optimization was then applied for optimal
descriptors. Finally, by using Shannon’s information entropy theory [53], we introduced an
improved entropy classifier to detect crowd behavior.

Experimental results show that our proposed system performed better compared to
existing well-known state-of-the-art methods. The proposed system has huge potential
applications, such as crowd density estimation, security, care of the elderly and vulnerable,
sports analysis, inspection tasks, military applications, robotic vision, video surveillance,
and pedestrian traffic monitoring. The major contributions of this paper can be highlighted
as follows:
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1. We propose a new particles force model for human silhouettes verification, which is
a necessary step for accurate counting and tracking of multiple persons in crowded
scenes.

2. We developed a novel particles gradient motion local descriptor and human crowd
contour as a global descriptor, while the fusion of global and local features was used
for crowd behavior detection.

3. We designed an improved entropy classifier to analyze contextual information and
classify crowd behavior in a more efficient manner.

4. We evaluated the performance of our proposed multi-person tracking approach on
a publicly available benchmark PETS2009 dataset while crowd behavior detection
performance was evaluated on the publicly available benchmark UMN dataset and
the proposed method was fully validated for efficacy, surpassing other state-of-the-art
methods, including deep learning.

The remaining structure of this paper was arranged as follows: Section 2 describes
related work. A detailed overview of the proposed model for multi-person tracking and
crowd behavior detection is mentioned in Section 3, which includes preprocessing, human
silhouettes extraction, the particles force model, multi-person counting, multi-person
tracking, global and local features extraction, bat optimization, and an improved entropy
classifier. In Section 4, we evaluate the performance of our proposed approach on a publicly
available benchmark dataset and give a detailed comparison of our proposed approach
with other state-of-the-art methods. Lastly, in Section 5, we sum up the paper and outline
future directions.

2. Related Work

During the last few years, several algorithms and systems have been developed by
different researchers for crowd counting, tracking, and human behavior detection [54–62].
Here, we divide the related work into two parts, namely, human crowd behavior detection
systems and multi-person counting and tracking systems.

2.1. Crowd Behavior Detection Systems

Many contributions have been proposed to describe crowd behavior using various
models [63–69]. Crowd behavior detection is a challenging problem due to the arbitrary
movements of individuals and groups, partial or full occlusions, different outlooks and
behaviors, posture changes, and composite backgrounds [70–76]. To detect human behav-
iors automatically in crowded areas, S. Wu et al. in [77] constructed a density function of
optical flow based on class-conditional probability and described the motion of crowds
using divergent centers and potential destinations so that anomalies can be detected on
the basis of a Bayesian framework. However, the system is not effective for arbitrary
movements or overlaps. S. Choudhary et al. in [78] proposed a SIFT feature extraction
technique, along with a Genetic Algorithm for optimal feature extraction; anomalies were
detected by checking feature set movement behaviors. Their proposed system has a very
high computational processing demand. Direkoglu et al. in [79] used a one-class SVM,
along with features based on optical flow to detect crowd behavior; their system is limited
by the accuracy limitations of optical flow estimation. W. G. Aguilar et al. in [80] intro-
duced a moved-pixels density-based statistical modeling approach for detecting abnormal
crowd behavior. This system has low computational cost, but the efficiency decreases
with increasing complexity of the situation being monitored, e.g., serious occlusions. A.
Shehzed et al. in [81] first detected humans and then the gaussian smoothing technique
was used to detect anomalous behavior; however, the accuracy of the system decreases
with illumination changes and occlusions because thresholding is used for detection. W.
Ren et al. in [82] introduced a behavior entropy model for detecting abnormal crowd
behavior using spatio-temporal information, along with behavior certainty of pixels, but
the system is vulnerable to certain misclassifications due to interclass similarities. G. Wang
et al. in [83] addressed the crowd behavior detection problem by using the pyramid Lucas-
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Kanade optical flow [84] method based on location estimation of adjacent flow; however,
the proposed method is not effective for an unstructured crowd. R Mehran et al. in [85]
placed a grid of particles on the image and introduced a social force model for detecting
crowd behavior. Bellomo, N. et al. in [86] pursued two specific objectives: the derivation
of a general mathematical structure based on appropriate developments of the kinetic
theory suitable for capturing the main features of crowd dynamics and the derivation of
macroscopic equations from the underlying mesoscopic description. Colombo, R.M. et al.
in [87] dealt with macroscopic modelling of crowd movements, particularly how non-local
interactions are influenced by walls, obstacles, and exits. An ad hoc numerical algorithm,
along with heuristic evaluation of its convergence, was also provided. Khan, S.D. et al.
in [88] proposed scale estimation network SENet and head detection network. The SENet
takes the input image and predicts the distribution of scales (in terms of histogram) of all
heads in the input image, which are later on classified by a detection network.

2.2. Multi-Person Counting and Tracking Systems

True foreground extraction, i.e., human pixels, is only one of the primary steps for
accurate counting and tracking of humans in crowded scenes [89–93]. Several approaches
and systems have been introduced by many researchers for multi-person counting and
tracking. In [94], S. Choudri et al. proposed a pixels-based people counting model using the
fusion of a pixel map-based algorithm along with human detection to count only human
classified pixels. They applied a depth map, image segmentation, and a human presence
map that was updated with a human mask for the purpose of counting people; however,
the system has misclassification problems due to interclass similarities. H. Chen et al.
in [95] proposed a new color and intensity patch segmentation approach for tracking and
detection of human body parts and for the full body. They applied fusion of color space
segmentations for the detection of body parts and for the full body. For tracking, based on
the velocity of a target, they adaptively selected the track gate size. A target’s likely forward
position was predicted based on the target’s previous velocity and direction. The proposed
algorithm achieved satisfactory results only when the count of peoples was limited in the
view, i.e., efficiency decreases as the crowd increases. In [96], J. Garcia et al. introduced
a head tracking-based directional people counter. Using several circular patterns and
preprocessing steps, people’s heads were detected. For the tracking application, a Kalman
filter was used, and counting was achieved on the bases of head detection and tracking.
The effectiveness of the proposed algorithm decreases during serious occlusions, arbitrary
movements, and overlaps. M. Vinod et al. in [97] introduced object tracking and counting
using new morphological techniques. The frame-difference technique, followed by mor-
phological processing and region growing, was used for counting people. Moving objects
were extracted by determining their movements, and then tracking was performed using
color features. As the illumination of the scene changed, the efficiency of the proposed
algorithm decreased. G. Liu et al. in [98] proposed a tracker based on a correlation filter.
Kalman filter applications were used for tracking. They designed a tracker that detects
numerous positions and alternate templates. However, the system was not efficient in
dealing with complex situations, such as occlusions and random movements. E. Ristani
et al. in [99] used deep learning to track multi-persons. Using CNN, they extracted features
and then introduced a weighted triple loss strategy to assign weights during training. Their
system was computationally complex, and a huge dataset was essential for training. H.
Xu et al. in [100] located humans by their shoulders and heads, and, for tracking, they
used trajectory analysis and the Kalman filter, but the system was not effective for arbitrary
movements or overlaps.

3. Proposed System Methodology

This section elaborates our proposed methodology for multi-person tracking and
crowd behavior detection. We propose a robust multi-person tracking system based on
a particles force model and human crowd behavior detection system using an improved
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entropy classifier with spatio-temporal and particles gradient motion descriptors. In
the proposed system, the first step is the preprocessing of extracted video frames from
a static camera. Secondly, object detection is transacted using multi-level thresholding,
morphological operations, and labeling. Thirdly, for human silhouette extraction, a distance
algorithm is applied, and non-human filtering is performed on all extracted labeled objects.
At this stage, we administered our work into two streams: the first was for multi-person
counting and tracking, where we first performed a human silhouette verification step by
converting extracted objects into particles and a robust particles force model was introduced
for human silhouette verification. In the next step, after verification of human silhouettes,
as all verified human silhouettes are a collection of particles, by treating each group of
particles as a cluster we performed labeling and cluster estimation using a K-nearest
neighbors searching algorithm for multi-person counting. After that, for multi-person
tracking, the position of each detected human silhouette was then located and locked by
assigning an integer ID for temporally fixing each human silhouette in the full video, and
detected fixed humans were tracked using a Jaccard Similarity Index. However, in the
second facet, for crowd behavior detection, the extracted foreground objects were passed
through a feature extraction step and multiple distinguishable global and local features
were extracted from every frame. After that, all the extracted features were standardized
using the bat optimization algorithm. Lastly, in the classification phase, an improved
entropy classifier was proposed for detection of crowd behavior. Figure 1 depicts the
synoptic schematics of our proposed system.

Figure 1. Synoptic schematics of the proposed Multi-Person Tracking and Crowd Behavior Detec-
tion system.

3.1. Pre-Processing

During image pre-processing, color frames were extracted from a static video camera
E = [f 1,f 2,f 3, . . . , fZ], where Z is the total number of frames. These color images were then
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passed through a Laplacian filter to reduce the noise and sharpen the edges. A Laplacian
filter was applied using Equation (1):

∇2 f =
∂2 f
∂2x

+
∂2 f
∂2y

(1)

where ∇2 f is the 2nd order derivative for obtaining the filtered mask. However, a pure
Laplacian filter did not produce an enhanced image, thus, to achieve the sharpened
enhanced image, we subtracted the Laplacian outcome from the original image using
Equation (2):

g(x, y) = f (x, y)−
[
∇2 f

]
(2)

where the g(x, y) is the sharpened image and f (x, y) is the input image. After obtaining the
sharpened image g(x, y), histogram equalization was performed on the sharpened image
in order to adjust the contrast of an image using Equation (3):

sk = T(rk) = (L − 1)∑k
j=0 pr

(
rj
)

k= 0, 1, 2, . . . , L − 1 (3)

where variable r denotes the intensities of an input image to be processed. As usual,
we assumed that r is in the range [0 L − 1], with r = 0 representing black and r = L − 1
representing white, while s represents the output intensity level after intensity mapping for
every pixel in the input image, having intensity r. However, pr(r) is the probability density
function (PDF) of r, where the subscript on p were used to indicate that it was a PDF of r.
Thus, a processed (output) image was achieved using Equation (3) by mapping each pixel
in the input image with intensity rk into a corresponding pixel with level sk in the output
image, as shown in Figure 2.

  
(a) (b) 

  
(c) (d) 

Figure 2. Preprocessing steps. (a) Original color frame of a video, (b) histogram of original image,
(c) histogram of enhanced image, and (d) enhanced image.

3.2. Human Silhouettes Extraction

After obtaining the preprocessed frames, we performed human/non-human detection
by performing multi-level thresholding using Equation (4), as depicted in Figure 3c.

th(x, y) =
{

1 if l(x, y) > t1, t2, t3
0 otherwise

(4)
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where th(x, y) is the threshold image and t1, t2, t3 are the applied thresholds that are defined
by Otsu’s procedure. In order to extract more useful information, the resultant binary
image was inverted using a point processing operation that subtracts every pixel of an
image from the maximum level of the image, as shown in Equation (5).

C(x, y) = 1 − th(x, y) (5)

where C(x, y) is the inverted image, as shown in Figure 3d, and th(x, y) is the binary image
with a maximum level of 1. After obtaining the human/non-human binary foreground
frames, we performed morphological operations to remove imperfections in the inverted
image C. For the removal of small unwanted objects, erosion was performed, and then,
to fill small holes while preserving the size and shape of objects, morphological closing
was performed. Every object in image C was first eroded using erosion as represented in
Equation (6) and then dilated using Equation (7), after which the dilated image was eroded
again using the disk-shaped structuring element, as shown in Equation (8).

m(x, y) =
{

1 if S fits C
0 otherwise

(6)

m(x, y) =
{

1 if S hits C
0 otherwise

(7)

Mo = (C  S)((C ⊕ S) S) (8)

where C represents the input inverted image and S is the disk-shaped structuring element
used for erosion and dilation, while Mo is the resultant image. The erosion of C by S
is denoted as (C  S); however, the dilation of C by S is denoted as (C ⊕ S). After
morphological operations, all the objects in the image were grouped and labeled, which
helped in extracting and uniquely analyzing every object that was required for human
silhouette extraction.

  
(a) (b) 

  
(c) (d) 

Figure 3. Object detection steps. (a) Original color frame of a video, (b) enhanced image, (c) binary
image after multi-level thresholding, and (d) inverse of a threshold image.

After human/non-human detection, for human silhouette extraction, we calculated
the center and extreme points of each of the labeled objects of Mo, then we extracted each
object one by one, and the distance from center to two extreme points was calculated
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for every object for non-human filtering, as shown in Figure 4. The same procedure was
adopted for the frames from frame 1 to frame Z.

Figure 4. Human silhouette extraction. (a) Distance algorithm from the center to two extreme points
for every object, (b) single silhouette extracted uniquely through labeling, along with its distance
graph, and (c) a single non-silhouette, along with its distance graph.

After calculating the distances, those objects whose distances were greater than the
set threshold were discarded using Equation (9), and only silhouettes resembling humans
were retained.

Eh =

{
0 if d1 > T ∩ d2 > T
1 otherwise

(9)

where the distance from the center to one extreme point is denoted by d1, the center to
the other extreme point distance is represented by d2, T is the set threshold and Eh is the
resultant image. After human silhouette extraction, most of the non-human objects were
discarded by the distance algorithm; however, some non-human objects that resembled
human objects remained.

3.3. Multi-Person Tracking

For accurate human tracking, the extraction of the true foreground, i.e., human pixels
only, is a primary step. Thus, after application of the distance algorithm (mentioned in
Section 3.2) for multi-person tracking, we performed the human silhouette verification step
using the particles force model, and then the multi-person counting and tracking steps
were executed.

3.3.1. Human Silhouettes Verification: Particles Force Model

We present a robust particles force model for human silhouette verification. First of
all, every extracted labeled silhouette was converted into particles, as shown in Figure 5a.
We treated all pixels as fluid particles, thus, every extracted silhouette was a collection of
many particles, as depicted in the magnified view in Figure 5b. Therefore, in our designed
method, each silhouette was represented by a set of particles Q = [p1, p2, p3, . . . , pN],
where N is the total number of particles in one silhouette.
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Figure 5. The particles force model. (a) Particle conversion of every extracted silhouette and
(b) magnified view of particle conversion.

We know from physics that, in solids, particles do not have enough kinetic energy to
overcome the strong forces of attraction, called bonds, which attract the particles toward
each other. Using this physics phenomenon, we found the force of attraction between
particles of every extracted silhouette, as shown in Figure 6:

Figure 6. Particles force model. (a) Interacting force between two particles (b) for non-human
silhouettes and (c) human silhouettes.

For simplicity, we found the force of attraction between only two mutually interacting
particles using Equation (10) in all frames from 1 to Z.

Fi =
p1 p2

r2 (10)

where i is in the range [1 E] with E, representing the maximum number of silhouettes per
frame, while Fi is the force of attraction between particle p1 and p2 of the ith silhouette and
r2 is the square of Euclidian distance between particles p1 and p2. After calculating the force
between particles of every silhouette in all video frames, we discarded those silhouettes
whose force of attraction was static in frame t and frame t + 1 using Equation (11):

Hs =

{
1 if dFi

dt > 0
0 otherwise

(11)
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where dFi
dt represents the change in attraction force between particles of every ith silhouette,

with respect to time between frames t to t + 1. After application of the particles force model,
we only retained human silhouettes in each frame, as depicted in Figure 7:

  

Figure 7. A few examples of verified multi-human silhouettes.

3.3.2. Multi-Person Counting

After extraction of the verified human silhouettes, to count these detected humans
silhouettes, which consist of a set of particles, we performed cluster estimation. Since
every silhouette is a collection of particles, the group of particles that makes one silhouette
was treated as one cluster, and, by using the K-nearest neighbor search algorithm, cluster
estimation was performed on every frame, as depicted in Figure 8:

  

Figure 8. Human contours for cluster estimations.

After that, we labeled clusters in all frames, as shown in Equation (12), and, to make
them appear visually, we drew green bounding boxes around each cluster. Thus, by
performing cluster estimation and labeling, we counted all the extracted human silhouettes,
as shown in Figure 9:

Ic = Lm pN (12)

where pN is the total number of particles in one cluster (the total number of particles in
each cluster varies from cluster to cluster and the number of clusters in each frame varies
from frame to frame), while Lm represents the label of cluster m and Ic is the resultant
extracted labeled cluster that was treated as one silhouette and was considered in counting.

  

Figure 9. Sample frames of multi-person counts at different time intervals.
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3.3.3. Multi-Person Tracking

The goal of person tracking is to establish correspondence between individuals across
frames. Thus, to establish correspondence between persons in frame t and frame t + 1, we
calculated the position and velocity of every detected human silhouette in all frames. In
our model, we assumed that people can enter or leave the scene, thus, for temporally fixing
of all humans across frames, the position of each human silhouette was located and locked
by assigning a unique integer ID, which was fixed to that particular silhouette in all frames.
The states of all the predicted persons in frame Ft were stored in a structure and matched
with the states of frame Ft + 1, while the detected fixed human silhouettes were tracked
using the Jaccard similarity index.

St = ∑n
i=1 ILi (13)

While using data association and cross-correlation as a cost function, detected and
predicted persons were associated in consecutive frames, as represented in Figure 10. The
root steps involved in multi-person tracking are illustrated in Figure 11.

  
Frame 27 Frame 49 

  
Frame 67 Frame 81 

Figure 10. Sample frames of multiple human silhouette-fixing and tracking at different time intervals.

Figure 11. Key steps involved in multi-person tracking.
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3.4. Crowd Behavior Detection

Understanding that accurate crowd behavior requires robust global and local feature
extraction [101–103], along with a potent decision-making classifier, for crowd behavior
detection after applying the distance algorithm (mentioned in Section 3.3), the extracted
silhouettes were passed through the feature extraction step and multiple distinguishable
global and local features were extracted for every frame. Next, bat optimization was applied
for optimal feature extraction and decisions were made by the improved entropy classifier.

3.4.1. Global-Local Descriptors

For the global-local descriptor, we used a fusion of global and local image properties.
In global features, we described the visual content of the whole image and we had the
ability to represent an image with a single vector. Here, we extracted the crowd contour as
a global feature. For local features, we used our newly proposed particles gradient motion
features, geometric features, and speeded up robust feature (SURF) [104]. For local features,
we extracted interest points and represented them as a set of vectors that respond more
vigorously to clutter and occlusions.

Initially, in global features, we found the center of each human and considered all the
humans in the scene as a vertex; this can be denoted as P = {P1, P2, . . . , Pn|Pi = (Xi, Yi)},
where P represents the whole human crowd in the scene, considered as a set of vertices, and
(Xi, Yi) are the coordinates of the ith human. We considered only those humans that were
at the extreme points and joined them with a line, forming the biggest graph, covering all
extreme vertices, as shown in Figure 12. The graph represented the human crowd contour,
and thus, the variations in the shape of a graph threw a flash on variations in the outer
area of the human crowd, i.e., on global changes. To measure the variations in the crowd
contour, we compared the contour temporally by integrating over all of the pixels of the
contour. In general, we defined the (p, q) moment of a contour as in Equation (14):

mp,q = ∑n
x ∑n

y I(x, y)xpyq (14)

where I(x, y) is the intensity of the pixels in coordinate (x, y). Here, p is the x-order and q
is the y-order, whereby, order means the power to which the corresponding component
is taken in the sum just displayed. The summation is over all of the pixels of the contour
boundary (denoted by n in the equation). It then follows immediately that, if p and q are
both equal to 0, then the m0,0 moment is actually just the length in pixels of the contour. The
moment computation just described gives some rudimentary characteristics of a contour
that can be used to compare two contours.

 

Figure 12. Extraction of human crowd contour as a global feature.
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In the SURF descriptor [105], we computed distinctive invariant local features, which
detected the interest points and elaborate features that depict some invariance to image
noise, rotation, direction, scaling, and changes in illumination. Using SURF, we computed
75 local points for every human silhouette in an image, and thus, for every frame, we had
1050 SURF descriptors in a set of vectors, as shown in Figure 13:

(a) (b) 

Figure 13. (a) SURF features for all human silhouettes and (b) magnified view of SURF features for
two human silhouettes.

In geometric local features, we first identified the skeleton joints of every human
silhouette in each frame using a skeleton model, and then, by considering skeleton joints
as vertices, we drew poly-shapes and triangles with three or four vertices. By using the
left arm, neck, left shoulder, and torso, a left polygon wing was drawn and filled with a
color. Similarly, a right polygon wing was drawn and filled with different colors using
the right arm, neck, torso, and right shoulder. Additionally, the torso area, lower area, left
shoulder triangles, and right shoulder triangles were drawn, as depicted in Figure 14. The
areas enclosed under these polygons were analyzed frame by frame, and on the basis of
angle differences and area size, normal and abnormal behaviors of human crowds were
detected. Algorithm 1 depicts the overall procedure used for the extraction of the strongest
body points for human silhouettes.

   
(a) (b) 

Figure 14. (a) Geometric features for all human silhouettes. (b) Magnified view of geometric features
for two human silhouettes.

In particles gradient motion (PGM), we first converted every human silhouette into
particles and then only those particles that were on the human contour were considered,
and their interaction force was calculated. Generally, every pedestrian in a crowd has a
desired direction and velocity vi

d, calculated using Equation (16). However, in crowded
scenes, because of the presence of multiple persons, individual movements are limited, and
the actual velocity of each pedestrian vi is different from their respective expected motion.
The actual velocity of particles is calculated using Equation (15).

vi = Favg(xi, yi) (15)
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where Favg(xi, yi) is the ith particle average optical flow in the coordinate (xi, yi). We
calculated the desired velocity vi

d of particles as:

vi
d= (1 − wi) F(xi, yi)+ wiFavg(xi, yi) (16)

where F(xi, yi) represents ith particle optical flow with coordinates (xi, yi) and wi is the
panic weight parameter. The pedestrian i displays vanity behaviors as wi → 0 and collective
behaviors as wi → 1. Linear interpolation was used for the enumeration of efficient optical
flow and the adequate average flow field of particles. Thus, on the basis of the actual
velocity and the desired velocity, we can calculate the interaction force using Equation (17):

Fint =
1
T

(
vi

d − vi)–
dvi
dt

(17)

where Fint is the resultant interaction force, as represented in Figure 15 and T is the
relaxation parameter. When the interaction force of particles was greater than the set
threshold, it was detected as an abnormal event; otherwise, it was considered to be normal.

Algorithm 1 Extract strongest body points for human silhouettes

Input: I: Extracted Human Silhouettes
Output: Strongest body points, i.e., head, shoulders, legs, arms, hips
/* for each connected component, extract body points.
B = bwboundaries(binary_image);
lbl = bwlabel(binary_image);
CC2 = bwconncomp(lbl);
L52 = labelmatrix(CC2);
for objectidx2 = 1:CC2.NumObjects
individualsilheouts2 = bsxfun(@times, closezn, L52 == objectidx2);
[labeledImage2,numberofBlobs2] = bwlabel(individualsilheouts2,4);
end
Aa = individualsilheouts2;
/* Defining a upper, middlle and lower portion for each individual silheouts */
th = thershold;
rps = regionprops(Aa,’Boundingbox’, ‘Area’);
for k = 1 to length(rps) do
w = rps(k). Boundingbox
if height > th and width > th then
upper_region = struct(‘x’,w(1), ‘y’, w(2), ‘width’,w(3), ‘height’, w(4)/5); /* head */
middle_region = struct(‘x’,w(1), ‘y’, w(2) + w(4)/4, ‘width’,w(3), ‘height’, w(4)/4); /* arms */
lower_region = struct(‘x’,w(1), ‘y’, w(2) + w(4)/2, ‘width’,w(3), ‘height’, w(4)/2); /* legs */
j = j+1;
s(j) = w;
end

end

top = [x,max_y]:left = [min_x,y]:bottom = [x,min_y]:right = [max_x,y];
% label the head region%
Head =top pixels of upper region
Right Shoulder = Bottom right pixels of upper region
Left Shoulder = Bottom left pixels of upper region
Right arm = Right Pixels of middle region
Left arm = Left Pixels of middle region
Right foot = Bottom right pixels of lower region
Left foot = Bottom left pixels of lower region
return Head, Shoulders, arms, foots
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(a) (b) 

Figure 15. (a) Particles gradient motion descriptors for all human silhouettes and (b) magnified view
of PGM for two human silhouettes.

3.4.2. Event Optimization: Bat Optimization

Optimization is a process by which the optimal solutions of a problem that satisfies
and objective function are accessed [106–109]. Yang, in [110], introduced an optimization
algorithm inspired by a property of bats, known as echolocation. Echolocation is a type of
sonar that enables bats to fly and hunt in the dark. The bat optimization (BO) algorithm is
composed of multiple variables of a given problem. Using the echolocation capability, bats
can detect obstacles in the way and the distance, orientation, type, size, and even the speed
of their prey.

BO has multiple agents depicting the parameters of the layout dilemma, as any other
metaheuristic mechanism. From real-valued vectors, the initial population is randomly
generated with number N and dimension d by considering lower and upper boundaries
using Equation (18):

Xij = Xmin + ϕ(Xmax − Xmin) (18)

where Xmax and Xmin are higher and lesser boundaries for dimension j, respectively, j =
1, 2, . . ., d, i = 1, 2, . . . , and N and ϕ ranged from 0 to 1 is a randomly generated value.
After population initialization, we calculated the fitness function and stored the local and
the global best. We evaluated the fitness values of all humans, and, on the basis of their
movements, new local and global best solutions were obtained; all the humans had velocity
Vit affected by a predefined frequency fi, and finally, their new position Xit was located
temporally, as described in the following Equations:

fi = fmin + β( fmax − fmin) (19)

Vit = Vit−1 + (Xit − X ∗) fi (20)

Xit = Xit−1 + Vit (21)

where fi is the frequency of the ith human, fmin and fmax are lower and higher frequency
values, respectively, β represents a randomly generated value, and, after comparison of all
solutions, X∗ illustrates achieved global best location (solution). Figure 16 depicts the flow
chart of the algorithm and Figure 17 represents optimization results.
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Figure 16. Bat optimization flow chart.

 
(a) (b) 

Figure 17. Bat optimization results. (a) Normal optimal features; (b) abnormal optimal features.

3.4.3. Improved Entropy Classifier

Using Shannon’s information entropy theory [53] to describe the degree of uncertainty,
we proposed an improved entropy classifier for the detection of human crowd behavior.
First of all, we standardized all the features using Equation (22):

Xij
∗ =

Xij − min
{

Xj
}

max
{

Xj
}− min

{
Xj
} (22)
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where Xij
∗ is the value of the j-th feature for i-th human. j = 1, 2, . . . , m, i = 1, 2, . . . , n, while

n is the count of humans and m represents the count of features. After that, the weight of
j-th feature for i-th human was calculated using Equation (23):

qij =
Xij

∗

∑n
i=1 Xij

∗ (23)

Thus, the information entropy of each feature was calculated using Equation (24):

ej = −k ∑n
i=1

(
qij × lnqij

)
(24)

where k = 1
ln m . After calculating the information entropy, we then calculated the difference

coefficient and maximum ratio of the difference coefficient using Equations (25) and (26):

dj = 1 − ej (25)

D =
max

(
dj
)

min
(
dj
) , (j = 1, 2, . . . , m) (26)

After calculating D, we then built up the scale ratio chart 1–9 using Equation (27):

R =
a−1

√
D
a

(27)

where a depicts the highest scale-value worked as an adjustment coefficient by calculating
the power (a − 1). The D is allocated to the mapping values from 1 to 9 in the above
Equation. After that, from scale 1–9, mapped values were calculated, and judgment matrix
R was established with elements rij, respectively, using Equation (28):

rij =
di
dj

,
(
di > dj

)
(28)

The obtained judgment matrix satisfied the consistency test because the elements rij
demonstrated the ratio of difference coefficient of two features.

Thus, the consistent weights Wj for each feature were then calculated using an ana-
lytical hierarchy process. After that, information entropy was again calculated for each
feature, using these weights by utilizing Equation (24). The crowd behavior entropy of the
whole system was the summary of all entropies. In this way, for every frame, the entropy
value was calculated and utilized as a template. For a small entropy value less than the
defined threshold, the behavior was predicted as normal; however, for entropy values
higher than the set threshold, the behavior was presumed to be abnormal. A flow chart of
the proposed improved entropy classifier is shown in Figure 18. Figure 19 depicts results
over event classes.
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Figure 18. Flow chart of the improved entropy classifier.

  
(a) (b) 

  
(c) (d) 

Figure 19. Crowd behavior detection. (a,c) Normal frames and (b,d) abnormal frames.
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4. Performance Evaluation

In this section, we evaluated the performance of our proposed system. We conducted
experiments on two publicly available benchmark datasets to evaluate the accuracy and
performance of our proposed model. The PETS2009 dataset was used to evaluate the
accuracy of multi-person tracking and the UMN dataset was used to evaluate the accuracy
of crowd behavior detection. We started by briefly describing the datasets used, and
then the experimental results were discussed. Finally, we showed the mean accuracy of
our proposed system. We also compared our proposed model with other state-of-the-art
multi-person tracking and crowd behavior detection systems.

4.1. Datasets Description
4.1.1. PETS2009 Dataset

To evaluate different video surveillance challenges, we used PETS2009, one of the
publicly available benchmark datasets. The challenges included the S1 dataset for counting
persons in a low-density crowd, the S2 dataset for detecting and tracking persons in
medium-density crowds, and the S3 dataset for tracking and estimating the number of
persons in a high-density crowd. Some sample frames of different synchronized views
from PETS2009 dataset are depicted in Figure 20.

   

Figure 20. Sample frames of different synchronized views from the PETS2009 dataset.

4.1.2. UMN Dataset

To evaluate different video surveillance challenges for crowd behavior detection,
UMN is one of the publicly available benchmark datasets. The UMN dataset consists of
three different scenes, specifically, two outdoor and one indoor, with videos of 11 various
panic scenarios. For the detection of abnormal behavior of a crowd, the UMN dataset is
one of the best datasets that is publicly available. There were two outdoor scenes: the
lawn scene, consisting of two scenarios with 1453 frames, and the Plaza scene, with three
scenarios that had 2142 frames. There were six scenarios in the indoor scene, with 4144
frames. Sample frames of different scenarios of the UMN dataset are shown in Figure 21.

   

Figure 21. Sample frames of different scenarios of the UMN dataset.

4.2. Experimental Settings and Results

We performed all the experiments on MATLAB, and the hardware system had a 64-bit
intel core-i3 2.5 GHz CPU and 6 GB of RAM. Three experimental measures were used to
evaluate the performance of the system: (1) mean accuracy of multi-person tracking, (2) the

87



Entropy 2021, 23, 628

accuracy of human crowd behavior detection, and (3) comparisons between our proposed
new system with other current and well-known systems. Experimental results showed that
our proposed system produces a higher accuracy rate over existing systems.

4.2.1. Experiment 1: Multi-Person Tracking over the PETS2009 Dataset

Experimental results and mean accuracy of our proposed multi-person counting and
tracking model on a publicly available PETS2009 dataset are shown in Tables 1 and 2. The
ground truth was obtained by counting the number of persons in every sequence, where
one sequence contained 20 frames. Table 1 depicts the mean accuracy of our proposed
multi-person counting system on the first 30 sequences. As shown, the mean accuracy of
our proposed model was 89.80%.

Table 1. Multi-person counting accuracy over the PETS2009 dataset.

Sequence No (Frame = 20) Actual Count Predicted Count Accuracy

6 3 3 100
12 4 4 100
18 5 4 80
24 6 5 83.33
30 7 6 85.71

Mean Accuracy = 89.80%

Table 2. Multi-person tracking accuracy over PETS2009 dataset.

Sequence No (Frame = 20) Successful Failure Accuracy

6 3 0 100
12 4 0 100
18 4 1 80
24 5 1 83.33
30 5 2 71.43

Mean Accuracy = 86.95%

Table 2 presents the mean accuracy of our proposed multi-person tracking system.
The actual number of humans is the same as for Table 1, while column 2 represents the
successful tracking rate of our proposed particles force model and column 3 depicts the
failure case. The mean accuracy of our proposed model for multiple person tracking
was 86.95%.

4.2.2. Experiment 2: Human Crowd Behavior Detection over the UMN Dataset

Experimental results using the confusion matrix and the mean accuracy of our pro-
posed HCB model on the publicly available UMN dataset are shown in Table 3. The way to
evaluate algorithms is to run them throughout a test sequence with initialization from the
ground truth position in the first frame.

Table 3. Confusion matrix, showing mean accuracy for human crowd behavior detection on the
UMN dataset.

Events Normal Abnormal

Normal 88 12

Abnormal 16 84

Mean Accuracy of Event Detection = 86.06%
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4.2.3. Experiment 3: Multi-Person Tracking and HCB Detection Comparisons with
State-of-the-Art Methods

We compared our proposed system with other well-known multi-person tracking
and human crowd behavior detection methods. As depicted, our system performed
better compared to existing well-known state-of-the-art methods. Table 4 shows that, in
comparison to other state-of-the-art methods, our proposed system achieved an admirable
accuracy rate of 86.06% for crowd behavior detection, which is higher than the accuracy of
the force field model (FF) (81.04%) and the social force model (SF) (85.09%). The accuracy
of other methods under the same evaluation settings was taken from [77,79].

Table 4. Comparison of the proposed approach with other state-of-the-art methods for human crowd
behavior detection on the UMN dataset.

Indoor/Outdoor Scenes Force Field Model Social Force Model Proposed Method

Scene 1 88.69 84.41 87.43
Scene 2 80.00 82.35 83.21
Scene 3 77.92 90.83 90.63

Overall accuracy 81.04% 85.09% 86.06%

Table 5 presents the comparison of our proposed system with other state-of-the-art
systems for multi-person counting. Experiment results show that our proposed system
achieved a higher accuracy rate of 89.8% over existing methods.

Table 5. Comparison of proposed approach with state-of-the-art multi-person counting methods.

Methods Counting Accuracy (%)

Pixel-map based algorithm [94] 83.6
Sparsity-driven [111] 86.3

Head Shoulder based detection [100] 86.7
Skin Detection [81] 88.7
Proposed method 89.8

In Table 6, comparisons of multi-person tracking with other state-of-the-art methods
show that our proposed system achieved a higher accuracy rate of 86.9% over existing
methods.

Table 6. Comparison of the proposed approach with state-of-the-art multi-person tracking methods.

Methods Tracking Accuracy (%)

Flow Linear Programming [112] 78.8
DDPMO [113] 81.3

Appearance model [114] 83.0
Proposed method 86.9

5. Conclusions

In this paper, we proposed a new robust approach for crowd counting. We introduced
and tested tracking and human behavior detection using the idea of a mutually interacting
particles force model and an improved entropy classifier with spatio-temporal and particles
gradient motion descriptors. Through detailed experiments, we proved the ability of the
method to efficiently count, track, and detect the behavior of multiple persons efficiently in
crowded scenes. The performance of our new tracking system decreases marginally with
increasing numbers of persons in the scene. This is mainly due to full occlusions that occur
in the test videos. We achieved promising results on the publicly available benchmark
PETS2009 dataset, with an accuracy of 89.80% for multi-person counting and 86.95% for
person tracking, as shown in Tables 1 and 2. However, for HCB detection, we achieved
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promising results on the publicly available benchmark UMN dataset, with an accuracy
of 86.06%, as shown in Table 3. Our future work will focus on some occlusion reasoning
methods to further tackle the occlusion problems. We will also extend our work to multiple
scene detection. We are interested in recognition of different scenes, such as sport scenes,
fight scenes, robbery scenes, traffic scenes, and action scenes.
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Abstract: Full waveform inversion is an advantageous technique for obtaining high-resolution
subsurface information. In the petroleum industry, mainly in reservoir characterisation, it is common
to use information from wells as previous information to decrease the ambiguity of the obtained
results. For this, we propose adding a relative entropy term to the formalism of the full waveform
inversion. In this context, entropy will be just a nomenclature for regularisation and will have
the role of helping the converge to the global minimum. The application of entropy in inverse
problems usually involves formulating the problem, so that it is possible to use statistical concepts.
To avoid this step, we propose a deterministic application to the full waveform inversion. We will
discuss some aspects of relative entropy and show three different ways of using them to add prior
information through entropy in the inverse problem. We use a dynamic weighting scheme to add
prior information through entropy. The idea is that the prior information can help to find the path
of the global minimum at the beginning of the inversion process. In all cases, the prior information
can be incorporated very quickly into the full waveform inversion and lead the inversion to the
desired solution. When we include the logarithmic weighting that constitutes entropy to the inverse
problem, we will suppress the low-intensity ripples and sharpen the point events. Thus, the addition
of entropy relative to full waveform inversion can provide a result with better resolution. In regions
where salt is present in the BP 2004 model, we obtained a significant improvement by adding prior
information through the relative entropy for synthetic data. We will show that the prior information
added through entropy in full-waveform inversion formalism will prove to be a way to avoid
local minimums.

Keywords: prior information; entropy; fwi; regularization; inverse problems

1. Introduction

The subsurface image, more specifically, a detailed image of the oil reservoir, is essen-
tial in oil and gas exploration and production and requires appropriate data acquisition,
processing to remove unwanted information, building a velocity model to use in an ap-
propriate migration algorithm. The quality of the image obtained is, generally, controlled
by the subsurface velocity model. When the geology of the area of interest is composed of
salt bodies with complex geometrical shapes, the construction of a precise velocity model
is more complicated. Full waveform inversion (FWI) is a tool that can provide us with a
velocity model with greater precision and resolution. Wang and Rao [1] is, for the first
time, applying FWI for the industrial standard reflection seismic data. Through the use of
amplitude and travel time content of the acquired seismic data, this technique, theoretically,
has the potential to be the most accurate method for the construction of subsurface velocity
models [2,3]. Wang and Houseman [4] proposed the joint inversion that uses both the
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amplitude and travel time data simultaneously, so as to mitigate the ambiguity of reflector
geometry and the interval velocities between reflectors.

FWI is a nonlinear and ill-posed data fitting method that usually uses local optimisa-
tion methods and, thereforem its solution depends heavily on the initial model. In order to
avoid the cycle skipping, the initial model should predict errors in the arrival times less
than half the wavelength [3]. One can minimise the issue of non-linearity and the cycle
skipping problem with the use of a multi-scale strategy, where we begin from the lowest to
the highest frequencies, helping the convergence to the global minimum [5].

The effects of non-uniqueness of the ill-posed inverse problem are usually decreased
by the use of regularisation techniques. These regularisation techniques help to stabilise
the inversion scheme by incorporating a specific structure or characteristic of the model
(e.g., smoothness, sparsity). The most used regularisation scheme is the one that was
proposed by Tikhonov and Arsenin [6]. This method incorporated in the inversion scheme
aims to find a smooth model that can justify the data. In FWI, in some cases, an l1 model
penalty is used as a regularisation strategy to preserve edges and contrasts [7]. However,
in some cases, prior information, such as sonic records, stratigraphic data, or geological
restrictions, about the model is available. To mitigate the problems of non-uniqueness and
stability of the solution, we can use a regularisation scheme that is composed of the model
norm and first-order Tikhonov regularisation to act as a smoothing operator, as proposed
in [8]. They also suggest that the weighting of the term that is responsible for adding the
prior information be done dynamically. This strategy proved to be useful in avoiding local
minimums in the FWI. Peters and Hermmann [9] showed a way of including constraints
on spatial variations and values ranges of the inverted velocities in FWI.

One way to add prior information to the inversion scheme is through relative entropy.
In Thermodynamics, we can introduce the notion of entropy to characterise the degree of
disorder of a system. The notion of entropy has been the subject of many controversies
and different formulations [10]. Here, we will use entropy just as nomenclature used
to restrict the solutions of the inverse problem. In a minimisation problem, when we
compare entropy with the model norm, the logarithmic operation will suppress the low-
intensity ripples. Thus, the entropy method can deliver images with better resolution in
some cases [11]. In other words, adding entropy to the FWI formalism, we introduce a
smoothness characteristic in the objective function, which will lead to smoothed solutions
that are consistent with the available data [12].

The principle of minimum relative entropy (PMRE) was introduced in [13], and it was
first applied in the context of geophysicist by Shore [14] in spectral analysis. Other works
applied the PMRE in the seismic deconvolution to make limited band extrapolation [15],
diffraction seismic tomography [16], and different geophysical problems, such as inversion
of interval velocities, removal of the alias effect, and seismic deconvolution [17]. In the
context of the FWI, the entropy concept was applied by Chen and Peter [18], who proposed
a misfit function based on entropy regularised optimal transport. da Silva et al. [19]
proposed a misfit function for FWI based on Shannon entropy for deeper velocity model
updates. None of them made use of prior information and, all of them, in some way, use
statistical formalism.

Recently, many works have been developed formulating the FWI in terms of Bayesian
formalism. In this sense, Zhu et al. [20] show a Bayesian approach to estimate uncer-
tainty for full-waveform inversion using a priori information from depth migration.
Singh et al. [21] propose a robust way to constrain the inversion workflow using per-facies
rock-physics relationships derived from well logs. Carvalho et al. [22] show Full-waveform
inversion with subsurface fractal information and variable model uncertainties. Zhang
and Curtis [23] present the first application of variational full-waveform inversion (VFWI)
to seismic reflection data where they imposed realistically weak prior information on
seismic velocity.

Usually, when working with entropy, we use probability distribution information
or Bayesian formalism, which requires some additional step in the formulation of the
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problem, such as representing initial and prior models as posterior and prior probability
distributions [17]. Our proposal is to add prior information to the FWI using relative
entropy without explicitly using the concept of a probability distribution or Bayesian
formalism. We will do this in a deterministic and direct way. We present three distinct
ways to add prior information to the FWI formalism through relative entropy. We will
discuss some aspects of the relative entropy for obtaining velocity models and show how
these ways of adding prior information will contribute to recovering the velocity model in
areas that are affected by the presence of bodies of salt through a synthetic application on
the BP model.

2. Theory

Full waveform inversion is an example of a nonlinear ill-posed problem. In general,
the solution to this problem is to minimise the discrepancies between the observed and
modelled data. From the mathematical point of view, this is a nonlinear problem that is
usually being treated as a linearised least-squares problem. However, even the linearised
problem still ill-posed and, consequently, several solutions can provide a satisfactory fit
between the observed and modelled data.

One way to circumvent this ambiguity of solutions is by introducing prior information
adding to the formalism of the inverse problem a terms of regularisation. Thus, we
will briefly present the mathematical methodology of the inversion algorithm with the
contribution of prior information.

Let F be a generic cost function that is given by:

F(m) = Φd(m) + αΨm(m). (1)

For FWI, the term Φd(m) is usually constructed through the L2 norm of the residue
between the modeled and observed data, which is:

Φd(m) = ∑
ns

1
2
[(dobs − dcal(m))t(dobs − dcal(m))], (2)

where dobs and dcal(m) represent the observed and calculated data vectors, respectively.
In our work, we use a time domain approach and each component of these vectors are
samples of time domain seismograms recorded at each of the receivers for a seismic
source. The misfit function is the result of the sum realized over all ns sources of the
seismic acquisition. There is a non-linear dependence on the modeled data and the model
parameters, as represented by m. The model parameters are determined by an inverse
process that aims to reduce the residue between the modeled and observed data.

In our case, the second term of the cost function will be responsible for adding the
prior information (this a prior information can, for example, come from well profiles) to the
inversion process. Here, the prior information will be denoted by mr. This prior information
can be added in different ways to the inversion. In FWI, the model norm with this intention
is used in [8]. We use this form for comparison purposes, so we can write Ψ as:

Ψm(m) =
N

∑
i=1

(mi − mr
i )

2. (3)

The first form that we studied in this experiment was the relative entropy described
by [24,25]:

Ψ =
N

∑
i=1

miln(
mi
mr

i
), (4)

the Equation (4) is the Kullback–Leibler’s distance from mr to m. Usually, this equation is
used in association with probability distribution. This makes the relative entropy always
positive. However, this is only true because the probabilities of the events fall between
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zero and one [26]. In order to avoid a reformulation of the problem, our idea is to use it in
a deterministic way, which is, without using concepts of probability.

Formally, the Kullback–Leibler distance is a pseudo-distance, as it does not satisfy two
properties of the metric definition; triangular inequality and symmetry [27]. The fact of non-
symmetry led us to our second case study, which will be represented in the equation below:

Ψ =
N

∑
i=1

mr
i ln(

mr
i

mi
). (5)

It becomes necessary to analyze the behavior of these functions. For this, we simulate
a situation in which the prior information was constant (mr = 10, for example) and plot the
graph of the function y = xln(x/10) and y = 10ln(10/x), as can be seen in the Figure 1.
Analyzing Figure 1, we can infer that Ψ (in Equations (4) and (5)) can present positive
and negative values. The graph of Equation (4) (red curve) shows that Ψ will always be
negative when the values of the model parameters are less than the parameters of the
reference model. The graph of Equation (5) (blue curve) shows that Ψ will always be
negative when the values of the model parameters are greater than the parameters of the
reference model. In addition, the graph of Equation (5) (red curve) shows that this function
does not present a minimum.

Figure 1. Graphic of the functions y = xln(x/10) (red curve) and y = 10ln(10/x) (blue curve). This
function is not positive definite. The function y = 10ln(10/x) does not present a minimum

This behavior (sometimes positive and negative) in both equations brings an incon-
venience to inversion. At one point, we would be minimizing the function at another,
maximizing the function.

The simplest way to transform Equation (4) into positive definite is to work with the
quadratic form. Thus, we rewrite Equation (4), as follows:

Ψ =
N

∑
i=1

[
miln(

mi
mr

i
)

]2
. (6)

Analogously, we can change Equation (5) into positive definite taking its quadratic
form. Thus, we rewrite Equation (5), as follows:

Ψ =
N

∑
i=1

[
mr

i ln(
mr

i
mi

)

]2

. (7)

As was done for Equations (4) and (5), we plotted a graph of the function described
by Equations (6) and (7), as can be seen in Figure 2. Analyzing Figure 2, it can be seen that
Equation (6) is positively defined. However, in the example that is illustrated in Figure 2,
we can observe the presence of two minimums. This leads us to interpret that the use of
Equation (6) in FWI can increase the problem of local minimums (this will be exemplified in
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numerical applications). Also analyzing Figure 2, we can expect that Equation (7) presents
the characteristics that are favorable to the inversion process, which is, it is a definite
positive function and that only presents a minimum.

Figure 2. Graphic of the functions y = [xln(x/10)]2 (red curve), y = [10ln(10/x)]2 (blue curve) and
y = xln(x/10)− (x − 10) (green curve). The function y = [xln(x/10)]2 is positive definite, but it has
more than a minimum. The functions y = [10ln(10/x)]2 and y = xln(x/10)− (x − 10) are positive
definite and present only a minimum.

Finally, we can add the prior information to FWI with the axiomatic form that is given
by (8) [28,29]:

Ψ =
N

∑
i=1

[
miln(

mi
mr

i
)− (mi − mr

i )

]
, (8)

the Equations (4) and (8) are similar. However, Equation (8) has a term referring to the
difference of the models that leaves it with the characteristic that we expect (definite
positive function), as can be seen in Figure 2 in a green curve.

If we minimize the objective function in the classical way, we obtain a system of
equations that can be expressed as:

HFΔm = −GF, (9)

where HF and GF represent the Hessian and gradient of cost function, respectively. In this
case, the gradient represents the sum of two terms. If the Ψ function is the model norm
(Equation (3)), we have:

GF = JT(dobs − d(m)) + 2α(mi − mr
i ). (10)

For the Ψ function to be represented by Equation (6), the gradient will be represented,
as follows:

GF = JT(dobs − d(m)) + 2α

[(
miln(

mi
mr

i
)

)(
ln(

mi
mr

i
) + 1

)]
. (11)

When the Ψ function that is represented by Equation (7) is used, the gradient expres-
sion will be given by:

GF = JT(dobs − d(m))− 2α

[(
mr

i ln(
mr

i
mi

)

)(
mr

i
mi

)]
. (12)

In case the Ψ function used is the one represented in Equation (8), the gradient will be
described, as follows:

GF = JT(dobs − d(m)) + α

[
miln(

mi
mr

i
)

]
. (13)
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The term J that is present in the gradient expressions is the sensitivity matrix. The sensitivity
matrix is composed of the derivatives of the modeled data with respect to the model parameters
(J = ∂d(m)/∂m). The elements of J are not explicitly calculated because they demand a high
computational cost. For this reason, the adjoint formulation [30] is used for this purpose.

Asnaashari et al. [8] showed that we should work with a dynamic weighting of the
term regularisation. The basic idea of this methodology is to help the inversion process to
converge to the global minimum of the objective function by increasing the importance
of prior information at the beginning of the process and gradually decreasing the penalty
term weighting until, in the final iterations, the convergence driven by the term of the data.
In this work, the α = μγ parameter is a dynamic weighting of the term regularisation and
it has the role of decreasing the weight of the entropy term over the iterations. We built the
dynamic term (γ) from the ratio of the gradients, as can be seen in Equation (14):

γ =
∑M

i=1(∇Φi)
2

∑M
i=1(∇Ψi)2

, (14)

where Φi and Ψi are the elements of the gradients vectors of misfit and regularise, re-
spectively. In our tests, as will be seen in numerical applications, the γ value proved to
be inadequate (the initial value was large) and it needed to be adjusted. We made this
adjustment using the μ parameter.

We calculated the gradients of the terms of those that are responsible for adding the
prior information easily and directly added to the data gradient. The term of the Hessian
matrices, which is composed of the second derivative of misfit function and relative entropy,
is not explicitly resolved in this paper. We calculated the hessian using a limited quasi-
newton method that is known in the literature as L-BFGS-B. The routine that was proposed
by [31] considers that the inverse Hessian matrix is non-diagonal and roughly obtains its
elements from the gradient vectors and previous models by performing a line search that
satisfies Wolfe’s conditions.

3. Numerical Tests

We only worked with the acoustic case (i.e., a P velocity model) and considered the
homogeneous density distribution. We also considered a regular grid with 12.5 m spacing,
which is used in both modelling and inversion. The data that were observed and modelled
in time were obtained from the acoustic wave equation through finite-difference modelling,
where an eighth order approximation for the Laplacian operator and a second-order
approximation for the time derivative were considered. A CPML absorption boundary
layer was employed to avoid boundary reflection [32,33]. The absorbing layer was applied
to all sides of the model, using a width of 40 cells. The FWI worked here was performed in
the time domain using all spectrum frequencies.

In this section, we will show the contribution of prior information added to the FWI
through relative entropy. Therefore, we chose using the first and second part of the BP 2004
benchmark [34]. For the first part, the acquisition geometry consisted of 475 hydrophones
distributed along a straight line 12.5 m deep, with 12.5 m spacing between each receiver.
For the shots, 15 sources spaced 395 m arranged in line with 25 m deep. For all shots, a
Ricker wavelet source with a central frequency of 10 Hz was used and the time record was
5.0 s. For the second part, the geometry acquisition is similar to that used in the first part,
but the central frequency of Ricker was 12 Hz with a record time of 6.5 s.

Given that FWI is usually treated as an iterative process, an initial velocity model is
required. For example, this model may be the result of a tomography that is based on the
times of first arrivals and reflected events. For this work, we perform the smoothing of the
real model (Figure 3), and we use it as an initial model in the FWI process.
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(a) (b)

Figure 3. Illustration of the initial models used as an initial model to FWI. (a) Smoothing of the first part from the BP model.
(b) Smoothing of the second part from the BP model.

For this study, we assume that we have information from exploration wells. The velocities
profile are measurements that provide a good measure of the local depth velocity. Thus, we
will use these sonic profiles to build our a priori information model. A linear interpolation
was made between the two wells. In the other regions, we use an extrapolation of the well’s
velocity profile. We also apply a slight smoothing to this a priori model of velocity. We can
see this interpolated model in Figure 4. Although not geologically significant, this model
contains some travel time information, and it will be considered an a priori velocity model and
incorporated into the FWI through the relative entropy of the model.

(a) (b)

Figure 4. The prior models built by linear interpolation between the values and extrapolation outside from wells that will
be added in the FWI. (a) Prior model of the first part from BP model, (b) Prior model of the second part from BP model.

First, we performed the inversion without adding prior information on both parts of
the BP model that are illustrated in Figure 5a,b. This means that, in Equation (1), α = 0. We
used the initial models that are shown in Figure 3a,b. The results of the FWI for each of the
cases are shown in Figure 6a,b. Clearly, in both cases, the conventional FWI (without any
type of regularisation) converges to a local minimum. Asnaashari et al. [8] discussed some
differences between the prior and initial models in the inversion procedure. In this case,
the smoothed model that is shown in Figure 3 and the a priori model shown in Figure 4
have only part of the real model information. For the FWI result to converge to the desired
result, both of the models must be used in a complementary way.
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(a) (b)

Figure 5. True Vp velocity model, which are parts of the BP model and the scheme of acquisition. The red-dashed line
represents the position of the receivers, while the green line represents the position of the sources. (a) First part from the BP
model, the white arrows illustrate the target zones (overpressure zones) and the black-dashed lines represent the position of
the two wells that cross overpressure zones. (b) Second part from the BP model, the white arrows illustrate the target zones
(channels) and the black-dashed lines represent the position of the two wells that cross the channels.

(a) (b)

Figure 6. (a) FWI results using the smoothed model and without prior information (α = 0) (a) in first part of BP model and
(b) in second part of BP model.

Given the obtained results, we will add the prior information to the FWI formalism in
four different ways, as shown later on.

3.1. Model Norm

In this section, we add the prior information to the FWI using Equation (3). This
method was used by [8] to incorporate the prior information in the FWI. Here, as previously
mentioned, we will use the results obtained here to compare with the entropy methods
that are the focus of this work. Therefore, we performed the FWI for both models (first and
the second parts of the BP model), adding the prior information that is shown in Figure 4.
The initial models used are those that are represented in Figure 3. Figures 7a and 8a show
the results. When we compare these results with those that are obtained without adding
prior information (Figure 6a,b), we observe an improvement in the quality of the FWI result.
We observed that, in general, the body of salt was recovered in both models (although the
first part of the BP model presents a small problem on the left side of the well positioned at
x = 2.3 km). For a more detailed quality control, we can see the profiles in the positions of
the wells in Figure 7b,c for the first part of the model, and Figure 8b,c for the second part of
the model. By analysing the profiles, we can confirm that the addition of prior information
in FWI through the model norm provides a good result.

A crucial point for the success of adding prior information in FWI scheme is the choice
of the alpha parameter. In this work, as described in the theoretical section, the α parameter
is the product of two terms. The first is a dynamic term (γ), as calculated from Equation (14).
Using the model norm, the γ parameter initiated the inversion process equal to 6 × 10+17

and 7.6 × 10+17 for the first and second parts of the BP model, respectively. The initial value
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of the γ parameter proved to be inadequate and it needed to be adjusted. Consequently,
we use a second term, the μ parameter to adjust the weight of the regularization term.
After several tests, we found that the parameter should be 3.5 × 10−10 and 3 × 10−10 for
the first and second part of the BP model, respectively. Once the values of the μ and γ
parameters are found, determining the α parameter is straightforward. The evolution of
the α parameter for each model can be seen in Figures 7d and 8d. Note that the α values
are on the log (natural base) scale. We can see the expected behavior for the weight (α)
given to the model norm term in Figures 7d and 8d. We observed that there was a sharp
drop at the beginning of the inversion. As the model is updated, these terms will decrease
and the seismic data will conduct the inversion.

The misfit data curve is shown in Figure 7e for the first part of the model and Figure 8e
for the second part of the model. For all of the tests that we performed, we used a small
stop criterion to ensure that the data adjustment was as large as possible, which resulted
in a large number of iterations. For the stopping criterion, a tolerance limit of 9 × 10−9

was established in the total value of the model update (total gradient). The misfit data
curves show a great difference between the convergence of conventional FWI (without any
type of regularisation or prior information) and FWI with the addition of prior information
through the model norm. Even with several iterations, the conventional FWI cannot reduce
the misfit data, while the FWI with prior information shows a very sharp drop at the
beginning of the iterations that continues until it reaches a relatively satisfactory result.

(a) (b) (c)
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Figure 7. First part of BP model; (a) FWI result with adding prior information through the model norm; (b) profile in well at
position x = 2.3 km, (c) profile in well at position x = 3.5 km and (d) dynamic term (α) progress, (e) misfit data function
progress (logarithmic natural base scale).
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Figure 8. Second part of BP model; (a) FWI result with adding prior information through the model norm; (b) profile in
well at position x = 1.5 km (c) profile in well at position x = 2.3 km, (d) dynamic term (α) progress (e) misfit data function
progress (logarithmic natural base scale).

3.2. First Case: Kullback-Leibler’s Distance

As mentioned earlier, our proposal is to add priori information to the FWI formalism
through relative entropy. The first attempt to add prior information to FWI through entropy
would be with the use of the relative entropy that is described by Equation (4). To use it, it
would be necessary to represent entropy as a probability distribution function. This implies
a normalization constraint, that is, 0 ≤ p ≤ 1 [17]. For the addition of a priori information
to be done in a simple and direct way, we will do this in a deterministic way. Thereby, the
Equation (4) is not adequate as previously discussed. Equation (4) is not positively defined
in any interval. The way to get around the problem that was brought by Equation (4) was
to work with its quadratic form represented by Equation (6). Thus, we started the tests
in the first part of the BP model using α = 2 × 10+7. Even with the addition of prior
information, the result converged to a local minimum and it is far from the expected result,
as can be seen in Figure 9a. A natural idea would be that the initial weight given to the
entropy term is inadequate. Consequently, we increased the value of this initial weight to
α = 3 × 10+7 and with few iterations we obtained the result that is illustrated in Figure 9b.
In this result, which is still a local minimum, we note that the FWI is leading the solution
for the prior model. Although we performed other tests with intermediate values for alpha,
we did not achieve the desired success for this case.
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(a) (b)

Figure 9. FWI results with adding prior information through the quadratic form of relative entropy for the first part of BP
model. (a) initial α = 2 × 107 (b) initial α = 3 × 107.

Even with the failure in the first attempt to add the quadratic form of entropy relative
to the formalities of the FWI, we performed the test in the second part of the BP model.
Figure 10a shows the result. The analysis of the result that is illustrated in Figure 10a shows
that in this case the addition of prior information through the quadratic form of the relative
entropy enabled the FWI to converge on a satisfactory solution. When comparing the result
that was obtained with the model norm (Figure 8a), a visible similarity is observed. A more
detailed analysis of the position of the wells confirms this similarity when we compare the
adjustment at position x = 1.5 km. The model norm (red curve) and the relative entropy
(blue curve) both provide equivalent results, as can be seen in Figure 10b. However, when
we see the position x = 2.3 km (Figure 10c), the adjustment that is provided by the relative
entropy proved to be slightly better to the model norm, mainly in the deep part of the
model. The initial alpha for this case was α ∼ 8 × 107 (in this case, γ ∼ 2.7 × 1017 and
μ = 3 × 10−10) and its evolution can be seen in Figure 10c. We observe that there is a
marked decrease in the weight given to the end of the relative entropy, which allows us
to avoid giving too much importance to the entropy term by ensuring that an adequate
contribution of the prior information is maintained throughout the iterations.

Figure 10e illustrates the data misfit. As seen in the case of the model norm (green
curve), the addition of prior information through relative entropy (light blue curve) causes
the FWI to drastically reduce the misfit of the data, leading to a low misfit result. Even
though the relative entropy leads to an inversion around iteration 470 through a path of
misfit greater than that of the model norm, the values of the final misfit are close.

The failure in the first part and the success in the second part of the BP model led
us to conclude that the initial reasoning made through the analysis of the graph that is
shown in Figure 2 was correct. In other words, the quadratic form of the relative entropy
can somehow increase the problem of local minimums, but, depending on the path that the
inversion process takes, we can find the global minimum.

3.3. Second Case: Kullback-Leibler’s Distance—Symmetric Form

There are few applications in the literature for the symmetric form of relative entropy
that is shown in Equation (5). Probably the reason for this is the fact that this equation
does not have a minimum region, as mentioned in the theoretical section. Therefore, our
second proposal is to add the priori information in FWI is through the quadratic form that
is represented in Equation (7). Analogously to the previous case, we will also add priori
information to the problem directly, without using a probability distribution formalism.
First, we performed the tests on the first and second parts of the BP model. The result can
be seen in Figures 11a and 12a. We can observe, in both cases, that the addition of prior
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information through the use of the quadratic form of the symmetric relative entropy allows
the FWI to provide satisfactory results.
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Figure 10. (a) FWI results of adding prior information through the quadratic form of the relative entropy in the second
part of BP model; (b) velocity profile at position x = 1.5 km, (c) velocity profile at position x = 2.3 km and (d) α parameter
evolution (note this curve is shown in logarithmic natural base scale), and (e) misfit data function progress (logarithmic
natural base scale).

We compare the result of the FWI (for the first part of the model) using the symmetrical
form of the relative entropy (Figure 11a) with that obtained with the model norm in
Figure 7a. We observe that the addition of prior information through the symmetric relative
entropy provides a better result on the left-hand side of the model. We can confirm the
quality of the result by looking at the velocity profiles in the well positions, see Figure 11b,c.
We can observe that, for the well at position x = 2.3 km (Figure 11b), the result of the FWI
with the addition of prior information through the symmetric form of the relative entropy
when compared to the use of the model norm provides a better approximation of the real
value in the region below the salt. For the well at position x = 3.5 km (Figure 11c), the
results of the FWI with the symmetric relative entropy and with the model norm provide
equivalent adjustments. As for the second parts of the model, the result of the FWI with
the symmetric relative entropy (Figures 12a) is visibly equivalent to the result that was
obtained with the model norm (Figures 8a). However, when we observe the velocity
profiles in the well positions that are shown in Figure 12b,c, we can see that adding the
symmetrical case of the relative entropy in the FWI provides a slightly better fit in the
deeper part of the model than the model norm.

After several tests, we concluded that the initial value of the α parameter for the
first part of the BP model should be equal to 1.4 × e6 (in this case, γ ∼ 2.8 × 1017 and
μ = 5 × 10−10). Its progression can be seen in Figure 11d. For the second part of the BP
model, the initial value of α parameter was equal to 1.3 × e6 (in this case, γ ∼ 2.6 × 1017
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and μ = 5 × 10−10, and we show its evolution in Figure 12d. As previously mentioned, we
observed that the α parameter provides an adequate balance between the term of the data
and the prior information added through the relative entropy. The misfit data curve for the
first part of the model is illustrated in Figures 11e. The relative entropy (blue curve) that
is added to the FWI provides a result with a better fit than with the model norm (green
curve) and conventional FWI (purple curve). For the second part of the model, we can see
the misfit data curve in Figure 12e. We observe that the addition of information through
the relative entropy (light-blue curve) to the FWI also provides an extensive decay in the
misfit data when compared to the classic FWI (purple curve). When comparing the misfit
data of FWI with the model norm (green curve), we see that the final adjustment is close,
although the misfit with relative entropy is a little better.
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Figure 11. (a) FWI result with adding prior information through the quadratic form of the relative entropy in first part of BP
model; (b) velocity log at position x = 2.3 km; (c) velocity log at position x = 3.5 km; (d) α parameter evolution (Note this
curve is shown in logarithmic natural base scale); and, (e) misfit data function progress (logarithmic natural base scale).

3.4. Third Case: Axiomatic Form

Finally, our third proposal to add relative entropy in FWI is the Axiomatic form.
We also use this form to add priori information to the FWI. Its form is described in the
Equation (8). The advantage of the relative entropy described by Equation (8) is that it is
positively defined, which makes the application straightforward without the need for any
adjustments. Thus, we used Equation (8) and performed the FWI in the first of the BP model,
and we show the result in Figure 13a. As in the previous cases, when we compare the
result of the FWI with the use of the model norm (Figure 7a) to add the prior information,
the relative entropy (8) added to the FWI provides a slightly better quality result on the
left-hand side of the model. The analysis of the velocity profiles in the well positions show
that the FWI with the addition of the relative entropy (blue curve) as compared to the FWI
with the addition of the model norm (red curve) provides an adjustment that is closer to
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the desired in the well in the position x = 2.3 km (Figure 13b) and a similar adjustment at
position x = 3.5 km (Figure 13c). We also performed FWI in the second part of BP model,
and it can be seen in Figure 14a. In this case, we can see the similarity of the results when
we compare this result with that obtained using the model norm (Figure 8a). The analysis
of the velocity profiles in the well positions shows an equivalent result in the well position
at x = 1.5 km (Figure 14b) and, in the position x = 2.3 km, we observe a slightly better
result of the FWI with the relative entropy (Figure 14c).
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Figure 12. FWI result with adding prior information through the quadratic form of the relative entropy in second part of BP
model; (b) velocity log at position x = 1.5 km; (c) velocity log at position x = 2.3 km; (d) α parameter evolution (Note this
curve is shown in logarithmic natural base scale); and, (e) misfit data function progress (logarithmic natural base scale).

After several tests, we concluded that, for this case, the weight value of the entropy
term should start at α = 25 (in this case, γ ∼ 2.8 × 104 and μ = 9 × 10−4) for the first
part of the BP model. The evolution of the α parameter can be seen in Figure 13d. For the
second part of the BP model, we conclude that the alpha parameter should be α = 50 (in
this case, γ ∼ 5.6 × 104 and μ = 9 × 10−4) and its evolution can be seen in Figure 14d.
In Figures 13e and 14e, we see the misfit data curve for the first and second parts of the
model, respectively. We observe that in the case of the first part of the model, the FWI with
the relative entropy (light-blue curve) starts the inversion in a path that is very close to the
conventional FWI (purple curve). However, around the iteration 1350, the data adjustment
begins to improve significantly, finishing the inversion at a lower misfit data value than the
FWI with the model norm (green curve). For the second part of the model, we observe that
the FWI with the relative entropy (light-blue curve) starts the inversion in a path that is
very close to the FWI with the model norm (green curve). However, at iteration 200, the
FWI with relative entropy takes a path of a larger misfit, so that more iterations are needed
to obtain a misfit data result that is close to that obtained by the FWI with the model norm.
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Figure 13. (a) FWI result of adding prior information through the relative entropy in the first part of the BP model:
(b) velocity log at position x = 2.3 km; (c) velocity log at position x = 3.5 km; (d) α parameter evolution (Note this curve is
shown in logarithmic natural base scale); and, (e) misfit data function progress (logarithmic natural base scale).
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Figure 14. (a) FWI result with adding prior information through the relative entropy in second part of BP model: (b) velocity
log at position x = 1.5 km; (c) velocity log at position x = 2.3 km; (d) α parameter evolution (Note this curve is shown in
logarithmic natural base scale); and, (e) misfit data function progress (logarithmic natural base scale).109
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3.5. Discussion

We have shown that the addition of a priori information to the FWI scheme can be an
effective strategy for driving the inversion process to converge toward the global minimum.
Here, we have incorporated the priori information in different ways and, to quantify the
accuracy of the inversion results for each one, we have computed the normalized model
misfit using the following equation:

ε =

[
∑n

i=1
(
mtrue

i − minv
i
)2
]1/2

[
∑n

i=1
(
mtrue

i
)2
]1/2 , (15)

where mtrue is the true model and model and minv is the inverted model using an FWI
method [35,36]. An ε close to 0 means low error. The ε values are shown in the Table 1.

In the analysis of the results that are presented in Table 1, we observe that axiomatic
form (third case) We note that the third case provides the model with the smallest error
in both cases. Although it does not provide the smallest error in the model, our proposal
to use the quadratic form of the symmetric form of the relative entropy (second case) is
also robust. It is possible to see that the model error with this strategy is less than using
the model norm. Finally, it is possible to observe that our proposal to use the quadratic
form of relative entropy (first case), although its result depends on the inversion path, can
also provide a good result. For the first part of the model, we were not successful in our
tests, but we calculated the error for the results that are shown in Figure 9a,b, respectively.
For the second part of the model, we can observe that the model error is less than the
conventional case.

Table 1. Misfit model of the FWI results. (∗) This is the model misfit for the result that is illustrated
in Figure 9a, while (∗∗) is the model misfit for the result illustrated in Figure 9b.

Strategy
First Part Second Part

ε ε

Conventional FWI 0.6389 0.4415
FWI + Model Norm 0.0114 0.1132

Our proposal: FWI + First case 0.04963 ∗/0.0091 ∗∗ 0.1415
Our proposal: FWI + Second case 0.0063 0.0968
Our proposal: FWI + Third case 0.0025 0.0876

4. Conclusions

In this work, we propose adding the relative entropy in the FWI formalism. We use
relative entropy to include priori information in the FWI to reduce the difficulty of the
uniqueness of the solution in this kind of inverse problem. The addition of the prior
information was done in a deterministic way, which is, it was done in a direct way, avoiding
the formulation in terms of a probability distribution. We have applied this scheme in two
regions of the BP model, which presents a complex lateral velocity variation due to the
halokinesis of salt layers. The numerical tests show the quality improvement in the result
that was obtained when compared with the conventional FWI. In addition to the visual
analysis, we calculated the misfit model to show the improvement that was brought by
our proposal.

We present three different ways of introducing prior information through entropy
to the FWI formalism: the literature as Kullback–Leibler’s distance and its symmetrical
form and an axiomatic form. In the first case, we show that in the deterministic approach,
the Kullback–Leibler’s distance is not positively defined in its entire domain. To avoid
this misfortune, we suggest using its quadratic form. We have seen that this quadratic
form will not always help to solve the local minimum problem. We graphically illustrate
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that the function described by the quadratic form of the Kullback–Leibler’s distance has
two regions of minimum. Therefore, the result will depend on the path taken by the FWI
throughout the iterations: while it was not possible to obtain a satisfactory solution for
the first part of the model after several tests, for the second part of the model, the result
was satisfactory.

The second case was the symmetrical form of Kullback–Leibler’s distance. We graph-
ically illustrate that this function is also not positively defined, which makes it difficult
to define the problem as a maximization or minimization. In addition, the symmetrical
form has no minimum region. To avoid these inconveniences, we propose the use of its
quadratic form. We have shown graphically that this quadratic shape has characteristics
that can help the FWI to avoid local minimums. In addition to being positively defined, it
presents a minimum region. The addition of previous information in the FWI through this
quadratic form enables the FWI to deliver a satisfactory result for both cases.

The third case that we studied was the addition of prior information through an axiom
of relative entropy. Graphically, we show that this shape is positively defined and it has a
minimum region. These features allow this form to be used to add information prior to the
FWI formalism in a straightforward manner. The results of the FWI with this regularization
scheme were also satisfactory for both models.

The FWI results that were obtained using the relative entropy were compared to the
result with the model norm. We observed that for the first part of the BP model, the FWI
result with real entropy is slightly better (mainly on the left-hand side of the model). This
fact is corroborated by the analysis of the velocity profiles in the position of the wells. We
saw that the FWI result with the relative entropy provides an adjustment closer to the
desired result when compared to the FWI result with the model norm. In addition, we saw
that the misfit data are less when we add prior information through entropy. For the second
part of the BP model, the results are visibly similar. We have seen that the adjustment of
the data is close, although the first and third cases of relative entropy require a little more
iteration. However, when comparing the well profiles, we observed that the adjustment of
the FWI with the addition of prior information through entropy provides a better fit early
in the deepest region of the model.
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Abstract: Anode heel effects are known to cause non-uniform image quality, but no method has
been proposed to evaluate the non-uniform image quality caused by the heel effect. Therefore, the
purpose of this study was to evaluate non-uniform image quality in digital radiographs using a
novel circular step-wedge (CSW) phantom and normalized mutual information (nMI). All X-ray
images were acquired from a digital radiography system equipped with a CsI flat panel detector.
A new acrylic CSW phantom was imaged ten times at various kVp and mAs to evaluate overall
and non-uniform image quality with nMI metrics. For comparisons, a conventional contrast-detail
resolution phantom was imaged ten times at identical exposure parameters to evaluate overall image
quality with visible ratio (VR) metrics, and the phantom was placed in different orientations to assess
non-uniform image quality. In addition, heel effect correction (HEC) was executed to elucidate the
impact of its effect on image quality. The results showed that both nMI and VR metrics significantly
changed with kVp and mAs, and had a significant positive correlation. The positive correlation is
suggestive that the nMI metrics have a similar performance to the VR metrics in assessing the overall
image quality of digital radiographs. The nMI metrics significantly changed with orientations and
also significantly increased after HEC in the anode direction. However, the VR metrics did not change
significantly with orientations or with HEC. The results indicate that the nMI metrics were more
sensitive than the VR metrics with regards to non-uniform image quality caused by the anode heel
effect. In conclusion, the proposed nMI metrics with a CSW phantom outperformed the conventional
VR metrics in detecting non-uniform image quality caused by the heel effect, and thus are suitable for
quantitatively evaluating non-uniform image quality in digital radiographs with and without HEC.

Keywords: circular-step wedge; contrast-detail; mutual information; visible ratio; anode heel effect

1. Introduction

Image quality is an essential requirement in digital X-ray imaging and is closely
associated with the accuracy of disease diagnosis. The fundamental metrics of static image
quality are contrast, spatial resolution, and noise, which can be evaluated through the
measurements of modulation transfer function (MTF), point-spread function, and noise
power spectrum (NPS) [1–3]. Although these metrics can be measured from an X-ray
imaging system, the individual metrics cannot correctly reflect the overall image quality.
Detective quantum efficiency (DQE), which is a function of MTF, NPS, and system gain,
is the most commonly used metric to quantify the overall performance of X-ray imaging
systems [4–6]; however, DQE cannot reflect entire imaging chains, such as image processing
and correction [7]. In contrast, a more practical approach to quantifying overall image
quality of a radiograph is to use contrast-detail phantoms [8–12]. Previously, an emerging
metric, termed as mutual information (MI), was shown to successfully quantify the overall
image quality of a digital radiograph with the use of a linear step-wedge phantom [13,14].
Although these metrics were shown to be capable of quantifying overall image quality,
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none are suitable for evaluating the non-uniform image quality of an image caused by the
anode heel effect.

In radiography, the “heel effect” causes less X-ray fluence and higher mean radia-
tion energy in the anode direction due to the absorption of low-energy photons by the
anode heel [15]. The non-uniform distribution of X-ray fluence may result in non-uniform
image quality, especially in the anode-cathode direction. However, there were limited
previous works quantifying the influence of anode heel effect on image quality in digital
radiographs [16]. Previous studies demonstrated that the heel effect significantly impacted
the signal-to-noise ratio (SNR) using an anthropomorphic phantom, but the image qual-
ity was not significantly different between pelvic radiographs with the head towards
the anode and cathode directions [17,18]. Moreover, some previous studies performed
post-processing heel effect correction (HEC) to minimize the inhomogeneous intensity
in radiographs [19–21]. However, no suitable method has been presented that can objec-
tively quantify the non-uniform image quality in radiographs. Moreover, no methods can
elucidate how much the image quality can be improved in the radiographs with HEC.
Therefore, the purposes of this study were three-fold: (1) to design a circular step-wedge
(CSW) phantom for evaluating overall and non-uniform image quality, (2) to compare other
image quality metrics measured from a contrast-detail phantom, and (3) to understand
how much HEC can improve the image quality.

2. Materials and Methods

2.1. Circular Step-Wedge Phantom

In information theory, MI is a measure of mutual dependence between two random
variables, and is calculated from their individual entropy and joint entropy, defined as

MI = H(X) + H(Y) − H(X, Y),

where H(X) and H(Y) are individual entropy of random variables (X and Y), and H(X, Y) is
their joint entropy [22]. As MI reflects the amount of information of one random variable
that is observed from the other random variable, it is possible to utilize the MI metrics to
reflect the image quality using a linear step-wedge phantom [13,14]. However, the original
design can only measure MI in one direction parallel to the long axis of the phantom, so it is
unable to evaluate non-uniform image quality in radiographs caused by anode heel effect.
Therefore, the present study designed a CSW phantom with acrylic material to estimate the
MI metrics in different directions from a single image. The phantom was fabricated using
14 pieces of circular acrylic board with radii from 4 cm to 30 cm, which were precisely
(±0.1 mm) laser cut from a 2 mm thick acrylic plastic sheet. After a 1 mm hole (diameter)
was drilled in the center, 14 circular acrylic boards were piled up sequentially from large to
small and were aligned and glued together at the center. The CSW phantom consisted of
14 steps with thickness from 2 mm to 28 mm and with radii from 4 cm to 30 cm, as shown
in Figure 1.

2.2. Contrast-Detail Resolution Phantom

A commercial contrast-detail resolution (CDR) phantom was also used to evaluate
the overall image quality of radiographic images. The phantom consists of 144 circular
details with 12 sizes × 12 contrasts (TO16, Leeds Test Objects LTD, North Yorkshire, UK;
https://www.leedstestobjects.com (accessed on 30 March 2021)) [9]. Of the 144 details,
72 larger details were arranged circularly in the outer region, and the remaining 72 smaller
details were arranged linearly in the central region, as shown in Figure 2.

2.3. Image Data Acquisition

Image quality was evaluated using both CSW and CDR phantoms in a digital radio-
graphic system (Toshiba/DRX-3724HD) that was equipped with a CsI flat panel detector
(a-Si, TFT, CXD-70C wireless). The X-ray images were acquired from the two phantoms with
matrix size = 2800 × 3408, pixel size = 0.13 × 0.13 mm2, dynamic range = 4096, and source-
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to-detector distance = 100 cm. For statistical analysis, image acquisition was repeated
ten times at 40, 45, 50, 55, and 60 kV (5 mAs), and at 5, 10, 20, 25, and 40 mAs (40 kVp),
respectively. A posterior-anterior right-hand radiograph was acquired with 52 kVp and
10 mAs to show the impact of anode heel effect on image quality. The human study was
approved by the local institutional review board (KMUHIRB-E(I)-20200274).

Figure 1. The top view (A), lateral view (B), and actual image (C) of the CSW phantom consisting of
14 steps with 2 mm incremental thickness (from 2 to 28 mm), and 20 mm incremental diameter (from
40 to 300 mm).

Figure 2. The arrangement of 144 disc details within the TO16 CDR phantom. In the phantom,
72 larger disc details are arranged circularly in the outer region, and 72 smaller ones are arranged
linearly in the central region.

2.4. Mutual Information with a CSW Phantom

This study estimated MI from an X-ray image of the CSW phantom using a home-
made script on a MATLAB software. First, the center of the CSW phantom in the image was
detected by the center of gravity. Second, 14 circular regions-of-interest (ROIs), each con-
taining 1941 pixels, were automatically placed on the center of 14 steps, respectively, in one
direction, as shown in Figure 3. Subsequently, the 14 ROIs were rotated counterclockwise

115



Entropy 2021, 23, 525

around the center every 10 degrees, from which 36 MI metrics were calculated. For each
direction, the MI metrics were calculated according to the method reported by previous
studies [13,14]. However, since a larger number of steps of the phantom would give rise to
larger MI values (bits), the present study calculated a normalized MI (nMI) [23,24], defined
as MI/log2(N) × 100 %. N is the number of steps in the CSW phantom. The resultant nMI
ranges from 0 to 100%, and a larger nMI value indicates better image quality.

 

Figure 3. The estimation of the nMI metrics in 36 orientations separated by 10 degrees. 14 equal-sized
circular ROIs (A1 to A14) are placed respectively on the step centers to calculate the nMI metrics.
Afterwards, the 14 ROIs are rotated counterclockwise by multiples of 10 degrees to estimate the
corresponding nMI metrics in other orientations.

2.5. Visible Ratio with a CDR Phantom

This study measured visible ratio (VR) metrics using a TO16 CDR phantom with a
commercial AutoPIA tool (Leeds Test Objects LTD, North Yorkshire, UK). The phantom was
rotated counterclockwise every 30 degrees from 0 to 180 degrees to understand whether
the CDR phantom can adequately reflect the anode heel effect on image quality. For each
orientation, ten repeated X-ray images of CDR phantoms were acquired for comparisons
and were analyzed automatically to detect all possible details. In this step, the software
calculated the contrast-to-noise ratio (CNR) for each of 144 details, defined as |(target
signal − background signal)|/(background noise), and then those details with CNR higher
than a predefined threshold were considered as visible details [9]. Finally, the VR metrics,
defined as (number of successfully detected details)/(total number of details) × 100 %,
were calculated to give a value between 0 to 100%. Similarly, a larger VR metrics indicates
better image quality and higher performance in detecting details.

2.6. Heel Effect Correction

This study performed a retrospective correction method that minimizes the intensity
inhomogeneity in the X-ray images by fitting the background signals to a 2nd order
polynomial function in the anode-cathode direction to understand how the HEC impacts
the image quality. Subsequently, the phantom image was subtracted by the fitted curve
and added by a minimum value of the curve to keep similar image brightness, as shown in
Figure 4. Finally, nMI and VR metrics were estimated from the phantom images with and
without HEC.
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Figure 4. The CSW (A) and CDR (C) images acquired with 40 kVp and 5 mAs exhibited inho-
mogeneous signal intensity in the anode-cathode (horizontal) direction due to the heel effect. The
inhomogeneity was successfully removed in the corrected CSW (B) and CDR (D) images after HEC.

2.7. Statistical Analysis

A one-way analysis of variance (ANOVA) was performed to understand whether
the image quality metrics significantly changed with kVp, mAs, and orientations before
and after HEC, respectively. A post-hoc Mann–Whitney U test was used to compare the
differences between two exposure parameters and between two orientations. The Wilcoxon
signed rank test was conducted to show the difference in nMI and VR metrics before and
after HEC [25]. Moreover, Pearson’s correlation analysis was carried out to reveal the
relationship between the two metrics before and after HEC, respectively [26]. Statistical
significance (P) was deemed if P < 0.05.

3. Results

By varying kVp, one-way ANOVA analysis showed that both nMI and VR metrics
significantly changed with kVp between 40 and 60 kVp at a constant 5 mAs. It was also
found that nMI changed more prominently than VR in X-ray images with and without
HEC, as shown in Figure 5. The Mann–Whitney U test highlighted a significant difference
in nMI metrics between any two kVps; however, the VR metrics were not significantly
different between 45 to 50 kVp, 45 to 60 kVp, or 50 to 60 kVp in images with and without
HEC. Moreover, the nMI metrics were significantly increased after HEC; however, no
significant change was noted in the VR metrics at different kVps after HEC.

By varying mAs, one-way ANOVA analysis showed that both nMI and VR metrics
also significantly changed with mAs between 5 and 40 mAs at a constant 40 kVp, as shown
in Figure 6.

The post-hoc Mann–Whitney U test showed that both nMI and VR were significantly
different between any two mAs in the images with and without HEC. The nMI metrics
were significantly increased after HEC; however, no significant change was noted in the
VR metrics at any of the mAs after HEC. Moreover, the averaged nMI and VR metrics
significantly correlated in the images without HEC, as shown in Figure 7.
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Figure 5. The VR (A) and nMI (B) metrics changed significantly with kVp, at 5 mAs, before and after HEC.

Figure 6. The VR (A) and nMI (B) metrics changed significantly with mAs, at 40 kVp, before and
after HEC.
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Figure 7. The significant correlation (cc = 0.9129, P < 0.05) between the VR and nMI metrics measured
from all exposure parameters in images without HEC.

By varying orientation in the measurement, without HEC, there were significant
changes in nMI with orientations between 0 and 180 degrees (the results were symmetric
around 180 degrees). However, without HEC, there were no significant changes in VR with
orientations between 0 and 180 degrees, as shown in Figure 8. The post-hoc Mann–Whitney
U test showed that the nMI metrics were significantly different between two orientations
in images with and without HEC. Although the nMI metrics came to be more uniform
across different orientations, there remains slight difference in nMI metrics between 30 and
150 degrees.

A posterior-anterior right-hand X-ray image (Figure 9) demonstrated inhomogeneous
signal intensity in the anode-cathode direction due to the heel effect, where lower sig-
nal intensity (higher X-ray exposure) was noted in the finger than the wrist direction
(Figure 9A,C,E). By applying the HEC, the inhomogeneity issue was minimized across the
entire image, and small bony structures were more conspicuous in the corrected image
than the raw image displayed with an identical window level and width (Figure 9B,D,F).
Although the bony structures of the wrist in the raw image can be visualized by adjusting
the window level and width, the bony structures of the fingers will be too dark to be
visualized. This inhomogeneous issue can be reflected by the inconsistent nMI metrics in
radial direction, as shown in Figure 8.

Figure 8. Cont.
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Figure 8. The VR (A) and nMI (B) metrics measured as a function of orientation at 40 kVp and 5 mAs.
The VR metrics did not change significantly with orientations, whereas the nMI metrics changed
significantly with orientations in the images without HEC.

 

Figure 9. A posterior-anterior right-hand image acquired with 52 kVp and 10 mAs before (A,C,E) and
after (B,D,F) HEC. The arrows indicate the bony structures of the lunate that were more conspicuous
in the image with (F) than without (E) HEC.
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4. Discussion

In radiography, the heel effect causes less X-ray fluence and higher mean radiation
energy in the anode direction, and results in non-uniform image quality. Although there
have been some methods proposed to reduce the heel effect [19–21], no suitable method
has been presented that can objectively quantify the overall and non-uniform image quality
caused by the heel effect. This study designed a CSW phantom for quantification of
overall and non-uniform image quality in X-ray radiographs using nMI metrics based on
information theory. The nMI metrics were demonstrated to be associated with imaging
SNR, contrast, and resolution [13,14]. In the present study, the evaluated image quality
was compared between the nMI (CSW phantom) and conventional VR (CDR phantom)
metrics in digital X-ray images acquired at various exposure parameters and orientations,
and with and without HEC. The results highlight that both metrics significantly changed
with kVp (from 40 to 60 kVp at 5 mAs) and mAs (from 5 to 40 mAs at 40 kVp). The
overall image quality assessed by nMI and VR metrics exhibited a similar trend with high
correlation, suggesting that both metrics are capable of reflecting image quality in digital
X-ray images. In addition, the nMI metrics were found to be more sensitive to changes in
exposure parameters (kVp and mAs) than the VR metrics. It is postulated that the increased
sensitivity is due to the fact the CSW phantom was made of acrylic material and had a
small difference in thickness.

It is known that the anode heel effect may lead to heterogeneous X-ray exposure that
can deteriorate overall image quality. The results of the present study demonstrated that
the heel effect significantly deteriorated the overall image quality. Furthermore, the image
quality reflected by the nMI metrics can be significantly improved with HEC in the anode
direction; this correction resulted in improved homogeneity of image quality and higher
conspicuity of bony structures in the hand X-ray images. However, the conventional VR
metrics were not significantly changed with orientations before and after HEC, suggesting
that the nMI metrics were more sensitive than the VR metrics to non-uniform image quality.

The insensitivity of VR metrics to detect non-uniformity of image quality was likely
attributable to the fact that the disk details were embedded in the central area of the CDR
phantom, as shown in Figure 2. Although the centralized disk details in the CDR phantom
were suitable for measuring the image quality in the central field of view, the design itself
rendered it less sensitive to inhomogeneous image quality that occurred in the outer region.
On the contrary, the nMI metrics were calculated from the image of CSW phantom made
of acrylic material and with a suitable size that fits the flat panel detector. A previous
study showed that the image quality reflected by the correctly identified holes (%) of
the CDRAD phantom was more sensitive to changes in exposure parameters than the
number of detected details in a CDR phantom [12], suggesting that the acrylic material of
the CDRAD phantom was sensitive to changes in signal intensity. Similarly, our results
demonstrated that the nMI metrics (CSW phantom) were more sensitive to changes in
exposure parameters and orientations than the VR metrics (CDR phantom). The results
indicated that the nMI with the CSW phantom could potentially be a quantifiable metric
for non-uniform image quality in digital X-ray images.

Some limitations, however, warrant discussion. First, a small range of exposure pa-
rameters was utilized in this study. A study using a broader range of exposure parameters
may provide more comprehensive comparisons between the two metrics. Second, the nMI
metrics with the CSW phantom have an intrinsic disadvantage of less sensitivity to changes
in spatial resolution [13]. However, the circular nature of CSW phantom can be used to
estimate radial MTF, as proposed by a previous study [27], so in addition to nMI, the
CSW phantom can be utilized to evaluate the radial MTF in X-ray images. Third, the CSW
phantom was designed with acrylic material, so it may not be suitable to measure the image
quality at high kVp and high mAs. A CSW phantom with a combination of aluminum and
acrylic materials may be helpful to reflect image quality of X-ray images acquired using
clinical parameter settings. Further investigations will be needed to compare the results
between phantoms made of different materials.
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5. Conclusions

In conclusion, the nMI with the CSW phantom performs as well as VR does with
the CDR phantom in evaluating overall image quality in digital X-ray images. Moreover,
both metrics had a significantly high correlation at various exposure parameters. The
nMI metrics further outperformed the VR metrics in detecting heel effects associated with
non-uniform image quality. The nMI metrics also had higher sensitivity to changes in
image quality after HEC. Therefore, we concluded that the proposed nMI metrics with the
CSW phantom are suitable for evaluating overall and non-uniform image quality in digital
X-ray images.
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Abstract: Image security is a hot topic in the era of Internet and big data. Hyperchaotic image
encryption, which can effectively prevent unauthorized users from accessing image content, has
become more and more popular in the community of image security. In general, such approaches
conduct encryption on pixel-level, bit-level, DNA-level data or their combinations, lacking diversity
of processed data levels and limiting security. This paper proposes a novel hyperchaotic image
encryption scheme via multiple bit permutation and diffusion, namely MBPD, to cope with this issue.
Specifically, a four-dimensional hyperchaotic system with three positive Lyapunov exponents is firstly
proposed. Second, a hyperchaotic sequence is generated from the proposed hyperchaotic system
for consequent encryption operations. Third, multiple bit permutation and diffusion (permutation
and/or diffusion can be conducted with 1–8 or more bits) determined by the hyperchaotic sequence
is designed. Finally, the proposed MBPD is applied to image encryption. We conduct extensive
experiments on a couple of public test images to validate the proposed MBPD. The results verify
that the MBPD can effectively resist different types of attacks and has better performance than the
compared popular encryption methods.

Keywords: hyperchaotic; image encryption; permutation; diffusion; multiple bit operation

1. Introduction

In the current era of Internet and big data, billions of images are produced, stored and
transmitted every day. How to protect image content from illegal acquisition, especially for
military, medical, and privacy purposes, has become a hot topic in recent years. Because of
some attributes of images, such as high redundancy, strong correlation, and bulky data,
traditional encryption methods for common text and data are usually not the best choice for
image encryption. In recent years, various chaos-based image encryption approaches have
emerged and they have been demonstrated very effective in improving image security. The
reason why chaotic image encryption has become so popular is that chaotic systems have
some characteristics that are very suitable for image encryption, such as extreme sensitivity
to initial values, unpredictability, pseudorandomness, and ergodicity [1–3].

In chaotic image encryption, chaotic sequences are generated from the chaotic systems
and they usually are applied to change the positions and/or values of image data. Early
schemes usually used single low-dimensional chaotic systems, such as Logistic map, Tent
map, Baker map, Cat map, etc., to encrypt images [4–8]. For example, Chen et al. extended
2D Cat map to a 3D one and designed a fast symmetric encryption approach, and the
experiments demonstrated the approach was superior to the compared methods in terms
of security and speed [4]. Pisarchik et al. proposed a pixel-by-pixel image encryption with
Logistic maps [7]. Although these schemes achieved satisfactory encryption results at that
time, the relatively simple structure of low-dimensional chaotic systems made them have
a certain risk of being cracked. To solve this issue, possible directions are to use a more
complex chaotic system or to combine two or more simple chaotic systems. In recent years,
a variety of researchers have attempted to improve the performance of image encryption in
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these two directions. According to the theory of chaos, Lyapunov exponent (LE) can be used
to characterize the variable of a chaotic/hyperchaotic system. A dynamic system is chaotic
if it has one positive LE, while it is hyperchaotic if it has two or more positive LEs. In general,
image encryption schemes based on hyperchaotic systems are more secure than those with
chaotic systems. In real-world encryption, Lorenz system and its extensions are among
the most popular chaotic/hyperchaotic systems [9–12]. Wang and Zhang applied a 4D
Lorenz-like hyperchaotic system with two positive LEs and genetic recombination to image
encryption [10]. Li et al. used 5D and 7D hyperchaotic systems, dynamic filtering, DNA
permutation and bit cuboid operations for image encryption, and the experimental results
prove the effectiveness [13,14]. Unlike most schemes that carry out encryption in spatial
domain, Wu et al. used 2D discrete wavelet transform (2D DWT) and a 6D hyperchaotic
system to encrypt images in both spatial domain and frequency domain [15]. In addition
to integer-order hyperchaotic systems, fractional-order hyperchaotic systems are becoming
more and more popular with image encryption [16–19]. Zhu and Sun proposed a Logistic-
Tent map for image encryption [20]. Luo et al. cooperated a piecewise linear chaotic
map and a 4D hyperchaotic map for parallel image encryption [21]. Other combinations
include Henon-Sine map [22], Logistic map and Lu system [23], Logistic-Sine map [24–29],
Logistic-Tent-Sine map [30,31], Rossler-Sine map [32], etc. These combinations have been
proven effective in improving the security of encryption.

The aim of image encryption is to prevent unauthorized users from discovering any
meaningful content in the image. In other words, encrypted images are entirely random-
like for them. There are many operations to convert informative images (plain images) to
random-like ones (cipher images), among which permutation and diffusion are two major
ones. Permutation changes the positions of image content, while diffusion changes the
values of images. Most existing image encryption schemes adopted both the operations,
separately or jointly, to achieve good security [33–37]. Among them, pixel-level (8 bits)
data or bit-level (1 bit) data are the most widely used encryption units. In recent years,
DNA computing has been introduced into image encryption; hence, DNA-level (2 bits)
data has also be used to encrypt images [38–42]. Most studies focus on one or two bit
levels in image encryption and the bit levels of encrypted data need to be enhanced to
improve the effectiveness of image encryption. In fact, besides the mentioned 1 bit, 2 bit
and/or 8 bit encryption operations, other multiple bit data, such as 3–7 bit data, can also
be used to permutate and/or diffuse images. More bit-level data enhances the diversity of
encrypted units and may have the potential to improve encryption performance. However,
few existing studies have paid attention to this point.

Motivated by the above analysis, this paper proposes multiple bit permutation and
diffusion, namely MBPD, for hyperchaotic image encryption. We first extend a modified
3D Lorenz chaotic system to a 4D hyperchaotic system with 3 positive LEs, and its charac-
teristics are analyzed. Second, the hyperchaotic system is used to generate a hyperchaotic
sequence for the consequent encryption operations. The initial values of the hyperchaotic
system are considered as keys for the purpose of encryption. Then, the operations of
multiple bit permutation and multiple bit diffusion are presented to encrypt images. The
MBPD treats several bits (e.g., 3 bits) as a processing unit for permutation and diffusion,
and different lengths of bits can be chosen for encryption. For the permutation, the order
of the hyperchaotic sequence is used to scramble the multiple bit data, while the sequence
will be converted into an integer mask for the diffusion. Finally, the proposed MBPD with
different lengths of bits is applied to image encryption to improve security.

The contributions of this paper are the following:

(1) A new 4D hyperchaotic system with 3 positive LEs is presented, and some related
hyperchaotic characteristics are analyzed.

(2) Multiple bit permutation and diffusion is proposed for image encryption, which is
very different from most existing image encryption schemes that encrypt images only
with 1 bit, 2 bit and/or 8 bit data. To the best of our knowledge, it is the first time that
multiple bit operations are proposed for image encryption.
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(3) Extensive experiments demonstrate that the proposed MBPD significantly outper-
forms the state-of-the-art compared image encryption schemes in terms of the evalua-
tion indicators.

The rest of this paper is organized as follows: Section 2 presents a new 4D hyperchaotic
system with 3 positive LEs. Section 3 proposes MBPD and details the encryption steps. In
Section 4, experimental results are reported and analyzed. Finally, we conclude the paper
in Section 5.

2. Presented 4D Hyperchaotic System

2.1. Lorenz System

Since the chaotic attractor was first found by Lorenz in 1963, chaos theory has attracted
researchers from many fields, such as economics, mathematics, physics, and communica-
tions [9]. The initial Lorenz system has been extended to many versions. One modified
generalized Lorenz system is formulated as Equation (1) [43].⎧⎨

⎩
ẋ = −ax + by
ẏ = cx + dy − xz
ż = −ez + x2

, (1)

where a, b, and e are positive real constants, and c and d are real parameters meeting
d > − bc

a [44]. By introducing a 1D linear system to Equation (1), a new 4D system can
be obtained, as Equation (2). ⎧⎪⎪⎨

⎪⎪⎩
ẋ = −ax + ay
ẏ = bx + cy − xz
ż = −dz + x2

ẇ = ey + f w

. (2)

In this system, a, b, c, d, and f are real constant parameters, while f is a coupling
parameter. When the parameters (a, b, c, d, e, f ) = (35, 7, 35, 5, 1.5, 1), the system has the
following LEs: LE1 = 1.284559, LE2 = 0.937533, LE3 = 0.007986, and LE4 = −38.230078.
Since three LEs are positive, the system is hyperchaotic [44].

2.2. 4D Hyperchaotic System

Although Equation (2) is hyperchaotic, the introduced component w will increase
exponentially after a certain number of iterations, and then its value will become positive
infinity and its applications will be limited. To cope with this issue, we modify the fourth
item of Equation (2) and add the component w to the first equation. A new 4D system can
be obtained, as shown in Equation (3).⎧⎪⎪⎨

⎪⎪⎩
ẋ = −ax + ay + w
ẏ = bx + cy − xz
ż = −dz + x2

ẇ = ey + f wsin(w)

, (3)

where parameters a − f are the same as Equation (2).
We use the 4th-order Runge-Kutta method to plot the attractors of the presented 4D

hyperchaotic system with parameters (a, b, c, d, e, f ) = (35, 7, 35, 5, 1.5, 1) and initial values
(x0, y0, z0, w0) = (0.12, 0.23, 0.34, 0.45) in 2D space and 3D space, as shown in Figure 1.
From this figure, we can see that the component w falls within an appropriate range.

127



Entropy 2021, 23, 510

Figure 1. Attractors of the presented 4D hyperchaotic system with the parameters (a, b, c, d, e, f ) =
(35, 7, 35, 5, 1.5, 1) and initial values (x0, y0, z0, w0) = (0.12, 0.23, 0.34, 0.45).

By using Wolf’s method [45], we fix (a, b, c, d, e) = (35, 7, 35, 5, 1.5) and let f vary from
0 to 2 to plot the dynamics of LEs, as shown in Figure 2. We can see that the new system
has three positive LEs in many ranges. For example, when f = 1, the LEs of the system
are LE1 = 2.253019, LE2 = 1.406374, LE3 = 0.054342, and LE4 = −38.339706 and the
three positive LEs (LE1, LE2, and LE3) are much larger than the corresponding positive
LEs of Reference [43]. Therefore, the new system is also hyperchaotic, and it is better than
Equation (2).

Figure 2. Dynamics of Lyapunov exponents of the proposed 4D hyperchaotic system with the
parameters (a, b, c, d, e) = (35, 7, 35, 5, 1.5), variable f from 0 to 2, and initial values (x0, y0, z0, w0) =

(0.12, 0.23, 0.34, 0.45).
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In this paper, we will use the new 4D hyperchaotic system for image encryption.
The reasons lie in: (1) Although it has only 4 dimensions in total, it has 3 positive LEs.
The hyperchaotic characteristics make it very suitable for image encryption. (2) It has a
simpler mathematical form when compared with some hyperchaotic systems of higher
dimensions. (3) All the components fall within appropriate ranges, making it easy to sort
for permutation and convert hyperchaotic sequences into integers for diffusion.

3. MBPD: Multiple Bit Permutation and Diffusion

This section will detail the steps of multiple bit permutation and diffusion for image
encryption, including how to generate the hyperchaotic sequence, operations of multiple
bit permutation and multiple bit diffusion, and the encryption algorithm.

3.1. Hyperchaotic Sequence Generation

In chaotic image encryption, a chaotic sequence is required to generate index for
permutation and a mask for diffusion. Given the parameters and the initial values, we
use the Fourth-order Runge-Kutta method and an interval of 0.001 to solve the presented
4D hyperchaotic system in Section 2.2 and then construct the hyperchaotic sequence for
encryption. The detailed steps are as follows:

Step 1: Given the initial values IV = {x0, y0, z0, w0}, we solve the 4D hyperchaotic system
to obtain long enough state values. The state values in the i−th iteration can be
denoted as si = {xi, yi, zi, wi}.

Step 2: To remove the adverse effects, the state values obtained by the first it0 iterations
are discarded.

Step 3: When the iteration terminates, we can get a hyperchaotic sequence H by concate-
nating all the sj(j = 1, 2, · · · , N) as Equation (4):

H = {s1, s2, · · · , sN} = {x1, y1, z1, w1, · · · , xN , yN , zN , wN}
= {h1, h2, h3, h4, · · · , h4N−3, h4N−2, h4N−1, h4N},

(4)

where N is the iteration times excluding it0.
Step 4: Since the elements in H come from different equations in Equation (3) and, hence,

have different ranges, we use the following formulation to further map each
element in H to a uniform interval [0, 1).

hi =
∣∣∣hi × 108

∣∣∣− �
∣∣∣hi × 108

∣∣∣�, (5)

where |·| and �·� are the mathematical computation of absolute value and floor-
ing, respectively.

It can be seen that each element in H is a real value in [0, 1). With an element hi , we
can use the following formula to map it to an integer I in the range of [0, N]:

I = �((|hi| − �|hi|�)× 1014)�%N, (6)

where % is the modulo operation.

3.2. Multiple Bit Permutation

Permutation is to rearrange the image content on a certain basis. For the permutation
in chaotic image encryption, the positions of the image data to be permuted are usually
determined by an index vector that can be obtained by sorting a hyperchaotic sequence.
Typical permutation is conducted on pixel-level, DNA-level, and/or bit-level data [46].
The pixel-level data and DNA-level data in the current encryption technique actually refer
to 8-bit data and 2-bit data, respectively. Few studies have focused on other numbers of
bit data for encryption, such as 3–7 bits. In this paper, multiple bit permutation means
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conducting permutation on different numbers of bit data. n-bit permutation refers to using
n bits as a minimum permutation unit.

All multiple bit operations require a bit stream of an image. Without loss of generality,
given a bit stream B of length L, a hyperchaotic sequence H, and the number of bits to be
permutated n, the first step is to calculate the number of permutation units PU and the
remaining bits RB by PU = �L/n� and RB = L%n, respectively. It is clear that RB < n.
Then, the PU units need to rearrange according to the index of sorting PU values in H and
the RB bits can be embedding into the rearranged bit stream at a position decided by a
value in H.

The n-bit permutation can be described as Algorithm 1:

Algorithm 1 n-bit permutation.

Input: a bit stream B, a hyperchaotic sequence H, and the number of bits to be permuted
in a unit n

Output: a permutated bit stream PB, the number of used elements PU in H
1: function BITPERMUTE(B, H, n)
2: L ← length(B); //length of B
3: PU ← �L/n�;
4: RB ← L%n;
5: PB ← reshape(B(1 : PU ∗ n), [PU, n]); //reshape the first PU ∗ n bits in B into a

vector PB having PU n-bit units
6: [v, idx] ← sort(H(1 : PU)); // ascending sort to get the index vector idx
7: PB(1 : idx) ← PB; // permute the PU units
8: PB ← reshape(PB, [1, PU × n]); // reshape the matrix PB to a bit stream
9: if RB <> 0 then

10: PU ← PU + 1;
11: Generate a random position pos in the range of [1, PU] from H(PU) via

Equation (6);
12: Insert the remaining RB bits B(L − RB + 1 : L) into PB at pos;
13: end if
14: return PB, PU;
15: end function

When n equals 1 or 8, Algorithm 1 degenerates to bit-level permutation or pixel-level
permutation. Hence, the common bit-level permutation and pixel-level permutation are
the special cases of Algorithm 1.

Here, we take 2-bit permutation and 3-bit permutation as an example to illustrate the
detailed permutation procedure, as shown in Figure 3.

order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

H 0.46 0.86 0.13 0.27 0.95 0.75 0.28 0.86 0.82 0.95 0.49 0.74 0.24 0.33 0.19 0.59 0.08 0.94 0.95 0.22 0.04 0.98 0.67 0.27 0.35 0.66 0.271456874102351

idx 3 15 13 4 7 14 1 11 16 12 6 9 2 8 5 10 5 1 4 8 9 10 7 2 3 6

pos 5
Obtained by mapping H27

P 12 23 B1 3-bit permutation
134 245

PB1 B2 011 100 000 101 001 110 011 100 110 100 10

C1 112 83 PB2 100 100 110 000 011 100 011 101 001 110
156 251

PB3 100 100 110 000 011 10 100 011 101 001 110

C2 147 7
71 78

PB2 with the 2-bit unit embedding at pos

Final cipher image of P by 2-bit
permutation and 3-bit permutation

Cipher image of P by 2-bit permutation

Bit stream of P shown in 2-bit units

Permutated B1 by 2-bit permutation with I1 Bit stream of C1 shown in ten 3-bit units and one 2-bit unit

The ten 3-bit units of B2 permuted by 3-bit permutation with I2

I2: Index obtained by sorting H17:H26

Plain image

2-bit permutation

00 00 11 00 00 01 01 11 10 00 01 10 11 11 01 01

01 11 00 00 01 01 00 11 10 01 11 00 11 01 00 10

I1: Index obtained by sorting H1:H16

Figure 3. Illustration of 2-bit and 3-bit permutation.
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A 2 × 2 plain image P is firstly converted into a bit stream B1 and the bits are grouped
into 16 2-bit units. We get an index vector idx from the first 16 elements of the given
hyperchaotic sequence H. It can be further grouped into two small vectors: I1 and I2.
Then, we use I1 to rearrange the 16 units to get the permutated PB1. Since the RB is equal
to 0 for this 2-bit permutation, there are no remaining bits needed to be embedded. Up
to now, the 2-bit permutation completes. The obtained PB1 by the 2-bit permutation is
actually the cipher image C1, which is clearly different from P. Then, it starts to conduct
3-bit permutation on the PB1. The 32 bits can be grouped into 10 complete 3-bit units
and 2 remaining bits, as shown by B2. For the 10 3-bit units, we can rearrange them by
I2, and then obtain the PB2 before embedding. H27 can be mapped to an integer 5 using
Equation (6), and the remaining 2 bits can be inserted after the 5-th 3-bit unit in PB2, shown
as PB3 after embedding in the figure. The final PB3 is actually the cipher image C2, a
totally different image from P. From this illustration, we can see that the proposed n-bit
permutation can also cause the change of the pixel values in plain images.

3.3. Multiple Bit Diffusion

The purpose of diffusion is to change the values of image data. The existing image
encryption schemes mainly conduct diffusion on pixel-level data and/or DNA-level data
(two bits). Similar to n-bit permutation, we propose n-bit diffusion that can be conducted
on n-bit data per unit.

With the B, L, H, and n given for n-bit permutation, the number of n-bit units to be
diffused DU is equal to �L/n� and the length of the last unit LL is L%n. If LL equals 0,
the last unit is null; otherwise, its length is less than n (we call it non-n-bit unit) and it
needs special handling. In this paper, we use a ciphertext diffusion in crisscross pattern
(CDCP)-like idea to conduct n-bit diffusion [47]. Specifically, the bit stream B is transformed
into a vector P of n-bit unit and then divided into two parts, and the two parts are diffused
in crisscross pattern with two rounds. A mask vector M and an initial n-bit integer V can
be mapped from H. When DU is an even, the first n-bit unit of each part can be initialized
by Equation (7). {

C1 = P1 ⊗ ((V − M1)%2n)
CDU/2+1 = PDU/2+1 ⊗ ((C1 − MDU/2+1)%2n)

, (7)

where ⊗ is the bitwise XOR (exclusive or) operation, and C is the vector of an cipher image.
After that, the other n-bit units of each part can be updated as Equation (8):{

Ci = Pi ⊗ ((CDU/2+i−1 − Mi)%2n)
CDU/2+i = PDU/2+i ⊗ ((Ci − MDU/2+i)%2n)

, i = 2, 3, · · · , DU/2. (8)

There are two cases that need to be handled specially. When DU is an odd, we use the
following formulation to encrypt the (DU + 1)/2-th unit.

C(DU+1)/2 = P(DU+1)/2 ⊗ ((CDU − M(DU+1)/2)%2n). (9)

Another case is about the non-n-bit unit. When it exists, we use the following formulation
which is similar to Equation (9) to handle it.

CDU+1 = PDU+1 ⊗ ((CDU − MDU+1)%2LL). (10)

The second round diffusion is the same as the first round, except that CDU is used as
the initial value to replace V in Equation (7).

The n-bit diffusion can be described as Algorithm 2.
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Algorithm 2 n-bit diffusion.

Input: a bit stream B, a hyperchaotic sequence H, and the number of bits to be diffused in
a unit n

Output: a diffused bit stream DB, the number of used elements PU in H
1: function BITDIFFUSE(B, H, n)
2: L ← length(B); //length of B
3: DU ← �L/n�;
4: LL ← L%n;
5: P ← reshape(B(1 : DU ∗ n), [DU, n]); //reshape the first DU ∗ n bits in B into a

vector P having DU n-bit units
6: PDU+1 = B(DU ∗ n + 1 : end) //Use PDU+1 to denote the remaining L%n bits in B

if they exist;
7: PU ← L/8;
8: Map H(1 : PU) to a vector of 8-bit unsigned integers M;
9: Map H(PU + 1) to a n-bit unsigned integer V;

10: PU ← PU + 1;
11: Conduct the first round diffusion with P, V and M by Equations (7)–(10);
12: P ← C, V ← CDU ;
13: Conduct the second round diffusion with P, V and M by Equations (7)–(10);
14: DB = reshape(P, [1, L]);
15: return DB, PU;
16: end function

An illustration on 2-bit diffusion and 3-bit diffusion is shown in Figure 4.

order 3 4 5 6 7 8 9 10

H 0.975... 0.355… 0.325… 0.009… 0.480… 0.786… 0.777… 0.299174461427701

integer 32 104 169 193 3 31 82 50

binary 00100000 01101000 10101001 11000001 00000011 00011111 01010010 00110010

2-bit diffusion
P 12 23 B1

134 245

M1

V1 01

R1

3-bit diffusion
R2 B2

Bit stream of C1 shown in ten 3-bit units and one 2-bit unit

C1 138 91 M2
67 199

V2 010

R3

R4

C2 119 43
147 36

      Cipher image of P by 2-bit diffusion

1 2

0.834076243076637 0.879...

207 185

11001111 10111001

00 00 11 00 00 01 01 11 10 00 01 10 11 11 01 01

11 00 11 11 10 11 10 01 00 10 00 00 01 10 10 00

11 01 11 10 00 01 00 11 11 10 10 11 11 11 01 00

10 00 10 00 01 01 10 11 01 00 00 11 11 00 01 11 100 010 000 101 101 101 000 011 110 001 11

110 000 010 000 001 100 011 111 010 100 10

I1: Integers obtained by mapping H1:H5 I2: Integers obtained by mapping H6:H10

Binary of I1 Binary of I2

Plain image
Bit stream of P shown in 2-bit units

Mask vector from I1 shown in 2-bit units

Result of 1st round  2-bit diffusion

Result of 2nd round  2-bit diffusion

A 2-bit initial integer extracted from I1(5)

Mask vector from I2 shown in 3-bit units

000 011 110 001 101 001 000 100 001 000 01

011 101 110 010 101 110 010 011 001 001 00

Final cipher image of P by 2-bit
diffusion and 3-bit diffusion

A 3-bit initial integer extracted from I2(5)

Result of 1st round  3-bit diffusion

Result of 2nd round  3-bit diffusion

Figure 4. Illustration of 2-bit and 3-bit diffusion.

As done in Figure 3, the same plain image P is transformed into a binary sequence
B1. A hyperchaotic sequence H having 10 elements are mapped into 8-bit integers and a
further binary sequence (“binary” in the figure) by Equation (6). The sequence can also be
split into I1 and I2. Note that some elements in H only show their first four digits to save
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spaces of the figure. The I1 can be further shown in a two-bit format as M1. The initial
values V1 is extracted from the last 2 bits from I1(5), as shown in red. When the 2-bit
diffusion completes using Equation (7)/Equation (8) for the first/second round, we can
obtain R1 and R2, respectively. R2 is actually the cipher image C1, which is totally different
from the plain image P. Similarly, C1 can be encrypted by performing 3-bit diffusion. Note
that since it has a 2-bit unit, when all the 3-bit units are encrypted, the remaining 2-bit unit
needs to be encrypted by Equation (10). After the first and the second round 3-bit diffusion,
we can obtain R3 and R4, respectively. R4 represents the final cipher image C2, where we
can not find any visually information of the plain image P.

3.4. MBPD: Multiple Bit Permutation and Diffusion for Image Encryption

The main characteristic of the proposed MBPD lies in the permutation and diffusion
can be conducted on multiple bit level data, which is very different from the common
1-bit, 2-bit (DNA) and/or 8-bit (pixel) permutation and 8-bit diffusion operations in most
existing image encryption schemes.

With the aforementioned analysis, the detailed steps of the proposed MBPD are
described as Algorithm 3.

Algorithm 3 MBPD: Multiple bit permutation and diffusion.

Input: a plain image P, initial values IV = (x0, y0, z0, w0) for the hyperchaotic system, and
iteration numbers of the discarded sequence it0

Output: a cipher image C
1: function MBPD(P, IV,it0)
2: Generate a hyperchaotic sequence H with IV and it0 as described in Section 3.1;
3: Get the height h and the width w of P;
4: Convert P to a bit stream B of length L = h ∗ w ∗ 8;
5: i ← 0;
6: for n = 1 → 8 do
7: B, ul ← BITPERMUTE(B, H(i + 1 : end), n); //n-bit permutation
8: i ← i + ul;
9: B, ul ← BITDIFFUSE(B, H(i + 1 : end), n); //n-bit diffusion

10: i ← i + ul;
11: end for
12: Convert B to an image C;
13: return C;
14: end function

The key steps of Algorithm 3 consist of a hyperchaotic sequence generation (Line 2),
conversion the plain image to a bit stream (Line 3–4), conducting multiple bit permutation
and diffusion on the bit stream (Line 6–11), and converting the bit stream back to an image
(Line 12). Note that Algorithm 3 is proposed for gray images, but it can be easily extended
for color images. The easiest way is to consider an RGB color image as three gray images
and encrypt each gray image independently. The current proposed algorithm considers
8-bit permutation and diffusion at most, and it might be extended for 9-bit, 10-bit and even
more bit permutation and diffusion. In addition, the proposed MBPD can be performed
more than one round to enhance the effect of encryption. On the other hand, in real-world
applications, it is not necessary to conduct all n-bit (n = 1, 2, · · · , 8) operations to save
time. The proposed MBPD can also be considered as a typical application of the strategy of
“divide and conquer” [48,49].

To obtain a decrypted image, it only needs to execute the steps in Algorithm 3 reversely.

4. Experimental Results

4.1. Experimental Settings

We select the initial values IV = (x0, y0, z0, w0) for the presented 4D hyperchaotic
system as the security keys of the MBPD. Instead of conducting all bit levels permutation
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and diffusion, we only perform 6 types of n-bit permutation (n = 1, 2, 3, 5, 6, 7) and 2 types
of n-bit diffusion (n = 4, 8). Specifically, we list all the parameters in Table 1. Although
we use fixed security keys for all test images, they can also be optimized by evolutionary
algorithms for each image [50–52].

Table 1. Experiment parameters.

Parameter Description Value

Hyperchaotic system’s parameters (a, b, c, d, e, f ) = (35, 7, 35, 5, 1.5, 1)
Security keys (x0, y0, z0, w0) = (0.12, 0.23, 0.34, 0.45)
Iteration number to generate discarded
sequence it0 = 500

Bit levels of permutation n = 1, 2, 3, 5, 6, 7
Bit levels of diffusion n = 4, 8
Rounds of encryption 1

We use 16 publicly accessible 256-level gray images as test images in most experiments.
The size of each image is 256 × 256 or 512 × 512. We name each image by the format of
“name+width”. For example, “Lena512” represents gray Lena image of size 512 × 512. To
demonstrate the performance of the proposed MBPD, we compare it with three popular
gray image encryption schemes in most experiments: DFDLC [13], HCDNA [38], and
CDCP [47].

All the experiments are conducted with MATLAB R2020b on a PC with 64-bit Windows
10 OS, an i5-9500 CPU @3.00 GHz, and 32 GB RAM.

4.2. Security Key Analysis

The security key is very important in cryptography, regardless of whether the encryp-
tion object is text, ordinary data or multimedia information. Key space and key sensitivity
are two important indicators for evaluating security keys in image encryption.

4.2.1. Key Space

A good encryption scheme should have an enough large key space. An image en-
cryption scheme with a key space larger than 2100 is able to resist brute-force attacks from
modern computers. As far as the proposed MBPD is concerned, the initial value of the 4D
hyperchaotic system can be considered as the security key. According to the IEEE standard,
the precision of each element of the initial values is 10−15; hence, the total key space is
(1015)4 ≈ 2199, which is far larger than 2100. In addition, the parameters of the hyperchaotic
system, the iteration number to generate discarded sequence, and the combination of
permutation and/or diffusion at n bits can be thought of as parts of security key to further
enlarge the key space. Therefore, the key space of the proposed MBPD is so large that it
can resist brute-force attacks.

4.2.2. Key Sensitivity

A hyperchaotic system is extremely sensitive to the key. A tiny change in the key
will produce a different hyperchaotic sequence and, hence, result in completely different
decrypted images. To demonstrate the sensitivity of the proposed MBPD, we use the
corrected security K1 = (x0, y0, z0, w0) = (0.12, 0.23, 0.34, 0.45) and a slightly different key
K2 = (x0 + 10−15, y0, z0, w0) to decrypt some cipher images. The decrypted images with
K1 and K2 are shown in the first row and the second row of Figure 5, respectively.
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Figure 5. Results of key sensitivity. The first row and the second row show the decrypted images by
K1 and K2, respectively. From left to right: Clock256, Cameraman256, Finger512, Lena512, Baboon512,
Bw512, Couple512, and Peppers512.

From this figure, we can find that the MBPD can decrypt the cipher images correctly
with K1 and even a tiny change (10−15) that occurs in one element of K1 will result in
random-like images. It reveals that the MBPD is very sensitive to the security key.

To quantitatively demonstrate the sensitivity, we further use the SSIM to measure the
structural similarity between the two decrypted images with K1 and K2 [53]. The lower the
SSIM value, the higher the sensitivity. If the SSIM value is very close to 0, it reveals that the
two images are almost completely different. Therefore, if a tiny change in the security key
produces an SSIM value close to 0, we can say that the security key is very sensitive, from
the review of decrypted images. The SSIM values of the decrypted images in Figure 5 are
listed in Table 2. From this table, we can observe that all the SSIM values are very close to
0, showing the sensitivity of security keys.

Table 2. The SSIM values of decrypted images with K1 and K2.

Image Name SSIM Value Image Name SSIM Value

Clock256 0.0083 Cameraman256 0.0087
Finger512 0.0081 Lena512 0.0093
Baboon512 0.0107 Bw512 0.0047
Couple512 0.0110 Peppers512 0.0098

We also use the SSIM to verify the structural similarity between the two cipher images
by K1 and K2. The results are shown in Table 3. Again, we can find that the SSIM values
are far below 0.01 and very close to 0, indicating that the security keys are very sensitive to
cipher images.

Table 3. The SSIM values of cipher images with K1 and K2.

Image Name SSIM Value Image Name SSIM Value

Clock256 0.0011 Cameraman256 0.0021
Finger512 0.0052 Lena512 0.0081
Baboon512 0.0087 Bw512 0.0060
Couple512 0.0052 Peppers512 0.0054

In summary, both the visual decrypted images and the quantitative analysis for
decrypted images and cipher images show that the proposed MBPD has sensitive security
keys for image encryption.

4.3. Statistical Analysis

In this subsection, we will analyze the MBPD via information entropies, histograms
and correlations, which are all among the typical statistical analysis indicators in the area
of image encryption.
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4.3.1. Information Entropy

Entropy is an important concept in physics, communication, information theory, and
others. It is often used to measure the uncertainty or randomness of a specific complex
system. Given an L-level gray image I and the probability pi of each gray level i occurs in
the image, the information entropy of I, denoted by E(I), can be calculated by:

E(I) = −
L−1

∑
i=0

pilog2(pi). (11)

For a 256-level test image in the experiment, if it has only one level, for example,
all-white image, its information entropy will equal the minimal value, 0. If each level
appears with an identical probability, 1

256 , the corresponding information entropy is equal
to the maximal value, 8. Therefore, the closer the information entropy to 8, the better
the encrypted image. We list the information entropies of all plain images and their
corresponding cipher images by the MBPD and the other compared schemes in Table 4,
where the highest entropy of each image is shown in bold.

Table 4. Information entropies of the testing images.

Image Name Plain Image
Cipher Image

MBPD DFDLC [13] HCDNA [38] CDCP [47]

Airplane256 6.4523 7.9970 7.9974 7.9961 7.9975
Clock256 6.7057 7.9970 7.9974 7.9957 7.9972

Cameraman256 7.0492 7.9976 7.9972 7.9961 7.9975
Cameraman512 7.0480 7.9994 7.9992 7.9982 7.9993

Finger512 6.7279 7.9994 7.9993 7.9991 7.9993
Gray512 4.3923 7.9992 7.9993 7.9920 7.9993
Lena512 7.4460 7.9993 7.9994 7.9989 7.9993

Baboon512 7.1391 7.9994 7.9994 7.9993 7.9993
Barbara512 7.6321 7.9993 7.9994 7.9993 7.9993

Boat512 7.1914 7.9992 7.9994 7.9990 7.9993
Bw512 1.0000 7.9992 7.9992 7.9154 7.9993

Couple512 7.0572 7.9993 7.9993 7.9992 7.9994
Houses512 7.6548 7.9993 7.9993 7.9993 7.9992
Peppers512 7.5925 7.9994 7.9994 7.9992 7.9994
Pirate512 7.2367 7.9993 7.9993 7.9990 7.9993
Truck512 6.0274 7.9994 7.9994 7.9991 7.9993

We can see that all plain images’ information entropies are much less than those
of their cipher images. Specifically, the entropies of plain images fall in the range of
[1.0000, 7.6548], where the lower bound and the upper bound are achieved by Bw512 and
House512, respectively. However, those values of cipher images of size 256 × 256 are
greater than 7.9957. For cipher images of size 512 × 512, except for HCDNA’s 7.9154 for
Bw512, the lowest information entropy is 7.9920, which is very close to the maximal value,
8. The proposed MBPD, DFDLC, HCDNA, and CDCP achieve the highest information
entropies in 8, 10, 1, and 6 out of 16 cases, respectively. In terms of information entropy, the
MBPD significantly outperforms HCDNA and achieves comparable results with CDCP
and DFDLC, revealing that the MBPD is able to resist entropy attacks effectively.

4.3.2. Histogram

The histogram of an image reflects the distribution of pixel levels. A natural image
often has a histogram with certain irregular shapes, such as mountain peaks and valleys. A
well-designed encryption scheme should break the original distribution of gray-levels and
make the new distribution as even as possible. The histograms obtained by the MBPD are
shown in Figure 6, where the test images’ orders are the same as in Table 4.
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Figure 6. Histograms of plain images and their corresponding cipher images. Each plain image is
followed by its histogram, the corresponding cipher image, and its histogram.

From this figure, we can find that all the natural images (those except for Gray512
Bw512) appear irregular histograms. Since plain Gray512 and Bw512 have evenly 21 and
2 gray-levels, respectively, they only have 21 and 2 bars in the histograms. However, the
distributions of the pixel values of the cipher images are so uniform that the tops of the
bars in the histograms appear as horizontal lines, even for Gray512 and Bw512. The results
reveal that the proposed MBPD can effectively break the distributions of cipher images
and produce sufficiently uniform histograms.

4.3.3. Correlation

Strong correlation among neighboring pixels is a key attribute of plain images. A
practical image encryption scheme should reduce such correlation significantly. The lower
the correlation in cipher images, the better an encryption scheme. Given two sequences s1
and s2, the correlation (γ) between them can be computed by:

γ =
ρ(s1, s2)√

D(s1)D(s2)
, (12)

where ρ denotes the covariance of two sequences, and D is the standard deviation of a
sequence. According to this equation, the highest value of correlation will be 1 if s1 and s2
are identical, while it will be 0 if they are independent.

Given an image, there are many ways to construct s1 and s2. Typically, when a pixel is
put into s1, its horizontal, vertical, or diagonal adjacent pixel can be placed in s2. In this
way, we can use Equation (12) to calculate the correlations at the horizontal (γh), vertical
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(γv), and diagonal (γd) directions. We use all the pixels in an image to construct s1, and then
construct corresponding s2 to compute γh, γv, and γd. The correlations of plain images and
cipher images are shown in Table 5, where the best results are in bold.

Table 5. The correlation coefficients γ of the testing images.

Image Name γ Plain Image
Cipher Image

MBPD DFDLC [13] HCDNA [38] CDCP [47]

Airplane256
γh 0.9562 −0.0062 0.0004 −0.0049 −0.0003
γv 0.8742 0.0006 −0.0042 −0.0045 −0.0006
γd 0.8995 0.0019 0.0001 0.0038 −0.0022

Clock256
γh 0.9540 −0.0024 0.0034 0.0017 0.0020
γv 0.9734 −0.0107 0.0022 −0.0060 −0.0017
γd 0.9376 0.0013 0.0026 −0.0015 −0.0031

Cameraman256
γh 0.9554 −0.0059 0.0015 −0.0006 −0.0013
γv 0.9710 0.0007 0.0023 −0.0012 0.0001
γd 0.9377 0.0052 −0.0053 0.0012 −0.0030

Cameraman512
γh 0.9830 −0.0013 −0.0016 −0.0014 0.0011
γv 0.9887 0.0014 0.0015 0.0029 −0.0026
γd 0.9746 −0.0017 0.0002 −0.0022 0.0010

Finger512
γh 0.9343 0.0022 −0.0010 −0.0012 −0.0002
γv 0.9168 0.0007 −0.0012 −0.0005 −0.0005
γd 0.8664 0.0017 0.0001 −0.0003 −0.0003

Gray512
γh 0.9913 0.0028 −0.0006 0.0017 0.0001
γv 0.9989 0.0009 0.0021 −0.0010 0.0017
γd 0.9964 0.0005 −0.0006 −0.0007 0.0007

Lena512
γh 0.9705 0.0005 0.0014 0.0022 −0.0028
γv 0.9856 0.0002 −0.0004 −0.0004 0.0038
γd 0.9649 0.0000 0.0021 −0.0008 0.0023

Baboon512
γh 0.8652 −0.0018 0.0024 0.0020 −0.0024
γv 0.7524 −0.0017 −0.0000 0.0027 0.0024
γd 0.7210 0.0022 0.0026 0.0011 0.0012

Barbara512
γh 0.8940 0.0000 0.0001 0.0007 −0.0001
γv 0.9572 0.0002 0.0034 −0.0018 −0.0001
γd 0.8942 0.0004 −0.0006 −0.0001 −0.0014

Boat512
γh 0.9368 0.0022 −0.0015 −0.0022 −0.0052
γv 0.9709 0.0007 0.0008 −0.0004 0.0025
γd 0.9240 −0.0007 0.0012 0.0015 0.0021

Bw512
γh 1.0000 −0.0013 −0.0009 −0.0001 −0.0022
γv 0.9922 0.0031 0.0050 −0.0016 −0.0019
γd 0.9961 −0.0011 −0.0019 0.0002 −0.0008

Couple512
γh 0.9451 0.0013 0.0020 0.0007 0.0019
γv 0.9514 0.0011 0.0002 0.0020 0.0032
γd 0.9116 −0.0015 −0.0011 −0.0006 0.0001

Houses512
γh 0.9077 −0.0013 0.0028 0.0014 −0.0030
γv 0.9173 −0.0002 0.0000 −0.0026 0.0016
γd 0.8439 0.0014 0.0005 0.0010 −0.0011

Peppers512
γh 0.9733 −0.0009 0.0006 −0.0004 0.0001
γv 0.9763 −0.0021 −0.0024 0.0007 −0.0006
γd 0.9650 0.0005 0.0007 0.0011 −0.0008

Pirate512
γh 0.9593 −0.0006 0.0014 −0.0020 −0.0020
γv 0.9675 −0.0022 0.0006 −0.0008 0.0006
γd 0.9432 0.0002 −0.0010 −0.0003 −0.0023

Truck512
γh 0.9610 0.0005 0.0000 0.0012 0.0035
γv 0.9164 0.0018 0.0001 0.0003 −0.0004
γd 0.9048 −0.0028 −0.0003 −0.0016 −0.0005

From this table, we can observe that all the plain images have high correlations. In
particular, the γh of plain Bw512 is equal to the highest value, i.e., 1. However, these high
correlations are reduced to a very low level by the encryption schemes. More specifically,
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the correlations by the encryption schemes are very close to or even equal to 0, showing
that all the schemes can break the high correlations in plain images. As far as the four
schemes, MBPD achieves the lowest correlations in 15 out of 48 times, followed by CDCP’s
13 times, DFDLC’s 12 times, and HCDNA’s 11 times, indicating that MBPD performs better
than the compared encryption schemes.

To further analyze the correlations, we randomly pick up 4000 pairs of horizontally
adjacent pixels from plain images and cipher images by the proposed MBPD and then
plot their gray levels as x-values and y-values in a 2D plane, as shown in Figure 7. We
can observe that the plots of all the plain images except for Bw512 appear near the main
diagonals, showing that there exist strong correlations in the cipher images. Since Bw512
has only two gray levels: 0 and 255, most points are piled up at (0, 0) and (255, 255), which
are also on the main diagonal. In contrast, the plots of all the cipher images fill with the
whole planes, suggesting low correlations in cipher images.

0 100 200
(1) Plain Airplane256

0

100

200

0 100 200
(9) Cipher Airplane256

0

100

200

0 100 200
(2) Plain Clock256

0

100

200

0 100 200
(10) Cipher Clock256

0

100

200

0 100 200
(3) Plain Cameraman256

0

100

200

0 100 200
(11) Cipher Cameraman256

0

100

200

0 100 200
(4) Plain Cameraman512

0

100

200

0 100 200
(12) Cipher Cameraman512

0

100

200

0 100 200
(5) Plain Finger512

0

100

200

0 100 200
(13) Cipher Finger512

0

100

200

0 100 200
(6) Plain Gray512

0

100

200

0 100 200
(14) Cipher Gray512

0

100

200

0 100 200
(7) Plain Lena512

0

100

200

0 100 200
(15) Cipher Lena512

0

100

200

0 100 200
(8) Plain Baboon512

0

100

200

0 100 200
(16) Cipher Baboon512

0

100

200

0 100 200
(17) Plain Barbara512

0

100

200

0 100 200
(25) Cipher Barbara512

0

100

200

0 100 200
(18) Plain Boat512

0

100

200

0 100 200
(26) Cipher Boat512

0

100

200

0 100 200
(19) Plain Bw512

0

100

200

0 100 200
(27) Cipher Bw512

0

100

200

0 100 200
(20) Plain Couple512

0

100

200

0 100 200
(28) Cipher Couple512

0

100

200

0 100 200
(21) Plain Houses512

0

100

200

0 100 200
(29) Cipher Houses512

0

100

200

0 100 200
(22) Plain Peppers512

0

100

200

0 100 200
(30) Cipher Peppers512

0

100

200

0 100 200
(23) Plain Pirate512

0

100

200

0 100 200
(31) Cipher Pirate512

0

100

200

0 100 200
(24) Plain Truck512

0

100

200

0 100 200
(32) Cipher Truck512

0

100

200

Figure 7. Horizontal correlations of plain images and their corresponding cipher images.

4.4. Differential Attack Analysis

Differential attacks compare the variations in a plain image with variations in the
cipher image to find the plain image and/or desired security key. To resist differential
attacks, a well-designed image encryption scheme must produce a completely different
cipher image even for a tiny change in the corresponding plain image.

There are two popular indicators in the community of image security to measure
image encryption schemes’ capability of resisting differential attacks. One is the number of
pixels change rate (NPCR), which can be defined as Equation (13). And the other is the
unified average changing intensity (UACI) defined by Equation (14).

NPCR =
∑H

h=1 ∑W
w=1 d(h, w)

H · W
× 100%, (13)

UACI =
∑H

h=1 ∑W
w=1|C1(h, w)− C2(h, w)|

255 · H · W
× 100%, (14)

where H and W denote the height and the width of the cipher images C1 and C2, and
d(h, w) is used to judge whether the gray levels of C1 and C2 at the position (h, w) are
different, as formulated by Equation (15).

d(w, h) =
{

0, C1(h, w) = C2(h, w)
1, C1(h, w) �= C2(h, w)

. (15)
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Given two 8-bit gray images, if they are identical, their both NPCR and UACI obtain
the minimal value, 0. If one is all-white and the other is all-black, their NPCR and UACI
values will be the maximal value, 1. Since the cipher images are all random-like, the
NPCR and UACI values of a pair of cipher images usually fall into a certain range. The
study by Wu et al. reveals that, given a significance level α = 0.05 and a 256 × 256 8-bit
gray levels image, if the NPCR is greater than N 1

0.05 = 99.5693% and the UACI falls
into the range of

(U 11
0.05,U 1u

0.05
)
= (33.2824%, 33.6447%), the encryption scheme is said

to pass NPCR test and UACI test separately at α = 0.05 [54]. Similarly, for a 512 × 512
image, the corresponding NPCR threshold and UACI range are N 2

0.05 = 99.5893% and(U 21
0.05,U 2u

0.05
)
= (33.3703%, 33.5541%), respectively.

We compute NPCR and UACI values from the cipher image by the exact plain image
and a cipher image by a slightly changed plain image generated by adding one to the least
significant bit of a random pixel. The computation procedure is repeated 20 times, and the
average NPCR and UACI are reported in Tables 6 and 7, respectively, where the values
that pass the tests are shown in bold. Moreover, the times of passing the test, the standard
deviation, and the average value of the 16 test images by each scheme are shown in the last
three lines of the tables.

From Table 6, we can find that the MBPD passes the NPCR test on all images, following
by DFDLC and CDCP’s in 15 out of 16 cases. The HCDNA fails to the test because it has
no operations to expand a tiny change in the plain images to the whole cipher images.
Although CDCP achieves the highest average NPCR value (99.6773%) for the 16 test
images, but its standard deviation (0.0723%) is not as low as that of MBPD (0.0037%),
indicating that the MBPD achieves the stablest NPCR values. Regarding UACI, again,
MBPD passes the test on all test images and achieved the lowest standard deviation, and
CDCP and DFDLC fails one image, i.e., Bw512 and Pirate512, respectively. HCDNA
performs the worst and fails all the test images. To summarize, the proposed MBPD
outperforms the other compared schemes in terms of NPCR and UACI and can effectively
resist differential attacks.

Table 6. The average NPCR (%) of running the schemes 20 times.

Image MBPD DFDLC [13] HCDNA [38] CDCP [47]

Airplane256 99.6014 % 99.6125% 76.4828% 99.6374%
Clock256 99.6114% 99.6085% 65.7269% 99.7081%
Cameraman256 99.6099% 99.6196% 73.4785% 99.7564%
Cameraman512 99.6112% 99.6078% 67.1009% 99.6590%
Finger512 99.6083% 99.6108% 76.2949% 99.6928%
Gray512 99.6088% 99.6131% 61.1288% 99.6767%
Lena512 99.6062% 99.6084% 66.5552% 99.6849%
Baboon512 99.6104% 99.6077% 64.3461% 99.6372%
Barbara512 99.6113% 99.6114% 73.5446% 99.5927%
Boat512 99.6093% 99.6089% 75.0493% 99.4786%
Bw512 99.5997% 89.6501% 64.8879% 99.7000%
Couple512 99.6033% 99.6045% 63.5847% 99.7910%
Houses512 99.6037% 99.6092% 75.8256% 99.7578%
Peppers512 99.6090% 99.6100% 73.8790% 99.6849%
Pirate512 99.6082% 99.6087% 73.9838% 99.6765%
Truck512 99.6063% 99.6070% 66.5778% 99.7033%

Pass/Fail/All 16/0/16 15/1/16 0/16/16 15/1/16
Std. 0.0037% 2.4899% 5.3211% 0.0723%
Mean 99.6074% 98.9874% 69.9029% 99.6773%
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Table 7. The average UACI (%) of running the schemes 20 times.

Image MBPD DFDLC [13] HCDNA [38] CDCP [47]

Airplane256 33.4400 % 33.4256% 30.6926% 33.4682%
Clock256 33.4610% 33.4992% 28.3912% 33.5090%
Cameraman256 33.4312% 33.4529% 31.3096% 33.4766%
Cameraman512 33.4618% 33.4547% 27.7148% 33.4765%
Finger512 33.4552% 33.4766% 33.6617% 33.4796%
Gray512 33.4628% 33.4638% 25.1829% 33.4842%
Lena512 33.4545% 33.4581% 27.2038% 33.4484%
Baboon512 33.4590% 33.4528% 26.1169% 33.4996%
Barbara512 33.4905% 33.4746% 28.2405% 33.5072%
Boat512 33.4684% 33.4781% 31.6422% 33.4881%
Bw512 33.4899% 30.1296% 22.3338% 33.4655%
Couple512 33.4661% 33.4853% 25.9647% 33.4975%
Houses512 33.4682% 33.4631% 31.4138% 33.4587%
Peppers512 33.4409% 33.4255% 29.2497% 33.4637%
Pirate512 33.4808% 33.4251% 30.3032% 33.5917%
Truck512 33.4612% 33.4609% 28.0393% 33.4589%

Pass/Fail/All 16/0/16 15/1/16 0/16/16 15/1/16
Std. 0.0164% 0.8328% 2.8880% 0.0335%
Mean 33.4620% 33.2516% 28.5913% 33.4858%

4.5. Robustness

From the above analysis, we know that a tiny change in a plain image will result in a
completely different cipher image for a well-designed image encryption scheme. However,
contamination in cipher images is unavoidable during transmission and storage. Therefore,
a good encryption scheme should recover a contaminated cipher image to some extent.
Noise and cropping are two typical types of contamination.

To validate the robustness to noise and cropping, we first add 0.5%, 1%, 2%, 4%, and
10% salt-and-pepper noise to the cipher images, and decrypt them with the proposed
MBPD. The results are shown in Figure 8, where we can find that when the noise level is
less than 4%, the MBPD can recover the cipher images very well and even for 10% noise
level, the profile of Lena can be clearly recognized. Then, we crop the images with 1%,
2.78%, 6.75%, 11.11%, and 25% data loss, the cropped cipher images and the corresponding
decrypted images are shown in Figure 9. We can see that Lena can be easily recognized
when the data loss levels are less than 11.11%. When the level equals to 25%, it is hard to
recognize the profile of Lena. Another finding is that, even if the data loss is concentrated
in the center of an encrypted image, the contaminated locations in the decrypted image are
evenly distributed throughout the image.

To summarize, the MBPD can effectively resist noise and cropping attacks to some extent.

Figure 8. Noise test. The first row, from left to right: cipher images with 0.5%, 1%, 2%, 4%, and 10%
salt-and-pepper noise added. The second row: the decrypted images from the corresponding cipher
images in the first row.
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Figure 9. Cropping test. The first row, from left to right: cipher images with 1%, 2.78%, 6.75%, 11.11%,
and 25% data loss. The second row: the decrypted images from the corresponding cipher images in
the first row.

4.6. Running Time

Running time is used to measure the efficiency of the encrypted algorithms. Table 8 lists
the running time of encryption and decryption operations on images with sizes 256 × 256
and 512 × 512. We can find that CDCP takes the least time among the four schemes, while the
HCDNA takes the most time. The running time of HCDNA is about 30 times that of CDCP.
The results of MBPD and DFDLC are somewhere in between and are very close but the former
is slightly less than the latter. The major reasons why MBPD is somewhat time-consuming
are that it conducts encryption at multiple bit levels and the operations with most multi-bit
levels involve string operations. Two possible directions for decreasing running time are:
using parallel computing and reducing the number of bit levels for multi-bit operations, e.g.,
encrypting images only with 1-bit permutation and 4-bit diffusion.

Table 8. Running time of encryption and decryption (in seconds).

Operation Size MBPD DFDLC [13] HCDNA [38] CDCP [47]

Encryption 256 × 256 0.8158 0.8479 3.4635 0.1268
512 × 512 3.3833 3.4261 14.2808 0.5240

Decryption 256 × 256 0.8136 0.8366 4.7181 0.1305
512 × 512 3.3624 3.4116 19.5680 0.5126

4.7. Discussion

From the above experimental results and the corresponding analysis, we can see that
the proposed MBPD is a promising scheme for image encryption.

In addition to the proposed 4D hyperchaotic system and the extensive experiments,
the major contribution of the paper lies in proposing a novel multiple bit permutation and
diffusion scheme for image encryption. The MBPD can encrypt images not only with 1-bit,
2-bit, and 8-bit (one pixel) data that are widely processed by existing image encryption
schemes but also with 3–7 bit data that few studies have focused on.

The proposed MBPD’s main advantage over the existing image encryption schemes is
that it can perform permutation and diffusion with multiple different bits. The diversity
of each encrypted unit’s length is enhanced, and the proposed MBPD finally achieves
promising results in terms of the evaluation metrics when compared with four state-of-the-
art image encryption schemes, as demonstrated by the experiments.

Sixteen publicly accessible 256-level gray images of two sizes are used to evaluate
the proposed MBPD. They include 14 natural images in different scenes, as well as two
handcrafted images, which are very popular in the evaluation of image encryption schemes.
The MBPD performs quite well with all the test images. Although the MBPD is proposed to
encrypt gray images only in this paper, it can be easily extended for color image encryption.
The simplest way is to treat each channel of a color image as a gray image, and each channel
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can be separately encrypted by the MBPD. Here, we use miscellaneous images of different
sizes, different scenes and different channels (a 3-channel image means a color image)
from the SIPI image database (http://sipi.usc.edu/database/database.php?volume=misc,
accessed on 19 April 2021) to verify the generality of the proposed MBPD. Note that the
data set has 39 images in total, consisting of 24 gray images and 15 color ones. Six of them
have been tested in the above experiments; hence, they are excluded in this experiment.
The results of entropy, γh, γv, γd, NPCR, and UACI of the rest 33 images obtained by the
proposed MBPD are reported in Table 9, where the test images are sorted by size and image
name. Note that the table reports the average of the three channels for color images.

Table 9. Results obtained by the proposed MBPD on miscellaneous images from the SIPI image database.

Image Size Entropy γh γv γd NPCR UACI

5.1.10 256 × 256 7.9973 0.0010 −0.0024 −0.0003 99.6053% 33.4448%
5.1.13 256 × 256 7.9976 0.0011 0.0000 −0.0016 99.6127% 33.4409%
5.1.14 256 × 256 7.9974 −0.0022 0.0000 −0.0010 99.6114% 33.5188%
Moonsurface256 256 × 256 7.9973 0.0023 −0.0042 −0.0012 99.6093% 33.4342%
5.2.10 512 × 512 7.9992 0.0010 −0.0040 0.0005 99.6116% 33.4516%
7.1.02 512 × 512 7.9993 −0.0007 0.0018 −0.0004 99.6083% 33.4698%
7.1.03 512 × 512 7.9993 −0.0040 0.0017 −0.0004 99.6070% 33.4621%
7.1.04 512 × 512 7.9993 0.0001 −0.0006 −0.0027 99.6060% 33.4578%
7.1.05 512 × 512 7.9993 −0.0017 −0.0027 0.0013 99.6114% 33.4616%
7.1.06 512 × 512 7.9994 0.0028 0.0015 −0.0027 99.6074% 33.4786%
7.1.07 512 × 512 7.9993 0.0018 −0.0006 −0.0004 99.6066% 33.4736%
7.1.08 512 × 512 7.9994 0.0007 −0.0012 −0.0000 99.6093% 33.4505%
7.1.09 512 × 512 7.9993 0.0003 −0.0035 0.0011 99.6142% 33.4582%
7.1.10 512 × 512 7.9992 −0.0026 −0.0007 −0.0000 99.6109% 33.4435%
Aerial512 512 × 512 7.9993 0.0002 −0.0016 0.0004 99.6075% 33.4789%
ruler.512 512 × 512 7.9993 −0.0045 −0.0001 −0.0010 99.6134% 33.4642%
5.3.01 1024 × 1024 7.9998 −0.0006 −0.0017 0.0002 99.6117% 33.4545%
5.3.02 1024 × 1024 7.9998 0.0014 0.0000 0.0004 99.6090% 33.4637%
7.2.01 1024 × 1024 7.9998 0.0005 −0.0001 −0.0006 99.6127% 33.4609%
4.1.01 256 × 256 × 3 7.9969 0.0016 0.0031 0.0027 99.6155% 33.4652%
4.1.02 256 × 256 × 3 7.9975 −0.0068 −0.0037 0.0032 99.6149% 33.4376%
4.1.03 256 × 256 × 3 7.9971 0.0029 −0.0029 −0.0001 99.6168% 33.4728%
4.1.04 256 × 256 × 3 7.9972 0.0013 0.0024 0.0001 99.5991% 33.4596%
4.1.05 256 × 256 × 3 7.9974 0.0030 0.0031 −0.0008 99.6046% 33.4304%
4.1.06 256 × 256 × 3 7.9971 −0.0030 0.0009 0.0020 99.6051% 33.3983%
4.1.07 256 × 256 × 3 7.9972 0.0002 −0.0003 −0.0049 99.6139% 33.4285%
4.1.08 256 × 256 × 3 7.9970 0.0024 −0.0008 0.0003 99.6086% 33.4542%
4.2.01 512 × 512 × 3 7.9993 0.0014 −0.0005 −0.0006 99.6051% 33.4530%
4.2.03 512 × 512 × 3 7.9992 −0.0011 0.0032 0.0017 99.6102% 33.4833%
4.2.05 512 × 512 × 3 7.9994 −0.0004 −0.0002 −0.0004 99.6111% 33.4447%
4.2.06 512 × 512 × 3 7.9993 0.0004 −0.0016 −0.0006 99.6106% 33.4843%
4.2.07 512 × 512 × 3 7.9993 −0.0013 −0.0001 −0.0000 99.6087% 33.4446%
house 512 × 512 × 3 7.9992 −0.0012 0.0005 −0.0010 99.6079% 33.4962%

From this table, we can find that the experimental results are very ideal in terms of all
the evaluation indicators, regardless of the image content, size, and the number of channels.
Specifically, the entropies are very close to the theoretical best value, 8, and all the correlations
in all directions are close to 0. All the images pass the NPCR and UACI tests. Therefore, the
extensive test images demonstrate that the proposed MBPD has good generality.

5. Conclusions

Most existing image encryption schemes involve 1-bit level, 2-bit level (DNA com-
puting), and/or 8-bit level (pixel) data. Few studies focus on other bit-level data, which
limits the diversity of encrypted data units and ultimately negatively affects the encryption
effect. To this end, this paper proposes a novel multi-bit permutation and diffusion scheme
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(MBPD) for image encryption. The key characteristic of MBPD is that it can perform
permutation and diffusion at different bit-level data, such as 1-bit permutation, 3-bit dif-
fusion, and 6-bit permutation, to encrypt images. The results of extensive experiments
demonstrate that the proposed MBPD can resist different types of attacks and has high
security. One limitation of the MBPD is that it is somewhat time-consuming. In the future,
we will study how to speed it up and apply it to color image encryption.

Author Contributions: Conceptualization, T.L.; Formal analysis, T.L.; Funding acquisition, T.L.;
Investigation, T.L.; Methodology, T.L.; Software, T.L.; Supervision, T.L.; Validation, T.L.; Visualization,
D.Z.; Writing—original draft, T.L.; Writing—review & editing, T.L. and D.Z. Both authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Education of Humanities and Social Science
Project (Grant No. 19YJAZH047) and the Scientific Research Fund of Sichuan Provincial Education
Department (Grant No. 17ZB0433).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The used test images are all included in the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhou, S.; Zhang, Q.; Wei, X.; Zhou, C. A Summarization on Image Encryption. IETE Tech. Rev. 2010, 27, 503–510. [CrossRef]
2. Cheng, G.; Wang, C.; Chen, H. A Novel Color Image Encryption Algorithm Based on Hyperchaotic System and Permutation-

Diffusion Architecture. Int. J. Bifurc. Chaos 2019, 29. [CrossRef]
3. Lu, Q.; Zhu, C.; Deng, X. An Efficient Image Encryption Scheme Based on the LSS Chaotic Map and Single S-Box. IEEE Access

2020, 8, 25664–25678. [CrossRef]
4. Chen, G.; Mao, Y.; Chui, C.K. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 2004,

21, 749–761. [CrossRef]
5. Mao, Y.; Chen, G.; Lian, S. A novel fast image encryption scheme based on 3D chaotic baker maps. Int. J. Bifurc. Chaos 2004,

14, 3613–3624. [CrossRef]
6. Pareek, N.K.; Patidar, V.; Sud, K.K. Image encryption using chaotic logistic map. Image Vis. Comput. 2006, 24, 926–934. [CrossRef]
7. Pisarchik, A.N.; Flores-Carmona, N.J.; Carpio-Valadez, M. Encryption and decryption of images with chaotic map lattices. Chaos

2006, 16. [CrossRef]
8. Yoon, J.W.; Kim, H. An image encryption scheme with a pseudorandom permutation based on chaotic maps. Commun. Nonlinear

Sci. Numer. Simul. 2010, 15, 3998–4006. [CrossRef]
9. Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
10. Wang, X.; Zhang, H.l. A novel image encryption algorithm based on genetic recombination and hyper-chaotic systems. Nonlinear

Dyn. 2016, 83, 333–346. [CrossRef]
11. Younas, I.; Khan, M. A New Efficient Digital Image Encryption Based on Inverse Left Almost Semi Group and Lorenz Chaotic

System. Entropy 2018, 20, 913. [CrossRef]
12. Hu, T.; Liu, Y.; Gong, L.H.; Ouyang, C.J. An image encryption scheme combining chaos with cycle operation for DNA sequences.

Nonlinear Dyn. 2017, 87, 51–66. [CrossRef]
13. Li, T.; Shi, J.; Li, X.; Wu, J.; Pan, F. Image encryption based on pixel-level diffusion with dynamic filtering and DNA-level

permutation with 3D Latin cubes. Entropy 2019, 21, 319. [CrossRef] [PubMed]
14. Li, X.; Xie, Z.; Wu, J.; Li, T. Image encryption based on dynamic filtering and bit cuboid operations. Complexity 2019, 2019, 7485621.

[CrossRef]
15. Wu, X.; Wang, D.; Kurths, J.; Kan, H. A novel lossless color image encryption scheme using 2D DWT and 6D hyperchaotic system.

Inf. Sci. 2016, 349, 137–153. [CrossRef]
16. Li, T.; Yang, M.; Wu, J.; Jing, X. A novel image encryption algorithm based on a fractional-order hyperchaotic system and DNA

computing. Complexity 2017, 2017, 9010251. [CrossRef]
17. Yang, Y.G.; Guan, B.W.; Zhou, Y.H.; Shi, W.M. Double image compression-encryption algorithm based on fractional order hyper

chaotic system and DNA approach. Multimed. Tools Appl. 2021, 80, 691–710. [CrossRef]
18. Yang, F.; Mou, J.; Liu, J.; Ma, C.; Yan, H. Characteristic analysis of the fractional-order hyperchaotic complex system and its image

encryption application. Signal Process. 2020, 169. [CrossRef]
19. Wang, Y.; Yang, F. A fractional-order CNN hyperchaotic system for image encryption algorithm. Phys. Scr. 2021, 96. [CrossRef]
20. Zhu, C.; Sun, K. Cryptanalyzing and Improving a Novel Color Image Encryption Algorithm Using RT-Enhanced Chaotic Tent

Maps. IEEE Access 2018, 6, 18759–18770. [CrossRef]

144



Entropy 2021, 23, 510

21. Luo, Y.; Zhou, R.; Liu, J.; Cao, Y.; Ding, X. A parallel image encryption algorithm based on the piecewise linear chaotic map and
hyper-chaotic map. Nonlinear Dyn. 2018, 93, 1165–1181. [CrossRef]

22. Wu, J.; Liao, X.; Yang, B. Image encryption using 2D Henon-Sine map and DNA approach. Signal Process. 2018, 153, 11–23.
[CrossRef]

23. Fu, C.; Zhang, G.Y.; Zhu, M.; Chen, Z.; Lei, W.M. A New Chaos-Based Color Image Encryption Scheme with an Efficient
Substitution Keystream Generation Strategy. Secur. Commun. Networks 2018. [CrossRef]

24. Hua, Z.; Zhou, Y.; Pun, C.M.; Chen, C.L.P. 2D Sine Logistic modulation map for image encryption. Inf. Sci. 2015, 297, 80–94.
[CrossRef]

25. Yu, C.; Li, J.; Li, X.; Ren, X.; Gupta, B.B. Four-image encryption scheme based on quaternion Fresnel transform, chaos and
computer generated hologram. Multimed. Tools Appl. 2018, 77, 4585–4608. [CrossRef]

26. Ghazvini, M.; Mirzadi, M.; Parvar, N. A modified method for image encryption based on chaotic map and genetic algorithm.
Multimed. Tools Appl. 2020, 79, 26927–26950. [CrossRef]

27. Si, Z.H.; Wei, W.; Li, B.S.; Feng, W.J. Analysis of DNA Image Encryption Effect by Logistic-Sine System Combined with Fractional
Chaos Stability Theory. J. Imaging Sci. Technol. 2020, 64. [CrossRef]

28. Faragallah, O.S. Optical double color image encryption scheme in the Fresnel-based Hartley domain using Arnold transform and
chaotic logistic adjusted sine phase masks. Opt. Quantum Electron. 2018, 50. [CrossRef]

29. Hua, Z.; Jin, F.; Xu, B.; Huang, H. 2D Logistic-Sine-coupling map for image encryption. Signal Process. 2018, 149, 148–161.
[CrossRef]

30. Li, H.; Yu, C.; Wang, X. A novel 1D chaotic system for image encryption, authentication and compression in cloud. Multimed.
Tools Appl. 2021, 80, 8721–8758 [CrossRef]

31. Pourjabbar Kari, A.; Habibizad Navin, A.; Bidgoli, A.M.; Mirnia, M. A new image encryption scheme based on hybrid chaotic
maps. Multimed. Tools Appl. 2021, 80, 2753–2772. [CrossRef]

32. Sangavi, V.; Thangavel, P. An exotic multi-dimensional conceptualization for medical image encryption exerting Rossler
systemand Sine map. J. Inf. Secur. Appl. 2020, 55. [CrossRef]

33. Wang, X.; Wang, Q. A fast image encryption algorithm based on only blocks in cipher text. Chin. Phys. B 2014, 23, 030503.
[CrossRef]

34. Zhang, X.; Fan, X.; Wang, J.; Zhao, Z. A chaos-based image encryption scheme using 2D rectangular transform and dependent
substitution. Multimed. Tools Appl. 2016, 75, 1745–1763. [CrossRef]

35. Zhou, N.; Hu, Y.; Gong, L.; Li, G. Quantum image encryption scheme with iterative generalized Arnold transforms and quantum
image cycle shift operations. Quantum Inf. Process. 2017, 16. [CrossRef]

36. Cao, W.; Mao, Y.; Zhou, Y. Designing a 2D infinite collapse map for image encryption. Signal Process. 2020, 171. [CrossRef]
37. Li, T.; Shi, J.; Zhang, D. Color image encryption based on joint permutation and diffusion. J. Electron. Imaging 2021, 30, 013008.

[CrossRef]
38. Zhan, K.; Wei, D.; Shi, J.; Yu, J. Cross-utilizing hyperchaotic and DNA sequences for image encryption. J. Electron. Imaging 2017,

26. [CrossRef]
39. Chai, X.; Fu, X.; Gan, Z.; Lu, Y.; Chen, Y. A color image cryptosystem based on dynamic DNA encryption and chaos. Signal

Process. 2019, 155, 44–62. [CrossRef]
40. Zhu, X.; Liu, H.; Liang, Y.; Wu, J. Image encryption based on Kronecker product over finite fields and DNA operation. Optik

2020, 224. [CrossRef]
41. Ben Farah, M.A.; Guesmi, R.; Kachouri, A.; Samet, M. A novel chaos based optical image encryption using fractional Fourier

transform and DNA sequence operation. Opt. Laser Technol. 2020, 121. [CrossRef]
42. Wu, J.; Shi, J.; Li, T. A novel image encryption approach based on a hyperchaotic system, pixel-level filtering with variable

kernels, and DNA-level diffusion. Entropy 2020, 22, 5. [CrossRef] [PubMed]
43. Yang, Q.; Zhang, K.; Chen, G. A modified generalized Lorenz-type system and its canonical form. Int. J. Bifurc. Chaos 2009,

19, 1931–1949. [CrossRef]
44. Yang, Q.; Bai, M. A new 5D hyperchaotic system based on modified generalized Lorenz system. Nonlinear Dyn. 2017, 88, 189–221.

[CrossRef]
45. Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom.

1985, 16, 285–317. [CrossRef]
46. Li, Y.; Wang, C.; Chen, H. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level

permutation. Opt. Lasers Eng. 2017, 90, 238–246. [CrossRef]
47. Zhu, C.; Hu, Y.; Sun, K. New image encryption algorithm based on hyperchaotic system and ciphertext diffusion in crisscross

pattern. J. Electron. Inf. Technol. 2012, 34, 1735–1743. [CrossRef]
48. Li, T.; Zhou, M. ECG classification using wavelet packet entropy and random forests. Entropy 2016, 18, 285. [CrossRef]
49. Li, T.; Hu, Z.; Jia, Y.; Wu, J.; Zhou, Y. Forecasting crude oil prices using ensemble empirical mode decomposition and sparse

Bayesian learning. Energies 2018, 11, 1882. [CrossRef]
50. Song, Y.; Wu, D.; Deng, W.; Gao, X.Z.; Li, T.; Zhang, B.; Li, Y. MPPCEDE: Multi-population parallel co-evolutionary differential

evolution for parameter optimization. Energy Conv. Manag. 2021, 228, 113661. [CrossRef]

145



Entropy 2021, 23, 510

51. Deng, W.; Shang, S.; Cai, X.; Zhao, H.; Song, Y.; Xu, J. An improved differential evolution algorithm and its application in
optimization problem. Soft Comput. 2021, 25, 5277–5298. [CrossRef]

52. Li, T.; Qian, Z.; He, T. Short-term Load Forecasting with Improved CEEMDAN and GWO-based Multiple Kernel ELM. Complexity
2020, 2020, 1209547. [CrossRef]

53. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: from error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef]

54. Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel.
Areas Telecommun. (JSAT) 2011, 1, 31–38.

146



entropy

Article

Automated Spleen Injury Detection Using 3D Active Contours
and Machine Learning

Julie Wang 1, Alexander Wood 2, Chao Gao 2, Kayvan Najarian 1,2,3,4,5 and Jonathan Gryak 2,5,*

Citation: Wang, J.; Wood, A.; Gao, C.;

Najarian, K.; Gryak, J. Automated

Spleen Injury Detection Using 3D

Active Contours and Machine

Learning. Entropy 2021, 23, 382.

https://doi.org/10.3390/e23040382

Academic Editor: Amelia Carolina

Sparavigna

Received: 15 February 2021

Accepted: 22 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, MI 48109, USA; wangjuli@umich.edu (J.W.); kayvan@med.umich.edu (K.N.)

2 Department of Computational Medicine and Bioinformatics, University of Michigan,
Ann Arbor, MI 48109, USA; alexwood2@gmail.com (A.W.); gchao@umich.edu (C.G.)

3 Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA
4 Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
5 Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI 48109, USA
* Correspondence: gryakj@med.umich.edu

Abstract: The spleen is one of the most frequently injured organs in blunt abdominal trauma. Computed
tomography (CT) is the imaging modality of choice to assess patients with blunt spleen trauma, which
may include lacerations, subcapsular or parenchymal hematomas, active hemorrhage, and vascular
injuries. While computer-assisted diagnosis systems exist for other conditions assessed using CT scans,
the current method to detect spleen injuries involves the manual review of scans by radiologists, which
is a time-consuming and repetitive process. In this study, we propose an automated spleen injury
detection method using machine learning. CT scans from patients experiencing traumatic injuries were
collected from Michigan Medicine and the Crash Injury Research Engineering Network (CIREN) dataset.
Ninety-nine scans of healthy and lacerated spleens were split into disjoint training and test sets, with
random forest (RF), naive Bayes, SVM, k-nearest neighbors (k-NN) ensemble, and subspace discriminant
ensemble models trained via 5-fold cross validation. Of these models, random forest performed the
best, achieving an Area Under the receiver operating characteristic Curve (AUC) of 0.91 and an F1 score
of 0.80 on the test set. These results suggest that an automated, quantitative assessment of traumatic
spleen injury has the potential to enable faster triage and improve patient outcomes.

Keywords: image segmentation; computer-assisted diagnosis; machine learning; spleen injury detection

1. Introduction

Blunt spleen injuries account for up to half of all abdominal solid organ injuries.
Common causes include road traffic accidents, falls, physical assaults, and sports-related
injuries. Multiphasic contrast-enhanced computed tomography (CT) is the standard non-
invasive diagnostic tool for injury evaluation of blunt spleen injuries [1], which include
lacerations, subcapsular or parenchymal hematomas, active hemorrhage, and vascular
injuries. The type and severity of spleen injuries are commonly described based on the
Abbreviated Injury Scale (AIS) or the American Association for Trauma (AAST) Organ
Injury Scale (OIS). Currently, detection and classification of spleen injuries rely on the
manual review of radiologists. This manual process is not only inefficient but also subject
to variability based on the reviewer [1,2].

Many computer-assisted diagnosis (CAD) systems have been developed to detect,
locate, and assess potential anomalies or injuries to aid radiologists in the diagnostic
process. Detection of pathology in the chest, breast, and colon has been the main focus of
previous CAD studies [3]. Other extant CAD systems include those that target the brain,
liver, skeletal, and vascular systems [3–5]. Although there have not been previous studies
on CAD systems for the spleen, an automated method for localizing and segmenting the
spleen [6] was previously developed by the co-authors of this study. This method can be
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utilized to segment the region of interest in a CT volume, a prerequisite step to performing
spleen injury detection.

Machine learning techniques, including Support Vector Machines (SVM), random forest
(RF), logistic regression (LR), and deep learning methods, have been widely applied for
analysis of medical images [5]. A critical step in application of machine learning to medical
image analysis is the extraction and representation of features salient to the classification
or detection task at hand. Different types of features and feature extraction methods have
been employed based on the anomaly of interest. Common features used include histogram-
based [7,8], shape-based [7,9–11], texture-based [12–14], region-based [10,15], and bag-of-
words features [15], among others.

In this paper, we propose a supervised classification scheme to discriminate lacerated
spleens from healthy controls, a schematic diagram that is presented in Figure 1. Lacer-
ations were chosen for study as they are major types of blunt spleen injury that can be
readily observed from contrast-enhanced CT, appearing as linear or branching regions
extending from the capsular surface of the spleen and often disrupting the smooth splenic
contour [1]. CT scans from patients experiencing traumatic injuries were collected from
the Michigan Medicine and the Crash Injury Research Engineering Network (CIREN)
dataset [16]. Healthy and lacerated spleens within CT scans from 99 patients were automat-
ically segmented using a previously developed method [6]. From the segmented spleen
region, various features were extracted: statistical histogram-based features including
Rényi entropy; shape-based feature including fractal dimension [17], whose generalized
version is directly related to Rényi entropy [18]; and texture-based features. The perfor-
mance of five machine learning models: RF, naive Bayes, SVM, k-nearest neighbors (k-NN)
ensemble, and subspace discriminant ensemble, were trained using 5-fold cross-validation.
On a distinct test set, RF was the best performing classifier, achieving an Area Under the
receiver operating characteristic Curve (AUC) of 0.91 and F1 score of 0.80. This study
demonstrates the potential for such an automated injury assessment method to reduce
physician workload and improve patient outcomes by enabling faster injury triage.

Figure 1. A schematic diagram of the proposed method.
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2. Materials and Methods

2.1. Dataset

CT scans used in this study were obtained from Michigan Medicine patients who
experienced traumatic abdominopelvic injuries under an IRB-approved retrospective study.
Patient consent was waived by the IRB as the research involved no more than minimal risk
to the subjects. Additional training data were obtained from the Crash Injury Research
Engineering Network (CIREN) dataset [16] containing CT volumes for patients who expe-
rienced traumatic injuries in a motor vehicle accident. Each patient CT scan used in this
study contained an axial abdominopelvic volume, comprised of between 42 and 122 slices
of 5 mm thickness from the heart to the pelvic region. Samples with artifacts around the
spleen region were removed.

A total of 99 CT scans, one per patient, were used in this study, consisting of 54 healthy
spleen samples and 45 lacerated spleen samples. The lacerated samples are categorized by
the Abbreviated Injury Scale (AIS) and the Organ Injury Scale (OIS). Of the 45 lacerated
spleen samples, the distribution of injury is as follows: OIS grade I or II (AIS = 2): 15, OIS
grade III (AIS = 3): 16, OIS grade IV (AIS = 4): 10, OIS grade V (AIS = 5): 4.

The previously developed spleen segmentation method utilized in this study [6] also
made use of the Michigan Medicine and CIREN datasets. In that study, CT scans from 147
patients (one scan per patient) were used to train and test automated spleen segmentation
on patients with healthy spleens. The training set was composed of 108 patients, 65 from
Michigan Medicine, and 43 from CIREN, with a disjoint test set containing 39 CT scans,
21 from Michigan Medicine, and 18 from CIREN. The patients utilized for training in the
prior segmentation study are distinct from those used in this study for training spleen
injury detection.

2.2. Spleen Segmentation

Segmentations of the spleen were obtained from each abdominopelvic CT volume
using a previously developed fully automated spleen localization and segmentation
method [6]. Preprocessing was first applied to the images in order to remove noise through
standard and local contrast adjustment, as well as the application of image denoising filters.
Localization then utilized machine learning methods to identify a small region within the
spleen as a seed mask. Segmentation was then performed via a series of reinitialized active
contours using the established seed mask.

Segmentations that resulted in a total segmented spleen volume of less than 80 cm2

were considered segmentation errors. This occurred in 6 out of 99 cases, and these samples
were removed from the dataset. Manual annotations reviewed by an expert radiologist
were obtained for 36 healthy samples as well as one lacerated sample. The segmentation
method achieved an average Dice score of 0.87, excluding segmentation errors. Sample
segmentations of healthy and lacerated spleens are illustrated in Figure 2.

2.3. Feature Extraction

In this study, four types of features—histogram features, fractal dimension features,
Gabor features, and shape features—were extracted to train classifiers capable of discrimi-
nating injured spleens from healthy controls. Histogram and Gabor features were used
to represent and discriminate textures within the spleen segmentation, while fractal and
shape analyses were applied to characterize the spleen contour.
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(a) Healthy Sample (b) Grade I or II (AIS =‘2)

(c) Grade III (AIS = 3) (d) Grade IV (AIS‘= 4)

Figure 2. Segmentation of healthy and lacerated spleens.

2.3.1. Histogram Features

The histogram of an image is a plot of the intensity values of a color channel against the
number of pixels at that value. The shape of the histogram provides information regarding
the contrast and brightness of the image [19]. Five statistical and information-theoretic
features of the histogram were extracted from the data for this analysis: mean, variance,
skewness, kurtosis, and Rényi entropy. Mean denotes the average intensity level, while
variance represents the variation of intensities around the mean. Skewness measures the
asymmetry of the data about the mean and kurtosis specifies whether the distributions
are flat or peaked relative to a normal distribution. Additionally, entropy measures the
disorder in the image based on the distribution of intensity levels.

2.3.2. Fractal Dimension Analysis

Fractals are mathematical sets with high degrees of geometrical complexity capable
of modeling irregular, complex shapes [20]. Fractal features have been widely applied in
texture and shape analyses of images, including medical images [9,21] to characterize the
irregularity of physical structures.

Fractal dimension (Df) is one of the most important fractal features and provides
a quantitative measure of the coarseness of an image. Since lacerated spleens generally
display an irregular [2], jagged contour as compared to healthy spleens (see Figure 2), the
fractal dimension of binary segmentation images was calculated as a shape-based feature.
Both the fractal dimension of the segmentation perimeter as well as the segmentation area
were extracted.

In this study, the widely used box counting method [17] was employed to estimate
Df for each binary image of segmentation, after which the fractal dimension Df was
calculated for each frame in the CT volume containing the segmented spleen. Let N(r)
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denote the number of boxes with fixed side length r necessary to cover the positive pixels
of the segmentation. The box-counting method iteratively calculates N(r) for each r of
1, 2, 3, ..., 512 pixels. Df is then calculated by fitting log N(r) to a linear function of log r by
the least squares error method.

2.3.3. Gabor Features

A Gabor filter is a linear filter often used for edge detection. Gabor filter-based features
are commonly used to represent and discriminate textures in images and are captured
from responses of images convolved with Gabor filters. A two-dimensional Gabor filter is
a Gaussian kernel function modulated by a complex sinusoidal plane wave, and can be
defined as follows:

g(x, y; λ, θ, ψ, σ, γ) = exp
(
− x′2 + γ2y′2

2σ2

)
exp

(
i(2π

x′

λ
+ ψ)

)
x′ = x cos θ + y sin θ (1)

y′ = −x sin θ + y cos θ

In Equation (1), λ is the wavelength of the sinusoidal factor, θ is the orientation of the
normal to the parallel stripes of a Gabor function, ψ is the phase offset, σ is the standard
deviation of the Gaussian envelope, and γ is the spatial aspect ratio [22,23].

In this study, a filter bank of 40 Gabor filters in 5 scales and 8 orientations was
employed. From the response matrices, two types of Gabor features were extracted: local
energy and mean amplitude. Local energy is calculated by the sum of the squared values in
each response matrix. Mean amplitude captures the response amplitude for each response
matrix by taking the sum of absolute values in each matrix.

2.3.4. Shape Features

Values of circularity, eccentricity, orientation, and the difference between the seg-
mented area and its convex area were extracted to characterize the shape of the segmented
spleen. Circularity, calculated as

(4 ∗ Area ∗ π)/(Perimeter2), (2)

captures the roundness of objects; a perfect circle would have a circularity of 1. Eccentricity
is the ratio of the distance between the foci of an ellipse and its major axis length. Orien-
tation was calculated as the angle between the x-axis and the major axis of an ellipse. In
addition, finally, the convex area is the area of the convex hull of the region, defined as the
smallest convex set that contains the original region. The difference between this area and
the original segmented area was also extracted.

2.4. Classification
2.4.1. Training

Ninety-three classification samples were randomly separated into training and test
sets, respectively, comprising 80% and 20% of the samples, with the relative number of
injury and healthy samples being balanced. As only one CT scan per patient was utilized
in this study, patients and their respective scans were exclusively assigned to either the
training or test set.

5-fold cross validation was employed during the training phase to select models with
low variance and low bias. The training set was divided into 5 folds of roughly equal size.
The classifier was then trained on 4 folds and tested on the remaining fold. Validation
accuracy, AUC, and the associated standard deviations were used to select models.
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2.4.2. Model Selection

Five models—RF, naive Bayes, SVM, k-NN ensemble, and subspace discriminant
ensemble—were selected based on validation performance during the training phase as
reported in Table 1. Of the five models, RF performed the best on the training set with an
AUC of 0.91.

RF, naive Bayes, and SVM are all popular supervised learning models used for analysis
on medical images [5]. Naive Bayes is a probabilistic classifier applying Bayes theorem
with an assumption of feature pairwise independence given class values. Ensemble learn-
ing combines several classifiers to improve prediction performance. RF is an ensemble
learner that leverages multiple decision trees to produce a more accurate and stable pre-
diction. Subspace discriminant ensemble [24] employs the linear discriminant analysis
(LDA) scheme for a specific discriminant subspace of low dimension. The k-NN ensemble
employed in this study uses the Random Space method with k-NN learners.

Deep learning, and more specifically the application of convoluted neural networks
(CNN) to image analysis, has achieved great success in recent years [25]. To assess the
validity of the hand-crafted features proposed in this study, an end-to-end deep learning
method was evaluated along with the traditional machine learning models. A pre-trained
CNN, ResNet-50 [26], was used for feature extraction on the segmented CT volumes,
with subsequent classification performed by a Long Short-term Memory (LSTM) artificial
recurrent neural network (RNN). This combination of CNN for slice-wise feature extraction
and LSTM for spatial information extraction across the CT volume has been successful in
previous injury detection studies, including classification of intracranial hemorrhage [27,28],
lung cancer [29], as well as liver and brain tumors [30]. The goal of this approach is to
leverage 2D models pre-trained on the ImageNet dataset [31] while still accounting for
spatial information between slices in the 3D volume. ResNet-50 was selected for feature
extraction because of its relatively higher accuracy and lower number of parameters (23
M) compared to other architectures commonly used for medical image analysis, such as
AlexNet (62 M parameters) and VGGNet (138 M parameters).

Feature extraction was performed by ResNet-50 on each slice of the segmented CT,
which were cropped to reduce blank space surrounding the region of interest. An LSTM
model was then employed to perform classification on the extracted features across each
patient’s CT sequence.

Table 1. Mean and standard deviation (SD) of performance metrics for spleen injury classification
from 5-fold cross validation on the training set. The highest value for each performance metric is
bolded while the lowest SD is italicized.

Metric RF Naive Bayes SVM k-NN Subspace Discriminant

Accuracy 0.83 (0.10) 0.71 (0.11) 0.73 (0.10) 0.73 (0.10) 0.67 (0.10)
Sensitivity 0.77 (0.16) 0.66 (0.17) 0.61 (0.17) 0.56 (0.18) 0.44 (0.19)
Specificity 0.89 (0.12) 0.75 (0.15) 0.84 (0.13) 0.89 (0.11) 0.87 (0.13)

F1 0.81 (0.12) 0.68 (0.13) 0.67 (0.14) 0.65 (0.16) 0.54 (0.18)
AUC 0.91 (0.08) 0.75 (0.12) 0.81 ( 0.10) 0.84 (0.10) 0.77 (0.13)

3. Results

3.1. Classifier Performance

The trained classifiers were evaluated on the test set, with the resulting accuracy,
sensitivity, specificity, F1, and AUC reported in Table 2. The RF model achieved the
best classification performance with an AUC of 0.91 and an F1 of 0.80. Overall, testing
loss and accuracy are consistent with 5-fold cross validation results on the training set,
demonstrating the generalizability of the proposed method on unseen data. No over-fitting
seemed to occur on any of the models reported.
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Table 2. Performance metrics for spleen injury classification on the test set. The highest value for
each performance metric is bolded.

Metric RF Naive Bayes SVM k-NN Subspace Discriminant

Accuracy 0.83 0.70 0.71 0.75 0.64
Sensitivity 0.76 0.63 0.56 0.59 0.40
Specificity 0.89 0.76 0.85 0.88 0.85

F1 0.80 0.66 0.64 0.68 0.50
AUC 0.91 0.74 0.80 0.84 0.76

3.2. Comparison against Deep Learning

A comparison between the RF classifier performance and the deep learning method is
shown in Table 3. The RF classifier trained with hand-crafted features demonstrated better
performance than the deep learning method, with RF achieving an AUC of 0.91 while the
deep learning method achieved an AUC of 0.72. The lower deep learning performance is
likely due to the small sample size available in this study, as deep learning methods require
large datasets to minimize over-fitting and achieve good performance [25,32]. These results
demonstrate that hand-crafted features using domain knowledge can overcome sample
size limitations.

Table 3. Performance metrics for the RF classifier trained using hand-crafted features and for the
deep learning method. The highest value for each performance metric is bolded.

Metric RF (Hand-Crafted) ResNet + LSTM (Deep Learning)

Accuracy 0.83 0.79
Sensitivity 0.76 0.67
Specificity 0.89 0.90

F1 0.80 0.75
AUC 0.91 0.72

3.3. Leave-One-Site-Out Analysis

This study utilizes two different datasets—the internal Michigan Medicine dataset
and the public CIREN dataset. A leave-one-site-out analysis was performed to evaluate
the cross-site generalizability of the proposed method.

To achieve an 80% to 20% training/test split, the Michigan Medicine dataset, con-
taining a total of 54 samples, was used as the training set while 14 CIREN samples were
used as the test set. The 14 CIREN test samples were randomly stratified based on injury
grade. The best performing classifier from Section 2.4.2, RF, was trained on the Michigan
Medicine samples and tested on the CIREN samples. Performance metrics of the classifier
are reported in Table 4.

Table 4. Performance metrics for the RF classifier trained on Michigan Medicine samples and tested
on CIREN samples.

Metric RF

Accuracy 0.75
Sensitivity 0.59
Specificity 0.94

F1 0.71
AUC 0.91
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The RF classifier achieved good performance on the cross-site generalizability as-
sessment, with an AUC of 0.91 and a F1 of 0.71. Compared to the performance on the
mixed-site test set, the classifier achieved the same AUC but lower F1, accuracy, and sen-
sitivity. This performance difference is likely affected by the limited sample size used to
train the classifier as only one dataset is utilized. Overall, the performance of the classifier
demonstrates that the proposed method is relatively robust against variability stemming
from differences in the data from two different sites.

4. Discussion

RF outperformed other classifiers on both the training and test set, which is consistent
with its popularity among many previous medical image analysis studies [33–36]. Several
features of RF may contribute to its higher performance on medical images—RFs are
suited for high predictor dimension relative to sample size, they inherently perform feature
selection, and they generalize well to regions of the feature space with sparse data [34,35].

Table 5 reports the classification accuracy of RF by injury grade on both the training
and test sets. Although the RF classifier correctly classified the majority of samples across all
injury grades, most incorrect classifications occurred within mildly or moderately injured
samples (AIS = 2, 3). High classification accuracy is seen among healthy samples and more
severe samples (AIS = 4, 5). Lower accuracy and higher variance were achieved for all
injury grades as compared to healthy samples, likely due to the smaller number of samples
within each individual injury grade compared to the healthy dataset. Despite the lower
performance on less severe cases, the proposed method performs well on severe cases,
demonstrating the potential to increase injury triage efficiency in real-world applications.

Table 5. RF classification accuracy by injury grades. The mean accuracy and standard deviation (SD)
across 5-fold cross validation on the training set, as well as the mean accuracy on the test set are reported.

Injury Grade Training Accuracy Testing Accuracy

Healthy 0.89 (0.12) 0.89
AIS = 2 0.72 (0.30) 0.70
AIS = 3 0.74 (0.27) 0.78

AIS = 4, 5 0.88 (0.22) 0.79

Common misclassifications included classification of a mildly or moderately injured
sample as healthy and classification of a healthy sample as lacerated, as illustrated in
Figure 3. A lacerated sample with lower injury severity misclassified as healthy is likely
caused by a relatively smooth segmentation contour (Figure 3c), which may be the result
of imperfect segmentation of the lacerated region and/or a lower degree of laceration.
Healthy samples misclassified as lacerated were often due to noise in the original image,
which produces misleading segmentations or irregular contour shapes (Figure 3d,e).

Existence of a small portion of samples with localization errors likely led to lower
model performance due to imperfect or erroneous segmentations. Image resolution and
noise are likely contributing factors to imperfect localization and segmentation results.
Previous studies have shown that image thickness is inversely related to image noise but
directly related to image resolution [37]. In order, 5 mm CT slices were utilized in this
study, which has worked relatively well due to its lower image noise compared to thinner
slices. However, 5 mm slices have a lower resolution, decreasing diagnostic content and the
proposed method’s ability to detect small lesions. Although not available in the datasets
utilized in this study, 3 mm slices may strike an ideal balance between minimizing image
noise and maximizing image resolution and can be explored in the future [37].
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(a) (b)

(c) (d) (e)
Figure 3. Classification results. (a,b) lacerated (AIS = 2) samples correctly classified as lacerated;
(c) lacerated (AIS = 2) sample incorrectly classified as healthy; (d,e) healthy samples incorrectly
classified as lacerated.

Future work will focus on refinement of the segmentation method to improve clas-
sification accuracy in lower severity cases. Additional pre- and post-processing of in the
segmentation method can be introduced to reduce noise and increase discrimination be-
tween healthy and mildly lacerated spleen. Incorporation of more samples in each injury
grade may increase classifier performance and support extension of the current binary
classification to multi-class classification on different injury grades, providing additional
clinical use cases. Finally, although this study focuses on spleen lacerations, future work
should generalize to other blunt spleen injuries, including hematomas and hemorrhages.

5. Conclusions

In this study, an automated method for detecting spleen lacerations in CT scans was
proposed. The classification scheme was built upon a previously developed localization
and segmentation process [6], and used histogram, Gabor filters, fractal dimension, and
shape features to distinguish lacerated spleens from healthy controls. Classifiers examined
were RF, naive Bayes, SVM, k-NN ensemble, subspace discriminant ensemble, and a CNN-
based architecture. The RF method outperformed other models in discriminating between
lacerated and healthy spleens, achieving an AUC of 0.91 and an F1 of 0.80. Additionally,
a leave-one-site-out analysis was performed that demonstrated the method’s robustness
against variability stemming from differences in the data from two different sites. Results
from this study demonstrate the potential for automated, quantitative assessment of
traumatic spleen injury to increase triage efficiency and improve patient outcomes. Future
work will focus on improving classifier accuracy in less severe cases, extension of the
method to support multi-class classification based on injury grade, and generalization to
other types of blunt spleen injuries.
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Abstract: With increasing utilization of digital multimedia and the Internet, protection on this
digital information from cracks has become a hot topic in the communication field. As a path for
protecting digital visual information, image encryption plays a crucial role in modern society. In this
paper, a novel six-dimensional (6D) hyper-chaotic encryption scheme with three-dimensional (3D)
transformed Zigzag diffusion and RNA operation (HCZRNA) is proposed for color images. For this
HCZRNA scheme, four phases are included. First, three pseudo-random matrices are generated
from the 6D hyper-chaotic system. Second, plaintext color image would be permuted by using the
first pseudo-random matrix to convert to an initial cipher image. Third, the initial cipher image is
placed on cube for 3D transformed Zigzag diffusion using the second pseudo-random matrix. Finally,
the diffused image is converted to RNA codons array and updated through RNA codons tables,
which are generated by codons and the third pseudo-random matrix. After four phases, a cipher
image is obtained, and the experimental results show that HCZRNA has high resistance against
well-known attacks and it is superior to other schemes.

Keywords: hyper-chaotic; ribonucleic acid; color image encryption; transformed Zigzag

1. Introduction

Nowadays, rapid developments of Internet and digital technologies have led to
tremendous digital multimedia contents transmitting over Internet networks. Thus, protec-
tion on the contents of digital data has attracted serious concern from medical, military,
and many other areas. Various image encryption methods have emerged by using crypto-
graphic techniques [1–4]. Although there exists a view that AES is not suitable for image
encryption, Zhang recently refuted it by using AES of cipher block chaining mode to
encrypt images [5].

The chaos-based encryption method has become one of the most ideal methods,
since it has a lot of appropriate characteristics, e.g. high sensitivity on initial conditions,
mixing property, ergodicity, complex behavior, etc. [6–8]. As a result, a lot of researchers
have presented plenty of image encryption schemes with a chaotic system [9–13]. In [14],
Askar et al. proposed a chaotic economic map based image encryption method, whose
simulation results indicated that the proposed algorithm could successfully encrypt and
decrypt the images, and it had a good performance on security tests, except noise attacks
analysis. By using a single round based hyper-chaotic system, Shaikh et al. presented
a color image encryption method with bi-directional pixel diffusion [15]. Additionally,
Li et al. presented a "transforming-scrambling-diffusion” model based color image encryp-
tion method with a four-dimensional (4D) hyper-chaotic system, which could convert pixel
values to gray format before scrambling [16]. There is no doubt that some of the encryption
methods in these chaos-based schemes still have weaknesses to some extent. However,
different chaotic systems are neither superior nor inferior each other. A high-dimensional
chaotic system has complex chaotic behaviors with high time cost, while a low-dimensional
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chaotic system is opposite [17–19]. Hence, in this paper, a 6D hyper-chaotic system is
employed as a pseudo-random numbers sequence generator for more complexity.

Zigzag is a common scrambling operation in image encryption [20,21]. In [22],
Li et al. presented a 3D logistic map based color image encryption method with Zigzag
scramble; the experiments showed that this method had brute-force attack and statistical
attack resistance, but differential attacks analysis was missing. While, Wang et al. proposed
a color encryption method with a Zigzag transformation, which could change the start pixel
from upper left corner to the other three corners in an image [20]. Next year, Wang et al. [23]
presented another image encryption method, which introduced an extended Zigzag confu-
sion for a non-square image. Additionally, in [24], Zhao et al. proposed a novel color image
encryption by combining Zigzag map and Hénon map together for permutation. However,
these image encryption schemes implement Zigzag scramble on 2D images, which leads
to some adjacent values in special positions of the image not being able to be scrambled,
and different channels of a color image could not be scrambled, either. On the other hand,
some image encryptions transformed 2D image to 3D cube [25], which gives out a new
encryption inspiration on permutation, but most of them were focused on rotation, but not
Zigzag. Therefore, Zigzag is utilized in diffusion on a 3D cube instead of scramble on 2D
image to eliminate these drawbacks in this paper.

Deoxyribonucleic acid (DNA), a biological concept, has recently become a popular
trend in the image encryption field [26,27]. By using DNA-based techniques, cipher
images could obtain competitive entropy, correlation coefficients etc. [4,28–31]. In [29],
Chai et al. presented a new diffusion mechanism that is based on the random numbers
that are generated by plaintext image, and incorporated DNA encryption with four-wing
hyper-chaotic system. Reference [32] proposed an image encryption method using a spatial
map based DNA sequence matrix. In general, the DNA-based encryption mechanism
includes two steps: use DNA operation rules to convert pixels of plaintext image to DNA
codon matrix and change chaotic sequence to DNA keys to generate cipher image with
DNA codon matrix.

While unlike the two strands structure of DNA sequences, Ribonucleic acid (RNA)
is a single strand structure. RNA could form double helixes with complementary base
pairing. By using this feature, some new image encryption methods have been proposed.
In [33], Mahmud et al. presented an image encryption method by combining RNA with
Genetic Algorithm (GA) through using a logistic map. In [34], Abbasi et al. employed
Chen’s chaotic system to encrypt an image with imperialist competition algorithm and
RNA operations. Yadollahi et al. utilized the concepts of DNA and RNA to construct a
two-phase image encryption method [35]. While an image encryption method is presented
by Wang et al. through using an one-dimensional (1D) chaotic system combined from
Logistic and Sine map, extended Zigzag confusion, and RNA operation [23]. However, all
of these four schemes focus on gray image encryption. Although there is a color image
experiment in [23], it is realized by running the scheme three times in three channels.

Being motivated by above discussions, a novel color image encryption method, called
HCZRNA, is proposed in this paper. At the beginning, a 6D hyper-chaotic system is
employed to generate three pseudo-random matrices. Subsequently, one of the pseudo-
random matrices is used to permute plaintext color image. Additionally, 3D transformed
Zigzag diffusion is implemented on initial cipher image with the second pseudo-random
matrix. After diffusion, an RNA operation is used to convert the diffused image to RNA
codons array, and update this array through RNA codons tables that are generated by the
third pseudo-random matrix. Finally, a cipher image is obtained.

The main contributions of this work is listed as follows:

• A novel 6D hyper-chaotic system is employed in this paper to produce chaotic matrix
for permutation, diffusion, and RNA operation.

• A new 3D transformed Zigzag diffusion scheme is proposed to encrypt color images.
• RNA operation is modified specifically for color images.
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• Extensive experiments and analyses demonstrate that the proposed HCZRNA could
resist various types of attacks.

The rest of this paper is structured as follows: Section 2 introduces the used 6D hyper-
chaotic system, 3D Zigzag and RNA. Section 3 presents the HCZRNA scheme and explains
how initial values and pseudo-random matrix are generated in detail. Section 4 reports
and analyzes the experimental results. Finally, Section 5 concludes this paper.

2. Preliminaries

2.1. The 6D Hyper-Chaotic System

There are a lot of classical chaotic systems, e.g. Sine map, Logistic map, Tent map, etc.,
which have simple mathematical forms and can be implemented easily. However, they
suffer from small key spaces, predictable orbits, limited ranges, etc. Existing research has
shown that higher dimensional chaotic systems are much securer for image encryption [36].
Therefore, a novel 6D hyper-chaotic system is employed in this paper for chaotic sequences
generation, which could be described as Equation (1) [37].

ẋ1 = g(ω + βx2
6)x2 − ax1

ẋ2 = cx1 + dx2 − x1x3 + x5

ẋ3 = −bx3 + x2
1

ẋ4 = ex2 + f x4

ẋ5 = −rx1

ẋ6 = x2

(1)

where a, b, c, d, e, f , g, r, ω, and β are controlling parameters, and xi(i = 1, 2, · · · , 6) are
state variables.

The fourth-order Runge–Kutta method is used to solve this hyper-chaotic system
with step size h = 0.001. We set the controlling parameters as (a, b, c, d, e, f , g, r, ω, β) =
(0.3, 1.5, 8.5,−2, 1,−0.1, 0.9, 1, 1, 0.2) and initial state variables as (x1, x2, x3, x4, x5, x6) =
(0.1, 0.6, 0.2, 0.02, 1, 0.5); Figure 1 shows this 6D hyper-chaotic system’s attractors. Its Lya-
punov exponents are λ1 = 7.340, λ2 = 0.087, λ3 = 0.006, λ4 = −0.368, λ5 = −1.349,
λ6 = −67.426. Since this chaotic system has three positive Lyapunov exponents, its predic-
tion time should be longer than other chaotic systems and it is hard to crack. Besides, this
hyper-chaotic system exhibits limit cycles, quasiperiodic, and bursting behavior. Accord-
ingly, it could generate effective a pseudo random sequence. More detailed demonstration
could be found in reference [37].

Figure 1. The attractors of six-dimensional (6D) hyper-chaotic system.
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2.2. 3D Transformed Zigzag Diffusion

Zigzag is a scanning method that is used to scramble pixels in image encryption.
By scanning and taking a pixel with left upper corner of image, then taking other pixels
one-by-one through Zigzag path, the image could be converted to a matrix in a fixed way.
Hence, the image’s pixels could be scrambled.

Traditional Zigzag scrambling could only walk through numbers in N × N matrix
with a fixed Zigzag path; an example of 4 × 4 matrix is shown in Figure 2. By this
fixed path, different channels of color image could not be scrambled with each other.
Due to its drawbacks, this paper proposes a novel 3D Zigzag transformation. Using this
transformation, each channel of color image would be cut into two triangles through a
diagonal line, and be placed on opposite surfaces of a cube, which is illustrated by an
example of 4 × 4 × 3 matrix, as shown in Figure 3. Subsequently, diffusion would start
from origin vertex of the frontal side of the cube, and walk through every pixels on six
surfaces at the front and back side synchronously with spiral Zigzag path, as in Figure 4.
For all triangles that are placed on the cube, the order of diffusion is shown in Figure 5. In
this way, different channels of color image could be diffused together.

Figure 2. 4 × 4 traditional Zigzag scramble.

2.3. RNA Operation

RNA is one of the major macromolecules necessary for living organism. RNA has
a single strand structure with four nitrogen bases: adnine (A), cytosine (C), guanine (G),
and uracil (U). For these four units of RNA, a binary system could be employed for
representation, which is shown in Table 1. According to the base pairing rules, four bases of
RNA could be coded and constructed into three nucleotides that correspond to one amino
acid called codon. Accordingly, there are 64 codons truth table of bases combinations, as
shown in Table 2. Assuming that pixels in the image could transfer into six-bits format, a
corresponding RNA codon could be found in Table 2.

Table 1. Binary representation of RNA.

RNA Bases A C G U

Binary 00 01 10 11
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Table 2. RNA codon table.

# Bin. Codon # Bin. Codon # Bin. Codon # Bin. Codon

0 000000 AAA 16 010000 CAA 32 100000 GAA 48 110000 UAA
1 000001 AAC 17 010001 CAC 33 100001 GAC 49 110001 UAC
2 000010 AAG 18 010010 CAG 34 100010 GAG 50 110010 UAG
3 000011 AAU 19 010011 CAU 35 100011 GAU 51 110011 UAU
4 000100 ACA 20 010100 CCA 36 100100 GCA 52 110100 UCA
5 000101 ACC 21 010101 CCC 37 100101 GCC 53 110101 UCC
6 000110 ACG 22 010110 CCG 38 100110 GCG 54 110110 UCG
7 000111 ACU 23 010111 CCU 39 100111 GCU 55 110111 UCU
8 001000 AGA 24 011000 CGA 40 101000 GGA 56 111000 UGA
9 001001 AGC 25 011001 CGC 41 101001 GGC 57 111001 UGC
10 001010 AGG 26 011010 CGG 42 101010 GGG 58 111010 UGG
11 001011 AGU 27 011011 CGU 43 101011 GGU 59 111011 UGU
12 001100 AUA 28 011100 CUA 44 101100 GUA 60 111100 UUA
13 001101 AUC 29 011101 CUC 45 101101 GUC 61 111101 UUC
14 001110 AUG 30 011110 CUG 46 101110 GUG 62 111110 UUG
15 001111 AUU 31 011111 CUU 47 101111 GUU 63 111111 UUU

Figure 3. Color image to cube.The first row is three channels of a color image. The second row is the
triangles generated from image. Additionally, the third row is the placement of triangles on a cube.
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(a) The front side (b) The back side

Figure 4. Three-dimensional (3D) transformed Zigzag diffusion. (a) is the Zigzag diffusion process
on the front side of cube. (b) is the Zigzag diffusion process on the back side of cube.

Figure 5. 3D transformed Zigzag path. For all triangles on the cube, 3D transformed Zigzag diffusion
is implemented through this order.

3. Encryption and Decryption

In this paper, image encryption could be divided into three parts. Firstly, a 6D
hyper-chaotic system is employed to generate chaotic matrices for encryption processes.
Subsequently, three-dimensional (3D) transformed Zigzag diffusion is implemented on the
permuted image. Finally, RNA concept is used for encoding and decoding.

3.1. Encryption Scheme

Suppose that plaintext image has N rows and N columns with RGB channels.
The flowchart of HCZRNA is described in Figure 6, and the specific operations are

listed, as follows.
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Figure 6. The process of encryption.

3.1.1. Initial Values Generation

The HCZRNA scheme uses a 256-bit key of different characters against attacks.
The 256-bit long security key would be utilized in two parts, which are hyper-chaotic
system initial values generation and RNA encryption.

At first, the initial values of hyper-chaotic system should be generated by a security
key. Details of initial values generation is performed in three steps:

• Step 1: divide the secret key K into 32 blocks, which could be expressed as K =
{k1, k2, . . . , k32}, each k is a 8-bits number.
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• Step 2: K array that is generated in step 1 is calculated into four intermediate pa-
rameters d1, d2, d3, d4 by Equation (2) with four user-defined constants c1, c2, c3 and
c4. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1 = c1 +
k1 ⊕ k2 ⊕ · · · ⊕ k8

256

d2 = c2 +
k9 ⊕ k10 ⊕ · · · ⊕ k16

256

d3 = c3 +
k17 ⊕ k18 ⊕ · · · ⊕ k24

256

d4 = c4 +
k25 ⊕ k26 ⊕ · · · ⊕ k32

256

(2)

where ⊕ represents bitwise XOR operation.
• Step 3: The initial values x1 to x6 of 6D hyper-chaotic system could be obtained from

the 4 intermediate parameters by Equation (3).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 =
((d1 + d2)× 108) mod 256

255

x2 =
((d2 + d3)× 108) mod 256

255

x3 =
((d3 + d4)× 108) mod 256

255

x4 =
((d1 + d3)× 108) mod 256

255

x5 =
((d1 + d4)× 108) mod 256

255

x6 =
((d2 + d4)× 108) mod 256

255

(3)

where mod means module operation.

3.1.2. Hyper-Chaotic Matrices Generation

With the initial values that are calculated in Section 3.1.1, chaotic matrices could
be generated from 6D hyper-chaotic system. In HCZRNA, chaotic matrices would be
utilized in three parts, which are permutation, 3D transformed Zigzag diffusion, and RNA
operation. Suppose that the plaintext image has N × N × 3 pixels, an N × N × 6 chaotic
matrix is needed for permutation, a 2 × N × N × 6 chaotic matrix for Zigzag, and 64 × 6
chaotic matrix for RNA.

Therefore, the 6D hyper-chaotic system utilizes initial values from Equation (3) to
iterate for generating a (3 × N × N + 64)× 6 matrix. Given that ith iteration’s state values
could be described as si = {x1,i, x2,i, x3,i, x4,i, x5,i, x6,i} , a hyper-chaotic matrix S could be
depicted as Equation (4) after all iterations.

S = {s1, s2, . . . , sM} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1,1, x1,2, . . . , x1,M

x2,1, x2,2, . . . , x2,M

x3,1, x3,2, . . . , x3,M

x4,1, x4,2, . . . , x4,M

x5,1, x5,2, . . . , x5,M

x6,1, x6,2, . . . , x6,M

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

6×M

(4)

where M = 3 × N × N + 64.
However, the numbers in matrix S are double-precision values, which are suitable

for permutation but not for Zigzag and RNA, and color image only has three channels
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that are smaller than channels of S. Hence, matrix S should be separated into three pieces
respectively.

For permutation, a matrix S1 is calculated from the first N × N part of S by Equation (5).

S1 =

⎧⎪⎨
⎪⎩

x1,1 + x2,1, x1,2 + x2,2, . . . , x1,M′ + x2,M′

x3,1 + x4,1, x3,2 + x4,2, . . . , x3,M′ + x4,M′

x5,1 + x6,1, x5,2 + x6,2, . . . , x5,M′ + x6,M′

⎫⎪⎬
⎪⎭

3×M′

(5)

where M′ = N × N.
While matrix S2 is cut from sM′+1 to s3M′

in S for 3D transformed Zigzag diffusion.
Additionally, because 8-bit integer digits are needed for diffusion, each item x′i,j in S2

should be calculated by Equation (6).

Suppose �si = {xi,(M′+1), xi,(M′+2), . . . , xi,3M′ }

yi,j = 2 × xi,j +
max(�si) + min(�si)

max(�si)− min(�si)

x′i,j = ((�|yi,j| − �|yi,j|��)× 1010) mod 256

(6)

where max and min are maximum and minimum operations.
Matrix S3 is the last part of matrix S and it is used to sort operation for encrypting

RNA codons tables as indexes. Because there only needs two indexes sequences, matrix S3
should be summarized as Equation (7).

index1 = {x1,3M′+1 + x2,3M′+1 + x3,3M′+1, x1,3M′+2 + x2,3M′+2 + x3,3M′+2, . . . , x1,3M′+64 + x2,3M′+64 + x3,3M′+64}
index2 = {x4,3M′+1 + x5,3M′+1 + x6,3M′+1, x4,3M′+2 + x5,3M′+2 + x6,3M′+2, . . . , x4,3M′+64 + x5,3M′+64 + x6,3M′+64}

(7)

3.1.3. Permutation

In this part, matrix S1 is used to permute plaintext image. At the beginning, each
element in S1 should be allocated to each pixel as index. Hence, an N × N × 3 matrix S′

1 is
needed to be converted from S1 by reshaping.

S′
1 = reshape(S1, N, N, 3) (8)

Afterwards, each pixel in plaintext image has a corresponding index in S′
1 at the same

coordinate. Combine plaintext image with matrix S′
1, and take another reshaping operation

to convert these two matrix into two sequences with a length of N × N × 3. After sorting S′
1

ascendingly with image sequence synchronously, pixels’ orders in plaintext image sequence
have been scrambled.

Finally, reshaping the sorted image sequence to an N × N × 3 matrix, the initial cipher
image could be generated.

3.1.4. Diffusion

After permutation, a diffusion scheme by 3D Zigzag transformation is proposed, as
follows. An initial cipher image would be split and placed on the surfaces of an N × N × 6
cube, termed as P, as described in Section 2.2. Additionally, chaotic matrix S2 would also
be placed on another two N × N × 6 cubes, since diffusion would implement two rounds.
For the first N × N × 6 numbers in S2, each number would be placed on a cube in order,
which could be called cube SC1.For the last N × N × 6 numbers in S2, cube SC2 could be
generated by the same process.
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Subsequently, diffusion would start from origin point of cube P on the front side,
and its coordinate is [1, 1, 1]. At each iteration, the pixel’s value Ci,j,m is calculated by
Equation (9).

Ci,j,m = (Pi,j,m ⊕ (T + xi,j,m;1)) mod 256 (9)

where i, j, m are the coordinates of pixel at the ith row, jth column, and mth side on the cube.
T is the previous one diffused pixel’s C value, if i, j, m = 1, 1, 1, T is a user-defined constant.
xi,j,m;1 is the corresponding coordinate’s value in SC1.

For the second round of diffusion, Equation (9) would change to Equation (10).

Di,j,m = (Ci,j,m ⊕ (T′ + xi,j,m;2)) mod 256 (10)

where D is result of diffusion, and T′ is the previous one diffused pixel’s D value, and, if
i, j, m = 1, 1, 1, T′ is the last pixel’s C value after the first round diffusion. While xi,j,m;2 is
corresponding coordinate’s value in SC2.

Through these two round diffusions, D cube is generated. Additionally, recover the
D’s N × N × 6 matrix by reversing processes of image splitting and cube placement in
Section 2.2. A diffused N × N × 3 matrix Dmat is obtained.

3.1.5. RNA Operation

The encryption from diffused matrix Dmat through RNA operation could be described,
as follows:

• Step 1: RNA operation is initiated from creating two encrypted codons tables, called
T00 and T01. In which, T00 and T01 are shuffled tables from codons truth, as in Table 2.
The shuffle orders are generated according to indexes sequences calculated from
Equation (7). After sorting with these two indexes sequences, the original codons
truth table could be shuffled to two different encrypted codons tables T00 and T01.
Subsequently, by the complementary rules of RNA, additional tables T10 and T11 could
be generated from T00 and T01. Hence, four encrypted codons tables are generated.

• Step 2: for each element in Dmat, binary number conversion is processed, which is
recorded as B.

B = {bi,j,m}. i, j = 1, 2, . . . , N; m = 1, 2, 3 (11)

Each bi,j,m could be expressed as eight binary numbers, which could be depicted as

bi,j,m
0 bi,j,m

1 bi,j,m
2 bi,j,m

3 bi,j,m
4 bi,j,m

5 bi,j,m
6 bi,j,m

7 .
• Step 3: divide bi,j,m into four pieces, each two bits are one piece, which are recorded as:

bti,j,m
1 = bi,j,m

0 bi,j,m
1

bti,j,m
2 = bi,j,m

2 bi,j,m
3

bti,j,m
3 = bi,j,m

4 bi,j,m
5

bti,j,m
4 = bi,j,m

6 bi,j,m
7

(12)

Additionally, combine three channels’ bts at the same coordinate together:

bti,j
1 = bti,j,1

1 bti,j,2
1 bti,j,3

1

bti,j
2 = bti,j,1

2 bti,j,2
2 bti,j,3

2

bti,j
3 = bti,j,1

3 bti,j,2
3 bti,j,3

3

bti,j
4 = bti,j,1

4 bti,j,2
4 bti,j,3

4

(13)

Therefore, each bti,j has six bits that could transfer to RNA codons according to Table 1.
Exchange each two bits in bts to RNA base one-by-one according to the principle
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of row priority, bts could be coded to codons. And put them into a one-dimension
sequence BS as Equation (14).

BS = {bt1,1
1 , bt1,1

2 , bt1,1
3 , bt1,1

4 , bt1,2
1 , bt1,2

2 , . . . , bt2,1
4 , bt2,2

1 , . . . , btN,N
3 , btN,N

4 }. (14)

• Step 4: convert key to binary format. 256-bit key could be changed into a binary
sequence BK.

key = [key0, key1, . . . , key31]

keyi = keyi,0, keyi,1, . . . , keyi,7

BK = [key1,0, key1,1, . . . , key1,7, key2,0, key2,1, . . . , key31,7]

(15)

Walk through sequence BS, and find corresponding index id of each codon in BS from
Table 2. For each codon in BS, check 2-bits table number z in sequence BK.

z = BKn mod 2048BK(n+1) mod 2048 (16)

where n is the walking times.
Take the codon Tz(id) to replace the origin codon BS(n).
When iterations termination, an encrypted sequence is generated.

• Step 5: decode each base in encrypted sequence BS to binary format by Table 1, put all
of the binary digits back to original coordinates by reversing operations in Step 3.
Additionally, change binary matrix into 2-bit matrix. The cipher image is generated.

The HCZRNA encryption has four stages: hyper-chaotic matrices generation
(Sections 3.1.1 and 3.1.2), hyper-chaotic permutation (Section 3.1.3), 3D transformed Zigzag
diffusion on surfaces of cubes, which is generated from initial cipher image (Section 3.1.4),
and a bit-level RNA operation (Section 3.1.5). The major steps of the HCZRNA are
Sections 3.1.4 and 3.1.5, i.e., the transformed Zigzag diffusion on 3D cubes and bit-level
RNA substitutions with hyper-chaotic matrix, respectively. The HCZRNA uses the strategy
of “divide and conquer” that is widely used in various applications to decompose the
original encryption task into a couple of simpler sub-tasks [38,39].

3.2. Decryption

In this paper, the encryption scheme has been depicted, and decryption is the inverse
process of encryption. Details are proposed, as follows.

• Step 1: redo the processes that are listed in Sections 3.1.1 and 3.1.2 to generate hyper-
chaotic matrices S1, S2, and S3.

• Step 2: convert the cipher image to a binary format, and reconstruct three channels’
pixels at each coordinate into four 6-bit binary arrays by using Euqation (12) and (13).
Change 6-bit arrays into codons from codons truth Table 2, and put them in a one-
dimension sequence BS′ as Equation (14).

• Step 3: generate key binary sequence BK through Equation (15) and encrypted codons
tables {T00, T01, T10, T11} by redoing Step 1 in Section 3.1.5.

• Step 4: Check each 2-bits z in BK and find corresponding table Tz from {T00, T01, T10, T11}.
Walk through BS′ and find each codon’s corresponding index id′ in Table Tz. Replace
codon in BS′ to codon id′ in codons truth Table 2. After all codons are replaced,
convert them into binary formats and 8-bit numbers, matrix D′

mat is obtained.
• Step 5: split matrix D′

mat and place triangles on cube surfaces as the process shown
in Section 2.2. Redo Section 3.1.4 with modified Equation (17) two rounds, and then
walk through pixels with reversed Zigzag path. Take Figure 4 in Section 2.2 as an

169



Entropy 2021, 23, 361

example, the traversal road of decryption is shown in Figure 7. If we put all the pixels
together, the order of traversal is depicted in Figure 8.

C′
i,j,m = (D′

i,j,m ⊕ (T′ + xi,j,m;2))mod256

P′
i,j,m = (C′

i,j,m ⊕ (T + xi,j,m;1))mod256
(17)

where T′ is the previous one pixel’s D′ value, and, if i, j, m = 1, 1, 1, T′ is the last
pixel’s C′ value after first round iteration. T is the previous one pixel’s C′ value and, if
i, j, m = 1, 1, 1, T is the user-defined constant that is used in Section 3.1.4.

• Step 6: after the process in Step 5, return the triangles in the cube to theirs original
coordinates on a image. Additionally, the reverse processes in Section 3.1.3, reshape S1
to construct sorted sequence. Find image pixels’ corresponding coordinates through
sorted sequence and recover. The decrypted image is generated.

Figure 7. Reverse traversal.

Figure 8. The order of Zigzag in decryption.

4. Experimental Results

The encryption and decryption schemes have been tested on four popular RGB color
images in Table 3. All of the experiments are conducted by MATLAB R2019b on 64-bit
Windows 10 system, and the main hardware includes an Xeon(R) W-2223 @ 3.60 GHz CPU
as well as 32 GB RAM.
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Table 3. Testing images.

Image Size (h × w × c) Image Size (h × w × c)

Lena 256 × 256 × 3 Baboon 512 × 512 × 3
Peppers 256 × 256 × 3 Splash 512 × 512 × 3

For the controlling parameters setting in Equation (1), (a, b, c, d, e, f , g, r, ω, β) =
(0.3, 1.5, 8.5,−2, 1,−0.1, 0.9, 1, 1, 0.2). Constants c1, c2, c3, c4 in Equation (2) are set as (1, 1, 2, 2)
and the initial constant of T in Equation (9) is 11. The security key can be set by users, so
we set a 256-bit hexadecimal sequence that is shown below as the security key in all of the
experiments. The key can also be optimized by some evolutionary optimizations, such as
differential evolution and particle swarm optimization [40–43].

key =′ 743B5A203B1E8EDF6C0FB0D7497CB2E228689AD00F57F8953B5C6127E1C26053′

In order to demonstrate performance of proposed HCZRNA scheme, five state-of-
the-art encryption schemes are employed for comparison: a Four-wing hyper-chaotic
system based dynamic DNA encryption scheme [29], an extended Zigzag confusion and
RNA encryption based scheme [23], a Hopfield chaotic neural network-based scheme [44],
a scheme with utilization of differences between two 1D chaotic maps [45] and a scheme
with 4D hyper-chaotic system and DNA encryption [46].

4.1. Key Space

For an image encryption system, large enough key space is necessary to withstand a
brute-force attack. In HCZRNA, a 256-bit security key is used to calculate the initial values
of the hyper-chaotic system to generate the pseudo random matrices that could affect the
outputs of permutation, diffusion, and RNA operations. As we know, different initial
values in a hyper-chaotic system would get different pseudo random sequences, and each
bit has two states, the security key has 2256 different states, so it could generate 2256 results
of a hyper-chaotic system. Therefore, the key space of HCZRNA could be calculated as
2256. Theoretically, if the key space of an encryption scheme is larger than 2100, this scheme
could resist violent crack by modern computers [47]. Therefore, the proposed HCZRNA in
this paper has a large enough key space to resist brute-force attack.

4.2. Sensitivity of Keys

The sensitivity test on keys refers to utilize slightly different keys to encrypt the same
images. If an encryption is sensitive, the encryption with slight difference on keys would
get completely different cipher images. To test the key sensitivity, we would use two
different keys to encrypt four test images, one of these two keys is initial security key key1,
another key is key2, which is one bit changed for key1. These two keys are stated as follows,
where the changed bits are shown in red:

key1 =′ 743B5A203B1E8EDF6C0FB0D7497CB2E228689AD00F57F8953B5C6127E1C26053′

key2 =′ 743B5A203B1F8EDF6C0FB0D7497CB2E228689AD00F57F8953B5C6127E1C26053′

By comparing two cipher images from the same plaintext image, the differences of
cipher images that are encrypted from these two security keys are stated in Table 4.

Table 4. Differences between the cipher images.

Image Lena Pepper Baboon Splash

Difference 99.59% 99.62% 99.61% 99.60%

In the table, it is obvious that all of the differences between two cipher images are over
99%, which reveals that, even with tiny changes in security keys, encryption by HCZRNA

171



Entropy 2021, 23, 361

would also lead to extremely different outputs. Hence, HCZRNA satisfies sensitivity
requirements.

4.3. Histogram

Because a histogram reflects each pixel’s times in an image, histograms of meaningful
images are fluctuated, while cipher images’ histogram should be flat and uniform. That is
to say, if an encryption scheme is well-designed, the histograms of cipher images should be
as flat as possible. For the proposed HCZRNA, a histogram of Baboon and its cipher image
are placed in Figure 9.
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Figure 9. Histogram. image (a,c,e) are the histograms of three channels of Baboon, and image
(b,d,f) are the histograms of corresponding channels of encrypted Baboon.

From this figure, it could find that histograms of all channels in plaintext image are
fluctuated, while histograms of cipher image’s different channels are almost distributed in
a narrow range, and their values are around 1000. For more accurate results, histogram
statistics are introduced to evaluate the variance and standard deviation of plaintext and
cipher images [48,49]. Variance is used to calculate the average difference in each gray level
frequency with respect to mean value x̄, which could be formulated as Equation (18).

α =
1

256

256

∑
i=1

(xi − x̄)2,

x̄ =
h × w
256

(18)
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where h, w represent the image’s height and width respectively, x is the frequency of
different gray levels of pixels in a image, and the x̄ is the mean value of xs. And α is the
variance, the higher is α, the more fluctuate is the graphic histogram. Accordingly, if a
encryption is well-designed, the α of encrypted image should be low.

As α is always very high in plaintext image, a standard deviation is used to evaluate
histogram’s fluctuations, which is stated as Equation (19).

β =
√

α (19)

where β is the standard deviation. For all test images, Table 5 describes the results of
histogram statistics.

Table 5. Histogram statistics.

Image Channels
Plaintext Ciphertext

α β α β

Lena
R 65,306 255 248 15
G 30,665 175 258 16
B 91,939 303 232 15

Pepper
R 57,413 239 249 15
G 119,411 345 238 15
B 151,644 389 237 15

Baboon
R 165,679 407 520 22
G 285,616 534 532 23
B 159,885 399 541 23

Splash
R 1,211,325 1100 566 23
G 1,541,948 1241 495 22
B 2,958,482 1720 504 22

In the table, the variances and standard deviations of plaintext images are very high,
while they are extremely different in cipher images. All of these performances indicate that
the proposed HCZRNA could effectively resist histogram attack.

4.4. Correlation

The correlation test refers to adjacent pixels’ relationship. A meaningful image has
high correlation because values of adjacent pixels are close to each other. This attribute
could be utilized to crack. Therefore, a well-designed encryption scheme should have low
enough correlations in three directions: horizontal, vertical, and diagonal directions. Given
a pixel sequence that is represented by X = {x1, x2, . . . , xN} and its adjacent pixel sequence
Y = {y1, y2, . . . , yN} in an image, correlation between X and Y could be denoted as γX,Y in
Equation (20).

γX,Y =
1
N ∑N

i=1(xi − D(X))(yi − D(Y))√
D(X)D(Y)

D(X) =
∑N

i=1(xi − E(X))2

N

E(X) =
∑N

i=1 xi

N

(20)

where E(X) is X′s mathematical expectation and D(X) is standard deviation.
If X and Y are identical, γX,Y would be a maximum of 1. On the contrary, γX,Y would

be close to 0 when X and Y have few correlations.
Figure 10 depicts the correlation test results. It is obvious that the adjacent pixels’

distributions in plaintext images are concentrated, while the distributions in the cipher
images are opposite.
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More accurately, Table 6 provides correlation coefficients between plaintext images
and cipher images. Additionally Table 7 demonstrates comparisons with references [44,45].
Through this test, it could find that the correlation coefficients of the proposed HCZRNA
are extremely close to 0, which means that HCZRNA could effectively break correlations
existing in plaintext images. While the comparisons show that the proposed HCZRNA
achieves the best results with [44,45] in all cases. This reveals that HCZRNA outperforms
when compared schemes in terms of reducing correlations.
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Figure 10. Correlations.The first row is correlations of plaintext images, and the second row is
correlations of cipher images.

Table 6. The correlation coefficients of the testing images.

Image Channels
Plaintext Ciphertext

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena

R 0.9512 0.9755 0.9444 0.0046 0.0024 0.0051

G 0.9512 0.9679 0.9276 −0.0027 −0.0007 0.0002

B 0.9512 0.9479 0.9021 −0.0023 0.0014 0.0004

Baboon

R 0.9218 0.8624 0.8531 0.0003 0.0001 0.0015

G 0.9218 0.7591 0.7299 −0.0010 0.0004 0.0020

B 0.9218 0.8782 0.8411 0.0005 −0.0022 0.0012

Table 7. Comparisons of correlation coefficients.

Image Channels Plaintext
Ciphertext

HCZRNA Ref. [44] Ref. [45]

Baboon

R
Horizontal 0.9218 0.0003 0.0054 −0.0073

Vertical 0.8624 0.0001 −0.0042 −0.0059
Diagonal 0.8531 0.0015 −0.0177 −0.0136

G
Horizontal 0.9218 −0.0010 −0.0055 0.0046

Vertical 0.7591 0.0004 0.0119 −0.0077
Diagonal 0.7299 0.0020 0.0046 −0.0044

B
Horizontal 0.9218 0.0005 −0.0021 −0.0067

Vertical 0.8782 −0.0022 0.0104 −0.0111
Diagonal 0.8411 0.0012 −0.0021 0.0122
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4.5. Information Entropy

Information Entropy shows the randomness and uncertainty of image’s pixels. If
pixels in an image have uniform distribution, this image could resistant statistical attacks.
Because there are 256 gray levels in each channel of color image, the Entropy calculation
could be formulated as Equation (21):

H(C) = −
255

∑
i=0

p(i)log2 p(i) (21)

where C denotes channels of color image and p(i) is probability of gray level in whole
channel.

The bigger H(C), the bigger uncertainty of image. While the theoretical value of H(C)
is 8.

Table 8 shows the entropies of all channels of plaintext color images and corresponding
cipher images through encryptions by proposed HCZRNA. It is obvious that cipher images
have increased entropies a lot from plaintext images and their entropies are very close to the
theoretical value. Moreover, a comparison is held between HCZRNA and Ref. [23,29,44–46],
and the results are stated in Table 9. Among all of the encryption schemes, the proposed
HCZRNA achieves the highest entropies in four out of six cases. It could conclude that
HCZRNA has the ability to resist statistical attack.

Table 8. Information Entropies of testing images.

Image Channels Lena Peppers Baboon Splash

Plaintext

R 7.2353 7.3369 7.7067 6.9481

G 7.5683 7.4394 7.4744 6.8845

B 6.9176 7.0219 7.7522 6.1265

Ciphertext

R 7.9973 7.9972 7.9993 7.9993

G 7.9970 7.9970 7.9993 7.9994

B 7.9972 7.9972 7.9993 7.9993

Table 9. Comparison of entropies.

Image Channel Plaintext HCZRNA Ref. [29] Ref. [23] Ref. [44] Ref. [45] Ref. [46]

Lena
R 7.2353 7.9973 7.9971 7.9973 - - 7.9973
G 7.5683 7.9970 7.9971 7.9972 - - 7.9975
B 6.9176 7.9972 7.9971 7.9971 - - 7.9975

Baboon
R 7.7067 7.9993 7.9926 - 7.9993 7.9993 7.9970
G 7.4744 7.9993 7.9926 - 7.9993 7.9993 7.9978
B 7.7522 7.9993 7.9926 - 7.9993 7.9992 7.9987

4.6. Differential Attack

The differential attack test is an important security test for image encryption, which
reveals the influence on the cipher image caused by a minor change in pixels of plaintext
image. If a tiny change on pixels in plaintext image leads to significant different cipher
image, that is to say the encryption scheme could resist differential attack.

Two important indices are introduced to measure the ability of differential attack
resistance, which is called the number of pixel change rate (NPCR) and the unified average
changing intensity (UACI). Additionally, they are defined as Equations (22) and (23):

NPCR =
∑h

i=0 ∑w
j=0 F(i, j)× 100%

w × h
(22)

175



Entropy 2021, 23, 361

UACI =
∑h

i=0 ∑w
j=0|e1(i, j)− e2(i, j)|
255 × w × h

(23)

where e1 and e2 are two cipher images, and e(i, j) means the pixel’s value at coordinate
i, j in image e. F(i, j) denotes whether the same coordinate’s pixel values in e1 and e2 are
independent or not, which could be formulated as Equation (24):

F(i, j) =

{
0, i f e1(i, j) = e2(i, j)

1, i f e1(i, j) �= e2(i, j)
(24)

For two random images, NPCR and UACI’s expected values are stated as: NPCR =
99.6094% and UACI = 33.4635% for an 8-bit gray image [30].

Hence, to realize the test, one bit would be changed on a random pixel in plaintext
image. And both the plaintext image and changed image are encrypted to two different
cipher images. Table 10 lists the average results of ten times tests. It could find that all NPCR
values and UACI values of cipher images’ different channels exceed the theoretical values.
Additionally, comparisons with Ref. [23,29,44–46] are shown in Tables 11 and 12. Through
the comparisons, the proposed HCZRNA encryption scheme has better performances on
NPCR and UACI, which indicates that HCZRNA could resist differential attack well.

Table 10. The mean number of pixel change rate (NPCR) and unified average changing intensity
(UACI) of cipher images.

Image
NPCR(%) UACI(%)

R G B R G B

Lena 99.6619 99.6272 99.6460 33.6177 33.6048 33.6422
Peppers 99.6481 99.6404 99.6239 33.7208 33.5701 33.6435
Baboon 99.6159 99.6769 99.6115 33.5196 33.5203 33.5049
Splash 99.6219 99.6934 99.6253 33.4983 33.5114 33.4816

Table 11. Average NPCR (%) of running the schemes 10 times.

Image Channel HCZRNA Ref. [29] Ref. [23] Ref. [44] Ref. [45] Ref. [46]

Lena
R 99.6619 99.60 99.6323 - - 99.615
G 99.6272 99.61 99.6109 - - 99.62
B 99.6460 99.61 99.6338 - - 99.617

Baboon
R 99.6159 99.6083 - 99.6037 99.6037 99.6140
G 99.6769 99.6065 - 99.6048 99.6017 99.6073
B 99.6115 99.6094 - 99.6059 99.6043 99.6292

Table 12. Average UACI (%) of running the schemes 10 times.

Image Channel HCZRNA Ref. [29] Ref. [23] Ref. [44] Ref. [45] Ref. [46]

Lena
R 33.6177 33.56 33.4683 - - 33.4732
G 33.6048 33.45 33.4341 - - 33.3428
B 33.6422 33.49 33.4991 - - 33.4647

Baboon
R 33.5196 33.4939 - 33.4427 29.9630 33.4843
G 33.5203 33.4295 - 33.4605 28.5708 33.4690
B 33.5049 33.4856 - 31.9747 31.2574 33.4965

4.7. Robustness

It is unavoidable that there data loss or noise attack occur when cipher images are
transmitting. Hence, a well-designed encryption and decryption scheme should resist
contamination on cipher images to recover plaintext images without great changes.
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To demonstrate robustness of proposed HCZRNA scheme, 12.5%, 25%, and 50%
data lose tests and 1%, 5%, and 10% salt and pepper noise tests would presented in
Figures 11 and 12.

Figure 11. Cropping attack tests. The first row is cipher images with 12.5%, 25% and 50% data loss,
and the second row is decrypted images from the first row.

Figure 12. Noise attack tests. The first row is cipher images with 1%, 5%, 10% salt and pepper noise,
and the second row is decrypted images from the first row.

From the figures, the main information of plaintext images could be identified from
decrypted images, which could conclude that HCZRNA has enough robustness for data
loss and noise attacks. Here, the Mean Squared Error (MSE) and Peak Signal to Noise Ratio
(PSNR) are also utilized to test robustness [48,49], which is formulated as Equation (25).
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MSE =
1

h × w

h

∑
i=1

w

∑
j=1

[P(i, j)− E(i, j)]2,

PSNR = 20log10(
255√
MSE

)

(25)

where P and E represent two different images. MSE is used to evaluate the difference
between two images, and PSNR depicts the ratio between the maximum possible power
of a signal and the power of distorting noise that affects the quality of its representation.
The lower the MSE, the higher PSNR, which indicates that two images have high similarity.
Hence, under noise attacks, if the PSNR between the plaintext image and decrypted image
is high, the encryption and decryption schemes are good enough. Tables 13 and 14 present
the results of plaintext image and decrypted image of Lena under data loss and salt and
pepper noise attacks.

Table 13. Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR) under data loss.

Data Loss MSE PSNR

12.5% 1195 17.35
25% 2315 14.48
50% 4502 11.60

Table 14. MSE and PSNR under salt and pepper noise.

Salt and Pepper Noise MSE PSNR

1% 610 20.28
5% 2684 13.84
10% 4490 11.61

Through the results, we could find there are high MSEs and low PSNRs in these tables,
which figures out that HCZRNA could resist attacks of data loss and noise.

4.8. Running Time

In HCZRNA, the pixels of image would be walked through multiple times in diffusion
and RNA operation. Suppose that the size of RGB image is N × N × 3. For the five parts of
encryption processes that are listed in Section 3.1, initial values of hyper-chaotic system
are calculated from the security key, which costs O(1) time complexity; the hyper-chaotic
matrices are computed 3 × N × N + 64 times iterations; for permutation, reshape and
sort operations are implemented three times; while the diffusion process walks through
each pixel two times, which costs O(2 × N × N × 3); at last, as RNA operation walks
through all 6-bit codons that are transformed from 8-bit pixels, the times of iteration are
increased to 4

3 × N × N × 3. Hence, the time complexity of HCZRNA could be calculated
as O(1 + 3 × N × N + 64 + 3 + 2 × N × N × 3 + 4

3 × N × N × 3) = O(13N2 + 68) =
O(N2). Using the experiment environment that is listed in this section, the running times
of encryption and decryption could be stated in Table 15. Although the time costs of
encryption and decryption are not very good, the time complexity is also a polynomial
time, which could be tolerable. Additionally, the processes of RNA operation on different
codons have no correlation with each other, which could improve computational time by
computing RNA operation in parallel.
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Table 15. Running time (unit: second).

Image Size Encryption Decryption

64 × 64 × 3 0.59 0.44
128 × 128 × 3 2.39 1.77
256 × 256 × 3 9.36 6.96
512 × 512 × 3 37.54 28.49

5. Conclusions

A novel hyper-chaotic system based image encryption scheme is proposed with 3D
transformed Zigzag and RNA operation in this paper. By using the 6D hyper-chaotic
system, three auxiliary matrices are generated, including one permutation index matrix,
one mask matrix for Zigzag, and one codon table index matrix. Subsequently, two rounds
3D transformed Zigzag diffusion mechanism is proposed for pixels diffusion with each
other. Nevertheless, additional encryption with RNA codons makes more reliable and
secure results through employing codons tables and security keys. Through simulations,
the proposed HCZRNA has better performances on the resistance of different types attacks
than the compared encryption schemes, while the speed is not ideal, since it is a complex
process. On the premise of ensuring performance, we would simplify diffusion and RNA
operation processes and optimize the encryption steps for improving speed in the future.
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Abstract: Fractional-order chaos has complex dynamic behavior characteristics, so its application
in secure communication has attracted much attention. Compared with the design of fractional-
order chaos-based cipher, there are fewer researches on security analysis. This paper conducts a
comprehensive security analysis of a color image encryption algorithm using a fractional-order
hyperchaotic system (CIEA-FOHS). Experimental simulation based on excellent numerical statistical
results supported that CIEA-FOHS is cryptographically secure. Yet, from the perspective of crypt-
analysis, this paper found that CIEA-FOHS can be broken by a chosen-plaintext attack method owing
to its some inherent security defects. Firstly, the diffusion part can be eliminated by choosing some
special images with all the same pixel values. Secondly, the permutation-only part can be deciphered
by some chosen plain images and the corresponding cipher images. Finally, using the equivalent
diffusion and permutation keys obtained in the previous two steps, the original plain image can
be recovered from a target cipher image. Theoretical analysis and experimental simulations show
that the attack method is both effective and efficient. To enhance the security, some suggestions for
improvement are given. The reported results would help the designers of chaotic cryptography pay
more attention to the gap of complex chaotic system and secure cryptosystem.

Keywords: chaos; image encryption; cryptanalysis

1. Introduction

Nowadays, with the rapid development of optical fiber broadband access network, 5G
and other communication technologies, the security of multimedia data, especially digital
images, is of particular interest in communication networks [1]. As everyone knows, en-
cryption is an effective means of achieving security enhancements [2]. However, traditional
text encryption algorithms such as AES, DES, and IDEA are not suitable for digital images
because they featured with strong correlation between adjacent pixels. To deal with the
problem, various methodologies are introduced to design different image ciphers. Among
them, chaos-based image encryption is the most popular one, because chaos has character-
istics of sensitivity to initial values, dense periodic points, and long-term unpredictability of
orbits [3–5]. In the past two decades, chaotic image encryption technology has been widely
discussed and has become a research hotspot [6]. To improve the security performance of
chaotic image encryption technology, various chaotic systems with resistance to dynamic
degradation are studied, including quantum chaotic map [7], fractional-order chaos [8],
non-degenerated hyperchaos [9], economic chaotic map [10], and cascaded chaotic sys-
tems [11], etc. However, chaotic cryptography still lacks authoritative metrics, especially in
terms of security. Accordingly, many reported chaotic encryption algorithms have been
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broken [12–15]. As shown in Table 1, some previous chaos-based ciphers are vulnerable
upon various attack methods, including chosen-ciphertext attack [16], chosen-/known-
plaintext attack [12], differential cryptanalysis [17], even cipher-only attack [18]. Therefore,
research on security is extremely important and has received much attention [19–33].

Table 1. Some chaos-based ciphers broken by various attack methods.

Ciphers Broken by Attack Methods

Fridrich et al. [34] in 1998 Xie et al. [16] in 2017 Chosen-ciphertext attack
Zhao et al. [35] in 2015 Norouzi et al. [36] in 2017 Chosen-plaintext attack

Ye [37] in 2010 Li et al. [18] in 2017 Cipher-only attack
Zhou [38] in 2015 Chen et al. [17] in 2016 Differential cryptanalysis

Song et al. [15] in 2015 Wen et al. [13] in 2019 Chosen-plaintext/cipertext attacks
Shafique et al. [14] in 2018 Wen et al. [12] in 2019 Chosen-plaintext attack

As described in Ref. [39], fractional-order chaotic systems have higher complexity
and more optional key parameters and can be used as a competitive encryption scheme.
Correspondingly, image encryption algorithms based on fractional-order chaotic systems
have attracted the attention of researchers in recent years [35,40–42]. In 2013, Wang et al. [40]
introduced a fractional-order chaos into image encryption for the first time, and gave some
experiments to verify its performance. Since then, many image encryption schemes based
on fractional-order chaotic systems have been proposed [35,41,42]. For example, in 2017,
Zhang et al. [41] proposed a color image encryption scheme combing with fractional-
order hyperchaotic system and DNA encoding. Yet, cryptanalysts have reported that
some fractional-order chaotic image encryption algorithms have some fatal security issues.
Exactly, Norouzi et al. [36] pointed out that the image cipher that using an improper
fractional-order chaotic system was insecure, which was proposed in [35]. As far as we
know, there are still few research studies concerning cryptanalysis on the ciphers based
on fractional-order chaotic systems. Moreover, considering that each cryptosystem has
its intrinsic characteristics, it is necessary and urgent to perform cryptanalysis on these
existing ciphers.

In 2015, a color image encryption algorithm based on a fractional-order hyperchaotic
system was proposed [42]. In color image encryption algorithm using a fractional-order
hyperchaotic system (CIEA-FOHS), using the pseudo-random sequences generated by
the fractional-order hyperchaotic system, RGB-inter permutation, RGB-intra permutation
and pixel diffusion are successively performed to get cipher images from plain images.
Meanwhile, the relevant pixel correlation, histogram and other experimental analysis are
given to verify its security performance. However, from the perspective of cryptanalysis,
we found some security defects as follows:

• The existence of an equivalent key. CIEA-FOHS encrypts the image using a pseudo-
random sequence generated by fractional-order chaos. However, these sequences are
not related to plaintext. Thus, these sequences can be considered as equivalent keys.

• Two-stage permutations can be equivalently simplified to only once. The reason is
that the two permutations only change the position of the pixel without changing the
value of the pixel.

• The paradigm of the diffusion part is insecure. According to the conclusion of Ref. [43],
a class of diffusion encryption using module addition and XOR operations can be
cracked with only two special plain images and their corresponding cipher images.
Unfortunately, CIEA-FOHS is also the case.

Based on the three points, CIEA-FOHS cannot resist against a chosen-plaintext attack
method with the divide-and-conquer strategy. More specifically, under the scenario of
chosen-plaintext attack, firstly an equivalent diffusion key is obtained, and then an equiva-
lent permutation key is achieved, and finally the original images can be restored from the
encrypted images with the equivalent keys.
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2. The Encryption Algorithm under Study

In this section, the fractional-order hyperchaotic system used in Reference [42] is
presented, and then the specific steps of CIEA-FOHS are introduced.

2.1. Fractional-Order Hyperchaotic System

The fractional-order hyperchaotic system used in CIEA-FOHS is derived from Ref. [39],
given as ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
t x(t) = −z − w

Dα
t y(t) = 2y + z

Dα
t z(t) = 14x − 14y

Dα
t w(t) = 100(x − g(w))

(1)

where x, y, z, w are the four state variables, g(w) = w − (|w − 0.4| − |w − 0.8| − |w + 0.4| −
|w + 0.8|), Dα

t is the fractional derivative under the definition of Caputo and α is the deriva-
tive order. The attractor of the fractional-order hyperchaotic system is shown in Figure 1.

(a) (b)

(c) (d)

Figure 1. Attractor phase diagrams of the fractional-order hyperchaotic system with different
variables: (a) (x, y, z); (b) (x, y, w); (c) (x, z, w); (d) (y, z, w).

2.2. Description of CIEA-FOHS

As shown in Figure 2, CIEA-FOHS consists of three main parts: inter-permutation,
intra-permutation and pixel diffusion. It is noted that, a two-dimensional image is trans-
formed into an one-dimensional sequence in raster scan order. Specifically, a color plain
image I of size H × W × 3 is converted into three sequences of length H × W expressed
as: IR, IG, and IB, which correspond to the three RGB channels of the image. The main
contents are briefly introduced as follows:
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Figure 2. The block diagram of CIEA-FOHS.

• The Secret Key:
The secret keys of CIEA-FOHS include (t f , α, h, x0, y0, z0, w0), where t f is the fractional
derivative defined by Caputo definition, α is the dimension, h is the step size for
discretization, and (x0, y0, z0, w0) are the four initial values of the fractional-order
hyperchaotic system defined in Equation (1), respectively. In CIEA-FOHS, these keys
are used to generate some chaos-based pseudo-random sequences for encryption [42].

• Initialization:
In Equation (1), by selecting the secret key as the initial values and parameters and it-
erating L times, one gets four chaos-based pseudo-random sequences {xi}L

i=1, {yi}L
i=1,

{zi}L
i=1 and {wi}L

i=1, where L = H × W represents the number of pixels in a single
image channel.

• Stage 1. RGB-inter permutation:
The RGB-inter permutation refers to the process of pixel replacement between chan-
nels. This stage is implemented by two control vectors {selEi}L

i=1 and {selLeni}L
i=1,

which are given as ⎧⎨
⎩ selEi = (|xi| × 1014) mod 6

selLeni = (|zi| × 1014) mod 3
(2)

where i = 1 ∼ L. More specifically, {selEi}L
i=1 is used to switch channels, as shown

in Table 2, and {selLeni}L
i=1 is to control the position and length of the permutation

pixel, given as

Table 2. The stutas of RGB-inter permutation under six rules.

Rule selE(i) 0 1 2 3 4 5

Permutation status

R → R

G → G

B → B

R → R

G → B

B → G

R → G

G → R

B → B

R → B

G → R

B → G

R → G

G → B

B → R

R → B

G → G

B → R

⎧⎪⎪⎨
⎪⎪⎩

length = (sum(ER(pos : pos + length − 1)) mod 64), if selLeni = 0

length = (sum(EG(pos : pos + length − 1)) mod 64), if selLeni = 1

length = (sum(EB(pos : pos + length − 1)) mod 64), if selLeni = 2

(3)

where pos is the starting position, length is the length of the permautation pixels, and
sum is the cumulative function.

• Stage 2. RGB-intra permutation:
Sort {yi}L

i=1, {zi}L
i=1, and {wi}L

i=1 to get three index sequences {IYi}L
i=1, {IZi}L

i=1,
and {IWi}L

i=1 respectively, and their values range [1, L]. Use {IYi}L
i=1, {IZi}L

i=1, and
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{IWi}L
i=1 to permute ER, EG and EB respectively, given as ERi = ER(IYi), EGi =

EG(IZi) and EBi = EB(IWi).
• Stage 3. Pixel diffusion:

Perform pixel diffusion on ER, EG and EB, and then get three channels of the cipher
image C. Exactly, the three channels CR, CG and CB are defined as

⎧⎪⎪⎨
⎪⎪⎩

CRi = SXi ⊕ ((ERi + SXi) mod 256)⊕ CRi−1

CGi = SYi ⊕ ((EGi + SYi) mod 256)⊕ CGi−1

CBi = SZi ⊕ ((EBi + SZi) mod 256)⊕ CBi−1

(4)

where i = 1 ∼ L, ⊕ is bitwise XOR operation, mod represents modulo operation,
and CR0 = SXL, CG0 = SYL, and CB0 = SZL. Here, three diffusion sequences
SX, SY and SZ are generated by SXi = round(xi) × 1014, SYi = round(yi) × 1014

and SZi = round(zi) × 1014 respectively, where round is a rounding operation on
real numbers.

Decryption is the inverse of encryption and is not described in detail here.

3. Security Analysis of CIEA-FOHS

3.1. Preliminary Analysis of CIEA-FOHS

Referring to the basic assumptions of cryptanalysis, everything about the cryptosys-
tem is public and only the secret key is unknown for attackers [13]. Chosen-plaintext
attack is a common and powerful method of cryptanalysis. It assumes that attackers can
arbitrarily choose the plaintext that is conducive to deciphering and obtain the correspond-
ing ciphertext [12]. Under the scenario of chosen-plaintext attack, attackers can construct
special plain images, such as all black and all white, and obtain the corresponding cipher
images to analyze the target cipher.

From the perspective of cryptanalysis, two-stage permutations of CIEA-FOHS can be
treated as a global pixel permutation because they only change the pixels’ position without
their values. The difference is that the number of pixels performing the permutation is
3HW instead of HW. Then, the algorithm structure of CIEA-FOHS is actually a classic
single-round permutation-diffusion. Moreover, the generation process of all chaos-based
pseudo-random sequences is independent of the plain image, which means that these
sequences can be regarded as an equivalent key. The reason is that, in the case of a
given secret key, these sequences are fixed for encrypting different plain images with the
same size. Then, CIEA-FOHS can be equivalently simplified as Figure 3, where PM is
an equivalent permutation key and three diffusion sequences SX, SY and SZ serve as an
equivalent diffusion key.

Figure 3. The block diagram of an equivalent simplified CIEA-FOHS.

Based on the above, under the scenario of chosen-plaintext attack and the strategy of
divide and conquer, one can get the equivalent keys and then recover the original plain
images. Specifically, firstly choose some plain images with same pixel values to cancel
the permutation and get the corresponding plain images to obtain the diffusion key; then
achieve the permutation key by the method of Reference [12]; finally, recover the images
by the equivalent keys.
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3.2. Analysis on the Diffusion Part

In this section, based on chosen-plaintext attack, it is assumed that the plaintext image
with the same pixel value is selected, and the corresponding ciphertext image is obtained.

• Step 1. Choose the all-zero plain image I(0) and get the corresponding cipher image
C(0) to determine SXL, SYL, SZL.
The reason for choosing the all-zero image is that the permutation is invalid at this time,
and the diffusion can be eliminated to the greatest extent. Then, Equation (4) becomes

⎧⎪⎪⎨
⎪⎪⎩

CR(0)
i = CR(0)

i−1

CG(0)
i = CG(0)

i−1

CB(0)
i = CB(0)

i−1

(5)

when i = 1, one has CR(0)
1 = CR0. Since CR0 = SXL, thus SXL = CR(0)

i . Similarly,

one further gets SYL = CG(0)
i and SZL = CB(0)

i .
• Step 2. Choose two special plain images and get the corresponding cipher images to

determine SXi, SYi, SZi for i = 1 ∼ L − 1.
Referring to [43,44], the two chosen plaintexts are pure-color images with pixel values
of 85 and 170, represented as I(85) and I(170), respectively. Because for the combined
operation of module addition and bitwise XOR, choosing these two plain images can
minimize the number of solutions for SX, SY , SZ. Under the plain image I(85) and its
corresponding cipher image C(85), one gets

⎧⎪⎪⎨
⎪⎪⎩

CR(85)
i = SXi ⊕ ((85 + SXi) mod 256)⊕ CR(85)

i−1

CG(85)
i = SYi ⊕ ((85 + SYi) mod 256)⊕ CG(85)

i−1

CB(85)
i = SZi ⊕ ((85 + SZi) mod 256)⊕ CB(85)

i−1

(6)

Similarly, given the plain image I(170) and its corresponding cipher image C(170),
one has ⎧⎪⎪⎨

⎪⎪⎩
CR(170)

i = SXi ⊕ ((170 + SXi) mod 256)⊕ CR(170)
i−1

CG(170)
i = SYi ⊕ ((170 + SYi) mod 256)⊕ CG(170)

i−1

CB(170)
i = SZi ⊕ ((170 + SZi) mod 256)⊕ CB(170)

i−1

(7)

By performing bitwise on Equations (6) and (7), one further gets

⎧⎪⎪⎨
⎪⎪⎩

(85+̇SXi)⊕ (170+̇SXi) = CR(85)
i ⊕ CR(85)

i−1 ⊕ CR(170)
i ⊕ CR(170)

i−1

(85+̇SYi)⊕ (170+̇SYi) = CG(85)
i ⊕ CG(85)

i−1 ⊕ CG(170)
i ⊕ CG(170)

i−1

(85+̇SZi)⊕ (170+̇SZi) = CB(85)
i ⊕ CB(85)

i−1 ⊕ CB(170)
i ⊕ CB(170)

i−1

(8)

where +̇ is defined as a+̇b Δ
= mod(a + b, 256). It is worth pointing out that the reason

why 85 and 170 are chosen as the attack images is that their binary are 01010101 and
10101010 respectively. At this time, the number of possible solutions of SXi, SYi, SZi is
the smallest, which is two. More precisely, the difference between the two solutions is
128. Then, based on Equation (8), we propose Alogrithm 1 to determine SXi, SYi, SZi,
where i = 1 ∼ L − 1.

• Step 3. Eliminate the diffusion part by SX, SY , SZ.
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Corresponding to Equation (4), the decryption process of diffusion is given as

⎧⎪⎪⎨
⎪⎪⎩

ERi = (SXi ⊕ CRi ⊕ CRi−1 − SXi) mod 256

EGi = (SYi ⊕ CGi ⊕ CGi−1 − SYi) mod 256

EBi = (SZi ⊕ CBi ⊕ CBi−1 − SZi) mod 256

(9)

Thus, ER, EG, EB can be restored from CR, CG, CB with SX, SY , SZ, respectively.

Algorithm 1: Determining SXi, SYi, SZi for i = 1 ∼ L − 1

Input: SXL, SYL, SZL, two chosen plain images I(85) and I(170), and their
corresponding cipher images C(85) and C(170).

Output: SXi, SYi, SZi for i = 1 ∼ L − 1
1 i ← 1;
2 for x ← 0 to 255 do

3 if (85+̇x)⊕ (170+̇x) = CR(85)
1 ⊕ CR(170)

1 then
4 SX1 ← x;
5 end

6 if (85+̇x)⊕ (170+̇x) = CG(85)
1 ⊕ CG(170)

1 then
7 SY1 ← x;
8 end

9 if (85+̇x)⊕ (170+̇x) = CB(85)
1 ⊕ CB(170)

1 then
10 SZ1 ← x;
11 end

12 end
13 for i ← 2 to L − 1 do
14 for x ← 0 to 255 do

15 if (85+̇x)⊕ (170+̇x) = CR(85)
i ⊕ CR(85)

i−1 ⊕ CR(170)
i ⊕ CR(170)

i−1 then

16 SXi ← x;
17 end

18 if (85+̇x)⊕ (170+̇x) = CG(85)
i ⊕ CG(85)

i−1 ⊕ CG(170)
i ⊕ CG(170)

i−1 then

19 SYi ← x;
20 end

21 if (85+̇x)⊕ (170+̇x) = CB(85)
i ⊕ CB(85)

i−1 ⊕ CB(170)
i ⊕ CB(170)

i−1 then

22 SZi ← x;
23 end

24 end

25 end
26 return SXi, SYi, SZi for i = 1 ∼ L − 1

3.3. Analysis on the Permutation Part

Once the diffusion part is broken, CIEA-FOHS degenerates into a permutation-only
cipher. Based on existing research, it cannot resist a chosen-plaintext attack. The basic idea
of attacking permutation-only is to construct a special plain image with unequal element
values, and get the corresponding permuted image. Taking 2× 2× 3 as an example, the pro-
cess of solving PM is described below. First, a chosen plain image and the corresponding
permuted image are given as

IR =

⎡
⎣ 0 1

2 3

⎤
⎦; IG =

⎡
⎣ 4 5

6 7

⎤
⎦; IB =

⎡
⎣ 8 9

10 11

⎤
⎦
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ER =

⎡
⎣ 5 8

3 11

⎤
⎦; EG =

⎡
⎣ 1 10

2 9

⎤
⎦; EB =

⎡
⎣ 6 4

0 7

⎤
⎦

For ease of explanation, a matrix of size H × 3W is obtained by connecting three
channels of size H × W in a row connection manner. Then, the permutation process can be
described by ⎡

⎣ 0 1 4 5 8 9

2 3 6 7 10 11

⎤
⎦ PM−−→

⎡
⎣ 5 8 1 10 6 4

3 11 2 9 0 7

⎤
⎦

where PM is the permutation matrix of size H × 3W. Finally, PM is determined as

PM =

⎡
⎣ (2, 5) (1, 3) (1, 6) (1, 1) (1, 2) (2, 4)

(2, 3) (2, 1) (1, 5) (2, 6) (1, 4) (2, 2)

⎤
⎦ (10)

Obviously, one can recover (IR, IG, IB) from (ER, EG, EB) with PM. However, the
situation may be more complicated for large size images. For an 8-bit image, the pixel
value range is [0, 255]. Thus, when 3HW > 256, PM cannot be determined by only one
chosen plain image and its corresponding cipher image. Fortunately, this problem has been
solved in our latest research [12,13]. The basic idea is to combine multiple chosen plain
images in a weighted manner to form a matrix with different elements, and the number of
chosen plain images required for attacking permutation is

⌈
log256(3HW)

⌉
, where �.� is the

rounding up operation.
Based on the above, the steps for attacking permutation are briefly summarized as

follows:

• Step 1. Choose some special plain images and get their corresponding cipher images
to determine the permutation matrix PM;

• Step 2. Use the permutation matrix PM to recover the original images from the
permuted images.

3.4. The Proposed Chosen-Plaintext Attack Method

Following the above-mentioned discussion, CIEA-FOHS cannot resist the attack
method proposed in this paper. The flowchart of the attack method is shown in Figure 4,
and the specific steps based on chosen-plaintext attack are given as: firstly, get an equivalent
diffusion key (SX, SY , SZ) by the method in Section 3.2; secondly, achieve the permutation
matrix PM by the method in Section 3.3; finally, recover the original images with the
equivalent keys.

Figure 4. The overall flowchart of attacking CIEA-FOHS.

Moreover, the complexity required for the attack method is discussed here. In terms
of data complexity, for color images of size H × W × 3, the number of chosen plain images
required to decipher diffusion and permutation is 3 and

⌈
log256(3HW)

⌉
, respectively.

Hence, the total data complexity required is O(3 +
⌈
log256(3HW)

⌉
).
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4. Experimental Verifications and Discussions

To verify our security analysis, the algorithm steps of CIEA-FOHS strictly follow
Ref. [42]. Although Due to the complexity of fractional-order chaos, some parameters may
not be completely consistent, but this does not affect the effectiveness of security analysis.
We conduct simulation verification on the proposed image cryptosystem based on a PC
(personal computer) with MATLAB r2018b. The running PC is installed with Windows
10 64-bit OS (operating system), Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz and 8 GB
memory. We select some typical images listed in Table 3 for experiments. Among them,
the image “Lenna” of size 256 × 256 × 3 given in Ref. [42] is also included. In Equation (1),
we set the experimental secret key parameters for h = 0.001, α = 104, t f = 100, x0 = 1.002,
y0 = 0.949, z0 = 0.997 and w0 = 1.103.

• Case 1. Breaking CIEA-FOHS with an image of size 2 × 2 × 3:
In order to better illustrate the attack process, we first adopt an extremely simple
image with a size of 2 × 2 × 3. A pair of the given target plain and cipher images I and
C is shown in Figure 5a,c respectively, and their histograms are shown in Figure 5b,d
respectively. Accordingly, the numerical matrices of I and C are:

(a) (b) (c) (d)

Figure 5. A pair of plain and cipher images of size 2 × 2 × 3: (a) plain image I; (b) histogram of I; (c)
cipher image C; (d) histogram of C.

IR =

⎡
⎣11 22

33 44

⎤
⎦; IG =

⎡
⎣55 66

77 88

⎤
⎦; IB =

⎡
⎣ 99 100

111 122

⎤
⎦

CR =

⎡
⎣ 70 165

103 145

⎤
⎦; CG =

⎡
⎣231 154

118 28

⎤
⎦; CB =

⎡
⎣181 24

171 165

⎤
⎦

Firstly, following Step 1 in Section 3.2, choose the all-zero plain image I(0) shown
in Figure 6a and temporarily use the encryption machine of CIEA-FOHS, and then
get the corresponding cipher image C(0), as shown in Figure 6c. The all-zero plain
image I(0) and the corresponding cipher image C(0) and their histograms are shown
in Figure 6b,d, respectively. Similarly, the numerical matrices of I(0) and C(0) are:

(a) (b) (c) (d)

Figure 6. The all-zero chosen plain image I(0) and its corresponding cipher image C(0) of size
2 × 2 × 3: (a) I(0); (b) histogram of I(0); (c) C(0); (d) histogram of C(0).

191



Entropy 2021, 23, 258

IR(0) =

⎡
⎣0 0

0 0

⎤
⎦; IG(0) =

⎡
⎣0 0

0 0

⎤
⎦; IB(0) =

⎡
⎣0 0

0 0

⎤
⎦

CR(0) =

⎡
⎣77 77

77 77

⎤
⎦; CG(0) =

⎡
⎣174 174

174 174

⎤
⎦; CB(0) =

⎡
⎣109 109

109 109

⎤
⎦

Then, one has SXL = 77, SYL = 174 and SZL = 109 because SXL = CR0, SYL = CG0
and SZL = CB0, where L = 2 × 2 = 4.
Secondly, based on Step 2 in Section 3.2, choose the two plain images I(85) and
I(170), and get the corresponding cipher images, C(85) and C(170), which are shown in
Figure 7a–d, respectively. The values of their RGB three channels are:

IR(85) =

⎡
⎣85 85

85 85

⎤
⎦; IG(85) =

⎡
⎣85 85

85 85

⎤
⎦; IB(85) =

⎡
⎣85 85

85 85

⎤
⎦

CR(85) =

⎡
⎣176 186

77 85

⎤
⎦; CG(85) =

⎡
⎣ 5 181

110 24

⎤
⎦; CB(85) =

⎡
⎣184 94

229 241

⎤
⎦

IR(170) =

⎡
⎣170 170

170 170

⎤
⎦; IG(170) =

⎡
⎣170 170

170 170

⎤
⎦; IB(170) =

⎡
⎣170 170

170 170

⎤
⎦

CR(170) =

⎡
⎣231 235

177 81

⎤
⎦; CG(170) =

⎡
⎣120 24

174 238

⎤
⎦; CB(170) =

⎡
⎣199 123

45 1

⎤
⎦

(a) (b) (c) (d)

Figure 7. The two chosen plain images I(85), I(170) and their corresponding cipher images C(85),
C(170)of size 2 × 2 × 3: (a) I(85); (b) C(85); (c) I(170); (d) C(170).

Then, combining Algorithm 1, we determine SX SY SZ as

SX =
[
84 86 89 77

]
; SY =

[
63 31 71 46

]
; SZ =

[
64 36 119 109

]
or

SX =
[
212 214 217 205

]
; SY =

[
191 159 199 174

]
; SZ =

[
192 164 247 237

]
Thirdly, by Step 3 in Section 3.2, the corresponding permuted image shown in
Figure 8c can be restored from the targeted cipher image Figure 8a with SX SY SZ.
Fourthly, following Step 1 in Section 3.3, construct some special attack images to obtain
the permutation matrix PM. For images of size 2 × 2 × 3, the process of solving PM
is exactly the same as Section 3.3. Then, we determine the PM as Equation (10). Fifth,
by Step 2 in Section 3.3, recover (IR, IG, IB) from (ER, EG, EB) with PM. Thus, the

192



Entropy 2021, 23, 258

original plain image shown in Figure 8e can be recovered.

(a) (b) (c)

(d) (e) (f)

Figure 8. A target cipher image, the permuted image, the original plain image and their histograms
of size 2 × 2 × 3: (a) a target cipher image; (b) histogram of (a); (c) its permuted image; (d) histogram
of (c); (e) its plain image; (f) histogram of (e).

• Case 2. Breaking CIEA-FOHS with “Lenna” of size 256 × 256 × 3:
Firstly, following Step 1 in Section 3.2, choose the all-zero plain image I(0) shown in
Figure 9a and temporarily use the encryption machine of CIEA-FOHS, and then get
the corresponding cipher image C(0), as shown in Figure 9b, and the corresponding
three channel images and their histograms of C(0) are shown in Figure 9c,d, respec-
tively. Exactly, one has SXL = 238, SYL = 168 and SZL = 91 owing to SXL = CR0,
SYL = CG0 and SZL = CB0.

(a) (b) (c) (d)

Figure 9. The all-zero chosen plain image I(0) and its corresponding cipher image C(0) of size
256 × 256 × 3: (a) I(0); (b) histogram of I(0); (c) C(0); (d) histogram of C(0).

Secondly, based on Step 2 in Section 3.2, choose the two plain images, I(85) and
I(170), and get the corresponding cipher images, C(85) and C(170), which are shown in
Figure 10a–d, respectively.

193



Entropy 2021, 23, 258

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. The two chosen plain images I(85), I(170) and their corresponding cipher images C(85),
C(170)of size 256 × 256 × 3: (a) I(85); (b) histogram of I(85); (c) C(85); (d) histogram of C(85); (e) I(170);
(f) histogram of I(170); (g) C(170); (h) histogram of C(170).

Furthermore, one determines SXi, SYi, SZi for i = 1 ∼ L − 1 by Algorithm 1.
Thirdly, by the method in Section 3.3, choose the three plain images (shown in
Figure 11a–f) and get the corresponding cipher images (shown in Figure 11g–l), and
then use Algorithm 1 again to obtain their corresponding permuted images (shown in
Figure 11m–r). Then, we can get PM.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 11. Cont.
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(m) (n) (o) (p)

(q) (r)

Figure 11. Three chosen plain images, the corresponding cipher and permuted images for attacking
permutation: (a) 1# plain image; (b) The histogram of (a); (c) 2# plain image; (d) The histogram of (c);
(e) 3# plain image; (f) The histogram of (e); (g) 1# cipher image; (h) The histogram of (g); (i) 2# cipher
image; (j) The histogram of (i); (k) 3# cipher image; (l) The histogram of (k); (m) 1# permuted image;
(n) The histogram of (m); (o) 2# permuted image; (p) The histogram of (o); (q) 3# permuted image;
(r) The histogram of (q).

Finally, we recover the original image from the cipher image of “Lenna” shown in
Figure 12a. First, the permuted image shown in Figure 12c is obtained from the
cipher image with (SX, SY , SZ). Then, the plain image is restored by PM, which is
shown in Figure 12e.

(a) (b) (c)

(d) (e) (f)

Figure 12. The cipher image, the permuted image, the original plain image of “Lenna” and their
histograms of size 256 × 256 × 3: (a) the cipher image; (b) histogram of (a); (c) its permuted image;
(d) histogram of (c); (e) its plain image; (f) histogram of (e).

Without loss of generality, we do the experiments based on other images with different
sizes. The experimental results are shown in Table 3 and Figure 13. They both verify the
effectiveness of our attack method. Besides, it can be seen from Table 3 that the proposed
attack is efficient. Taking the image “Lenna” of size 256 × 256 × 3 as an example, when the
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encryption time is 0.6391 s, the time needed for the corresponding attack is just 129.4039 s.
Even if the image size increases, the time required for the attack is still within an acceptable
range. Thus, it verifies that our method is computationally feasible.

Moreover, we verified the data complexity required for the attack. As discussed in Sec-
tion 3.4, the total data complexity required for breaking CIEA-FOHS is O(3 +

⌈
log256(3HW)

⌉
).

In our experiment with chosen-plaintext attack, the number of attack images required for
sizes 2 × 2 × 3 and 100 × 100 × 3 are 4 and 5, respectively. And for sizes 300 × 200 × 3,
256 × 256 × 3 and 512 × 512 × 3, the number of attack images required are all 6. Therefore,
the experimental verification is consistent with the theoretical calculation.

Table 3. The time required for breaking CIEA-FOHS by our proposed attack method (unit: second).

Images Sizes
Encrytion Attacking Diffusion Attacking Permutation Totol

Time Step 1 Step 2 Step 3 Step 1 Step 2 Attacking Time

Figure 5a 2 × 2 × 3 0.0280 0.1559 0.1811 1.0297 0.0244 2.7151 4.1502
Figure 13b 100 × 100 × 3 0.1539 0.0920 19.6092 1.1407 0.2764 2.7102 24.0427
Figure 13d 300 × 200 × 3 0.3280 0.5092 101.7737 0.7872 0.9055 2.4353 106.8545
Figure 12e 256 × 256 × 3 0.6391 0.6913 120.4768 1.6147 1.9642 3.7725 129.4039
Figure 13f 512 × 512 × 3 3.5386 2.8134 988.3704 1.9930 4.2884 5.0459 1004.4617

(a) (b) (c)

(d) (e) (f)

Figure 13. Attacking results with three images of size 100 × 100 × 3, 300 × 200 × 3 and 512 × 512 × 3
respectively: (a) cipher image of size 100 × 100 × 3; (b) plain image of (a); (c) cipher image of size
300 × 200 × 3; (d) plain image of (c); (e) cipher image of size 512 × 512 × 3; (f) plain image of (e).

5. Suggestions for Improvement

On the basis of the above, CIEA-FOHS is insecure against a chosen-plaintext attack
method because of its inherent security defects. To enhance the security, some suggestions
for improvement are listed below:

• Suggestion 1. Ensuring the substantial security contribution of the fractional-order
chaos to the corresponding cipher. The attractor phase diagram of the fractional-
order hyperchaotic system is shown in Figure 1, which shows the extremely complex
dynamics. Undoubtedly, fractional-order chaos is one of the preferred sources of
entropy for encryption. However, due to the negligence of algorithm design, CIEA-
FOHS has serious security defects and is attacked.

196



Entropy 2021, 23, 258

• Suggestion 2. Security analysis should be implemented from the perspective of cryp-
tography, not limited to numerical statistical verification. As Ref. [45] points out,
many encryption algorithms have excellent statistical analysis results, but they are
still insecure. In fact, good statistical analysis results are only a necessary and not
a sufficient condition for security. Some security flaws are difficult to reflect with
numerical statistical results, but they can be clearly revealed by theoretical security
analysis. For example, the existence of an equivalent key makes CIEA-FOHS vulner-
able to cryptographic attacks. Given the implementation of detailed cryptographic
security analysis, these flaws can be avoided, thereby improving security.

6. Conclusions

In this paper, a detailed security analysis of a color image encryption algorithm
named CIEA-FOHS using a fractional-order chaos was performed. From the perspective of
cryptanalysis, this paper found that CIEA-FOHS can be broken by a chosen-plaintext attack
method, owing to its some inherent security defects. Theoretical analysis and experimental
simulations show that the attack method is both effective and efficient for attacking CIEA-
FOHS. Although the fractional-order chaotic system has complex dynamics, the algorithm
defects may cause insecurity. The reported results would help the designers of chaotic
cryptography pay more attention to the gap between complex chaotic system and secure
cryptosystem.
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Abstract: Image encryption is an excellent method for the protection of image content. Most au-
thors used the permutation-substitution model to encrypt/decrypt the image. Chaos-based image
encryption methods are used in this model to shuffle the rows/columns and change the pixel values.
In parallel, authors proposed permutation using non-chaotic methods and have displayed good
results in comparison to chaos-based methods. In the current article, a new image encryption al-
gorithm is designed using combination of Newton-Raphson’s method (non-chaotic) and general
Bischi-Naimzadah duopoly system as a hyperchaotic two-dimensional map. The plain image is
first shuffled by using Newton-Raphson’s method. Next, a secret matrix with the same size of
the plain image is created using general Bischi-Naimzadah duopoly system. Finally, the XOR be-
tween the secret matrix and the shuffled image is calculated and then the cipher image is obtained.
Several security experiments are executed to measure the efficiency of the proposed algorithm,
such as key space analysis, correlation coefficients analysis, histogram analysis, entropy analysis,
differential attacks analysis, key sensitivity analysis, robustness analysis, chosen plaintext attack
analysis, computational analysis, and NIST statistical Tests. Compared to many recent algorithms,
the proposed algorithm has good security efficiency.

Keywords: Newton-Raphson’s method; chaos; image encryption/decryption; security analysis

1. Introduction

Digital images play a critical role in the world today. Digital images make up 70%
of the transmitted data via the Internet [1]. They often contain sensitive and valuable
information which requires protection against unauthorised access in various applications
such as military images, medical images and Satellite images. Therefore, researchers have
been designing methods to protect digital images from piracy while they are transferred
from one place to another such as encryption algorithms via chaos [2–6], DNA coding [7],
and wavelets [8]. Also S-boxes play an excellent role in confirming the resistance of block
ciphers against cryptanalysis [9]. In Reference [10], the authors presented an efficient
algorithm based on a class of Mordell elliptic curves to generate S-boxes. One of the most
stable and powerful public key cryptosystems has been proven to be the Elliptic Curve
Cryptography, which is popular for its high performance. But improving protection by
increasing the duration of the key is inefficient [11,12].

Among the many ways of image cryptography, the image cryptography based on
chaotic map will selected over the past two decades. This is because the chaotic mappings
have necessary proprieties such as high sensitivity to the initial conditions and the parame-
ters, nonlinearity, non-periodicity, and pseudorandomness [13–17]. Numerous researchers
have presented image cryptography algorithms via chaotic maps. Some of these algo-
rithms have limited key space, weak keys, vulnerability to chosen plaintext/ciphertext
attacks [18–20]. Almost all the authors used the permutation-substitution (confusion-
diffusion) model to encrypt/decrypt the image. There are different permutation methods,
from performing a shuffling to rows/columns to performing more complicated iterative
processes. For example, in Reference [3], the authors proposed rows/columns shuffling
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algorithm using the logistic map to get permutation. Karawia in Reference [6] suggested
an image encryption algorithm using Fisher-Yates shuffling to obtain permutation while
Shakiba in Reference [21] performed cyclic shifts to the rows/columns via Chebyshev map-
ping to achieve permutation. Xiao et al. in Reference [22] used switch control mechanism
to perform permutation for rows and columns of plain image. For substitution, majority
of the authors applied the XOR processes [3–6,21,23], or addition modular 256 during the
substitution stage of encryption [24]. There are many maps (chaotic and hyperchaotic)
utilized to design encryption algorithms, for example, 1D chaotic map in Reference [25],
2D generalized Arnold map in Reference [26], 3D Cat chaotic map in Reference [27,28],
and 4D chaotic map in Reference [29].

Many of the known chaotic image encryption algorithms are resistanceless for cho-
sen plaintext attacks(CPA). These image encryption algorithms are broken by Li et al.,
algorithm [30], such as References [25,31,32]. To avoid this, the image encryption algorithm
must be dependent on the plain image and randomized [21,33]. Based on the dimension
of the chaotic map, most of 1D-chaotic maps have simple forms and simple chaotic orbits
and can be guessed. So image encryption based on 1D chaotic maps are low secure [19,34].
On the contrary, the hyperchaotic maps have more complicated form and complicated
chaotic performance which make expectation of their chaotic orbits is difficult [35].

In the current article, we design an image encryption algorithm that uses Newton-
Raphson’s method, to shuffle the rows/columns of the plain image, and the general
Bischi-Naimzadah duopoly system, to diffuse the pixels of the shuffled image. The general
Bischi-Naimzada is selected to solve three essential problems: (i) the randomness of the
chaotic sequences, (ii) the space of the secret key, and (iii) improving the security compared
with the algorithms in literature. The chaotic sequence generated from it is extremely
random. Also, it has eight parameters and two initial values and thus increasing the secret
key space for the image encryption algorithm. In this algorithm, the key mixing proportion
factor K is utilized to generate the secret key [36]. So, the proposed algorithm depends on
the plain image and it can provide CPA-security. For more details about chaos based image
encryption techniques, see Reference [37].

The main contributions of the current article are: (i) using a 2D chaotic map (the general
Bischi-Naimzadah duopoly system) with a large positive Lyapunov exponent, wide and
uniform distribution, (ii) Performing rows/columns shuffle for the plain image using
pseudo-random sequence generation based on Newton-Raphson’s method, (iii) performing
pixel diffusion to the shuffled image, and (iv) offering CPA-security for our algorithm.

This article is prepared as follows. In Section 2, the general Bischi-Naimzadah duopoly
system is presented. The proposed algorithm is introduced in Section 3. In Section 4,
security experimental results and comparative analyses are given. Finally, conclusions are
mentioned in Section 5.

2. General Bischi-Naimzadah Duopoly System (GBNDS)

The image encryption needs a sequences of random numbers to generate a good
secret image. The current paper takes advantage of the effectiveness of the general Bischi-
Naimzadah duopoly system to generate pseudorandom numbers. The general Bischi-
Naimzada game is a market vying between two companies based on sales constraints
with the aim of maximising profits. The general Bischi-Naimzadah duopoly system is
mathematically defined as [38]:

q1(t + 1) = q1(t) + ν1q1(t)[(1 − μ1)(a − 2bq1(t)− bq2(t))− c1]
q2(t + 1) = q2(t) + ν2q2(t)[(1 − μ2)(a − 2bq2(t)− bq1(t))− c2],

(1)

where
qi: the output of company i = 1, 2,
a > 0: constant price,
b > 0: the market price slope,
ci: the marginal cost, i = 1, 2,
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μi > 0: associated with the sales constraint, i = 1, 2,
νi > 0: the adjustment speed of company i = 1, 2.

The chaotic behavior of system (1) is observed by the values of the parameters:
a = 11.25, b = 0.5, c1 = 0.20, c2 = 0.30, μ1 = 0.002, μ2 = 0.60, ν1 = 0.20, ν2 = 0.70 and
initial values q10 = 0.10, q20 = 0.20. Figure 1a displays the bifurcation diagram of system
(1) regarding the parameter μ1. Lyapunov exponent of system (1) regarding the parameter
μ1 is shown in Figure 1b. Figure 2 displays phase diagram of system (1). It presents four
unconnected chaotic areas. Whereas the phase diagram of system (1) at μ1 = 0.97 is given
in Figure 3 and it presents a chaotic attractor. The main advantages of the proposed coding
scheme compared to other systems in the literature is that the chaotic coding sequence
extracted from the GBNDS is extremely random. This is because this it contains many
chaotic regions for different values of the parameters. The proposed system also shows a
great positive feature, which is the emergence of a very wide range of chaos and complex
dynamics with the parameter μ1 in which the system (1) shows very complex chaotic
behavior [38]. Moreover, incorporating the effects of sales constraints into the form has
the advantage of increasing the number of parameters in the form and thus expanding
the secret key space for the cryptography process. Also, a stable coexistence of multiple
chaotic attractions is observed in this case [38].

Figure 1. (left) Bifurcation diagram of system (1) regarding μ1, (right) Lyapunov exponent of system
(1) regarding μ1.

Figure 2. Phase diagram of system (1) for a = 11.25, b = 0.5, c1 = 0.20, c2 = 0.30, μ1 = 0.002,
μ2 = 0.60, ν1 = 0.20, ν2 = 0.70, q10 = 0.10, and q20 = 0.20.
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Figure 3. Phase diagram of system (1) for a = 11.25, b = 0.5, c1 = 0.20, c2 = 0.30, μ1 = 0.97,
μ2 = 0.60, ν1 = 0.20, ν2 = 0.70, q10 = 0.10, and q20 = 0.20.

3. The Proposed Algorithm

The proposed method applies confusion-diffusion model to encrypt the plain image.
Sequences are generated by the points, calculated by Newton-Raphson’s method, on a
polynomial function. Based on these sequences, the rows/columns of the plain image
are shuffled (confusion phase). By applying XOR between the shuffled image and the
generated values of the chaotic system (1), the diffusion stage modifies the pixel val-
ues. In the current section, the key generation, rows/columns Shuffling, and an image
encryption/decryption algorithms are presented.

3.1. The Key Generation

Suppose that O = (oij), i = 1, 2, ..., M, and j = 1, 2, ..., N, is the plain image. The se-
cret key is generated by using the key mixing proportion factor K as follows [36]:

Ks =
1

256
mod

⎛
⎜⎝ [ sM

2 ]

∑
i=[ (s−1)M

2 ]+1

N

∑
j=1

oij, 256

⎞
⎟⎠, s = 1, 2, (2)

and, the key values ζs is changed via the following formula:

ζs ← (ζs + Ks)

2
, s = 1, 2, (3)

where [x] denoted to the nearest integer and ζs denoted to qs0, s = 1, 2.
The key space of the proposed algorithm consists of the polynomial function with

degree k and limits of [α, β] for the Newton-Raphson’s method, two initial values and
eight parameters for GBNDS. Then, for the confusion phase, select two values, α, β,
and one polynomial function based on Newton-Raphson’s method, and for diffusion phase,
two initial values, q10, q20, and eight parameters a, b, c1, c2, μ1, μ2, ν1, ν2 for the System (1).

3.2. Rows/Columns Shuffling (Confusion Phase)

In this section, we design a technique for generating a random permutation of the
integers {1, 2, . . . , n}. Then, we shuffle the rows/columns of the plain image via the random
permutation sequences.

Suppose a polynomial function of degree s, p(x) = ∑s
i=1 aixi, where as �= 0 and s > 1,

is defined on the interval [α, β]. Take x0 = (α + β)/2 and Newton-Raphson’s method
generates the sequence {xi}∞

i=0 by the following formula:

xi = xi−1 − p(xi−1)

p′(xi−1)
, p′(xi−1) �= 0 ∀ i = 1, 2, 3, . . . (4)
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Suppose, the Newton-Raphson’s method generates the points {x1, x2, x3, . . . , xn}.
To get more randomness, instead of p(xi), the sequence is defined as the fraction part of
p(xi). This sequence depends on the polynomial p(x) and the interval [α, β].

The standard NIST SP800-22 test is used to assess the efficiency of the pseudorandom
number generator(PRNG) of Newton-Raphson’s method, and Table 1 gives the test results.
In Table 1, the random number generator has passed all the tests. So, it has a good randomness.

Table 1. NIST statistical test for PRNG-Newton-Raphson’s method.

Statistical Test PRNG Result

Frequency monobit test 100/100 PASS
Block frequency test 99/100 PASS
Rank test 99/100 PASS
Runs test 97/100 PASS
Longest runs test 99/100 PASS
Cumulative sums test 100/100 PASS
Discrete Fourier transform 100/100 PASS
Random excursion test 56/58 PASS
Random excursion variant test 57/58 PASS
Universal test 96/100 PASS
Approximate entropy 97/100 PASS
Linear complexity test 99/100 PASS
Serial 99/100 PASS
Non Overlapping templates test 97/100 PASS
Overlapping templates test 100/100 PASS

Algorithm 1 is proposed to generate a random permutation of the integers {1, 2, . . . , n}
based on Newton-Raphson’s method as follows:

Algorithm 1 Random-Permutation algorithm
Input: Size of random numbers, n, the polynomial p(x), α, and β.
Output: S, the random permutation of the integers {1, 2, . . . , n}.
Step 1: Set S = 1, x0 = (α + β)/2, x = p(x0)− f ix(p(x0))
Step 2: For i = 2 to n, compute

S = [S i]
k = ceil(i ∗ x)
S([k i]) = S([i k])
x1 = x0 − p(x0)/p′(x0)
x = p(x1)− f ix(p(x1))
x0 = x1

End For
Step 3: S

Suppose the size of the plain image is M × N. Algorithm 2 is designed to shuffle
the plain image based on the random permutation sequences of Algorithm 1. It may be
processed as in Algorithm 2.

3.3. Diffusion Phase

The system (1) is utilized to generate a chaotic sequence of size M × N. Then, reshape
it to be of size 1 × MN, Q = {q1, q2, . . . , qMN}. The sequence Q is modified using the
following formula:

qi = mod(ceil(qi × 1014), 256), i = 1, 2, . . . , MN. (5)
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Algorithm 2 Row/Columns shuffling algorithm
Input: The plain image, O, the polynomial p(x), α1, α2, β1, and β2.
Output: H, the shuffled image.
Step 1: Set [M, N] = size(O)
Step 2: Use Algorithm 1, with polynomial p(x), and interval [α1, β1], to generate a random

permutation of size M for shuffling the rows, say SRows.
Step 3: Use Algorithm 1, with polynomial p(x), and interval [α2, β2], to generate a random

permutation of size N for shuffling the columns, say SColumns.
Step 4: For i = 1 to M, compute

For j = 1 to N, compute
H(i, j) = O(SRows(i), SColumns(j))

End For j
End For i

Step 5: H, the shuffled image.

Moreover, the shuffled image H is reshaped to be of size 1× MN, H = {h1, h2, . . . , hMN}.
Finally, XOR is applied between each pixel in H and corresponding chaotic value of X,
D = XOR(H, X) (diffusion phase). The algorithm of diffusion phase may be processed
as follows:

Algorithm 3 Diffusion algorithm
Input: The shuffled image, H, q10, q20, a, b, c1, c2, μ1, μ2, ν1, and ν2.
Output: D, the diffusion vector.
Step 1: Reshape H, H = {h1, h2, ..., hMN}.
Step 2: Covert H to binary, Hb.
Step 3: Set q1(0) = q10, q2(0) = q20.
Step 4: Perform initial iterations,

For t = 0 to 999
q1(t + 1) = q1(t) + ν1q1(t)[(1 − μ1)(a − 2bq1(t)− bq2(t))− c1]
q2(t + 1) = q2(t) + ν2q2(t)[(1 − μ2)(a − 2bq2(t)− bq1(t))− c2]

End For
Step 5: Set q1(0) = q1(1000), q2(0) = q2(1000).
Step 6: For t = 0 to MN − 1

q1(t + 1) = q1(t) + ν1q1(t)[(1 − μ1)(a − 1(t)− bq2(t))− c1]
q2(t + 1) = q2(t) + ν2q2(t)[(1 − μ2)(a − 2bq2(t)− bq1(t))− c2]
q(t + 1) = (q1(t + 1) + q2(t + 1))/2

End For
Step 7: Preprocess the values of Q = {q(1), q(2), ..., q(MN)} as follows:

q(t) = mod(ceil(q(t) ∗ 1014), 256), t = 1, 2, ..., MN.
Step 8: Covert Q to binary, Qb.
Step 9: Perform XOR between Hb and Qb, say D = XOR(Hb, Qb).

3.4. The Encryption/Decryption Algorithm

The encrypted image is produced from Algorithm 3 by reshape diffusion vector D to
be of size M × N, say E. The whole image encryption algorithm may be processed as in
the Algorithm 4.

The Algorithm 4 (Image Encryption based on General Bischi-Naimzadah Duopoly
System) will be referred to as IEGBNDS algorithm. Indeed, IEGBNDS algorithm can be
applied to encrypt the color images. We can decompose color images into three grayscale
images of red, green and blue colors (R, G, B components). After that we can encrypt
them into their corresponding cipher images by applying the proposed algorithm. Then by
re-joining the three cipher images of the R, G, B components, the color cipher image can
be obtained.
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Algorithm 4 Image encryption algorithm
Input: The plain image, O, the polynomial p(x), α, β, q10, q20, a, b, c1, c2, μ1, μ2, ν1, and ν2.
Output: E, the encrypted image.
Step 1: Read the plain image, O.
Step 2: Generate the secret key by using the key mixing proportion factor.
Step 3: Call Algorithm 2 to get the shuffled image H.
Step 4: Call Algorithm 3 to get the diffusion vector D.
Step 5: Covert D to decimal, say Dd.
Step 6: Change the dimension of Dd to M × N, say E.
Step 7: E is the encrypted image.

The decryption algorithm is the inverse steps of IEGBNDS algorithm. Figure 4 displays
the block diagram of IEGBNDS algorithm.

Figure 4. Block diagram of the proposed algorithm.

4. Experimental Results

The IEGBNDS algorithm has been applied to several 512 × 512 pixel gray-scale
images and very promising results have been accomplished. All codes are accomplished
on a Windows 10 Laptop with Intel(R) Core(TM) i7 2.40 GHz, CPU with 12 GB RAM using
MATLAB R2016b.

4.1. Key Space Analysis

The key space must be large enough to hold out against brute-force attack. It must
be above the value 2100 [39]. The key space of the IEGBNDS algorithm consists of the
polynomial function with degree k and limits of [α, β] for the Newton-Raphson’s method,
two initial values and eight parameters for GBNDS. If the accuracy 10−14 has been used
then it will be equal to 1014(k+1) + 10168(>> 2100). Table 2 gives the key space of the
IEGBNDS algorithm compared to some recent algorithms in literature.

Table 2. Key space of the IEGBNDS algorithm compared to some recent algorithms in literature.

Algorithm IEGBNDS Algorithm [5] [23] [40]

Key space (1014(k+1) + 10168) > 2605 10140 ≈ 2466 >104 × 2208 2256
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4.2. Histogram Analysis

In a good encryption algorithms, the distribution of the pixel intensity values within
a cipher image should be as similar to the uniform distribution as possible. Figures 5 and 6
show that the histograms of the cipher image is very similar to the uniform distribution.
As the χ2 statistical test is used to measure the nearness of produced histograms to the
uniform histogram. The statistical χ2-value is evaluated by [6]:

χ2 =
256

∑
i=1

(Ei − ei)
2

ei
, (6)

where the length of all possible values in an image is 256, Ei is the observed event frequen-
cies of i − 1 and ei is the expected event frequencies of i − 1, i = 1, 2, ..., 256. By evaluating
the χ2-value with the level of significance α = 0.05, we got χ0.05(255) = 293.25. So, Both dis-
tributions are nearly equal if χ2(255) < 293.25. Table 3 shows that all tested images are
smaller than 293.25. Therefore, the cipher images histograms are close to the uniform distri-
butions. In other words, an attacker cannot retrieve any valuable information from them.
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Figure 5. Plain images, cipher images and their corresponding histograms.
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Figure 6. Plain images, cipher images and their corresponding histograms.

Table 3. χ2-values of the histograms of the cipher images at a = 11.25, b = 0.5, c1 = 0.20, c2 = 0.30,
μ1 = 0.002, μ2 = 0.60, ν1 = 0.20, ν2 = 0.70, q10 = 0.10, and q20 = 0.20.

Image χ2-Value

Lena 286.52
Barbara 256.74

Cameraman 252.88
Mandrill 275.24
Airplane 279.64

Boat 260.23
Peppers 288.74

Moon_surface 249.12

Histogram Statistics

The variance and standard deviation are dispersion metrics applied in graphic his-
tograms to help the effects of visual inspection. They calculate how often the elements of a
dataset differ across the average with respect to each other. The same average value (mean)
can be in two datasets, but the differences may be dramatically different. If the histogram
has the lower variance then it has the more uniform of the graphic histogram, which is
calculated by the following formula:

V =
1

256

256

∑
i=1

(θi − θ̄)2, (7)

209



Entropy 2021, 23, 57

where

θ̄ =
M × N

256
, (8)

θi is the frequency for each pixel’s value from 0 − 255 of the histogram, i = 1, 2, . . . , 256,
θ̄ is the histogram mean.

The standard deviation helps us to know the arithmetic average of the dataset’s
variations relative to the mean. It is calculated as follows:

S =
√

V, (9)

where V is the histogram variance.
Table 4 presents the histogram statistics for the plain and cipher images of the tested

images for the IEGBNDS algorithm and the encryption algorithm in Reference [41].

Table 4. Histogram statistics for the IEGBNDS algorithm and the encryption algorithm in Refer-
ence [41].

Image

Plain Image Cipher Image
IEGBNDS [41]

V S V S V S

lena (256 × 256) 38451 196.1 396 19.9 414 20.3
lena (512 × 512) 633397 795.9 3171 56.3 3340 57.8

4.3. Entropy Analysis

Information entropy [7] is utilized to detect the randomness of the cipher image. It is
computed as follows:

H =
255

∑
i=0

Pilog2(
1
Pi
), (10)

where Pi is the probability associated with gray level i. The largest value of the entropy
reflects the randomness of the encrypted image. The maximum value of the entropy in our
case is 8. Table 5 gives the information entropy for the plain and cipher images of the tested
images. All values of entropy based on our algorithm are close to 8. In addition, the IEGB-

NDS algorithm gives average better than most averages of the listed recent algorithms.
Based on the results of entropy, the IEGBNDS algorithm has reasonable protection.

Table 5. Information entropy analysis of the IEGBNDS algorithm compared to some recent algo-
rithms in literature.

Image
Information Entropy

Plain Image Encrypted Image

Lena 7.4475 7.9992
Barbara 7.6338 7.9993
Cameraman 7.0518 7.9993
Mandrill 7.2933 7.9992
Airplane 6.6823 7.9992
Boat 7.2151 7.9993
Peppers 7.4849 7.9992
Moon_surface 6.6974 7.9993
Average 7.1883 7.99925
[5] (Average) – 7.99867
[23] (Average) – 7.90252
[40] (Average) 7.266297 7.999224
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4.4. Correlation Coefficients Analysis

In the plain image, adjacent pixels have strong relationships. So, reducing these
relationships is required to hold out against statistical attacks. The correlation coefficient
between two adjacent pixels, θ and φ, is defined as [6]:

rθφ =
Cov(θ, φ)√
(D(θ)D(φ))

, (11)

where

Cov(θ, φ) =
1
N

N

∑
m=1

(θm − E(θ))(φm − E(φ)), (12)

E(θ) =
1
N

N

∑
m=1

θm, (13)

and

D(θ) =
1
N

N

∑
m=1

(θm − E(θ))2, (14)

where θ and φ are selected randomly. 3000 pairs of adjacent pixels are chosen randomly
from the plain and cipher images. Figure 7 displays the pixel intensity value’s distribution
of 3000 pairs for the Barbara image and its encrypted image in the three directions, diagonal,
horizontal, and vertical. The correlation coefficients of the three directions for the IEGB-

NDS algorithm compared to some recent encryption algorithms based on the average of
the correlation coefficients are given in Table 6. Table 6 shows that the IEGBNDS algorithm
outperforms all of them at least in one direction. Also all values of rθφ for the cipher images
are close to zero. So, it can protect the image information.

Table 6. Correlation coefficient of the cipher images based on the IEGBNDS algorithm compared to
some recent encryption algorithms in literature.

Image
Correlation Coefficient

Horizontal Vertical Diagonal

Lena 0.0011 −0.0026 −0.0015
Barbara −0.0006 −0.0015 −0.0010
Cameraman −0.0035 −0.0029 −0.0015
Mandrill −0.0002 −0.0005 −0.0026
Airplane 0.0029 −0.0020 −0.0049
Boat −0.0034 −0.0019 0.0010
Peppers −0.0035 0.0032 0.0017
Moon_surface −0.0013 0.0000 0.0011
Average 0.002063 0.001825 0.001913
[5] (Average) 0.007067 0.007867 0.014567
[23] (Average) 0.001544 0.001772 0.002678
[40] (Average) 0.003134 0.006602 0.004525
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Distribution of adjacent pixels in the plain image (a,c,e) and the cipher image (b,d,f) for
Barbara image in the three directions, diagonal, horizontal, and vertical.

4.5. Differential Attack Analysis

The protection against differential attacks is required for any image encryption al-
gorithm. There are two main measurements, (1) NPCR (Number of Pixel Change Rate),
and (2) UACI (Unified Average Changing Intensity). These measurements evaluated the
amount of differences between two images, and can be defined as [5]:

NPCR =
∑m,n D(m, n)

M × N
× 100%, (15)

UACI =
1

M × N

[
∑
m,n

|O(m, n)− E(m, n)|
255

]
× 100%, (16)

where

D(m, n) =

{
0 if O(m, n) = E(m, n),

1 otherwise.
(17)

A single pixel of the plain image is selected randomly and it modified to 255 − v,
where v is the original intensity value of pixel. The same key is utilized to encrypt the
modified image and the plain image. Then, NPCR, and UACI are calculated using the two
cipher images. Table 7 shows NPCR and UACI for the tested images and compared them
to some recent algorithms in literature. The IEGBNDS algorithm offers a good level of
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security. Based on the averages of NPCR and UACI, the IEGBNDS algorithm outperforms
all of them at least in one of the two measures. So, the IEGBNDS algorithm can be useful
against differential attacks.

Table 7. NPCR and UACI of the tested images using the IEGBNDS algorithm and the recent algorithms.

Image NPCR (%) UACI%

Ideal value [23] 99.6094 33.4635
Lena 99.6326 33.4584
Barbara 99.6082 33.5339
Cameraman 99.6044 33.5797
Mandrill 99.6204 33.4392
Airplane 99.5907 33.4608
Boat 99.6086 33.4599
Peppers 99.6033 33.4868
Moon_surface 99.5998 33.4590
Average 99.6085 33.48471
[5] (Average) 99.6067 33.4267
[23] (Average) 99.6083 33.4521
[40] (Average) 99.6060 33.4646

4.6. Key Sensitivity Analysis

The sensitivity to the secret key is one of the important features of an excellent
encryption algorithm. During the restoring plain image (decryption process), small changes
in one of the initial values or parameter are made and we will observe the restoring image
via the modified secret key. Table 8 shows the restoring images using the true secret key
and the modified secret keys. The plain image cannot be restored by any of modified
secret keys. Therefore, the IEGBNDS algorithm is highly sensitive to any changes of the
secret key.

Table 8. The result of key sensitivity analysis.

Cipher Decrypted with Decrypted with Decrypted with
image true key wrong key q1(1)× 10−14 wrong key q2(1)× 10−14

Decrypted with Decrypted with Decrypted with Decrypted with
wrong key a × 10−14 wrong key b × 10−14 wrong key μ1 × 10−14 wrong key ν1 × 10−14
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4.7. Robustness Analysis

In real life, noise or data loss is occurred and the IEGBNDS algorithm is tested against
these problems. Salt&Pepper noise with different densities are added to the cipher image
of lena with size 512 × 512. Table 9 shows the decrypted images of the noisy encrypted
images. Moreover, the decryption image of the encryption image with some data loss is
shown in Table 9. Based on the result of Table 9, The IEGBNDS algorithm can be robust
against the noise and data loss attacks.

Table 9. Robustness analysis of the IEGBNDS algorithm for lena image with size 512 × 512.

Encrypted with Decryption of Encrypted with Decryption of
salt&pepper(0.01) previous image salt&pepper(0.05) previous image

Encrypted with Decryption of Encrypted with Decryption of
salt&pepper(0.1) previous image corp of 200 × 200 previous image

4.8. Chosen Plaintext Attack Analysis

The IEGBNDS algorithm is sensitive to the key generation, Ks, in Equation (2) and dif-
ferent sequences will be generated by small changes in the plain image. So, the IEGBNDS

algorithm can hold out against the plaintext attacks. Now, we will examine the IEGBNDS

algorithm against the chosen plaintext attack. Suppose the attacker has the encrypted
image and the running of the IEGBNDS algorithm for a short time. The algorithm of Ref-
erence [42] will be used to examine our algorithm against chosen plaintext attack. In this
algorithm, the following notations will be used:

P: plain image,
E: encrypted image of P,
D: designed image, where dmn = 0, m = 1, 2, . . . , M, n = 1, 2, . . . , N,
ED: encrypted image of D,
DE: decrypted image of E.

The XOR operations between the pixels of E and ED are performed to obtain the plain
image P. Based on the result of Figure 8, the decrypted image is totally unlike the plain
image. Therefore, the IEGBNDS algorithm can resist chosen plaintext attack.
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(a) (b) (c) (d)

Figure 8. Analysis of chosen plaintext attack: (a) Encrypted image E, (b) designed image D, (c) en-
crypted image of D, (d) Decrypted image DE.

4.9. Computational Analysis

The average times of encryption and decryption algorithm for one hundred time are
34.11 ms and 30.57 ms (Tested image of size 512 × 512), respectively. On the other hand,
for the tested image of size M × N, the encryption algorithm needs 5 MN + M + N + 2000
operations. The complexity time for the decryption algorithm is equal to the complexity
time of the encryption algorithm. Table 10 shows that the running time of the IEGBNDS

algorithm is effective compared to some recent image encryption algorithms such as in
Reference [40] by Shakiba and Reference [23] by Cao et al.

Table 10. Running time of the encryption for the IEGBNDS algorithm and the recent algorithms.

Algorithm Image Size Running Time (ms)

IEGBNDS 512 × 512 34.11
[40] 512 × 512 976 ± 24.6
[23] 256 × 256 32.43

4.10. NIST Statistical Tests

NIST were established to test the randomness of generating cipher images created by
encryption algorithms [43]. For the IEGBNDS algorithm, it is used to check the randomness
of a sequence that consists of 100 cipher images of length 512 × 512 × 8 = 2,097,152 bits.
They were generated by using different random secret keys. Table 11 presents the results
for 15 tests and all of them passed these tests.

Table 11. NIST statistical test for 100 cipher images by the IEGBNDS algorithm.

Statistical Test IEGBNDS Algorithm Result

Frequency monobit test 100/100 PASS
Block frequency test 99/100 PASS
Rank test 99/100 PASS
Runs test 99/100 PASS
Longest runs test 100/100 PASS
Cumulative sums test 99/100 PASS
Discrete Fourier transform 98/100 PASS
Random excursion test 56/58 PASS
Random excursion variant test 57/58 PASS
Universal test 99/100 PASS
Approximate entropy 98/100 PASS
Linear complexity test 100/100 PASS
Serial 100/100 PASS
Non Overlapping templates test 99/100 PASS
Overlapping templates test 100/100 PASS
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5. Conclusions

In this article, the IEGBNDS algorithm via Newton-Raphson’s method and general
Bischi-Naimzadah duopoly system (GBNDS) has been suggested. Newton-Raphson’s
method has been used for shuffling the rows/columns of the plain image. GBNDS has
been used to producing chaotic sequences to diffusion phase of image encryption algorithm.
The extracted chaotic sequences from the GBNDS is extremely random based on the NIST
statistical tests. Many security experiments are applied to evaluate the efficiency of our
algorithm. The IEGBNDS algorithm has a large key space (1014(k+1) + 10168(>>2100),
the histograms of the generated cipher images are close to the uniform distributions, all en-
tropy values for the cipher images based on IEGBNDS algorithm are close to 8, all correla-
tion coefficient values for the cipher images are close to zero. The IEGBNDS algorithm
outperforms some recent algorithms at least in one of the two measures, highly sensitive to
small changes of the secret key, can be robust against the noise and data loss attacks, and can
hold out against the plaintext attacks. In comparison to several recent algorithms, the
IEGBNDS algorithm has a small running time. NIST statistical tests for 100 cipher images
by the IEGBNDS algorithm are performed and all tests are passed. Finally, quantum im-
age encryption algorithm based on GBNDS will be designed in the future to increase the
security of the current algorithm.
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