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Laboratoire dOcéanographie Physique et Spatiale, Ifremer

France

Editorial Office

MDPI AG

St. Alban-Anlage 66

Basel, Switzerland

This edition is a reprint of the Special Issue published online in the open access journal 
Remote Sensing (ISSN 2072-4292) in 2017 (available at: http://www.mdpi.com/journal/

remotesensing/special issues/ocean rs SAR).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, F.M.; Lastname, F.M. Article title. Journal Name. Year. Article number, page range.

First Edition 2018

Image courtesy of  Xiaofeng Yang, Xiaofeng Li, Ferdinando Nunziata and Alexis Mouche

ISBN 978-3-03842-720-9 (Pbk) 
ISBN 978-3-03842-719-3 (PDF)

Articles in this volume are Open Access and distributed under the Creative Commons Attribution

(CC BY) license, which allows users to download, copy and build upon published articles even for

commercial purposes, as long as the author and publisher are properly credited, which ensures max-

imum dissemination and a wider impact of our publications. The book taken as a whole is c© 2018

MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons li-

cense CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).



Table of Contents

About the Special Issue Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Preface to ”Ocean Remote Sensing with Synthetic Aperture Radar” . . . . . . . . . . . . . . . .  vii

Xuan Zhou, Jinsong Chong, Haibo Bi, Xiangzhen Yu, Yingni Shi and Xiaomin Ye

Directional Spreading Function of the Gravity-Capillary Wave Spectrum Derived
from Radar Observations
doi: 10.3390/rs9040361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Hui Meng, Xiaoqing Wang, Jinsong Chong, Xiangfei Wei and Weiya Kong

Doppler Spectrum-Based NRCS Estimation Method for Low-Scattering Areas in Ocean
SAR Images
doi: 10.3390/rs9030219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Weiya Kong, Jinsong Chong and Hong Tan

Performance Analysis of Ocean Surface Topography Altimetry by Ku-Band Near-Nadir
Interferometric SAR
doi: 10.3390/rs9090933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Xiangguang Leng, Kefeng Ji, Shilin Zhou and Huanxin Zou

Azimuth Ambiguities Removal in Littoral Zones Based on Multi-Temporal SAR Images
doi: 10.3390/rs9080866 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

He Wang, Jingsong Yang, Alexis Mouche, Weizeng Shao, Jianhua Zhu, Lin Ren and Chunhua

Xie

GF-3 SAR Ocean Wind Retrieval: The First View and Preliminary Assessment
doi: 10.3390/rs9070694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Xiuzhong Li, Biao Zhang, Alexis Mouche, Yijun He and William Perrie

Ku-Band Sea Surface Radar Backscatter at Low Incidence Angles under Extreme
Wind Conditions
doi: 10.3390/rs9050474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Lanqing Huang, Bin Liu, Xiaofeng Li, Zenghui Zhang, Wenxian Yu

Technical Evaluation of Sentinel-1 IW Mode Cross-Pol Radar Backscattering from the Ocean
Surface in Moderate Wind Condition
doi: 10.3390/rs9080854 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Lizhang Zhou, Gang Zheng, Xiaofeng Li, Jingsong Yang, Lin Ren, Peng Chen, Huaguo

Zhang and Xiulin Lou

An Improved Local Gradient Method for Sea Surface Wind Direction Retrieval from
SAR Imagery
doi: 10.3390/rs9070671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Yi Yu, Xiaofeng Yang, Weimin Zhang, Boheng Duan, Xiaoqun Cao and Hongze Leng

Assimilation of Sentinel-1 Derived Sea Surface Winds for Typhoon Forecasting
doi: 10.3390/rs9080845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Boheng Duan, Weimin Zhang, Xiaofeng Yang, Haijin Dai, and Yi Yu

Assimilation of Typhoon Wind Field Retrieved from Scatterometer and SAR Based on the
Huber Norm Quality Control
doi: 10.3390/rs9100987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

iii



Weizeng Shao, Jing Wang, Xiaofeng Li and Jian Sun

An Empirical Algorithm for Wave Retrieval from Co-Polarization X-Band SAR Imagery
doi: 10.3390/rs9070711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Pengzhen Chen, Lei Liu, Xiaoqing Wang, Jinsong Chong, Xin Zhang and Xiangzhen Yu

Modulation Model of High Frequency Band Radar Backscatter by the Internal Wave Based
on the Third-Order Statistics
doi: 10.3390/rs9050501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Olga Lavrova and Marina Mityagina

Satellite Survey of Internal Waves in the Black and Caspian Seas
doi: 10.3390/rs9090892 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Miao Kang, Kefeng Ji, Xiangguang Leng and Zhao Lin

Contextual Region-Based Convolutional Neural Network with Multilayer Fusion for SAR
Ship Detection
doi: 10.3390/rs9080860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Yichang Chen, Gang Li, Qun Zhang and Jinping Sun

Refocusing of Moving Targets in SAR Images via Parametric Sparse Representation
doi: 10.3390/rs9080795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Tingting Jin, Xiaolan Qiu, Donghui Hu and Chibiao Ding

An ML-Based Radial Velocity Estimation Algorithm for Moving Targets in Spaceborne High-
Resolution and Wide-Swath SAR Systems
doi: 10.3390/rs9050404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Ji-Wei Zhu, Xiao-Lan Qiu, Zong-Xu Pan, Yue-Ting Zhang and Bin Lei

An Improved Shape Contexts Based Ship Classification in SAR Images
doi: 10.3390/rs9020145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Yongfeng Cao, Linlin Xu and David Clausi

Exploring the Potential of Active Learning for Automatic Identification of Marine Oil Spills
Using 10-Year (2004–2013) RADARSAT Data
doi: 10.3390/rs9101041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Shuangshang Zhang, Qing Xu, Quanan Zheng and Xiaofeng Li

Mechanisms of SAR Imaging of Shallow Water Topography of the Subei Bank
doi: 10.3390/rs9111203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Xiaolin Bian, Yun Shao, Wei Tian, Shiang Wang, Chunyan Zhang, Xiaochen Wang and Zhixin

Zhang

Underwater Topography Detection in Coastal Areas Using Fully Polarimetric SAR Data
doi: 10.3390/rs9060560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Wensheng Wang, Martin Gade and Xiaofeng Yang

Detection of Bivalve Beds on Exposed Intertidal Flats Using Polarimetric SAR Indicators
doi: 10.3390/rs9101047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

iv



About the Special Issue Editors

Xiaofeng Yang received his B.S. degree in environmental science from Sichuan University, Chengdu,

China, in 2005, and his Ph.D. degree in cartography and geographic information systems from the

Institute of Remote Sensing Applications (IRSA), Chinese Academy of Sciences (CAS), Beijing, China,

in 2010. From 2010 to 2015, he was an Associate Professor with the Institute of Remote Sensing and

Digital Earth, CAS. He is currently a Full Professor with the State Key Laboratory of Remote Sensing

Science, RADI, CAS. His research interests include satellite oceanography, synthetic aperture radar

image processing, and marine atmospheric boundary layer process studies. Dr. Yang serves as an

Editor for MDPIs Remote Sensing. He is an IEEE Senior Member, and the Secretary of Technical

Committee on Space Earth Science, Chinese Society of Space Research. He has also served as the

Assistant Chief Scientist of the Chinese Water Circle Observation Mission.

Xiaofeng Li, Scientist at NOAA, received his B.S. degree in optical engineering from Zhejiang Uni-

versity, China in 1985 and his Ph.D. degree in physical oceanography from the North Carolina State

University, USA in 1997. He is the author of more than 100 peer-reviewed publications covering the

topics in remote sensing observation and theoretical/numerical model studies of various types of

oceanic and atmospheric phenomena, satellite image processing, ocean surface oil spill and target

detection/classification with multi-polarization SAR, and development of sea surface temperature

algorithms. Dr. Li currently serves as an Associate Editor of IEEE Transactions on Geoscience and

Remote Sensing, is an Associate Editor of the International Journal of Remote Sensing, and the Ocean

Section Editor-in-Chief of Remote Sensing. He is an Editorial Board Member of the International

Journal of Digital Earth, Big Earth Data, and CAAI Transactions on Intelligence Technology.

Ferdinando Nunziata, PhD, was born in Italy in 1982. He received his B.Sc. and M.Sc. degrees

(summa cum laude) in telecommunications engineering and his Ph.D. degree (curriculum electro-
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Preface to “Ocean Remote Sensing with Synthetic 
Aperture Radar” 

The oceans covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% 
of Earth’s water. In 1978, NASA launched the first SeaSat satellite, primilary aiming at ocean observations 
and the microwave synthetic aperture radar (SAR) was one of four instruments. Since then, the global 
oceans have been observed on SAR images, which has a high resolution (<100 m) and a large  
swath (450 km for ScanSAR mode images). The microwave SAR can image the ocean surface in all 
weather conditions and day or night. An increasing number of SAR satellites have become available since 
the early 1990s, such as the ERS-1/-2 and Envisat satellites, the Radarsat-1/-2 satellites, the COSMO-
SkyMed constellation, TerraSAR-X and TanDEM-X, the Gaofen-3, among others. Recently, the European 
Space Agency lauched a new generation of SAR satellites (Sentinel-1A in 2014 and Sentinel-1B in 2016). 
This operational SAR mission, for the first time, provides researchers with free and open SAR images 
necessary to carry out broader and deeper investigation of the global oceans. 

SAR remote sensing of ocean and coastal monitoring has become a research hotspot in geoscience 
and remote sensing. This book—Progress in SAR Oceanography—provides an update of the state-of-the-
science research on ocean remote sensing with SAR. Overall, the book presents a variety of marine 
applications in ocean research topics such as, oceanic surface and internal waves characteristics studies, 
high-resolution sea surface wind retrieval, shallow-water bathymetry mapping, oil spill detection, 
coastline and inter-tidal zone classification, ship and other man-made objects detection, as well as 
remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate 
students, university faculty members, scientists to policy makers and managers.  

Xiaofeng Yang, Xiaofeng Li, Ferdinando Nunziata, Alexis Mouche 
Special Issue Editors 
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Abstract: Directional spreading function of the gravity-capillary wave spectrum can provide
the high-wavenumber wave energy distribution among different directions on the sea surface.
The existing directional spreading functions have been mainly developed for the low-wavenumber
gravity wave with buoy data. In this paper, we use radar observations to derive the directional
spreading function of the gravity-capillary wave spectrum, which is expressed as the second-order
Fourier series expansion. So far the standard form of the second-order harmonic coefficient has not
been proposed to correctly unify the gravity and gravity-capillary wave. Our strategy is to introduce
a correcting term to replace the inaccurate gravity-capillary spectral component in Elfouhaily’s
directional spreading function. The second-order harmonic coefficient at L, C and Ku band calculated
by the radar observation is used to fit the correcting term to obtain one at the full gravity-capillary
wave region. According to our proposed the directional spreading function, there is a spectral region
between the gravity and gravity-capillary range where it signifies the negative upwind–crosswind
asymmetry at low and moderate speed range. And this is not reflected by the previous models,
but has been confirmed by radar observations. The Root Mean Square Difference (RMSD) of the
proposed second-order harmonic coefficient versus the radar-observed one at L, C band Ku band is
0.0438, 0.0263 and 0.0382, respectively. The overall bias and RMSD are −0.0029 and 0.0433 for the
whole second-order harmonic coefficient range, respectively. The result verifies the accuracy of the
proposed directional spreading function at L, C band Ku band.

Keywords: directional spreading function; gravity-capillary wave; radar observations

1. Introduction

The gravity-capillary wave plays an important role in air-sea interaction because it affects the
mass, momentum and energy flux through the air-sea interface. The wind-induced turbulence transfers
wind energy from the atmosphere to the gravity-capillary wave by the friction at the interface, and then
because the phase speed of the gravity-capillary wave is less than one of the gravity waves, its energy

Remote Sens. 2017, 9, 361 1 www.mdpi.com/journal/remotesensing
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is pillaged by the gravity wave and wind wave will grow [1,2]. The energy propagation is colinear
with gravity crests propagation in absence of currents and internal gravity waves. The directional
spectrum is used to describe the gravity-capillary waves, which can give the wave energy distribution
among different directions on the sea surface. There are two main ways to observe the azimuthal
behavior of the directional spectrum: in situ measurement and remote sensing measurement.

Buoy and its array provided two main types of directional spreading functions of ocean wave
spectrum. The cosine-shape spreading function was first proposed by Longuet-Higgines et al. [3]
according to the motion of a flotation buoy. Mitsuyasu et al. [4] estimated the spreading parameter
of the cosine-shape function using a cloverleaf buoy data. Hasselmann et al. [5] improved the
cosine-shape functions using wave data collected by pitch-and-roll buoys. The sech-shape spreading
function was advanced by Donelan et al. [6] using data collected from a 14-element wave gauge array
because they found that the distribution of wave energy in the direction transverse to the main wave
direction behaved like a hyperbolic secant. The above-mentioned directional spreading functions
measured by buoy are suitable for the gravity wave spectrum. However, the wavelength of the
gravity-capillary wave is too short for buoy and its array to measure the azimuthal behavior of the
gravity-capillary wave.

Radar is the important method to measure the gravity-capillary wave spectrum due to the Bragg
resonance scattering between electromagnetic waves and gravity-capillary waves [7–9]. Apel [10],
Caudal et al. [11] and Liu et al. [12] extended the sech-shape spreading function to the gravity-capillary
domain using radar data. However, the sech-shape spreading function cannot explain the angular
scattering behavior of radar data due to its noncentrosymmetric property. Guissard [13] pointed out
that the directional spreading function of gravity-capillary wave spectrum should contain only even
harmonics if expressed as a Fourier series. And then it was also applied to a directional spectrum by
Elfouhaily et al. [14] and Hwang et al. [15]. Unfortunately, when these directional spreading functions
are used to demonstrate scattering properties of the sea surface, there are obvious differences between
theoretical calculations and radar observations. For example, the L-band negative upwind-crosswind
asymmetry [16–18] of backscatter at low wind speeds is not explained by the existing directional
spreading functions.

The radar observation is related to the directional spectrum by sea surface backscatter
model, such as the Two-Scale Model (TSM). However, the double integrals in TSM are very
inconvenient to calculate the directional spreading function. For the VV polarization, the solutions
of Small-Perturbation Method (SPM) are approximately equal to the TSM solutions in intermediate
incidence angles. Therefore, the SPM is used to relate the directional spectrum to the GMFs at VV
polarization in intermediate incidence angles. The new directional spreading function at the full
gravity-capillary wave region is derived from the L-, C- and Ku-band one calculated by the SPM.
This paper is organized as follows: Section 2 describes the L-, C- and Ku-band GMFs. The detail of
methodology is given in Section 3. Section 4 validate the directional spreading function by radar
observation from SMAP SAR, METOP-A ASCAT and QuikSCAT SeaWinds-1. The whole paper is
discussed and concluded in Sections 5 and 6, respectively.

2. Data Description

In this paper, the L-, C- and Ku-band geophysical model functions (GMFs), which empirically
describe the backscattering properties of sea surface, are chosen to serve as a proxy of radar
observations to derive a new directional spreading function of the gravity-capillary wave spectrum.
The combination of the L, C and Ku bands provide a good coverage of the gravity-capillary wave
spectrum for the wavenumber ranging from 25 to 500 rad/m. The following derivation is based on
L-band GMF [18], C-band CMOD5 GMF [19] and Ku-band NSCAT2 GMF [20]. The L-band GMF and
CMOD5 GMF express the NRCSs as second-order cosine harmonic functions of the radar-observed
azimuthal angle with the analytical functions [21]. The NSCAT2 GMF is given as the lookup table with
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respect to the NRCS, the polarization, the 10-m-height wind speed, the relative wind direction and the
incidence angle.

Figure 1 shows the contour plots of SMAP SAR GMF, CMOD5 GMF and NSCAT2 GMF in 40◦

incidence angles. The contour line of each wind speed is symmetric around the wind direction. At C
and Ku band, the maxima of the contour line occur in the upwind (0◦) and downwind (180◦) directions
and minima in the crosswind (90◦ or 270◦) directions. However, the contour lines of low wind speeds
overlap ones of moderate and high wind speeds at L band, which is obviously different from C- and
Ku-band pattern. This is not explained by the existing directional spreading functions.

(a) 

(b) 

(c) 

Figure 1. The SMAP SAR GMF (a); CMOD5 GMF (b) and NSCAT2 GMF (c) in 40◦ incidence angles.

3. Methodology

The directional spreading function of the gravity-capillary wave spectrum is related to the radar
observation through sea surface backscatter model. We first introduce the directional wave spectrum
and propose a basic form of directional spreading function. And then TSM and SPM, which are two
basic kinds of sea surface backscatter model, are described and compared. It is generally known that
TSM is more suitable for a realistic sea surface due to introduce the double integrals to describe the
sea surface tilting effect. However, the double integrals in TSM are very inconvenient to be used to
calculate the directional spreading function with radar observations. Fortunately, the solutions of SPM
are approximately equal to the TSM solutions in intermediate incidence angles at VV polarization.

3
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Finally, we derive the directional spreading function from SPM and calculate its parameters with L-,
C- and Ku-band GMFs.

3.1. Basic Form of Directional Spreading Function

The directional wave spectrum can provide the directional distribution of ocean wave energy
on the sea surface. With the increase of the quality and quantity of available data, more and more
directional wave spectrums have been proposed [22,23]. In most cases the directional wave spectrum
Ψ(k, φ) can be described as a function of both the wave wavenumber and the wave direction relative
to the wind as follows:

Ψ(k, φ) = ϕ(k)·D(k, φ) (1)

where k is the wave wavenumber, φ is the wave direction relative to the wind, ϕ(k) is the
omnidirectional wave spectrum and D(k, φ) is the directional spreading function defined as:

D(k, φ) =
Ψ(k, φ)∫ 2π

0 Ψ(k, φ)dφ
(2)

If the directional wave spectrum is expressed as a Fourier series, the directional spreading function
should contain only even harmonics:

D(k, φ) =
1

2π
[1 +

∞

∑
n=1

a2n cos(2nφ)] (3)

where a2n is the coefficient of even harmonics. In fact the Fourier series expansion is usually truncated
to second order [10]:

D(k, φ) =
1

2π
[1 + Δ(k) cos(2φ)] (4)

where Δ(k) is the second-order harmonic coefficient and the function of both the wavenumber and
the wind speed. Unfortunately, up till now the shape of the directional spreading function has been
a controversial issue, and the standard form of Δ(k) has not been given to correctly unify the gravity
and gravity-capillary wave [11]. Here, the form of the directional spreading function from Elfouhaily’s
spectrum is used and Δ(k) is expressed as:

Δ(k) = tanh{a0 + ap
(
c/cp
)2.5

+ am(cm/c)2.5} (5)

where a0 and ap are both constants, am is the function of u∗/cm, c is the phase speed, cp is the phase

speed of the dominant long wave and u∗ is the friction velocity at the sea surface. ap
(
c/cp
)2.5 and

am(cm/c)2.5 in Equation (5) are related to the directionality of the gravity wave and the gravity-capillary
wave, respectively. However, Elfouhaily’s spectrum cannot correctly reflect the directionality of the
gravity-capillary wave because radar data is excluded from its development. A correcting term is
introduced to replace the gravity-capillary spectral component in the directional spreading function of
Elfouhaily’s spectrum:

Δ(k) = tanh{ap
(
c/cp
)2.5

+ δ(k, U10)} (6)

where ap is equal to 4, U10 is the 10-m-height wind speed and δ is a correction factor which is a function
of wavenumber and wind speed.

3.2. Comparison and Selection of Sea Surface Backscatter Model

Sea surface backscatter model can describe the relation between radar observation and directional
wave spectrum. The SPM and TSM, which are two basic approaches to calculate ocean-surface
scattering, are suitable for the small-scale surface and the tilted small-scale surface, respectively.

4
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3.2.1. Small-Perturbation Method

According to electromagnetic scattering perturbation theory, the Normalized Radar Cross Section
(NRCS) of the gravity-capillary wave surface without regard to the tilting effect can be calculated by
the first-order SPM [24]:

σ0pq(θ) = 16πk4
R cos4 θ

∣∣gpq(θ)
∣∣2Ψ(2kR sin θ, φ) (7)

where σ0 is the NRCS, the indices p and q represent transmitting and receiving polarizations,
respectively; kR is the radar wavenumber, kR = 2π/λ, λ is the radar wavelength; θ is the incidence
angle; gpq(θ) is the first-order scattering coefficient.

3.2.2. Two-Scale Model

In fact, the gravity-capillary waves are tilted by the gravity waves of sea surface. The tilting effect
modifies the incidence angle θ referenced to a horizontal surface as the local angle θi. Accounting for
the sea surface tilting effect, the NRCS is calculated by TSM [24]:

σ0pq(θ) =
∫ ∞

−∞

∫ ∞

− cot θ
σ0pq(θi)Pθ

(
Z′

x, Z′
y

)
dZxdZy (8)

where Pθ

(
Z′

x, Z′
y

)
is the slope probability density of the gravity wave as viewed at an incidence

angle θ. Zx and Zy are the slope components for upwind and crosswind, respectively. Z′
x and Z′

y are
expressed as:

Z′
x = Zx cos φ + Zy sin φ (9)

Z′
y = Zy cos φ − Zx sin φ (10)

The relation between the slope probability density function Pθ

(
Z′

x, Z′
y

)
and the function

P
(

Z′
x, Z′

y

)
defined by Cox and Munk [25] is:

Pθ

(
Z′

x, Z′
y

)
= (1 + Zx tan θ)P

(
Z′

x, Z′
y

)
(11)

The form of P
(

Z′
x, Z′

y

)
is a Gram-Charlier series [25,26]:

P
(

Z′
x, Z′

y

)
=

F
(

Z′
x, Z′

y

)
2πSuSc

exp [− Z′
x

2

2Su
2 − Z′

y
2

2Sc
2 ] (12)

where

F
(

Z′
x, Z′

y

)
= 1 − C21

2

(
Z′

y
2

Sc
2 − 1

)
Z′

x
Su

− C03

6

(
Z′

x
2

Su
3 − 3Z′

x
Su

)
+

C40

24

(
Z′

y
4

Sc
4 − 6

Z′
y

2

Sc
2 + 3

)

+
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where C40 = 0.4, C22 = 0.12, C04 = 0.23, C21 = 0.01 − 0.0086U, Su
2 = 0.005 + 0.78 × 10−3U,

C03 = 0.04 − 0.033U, Sc
2 = 0.003 + 0.84 × 10−3U.

TSM is more suitable for a realistic sea surface than SPM because accurately expressing the
sea surface tilting effect with the double integrals. But the double integrals bring the difficulty for
directly calculating the directional spreading function from TSM. In order to simplify the derivation
and calculation of directional spreading function, we find in which case the solutions of SPM are
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approximately equal to ones of TSM by comparing radar backscatters calculated by SPM and TSM in
the following section.

3.2.3. Comparison of SPM and TSM

Figure 2 shows VV- and HH-polarization NRCS at 5, 12 and 20 m/s wind speeds, which is
calculated by SPM and TSM at L-, C- and Ku-band radar frequencies using Elfouhaily’s omnidirectional
spectrum. For HH polarization, there is an evident disagreement of NRCS calculated by SPM and
TSM, especially for high wind speed. This is because the gravity-capillary waves are riding on the
gravity waves and are thus tilted with respect to the horizontal. For VV polarization, within the
range of about 35◦–40◦ incidence angles, there are a very good agreement between the SPM and
TSM solutions. It means that the tilting effect from the gravity waves cannot significantly modify the
VV-polarization NRCS and the SPM solutions are approximately equal to the TSM solutions within
35◦–40◦ incidence angles.

 
(a) 

 
(b) 

Figure 2. Comparison of VV- (a) and HH- (b) polarization NRCS calculated by SPM and TSM at L
band (1.26 GHz), C band (5.3 GHz) and Ku band (13.9 GHz).
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3.3. Derivation and Calculation of Directional Spreading Function

Wright [27] demonstrated that NRCS calculated by TSM compare favorably with measurements.
However, double integrals in TSM (Equation (6)) are very inconvenient to derive the directional
spreading function of the gravity-capillary wave spectrum. Fortunately, within 35◦–40◦ incidence
angles, the SPM solutions are very close to the TSM solutions at VV polarization. That means the
VV-polarization NRCS calculated by Equation (7) is equal to Equation (8). Therefore Equation (7) can
be used to retrieve the directional spreading function of the gravity-capillary wave spectrum at VV
polarization within 35◦–40◦ incidence angles.

According to Equation (7), the directional spreading function is written as:

D(kB, φ) =
σ0vv tan4 θ

πk4
B|gvv(θ)|2ϕ(kB)

(14)

where kB is the wavenumber of the Bragg resonance ocean wave component and related to the radar
wavenumber by kB = 2kR sin θ, σ0vv represents VV-polarization NRCS and is measured by radar.
An empirical functional relationship between the VV-polarization NRCS σ0vv, the 10-m-height wind
speed U10, the relative wind direction φ (the radar azimuth angle with respect to the wind direction)
and the incidence angle θ is generally expressed as:

σ0vv = A0(U10, θ)(1 + A1(U10, θ) cos φ + A2(U10, θ) cos 2φ) (15)

where the A1 term describes the upwind-downwind difference of NRCS. The difference is weak
and cannot be attributed to the contribution of ocean wave spectrum [13]. We do not discuss the
upwind-downwind difference in this paper. The A2 term describes the upwind-crosswind asymmetry
of NRCS and is calculated by:

A2(U10, θ) =
σ

upwind
0vv + σdownwind

0vv − 2σcrosswind
0vv

σ
upwind
0vv + σdownwind

0vv + 2σcrosswind
0vv

(16)

where σ
upwind
0vv , σdownwind

0vv and σcrosswind
0vv are the VV-polarization NRCS along the upwind (0◦),

downwind (180◦) and crosswind (90◦ or 270◦) directions, respectively. Because the radar-observed
NRCS is proportional to the directional spreading function in Equation (14), the A2 term can be
analogous to the second-order harmonic coefficient Δ(k) in the directional spreading function of the
gravity-capillary wave. Therefore, the second-order harmonic coefficient Δ(k) is expressed as:

Δ(k) =
σ

upwind
0vv + σdownwind

0vv − 2σcrosswind
0vv

σ
upwind
0vv + σdownwind

0vv + 2σcrosswind
0vv

(17)

Presently, the L-, C- and Ku-band GMFs, which empirically relate the NRCS, the 10-m-height wind
speed, the relative wind direction and the incidence angle, are better developed than other frequencies
with radar observation. The combination of the L, C and Ku bands provide a good coverage of the
gravity-capillary wave spectrum for the wavenumber ranging from 25 to 500 rad/m. These GMFs
can provide the σ

upwind
0vv , σdownwind

0vv and σcrosswind
0vv at the three frequency bands and are used to derive

a directional spreading function of the gravity-capillary wave.
The following calculations are based on the L-band GMF, CMOD5 GMF, and NSCAT2 GMF.

Figure 3 shows that the second-order harmonic coefficient Δ(k) from L-, C- and Ku-band GMF in
35◦–40◦ incidence angles vary with the wavenumber. The L-band Δ(k) is obviously less than the C-
and Ku-band ones at all wind speeds, and even is negative at low wind speeds. That indicates that the
upwind-crosswind asymmetry of NRCS at L band is weaker than ones at C and Ku band. However,
the Elfouhaily’s Δ(k) has very little variation in the wavenumber ranging from 10 to 1000 rad/m
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(contain L, C and Ku band) and is positive at all wind speeds. That cannot explain the obvious variation
in L-, C- and Ku-band Δ(k) from radar observations, and is inconsistent with the L-band negative
value of radar observations at low wind speeds [15]. Therefore a new directional spreading function
should be developed to explain these azimuthal behaviors.

 
(a) (b) 

 
(c) (d) 

Figure 3. The second-order harmonic coefficient Δ(k) inferred from the GMFs in 35◦–40◦ incidence
angles, Elfouhaily’s spectrum and fitting curves plots as a function of wavenumber at wind speeds of
4 (a); 8 (b); 12 (c); 16 (d) m/s.

According to Equation (17), we use the NRCSs from L-, C- and Ku-band GMF at 35◦–40◦ incidence
angle and 2–20 m/s wind speed range to calculate the second-order harmonic coefficient Δ(k) at
wavenumbers of 30–33, 127–142, 333–374 rad/m. And then the second-order harmonic coefficient
Δ(k) at the full gravity-capillary wave region is derived by fitting the L-, C- and Ku-band Δ(k) to
Equation (6) with the Least-Squares-Fitting (LSF) method. δ(k, U10) in Equation (6) is written as:

δ(k, U10) = δ0 + 10B1K2+B2K+B3 (18)

where δ0 is a constant and equal to −0.1467; K = log10(k), k is expressed in radian per meter; B1, B2 and
B3 are the regression coefficients and can be derived in each wind-speed bin. The cubic functions of
wind speed are used to model B1, B2 and B3 by the LSF method.

B1 = p13U3
10 + p12U2

10 + p11U10 + p10 (19)
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B2 = p23U3
10 + p22U2

10 + p21U10 + p20 (20)

B3 = p33U3
10 + p32U2

10 + p31U10 + p30 (21)

where p1i, p2i and p3i are the coefficients of the cubic functions and given in Table 1.

Table 1. The regression coefficients for B1, B2 and B3.

Coefficients pi3 pi2 pi1 pi0

Bi (i = 1) 3.6924 × 10−3 −2.1047 × 10−1 3.9774 −2.5721 × 101

Bi (i = 2) −3.2332 × 10−3 1.8138 × 10−1 −3.3790 2.1479 × 101

Bi (i = 3) 7.1639 × 10−4 −3.9639 × 10−2 7.2625 × 10−1 −4.5533

According to Equations (6) and (18)–(21), we plots the proposed second-order harmonic coefficient
Δ(k) as a function of wavenumber for wind speeds from 2 m/s to 20 m/s with a 4 m/s step in Figure 4.
The proposed Δ(k) is 1 in the gravity wave region and then decreases with the increasing wavenumber.
When the wavenumber is close to the gravity-capillary wave region, the proposed Δ(k) drops to
the nadir. The nadir is even negative at low and moderate speed range (2–14 m/s). This feature
is confirmed by radar observation but is not reflected by the previous models, such as directional
spreading functions of Apel [10], Caudal et al. [11] and Elfouhaily et al. [14]. When the wavenumber is
in the gravity-capillary wave region, there exists obviously the peak, which will move toward the low
wavenumber under the conditions of high wind speeds. The value of peak varies with the wind speed.
Its maximum is about 0.4759 and occurs at the wind speed of about 10 m/s and the wavenumber
of about 260 rad/m where the gravity-capillary wave spectrum shows the strongest dependence on
the direction.

Figure 4. The proposed second-order harmonic coefficient Δ(k) plots as a function of wavenumber for
wind speeds from 2 m/s to 20 m/s with a 4 m/s step.

Figure 5 shows the proposed directional spreading function of L, C and Ku band at wind speeds
of 4, 8, 12, 16 m/s in polar coordinate. The C- and Ku-band amplitudes at all wind speeds (4, 8,
12 and 16 m/s) and the L-band amplitude at high wind speeds (12 and 16 m/s) along upwind (0◦) or
downwind (180◦) directions are evidently greater than one along crosswind (90◦ or 270◦) directions.
In contrast, the L-band amplitude at low and moderate wind speeds (4 and 8 m/s) along upwind (0◦)
or downwind (180◦) directions is less than one along crosswind (90◦ or 270◦) directions, which signifies
the negative upwind–crosswind asymmetry. It is consistent with the directional feature observed by
Yueh et al. [17], Zhou et al. [18] and Isoguchi et al. [28]. In addition, the difference of the directional
spreading function between L, C and Ku band decreases with the increase of wind speed. When the
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wind speed increases to 16 m/s, the maximum difference is less than 0.02, which means that the
directional spreading function of the gravity-capillary wave spectrum has very little variation with the
frequency (wavenumber) at high wind speeds.

(a) (b) 

(c) (d) 

Figure 5. The L-, C- and Ku-band directional spreading function plots as a function of the wave
direction relative to the wind at wind speeds of 4 (a); 8 (b); 12 (c); 16 (d) m/s.

4. Verification of Directional Spreading Function

The gravity-capillary wave spectrum is not obtained with traditional wave measuring techniques,
and therefore it is not feasible to directly verify the proposed directional spreading function of the
gravity-capillary wave spectrum with field data at present. Fortunately, the radar backscatter carries the
information of the directional wave spectrum due to the Bragg resonance, thus the proposed directional
spreading function can be verified by radar observations from the L-band SAR on the SMAP satellite,
the C-band ASCAT scatterometer on the METOP-A satellite and the Ku-band SeaWinds-1 scatterometer
on the QuikSCAT satellite. SMAP SAR NRCS, simultaneous DMSP F17 SSMI/S wind speed and NCEP
wind direction are used to act as the L-band validation data, and its time range is from 18 to 28 April
2015. ASCAT NRCS and wind field are used to act as the C-band validation data, and its time range
from 1 to 10 February 2010. SeaWinds-1 NRCS and wind field are used to act as the Ku-band validation
data, and its time range is from 1 to 10 January 2008.

According to Equation (4), the accuracy of the directional spreading function is closely related to
the second-order harmonic coefficient Δ(k), which can be calculated by the VV-polarization NRCS
from radar observation along the upwind, downwind and crosswind directions. Therefore, we validate
the accuracy of the directional spreading function by comparing the proposed second-order harmonic
coefficients and the radar-observed second-order harmonic coefficients.
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Figure 6 shows the comparisons of the second-order harmonic coefficient Δ(k) from the proposed
direction spreading function, radar observation and Elfouhaily’s spectrum at L, C and Ku band at
2–20 m/s wind speed range. The incidence angles of L-band data from SMAP SAR and C-band data
from ASCAT are both 40◦, and one of Ku-band data from SeaWinds-1 is 55◦. The proposed Δ(k) varies
with wind speeds and is basically consistent with one from radar observation. Other than the above
two ones, the Elfouhaily’s Δ(k), which is about 0.2 and has very little variation with wind speeds
especially at C and Ku band, is inconsistent with radar observation. The comparisons between the
three second-order harmonic coefficients indicates that the proposed direction spreading function
is more consistent with radar observation than Elfouhaily’s spectrum, which is also reflected by the
statistics of the comparisons in Table 2.

 
(a) (b) (c) 

Figure 6. Comparisons of the Δ(k) from the proposed direction spreading function(solid lines), radar
observations (dotted lines) and Elfouhaily’s spectrum (dashed lines) at L (a), C (b) and Ku (c) band at
2–20 m/s wind speed range.

Table 2 shows the RMSD and CC of the proposed Δ(k) and Elfouhaily’s Δ(k) versus the
radar-observed Δ(k) at L, C and Ku band at 2–20 m/s wind speed range. The radar-observed
Δ(k) acts as sea truth data. The L-band RMSD and CC of the proposed Δ(k) is 0.0438 and 0.9745,
respectively. The C- and Ku-band RMSDs are reduced to 0.0263 and 0.0382, respectively, and their CCs
are reduced to 0.9656 and 0.9009, respectively. Overall, the proposed Δ(k) has the high accuracy and is
remarkably consistent with radar observation. In addition, it is obvious that the RMSD of Elfouhaily’s
Δ(k) is greater than one of the proposed Δ(k), and its CC is less than one of the proposed Δ(k).
In other words, the accuracy of the proposed Δ(k) is much higher than Elfouhaily’s Δ(k) because the
development of Elfouhaily’s spectrum does not introduce radar data, which contain the information of
the gravity-capillary waves.

Table 2. Statistics of the proposed Δ(k) and Elfouhaily’s Δ(k) versus the radar-observed Δ(k) at
2–20 m/s wind speed range.

Δ(k)
L Band C Band Ku Band

RMSD CC RMSD CC RMSD CC

the proposed Δ(k) 0.0438 0.9745 0.0263 0.9656 0.0382 0.9009
Elfouhaily’s Δ(k) 0.2005 −0.3965 0.0909 0.5840 0.0887 −0.0257

Figure 7 shows the scatterplots of the proposed Δ(k) and Elfouhaily’s Δ(k) versus the
radar-observed Δ(k) at L, C and Ku band at 2–20 m/s wind speed range. The incidence angles
of L-band data from SMAP SAR and Ku-band data from SeaWinds-1 is 40◦ and 55◦, respectively,
and ones of C-band data from ASCAT is from 35◦ to 45◦. The radar-observed Δ(k) acts as sea truth data.
Figure 7a shows that the proposed Δ(k) is basically consistent with radar observation. The bias and
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RMSD of the proposed versus the radar-observed Δ(k) are −0.0029 and 0.0433, respectively. Figure 7b
shows that Elfouhaily’s Δ(k) is a serious deviation from radar observation and its bias and RMSD are
0.1580 and 0.1426, respectively. Obviously, the proposed Δ(k) is more consistent with radar observation
than Elfouhaily’s Δ(k).

(a) (b) 

Figure 7. The radar-observed Δ(k) versus the proposed Δ(k) (a) and Elfouhaily’s Δ(k) (b).

In conclusion, the proposed direction spreading function has the high accuracy and is basically
consistent with radar observation on the basis of comparisons and statistics of the second-order
harmonic coefficient.

5. Discussion

At present, there is no standard form of the directional spreading function to correctly unify the
gravity and gravity-capillary wave. If the directional wave spectrum is expressed as a Fourier series,
the cosine-shape spreading function proposed by Longuet-Higgines et al. [3], Mitsuyasu et al. [4],
Hasselmann et al. [5], and the sech-shape spreading function proposed by Donelan et al. [6] are all
transformed into the hyperbolic tangent form. Due to the natural involvement of the hyperbolic tangent
function, the proposed directional spreading function in this paper, which introduces a correcting term
to replace the gravity-capillary spectral component in the directional spreading function of Elfouhaily’s
spectrum, is a good choice to unify the gravity and gravity-capillary wave. The correcting term is a
function of wavenumber and wind speed with twelve adjusted parameters, which are derived from L-,
C- and Ku-band radar backscatter. It is noted that the X-band GMF has been developed by Li et al. [29]
and Ren et al. [30]. But the upwind-crosswind asymmetry in their GMFs needs to be verified by large
amounts of data. Therefore, the better developed L-, C- and Ku-band GMFs are only used to derive
and verify the directional spreading function of the gravity-capillary wave spectrum.

6. Conclusions

In this paper, the directional spreading function of the gravity-capillary wave spectrum is
expressed as the second-order Fourier series expansion. It is worthwhile to note that no standard
form of the second-order harmonic coefficient has been given to correctly unify the gravity and
gravity-capillary wave at the present. Our strategy is to introduce a correcting term to replace
the inaccurate gravity-capillary spectral component in Elfouhaily’s directional spreading function.
And then we derive the correcting term from radar observations.

The Two-Scale Model (TSM) is widely applied to describe the relation between radar observation
and directional wave spectrum, but has double integrals to be very inconvenient to study the directional
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spectrum. Fortunately, the comparison of radar backscatters calculated by Small-Perturbation Method
(SPM) and TSM shows that the SPM solutions are approximately equal to the TSM solutions for VV
polarization within 35◦–40◦ incidence angles. So we use the SPM to relate radar observations at VV
polarization within intermediate incidence angles to the directional wave spectrum.

The radar-observed Normalized Radar Cross Section (NRCS) is proportional to the directional
spreading function in radar backscatter model of SPM. So the upwind-crosswind asymmetry of
NRCS is analogous to the second-order harmonic coefficient in the directional spreading function.
The second-order harmonic coefficient at wavenumbers of 30–33, 127–142, 333–374 rad/m calculated
by the NRCS is used to fit the correcting term to obtain one at the full gravity-capillary wave region by
the Least-Squares-Fitting (LSF) method. According to the proposed second-order harmonic coefficient,
we find that there is the obvious peak at the gravity-capillary wave region, which varies with the
wind speed. In addition, there exist the negative values at low and moderate wind speeds in
proposed second-order harmonic coefficient, which is different from the previous model but has
been confirmed by the L-band radar observation. The Root Mean Square Difference (RMSD) of the
proposed second-order harmonic coefficient versus the L-, C- and Ku-band radar-observed one from
SMAP SAR, ASCAT and SeaWinds-1 are 0.0438, 0.0263 and 0.0382, respectively. The L-, C- and
Ku-band Correlation Coefficient (CC) is 0.9745, 0.9656 and 0.9009, respectively. The overall bias and
RMSD are −0.0029 and 0.0433 for the whole second-order harmonic coefficient range, respectively.
This means that the proposed second-order harmonic coefficient in the paper has the high accuracy
and is consistent with radar observation at L, C and Ku band.

This paper verifies the proposed second-order harmonic coefficient with L-, C- and Ku-band
NRCS. It is worthwhile to note that the proposed second-order harmonic coefficient is derived at
the full gravity-capillary wave region and the accuracy at other microwave frequency bands needs
to be quantitatively verified. With the increase of the quality and quantity of available data at other
microwave frequency bands, the future work will be able to further verify and improve it.
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Abstract: The image intensities of low-backscattering areas in synthetic aperture radar (SAR) images
are often seriously contaminated by the system noise floor and azimuthal ambiguity signal from
adjacent high-backscattering areas. Hence, the image intensity of low-backscattering areas does
not correctly reflect the backscattering intensity, which causes confusion in subsequent image
processing or interpretation. In this paper, a method is proposed to estimate the normalized radar
cross-section (NRCS) of low-backscattering area by utilizing the differences between noise, azimuthal
ambiguity, and signal in the Doppler frequency domain of single-look SAR images; the aim is to
eliminate the effect of system noise and azimuthal ambiguity. Analysis shows that, for a spaceborne
SAR with a noise equivalent sigma zero (NESZ) of −25 dB and a single-look pixel of 8 m × 5 m,
the NRCS-estimation precision of this method can reach −38 dB at a resolution of 96 m × 100 m.
Three examples are given to validate the advantages of this method in estimating the low NRCS and
the filtering of the azimuthal ambiguity.

Keywords: SAR; ocean; NRCS; Doppler spectrum; azimuthal ambiguity

1. Introduction

Areas with low normalized radar cross-section (NRCS) appear dark in synthetic aperture radar
(SAR) images. It is frequently seen in ocean SAR images, such as those of oil spills, organic films,
low wind areas, fronts, upwelling, current shear zones, and dark strips of internal waves and
swells [1,2]. Among land targets, the backside of mountains and flat ground such as airport runways are
also typical low-backscattering targets. The signal intensities of low-backscattering areas in SAR images
are often close to or even less than the noise floor of the SAR system. Taking the ocean surface as an
example; the mean NRCS of the ocean surface for the L, C, and X bands ranges from −15 dB to −25 dB
at moderate wind speeds and incident angles. However, the NRCS of low-backscattering areas on the
ocean surface is much lower than the mean NRCS of the ocean surface. The NRCS of low-backscattering
areas of the ocean surface is often less than −30 dB, whereas the noise equivalent sigma zero (NESZ)
of most spaceborne SAR systems ranges from −20 dB to −30 dB. Hence, the backscattering signal
intensities of low-backscattering areas in ocean SAR images are often less than the noise floor of SAR
systems. The NESZ values of typical spaceborne SAR systems are listed in Table 1 [3,4].
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Table 1. Noise equivalent sigma zero (NESZ) values of typical spaceborne synthetic aperture radar
(SAR) systems.

Satellite Mode NESZ (dB)

ERS-1/2 −21 to −24

Envisat

Image −20 to −22
Wave −20 to −22

Alternating Polarization −19 to −22
Wide Swath −21 to −26

Global Monitoring −32 to −35

Radarsat-1 <−21

Radarsat-2

Standard −31
Fine −28
Wide −23

ScanSAR narrow −23
ScanSAR wide −23

JERS-1 <−20.5

ALOS/PALSAR

Fine (Swath Width 70 km) <−23
Fine (Swath Width 60 km) <−25

Polarimetry <−29
ScanSAR <−25

TerraSAR-X

Spotlight (HS) −23
Spotlight (LS) −23

Stripmap −22
ScanSAR −21

Another factor that can affect the image intensities of low-backscattering areas is the azimuthal
ambiguity effect of high-backscattering areas. It occurs because the Doppler frequency of the signal
reflected from the area illuminated by the azimuthal sidelobe of the antenna exceeds the pulse repetition
frequency (PRF). The azimuthal ambiguity signal of a target is located at a position with a certain
displacement relative to its real position. This displacement depends on the PRF, the velocity of the
platform and the Doppler centroid frequency of the SAR system. A typical value of the azimuthal
ambiguity of a spaceborne SAR is about −15 dB to −20 dB. If the NRCS of a high-backscattering
area is 15 dB to 20 dB higher than that of a low-backscattering area located at the position where the
azimuthal ambiguity signal from the high-backscattering area is present, the azimuthal ambiguity
signal could significantly affect the image intensity of the dark area. Azimuthal ambiguities are
especially frequent in land–water junctions, because the NRCSs of land targets are much higher than
that of the water surface.

Two analyses above indicate that, in order to estimate the certain value of the low areas’ NRCS,
the effect of the azimuthal ambiguity must be taken into consideration. Nevertheless, the standard
radiometric calibration algorithm for SAR images only takes the system noise into account and ignores
the azimuthal ambiguity effect, which is expressed in the following equation [5,6].

σcal = 10lg(I − N0)− K + 10lg

⎡⎣( R
Rre f

)3
sin α

sin αre f

Gre f

g(α)G

⎤⎦ (1)

where I, R, α, and G are the image intensity, slant range, elevation angle and system gain of a certain
image pixel respectively; g(α) is the two-way antenna gain at elevation angle α, N0 is the system noise,
K is the calibration constant, and Rre f , αre f , and Gre f are the slant range, elevation angle, and system
gain of the reference target, respectively.

However, an accurate system noise N0 is seldom provided in standard commercial spaceborne
SAR data products. Moreover, even if a sufficiently accurate N0 is provided, it is possible to obtain
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a meaningless NRCS of less than or equal to zero because the image intensity is a stochastic variable that
may be less than the system noise N0, especially when the NRCS of the target is relatively low. Hence,
in most practical NRCS calibration applications, the system noise is also ignored and Equation (1) is
simplified as follows [5–10].

σcal = 10lg(I)− K + 10lg

⎡⎣( R
Rre f

)3
sin α

sin αre f

Gre f

g(α)G

⎤⎦ (2)

When calibrated using Equation (2), the NRCS of low-backscattering areas inevitably includes
a significant contribution from the system noise and azimuthal ambiguity, which can cause confusion
in subsequent image processing and interpretation.

In this paper, a method of NRCS estimation for low-backscattering areas based on a spectrum
is proposed. This method requires to know the noise floor N0 and antenna patterns firstly. If N0 and
antenna patterns are unknown, we also can estimate them from a single-look complex SAR image.
This method can also eliminate the azimuthal ambiguity effect according to the shape of the Doppler
spectrum; avoiding a meaningless NRCS estimation by using the maximum likelihood (ML) estimation
method and the modified Newton’s iteration method.

The rest of this paper is organized as follows. Section 2 gives the details of the algorithms and
principles used in this method. In Section 3, three examples are presented to validate the advantages
of this method. In Section 4, an analysis of the estimation precision and simulations are stated. Finally,
some conclusions are presented in Section 5.

2. Spectral-Based NRCS Estimation Method for Low-Scattering Areas in SAR Images

2.1. The Principle of the Proposed Method

2.1.1. Analysis of Doppler Spectrum Composition

From the SAR imaging theory [4–11], it is well known that the shape of system noise, azimuthal
ambiguity, and the backscattering signal present different patterns in the Doppler spectrum of the SAR
raw signal (here, it is supposed that the range match filtering and range cell migration correction have
been done), i.e., the system noise power density is a certain constant in the Doppler spectrum, whereas
the shape of the Doppler spectrum of the backscattering signal and azimuthal ambiguity depend on
the antenna pattern: the backscattering signal and azimuthal ambiguity correspond to the main lobe
and side lobe respectively. The Doppler spectrum of the SAR raw signal can be expressed as:

E[pr( f , x0, y0)] =
n=∞

∑
n=−∞

σ
(

x0 + nDx, y0 + nDy
)

Pa( f − f0 + nFr) +
N0

Fr
(3)

In Equation (3)
[

x0 y0

]
are the center positions of the area where the Fourier transformation

apply, and x0 and y0 are the coordinates in the flight and look directions, respectively, E[ ] refers
to the mathematic expectation, f denotes the Doppler frequency, and pr( f ) denotes the azimuthal
power spectrum of the SAR raw signal. Pa( f ) is the power spectrum function of an ideal point target
with a 0 dB NRCS, the shape of which is determined by the two-way antenna azimuthal pattern.
Further, f0 is the Doppler centroid, Fr refers to the pulse repeat frequency of the SAR system, N0 is
the intrinsic noise floor of the SAR system, σ

(
x0 − nDx, y0 − nDy

)
is the mean NRCS of the pixels

located between
[

x0 − nDx − L/2 y0 − nDy

]
and
[

x0 − nDx + L/2 y0 − nDy

]
(L is the data

length for calculating the Doppler spectrum), Dx and Dy are the displacements in the flight and look
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directions, respectively, between the position of the azimuthal ambiguity signal and the real target
position. They can be written as:

Dx =
RλFr

2V
, Dy = −λ2 f0FrR

4V2 (4)

where R is the slant range of the target, λ is the radar wavelength, and V is the velocity of the
SAR platform.

In Equation (3), n = 0 corresponds to the signal reflected from the mainlobe of the antenna,
and n �= 0 corresponds to the contribution from the azimuthal ambiguity effect. In general, among the
azimuthal ambiguity signals, only n = −1 and 1, which correspond to the azimuthal ambiguity from
the first azimuthal antenna sidelobes. Hence, Equation (3) can be simplified as:

E[pr( f , x0, y0)] ≈ σ(x0, y0)Pa( f − f0) + σ
(

x0 + Dx, y0 + Dy
)

Pa( f − f0 + Fr)

+σ
(

x0 − Dx, y0 − Dy
)

Pa( f − f0 − Fr) +
N0

Fr

(5)

Equation (5) indicates the shapes of the averaged power spectrum of the backscattering signal
are determined by the antenna pattern Pa( f ) and N0. To illustrate the shape difference of the power
spectrum between system noise, azimuthal ambiguity, and the backscattering signal more clearly,
a schematic diagram is given in Figure 1.
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Figure 1. Schematic of the Doppler spectrum of synthetic aperture radar (SAR) raw signal and its
various components.

Figure 1 is only a schematic diagram. When the image distribution is relatively uniform, the noise
is the main disturbance. When there is a strong target around it, the azimuthal ambiguity is mainly
from the strong target. From Figure 1, it is clear that the shapes of various components of the
power spectrum of the SAR raw signal, composed of the backscattering signal, azimuthal ambiguity,
and system noise, are very different. In general, the antenna pattern Pa( f ) and system noise N0 can
be acquired from the external and internal calibration of the SAR system. Therefore, it is possible to
eliminate the effect of the azimuthal ambiguity on the NRCS estimation by taking full advantage of
these differences. However, the azimuthal resolution of the SAR raw signal is too coarse for most
applications. To increase the azimuthal resolution, the azimuthal matching filter must be applied on
the SAR raw signal to convert it to a single-look complex image. However, the unweighted azimuthal
matching filter can be used, which only changes the phase of the Doppler spectrum without modifying
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the amplitude of the Doppler spectrum. Thus, the azimuthal power spectrum of the single-look
complex image has the same shape characteristic with that of the SAR raw signal. The relation between
the power spectra of single-look complex images and the SAR raw signal is given as:

ps( f , x0, y0) = pr( f , x0, y0)|H( f )|2 = pr( f , x0, y0) (6)

where H( f ) = exp
(

jπ
λR f 2

2V2

)
is the unweighted azimuthal matching filter, ps( f , x0, y0) and

pr( f , x0, y0) are the azimuthal power spectra of the single-look complex image and the SAR raw
signal, respectively.

The shape patterns shown in Figure 1 are the mathematics expectation of the power spectrum.
The real power spectrum of a small patch of the single-look complex images is in fact a stochastic
process. As the signal of a single-look complex image is a complex Gaussian process, the probability
density function of each sample of the power spectrum can be given by the well-known exponential
distribution that follows:

g(ps( f , x0, y0)) =
1

E[ps( f , x0, y0)]
exp
{
− ps( f , x0, y0)

E[ps( f , x0, y0)]

}
(7)

Equation (5) indicates that the backscattering signal σ(x0, y0) of a certain area contributes to three
spectra: ps( f , x0, y0), ps

(
f , x0 − Dx, y0 − Dy

)
, and ps

(
f , x0 + Dx, y0 + Dy

)
. Hence, the joint condition

probability density function of all the frequency points is:

g
(

ps( f , x0, y0) ps
(

f , x0 − Dx, y0 − Dy
)

ps
(

f , x0 + Dx, y0 + Dy
) ∣∣∣σ(x0, y0)

)
=

m
∏
i=1

1
E[ps( fi, x0, y0)]

exp
{
− ps( fi, x0, y0)

E[ps( fi, x0, y0)]

}
m
∏
i=1

1
E
[
ps
(

fi, x0 − Dx, y0 − Dy
)] exp

{
− ps

(
fi, x0 − Dx, y0 − Dy

)
E
[
ps
(

fi, x0 − Dx, y0 − Dy
)]}

m
∏
i=1

1
E
[
ps
(

fi, x0 + Dx, y0 + Dy
)] exp

{
− ps

(
fi, x0 + Dx, y0 + Dy

)
E
[
ps
(

fi, x0 + Dx, y0 + Dy
)]}

(8)

where m is the point number of the discrete Doppler spectrum.
Moreover, the image intensity is also a stochastic process related to the backscattering signal.

In general, if the image pitch is small enough, the probability density function of a multi-look image
intensity of an image pitch can be modeled by a gamma distribution as follows:

gp(I(x0, y0)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

MM IM−1(x0, y0)[
Ecσ(x0, y0) + Elσ

(
x0 − Dx, y0 − Dy

)
+ ERσ

(
x0 + Dx, y0 + Dy

)]LΓ(M)

exp

(
− MI(x0, y0)

Ecσ(x0, y0) + Elσ
(
x0 − Dx, y0 − Dy

)
+ ERσ

(
x0 + Dx, y0 + Dy

)) I(x0, y0) > 0

0 I(x0, y0) ≤ 0

(9)

where M is the look number, I(x0, y0) is the mean image intensity of a certain area with the
center located at [x0, y0]. Ec, El , and ER are the main lobe, left side lobe, and right side lobe
factors, respectively:

Ec =

Fr/2∫
−Fr/2

Pa( f − f0)d f , El =

Fr/2∫
−Fr/2

Pa( f − f0 − Fr)d f , Er =

Fr/2∫
−Fr/2

Pa( f − f0 + Fr)d f (10)

To estimate higher resolution NRCS from the power spectrum, the single-look complex images
are divided into many small pitches and the Fourier transformation is applied on each image patch.
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After obtaining Pa( f ) and N0, the local NRCS can be further estimated from the Doppler spectrum.
In this step, L is selected according to the desired final resolution, but it cannot be significantly larger.

2.1.2. Methods and Solutions to Estimate the NRCS from the Doppler Spectrum

Suppose that a SAR single-look complex image has been corrected. For example, the range shift
caused by the azimuthal ambiguity has been compensated, and the image has been interpolated k times
in azimuth. Meanwhile, the azimuthal shift caused by the azimuthal ambiguity is X times larger than
emphL. The corrected image is divided into some small patches. The size of every patch is about
Rm × Ra (range multiplied by azimuthal). Choosing a row of azimuthal patches, and supposing that
the scattering coefficient of every patch is σ1, σ2, . . . , σT , respectively, the Doppler spectrum of the i-th
block is fi_m.

Estimating NRCS from Doppler spectrum is a typical Bayesian estimation problem [12,13], which
is expressed as the following equation.

σ̂i = argmax
σ(x0,y0)

[g (p( fi_1), p( fi_2), ..., p( fi_m), p( fi−X_1), p( fi−X_2), ...,

p( fi−X_m), p( fi+X_1), p( fi+X_2), ..., p( fi+X_m)|σi)gp(σ(x0, y0))
] (11)

The estimation equation of single patches can be expressed as:

σ̂(x0, y0) = argmax
σ(x0,y0)

[
g(p( f1), p( f2), ..., p( fm)|σ(x0, y0))gp(σ(x0, y0))

]
(12)

where σ̂(x0, y0) is the estimation of σ(x0, y0), fi (i = 1, 2, ...m) is the discrete frequency point, m is
the point number of the discrete Doppler spectrum, g(p( f1), p( f2), ..., p( fm)|σ(x0, y0)) refers to the
conditional probability density function of the Doppler spectrum, and gp(σ(x0, y0)) refers to the
a-priori probability density of σ(x0, y0).

Bayesian estimation is a global optimal estimation method. It increases the estimation precision at
the NRCS with high a-priori probability density, but decreases the estimation precision at the NRCS
with low a-priori probability density. In general, the a-priori probability density of the NRCS of a SAR
image can be expressed by models such as Gamma, inverse Gaussian, or other distribution models [14].
However, in these commonly used models, the probability densities of low-NRCS are relatively low,
which will lead to a less accurate estimation result for the low-backscattering areas. Hence, to acquire
a higher estimation precision for the low-backscattering areas, the commonly used NRCS distribution
models are not adopted, but it is assumed that the a-priori probability density of the NRCS is uniformly
distributed. Another point which should be considered is that the NRCS should be greater than zero.
Therefore, the a-priori probability density of the NRCS used in this paper is given as:

gp(σ) =

{
1 σ > 0

0 σ ≤ 0
(13)

The Equation (13) is used as the new a-priori probability density in proposed method, then the
NRCS is estimated by the maximum likelihood (ML) estimation method. The advantage of the
proposed method is that it can avoid meaningless estimation results less than or equal to zero.

Because the a-priori probability density given by Equation (13) is a discontinuous function, which
is not convenient for the solving of Equation (11), it is approximated by:

gp(σ) =
1
2
+

1
π

arctan(ασ) (14)

where, in order to match Equation (13), α should be more than 1016 and choose 1020 in this method.
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The estimation of Equation (12) can be obtained by solving the following equation:

∂ ln g
(

pn( f1) pn( f2) · · · pn( fm)
∣∣∣σn

)
∂σn

+
∂ ln g

(
pn−X( f1) pn( f2) · · · pn( fm)

∣∣∣σn

)
∂σn

+
∂ ln g

(
pn+X( f1) pn+X( f2) · · · pn+X( fm)

∣∣∣σn

)
∂σn

+
∂ ln gp(σn|)

∂σn
= 0

(15)

where pn( fi) is the i-th frequency of the n-th block.
Because the signal of a single-look complex image is a complex Gaussian process, the probability

density function of each sample of the Doppler spectrum can be given by the well-known exponential
distribution as follows:

g( p( f )|σ(x0, y0)) =
1

E[p( f )]
exp
{
− p( f )

E[p( f )]

}
(16)

Thus, the joint probability density function of all the frequency points is:

g(p( f1)p( f2) · · · p( fm)|σ(x0, y0)) =
m

∏
i=1

1
E[p( fi)]

exp
{
− p( fi)

E[p( fi)]

}
(17)

Inserting Equations (5), (16) and (17) into Equation (15), and considering that the Doppler
spectrum at different azimuthal locations has different components, thus, the following functions at
different azimuthal locations are derived.

When 2X < n ≤ T − 2X

− m
∑

i=1

PC( fi)[
σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +

N0

Fr

] − m
∑

i=1

PR( fi)[
σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +

N0

Fr

]
− m

∑
i=1

PL( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

] + m
∑

i=1

pn( fi)PC( fi)[
σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +

N0

Fr

]2

+
m
∑

i=1

pn−X( fi)PR( fi)[
σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +

N0

Fr

]2 +
m
∑

i=1

pn+X( fi)PL( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

]2

+
α

[1 + (ασn)][
π

2
+ arctan(ασn)]

= 0

(18)

where PC( fi) = Pa( fi − f0), PL( fi) = Pa( fi − f0 − Fr), and PR( fi) = Pa( fi − f0 + Fr); n refers to the
pixel location in the flight directions. T is the length of the azimuthal data. X is the number of the
azimuthal ambiguity.

When X < n ≤ 2X:

− m
∑

i=1

PC( fi)[
σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +

N0

Fr

] − m
∑

i=1

PL( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

]
+

m
∑

i=1

pn( fi)PC( fi)[
σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +

N0

Fr

]2 +
m
∑

i=1

pn+X( fi)PL( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

]2

+
α

[1 + (ασn)][
π

2
+ arctan(ασn)]

= 0

(19)
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When 0 < n ≤ X:

− m
∑

i=1

PL( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

] + m
∑

i=1

pn+X( fi)PL( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

]2

+
α

[1 + (ασn)][
π

2
+ arctan(ασn)]

= 0
(20)

When T − 2X < n ≤ T − X:

− m
∑

i=1

PC( fi)[
σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +

N0

Fr

] − m
∑

i=1

PR( fi)[
σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +

N0

Fr

]
+

m
∑

i=1

pn( fi)PC( fi)[
σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +

N0

Fr

]2 +
m
∑

i=1

pn−X( fi)PR( fi)[
σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +

N0

Fr

]2

+
α

[1 + (ασn)][
π

2
+ arctan(ασn)]

= 0

(21)

When T − X < n ≤ T:

− m
∑

i=1

PR( fi)[
σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +

N0

Fr

] + m
∑

i=1

pn−X( fi)PR( fi)[
σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +

N0

Fr

]2

+
α

[1 + (ασn)][
π

2
+ arctan(ασn)]

= 0
(22)

Combining all the equations above, there are n equations. To solve all the unknown variables,
the Newton iterative method is adopted. The Jacobian matrix of the derived function is in the Appendix A.

To solve σ(x0, y0) from all equations above, σ
(

x0 − Dx, y0 − Dy
)

and σ
(

x0 + Dx, y0 + Dy
)

should
be first known. However, to obtain σ

(
x0 − Dx, y0 − Dy

)
or σ
(

x0 + Dx, y0 + Dy
)
, a known σ(x0, y0) is

also needed. This self-contradiction problem can be addressed by using an iterative strategy. In the
n-th iteration, Equation (17) is written as:

m
∑

i=1

Pa( fi − f0)[
σn(x0, y0)Pa( f − f0) + σn−1

(
x0 + Dx, y0 + Dy

)
Pa( f − f0 + Fr) + σn−1

(
x0 − Dx, y0 − Dy

)
Pa( f − f0 − Fr) +

N0

Fr

]
=

m
∑

i=1

p( fi)Pa( fi − f0)[
σn(x0, y0)Pa( f − f0) + σn−1

(
x0 + Dx, y0 + Dy

)
Pa( f − f0 + Fr) + σn−1

(
x0 − Dx, y0 − Dy

)
Pa( f − f0 − Fr) +

N0

Fr

]2

+
α

[1 + (ασn)][
π

2
+ arctan(ασn)]

(23)

where σn(x0, y0) is the estimation result in the n-th iteration. The initial guess of σ(x0, y0) is given as:

σ0(x0, y0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

I(x0, y0)− I
(
x0 + Dx, y0 + Dy

)
A − I

(
x0 − Dx, y0 − Dy

)
A

1 − 2A
− N0

, I(x0, y0) > I
(
x0 + Dx, y0 + Dy

)
A + I

(
x0 − Dx, y0 − Dy

)
A + (1 − 2A)N0

σmin,
, I(x0, y0) ≤ I

(
x0 + Dx, y0 + Dy

)
A + I

(
x0 − Dx, y0 − Dy

)
A + (1 − 2A)N0

(24)

where I(x0, y0) is the mean image intensity of the pixels between
[

x0 − L/2 y0

]
and[

x0 + L/2 y0

]
, A is the azimuthal ambiguity factor which is given by:

A =

−3Fr/2∫
−Fr/2

Pa(f)df (25)
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The convergence condition is given by:

∑
y0

∑
x0

|σn(x0, y0)− σn−1(x0, y0)|
Nx Ny

< σmin (26)

where σmin refers to a certain small NRCS value. Nx and Ny are the pixel numbers of the estimated
NRCS image in flight and look directions, respectively.

The aforementioned σ(x0, y0) is a relative backscattering intensity rather than an absolute NRCS.
If we have the K-constant needed in the radiometric calibration, the estimated relative backscattering
intensity σ(x0, y0) can be further converted to the absolute NRCS by replacing I − N0 in Equation (1)
with σ(x0, y0) estimated by this method, expressed as:

σcal(x0, y0) = 10lg[σ(x0, y0)]− K + 10lg

⎡⎣( R
Rre f

)3
sin α

sin αre f

Gre f

g(α)G

⎤⎦ (27)

2.2. Algorithm Flow Chart and Summary

The azimuthal matching filters of the standard imaging algorithm of commercial SAR products are
generally weighted filters, which does not satisfy the requirements of our method. Thus, our algorithm
begins with the SAR raw data product. In the first step, SAR imaging, an unweighted azimuthal
matching filter is used. The byproduct of SAR imaging is the Doppler centroids of each range cell,
which will be used in the second step. The method shifts the Doppler centroids of the single-look
complex images to a zero frequency position. This includes some substeps, such as fast Fourier
transform (FFT), inverse FFT, and spectrum shifting. In the last step, the single-look complex image
is divided into many subimage patches first. The size of the subimage patches is selected based on
the desired resolution. Then, an iteration strategy is used to estimate the signal intensities of each
subimage patch. In each iteration, the signal intensities are estimated on the basis of Equation (23),
which is solved by the Newton-iteration algorithm. Finally, the estimated relative backscattering
intensity σ(x0, y0) is converted to absolute NRCS using Equation (27).

The algorithm used in this method is summarized in Figure 2.

Imaging algorithm
(the azimuthal matching filter should 

be an unweighted filter)

SAR Raw 
Data

SAR single-look 
complex image

Doppler centroids 
of all range cells

Apply Fourier transformation in flight 
direction

Shift the Doppler spectrum centroid to 
zero 

Apply inverse Fourier transformation in 
flight direction

Doppler-centroid-shifted 
single-look complex 

image

Divide the entire single-look complex 
image into many small subimage 

patches

Calculate initial guess 
 for each subimage 

patches by equation (24)

N0

Pa(f)

Estimate the signal intensity 
 each subimage 

patches by equation (23)

Calculate Doppler 
spectra for each 

subimage patches

Compare with the estimation 
result of last iteration

Judge iteration 
convergence

No

Iteration loop

Yes

2. Shift the Doppler 
centroids to zero

3. Estimate 
NRCS 

1.SAR imaging

Calibrate the absolute 
NRCS of each pixels by 

equation (27)

Figure 2. Algorithm flow chart.

23



Remote Sens. 2017, 9, 219

3. Validation of the Proposed Estimation Method

In this section, three examples will be presented to demonstrate the advantages of this method in
low NRCS estimation and azimuthal ambiguity filtering.

3.1. Example 1: Qualitative Analysis for the Estimation Method in Low NRCS

The first example is an ocean image acquired by ERS-2 (European remote sensing satellite (ERS)
was the European Space Agency's first Earth-observing satellite) on 30 April 2005 in the South China
Sea as a qualitative analysis, which is shown in Figure 3. There are 4912 pixels in the look direction and
28,695 pixels in the flight direction in the single-look complex image used in this example. Frame 1 in
Figure 3 is a subimage for the comparison between a conventional SAR image and the corresponding
estimated NRCS image.

Figure 3. ERS-2 (European remote sensing satellite (ERS) was the European Space Agency's
first Earth-observing satellite) ocean SAR image of South China Sea collected on 30 April 2005,
at 02:28 UTC. Frame 1 is a subimage for the comparison between conventional SAR image and
the corresponding estimated NRCS image.

The first step is estimating the Doppler centroid f 0 for each range cell [11,15–19], and then shifting
the Doppler spectrum centroid of the single-look complex image to zero. Note that ocean currents can
lead to an additional local shift of the Doppler centroid [20–22]. However, the Doppler shift resulting
from the ocean current is generally less than 5% of the PRF, which can be neglected in the method
proposed in this paper. Examples of unshifted and shifted Doppler spectra are shown in Figure 4.
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Figure 4. Unshifted and shifted Doppler spectra.
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The second step is calculating Doppler spectra from the single-look complex image. In this
example, each Doppler spectrum is a 128-point discrete spectrum that is averaged by 224 times in the
flight direction and 10 times in the look direction. A total of 491 Doppler spectra from the entire SAR
image are obtained. The azimuthal length used for calculating one Doppler spectrum is about 121 km
(i.e., L = 121 km).

Frame 1 in Figure 3 is chosen to compare the conventional SAR image with the corresponding
estimated NRCS image. The result is shown in Figure 5. The pixel size of the single-look complex
image is about 21 m (range direction) × 4.2 m (flight direction). Figure 5a is a multi-look SAR image,
in which each pixel is averaged by 80 adjacent pixels of the single-look complex image (4 pixels in the
look direction × 20 pixels in the flight direction). Figure 5b is the estimated NRCS image, in which each
pixel is estimated from 80 pixels of the single-look complex image (in each estimation, the Doppler
spectrum is calculated from 20 pixels in the flight direction and averaged by 4 times in the look
direction). The pixel sizes of both images in Figure 5 are about 84 m × 84 m. The image intensities of
both images are shown by logarithmic grayscaling to display clear texture features of the dark area.

Figure 5. Subimages of Frame 1 in Figure 3, (a) conventional SAR image; (b) estimated normalized
radar cross-section (NRCS) image.

The comparison of Figure 5a,b demonstrates that Figure 5b presents the features of the dark area
more clearly. To compare these two images qualitatively, the image intensity profiles along the white
lines are depicted in Figure 6.
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Figure 6. Image intensities along the white lines in Figure 5a (red dotted line) and Figure 5b (blue
solid line).
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In Figure 6, the signal intensity is normalized by the mean intensity of the entire image. The image
feature near the white line is an oceanic internal wave. Four peaks of the internal wave are marked
by dashed lines, and three troughs are marked by bold dashed lines. At the positions of the peaks,
the estimated NRCS intensity is very close to that of conventional SAR image intensity because the
SNR of the peaks is sufficiently high. As a comparison, at the positions of the troughs, the SAR signal
is buried by the noise floor (about −10 dB after normalization), making it hard to judge the exact
trough position. In contrast, the estimated NRCS can remove the effect of the noise floor to a large
extent, and the trough positions of the estimated NRCS are near the midpoint of the two adjacent
peaks, which indirectly validates the correctness of the proposed method.

3.2. Example 2: Quantitative Analysis for the Estimation Method in Low NRCS

This example is the atmospheric gravity waves’ image acquired by ERS-2 on 11 March 2006 in
the East China Sea as a quantitative analysis, which is shown in Figure 7. There are 4912 pixels in
the look direction and 28,695 pixels in the flight direction in the single-look complex image used in
this example.

Figure 7. ERS-2 Ocean SAR image of the East China Sea collected on 11 March 2006, at 02:24 UTC.
The four white data lines a, b, c, and d are the profiles for comparison between the proposed method,
the SAR raw image intensity minus N0 and the optimal parameter estimation method of internal
waves [23].

In this example, the method of optimal parameter estimation of internal waves in SAR images [23]
and the proposed method in this paper will be used to deal with the internal wave in Figure 7.

The optimal parameter estimation is the latest method for estimating the parameter of internal
solitary waves. In this article, it is referred to as optimal parameter estimation. In order to verify
the feasibility of this method, we found a section at the other location of atmospheric gravity waves
(the red solid line region in Figure 7. The estimation result is shown in Figure 8, showing that the
optimum estimators are very close to the Cramér–Rao bound (CRB). Therefore, the estimation method
in the literature [23] is considered to fit the atmospheric gravity waves’ profile in Figure 7.

We selected four profiles from the atmospheric gravity waves in Figure 7, and at the position
of the trough, the SAR signal is buried by the noise floor at positions a and b are more obvious than
positions c and d. The estimation method in the literature [23], the proposed method and the SAR
Raw Image are used in the four profiles for comparison, The results of the comparison are shown
in Figure 9.
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Figure 8. The validation of the optimal parameter estimation of internal waves.
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Figure 9. Image intensities along the four white lines in Figure 7. (a) the profile a in Figure 7; (b) the
profile b in Figure 7; (c) the profile c in Figure 7; (d) the profile d in Figure 7; The green dashed line
is the SAR raw image intensity minus N0; the black solid line is the proposed method in this paper;
the red dot dash line is the optimal parameter estimation method of internal waves.
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In Figure 9, the signal intensity is normalized by the mean intensity of the entire image. The image
feature near the white lines represent atmospheric gravity waves. At the position of the peak,
the estimated NRCS intensity of all the profiles are very close to that of conventional SAR image
intensity due to sufficiently high SNR of the peak. As a comparison, at the position of the trough,
the SAR signal is buried by the noise floor (about −10 dB after normalization at positions a and b,
and about −5 dB to −8 dB at positions c and d), making it hard to judge the exact trough position.
In contrast, the estimated NRCS can remove the effect of the noise floor, which can reach −22 dB after
normalization at positions a and b, and about −16 dB to −18 dB at positions of c and d. Position a
is selected as an example through the method of optimal Parameter Estimation of Internal Waves in
SAR images from the literature [23] to estimate the energy intensity value in the wave trough position,
which is around −22 dB. From Figure 9, the estimation curve of signal intensity by the proposed
method in this paper is very close to the method of optimal Parameter Estimation of Internal Waves in
SAR images, which directly validates the accuracy of the proposed method.

3.3. Example 3: Validation of the Azimuthal Ambiguity Analysis

The third example is a RADARSAT-1 (RADARSAT is a Canadian remote sensing Earth observation
satellite program overseen by the Canadian Space Agency) image of Vancouver, which is shown in
Figure 10. The SAR raw data of this example was obtained from the accompanying CD of literature [11].

 
Figure 10. RADARSAT-1 (RADARSAT is a Canadian remote sensing Earth observation satellite
program overseen by the Canadian Space Agency) SAR image of Vancouver collected on 16 June 2002,
at 02:24 UTC.

There are 7940 pixels in the look direction and 19,425 pixels in the flight direction in the single-look
complex image of this example. As in the first example, each Doppler spectrum in this example is also
a 128-point discrete spectrum, which is averaged by 151 times in the flight direction and 30 times in the
look direction. A total of 264 Doppler spectra can be obtained from the entire single-look complex image.
The azimuthal length used for calculating one Doppler spectrum is about 109 km (i.e., L = 109 km).

Using Frame 2 in Figure 10 as an example, the conventional SAR image and the corresponding
estimated NRCS image are shown in Figure 11. The pixel size of the single-look complex image is
about 8 m (look direction) × 5.6 m (flight direction). Figure 11a is a multi-look SAR image, in which
each pixel is averaged by 192 adjacent pixels of the single-look complex image (12 pixels in the look
direction × 16 pixels in the flight direction). Figure 11b is an estimated NRCS image, in which each
pixel is estimated from 192 pixels of the single-look complex image (in each estimation, the Doppler
spectrum is calculated from 16 pixels in the flight direction and averaged by 12 times in the look
direction). The pixel sizes of both images are about 96 m × 90 m.
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Figure 11. Subimage of Frame 2 in Figure 10, (a) conventional SAR image; (b) estimated NRCS image.

The white frame in Figure 11a is contaminated by the azimuthal ambiguity signal from the strong
land targets to the right. As a comparison, the azimuthal ambiguity signal is filtered quite clearly in
the same position in Figure 11b.

Points A and B in Figure 11a are selected to illuminate the difference in the Doppler spectrum
between the signals contaminated and uncontaminated by the azimuthal ambiguity. The Doppler
spectra of points A and B are shown in Figure 12.
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Figure 12. (a) Doppler spectrum of point A in Figure 11a; (b) Doppler spectrum of point B in Figure 11b;
Blue solid and red dashed lines are the measured and modeled Doppler spectra, respectively.

The centroids of the Doppler spectra depicted in Figure 12a,b have been shifted to zero. The blue
solid lines are the measured Doppler spectra that is calculated directly from the single-look complex
image, and the red dashed lines are the Doppler spectra modeled by Equation (5), in which σ(x0, y0),
σ
(

x0 + Dx, y0 + Dy
)
, σ
(

x0 − Dx, y0 − Dy
)
, Pa( f ), and N0 are all known from the raw data. Point A is

an uncontaminated target, so its Doppler spectrum satisfies a typical Gaussian function quite well
(Figure 12a). The accordance between the measured and modeled spectra validates the accuracy
of the proposed method. As a comparison, point B is a target seriously contaminated by the
azimuthal ambiguity effect. The low-frequency and high-frequency parts of the Doppler spectrum
of B (Figure 12b) are very high; they correspond to the ambiguity signals from the right and left sides
of point B, respectively. The spectrum at low frequency is especially high. From Figure 11a, it is
known that the left and right sides of point B are all high-backscattering land targets, whereas point B
is a water area with a very low NRCS, and the target on the right is much stronger than on the left.
The NRCS distribution of Figure 11a agrees with the analysis of the Doppler spectrum of point B
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and the modeled spectrum satisfies the measured spectrum quite well, which further validates the
proposed method.

4. Discussion

As SAR imaging is more and more widely used, the radar echo is analyzed in the proposed
method, and the relative value of RCS is extracted from the Doppler spectrum, the estimated relative
backscattering intensity is converted to absolute NRCS using Equation (27). The comparison between
the proposed method and the traditional method is described in detail in Section 3. Three examples
show the feasibility and superiority of the proposed method. In the following, the estimation accuracy
of the proposed method and the traditional method is analyzed by simulation.

Because the normalized image intensity differs from the NRCS only with a constant offset,
the proposed method uses the normalized image intensity to be equivalent to NRCS. In this paper,
in order to simplify the calculation without the loss of equivalence, the normalized image intensity is
adopted in Figures 6, 8 and 9.

The Comparative Simulation Analysis of Estimation Accuracy for Different NRCS Estimation Methods

The simulations were performed under different signal-to-noise ratios (SNR) and azimuthal
ambiguity conditions. The parameters of the simulations are given in Table 2, which correspond to
low, intermediate, and high azimuthal ambiguity, respectively.

Table 2. Simulation parameters.

Simulation 1 Simulation 2 Simulation 3

σ(x0, y0)/N0 0.01–0.5 0.01–0.5 0.01–0.5
σ
(

x0 − Dx, y0 − Dy
)
/N0, σ

(
x0 + Dx, y0 + Dy

)
/N0 2 5 10

Simulation repeat number 400 400 400
Pixel number used for calculating one Doppler spectrum 80 80 80

Take the estimation precision of ML estimation into consideration; according to mathematical
statistics theory, the ML estimation can reach the Cramer–Rao bound [12,13]. That is the root-mean-
square (rms) of the estimation which can be expressed as:

rms[σ̂n] =
1√√√√√−E

⎡⎣∂2 ln g
(

pn−X pn pn+X In

∣∣∣σn

)
∂σ2

n

⎤⎦
=

1√√√√√√√√√√√√

m
∑

i=1

P2
C( fi)[

σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +
N0

Fr

]2 +
m
∑

i=1

P2
R( fi)[

σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +
N0

Fr

]2

+
m
∑

i=1

P2
L( fi)[

σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +
N0

Fr

]2 +
N
σ2

n

(28)

where σ̂(x0, y0) is the ML estimation of σ(x0, y0), and rms[•] refers to the root–mean–square.
The rms of the modified method is shown in Figure 13. For comparison, the Cramer–Rao bound

of ML estimation and the simple estimation of I − N0, which is used in Equation (1), are also depicted
in Figure 13.
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Figure 13. The comparison of three kinds of estimation precision, rms of estimation error of modified
estimation method (black solid line), I − N0 (green dashed line), and Cramer–Rao bound of maximum
likelihood (ML) estimation (red dotted line), (a) for simulation 1; (b) for simulation 2; and (c) for
simulation 3.
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In Figure 13, the SNR (x-axis) refers to σ(x0, y0)/N0, and the estimation error (y-axis) is normalized
by N0. A comparison of Figure 13a, Figure 13b, and Figure 13c clearly shows that the estimation error
of the simple estimation I − N0 increases significantly with increasing azimuthal ambiguity, but the
results from the proposed method of estimation can almost maintain the same estimation precision
under various azimuthal ambiguity conditions. Even under low azimuthal ambiguity conditions
(Figure 13a), the estimation error of the proposed estimation method is also significantly less than
that of simple estimation I − N0. In Figure 13a–c, it indicates that the rms of the estimation error
of the proposed estimation method is very close to the Cramer–Rao bound with the increase in
SNR. This result validates that the proposed estimation method can significantly increase estimation
precision under a low SNR or low-scattering area in SAR images.

Take the low SNR condition into account, supposing σ(x0, y0) << N0; neglecting the contribution
from the azimuthal ambiguity effect, the rms of the estimation error of the proposed estimation method
can be obtained as:

rms[σ̂(x0, y0)] ≈ 0.8
N0

Fr

√
m
∑

i=1
P2

a ( fi − f0)

(29)

The Doppler power spectrum can often be obtained by incoherently averaging the spectra of
several uncorrelated signals. The estimation precision derived so far is also applicable in the case when
the number m is replaced by the overall number of pixels contributing to the estimation.

For example, assume that the NESZ of a spaceborne SAR is −25 dB, the single-look pixel size is
8 m (look direction) × 5 m (flight direction), and the number of pixels contributing to one estimation
is 240 (in each estimation, the Doppler spectrum is calculated from 20 pixels in the flight direction
and incoherently averaged by 12 times in the look direction); an NRCS estimation precision of about
−38 dB could be acquired in the low-backscattering area at a resolution of 96 m × 100 m.

5. Conclusions

The image intensities of SAR images of low-backscattering areas are often affected by the system
noise and azimuthal ambiguity effect. In this paper, a method is proposed for estimating the NRCS of
low-backscattering areas. The method can eliminate much of the effect of system noise and azimuthal
ambiguity. This method is based on the single-look complex image, and the azimuthal matching filter
in the imaging algorithm must be an unweighted filter. The parameters needed for this method can
all be estimated from the single-look complex image itself, which makes the method easy to apply.
An analysis on the estimation precision demonstrates that, for a typical spaceborne SAR with a NESZ of
−25 dB and a single-look pixel size of 8 m × 5 m, the NRCS estimation precision of low-backscattering
areas can reach −38 dB at a resolution of 96 m × 100 m.

Three examples are given for validation in Section 3. The first example is a SAR image that is
an oceanic internal wave. In the conventional SAR image, the troughs of the internal wave signal
intensity are buried by the noise floor, making it hard to judge the exact trough position. In contrast,
the NRCS estimated by the proposed method can recover the texture features of the low-scattering
area much better, and the recovered troughs of the internal wave are located near the midpoint of the
adjacent peaks. The result is a qualitative analysis for the estimation method in low NRCS. In addition,
the example in Section 3.2 is atmospheric gravity waves. The estimation values of signal intensity by
the proposed method in this paper are very close to the theoretical value of the signal intensity in the
low-scattering area of the original image. The result is a quantitative analysis for the estimation method
in low NRCS. The third example is a SAR image of a land-water junction, in which the water area
is seriously affected by the azimuthal ambiguity signals from high-backscattering land targets. As a
comparison, the azimuthal ambiguity signals are filtered out quite clearly in the NRCS image estimated
by the proposed method. The Doppler spectra of two points were analyzed, one contaminated and one
uncontaminated by the azimuthal ambiguity signal. Analysis proves that the Doppler spectra modeled
by the proposed method can satisfy the actual Doppler spectra calculated from the single-look complex
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image quite well. These three examples both indirectly and directly validate the feasibility of the
proposed method in this paper.

This proposed method can be applied to SAR image processing in low-scattering areas in the
ocean, such as internal waves, oil spills, low wind speed zones, upwelling, and so on. Conversely,
the proposed method can be applied to the data processing of the SAR satellite system with lower
NESZ, which can reduce the cost of satellites and improve the bandwidth, resolution, and other
indicators of the SAR system.
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Appendix A. The Jacobian Matrix of the Derived Function

When 2X < n ≤ T − 2X

J(n, n − 2X) =
m
∑

i=1

PL( fi)PR( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

]2 − 2
m
∑
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Fr

]3
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When X < n ≤ 2X
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When 0 < n ≤ X
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When T − X < n ≤ T
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Abstract: Interferometric imaging radar altimeter (InIRA) is the first spaceborne Ku-band
interferometric synthetic aperture radar (InSAR) which is specially designed for ocean surface
topography altimetry. It is on the Tiangong II space laboratory, which was launched on 15 September
2016. Different from any other spaceborne synthetic aperture radar (SAR), InIRA chooses a near-nadir
incidence of 1◦~8◦ in order to increase the altimetric precision and swath width. Limited by the size
of the Tiangong II capsule, the baseline length of InIRA is only 2.3 m. However, benefitting from the
low orbit, the signal-to-noise ratio of InIRA-acquired data is above 10 dB in most of the swath, which,
to a certain extent, compensates for the short baseline deficiency. The altimetric precision is simulated
based on the system parameters of InIRA. Results show that it is better than 7 cm on a 5-km grid
and improves to 3 cm on a 10-km grid when the incidence is below 7.4◦. The interferometric data of
InIRA are processed to estimate the altimetric precision after a series of procedures (including image
coregistration, flat-earth-phase removal, system parameters calibration and phase noise suppression).
Results show that the estimated altimetric precision is close to but lower than the simulated precision
among most of the swath. The intensity boundary phenomenon is first found between the near range
and far range of the SAR images of InIRA. It can be explained by the modulation of ocean internal
waves or oil slick, which smooths ocean surface roughness and causes the modulated area to appear
either brighter or darker than its surroundings. This intensity boundary phenomenon indicates that
the available swath of high altimetric precision will be narrower than expected.

Keywords: InSAR; near-nadir incidence; Ku-band; ocean surface topography; altimetry

1. Introduction

Under the influence of ocean tides, eddies and bathymetry variety, ocean surface topography
(OST) changes at a global level [1,2]. Satellite radar altimetry has been utilized for over three decades
since the first spaceborne radar altimeter on geodetic satellite (GEOSAT)to acquire high precision OST.
Now the latest Poseidon-3B on Jason-3 can achieve a 2-cm precision [3]. The altimeter sends special
shaped pulse to the nadir point and times the round trip delay to measure the ocean surface height.
The pulse size projected on the ocean surface, also referred to as a footprint, decides the swath width
and resolution of the altimeter, which is usually on the order of 2~10 km [4], as shown in Figure 1.
An altimeter is none-imaging radar, it only measures one-dimensional OST along the satellite track.
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It is difficult for an altimeter to map mesoscale or sub-mesoscale (15~300 km) oceanic processes, since
a 200~300 km gap usually exists between two successive tracks. Therefore, an altimeter is normally
used to study large-scale (>300 km) oceanic processes [5].

In recent years, there has been a growing demand for scientific research on mesoscale and
sub-mesoscale oceanic processes, such as eddies and currents [6,7]. Interferometric synthetic aperture
radar (InSAR), which is capable of measuring OST with high precision and a wide swath, is expected to
be the next generation of satellite altimeter. InSAR has been successfully used to map terrain elevation,
and the Shuttle Radar Topography Mission (SRTM) is one of the most typical examples [8]. InSAR
altimetry is performed by acquiring two synthetic aperture radar (SAR) complex images of the same
region during the single pass or repeat pass of the satellite [9]. Topography change is then recorded
by the interferometric phase, which is the phase difference between two SAR complex images [10].
Different from terrain elevation measurement, ocean surface height changes randomly, hence two SAR
antennas should be borne on satellites to acquire the images simultaneously. Moreover, OST altimetry
demands centimeter-level precision, which is far beyond the capability of current InSAR systems.
Therefore, several key parameters of InSAR need to be adjusted to fulfill the stringent requirements,
which include near-nadir incidence, long physical baseline and short radar wavelength, and near-nadir
incidence is the most distinctive characteristic from any other existing InSAR systems. Near-nadir
InSAR is imaging radar; by using a pulse compressing technique, the image resolution is about a few
meters, which is much smaller than its swath, as shown in Figure 1. Therefore, near-nadir InSAR can
be used to measure surface water (lakes, rivers, wetlands, etc.) as well [11].

The wide-swath ocean altimeter (WSOA) is the first near-nadir InSAR proposed by National
Aeronautics and Space Administration (NASA), and its two antennas work at Ku-band and form
a baseline of 6.4 m. The incidence ranges from 0.6◦ to 4◦, and a 5-cm precision is expected on a 15 km
grid [12,13]. However, due to the technical limitations at that time, WSOA was finally canceled. The
Surface Water and Ocean Topography (SWOT) mission, a collaboration between NASA and Centre
National d’Etudes Spatiales (CNES), draws from the heritage of WSOA. KaRIN, as its main instrument,
is a Ka-band near-nadir InSAR. A 10-m boom links its antennas to guarantee that the baseline is long
enough to achieve a 3-cm precision on a 1-km grid. SWOT is planned to be launched in 2021 [5]. CNES
carried out a series of airborne near-nadir InSAR experiments on surface water measurement to imitate
SWOT performance [14,15]. Roger Fjørtoft [16] reported that the surface water was severely influenced
by layover effect from its surrounding landscape because of the near-nadir incidence. Nevertheless,
due to high land/water contrast, which was about 10~20 dB, the layover could be mitigated to some
extent. Elizabeth H. Altenau et al. [17] used AirSWOT (an airborne near-nadir InSAR which was
developed by Jet Propulsion Laboratory) collected near-nadir InSAR data to retrieve water surface
elevation of the Tanana River, Alaska. Verified by in situ measurements, results showed that the
root-mean-square error (RMSE) was 9 cm for water surface elevation averaged over 1-km2 areas.

The interferometric imaging radar altimeter (InIRA), as an experimental payload, was developed
by the National Space Science Center, Chinese Academy of Sciences. InIRA is borne on
Tiangong II, the Chinese space laboratory, which was launched on 15 September 2016 and runs
in a non-sun-synchronous orbit at an altitude of about 400 km. InIRA is the second spaceborne InSAR
that can perform single-pass interferometry after SRTM. Its two antennas work at Ku-band and form
a baseline of 2.3 m. As shown in Figure 1, due to the wide range of the incidence (1◦~8◦), a swath larger
than 40 km can be achieved along the right side of the orbit track. The usual SAR incidence varies
from 20◦ to 60◦, which determines that Bragg scattering is prevalent among the received signal [18].
While under the near-nadir incidence, specular-reflected signal from ocean surface dominates, which
makes InIRA acquired data quite unique from any other SAR images.
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Figure 1. Schematic diagram of the resolution and swath of an altimeter, interferometric imaging
radar altimeter (InIRA) and synthetic aperture radar (SAR) (the sketch does not represent the actual
geometrical size).

In this paper, we analyze the performance of InIRA on ocean surface topography altimetry
to evaluate its capabilities on exploiting various oceanic processes; in Section 2, the measurement
principle of near-nadir InSAR is briefly introduced and the altimetric precision is simulated based
on the system parameters of InIRA; in Section 3, after a series of data processing procedures, the
altimetric precision on a 1-km grid is estimated from the multi-look interferometric phase; in Section 4,
the intensity boundary phenomenon of near-nadir InSAR image is first found and discussed; some
recommendations of parameter design for future near-nadir InSAR are given based on the performance
of InIRA in Section 5.

2. Altimetry Simulation of OST

2.1. System Parameters of InIRA

All system parameters of InIRA are designed in order to increase its altimetric precision and
swath width; however, limited by the capsule size of Tiangong II and the compatible requirements
with other experiment payloads, some of the system parameters are restricted.

The altimetric precision of InSAR is given by [10]:

Δh =
λr1 sin θ

2πB cos(θ − α)
Δφ (1)

where B is the physical baseline length, λ is the radar wavelength, θ is the incidence, α is the baseline
roll angle, and Δφ is the phase error. Therefore, a longer baseline, smaller incidence and shorter radar
wavelength will improve the altimetric precision significantly.

The antennas are installed outside the capsule of Tiangong II and form a 2.3-m baseline. The
baseline length is quite short for the high altimetric precision requirement. In order to compensate
for the short baseline deficiency, a near-nadir incidence is chosen. A bonus brought by the near-nadir
incidence is that the received signals are mainly from specular reflection, which improves the
signal-to-noise ratio (SNR) a lot and further increases the altimetric precision. The relationship
between SNR and altimetric precision is explained in Section 2.3.

Theoretically, the shorter the radar wavelength the higher the altimetric precision. However, short
radar wavelength has its drawbacks, and rain attenuation will decrease the SNR of reflected signal and
eventually worsen the altimetric precision [19]. Moreover, when an electromagnetic wave intersects
with the ocean surface, short radar wavelength will lower the possibility of specular reflection because
less surface appears smooth [16]. This will definitely worsen the precision as well since most of
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the reflected signals come from specular reflection under near-nadir incidence. Hence, the Ku-band
antennas are chosen for InIRA above all these considerations.

In order to achieve a wide swath, the relative variation of the incidence is quite large. The nominal
incidence of InIRA is 1◦~8◦, as shown in Figure 2a; a 47-km-wide swath can be achieved within the
incidence range, while a large relative variation of incidence also makes the ground-range resolution of
InIRA change significantly. The ground-range resolution has changed almost eight times from ~213 m
in the near range to ~27 m in the far range, as shown in Figure 2b.The variation of ground-range
resolution also causes the multi-look number varies significantly among the swath. Averaging N
neighboring pixels, also referred to as multi-looking, is normally used to reduce the phase error
while processing the interferometric data [20]. The multi-look number is determined by the ratio
between grid resolution and ground-range resolution. Supposing that the grid resolution along the
ground-range direction is 1 km after multi-looking, then the phase error suppression by multi-looking
in the near range of the swath will be much less than in the far range.

Figure 2. (a) Swath width and (b) ground-range resolution of InIRA within the incidence range.

2.2. Altimetry Principle of OST

Before the simulation of altimetric precision, we briefly introduce the OST altimetry principle.
As shown in Figure 3, the baseline of InIRA is perpendicular to its orbital track, and α is the
baseline tilt angle. Antenna A1 sends pulses to the ocean surface, and both of the antennas receive
the reflected pulses; r1 and r2 are the distances between the antennas and point P, respectively.
This one-transmit-two-receive working mechanism makes the effective baseline half of its physical
length [10]. The received pulses of A1 and A2 are processed into two SAR complex images separately.
Because of the return path difference Δr, which is caused by the existence of baseline, the corresponding
phases of point P in the complex images are different. Therefore, the relationship between phase
difference φ and return path difference Δr can be expressed by:

φ =
2π(r2 − r1)

λ
=

2πΔr
λ

=
2πB sin(θ − α)

λ
(2)

where λ is the wavelength, B is the physical baseline length, and Δr is the return path difference,
which can be approximated by the parallel component of the baseline along the look direction.

After acquiring the phase difference φ, with precise knowledge of r1, the height of point P above
the reference plane (could be the local mean sea level) can be deduced by:

h = H − r1 cos θ (3)

where H is the altitude of Tiangong II above the reference plane, r1 is measured by timing the signal
round trip delay, and θ is the incidence which is related to the phase difference φ.
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Figure 3. Ocean surface topography (OST) measurement principle (slant-range profile).

According to the geometrical relationship in Figure 3, two equations are given:

cos β =
r2

1 + B2 − r2
2

2r1B
≈ −Δr

B
(4)

β =
π

2
+ α − θ (5)

where β is the angle between the baseline and view direction. Combining Equations (2)–(5), the
relationship between height h and phase difference φ is given by:

h = H − r1 cos(
π

2
+ α − arccos(− λφ

2πB
)) (6)

In fact, Equation (1) is deduced from the differential of Equation (6).
The interferometric phase φ12 which is derived from the phase difference between two SAR

complex images, cannot be directly translated into ocean surface height. According to Equation (2), the
return path difference Δr can be expressed by the number of wavelengths, normally Δr is longer than
one wavelength. Whereas the phases recorded by complex images are confined within [−π, π], this
means the phases are wrapped. The relationship between unwrapped phase φ and interferometric
phase φ12 is given in Equation (7). Phase wrapping leads to the missing of integer number n, so phase
calibration must be done before acquiring the absolute ocean surface height.

φ = 2π(n +
φ12

λ
) (7)

2.3. Altimetric Precision Simulation

In Equation (1), Δh can also be regarded as the relative height change above a reference sea level,
Δφ is the corresponding phase change. Since phases are confined within [−π, π], a too-large relative
height change will cause phase ambiguity, also referred to as phase wrapping [10]. The altimetric

41



Remote Sens. 2017, 9, 933

ambiguity is defined as the relative height change corresponding to a phase ambiguity of 2π. When
Δφ = 2π in Equation (1), then the altimetric ambiguity is given by:

h2π =
λr1 sin θ

B cos(θ − α)
(8)

Obviously, a longer baseline, smaller incidence and shorter wavelength will decrease the altimetric
ambiguity or, in other words, cause the phase to be wrapped more easily by the same relative height
change. Phase unwrapping is difficult, hence the altimetric ambiguity of InIRA should be large enough
to avoid this problem. Figure 4a shows that the altimetric ambiguity has changed over eight times from
~64 m in the near range to ~518 m in the far range. This indicates that a relative height change larger
than ~32 m in the near range will wrap the phase (since the corresponding phase is larger than π).
However, phase wrapping is quite unlikely to happen, since ocean surface height variation is usually
only within a few meters.

While a too-large altimetric ambiguity also brings a challenge to InIRA, for a 10-cm relative
height change, the corresponding phase change is only 0.01 rad in the near range, then drops down to
0.001 rad in the far range, as shown in Figure 4b. This indicates that the phase error in the near range
should be better than 0.01 rad to detect the relative height change effectively, and the phase error in the
far range should be even 10 times better than in the near range. The stringent requirement on phase
error demands that the system thermal noise be constrained at a certain level, and the data processing
must be extremely accurate.

Figure 4. (a) Altimetric ambiguity of InIRA corresponds to a phase ambiguity of 2π; (b) Altimetric
sensitivity of InIRA corresponds to a 10-cm ocean surface height change.

According to the analysis mentioned above, phase error will eventually determine the altimetric
precision of InIRA. Phase errors are mainly from systematic errors and random errors. Systematic
errors are constant or slow drifting, such as differential phase drift error or baseline roll angle error,
most of which can be eliminated through calibration. In this paper we focus on the relative altimetric
precision of ocean surface height, thus only random errors are considered during the simulation.

Random phase error is introduced in the simulation by multiple decorrelation factors. For any
InSAR, thermal noise influences phase error the most [21], the thermal correlation factor γN is given by:

γN =
SNR

SNR + 1
(9)

where SNR is the signal-to-noise ratio. Benefitting from low orbit and near-nadir incidence, the
SNR of InIRA received data is very high within most of its swath, as show in Figure 5a (the SNR
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curve is derived from the acquired data of InIRA), and high SNR guarantees high coherence for the
interferometric data. Apart from thermal decorrelation, the presence of ocean waves will introduce
a volume-scattering layer on the angle subtended by a range resolution grid, thereby introducing the
volumetric decorrelation [22], which is given approximately by:

γv ≈ e−2(
2πσh B

r1λ tan θ )
2

(10)

where σh is the ocean surface height standard deviation, related to the significant wave height (SWH)
as SWH = 4σh. The simulated volumetric decorrelation coefficient is shown in Figure 5b. It obviously
has a much bigger influence in the near range because of the steeper incidence, and it decreases
significantly as the SWH increases.

Compared to the above mentioned factors, other decorrelation factors can be neglected during
the simulation [22]. The coherence of the interferometric data can be expressed by the multiplication
of the decorrelation factors, as given in (11):

γ = γN ·γv (11)

The coherence of InIRA acquired data is then simulated, as shown in Figure 5c, and the decrease
in the far range is mainly caused by the decrease of SNR. By averaging the neighboring pixels, the
phase error can be suppressed and follows the Cramer-Rao bound [21], which is given by:

Δφ =

√
1 − γ2

2γ2N
(12)

where N is the multi-look number, γ is the coherence. Though the SNR of InIRA acquired data is
very high, a large number of pixels still need to be averaged to achieve centimeter-level precision.
We have simulated the altimetric precision on a 1-km grid, as shown in Figure 5d. In the near range,
the precision drops due to the volumetric decorrelation. In the far range, when the incidence is above
~7.4◦, the precision appears to have a steep drop, this is caused by the increase of the incidence apart
from the SNR decline. As mentioned before, the altimetric precision can be increased by multi-looking,
thus altimetric precision on a 1-km, 5-km and 10-km grid are simulated and compared, the SWH is set
to be 2 m. As shown in Figure 5e, the precision on a 5-km grid is better than 7 cm and improves to
3 cm on a 10-km grid due to larger averaged pixel number.

Figure 5. Cont.
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Figure 5. (a) Signal-to-noise ratio (SNR) curve estimated from InIRA acquired data; (b) volumetric
decorrelation coefficient; (c) coherence, and; (d) altimetric precision under a different significant wave
height (SWH) setting; (e) altimetric precision on a different resolution grid, the SWH is set to be 2 m
during the simulation.

3. OST Altimetry Results and Analysis of InIRA

InIRA acquired the first batch of data in September 2016; the intensity image shown in Figure 6 is
located in the South China Sea, next to Vietnam. The South China Sea is famous for its abundant ocean
internal waves [23], and the data has just recorded this phenomenon. Some intensity discontinuity,
also referred to as scalloping [24], can be seen in the far range of the ocean along the azimuth direction;
this is caused by the burst working mode of InIRA. Contrary to conventional synthetic aperture
radar (SAR) images, the intensity of the ocean surface in Figure 6 is much brighter than the land.
The reason for this unique feature is that the received signal of InIRA contains both backscattered
energy and specular-reflected energy. Compared with rough land surfaces, the signals are much
easier to be specular-reflected by the ocean surface, and the specular-reflected signal takes up a much
bigger proportion than the backscattered signal. In this section, the processing procedures of the
interferometric data are briefly introduced, then the altimetric precision on a 1-km grid is estimated
and analyzed by the processed interferometric phase.
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Figure 6. SAR intensity image of the South China Sea, acquired by InIRA in September 2016. The
image is geocoded, the modulation of antenna pattern along the range direction is corrected. The
azimuth and range directions are indicated by arrows.

3.1. Interferometric Data Processing

The interferometric data need to be coregistered, flat-earth phase removed and calibrated to finally
obtain the absolute ocean surface height [10]. Though the parameter calibration of InIRA has not yet
proceeded, we can still utilize the relative phase change to estimate the altimetric precision after the
flat-earth phase removal.

Figure 7a is the slant-range image, under the modulation of antenna pattern, ocean surface
intensity decreases rapidly in the far range, which indicates the decrease of SNR as well. Figure 7b is
the coregistered phase of two SAR complex images, and fringes among the ocean area is the classic
flat-earth phase. The flat-earth phase exists and changes regularly in the slant-range direction even
if the topography does not change at all [10]. Among the mountainous area, the fringes seem to be
distorted, which is caused by the elevation change of the mountains. Due to the decrease of SNR,
phases in the far range are much noisier.

Phases in the black box in Figure 7b contains both the flat-earth phase and relative phase, which
corresponds to the OST change. To acquire the relative phase, the flat-earth phase should be removed
first. The flat-earth phase can be expressed by:

ϕ(B, α, n) =
2πB sin(θ − α)

λ
= ϕ f ringe + 2πn (13)

where the baseline length B, baseline tilt angle α and wavelength number n need to be calibrated.
ϕ f ringe is the wrapped flat-earth phase, which changes regularly along the slant-range direction,
as shown in the black box in Figure 7b.

Since the relative phase change is very small according to the altimetric sensitivity simulation
in Section 2.1, hence phases in the black box are mostly composed by the wrapped flat-earth phase
ϕ f ringe, which contains precise information of the parameters that need to be calibrated.

Therefore, we utilize the flat-earth phase to calibrate the system parameters. Phases in the black
box in Figure 7b are selected to acquire the flat-earth phase curve along the slant-range direction, then
the flat-earth phase curve is fitted to the nominal Equation (13). By changing different combination of
parameters (B, α, n) and seeking the minimum RMSE between flat-earth phase curve and the nominal
equation. The parameters are calibrated in this way, as given in (14), and the nominal flat-earth phase is
calculated and eliminated throughout the entire image. Besides, most of the systematic errors, such as
differential phase drift [22], are also eliminated during this process.

∧
(B, α, n) = argmin[ϕ f ringe − ϕ(B, α, n)] (14)
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The relative phases which correspond to the topography are shown in Figure 7c. The phases
vary notably among the mountainous area due to the large terrain variation. However, among the
ocean area, the phases hardly change and tend to be near 0 rad. In the far range, where the internal
waves exists, the phase deviates from 0 rad and looks much noisier; this phenomenon will be analyzed
in Section 3.2.

Figure 7d is the coherence between two SAR complex images, and most of the ocean surface area
is above 0.95. However, the coherence drops in the far range because of the decrease of SNR, especially
in the internal wave area. Coherence of the mountainous area is between 0.3 and 0.7, and this relatively
low coherence is mainly caused by volumetric decorrelation of the Ku-band signal, since mountains in
Vietnam are covered by lush vegetation.

Figure 7. Cont.
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Figure 7. (a) Intensity image in slant-range direction without antenna pattern correction; (b) coregistered
phase of two SAR complex images; (c) relative phase after flat-earth phase removal; (d) coherence between
two SAR complex images. The azimuth and slant-range directions are indicated by arrows.

3.2. Altimetric Precision Estimation

According to the altimetric sensitivity analysis in Section 2.3, a 10-cm height change causes a mere
0.001~0.01 rad phase change for InIRA. The phase change is too small compared to the dynamic phase
range, which is between [-π, π]. Moreover, the phase noise level is too high for OST-associated phase
change to emerge on Figure 7c.

Phases in the black box in Figure 7c are multi-looked to lower the phase noise level; the phase
dynamic range decreases significantly and the OST associated phases finally emerges on the 1-km grid,
as shown in Figure 8.

Figure 8. Multi-look interferometric phase on a 1-km grid. Phases in the blue box corresponds to the
internal wave area.

The altimetric precision on a 1-km and 5-km grid are estimated by calculating the RMSE of the
phase in the same ground-range bin. The simulated altimetric precision is also presented to compare
with the estimated results (the SWH is set to be 1.8 m according to the meteorological data during the
image acquisition), as shown in Figure 9a. Since the altimetric precision within 7◦~8◦ incidence range
is too large, the precision axis is on logarithmic scale to present the curves more clearly. Throughout
the entire swath, the estimated precision on a 5-km grid (the magenta solid line) is higher than that of
a 1-km grid (the red solid line) due to larger multi-look number. The estimated precision is lower than
the simulated results (the dashed lines), and to analyze the reason for this difference, the precision
difference curves within 1◦~7◦ incidence range are shown in Figure 9b. Due to the random error
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suppression by multi-looking, the precision difference on a 5-km grid is lower than that of a 1-km
grid. However, a considerable residual difference still exits and, apart from the fact that the OST
changes slightly in the area, the residual difference is mainly caused by the residual calibration error
and data processing induced error. Most of these are systematic errors and cannot be further removed
by multi-looking (within the 4◦~5◦ incidence range, the difference is almost the same as the 1-km
curve, which indicates that the precision difference is mainly from systematic errors).

Figure 9. (a) Altimetric precision of the estimated and simulated results and (b) precision difference
between the estimated and simulated results on a 1-km and 5-km grid, respectively.

In Figure 8, phases in the blue box are much lower than the surrounding phases. This anomaly
causes the estimated precision drops sharply and deviates notably from the simulated precision when
the incidence is above ~7◦, as shown in Figure 9a. According to Figure 7a, ocean internal waves
happen to exist in this area. In Figure 10, by comparing the intensity, coherence and phase images
of the interval waves, we deduce that the altimetric precision decline is caused by the modulation
of internal waves on ocean surface roughness. In the far range, the modulated area appears darker
than the surrounding area, which indicates the decline of the SNR. As the SNR decreases, so does the
coherence of the modulated area. The coherence decline increases the phase noise and worsens the
altimetric precision.

Figure 10. (a) Intensity (b) coherence and (c) phase image of the internal wave area.

4. Discussion

The modulation of internal waves on ocean surface roughness leads to a sharp decline in altimetric
precision. However, the modulation effect seems to be quite different between the near and far
range of the image. Classical SAR ocean imaging theory presumes that under 20◦~60◦ incidence,
the SAR received signal is mainly from Bragg scattering. When the modulated area gets smoother,
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the backscattered signal will decrease and the internal waves will appear as dark stripes, which
coincides with the situation that occurred in the far range. While different from conventional SAR,
the near-nadir incidence of InIRA determines its received signals are mainly from specular reflection,
so internal waves are supposed to be bright stripes, which coincides with the near range situation,
and a similar phenomenon observed by satellite altimeter has also been reported in [25]. Obviously,
there is an intensity boundary around ~5◦ incidence, as shown in Figure 11a.

The intensity boundary phenomenon also happens around the area where the ocean surface is
covered by oil slick, as shown in Figure 11b. In the near range, the slicks look brighter than the
surrounding area, while darker in the far range. Since the modulation of oil slick also makes the ocean
surface smoother, so the intensity boundary can be explained by the same reason as of the internal waves’.

Figure 11. Intensity boundary phenomenon of (a) internal waves (as shown in the red boxes);
(b) oil slick.

Considering the near-nadir incidence of InIRA, the intensity boundary can be explained as follows.
In the near range, the incidence is almost vertical, meanwhile, a small surface slope induced by

ocean waves also exists, as shown in Figure 12. When radar signals illuminate the ocean surface, most
of the signals will reflect straight back into the receiver. Since under the modulation of internal waves
or oil slick, the ocean surface get smoother, so reflected signals from modulated ocean area become
stronger. This makes the internal waves or oil slick appear brighter than the surrounding area.

In the far range, the incidence increases, however, the surface slope does not increase since it is
largely dominated by the local sea state. Though most of the radar signals are also specular-reflected,
only few of them can head back into the receiver. It gets even worse around the modulated area since
the backscattered signal also decreases because of the smoother surface roughness. This makes the
internal waves or oil slick appear darker than the surrounding area.

Figure 12. Schematic diagram of the intensity boundary phenomenon.
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The position where the intensity boundary locates is determined by ocean wave slope, and the
ocean wave slope is dominated by the local sea state. So future near-nadir InSAR should consider
this phenomenon while designing the incidence range. Our future work will derive the relationship
between the intensity boundary and sea state from the statistics of the acquired data.

5. Conclusions

As an experimental payload, even though some of the system parameters are limited by the
current technique, InIRA has shown its great potential in measuring the OST with high precision that
have never been resolved before. Based on the performance analysis of InIRA in this paper, here are
some suggestions on parameter design for the future near-nadir InSAR.

(1) According to the intensity boundary phenomenon, the available swath of high altimetric precision
will be narrower than expected. As for InIRA, when the incidence range is 1◦~5◦, the swath will
decrease to only 20 km. This narrow swath can hardly fulfill the altimetry on sub-mesoscale
oceanic processes. Therefore, future near-nadir InSAR could fly on a higher orbit to increase the
swath width.

(2) Flying on a higher orbit means the SNR of the received signal will decrease significantly, thereby
definitely increasing the phase noise level. As mentioned before, multi-looking is one of the most
effective ways to lower the phase noise, and the 3-cm altimetric precision on a 10-km grid is much
higher than that of a 1-km grid, according to the simulation. However, it is quite challenging
for the 10-km grid to resolve mesoscale or sub-mesoscale oceanic processes whose physical
dimension is only about 15~300 km. Therefore, future near-nadir InSAR should guarantee
an even higher intrinsic image resolution so that a larger multi-look number could be acquired
on the same grid.

(3) Baseline length is the key parameter which guarantees high altimetric precision for near-nadir
InSAR. Meanwhile, a longer baseline will mitigate the stringent requirement for a systematic
phase noise level and data processing precision, allowing the near-nadir InSAR to achieve better
performance much more easily.
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Abstract: Synthetic aperture radar (SAR) is one of the most important techniques for ocean
monitoring. Azimuth ambiguities are a real problem in SAR images today, which can cause
performance degradation in SAR ocean applications. In particular, littoral zones can be strongly
affected by land-based sources, whereas they are usually regions of interest (ROI). Given the presence
of complexity and diversity in littoral zones, azimuth ambiguities removal is a tough problem. As
SAR sensors can have a repeat cycle, multi-temporal SAR images provide new insight into this
problem. A method for azimuth ambiguities removal in littoral zones based on multi-temporal
SAR images is proposed in this paper. The proposed processing chain includes co-registration,
local correlation, binarization, masking, and restoration steps. It is designed to remove azimuth
ambiguities caused by fixed land-based sources. The idea underlying the proposed method is that
sea surface is dynamic, whereas azimuth ambiguities caused by land-based sources are constant.
Thus, the temporal consistence of azimuth ambiguities is higher than sea clutter. It opens up the
possibilities to use multi-temporal SAR data to remove azimuth ambiguities. The design of the
method and the experimental procedure are based on images from the Sentinel data hub of Europe
Space Agency (ESA). Both Interferometric Wide Swath (IW) and Stripmap (SM) mode images are
taken into account to validate the proposed method. This paper also presents two RGB composition
methods for better azimuth ambiguities visualization. Experimental results show that the proposed
method can remove azimuth ambiguities in littoral zones effectively.

Keywords: azimuth ambiguities; littoral zones; multi-temporal; RGB composition; synthetic aperture
radar (SAR); Sentinel-1

1. Introduction

Synthetic Aperture Radar (SAR) is a microwave remote sensing technology providing 2D images
with 24-h all-weather sensing capability [1]. Since the launch of the Seasat in 1978, the number of
spaceborne SAR sensors has drastically increased [2,3]. It is a mature and successful discipline for
global ocean monitoring [3–6]. Advanced spaceborne SAR sensors today provide fine resolutions,
such as TerraSAR-X, COSMOS-SkyMed, RADARSAT-2, GF-3, and Sentinel-1 [4–9]. As more than 90%
of the world’s trade goods, and more than 70% of global crude oil are transported by sea, maritime
surveillance is of utmost importance [10].

Azimuth ambiguities are inherent artifacts in current SAR systems. They are visible in most
spaceborne SAR images. SAR images often suffer from azimuth ambiguities. Experience shows that
azimuth ambiguities are today a real problem for ocean monitoring [11,12]. SAR images can be strongly
affected by land-based sources. If azimuth ambiguities are unrecognized, they can give rise to false
alarms and errors in SAR image interpretation.
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Littoral zones are ‘hard-hit areas’ of azimuth ambiguities. There are three reasons for this. The
first one is that littoral zones are usually areas of low wind speed condition. The neighboring land
can provide a barrier to generate a weak-wind region. Azimuth ambiguities become prominent when
the calm sea surface appears darker. The second one is that there are always strong sources at the
coast. Coastal regions are always the most developed areas, e.g., New York, Shanghai, Singapore, etc.
There are many tall buildings, bridges, ports, and other artifacts. They are all strong sources which
can generate azimuth ambiguities. The final one is that the typical spaceborne azimuth ambiguity
displacements are 4~8 km. Azimuth ambiguities of land-based sources will occur exactly in sea areas
near the coast. Unfortunately, littoral zones are also regions of interest (ROI) in most cases. There are
many ships in the harbors, straits, and other important littoral zones usually. The pressure on the
security of the ocean is also increasing as shipping traffic grows. Littoral zones bear the brunt of the
pressure. They are exposed to various hazards like pollution, terrorism, or privacy. Thus, efficient
methods for monitoring, prediction, and visualization of littoral zones are of great importance.

Many investigations have been carried out for azimuth ambiguities removal in SAR imagery. The
postprocessing techniques which this paper focuses on can be divided into three categories based
on SAR data type used, i.e., methods based on detected (intensity/amplitude) products, single-look
complex (SLC) products, and quad-pol (QP) products. Calculating the azimuth displacement to
identify azimuth ambiguities is one of the most important methods used in detected products [4,12,13].
This method checks whether there is a stronger source target present at the azimuth displacement. If
either side has a detection of stronger power than the source target, it is considered to be an ambiguity.
As SLC or QP products can be used to construct detected products, detected products are more
common than other type of products. Generally this method is one of the most tractable methods,
especially for azimuth ambiguities caused by ship targets. It has been widely used in existed SAR ship
detection systems [4,13]. However this method fails to discard azimuth ambiguities when the source
is flooded by strong targets in littoral zones or outside of the image. Besides, azimuth ambiguities
have unpredictable variations leading to a difficult correlation between sources and ambiguities.
Finally, azimuth displacements can be different in ScanSAR or TOPSAR (Terrain Observation with
Progressive Scans SAR) images. Methods based on SLC products usually adopt filtering techniques in
the frequency domain [14,15], and remove azimuth ambiguities by filtering azimuth signals. They can
take advantage of both real and imagery parts in SLC products. Filtering is effective in suppressing
azimuth ambiguities, but can result in additional speckle noise and small ship loss. Methods based
on QP products employ the fact that the two cross-polarized channels are each other’s complex
conjugate for azimuth ambiguities [16]. They consider that a proper combination of two cross-polarized
channels [17] or polarimetric decomposition can cancel out azimuth ambiguities [18]. Methods based
on QP products are quite effective, whereas QP products are not available in practice usually.

The increasing of multi-temporal SAR images today provides new insight into this problem.
For example, Sentinel-1 has a repeat cycle of 12 days by one satellite and 6 days by a pair of satellites [8,
19]. A scene on the littoral zones can be re-imaged every 12 days or 6 days. Thus, image pixels of the
same scene can be made to exactly coincide. This can identify fixed artifacts in littoral zones. This paper
opens up the possibilities to use multi-temporal SAR data to remove azimuth ambiguities. A method
for azimuth ambiguities removal in littoral zones based on multi-temporal SAR images is proposed
in this paper. The proposed processing chain includes co-registration, local correlation, binarization,
masking, and restoration steps applied to images. It is designed to remove azimuth ambiguities
caused by fixed land-based sources in littoral zones. The basic idea underlying the proposed method
is that the sea surface is dynamic whereas azimuth ambiguities caused by land-based sources are
constant. The temporal consistence of azimuth ambiguities is higher than sea clutter. Thus, azimuth
ambiguities can be identified by the correlation of multi-temporal SAR images. The design of the
method and the experimental procedure are based on detected products from the Sentinel data hub
of Europe Space Agency (ESA) [8]. Both Interferometric Wide Swath (IW) and Stripmap (SM) mode
images are taken into account to validate the algorithms. Experimental results show that the proposed

53



Remote Sens. 2017, 9, 866

method can remove azimuth ambiguities in littoral zones effectively when no QP data is available.
To obtain better visual results of azimuth ambiguities than original images, this paper also presents
two RGB composition methods for azimuth ambiguities based on the number of multi-temporal SAR
images available.

The rest of this paper is organized as follows. Section 2 is a review on azimuth ambiguities.
Section 3 proposes the method for azimuth ambiguities removal in littoral zones based on
multi-temporal SAR images. Section 4 presents two RGB composition methods for azimuth ambiguities.
Section 5 validates and discusses the method proposed in this paper by testing on Sentinel-1 IW and
SM images. Finally, Section 6 concludes this paper.

2. Review on Azimuth Ambiguities

Azimuth ambiguities are caused by finite sampling of azimuth Doppler signals. A too low pulse
repetition frequency (PRF) may cause those Doppler frequencies higher than PRF are folded into the
central part of the azimuth spectrum. Thus, aliased signals are produced in this case [17]. As shown in
Figure 1, targets A and B have equal Doppler histories due to aliasing. If target B is much stronger
than target A, then it is possible that a ghost image of target B will be visible in the position of A. This
ghost is called azimuth ambiguity. The Doppler shift as a function of a pointing error, increases linearly
with frequency. Azimuth ambiguities in SAR images are spatially displaced in azimuth directions at
approximate locations [11,14], as

ΔDAZ ≈ n
fPRF
fDR

V (1)

where ΔDAZ is the azimuth displacement, V is the satellite velocity, fPRF is the PRF, fDR is the Doppler
rate, n is the order.

0 PRFf f+

2
PRFf+

2
PRFf−

0f

Figure 1. Illustration of azimuth ambiguity formation in SAR images, targets A and B have equal
Doppler histories due to aliasing [20].
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As

fDR ≈ 2V2

λRs
(2)

where λ is the wavelength and Rs is the slant range, an equivalent representation of Formula (1) is

ΔDAZ ≈ n
λRs

2V
fPRF (3)

Typical azimuth ambiguity displacements are 4~8 km. In cases where the sea clutter level is low,
e.g., weak-wind areas, azimuth ambiguities can occur more easily. A quality measure for azimuth
ambiguities is the Azimuth Ambiguity to Signal Ratio (AASR). The requirement of AASR for ship
detection and oil spill detection is −25 dB and −23 dB, respectively [12]. Azimuth ambiguities are
inherent artifacts in current SAR systems, which appear in most spaceborne SAR images. As shown in
Figure 2, azimuth ambiguities and their azimuth displacements in TerraSAR-X, COSMOS-SkyMed,
RADARSAT-2, and Sentinel-1 images are presented. Azimuth ambiguities in the littoral zones affect
SAR image interpretation severely.

  
(a)                         (b) 

  
(c)          (d) 

Figure 2. Examples of azimuth ambiguities in current synthetic aperture radar (SAR) imagery,
(a) TerraSAR-X StripMap image, azimuth displacement is ~4.4 km (b) COSMOS-SkyMed StripMap
image, azimuth displacement is ~4.4 km (c) RADARSAT-2 Standard mode image, azimuth displacement
is ~5.2 km (d) Sentinel-1 IW image, azimuth displacement is ~4.7 km (beam IW2).
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The important features of azimuth ambiguities can be concluded into 5 aspects:

(1) They occur in azimuth direction at determinate multiple distances at two sides of the source
target. They may also have a small shift in range direction. Thus, the theoretical distance can be
less than the measured distance.

(2) The displacement rises as the wavelength increases, other parameters remaining the same. The
ambiguities are less severe in SAR images of a long wavelength than a short wavelength.

(3) As the order n increases, the displacements of the related ambiguities increase and their intensities
decrease usually. The power of the 1st order azimuth ambiguity is weaker than the source target.

(4) They appear to be not well focused or not very strong in intensities. However they are similar to
the source target in some features, e.g., shape, texture, size. Thus, it is not easy to identify them
by methods based on features.

(5) HV and VH channels have approximately the same magnitude, whereas their azimuth
ambiguities are shifted in phase by about 180◦.

3. Proposed Method

In the proposed method, multi-temporal SAR images of the same scene in the same configuration
should be available first. The same configuration indicates that the multi-temporal SAR images should
be acquired by a same sensor with same the imaging mode and pass way (ascending or descending) at
least. Figure 3 shows the detailed flowchart of the proposed method which can be divided into 6 steps.

Multi-temporal SAR images 
in same configuration

Co-registration

Land masking

Calculating the local correlation coefficient

Binarization

Azimuth ambiguity masking

SAR images after azimuth 
ambiguity removal

Azimuth ambiguity area restoration

 

Figure 3. The flowchart of the proposed method. It includes co-registration, local correlation,
binarization, masking, and restoration steps. The idea underlying the proposed method is that sea
surface is dynamic whereas azimuth ambiguities caused by land-based sources are constant. It is
designed to remove azimuth ambiguities caused by fixed land-based sources.

3.1. Co-Registration

To support the mapping of multi-temporal SAR images, some relevant preprocessing operations
must be performed. These mainly include the co-registration of SAR data. Co-registration is
accomplished through cross correlation and warp usually. Then we abstract the same geographical
areas from multi-temporal SAR data. Thus, corresponding pixels in multi-temporal SAR images
exactly coincide and represent the same point on the Earth surface. It should be noted that radiometric
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correction and speckle filtering are not needed in the preprocessing. This simplifies the processing
chain. The reason will be presented in the subsequent steps.

3.2. Land Masking

As only the ocean is of interest, land masking is important for multi-temporal SAR images. There
are two popular approaches for land masking. One is to register SAR images with existing geospatial
databases, e.g., the GSHHS (Global Self-consistent, Hierarchical, High-resolution Shoreline) [21].
Another one is to use automatic algorithms to detect coastlines or land areas [22,23]. In this paper, land
will be removed for better results in subsequent steps.

3.3. Calculating the Local Correlation Coefficient

As sea surface is dynamic, whereas azimuth ambiguities caused by land-based sources are
fixed. The temporal consistence of azimuth ambiguities is higher than sea clutter. Thus, we can use
correlation operation to identify azimuth ambiguities from sea clutter. Two-temporal images in the
same configuration are needed at least. Generally, more images seem to be better when applying the
correlation operation. However there is an increasing risk that land-based sources changed in a long
period. Thus, two-temporal images acquired in continuous periods are preferred in this paper.

The local correlation coefficient between each image is calculated in a local sliding window. The
size of the sliding window can be decided by a reference size, e.g., the smallest ship one wants to
detect. If there are two-temporal images available, named I1, I2, then

R = I1 ⊗ I2 (4)

where R is the local correlation coefficient map, ⊗ indicates the local correlation operation here, i.e.,

r =
∑
m

∑
n

(
I1(m, n)− I1

)(
I2(m, n)− I2

)
√(

∑
m

∑
n

(
I1(m, n)− I1

)2)(
∑
m

∑
n

(
I2(m, n)− I2

)2) (5)

where r is the local correlation coefficient value at sliding window center, I1(m, n) and I2(m, n) are the
pixel values at location (m, n) in the sliding window respectively, I1 and I2 are the mean of all pixels in
the sliding window respectively.

As azimuth ambiguities are temporally more consistent than sea clutter and ships, the correlation
coefficient of azimuth ambiguities are much higher than sea clutter and ships. Thus, azimuth
ambiguities and other constant artifacts are prominent in the local correlation coefficient map. Note
that the local correlation operation does not need radiometric correction and speckle filtering. The
reason is that the correlation operation is applied in a local window. The radiometric scaling can
be considered as a constant in a local window, while the correlation operation is invariant to this
constant scaling. Meanwhile, speckle filtering reduces granularity in SAR images. This may increase
the consistence of sea clutter. Thus, both radiometric correction and speckle filtering are not needed.

3.4. Binarization

Azimuth ambiguities are prominent, whereas sea clutter is suppressed in the local correlation
coefficient map. Thus, azimuth ambiguities can be identified by a binarization operation. Binarization
can be achieved by a thresholding method. There are many thresholding methods. In this paper, the
thresholding method based on maximum entropy [24] is employed. In this method, two probability
distributions hi

(1) and hi
(2) (e.g., object and background) are derived from the original gray distribution

of the image. If t is the threshold, then the entropy of the object and background are defined as
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Hb = − t
∑

i=1
hi

(1)lghi
(1)

Hw = − L
∑

i=t+1
hi

(2)lghi
(2)

(6)

where L is the gray level. Then the optimal threshold t∗ is defined as the gray level, which maximizes
Hb + Hw, i.e.,

t∗ = arg max {Hb(t) + Hw(t)} (7)

The idea underlying this entropic method is that the optimal threshold should make the object
and background areas more homogenous with each other. This can make sense for the local correlation
coefficient map which is like a blurred ‘salt and pepper’ map. It should be noted that Otsu method [25]
or Mode method [26] that require two peaks in the histogram are not appropriate in this case as two
peaks may not occur in the histogram.

3.5. Azimuth Ambiguity Masking

The binarization result can be considered as an azimuth ambiguity mask. This mask can be used
to remove azimuth ambiguities in multi-temporal SAR images. Thus, multi-temporal SAR images are
freed from azimuth ambiguities in littoral zones. On the other hand, an azimuth ambiguity mask can
also be used to locate the strong land-based sources. It is an inversion of the method by calculating the
displacement to identify azimuth ambiguities. The inversion results can also be used to distinguish
1st order azimuth ambiguities and higher order azimuth ambiguities. If the shifted mask is on the
land, the mask can be recognized as 1st order azimuth ambiguities. However if the shifted mask is
on the sea, the mask can be recognized as higher order azimuth ambiguities or fixed artifacts on the
sea. This is because only the mask of 1st order azimuth ambiguities can be shifted on the land by an
azimuth displacement.

3.6. Azimuth Ambiguity Area Restoration

Azimuth ambiguities have little help for the ocean environment and maritime traffic monitoring,
though Liu, C. et al. [16] mentioned that azimuth ambiguities may indicate moving objects by the
subtraction of two cross-polarized channels. Thus, this paper restores the azimuth ambiguity patches
masked in the multi-temporal SAR images. If sea clutter is homogeneous, azimuth ambiguity
patches are filled with pixels randomly from a Gaussian distribution. The parameters of the
Gaussian distribution are estimated from sea clutter based on methods of moments. If sea clutter is
heterogeneous, given the complex textures and structures, the Exemplar-based inpainting method [27]
is employed for filling the lost patches of images. The homogeneity is estimated by the equivalent
number of looks (ENL). It is defined as follows

ENL =
(μ

σ

)2
(8)

where μ and σ are the mean and standard deviation of sea clutter. ENL can be estimated from a
homogenous portion of the image. Larger ENL means lower speckle noise and more homogeneous sea
clutter. The empirical threshold of ENL is set as 15 to decide whether sea clutter is homogeneous or
not. This is based on the fact that ENL is 4.4 for the Sentinel-1 detected IW products, whereas it is 29.7
for SM products [19]. This means that SM products are more homogeneous than IW products. We set
the approximate median value as the threshold to distinguish homogeneous areas and heterogeneous
areas. The threshold has been validated by several experiments.

In the Exemplar-based inpainting method, a patch ψq is searched for patch ψ�
p

in the source region
Φ which is the most similar to ψ�

p
. The similarity between the patches is measured as [27]
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ψ�
q
= arg min d

(
ψ�

p
, ψq

)
, ψq ∈ Φ (9)

where the distance d(ψa, ψb) between two generic patches ψa and ψb is defined as the sum of squared
differences of the already filled pixels in the two patches. In this method, the fill order is based on a
defined priority parameter and the patch on front with the highest priority is filled first. Its priority is
defined as [27]

R(α) = C(α)D(α) (10)

where C(α) and D(α) represent the confidence term and data term, respectively. For more details
about this technique, the readers are referred to [27].

4. RGB Composition Method for Azimuth Ambiguities

The use of RGB composition in multi-temporal SAR image analysis has been already presented
for flood mapping [28,29]. However, there has rarely been a study on RGB composition for azimuth
ambiguities [11]. This section presents and compares two RGB composition methods for better azimuth
ambiguities visualization based on the number of SAR images available.

4.1. Two or More Than Two-Temporal Images Available

This method is based on temporal consistency of azimuth ambiguities. It also requires same
configuration and co-registration. Otherwise the temporal consistence can be lost. In this case, three
images are composed as RGB channels directly (one image can be used twice if only two-temporal
images available). Thus, azimuth ambiguities and land pixels that are in a good relationship appear
in white. Color pixels are associated with low correlation, e.g., moving ship targets in different
temporal images.

4.2. Only One Image Available

This method is based on the strong spatial correlation existing between the ambiguity and the
related source target. In this case, one image should be used three times in RGB composition. The R
and G channels are associated to the original image. The B channel is associated to a copy generated
by the original image. The copy is the original image translated in an azimuth ambiguity displacement
given by Formula (1) [11]. Similarly, azimuth ambiguities and strong source target pixels that are in
good relationship appear in white. Yellow and blue pixels are associated with a low correlation.

In sum, as the consistence of azimuth ambiguities, they always appear in white, whereas other
targets on the ocean can appear in color. Thus, they can be used for azimuth ambiguities enhancement
and identification.

5. Experimental Results and Discussion

The proposed method is tested on Sentinel-1A IW data first. There are three-temporal images
available. The data subsets are presented in Figure 4. They are acquired at 6, 18 February, and
2 March 2017, on Napoli, Italian coast separately. Their polarization modes are VV mode. Azimuth
ambiguities are visible in three images, whereas their source targets cannot easily be identified. Thus,
it is intractable by using the method by calculating the displacement. QP data is also not available as
Sentinel-1 is a dual-polarized system.

In order to have an overview of the location of the subimage, the optical image (taken from Google
Earth) of Napoli is presented in Figure 5a, where the red trectangle indicates the subimage location.
Figure 5b is the corresponding optical image of the subimage, where the yellow rectangles 1 and 2
represent the typical ports in Figure 5c,d respectively. The dihedrals of the typical ports in Figure 5c,d
can cause strong reflection leading to azimuth ambiguities.
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Azimuth ambiguities

 
T1       T2       T3 

Figure 4. The Sentinel-1A multi-temporal dataset. The similar clusters of dots in T1, T2 and
T3 at the same location are prominent azimuth ambiguities from the strong source targets on
land. T1: S1A_IW_GRDH_1SDV_20170206T165649_20170206T165714_015166_018D05_8064; T2:
S1A_ IW_GRDH_1SDV_20170218T165649_20170218T165714_015341_01927E_D691; T3: S1A_IW
_GRDH_1SDV_20170302T165648_20170302T165713_015516_0197CF_75D4.

 
(a) 

   
(b)     (c)     (d) 

Figure 5. Google Earth image indicating the Sentinel-1A images. The red rectangle in (a) indicates the
subimage location in Figure 4, (b) is the corresponding optical image of the subimage, yellow rectangles
1 and 2 represent the typical ports (c) and (d) which can cause azimuth ambiguities respectively.

60



Remote Sens. 2017, 9, 866

RGB composition results are shown in Figure 6. The results are obtained by different methods
presented in Section 4. From the results, it can be seen that white azimuth ambiguities can be recognized
more easily than in the original images. The colorful moving ships can also catch one’s eye. Different
color represents ships in different period. Compared to the RGB composition methods based on more
than two images, the result based on only one image would have a smaller valid size because of the
shift operation, as shown in Figure 6c. In this case, strong ship targets also present in white because of
its strong spatial correlation between ambiguities. This is distinctive to the method based on more
than two images. In sum, azimuth ambiguities always appear in white in all methods. This can help
azimuth ambiguity and ship identification in multi-temporal SAR images.

   
(a) R: T1, G: T2, B: T3   (b) R: T2, G: T2, B: T3  (c) R: T3, G: T3, B: Translated T3 

Figure 6. RGB composition results of the Sentinel-1A multi-temporal data. Azimuth ambiguities
appearing white in (a–c) can be recognized more easily than in the original images. A ship target
in (b) seems to be white as there is a blue target near it. (c) has a smaller valid size because of the
shift operation.

T2 and T3 images are chosen to test the proposed method in this paper. The local window size
here is 7. ENL estimated is 7.7. The ambiguity map is shown in Figure 7. Figure 7a is the local
correlation coefficient map, Figure 7b is the binarization result, Figure 7c is the T3 ambiguity masks. It
can be seen that the proposed method can identify very small azimuth ambiguities. Statistical results
show that the azimuth ambiguities with more than 20 pixels can be identified by the proposed method.
Some masks may be larger than the actual ambiguities. This is because the local correlation value
is not only high for azimuth ambiguities, but also for the surrounding pixels. Figure 8 shows the
restored images by the proposed method, which shows a significant enhancement as compared to the
original images. The zoomed patches before and after restoration in yellow rectangles are also shown
in Figure 8, on the side. Azimuth ambiguities are mitigated effectively. Figure 9 is the inversion to
mask strong land sources. The strong land sources are masked as red. Surprisingly, this approach can
also distinguish 1st and 2nd order azimuth ambiguities. The red mask on the land can be recognized
as 1st order azimuth ambiguities, whereas the green mask on the sea can be recognized as 2nd order
azimuth ambiguities or fixed artifacts on the sea. It should be noted that the azimuth displacement in
different beams is different. It is ~5.3 km in beam IW1 and 4.8 km in beam IW2 for these images.

The proposed method is also validated by the Sentinel-1b SM data acquired on Boston, as shown
in Figure 10. They are acquired at the 20 March and 1 April 2017, separately. Their polarization modes
are HH mode. The zoomed patches before and after restoration in yellow rectangles are also shown
in Figure 10. The experimental results show that the proposed method can mitigate most azimuth
ambiguities effectively.
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(a)       (b)       (c) 

Figure 7. Azimuth ambiguity mask, (a) local correlation coefficient map, (b) binarization result, (c) T3
ambiguity mask.

  
(a)       (b) 

Figure 8. Restored images, (a) T2 restored image, (b) T3 restored image. The zoomed patches before
and after restoration in yellow rectangles are shown on the side.

  
(a)        (b) 

Figure 9. Inversion to mask strong land sources, (a) T2 image, (b) T3 image. The strong land sources
are masked as red. Note that the azimuth displacement in different beams is different, ~5.3 km in
beam IW1 and 4.8 km in beam IW2. Red masks on the land can be recognized as 1st order azimuth
ambiguities whereas green masks can be recognized as 2nd order azimuth ambiguities or fixed artifacts
on the sea.
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(a) T1        (b) T2 

  
(c) T1 restored image    (d) T2 restored image 

Figure 10. Azimuth ambiguities removal results. (a,b) Original Sentinel 1-b images, (c,d) Restored
Sentinel-1b images. The zoomed patches before and after restoration in yellow rectangles are shown
on the side. T1: S1B_S6_GRDH_1SDH_20170320T002541_20170320T002604_004785_0085BB_9204; T2:
S1B_S6_GRDH_1SDH_20170401T002541_20170401T002605_004960_008AC4_D8E2.

The important advantages of the proposed method can be concluded from the
experimental results:

(1) The method by calculating the displacement fails to identify azimuth ambiguities in littoral zones
because of the complicated scenes, whereas the proposed method is able to.

(2) When no QP data is available, the proposed method is a successful candidate for azimuth
ambiguities removal in littoral zones.

(3) The proposed method is a quite tractable method, in which both radiometric correction and
speckle filtering are not needed.

(4) The proposed method only restores azimuth ambiguities areas. There is no change for other areas.
Thus, it will not degrade image quality as methods based on SLC products.

(5) The proposed method can identify very small azimuth ambiguities in detected products, whereas
the method by calculating the displacement cannot.
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Obviously, though the proposed method is designed to identify azimuth ambiguities, it can
also identify other fixed image features, e.g., range ambiguities or fixed artificial structures in
multi-temporal images as their temporal consistence. However, small islands in the sea will not
be identified by the proposed method because they are removed by the land masking step. We
believe that the proposed method would be a practical candidate for ambiguities removal with more
multi-temporal images available. The proposed method would be very helpful for ocean monitoring.

The proposed method assumes that the strong land sources are fixed in the period. If the strong
land sources changed in the period, the temporal consistence of azimuth ambiguities would decrease.
Thus, the proposed method may fail to identify azimuth ambiguities. The method by calculating
the azimuth displacement can identify azimuth ambiguities caused by ships on the sea effectively,
but fail to identify azimuth ambiguities caused by land sources. Thus, the proposed method can be
complementary for it.

6. Conclusions

This paper opens up the possibilities to use multi-temporal SAR data to remove azimuth
ambiguities by proposing an azimuth ambiguities removal method in littoral zones based on
multi-temporal SAR images. Azimuth ambiguities are identified through an effective technique
by the correlation operation of two temporal images. Azimuth ambiguities areas are restored by
either a Gaussian distribution or Exemplar-based inpainting techniques based on the homogeneity
of sea clutter. Experimental results based on multi-temporal Sentinel-1 IW and SM data validate the
effectiveness of the proposed method. It is a successful candidate for azimuth ambiguities removal in
littoral zones when no QP product is available. Azimuth ambiguities with more than 20 pixels in IW
mode images can be identified by the proposed method. This paper also presents two RGB composition
methods for azimuth ambiguities displayed in multi-temporal SAR images. Experimental results show
that the RGB composition results can help to enhance azimuth ambiguities for visualization.

Despite the effectiveness of the proposed method, further investigations about how more
accurate local correlation needs to be done, which may significantly improve the accuracy of azimuth
ambiguities identification.
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Abstract: Gaofen-3 (GF-3) is the first Chinese civil C-band synthetic aperture radar (SAR) launched
on 10 August 2016 by the China Academy of Space Technology (CAST), which operates in 12
imaging modes with a fine spatial resolution up to 1 m. As one of the primary users, the State
Oceanic Administration (SOA) operationally processes GF-3 SAR Level-1 products into ocean
surface wind vector and plans to officially release the near real-time SAR wind products in the
near future. In this paper, the methodology of wind retrieval at C-band SAR is introduced and
the first results of GF-3 SAR-derived winds are presented. In particular, the case of the coastal
katabatic wind off the west coast of the U.S. captured by GF-3 is discussed. The preliminary accuracy
assessment of wind speed and direction retrievals from GF-3 SAR is carried out against in situ
measurements from National Data Buoy Center (NDBC) buoy measurements of National Oceanic
and Atmospheric Administration (NOAA). Only the buoys located inside the GF-3 SAR wind cell
(1 km) were considered as co-located in space, while the time interval between observations of SAR
and buoy was limited to less the 30 min. These criteria yielded 56 co-locations during the period from
January to April 2017, showing the Root Mean Square Error (RMSE) of 2.46 m/s and 22.22◦ for wind
speed and direction, respectively. Different performances due to geophysical model function (GMF)
and Polarization Ratio (PR) are discussed. The preliminary results indicate that GF-3 wind retrievals
are encouraging for operational implementation.

Keywords: GF-3; synthetic aperture radar (SAR); ocean surface wind; validation

1. Introduction

Space-borne synthetic aperture radar (SAR) sensors operating in C-band (~5.3 GHz) have the
capability to detect the sea surface at high spatial resolution under all-weather conditions, even in
hurricanes. Normalized radar cross-section (NRCS) observations from SAR are directly related to
the sea surface roughness of short surface waves. Therefore, assuming the surface wind is the first
order contributor to these waves, coastal ocean surface winds at high resolution can be retrieved from
SAR images. In recent decades, C-band SARs aboard Canadian satellite RadarSAT-1/2, and European
satellites ERS-1/2, Envisat, and Sentinel-1A/B have demonstrated the capability of SAR to provide
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remote sensed ocean surface winds at a kilometer scale [1–3]. Moreover, these SAR-derived ocean
surface winds are used in various applications, such as coastal wind energy resource assessment
(e.g., [4]).

To date, Geophysical Model Functions (GMFs), which were originally developed to relate NRCS
measured by scatterometers to ocean surface wind vector, are widely used for the estimations of ocean
winds from C-band SARs. For VV-polarization, various empirical GMFs, describing the relationship
between radar NRCS and the 10-m height ocean surface wind vector relative to radar viewing geometry,
have been developed (e.g., [5–7]). When such GMFs are applied to HH-polarized SAR images,
polarization ratio (PR) models have to be used to convert HH-NRCS into VV-NRCS before wind
inversion. As for VV-GMF, different PR models have been developed (e.g., [8–10]). Studies indicate
different performances depending on the GMF models (e.g., [11–13]). To date, ocean surface wind
products derived from different satellite missions (scatterometers or SARs operating in C-band) rely on
different GMFs. For instance, CMOD5.N [7] is currently used in MetOp-ASCAT scatterometer ocean
wind processor; meanwhile, CMOD-IFR2 [6] is applied for the production of level 2 SAR ocean winds
from Sentinel-1A/B [14]. Note also that different teams can use different GMFs. For instance, National
Oceanic and Atmospheric Administration (NOAA) relies on a different GMF called CMOD5.H [15].
Thus, the choice of the GMF and PR models to be used for wind inversion is critical for GF-3 C-band
SAR missions.

On 10 August 2016, carrying the first Chinese civil multi-polarization SAR operating at C-band,
Gaofen-3 (GF-3) satellite was successfully launched into a polar sun-synchronous orbit of 755 km
altitude with a 26-day repeat cycle. Following several months of in-orbit commissioning phase, GF-3
SAR has now been in operation since January 2017. Recently, a case of internal waves in the Yellow Sea
captured by GF-3 was reported in Reference [16], implying promising marine application of the GF-3
SAR mission. As one of the primary users, the State Oceanic Administration (SOA) is operationally
processing GF-3 SAR Level-1 products into Level-2 ocean surface wind vector and plan to operationally
release the near real-time GF-3 SAR wind products. The aim of this paper is to present the first results
of GF-3 SAR-derived winds and the preliminary assessment using the buoy measurements.

The remainder of the paper is organized as follows. Section 2 introduces the match-ups for GF-3
SAR images and in situ winds. Methodology for ocean wind retrieval with GF-3 SAR is presented in
Section 3. The results of GF-3-derived winds and the assessment are given and discussed in Section 4.
Finally, conclusions are given in Section 5.

2. Description of Collocated Data Sets

Validations of SAR-derived winds mostly lie on collocations with observations from buoys
(e.g., [11]), offshore meteorological masts (e.g., [17–19]), and scatterometers (e.g., [3]). To date, besides
HY-2A SCAT (exceeded its three-year design lifetime since 2015) providing degraded wind products,
the available scatterometers are ASCATs onboard MetOp-A/B. Unfortunately, GF-3 and MetOp are
in sun-synchronous orbits with the local equator crossing time at the ascending node of 6:00 am and
9:30 am, respectively. The large local time difference could limit the comparison of ocean winds derived
from GF-3 and ASCATs. Hence, in this study, the validation of GF-3 wind retrieval was performed
using in situ buoys.

2.1. GF-3 SAR Data

SAR data of high radiometric quality are essential for accurate ocean wind inversion. For GF-3
SAR, the external calibration campaign was carried out using active radar transponders deployed in
Inner Mongolia, during the commissioning phase (from September to November 2016). The results
from the in-orbit external calibration experiment reveal the NRCS radiometric accuracy of 1.3~1.4 dB
(3σ), and Noise Equal Sigma Zero (NESZ) of −20~−22 dB [20] for different GF-3 SAR operating modes.

In this study, a total of 37 GF-3 SAR scenes were co-located with buoys over the period of January
through April 2017. These GF-3 data have been collected in five GF-3 imaging modes (see Table 1
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for details) amongst the 12 modes of the sensor, including Standard Strip, Quad-Polarization Strip I,
Quad-Polarization Strip II, Fine Strip I, and Narrow ScanSAR imaging mode with different polarization
(dual-polarization or quad-polarization), pixel spacing, and SAR scene swath.

Table 1. Main parameters for GF-3 imaging mode used here.

Imaging
Mode 1 Polarization

Resolution
(m)

Swath
(Km)

Num of Synthetic Aperture
Radar Scenes Used

SS VV + VH or HH + HV 25 130 26
QPSI VV + HH + VH + HV 8 30 3
QPSII VV + HH + VH + HV 25 40 5

FSI HH + HV 5 50 2
NSC VV + VH 50 300 1

1 SS, QPSI, QPSII, FSI and NSC stand for Standard Strip, Quad-Polarization Strip I, Quad-Polarization Strip II,
Fine Strip I, and Narrow ScanSAR imaging mode of GF-3, respectively.

2.2. Buoy Data

Buoy measurements are generally assumed to be of high quality up to 30 m/s [21,22] and hence
were used as ground truth for the validation of wind retrieval from GF-3 SAR here. Wind observations
of buoys have been collected from the National Data Buoy Center (NDBC) of NOAA. Most of them
are off the west coast of the U.S., while some of them are in the region of Hawaiian Islands, southeast
Pacific (Stratus buoy station), and Korean coastal sea.

In this study, only the buoys located inside the GF-3 SAR scene were considered as co-located in
space. The buoy winds from NDBC are measured hourly by averaging the wind speed and direction
over 10 min. Therefore, the time interval between observations of SAR and buoy was limited to less
the 30 min. During the period from January to April 2017, these criteria yielded 53 match-ups, whose
locations are depicted in Figure 1.

Since the anemometers on the buoys measure the wind at different heights above the sea surface
level, buoy wind speeds had to be converted to the equivalent neutral winds at 10 m for comparison
between GF-3 retrieval and buoy measurements. Here, the correction was performed using the simple
semi-rational formula of assuming a logarithmically varying wind profile [23]; the wind speed given
at any elevation z can be calculated from the friction velocity u* by:

U(z) =
u∗
κ

ln
(

z
z0

)
(1)

where κ = 0.4 is the constant of von Kármán, and U(z) is the wind speed at a height of z. The friction
velocity u* is related to the sea surface roughness length z0 by [24]:

z0 =
0.11υ

u∗ +
αu∗2

g
(2)

Here, α = 0.011 is the Charnock parameter [23], υ
(
1.5 × 10−5 m2/s

)
is the kinematic viscosity of

air, and g is the gravitational acceleration.
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Figure 1. Map of footprints of GF-3 SAR acquisitions (red boxes) in the area of (a) U.S. west coast; (b)
Hawaiian region; (c) South Pacific Ocean; (d) Korean coast. The blue dots denote the location of the
National Data Buoy Center (NDBC) buoys.

3. GF-3 SAR Wind Retrieval Scheme

Both wind speed and direction could be inverted from NRCS measurements if multiple acquisitions
over the same area are obtained simultaneously with different radar geometries, as for the scatterometers.
In contrast, because SARs operate with only one radar viewing angle, the inversion of the NRCS leads
to multiple solutions of wind vector. In this context, SAR wind retrieval schemes usually assume the
wind direction as known from atmospheric models (i.e., [3,4]), or directly extracted from the SAR
image if wind-induced streaks exist (i.e., [25]).

Before wind inversion, the pre-processing of GF-3 images requires radiometric calibration, land
masking, and resampling of NRCS, incidence angle, and azimuth angle at a 1000 m resolution cell.
The inversion methodology proposed here combines SAR NRCS with a priori wind from the European
Centre for Medium-range Weather Forecasts (ECMWF) model, taking into account that both SAR
observations and atmospheric models may contain errors [26,27].

In principle, in order to invert to the wind vector (u, v for two components), the cost function
J(u, v) defined as follows is minimized.

J(u, v) =
(
σ0

obs − σ0
GMF(u, v)

Δσ0

)2

+

(
umodel − u

Δu

)2
+

(
vmodel − v

Δv

)2
(3)
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where σ0
obs is the calibrated GF-3 SAR NRCS at co-polarized channel (VV or HH). And umodel and

vmodel are the U,V wind components from ECMWF model. These a priori winds provided from
ECMWF at a 0.125◦ spatial and a three-hourly temporal resolution were interpolated into the GF-3
wind retrieval cell at 1000 m resolution as σ0

obs. Δσ0, Δu and Δv are the Gaussian standard deviation
errors for the NRCS and the ECMWF model wind vector, respectively. σ0

GMF is the NRCS prediction
from the GMF model. A general form of GMF could be expressed in functions of second-order cosine
harmonic, as below:

σ0 = A0[1 + A1 cos∅+ A2 cos 2∅]B (4)

where A0, A1, A2 and B are the function of the 10-m-height wind speed and radar incidence angle,
and ∅ is the wind direction relative to the radar look direction. For the HH channel, an additional PR
model is used.

In order to make the inversion scheme more efficient, the minimization of cost function of
Equation (3) is implemented with the help of the pre-computed look-up tables (LUT) from GMF
models. Here, different LUT from models are used to test the GF-3 wind retrieval performance,
including CMOD-like GMFs of CMOD-IFR2 adopted by Sentinel-1A/B and CMOD5.N used by
MetOp-ASCAT, and PR models of Mouche et al. used by Sentinel-1A/B [9] and Zhang et al. [10].
Moreover, we also investigate the performances of C-band GMF called C-SARMOD recently proposed
by Reference [28] for both VV- and HH-polarizations.

4. Results and Discussion

4.1. GF-3 SAR Wind: The Case of Katabatic Wind

Figure 2a shows a VV-polarized GF-3 SAR scene in Narrow Scan mode over the Californian coast.
The image was acquired at 14:31 Universal Time Coordinated (UTC) (07:31 in local time) on 6 January
2017, with an incidence angle ranging from 22◦ (near range) to 37◦ (far range). The wind field at
1000 m resolution retrieved from Figure 2a using the scheme proposed in Section 3 with the GMF of
CMOD5.N is presented in Figure 2b.

In this case, brighter NRCS and corresponding higher sea surface wind speed are manifested
along the coast, as shown in Figure 2a,b. This signature captured by GF-3 could be interpreted as the
coastal katabatic wind. This kind of wind, blowing toward the coastal waters from the mountains,
is the gravitational cold-air flow due to the temperature difference between the sea water and the shore.
In addition to a meso-scale background wind, the katabatic wind increases the short surface waves,
and thus the NRCS. This produces brighter areas near the coastline visible in SAR imagery as reported
by References [29,30]. Compared with the ECMWF winds in 0.125◦ grid, as shown in Figure 2c, finer
scale for the katabatic wind could be found the GF-3 wind retrievals in Figure 2b.

Three NDBC buoys are located inside this GF-3 SAR image, as the dots depicted in Figure 2a.
For these three match-ups, ocean winds (speed at 10 m and direction) from GF-3 SAR retrieval and
buoy observation are listed in in Table 2.

Table 2. GF-3 SAR winds against NDBC measurements for the case shown in Figure 2.

Buoy ID
Latitude

(◦N)/Longitude (◦W)
Buoy U10

(m/s)
GF-3 U10

(m/s)
Buoy Wind

Direction (◦)
GF-3 Wind

Direction (◦)

46015 42.764/124.832 6.16 6.1 143 150.4
46027 41.852/124.382 6.16 4.2 104 112.2
46022 40.720/124.531 7.2 5.2 114 145.5
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Figure 2. A katabatic wind case of GF-3 SAR image taken at 14:31 Universal Time Coordinated
(UTC) (07:31 in local time) on 6 January 2017 in the Western U.S. coastal region: (a) Normalized
radar cross-section (NRCS) at VV-polarization; (b) ocean surface wind inverted from VV NRCS using
Geophysical Model Function (GMF) of CMOD5.N; (c) ocean surface wind from European Centre for
Medium-range Weather Forecasts (ECMWF). The NDBC buoys of 46015, 46027, and 46022 are depicted
as dots in blue, green, and red respectively.

4.2. GF-3 SAR Winds from VV-Polarization

For VV-polarization, 14 match-ups between GF-3 in SS, QPSI, QPSII, and NSC imaging mode
and the buoys are found. In situ wind speed ranges between 5 m/s and 15 m/s. The comparison
of winds derived from VV-polarized GF-3 SAR using different GMFs against those measured from
NDBC buoys are presented in Figure 3. In each scatterplot from Figure 3, colors represent the incidence
angle of GF-3, ranging from 23◦ to 45◦. For wind speed, the application of GMF models of CMOD5.N,
CMOD-IFR2, and C-SARMOD results in negative bias, with the smallest of -0.15 m/s using CMOD5.N
for our retrieval. It is also shown that the Root Mean Square Error (RMSE) of the GF-3 retrieval of
10-m-height wind speed with respect to the buoy data is 2.34 m/s, 2.60 m/s, and 2.53 m/s using GMF
models of CMOD5.N, CMOD-IFR2, and C-SARMOD, respectively. In terms of wind direction, a slight
difference could be found for VV-polarization using the three GMFs, with bias and RMSE around 5◦

and 21.9◦, respectively.
Thus, among the three GMF models used, CMOD5.N shows the overall best performance for

VV-polarized GF-3 SAR.
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Figure 3. Scatter plots of wind retrievals from GF-3 SAR (VV-polarization) against NDBC buoy
observations for wind speed (left panels) and wind direction (right panels). GF-3 winds estimated
using GMF of CMOD5.N, CMOD-IFR2, CSARMOD_VV are presented from upper to bottom panels.
Points with color indicate the incidence angle, and different markers present different imaging modes
of GF-3, according to the legend.

4.3. GF-3 SAR Winds from HH-Polarization

Figure 4 illustrates the scatter plots of GF-3 SAR winds from HH-polarization against NDBC
observations. Three different GMFs are used: CMOD5.N + PR model of Zhang et al. [10], CMOD5.N +
Mouche et al. [9], and C-SARMOD for HH-polarization [28]. Respectively, 42 and 31 match-ups of
HH-polarized wind retrievals against in situ buoys for wind speed and wind direction are compared
here; some of the buoy wind direction data are missing.
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Figure 4. As in Figure 3, but for HH-polarized GF-3 SAR wind retrievals. GF-3 wind estimated using
GMF of CMOD-5.N with of Zhang et al. [10], GMF of CMOD5.N with of Mouche et al. [9], and GMF of
C-SARMOD_HH are presented from upper to bottom panels.

The wind direction retrievals show a slight difference for HH-polarization using the three GMFs.
The RMSEs are very close between HH- and VV-polarized GF-3 retrievals, with a smaller bias for
HH-polarized retrievals.

In terms of wind speed from HH-polarized GF-3 SAR, all the three GMFs used here present a
positive bias. Also, larger RMSEs could be found compared to the results using CMOD5.N (see Figure 3)
for VV-polarized SAR images, indicating that the GMF models used for HH-polarization could be
improved in the future. Among the three models of GMF and PR applied to HH-polarized GF-3
SAR in this study, the combination of CMOD5.n and the PR model from Zhang et al. [10] leads to
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the smallest RMSE of 2.50 m/s, though the bias of 0.93 m/s is a litter bit larger than the 0.77 m/s of
C-SARMOD. For the combination model of CMOD5.n and PR from Mouche et al. [9], and the empirical
GMF C-SARMOD [28], very close RMSEs (around 2.85 m/s) could be found, while the latter GMF
model presents smaller bias (0.77 m/s) than those of the former(1.28 m/s).

The new model of C-SARMOD is expressed by an explicit GMF so that the conversion of HH-
to VV-polarization NRCS are no longer required, making it more applicable for HH-polarized SAR
images. Although the smallest bias is found here, a larger RMSE is found for this new model, indicating
that careful tuning may be needed in order to make it applicable for HH-polarized GF-3. Generally,
the PR model proposed by Zhang et al. [10] illustrates good performances, due to the fact that it
includes both the dependence of wind speed and incidence angle. Taking this into account for the
preliminary comparison of different models, we selected the combination of CMOD5.n and PR model
from Zhang et al. [10] for the HH-polarized GF-3 SAR wind retrieval in our scheme.

4.4. GF-3 SAR Winds General Validation Statistics

From the analysis in Sections 4.2 and 4.3, the GMF of CMOD5.N [7] and the PR of Zhang et al. [10]
resulted in the best performance for the GF-3 wind retrieval scheme used here. As a consequence,
they were chosen for the production of GF-3 ocean wind retrievals. Based on these GMF models, the
GF-3 wind retrievals were assessed against NDBC winds, with the scatter plots depicted in Figure 5
and general statistics listed in Table 3. In general, an RMSE of 2.46 m/s and 22.22◦, and a bias of
0.66 m/s and 1.35◦ could be found for the comparison of GF-3-derived wind against buoy winds in
this preliminary assessment.

Figure 5. Scatter plots of GF-3 SAR wind retrievals against NDBC buoy observations for wind speed
(left) and wind direction (right). GF-3 winds are estimated using the GMF of CMOD5.N and the PR of
Zhang et al. [10], for HH-polarization. Points with color indicate the incidence angle, and different
markers present different polarizations of GF-3, according to the legend.

Table 3. Statistics for GF-3 SAR winds against NDBC measurements.

Polarization of
GF-3 Data

Wind Speed Wind Direction
GMF Used

N Bias (m/s) RMSE (m/s) N Bias (◦) RMSE (◦)

All
co-polarization 56 0.66 2.46 45 1.35 22.22 VV: CMOD5.n

HH:CMOD5.n + PR model
from Zhang et al. [10]VV 14 −0.15 2.34 14 4.85 21.91

HH 42 0.93 2.50 31 −0.23 22.37
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5. Conclusions

In this paper, the proposed GF-3 SAR wind inversion methodology combines SAR-observed
NRCS at a co-polarized channel with a priori wind information from ECMWF winds, taking into
account that both NRCS observations and models may contain errors. In order to extract the wind
speed and direction, the cost function is minimized with the help of look-up tables computed from
geophysical model functions (GMFs), making the inversion scheme more efficient. Using this inversion
scheme, coastal winds at 1 km resolution were estimated from the GF-3 SAR. One case of the coastal
katabatic wind off the west coast of the U.S. captured by GF-3 is presented.

The first accuracy assessment of the ocean surface wind vector from GF-3 was carried out through
a comparison with in situ observations from moored NDBC buoys, over the period from January to
April 2017.

To select the GMF and PR models for the GF-3 wind inversion scheme, retrieval performances
were compared for models including CMOD-like GMFs of CMOD-IFR2 and CMOD5.N, PR models
of Mouche et al. [9], Zhang et al. [10], and the recently proposed C-SARMOD. The results indicate
that the GMF of CMOD5.N and the PR of Zhang et al. [10] present the best performance for GF-3
wind inversion. Thus, these two models were chosen for the production of GF-3 ocean wind retrievals.
A validation of GF-3-derived winds against NDBC measurements shows an RMSE of 2.46 m/s and
22.22◦ for wind speed and direction, respectively. These preliminary results indicate that GF-3 wind
retrievals are encouraging for operational products, which will be released from the State Oceanic
Administration in the near future.

Future work will be dedicated to collect more data over buoys to increase the representativeness
of our dataset and refine the performance assessment such as the error with respect to incidence angle,
wind speed, or NESZ. In addition, the possibility of estimating the wind direction directly from GF-3
SAR images (e.g., [31]) will be investigated.
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Abstract: This paper reports Ku-band normalized radar cross section (NRCS) at low incidence angles
ranging from 0◦ to 18◦ and in the wind speed range from 6 to 70 m/s. The precipitation radar
onboard the tropical rainfall measuring mission and Jason-1 and 2 have provided 152 hurricanes
observations between 2008 and 2013 that were collocated with stepped-frequency microwave
radiometer measurements. It is found that the NRCS decreases with increasing incidence angle.
The decrease is more dramatic in the 40–70 m/s range of wind speeds than in the 6–20 m/s range,
indicating that the NRCS is very sensitive to low incidence angles under extreme wind conditions
and insensitive to the extreme wind speed. Consequently, the sea surface appears relatively “smooth”
to Ku-band electromagnetic microwaves. This phenomenon validates the observed drag coefficient
reduction under extreme wind conditions, from a remote sensing viewpoint. Using the NRCS
dependence on incidence angle under extreme wind conditions, we also present an empirical
linear relationship between NRCS and incidence angles, which may assist future-satellites missions
operating at small incidence angles to measure sea surface wind and wave field.

Keywords: NRCS; extreme wind conditions; low incidence angles

1. Introduction

Tropical cyclones (also called hurricanes or typhoons) are always associated with high wind
speeds. The wind speed plays a crucial role in air–sea interactions, numerical forecasting models,
and tropical cyclone intensity. Active microwave remote sensors have advantages for estimating
wind speeds because the normalized radar cross section (NRCS, σ0) of the sea surface varies with the
roughness and whitecaps or the foam effects that are driven by high wind speeds. The NRCS is a critical
parameter for ocean remote sensors such as synthetic aperture radar (SAR) devices, scatterometers, and
altimeters. Besides wind speeds at the sea surface, the NRCS can be used to detect ship targets at the
sea surface [1], ocean surface currents [2], ocean wave spectra [3], and other ocean surface information.

However, most NRCS applications are limited to low or moderate wind conditions. Several
researchers have analyzed the C-band NRCS saturation at wind speeds up to 35 m/s [4–6].
Donnelly et al. [7] and Carswell et al. [8] studied the Ku- and C-band NRCS up to wind speeds
of 45 m/s. Thus far, only Fernandez et al. [9] have presented the Ku and C-band NRCS up to wind
speeds of 65 m/s. In all of these reports, the co-polarization (VV) NRCS saturated at high wind speeds
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up to 25 m/s. Non-saturated cross-polarization (HV or VH) NRCS variation at high wind speeds has
also been reported [10–14].

NRCS analyses at low incidence angles and low wind conditions have been frequently
reported [15–18]. Some researchers consider that the NRCS under high wind conditions can be
extrapolated from the NRCS characteristics in moderate wind conditions [19–21]. At high winds
(up to 35 m/s), Quilfen et al. [22] empirically derived an inverse relationship between the sea surface
roughness and altimeter backscatter. However, at wind speeds exceeding 35 m/s, the collocated data
are too sparse to analyze the σ0 characteristics with statistical confidence.

The paper collocates the NRCS from the precipitation radar (PR) of the tropical rainfall measuring
mission (TRMM) and the Jason-1 and 2 altimeter observations, and the stepped-frequency microwave
radiometer (SFMR) wind speed measurements up to 70 m/s. Subsequently, we derive a new NRCS
dependence on wind speed at small incidence angles. Section 2 introduces the datasets, and Section 3
presents the data acquisition methodology. Then Section 4 gives results of relatively common
moderately intense wind conditions and the newly proposed NRCS characteristic. The relationship
between NRCS and incidence angle is also presented in this section. Discussion and conclusions are
given in Sections 5 and 6, respectively.

2. Dataset

To acquire the NRCS at extremely high wind conditions, NRCS data at low incidence angles
were collected from the standard products 2A21 (version-7) of PR and the geophysical data record
(GDR) of Jason-1 and 2. The wind speeds were obtained from the National Oceanic Atmospheric
Administration (NOAA) Hurricane Research Division (HRD) SFMR along-track measurements in
hurricanes. The datasets are summarized and analyzed as follows.

2.1. TRMM PR

PR is a spaceborne Ku-band horizontal polarization radar onboard TRMM that has measured
precipitation since 1997. The PR antenna is an electronically scanned phased array that scans a planar
cross-track area through the nadir (in fact, as the satellite travels very quickly, the scanning track
is not strictly vertical to the along-track direction). The nadir spatial resolution of the PR is 5.0 km
(cross-track) × 4.1 km (along-track). Since the boost of the satellite orbit in 2001 to higher altitude, the
swath width has been extended to 250 km. The 49 incidence angles vary from approximately −18◦

to 18◦.
PR is the first instrument designed to measure the reflectivity of rain from space. The technique

is that short pulses are transmitted at Ku-band, and the time delay and strength of the echo gives
the distance and intensity of the rain. One of the key points with this technique is to determine the
rain attenuation effect at a location. In order to solve this problem, one needs to know the strength of
the sea surface reflectance, which varies according to the prevailing wind conditions [23]. Liao and
Meneghini [24] compared the performances of the version-6 PR product before and after the satellite
boost with a ground-based weather surveillance radar (WSR-88D) in Melbourne, FL. The PR product
maintained its calibration accuracy of about 1 dB. Although the orbit boost reduced the NRCS by
0.67–0.88 dB, the accuracy of the PR σ0 remained within 1 dB [25].

2.2. Jason-1 and 2

Jason-1 and Jason-2 were launched in 2001 and 2008, respectively. Jason-1 has expired but Jason-2
remains in orbit. This study uses the 0◦ NRCS of Jason-1 and 2 from the Ku bands, acquired from 2008
to 2012. The temporal and spatial intervals during the matchup were required to be within 60 min
and 100 km, respectively. The product GDR–c of Jason-1 contains 1-Hz measurements, so points with
less than 10 valid NRCSs were eliminated. For Jason-2, the “qual_alt_1hz_sig0_ku” (a quality flag
variable in the Ku-band NRCS product) of GDRs are flagged as “good” and these values are retained.
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Both GDRs flagged “no rain” are selected. In total, Jason-1 and Jason-2 were able to contribute 1209
and 3046 collocated pairs, respectively.

2.3. SFMR

The SFMR onboard NOAA WP-3D aircraft has been the prototype for a new generation of
operational airborne remote sensing instruments designed for measuring the surface winds and
rainfall in hurricanes since 1984 [26]. The SFMR operates at 4.6–7.2 GHz and measures meteorological
parameters such as wind speed and rain rate [27]. The temporal and spatial resolutions of the
measured wind speed are 1 s and 1.5 km, respectively. The wind speeds are estimated at 10 m above
the sea surface by SFMR; they have been validated by the dropwindsonde measurements and the
root-mean-square error (RMSE) is approximately 4 m/s, or 5%–25% [28]. Since 2007, the SFMR
onboard the Air Force Reserve Command has measured the wind speed using the model developed
by Uhlhorn and Black [28]. The SFMR-derived wind speeds in hurricanes have also been validated
against those retrieved by cross-polarized SAR image, with a bias and RMSE of −0.89 m/s and
3.24 m/s, respectively [10]. Recently, the SFMR measurements of the surface winds in tropical cyclones
with heavy precipitation have been further improved using a new relationship between microwave
absorption and rain rate [29]. This relationship significantly decreased the surface-wind retrieval bias
in the presence of rain at weak hurricane wind speeds.

3. Methodology

152 hurricanes observations were collected from the TRMM PR between 2008 and 2013, which
were collocated with SFMR measurements. The temporal and spatial intervals for collocations were
30 min and 50 km, respectively. For each collocated data pair (denoting 1 s of SFMR data and one
incidence angle of PR), the wind speed and rain rate from SFMR and the NRCS from the PR were
recorded. The collocated dataset contains 29,798,600 points, of which 87.22% and 58.11% are below
5 mm/h and 2 mm/h, respectively. Only 140,795 points correspond to wind speeds above 40 m/s.
The distribution of the wind speeds between 40 m/s and 70 m/s is shown in Figure 1. The numbers in
each of the wind speed bin do not have large discrepancies among one another.

 

Figure 1. Wind speed histogram of collocated data pairs (140,795) between precipitation radar
(PR)-observed normalized radar cross section (NRCS) and stepped-frequency microwave radiometer
(SFMR)-measured wind speed ranging from 40 to 70 m/s.
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Typically, strong winds in intense storms bring intense rainfall. To reduce the rain impacts on
the NRCS and obtain sufficient data pairs for our analysis at extremely high winds, we selected pairs
with rain rates below 5 mm/h. These pairs are gridded by discretizing the wind speeds and incidence
angles into 1 m/s bins and 1◦ bins, respectively. In the two-dimensional bins, data pairs whose NRCS
deviates by more than one standard deviation (STD) from the NRCS average are discarded. This simple
quality control criterion yields a new NRCS. Figures 2 and 3 show the STD distributions of the old and
new NRCSs, respectively. Panels a and b of each figure display the binned STDs in the wind speed
ranges 6–20 m/s and 40–70 m/s, respectively.

(a) 

(b) 

Figure 2. (a) Distribution of NRCS standard deviations (STDs) in each bin before quality control at
wind speed 6–20 m/s. The wind speed is from SFMR and NRCS is from PR. Each collocated data pair
contains 1 s of SFMR data and one NRCS and incidence angle of PR. (b) Distribution of NRCS STDs in
each bin after quality control at wind speed 6–20 m/s. The wind speed is from SFMR and NRCS is
from PR. Each collocated data pair contains 1 s of SFMR data and one NRCS and incidence angle of PR.
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(a) 

(b) 

Figure 3. (a) Distribution of NRCS STDs in each bin before quality control at wind speed 40–70 m/s.
The wind speed is from SFMR and NRCS is from PR. Each collocated data pair contains 1 s of SFMR
data and one NRCS and incidence angle of PR. (b) Distribution of NRCS STD in each bin after quality
control at wind speed 40–70 m/s. The wind speed is from SFMR and NRCS is from PR. Each collocated
data pair contains 1 s of SFMR data and one NRCS and incidence angle of PR.

As confirmed in Figures 2 and 3, the simple quality control criterion drastically decreases the STDs.
As wind speeds are between 6 and 20 m/s (Figure 2), the new STDs are constrained to be within 1.1 dB,
whereas the non-controlled STDs are approximately within 3.5 dB. For high wind speeds ranging from

82



Remote Sens. 2017, 9, 474

40 to 70 m/s (Figure 3), the NRCS is rendered noisier by the high wind and reduced number of points.
In this case, the simple control criterion reduces the largest STDs from approximately 8 dB to 4.7 dB.
Although 4.7 dB is still below the required accuracy, most of the STDs are within 1.5 dB (the largest
errors occur at 0◦). The data is acceptable for our analysis, as the PR is accurate to 1 dB.

4. Results

To show the results of NRCS from PR clearly, four figures are presented. Figures 4 and 6 study
the dependence of NRCS on incidence angle at different wind speeds. Figures 5 and 7 study the
dependence of NRCS on wind speed at different incidence angles. In this condition, Figures 4 and 5
illustrate dependence of NRCS on moderate wind condition while Figures 6 and 7 correspond to high
wind condition.

4.1. PR NRCS at Small and Moderate Wind Speeds

At low incidence angles and wind speeds below 20 m/s, the NRCS is dominated by a
quasi-specular reflection mechanism, and can be simulated by simple formulas [30,31]. Here we
validate the NRCSs measured by the TRMM PR by using a geometrical optics model based on
non-Gaussian probability density distribution [25]. This model was derived by the NRCS from PR and
the wind speed from NDBC buoys, and is formulated as follows:

σ0
sp(θ) =

|R(0)|2
MSS · cos4 θ

exp
[
− tan2 θ

svp

][
a1

tan4 θ

MSS2 − a2
tan2 θ

MSS
+

a2

4
+ 1
]

(1)

In Equation (1), coefficients a1 and a2 are related to the kurtosis of the sea surface slopes. |R(0)|2 is
effective nadir reflection coefficient. MSS is the mean square slope of sea surface. The four parameters
are the function of wind speed, which are given in Li et al. [25]. The NRCS dependences on low
incidence angle and low to moderate wind speed are illustrated in Figures 4 and 5, respectively.

Figure 4. Comparison between collocated NRCS and simulated NRCS, showing NRCS dependence on
incidence angle. The squared colored dots are the NRCS collocated from PR and SFMR. The lines are
plotted according to the geometrical optics model. The different colors denote different wind speeds.

As shown in Figure 4, the NRCS decreases with increasing incidence angle and is generally
consistent with the geometrical optics model predication. Small discrepancies appear at 20 m/s wind
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speed and incidence angles of 0◦ and 15◦–18◦. The geometrical optics model was derived from a
limited number of wind speeds above 15 m/s, and may not be sufficiently accurate under high wind
conditions. Alternatively, the discrepancy could arise from the different wind speed measurement
accuracies of SFMR and buoys. Here, the small discrepancies can be neglected. The NRCS becomes
independent of wind speed at approximately 12◦ incidence angle, slightly larger than reported 10◦ in
previous studies [32].

Figure 5 shows the dependence of NRCS on wind speed, analyzed with the same dataset as
Figure 4. The NRCSs destabilize at near-nadir angles (as evidenced from the STDs in Figure 2b),
and the discrepancy increases at 18◦. However, the differences between the measured NRCSs and
those simulated with the geometrical optics model [25] are less than 1 dB. Therefore, the results are
considered to be consistent (given the 1 dB uncertainty in PR) [24].

Figure 5. Comparison between collocated NRCS and simulated NRCS, showing NRCS dependence
on wind speed. The squared colored dots are the NRCS collocated from PR and SFMR. The lines are
plotted according to the geometrical optics model. The different colors denote different wind speeds.

In summary, the NRCS values collocated from PR in the present study display the expected
dependences on incidence angle and wind speed in moderate wind conditions.

4.2. Analysis at Extremely High Wind Speeds

However, at extremely high wind speeds, the NRCS characteristics deviate from those in moderate
wind conditions. To distinguish the NRCS characteristics between the two different wind conditions,
we plot the NRCS dependencies on wind speeds and incidence angles, which are shown in Figures 6
and 7, respectively. The results are derived over the full wind condition that is, sea-surface wind
speeds ranging from 6 to 70 m/s.

Since the rain rates in the data in Figures 6 and 7 are low (0–5 mm/h), the rainfall impacts on the
NRCS can be ignored. The same figures were also plotted at very low rain rates of 0–2 mm/h (results
were not shown). The NRCS trends were identical at the low rain rate, except the number of collocated
pairs is reduced. Although the plots in Figure 6 appear chaotic, the colors clearly reveal that the wind
speeds decrease with increasing incidence angles more dramatically for winds at 40–70 m/s than at
6–20 m/s. Figure 7 clarifies that at wind speeds exceeding 40 m/s, the NRCS characteristics distinctly
differ from those of moderate wind conditions. In the 40–70 m/s range, the NRCS is disturbed and
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exhibits no clear dependence on wind speed. In extreme high wind conditions, the NRCS is generally
very sensitive to low incidence angles and not sensitive to extreme wind speeds.

Figure 6. NRCS dependence on incidence angle at different wind speeds. The squared colored dots are
the NRCS values collocated from PR and SFMR. The different colors denote different wind speeds.

Figure 7. NRCS dependence on wind speed at different incidence angles. The squared colored dots are
the NRCS values collocated from PR and SFMR. The different colors denote different incidence angles.

4.3. Results of Altimeter NRCS

To determine whether the altimeter NRCS data yield similar results or not, we plot the dependence
of NRCS acquired by Jason-1 and 2 on wind speed. The results are shown in Figure 8. Here, the wind
speeds are also collocated from SFMR. The model of Quilfen [22] is also illustrated for comparison.
The model coefficients were derived by orthogonal regression between the QuikSCAT and Jason-2
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data at wind speeds between 18 and 30 m/s. The formula of the model mentioned above is given
as follows:

U10 = 96.68 − 7.32·
(

σ0 + o f f set
)

f or σ0 < 10.7896 (2)

In Figures 8 and 9, the temporal and spatial intervals decrease from 60 min to 30 min and from
100 km to 50 km respectively. As the wind speed increases, the number of collocated pairs also
decreases. Moreover, both plots present the same tendency of NRCS dependence on wind speed.
In general, our results are consistent with Quilfen (green line in the two figures) [22] in the wind speed
range from 18 to 30 m/s. It is important to note that the NRCS becomes large at extremely high wind
speeds, similarly to the NRCS values from PR, although the points are few and scattered at wind
speeds above 40 m/s.

Figure 8. NRCS dependence on wind speed. Blue dots are from Jason-1 Ku-band NRCS while the
red ones are Jason-2. The green line is plotted according to Quilfen Model (2011). Here the temporal
and spatial distances are 60 min and 100 km, respectively. N_j1 and N_j2 show that the number of
collocation points are 1209 and 3046, respectively.

Figure 9. NRCS dependence on wind speed. Blue dots are from Jason-1 Ku-band NRCS while the red
ones are Jason-2. The green line is plotted according to Quilfen Model (2011). Here the temporal and
spatial distances are 30 min and 50 km, respectively. N_j1 and N_j2 show that the number of collocation
points are 356 and 859, respectively.
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5. Discussion

This study newly presents the NRCS characteristics at extremely high wind speeds. To further
describe the phenomenon in detail, we assume that NRCS are constant in the wind speed range from
46 to 70 m/s for a given incidence angle. Because NRCS is not sensitive to extreme high winds, we
average the NRCSs at different incidence angles and plot them versus incidence angle in Figure 10.
Then the result is fitted to the following linear equation:

σ0
dB(0) = 10 · log10

(
σ0
)
= a · θ + b (3)

Figure 10. NRCS dependence on incidence angle under extreme wind conditions. (Left) in units of dB;
(Right) in linear units.

The linear fitting yields a = −1.1097 and b = 15.6995. The NRCS and θ are expressed in dB
and degrees, respectively. Near the nadir angle, the NRCS is very large and decreases drastically
with small increments in incidence angle. Generally, the decrease in NRCS with increasing incidence
angle obeys the simple Equation (3). This newly found phenomenon may be useful in the following
research directions.

5.1. Validation of Cd

From the late 1960s through the 1990s, the drag coefficient Cd was considered to be positively
correlated with the sea surface wind speed. However, this universally accepted relationship is only
confirmed for wind speeds under 26 m/s, because no high wind speed observations can be acquired
especially in regions over the deep ocean [33].

In 2003, Powell et al. showed that Cd decreases at U10 > 33 m/s. The team hypothetically
attributed this reduction to sea foam, spray and bubbles resulting from breakage of steep wave faces,
which forms a slip surface [34]. Donelan and his team [35] observed that the drag coefficient is
saturated as sea surface wind speeds are above 33 m/s. They concluded that as the wind speed
over the open ocean increases from gale to hurricane force values, continuous intense wave-breaking
occurs and the crests are essentially blown away by the strong winds. This mechanism fills the air
with sea spray and the surface with spume, altering its frictional and roughness characteristics [35].
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Many subsequent papers have studied the nonlinearity and parametrization of Cd in these conditions
(e.g., [36–38]).

For moderate wind speeds as shown in Figure 4, the dependence of NRCS on incidence angle
complies with quasi-specular backscattering theory. As shown in Figure 7, the decrease of NRCS
with increasing incidence angles in the wind speed range from 40 to 70 m/s is more dramatic than
in that from 6 to 20 m/s. The distinction indicates that the sea surface at extreme wind speed is
relatively “smooth” to Ku-band electromagnetic microwaves, in contrast to at low and moderate wind
speeds. That is, the NRCS is very sensitive to low incidence angles under extreme wind conditions
and insensitive to the extreme wind speed. Due to this relative “smooth” sea surface, the Cd under
high wind conditions should be smaller than that of in moderate wind circumstances. Therefore, the
phenomenon revealed in this paper validates the Cd decreases at extremely high wind conditions, in
contrast to moderate wind conditions. Hwang [39,40] derived an experimental formula for Cd based
on previous studies, but this formula is limited to wind speeds below 50 m/s. According to Figure 7,
the sea surface remains “smooth” at wind speeds up to 70 m/s.

In previous studies, the Cd levels off at 32–33 m/s; in others, saturation occurs at 22–23 m/s [33].
Figure 7 is consistent with Cd saturation at 32–33 m/s; otherwise, the NRCS should begin dramatically
varying at 22–23 m/s. Besides validating the remote sensing data, the new characteristics may
potentially assist anticipated satellites missions in the future.

5.2. CFOSAT

The CFOSAT satellite is scheduled for launch in 2018. The payload instruments are Surface
Waves Investigation and Monitoring (SWIM) and a rotating scatterometer. SWIM operates in the
Ku-band, with VV polarization, at small incidence angles. At low wind speeds, the interface between
the atmosphere and sea surface is well-clarified. Moreover, the VV-polarized NRCS is similar to the
HH-polarized NRCS at small incidence angles for the quasi-specular scattering mechanism. Therefore,
at high wind conditions, the NRCS acquired from VV polarization probably shares similar dependence
on incidence angle to those acquired from HH.

In extreme wind conditions, the atmosphere ocean interface essentially disappears and the sea
surface becomes relatively “smooth” for the Ku-band (or the NRCS will conform to the quasi-specular
backscattering results, such as Equation (1)). Beneath the interface are the water balls surrounded
by the atmosphere and beneath the water balls may be the ocean water fluctuation. CFOSAT SWIM
detects the ocean wave spectra based on the tilted ocean surface modulation, that is, the variations of
backscattering cross section of long waves are linearly proportional to the sea surface slopes:

∂σ/σ = α · ∂ξ/∂x (4)

Here, σ is backscattering cross section of long waves, α the modulation transfer function (related
to the incidence angle), and ∂ξ/∂x the sea surface slope. After spectral estimation, the sea wave
spectra can be acquired [41]. However, in extreme wind conditions the information of ocean water
fluctuation at the bottom cannot be acquired by the Ku-band EM waves because the relatively “smooth”
surface backscatters EM energy and thus no fluctuation signals can be used to retrieve the ocean water
fluctuation. The dramatic decrement of NRCS with increasing incidence angle can flag the presence of
a high sea state; that is, can qualitatively indicate the severity of the sea-wave spectra.

5.3. Altimeter

In the near future, wide swath ocean altimeters (WSOA), HY-2B etc. will be launched. They all
operate at small incidence angles. Here, a preliminary NRCS dependence on high wind speed is
shown, and more validation is needed at nadir incidence angles.

The potential impacts of the NRCS characteristics at extremely high wind speeds on altimetry
may be the distorted waveforms reflected from the “smooth” sea surface. The waveforms will peak
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with very steep leading and sharp trailing edges, just like a delta function, which appears when the
nadir direction surface is land occupied by ice. This phenomenon will lead to errors for estimates of
the sea surface height or the wrong land flag. Thus, this influence cannot be neglected.

6. Conclusions

In this paper, in order to analyze the NRCS at low incidence angles at extreme wind condition,
the wind speed from SFMR and NRCS from PR on TRMM or altimeters are collocated. After the data
statistics are computed and a simple quality control criterion is specified, the NRCS dependencies on
incidence angle from 0◦ to 18◦ and wind speed from 6 m/s to 70 m/s are shown.

The NRCS values at moderate and low wind speeds are compared with those from a geometrical
optical model, which confirms the consistency among them. Figures 4 and 5 show that there are
only small differences at wind speed 20 m/s and incidence angles 0◦, 15◦–18◦. The optical model is
developed by the NRCS from PR and wind speeds from NDBC. Taking into account the SFMR wind
speed error in contrast to that from NDBC, the NRCS dependence is generally consistent with that of
the optical model.

At extremely high wind speeds, the characteristics of the NRCS are shown in Figures 6 and 7.
These results have not been reported previously in the literature. We have found that the NRCS
increases drastically with increasing wind speeds from about 32 m/s to 40 m/s at near-nadir incidence
angles and then becomes generally invariable, for higher winds. At about 11◦–13◦, the NRCS is nearly
invariant for all kinds of wind conditions (wind speeds from 6 m/s to 70 m/s). When the incidence
angles increase to about 18◦, the saturation is shown to occur at around 30 m/s–32 m/s, as expected,
which is the same as that of scatterometers. However, the NRCS at near 18◦ decreases drastically from
32 m/s to 40 m/s and then becomes nearly constant for higher winds. Generally, the NRCS values
at extremely high wind speeds have large values at near-nadir incidence angels and then decrease
drastically with increasing incidence angles. In Figures 8 and 9, the matchups from Jason-1 and 2 and
SFMR are collected; the same NRCS characteristics at nadir incidence angles as found for PR can also
confirm the results, although the number of points at extremely high wind speeds is too small to be
statistically significant.

The NRCS dependence on incidence angles at extremely high wind speed is generally presented
in Figure 10 and a simple formula is given by Equation (3). In physical terms, at extremely high wind
speeds for Ku-band EM wave and HH polarization, the sea surface becomes very “smooth”, just like a
“mirror”, and only this assumption can explain the characteristics of the NRCS values in Figure 10.
This is consistent with the Cd decrement at high wind speed, which has been discovered by many
researchers with in-situ measurements.

The new discovery may have potential use for the future missions, such as CFOSAT, WSOA, etc.
Because of the scarcity of the data at high wind speeds, the data points are not enough for validation
at 0◦ incidence angle and the phenomenon can be verified in more detail by NRCS at nadir angles and
medium angles.
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Abstract: The Sentinel-1 synthetic aperture radar (SAR) allows sufficient resources for cross-pol
wind speed retrievals over the ocean. In this paper, we present technical evaluation on wind
retrieval from both Sentinel-1A and Sentinel-1B IW cross-pol images. Algorithms are based on the
existing theoretical and empirical ones derived from the RADARSAT-2 cross-pol data. First, to better
understand the Sentinel-1 observed normalized radar cross section (NRCS) values under various
environmental conditions, we constructed a dataset that integrates SAR images with wind field
information from scatterometer measurements. There are 11,883 matchup data in the experimental
dataset. We then calculated the systemic noise floor of Sentinel-1 IW mode, and presented its unique
noise characteristics among different sub-bands. Based on the calculated NESZ measurements,
the noise is removed for all matchup data. Empirical relationships among the noise free NRCS
σ0

VH, wind speed, wind direction, and radar incidence angle are analyzed for each sub-band, and a
piecewise model is proposed. We showed that a larger correlation coefficient, r, is achieved by
including both wind direction and incidence terms in the model. Validation against scatterometer
measurements showed the suitability of the proposed model.

Keywords: cross-pol; Sentinel-1; radar backscattering; wind retrieval

1. Introduction

Synthetic aperture radar (SAR) images provide deep knowledge of the characteristics of wind
fields over both the ocean and littoral zones with high spatial resolution. Due to the complex
electromagnetic scattering mechanism of SAR, empirical approaches of wind field retrievals based on
geophysical model functions (GMF), which describe the dependence of the normalized radar cross
section (NRCS) with respect to wind vectors and incidence angles, are widely investigated. For C-band
co-polarization (co-pol) SAR images, along with a polarization ratio model for HH polarizations,
many GMF models are developed [1–6]. However, the NRCS of co-pol exhibits data saturated when
wind speed exceeds about 16 m/s for incidence angle under 35◦ [7]. Otherwise, the cross-polarization
(cross-pol) shows that the signal increases with wind speed and does not saturate even at very high
speeds. Therefore, cross-pol data has been widely used for high wind speed retrievals [7–11].

Some related assessments and evaluations of cross-pol images have been done to RADARSAT-2
quad polarization (quad-pol) which have lower noise (about −36 dB). By collocating quad-pol
RADARSAT-2 SAR images and buoy measurements, Vachon and Wolfe in 2011 have shown that
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the cross-pol backscattering is independent of incidence angle and wind direction, and developed
a monotonic linear relationship between cross-pol backscattering and wind speed [12]. In [7],
Hwang et al. have shown that the linearly increasing relationship between the NRCS σ0

VH in moderate
wind conditions (about <7 m/s) gradually transits to cubic in high wind conditions (about >10m/s).
Bergeron et al. [13] compared the wind retrieval performances of two models proposed by Vachon [12]
and Hwang [7] for wind speed retrieval in cross-pol. These researches describe the relationship
between the NRCS σ0

VH and wind speeds assuming that cross-pol is independent on the variations
of incidence angles. In [14], the incidence angle and wind direction dependences of cross-pol radar
backscattering are analyzed and theoretically explained.

Some researches concentrated on wind retrieval using C-band high noise data in dual polarization
(dual-pol) such as RADARSAT-2 ScanSAR mode, Sentinel-1 and planned RADARSAT Constellation.
Differ from RADARSAT-2 quad-pol data which have lower noise (about −36 dB), the wide swath
RADARSAT-2 ScanSAR have higher noise (about −30 dB) [14]. In [15], Shen et al. indicate that
dual-pol and quad-pol exhibit different relationships with wind speed, therefore a distinct model
particularly for high noise dual-pol data wind retrieval is required. For RADARSAT-2 ScanSAR
mode images, existing wind retrieval models only consider wind speed dependence [15,16]. In [16],
the NRCS σ0

VH is found to be a linear function of wind speed, thus the C-2POD model was derived
for hurricane wind retrieval. A two-piecewise linear GMF model was developed to quantify the
relationship between the NRCS σ0

VH and wind speeds [15]. In [17], the wind direction dependence
of NRCS σ0

VH is analyzed. Zhang et al. [11] proposed a hybrid backscattering model to carry out
theoretically analyze the relationship among both VH and VV polarized NRCS, wind speed and
incidence angle. Using this hybrid model, a hurricane wind retrieval model named C-3PO was
developed, by including dependence on incidence angle.

With the free and open data policy of Sentinel-1 satellites, VH dual polarization SAR images
have become publicly available, allowing sufficient resources for cross-pol wind speed retrievals.
In [18], based on Sentinel-1 VV polarization images, the spatial characteristics of the SAR-derived
winds are presented, and the detailed descriptions of the wind fields provided by SAR are
analyzed. Monaldo et al. [19] evaluate the performance of Sentinel-1A wind speed retrievals
using GMFs (CMOD4, CMOD_IF2, CMOD5,CMOD5.N), and conclude good agreement of Advanced
SCATterometer (ASCAT) wind speeds and Sentinel-1 VV and HH measurements. However,
for Sentinel-1 cross-pol SAR images, their radar backscattering from the ocean surface and technical
performance for wind speed retrievals are yet to be evaluated.

The planned RADARSAT Constellation Mission (RCM), which will be launched in 2018,
is designed primarily to be dedicated to regular monitoring with various modes and resolutions [20].
Among the main operational modes, the Medium Resolution 50 m mode was designed for
general-purpose wide area surveillance [21,22]. It is 4 looks and a 350 km imaging swath, and is
comparable to the RADARSAT-2 ScanSAR mode, thus it is promising to be employed in marine
wind application [21,22]. We expect that there will be more available C-band high noise data such as
Sentinel-1 and RCM in the coming years. Therefore, wind retrieval model designed for C-band high
noise data is required.

In this paper, with the rapidly growing availability of Sentinel-1 data, we revisit the empirical
relationships between cross-pol radar backscattering σ0

VH and wind speeds with attention to evaluate
contribution from incidence angle and wind direction terms. A model for moderate wind speed
retrieval is proposed, by including the dependences on wind speed, incidence angle, and wind
direction. The scopes of this paper are to give a technical evaluation of Sentinel-1 cross-pol images
based on the theoretical and empirical analyses derived from RADARSAT-2 data, and provide a wind
retrieval model based on Sentinel-1 cross-pol images.

First, in order to better understand the Sentinel-1 cross-pol NRCS under various environmental
conditions, we construct a dataset dedicated to Sentinel-1A and 1B SAR ocean environment by
integrating SAR images with wind vectors from ASCAT scatterometer. The matchup dataset contains
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data from 90 VH dual-pol SAR images acquired in 2016. Next, all the matchup data are integrated
with precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM). 11,883 cross-pol
data with 0 mm/h are selected from the matchup dataset. We calculate the systemic noise floor of
Sentinel-1 interferometric mode (IW) mode, and point out its unique noise characteristics among
different sub-bands. The noise is removed for the matchup data. Empirical relationships among the
noise removal NRCS, wind speed, wind direction, and radar incidence angle are analyzed for each
sub-band. The lowest boundary wind speed for retrievals is specified. Finally, a piecewise model for
wind retrieval is proposed. We showed that a larger correlation coefficient, r, is achieved by including
wind speed, wind direction and incidence terms in the model. Validation against scatterometer
measurements showed the suitability of the proposed model.

The remainder of this paper is organized as follows. Section 2 introduces the construction of
the matchup dataset. The relationship between NRCS and wind speeds with attention to evaluate
contribution from incidence angle and wind direction terms are analyzed in Section 3. In Section 4 an
empirical model is developed and validated. Discussion of model is given in Section 5. The conclusions
are drawn and the future work is introduced in Section 6.

2. The Matchup Dataset

In order to better understand the Sentinel-1 NRCS under various environmental conditions,
a dataset which integrates SAR images with wind information from ASCAT scatterometer [23],
is constructed. The construction and organization of the dataset are summarized as follows.

2.1. Data Collection

2.1.1. Sentinel-1A and 1B

Sentinel-1 satellites, which are designed by the European Space Agency (ESA), operate C-band
imaging in four exclusive imaging modes with different resolutions (down to 5 m) and coverage
(up to 400 km) [24]. Sentinel-1 satellites achieve short revisit times (6 days) and rapid data delivery.
Besides, Sentinel-1 are the first satellites exploiting the Terrain Observation with Progressive ScanSAR
(TOPSAR) technique for the IW mode. The IW mode, with VV and VH dual polarization, is the
default Sentinel-1 acquisition mode [25]. Although several other acquisition modes for specific aims
are available: the Stripmap Mode (SM) which only be used on request for emergency management,
the Extra-wide Swath Mode (EW) which is primarily applied to sea-ice monitoring over high latitude
areas, and the Wave Mode (WV) which is designed for ocean wind field and swell spectra, these modes
are usually only acquired for some specific areas with limited quantity. Therefore, in order to build up
a consistent long-term dataset with various coverage, we focus on the IW mode that almost covers
global littoral zones. Both Sentinel-1A and Sentinel-1B products are freely and opening available
from the ESA’s Sentinels Scientific Data Hub [26]. Our experiments concentrate on the Ground Range
Detected (GRD) products. The details of the GRD products are listed in Table 1.

Table 1. Parameters for Sentinel-1 IW GRD products [25].

Product Type
Resolution

(rg × az) (m)
Pixel Spacing
(rg × az) (m)

Swath Width
(km)

Looks
(rg × az)

Equivalent Number
of Independent Looks

GRD 20 × 22 10 × 10 250 5 × 1 4.9

2.1.2. ASCAT

The ASCAT is one of the instruments carried on the Meteorological Operational (Metop) satellites
launched by ESA. The ASCAT wind product is produced by the European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility
(OSI SAF) and provided through the Royal Netherlands Meteorological Institute (KNMI) [23].
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Here, we focus on the ASCAT on Metop-A and B Level 2 coastal (ASCAT-L2-coastal) dataset,
which contains operational coastal ocean surface wind vector retrieval products of global coverage,
with 1800 km swath width. The ASCAT-L2-coastal wind products are at 25 km resolution and 12.5 km
cell spacing, with 1.7 h (minimum) or 5 days (maximum) temporal repeat [23]. The ASCAT-L2-coastal
wind products used in the matchup dataset are provided by Physical Oceanography Distributed Active
Archive Center (PO.DAAC), Jet Propulsion Laboratory [27].

2.2. Construction of the Dataset

To construct the matchup dataset, Sentinel-1A and 1B SAR products, the ASCAT-L2-coastal
products are matched together within a 2 h window. Specifically, the data match-up processing of the
matchup dataset consists of the following steps:

1. Sentinel-1 data preprocessing.
The original Sentinel-1A and 1B SAR products [26] are downloaded. In the preprocessing, we
employ SNAP 4.0 [28] to perform the Radiometric Calibration.

2. ASCAT data preprocessing.
The ASCAT-L2-coastal products [27] are downloaded. The products are in the NetCDF format.
The information of wind vector, geographical position, and acquisition time is extracted by
MATLAB programming.

3. Integration of the Sentinel-1 and the ASCAT-L2-coastal products.
For each SAR image, determine whether the corresponding ASCAT-L2-coastal product is acquired
at the same zone within 2 h window whose center is the SAR acquisition time. If yes, the latitude
and longitude coordinates of all the Sentinel-ASCAT match-up points are recorded.

4. Selection of the matchup points with 0mm/h precipitation.
According to the SAR acquisition time, the corresponding TRMM-3B42 product within 3 h
temporal difference is downloaded [29]. Because of the global 0.25◦ × 0.25◦ (lat./lon) -averaged
of TRMM-3B42 product [30], all the Sentinel-ASCAT matchup points are integrated with
precipitation information. In order to avoid the effect of rainfall on the NRCS σ0

VH, only the
0mm/h matchup points are selected in the dataset and utilized in further analyses.

5. Post-processing.
The SAR data integrated with wind information are generated. Besides, a XML file is generated
for the convenience of retrieving the integrated information of each matchup data.

Following the steps above, the experimental dataset was constructed.

2.3. Noise Removal

Since dual-pol measurements may suffer crosstalk among channels and thus perform lower
signal-to-noise ratio (SNR), the noise removal for Sentinel-1 IW dual-pol images is necessary [12,15].

For the Sentinel-1 IW mode products, the nominal instrumental noise floors (i.e., the noise
equivalent sigma naught (NESZ)) are calculated according to the formula provided in the Sentinel-1
product specification [31] and the metadata XML file contained in each product. The NESZ measures
of IW mode VH polarization images with respect to incidence angles are plotted in Figure 1.
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Figure 1. NESZ measures for IW mode VH images.

The noise removal is processed in two steps.

1. Based on the calculated NESZ measures, data do not satisfy Equation (1) are removed.

NobsdB

NnoisedB

> 0.6 dB (1)

where NobsdB
denotes the NRCS in dB, and NnoisedB is the measured NESZ in dB. Empirical

threshold is set to 0.6 dB to guarantee the noise free signal is above −40 dB, which is applicable
for cross-pol wind analyses illustrated in [17]. Please note that, we do not apply higher cut-off
level since we aimed at finding the minimum cross-pol NRCS for wind retrieval. Thus, some
relatively low SNR data are reserved for further analyses.

2. NRCS is composed of signal and noise which is particularly high for low SNR cross-pol
observations. We attempt to subtract the noise component based on the calculated NESZ measures
according to Equations (2)–(5) [15].

Nobslinear
= 10NobsdB

/10 (2)

Nnoiselinear = 10NnoisedB
/10 (3)

Nsiglinear
= Nobslinear

− Nnoiselinear (4)

NsigdB
= 10 × log10 Nsiglinear

(5)

where Nobslinear
, Nnoiselinear , and Nsiglinear

denote the NRCS, the NESZ measures, and the noise free
signal NRCS in linear scale. NsigdB

denotes the noise free signal NRCS in dB.

Based on the introduced steps of noise removal, an example of noise removal for Sentinel-IW
GRD product is illustrated in Figure 2.

96



Remote Sens. 2017, 9, 854

Figure 2. NRCS in radar range direction (blue) with and (green) without noise removal.

2.4. Experimental Data

The 11,883 matchup data (noise removal) covering 90 Sentinel-1A and 1B VH dual-pol GRD
images with 0 (mm/h) precipitation. We divided the whole data into training and testing sets in
two steps. First, the mathchup data are randomly divided into 85% training set and 15% testing set.
Then in order to guarantee that both training and testing sets cover full ranges of incidence angles,
wind directions and wind speeds, we manually adjust a small number of samples in the training
and testing sets. After the two steps, the number of samples in training and testing sets are 10,258
and 1625, respectively. The distributions of wind speeds, wind directions, and incidence angles are
shown in Figures 3–5, respectively. The spatial distance error of the matchup data are shown in
Figure 6. Here the spatial distance error is defined as the distance between the geographic position of
the matchup ASCAT and the center of the corresponding SAR image.

Figure 3. Wind speed histogram of the matchup dataset.
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Figure 4. Wind direction histogram of the matchup dataset.

Figure 5. Incidence angle histogram of the matchup dataset.

Figure 6. Spatial distance error histogram of the matchup dataset.
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3. Experiments and Analyses

3.1. Relationship between NRCS and Incidence Angles

For the 12,058 training data and 1625 testing data, each SAR sub-image is integrated with
environmental information, with the size of 50 × 50 pixels (500 m resolution). The averaged value
of the NRCS of SAR sub-image is calculated, denoted as σ0

VH. 500 m resolution is applicable and
widely employed for SAR wind analyses [4,5,19]. Both Figures 7 and 8 show the empirical relationship
between the NRCS σ0

VH and incidence angle based on the 12,058 training data. In Figure 7, different
colors represent the different values of wind speeds. Here, the wind direction is defined as the angle
that lies between the true wind direction and the radar look direction. In addition, in Figure 8, different
colors represent the different values of wind directions.

Figure 7. Relationship between NRCS and incidence angle (different colors represent different
wind speeds).

Figure 8. Relationship between NRCS and incidence angle (different colors represent different
wind directions).

As illustrated in Figures 7 and 8, because of the low SNR in cross-pol images, the radar
backscattering is interfered with the instrumental noise. As such, the NRCS σ0

VH is fluctuated and
negatively correlated to the incidence angles. The maximum wind speed in this dataset is 17.9 m/s.

From Figure 7, under every bin of incidence angles, the colors of data which represent different
values of wind speeds are distinguishable. Known that the radar backscattering can reflect the ocean
clutter more accurately when exceeding NESZ, from Figures 1 and 7, it can be seen that the NRCS σ0

VH
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exceeds NESZ when the wind speed is roughly in the interval of about 8–10 m/s. Moreover, under
every bin of incidence angles, the colors of data are clearly distinguishable when wind speeds exceed
the interval of 8–10 m/s. While, the colors of the data are mixed-up when speed is below the interval
of 8–10 m/s, because in this condition, the radar backscattering of cross-pol are too low to reflect
the ocean clutter. The accurate value of this wind speed threshold will be specified and discussed in
Section 3.2.

From Figure 8, under every bin of incidence angles, the colors of data which represent different
values of wind directions are scattered and mixed-up. However, we could not observe the wind
direction dependence directly from this plot, since the wind direction dependence is relatively small
for cross-pol [14,17]. The wind direction dependence will be quantitatively analyzed in Section 3.3.

3.2. Relationship between NRCS and Wind Speeds

In this section, we further analyzed the relationship between the NRCS σ0
VH and wind speeds.

Due to the unique TOPSAR technique for the IW mode, three sub-swaths are captured, denoted as
IW1-band (with incidence angles roughly ranging from 30◦ to 36◦), IW2-band (with incidence angles
roughly ranging from 36◦ to 41◦), and IW3-band (with incidence angles roughly ranging from 41◦

to 46◦), respectively. Therefore, we categorized the 12,058 data according to their bands: IW1-band,
IW2-band, and IW3-band.

3.2.1. IW1-Band

The relationship between the NRCS σ0
VH and wind speeds for IW1-band is illustrated in Figure 9.

For the IW1-band, the range of incidence angles is 30–36◦. Clearly, NRCS σ0
VH monotonically increase

with wind speed. In the three regions (IW1-G1, IW1-G2 and IW1-G3) separated by dotted line
representing 8 m/s and 12.3 m/s, the slope is constant and increases as wind speed increases.
To quantify this relationship, a three piecewise-linear fitting is carried out, and the results of fitting are
illustrated in Table 2.

For the IW1-G1 (wind speed is lower than 8 m/s), the NRCS σ0
VH are scattered with large variation.

This variation arises because the radar return signals are low, the NRCS σ0
VH can not reflect the

backscattering of ocean clutter. In addition, from Table 2, the slope of fitting is 0.13.
For the IW1-G2 (wind speed is between 8 m/s and 12.3 m/s), the variation of the σ0

VH decreases
obviously. This indicates that when wind speed is higher than 8 m/s, for the Sentinel-1 cross-pol
IW1 products, the radar backscattering is sensitive enough to reflect ocean clutter signatures when
wind speed exceeds 8 m/s, and thus the wind speed retrieval from cross-pol observations is valid.
This threshold is accordance with the analyses in the last paragraph of Section 3.1, in which we estimate
the threshold to be 8–10 m/s based on results Figures 1 and 7. From Table 2, the slope of fitting is 0.46.

Figure 9. Relationship between NRCS and wind speeds for IW1-band.
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Table 2. Relationship of NRCS and wind speed for different sub-bands.

Number of Samples RMSE r Fitting Function

IW1-band 3487 1.35 0.72 σ0
VH =

⎧⎪⎨⎪⎩
0.13 v − 31.66 (v ≤ 8 m/s)

0.46 v − 34.06 (8 < v ≤ 12.3 m/s)

0.89 v − 39.36 (v > 12.3 m/s)

IW2-band 3671 1.64 0.70 σ0
VH =

{
0.23 v − 33.65 (v ≤ 9.2 m/s)

0.73 v − 38.08 (v > 9.2 m/s)

IW3-band 3100 2.69 0.43 σ0
VH = 0.44 v − 35.67

For IW1-G3 (wind speed is above 12.3 m/s), the slope of the fitting function obviously increases.
From Table 2, the slope of fitting is 0.89, indicating the higher rate of increase of the NRCS σ0

VH with
wind speeds. In the research of RADARSAT-2 VH dual-polarization images [15], Shen et al. also
referred to this turning point estimated at about 10 m/s. This phenomena is theoretically explained as
the wave-breaking contributions by non-bragg surface scattering mechanisms or volume scattering
from breaking generated foamy layers, by Hwang et al. in [7,14]. Therefore, the wind speed sensitivity,
as reflected in slope, increases with higher wind speeds, which suggests the potential of Sentinel-1
cross-pol for higher wind retrievals. Here, noted that due to the limitation of maximum wind speed of
ASCAT products, the signal saturation of Sentinel-1 cross-pol will be further investigated in the future.

3.2.2. IW2-Band

The relationship between the NRCS σ0
VH and wind speeds for IW2-band is illustrated in Figure 10.

For the IW2-band, the range of incidence angles is 36–41◦. Similarly, the relationship between the
NRCS σ0

VH and wind speeds has the same trends as these in IW-1 band. Therefore, according to the
slopes, the data can be divided into two groups, denoted as IW2-G1, IW2-G2, which are separated by
wind speed at 9.2 m/s, marked in the dotted line. To quantify this relationship, a two piecewise-linear
fitting is carried out, and the results of fitting are illustrated in Table 2.

Figure 10. Relationship between NRCS and wind speeds for IW2-band.

For IW2-G1, when the wind speed is lower than 9.2 m/s, the σ0
VH are scattered with large variation,

and from Table 2, the slope of fitting is 0.23. As discussed in Section 3.2.1, this variation arises because
the radar return signals are too low to reflect the backscattering of ocean clutter signatures accurately.
For IW2-G2, when the wind speed is higher than 9.2 m/s, the variation of the σ0

VH decreases obviously.
This indicates that when wind speed is higher than 9.2 m/s, the radar return signals are sensitive
enough to reflect ocean clutter signatures, and thus the wind speed retrieval from cross-pol observations
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is valid. Due to the limitation of the maximum wind speed is under 20 m/s, there suggests no turning
point of significant change of slope. Because of the higher incidence angle of IW2-band, this point may
occur at larger wind speed than that of IW1-band (12.3 m/s).

3.2.3. IW3-Band

The relationship between the NRCS σ0
VH and wind speeds for IW3-band is illustrated in Figure 11.

For the IW3-band, the range of incidence angles is 41–46◦. To quantify the relationship, a linear fitting
is carried out, and the results of fitting are illustrated in Table 2. For IW3-band, due to the higher
incidence angles, the NRCS σ0

VH are relatively lower. The data are scattered, and the correlation
coefficient r is very low. This observation of Sentinel-1 is consistent with [32]. Based on the data of
ASAR AP mode, compared with higher incidence angles, Vachon et al. conclude that the cross-pol
radar returns can better reflect the signatures of clutter in lower incidence angles [32]. Therefore, we
infer that for the IW3-band, the NRCS σ0

VH can not reflect the radar backscattering of ocean clutter
signatures, and the accuracy of wind retrieval can not be guaranteed in moderate wind conditions
(<20 m/s).

Figure 11. Relationship between NRCS and wind speeds for IW3-band.

3.3. Relationship between NRCS and Wind Directions

As illustrated in Section 3.1, wind speed performs more significant effects on NRCS σ0
VH than

wind direction. Therefore, to determine the dependence of NRCS σ0
VH with respect to wind direction,

the effects of wind speed should be isolated [17]. In this section, the NRCS σ0
VH are investigated for

wind speeds at 3, 5, 7, 9, 11 and 13 m/s bounded by ±1 m/s interval. The relationships between
NRCS σ0

VH and wind direction for different wind speed intervals are illustrated in Figure 12. For each
subfigure, the mean values of NRCS σ0

VH are calculated for wind directions at 0◦, 90◦, 180◦, 270◦

and 360◦ bounded by ±10◦ interval. The mean values are illustrated in Table 3. In addition, in
Figure 12, the mean values are presented in red points and connected into the red lines to show the
trend of NRCS σ0

VH variation with respect to different wind directions. Note that the range of wind
direction is [0◦, 360◦], thus the mean values of NRCS σ0

VH at 0◦ and 360◦ are calculated in [0◦, 10◦] and
[350◦, 360◦] intervals, respectively. Besides, because of the deficiency of data at 13 ± 1 m/s for [0◦, 10◦]
and [350◦, 360◦] intervals, their mean values of NRCS σ0

VH are not calculated.
From Figure 12, the dependence on wind directions is visible. The values of NRCS σ0

VH reach local
maxima at the up- and downwind directions (0◦, 180◦ and 360◦) and local minima at the crosswind
directions (90◦ and 270◦). This observation is consistent with the recent studies [14,17], which indicated
wind direction dependence for cross-pol NRCS. It should be noted that for the interval of wind
speed at 3 ± 1 m/s and 5 ± 1 m/s, the wind dependences of NRCS σ0

VH are not obvious. This can
be explained as the relatively low SNR of radar signal returns in low wind conditions, which has
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been detailed in Sections 3.1 and 3.2. Based on Table 3, the average variation between the NRCS
σ0

VH at the up-/downwind directions and the crosswind is about 1 dB for wind speed exceeds 5 m/s.
Horstmann et al. [17] indicate that the wind direction dependence decreases with the increasing wind,
and the direction dependence loses when speed exceeds 22.5 m/s. In this section, because of the limited
data in high wind condition, this observation is not presented. We will handle with this problem in the
future work.

(a) (b)

(c) (d)

(e) (f)

Figure 12. Dependencies of the NRCS on wind direction. (a–f) show wind speed intervals of ±1 m/s
at 3, 5, 7, 9, 11, and 13 m/s, respectively. The red line represents the trendline.
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Table 3. Relationship of NRCS and wind direction.

Speed

NRCS σ0
VH (dB) Direction

[0◦, 10◦] 90◦ ± 10◦ 180◦ ± 10◦ 270◦ ± 10◦ [350◦, 360◦]

3 ± 1 m/s −32.65 −33.15 −32.24 −32.59 −32.58
5 ± 1 m/s −32.10 −31.84 −32.49 −31.96 −32.67
7 ± 1 m/s −31.40 −31.63 −31.62 −32.59 −31.53
9 ± 1 m/s −31.20 −31.67 −30.36 −32.15 −31.05

11 ± 1 m/s −29.37 −30.62 −28.99 −31.12 −29.67
13 ± 1 m/s NaN −29.43 −29.32 −30.44 NaN

3.4. Summary

Based on the theoretical and empirical researches developed on RADARSAT-2, and considering
the unique characteristics of Sentinel-1 IW mode, the relationship between the NRCS σ0

VH and wind
speeds with attention to evaluate contribution from incidence angle and wind direction terms are
analyzed in Sections 3.1–3.3. After analyses, six observations are made.

1. For Sentinel-1 cross-pol images, the radar backscattering NRCS σ0
VH are fluctuated and negatively

correlated with the incidence angles.
2. For Sentinel-1 cross-pol images, the values of NRCS σ0

VH reach local maxima at the up- and
downwind directions (0◦, 180◦ and 360◦) and local minima at the crosswind directions (90◦ and
270◦). In addition, the average variation between the NRCS σ0

VH at the up-/downwind directions
and the crosswind is about 1 dB in our experiment.

3. Due to the unique TOPSAR technique for the IW mode (three sub-swaths IW1, IW2, IW3),
the relationship between the NRCS σ0

VH and wind speeds for three sub-swaths are different and
should be analyzed respectively.

4. For IW1-band, the relationship between the NRCS σ0
VH and wind speeds is monotonically linear

increase, and the slope increases with higher wind speeds. The data can be divided into three
groups. When the wind speed is lower than 8 m/s, the NRCS σ0

VH are scattered with large
variation because the radar returns are low. When the wind speed is between 8 m/s and 12.3 m/s,
the variation of the NRCS σ0

VH decreases obviously. This indicates the radar backscattering
is sensitive enough to reflect ocean clutter signatures, and thus the wind speed retrieval from
cross-pol observations is valid. When the wind speed is above 12.3 m/s, the wind speed sensitivity,
as reflected in slope, increases with higher wind speeds, suggesting the potential of Sentinel-1
cross-pol to high wind retrievals.

5. For the IW2-band, the relationship between the NRCS σ0
VH and wind speeds is monotonically

linear increase. When the wind speed is lower than 9.2 m/s, the NRCS σ0
VH are scattered with

large variation because the radar return signals are low. When the wind speed is higher than
9.2 m/s, the variation of the NRCS σ0

VH decreases obviously. The radar backscattering is sensitive
enough to reflect ocean clutter signatures, and thus the wind speed retrieval from cross-pol
observations is valid.

6. For the IW3-band, due to the higher incidence angles, we infer that for IW3-band, the NRCS
σ0

VH can not reflect the radar backscattering of ocean clutter signatures, and the accuracy of wind
retrieval can not be guaranteed in moderate wind condition (<20 m/s).

The meaning of these analyses is that by revisiting the theoretical and empirical relationship
derived from RADARSAT-2 data, we assess the Sentinel-1 IW cross-pol images, and provide a technical
evaluation on ocean wind retrieval from Sentinel-1 cross-pol images. In summary, for Sentinel-1 IW
products, the NRCS σ0

VH can better reflect the ocean clutter signatures in relatively lower incidence
angles, which is IW1-band and IW2-band, therefore are suitable for wind field retrieval when wind
speed exceeds the low boundary (8 m/s and 9.2 m/s for IW1 and IW2 band, respectively). An empirical
model based on this is proposed in the next section.
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4. Proposed Model for Sentinel-1 Cross-Pol Wind Retrieval

Based on the analyses in Section 3, we infer the NRCS σ0
VH is dependent on incidence angle, wind

speed and wind direction. Therefore, we propose a model to describe this relationship for Sentinel-1
cross-pol IW images.

σ0
VH = f1(v)(1 + ω ‖ f2(θ)‖) + C + A (6)

where σ0
VH denotes the NRCS values of radar return signals in dB, ω is defined as weight parameter,

C is the constant, f1(v) is the wind speed function which describes the relationship between the NRCS
σ0

VH and wind speed, ‖ f2(θ)‖ is the incidence angle function normalized into [−1, 1], A is to compensate
the effects of wind direction. Both f1(v) and f2(θ) are obtained from the observational data by fitting
functions. The applicable condition of the proposed model will be given in Equations (7) and (9) in
next sections.

4.1. Wind Speed Function

Based on the analyses in Section 3.2, under specific condition of incidence angles and wind speeds,
the radar return signals can be utilized to retrieve wind filed. Specifically, for IW1-band (incidence
angle between 30◦ and 36◦) and for IW2-band (incidence angle between 36◦ and 41◦), wind speed
retrievals can be performed when wind speeds exceed 8 m/s and 9.2 m/s, respectively. Base on Table 2,
the wind speed function is proposed as⎧⎪⎪⎨⎪⎪⎩

0.46 v − 34.06 (30◦ < θ ≤ 36◦, 8 < v ≤ 12.3 m/s)

0.89 v − 39.36 (30◦ < θ ≤ 36◦, v > 12.3 m/s)

0.73 v − 38.08 (36◦ < θ ≤ 41◦, v > 9.2 m/s)

(7)

4.2. Wind Direction Compensation

For Sentinel-1 cross-pol images, the values of NRCS σ0
VH reach local maxima at the up- and

downwind directions (0◦, 180◦ and 360◦) and local minima at the crosswind directions (90◦ and 270◦).
In addition, the average variation between the NRCS σ0

VH at the up-/downwind directions and the
crosswind is about 1 dB in our experiment. Therefore, for simplicity, A is empirically set according to
Equation (8) to compensate the effects of wind direction.

A =

{
0.5 (up-/downwind direction)

−0.5 (crosswind direction)
(8)

4.3. Incidence Angle Function

Based on the analyses of Section 3.1, for IW1-band (incidence angle between 30◦ and 36◦) wind
speed retrieval can be performed when wind speed exceeds 8 m/s, and the slope increase obviously
when wind speed exceed 12.3 m/s. For the IW2-band (incidence angle between 36◦ and 41◦), wind
speed retrieval can be performed when wind speed exceeds 9 m/s. Therefore, for the three subgroups
of data, 2 degree polynomial functions are employed to fitting the data, illustrated in Figures 13 and 14.
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Figure 13. Incidence angle function for IW1-band.

Figure 14. Incidence angle function for IW2-band.

The incidence angle function is proposed as⎧⎪⎪⎨⎪⎪⎩
0.13 θ2 − 8.42 θ + 103.88 (30◦ < θ ≤ 36◦, 8 < v ≤ 12.3 m/s)

0.08 θ2 − 4.86 θ + 48.97 (30◦ < θ ≤ 36◦, v > 12.3 m/s)

0.16 θ2 − 12.10 θ + 195.98 (36◦ < θ ≤ 41◦, v > 9.2 m/s)

(9)

By substituting Equations (7) and (9) into Equation (6), we get the model to describe this
relationship for Sentinel-1 IW cross-pol images. The parameters of the proposed model corresponding
to different situations are listed in Table 4. Figures 15 and 16 illustrate the performance of the proposed
model. The correlation coefficient rIW1 and rIW2 are 0.80 and 0.82 for IW1 and IW2 band, respectively,
which are improved by taking the dependence on incidence angle, wind speed and wind direction
into consideration.

106



Remote Sens. 2017, 9, 854

Table 4. Parameters for the proposed model.

Incidence Angle θ Wind Speed v (m/s) ω C

IW1-band 30–36◦ 8–12.3 −0.039 0.32
IW1-band 30–36◦ >12.3 −0.039 0.32
IW2-band 36–41◦ >9.2 −0.045 0.68

Figure 15. Estimated NRCS of the proposed model for IW1-band.

Figure 16. Estimated NRCS of the proposed model for IW2-band.

4.4. Model Validation

As introduced in Section 2.4, the testing dataset which were not used to derive Equation (6)
contains 1625 data covering full ranges of incidence angles, wind speeds and wind directions. Since the
applicable condition of the proposed model are given in Equations (7) and (9), 230 data which satisfy
this condition are selected from the testing dataset. Based on Equation (6), the retrieved wind speeds
from Sentinel-1 IW cross-pol images compared with the ASCAT measurements are illustrated in
Figure 17. The bias of the retrieved wind speed is 0.42 m/s, and the root mean square error (RMSE) is
1.26 m/s. Besides, from Figure 17, the accuracy of retrievals increases in high speed condition. For wind
speed higher than 13 m/s, the bias and RMSE are 0.38 m/s and 0.97 m/s, respectively. This may be
due to less accurate radar return signals in low-to-moderate wind condition. As Vachon and Wolf
suggested in [12], the higher noise floor is, the larger wind speed is required to guarantee the useful
radar backscattering which accurately reflect ocean clutter signatures.
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Figure 17. Comparison of the estimated wind speed with ASCAT wind speed.

In order to further demonstrate the suitability of the proposed model, a model proposed by
Shen et al. based on RADARSAT-2 ScanSAR cross-pol data is carried out for comparison [15].
Shen’s model is a two piecewise-linear function proposed as

σ0
VH =

{
0.16 × v − 28.49 (v ≤ 10.1 m/s)

0.42 × v − 30.98 (v > 10.1 m/s)
(10)

where v is the wind speed. and the two line segments meet when the wind speed is 10.1 m/s. Similarly,
we first estimate NRCS by Shen’s model and calculate the correlation coefficient rIW1 and rIW2 for IW1
and IW2 band, respectively. Then, the wind filed retrieval is carried out on same testing dataset and
the bias and RMSE are calculated. The detailed performances comparison are shown in Table 5.

Table 5. Performances of the proposed and compared model.

rIW1 rIW2 Bias (m/s) RMSE(m/s)

The proposed model 0.80 0.82 0.42 1.26
The compared model 0.73 0.68 −3.63 4.52

As we can see from Table 5, the proposed model shows better performance, for larger values of
rIW1 and rIW2 and smaller values of Bias and RMSE. In [15], Shen et al. indicate that σ0

VH show no
evident dependence on incidence angles or wind direction, therefore the model only took wind speed
into consideration, and performed very good wind retrieval ability for hurricane. In this experiment,
for moderate wind condition, the σ0

VH show dependences on incidence angles and wind directions.
Therefore, the proposed model which considers the σ0

VH dependences on incidence angle, wind speed
and wind direction performs better.

5. Discussion

5.1. Influence of Different Samples of Training and Testing Sets

Based on the 10,258 matchup data as training dataset, we analyzed the dependences of σ0
VH

with respect to incidence angles, wind speeds, and wind directions, and proposed a model for wind
retrieval. However, different sets of samples for training and testing might cause undesirable effects
on fitting results, thus the stability and performance of the model might be affected. In this section,
in order to evaluate this effect, we carried out all the experiments in Sections 3 and 4 with different
samples in training dataset and testing dataset. The results are summarized in Tables 6 and 7.
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As shown in Table 6, dataset 1 is composed of 12,058 for training and 1625 for testing, which is
employed in the former sections of this paper. Both the training and testing data cover full ranges of
incidence angles, wind speeds and wind directions. Dataset 2 is composed of 9285 for training and
2598 for testing, which is employed for comparison. Both the training and testing data cover full ranges
of incidence angles, wind speeds and wind directions. Dataset 3 is composed of 8134 for training
and 3797 for testing, which is employed for comparison. Both the training and testing data cover full
ranges of incidence angles, wind speeds and wind directions. Table 6 summarized the parameters of
the proposed model for different sets of samples. As we can observe, most of the coefficients in the
model maintain relatively stable for three different datasets. Thus, we infer that the effects of training
samples on model deriving are not significant.

Based on Equation (6), the performances of the proposed model for the three different datasets are
summarized in Table 7. For dataset 1–3, 230, 335, 917 data which satisfy the applicable condition (given
in Equations (7) and (9)) are selected from the testing dataset and performed wind field retrievals,
respectively. Table 7 summarized the performances of the proposed model for three different datasets.
As we can observe, most of the measurements maintain relative stability. Thus, we infer that the effects
of testing samples on wind retrieval are not significant.

Table 6. Parameters of the model for datasets with different training and testing samples.

Dataset Incidence Angle Wind Speed Wind Speed Function Incidence Angle Function ω C

1
30–36◦ 8–12.3 m/s 0.46 v − 34.06 0.13 θ2 − 8.42 θ + 103.88 −0.039 0.32
30–36◦ >12.3 m/s 0.89 v − 39.36 0.08 θ2 − 4.86 θ + 48.97 −0.039 0.32
36–41◦ >9.2 m/s 0.73 v − 38.08 0.16 θ2 − 12.10 θ + 195.98 −0.045 0.68

2
30–36◦ 8–12.3 m/s 0.44 v − 34.04 0.13 θ2 − 8.46 θ + 104.44 −0.039 0.32
30–36◦ >12.3 m/s 0.89 v − 39.36 0.08 θ2 − 4.86 θ + 48.97 −0.039 0.32
36–41◦ >9.2 m/s 0.72 v − 38.08 0.18 θ2 − 13.60 θ + 225.65 −0.045 0.68

3
30–36◦ 8–12.3 m/s 0.41 v − 33.54 0.13 θ2 − 8.12 θ + 98.84 −0.039 0.32
30–36◦ >12.3 m/s 0.89 v − 39.29 0.07 θ2 − 4.64 θ + 45.45 −0.039 0.32
36–41◦ >9.2 m/s 0.69 v − 37.52 0.14 θ2 − 10.80 θ + 171.85 −0.045 0.68

Table 7. Performances of the model for datasets with different training and testing samples.

Dataset rIW1 rIW2 Bias RMSE

1 0.80 0.82 0.42 1.26
2 0.82 0.82 0.49 1.14
3 0.81 0.81 0.31 1.96

5.2. Influence of Different Number of Pixels for SAR Chip

The experiments in Sections 3 and 4 are carried out on SAR chips with the size of 50 × 50 pixels
(500 m resolution). Therefore, for each matchup data, σ0

VH is calculated as the averaged value of the
NRCS of 50× 50 pixels. However, the different number of samples for average might cause undesirable
effects on fitting results, thus the stability and performance of the model might be affected. In this
section, in order to evaluate this effect, we carried out all the experiments in Sections 3 and 4 with
different number of samples for average. The results are summarized in Tables 8 and 9.

Table 8 summarized the parameters of the proposed model for different number of averaged
pixels: 25 × 25, 50 × 50 and 100 × 100 pixels. As we can observe, most of the coefficients in the model
maintain relatively stable with different pixel numbers. Thus, we infer that the effects of pixel numbers
on model deriving are not significant. Based on Equation (6), the performances of the proposed model
for different number of averaged pixels are summarized in Table 9. As we can observe, most of the
measurements maintain relatively stable. Thus, we infer that the effects of pixel numbers on wind
retrieval are not significant.
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These inferences are consistent with the observation indicated by Bergeron et al. [13], which
demonstrates the exactly same results for SAR cross-pol wind speed retrieval at 1 km and 400 m
resolution. In addition, 500 m resolution for SAR wind speed retrieval are widely used [4,5,19].

Table 8. Parameters of the model for datasets with different number of pixels.

Pixel Number Incidence Angle Wind Speed Wind Speed Function Incidence Angle Function ω C

25 × 25
30–36◦ 8–12.3 m/s 0.46 v − 34.03 0.15 θ2 − 9.91 θ + 128.95 −0.039 0.32
30–36◦ >12.3 m/s 0.92 v − 39.85 0.08 θ2 − 5.10 θ + 52.69 −0.039 0.32
36–41◦ >9.2 m/s 0.71 v − 37.91 0.18 θ2 − 13.58 θ + 225.04 −0.045 0.68

50 × 50
30–36◦ 8–12.3 m/s 0.46 v − 34.06 0.13 θ2 − 8.42 θ + 103.88 −0.039 0.32
30–36◦ >12.3 m/s 0.89 v − 39.36 0.08 θ2 − 4.86 θ + 48.97 −0.039 0.32
36–41◦ >9.2 m/s 0.73 v − 38.08 0.16 θ2 − 12.10 θ + 195.98 −0.045 0.68

100 × 100
30–36◦ 8–12.3 m/s 0.48 v − 34.27 0.13 θ2 − 8.05 θ + 97.59 −0.039 0.32
30–36◦ >12.3 m/s 0.90 v − 39.56 0.06 θ2 − 3.50 θ + 46.26 −0.039 0.32
36–41◦ >9.2 m/s 0.73 v − 38.07 0.17 θ2 − 12.40 θ + 201.72 −0.045 0.68

Table 9. Performances of the model for datasets with different number of pixels.

Pixel Number rIW1 rIW2 Bias RMSE

25 × 25 0.80 0.81 0.50 1.27
50 × 50 0.80 0.82 0.42 1.26

100 × 100 0.81 0.82 0.41 1.33

6. Conclusions

In this paper, we revisit the empirical relationships between cross-pol radar backscattering σ0
VH

and wind speeds with attention to evaluate contribution from incidence angle and wind direction
terms. The scopes of this paper are to give a technical evaluation of Sentinel-1 cross-pol images
based on the theoretical and empirical analyses derived from RADARSAT-2 data, and provide a wind
retrieval model based on Sentinel-1 cross-pol images.

In order to better understand the Sentinel-1 cross-pol NRCS values under various environmental
conditions, we construct a dataset by matching SAR winds with near coincide wind vectors from
ASCAT scatterometer. 11,883 data with 0 mm/h precipitation are utilized as training and testing data
in the following analyses.

Next, we calculate the NESZ of Sentinel-1 IW mode, and perform noise removal for all the
matchup data. Empirical relationships among the noise free NRCS σ0

VH, wind speed, wind direction,
and radar incidence angle are analyzed. The lowest boundary wind speed for retrievals is specified.

A piecewise model particularly fitting the Sentinel-1 IW mode is proposed to describe the
relationships between the NRCS σ0

VH and factors. The model is composed of the incidence angle
function, wind speed function and wind direction compensation, derived from data fitting. Compared
with the analyses of incidence angle and wind speed separately in Section 3, the larger r suggests the
necessity of taking incidence angle, wind speed and wind direction into consideration for describing
this relationship. In addition, the model is validated using 230 data. The low bias and RMSE show
the suitability of the proposed model for Sentinel-1 IW cross-pol images. Furthermore, the retrieval
accuracy of the model increases in high speed condition; for smaller bias and RMSE with higher
wind speeds. This indicates the potential of apply Sentinel-1 cross-pol images to wind retrievals in
extreme weather.

Future work involves further analyzing the Sentinel-1 cross-pol radar backscattering with
incidence angles and wind speeds in very high wind conditions. The signal saturation of Sentinel-1
cross-pol images will be further investigated, because there are not enough high-wind matchup
data available as of now. However, we expect that there will be more Sentinel-1 images covering
hurricanes/typhoons as shown in [33] in the coming years, and we will be able to validate the model
against airborne and spaceborne sensors special designed for high-wind measurements. Moreover,
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we will match Sentinel data with buoys and do more validation and modification of the model against
multiple wind products.
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Abstract: Sea surface wind affects the fluxes of energy, mass and momentum between the atmosphere
and ocean, and therefore regional and global weather and climate. With various satellite microwave
sensors, sea surface wind can be measured with large spatial coverage in almost all-weather
conditions, day or night. Like any other remote sensing measurements, sea surface wind measurement
is also indirect. Therefore, it is important to develop appropriate wind speed and direction retrieval
models for different types of microwave instruments. In this paper, a new sea surface wind
direction retrieval method from synthetic aperture radar (SAR) imagery is developed. In the method,
local gradients are computed in frequency domain by combining the operation of smoothing and
computing local gradients in one step to simplify the process and avoid the difference approximation.
This improved local gradients (ILG) method is compared with the traditional two-dimensional fast
Fourier transform (2D FFT) method and local gradients (LG) method, using interpolating wind
directions from the European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis
data and the Cross-Calibrated Multi-Platform (CCMP) wind vector product. The sensitivities to the
salt-and-pepper noise, the additive noise and the multiplicative noise are analyzed. The ILG method
shows a better performance of retrieval wind directions than the other two methods.

Keywords: local gradients method; retrieval; SAR; wind direction

1. Introduction

Surface wind field over the oceans is needed for weather forecasts, wind resources assessment,
numerical modeling of waves, oil spill monitoring, and so on [1–10]. Traditional measurements of
sea surface wind from ships, buoys and land stations are far from meeting the growing demand for
human beings, as these approaches can only provide data with limited spatial and temporal coverage.
Spaceborne microwave radiometers and scatterometers have provided global-scale observations for
sea surface wind, but the wind data in coastal regions are missing due to contamination from signal
reflection of land [11–13]. Also, the spatial resolution of radiometers or scatterometers is relatively
low (about 25 km). This is suitable for open ocean studies. However, wind fields on a much finer
scale can be provided by spaceborne synthetic aperture radar (SAR) due to its relatively high spatial
resolution. As a result, SARs can be useful tools when high-resolution ocean surface wind fields
are needed, especially in coastal regions, and the retrieval of wind field from SAR images is widely
researched [14–21].
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Many satellites have been launched with SAR onboard, e.g., Seasat, ERS-1/2, Envisat,
Radarsat-1/2, and so on [14–18]. These sensors have acquired abundant SAR images containing many
interesting features including coastal upwelling, typhoon/hurricane, atmospheric waves, atmospheric
vortex street, and so on [19–31]. Some of SAR imaged features, e.g., Langmuir cells, boundary layer
rolls, surfactant streaks, foam and water blown from breaking waves, or wind shadowing, align with
wind direction.

Wind direction (with an ambiguity of 180◦) can be retrieved from these features by different
methods including Fourier transforms, wavelet analysis, local gradients and so on. The 180◦ ambiguity
can be removed by referencing to weather model output, Doppler shift or land shadows [3,16,32].
The accuracy of various methods ranges from 15–40◦ [33]. After wind direction is obtained, wind
speed can be retrieved by physical or empirical models. Accordingly, estimating wind vectors directly
from SAR images becomes feasible [34]. Both cross-polarization and co-polarization SAR images can
be used for the retrieval of wind vectors [35–37]. There are two conventional methods of retrieving
wind directions (with an ambiguity of 180◦ which is removed later) from SAR images, namely,
two-dimensional fast Fourier transform (2D FFT) method and local gradients (LG) method [34,38,39].
In the FFT method, the Fourier spectrum of SAR images is computed and the main spectral energy is
located perpendicular to the orientation of the wind streaks. The reported standard deviations of FFT
method are between 10–37◦ and the method works fine on large image areas, e.g., 20 km by 20 km [34].
In the LG method, local gradients are computed with standard image processing algorithms, and
the orthogonal of the most frequent gradient direction is chosen to be the likely wind direction. The
reported directional error of LG method was about 20◦ for ERS-1/2 images and the most frequent
spatial sampling used was 20 km by 20 km and 10 km by 10 km [34].

The tests in [34] indicated that the LG method could provide a higher resolution of retrieved
wind field than the FFT method. However, the current LG method has a problem; that is, the local
gradients in the conventional LG method are computed with difference approximation like Sobel
operators, and this process is easily affected by noise, e.g., speckle noise. Thus, SAR images are
usually first smoothed before computing local gradients. In this study, we develop an improved local
gradients (ILG) method for sea surface wind retrieval by combining smoothing and computation
of the local gradients together in the frequency domain. In the method, the computation of local
gradients is analytical as the Gaussian function can be expressed analytically in both spatial domain
and frequency domain and it can avoid the errors of difference approximation which can be easily
affected by noise. The new method is tested on the images acquired by the advanced synthetic aperture
radar (ASAR) onboard Envisat, and its retrieved results show better agreement with both following
kinds of interpolating wind directions than the other two methods. The interpolating wind directions
from the European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis data are obtained
by interpolating the ECMWF reanalysis data to the SAR imaging times. The same procedure is applied
to the Cross-Calibrated Multi-Platform (CCMP) data to obtain the interpolating wind directions from
the CCMP data.

The remaining sections are organized as follows. In Section 2, the ILG method is described in
detail. In Section 3, the data sets used are introduced. In Section 4, we compare the three wind direction
retrieval methods using the wind directions from the ECMWF reanalysis data and the CCMP wind
products. The ILG method is also tested by using small images (thus high resolution) in this section.
The performance of each retrieval method is analyzed while the images are corrupted by different
types of noise in Section 5. Conclusions are given in Section 6.

2. Improved Local Gradients Method

The direction of the gradient should be the same as the direction of the strongest change in an
image, and an ideal image of streaks should have nearly no change along the direction of streaks, and
show the strongest variation in the orthogonal direction of streaks. Thus, the wind direction, which is
assumed to be parallel to the wind streaks [40], is also perpendicular to the direction of the gradient.
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Usually, the components of the gradient are computed with the optimized Sobel operators pixel by
pixel after smoothing, and the most frequent gradient direction is chosen to be the local wind direction.

As mentioned in the introduction, the computing method described above, however, can lead to
some problems. So, we try to combine the operation of smoothing and computation of local gradients
on the basis of a conventional LG method which is given by Koch in 2004. The smoothing of an
image can be realized by convolution, and the Gaussian function is commonly used for smoothing, as
shown in

s′(x′, y′) =
�

s(x, y) f (x − x′, y − y′)dxdy (1)

where s′(x′, y′) is the image after smoothing, and s(x, y) is the original image. f (·, ·) is the Gaussian
function for smoothing, with the form

f (x, y) =
1

2πσ2 e−
x2+y2

2σ2 (2)

where σ determines the width of smoothing window in the ILG method. The choice of the value of the
parameter is empirical, and in this paper the parameter is set to 15 for all SAR images. The benefit
of the choice of the Gaussian is that it can be expressed analytically in both spatial and frequency
domains. The gradients of the image can be expressed as

∇s′(x′, y′) = ∂

∂x′ s
′(x′, y′)êx +

∂

∂y′ s
′(x′, y′)êy (3)

where êx and êy are the unit vectors in the x and y directions, respectively. Using Equation (1)–(3) and
exchanging the order of integral and partial derivative, ∂

∂x′ s
′(x′, y′) can be expressed as

∂

∂x′ s
′(x′, y′) = −s(x, y) ∗ hx(x, y) (4)

where * denotes convolution, and hx(x, y) = ∂
∂x f (x, y). We perform Fourier transform on both sides

of Equation (4), and get

F[
∂

∂x′ s
′(x′, y′)] = −F[s(x, y)] · F[hx(x, y)] (5)

where F[·] denotes the 2D Fourier transform.
The first term on the right hand side of Equation (5) can be obtained from the Fourier transform

of the image directly. The second term, represented by Hx for convenience of expression, can be
expressed as

Hx = F[hx(x, y)] = − ikx

σ2 e−2σ2π2(k2
x+k2

y) (6)

where i indicates the imaginary part. So, ∂
∂x′ s

′(x′, y′) can be expressed as

∂

∂x′ s
′(x′, y′) = −F−1{F[s(x, y)] · Hx} (7)

where F−1[·] denotes the 2D inverse Fast Fourier transform (2D IFFT). Similarly, ∂
∂y′ s

′(x′, y′) can be
expressed as

∂

∂y′ s
′(x′, y′) = −F−1{F[s(x, y)] · Hy

}
(8)

where Hy can be expressed by Equation (9).

Hy = F[hy(x, y)] = − iky

σ2 e−2σ2π2(k2
x+k2

y) (9)
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∂
∂x′ s

′(x′, y′) and ∂
∂y′ s

′(x′, y′) are denoted as gx and gy, respectively, for convenience, so the gradients
can be stored as complex numbers in the form of

g = gx + igy (10)

Now, the gradients are in the same form as those in Koch’s LG method [34]. Figure 1 shows the
flowchart of the ILG method for wind direction retrieval. The remaining steps are consistent with those
in Koch’s method, including discarding unusable points and extracting the main gradient direction.
The 180◦ wind direction ambiguity is removed by referencing coincident wind direction from the
ECMWF model result [41].

The image acquired by the advanced synthetic aperture radar (ASAR) onboard Envisat at 02:06
on 14 October 2007 is shown in Figure 2a. Figure 2b shows the wind direction computed on a 30 km
by 30 km subimage which is indicated by red box in Figure 2a. Wind streaks are visible all over the
subimage. The white arrow (211◦) in Figure 2b indicates the wind direction computed from 75 m
pixels by using the ILG method. The wind direction from the ECMWF was 222◦, indicated by the red
arrow in Figure 2b. The wind direction from the CCMP was 225◦ (the green arrow in Figure 2b). Note
that the wind directions here are placed in the same coordinate. In this coordinate, the direction of the
northward wind vector is 0◦ (or 360◦), the direction of the eastward wind vector is 90◦, the direction of
the southward wind vector is 180◦, and the direction of the westward wind vector is 270◦.

 

Figure 1. Flowchart of the improved local gradients method for wind direction retrieval.
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(a) (b)

Figure 2. (a) An Envisat advanced synthetic aperture radar (ASAR) image acquired at 02:06 on 14
October 2007 in VV polarization with a resolution of 75 m. (b) The subimage which is indicated by
the red box in (a). White, red and green arrows indicate wind directions obtained from improved
local gradients (ILG) method, European Centre for Medium-Range Weather Forecast (ECMWF) and
Cross-Calibrated Multi-Platform (CCMP), respectively.

Hx and Hy are shown in Figure 3 in frequency domain, and their amplitudes are indicated by
different colors. The computed gx and gy of the image in Figure 2b are shown in Figure 4 in spatial
domain and different colors indicate different values of the gradient component.

 

Figure 3. The amplitude distributions of Hx (a) and Hy (b), σ is 15.
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Figure 4. Computed gx (a) and gy (b) of the SAR image in Figure 2b.

3. Data Sets

3.1. SAR Data

The wind streaks do not appear in all regions of the full-frame SAR image, so we find the wind
streak patterns in a SAR image and apply the retrieval methods to the sub-images at these locations.
After that, we can validate the retrieval results against the interpolating wind directions at these
locations. To compare the retrieved results of different methods with the CCMP products on 0.25◦ grid,
we test all methods over the 30 km by 30 km sub-images, uniformly. Finally, we acquired 62 Envisat
ASAR sub-images between 2004 and 2011. Most of the images are located between 15◦N to 35◦N and
113◦E to 129◦E. ASAR operates in the C band in a wide variety of acquisition modes. The incidence
angles of ASAR range from 15◦ to 45◦. The ASAR images used here are in VV polarization with a
spatial resolution of 75 m by 75 m in range and azimuth. Geometric calibrations are carried out by
the Next ESA SAR Toolbox provided by the European Space Agency (ESA). The distribution of wind
directions of all ASAR images used in the study is shown in Figure 5. The radius of each fan indicates
the amount of wind directions in each interval.

Figure 5. The distribution of wind directions of the images.
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3.2. ECMWF Data

The ERA-Interim is the latest global atmospheric reanalysis produced by ECMWF. The
ERA-Interim reanalysis is produced with data assimilation, advancing forward using 12-hourly
analysis cycles in time. In each cycle, available observations and prior information from a forecast
model are combined to obtain the evolving state of the global atmosphere and its underlying surface.
Thus, the data assimilation produces 6-hourly products at different spatial resolutions, which include
various kinds of global surface parameters including u and v wind components at 10 m height [42]. It
covers a long period starting in 1979 and continues updating in near real time. The detailed method for
extracting the wind direction of a specific SAR image from the ECMWF data (0.25◦) is as follows. First,
the nearest location is found by the latitude and longitude of the center of the SAR image. Then, the u
and v components at imaging time are obtained by interpolating the reanalysis data of the nearest two
times. At last, the wind direction is computed by using the u and v components from interpolation.

3.3. CCMP Data

The wind directions from the CCMP wind product are used for validation. The CCMP data
set combines cross-calibrated satellite microwave winds and instrument observations to produce
high-resolution (0.25◦) gridded analysis using a 4-dimensional variational analysis method with the
ECWMF ERA-Interim Reanalysis model wind field as a background wind. Each daily data file contains
three arrays of size 1440 (longitude) by 628 (from 78.375◦S to 78.375◦N) by 4 (times of 0, 6, 12 and 18
UTC) [9]. Two of the arrays are u and v wind components in meters per second at 10 m height. Another
array in the file is the number of observations (satellites or buoys) used to derive the wind components
for each grid and a number of observations value of zero means that the wind vector for this grid was
obtained from the background field only as no satellite or moored buoy wind data were available. We
prefer the data from satellite or instruments, so only the locations where the number of observations is
more than zero are taken into consideration. The steps for extracting the wind direction of a specific
SAR image from the CCMP data are similar to that from the ECMWF data.

4. Results and Discussion

To compare the results of different wind direction retrieval methods, the wind directions
interpolated from ECMWF and CCMP data are used, respectively. For each 30 km by 30 km
image, the interpolating wind direction was obtained by the nearest grid from the center of the
image. Furthermore, the performance of the ILG and the other two methods for small regions (e.g.,
7.5 km, 6 km and 3 km) is discussed visually. We implemented the FFT and LG method based on
algorithms described in the papers [34,38]. Therefore, we specify these methods as FFT-like method
and LG-like method to suggest that they are our implementation of the original wind direction retrieval
techniques, respectively.

4.1. Comparison with ECMWF

In this part, the wind directions interpolated from ECMWF data are used to compare the retrieved
results of different methods. Figure 6 shows the comparison between the retrieved result of each
method and ECMWF wind directions for all 62 images, and each dot represents the retrieved wind
direction and the wind direction interpolated from ECMWF data.
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(a) (b) (c) 

Figure 6. Comparison of wind directions between each retrieval method and ECMWF: (a) fast Fourier
transform (FFT)-like method, (b) local gradients (LG)-like method, (c) ILG method.

From Figure 6, we can see that the wind directions retrieved by each method are obviously
correlated with those from the ECMWF reanalysis data for these images. Table 1 shows the
root-mean-square (RMS) error, correlation coefficient (R) and p-value (p-value demonstrates whether
the two sets of data are correlated and the significance of correlation is larger when its value is smaller)
of wind direction comparisons obtained by different retrieval methods and the ECMWF reanalysis
data. In addition, if the absolute value of the angle difference between the retrieved direction and
the ECMWF reanalysis data is bigger than 90◦, the retrieved direction should add or subtract 360◦

before computing these statistics, e.g., the retrieved direction is 2◦ and the direction from ECMWF is
358◦, so the retrieved direction should be converted to 362◦. The process is similar for the computation
with the CCMP data. We can see that the wind directions retrieved by the ILG method are closer to
those of ECMWF reanalysis with the least RMS error of 21.57◦ and the largest correlation coefficient of
0.9765. In addition, the p-value of ILG method is the smallest among the three methods. These statistics
indicate that the retrieved results of the ILG method are the closest to the ECMWF reanalysis data
among the three methods. By the way, the directional error of LG method in Koch’s paper is 17.6◦ for
ERS-1/2 images, but there are no details about how to obtain the value. In fact, the validation results
could be affected by several factors (e.g., the ground truth data, difference of different SAR sensors). In
our study, we tested the different methods using ASAR images and the ECMWF (or CCMP) data, in
order to compare their performances fairly. As a result, the statistics are different.

Table 1. The results of general statistics between wind directions obtained by different retrieval
methods and ECMWF reanalysis data for 62 images.

FFT-Like Method LG-Like Method ILG Method

RMS(◦) 30.22 36.10 21.57
R 0.9344 0.9314 0.9765

p-value 1.38 × 10−28 4.30 × 10−25 1.03 × 10−41

4.2. Comparison with CCMP

We prefer the CCMP data with observations (satellites or buoys), and we matched up SAR images
with the CCMP data which have observations. Finally, 22 images are matched. Figure 7 shows the
comparison between the results of each method and CCMP wind directions for all matched images.
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(a) (b) (c) 

Figure 7. Comparison of wind directions between each retrieval method and CCMP: (a) FFT-like
method, (b) LG-like method and (c) ILG method.

From Figure 7, we can see that the wind directions retrieved by each method show an obvious
correlation with those from CCMP data for the matched images. Table 2 shows the results of statistics
between wind directions obtained by each retrieval method and CCMP for these matched images. We
can see that wind directions retrieved by the ILG method is the closest to the CCMP data with the least
RMS error of 21.61◦ and the largest correlation coefficient of 0.9771. The p-value of ILG method is also
the smallest. Consequently, the wind directions retrieved by the ILG method are the closest to CCMP
data among the three methods.

Table 2. The results of general statistics between wind directions obtained by different retrieval
methods and CCMP data for 22 images.

FFT-Like Method LG-Like Method ILG Method

RMS(◦) 25.41 36.65 21.61
R 0.9659 0.9413 0.9771

p-value 3.29 × 10−13 6.92 × 10−11 6.55 × 10−15

4.3. Discussion

The wind directions discussed above are retrieved from 30 km by 30 km images with a spatial
resolution of 75 m in both range and azimuth. To test the performance of the ILG method in small
regions, wind directions of the example image in Figure 2b are computed on 7.5 km, 6 km and 3 km
grids, respectively. The other two retrieval methods are also carried out on the same grids. Figure 8
shows the results of the three retrieval methods of the image on different grids. Yellow, magenta and
cyan arrows indicate wind directions retrieved by the FFT-like, LG-like and ILG methods, respectively.
The general wind direction of the image is from upper right to lower left. On the three kinds of grids
in Figure 8, the retrieved results of the FFT-like method does not work well, and the retrieved results
of the LG-like and ILG methods agree well with the streaks in the most areas. However, the retrieved
results of the ILG method show better agreement with the streaks than that of the ILG method on the
grids where the retrieved results of the two methods differ, visually. Another ASAR image acquired at
00:45, 25 March 2005 in VV polarization with a spatial resolution of 75 m was also tested. The image
was along the coastal area of Iwate Prefecture, Japan. Figure 9 shows the image and the retrieved
results of the three methods on 7.5 km, 6 km and 3 km grids, respectively. Yellow, magenta and
cyan arrows indicate the wind directions retrieved by the FFT-like method, LG-like and ILG methods,
respectively. From the SAR image, it can be seen that the general wind blows from upper left to lower
right. From Figure 9a–c, we can see that the retrieved wind directions of the LG-like and ILG methods
show better agreement with the streaks in most regions than the results of the FFT-like method. The
retrieved wind directions of the ILG method still agree better with the general wind direction than the
other two methods at the bottom of the image with the influence of the land.
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(a) (b) (c) 

Figure 8. Wind directions retrieved by the three methods from 75 m pixels on different grids of the
ASAR image in Figure 2b: (a) 7.5 km grid, (b) 6 km grid, (c) 3 km grid. Yellow, magenta and cyan
arrows indicate wind directions retrieved by the FFT-like, LG-like and ILG methods, respectively.

 
(a) (b) (c) 

Figure 9. Wind directions retrieved by the three methods on different grids of the ASAR image
acquired at 00:45, 25 March 2005 in VV polarization: (a) 7.5 km grid, (b) 6 km grid, (c) 3 km grid.
Yellow, magenta and cyan arrows indicate wind directions retrieved by the FFT-like, LG-like and ILG
methods, respectively.

We have tried to match all the ASAR sub-images we have with buoys, but none are matched.
However, a Radarsat-2 image is matched with the buoy (46073) of National Data Buoy Center (NDBC).
The Radarsat-2 image was acquired at 17:58, 11 February 2011 in VV polarization, and it was reduced
to 80 m by 80 m. A region (32 km by 32 km) where the wind streaks are visible was cut out to perform
the test. Figure 10 shows the results of the three retrieval methods of the sub-image on different grids
(8 km, 6.4 km and 3.2 km), and the buoy is marked as a green dot in the SAR image. Again, the yellow,
magenta and cyan arrows indicate wind directions retrieved by the FFT-like, LG-like and ILG methods,
respectively. The wind direction (263◦) measured by the buoy is indicated by the green arrow. From
Figure 10, it can be seen that the retrieved wind directions of the LG-like and ILG methods agree better
with the wind direction measured by the buoy than the FFT-like method. From Figure 10c, it can be
seen that the retrieved results of the LG-like and ILG methods agree with each other in most regions,
but the retrieved results of the ILG method show better agreement with the streaks than that of the LG
method, especially at the edges of the SAR image.
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(a) (b) (c) 

Figure 10. Wind directions retrieved by the three methods on different grids of the Radarsat-2 image
acquired at 17:58, 11 February 2011 in VV polarization: (a) 8 km grid, (b) 6.4 km grid, (c) 3.2 km grid.
Yellow, magenta and cyan arrows indicate wind directions retrieved by the FFT-like, LG-like and ILG
methods, respectively. The buoy (46073) is marked as the green dot and the in situ measurement is
indicated by the green arrow.

5. Sensitivities to Different Noise

In the conventional LG method, the local gradients are computed using difference operators
(e.g., Sobel operators), which is easily affected by noise. However, the ILG method does not need any
difference approximation. Therefore, the sensitivities of the three retrieval methods to different types
of noise are analyzed, including the salt-and-pepper noise, the additive noise and the multiplicative
noise. It is assumed that there is no noise in the original SAR images before they are corrupted by
the noise in the tests. Figure 11 shows the image corrupted by different noise, taking the image in
Figure 2b as an example. For a specific kind of noise with a specific intensity, the RMS of a specific
method was calculated from the differences between the retrieved results of the 62 corrupted images
by the method and those interpolated from the ECMWF data. After we calculate the RMS differences
of the method for different intensity, we get the RMS curve of the method with respect to intensity
for the kind of noise. The RMS curves are used to compare the sensitivity of each method. The same
procedure was done for the 22 images matched with CCMP data.

5.1. Salt-and-Pepper Noise

Figure 12 shows the RMS differences between each of the three retrieval methods and interpolating
wind directions of ECMWF or CCMP data when the salt-and-pepper noise exists in each image with
different intensities. The intensity of the salt-and-pepper noise is decided by the percentage of
contaminated pixels in the image. It is obvious that the quality of wind direction retrieval roughly
decreases with the increase of noise level. The curve of the ILG method is below the curves of the other
two methods in Figure 12a,b. It indicates that the ILG method can achieve better retrieved results
than the other two methods comparing with ECMWF (or CCMP) data when the salt-and-pepper
noise exists.

123



Remote Sens. 2017, 9, 671

 

 

Figure 11. The image in Figure 2b is corrupted by each kind of noise: (a) salt-and-pepper noise (10% of
contaminated pixels), (b) additive noise (SNR is −10 dB), (c) multiplicative noise (variance of n’ is 0.4),
(d) speckle noise.

 
(a)

 
(b)

Figure 12. Root-mean-square (RMS) differences between the retrieved results of each method and
the interpolating wind directions when the salt-and-pepper noise exists with different intensity:
(a) ECMWF and (b) CCMP.
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5.2. Additive Noise

The additive noise is added to the image I using the equation

J = I + n (11)

where n is the Gaussian white noise with zero mean and a specific variance. As mentioned above, it is
assumed that there is no noise in the original SAR images before they are corrupted by the noise in the
tests. Therefore, the signal-to-noise ratio (SNR) of an image corrupted by noise can be considered as
the ratio of the variance of the original image and the variance of n. The intensity of the noise is lower
when the SNR is larger. Figure 13 shows the RMS differences between the results of the three retrieval
methods and interpolating wind directions when the images are corrupted by the additive noise with
different SNR. We can find that all curves decline with increasing SNR, roughly. Furthermore, the ILG
method can achieve better retrieved results than the other two methods comparing with ECMWF (or
CCMP) data when the additive noise is present.

 
(a) 

 
(b) 

Figure 13. RMS differences between the retrieved results of each method and the interpolating wind
directions when the additive noise exists with a different signal-to-noise ratio (SNR): (a) ECMWF and
(b) CCMP.

5.3. Multiplicative Noise

The multiplicative noise is added to the image I using the equation

J = (1 + n)I (12)

where n is uniformly distributed random noise with zero mean and a given variance. The multiplicative
noise intensity is decided by the given variance. The noise intensity increases with the increase of
the variance. Figure 14 shows the RMS differences between the results of the three retrieval methods
and interpolating wind directions while the multiplicative noise changes with different variance.
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The retrieved results of the three methods become worse roughly while the noise becomes greater.
However, the ILG method always gives better retrieved results than the other two methods when the
multiplicative noise is present comparing with ECMWF (or CCMP) data.

 
(a) 

 
(b) 

Figure 14. RMS differences between the retrieved results of each method and the interpolating wind
directions when the multiplicative noise exists with different variance: (a) ECMWF and (b) CCMP.

The speckle noise is a kind of multiplicative noise as well, but the equation used to add the speckle
noise to the image I is a little different from Equation (12), which can be described as:

J = nI (13)

where n is the noise with an exponential distribution whose expectation and variance are 1, as the
SAR intensity images are corrupted. The RMS difference of each method between retrieved results of
the images corrupted by this noise and wind directions obtained from the ECMWF (or CCMP) data
is shown in Table 3. From Table 3, it can be seen that the retrieved results of the corrupted images of
each method become worse than the results in Tables 1 and 2, as the speckle noise affects the retrieved
results. However, the retrieved results of the corrupted images by the ILG method are better than the
other two methods comparing with ECMWF (or CCMP) data when the speckle noise exists.

Table 3. The RMS differences between retrieved results of each method of the images corrupted by the
speckle noise and wind directions obtained from the ECMWF (or CCMP) data.

FFT-Like Method LG-Like Method ILG Method

ECMWF 46.73◦ 45.29◦ 37.06◦
CCMP 46.39◦ 42.14◦ 37.19◦
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Form the analysis above, it can be found that the sensitivity of the ILG method to each kind of
noise is lower than the other two methods.

6. Conclusions

In this study, the conventional LG method was improved by using the new approach to compute
the local gradients. With the new approach, we can avoid the difference approximation which can be
easily affected by noise. Comparing with ECMWF and CCMP data, we found that the RMS difference
of the ILG method is smaller (about 15◦) than the FFT-like and LG-like methods. The correlation
coefficient of ILG method is the largest (about 0.98) among the three methods, suggesting that its
retrieved results fit the ECMWF and CCMP data better than the other two methods. The ILG method
could retrieve wind directions from small images (thus high resolution) with the tests on different
grids, and the retrieved results of the ILG method on small grids (e.g., 3 km) agree better with the wind
streaks than the other two methods. When the SAR images containing both sea and land portions
are processed, the ILG method still can work well. Furthermore, the sensitivity of the ILG method to
different noises is lower than the other two methods, as the new method can avoid the use of difference
approximation operators. All of these indicate that the ILG method is feasible.
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Abstract: High-resolution synthetic aperture radar (SAR) wind observations provide fine structural
information for tropical cycles and could be assimilated into numerical weather prediction (NWP)
models. However, in the conventional method assimilating the u and v components for SAR
wind observations (SAR_uv), the wind direction is not a state vector and its observational error is
not considered during the assimilation calculation. In this paper, an improved method for wind
observation directly assimilates the SAR wind observations in the form of speed and direction
(SAR_sd). This method was implemented to assimilate the sea surface wind retrieved from Sentinel-1
synthetic aperture radar (SAR) in the basic three-dimensional variational system for the Weather
Research and Forecasting Model (WRF 3DVAR). Furthermore, a new quality control scheme for
wind observations is also presented. Typhoon Lionrock in August 2016 is chosen as a case study to
investigate and compare both assimilation methods. The experimental results show that the SAR
wind observations can increase the number of the effective observations in the area of a typhoon and
have a positive impact on the assimilation analysis. The numerical forecast results for this case show
better results for the SAR_sd method than for the SAR_uv method. The SAR_sd method looks very
promising for winds assimilation under typhoon conditions, but more cases need to be considered to
draw final conclusions.

Keywords: SAR; sea surface wind; assimilation; observational error; typhoon

1. Introduction

Sea surface wind is the primary power source for atmospheric movement over the ocean
surface [1] and remarkably affects the air-sea exchange process. Tropical cyclones (TCs), storm surges,
and many other severe ocean conditions are driven by the sea surface wind. However, the usual
measurements of sea surface wind observations from the buoys and ships are scarce and distributed
irregularly. The observations for bad weather are often far away from ships on limited routes, and
especially, there are few observations of high precision and resolution in the area of TCs. The lack of
observations regarding the initial analysis in the TC model would greatly reduce the accuracy of the
TC forecast.

In recent years, microwave remote sensing instruments such as microwave scatterometers and
synthetic aperture radar (SAR) have been used to retrieve sea surface wind fields [2–4]. Although the
scatterometer observes the ocean surface with wide coverage [5], the spatial resolution of scatterometers
is 12.5~25 km and the accuracy of scatterometers’ measurements of winds is low in coastal regions [6].
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However, the SAR observations are of high spatial resolution [7–9], and these data can provide very
detailed information on the structure of tropical cyclones [10]. The accuracy of sea surface wind data
retrieved from SAR is also comparable with scatterometer data [11,12], and these wind fields can
be used with a data assimilation system to provide the initial conditions for the numerical weather
prediction (NWP) model [13]. Some researchers have tried to adopt the SAR observations in the
assimilation system. Danielson designed a plan to assimilate SAR wind information in Environment
Canada’s high-resolution three-dimensional variational (3DVAR) analysis system [14]. Perrie et al.
assimilated the SAR derived wind, which captured Hurricane Isanbe’eye, and found that the analysis
from the experiment provided new information about Isabel’s central region [15]. Choisnard et al.
assessed the quality of a marine wind vector retrieved from the variational data assimilation of SAR
backscatter observation and inferred that wind direction information from wind streaks could be of
interest to add some wind direction sensitivity [16].

The SAR derived wind products are in the form of the wind speed (spd) and the wind direction
(dir). In current data assimilation systems, including the Weather Research and Forecasting Model Data
Assimilation system (WRFDA), the input wind products are transformed to a longitudinal component
(u wind) and a latitudinal component (v wind). Then, u and v are used in the assimilation calculation
as the vectors for wind observations [17]. In this conventional method, dir is not a state vector and can
not influence the analysis directly. Furthermore, the impact of the dir observational error on u and v is
ignored. This will cause large errors in the u and v assimilation, especially when the wind observations
are largely different from the background wind, e.g., during typhoon events [18]. In fact, for SAR wind
retrieval, the wind speed is derived from the radar sea surface backscattering signal, while the wind
direction is usually extracted from wind-aligned patterns on SAR imagery [10]. Consequently, the
spd and dir errors of SAR observations are independent, and the dir observational error should not be
ignored in the wind data assimilation.

Recently, a novel method to assimilate the wind observations has been proposed by Huang et al.,
which directly assimilates spd and dir based on the transformation of the state vectors u and v to spd
and dir by the observation operator [18]. Gao et al. further tested this method in the experiments for
the satellite-derived Atmospheric Motion Vectors (AMV) and the surface dataset in the Meteorological
Assimilation Data Ingest System (MADIS) [19]. However, the quality control process is ignored for the
ideal observations in these studies, and the derived values of u and v were not checked together in
the quality control stage, even though they were derived from a single wind vector. In this study, an
improved method is proposed based on Huang et al., which can assimilate the SAR wind data under
typhoon conditions. A new quality control scheme is also presented. The proposed methods are tested
and compared with the traditional methods within the WRF/3DVAR framework for the prediction of
Typhoon Lionrock (2016). The impact of assimilation of SAR sea surface winds on the typhoon track
and intensity will be examined using different methods.

The rest of the paper is organized as follows. In Section 2, we introduce the sea surface wind
retrieval method, the assimilation methods, and the quality control scheme. The numerical model and
experiment setup are described in Section 3. The experimental results are compared and discussed in
Section 4. The conclusions are presented in Section 5.

2. Data and Methodology

2.1. SAR Wind Retrieval

On 3 April 2014, the European Space Agency (ESA) launched the C-band Sentinel-1A satellite.
They acquired the first Sentinel-1 typhoon image in the northwest Pacific on 4 October 2014 [20].
Sentinel-1 provides free and open SAR data for ocean, land changes, and emergency response
applications, and the data have been utilized in research for hurricane/typhoon studies [21–23].
Sentinel-1 has four operational modes, i.e., Strip Map Mode, Interferometric Wide Swath Mode,
Extra-wide Swath Mode, and Wave Mode. Sentinel-1 has selectable single polarization (VV, vertical
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transmit and vertical receive or HH, horizontal transmit and horizontal receive) for the Wave Mode
and selectable dual polatization (VV + VH, vertical transmit and horizontal receive or HH + HV,
horizontal transmit and vertical receive) for all other modes. In this study, an Extra-wide Swath Mode
dual polarization (VV + VH) SAR image is used to derive the sea surface wind map of Typhoon
Lionrock (as shown in Figure 1). Its swath is 400 km, and its spatial resolution is 25 × 100 m.

Figure 1. Windfield retrieved from Sentinel-1A synthetic aperture radar (SAR) Extra-wide Swath Mode
data on 29 August 2016 at 08:32 UTC. (A) Sea surface radar backscattering map; (B) the SAR derived
sea surface wind map.

The raw data of Sentinel-1 observations are first calibrated to give the Normalized Radar
Cross-section (NRCS), which expresses the radar return signal per unit area and depends on the instant
wind stress over the ocean surface and the radar viewing geometry. The Geophysic model function
(GMF) is used for SAR wind retrieval and here a C-band geophysical model function (CMOD-5) [24]
is used to convert the calibrated NRCS measurement to sea surface winds. The general form of the
GMF is:

σ0 = M(U, ϕ, θ; p, f ) (1)

where σ0 is NRCS; U is the wind speed at 10 m; ϕ is the wind direction with respect to the radar look
direction; θ is local incidence angle; p is the method of polarization; and f is the frequency of the
incident radar wave. As shown in Equation (1), the wind speed retrieval from SAR requires a priori
information about the wind direction as the SAR is only capable of observing each point on the ocean
surface from a single look angle. This wind direction information is usually obtained from in situ
measurements, numerical model outputs, or SAR imagery. For the typhoon wind field, there are wind
streaks in SAR imagery, and the wind direction can be extracted from this image pattern. In this study,
a method called Discrete Wavelet Transform (DWT) is chosen to derive the sea surface wind direction.
The details of the DWT methods can be found in Du et al., 2002 [25] and Zhou et al., 2013 [26]. In the
SAR wind retrieval, the heavy rain has been filtered out.
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2.2. Data Assimilationof SAR Sea Surface Winds

Data assimilation provides initial conditions to atmospheric models by concentrating on searching
for a solution that minimizes simultaneously the distance between observations and the background
and the distance between the initial guess variables and the analysis variables [27]. In the three
dimensional variational data assimilation (3DVAR) framework, the initial conditions are the best
estimations obtained through the minimization of a cost function based on Bayes theory [28], defined as:

J(x) = Jb + Jo =
1
2
(x − xb)

T B−1(x − xb) +
1
2
[y − H(x)]T R−1[y − H(x)] (2)

Here, Jb is the background term and describes the misfit between the model state variable x
and the background state xb, which is derived from short-range forecast. Jo is the observation term,
describing the misfit between the observation vector y and the vector equivalent to the model state
variable, which is projected to the observation space by the observation operator H [29,30]. B and R
are the background and observational error covariance matrices, respectively, and both are assumed
Gaussian distributions. The superscripts T and −1 denote the inverse and adjoint, respectively.

Since the state vectors for wind observations in the assimilation system are u and v, the
conventional method (referred as SAR_uv) assimilates the u and v wind derived from the initial
observation of spd and dir. The impact of dir errors on the uncertainly of u and v is not considered
during the assimilation process, and the dir errors have no independent influence on the assimilation
results. A new method (referred as SAR_sd) proposed by Huang et al. [18] can directly assimilate
spd and dir. In this method, the state vectors u and v need to be converted into spd and dir by the
observation operator H, then the observation vector y contains the variables spo and diro, as below:

ysd = (· · · , spo, diro, · · · )T (3)

Assuming the observation vector only contains the wind observation, the observation term Jo can
be written as:

Jo =
1
2

(
spo − spb

σo
sp

)2

+
1
2

(
diro − dirb

σo
dir

)2

(4)

Here, spb and dirb are the wind speed and direction from the background, respectively, and σo
sp

and σo
dir are the observational errors for wind speed and direction, respectively. By this method, the

observational error of wind direction is considered for the wind observations. The details of this
method were described in Huang et al. [18].

2.3. Observation Quality Control Scheme

Wind observations may carry many kinds of errors such as the error from the instruments,
the error from the retrieval method, and so on. Adequate quality control can filter out spurious
observations from the data assimilation system and obtain a more accurate field. The observation
quality control process is usually verified by the observation innovation and the observation errors [31].
In the WRFDA system, when the observation innovation is greater than five times the observation
error, the observation is rejected [32], as shown in the Equation (5):

|d|> 5σ (5)

Here, d is the observation innovation and σ is the observational error. The observation innovation
is derived by subtracting the background by the observation, as shown in the following equation:

d = y − H(xb) (6)
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For spd, if the observation error is 2 m/s, then when the spd innovation is larger than 10 m/s,
the observation is rejected. The same is for u and v. For dir, make a definition that the observation
difference is inv, and:

inv =
∣∣∣diro − dirb

∣∣∣ (7)

Here, diro is the dir observation and dirb is the dir background. Then the dir observation innovation
is defined as below: {

d = inv i f inv ≤ 180◦

d = 360◦ − inv i f inv > 180◦
(8)

For example, if dirb = 0◦, diro
1 = 30◦, and diro

2 = 330◦, then the observation innovation is 30◦ for
both diro

1 and diro
2. If the dir observation error is 20◦ and the dir innovation is greater than 100◦, then

the dir observation is rejected. In this study, a dir observation error of 20◦ is applied, and a wind speed
error of 2 m/s is applied for u, v, and spd.

There are two different quality control methods for the two components in the single wind vector,
both for u and v in the SAR_uv assimilation or for spd and dir in the SAR_sd assimilation. As in
most assimilation systems, including WRFDA, the assumptions are widely used that the errors for
different state variables are independent and that the quality controls for different state variables
are independent [33]. Here we refer to the method that indicates that the quality control for the two
components in one single wind vector is independent as Quality Controlled alone (QC_al). However,
the two components u and v are not observed independently and are calculated from one wind vector.
For the spd and dir observations, sometimes they are independent, like the spd measured by the rotating
cup anemometer in most operational 10-m synoptic observation stations while the dir is observed
by a vane, and sometimes they are dependent, like the Atmospheric Motion Vectors (AMV) derived
from satellite imagery. If the two components are not observed independently, they should be quality
controlled together. Here we refer the method that indicates that two components in one single
wind vector are checked by each other during the quality control as Quality Controlled corporately
(QC_co).To discuss the two methods of quality control, one wind vector from the background (BKG)
and four observation wind vectors are presented in Figure 2, and the values for all five vectors are
detailed in the Table 1. In this figure, BKG is represented by a blue arrow, and the red arrows represent
four different examples of observations. For SAR_sd assimilation, if we use the QC_co method for
quality control, only observation 1 (OBS1) and observation 2 (OBS2) of the four observations are
accepted in dir quality control, as their wind direction innovations are less than 100◦, like all the
observations distributed in the right hand angle between the green boundary lines Boundary1 and
Boundary2, but OBS2 is rejected in spd quality control as the spd innovation is larger than 10 m/s.
Finally, only OBS1 remains in the quality control. If we use the QC_al method, OBS2 can keep the dir
observation, while the spd observation is rejected, and observation 3 (OBS3) and observation 4 (OBS4)
can keep the spd observations, but the dir observations are rejected. For SAR_uv assimilation, the
direction error is not considered. If the QC_co method is applied, OBS1 and OBS4 are kept, OBS2 is
rejected as the v innovation is larger than 10m/s, and the OBS3 is rejected with u innovation larger than
10 m/s. If the QC_al method is applied, OBS2 can keep u wind and OBS3 can keep v wind. The results
are concluded in Table 2.

From the discussion above, we conclude that, in SAR_uv assimilation, no matter which quality
control method is adopted, observations like OBS4 filling in the left angle of the two green boundary
lines could be assimilated, which may result bad analysis. If using the QC_al method, SAR_uv
assimilation will reject all the observations with high speed such as v of OBS2 and u of OBS3, only
keeping the u or v speed close to the background.
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Figure 2. Diagram of background wind vector BKG and the observation wind vectors (OBS1, OBS2,
OBS3, and OBS4) used to present the difference between thequality control procedures, QC_co and
QC_al, of SAR_uv (standard assimilation method in theWeather Research and Forecasting Model Data
Assimilation system (WRFDA), assimilating SAR wind observation in the form of u and v components)
and SAR_sd (new assimilated method, assimilating SAR wind observation in the forms of wind speed
and direction).

Table 1. The detail value of the background and four kinds of observations.

Wind Vectors Spd (m/s) Dir (◦) U (m/s) V (m/s)

BKG 4.61 30 4.00 2.31
OBS1 8.00 60 4.00 6.93
OBS2 14.62 110 −4.99 13.74
OBS3 6.80 150 −5.89 3.40
OBS4 5.60 210 −4.85 −2.80

Table 2. The remaining components after quality control for the two assimilation methods.

Observation
Types

SAR_sd SAR_uv

QC_co QC_al QC_co QC_al

OBS1 spd, dir spd, dir u, v u, v
OBS2 - dir - u
OBS3 - spd - v
OBS4 - spd u, v u, v

3. Case Study—Typhoon Lionrock of 2016

3.1. Description of Typhoon Lionrock

Typhoon Lionrock was the tenth named storm in 2016. It was a powerful, long-lived, severe
tropical cyclone and caused remarkable flooding and casualties in North Korea and Japan [34].
After forming as a hybrid disturbance located about 585 km to the west of Wake Island on 15 August,
it moved southwestward and intensified into a typhoon, then moved northeastward and became a
super typhoon. On 29 August, Lionrock weakened and moved on an unprecedented path towards
the northeastern region of Japan. Right before weakening into a severe tropical storm at 0900 UTC
on 30 August, Lionrock made landfall near Ōfunato, a city in Iwate Prefecture. After landing, the
center of the Lionrock cluster intensified, moving further to the northwest as a Pacific storm at the rare
70 to 80 km per hour. After just a few hours, Lionrock swept northeast of Japan and moved again into
the Sea of Japan at noon on the day. This makes Lionrock the first tropical cyclone to make landfall
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over the Pacific coast of the Tōhoku region of Japan since the Japan Meteorological Agency began
record-keeping in 1951. Lionrock transformed to be a tropical storm at the night of 31 August and
landed again in the vicinity of Vladivostok, Russia. It continued moving westward, turned into a
temperate cyclone on 1 September, and was last noted on 2 September in the Jilin Province, China.

3.2. Experimental Design

Three groups of experiments are designed to investigate the impact of SAR wind data in
three-dimensional variational system for the Weather Research and Forecasting Model (WRF 3DVAR).
These runs are referred to as the basic control experiment (CNTL) without observations, the SAR_uv
experiment assimilating u and v, and the SAR_sd experiment assimilating the SAR wind speed and
direct retrievals. The background fields were derived from a WRF simulation, which was integrated
from 0000 UTC 28 August 2016 for 24 h, and the National Centers for Environmental Prediction (NCEP)
final (FNL) analysis data was adopted in the WRF model. All the groups of experiments used the
same background field. The analysis time for data assimilation was 0900 UTC 29 August 2016. In the
SAR_uv and SAR_sd experiments, the assimilation window was 6 h, and the SAR observations were
sounded at about 0830 UTC 29 August. After the assimilation, the analysis field was inputted to the
WRF forecast model and run from the analysis time for 33 h. The input wind speed of the observations
was checked to be less than 25 m/s and thinned to be 15 km. In both cases, 23,207 wind vectors were
inputted. After quality control, only 327 wind vectors were accepted; 22,880 wind vectors were rejected
in the SAR_sd case, and, in the SAR_uv case, 2896 wind components (u and v wind) were accepted and
20,311 wind vectors were rejected. The accepted observations for the two cases are plotted in Figure 3.
The details of the three experiments are provided in Table 3.

(a) (b)

Figure 3. The accepted observtion wind vectors in the (a) SAR_sd and in the (b) SAR_uv experiments.
The blue points are the wind vectors.

Table 3. Details of the three experiments.

Experiment Data Operator Quanlity Controll Accept Obs. Reject Obs.

CNTL - - - - -
SAR_uv u and v componets UV operator QC_co 2896 20,311
SAR_sd spd and dir SD operator QC_co 327 22,880

3.3. Model Description

The WRF model developed by the United States National Centers for Environmental Prediction
was used in this study, and the 3DVAR version 3.5 was used as the basic assimilation system for the
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SAR observations [29]. The UV operator and the SD operator were implemented in the 3DVAR system
for the assimilation of the SAR UV wind and SD wind retrievals, respectively. The WRF 3.8 version
was run as the forecast model.

Various physical parameterization schemes are developed in the non-hydrostatic WRF model for
the researchers to choose properly in order to simulate the atmospheric structures. The major physical
options in our experiments include the WRF Single-Moment 3-class (WSM3) microphysics scheme [35],
the Kain-Fritsch (KF) convective parameterization [36], and the Yonsei University (YSU) boundary
layer scheme [37]. The domain of the WRF 3DVAR analysis and the WRF model simulation has
260 × 250 grid points, and the center of the domain is located at 30.0◦N, 135◦E (as shown in Figure 4).
The horizontal resolution is 15km, and the vertical levels are 51 in the WRF model framework; the
no-nesting method is utilized, and the Terrian-following coordinate (σ-coordinate) [38] at the top of
the model atmosphere was located at 10 hPa. The SAR observed the area covering the center of the
typhoon, and the structure of the wind field around the typhoon center can be seen clearly in Figure 1.
Like the wind retrieval from the scatterometer observations, the SAR wind retrieval with speeds over
25 m/s also exhibits larger errors and is considered to be less reliable; the SAR wind retrieval with
speeds less than 25 m/s is used in the assimilation.

 

Figure 4. The domain area for theWeather Research and Forecasting (WRF) model simulation.
The corverage of SAR observations is shownin the red frame.

4. Experimental Results

4.1. Wind Analysis at 10 m

To investigate the impact of the assimilation of SAR sea surface wind observations on the wind
analysis at 10 m by the two different assimilation methods, the NCEP FNL data at 0900 UTC 29 August
is used as the true wind field as the FNL data at the time of analysis time is of high accuracy [39].

Figure 5 shows the wind fields at 10 m at 0900 UTC 29 August 2016. The Figure 5a,b, show the
wind fields at 10 m from the NCEP FNL data and from the background field, respectively. The center
of the typhoon in the FNL data is at 142◦E, 32◦N, while the typhoon center in the background is further
north than the location in the FNL data. It can be seen from Figure 5a that the typhoon center of the
real wind field is basically symmetrical and the wind field in the typhoon revolves around the typhoon
center in the reverse clock direction. Compared with the real wind field, the center of the typhoon in
the background field from Figure 5b is not obviously symmetrical. The direction of the wind field
around the typhoon center is also counter-clockwise, but the strength simulation was significantly
weaker than the real wind field. Moreover, the vortex structures and the pressure are very different in
the two panels.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. The 10m wind field at 0900 UTC 29 August 2016 from (a) the NCEP FNL data in (b) the
background field; the wind analysis field at 10m from (c) SAR_sd and (d) SAR_uv. The bottom two
panelsare the analysis bias derived from the analysis subtracting the FNL data for (e) SAR_sd and
(f) SAR_uv. The red frames mark the area of the SAR wind observations. Note the different spatial
scales of (e,f) as compared to (a–d).
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The Figure 5c,d, are the wind analysis at 10 m from the SAR_sd and SAR_uv, respectively.
The tropical centers in both analysis fields are very close to the location in the FNL data. The wind
fields from two analysis experiments are close to the real wind field. The wind field structure and
the intensity of the typhoon in both assimilation analysis fields are basically consistent with those
of the typhoon wind field. The observation data of the assimilated SAR can effectively adjust the
background field and provide an accurate wind field at 10 m for the forecasting model. However,
the pressure intensity in the typhoon center from the SAR_uv is slightly lower than that for the true
field. The typhoon structure in the SAR_sd analysis is more symmetrical than the SAR_uv analysis.
The spatial pressure distribution in SAR_sd is similar to the true wind field (Figure 5a), and the wind
field in SAR_sd is also close to the true wind field. These results indicate that the analysis field from
the SAR_sd experiment is closer to the FNL truth.

The Figure 5e,f are the analytical deviation at 10 m in the center of typhoon from the SAR_sd and
the SAR_uv experiments, respectively. The red diamond region represents the area covered by the
SAR observations. The analysis deviation is derived from the true field subtracted by the analysis.
The smaller the analysis deviation, the more accurate the analysis field is. In the red frames, most of
the arrows in Figure 5e are shorter than the arrows in Figure 5f; this indicates that the magnitude of the
wind speed deviation of SAR_sd is smaller than that of SAR_uv. We can infer that the wind speed of
the SAR_sd analysis is closer to the real wind speed; even the direction deviation is sometimes the same
as the real wind field and sometimes contrary to the real wind field. A clockwise wind field orientation
in Figure 5e,f indicates that the wind speed is underestimated, whereas a counter-clockwise wind
field orientation indicates that the wind speed is overestimated. Almost all the wind direction of the
deviation of SAR_uv is opposite to the real wind field, indicating that the wind speed is underestimated.
However, comparing this with the observation bias outside the observation coverage area, it can be
found that the impact of the analysis bias of SAR_sd is spread beyond the observation range and the
deviation in both the left and right sides of the observation area is relatively large. The assimilation of
SAR observations by the method to assimilate spd and dir can have a good influence in the observation
area, and it may have some negative effects out of the periphery of the scanning area. This also can
be seen in the northeastern side of the typhoon center on the right side of the SAR observation area
in Figure 5c, where the wind speed and wind direction are significantly different from the real wind
field. The impact of the analysis of SAR_uv is small both inside and outside of the periphery of the
observation area, but it is not negative out of the periphery of the observed coverage area.

4.2. Analysis Bias at Different Height

To assess the impact of the SAR sea surface wind observations on the analysis in of the vertical
height of a typhoon, the analysis biases of wind speed for SAR_sd and SAR_uv at 10 m at 850 hPa,
700 hPa, 500 hPa, and 300 hPa are investigated. The analysis bias is derived from the true field
subtracted by the analysis, and the NCEP FNL analysis at the analysis time is used as the true field.

The top two panels are the analysis bias of the wind speed at 10 m. There is an area of bias of
−6 to −2 m/s in SAR_sd, and the area of bias is significant smaller than the area of SAR_uv out of
the periphery of the TC. Generally the minimum bias of −2 to 2 m/sis the dominance area of the
two panels, and this kind of area in SAR_sd is larger than in SAR_uv. These results indicate that the
analysis by SAR_sd at 10 m is more accurate than that of SAR_uv. The middle two panels show the
analysis bias of wind speed at 850 hPa. Figure 6c shows that, although there is an area of analysis bias
of SAR_sd lower than −10 m/s in the northeast of the TC center, the bias is small in the southwest
of the TC center, where many SAR sea surface wind observations exist. There is a large area of bias
of −6 to −2 m/s in the west of the periphery of the TC from SAR_sd; this indicates that, in this area,
the wind speed of SAR_sd is slower than the true wind field. Figure 6d shows there is a large area
of analysis bias of −10 to −6 m/s just around the TC center from SAR_uv. There is a large area of
analysis bias of 2 to 6 m/s in the periphery of the TC from SAR_uv, indicating that the wind speed is
larger than the true wind field in this area for SAR_uv. Figure 6e,f show the analysis bias of wind speed
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at the 700 hPa for SAR_sd and SAR_uv, respectively. The two panels are similar, the main bias is −2 to
2 m/s, the lower bias is more from SAR_sd, and the higher bias is more from SAR_uv. The results at
500 hPa and 300 hPa are almost the same; the figures are not shown.

(a) (b)

 
(c) (d)

(e) (f)

Figure 6. The analysis bias the SAR_sd (left panels) and the SAR_uv (right panels) at (a,b) 10 m at
(c,d) 850 hPa, and at (e,f) 700 hPa.
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4.3. Analysis Increment for Different Analysis Parameters

The results described above show that the analysis of SAR_sd is closer to the NCEP FNL data;
it is more accurate than the analysis of SAR_uv. We can investigate the analysis increment to derive
some verification for the two types of SAR wind observations. The larger the analysis increment is, the
more improvement brought by the observations, as both assimilation experiments were based on the
same background and literal boundary conditions.

Figure 7 presents the average root mean square error (RMSE) of the analysis increment for both
the SAR_sd and SAR_uv experiments. The analysis of u wind, v wind, temperature, and relative
humidity is described in Figure 7a–d, respectively. The results from Figure 7a,b are almost the same.
It can be seen that the SAR wind observations improved u and v analysis mainly from the surface to
450 hPa. Above 450 hPa, the analysis increment is nearly 0 and the information on u and v comes from
the background. For the analysis of both u and v, the RMSE increment of the two experiments reached
the maximum at 950 hPa. For the Figure 7c,d, it can be seen that the analysis increment exists in the
whole vertical layer for both temperature and relative humidity. The maximum RMSE exists between
850 hPa and 800 hPa, and the RMSE of temperature is smaller than that of relative humidity. Generally,
from the four panels, the results show that the RMSE from SAR_sd is larger than the RMSE from
SAR_uv; this indicates the assimilation of spd and dir has larger improvement than the assimilation of
u and v for the same SAR sea surface wind.

 

Figure 7. Root mean square error (RMSE) profiles of the analysis increments from the SAR_sd
experiment (round point) and the SAR_uv experiment (triagle piont) for (a) u wind, (b) v wind,
(c) temperature, and (d) relatively humidity.

141



Remote Sens. 2017, 9, 845

4.4. Forecast Results

To verify how the assimilation of SAR sea surface wind affects the TC forecasts, the forecast
skills of the track, the track error, the minimum sea level pressure (MSLP) error, and the absolute
maximum wind speed error were assessed by comparing the forecasts from the SAR_sd and SAR_uv
experiments with the CNTL experiment in Figure 8. The ‘best track’, minimum sea level pressure, and
absolute maximum wind speed data for Typhoon Lionrock are obtained from the China Meteorological
Administration (CMA).

 
(a) (b)

(c) (d)

Figure 8. For Typhoon Lionrock: (a) 33h track forecast initialized at 0900 UTC August 2016; (b) mean
absolute track errors; (c) mean absolute maximum wind speed errors; (d) minimum sea level pressure
as a function of forecast lead time.

Figure 8a shows the 33 h track forecasts of Lionrock initialized at 0900 UTC 29 August 2016.
The best track positions from CMA are the blue line. The forecast tracks from the two SAR observation
experiments agree better with the best track than that of the CNTL experiment, especially the track
forecast from SAR_sd experiment after the 9 h forecast. The SAR sea surface wind prevented the track
forecast from moving clearly westward too fast, even though SAR_sd moved westward in the first 9 h.
All the predicted tracks moved faster than the best track. Generally, the track forecast from SAR_sd
was closer to the best track than the track forecast from SAR_uv, and the landfall position in Japan
from SAR_sd was closest to the position from the best track.

Mean absolute track error, MSLP error, and mini and absolute maximum wind speed error as a
function of forecast range for Lionrock are shown in Figure 8b–d. We found that the track errors of
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SAR_uv and CNTL are almost the same, and they consistently increase, excepting the 15 h and 18 h
forecast. The track error of SAR_sd is smaller those that of SAR_uv and CNTL, excepting the first 3 h,
and is basically within 100km. The time after the 24 h forecast is the landing time for Lionrock; the track
error from SAR_sd is about 45 km and is the smallest in the whole forecast time. The positive impact
on the track forecast lasted for 27 h in SAR_sd, but the track error increases after 27 h. The MSLP
error from SAR_sd is almost less than 5hPa for the whole forecast time, excepting the time after the
21 h forecast, and reached the minimum after the 9 h forecast even though it is the largest in the first
9 h compared with CNTL and SAR_uv. The maximum wind speed bias of SAR_sd is smaller than
that of SAR_uv and CNTL during the forecast time 5~15 h and 20~25h. However, the bias from all
three experiments is larger than 22 m/s, which may be related to the lack of perfection of the model
itself [40].

5. Discussion and Conclusions

This study investigates the impact of SAR sea surface wind observations assimilated in the
WRFDA system under typhoon conditions. The method to assimilate the wind speed (spd) and the
direction (dir) was implemented in the WRFDA system and was compared with the conventional
method, which assimilates the u and v wind components. The sea surface wind observations from
the satellite-derived C-band Sentinel-1SAR were assimilated, and observational errors in the quality
control were discussed for the two forms of wind state vectors. NCEP FNL analysis and reanalysis
data distributed by the CMA were used to test and validate both assimilation methods.

Compared with the CNTL experiment, only the SAR sea surface wind observations in the center
of the typhoon were assimilated in this study, but the results show that the SAR wind observations
improved the analysis of Typhoon Lionrock in terms of the whole vertical height, and the improvement
is significant below the height of 450 hPa, especially near 850 hPa, where the maximum improvement
was reached. The assimilation of the SAR sea surface wind not only improved the analysis of wind
but also improved the analysis of temperature and relative humidity. The SAR sea surface wind
observations with a high resolution improved the depiction of the dynamic and thermodynamic vortex
structure, especially by the method of the assimilation of spd and dir, which resulted in a reasonable
observational error of dir, rather than the method of the assimilation of u and v wind without the
consideration of the impact of dir. In the experiments, SAR_sd brought the TC environment fields
closer to the NCEP FNL and observations and produced better analyses and forecasts for Typhoon
Lionrock, compared with SAR_uv, using the same background and lateral boundary.

In this study, the SAR sea surface observations increase the number of effective observations in the
typhoon area. However, many observations were still excluded after the thinning of the observations.
This is because NWP systems run at low spatial resolutions, which is typically at 10 to 50 km resolution,
and the high-resolution SAR data should be thinned to be compatible with the data assimilation
system. The next generation data assimilation system with high resolution designed for limited
area models could benefit from assimilating nearly full-resolution SAR data and could improve the
typhoon forecast.

The strict QC_co method was applied for both kinds of assimilation methods to assimilate more
accurate observations. The QC_co method was applied to the methods of assimilating u and v wind,
but many wind vectors like the OBS4 in Figure 2 were still accepted after the quality control, and these
observations may reduce the impact of the analysis. In addition, dir was derived independently from
spd for satellite-derived SAR sea surface wind observations. It is likely that the QC_co method is too
strict for the method of assimilating spd and dir to accept the most useful observations. For example, in
the Typhoon Lionrock case, the wind vectors with huge but appropriate spd were rejected because the
dir could not pass the quality control. The wind speed and wind direction are separately derived from
SAR observations, and their errors are independent. Thus QC_al could be suitable for the method
of assimilating spd and dir, and larger thresholds with more than five times the innovation could be
applied for the wind dir for this procedure. Further investigation of the quality control schemes for
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SAR-derived winds should be studied in the future. The numerical forecast results for this case show
better results for the SAR_sd method than for the SAR_uv method. The SAR_sd method looks very
promising for wind assimilation under typhoon conditions, but more cases need to be considered to
draw final conclusions.
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Abstract: Observations of sea surface wind field are critical for typhoon prediction. The scatterometer
observation is one of the most important sources of sea surface winds, which provides both wind
speed and wind direction information. However, the spatial resolution of scatterometer wind is low.
Synthetic Aperture Radar (SAR) can provide a more detailed wind structure of the tropical cyclone.
In addition, the cross-polarization observation of SAR can provide more detailed information of
high speed wind (>25 m·s−1) than the scatterometer. Nevertheless, due to the narrow swath of SAR,
the number of retrieved sea surface wind data used in the data assimilation is limited, and another
limitation of SAR wind observation is that it does not provide true wind direction information.
In this paper, the joint assimilation of the Advanced Scatterometer (ASCAT) wind and Sentinel-1
SAR wind was investigated. Another limitation in the current operational typhoon prediction is the
inefficient quality control (QC) method used in the data assimilation since a large number of high
speed wind observations was rejected by the traditional Gaussian distribution QC. We introduce the
Huber norm distribution quality control (QC) into the data assimilation successfully. A numerical
simulation experiment of typhoon by Lionrock (2016) is conducted to test the proposed method.
The experimental results showed that the new quality control scheme not only greatly increases
the availability of wind data in the area of the typhoon center, but also improves the typhoon track
prediction, as well as the intensity prediction. The joint assimilation of scatterometer and SAR winds
does have a positive impact on the typhoon prediction.

Keywords: tropical cyclone; scatterometer wind; SAR wind; data assimilation; quality control;
Huber norm

1. Introduction

The demand for more accurate predictions of tropical typhoons is increasing in order to minimize
losses and destruction. One primary objective is to enhance the observation targeting and observability
of cyclones. Satellite observations can effectively compensate for the shortcomings of traditional
methods of sea surface measurement and provide all-weather observation over the sea surface,
which is of great significance to improve the numerical prediction of strong convective weather
in the marine area. The spaceborne scatterometer observes the backscattering caused by the sea surface
roughness, and then, the sea surface wind can be retrieved. ASCAT is one of the instruments carried
on-board the Meteorological Operational (Metop) polar satellites launched by the European Space
Agency (ESA) and operated by the European organization for the exploitation of Meteorological
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Satellites (EUMETSAT) [1]. Its operating frequency is C-band (5.255 GHz), so the effects of clouds and
precipitation in the observation are small. ASCAT has two swaths, and each has a scanning width of
550 km. It can achieve a daily quasi-global coverage.

Scatterometer data were first used in a numerical weather forecasting operational system in
1996, when the European Center for Medium-Range Weather Forecasts (ECMWF) incorporated ERS-1
(European remote sensing satellite) scatterometer data into its global three-dimensional variational
system [2]. Previous works have shown that scatterometer data have significant impacts on weather
forecasting and climate monitoring [3–10]. Especially, it has been demonstrated useful in the prediction
of tropical cyclones [5] and extratropical cyclones [4]. ASCAT surface wind data have been used in
many forecasting operational organizations such as the ECMWF, the United Kingdom’s National
Weather Service (Met Office), the National Weather Service of France (Meteo-France) and Environment
Canada. In July 2009, the Japan Meteorological Agency (JMA) began to use ASCAT data for the
global spectrum model (GSM) and found that the ASCAT wind can capture the development of the
low pressure system and improve the prediction precision. Hersbach (2010) pointed out that the
neutral wind retrieved by ASCAT had a positive effect on the ECMWF forecasting system [11]. In 2011,
Li evaluated the role of the ASCAT wind in the global data assimilation system of the NCEP (National
Centers for Environmental Prediction), and the results showed that ocean surface wind of ASCAT has
a positive effect on the forecast of wind and temperature [1].

Spaceborne SAR systems are an important data source for sea surface monitoring. In 1978,
the United States of America launched the first synthetic aperture radar satellite SEASAT. Since then,
many countries have begun to carry out the study of the spaceborne SAR system vigorously. Most of
the systems used the single-band, single polarization imaging radar systems in the early stage, such as
ESA’s ERS-1/2, Canada’s Radarsat-1, and so on. At the beginning of the 20th Century, the spaceborne
SAR system was developed into multi-band, multi-polarization and multi-mode. The Envisat satellite
launched by ESA in 2002, with the multi-polarization interferometric imaging model, is widely used in
natural disaster monitoring and resource and environmental survey. The launch of the Japanese ALOS
(Advanced Land Observing Satellite) in 2006 aimed to provide full polarimetric SAR data. The launch
of the COSMO-SkyMed (Constellationof small Satellites for the Mediterranean basin Observation)
satellite in 2006 by Italy made the satellite resolution increase to 3m or even 1m. In 2007, Germany
launched the TerraSAR-X satellite with a revisit cycle of 11 days, which greatly improved the coherence
of interference data. Canada’s Radarsat-2 satellite has been able to provide full polarimetric image with
high-resolution since 2007. The Sentinel-1 was launched by ESA in April 2014 to provide data services
for more users with its wide range of multi-mode, multi-application features. The Sentinel-1 carries
a single C-band synthetic aperture radar instrument operating at a center frequency of 5.405 GHz.
Its extra-wide (EW) swath mode data can cover a wide area of 400 km at a medium resolution of 20 m
by 40 m on the ground. It also has the capability of dual polarization, a short revisit cycle and rapid
productization. Using pre-programmed, conflict-free operation mode, the Sentinel-1 can track and
monitor a typhoon center dynamically.

A variety of meteorological hydrological elements can be retrieved by SAR observation, and it
has been widely used in data assimilation in recent years. The first attempt to sequentially assimilate
ESA’s ERS SAR estimations of surface soil moisture was conducted in 2003 [12]. Matgen, P.
(2010) presented a new concept for the sequential assimilation of SAR-derived water stages into
coupled hydrologic-hydraulic models [13]. Scott, K. A. (2015) investigated the assimilation of binary
observations calculated from SAR images of sea ice [14]. Phan, X. V. (2014) introduced a variational data
assimilation scheme coupling TerraSAR-X radiometric data with the snowpack evolution model Crocus,
and the results indicated that X-band SAR data can be taken into account to modify the evolution of
snowpack simulated by Crocus [15]. Pichelli, E. (2015) developed a technique to retrieve integrated
water vapor from interferometric synthetic aperture radar (InSAR) data, and the computation of
statistical indices shows that the InSAR assimilation improves the forecast of weak to moderate
precipitation [16]. Advanced Synthetic Aperture Radar (ASAR) wide swath data were used to measure
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soil moisture by [17], and they have sufficient resolution to allow soil moisture variations due to local
topography to be detected, which helps to take into account the spatial heterogeneity of hydrological
processes. Another important use of SAR is the monitoring of typhoons and the study of typhoon
structure [18–24]. Many studies have also been carried out about the retrieval of ocean winds from
SAR image [25–28], the and estimation of the retrieved wind shows that the SAR wind has an ideal
accuracy [29–32]. However, the use of SAR-retrieved wind in numerical weather forecasts is a relatively
new area, especially for typhoon prediction.

Quality control of observation is an indispensable process for data assimilation [33]. It ensures that
the wrong observations are removed before assimilation, which would otherwise result in inaccurate
analysis [34]. In general, the deviation of background (b) and observation (o) is used as a basis for
evaluating the quality of the data. It is generally believed that the observation error distribution
satisfies the Gaussian distribution, assuming that the background error is a Gaussian distribution,
and then, the distribution of deviation should also be satisfied with the Gaussian distribution. However,
according to the statistical results, the distribution of deviation for many observations does not
strictly follow the Gaussian distribution. The traditional Gaussian distribution QC method carries
out strict threshold control by the magnitude of the deviation. However, large deviation between
the observation and background does not mean that the observation is wrong. In extreme weather
conditions, observation and background tend to have a larger deviation, and the use of traditional
Gaussian distribution QC will result in rejection of a large number of effective observations. In fact,
the deviation often complies with a Huber norm distribution [35,36]. In 2009, the Huber norm-based
QC method was applied to both the deterministic and ensemble forecasting system at ECMWF, but only
for conventional observations. Unlike traditional QC methods, this method takes appropriate weights
based on the magnitude of deviation from the observation and background, making it possible to
utilize more observations. Based on the Huber norm QC scheme, this paper calculates the transition
point of the Huber norm distribution and adjusts the weight of the observation error for the wind data.

In this paper, a data assimilation scheme is proposed to jointly use SAR and scatterometer retrieved
winds in the Weather Research and Forecasting (WRF) model. The improved Huber norm QC method
is also introduced. Following this Introduction, a brief description of the ASCAT scatterometer wind
and the Sentinel-1 SAR wind is given in Section 2. Section 3 introduces the detailed scheme of the
Huber norm QC. In Section 4, we use a numerical simulation experiment of the typhoon Lionrock case
to test the proposed method. Finally, the conclusion is given in Section 5.

2. Retrieved Wind of Scatterometer and SAR

2.1. ASCAT Wind

Two sets of three antennas are used in the ASCAT to generate radar beams looking 45 degrees
forward, sideways and 45 degrees backwards with respect to the satellite’s flight direction, on both
sides of the satellite ground track. For each wind vector cell (WVC), ASCAT obtains three independent
backscatter measurements using the three different viewing directions, separated by a short time
delay. Then, the surface wind speed and direction can be obtained by using these ‘triplets’ within
a geophysical model functions (GMF). The wind product we used in the paper is obtained through the
processing of scatterometer data originating from the ASCAT instrument of EUMETSAT’s Metop-B
satellite with a resolution of 12.5 km. Figure 1 shows the ASCAT wind field of the center of the typhoon
“Lionrock” at 9 a.m. on 29 August 2016. However, the wind field does not cover a complete typhoon
eye due to the limitation of the ASCAT swath.
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Figure 1. ASCAT wind field of typhoon “LionRock” with a resolution of 12.5 km.

2.2. SAR Wind of Satellite Sentinel-1

There exists an undisclosed problem for the retrieval of wind through SAR observation, that is
one SAR observation corresponds to numerous wind speed and wind direction solutions through the
geophysical model function (GMF). To solve the problem of SAR wind inversion, new information,
which can be obtained from the SAR image itself or from the numerical forecast model or buoy
observation data, must be added. In this paper, the wind direction information used for the
wind inversion of Sentinel-1 SAR data comes from interpolation of the numerical forecast model
(NCEP/GFS), and then, the wind speed can be retrieved by using the C-2PO (C-band Cross-Polarization
Ocean) GMF [37].

In this study, a Sentinel-1A EWswath mode dual-polarization (VV/VH) SAR image is used to
retrieve sea surface wind speed (see Figure 2). Its overpass time was 20:36:44 UTC on 29 August 2016.
The observation using VV polarization can get a good signal to noise ratio (SNR) in the low speed
wind conditions, and the accuracy of the retrieved wind is high. However, either the scatterometer nor
the SAR observation using VV polarization are sensitive to the physical feedback of the sea surface
under high speed wind conditions (wind speed greater than 25 m·s−1), and the detection signal
would reach a level of saturation. In other words, the effective range of the wind speed inversion for
scatterometer and SAR observation with VV polarization is limited to 25 m·s−1. The SAR observation
using VH polarization is sensitive to high speed wind conditions, and it can retrieve the wind speed
greater than 25 m·s−1, but the SNR is low under low speed wind conditions. As shown in Figure 2b,
VH polarization observation of the typhoon region can get more high speed wind information, but there
is a large amount of noise in the non-high speed wind region.

In order to combine the advantages of two kinds of polarization modes, we use a simple linear
weighted method to composite these two retrieved wind fields. The main idea is that more weight is
given to the VV polarization retrieved wind when the wind speed (we use the vVV as the reference
wind speed) is less than 25 m·s−1, on the other hand, more weight for the VH polarization retrieved
wind when the wind speed is greater than 25 m·s−1. The specific expression is as follows:

vS =

⎧⎪⎨⎪⎩
(1 − λ1) · vVV + λ1 · vVH if vVV ≤ 25 m·s−1

(1 − λ2) · vVV + λ2 · vVH if vVV > 25 m·s−1, and 25 m·s−1 < vVH < 35 m·s−1

vVH if vVV > 25 m·s−1, and vVH ≥ 35 m·s−1
(1)
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where vVV ,vVH and vS represent VV polarization wind speed, VH polarization wind speed
and synthetic wind speed, respectively; λ1 and λ2 are the linear functions of the wind speed,
where λ1 ∈ [0, 0.5], λ2 ∈ [0.5, 1]. The setup of λ1 and λ2 makes sure that the VV polarization retrieved
wind gets more weight when vVV ≤ 25 m·s−1 and the VH polarization retrieved wind gets more
weight when vVV > 25 m·s−1. As shown in Figure 2c, the synthesized wind field not only preserves
the low speed wind information of VV polarization observation, but also introduces the high speed
wind information of VH polarization observation.

Compared to the ASCAT wind field, the SAR wind field has a higher resolution, so that a fine
typhoon structure can be demonstrated. It can also be seen from the figure that there are still some
discontinuities among different radar beams in the SAR wind field. However, we can see later that
these discontinuities can be removed by thinning the observations.

(a) (b) (c)

Figure 2. SAR wind field of satellite Sentinel-1 in the typhoon “Lionrock” region with a resolution of
500 m (the arrows here are thinned for clarity): (a) retrieved wind using VV polarization observation;
(b) retrieved wind using VH polarization observation; (c) synthetic wind combined with VV and VH
polarization retrieved wind.

2.3. Joint Wind Field

In order to obtain a complete typhoon wind field, we combine the ASCAT wind field with the
Sentinel-1 SAR synthetic wind field. First, we thin the two wind fields to 25 km by sampling to
accommodate the needs of the assimilation system. For the ASCAT wind field with a resolution
of 12.5 km, we just need to sample every two winds from both zonal and meridional directions.
Additionally, we sample every 50 winds for SAR synthetic wind field with a resolution of 500 m.
Then, the overlapped winds of the SAR synthesis wind field with the ASCAT wind field are removed.
Since the swath of the SAR synthetic wind field is smaller than that of the ASCAT and has no real
wind direction information, it is mainly used as a complement to the ASCAT wind field. The joint
wind field is illustrated in Figure 3, which forms a complete wind observation of typhoon “Lionrock”.
It can also be seen from the figure that the discontinuities among different radar beams in the SAR
wind field are greatly eliminated by the thinning process.
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Figure 3. Joint wind field of typhoon “Lionrock” with a resolution of 25 km.

3. Huber Norm Distribution QC

3.1. Gaussian Distribution QC Scheme

The traditional Gaussian distribution QC assumes that the deviation between observation and
background satisfies the Gaussian distribution. Since observation with a big deviation will cause the
instability of the assimilation process, the observation that goes into the assimilation process should be
strictly controlled. In the Gaussian distribution QC, observation that satisfies (o − b)2 < α2(σ2

o + σ2
b )

can be received by the assimilation system, where σo and σb represent the standard deviation of the error
of observation and background error, respectively (it should be noted that observation errors inside
the assimilation system are different from the errors of observation here). In the assimilation system
we used in this study, α is set to five, which means observation with deviation more than five-times
the observation error was rejected. However, in extreme weather conditions, although observation
and background tend to have a large deviation, it does not mean that the observation has a gross error,
since the background sometimes also has large errors. Most of the high speed wind observation using
the traditional Gaussian distribution QC were rejected before the assimilation, as shown in Figure 4,
which shows the joint typhoon wind field after the traditional Gaussian distribution QC. In this

paper, the magnitude of the observation error is defined as 2 m·s−1 (namely,
√
(σ2

o + σ2
b ) = 2 m·s−1).

It can be seen that QC using the Gaussian distribution can cause a large number of observations to
be unusable in typhoon center areas, while these observations often contain key information of the
typhoon structure.

The actual situation is that the deviation between observation and background does not strictly
follow the Gaussian distribution, as shown in Figure 5, which demonstrates the deviation distribution
of the u, v component of the joint wind field and its best Gaussian fitting curve. In the figure, the true
distribution of the u component deviation shows a very obvious asymmetry, and the Gaussian curve
does not fit the distribution well. In addition, it can be seen from the figure that there is a certain bias
between the joint wind field and the background, so it is necessary to undertake the bias correction
process before assimilation (the cause of the bias correction was not analyzed in this study).
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(a) (b)

Figure 4. Gaussian distribution QC of the joint wind field during assimilation, where x represents
the magnitude of the deviation (x = o − b), and the black dots indicate the rejected observations:
(a) u component; (b) v component.

(a) (b)

Figure 5. Best Gaussian fit to the observation deviation distribution: (a) u component; (b) v component.

3.2. Huber Norm Distribution QC Scheme

3.2.1. Definition of Huber Norm

Research shows that the Huber norm distribution is more consistent with the deviation
distribution of the actual observations (Tavolato and Isaksen, 2014). The Huber norm uses
a combination of the Gaussian distribution with an exponential distribution, where the Gaussian
fit is used for the middle part of the distribution, while the exponential fit is used on both sides, as
shown in the equation:

f (x) =
1

σo
√

2π
· e−

ρ(x)
2 (2)

where:

ρ(x) =

⎧⎪⎪⎨⎪⎪⎩
x2

σ2
o

if |x| ≤ c

2c|x| − c2

σ2
o

if |x| > c
(3)
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In the assimilation system, x = y − H(xb), where y represents the observation, xb is the
background field, H is the observation operator and σo represents the observation error. c is the
transition point where the Gaussian fitting curve connects with the exponentially fitting curve, that is
where the Gaussian fitting curve ends and the exponential fitting curve begins. This definition ensures
that the derivative of the function f and f itself are continuous. Since the distribution of the deviation
is not strictly symmetrical, the left transition point cL of the function can be different from the right
transition point cR, and different parameter values are selected according to the type of observation.

3.2.2. Calculation of the Optimal Transition Point

Before calculating the transition point of the Huber norm fitting curve for the joint wind field,
it is necessary to correct the bias of the observation (this is not discussed in detail here). The Huber
norm fitting curve is mainly determined by the parameters σo, cL, cR, where σo is known, and cL, cR
can be calculated separately. For the calculation of the transition point, it is usually done by searching
the value between interval [0.0, 5.0] with a given step size of 0.1 [38], where the optimal value of the
transition point is the one that has the minimum misfit error between the data distribution and the
given Huber norm fitting curve. For each (cL, cR) pair, the misfit between the Huber norm curve and
the data distribution is defined as:

M(cL, cR) =
n

∑
i=1

(
Ni

Nsum
− Si

S f
)2 (4)

where Ni is the population in range bin i and Nsum is the number of all data, Si is the integration in
range bin i and S f is the integration of function f (x) with the specific Huber distribution (since f (x) is
a density function, so its integration S f equals one).

For the u, v component of the joint wind field, we calculate the transition points of the Huber norm
distribution for them separately. The optimal Huber norm fitting curve is shown in Figure 6, where the
optimal left and right transition point values of the u component are (1.4, 1.2), and the optimal left
and right transition points of the v component are (0.6, 0.8). It can be seen from the figure that the
Huber norm curve can better fit the distribution of observation deviation compared to the Gaussian
fitting curve.

(a) (b)

Figure 6. Best Huber norm fit to the observation deviation distribution: (a) u component; (b) v component.

3.2.3. Definition of Observation Weight

The traditional Gaussian distribution QC scheme gives full weight to the observation satisfying
the condition (o − b)2 < α2(σ2

o + σ2
b ). For the Huber norm distribution QC scheme, the main purpose

is to give a more reasonable weight to the observation. Observation with a smaller deviation to the
background is given a larger weight, while observation with a bigger deviation is given a smaller

154



Remote Sens. 2017, 9, 987

weight. By this mean, it makes sure that observation with a big deviation can still affect the final
analysis, while ensuring the stability of the assimilation process.

The cost function of the QC for a single observation is [39]:

JQC
O = −1

2
ln( f (x)) = ρ(x) + const (5)

For the weight attached to a single observation, the value of the weight is given by the ratio of
JQC
o to its cost function under the Gaussian assumption, namely:

W =
JQC
o

JGaussian
o

(6)

When |x| < c (or −cL ≤ x ≤ cR),

W =
2 ln(σo

√
2π) + (

y − h(xb)

σo
)2

2 ln(σo
√

2π) + (
y − h(xb)

σo
)2

= 1 (7)

When |x| > c (or x < −cLorx > cR),

W =

2 ln(σo
√

2π)− c2

σ2
o
+

2c|y − h(xb)|
σ2

o

2 ln(σo
√

2π) + (
y − h(xb)

σo
)2

(8)

Since |x| > c,
(c − |x|)2 = c2 − 2c|y − h(xb)|+ (y − h(xb))

2 > 0 (9)

which is:
(y − h(xb))

2 > −c2 + 2c|y − h(xb)| (10)

we can conclude that W < 1, that is to say, it reduces the weight of observation when the deviation
drops out of the transition point.

Figure 7 shows the weight assigned to observation using the Gaussian distribution QC scheme
and the Huber norm distribution QC scheme. As shown in the figure, the observation whose deviation
drops between the two transition points is given equal weight, while the weight of others is reduced
by the ratio of JQC

o to its cost function under the Gaussian assumption.

(a) (b)
Figure 7. The corresponding weights after applying the variational QC. Red line: Gaussian distribution;
blue line: Huber norm distribution: (a) u component; (b) v component.
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4. Assimilation Experiments

4.1. Experimental Setup

In this study, we select typhoon Lionrock (2016) as a numerical example, which was generated in
the Northwest Pacific at 2000 UTC 19 August 2016, in the vicinity of (33.1° N, 141.4° E). The center’s
maximum wind speed was about 18 m·s−1, and its pressure was about 994 hPa. Lionrock weakened
to an extratropical cyclone on 31 August. The the Weather Research and Forecasting model data
assimilation system (WRFDA) developed by the National Center for Atmospheric Research (NCAR)
[40] is adopted in this study. The WRFDA system is a widely-used operational system that can produce
a multivariate incremental analysis in the WRF model space [41]. The grid size of the assimilation
region is 260 × 250; the horizontal resolution is 15 km; and the vertical discretization is 30 layers.
The time of assimilation is based on the time window of the joint wind field of the typhoon region,
which was 0900 UTC 29 August 2016. The NCEP FNL (Final) Operational Global Analysis data are
used as the initial field and boundary conditions. This product is on one-degree by one-degree grids
prepared operationally every six hours. It is from the Global Data Assimilation System (GDAS), which
continuously collects observational data from the Global Telecommunications System (GTS) and other
sources, for many analyses. We take the 21-h forecast adjustment from 1200 UTC 28 August 2016 to
0900 UTC 29 August 2016 as the background field of the assimilation system. After the assimilation,
a 30-h forecast is made, which is a forecast to 1500 UTC 30 August 2016.

In this study, a set of assimilation and comparison experiments is carried out. The assimilation
experimental design is shown in Table 1, in terms of the QC scheme (traditional QC and Huber norm
QC) and observation types (SAR wind, ASCAT wind and joint wind). The control experiment is just
a forecast of the background field without assimilation. The purpose of Experiments 1, 2 and 4 is to
show if the assimilation of joint wind improves the analysis compared to the single wind type scheme,
while the aim of Experiments 3 and 4 is to show if the Huber norm method gives a better result than
the traditional QC scheme.

Table 1. Data assimilation experimental design.

Experiment Name QC Scheme Observation Type

1 Huber norm distribution QC SAR wind
2 Huber norm distribution QC ASCAT wind
3 Gaussian distribution QC SAR + ASCAT wind
4 Huber norm distribution QC SAR + ASCAT wind

4.2. Experimental Results and Discussion

We take the FNL data at the analysis time as the reference (close to the truth, but not the real truth)
and to see the analysis errors (analysis minus reference) of different experiments. Figure 8 gives the
analysis errors of the pressure field of different experiments at the 10-m height of the center area of
typhoon Lionrock at the analysis time. We still see some big analysis errors of different experiments
in the typhoon center; however, the joint wind assimilation using the Huber norm distribution QC
has the minimum analysis errors of pressure field compared to the others. An accurate initial field
(the analysis is used as the initial field for the forecast) is crucial to a good numerical forecast, as can be
seen in the following forecast results.

Figure 9a shows the observed typhoon path and forecasted typhoon paths of different experiments.
It is apparent that the location of the typhoon center based on different QC schemes is very close to the
control experiment (with no assimilation of the scatterometer wind) at the time of the assimilation,
and this may due the defect of the position algorithm of the typhoon center. However, the forecasted
typhoon paths of wind assimilation all show some improvement compared to that of the control
experiment. The time indicators in Figure 9a demonstrate that the joint wind assimilation using the
Huber norm distribution QC has the best forecasted path. In order to better compare the accuracy
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of the assimilation experiments with the typhoon moving path, Figure 9b gives the error of the
forecasted typhoon path. As Figure 9 shows, with an increase in forecast time, the typhoon path error
of most of the assimilation experiments becomes obviously smaller than that of the control experiment.
The experiment with SAR wind, however, shows some large errors after a forecast of 27 h, mainly
because that SAR wind alone contains no new direction information of wind, and the amount of data is
quite small after thinning to a resolution of 25 km. We get the benefit from the joint assimilation of SAR
wind and ASCAT wind comparing to the assimilation of a single type of wind, and it improves the
typhoon forecasted path using the Huber norm distribution QC compared to the Gaussian distribution
QC scheme.

(a) (b)

(c) (d)

Figure 8. Pressure error of the center area of typhoon Lionrock at the analysis time: (a) assimilation of
SAR wind using the Huber norm distribution QC; (b) assimilation of ASCAT wind using the Huber
norm distribution QC; (c) assimilation of joint wind using the Gaussian distribution QC; (d) assimilation
of joint wind using the Huber norm distribution QC.
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(a) (b)
Figure 9. Forecasted path and track errors of typhoon Lionrock: (a) forecasted path of different
experiments and the observed path. The time indicator is given every 12 h. (b) Track errors of different
experiments compared to the observed path.

The intensity forecasts of the typhoon based on the different schemes are compared in Figure 10,
and Table 2 gives the quantitative analysis of the data assimilation experiments. As shown in the
figure, the assimilation of wind data improves the intensity forecast of the typhoon. The joint wind
assimilation using the Huber norm, however, in some way weakens the minimum pressure and
strengthens the maximum wind speed of the typhoon eye at the time of the assimilation. Although there
is a bigger misfit between the intensity forecast and the observed truth than other experiments at
the analysis time, it has a better analysis field than the others (see Figure 8). As can be seen from
Table 2, the joint assimilation of SAR and ASCAT wind using the Huber norm distribution QC has the
minimum average errors on track forecast (85.24 km) and intensity forecast (−5.61 m·s−1 for speed
and −1.84 hPa for pressure, respectively). Therefore, the joint wind assimilation using the Huber norm
distribution QC has also improved the intensity forecast of the typhoon.

Figures 11 and 12 show the (O − A) (observation minus analysis, namely residual) diagram and
O/A (observation / analysis ) comparison of the bias, root-mean-square value and standard derivation
of the u and v components of the four experiments. Assimilation experiment with the SAR wind field
using Huber norm distribution QC shows a big deviation from the analysis (Figure 11a,e), thus having
a big rms (rmsu = 5.46, rmsv = 4.50) for the analysis (Figure 12a,e). This is mainly because most of the
wind observations of SAR were located in the center area of the typhoon (as can be seen in Figure
2), and about one third of the observations have a deviation more than five-times the observation
error to the background (nx>5σ = 93, nx≤5σ = 188). Observations with a bigger deviation from the
background have a smaller weight using the Huber norm distribution QC scheme. Smaller weight in
the observation means the analysis gets closer to the background or a bigger residual, as shown in
the Figure 11a,e. This also can be seen from Figure 11b,d,f,h, where the residual is much bigger in the
center area of the typhoon. While the joint wind assimilation using the Gaussian distribution QC has
the minimum rms (rmsu = 1.19, rmsv = 1.06) compared to the others (Figure 12c,g), since observations
with a big deviation from the background have been decreased in the QC step (Figure 11c,g), and the
remaining observations have an equal weight.

158



Remote Sens. 2017, 9, 987

Table 2. Quantitative analysis of data assimilation experiments.

Observation Type/QC Scheme nx≤ 5σ * nx> 5σ rmsu ** rmsv etrack *** espeed epressure

SAR/Huber norm 188 93 5.46 4.50 214.44 −6.43 7.05
ASCAT/Huber norm 4844 75 1.48 1.27 129.50 −6.52 7.14

SAR + ASCAT/Gaussian 4717 0 1.19 1.06 163.26 −6.84 6.48
SAR + ASCAT/Huber norm 4776 113 3.96 1.85 85.24 −5.61 −1.84

* n is the number of observations used in the assimilation, x = o − b, σ =
√

σ2
o + σ2

b ;

** rms is the root mean square of o − a; the unit is m·s−1;
*** e is the average forecast error; the units are km, m·s−1 and hPa, respectively.

(a) (b)

Figure 10. Intensity forecast errors of the typhoon eye: (a) minimum pressure forecast errors.
(b) maximum wind speed forecast errors.

It can be seen from Table 2 that the rms mainly depends on the ratio of the observations with
a big deviation to the background (x > 5σ) in the wind field. The higher the ratio, the bigger the rms.
However, it also can be seen from the table that the effect on the assimilation is not determined by the
rms, but the distribution of the observation. The experiment with ASCAT wind and the experiment
with joint wind using the Huber norm QC have almost the same ratio as the observations with a big
deviation, but the latter has a more complete observation of the typhoon center assimilated in the
assimilation step (see Figure 11b,d,f,h), thus a more positive impact on the typhoon prediction. This is
also the truth for the comparison of two different QC schemes (see Figure 11c,d,g,h).

It can be seen from Equation (5) that with the Huber norm distribution applied, the JQC
o is an

L2 norm in the center of the distribution and an L1 norm in the tails (Tavolato and Isaksen, 2014).
This makes the Huber norm QC a robust method that allows the use of observations with a large
deviation from the background. It also makes it safe to use observations with a few erroneous outliers,
since observation with a very large deviation only has a small weight and affects the analysis very
little. Figure 13 shows that the QC scheme with the Huber norm has a fast convergence to the minima
in the minimization process, as well as the Gaussian distribution QC scheme, which proves that the
Huber norm QC is a robust method.
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(a) (b)
Figure 13. Minimization process of the cost function and the gradient for assimilation of the joint wind
field: (a) Gaussian distribution QC scheme; (b) Huber norm distribution QC scheme.

However, although the joint wind field provides a detailed wind field of the typhoon,
the information of the wind in the center area of the typhoon is not fully used with the Huber
norm QC, since observation only have a small weight. This is mainly due to the bad background,
which usually cannot provide the high speed wind structure of the typhoon.

We can see from the results that when a detailed wind field is available for the typhoon, a more
accurate analyze was obtained when the Huber norm QC was applied, thus a more accurate prediction
for the typhoon.

5. Conclusions

Based on NCAR’s WRFDA system, we conducted a joint assimilation experiment of the ASCAT
wind and SAR wind for the typhoon “Lionrock (2016)” and introduced the Huber norm QC scheme.
Combining the SAR wind field with the ASCAT wind field, we take advantage of both observations,
which not only make up the small swath limit of the SAR wind, but also fill the vacancy of the ASCAT
wind field in the typhoon area. The results of assimilation experiments show that the joint assimilation
improved the typhoon track forecast results. In addition, the Huber norm distribution QC scheme
is adopted to increase the usage of the observation in the typhoon center area and to assign more
reasonable weight to the observation, thus improving the analysis.

Although VH polarization observation of SAR can retrieve high speed wind, the impact on
typhoon forecast is limited due to the quality of the background and parameterization scheme of the
typhoon model. On the one hand, the background wind field of the typhoon is generally smoother
than the real typhoon field, resulting in big deviation for the high speed wind observation, which led
to the small weight of observation in the process of assimilation. On the other hand, since the
parameterization of the typhoon model is not optimal, the mechanism of high speed wind for the
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development of the typhoon is not clear. Therefore, the improvement of the parameterization of the
typhoon model is the next step we should consider.
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Abstract: In this study, we proposed an empirical algorithm for significant wave height
(SWH) retrieval from TerraSAR-X/TanDEM (TS-X/TD-X) X-band synthetic aperture radar (SAR)
co-polarization (vertical-vertical (VV) and horizontal-horizontal (HH)) images. As the existing
empirical algorithm at X-band, i.e., XWAVE, is applied for wave retrieval from HH-polarization
TS-X/TD-X image, polarization ratio (PR) has to be used for inverting wind speed, which is treated as
an input in XWAVE. Wind speed encounters saturation in tropical cyclone. In our work, wind speed is
replaced by normalized radar cross section (NRCS) to avoiding using SAR-derived wind speed, which
does not work in high winds, and the empirical algorithm can be conveniently implemented without
converting NRCS in HH-polarization to NRCS in VV-polarization by using X-band PR. A total of
120 TS-X/TD-X images, 60 in VV-polarization and 60 in HH-polarization, with homogenous wave
patterns, and the coincide significant wave height data from European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis field at a 0.125◦ grid were collected as a dataset for tuning
the algorithm. The range of SWH is from 0 to 7 m. We then applied the algorithm to 24 VV and 21
HH additional SAR images to extract SWH at locations of 30 National Oceanic and Atmospheric
Administration (NOAA) National Data Buoy Center (NDBC) buoys. It is found that the algorithm
performs well with a SWH stander deviation (STD) of about 0.5 m for both VV and HH polarization
TS-X/TD-X images. For large wave validation (SWH 6–7 m), we applied the empirical algorithm
to a tropical cyclone Sandy TD-X image acquired in 2012, and obtained good result with a SWH
STD of 0.3 m. We concluded that the proposed empirical algorithm works for wave retrieval from
TS-X/TD-X image in co-polarization without external sea surface wind information.

Keywords: SAR; significant wave height; co-polarization; TerraSAR-X/TanDEM-X

1. Introduction

It is well known that space-borne synthetic aperture radar (SAR) is an efficiently instrument for
wind and wave observation in a large coverage with high spatial resolution at seas. Most satellite
SAR operates at X-band (TerraSAR-X (TS-X), TanDEM-X (TD-X), and Cosmo-SkyMed), C-band
(Radarsat-1/2, ERS-1/2, Envisat-ASAR, Sentinel-1A/-1B and Chinese Gaofen-3), and L-band (Japanese
ALOS-1/ALOS-2). TS-X and its twin TD-X have 514 km orbit height above earth and a 100-min orbit
period with fine spatial resolution of image up to 1 m. TS-X and TD-X SAR are officially operated
by Germen Aerospace Center (DLR). In the past few years, several algorithms for winds [1–5] and
waves [6–9] retrieval from TS-X/TD-X image have been developed. Geophysical model function
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(GMF) XMOD2 [4] and polarization ratio XPR2 [5] are the latest achievements for wind retrieval from
VV-polarization and HH-polarization TS-X/TD-X image, respectively. After employing SAR-derived
wind speed, waves can be estimated from TS-X/TD-X image by using the theoretic-based algorithm
“Parameterized First-guess Spectrum Method” (PFSM) [9] or the empirical algorithms [6,7]. Recently,
empirical wave retrieval algorithm is adapted for coastal application [8], considering the ship and
wave breaking etc. in offshore region.

Algorithm PFSM [10–12] was originally exploited for wave retrieval from C-band SAR, which
is based on the wave mapping mechanism on SAR, including tilt modulation, hydrodynamic
modulation [13] and velocity bunching [14]. PFSM is developed similar to the “Max-Planck Institute”
algorithm (MPI) [15–17], “Semi Parametric Retrieval Algorithm” scheme (SPRA) [18] and “Partition
Rescaling and Shift Algorithm” (PARSA) [19]. All these algorithms need a first-guess wave spectrum
and the “true” wave spectrum is inverted through a set of iterations by minimizing a cost function [15].
Algorithm MPI and PARSA take the outputs from numeric wave model [20] as the first-guess spectrum,
and both of these require a long computing time. Algorithm SPRA employs wind speed from
scatterometer to produce the first-guess wind-sea spectrum by using empirical parametric wave
function and information on swell is regarded as the difference between the retrieval results mapping
spectrum and the original SAR spectrum. In other words, the error in the wind-sea retrieval process is
delivered into the swell retrieval process in SPRA scheme. PFSM separates the non-linear wind-sea
and the linear-mapping swell spectrum by calculating the separation threshold of the wave number.
Moreover, it searches for the best parameters, e.g., dominate wave phase velocity and peak propagation
direction, together with SAR-derived wind speed so as to produce the best fit first-guess wind-sea
wave spectrum by using empirical parametric wave function, e.g., Jonswap [21]. The composite wave
spectrum is obtained, after the different wave spectrum portions are inverted from corresponding SAR
intensity spectrum portions. In addition, there are several unconstrained algorithms [22,23], which
can also be applied for waves retrieval in a particular sea state, e.g., a long wave dominant regime,
however, the retrieval result usually contains information on swell due to the portion produced by
shorter waves in a SAR spectrum is missing in the inversion schemes. In fact, the basic scattering
physics is independent on radar frequency and imaging polarization. In our previous study [9], it
was already proven that algorithm PFSM can be applied to invert wave spectrum from TS-X/TD-X
image and then wave parameters are derived from the inverted wave spectrum. Validation against the
third-generation wave model WaveWatch-III outputs through 16 HH-polarization TS-X/TD-X images
show a 0.43 m Root-Mean-Square Error (RMSE) of significant wave height (SWH).

Due to the complex nature of modulation transfer functions (MTF) in these theoretic-based
algorithms, researchers also exploited the empirical algorithms such as CWAVEs (CWAVE_ERS [24]
and CWAVE_ENV [25]) algorithms for C-band SAR and XWAVE [6–8] algorithms for X-band SAR.
In parallel, a few researches recently have made effort to build empirical algorithms for retrieving
SWH through azimuthal cutoff wavelength on SAR [26–29]. CWAVEs describe a relationship among
wave and several other variables, e.g., wind speed, radar cross section and a set of orthonormal
decompositions in a two-dimensional SAR spectrum derived from SAR intensity image. However,
CWAVEs were designed to retrieve wave information from particular C-band SAR mode image, e.g.,
wave mode that has a fixed incidence angle around 23◦. XWAVE inherits the idea behind CWAVEs,
which is exploited through a number of TS-X/TD-X images at full incidence angle ranged from 20◦

to 50◦. In the development of XWAVE [6,7], the algorithm coefficients were primarily tuned using
VV-polarization TS-X/TD-X data acquired over National Oceanic and Atmospheric Administration
(NOAA) moored buoys in the open ocean. The SWH retrieval results show good agreement with the
outputs from numerical wave model data provided by DWD. SAR-derived wind speed is necessary in
algorithm XWAVE. XMOD2 [4] are tuned by using an amount of VV-polarization TS-X/TD-X images
and collocated winds from DWD. However, no reliable wind retrieval above 20 m/s is achieved
from TS-X/TD-X image by using XMOD2 due to no available data at such wind speeds in the tuning
process. Thus far, two existing algorithms, PFSM and XWAVE, have not been implemented under

166



Remote Sens. 2017, 9, 711

tropical cyclone conditions yet. This is because XMOD is tuned and validated through VV-polarization
TS-X/TD-X images and the DWD with the wind speeds up to 25 m/s. Moreover, the signal saturation
problem also exists for SAR in tropical cyclone [30,31].

Recently, a new empirical approach was reported in [32], by which it is possible to directly retrieve
SWH in tropical cyclones from normalized radar cross section (NRCS) of C-band wide ScanSAR image,
e.g., Envisat-ASAR and Radarsat-1/2. Interestingly, that empirical model can be conveniently applied
similarly to the SAR wind retrieval methodology. Although the validation against outputs from
the third–generation wave models, including WaveWatch-III and SWAN, has exhibited encouraging
results, there are still some weaknesses existed in the model as mentioned by the authors.

In this study, we propose an empirical algorithm for SWH retrieval from X-band SAR through
improving existing XWAVE model. In particular, this developed model can be directly applied for
HH-polarization TS-X/TD-X image without converting NRCS in HH-polarization into NRCS in
VV-polarization. The proposed algorithm avoids using SAR-derived wind speed, which is known
having large retrieval errors in tropical cyclone. Data collected at high sea state (SWH > 5 m) are also
included in the tuning dataset and the algorithm performs well under tropical cyclone condition.

The paper is organized as follows. SAR images and collocated NOAA in situ buoys dataset
are introduced in Section 2. In Section 3, methodology of the proposed empirical model for SWH
retrieval is presented and the coefficients of the proposed empirical function are tuned by the dataset.
The comparison of SWH retrieved from SAR imagery and those measured by buoys is shown in
Section 4. A case study for wave retrieval using two TS-X/TD-X images acquired during in tropical
cyclone Sandy in 2012 is also presented. Conclusions are summarized in Section 5.

2. Data Description

SAR data used in this study includes 60 VV-polarization and 60 HH-polarization SAR images
acquired between 2008 and 2015. As examples, a HH-polarization TS-X image in StripMap mode
acquired in Gulf of Alaska at 03:05 UTC on 3 November 2011 is shown in Figure 1a while another
VV-polarization ScanSAR mode TD-X image acquired near Southeast Newfoundland Coast at 21:17
UTC on 4 October 2013 is shown in Figure 1b.

Figure 1. (a) A HH-polarization StripMap mode TerraSAR(TS-X) image acquired in Gulf of Alaska at
03:05 UTC on 3 November 2011; and (b) a VV-polarization ScanSAR mode TanDEM-X (TD-X) image
acquired to the Southeast of Newfoundland at 21:17 UTC on 4 October 2013.
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In this study, the European Centre for Medium-Range Weather Forecasts (ECMWF) global
atmospheric-marine reanalyzed data is matched up against the SAR measurements. Here, we used
ECMWF reanalysis SWH data at a 0.125◦ grid (approximate 12.5 km) at an interval of six hours.
To perform the matchup, every TS-X/TD-X imagery was divided into sub-scenes with a spatial
coverage of 1.5 × 1.5 km for StripMap mode and 4 × 4 km for ScanSAR mode images in azimuth and
range direction, respectively. Then, ECMWF SWH data in every sub-scene were calculated by both
bilinear interpolation in space and time. To eliminate inhomogeneous sub-scenes, we compute the
image variance and only keep those with values smaller than 1.05 [26]. Moreover, the SAR spectrum is
smoothed to reduce the distortions of other marine phenomena. Figure 2a,b shows the ECMWF SWH
data that correspond to the two images shown in Figure 1a,b, respectively.

 

Figure 2. (a) Space and time interpolated European Centre for Medium-Range Weather Forecasts
(ECMWF) SWH data corresponding to the SAR image in Figure 1a; and (b) same as (a) but for the SAR
image in Figure 1b.

In total, our dataset consists of more than one thousand SAR-derived and ECMWF reanalysis
SWH matchup points for algorithm tuning. Histograms of SWH matchups are shown in Figure 3, in
which the SWH ranges from 0 to 7 m at interval of 0.3 m.

 

Figure 3. Histograms of SWH matchups at interval of 0.3 m. SWH ranges from 0 to 7 m:
(a) VV-polarization; and (b) HH-polarization.
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3. Development of Empirical Algorithm for Wave Retrieval at X-Band

3.1. Existing X-Band SAR Wind and Wave Algorithms

The wind retrieval from SAR is a matured technology. The initial X-band GMF, XMOD1, simply
related VV-polarization X-band radar normalized radar cross section (NRCS) from TS-X/TD-X images
to wind speed in a pre-launch study [1]. Then, similar to the development of C-band GMF CMOD5 [33]
that was derived from ERS-1 SAR images and ECMWF reanalysis wind data, XMOD2 has been
exploited in [4] by using collocated VV-polarization TS-X/TD-X images and National Data Buoy
Center (NDBC) buoy measurements and it was found that a 1.44 m/s RMSE of wind speed was
achieved against NOAA in situ buoys. Besides, another X-band GMF, called SIRX-MOD, was proposed
in [3] by retuning the coefficients in the C-band GMF CMOD-IFR2 [34] with the VV-polarization
Spaceborne Imaging Radar (SIR) X-band SAR NRCS data and ECMWF reanalysis wind data. XMOD2
and SIRX-MOD take the general form of:

σ0 = B0(1 + B 1cosφ + B2 cos 2φ) (1)

where σ0 is the NRCS in linear unit, and φ represents the angle between the radar look direction
and the wind direction. The coefficients B0, B1 and B2 are functions of the radar incidence angle θ

and sea surface wind speed U10 at 10 m height above sea surface. Figure 4 shows the XMOD2 and
SIRX-MOD curves at θ of 30◦ and φ of 45◦, showing X-band NRCS is linearly related to wind speed.
This behavior is consistent with the observations of microwave backscattering signatures of the ocean
at X-band during the experiment using an airborne microwave scatterometer-radiometer system [35].
As for wind retrieval from HH-polarization TS-X/TD-X image, polarization ratio (PR) model is used
to convert NRCS values from VV to HH. X-band PR (XPR) models for TS-X/TD-X are given for [2,5].
It was reported in [5] that the comparison of wind speed by using the combination method, that is
XMOD2 together with XPR2, shows a RMSE of 1.79 m/s against winds measured by NOAA buoys.
However, these algorithms are only valid for wind speeds up to 25 m/s, because they are exploited
through low-to-moderate wind speeds.

 

Figure 4. The simulation of XMOD2 and SIRX-MOD at θ of 30◦ and φ of 45◦.

Based on SAR-derived wind speed, two wave retrieval algorithms, a theoretic-based PFSM [9]
algorithm and an empirical XWAVE model [6], have been developed for TS-X/TD-X image. XWAVE
takes the form of:
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Hs = A1
√

Es tan θ + A2U10 + A3 + A4 cosφ (2)

where Hs is the SWH, θ is the radar incidence angle, U10 is the wind speed at 10 m above
sea surface, φ is the wave peak direction relative to azimuth direction ranged from 0 to 90◦,
Es (=

∫ 2π
0

∫ kmax
kmin

S̄(k, θ)dkdθ) is the integrated value of the normalized SAR intensity spectrum
S̄(k, θ)in wavelength domain Lmin (= 2π/kmin) of 30 to Lmax (=2π/kmax) of 600 m, and the coefficients
A1 to A4 are the constants tuned by VV-polarization TS-X/TD-X images together with SWH from
DWD and NOAA buoys in [6,7]. XWAVE is conveniently applied for waves retrieval from TS-X/TD-X
images without transferring SAR intensity spectrum into wave spectrum. Although SAR-derived
wind speed from VV-polarization and HH-polarization TS-X/TD-X image has known accuracy at
within 2 m/s RMSE of wind speed [4,5], XWAVE is restrictedly used during operational application,
due to prior wind direction is necessary in the process of wind retrieval by using XMODs.

3.2. Empirical Algorithm for Wave Retrieval in Both VV- and HH-Polarization

X-band GMF XMOD2 and PR model XPR2 are valid for winds up to 25 m/s due to no available
higher winds in the tuning dataset. In this study, we develop an empirical wave retrieval algorithm by
replacing wind speed with NRCS in Equation (2). The purpose of this kind of development is that the
empirical algorithm can be conveniently implemented without calculating the sea surface wind speed.
The proposed empirical model takes the form:

Hs = C1
√

Es tan θ + C2σ
0+ C3 + C4 cosα (3)

where, α represents the peak direction relative to azimuth direction in a SAR spectrum instead of wave
peak direction φ in Equation (2) for convenient application. The collocated dataset, including ECMWF
SWH data and the three other variables derived from SAR intensity spectrum, is used for tuning the
coefficients C1 to C4 in VV-polarization and HH-polarization. The values of matrix C in Equation (3)
for VV-polarization and HH-polarization are shown in Tables 1 and 2, respectively.

The statistical analysis between the ECMWF reanalysis SWH and the simulated SWH by using
proposed algorithm is exhibited in Figure 5 for 10◦ of incidence angle bins between 20◦ and 50◦ and
1 m of SWH bins ranged from 0 to 7 m. The result shows the correlation is about 0.8. Under this
circumstance, it is indicated that the proposed algorithm is suitable for Hs retrieval from VV and HH
polarization TS-/TD-X image. However, it is necessary to figure out if the proposed algorithm relies
on good-quality power spectra of SAR image.

Table 1. Tuned coefficients in Equation (3) for VV-polarization.

C1 2.90

C2 3.31

C3 0.47

C4 0.58

Table 2. Tuned coefficients in Equation (3) for HH-polarization.

C1 2.11

C2 2.21

C3 0.91

C4 0.64
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Figure 5. ECMWF SWH data versus fitted SWH results, for 10◦ incidence angle bins between 20◦ and
50◦ and 1 m/s SWH bins ranging from 0 to 7 m/s: (a) VV-polarization; and (b) HH-polarization.

4. Validation

4.1. Validation Against Buoys

As a case study, the image of HH-polarization TS-X image in StripMap mode acquired at 16:19
UTC on 1 February 2012 at 13:59 UTC is shown in Figure 6, which covers the NOAA in situ buoy (ID:
46047). A sub-scene of 2048 × 2048 pixels with a 1.25 × 1.25 pixel size has been extracted from TS-X
image, which covers the location of NDBC buoy. The sub-scene is normalized and then the sub-scene
is divided into 2 × 2 small scenes. The corresponding four two-dimensional SAR spectra are calculated
by using the two-dimensional Fast Fourier Transform (FFT-2) method. The smooth two-dimensional
spectrum, which is obtained by averaging the four two-dimensional SAR spectra, is used here.

The image of sub-scene and the corresponding two-dimensional wave spectrum in term of length
λ, is shown in Figure 7a,b. The SAR-derived SWH in area A centered at the buoy location is 2.01 m
and the buoy-measured SWH is 2.48 m. As for this case study, the difference between retrieve SWH
and observed SWH is 0.47 m.

We apply the X-band wave retrieval algorithm to extract SWH values from 24 VV-polarization
and 21 HH-polarization TS-X/TD-X images. In these SAR images, they also contain 30 NOAA buoy
locations. The information of SAR images and corresponding NDBC buoys is shown in Appendix A.
The SAR-derived wave information is matched up against co-located NOAA buoy measurements.

As shown in Figure 8, the RMSE of SWH is 0.5 m with a 27% scatter index (SI) for VV-polarization
images and the RMSE of SWH is 0.52 m with a 36% SI for HH-polarization images. The stander
deviation (STD) of SWH is 0.5 m between retrieval results from co-polarization TS-X/TD-X images and
buoy measurements. We found that SAR-derived SWH by using the proposed algorithm has a similar
accuracy to the analysis results by using the existing wave retrieval algorithms, which has a SWH
STD of around 0.5 m as validated against observations from moored buoys or altimeters [18,24,25].
Again, it should be noted that the proposed empirical XWAVE model can be directly applicable
without knowing the information on wind speed and PR model is not required as it is applied for
HH-polarization TS-X/TD-X image.
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Figure 6. The image of HH-polarization TS-X image in StripMap mode acquired at 16:19 UTC on 1
February 2012, covering the NOAA in situ buoy (ID: 46047).

 

Figure 7. (a) Intensity image of sub-scene covering the NOAA in situ buoy (ID: 46047); and (b) the
two-dimensional SAR spectrum in term of length λ corresponding to the sub-scene.
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Figure 8. SWH retrieval results from TS-X/TD-X images are compared with buoy measurements:
(a) VV-polarization images; and (b) HH-polarization images.

4.2. Application in Trpocial Cyclone

Further, we also validate the algorithm for one TD-X image taken during tropical cyclone Sandy
in 2012. SAR has the capacity of all-weather field monitoring, especially in tropical cyclones. Through
several tropical cyclones captured by SAR, some achievements have been exhibited in [36–40], e.g.,
morphology of cyclones [36–38], hurricane-generated ocean swell refraction [39] and a new method
of high wind speed retrieval [40]. The comparison of wind retrieval using VV-polarization C-band
SAR backscattering in hurricanes was reported in [41]. The results show RMSE of wind speed is
6.2–6.5 m/s against measurements from Stepped Frequency Microwave Radiometer (SFMR), due
to winds encounter saturation problem as winds growing under tropical cyclone condition [30,31].
Therefore, SAR-derived wind speeds have a large deviation with reality in tropical cyclones. To
eliminate this source of errors, we replaced the wind speed with the NRCS in the existing XWAVE
formula in this study. The advantage of this development is that the application of proposed algorithm
avoids using SAR-derived wind speed, which is not working at high winds.

The multi-look ground range detected (MGD) VV-polarization TD-X SAR image in ScanSAR
mode acquired over tropical cyclone Sandy at 22:49 UTC on 28 October 2012 is shown in Figure 9.
The TD-X image has an 8.25 × 8.25 m pixel size in both azimuth and range directions and then it was
divided into sub-scenes of 512 × 512 pixels, which correspond to a spatial coverage of about 4 × 4 km.
The sub-scenes were processed to retrieve SWH by using the developed algorithm. However, about
15% of sub-scenes are contaminated by the rain. These data were excluded in this study.

There are no NOAA buoys within the TD-X image’s coverage. Therefore, we only perform the
comparison against ECMWF results. The commonly used WaveWatch-III model output has a spatial
resolution of 0.5◦ grid, which is too coarser than the ECMWF model results. Figure 10 shows that the
SAR-derived SWH from the TD-X image in tropical cyclone Sandy and ECMWF reanalysis SWH at
a 0.125◦ grid, in which the black rectangle represents the coverage of TD-X image. In particular, the
time between the TD-X imaging time and ECMWF reanalysis SWH data is comparatively close, i.e.
within 2 h. In general, the SAR-derived SWH is agreeable to the ECMWF reanalysis SWH data. Then
the SAR-derived SWH points matched up closest to ECMWF grid points are selected. Figure 11 shows
a 0.35 m RMSE of the SWH comparison. The unique ECMWF reanalysis SWH data were used for
tuning and validating the proposed empirical algorithm, causing a better 0.3 m STD than a 0.5 m STD
of SWH. Although ECMWF reanalysis SWH data deviate from reality, the statistical analysis of the
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case study still reveals the proposed empirical wave retrieval algorithm has a creditable performance
under tropical cyclone condition.

 

Figure 9. The image of VV-polarization TD-X SAR image in ScanSAR mode acquired over tropical
cyclone Sandy at 22:49 UTC on 28 October 2012.

 

Figure 10. (a) The SAR-derived SWH from TD-X image over tropical cyclone Sandy at 22:49 UTC on
28 October 2012. (b) ECMWF reanalysis SWH data at 00:00 UTC on 29 October 2012 at a 0.125◦ gird, in
which the rectangle represents the coverage of TD-X image.
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Figure 11. The comparison between SAR-derived SWH by using the proposed empirical algorithm
and ECMWF reanalysis SWH data.

5. Conclusions

XWAVE’s design was aimed to wave retrieval from VV-polarization TS-X/TD-X image, which
relies on SAR-derived wind speeds. Although several algorithms have been recently exploited for
wind retrieval from co-polarization TS-X/TD-X image, such as GMF SIRX-MOD [3], GMF XMOD2 [4]
and polarization ratio XPRs [2,5], these algorithms are only valid for wind speeds up to 25 m/s. When
XWAVE is applied for wave retrieval from HH-polarization TS-X/TD-X image, XPR has to be used for
converting NRCS in HH-polarization to NRCS in VV-polarization to retrieve wind speed. It is well
known that SAR NRCS has a strong relation with wind speed. This is true for C-band [33] and X-band
SAR [35]. In this study, we proposed an empirical algorithm by replacing NRCS instead of wind speed
in the existing XWAVE model. Therefore, this development benefits the operation of waves retrieval
from X-band SAR due to its application without using SAR-derived wind speeds.

In our work, 60 TS-X/TD-X images in VV-polarization and 60 TS-X/TD-X images in
HH-polarization were collected over whole seas. All these images were divided into numbers of
sub-scenes, which were collocated with ECMWF SWH data at a 0.125◦ grid. We have more than
one thousand matchups to tune the proposed empirical algorithm. An additional 24 images in
VV-polarization and 21 images in HH-polarization were implemented using the proposed empirical
algorithm and the retrieval results were validated against the observations from 30 NOAA in situ
buoys, showing a 0.5 STD of SWH. XWAVE needs convert NRCS in HH-polarization to NRCS in
VV-polarization by using XPRs and it relies on SAR-derived wind speed which has a deviation with
reality. The proposed algorithm directly works for both VV-polarization and HH-polarization without
using XPRs. The correlation between the ECMWF reanalysis SWH and the simulated SWH is about
0.8. Therefore, we think the proposed algorithm is suitable for wave retrieval from co-polarization
TS-X/TD-X image.

The validation of wind speed retrieved from TS-X/TD-X image using XMOD has not been
investigated yet under tropical cyclone condition. Therefore, the advantage of the proposed
empirical algorithm is that wind speed is no longer needed for wave retrieval in tropical cyclone.
One VV-polarization TD-X image in tropical cyclone Sandy in 2012 was used to confirm the applicability
of the proposed algorithm. Because no moored buoys were available in the TS-X coverage, and wave
data from WaveWatch-III model have a 0.5◦ grid, which is too coarse for validation, we use ECMWF
reanalysis SWH to preliminary evaluate the performance of the proposed algorithm. The comparison
between SAR-derived SWH and ECMWF reanalysis SWH data shows a 0.3 m STD of SWH meaning

175



Remote Sens. 2017, 9, 711

the proposed empirical algorithm also works under tropical cyclone condition. A new method of wind
retrieval in tropical cyclone was proposed in [40], in which wind speeds up to 65.4 m/s were retrieved
from the information on waves using the fetch-limited wind wave growth function. The validation
shows a good agreement with hurricane hunter measurements and there is no indication of saturation
problem in the wind retrieval. In the near future, we plan to validate the proposed algorithm through
more X-band SAR images in tropical cyclones, covering the moored buoys. Then winds can be retrieved
from X-band SAR image through SAR-derived SWH.
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Appendix A

Table A1. The information of TS-X/TD-X images and corresponding NDBC buoys used in our study.

Buoy
ID

TS-X/TD-X Acquisition
Time (YYYY-MM-DD)

Imaging
Mode

Buoy
ID

TS-X/TD-X Acquisition
Time (YYYY-MM-DD)

Imaging
Mode

46013 2008-02-22 02:08 StripMap 46011 2011-03-13 14:07 ScanSAR
46026 2008-03-02 14:15 StripMap 46054 2011-03-15 01:59 StripMap
46029 2009-03-19 02:02 ScanSAR 46050 2011-10-23 14:30 StripMap
41048 2009-05-13 22:31 StripMap 41047 2011-10-25 10:51 StripMap
46025 2009-06-10 01:50 ScanSAR 46050 2011-10-26 02:11 StripMap
46221 2009-07-19 01:42 ScanSAR 46229 2011-10-26 02:10 StripMap
46221 2009-09-12 01:42 ScanSAR 46015 2011-11-06 02:10 StripMap
46028 2010-04-08 01:59 ScanSAR 41047 2011-11-06 22:39 StripMap
46015 2010-06-13 02:01 ScanSAR 46015 2011-11-28 02:10 StripMap
46013 2010-07-05 02:00 ScanSAR 46050 2011-12-04 02:02 StripMap
46029 2010-07-05 02:02 StripMap 46015 2011-12-04 02:01 StripMap
42036 2010-07-06 11:42 StripMap 41043 2012-01-23 22:20 StripMap
46028 2010-07-16 01:59 StripMap 46047 2012-02-01 13:59 StripMap
46011 2010-11-12 14:07 StripMap 51000 2012-02-26 16:19 StripMap
46022 2010-11-16 14:31 StripMap 46222 2012-03-27 13:59 StripMap
46011 2010-11-17 14:15 StripMap 46011 2012-05-23 01:51 StripMap
44008 2010-11-20 22:25 StripMap 46025 2013-02-03 14:07 ScanSAR
51000 2010-12-13 16:19 ScanSAR 41048 2013-02-05 22:32 StripMap
46053 2010-12-15 14:07 ScanSAR 41002 2013-04-04 11:07 ScanSAR
46012 2010-12-17 02:00 ScanSAR 46011 2013-06-28 01:59 ScanSAR
51000 2010-12-20 04:14 ScanSAR 46053 2013-09-22 14:07 ScanSAR
51000 2010-12-24 16:19 ScanSAR 52200 2015-04-13 08:22 StripMap
46050 2011-03-04 02:02 ScanSAR
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Abstract: Modulation model of radar backscatters is an important topic in the remote sensing of
oceanic internal wave by synthetic aperture radar (SAR). Previous studies related with the modulation
models were analyzed mainly based on the hypothesis that ocean surface waves are Gaussian
distributed. However, this is not always true for the complicated ocean environment. Research has
showed that the measurements are usually larger than the values predicted by modulation models for
the high frequency radars (X-band and above). In this paper, a new modulation model was proposed
which takes the third-order statistics of the ocean surface into account. It takes the situation into
consideration that the surface waves are Non-Gaussian distributed under some conditions. The
model can explain the discrepancy between the measurements and the values calculated by the
traditional models in theory. Furthermore, it can accurately predict the modulation for the higher
frequency band. The model was verified by the experimental measurements recorded in a wind wave
tank. Further discussion was made about applicability of this model that it performs better in the
prediction of radar backscatter modulation compared with the traditional modulation model for the
high frequency band radar or under lager wind speeds.

Keywords: radar backscatter; modulation model; internal wave; third-order statistics; high frequency
band radar

1. Introduction

Internal waves usually result from the sharp density change occurring along the interface of the
stratified density structure of the two fluids and travel with the interior of a fluid [1]. In the process
of SAR imaging of internal waves, the internal wave firstly induce the variable current. Then, the
current will directly interact with the surface waves, which results in the modulation of the radar
backscatters [2]. Therefore, modulation model building is very crucial for the study of interaction
between the radar backscatter and internal wave.

Many joint experiments, such as SAXON-FPN [3] (the Synthetic Aperture Radar and X Band
Ocean Nonlinearities-Forschungs-platform Nordsee), JOWIP [4] (Joint Canada-U.S. Ocean Wave
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Investigation Project), SARSEX [5] (SAR Internal Wave Signature Experiment), CoastWatch-95 [6],
and SCSE [7] (South China Sea Experiment) were carried out and in situ measurements [8–12] were
made to investigate the modulation mechanism of radar backscatter. Weak hydrodynamic interaction
theory [13–15] was used to describe the distribution of Bragg wave spectrum modulated by internal
waves [2]. The imaging of internal waves is attributed to variations in the spectral energy density
of Bragg waves induced by weak current variations associated with internal waves, similarly as the
analysis of the imaging of bottom topography. A two-scale composite surface model derived from
a modified Kirchhoff model is used to calculate the L-/X-band radar backscatter modulation [16].
A full-spectrum model of the modulation of internal wave is established taking account of the wave
spectral perturbations over the entire spectrum of waves [17]. Existing models are mainly based on the
assumption that fluctuation of heights on the water surface is a random Gaussian distribution.

However, the comparison between the theoretical model and experimental results showed that the
measured modulation in SAR images is underestimated [17], especially for high frequency band (higher
than X-band) radar signals. Some investigators pointed out that the contribution of the backscatter
from breaking waves should not be ignored, especially for higher-band radar. RIM (Radar Imaging
Model) [18] adds the energy source of breaking waves into the formation of a wave-current model.
RIM simulates the wave modulation induced by convergent current taking account of breaking waves
and finds that the spectral modulation of the shorter wave (between 10 and 1000 rad/m) is larger than
the modulation calculated by the wave-current model without waves breaking. The radar signatures
of internal wave are more visible for HH polarization than VV polarization because of the impact of
breaking waves, as reported in [7]. In substance, RIM adopts the improved hydrodynamic model, the
composite surface model and Phillips’s semi-empirical model [19] of breaking waves scattering to
describe the scattering processing and explain the discrepancy of the modulation.

A modulation model of internal wave based on the third-order statistics of surface backscattering
is proposed in this paper. It can effectively explain the discrepancy mentioned above by taking the
non-Gaussian distribution of ocean surface slope into consideration. The IEM [20] (Integral Equation
Model) was introduced to calculate radar backscatter coefficients. Compared with traditional models,
the modulation model proposed in this paper combined the small perturbation method (SPM) [21] and
the physics optical method (POM) [22], and it does not need to divide the ocean surface into different
scales. As a result, the modulation of radar backscatter by internal wave could be calculated more
precisely. The model explains the contradiction between the radar backscatter and the values predicted
by traditional models. Experimental measurements were analyzed to verify the model. Information
recorded by a CCD (Charge-coupled Device), which has high spatial and temporal resolution, was used
to calculate the theoretical modulation attributed to second-order and third-order statistics. Results
were compared with the data obtained by X and Ka band radar showing good agreement with the
measured data by considering the third-order statistics. Moreover, these theoretical analyses and
experimental observations demonstrate that the contribution of ocean surface third-order statistics to
the modulation is significant for high frequency band radar. In other words, for high frequency band
radar, it is necessary to add the contribution of ocean surface third-order statistics to the modulation
by a variable surface current.

This paper is organized as follows: the modulation model of radar backscatter by internal wave
based on the third-order statistics was derived in Section 2. In Section 3, an experiment was briefly
described, as well as the data processing. In Section 4, results of experimental data were analyzed and
discussed to validate the proposed model. Finally, main conclusions were given in Section 5.

2. Modulation Model of Radar Backscatters by Internal Wave Based on Third-Order Statistics

2.1. Radar Backscatters of Ocean Surface Based on Third-Order Statistics

An ocean surface scattering model, which is related to the ocean surface roughness spectrum,
aims to quantify the relationship between the radar backscatter intensity and ocean surface statistics.
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The surface roughness spectrum is defined as the Fourier transform of the correlation of ocean surface
wave [23], that is,

W
(
kx, ky

)
=

1
4π2

∫ ∫
σ2ρ(ξ, ζ) exp

(−jkxξ − jkyζ
)
dξdζ, (1)

where σ2ρ(ξ, ζ) is the second-order statistics of the surface wave z(x, y) and can be calculated by
Equation (2), ρ(ξ, ζ) is the correlation function of surface wave, and σ2 is the variance of the surface
wave height:

σ2ρ(ξ, ζ) = 〈z(x, y)z(x + ξ, y + ζ)〉, (2)

where the 〈·〉 stands for the ensemble average. Incorporating a non-Gaussian distribution of the surface
wave height results in a difference between radar backscatters recorded downwind and upwind [24].
The skewness function s(ξ, ζ; τ, ς) represents the distribution of the surface skewness coefficient [23].
It is commonly used to measure the departure from symmetry and can be calculated by

〈z(x, y)z(x + ξ, y + ζ)z(x + τ, y + ς)〉 = σ3s(ξ, ζ, τ, ς). (3)

The Fourier transform of the bicorrelation function σ3s(ξ, ζ, τ, ς) is the bispectrum, that is,

B
(

kx, ky; kx, ky

)
=

1
16π4

∫
σ3s(ξ, ζ; τ, ς) exp

(
−jkxξ − jkyζ − jkxτ − jkyς

)
dξdζdτdς. (4)

It is a function of four variables. Two special cases were considered in the following calculation of
the model. When τ = ξ, ς = ζ, we can get

〈
z(x, y)z2(x + ξ, y + ζ)

〉
= σ3s(ξ, ζ). For the case τ = ς = 0,

we can get
〈
z2(x, y)z(x + ξ, y + ζ)

〉
= σ3s(−ξ,−ζ). We can decompose the skewness function into

two parts, the symmetric part ss(ξ, ζ) and the asymmetric part sa(ξ, ζ), as

ss(ξ, ζ) =
s(ξ, ζ) + s(−ξ,−ζ)

2
, (5)

sa(ξ, ζ) =
s(ξ, ζ)− s(−ξ,−ζ)

2
. (6)

The bispectrum is the Fourier transform of s(ξ, ζ) and can be written as

B
(
kx, ky

)
= Bs
(
kx, ky

)
+ jBa

(
kx, ky

)
= 1

2π

∫
σ3s(ξ, ζ)e−jkxξ−jkyζ dξdζ

= 1
2π

∫
σ3 sa(ξ,ζ)+sa(ξ,ζ)

2 e−jkxξ−jkyζ dξdζ

, (7)

where
Bs
(
kx, ky

)
= 1

2π

∫
σ3ss(ξ, ζ) exp

(−jkxξ − jkyζ
)
dξdζ

jBa
(
kx, ky

)
= 1

2π

∫
σ3sa(ξ, ζ) exp

(−jkxξ − jkyζ
)
dξdζ

. (8)

They present the symmetric and asymmetric property of the random ocean surface waves,
respectively. Radar backscatters of the ocean surface can be further calculated (see Appendix A) by the
theory of electromagnetic scattering [23]. That is,

σ0
pp =

k2

4π

∣∣Γpp
∣∣2e−4k2

zσ2
� {

exp
[
4k2

zσ2ρ(ξ, ζ) + j8k3
zσ3sa(ξ, ζ)

]
− 1
}

e−2jkxξdξdζ, (9)

where k is the wavenumber of the radar, Γpp is the coefficient defined as [23], kz = 2k cos θ, and
kx = 2k sin θ. From Equation (9), we can see that the radar backscatter σ0

pp is a weighted value of
the contribution of the second-order statistics σ2ρ(ξ, ζ) and the third-order statistics σ3sa(ξ, ζ). The
coefficient of the contribution is related to the kz and σ.
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2.2. Modulation Transfer Function of Radar Backscatter by Internal Wave

To simplify the following analysis, we name the modulation model that only considers the
contribution of second-order statistics of ocean surface IEM2 model. The model with consideration of
third-order statistics is called the IEM3 model.

Defining η(ξ, ζ) = exp
[
4k2

zσ2ρ(ξ, ζ) + j8k3
zσ3sa(ξ, ζ)

]− 1, we can get its Fourier transform as

Q(k1, k2) =
� {

exp
(

4k2
zσ2ρ(ξ, ζ) + j8k3

zσ3sa(ξ, ζ)
)
− 1
}

exp(−jk1ξ − jk2ζ)dξdζ. (10)

Therefore, Equation (9) can be rewritten as

σ0
pp =

k2

4π

∣∣Γpp
∣∣2 exp

(
−4k2

zσ2
)

Q(2kx, 0). (11)

We can get the modulation transfer function of radar backscatter by internal wave, that is,

MIEM3(k) =
σ̃0

pp

σ0
pp

=
Q̃(2kx, 0)
Q0(2kx, 0)

, (12)

where σ̃0
pp and Q̃(2kx, 0) are the modulated radar backscatter and the spectrum, respectively. Q0(2kx, 0)

is the background spectrum without modulation of internal waves.
For the case that the ocean surface is a Gaussian distribution, there will be no third-order

component existing, sa(ξ, ζ) = 0, and the radar backscatter is only attributed to the second-order
statistics, Equation (9) can be rewritten as

σ0
pp =

k2

4π

∣∣Γpp
∣∣2 exp

(
−4k2

zσ2
)

W(2kx, 0), (13)

where W(k1, k2) =
� {

exp
(
4k2

zσ2ρ(ξ, ζ)
)− 1

}
exp(−jk1ξ − jk2ζ)dξdζ. We can find that Equation (13)

is the same with the expression in [25]. Similarly, the modulation of radar backscatter by internal wave
can be obtained:

MIEM2(k) =
σ̃0

pp

σ0
pp

=
W̃(2kx, 0)
W0(2kx, 0)

, (14)

where σ̃0
pp and W̃(2kx, 0) are the modulated radar backscatter and the spectrum, respectively. W0(2kx, 0)

is the background spectrum without modulation of internal waves.
We can see that Equations (12) and (14) are exactly the same when the ocean surface is Gaussian

distributed. The contribution of third-order statistics can be ignored as long as j8k3
zσ3sa(ξ, ζ) �

4k2
zσ2ρ(ξ, ζ) according to Equations (10)–(12). However, the value of kz usually becomes larger for

the high frequency band radar that has a large wave number k, and sa(ξ, ζ) �= 0 for the case of high
wind speeds, which is likely resulting in the asymmetric distribution of the ocean surface. In this
situation, the modulation of radar backscatter should include the contribution of third-order statistics.
Therefore, it can explain the discrepancy between the measured radar backscatter and values calculated
by traditional modulation models that only take the second-order statistics into consideration.

3. Experimental Validation of the Model

We used the data of wind-wave tank experiment to validate the model proposed in Section 2.
Experiments were carried out in a large wind-wave tank filled with stratified water. The tank is 12 m
× 1.2 m × 1.2 m shown as Figure 1. Wind waves and internal wave were generated to simulate the
condition of ocean surface.
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Figure 1. Schematic side view of the experimental wind-wave tank.

3.1. Experiment Description

X-/Ka-band radars and CCD were employed in experiments to record the modulation of reflected
microwave signals by internal waves. Specifications of radar system are listed in Table 1.

Table 1. Specifications of radar system.

Specifications Values

Band X Ka
Frequency 9.4 GHz 35 GHz

Beam Width 9◦ × 9◦ 6◦ × 6◦
Incidence Angle 50◦ 57◦

The CCD array has high spatial and temporal resolution. It was used to record the information
of surface waves in the tank. As the optical system, it can obtain the wave slope by retrieving the
intensity of reflected light from the water surface. Specifications of the CCD are listed in Table 2.

Table 2. Specifications of CCD.

Specifications Values

Swath Width 36 cm
Resolution (Geometrical) 0.3 mm

Frame Repetition 300 Hz
Analog-to-Digital Convert Frequency 300 KHz

Radar system and CCD array are shown in Figure 2.
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(a) (b)

Figure 2. Experimental devices: (a) radar system; (b) CCD array.

Experiments were carried out under different experimental conditions. Table 3 shows the wind,
internal wave and fetch parameters used during the experiments. Uw is the wind speed measured in
the air channel, and its corresponding 10 m wind speed is U10. D is the depth of the water. F is the
fetch where the surface waves were recorded. Di is the depth of the internal wave.

Table 3. Description of experiments.

Uw (m/s) U10 (m/s) D (m/s) F (m) Di (m)

No. 1 3.2 4.1 0.8 5 0.3
No. 2 4 5.2 0.8 5 0.3
No. 3 5 6.9 0.8 5 0.3
No. 4 6 8.6 0.8 5 0.3

3.2. Experimental Data Processing

According to Bragg scattering theory [21] and parameters listed in Table 1, the frequencies of
surface Bragg waves should be 11.3 Hz (X-band) and 61.8 Hz in theory. Moreover, the surface current
and the orbital velocity of long surface wave which can be estimated by Vc = 0.6u∗ Ref. [26] also result
in Doppler frequency shifts of 5.2 Hz and 20.3 Hz for the X-band and Ka-band radar, respectively.
Figure 3 shows the Doppler spectrum of radar measured in the experiment at wind speed 4 m/s. It is
reasonable that the center of the Doppler frequencies are mainly concentrated around 17 Hz(X) and 78
Hz (Ka) before the internal wave generated (200 s–400 s).
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Figure 3. Doppler spectrum at the wind speed 4 m/s (a) X band; (b) Ka band.
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We can also see that an interference frequency about 7 Hz was shown in Figure 3. It is caused
by the echo data of water surface related to the antenna sidelobe. Therefore, we made the filtering in
frequency domain in the following data processing.

The surface wave height can be obtained by integrating the surface slope recorded by CCD array.
Figure 4a shows the water surface wave height recorded in 1 s. Figure 4b is the wave spectrum
measured at different wind speeds. We can see that the spectrum increases with the increasing
wind speed.
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Figure 4. Surface wave recorded by CCD: (a) wave height; (b) wave spectra at different wind speeds.

4. Results of Experiments and Discussion

4.1. Comparison between Radar Measurements and Values Calculated by Models

Given the high spatial and temporal resolution of CCD array, we took CCD data as the input of
modulation models to calculate the theoretic value. Radar systems used in the experiments were not
calibrated. Therefore, we cannot measure the absolute value of radar backscatters. In the further data
processing, we only calculate the change of the radar backscatter modulated by the internal wave.

Results of the IEM2 model, IEM3 model and contribution of the bispectrum were compared with
the radar data as shown in Figure 5. The 10 m wind speed is 5.2 m/s. Internal solitary wave passed by
the observing area at 500 s.

From Figure 5a, we can see that IEM2 modulation model can predict the modulation well for
X-band radar. However, the value predicted by IEM2 modulation model for Ka-band radar shown
in Figure 5b is smaller than the measured value about 5 dB. As has been analyzed before, IEM2
modulation model only takes the second-order statistics of the ocean surface into consideration. It
seems that the IEM2 model is not suitable for high frequency band radar. Moreover, the modulation of
Ka-band radar backscatter shown in Figure 5f is larger than the X-band radar backscatter as shown in
Figure 5e according to the measured radar data and the values calculated by the IEM3 model. This
may result from the contribution of breaking waves or bound waves that commonly have a small wave
length. They usually exist in the front of the long waves, resulting in the asymmetric distribution of
the ocean surface. Therefore, it is reasonable that modulation of Ka-band radar calculated by IEM3 is
larger than the result of IEM2, even larger than the modulation of X-band.
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Figure 5. Comparison between measurements of radar and values calculated by models in theory.
10 m wind speed 5.2 m/s: (a) IEM2 Model vs. Radar: X-band; (b) IEM2 Model vs. Radar: Ka-band; (c)
Bispectrum vs. Radar: X-band; (d) Bispectrum vs. Radar: Ka-band; (e) IEM3 Model vs. Radar: X-band;
(f) IEM3 Model vs. Radar: Ka-band.

The IEM2 model describes the contribution of surface roughness spectrum of the ocean. On the
contrast, modulation calculated by IEM3 model is a weighted sum of second-order statistics (surface
roughness spectrum) and third-order statistics (bispectrum) according to Equation (10). Contribution

186



Remote Sens. 2017, 9, 501

of bispectrum was compared with the radar data in Figure 6c,d. We can see that the contribution of
bispectrum is larger than the surface roughness spectrum for Ka-band radar from Figure 6b,d.
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Figure 6. Comparison between measurements of radar and values calculated by models in theory,
10 m wind speed 6.9 m/s; (a) IEM2 Model vs. Radar: X-band; (b) IEM2 Model vs. Radar: Ka-band; (c)
Bispectrum vs. Radar: X-band; (d) Bispectrum vs. Radar: Ka-band; (e) IEM3 Model vs. Radar: X-band;
(f) IEM3 Model vs. Radar: Ka-band.
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Figure 6 shows the results at wind speed 6.9 m/s. Compared with Figure 5, the relaxation rates
of the surface waves increase with the increasing wind speed. Correspondingly, the modulation of
the intensity of the radar decreases about 3 dB for X-band radar and 5 dB for Ka-band radar. The
modulation estimated by IEM2 model can hardly be recognized as shown in Figure 6a,b. It was
submerged under the signals of background and, as a consequence, the internal wave cannot be
detected. On the contrast, predicted values of IEM3 model as shown in Figure 6e,f are closer to the
radar data, which implies that the third-order statistics become increasingly important with the wind
speed increasing.

4.2. Relation between Modulation Depth of Radar Backscatter and Wind Speeds

In this section, we will further discuss the modulation of high frequency band radar by internal
waves at different wind speeds. To quantify the modulation, we introduce a new parameter modulation
depth ΔM defined as

ΔM =
σmax − σmin

σ0
, (15)

where σ0 is the backscatter coefficient of background, σmax and σmin are the maximum and minimum of
the radar backscatter coefficient modulated by internal wave, respectively. We used the data recorded
in the experiments at different wind speeds ranging from 4.1 m/s to 8.6 m/s and made the statistics.
Results were compared with the predicted value of IEM2 and IEM3 models shown as in Figure 7.
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Figure 7. Modulation depth of radar backscatters as a function of wind speed: (a) X-band; (b) Ka-band.

We can see that all of the modulation depth measured by X-/Ka-band radar shows a decrease
with increasing wind speed. It is similar for the predicted values calculated by modulated models
except for Ka-band at 4.1 m/s. This is reasonable for the increasing wind speed corresponding to small
relaxation rates [27,28] of the surface Bragg waves. As a result, the effect of internal wave on surface
wave spectrum decreases and results in small modulation depth.

Modulation depth calculated by the IEM3 model is superior to the results of the IEM2 model
compared with the experimental measurements. The difference between them is more obviously for
Ka-band than X-band. It is reasonable that Ka-band corresponds to a large kz and the contribution
of third-order statistics has a large impact on the total scatters. As for the value calculated at wind
speed 4.1 m/s for Ka-band radar, this might be accounted for the few Bragg waves existing at low
wind speed and the scatters mainly attributed to other sources, that is, multi-scattering or wedge
scattering [29], which is not considered in the IEM3 model.
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The predicted values by IEM2 of X-band and Ka-band are very close at wind speed larger than
4.1 m/s. However, the modulation depth of X-band is smaller than the Ka-band predicted by IEM3.
With the increasing wind speed, the contribution of bispectrum increases especially for the higher
band radar.

5. Conclusions

In this paper, the discrepancy between traditional modulation model and the measurements
of high frequency band radars are addressed. Based on the third-order statistics of ocean surface, a
modulation model of high frequency band radar backscatters by internal wave was proposed. It takes
the non-Gaussian distribution of the ocean surface into consideration.

Data of experiments conducted in a wind-wave tank was employed to evaluate performance
of the proposed model. Modulation depth of radar backscatter coefficients were calculated based
on the IEM model and compared with the measured results by X-/Ka-band radar. The IEM3 model
that considers the third-order statistics shows a better consistency with the radar data than the IEM2
model. Further processing and analysis to the model were made and showed that the third-order
statistics of ocean surface are more important to the high frequency band radar. The relation between
modulation depth and wind speed are also given. The larger radar frequency as well as the wind
speed corresponds to a greater weight to third-order statistics in the radar backscatters modulated by
internal waves. For the Ka-band radar, there are some other scattering mechanisms at low wind speed,
which will be explored in future studies.

This proposed model can be applied to high frequency band SAR imaging of internal waves.
It can enhance the image quality and show more information. Furthermore, it can be used in other
SAR’s marine applications such as the imaging of sea bottom topography and eddies, since they consist
of similar imaging mechanisms.
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Appendix A. Radar Backscatter Coefficient Function

Radar backscatter coefficient is a function of average receiving power ppp. It can be simplified by
using IEM. Details are shown as follows:

Ppp =
〈

Es
ppEs

pp
∗〉− 〈Es

pp

〉〈
Es

pp
∗〉

=
〈

Ek
ppEk

pp
∗〉− 〈Ek

pp

〉〈
Ek

pp
∗〉

+ 2Re
[〈

Ec
ppEk

pp
∗〉− 〈Ec

pp

〉〈
Ek

pp
∗〉]

+
〈

Ec
ppEc

pp
∗〉− 〈Ec

pp

〉〈
Ec

pp
∗〉 , (A1)

where Es
pp is the scattering electromagnetic field given by [20]. The right of Equation (A1) consists of

three parts, and they are

Pk
pp =

〈
Ek

ppEk
pp

∗〉− 〈Ek
pp

〉〈
Ek

pp
∗〉

Pkc
pp = 2Re

[〈
Ec

ppEk
pp

∗〉− 〈Ec
pp

〉〈
Ek

pp
∗〉]

Pc
pp =

〈
Ec

ppEc
pp

∗〉− 〈Ec
pp

〉〈
Ec

pp
∗〉 . (A2)

The scattering field Es
pp is

Es
pp = Ek

pp + Ec
pp , (A3)
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where

Ek
pp = CE0

∫
fpp exp

(
−j2

→
k i · →r

)
dxdy, (A4)

Ec
pp =

CE0

8π2

∫
Fpp exp

[
−j

→
k i · →r − j

→
k i · →r

′
+ ju
(

x − x′
)
+ jv
(
y − y′

)]
dxdydx′dy′dudv, (A5)

where E0 is the average transmitting power, C = −jke−jkR/4πR,. Therefore, the first item of Equation
(A2) can be expressed as

Pk
pp=
∣∣CE0 fpp

∣∣2〈�
e−j2

→
k i ·→r +j2

→
k i ·→r dxdydx′dy′

〉
− ∣∣CE0 fpp

∣∣2〈∫ e−j2
→
k i ·→r dxdy

〉〈∫
ej2

→
k i ·→r

′
dx′dy′

〉
=
∣∣CE0 fpp

∣∣2� 〈
e−j2kz(z−z′)

〉
e−j2kx(x−x′)−j2ky(y−y′)dxdydx′dy′−∣∣CE0 fpp

∣∣2[∫ 〈e−j2kzz
〉

e−j2kx x−j2kyydxdy
][∫ 〈

ej2kzz
〉

ej2kx x′+j2kyy′dx′dy′
] . (A6)

Since the averages of the quantities referred in Equation (A6) can be placed by [20] ,〈
e−j2kz(z−z′)

〉
= exp

{
4k2

zσ2[ρ(ξ, ζ)− 1] + j8k3
zσ3sa(ξ, ζ)

}〈
e−j2kzz

〉
= exp

(−2k2
zσ2 + j4k3

zσ3/3
)〈

ej2kzz
〉
= exp

(−2k2
zσ2 − j4k3

zσ3/3
) . (A7)

Defining x − x′ = ξ and y − y′ = ζ, (A6) can then be further rewritten as

Pk
pp =

∣∣CE0 fpp
∣∣2∫ exp

{
4k2

zσ2[ρ(ξ, ζ)− 1] + j8k3
zσ3sa(ξ, ζ)

}
e−j2kxξ−j2kyζ dξdζ−∣∣CE0 fpp

∣∣2∫ exp
(−2k2

zσ2 + j4k3
zσ3/3

)
exp
(−2k2

zσ2 − j4k3
zσ3/3

)
e−j2kxξ−j2kyζ dξdζ

=
∣∣CE0 fpp

∣∣2 A0e−4k2
zσ2∫ {

exp
[
4k2

zσ2ρ(ξ, ζ) + j8k3
zσ3sa(ξ, ζ)

]− 1
}

e−j2kxξ−j2kyζ dξdζ

. (A8)

For the second item in Equation (A2),

Pkc
pp = 2Re

{
|CE0|2

8π2

〈�
Fpp f ∗ppe−j

→
k i ·→r −j

→
k i ·→r

′
+j2

→
k i ·→r ′′

eju(x−x′)+jv(y−y′)dxdydx′dy′dx′′ dy′′ dudv
〉
−

|CE0|2
8π2

〈∫
Fppe−j

→
k i ·→r −j

→
k i ·→r

′
eju(x−x′)+jv(y−y′)dxdydx′dy′dudv

〉〈∫
f ∗ppej2

→
k i ·→r ′′

dx′′ dy′′
〉} . (A9)

We take the situation that only single scattering occurs during the radar radiation, that is,
→
r =

→
r
′
.

Therefore, x = x′, y = y′, x − x′′ = x′ − x′′ = ξ, and y − y′′ = y′ − y′′ = ζ. Equation (A9) can be
further expressed as

Pkc
pp = 2Re

{
|CE0|2

8π2

〈�
Fpp f ∗ppe−2j

→
k i ·→r +j2

→
k i ·→r ′′

dxdydx′′ dy′′
〉
− |CE0|2

8π2
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→
k i ·→r dxdy

〉〈∫
f ∗ppej2

→
k i ·→r ′′

dx′′ dy′′
〉}

= 2Re
{

|CE0|2
8π2

�
Fpp f ∗pp

〈
e−j2kz(z−z′′ )

〉
e−j2kx(x−x′′ )−j2ky(y−y′′ )dxdydx′′ dy′′ −

|CE0|2
8π2
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Fpp

〈
e−j2kzz

〉
e−j2kx x−j2kyydxdy

][∫
f ∗pp

〈
ej2kzz′′

〉
e−j2kx x′′ −j2kyy′′ dx′′ dy′′

]} . (A10)

The third item in Equation (A2) is

Pc
pp =

∣∣∣CE0Fpp
8π2
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e−j
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〉〈�
F∗

ppej
→
k i ·→r ′′

+j
→
k i ·→r ′′′
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.
(A11)
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For the same condition assumed above, we can get
→
r =

→
r
′
,
→
r
′′
=

→
r
′′′

, x = x′, y = y′, and
x′′ = x′′′ , y′′ = y′′′ . Therefore, we can further obtain

Pc
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∣∣∣CE0Fpp
8π2

∣∣∣2〈�
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〉
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8π2
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8π2
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〉
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] . (A12)

Defining x − x′′ = ξ, y − y′′ = ζ, we can rewrite (A12) as

Pc
pp =

∣∣∣CE0Fpp
8π2

∣∣∣2[∫ 〈e−j2kz(z−z′′ )
〉
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]
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4k2

zσ2ρ(ξ, ζ) + j8k3
zσ3sa(ξ, ζ)

]− 1
}

e−j2kxξ−j2kyζdξdζ
. (A13)

By substituting Equations (A2), (A8), (A10) (A13) into Equation (A1), we obtain

Ppp = Pk
pp + Pkc

pp + Pc
pp

= |CE0|2
[∣∣ fpp

∣∣2 − Re(Fpp f ∗pp)
4π2 +
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64π4
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, (A14)

where kx = 2k0 sin θ, kz = 2k0 cos θ, fpp and Fpp are coefficient defined by [20]. The radar backscatter
coefficient σ0

pp is a function of Ppp, that is,

σ0
pp = 4πR2 Ppp

E2
0 A0

, (A15)

where A0 is the area of antenna. Substitute Equation (A14) into Equation (A15) and use the method
introduced in [25], we can get

σ0
pp = k2

4π

[∣∣ fpp
∣∣2 + 1

4π2 Re
(

Fpp f ∗pp
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+ 1
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. (A16)

Since Fpp =
[
Fpp(kx, 0) + Fpp(−kx, 0)

]
/2, we can obtain

Re
(

Fpp f ∗pp

)
=

Fpp(kx, 0) + Fpp(−kx, 0)
4
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4
fpp. (A17)

By substituting Equation (A17) into Equation (A16), we can further get

σ0
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k2
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where

Γpp = fpp +
1

4π2
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4
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(A19)
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Abstract: The paper discusses the results of a study of short-period internal waves (IWs) in the Black
and Caspian Seas from their surface manifestations in satellite imagery. Since tides are negligible in
these seas, they can be considered non-tidal. Consequently, the main generation mechanism of IWs
in the ocean—interaction of barotropic tides with bathymetry—is irrelevant. A statistically significant
survey of IW occurrences in various regions of the two seas is presented. Detailed maps of spatial
distribution of surface manifestations of internal waves (SMIWs) are compiled. Factors facilitating
generation of IWs are determined, and a comprehensive discussion of IW generation mechanisms is
presented. In the eastern and western coastal zones of the Black Sea, where large rivers disembogue,
intrusions of fresh water create hydrological fronts that are able to generate IWs. At the continental
shelf edge, on the west and northwest of the Black Sea and near the Crimean Peninsula, IWs are
generated primarily due to relaxation of coastal upwelling and inertial oscillations associated with
hydrological fronts. In addition, IWs can be formed at sea fronts associated with the passage of cold
eddies. In the Caspian Sea, seiches are the main source of the observed IWs.

Keywords: Caspian Sea; Black Sea; internal waves; satellite remote sensing; sea surface; SAR imagery

1. Introduction

Internal waves (IWs) exist in the stably stratified ocean which corresponds to water density
increase in the direction of gravity force. They are wave-like oscillations of water particles around
a stable equilibrium position under the restoring action of Archimedes (buoyancy) forces [1]. IWs are
characteristic of the dynamics of all density-stratified water bodies—oceans, seas, lakes and reservoirs.
The differences in layer densities may be caused by differences in water temperature or salinity. In fact,
such processes also occur at the air/water interface. Unlike surface waves, IWs entrain fluid particles
that undergo vertical displacements with maximum amplitude located deep in water rather than at the
surface. At the same time, maximum amplitudes of horizontal displacements (orbital motion in IW)
are found in the immediate proximity to the ocean surface where these amplitudes can reach almost
1 m/s and produce perceptible changes in small-scale wind wave spectrum [2].

IWs are known to strongly affect processes in the ocean. Motions induced by IWs transpierce
the whole body of ocean water and also play an important role in processes at its surface. They can
propagate over several hundred kilometers and transport both mass and momentum. IW propagation
is accompanied by a considerable velocity shear that can lead to turbulence and mixing. That is
why IWs, and mechanisms of their generation, development, propagation and decay are always
a research focus.

With the employment of synthetic aperture radars (SARs), satellite remote sensing techniques
provided a new outlook for the study of oceanic IWs [3]. Satellite observations of surface manifestations
of internal waves (SMIWs) enable determining their spatial parameters and regions of regular
occurrence, as well as analyzing possible generation mechanisms and evolution. Today, using SAR data
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in IWs studies is standard practice around the world. By the initiative of John Apel, an atlas of surface
manifestations of IWs has been created and is maintained [4], presently comprising over 300 instances
of IW patterns from 54 regions of the world. Hundreds of publications have been devoted to remote
sensing of IWs and the flow of works does not seem to run out. For example, the development of
remote-sensing techniques in the study of IWs as well as the internal wave studies in the South China
Sea were summarized in [5]. Single or a series of SAR images makes it possible to investigate the two
dimensional structure of IWs by determining such characteristics as: half-width, crest length, number
of waves, propagation direction, distance between neighboring trains, distance between neighboring
IWs, and wave velocity. By using these IW parameters in models, oceanographers have been able to
derive important physical information, such as oceanic mixed layer depth [5–15]. However, most of
the observations concern IWs generated by tidal currents in shelf zones. It is widely accepted that IW
generation is closely related to tidal activity. Specifically, tidal IWs occur as a result of tidal currents
flowing normal to the local bathymetry features. Such processes are statistically reproducible, given
the same season, the same phase of both daily and fortnightly tides, and the same bathymetry. That is
why most remote sensing techniques are tailored for studying IWs generated by tidal currents and
internal tides in shelf zones.

By contrast, IWs of non-tidal origin have received much less attention. In non-tidal seas, IWs
can be induced by intensive dynamic processes such as coastal upwelling, eddies, wind-driven water
movements, hydrological front oscillations, etc. There are some works based on contact methods
focused on observation and numerical modeling of generation and propagation of non-tidal IWs [16,17].
However, publications on satellite observation of IWs in non-tidal seas are scarce and focus mainly on
IWs in large lakes [18–20].

Up to date, there are no reports on studies of IWs in the Black and Caspian Seas based on
their manifestations in satellite images, with the exception of publications by the researchers of
Space Radar Laboratory of the Space Research Institute RAS, where the authors belong. Our works,
initially performed for the northeastern Black Sea and Middle Caspian, revealed a variety of IW types
which could possibly be explained not only by bottom topography features, but also a diversity of
generation mechanisms. Preliminary results were presented in international conferences and published
in Russian language scientific journals [21–25]. Soon it became clear that IWs in non-tidal seas differed
substantially from those generated by barotropic tides on oceanic shelf and their investigation was
a challenge. Reconstruction of a satisfactory picture of generation, propagation and interaction of
IWs in the seas without tides and validation of IW generation hypotheses demanded accumulation
of a large bank of data. In this paper, we summarize the results obtained over a 10-year survey of
the Black and Caspian Seas using satellite data. The large amount of examined data permitted some
generalizations and statistically significant results on spatial and temporal variability of various SMIWs
in satellite images. Factors facilitating generation of non-tidal IWs were determined based on joint
analysis of available satellite remote sensing data of the sea surface in microwave, visible (VIS) and
near-infrared (NIR) ranges complemented by results of in-situ measurements.

During our long-term monitoring of the Black and Caspian Seas [21], we came across a significant
number of SMIWs in satellite imagery. Tides are so negligible in these seas that they cannot
induce IWs [26].

The main goal of our work reported in this paper was to broaden our insights into the physics
and geography of IWs in non-tidal seas based on satellite data.

This goal implied the following primary tasks: (1) identify regions of non-tidal seas where SMIWs
are regularly detected; (2) investigate features of SMIWs based on satellite data in various ranges of the
electromagnetic spectrum (microwaves, VIS); (3) determine the reasons for considerable interannual,
seasonal and spatial variations in SMIWs both at the sea surface and in radar images of the surface;
(4) map SMIWs in the Black and Caspian Seas; and (5) determine probable generation mechanisms of
IWs from joint analysis of satellite observations, hydrometeorological data, and in-situ measurements.
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Note that over the past year, new satellite data have emerged ensuring a much higher degree of
quality of remote observation of IWs. We refer to the continual flow of various high resolution satellite
data from the sensors installed on board new Sentinel satellites launched by European Space Agency.
Hence, the possibilities are open to: (1) consider smaller scales since data with resolution of units of
meters are now available; (2) compare radar and optical data obtained almost simultaneously in same
region and at same high resolution; and (3) investigate IW development and propagation in time due
to smaller intervals between the observations.

2. Study Areas

2.1. The Caspian Sea

The Caspian Sea has no natural connection with the World Ocean and is the largest inland body
of water in the world. It contains about 3.5 times more water, by volume, than all five of North
America’s Great Lakes combined. The Caspian is a lake by geographical definition but it is a saltwater
lake. Average salinity of the Caspian Sea water is 12.85� and that is approximately three times
lower than salinity of ocean. The Caspian has characteristics common to both seas and lakes, but its
size, hydrometeorological conditions, currents, water level oscillations, flora and fauna are more
characteristic of seas [27]. It is basically considered a non-tidal sea since tide heights do not exceed
12 cm at the coastline and 2 cm in open sea. Nevertheless, IWs do occur here and their generation
mechanisms can be explained by some specific characteristics of this water basin (Figure 1):

Figure 1. Map of the Caspian Sea. Dots indicate the division into North, Middle and South Caspian.

• The Caspian Sea is divided into three, approximately equal, parts: North, Middle and South.
• The most characteristic features of bottom topography are big shallow water areas in North,

and deep areas in Middle and South Caspian.
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• The temperature regime of the Caspian Sea is rather unusual. On the one hand, it is characterized
by considerable differences in wintertime temperature between North and South, and, on the other
hand, by equalizing the temperatures in summertime. Seasonal oscillations of water temperatures
are more pronounced in Middle Caspian. In North Caspian, there is no water temperature
stratification due to its shallowness.

• The most typical hydrometeorological feature of the Caspian Sea is the winds that induce 8–10 m
high and up to 100–150 m long strong waves throughout November to March in Middle Caspian.

• Well-pronounced atmospheric-forced motions are common. Seiches-like oscillations (amplitudes
up to 35 cm, periods from 8–10 min to several hours) occur often [28]. The currents are primarily
wind-generated. Horizontal dynamics is characterized by predominating cyclonic circulation at
the sea center and by generation of separate local eddies [29].

2.2. The Black Sea

The Black Sea is an inner enclosed sea on the southeast of Europe. As part of the Atlantic Basin,
it connects to the ocean on the south via the Mediterranean Sea through the Bosporus, Dardanelles
and Gibraltar (Figure 2). On the northeast, it connects to the Azov Sea through the Kerch Strait.
The total area of the sea is about 422 thousand km2, coastline is 3400 km long, average depth is 1240 m,
and maximum depth is 2210 m. Like the Caspian Sea, the Black Sea is considered non-tidal since tide
levels do not exceed 0.1 m because Mediterranean tides subside in the straits and the Black Sea is not
big enough to develop considerable tides of its own. The level of the sea changes primarily due to
wind-driven and seiche oscillations, as well as river outflows. Seiches are common in the Black Sea
with periods of several minutes to two hours and level oscillations of 0.4–0.5 m, sometimes up to 1 m.
The seiche lifetime varies in a broad range: from rapid subsiding to persisting for several days [30].

Figure 2. Map of the Black Sea.

The continental shelf of the Black Sea has a slight inclination (to the depths of 100–150 m) over the
distance of a few kilometers off mountainous coasts. It ends with an abrupt (up to 20◦–30◦) slope to
the depth of more than 1000 m. The only exception is the northwest of the sea where the shelf is up to
190 km wide.
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The basic circulation in the Black Sea is characterized by a strong cyclonic basin-wide current along
the coastline which is referred to as the Rim Current [31,32]. It is highly hydrodynamically unstable and
consists of a system of moving mesoscale rings and eddies [21,33]. Eddies of various scales are typical of
the whole coastal zone of the Black Sea [2,23,34,35]. The hydrological regime of the sea is determined by
water exchange with the Marmora and Azov Seas, inflow of coastal fresh waters and climatic conditions.
Coastal waters significantly freshen the near-surface water layer. The major part of river water (up to 80%)
flows in on the northwest, where the largest rivers, Danube, Dnepr and Dniester, disembogue. On the east,
rivers Inguri, Rioni, and Chorokh as well as many smaller ones carry their waters into the sea. Along the
rest of the coastline, the inflow of coastal waters is insignificant [30].

All year round, the temperature of the near-surface layer of water tends to grow in the direction
from northwest to southeast which is conditioned by the regional climate. In coastal zones, water
temperature is strongly influenced by storm surges and upwellings. Negative storm surges or
upwellings occurring near the Crimean Peninsula (Crimea) and the east coast in summer were reported
to drop the near-surface water temperature from 25 to 7 ◦C [30].

3. Data and Methods

3.1. Data and Data Processing

Data were processed and analyzed using the toolkit of the satellite information system developed at
Space Research Institute of the Russian Academy of Sciences (IKI RAS). The system is named “See the Sea”
(STS). STS functionality, goals and current status are detailed in [36,37]. STS provides not only instruments
for fast and easy access to satellite data and products, but also various tools for specialized data analysis.
In addition, it enables joint analysis of data different in nature, spatial resolution, unit of measurement
and acquisition time. The archive of STS is constantly automatically updated by its data receiving unit
communicating with a number of data source centers. Today, it holds over 100,000 individual scenes.
STS enables easy search of the distributed image archive using sensor type, time interval and location as
search criteria. The selected image is visualized in the map area of the interface along with its geographic
basis and related cartographic data. All information (regardless of sensor type or product) is presented
for viewing in the same cartographic projection for a given geographic area. This facilitates data selection
for analysis. Combining data of different nature (active/passive microwave, VIS and NIR), spatial
resolution and swath width allowed us to better understand the complex picture of meteorological
and hydrodynamic processes in the study regions, reveal factors favoring generation of non-tidal IWs,
and, consequently, come up with a hypothesis on generation mechanisms.

For purposes of complex analysis, STS has a specialized cartographic web-interface allowing
researchers to search, process and analyze various remote sensing data and related (for instance,
meteorological) information.

Our investigation of IWs in the Black and Caspian Seas began with selecting satellite data required
for the reconstruction of IWs generation and propagation in the regions of interest. After expert visual
identification of SMIWs in satellite images, the images were processes and analyzed. This could include
image contrasting, conversion into different units, comparison of images of different acquisition
times, creating color composites using different bands and data types (including data acquired at
different times), as well as parameter estimation of different objects, pixel-by-pixel analysis for various
products, etc.

]Using the STS interface, the main characteristics of IWs were determined in an interactive
semi-automatic mode. The result was a comprehensive description of the phenomena, including:
the train’s center coordinates, water depth at the manifestation location, number of waves in the train,
its width, maximal wave length in the train, direction of propagation, presence of nonlinear interactions,
near-surface wind speed and direction. The description was stored in the database. The database tools
allow storing and visualization of graphical and attributive information, hierarchical classification of
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observed processes, search by spatial, time and typological criteria, and mapping IWs distribution in
the studied seas.

3.2. Basics of SMIWs in Sea Surface Radar Imagery

Case studies performed during numerous field experiments have revealed main characteristics of
IWs in oceans and seas. They propagate in trains, usually rank-ordered, with the largest, the fastest,
the greatest-wavelength, and the longest-crested oscillations appearing at the train front. The maximal
amplitudes of fluid particles’ vertical displacements in IW occur at the pycnocline (the layer of rapid
vertical changes in water column density), while the maximal amplitudes of horizontal displacements
and horizontal orbital velocities are observed at the sea surface and may reach tens of cm/s, substantially
modulating small-scale wind waves [38]. SMIWs usually look as alternating parallel bands of enhanced
and attenuated surface roughness. The resulting surface roughness variations are translated into
contrast variations in radar data [39]. SMIWs are made visible in SAR data due to: (i) associated with IW
orbital currents which modulate, in one way or another, the short surface wave spectra; and (ii) surface
films that cause changes in surface tension.

The pertinent theory used in analyzing and interpreting SAR data includes a few mechanisms
of IW effects on the disturbed sea surface due to modulation of short wind gravity-capillary waves.
Historically, the first one was a kinematic model based on the wave action balance equation [2,40].
It described the significant features of IW-induced modulations of ocean surface observed in early satellite
data and explained image contrasts in the case of relatively long electromagnetic waves (tens of centimeters
and longer). Two hypotheses based on the Bragg resonant backscatter were suggested to account for
the contrasts observable in the range of centimeter waves: the cascade mechanism of ripple modulation
based on the known fact that a nonlinear IW can generate “parasitic” capillary ripples near its crest
in a resonant manner [41,42], and the mechanism of modulation of the momentum flux towards the
surface [43]. Further non-Bragg mechanism of microwave scattering on the SMIWs was studied in [44–47].
Respective quantitative contributions of micro-breaking of steep surface waves in the convergence zones
to electromagnetic wave scattering were evaluated in these studies and it was shown that, under certain
conditions, they can be very important.

Modulation of centimeter- and decimeter-scale surface waves caused by redistribution of surface
films by currents within IWs can also be the dominant factor behind SMIWs imaged by SAR operating
in short centimeter wavelengths. Elongated areas with increased film concentrations are present on
the sea surface at IW depressions resulting in significant attenuation of ripples and formation of slicks.
Since increased surfactant concentration is common for semi-enclosed and inland seas, this mechanism
is expected to predominate in such regions [48,49].

Under moderate viewing angles implemented in satellite SARs, SMIWs can be distinctly
visualized in co-polarized SAR images on both VV- and HH-polarizations. Co-polarized SAR images
are extensively employed in this study.

Figure 3 presents images taken by Advanced Synthetic Aperture Radar (ASAR) on board Envisat
satellite and illustrates two different mechanisms of SMIWs in radar imagery. Figure 3a features
parallel bands of enhanced backscatter alternating with wide zones of slightly attenuated signal and
shows no signs of surfactant film. By contrast, Figure 3b depicts long narrow parallel bands of slicks
due to concentrated film trapped by a SMIW. The inset graphs show variations in radar signal along
the cross sections of the trains (white lines).

Combined analysis of satellite radar and VIS/NIR data is effective for resolving ambiguities in
interpretation of radar data, detecting SMIWs, as well as revealing sources and mechanisms of IW
generation. VIS/NIR data, especially obtained with sun glint, can provide additional information on
the processes and phenomena on the sea surface at low winds. In these conditions, the returned radar
backscatter is low, and the surface may appear featureless and uniformly dark across the radar image.
Sun glint is observed by optical (VIS/NIR) sensors when sunlight incidence angle is equal to the angle
of reflection. Surface roughness excites tilting of numerous small wave facets reflecting sunlight at
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a variety of different angles. Size and shape of a sun glint pattern depend on the probability distribution
of the slopes of the facets, incident sunlight direction and sensor viewing angle. Thus, differences in
sea surface roughness variance in a sun glint area are manifested as variations in image brightness.
An example of SMIW imaged by an optical multispectral sensor is shown in Figure 4c.

 

(a) (b) 

Figure 3. Mechanisms of Surface manifestations of internal waves imaging by SAR in the Caspian
Sea: (a) restructuring of ripple spectrum, Envisat ASAR, HH-polarization, 16 July 2010, 06:44 UTC;
and (b) redistribution of surface films, Envisat ASAR, HH-polarization, 26 May 2011, 06:59 UTC.

4. Results

4.1. Radar Observations of IWs in the Caspian Sea

4.1.1. Parameters of IWs Derived from Satellite Data

Numerous SMIWs were identified in satellite data obtained over the Caspian Sea [50], some examples
are shown in Figure 4. IWs may appear as isolated solitons, such as the one in Figure 4a. It has a wave
length of 900 m and a wave crest length of 56 km and propagates southeast. However, the majority
of IWs look like classical soliton trains (Figure 4b). The inset depicts variation of the radar signal due
to the SMIW along the marked cross section (white line). The leading wave crest is about 68 km long
and the maximal wave length in the train is 1500 m. Sometimes, one image manifests several IW trains
that propagate at different angles to each other and interact nonlinearly. In a false-color Landsat-8 OLI
image (Figure 4c), five IW trains propagating over the depths of 100–150 m are clearly visible (A, B, C,
D, and E). The most distinct trains, A, B and C, propagate northeast, the distance between A and B is 9 km,
the distance between B and C is 8 km. Each of them contains 4–5 individual waves with average lengths
of 350 m, rising intensities from rear to front of a train and leading wave crest lengths of about 55 km.
Train D propagates southeast, intersects with C and B, interacting with them in a nonlinear way. Train E
propagates north, and consists of four waves with leading wave crest length of 15 km and 400 m average
wave length. The SMIW patterns mimic bottom topography features. Specific curvatures of the leading
waves allow for the identification of IW origination areas. They are usually topography inhomogeneities,
sandbanks, and steep elevations that are typical of the eastern region of Middle Caspian.

Some statistics on SMIWs in Middle Caspian were derived from the satellite data. Distributions of
spatial dimensions of IW trains detected in radar images are shown in Figure 5. The widths of trains
varied from 1 to 6 km depending on the number of waves in train. The length of the longest wave
in trains ranged from 150 to 2000 m (Figure 5a). The lengths of leading wave crests ranged tens of
kilometers, between 8 and 80 km (Figure 5b).
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(a) (b) (c) 

Figure 4. Surface manifestations of internal waves in the Caspian Sea: (a) Solitary IW, Envisat
ASAR, HH-polarization, 25 July 2010, 18:20 UTC; (b) IW train, Envisat ASAR, HH-polarization,
11 September 2010, 06:52 UTC; and (c) Multiple trains of IWs propagating in different directions, Landsat-8
OLI, 13 July 2016, 07:13 UTC.

(a) (b)

Figure 5. Distributions of spatial dimensions of IW trains detected in satellite images of the Caspian
Sea: (a) maximal wave length in train; and (b) leading wave crest length.

4.1.2. Spatial and Seasonal Variability of SMIWs in the Caspian Sea

Spatial distribution of SMIWs in Middle and South Caspian derived from radar data is presented in
Figure 6. The data cover only the period from May to October because no IWs were observed throughout
the other months.

As can be inferred from Figure 6, the SMIWs are distributed unevenly, concentrating in three
main regions. Their occurrence is season-dependent. In the end of May and in the first half of June,
SMIWs are found only in the western part of South Caspian (I); in the second part of June and in July,
all SMIWs are observed on the east, near the Absheron Sill (II); and in August, they shift northeast (III).
By far the largest number of SMIWs is observed in July and August, all located in the eastern Caspian,
north of Absheron Sill. In the other parts of the sea, SMIWs occur less often.
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Figure 6. Surface manifestations of internal waves detected in satellite imagery of the Caspian Sea.

4.2. Satellite Observations of IWs in the Black Sea

A large archive of radar and VIS/NIR satellite data allowed us to estimate contributions of various
factors into generation mechanisms of SMIWs and their spatial distribution in different areas of the
Black Sea. There are four main areas in the Black Sea where SMIWs are mostly observed: near the
Danube Delta and Crimea on the west, near Novorossiysk on the northeast, and on the continental
shelf near Georgia on the east (Figure 7).

4.2.1. SMIWs near the Danube Delta

The greatest number of SMIWs is observed on the Romanian shelf, in the area of the Danube Delta. One
high resolution satellite image, for example an image acquired by Landsat-8 OLI, with a resolution of 15 m
for the panchromatic band 8 and swath of 185 km, can manifest up to twenty IW trains. Statistical analysis of
satellite data shows that SMIWs are mostly observed from May to July in the region. The largest amount of
IWs propagating both toward and off the coast was observed in 2010. Most likely, this fact can be explained
by specific hydrological conditions of that year. However, no in situ measurements are available to confirm
this. Figure 8 shows mapped locations of the leading fronts of IWs revealed in 2010 radar (Envisat ASAR,
ERS-2 SAR) and VIS (Landsat-5 TM, Landsat-7 ETM+) images. Orientation peculiarities of the SMIW allow
suggesting two main sites the IWs originate from: one is attached to the Danube water plumes (dashed
area), while the other is farther off the coast, over the isobaths of 50–75 m.

IWs from the first site propagate in various directions, they contain from 10 to 20 waves with
lengths up to 150 m, and their leading fronts are rather distorted. To our view, the source of IWs here
is the low-salinity water plumes of the Danube River.

Generation of IWs associated with river outflow is quite common. It is theoretically examined,
for example, in [51,52], and satellite observations are described in [53]. Comprehensive measurements
of intense IWs induced by an intrusion of low-salinity surface waters were conducted from a marine
platform on the northwestern shelf of the Black Sea [54], and numerical modeling based on those data
was performed in [55]. These works consider IW generation by a solitary front of estuarine type when
wave crests are congruent with the front and propagate to the open sea.
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Figure 7. Main areas of SMIWs in the Black Sea, close to: (I) Danube Delta; (II) Crimean Peninsula;
(III) city of Novorossiysk; and (IV) shelf of Georgia.

Figure 8. Locations of IW fronts revealed in 2010 satellite data of the Danube Delta region, western Black Sea.
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The Danube waters flow into the surface layer of the Black Sea through many delta arms. The main
volume comes via three distributaries: Chilia, Sulina, and Sfântul Gheorghe (Saint George) (Figure 8).
In the distributaries, waters have slightly different parameters. Their interaction with each other
and the seawater produces multiple relatively small-scale non-stationary fronts, eddies, apparently
generating IWs in varying directions. As a rule, the IWs are parallel to the fronts outlining river water
plumes of different turbidities.

A color composite of Landsat-5 TM (bands 3, 2, 1, Figure 9) clearly displays turbid fresh Danube
waters and multiple (over 20) IWs propagating in different directions. Such direction variability
is explained by high non-uniformity of the river outflow as well as bottom topography features.
Many IWs sit directly on turbid plume leading fronts so that they propagate together. Multiple IWs
cross each other, their fronts become distorted, and new ones occur.

 

Figure 9. Multiple SMIWs near the Danube Delta. Intense color variation pertains to high turbidity of
the Danube plume. Landsat-5 TM (bands 3, 2, and 1), 4 June 2010.
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On the second site (farther off the coast), SMIWs almost always indicate propagation toward the
coast with IW fronts parallel to local isobaths. The number of waves in a train usually does not exceed 10,
wave length can reach 300 m. The IWs propagate shoreward, being induced, to our view, by inertial period
IWs entering the shelf zone, as it occurs in open ocean mainly under the impact of tides. In the Black Sea,
the same generation mechanism of intense IWs was also observed near the southern coast of Crimea.
Examples of SMIWs imaged by SAR in the second site are shown in Figure 10. To prove our IW generation
hypothesis, let us make some estimates in the way shown in [9,56]. For the Black Sea, the inertial period
is about 17.2 h. From the SAR image in Figure 10, we estimate the distance between the IW trains at
13 km and, consequently, IW velocity at 0.21 m/s. The latter value is the characteristic phase velocity of
short-period IWs in the Black Sea, which is confirmed by in situ measurements [16]. The periods of waves
range 10–20 min by in situ measurements [16,24]. These values are the characteristic periods of intense
short period IWs. Thus, the wave length is estimated at 126–252 m, which is in agreement with satellite
data. There are no reasons for the IW trains propagating with the front of internal inertial wave to have
phase velocity differing from the velocity of the long (inertial) IW.

With known vertical density (Brunt–Väisälä frequency) profile, it is easy to solve the equation
for internal inertial waves and obtain estimates of phase velocity and lengths for 17.2-h period
and short period waves. For arbitrary profile, the equation can be solved by numerical methods.
IW parameters were obtained by a numerical solution of the equation for hydrological conditions
of the Danube shelf over the depths of 70–80 m (assuming flat sea floor, which is acceptable for this
region). From temperature and salinity profiles measured by Romanian researchers, seawater density
was determined and then input into calculations of IW parameters and dispersion characteristics.
To simplify calculations, the waves were assumed linear. For 10-min period waves, phase velocity was
estimated at 0.42 m/s, for 20-min period waves, it was 0.46 m/s. Wave lengths were 252 m and 552 m,
respectively. Note that, while the lengths of short period waves are of the order of several kilometers
in open ocean [9], they are much less in the Black Sea. A good example of a wave train generated by
inertial IW on the Black Sea shelf, with wave parameters estimated, is presented in [16].

Nonlinear interactions manifested in Figure 10 were used to estimate the degree of nonlinearity
of IWs in the Danube Delta region. The Ursell number (Ur)—wave nonlinearity to variance ratio—was
calculated with the IWs modeled using the Korteweg–de Vries equation [57]:

Ur = (α/β)× c0 × η × Δs
2 (1)

where η is wave height, Δs
2 is wave half-width, and α and β are nonlinearity and variance coefficients

defined in the case of two-layer fluid (H = h1 + h2) as:

α = (3/2)× (h1 − h2)/(h2 × h1); β = c0 × h1 × h2/6 (2)

To estimate α/β we used hydrological data obtained by Romanian researchers during ship
expeditions. The measurements were performed in a time period close to the satellite observations at
depths of 25, 55 and 70 m. Water temperature and salinity data were taken at standard depth levels
yielding rather coarse vertical profiles of the parameters. Nevertheless, they allowed for a two-layer
approximation of the water column [58]. For example for H = 70 M, h1 = 15 m, h2 = 55 m.
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Figure 10. SMIWs near the Danube Delta indicating coastward propagation, Envisat ASAR, VV-polarization,
8 June 2010. Arrow points to the IW train for which the Ursell number was estimated.

Some SMIW spatial characteristics were derived from the image (Figure 10). The one indicated by
white arrow has the following characteristics. The train propagates northwest over a wide shelf with
a depth about 75 m. There are 14 waves in the train. The front wave is the narrowest one, its length,
estimated as the distance between the two successive low-signal bands in the image, is 325 m. The second
wave is twice as long—650 m. Lengths of the following waves are close to this value. At present,
it is not possible to estimate IW height from satellite images. Nevertheless, our multi-year experience
of measurements in the Black Sea [24] allows us to suggest an estimate of 5 m. For this wave height,
Ur is assessed at 67.7. If we assume the leading wave height to be 1 m, then Ur=13, which is close
to soliton-type value equal to 12 [59]. This number characterizes the degree of IW field nonlinearity.
The higher Ur, the stronger are nonlinear effects [60]. Considering the obtained Ur estimates (13 . . . 67.7),
we can conclude that nonlinearity prevails over variance in IWs propagating towards the coast from open
sea in the region of the Danube Delta.
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4.2.2. IWs near the Crimean Peninsula

IWs in the region of the Crimean Peninsula have been closely studied and described in detail
by researchers of Marine Hydrophysical Institute (Sevastopol) and Acoustics Institute (Moscow).
Many results were obtained due to regular observations from a marine scientific platform in Katsiveli
(Yalta Region) conducted for the past 30 years; the most recent are presented in [24,61].

We have conducted monitoring of the region since 2009. Until April 2012, we used primarily
Envisat ASAR and ERS-2 SAR data, then Landsat data. Starting from October 2014, we have used
Sentinel-1 SAR-C data, and since August 2015, Sentinel-2 MSI as well. According to our satellite
observations, SMIWs most frequently appear in two areas: near the south and west coasts of Crimea.
A typical SMIW near the west coast is shown in Figure 11. The most distinct IW train (another two less
pronounced IWs are closer to the coast) propagates east over the depths of 80–90 m, contains 6 waves
with an average length of 200 m and a leading wave crest length about 17 km. All detected IW trains
near Crimea propagated toward the coast. Fronts in the trains frequently had the shape of concentric
arcs, which made it possible to approximately locate their sources (Figure 12). In this region, at shelf
edge, velocity of the Rim Current, the principal element of water circulation in the sea, can reach 1 m/s
and more. Its meanders and inertial oscillations can induce current components normal to the coastline
with velocities up to 50 cm/s, comparable with current velocities in tidal seas. Another IW generation
mechanism involves local hydrological fronts moving over the shelf. For instance, they can be generated
by storm surges near south Crimea [16]. Anyways, SMIWs are quite rarely detected in SAR data of the
region. During 2009–2011, as few as eight SMIWs were observed, and they occurred not only during
June–August, but also in October (for example, 1 October 2010) [34].

 

Figure 11. Typical SMIW near the west coast of Crimea, Envisat ASAR, VV-polarization, 7 August 2009.
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Figure 12. Different types of IWs propagating near the south coast of Crimea: (A) natural IW; and (B) IW
generated by a moving ship, arrow points to the ship; Landsat-8 OLI (panchromatic band, resolution 15 m),
1 August 2013.

In satellite image of 1 August 2013 (Figure 12) obtained off south Crimea, beside SMIW marked
A, we can see two SMIWs marked B. These are IWs generated by a moving ship. Such IWs can be
clearly detected in high resolution satellite images obtained by Landsat-8 OLI at a resolution of 15 m
(band 8) or Sentinel 1 and 2 at a resolution of 10 m. Natural (A); and ship-wake (B) IWs in the region
have similar wave lengths, about 80–100 m. They obviously differ in crest length, as can be inferred
only from satellite data analysis. Natural IW crest length scarcely exceeds 5–6 km, while ship wakes
containing IWs can span tens of kilometers. Thus, one may encounter IWs of different origins when
interpreting data from regions with ship routes.

4.2.3. IWs in the Eastern Black Sea

As mentioned above (Section 2.2), the eastern Black Sea is characterized by a narrow shelf (the 200 m
isobath is at the distance of only 5 km from the coast) and many rivers carrying waters into the sea.
There are important differences between SMIWs on the west (Danube Delta) and east (shelf of Georgia).
In contrast to the wide western shelf, no IWs generated at shelf edge were observed on the east.
All SMIWs were associated with river plumes. Analysis shows that submesoscale IWs occur due to
inertial currents of (always) unstable sharp plume boundary front. IWs of this type are manifested only
in high resolution data and are best pronounced in VIS images. Examples are presented in Figure 13.
Wave length in the trains does not exceed 50 m, the length of leading wave crest depends on the shape
of river plume. The seasonal character of these SMIWs is associated with variations in river outflow
volumes rather than thermocline behavior.
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(a)

 
(b)

Figure 13. SMIWs in the eastern Black Sea due to river plumes of: (a) the Bzyp River, Sentinel-2A MSI,
1 May 2017; and (b) the Enguri River, Sentinel-2A MSI, 1 August 2016.

4.2.4. IWs in the Northeastern Black Sea

SMIWs in radar imagery of the northeastern Black Sea are scarce. We observed only fifteen
instances in satellite surveys of 2005–2016. Six cases were registered in 2006, of them four in June and
two in July. One SMIW was registered in August 2007, one case in June 2009, and none in years 2008
and 2010. Four SMIWs were revealed in July 2011. The 2012–2014 data gap was due to the interruption
of the continuous SAR data flow (Envisat out of operation, Sentinel not launched yet). After the launch
of the Sentinel satellites, we continued radar survey of the area and detected two SMIWs in June 2015
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and one in June 2016. The reasons for such a considerable interannual variability in SMIWs in radar
images are discussed in Section 5.1.

Spatial distribution of SMIWs identified in radar data in the northeastern Black Sea is depicted in
Figure 14.

 

Figure 14. A map of SMIWs detected in SAR images of the northeastern Black Sea.

According to Figure 14, we can outline three regions where IWs are observed:

I. Area near the Kerch Strait between isobaths 50 and 150 m.
II. Area near the Anapa-Gelendjik coastal line.
III. Area 45–50 km southwest off the Novorossiisk-Tuapse coastline between isobaths 1300 and

2000 m.

In the northeastern Black Sea, IWs are manifested as trains containing up to 20 waves with
maximal wave length in a train not exceeding 500 m. Leading wave crest is typically substantially
curved and its length varies between 7 and 18 km. Train width varies between 850 and 3500 m
depending on the number of waves in train. The distribution of IWs spatial characteristics derived in
radar images of this region is presented in Figure 15.

210



Remote Sens. 2017, 9, 892

(a) 
 

(b) 

Figure 15. Distribution of spatial dimensions of IW trains detected in satellite images of the northeastern
Black Sea: (a) maximal wave length; and (b) leading wave crest length.

5. Discussion

5.1. Effect of Sea Water Stratification on Detectability of IWs in Radar Imagery

The above results are evidence of a significant interannual, seasonal and spatial variability of
SMIWs both at the sea surface and in radar images of the surface. Below we discuss possible reasons
and show that the key factors are shape and depth of the pycnocline.

We observed a considerable interannual variability in the number of SMIWs in the northeastern
Black Sea (Figure 15). Most of the SMIWs in this region were documented in 2006. To find out
the reason, we analyzed the data of conductivity-temperature-depth (CTD) water column profiling
performed during summer cruises of R/V Akvanavt by researchers of the South Branch of Institute of
Oceanography RAS in 2006–2008. Hydrological measurements were carried out along a transection
perpendicular to the coastline [62].

Figure 16 shows profiles of sea buoyancy frequency derived from CTD measurements over the
depths of 1800 and 50 m. Buoyancy frequency describes the oscillation of a water parcel about its
equilibrium depth and is used as a parameter to express the strength of the seawater stratification. It is
inherently related to internal gravity waves and determines an upper bound on the existence of free
internal inertia-gravity waves in the sea.

  
(a) (b)

Figure 16. Vertical profiles of buoyancy frequency (cycles per hour, cph) based on in situ measurements
in areas with depth of: (a) 50 m; and (b) 1800 m (northeastern Black Sea).
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The pycnocline shape of June 2006 (when most of the SMIWs were observed) has significant
differences as compared to the other years, and these differences persist for different depths (Figure 16).
The buoyancy frequency peak is very sharp and located at a depth of 5–7 m.

Numerous SMIWs were identified in satellite data obtained over the Caspian Sea. All were
observed within the period from end of May to end of August. Three main regions of their localization
depending on time were outlined. In May, SMIWs were observed on the west of South Caspian, in June
and July, all SMIWs were located on the east, near the Absheron Sill, then in August, SMIWs moved
north. Comparison of satellite data and in situ measurements has demonstrated (Figure 6) that the
observed seasonal variability of SMIWs can also be explained by variations in pycnocline properties.
Periods of numerous SMIWs coincide with seasonal thermocline formation periods. Most SMIWs
registered in Middle Caspian are associated with sharp and shallow pycnocline. In summer, salinity
is almost constant across all depths in Middle and South Caspian, so density gradient primarily
depends on temperature gradient. As upper water layer warms up starting the second half of July,
and thermocline deepens down to bottom, SMIW localization areas shift northeast, where a noticeable
stratification exists.

Based on the results obtained for the northeastern Black Sea and Caspian Sea, we can state that the
maximal number of SMIWs is associated with the most sharp and shallow pycnocline. Such conditions
favor both generation of IWs and their manifestation at the sea surface by inducing strong orbital
motions in the near-surface water layer which modulate the wind wave spectrum to produce SMIWs
in radar data.

It should be noted that all SMIWs were detected in satellite data taken over Middle and South
Caspian. North Caspian is the shallowest area of the sea with average depth of only 6 m. Its depth does
not exceed 10 m and almost 20% of the region is less than 1 m deep. There is no thermal stratification
in North Caspian due to its shallowness. This fact explains the absence of SMIWs in this area.

5.2. Predominating Mechanisms of IW Generation in Inner Seas

The origins of IWs are diverse: tides, inertial oscillations, variations of atmospheric pressure and
wind, earthquakes beneath the sea, currents flowing over sea floor irregularities, anthropogenic effects,
etc. [61,63]. In coastal regions of oceans and tidal seas, IWs induced by interaction of tides with shelf
edge prevail. By contrast, IWs in non-tidal basins, though much less intense, vary significantly by their
generation mechanisms.

The main feature of IWs in non-tidal sea is their moderate amplitudes as compared to IWs in
the ocean. Widely spread nonlinear effects are another characteristic of IWs on the shelf of non-tidal
sea, the same as in seas with tides. Nonlinearity (vertical and horizontal profile asymmetry) of IWs is
manifested in train forming intense waves, generated under certain conditions. These are a combination
of processes responsible for generation of intense IWs in non-tidal sea. Previous results were based on
in-situ observations from stationary platforms in the Caspian and Black Seas [59,64]. They enabled
estimating some IW characteristics, their amplitudes and periods in the first place, and determine the
corresponding hydrological conditions. However, local in situ measurements, even using a network of
distributed probes, could not provide a comprehensive spatial picture and spatial characteristics of IWs
in the Black and Caspian Seas, therefore limiting our outlook with regard to their origin. A complex
analysis of multi-year satellite data complemented by meteorological and in-situ data, both reported in
literature [16,54] and our own [24], yielded statistically valid conclusions on IW generation mechanisms
in the studied seas. The results maintain that an effective generation mechanism of intense SMIWs
in non-tidal sea is the intrusion of long IWs—internal seiches or quasi-inertial IWs—onto shelf that
usually occurs after storms. Entering the shelf zone, long IWs play the same role in non-tidal sea as
tides on ocean shelf (Section 4.2.1). On the way toward the coast, they first transform from sinusoidal
to nonlinear, and then generate IW trains. In the case of a narrow shelf and abrupt continental slope
(like in the Black Sea on the northeast and off the southern tip of Crimea), IWs generation is associated
with surge-induced local fronts in the coastal area that are observed in periods of wind relaxation and
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restoration of water stratification disturbed by the surge (Section 4.2.2). In the case of a wide shelf
(the Danube Delta region), intense IWs can be generated by a developing surface intrusion of fresh
coastal waters (Sections 4.2.1 and 4.2.3).

Our long-term satellite survey revealed that practically all IW trains identified in satellite imagery
of the northeastern Black Sea (Figure 14) are located close to a cold eddy structure or a cold hydrological
front. This evidences in favor of the frontal generation mechanism, when IWs are radiated by
a non-stationary (moving and/or inertially oscillating) front or edge of a mesoscale eddy.

I. IWs in the Black Sea area adjacent to the Kerch Strait are often generated by moving hydrological
fronts. The Kerch Strait water exchange with the Black Sea is determined by the wind flows
over the strait. The water level slopes from the Black to the Azov Sea under the impact of
the winds blowing from the south. Under south winds, a front of salty and cold Black Sea
waters can form and move towards the Kerch Strait. In satellite images, we often see SMIWs
moving ahead of the front. A typical example of SMIWs generated by a cold seawater front
and moving ahead of it is shown in Figure 17. This figure presents an SST chart derived from
NOAA AVHRR data taken at a relatively close time to the moment of ASAR image acquisition.
A thermal front separating two water masses is clearly seen. The red rectangle marks the
location of IW trains propagating ahead of the front above the depths of 50–70 m. Each IW
train in the Envisat ASAR image contains more than 10 waves with an average wave length
of 300–400 m. The IWs trains interact nonlinearly. The SMIWs pattern is similar to tidal seas.
However, these IWs are smaller in dimensions and considerably less intense in comparison to
IWs in oceans and tidal seas.

II. In near-coastal waters (Region II), IW generation can be attributed to a storm surge or relaxation
of upwelling.

III. Combined analysis of radar and VIS/NIR data obtained within a small time interval shows
that all SMIWs revealed over deep waters (Region III) are located near the edge of a mesoscale
eddy or an eddy dipole.

 
(a) 

 
(b) 

 
(c) 

Figure 17. (a) Sea surface temperature chart from NOAA-15 data of 11 July 2006, 03:21 UTC; (b) Envisat
ASAR, VV-polarization, image of 11 July 2006, 19:19 UTC; and (c) signatures of non-tidal IWs (zoom
into red box in (b)).
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Figure 18 presents an Envisat ASAR image acquired on 19 June 2006 at 19:10 UTC together with
a water-leaving radiance chart derived from Aqua MODIS data obtained at a close time. Dark bands
distinctly visible in the Envisat ASAR image correspond to the outer boundary of an eddy dipole
visualized in the water-leaving radiance chart. In the Envisat ASAR image, the boundary is visible
due to filamentary biogenic films accumulated in convergence zones of the surface water layer.
Maximum contrasts delineate the eddy boundary in the water-leaving radiance chart. The SMIW
detectable in the Envisat ASAR image is located close to the area of high contrast. The train consisting
of over 20 waves with fronts parallel to the dipole jet propagates seaward at an angle to the shore.
Most probably, the IW train is radiated by the oscillating dipole jet.

 
(a) (b) (c) 

Figure 18. (a) Water-leaving radiance chart from Aqua MODIS data, wavelength 551 nm, 20 June 2006,
11:10 UTC; (b) mesoscale eddy dipole, Envisat ASAR, VV-polarization, 19 June 2006, 19:10 UTC; and (c)
signature of non-tidal IWs located in close proximity to the central part of the eddy dipole (zoom into
red box in (b). There are over 20 waves in the train. Leading wave crest length is 5600 m. Maximal wave
length is 220 m. IWs propagate seaward at an angle to the coast with fronts parallel to the dipole jet.

As to the Caspian Sea, we can point out two of the most common sources of IW generation:
(i) summer upwelling often observed near the east coast; and (ii) one-node seiches with nodes situated
near Absheron Cape.

Summer upwelling plays a very important role for the Caspian Sea, radically changing water
dynamics. It is observed every year along the east coast of Middle and parts of South Caspian. The rise
of cold deep waters occurs when strong southeast winds set to push warm surface waters away from
the coast. As a result, surface temperature decreases, horizontal temperature gradients reach 2.3 ◦C at
the surface and 4.2 ◦C at a depth of 20 m. The center of the upwelling gradually moves from 41◦–42◦N
in June to 43◦–45◦N in September.

Seiches occur as a result of rapid changes in atmospheric or wind pressure over the sea surface.
Free seiche oscillations arise in Middle and South Caspian with predominating periods of 8.5–8.7 and
4.2–4.6 h. The nodal line of a longitudinal uninodal seiche extends approximately along the Absheron
Sill separating Middle and South Caspian. Strong seiche currents bumping against the steep slope
generate thermocline oscillations inducing IWs. The sill-formed IWs radiate to deeper sea, less affected
by the bathymetry.

5.3. IWs and Look-Alikes in Non-Tidal Seas

Study of IWs in non-tidal seas based on satellite data is a complicated task. One of non-trivial
problems is discrimination between the signatures of IWs generated in water and in the atmosphere
above the sea surface.

Atmospheric internal gravity waves (AIWs) propagate all the time and everywhere in a stratified
atmosphere. They have various origins: air flows past different obstacles generating so-called lee
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waves, interaction of continental and marine air masses, movement of cold atmospheric fronts, etc.
In radar images of sea surface, we can observe AIWs when wind variations modulate sea surface
roughness so as it results in backscatter modulation [65].

Radar signatures of oceanic IWs (OIWs) and AIWs are frequently confused. Both are shaped in
alternating bands of enhanced and attenuated radar backscatter, similar in intensity. It is easier to
discriminate them in regions where OIWs are generated by tides at shelf edge. Such OIWs have typical
signatures of trains, as a rule, propagating toward the coast. Their localization and seasonal variability
are well known [4]. Radar signatures of OIWs have high contrasts; bands of enhanced backscatter
are extremely narrow, not more than 2–3 pixels (pixel resolution 75 m). Usually, AIWs propagate
away from the coast (orography waves), or on the lee side of islands, or are associated with passage
of an atmospheric front. AIWs have greater spatial dimensions: front lengths reach 200–300 km and
more, wave lengths are seldom less than 1–2 km. However, our satellite monitoring shows that in
inner seas, such as the Black and Caspian Seas, AIWs are manifested in a variety of patterns: from
gigantic narrow solitary waves with front length reaching 600 km to small-scale trains containing
more than 10 waves. Sometimes, the latter are very hard to differentiate from OIWs. An example is
shown in Figure 19. Radar signatures of OIWs and AIWs are very similar here, but some distinctions
are quite noticeable. OIWs are manifested as bright bands (suloys) with curved fronts (Figure 19a),
while AIWs as parallel dark bands (slicks) (Figure 19b). Given the same resolution of both images
(75 m), the suloys are narrower than the slicks. The signatures of AIWs appear less sharp, which is
confirmed by the inset graphs of normalized radar cross section (NRCS) along the black lines.

Obviously, to reliably discriminate between OIWs and AIWs in enclosed non-tidal seas, in addition
to comparing radar contrasts and spatial properties, we need to consider all available hydrometeorological
information, data on sea surface state, sea floor bathymetry and coastal orography. The best approach
would be to employ atmospheric sounding and compute the Scorer parameter, as it was made in [66].
Unfortunately, radiosonde observations are hardly affordable for most researchers. At present, the final
decision is up to the human expert who analyzes radar data and all complementary information.
The problem of discriminating surface manifestations of OIWs and AIWs in radar imagery is certainly
a topic of an individual comprehensive consideration and cannot be examined within the present work,
it is only mentioned here for the sake of completeness of the presentation. A detailed discussion of
discrimination between OIWs and AIWs in radar data can be found in [67]. Despite the fact that the
paper considers seas with tides, the principal conclusions agree with our results: the main discrimination
criteria are based on the shape and structure of radar signatures. The authors also present useful findings
on polarization differences of the signatures. AIWs are better pronounced in HH polarization and OIWs
in VV polarization. We plan to further investigate this aspect based on radar observations of the Caspian
Sea, where, unlike the Black Sea, OIW are frequently manifested.

Another problem of SMIWs studies is their differentiating from fine current structures within
submesoscale eddies. It is well known that, in radar images, submesoscale eddies are primarily
visualized by slicks [25,68]. At eddy edges, however, slicks may be shaped in quasi periodic structures
similar to IW trains.

We hope that, with the Sentinel program in place, the steady flow of high resolution radar data
that the sensors provide will facilitate important advances in the study of such infrequent phenomenon
as IWs in non-tidal seas.
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(a) (b) 

Figure 19. Comparison of radar signatures of OIW and AIW: (a) OIW, Envisat ASAR, HH-polarization,
24 July 2009; and (b) AIW, Envisat ASAR, VV-polarization, 14 March 2009. The inset graphs show
variations in radar signal along the cross sections of the trains (black lines).

6. Conclusions

We present results of our study of SMIWs in the Black and Caspian Seas. In these seas, no significant
tides can ever develop, so they can be considered non-tidal. Consequently, the main mechanism of IW
generation in ocean—interaction of tidal wave with bathymetry—is irrelevant.

Analysis of satellite data, primarily radar imagery (ERS-2 SAR, Envisat ASAR, and Sentinel-1
SAR-C) allowed us to identify regions of most regular SMIWs in these seas. In the Black Sea, there are
four such regions: (I) near the Danube Delta on the northwest; (II) near the Crimean Peninsula; (III) near
the city of Novorossiysk on the northeast; and (IV) the shelf of Georgia on the east. In the Caspian
Sea, SMIWs have distinct seasonal variability. In the end of May and in the first half of June, SMIWs
can be found only in the western part of South Caspian (I); in the second part of June and in July,
all SMIWs are observed on the east, near the Absheron Sill (II); and, in August, they appear northeast
of the Absheron Sill (III).

A comparative analysis of the observed non-tidal IWs was performed. A strong diversity of SMIW
forms, propagation directions and types of surface wave modulation was revealed which implied
different mechanisms of IW generation. For each region of regular SMIWs, the factors facilitating
generation of non-tidal IWs were identified via joint analysis of radar, VIS and NIR satellite data and
corresponding hydrometeorological information. For instance, in the eastern and western coastal
zones of the Black Sea, where large rivers disembogue, intrusions of fresh water create hydrological
fronts able to generate IWs. At continental shelf edge, on the west and northwest of the Black Sea
and near Crimea, the main IW generation mechanisms are: relaxation of coastal upwelling, inertial
oscillations associated with hydrological fronts, and storm surges. For the first time, we discovered
IWs formed at the fronts associated with passage of cold eddies. Processes of the type we observed
several times in the northwestern Black Sea. In the Caspian Sea, seiches were the main source of IWs
that we observed in satellite images.

The relation between occurrence of SMIWs and position of the pycnocline peak was also established.
Sharp and shallow pycnocline was shown to facilitate generation of IWs as well as enhance near-surface
currents associated with IWs.

In conclusion, we should note that statistically significant estimates of spatial and temporal
distribution of surface manifestations of non-tidal IWs in the Black and Caspian Seas have been
obtained for the first time.
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Abstract: Synthetic aperture radar (SAR) ship detection has been playing an increasingly essential role
in marine monitoring in recent years. The lack of detailed information about ships in wide swath SAR
imagery poses difficulty for traditional methods in exploring effective features for ship discrimination.
Being capable of feature representation, deep neural networks have achieved dramatic progress in
object detection recently. However, most of them suffer from the missing detection of small-sized
targets, which means that few of them are able to be employed directly in SAR ship detection
tasks. This paper discloses an elaborately designed deep hierarchical network, namely a contextual
region-based convolutional neural network with multilayer fusion, for SAR ship detection, which is
composed of a region proposal network (RPN) with high network resolution and an object detection
network with contextual features. Instead of using low-resolution feature maps from a single layer
for proposal generation in a RPN, the proposed method employs an intermediate layer combined
with a downscaled shallow layer and an up-sampled deep layer to produce region proposals. In the
object detection network, the region proposals are projected onto multiple layers with region of
interest (ROI) pooling to extract the corresponding ROI features and contextual features around
the ROI. After normalization and rescaling, they are subsequently concatenated into an integrated
feature vector for final outputs. The proposed framework fuses the deep semantic and shallow
high-resolution features, improving the detection performance for small-sized ships. The additional
contextual features provide complementary information for classification and help to rule out false
alarms. Experiments based on the Sentinel-1 dataset, which contains twenty-seven SAR images
with 7986 labeled ships, verify that the proposed method achieves an excellent performance in SAR
ship detection.

Keywords: context information; convolutional neural network (CNN); ship detection; synthetic
aperture radar (SAR); Sentinel-1

1. Introduction

With the rapid development of spaceborne SAR, such as TerraSAR-X, RADARSAT-2 and
Sentinel-1 [1–3], synthetic aperture radar (SAR) ship detection has been playing an increasingly
essential role in marine monitoring and maritime traffic supervision [4–6]. Many investigations
relating to ship detection in SAR imagery have been carried out. Traditional methods [7–9] detect
targets after sea–land segmentation and utilize the hand-crafted features for discrimination, which has
poor performance on nearshore areas and has difficulty ruling out false alarms, such as icebergs and
small islands. Additionally, the existence of speckle noises and motion blurring in SAR images causes
undesirable differences between ships, which creates difficulty for traditional SAR ship detection

Remote Sens. 2017, 9, 860 221 www.mdpi.com/journal/remotesensing



Remote Sens. 2017, 9, 860

methods in extracting effective features for discrimination. Therefore, it is necessary to develop
detectors with strong feature extraction capabilities to obtain better performances in SAR ship detection.

Deep neural networks are capable of feature representation and have been widely applied for
object detection [10,11]. They provide a highly promising approach for end-to-end object detection.
Since the breakthroughs made by the region-based convolutional neural network (R-CNN) [12]
using the PASCAL VOC dataset, the process followed by a region-based proposal extractor with a
detection network has been intensively investigated in recent years [13,14]. Ren et al. [15], introduced
a Region Proposal Network (RPN) to replace the typical region proposal methods, which achieves
end-to-end object detection and shares full-image convolutional features with a RPN and Fast R-CNN.
Deep transfer learning algorithms [16–18], which tune the model with rich labeled source domains
and small-scale target domains, are widely used to reduce the demand of labeled data and accelerate
the convergence of networks.

Despite being capable of extracting discriminative representation, the sharing CNN has a tradeoff
between the spatial resolution of the network and the semantic distinction of features. Specifically,
the shallow layers of CNN have a higher spatial resolution but more coarse features. The feature maps
of intermediate layers are complementary with a passable resolution. Moreover, with the depth of layer
increasing, the feature map becomes highly semantic but abstract. Taking VGG16 [19] for example,
a 32 × 32 pixel object will shrink to 2 × 2 when it comes to the last convolutional layer. In general,
the mean area of the majority of ships on SAR images from Sentinel-1 is smaller than 32 × 32, which
means that the ship detection on Sentinel-1 belongs to small-sized object detection. Therefore, when the
bounding box predictions map to the last feature maps by ROI pooling, small-sized objects have little
information for location refinement and classification, which naturally degrades the performance
of detection.

In order to cover the shortage of small-sized object detection, experiments have been conducted
by utilizing the different layers of CNN. SSD [14], MS-CNN [20] and FPN [21] predict objects on
multiple layers and fuse the output in the end, which also consumes more time for training and testing.
Tao Kong et al. [22] proposed a HyperNet to incorporate the intermediate layer with the downscaling
shallow layer and up-sampled deep layers, and compress them into a uniform space, which obtained
a comprehensive and relatively high resolution framework. MultiPath Network [23] and U-Net [24]
utilize skip connection between different layers to provide better feature representation at the cost of
a complex network structure.

Another way to improve the performance is to add contextual features for small-sized objects.
Research shows that contextual information around the objects in input images can provide a valuable
cue for object detection [25,26]. Especially for ship detection, the ocean surroundings can help detectors
to better rule out false alarms on land. Thus, adding context information to deep object detection
networks is a way to improve their distinction of small-sized ship detection. In ParseNet [27], global
context features are appended to help clarify the local confusion. With the contextual information
about the whole image, it has limited effects on object detection. Inside–Outside Net (ION) [28]
integrated the contextual information outside the region of interest by using spatial recurrent neural
networks with multiple layer feature maps. In order to obtain a better performance, the IRNN which
is Recurrent Neural Networks with ReLU recurrent transitions, needs to be trained on extra semantic
segmentation labels, which increases the difficulty of training. Chenchen Zhu et al. [29] presented
a face object detection network named CMS-RCNN, which combined multi-scale information with
body contextual information, for real-world face detection. However, this approach only builds fused
feature maps, which have the same resolution as the deepest layer and the small-sized objects have
little information for bounding box prediction.

This paper proposes a contextual convolutional neural network with multilayer fusion for SAR
ship detection. Similar to R-CNN, the proposed network is composed of a RPN with high resolution
and an object detection network with contextual features. Instead of using low-resolution feature
maps from a single layer for proposal generation, the proposed method employs an intermediate layer

222



Remote Sens. 2017, 9, 860

combined with a downscaled shallow layer and an up-sampled deep layer to predict the bounding
box. In this way, the fused feature maps integrate semantic, complementary, and high-resolution CNN
features. The spatial resolution of a RPN is raised to the same level as the intermediate layer, which
enlarges the response area of small-sized ships in feature maps. In the object detection network, region
proposals are projected onto multiple layers with ROI pooling to extract the corresponding features.
Contextual features around the ROI contain the environmental information of candidates, which can
complement the computation of a confidence score and bounding box regression.

The rest of this paper is organized as follows. Section 2 introduces the details of the proposed method.
Section 3 presents three experiments conducted on Sentinel-1 dataset to validate the effectiveness of
the proposed framework. Section 4 discusses the results of the proposed method. Finally, Section 5
concludes this paper.

2. Proposed Method

In order to improve the performance of ship detection, the proposed network consists of a RPN
with higher resolution and an object detection network with contextual features. As is shown in
Figure 1, in a RPN, 13 convolutional layers of VGG16 [19] are employed for shared feature extraction.
All convolutional layers adopt very small 3 × 3 filters in order to reduce the number of parameters
and to decrease the demand of labeled data. In this paper, conv1_2, conv2_2, conv3_3, conv4_3 and
conv5_3 of VGG16 are called conv1, conv2, conv3, conv4 and conv5 respectively. In order to improve
the resolution of the network, a shallow layer and a deep layer (“conv1” and “conv3”) are downscaled
with max pooling and up-sampled with deconvolution respectively. Then, they are concatenated with
the intermediate layer (“conv2”) and compressed into a uniform space with l2 normalization [26],
which obtains the same resolution of the intermediate layer and more detailed information for region
generation. The fused cube is reshaped to the same dimension as the intermediate layer and fed
into bounding box regression for the sake of the region proposal. The predicted bounding boxes are
mapped to different layers of VGG16 by ROI-pooling operations to obtain ROI features. Simultaneously,
contextual features around each ROI are extracted. After normalization, concatenation and dimension
reduction, the ROI features and contextual features are imported into two fully connected layers (“fc”).
Finally, two flattened vectors are concatenated for classification and location refinement.

Figure 1. The architecture of the proposed network. SAR images are fed into VGG16 which has five
sets of layers for feature extraction. The upper part is the RPN of the network. The white blocks and
light blue blocks represent contextual features and ROI features respectively, which are processed
concurrently in the object detection network.
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The rest of this section introduces the details of the proposed method and explains the motivation
of our design.

2.1. Concatenation of Multiple Layers

In order to reduce the number of parameters in the neural network, CNN always shrinks its
feature maps by using the max pooling operation after convolution. That is, one pixel on the feature
map corresponds to several pixels in the input image and the numerical correspondence is defined
as the resolution of a network. Some feature maps are displayed in Figure 2, which shows that in
VGG16 shallow layers keep more details of the input image. With the increase of resolution, the feature
map becomes smaller and more abstract, and while small-sized objects hardly have responses on the
deeper layers.

Figure 2. The feature maps of different layers in VGG16. With the increasing of resolution, the feature
map becomes smaller and more semantic.

Due to the respective merits that different layers possess, multiple layers fusion is a popular way
to enhance the performance of detection in the current top-performance detector. As CMS-RCNN [29]
did, the first way is to integrate down-sampled earlier layers with the last layer of the sharing CNN.
Despite the fact that the feature map information is increased, small-sized objects still only cause
responses on a tiny area in a fused feature map. Another way is to increase the resolution of a network
by up-sampling the deeper layer and connecting them with the shallower layer as proposed in this
paper. With the integration of conv1, conv2 and conv3, the resolution of network changes from 16 to 2,
which means a 32 × 32 sized object in the input image will have a 16 × 16 sized response on the fused
feature map rather than a 2 × 2 sized response. The increase of resolution will naturally provide more
detailed information for the following bounding box prediction.

2.2. Layer Up-Sampling with Deconvolution

Deconvolution, also known as transposed convolution, is extensively used in feature visualization,
image generation and up-sampling [21,30,31]. Since a naive up-sampling inadvertently loses details,
for feature map rescaling, a better option is to have a trainable up-sampling convolutional layer, namely
a deconvolution layer [21,22], whose parameters will change during training. The implementation of
deconvolution consists of two operations as shown in Figure 3. The first step is to insert zeros between
the consecutive inputs according to the resolution requirements. After that, an operation similar to
convolution is conducted, that is, defining a kernel of an appropriate size and sliding it with a stride to
get a higher resolution output compared with the inputs. Since such an operation simply reverses the
forward and backward passes of convolution, up-sampling with deconvolution is able to be performed
in-network for end-to-end learning by backpropagation.
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Figure 3. An illustration of deconvolution. It consists of inserting zeros and convolution operation [32].

2.3. L2 Normalization

In general, with the depth of the network increasing, the scale and norm of feature maps always
have a tendency to decrease. Concatenating multiple feature maps directly will lead to the dominance
of shallow layers [27] and degrade the generalization ability of the model. Although the weights of
layers are able to be tuned during the training, it takes a long time for the network to fill the dramatic
gap in scale of value and it requires elaborate tricks to achieve a good performance. With the limited
labeled data, overtraining will make the model learn the detail and noises in the training data and
put the network at risk of overfitting. Therefore, a desirable approach is to employ l2 normalization to
constrain the scale of value of the different feature maps to the same level before integration.

l2 normalization is applied to every pixel of the feature maps. For a layer that has d-channel
feature maps sized with (w, h), l2-norm for a d-channel vector is represented with Equation (1)

‖x‖2 = (
d

∑
i=1

|xi|2)
1/2

(1)

Per d-dimension pixels vector x of a layer is normalized as in Equation (2)

x̂ =
x

‖x‖2
(2)

where x̂ is the d-dimension normalized pixels vector.
In order to accelerate the training, the scale value of layers is always rescaled with a factor μ for

each channel i.
yi = μxi (3)

The scale factor μ is able to be updated with the backpropagation and chain rule [29]. In this paper,
a fixed scale factor, which makes the fused feature maps have the same mean level as the replaced
layer in Faster RCNN, is adopted [28].

2.4. ROI Pooling to Multiple Layers

In Faster R-CNN, the prediction of the bounding box will be projected onto the last convolutional
layer. Since region proposals are extracted from the fusion layer in this paper, projecting the region
proposals to appropriate layers and fusing the region features as the fused layer will generate more
accurate and comprehensive features for classification.

As shown in Figure 1, bounding box predictions are mapped to conv1, conv2 and conv3
respectively instead of a single layer. The corresponding regions on feature maps are normalized,
rescaled and fused together.
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2.5. Integrating Contextual Information

When searching for ships in a SAR image with the visual system of a human, context information
is able to help us to increase the confidence of decision. For instance, an object located on land is highly
unlikely to be considered a ship, while an object with bright intensity in the ocean area is prone to be
affirmed as a positive object. In order to mimic the visual effect of a human being in a computer vision
field, context information is always added into the deep neural network to recognize the small-sized
objects [27,29,33].

As shown in Figure 4, the proposed method takes the surrounding pixels of the proposal as
context information. In order to keep the same quantitative relation when the bounding boxes
are projected to multiple layers to obtain contextual features, we keep wcontext = λ × wproposal and
hcontext = λ × hproposal , where w and h represent the width and height of the bounding box. After l2
normalization and concatenation, the contextual features are flattened to a vector in the fully connected
layers, which are combined with ROI features in a new fused vector for the final output.

Figure 4. An illustration of context information. The bounding box in purple represents the region
proposal of the network and the outer orange bounding box is the boundary of context information.

3. Experiments and Results

In this section, experiments are carried out to evaluate the performance of the proposed method.
Two experiments are designed to explore the effect of different layer fusions and the influence of
contextual features. Besides, the comparison with other methods indicates the outperformance of the
proposed method.

3.1. Experiment Dataset and Settings

The dataset used in this paper is Sentinel-1, provided by the European Space Agency (ESA) on the
Internet [34] for free, which was collected in Interferometric Wide swath (IW) mode. Compared with
Extra-Wide swath (EW) mode, IW mode, as the main operational mode of Sentinel-1, is able to acquire
more and higher resolution images. Full resolution Level-1 Ground Range Detected (GRD) products
with 10 m pixel spacing were obtained. We labeled the location and the box of the ships on SAR
images with ship detection software [35] and visual interpretation. Some of them were verified with
Automatic Identification System (AIS) information [36]. Twenty-seven SAR images with 7986 labeled
ships were utilized in this paper and seven of them, containing 1502 ships, were used for testing.
Five-sixths and one-sixth of the remainders were used for training and validation sets respectively.

The histogram of the ship area is shown in Figure 5, according to the labeled ships that provided
AIS information. More than 85% of ships have an area smaller than 8000 m2, that is, around 80 pixels
on a SAR image, which is less than the object size of the ImageNet dataset (more than 80% of objects
have sizes between 40 and 140 pixels) [33]. Additionally, the ships which offer AIS information have
an average length of 168.3 m. Furthermore, the average area is around 51 pixels which is far less than
the area that is able to cause a response on the last convolutional layer of VGG16.
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Figure 5. The distribution of the ship area in the Sentinel-1 dataset (only the ships have Automatic
Identification System (AIS) information). More than 85% of ships have an area smaller than 80 pixels
on SAR images.

The labeled SAR images were cut into 512 × 512 sized patches without overlap and the
coordinates of the labeled bounding boxes were transformed into the location of the corresponding
patch. Those patches with the labeled ship were selected to feed into the proposed network for
training. The testing images are processed in the same way and are combined together for the detection
result display.

All experiments are implemented in the Tensorflow deep learning framework [37] and are
executed on a PC with an Intel single Core i7 CPU, NVIDIA GTX-1070 GPU (8 GB video memory),
and 64 GB RAM. The PC operating system was Ubuntu 14.04.

As is common practice, the pre-trained model on the ImageNet dataset of VGG16 was used to
initialize the model. According to the calculation of the mean norm of conv5 and pool5 of Faster
RCNN, which is trained on the Sentinel-1 dataset, the scale factor μ for a RPN and object detection
network is initialized to 20 and 40 respectively. The learning rate was set to 1 × 10−4 initially and the
maximal iteration was 10,000.

At the same time, we define the target detection probability as

pd =
Ntd

Nground_truth
(4)

where Ntd is the number of detected targets and Nground_truth denotes the total number of ground truth
and in this paper we have Nground_truth = 1502. Similarly, the estimation of the false alarm probability
is defined as (5), where Nf d denotes the number of false detected targets of all testing images and
Ntotal_target denotes the total number of detected ships of all testing images.

p f =
Nf d

Ntotal_target
(5)

In order to evaluate the overall performance of the detector, F1 score which is defined as (6) is
adopted in this paper. It reaches its best value at 1 and worst at 0.

F1 = 2 × pd × (1 − p f )

pd + (1 − p f )
(6)
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3.2. Influence of Different Layer Combination Strategies

As mentioned before, feature maps from different layers differ in terms of spatial resolution
and semantic distinction, giving them comparative advantages and disadvantages. Therefore, layer
selection has a great impact on the performance of the detection system. In this section, four models
with different layer combination strategies are trained for exploring the influence of different layer
selections. Specifically, the first model combines the conv3, conv4 and conv5 of VGG16 together for
region proposal. The second model integrates conv1, conv3 and conv5, and the final model selects
conv1, conv2 and conv3. The baseline method is a model with a single layer conv5. All models have
the same object detection network as the proposed method. The influence of different λ for contextual
features will be discussed in Section 3.3 and in this section we take λ equal to 3 for all models to explore
the effects of different layer fusion strategies.

As shown in Figure 6, in the open water areas, models have a comparative performance.
Conv5 misses most of the ships around the tiny harbor where the denser ships berth. The situation
improves greatly when conv3, conv4 and conv5 are combined. With the improvement of network
resolution, more small-sized targets are picked up with the combination of conv1, conv3 and conv5.
When the resolution of the network increases to the same level of conv2 in the model of conv 1+2+3,
the best performance is achieved and only few tiny weak targets are missing. The comparison of the
performance indicates that the detection performance of dense tiny ships improves dramatically with
the fusion of layers and the increase in network resolution.

Figure 6. The comparisons of detection results with different layer combination strategies. The red and
yellow rectangles represent the detection results and missing ships of detectors respectively. (a) conv5;
(b) conv 3+4+5; (c) conv 1+3+5; (d) conv 1+2+3.

Table 1 displays the detection probability, false alarm probability and F1 scores of different layer
combination strategies. Compared with the performance on a single layer conv5, the networks with
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combined layers achieve higher detection probability and lower false alarm probability. With the
combination of feature maps and a slight increase of resolution, the model with layer conv 3+4+5
detects more targets and obtains the lowest false alarm probability. The fusion of conv1, conv3
and conv5 promotes the detection probability to 80.43%. Conv 1+2+3 has the highest resolution
compared with the other structures, which leads to a 12.71% increase in Pd compared with a single
layer. Compared with other fusion structures, conv 1+2+3 also has a slight but acceptable increase in
false alarm probability, since the feature maps from shallow layers have lower semantic distinction.
The highest F1 score also indicates that the combination of conv1, conv2 and conv3 has the best
performance in SAR ship detection.

Table 1. Detection performance with different layer combination strategies.

Layers Ntotal_targets Ntd Nfd Pd (%) Pf (%) F1

conv5 1463 1106 357 73.64 24.4 0.746
conv 3+4+5 1355 1160 195 77.23 14.39 0.812
conv 1+3+5 1418 1208 210 80.43 14.81 0.827
conv 1+2+3 1540 1297 243 86.35 15.78 0.853

In summary, the increase of network resolution can dramatically improve the performance of
detectors, especially in small-sized targets detection. Different layer combination strategies have a
great impact on detection performance. As for SAR ship detection on Sentinel-1, since the sizes of most
targets are smaller than 32 × 32 and the features of ships are relatively simple in intensity imagery,
the combination of shallow layers from VGG16 is semantic enough to detect a ship in the background.
In other words, resolution improvement plays a more important role than semantic feature for ships
detection in SAR imagery.

3.3. Influence of Contextual Features

In order to identify the influence of contextual features, comparison experiments with different
sizes of contextual features in the proposed network are conducted in this section. The network without
contextual information means the object detection network only has one branch in the object detection
network of Figure 1. In other models, λ changes from 2 to 7 to obtain different sized contextual features.
The combination strategy of conv 1+2+3 is adopted and all models have the same experiment settings.

Table 2 shows that when the bounding box of context information is relatively small, additional
contextual information improves the overall performance to different degrees with higher F1 scores.
When a bounding box of contextual information five times larger than normal is appended, the best
performance is obtained and the F1 score changes to 0.873. Compared with the model without any
contextual information, the model with fivefold contextual features increases by 4.53% in detection
probability and decreases by 3.34% in false alarm rate. That is, extra contextual features provide
more information for the model to pick up more targets. Meanwhile, the additional surrounding
information of proposals also successfully assists to discriminate targets from false alarms. However,
when the size of the bounding box enlarges to 6 or 7, the detection probability begins to decrease.
One of the possible reasons is that most of the bounding boxes are oversized when λ is too large, which
leads to the dominance of contextual information in the concatenated features and aggravates the
performance of the network. Thus, the size of contextual information should be moderated according
to the detection task. Specifically, the proposed method possesses the best detection performance when
fivefold contextual information is added and conv1, conv2 and conv3 are fused.
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Table 2. Detection performance comparisons between different sized contextual features.

Context Size Ntotal_targets Ntd Nfd Pd (%) Pf (%) F1

without context 1518 1259 259 83.82 17.06 0.834
2× context 1534 1285 249 85.56 16.23 0.847
3× context 1540 1297 243 86.35 15.78 0.853
4× context 1564 1280 284 85.22 18.16 0.836
5× context 1538 1327 211 88.35 13.72 0.873
6× context 1519 1228 291 81.76 19.16 0.813
7× context 1481 1231 250 81.95 16.88 0.825

3.4. Comparisons with Other Methods

In order to validate the effectiveness of the proposed method, Faster RCNN [15,38] and
CMS-RCNN [29] are applied to Sentinel-1 dataset. CMS-RCNN, which has the same resolution as
conv5, fuses conv3, con4 and conv5 by down-sampling. The other experiment settings of CMS-RCNN
and Faster RCNN are the same as the proposed method.

Table 3 displays the performance of the three methods. Due to the increase of complexity
in the network structure, the proposed method consumes more time in training. However, for a
512 × 512 sized image, the testing time of the proposed method remains at the same level as Faster
RCNN and CMS-RCNN. With the layer fusion and the additional context information, the proposed
network increases by 25.8% in detection probability and reduces the false alarm probability from 27.68
to 13.72% compared with Faster RCNN. Based on a higher network resolution than CMS-RCNN,
the proposed method also promotes the detection performance significantly.

Table 3. Detection performance comparison between different methods.

Method Ntotal_targets Ntd Nfd Pd (%) Pf (%) F1 Testing Time

Faster RCNN 1304 943 361 62.78 27.68 0.672 1.019 s
CMS-RCNN 1491 1126 365 74.97 24.48 0.752 1.064 s

Proposed method 1538 1327 211 88.35 13.72 0.873 2.180 s

By changing the confidence score threshold of detection results on one testing image, different
values of pd and p f are obtained, which produces the performance curves of different methods in
Figure 7. As shown in the figure, the proposed method has the highest detection probability in a given
false alarm probability. Similarly, with a specific pd, the proposed method has the lowest false alarm
probability. Therefore, the proposed method performs better than Faster RCNN and CMS-RCNN.

Figure 7. The performance curves of different methods. The yellow, green and red curves represent the
performance of Faster RCNN, CMS-RCNN and the proposed method respectively. The x label and y
label represent p f and pd respectively.
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4. Discussion

Experiments on combination strategies and the influence of context information verify the
effectiveness of the proposed method in ship detection, especially in small-sized targets detection.
The comparisons with Faster RCNN and CMS-RCNN demonstrate the necessity of resolution
improvement and additional context information.

Since the proposed method omits sea–land segmentation which traditional methods required,
it provides the possibility for the network to detect ships nearshore, where traditional methods cannot
perform well because of the limited accuracy of sea–land segmentation. The equal treatment of land
and sea area also brings some undesirable false alarms on the land as shown in Figure 8. The red,
yellow and purple boxes represent the detected target, the false alarms and missing targets respectively.

Figure 8. The detection results of the proposed method near the harbor area. The red, yellow and
purple boxes represent the detected target, the false alarms and missing targets respectively.

Table 4 records the main categories of the false alarms in one test image. It is found that almost
65% of false alarms are building facilities on land, which are able to be ruled out with sea–land
segmentation in image preprocessing. Some harbor facilities also are incorrectly detected as ships.
While in the open ocean area, some noises, such as azimuth ambiguity and speckle, which have bright
intensity will be picked up by the model. Islands, one of most annoying false alarms in the traditional
method, are the least common false alarm category.

Table 4. The categories of false alarms.

Categories Building Harbor Island Noise Total

Number 68 17 3 18 106

In order to analyze the characteristics of false alarms, some typical patches are displayed in the
blue box of Figure 9. Visually, most of them are extremely similar to true positive targets. That is,
they are brighter than their context and are shaped similar to ships, which means that the network
values the visual features. Those kinds of false alarms are also hard to rule out by some hand-crafted
methods. Therefore, some additional discrimination networks need to be trained, aimed at those false
alarms and ships.
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As shown in the purple box of Figure 9, some missing targets have weak or small intensity,
which makes them cause few responses on the shallow layers and go undetected by the network.
The missing label of weak and tiny targets on the training dataset is another possible reason for the
missing detection, since the performance of the network is driven by the data which is fed into the
network. Some of the missing targets are very near to the shore or to some other brighter targets,
which makes the network assign them a low confidence score. Additionally, the motion blurring and
cross sidelobe of ships also exert adverse effects on classification.

Figure 9. Some typical false alarms and missing detection targets among the detection results of
the proposed method. The chips in the blue box and the purple box are false alarms and missing
ships respectively.

5. Conclusions

With the labeled dataset on Sentinel-1, this paper opens up the possibility of utilizing deep neural
networks for SAR ship detection. In order to improve the detection of ships on Sentinel-1 SAR imagery,
where ships always appear small, layer fusion is employed in a contextual convolutional neural
network to obtain semantic and high-resolution feature maps. Additionally, contextual information is
added in the object detection network in order to help detectors to rule out false alarms. Experiments
conducted in this paper demonstrate the effect of the layer fusion strategy and validate the influence
of contextual information. More importantly, experiment results validate that the proposed method
improves the detection performance dramatically.

Despite the effectiveness of the proposed method, some weak and tiny targets remain undetected
and false alarms on land are hard to rule out. Investigations into the detection of these targets and
false alarm discrimination need to be carried out in the future.
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Abstract: In this paper, a parametric sparse representation (PSR) method is proposed for refocusing of
moving targets in synthetic aperture radar (SAR) images. In regular SAR images, moving targets are
defocused due to unknown motion parameters. Refocusing of moving targets requires accurate phase
compensation of echo data. In the proposed method, the region of interest (ROI) data containing
the moving targets are extracted from the complex SAR image and represented in a sparse fashion
through a parametric transform, which is related to the phase compensation parameter. By updating
the reflectivities of moving target scatterers and the parametric transform in an iterative fashion,
the phase compensation parameter can be accurately estimated and the SAR images of moving targets
can be refocused well. The proposed method directly operates on small-size defocused ROI data,
which helps to reduce the computational burden and suppress the clutter. Compared to other existing
ROI-based methods, the proposed method can suppress asymmetric side-lobes and improve the
image quality. Both simulated data and real SAR data collected by GF-3 satellite are used to validate
the effectiveness of the proposed method.

Keywords: moving target imaging; parametric sparse representation (PSR); region of interest (ROI);
synthetic aperture radar (SAR)

1. Introduction

Moving target imaging is an important task of synthetic aperture radar (SAR) [1–6]. Since SAR
imaging algorithms were originally designed for stationary targets, the main challenge for SAR
imaging of moving targets is to compensate the phase error caused by non-cooperative motion of
targets. It is well known that the Doppler frequency shift caused by target movement results in the
imaging position offset along the azimuth direction. Further, the change of the azimuth frequency
modulation rate, which is related to the acceleration in range and the velocity in azimuth of the
target, introduces defocus of moving targets in regular SAR images [7]. From the viewpoint of process
flow, the existing methods of SAR moving target imaging can be generally divided into two types.
(1) Methods based on the raw radar data [8–12]. These methods deal with the entire echo data reflected
from both stationary background and moving targets. In fact, only a small part of the entire data is
related to the moving targets, and therefore, processing on entire data will induce a large amount
of clutter. The displaced phase center antenna (DPCA) and along track interferometry (ATI) can
effectively suppress the clutter [13,14], which requires multiple channels and therefore is not suitable
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for single-channel SAR systems. (2) Methods based on the region of interest (ROI) data [15–17].
This type of methods can effectively remove clutter and easily detect moving targets. Since only a
small image contacting the ROI data is extracted from regular SAR imaging result, the amount of data
to be processed is significantly reduced. Zhang et al. [16] proposed a high-resolution SAR imaging
method of ground moving targets with defocused ROI data. The authors derive an exact analytic
expression of the ROI data without approximation of the slant range. Ref. [16] assumed that the phase
error arises from the unknown azimuth and range velocities in a specific model. Then, the azimuth
and range equivalent velocities are estimated by a 2-D search, such that the maximum contrast of
moving target image is reached. The image of target is obtained by Stolt interpolation with each pair
of equivalent velocity parameters. However, the equivalent velocity cannot reflect the actual motion
parameters of target in acceleration state, which results in the difficulty of determining the search
interval of equivalent velocities. Even if the accurate equivalent velocities are estimated, the model
mismatch problem would introduce high asymmetric side-lobes in the imaging result when the target
is in an acceleration state.

Since the radar echo reflected from man-made moving targets are usually stronger than the
background, in recent years, many sparsity-aware methods have been applied to SAR moving target
parameter estimation and imaging [18–25]. Ref. [23,25] summarize the latest application of sparse
processing in SAR systems. An approach to motion parameter estimation with low pulse repetition
frequency based on compressed sensing (CS) theory is proposed in [19]. Ref. [20] also proposes a
method for motion parameter estimation of moving target based on the raw radar data. However,
complicated clutter suppression is required before motion parameter estimation. Ref. [21] presents
a method for imaging of moving targets with multi-static SAR using an overcomplete dictionary.
In Ref. [22], the authors divide a phase error into three subcategories and correct them by using a
nonquadratic regularization approach. However, due to the heavy computational burden, this method
may not be suitable for these targets occupying a large number of resolution cells. Onhon et al. utilize
the sparsity-driven autofocus framework to solve the problem of moving target imaging in [18], where
the phase error induced by target movement is corrected by the non-quadratic regularization approach.
However, this method ignores the relationship between the phase error and the motion parameters.
It needs to independently estimate the phase error of each sample data, thus increasing the unnecessary
computational burden.

In this paper, we propose a parametric sparse representation method for SAR imaging of moving
targets with ROI data. The parametric sparse representation technique has been utilized to ISAR
imaging of rotating targets [26–28], SAR motion compensation [29], and moving target motion
parameters estimation [12]. Differing from the previous work where the process flow starts from
entire raw data, the proposed method in this paper is based on ROI data. Firstly, the complex image
in ROI that contains the defocused moving target is extracted from the regular SAR image. Then,
the principal components of the ROI data, which correspond to the dominant scatterers of a moving
target, are represented by a parametric transform that is uniquely determined by a phase compensation
parameter. By updating the reflectivities of the target and the parametric transform in an iterative
fashion, the phase compensation parameter can be accurately estimated and the focused image of
moving target can be obtained when the iterative process converges. Differing from the method in [16],
which realizes the phase compensation by searching 2-D equivalent velocities of moving targets, in this
paper, the phase compensation is achieved by estimating the phase compensation parameter in an
iterative fashion. Experimental results based on both simulated and space-borne SAR data demonstrate
that the proposed method outperforms the method in [16] in terms of the imaging quality of moving
targets. Simulations also show that, compared to the method in [16], the proposed algorithm in this
paper has a higher tolerance for model mismatch problem and is capable of providing satisfactory
refocused image even when the target is moving in acceleration state.

The rest of this paper is organized as follows. The SAR signal model is reviewed in Section 2.
The proposed method for moving target imaging is formulated in Section 3. The performance of the
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proposed method is evaluated, with both simulated and measured data, in Section 4. Conclusions are
presented in Section 5.

2. Signal Model

The geometry relationship between the platform and a moving target for side-looking SAR is
shown in Figure 1. The horizontal axis denotes the azimuth direction, and the vertical axis denotes the
slant-range direction. Assume that the SAR platform flies straight at a speed of V along the x-axis, and
the velocities of a moving target in azimuth and range are vx and vr, respectively.

x

r

O

xv

rv

V

0 0,x r
1 1,x r

0R t
1R t

Figure 1. Geometry of synthetic aperture radar (SAR) imaging of a moving target.

The slow time is denoted as ts = nT with an integer n, and T is the pulse repetition time. Thus,
the radar antenna phase center (APC) position at ts is (Vts, 0), and the position of the moving target
is (x0 + vxts, r0 + vrts), where (x0, r0) is the initial position when ts = 0. The instantaneous distance
between the moving target and the radar can be expressed as

R(ts) =

√
(Vts − x0 − vxts)

2 + (r0 + vrts)
2 (1)

Suppose that the radar transmits a linear frequency-modulated (LFM) signal as

s(t, ts) = rect
(
t/Tp
) · exp

(
j2π fct + jπγt2

)
, (2)

where t is the fast time, Tp is the pulse width, rect(·) denotes the rectangular function, fc is the carrier
frequency, and γ is the chirp rate. The baseband echo of the moving target can be expressed as

sr(t, ts) = σ · rect
(

t − 2R(ts)/c
Tp

)
· rect

(
ts

Ta

)
· exp
(
−j4π fcR(ts)/c + jπγ(t − 2R(ts)/c)2

)
, (3)

where Ta is the synthetic aperture time, and the target scattering coefficient σ is assumed to be constant
during the observation time interval. By taking the two-dimensional Fourier transform, the signal of
the moving target in 2-D frequency domain can be expressed as

Sr( fr, fa)

= σ · Wr( fr) · Wa( fa) · exp
{

j ·
[
−2π fa

δ
v2

e
− π

f 2
r

γ − 4π[x0vr+r0(V−vx)]
cve

√
( fc + fr)

2 − c2 f 2
a

4v2
e

]}
,

(4)

where fr and fa are the range and azimuth frequencies, respectively, Wr( fr) and Wa( fr) are the

range and azimuth envelope function, respectively, δ = x0(V − vx)− r0vr and ve =
√
(V − vx)

2 + v2
r .

After conventional matched filtering and Stolt interpolation, (4) becomes [16]
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Sr_Stolt( fr, fa)

= σ · Wr( fr) · Wa( fa) · exp
{

j ·
[
−2π fa

δ
v2

e
− 4π[x0vr+r0(V−vx)]

cve

√
( fc + fr)

2 + c2 f 2
a

4

(
1

V2 − 1
v2

e

)]}
.

(5)

It can be seen from (5) that the high-order residual items still exist after the conventional SAR
imaging processing, which means that the image of the moving target is defocused. To achieve a
refocused image of moving target, it is necessary to compensate the residual phase items. The filter for
residual phase compensation can be constructed as [16]

H1( fr, fa) = exp

{
j ·
[

4πRre f

c

√
( fc + fr)

2 +
c2 f 2

a
4

(
1

V2 − α

)
− 4πRre f

c
( fc + fr)

]}
, (6)

where Rre f is the reference distance, and α is the phase compensation parameter, which is the parameter
to be estimated in this paper. The phase compensation parameter is related to the motion parameters
of target, and it can be expressed as α = 1/

[
(V − vx)

2 + v2
r

]
when the target is in uniform motion

state. The phase compensation parameter becomes α = 1/V2 when the target is stationary. This results
in H1( fr, fa) = 1 in (6), which means that no phase compensation is required for the data reflected
from stationary targets. In the proposed method, we can initialize the phase compensation parameter
as 1/V2. By taking the two-dimensional inverse Fourier transform in (5), we can obtain the regular
SAR complex image of observed scene, in which the sub-image that containing moving target is the
so-called ROI data. The extracted ROI sub-image from the focused stationary background can be
expressed as

sr_ROI
(
t, ts
)
= σ · Wr

(
t − 2RROI

(
ts
)

c

)
· Wa

(
ts − δ

v2
e

)
· exp
(
−j

4π

λ
RROI

(
ts
))

, (7)

where t and ts denote the sampling index of ROI date in range and azimuth time domain,
respectively, and

RROI
(
ts
)
=

√(
x0vr + r0(V − vx)

ve

)2
−
(

ts − δ

v2
e

)2
·
(

1
V2 − 1

v2
e

)
, (8)

In the next section, we will describe how to estimate the phase compensation parameter and
refocus target image with the ROI data.

3. Parametric Sparse Representation Method for Moving Target Imaging

In this section, we formulate the parametric sparse representation method for imaging of moving
targets. We denote the original image size as Nr × Na, and the ROI data size as nr × na. Note that
the data size is significantly reduced, but the signal bandwidth of moving target remains unchanged.
We define the range and azimuth frequency of ROI data as f r and f a, respectively. By taking
two-dimensional Fourier transform in Equation (7), the ROI data in 2-D frequency domain can be
expressed as

Sr_ROI

(
f r, f a

)
= σ · Wr

(
f r

)
· Wa

(
f a

)
· exp

{
j ·
[
−2π f a

δ
v2

e
− 4π[x0vr+r0(V−vx)]

cve

√(
fc + f r

)2
+

c2 f
2
a

4

(
1

V2 − 1
v2

e

)]}
.

(9)

The phase compensation filter of ROI data can be rewritten as
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H2(α)

(
f r, f a

)
= exp

⎧⎪⎨⎪⎩j ·

⎡⎢⎣4πRre f

c

√√√√( fc + f r

)2
+

c2 f
2
a

4

(
1

V2 − α

)
− 4πRre f

c

(
fc + f r

)⎤⎥⎦
⎫⎪⎬⎪⎭. (10)

The refocused image of the moving target can be obtained through a refocusing transform Γ(·):

Θ = Γ(sr_ROI) = Ψ−1
r ·
[
(Ψr · sr_ROI · Ψa) ◦ H2(α)

]
· Ψ−1

a , (11)

where Θ is the refocusing result of moving target, Ψ and Ψ−1 are the Fourier matrix and the inverse
Fourier matrix, respectively. The subscripts r and a denote the range direction and azimuth direction,
respectively, and ◦ denotes Hadamard product. As shown in Equation (11), through a series of matrix
operations, the refocusing transform Γ(·) can achieve the conversion from the defocused ROI data
to the refocusing result of moving target. It is obvious that the image quality of Θ depends on the
phase compensation parameter α, i.e., different phase compensation parameter produces different
filter function H2(α) and, therefore, different refocusing result Θ. Thus, Θ can be regarded as a function
of α and denoted by Θ(α). With a wrong value of α, the refocusing transform Γ(sr_ROI) will induce
the high-order phase error in azimuth and range, and thus a blurred image is most likely obtained.
With accurate estimate of α, the phase error of the ROI data can be well compensated, and accordingly,
a well-focused moving target image will be obtained. From the above consideration, refocusing of the
moving target can be carried out in an iterative fashion, i.e., the sparse imaging result Θ and the phase
compensation parameter α are iteratively updated.

3.1. Update the Sparse Solution

At the p-th iteration, denotes the estimate of the phase compensation parameter α(p). Accordingly,
the filter function H2(α(p)) and refocusing transform Γ(sr_ROI) can be constructed according to
Equations (10) and (11). The refocusing process described in (11) is reversible, and the inverse
transform can be written as

sr_ROI = Γ−1(Θ) = Ψ−1
r ·
[
(Ψr · Θ · Ψa) ◦ H∗

2(α)

]
· Ψ−1

a , (12)

where (·)∗ denotes the conjugate operation. Since the moving target is usually sparse in 2-D space
domain, we can obtain the moving target imaging results by solving the following unconstrained
problem [30,31]

min
Θ

‖sr_ROI − Γ−1(Θ)‖2
2 + λ‖Θ‖1, (13)

where ‖ · ‖1 and ‖ · ‖2 denote l1 and l2 norms, respectively, and λ > 0 is the regularization parameter
that balances the recovery error and the sparsity of the solution. Given the value of α(p), Equation (13)
is a standard problem of sparse signal recovery. In this paper, we utilize the soft iterative thresholding
algorithm [32] to solve Equation (13). The main steps are summarized below.

Soft Iterative Thresholding Algorithm

Input: sr_ROI , λ, α(p), Γ(·), and Γ−1(·)
Initialization: Let the iterative counter k = 1, residual matrix R0 = sr_ROI , and Θ̂0 = 0nr×na .
Iteration: at the k-th iteration (k > 1)

(1) Update the sparse result by Θ̂k = soft
(
Θ̂k−1 + Γ(Rk−1), λ

)
, where soft(x, λ) = sign(x) · max(|x| − λ, 0).

(2) Update the residual matrix by Rk = sr_ROI − Γ−1(Θ̂k
)
.

(3) Increment k, and return to Step (1) until the stopping criterion is met. Here the stopping criterion is
‖Θ̂k − Θ̂k−1‖2/‖Θ̂k−1‖2 ≤ ε. The selection of the threshold value ε is related to the precision requirement.

Output: Θ̂(p)
= Θ̂k.
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3.2. Update the Estimate of Phase Compensation Parameter

Given the sparse solution Θ̂(p), the phase compensation parameter estimate can be updated by

α(p+1) = α(p) + ζ · ρ, (14)

where ζ and ρ are iterative direction and iterative step-length, respectively. Further, the parameters
{ζ, ρ} can be estimated by minimizing the recovery error, that is

min‖sr_ROI − Γ−1
(

Θ̂(p)
)
‖

F
, (15)

where ‖ · ‖F denotes F-norm of matrix. Substituting Equations (12) into (15), we have

min‖Y − U ◦ H∗
2(α)Ψ

−1
a ‖

F
, (16)

where Y = Ψr · sr_ROI , and U = Ψr · Θ̂(p) · Ψa. Define B(α) = U ◦ H∗
2(α). According to (9) and (10), we

have the expression of each element of B(α) as

B(α)

(
f r, f a

)
= U
(

f r, f a

)
· exp

{
−j

[
4πRre f

c

√(
fc + f r

)2
+

c2 f
2
a

4

(
1

V2 − α
)
− 4πRre f

c

(
fc + f r

)]}
(17)

By taking the first-order Taylor expansion of B(α), we have

B(α) = B(α(p)) +
dB(α)

dα

∣∣∣∣
α=α(p)

· Δα (18)

where Δα is the first-order increment. According to Equation (17), the derivative of B(α) can be
expressed as

dB(α)

(
f r, f a

)
dα

= B(α)

(
f r, f a

)
·

⎛⎜⎜⎝j
πRre f c f

2
a

2

√(
fc + f r

)2
+

c2 f
2
a

4

(
1

V2 − α
)
⎞⎟⎟⎠ (19)

Then, Equation (16) can be rewritten as

min‖Y − B(α(p)) · Ψ−1
a − dB(α)

dα

∣∣∣∣
α=α(p)

· Ψ−1
a · Δα‖

F
(20)

Define
Ξ(p) =

[
Y − B(α(p)) · Ψ−1

a

]
Vector

, (21a)

Z(P) =

[ dB(α)

dα

∣∣∣∣
α=α(p)

· Ψ−1
a

]
Vector

, (21b)

where [·]Vector denotes the operation of stacking vectors one underneath the other sequentially, i.e.,
the size of Ξ(p) and Z(P) are nrna × 1. Define

C(p) =

⎡⎣ real
(

Z(P)
)

imag
(

Z(P)
) ⎤⎦, (22a)

D(p) =

⎡⎣ real
(

Ξ(p)
)

imag
(

Ξ(p)
) ⎤⎦, (22b)
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where real(·) and imag(·) denote the real and imaginary parts of a complex number, respectively.
Then, the real-valued solution of the first-order increment can be directly obtained as

Δα(p) =

([
C(p)
]T

C(p)
)−1[

C(p)
]T

D(p), (23)

where [·]T denotes the transpose operation. Then the iterative direction and iterative step-length can
be calculated as {

ζ = Δα/|Δα|
ρ = κ · |Δα| , (24)

where κ is the convergence parameter associated with the convergence speed, and it can be determined
empirically. In the experiments of this paper, we set κ = 10. Finally, the phase compensation parameter
can be updated by Equation (14).

By iteratively updating Θ and α as described above, the complete procedure of the parametric
sparse representation method for moving target imaging is summarized in Figure 2. The iterative
process is terminated until

∣∣∣α(p+1) − α(p)
∣∣∣ < η, where η is the convergence threshold.

Defocused target 
sub-image _r ROIs

Update sparse solution 
based on soft iterative 
thresholding algorithm

Calculate  iterative direction 
and iterative step-length of     
according to (24)

Update phase compensating 
parameter  according to (14)

1p p

Output refocused 
image of moving 
target

N

Y

 

Figure 2. Flowchart of the parametric sparse representation method.

4. Experimental Results

The experimental results based on simulated data and real SAR data collected by GF-3 satellite
are presented in this section to demonstrate the effectiveness of the proposed method.
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4.1. Simulated Data

First of all, the proposed method is verified by using simulated data. The main system parameters
are as follows. The carrier frequency is 10 GHz, the scene center range is 10 km, the platform velocity
is 150 m/s, the transmitted bandwidth is 300 MHz, and the pulse duration is 2.2 μs. The simulated
scene contains 2 stationary reference scatterers (S1–S2) and a rigid-body moving target consisting of
4 scatterers (M1–M4), as shown in Figure 3. We first assume that the target only has constant-speed
components in azimuth and range without acceleration. The actual velocity components of the target
are set to be vx = 10 m/s and vr = 5 m/s. Figure 4 shows the imaging result obtained by the range
migration algorithm (RMA) with the entire data, where the defocused sub-image containing the
moving target, i.e., ROI, is indicated by the red dashed box.
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Figure 3. Simulation scene of a rigid-body moving target and two stationary reference points.
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Figure 4. Range migration algorithm (RMA) imaging result with entire data.

By extracting the ROI sub-image from the regular SAR image, the data size is reduced to nr × na,
i.e., 30 × 1051. In the proposed method, the initialized value of phase compensation parameter is
set as α(0) = 1/1502. The convergence threshold in Figure 2 is set as η = α(0)/104. The convergence
process of the phase compensation parameter estimation is shown in Figure 5. For comparison, the
algorithm proposed in [16] is also employed in this experiment. The defocused ROI data and refocused
results are shown in Figure 6. By 2-D searching, the method of [16] can accurately estimate the target
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equivalent velocity. From Figure 6b,c, we can see that the image produces by the proposed method has
a stronger contrast. The reason is that the sparse based method can effectively suppress the side-lobes.
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Figure 5. Convergence processes of the proposed method.

(c)

(b)

(a)

Figure 6. (a) Defocused region of interest (ROI) data; (b) refocused result obtained by the method
in [16]; (c) refocused result obtained by the proposed method.

In the second simulation, the target in acceleration state is considered. The actual motion
parameters of the point target are set to be vx = 10 m/s, vr = 5 m/s, azimuth acceleration ax = 1 m/s2,
and range acceleration ar = 1 m/s2. By extracting the ROI sub-image from the regular SAR image,
the data size is 41 × 2201. The convergence process of the phase compensation parameter estimation is
shown in Figure 7. The refocusing results obtained by the method in [16], and the proposed method
are shown in Figure 8a,b, respectively. It is clear that the focusing performance of the method in [16]
is seriously deteriorated. The reason is that this method cannot eliminate the high-order phase error
caused by accelerative motion of the target. Moreover, we take the scatterer M3 on the target as
example to analyze the refocusing quality. The range and azimuth profiles obtained by different
methods are shown in Figures 9 and 10, respectively. One can find that the sub-image produced by the
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proposed method can effectively suppress the asymmetric side-lobe and improve the image quality,
which benefits from the superiority of the sparse constraint.
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Figure 7. Convergence processes of the proposed method.

Figure 8. Refocusing result obtained by (a) method proposed in [16]; (b) the proposed method.
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Figure 9. The range profiles of moving scatterer M3.
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Figure 10. The azimuth profiles of moving scatterer M3.

4.2. Space-Borne Measured Data

We now present the experimental results by using the GF-3 space-borne SAR data containing
moving ships. The regular SAR image of the sea surface is shown in Figure 11. We can see that the
whole image is focused well, but some ships are defocused due to their movements. Three ROIs named
T1, T2, and T3 containing moving ships are cropped from the original complex image, respectively.
These three ships are processed sequentially using the method in [16] and the proposed method,
respectively. Figure 12 shows the convergence processes of the phase compensation parameter of these
moving ships. The refocused results obtained by the method in [16] and the proposed method are
compared in Figures 13–15. It can be observed that the proposed method can successfully reconstruct
images of moving ships and significantly suppress the side-lobes. To quantitatively compare different
algorithms in terms of the image quality, the image entropy values of the refocused ROI images are
listed in Table 1. The smaller value of image entropy means better focusing effect. As shown in Table 1,
the proposed method can provide better image quality than the method in [16].

 

Figure 11. Regular imaging result of real data from GF-3 space-borne SAR.
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Figure 12. Convergence processes of the proposed method.

 

Figure 13. (a) Defocused ROI data of ship T1; (b) refocused result obtained by the method in [16];
(c) refocused result obtained by the proposed algorithm.

(a)

(b)

(c)

 

Figure 14. (a) Defocused ROI data of ship T2; (b) refocused result obtained by the method in [16];
(c) refocused result obtained by the proposed algorithm.
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(a)

(b)

(c)

 

Figure 15. (a) Defocused ROI data of ship T3; (b) refocused result obtained by the method in [16];
(c) refocused result obtained by the proposed algorithm.

Table 1. The image entropy of the refocused ROI images.

Targets and Methods
Ship T1 Ship T2 Ship T3

Ref. [16] PSR Ref. [16] PSR Ref. [16] PSR

Image Entropy 6.4149 3.5389 6.3011 3.9863 5.077 4.0953

5. Conclusions

In this paper, we have presented a parametric sparse representation method for moving target
imaging in SAR with ROI data. The ROI data extracted from regular SAR images is represented in a
sparse fashion through a parametric refocusing transform. Then, the spare image of the target and
the phase compensation parameter are estimated by solving a joint the optimization problem through
an iterative process. The proposed method works on the complex ROI data, rather than the raw
entire data, which is helpful in reducing the amount of data and alleviating the clutter. Particularly,
the proposed method can suppress asymmetric side-lobes and improve the image quality of moving
targets, compared to the method in [16]. Experimental results based on both simulated and real
space-borne SAR data validate the effectiveness of this method on refocusing the image of moving
target using ROI data. Through our experiments, with the initial values as set in Section IV, we
have never encountered the case where the proposed algorithm does not converge. A theoretical
convergence analysis of the proposed algorithm will be studied in our future work.
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Abstract: Multichannel synthetic aperture radar (SAR) is a significant breakthrough to the inherent
limitation between high-resolution and wide-swath (HRWS) compared with conventional SAR.
Moving target indication (MTI) is an important application of spaceborne HRWS SAR systems.
In contrast to previous studies of SAR MTI, the HRWS SAR mainly faces the problem of under-sampled
data of each channel, causing single-channel imaging and processing to be infeasible. In this study, the
estimation of velocity is equivalent to the estimation of the cone angle according to their relationship.
The maximum likelihood (ML) based algorithm is proposed to estimate the radial velocity in the
existence of Doppler ambiguities. After that, the signal reconstruction and compensation for the
phase offset caused by radial velocity are processed for a moving target. Finally, the traditional
imaging algorithm is applied to obtain a focused moving target image. Experiments are conducted
to evaluate the accuracy and effectiveness of the estimator under different signal-to-noise ratios
(SNR). Furthermore, the performance is analyzed with respect to the motion ship that experiences
interference due to different distributions of sea clutter. The results verify that the proposed algorithm
is accurate and efficient with low computational complexity. This paper aims at providing a solution
to the velocity estimation problem in the future HRWS SAR systems with multiple receive channels.

Keywords: synthetic aperture radar (SAR); high-resolution and wide-swath (HRWS); velocity
estimation; Doppler ambiguities; maximum likelihood (ML)

1. Introduction

Remote sensing for civilian and military applications sets a high requirement on both the spatial
resolution and swath coverage for synthetic aperture radar (SAR). However, conventional SAR systems
can barely achieve high-resolution and wide-swath (HRWS) images simultaneously [1]. Higher pulse
repetition frequency (PRF) is needed to obtain higher azimuth resolution, while lower PRF is required
to acquire a wider range swath. Multichannel SAR in the azimuth, which can overcome this inherent
limitation, has attracted much attention in recent years [2]. The launch of the TerraSAR-X satellite
in 2007 [3], the ALOS-2 satellite in 2014 [4], and the Chinese Gaofen-3 satellite in 2016, which all contain
a dual-receive channel mode, demonstrated the feasibility of this technique. Spaceborne HRWS SAR
with more receive channels is one of the prospects of SAR systems. Moving target indication and
imaging is one of the primary applications of spaceborne HRWS SAR systems, especially for ocean
remote sensing [2,3]. Estimation of the target’s velocity is crucial for target relocation, focused imaging
and false target suppression [5–15].
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The moving target’s velocity can be divided into the radial velocity and the azimuth velocity,
which stands for the cross-track and along-track velocities of the moving target, respectively.
For a spaceborne HRWS SAR system, the azimuth velocity of a motion target is far smaller than
that of the satellite, and thus can be ignored. The effects of the radial velocity are predominant [11],
and are listed as follows:

(1) The linear Range Cell Migration (RCM) is caused by the radial velocity after range compression
of the moving target;

(2) The azimuth offset of a moving target’s location is proportional to its radial velocity; and
(3) The reconstructed echo of a moving target will introduce a frequency-dependent phase mismatch,

leading to false targets along the azimuth after imaging.

Thus, estimating the radial velocity is a key procedure to relocation and precise imaging of
a moving target.

For a spaceborne multichannel SAR, the low PRF is transmitted to achieve wide swath images
with low range ambiguity levels, at the cost of under-sampled data in the azimuth and Doppler
spectrum ambiguity for a single channel. Unambiguous imaging of a single channel echo is not feasible.
Therefore, a reconstruction algorithm is introduced [1] to suppress the Doppler spectrum ambiguity
before obtaining a HRWS image. Most of the previous studies place an emphasis on moving target
indication (MTI) with the assumption that there is no Doppler ambiguity for each channel. For example,
in the along-track interferometry (ATI) method [6], the Eigen-decomposition method of the covariance
matrix [7] processes in the image domain of each channel. However, the main problem of a HRWS
SAR MTI system is under-sampled data in the azimuth for signal-channel echo.

In recent years, several methods have been proposed that are focused on moving target indication
for HRWS SAR systems, which aim at estimating velocity before imaging. In [8], estimating the radial
velocity is transformed to the direction-of-arrival (DOA) estimation of the echoes. By constructing
the spatial spectrum of the moving target, the radial velocity can be estimated by maximizing the
spectrum. However, without analyzing the efficiency or considering the sea clutter, the analysis is
not comprehensive. In [9–11], the imagery quality of the moving target is weighed by some criterion,
and the radial velocity is estimated by searching for the value which optimizes the imagery quality.
These approaches need iteration, thus guaranteeing the accuracy with the sacrifice of efficiency.

In [12], the Radon transform is applied to estimate the slope of the Doppler spectrum of the
single-channel echo, and the radial velocity is proportional to the slope. The computational load
is large for the implementation of Radon transform with each searched velocity. Additionally, the
redundant information of the multi-channel signal is not taken full advantage of. Yang et al. and
Wang et al. [13,14] transform the velocity estimation problem to measuring the azimuth offset, which
is proportional to its radial velocity mentioned above. However, these methods need additional
processing of the image and determination between false targets and the real one. Furthermore, these
methods lack detailed analysis of performance under sea clutter distributions.

In this paper, we propose a novel algorithm for velocity estimation and unambiguous imaging
of the moving target in a spaceborne HRWS SAR system. In addition, the estimation accuracy under
different sea clutter distributions are discussed. Firstly, we deduce the echo of a moving target for
multichannel SAR systems, and obtain the relationship of the radial velocity and the cone angle.
Considering that the cone angles are sparse in space for a certain Doppler frequency [16], we apply the
maximum likelihood (ML) method to estimate the cone angle as well as the radial velocity. Then the
signal reconstruction and compensation of the phase mismatch caused by target motion are processed,
followed by focused imaging to suppress false targets. Finally, we discuss the estimation of a moving
ship interfered with different sea clutter distributions. The merit of this algorithm is that it does
not need iteration or Eigen-decomposition, thus the computational complexity is not large. More
importantly, this algorithm can estimate velocities of multiple moving targets as it does not need too
many samples of Doppler bins, making estimating of adjacent targets possible.
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This paper begins with signal model of the moving target for a HRWS SAR system in Section 2.
In Section 3, detailed descriptions of the proposed velocity estimation algorithm and the imaging
process of multichannel moving target echoes are given, and the Cramér-Rao lower bound of velocity
estimation is deduced. Section 4 presents the experimental results of estimation accuracy under
different conditions, followed by the performance analysis in Section 5. Section 6 draws conclusions
and discusses future perspectives.

2. Echo Model of the Moving Target

2.1. Ideal Echo Model

For spaceborne multichannel SAR systems, the echo of the moving target has the
following characteristics:

• The velocity of the moving target is treated as constant during the antenna beam scanning as the
satellite is moving fast.

• The azimuth velocity of the moving target is negligible as it is much smaller than the satellite velocity.
• The radial velocity can be treated as the same for each receive channel as the radar beam is

very narrow.

The geometry of the HRWS SAR system is depicted in Figure 1. The x-axis points to the direction
of the platform velocity of the satellite, the z-axis points away from the Earth’s center, and the three
axes satisfy the orthogonal right-hand rule. The velocity of the platform is vs, R0 is the shortest slant
distance of the target, and Rb is the corresponding ground range. The full area of the antenna is used
as the transmitter, and is split into M channels in the azimuth as receivers. The antenna transmits
chirp signals at the center (Tx), and Rx1-RxM receive echoes simultaneously. The azimuth resolution
of the multichannel SAR system depends on the aperture size of a single receive channel. The distance
between two receive channels is d, the radial velocity and the azimuth velocity of the moving target
are vr and va, respectively.

Figure 1. The imaging geometry of the high-resolution and wide-swath (HRWS) synthetic aperture
radar (SAR) system.

The distance between the transmit center and the moving target is donated as RT(η), and the
distance between the m-th receiver and the moving target is RRm(η), expressed as:
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RT(η) =

√(
(vs − va)η

)2
+ (vrη + R0)

2 ≈ R0 + vrη +
(vsη)2

2R0
(1)

RRm(η) ≈
√(

(vs − va)η + xm

)2
+ (vrη + R0)

2 ≈ R0 + vrη +
(vsη + xm)

2

2R0
(2)

where τ, η denote the range time and azimuth time, respectively, and:

xm =

(
m − M + 1

2

)
d, m = 1, 2..., M (3)

For the sake of convenient expression, the moving target is modeled as an ideal point target with
constant radar cross section (RCS). Then the received signal of the m-th channel can be expressed as:

sm(τ, η) = σ · rect

⎡⎣ τ−
(

RT(η)+RRm(η)

)
/c

Tp

⎤⎦ · exp
{

jπKr

[
τ −
(

RT(η) + RRm(η)
)

/c
]2}

·rect
(

η
Ts

)
· exp

[
−j 2π

λ ·
(

RT(η) + RRm(η)
)] (4)

where c is the speed of light, Ts is the synthetic aperture time, and Tp and Kr are the pulse width and
chirp rate, respectively. σ stands for the overall amplitude weighting of the target, containing the
target backscatter coefficient, the weighted coefficient of the antenna pattern, and weighting factors of
electromagnetic wave propagation in space. Substituting Equations (1) and (2) into Equation (4), the
Doppler centroid and the Doppler rate can be written as:

fdc = −
(

2vr

λ
+

vsxm

λR0

)
, Ka ≈ − 2v2

s
λR0

(5)

While for a static target or clutter, vr = 0, the Doppler centroid and the Doppler rate are

fdc = −vsxm

λR0
, Ka ≈ − 2v2

s
λR0

(6)

Define φc and φt as the cone angles of the clutter and the moving target, respectively. From
Equations (5) and (6), the existence of the target motion result in a certain offset of the Doppler
frequency. For a side-looking SAR system, the relationship of the Doppler frequency fa and the cone
angle φ{c,t} can be expressed as [8]:

fa(φc) =
2vs

λ
sin φc (7)

ft,a(φt) =
2vs

λ
sin φt + Δ ft,a(φt) =

2vs

λ
sin φt +

2vr

λ
(8)

Figure 2a shows the linear relationship between fa and sin φ{c,t}, where the dotted line indicates
the clutter, and the solid line the ground moving target. For a HRWS SAR system, a low PRF is adopted
to eliminate the range ambiguities and enlarge the coverage, at the cost of the Doppler ambiguity.
Then the relationship between fa and sin φ{c,t} is shown as Figure 2b in practical applications, where
the Doppler spectrum of the clutter and the moving target are both folded. The corresponding moving
target signal of the m-th channel in the Doppler domain is expressed as:

Sm(τ, fa) =
L

∑
l=−L

S1
(
τ, fa + l · fp

)
exp
{

j
4π

λ
xm sin φt

(
fa + l · fp

)}
(9)
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where Sm(τ, fa), m = 1, 2...M is echo of the m-th channel in the range-Doppler domain, fp is the PRF,
and the number of the main Doppler spectrum ambiguity is N, N = 2L + 1.

(a) (b) 

Figure 2. Spatial-temporal spectra of echoes: (a) unambiguous; and (b) Doppler ambiguous.

2.2. Echo Model with Clutter and Noise

In reality, the SAR echoes of the moving target are interfered by clutter and noise; the clutter is
the background of the detected scene, and the noise comes from the receive chain of each channel.
Thus the model of the clutter depends on the detected scene, and the model of the noise is normally
white Gaussian noise. Considering the clutter and the noise, the echo in the range-Doppler domain of
the m-th channel can be expressed as:

Sm(τ, fa) =
L
∑

l=−L
S1
(
τ, fa + l · fp

)
exp
{

j 4π
λ xm sin φt

(
fa + l · fp

)}
+

L
∑

l=−L
Sc1
(
τ, fa + l · fp

)
exp
{

j 4π
λ xm sin φt

(
fa + l · fp

)}
+ Nm(τ, fa)

(10)

where Sc1(τ, fa) is the clutter signal of the first channel in the range-Doppler domain, Nm(τ, fa) is the
white Gaussian noise.

For simplification, the echoes of M channels in the vector form can be written as [17]

x(τ, fa) = σts(τ, fa) + ∑
i

σic(τ, fa) + n (11)

where bold lowercase letters are used for vectors, x(τ, fa) = [x1(τ, fa), x2(τ, fa), ..., xM(τ, fa)]
T denotes

the echo vector in the range-Doppler domain of M channels, and xm(τ, fa) is the echo of the i-th
channel combined with clutter and noise. s(τ, fa) denotes the echo vector of moving target, c(τ, fa)

denotes the echo vector of clutter, and n denotes the echo vector of thermal noise. σt and σi are the
complex scattering coefficients of the moving target and the clutter unit, respectively.

3. The Proposed Velocity Estimation Algorithm

According to Equation (8), the existence of vr causes a certain offset of the Doppler frequency;
thus, the cone angle of the moving target for a certain Doppler bin is related to vr. In other words, the
problem of radial velocity estimation is equivalent to the problem of cone angle estimation. Different
from traditional direction of arrival (DOA) estimation, there exists a Doppler ambiguity in the echo for
the HRWS SAR system. Fortunately, the steering vector matrix can be constructed considering the
Doppler ambiguity for the sparse signal representation.
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In this section, we firstly describe the proposed ML-based algorithm. Then the Cramér-Rao lower
bound of velocity estimation is deduced. Finally, the HRWS SAR moving target imaging procedure
is presented.

3.1. Algorithm Discription

To transform the velocity estimation problem to the cone angle estimation, or the steering vector
estimation, the echo expressed in Equation (9) can be rewritten in the vector form as the product of the
echo of first channel and the steering vector matrix, i.e.,

S(τ, fa) = At( fa)S1(τ, fa) (12)

where,
S(τ, fa) = [s1(τ, fa), s2(τ, fa), ..., sM(τ, fa)]

T (13)

s1(τ, fa) =
[
S1
(
τ, fa − L · fp

)
, ..., S1

(
τ, fa + l · fp

)
, ..., S1

(
τ, fa + L · fp

)]T (14)

At( fa) =
[
at,−L, ..., at,l , ..., at,L

]

=

⎛⎜⎝ exp
(−j 2π

λ x1 · sin φt,−L( fa)
)

. . . exp
(−j 2π

λ x1 · sin φt,L( fa)
)

...
. . .

...
exp
(−j 2π

λ xM · sin φt,−L( fa)
) · · · exp

(−j 2π
λ xM · sin φt,L( fa)

)
⎞⎟⎠

M×N

(15)

S1
(
τ, fa + l · fp

)
is the l-th ambiguous component of the first channel signal, and at,l denotes the l-th

ambiguous steering vector, i.e.,

at,l =

[
exp
(
−j

2π

λ
x1 · sin φt,l( fa)

)
, exp
(
−j

2π

λ
x2 · sin φt,l( fa)

)
, ..., exp

(
−j

2π

λ
xM · sin φt,l( fa)

)]T

(16)

where
sin φt,l( fa) = λ

2vs

(
fa + l · fp +

2vr
λ

)
= λ

2vs

(
fa + l · fp

)
+ vr

vs
, l = −L...0...L

(17)

From Equation (17), there is a one-to-one correspondence between radial velocity and the cone
angle for a moving target.

Then the maximum likelihood (ML) algorithm is applied to estimate φt or vr. The requirements
of the ML algorithm are as follows [18]:

1. The signal covariance matrix is positive definite;
2. The number of sampling points is larger than the number of receive channels; and
3. The noises sampled at different Doppler frequencies are uncorrelated, and obey a white

Gaussian distribution.

The joint conditional probability density function of the sampled signals from K Doppler
frequencies is:

f (x1, x2, ...xK) =
K

∏
k=1

1
det{πσ2

n I} exp
(
− 1

σ2
n
|xk − sk|2

)
(18)

where σ2
n is the average power of nk, xk is the sampled value of Equation (11), and sk is the sampled

value of moving target signals in range-Doppler domain, i.e., xk = sk + nk.
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The criterion of the ML estimator is maximizing the following cost function

Fml(φt) = tr
[

I − A
(

AHA
)−1

AH

]
R̂X (19)

where tr[·] represents the trace of a matrix, A is the steering vector matrix in Equation (15), and R̂X is
the signal covariance matrix of xk. By searching for vr in a certain space and computing the steering
vector matrix A, the maximum likelihood spectrum can be calculated. The maximum value of the
spectrum corresponds to the ML estimation of vr.

The process of the estimator is as follows:

(1) Conduct range compression of the echo of each channel, Equation (4) turns into

srm(τ, η) = σ · Tp · rect
(

η
Ts

)
· exp

[
−j 2π

λ · (RT(η) + RRm(η))
]

·sinc
{

πB
[
τ − (RT(η) + RRm(η))/c

]} (20)

where B = Kr · Tp is the bandwidth of the chirp signal. As the sinc function varies little around
the maximum value, the sinc function of Equation (20) for each channel is approximately equal.

(2) Conduct the azimuth Fourier transform, then extract the trajectory of the moving target in the
range-Doppler domain. Sample the extracted signal at K Doppler bins to constitute vector X, i.e.,

X = [s1+n1,...,sk+nk,...,sK+nK]
T (21)

where

sk =
[
s1(τ, fa,k), s2(τ, fa,k), ..., sM(τ, fa,k)

]T
(22)

nk = [n1, n2, ..., nM]T (23)

The signal covariance matrix is acquired by R̂X = X · XH .
(3) For each searched vr, compute the steering vector matrix A. Find the ML estimation of vr by

substituting R̂X and A into Equation (19). Finally, average the estimated values from K Doppler
bins to improve the robustness.

The common point of the proposed algorithm and the Capon spectrum [7] and MUSIC
algorithms [8] is that, they all search for the best radial velocity according to some principle by
constructing the sampled signal covariance matrix. The difference is the criterion they are based on.
The proposed ML-based algorithm has lower complexity than the iterative approaches in [9–11], which
need imaging for each possible velocity during the iteration. Moreover, this algorithm can estimate
velocities of multiple moving targets as it does not need a large number of Doppler bins, as long as the
number is larger than that of the receive channels.

3.2. The Cramér-Rao Lower Bound of Velocity Estimation

The Cramér–Rao lower bound (CRLB) is an important evaluation indicator for the effectiveness of
parameter estimation. There inevitably exist errors in the ML estimation of vr. The root mean squired
error (RMSE) of vr estimation is compared with the CRLB, and the estimator is viewed as an effective
estimate if the RMSE infinitely approaches CRLB with the increase of the signal-to-noise ratio (SNR).
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A classical tool for deriving the CRLB is the Fisher information matrix (FIM), and the CRLB
is obtained by computing the inverse of the FIM [19]. The FIM is obtained from the second-order
derivative of the likelihood function, which is the logarithm of the joint conditional probability density
function in Equation (18).

F(φt) = −E
[

∂2 ln f (x; φt)

∂φ2
t

]
(24)

where x = [x1, x2, ...xK]
T is the vector constituted by the sampled signals.

From Equation (18), the likelihood function is:

ln f (x; φt) = −
K

∑
k=1

{
1
σ2

n
|xk − sk|2 − ln det

{
πσ2

n I
}}

(25)

It has been proven in [20] that the CRLB of the ML estimation of the cone angle is expressed as

C
(
φ̂t,ml
)
=

σn

2K

{
Re
[
H � R̂X

]}−1
(26)

where:
H = DH

[
1 − A(AHA)

−1
AH
]
D (27)

D = [d−L...d0...dL] (28)

In Equation (26), dl is the derivative of the steering vector to the cone angle, i.e.,

dl = dat(φ)/dφt|φt=φt,l
(29)

Finally, the CRLB of vr estimation is obtained from the relationship of vr and φt in Equation (17), i.e.,

C(v̂r,ml) = vs · sin
[
C
(
φ̂t,ml
)]

(30)

3.3. Processing Flow

In Section 3.1, the proposed ML-based algorithm is described to estimate the radial velocity.
Then the phase errors caused by the moving target of the M channels are compensated before imaging
to suppress the false targets. The total processing flow of the moving target’s echoes of the multichannel
SAR system is illustrated in Figure 3. Detailed descriptions are as follows:

1. Range Compression: Conduct range compression with the echo of each channel.
2. Azimuth Fourier Transform: Perform the Fourier transform in the azimuth to obtain Sm(τ, fa),

m = 1, 2...M
3. Range Bin Selection: Choose the range bins that contain echoes of the moving target. Normally, the

range bin of the peak value and its adjacent range bins are selected.
4. ML Estimation of Radial Velocity: The ML method discussed in Section 3.1 is applied to estimate

the radial velocity of the moving target.
5. Multichannel Reconstruction: Reconstruct echoes of M channels and compensate for the phase

offsets introduced by target motion.
6. Traditional Imaging Algorithm: After reconstruction, the echoes of M channels are combined to

equivalent single-channel signal without Doppler ambiguities. The traditional chirp scaling (CS)
algorithm can be applied to obtain a focused image of the moving target with suppression of the
false targets.

257



Remote Sens. 2017, 9, 404

Figure 3. Processing flow of the moving target for the HRWS SAR system.

4. Experimental Results

In this section, experiments are conducted to evaluate the performance of the proposed ML-based
radial velocity estimator. In Section 4.1, we demonstrate the accuracy and the effectiveness of the
algorithm, the accuracy is evaluated by the estimation error, and the effectiveness is evaluated by the
proximity of the RMSE to the CRLB. After radial velocity estimation, phase offsets among channels
caused by target motion are compensated before imaging. The imaging results before and after
compensation are compared in Section 4.2. Finally, the estimation accuracy under different distributions
of sea clutter is discussed in Section 4.3.

The echo model of the moving target for the HRWS SAR system is shown is Figure 1. Figure 4
shows a diagram of the transmitting and receiving centers. The parameters of the simulated spaceborne
multichannel SAR system are listed in Table 1. The number of the Doppler ambiguity N equals 5
according to the parameters.

Table 1. Parameters of the simulated spaceborne multichannel SAR system.

Parameter Symbol Value

Number of Channels M 8
Aperture Size Da 11.2 m
Wavelength λ 0.05556 m
Look Angle θ 53.45 degrees

PRF fp 1317.1 Hz
Doppler Bandwidth Bd 5987.9 Hz

Satellite Velocity vs 7586.5 m/s
Sample Frequency fs 80 MHz

Bandwidth Br 67 MHz
Pulsewidth Tr 38 μs
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Figure 4. Diagram of the transmitting and receiving centers.

Figure 5 shows the comparison of simulated clutter signal and the moving target whose radial
velocity is 10 m/s. Figure 5a is the Doppler spectrum of the clutter signal of reconstructed echoes,
compared to that of the moving target signal in Figure 5b, where the spectral errors are evident from
the frequency-dependent phase mismatch caused by radial velocity. Figure 5c,d compare the trajectory
of the clutter signal and the moving target after range compression. We can see an additional linear
Range Cell Migration (RCM) after range compression of the moving target. In the following, the
trajectory of the moving target is extracted to estimate the radial velocity.
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Figure 5. Comparison of the Doppler spectra and Range-compressed signals between clutter and the
moving target: (a) Doppler spectrum of the clutter signal; (b) Doppler spectrum of the moving target;
(c) range-compressed signal of the clutter signal; and (d) range-compressed signal of the moving target.
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4.1. Performance of Radial Velocity Estimaion

In order to verify the performance of the proposed ML-based algorithm, an experiment is
conducted to evaluate the estimation accuracy and efficiency under different signal-to-noise ratios
(SNR). In the simulation, the radial velocity of the moving target is 10 m/s, and the SNR varies from
−5 dB to 20 dB. The searching step is 0.01 m/s and the searching range is 0–20 m/s. The clutter scenario
is temporarily not considered in the subsection. In the experiment, the range bin of the peak value
from the trajectory of the moving target and its adjacent 10 range bins are selected, and we average
the estimated values from 60 Doppler bins to improve the robustness. The estimated radial velocities,
the estimation errors and relative errors under different SNRs are listed in Table 2. The maximum
likelihood spectrum of radial velocity with the SNR = 0 dB is illustrated in Figure 6.

Table 2. Estimated Radial Velocities and Errors under different signal-to-noise ratios (SNRs).

SNR (dB) −5 0 5 10 15 20

Estimated Value (m/s) 10.47 10.22 10.08 9.97 9.99 10.00
Estimation Error (m/s) 0.47 0.22 0.08 0.03 0.01 0

Relative Error 4.7% 2.2% 0.8% 0.3% 0.1% 0

0 2 4 6 8 10 12 14 16 18 20
2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56
x 106 Maximum Likelihood Spectrum(SNR=0dB)

Vr(m/s)

Figure 6. Maximum likelihood spectrum of radial velocity.

In the following, the efficiency of the estimator is evaluated by the proximity of RMSE to the
CRLB. RMSE is expressed as

σvr =

√√√√1
I

I

∑
i=1

(v̂r,i − vr)
2 (31)

where I is the number of Monte Carlo experiments. In the comparison, we take the square root of the
CRLB in Equation (28). As the computational load is high, 100 Monte Carlo experiments are conducted
in the simulation. The RMSE is compared with the CRLB under different SNRs in Figure 7.

From the results in Table 2, the ML-based algorithm can estimate the radial velocity under very
strong noise conditions. As a general rule, the SNR is larger than 0 dB, the estimation error is smaller
than 0.22 m/s, with the relative error smaller than 2.2%. From the comparison of the RMSE and the
CRLB in Figure 7, the RMSE infinitely approaches the CRLB with the increase of the SNR. Thus, the
proposed ML-based radial velocity estimator is proven to be effective.
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Figure 7. Root mean squired error (RMSE) versus Cramér–Rao lower bound (CRLB) of radial
velocity estimation.

4.2. Imaging Results Before and after Estimation and Compensation

From the received signal of the m-th channel expressed in Equation (4), there exists a certain offset
in the Doppler frequency compared to the signal of a static target. The frequency offset of each channel
results in a frequency-dependent phase mismatch after the multichannel reconstruction introduced
in Section 3.3. As a result, the phase mismatches among the channels will cause false targets along
the azimuth when imaging. The phase error can be compensated after radial velocity estimation.
After compensation for the phase errors, the traditional CS algorithm is applied to the imaging process.
Figure 8a gives the trajectory of the moving target after range compression, where the linear RCM in
Figure 5d is well corrected with the estimated radial velocity. Finally, the well-focused image of the
moving target is obtained as shown in Figure 8b.
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Figure 8. Imaging process after compensation for the errors caused by target motion: (a) Trajectory of
the moving target after range compression; and (b) focused image of the moving target.

To demonstrate the impact of radial velocity on imaging quality for the multichannel SAR,
we compare the imaging results before and after phase error compensation when the SNR = 0 dB
in Figure 9. Figure 9a is the imagery of the moving target with traditional imaging process for
multichannel SAR, where false targets are uniformly distributed along the azimuth around the real
target. This is the impact of radial velocity on the multichannel SAR imaging. Figure 9b is the imagery
after compensation for the phase offsets with the estimated velocity, where false targets are much
suppressed and invisible. In Figure 10, the azimuth profiles of imaging results of the moving target
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are shown, Figure 10a corresponds to the azimuth profile of Figures 9a and 10b corresponds to the
azimuth profile of Figure 9b.

(a) (b)

Figure 9. Imaging results before and after compensation for the errors caused by target motion:
(a) before compensation; and (b) after compensation.
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Figure 10. Azimuth profile of imaging result of the moving target: (a) before compensation;
(b) after compensation.

To quantifiably describe the impact of radial velocity, we compute the maximum power of false
targets relative to the real one. The maximum power of false targets corresponding to Figure 9a is
−13.49 dB. Table 3 summarizes the maximum powers after compensation for phase errors under
different SNRs, which are smaller than −46.38 dB when the SNR is larger than 0 dB.

Table 3. The maximum power of false targets.

SNR (dB) −5 0 5 10 15 20

Maximum Power (dB) −40.48 −46.38 −52.92 −55.08 −55.23 −58.59
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4.3. Estimation Accuracy under Clutter Interference

One of the primary applications of the spaceborne multichannel SAR system is the remote sensing
of the sea surface, and sea clutter should be considered when detecting the moving ships. In the
simulation, four commonly-used clutter models are simulated as the background of the detected scene.
Rayleigh distribution is normally viewed as the magnitude probability function of the homogeneous
scene. Weibull distribution, Log-normal distribution, and K-distribution are main magnitude models
of the heterogeneous sea surfaces. The simulated clutter-interfered moving target signals are processed
with the procedure in Section 3.3. In the simulation, the radial velocity of the moving target is 10 m/s,
the signal-to-clutter ratio (SCR) is 0 dB and the SNR is 5 dB. The estimated radial velocities, the
estimation errors and relative errors under different clutter distributions are listed in Table 4. Table 5
summarizes the maximum powers of false targets before and after compensation for estimated phase
mismatches. We compare the imaging results before and after compensation under Weibull distribution
clutter in Figure 11. In Figure 12, the azimuth profiles of imaging results are shown, Figure 12a
corresponds to the azimuth profile of Figure 11a, and Figure 12b corresponds to the azimuth profile of
Figure 11b.

Table 4. Estimated radial velocities and errors under different clutter distributions.

Clutter Distribution Rayleigh Distribution Weibull Distribution Log-Normal Distribution K-Distribution

Estimated Value (m/s) 10.33 10.57 10.38 10.37
Estimation Error (m/s) 0.33 0.57 0.38 0.37

Relative Error 3.3% 5.7% 3.8% 3.7%

Table 5. The maximum power of false targets under different clutter distributions.

Clutter Distribution Rayleigh Distribution Weibull Distribution Log-Normal Distribution K-Distribution

Before Compensation (dB) −13.49 −13.50 −13.47 −13.50
After Compensation (dB) −46.46 −42.30 −43.57 −45.35

 

(a) (b) 

Figure 11. Imaging results before and after compensation under Weibull clutter: (a) before
compensation; and (b) after compensation.
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Figure 12. Azimuth profile of imaging result of the moving target under Weibull clutter: (a) before
compensation; and (b) after compensation.

5. Discussion

In Section 4, this paper conducted a comprehensive experiment to analyze the performance of the
proposed ML-based radial velocity estimation algorithm. From the estimated value under different
SNRs in Section 4.1, the relative estimation error is smaller than 2.2% when the SNR is larger than 0dB.
Thus this algorithm is accurate enough for applications. From the imaging results of the moving target
in the clutter-free situation in Figure 9, the false targets are rather obvious along the azimuth with the
traditional multichannel SAR imaging algorithm, and are visually unapparent after compensation
for the azimuth offsets with the estimated radial velocity. The maximum power of false targets after
compensation has been suppressed by more than 30 dB.

When the moving target is interfered by the sea clutter, the proposed algorithm can still estimate
the radial velocity. However, the performance is poorer than the ideal condition. Considering different
sea clutter distributions with SCR = 0 dB and SNR = 5 dB, the relative estimation error is at least 3.3%,
compared to that of 0.8% without clutter. Figure 11 demonstrates that the ML-based algorithm can also
estimate velocity and suppress false targets even in the interference of strong sea clutters. Despite the
maximum power of false targets with sea clutter interference being larger than that without clutter, the
deterioration of the performance is tolerable. Combined with Figures 9 and 11, the applicability of the
proposed estimation algorithm under different practical conditions is verified.

In terms of the estimation effectiveness, we have verified it in Figure 7, where the RMSE infinitely
approaches the CRLB with the increase of the SNR. As for the computational complexity, this algorithm
does not require iteration or matrix Eigen-decomposition, thus the computational load only lies in
the searching process of radial velocity. Finally, we have demonstrated that the proposed algorithm
can obtain accurate, efficient, and real-time estimation of the velocity of moving targets for HRWS
SAR systems.

6. Conclusions

A novel algorithm is proposed to estimate the velocity of the moving target for the spaceborne
HRWS SAR system. The main impact of the radial velocity is an additional Doppler spectrum shift
in the echo of each channel compared to that of the static target, leading to false targets along the
azimuth. According to the characteristics of a moving target signal, a maximum likelihood based
algorithm is proposed to estimate the sparse cone angle of the target, obtaining the radial velocity
indirectly. Moreover, for the peculiarity of the multichannel SAR system, the Doppler ambiguity is
considered in the estimation. After velocity estimation, the multichannel echoes are reconstructed and
phase mismatches are compensated to obtain the fine and unambiguous SAR image. The experimental
results show high accuracy of the proposed method even under different sea clutter distributions.
The effectiveness of the algorithm is also verified by comparing the RMSE and the CRLB. The proposed
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algorithm can precisely estimate the moving target’s velocity for the special mode of HRWS SAR
system, providing a reference for applications in remote sensing of the sea surface in future spaceborne
multichannel SAR systems.
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Abstract: In synthetic aperture radar (SAR) imagery, relating to maritime surveillance studies,
the ship has always been the main focus of study. In this letter, a method of ship classification in SAR
images is proposed to enhance classification accuracy. In the proposed method, to fully exploit the
distinguishing characters of the ship targets, both topology and intensity of the scattering points of the
ship are considered. The results of testing the proposed method on a data set of three types of ships,
collected via a space-borne SAR sensor designed by the Institute of Electronics, Chinese Academy
of Sciences (IECAS), establish that the proposed method is superior to several existing methods,
including the original shape contexts method, traditional invariant moments and the recent approach.

Keywords: ship classification; improved shape contexts; scattering centers; synthetic aperture radar
(SAR) image

1. Introduction

Synthetic aperture radar (SAR) has become a valuable tool for maritime surveillance studies.
Satellite SAR images are used for ship detection by virtue of their wide coverage and the all-day and
any-weather acquisition capability. At present, there have been many literatures on ship detection
in SAR imagery. The early researches are generally based on intensity images [1–4]. As early as
1996, an automatic ship and ship wake detection system for spaceborne SAR image is proposed
by Eldhuset [1]. In [2], Crisp presents a review of the available literatures on algorithms for ship
detection based on intensity images. The information provides by the backscattered intensity collected
by a single-polarization SAR is not sufficient to observe metallic targets. To obtain more effective
observation techniques, great attention to polarimetric approaches has been paid [5,6]. More recently,
many researchers [7,8] propose different approaches relying on the information kept in the spectrum
of a single-look complex (SLC) SAR images.

With improvement in the resolution of SAR sensor, as another interesting research field in
the domain of marine surveillance, ship classification in SAR images has been receiving greater
attention in recent years. Restricted by the amount of samples, many early studies were carried
out on simulated images. Graphical electromagnetic computation SAR (GRECOSAR), an orbital
polarimetric SAR simulator, is employed by Margarit et al. [9] for ship classification. The usefulness of
the simulator on vessel classification studies is assessed. Osman et al. [10] present a back propagation
neural network to classify simulated ship images with a correct classification rate of 98%. A ship
classifier based on the principal components analysis (PCA) are proposed [11] and the recognition
performance of the classifier are measured using various sets of simulated ship images under various
aspect angles. However, the above methods require a large amount of data samples. Since it
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is difficult to get enough real samples, the algorithms can only be carried on simulated images.
With the launching of several commercial satellites since the 1990s, such as Envisat and RadarSat-1,
the polarimetric SAR is exploited for ship classification [12,13]. Symmetric scattering characterization
method (SSCM) [12], a new method based on Poincare sphere representation, is introduced by
Touzi [13] for ship characterization. Dominant scatters which are useful for ship characterization
are extracted by SSCM. However, the method is sensitive to the system focus setting and Doppler
centroid shift. In [14], a new ship classification methodology that takes advantage of single-pol SAR
images based on a fuzzy logic (FL) decision rule is presented. Experiments conducted with the
ENVISAT images and AIS polls have achieved a classification ratio to 70%. These researches are
based on low-resolution images, leading to poor classification accuracy. In recent years, the successful
launching of high-resolution and multi-polarization SAR sensors, such as TerraSAR-X and RadarSat-2,
provided better observation conditions for ship targets. Researchers paid much more attention
to ship classification. Margarit et al. [14] propose an approach combining Pauli data analysis with
height-retrieval techniques to classify ships, based on their 3-D geometry. The experimental results
prove good performance of algorithm for realistic system, TanDEM-X. By extracting geometric and local
Radar Cross Section (RCS) density features and applying the sparse-representation classification (SRC),
Xing et al. [15] present a method to recognize ships in the feature space. Zhang et al. [16] consider the
scattering components that can represent the structure, materials, orientation, and other information
relating to merchant ships. However, the results of their research are mainly limited to civil ships,
such as oil tank, bulk and container, which has large difference in shape and appearance. The SRC
proposed in Xing’s literature [15] requires a large number of ship samples, which is not satisfied by
many categories of ships. Besides, the principal axis direction extraction and Zhang’s classification
criteria [16] are not applicable for warships whose shape difference is not obvious. The key to ship
recognition is discriminative feature extraction. Many researchers investigate the effective shape
features extraction using the public moving and stationary target acquisition and recognition (MSTAR)
dataset which includes several types of armored vehicles with azimuth angles that range from 0 to 360.
Zhou et al. [17] put forward scattering center features at different target poses using a global scattering
center model. Park et al. [18] propose 12 new features based on the projection length curve. Park and
Kim [19] extract the 1-D projection on radius and compressed coefficients by principal component
analysis (PCA) based on polar-mapped image. Zernike moments have been introduced by Amoon [20]
for target recognition in SAR images. The targets shadow is considered by Papson and Narayanan [21]
for classification. However, since it is difficult to obtain enough samples, the above feature extraction
methods cannot be applied to warship classification. To sum up, there has not been enough research
on ship classification in SAR imagery, especially the warships with a low degree of distinction and
those with few samples.

This paper focuses on devising a precise classification of warship targets, without the need for
a large number of samples. Besides, compared with the civilian ships, the warships are much closer
in shape and structure. In SAR images, the ship targets are composed of scattering points, whose
distribution patterns vary from ship to ship. Shape contexts feature [22] is a kind of feature extraction
method using log-polar histogram to describe the distribution of contour sampling points in natural
images. It has good recognition accuracy and has applied in many fields [23,24]. But so far no literature
has applied this method to target classification in SAR imagery. The matching procedure of shape
contexts does not require large numbers of samples which are necessary in many machine learning
approaches. Due to the characteristics of shape contexts, it would be an effective method for warship
classification in SAR images. However, this feature is not rotationally invariant and cannot utilize the
intensity of the scattering points. In this work, by modifying the original shape contexts (OSC) method,
we propose a novel classification method called improved shape contexts (ISC). Through principal
axis extraction of ship by PCA and weighted matching process, both the intensity and the topology of
scattering points are utilized in the method. The proposed method is validated by testing on a real
ship data set collected via a space-borne SAR sensor designed by the Institute of Electronics, Chinese
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Academy of Sciences (IECAS). The result shows that the improved shape contexts method is superior
to original method and other traditional moment methods.

The remainder of this letter is organized as follows: Section 2 analyzes the main characteristics of
ships in SAR images and presents the authors novel classification method for warships in SAR images;
Section 3 validates the proposed method by testing it on real data set collected from a space-borne
SAR sensor; the conclusions are presented in Section 4.

2. The Proposed Classification Method

2.1. Problem Description

According to the mechanism of imaging SAR, the ship targets in SAR imageries are composed of
many discrete scattering points. The discrete scattering points are called scattering centers, as shown
in Figure 1.

 

Figure 1. The optical and synthetic aperture radar (SAR) images of different types of ships.

The scattering points are generated by the interaction between the radar wave and the
superstructure of ships, such as the castle, bridge and mast. Since different types of warships have
different types of superstructures, the intensity and the topology of scattering points are also different.
They are the best discriminating features to differentiate one type of ship from others in SAR imagery.

However, precise ship classification is always a challenging task for three reasons. First, because
of the special imaging process of SAR and the electromagnetic scattering mechanism, the scattering
points are sensitive to the azimuth angle of the ship. Second, since the ships in SAR image do not
have obvious texture and edge, some local features, such as Scale-Invariant Feature Transform (SIFT)
and Histogram of Oriented Gradient (HOG), are no longer applicable. Besides, many types of ships
are similar in size, as shown in Figure 1; so, it is not enough to just measure the length and width
to distinguish them. Last but not the least, it is quite difficult to collect adequate experimental ship
samples; so, it is hard to take advantage of machine learning methods.

In conclusion, the classification strategy should not require many experimental samples. Second,
the feature descriptors should have a good description of the ship’s global characteristics, specifically
the intensity and the topology of scattering points. In addition, since scattering points are sensitive to
the azimuth angle of ships, the method should also be robust against changes in scattering intensity.

2.2. Proposed Ship Classification Method

In this section, a novel method for classification of warships in SAR images is proposed, based
on the improved shape contexts. The proposed method includes two steps: (i) feature extraction and
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(ii) feature matching. The feature extraction method takes full advantage of the topology of scattering
points, with invariance to image translation and rotation. The feature matching method exploits the
intensity of the scattering points.

The proposed method is divided into several stages, as shown in Figure 2. Before attempting to
classify the ships, the ships must have been reliably detected by applying the ship detection technique,
and separated from the surroundings.

 

Figure 2. The procedure of classification algorithm.

2.2.1. Preprocessing

1. CFAR segmentation

First of all, Constant False Alarm Rate (CFAR) [25] segmentation is used to extract the scattering
centers of ships, as shown in Figure 3. In this paper, the 2-parameter CFAR is employed for ship
segmentation. Both of the sea clutter and the sidelobes of ships appeared in the segmented image will
affect the topology of scattering centers. These interferences will affect the subsequent experimental
performance. Besides, the stable scattering centers are more valuable in subsequent experiments.
So we set a low false alarm rate (10−6) to remove all the sea clutter. Since the sidelobes of warships in
our experiments are rather weak, they are also generally removed after segmentation. So, there is no
need to suppress the sidelobes. After CFAR segmentation, the stable scattering centers (see Figure 3b)
are segmented from the original image.

 
(a) (b) (c) 

Figure 3. The procedure of classification algorithm. Diagram of the principal axis extraction.
(a) The original image; (b) The segmented image; (c) The principal axis extraction.

2. Principal axis direction extraction using PCA

Because of the geometrical characteristics of ship targets, the scattering points are distributed
along the principal axis of ships. Besides, the scattering points are symmetrically distributed on both
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sides of ships. So, the principal component analysis (PCA) method [26] can be employed to compute
the principal axis of the scattering points of the segmented targets.

2.2.2. The Improved Shape Contexts Method

After extracting the scattering points and the principal axis, the feature extraction and matching
methods are implemented for ship classification.

1. Shape contexts description based on principal axis

Shape context (see Figure 4) is a kind of shape feature that uses log-polar histograms to describe
the distribution of sampling points of the object contour. The sampling points are defined as
P = {p1, p2, p3, . . . pn}, pi ∈ IR2, (the meaning of IR2 is two dimensional real number vector space)
where n is the total number of points. By selecting the ith point pi as the point of origin, a coarse
histogram hi of the relative coordinates of the remaining n − 1 points can be computed,

hi(k) = #{q �= pi : (q − pi) ∈ bin(k)} 1 ≤ k ≤ K (1)

This histogram is defined as the shape context of pi. q denotes the remaining sampling point
and K denotes the number of histogram grid partitions. bin are uniform in log-polar space. The polar
coordinates of q are defined as (r, θ). r represents for the distance between q and pi. θ represents
for the angle between the connecting line of the two points and the zero angle axis, measured in
anticlockwise direction.

lo
gr

θ  
(a) (b) 

Figure 4. The original shape context descriptor. (a) The division of sampling points; (b) The histogram
of sampling points.

Specifically, log r is divided uniformly into M parts and θ into N parts; so, the dimensions of
histogram K are M × N. The two dimensional histogram is defined as

S = {(m, n) : 1 ≤ m ≤ M, 1 ≤ n ≤ N} (2)

Then, the histogram set for all the sampling points is defined as

hi = {hi(k) : 1 ≤ k ≤ K} = {hi(m, n) : (m, n) ∈ S} , k = (n − 1)× M + m (3)

However, the original shape contexts do not satisfy rotation invariance. The histograms of ships
of the same type, at different azimuth angles, are vastly different. To enable the feature suitable for
recognizing ships with different azimuths, we utilize the extracted principal axis of the ship as the
reference angle for shape context. The angle between every scattering point and the reference point is
measured by the angle between the connecting line of the two points and the principal axis, measured
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in anticlockwise direction (see Figure 5). After this measurement, the topology of the scattering points
is described by the histograms. Since the angle between every two points depends on the principal
axis of the ship, the scattering points of the ship are rotational invariant.

Principal axis
r

Figure 5. Shape contexts description based on principal axis.

2. The weighted feature matching procedure

Because of limited experimental samples, template matching is used to classify different types of
ships. Specifically, after calculating the matching costs of the query ship and different candidate ship
templates, the candidate ship template with the lowest matching cost would be the final recognition
result. The specific shape contexts matching method is as follows.

After obtaining the shape context feature of each scattering point, the distance between the shape
contexts of the query ship and the ship template are calculated by χ2 statistic. The cost of two points is
denoted as

Cij ≡ C(pi, qj) =
1
2

K

∑
k=1

[hi(k)− hj(k)]
2

hi(k) + hj(k)
(4)

Given the matrix of costs Cij between all pairs of points pi on the query ship and qj on the ship

template, the next task is minimizing the total matching cost C = 1
N

N
∑

i=1
C(pi, qπ(i)) = 1

N

N
∑

i=1
Ci,π(i),

subject to the constraint that the matching be one-to-one. qπ(i) is matching point of pi, which is
an instance of the square assignment problem that can be solved by the Hungarian method [27].
The matching result of the two ships is shown in Figure 6.

(a) (b) 

Figure 6. An instance of the shape contexts matching. (a) The segmented image of the query ship and
ship template; (b) The shape contexts matching result of the query ship and ship template. Query ship
(red), Ship template (blue).

So far, every scattering point of the query ship matches the scattering point of the ship template,
with almost similar topology. But we have taken advantage of only the topological relations of the

272



Remote Sens. 2017, 9, 145

scattering points, without taking into consideration the intensity information of the corresponding
scattering points.

The shape context of a scattering point represents its topological relation with other points.
Because the same types of ships are similar in structure, the scattering points with similar shape
contexts are also similar in intensity. Some scattering points of different types of ships may have similar
shape contexts. However, their intensity may be vastly different.

For calculating the matching cost of two ships, the intensities of their scattering points should be
taken into account by giving weight to the cost of every two matching points. Specifically, the original
matching cost Ci,π(i) of pi and qπ(i) should be multiplied by a weight factor Wi,π(i), which contains the
intensity information of the scattering points.

We believe that the more the similarity between the intensities of two matching points, the smaller
would be the matching cost. Assuming that the intensities of the matching points are Ii(k) and Iπ(i)(k),
then the weight indicating the degree of similarity in intensity is

W1
i,π(i) =

(
Ii(k)

Ii(k) + Iπ(i)(k)
− Iπ(i)(k)

Ii(k) + Iπ(i)(k)

)2

=

(
Ii(k)− Iπ(i)(k)
Ii(k) + Iπ(i)(k)

)2

(5)

Generally, the scattering points with higher intensity have greater effects on the matching
degree of the two ships. So, we multiply the original matching cost Ci,π(i) with another weight
W2

i,π(i) = Ii(k) + Iπ(i)(k). Finally, the weighted matching cost is

C′
i,π(i) = W1

i,π(i)W
2
i,π(i)Ci,π(i) = W1

i,π(i)W
2
i,π(i)C(pi, qπ(i)) =

(Ii(k)− Iπ(i)(k))
2

Ii(k) + Iπ(i)(k)
C(pi, qπ(i)) (6)

Finally, the total matching cost of the query ship and the ship template is

C′ =
1
N

N

∑
i=1

C′
i,π(i) =

1
N

N

∑
i=1

W1
i,π(i)W

2
i,π(i)Ci,π(i) =

1
N

N

∑
i=1

W1
i,π(i)W

2
i,π(i)C(pi, qπ(i)) (7)

The type of candidate ship template with the lowest matching cost would be the final classification
result of the query ship.

Compared with the original shape contexts method, there are two improvements in our proposed
method. Firstly, the principal component analysis (PCA) is employed to compute the principal axis of
the scattering points, so the algorithm is suitable for classification of warships under different azimuth
angles. Secondly, in the matching stage, the intensities of scattering centers are taken into account
by giving weight to the cost of every two matching points. In general, the improved shape contexts
method fully describes the distinguishing characteristics of the ship targets. The ship signature is
dependent on the azimuth angle of the ship, but given one angle, the algorithm is invariant to rotation
and translation.

3. Experimental Results

In this section, we implement the experiments on a real ship dataset via a space-borne SAR sensor
designed by IECAS to examine the effectiveness of the proposed method. The ships are collected from
32 stripmap-model SAR images with X band, 3m resolution in both azimuth and range directions.
The image acquisitions dates vary from 16 May 2008 to 9 September 2015. The categories of the ships
are confirmed by the professional interpreters. The data relates to three types of destroyers (total
150 samples). The number of the three kinds of ships is 50, 50 and 50, respectively (See Figure 7).
The incidence angle ranges between 40◦ and 55◦. The azimuth angles ranges between 0◦ and 360◦.
The ship dataset is extracted from geo-coded images, which have subjected to geometric correction.
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Figure 7. The first column represents the optical images of three types of warships. The second column
to the fourth column represents the samples corresponding to the three types of warships from different
azimuth angles. destroyer1 (top), destroyer2 (middle), destroyer3 (bottom).

Due to the limitation of sample size, the methods we compare are all template matching with
features. The features that are commonly used in computer vision for shape matching are Hu
moments [28] and Zernike moments [29]. They are invariant to image translation, scaling and rotation,
with global characteristic description. Invariant moments are widely used for target recognition and
tracking, texture analysis and other related purposes. Besides, we also compare our method with the
recent approach [15] proposed by Xing in 2013. The approach proposes to use both geometric features
and electromagnetic scattering characteristic for ship classification. The geometric feature includes
the ship length (Len), length to width ratio (R), centroid (C), shape complexity (X) and covariance
coefficient (V). The electromagnetic scattering characteristic is described by the local RCS density
(LRCS), specifically, the pixel intensity ratio of three parts of the ship. The feature vector f denoted
as follows.

f = [Len, R, C, X, V, LRCS]T (8)

In our study, for the sake of comparison, we conducted classification experiments with the
improved shape contexts (ISC) method we propose, the original shape contexts (OSC) method,
the feature proposed by the literature [15] with Euclidean distance and the conventional moment
features, namely Hu moments and Zernike moments with Euclidean distance. In the ISC and OSC,
we use five bins for log r and 12 equally spaced radial bins for θ. (K = 60, M = 5 and N = 12).

By randomly selecting one of each class as templates and the rest samples for classification test,
we carry out the classification experiments. Specifically, we calculate the matching cost of every query
ship and the three templates using the five methods cited above, the final classification result is the
type of template with the lowest matching cost. As the template samples are selected randomly,
the classification experiments are carried out repeatedly for ten times and the results are averaged.
The results, presented in Table 1, show that the improved shape contexts method outperforms all the
other methods with average classification rate nearly 91%.

Some correctly classified and incorrectly classified ship images of OSC are provided in Figure 8.
The third column is misclassified. In this column, the first and third samples are misclassified as
destroyer 2 while the second sample is misclassified as destroyer 3. This is mostly because, under
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some certain azimuth angles, the scattering centers of ships vary greatly due to the mechanism of
imaging SAR. Besides, high speed navigation of ships also impacts image quality. These problems are
not considered in the proposed algorithm.

Table 1. Comparison of Classification Accuracy obtained by Hu moments, Zernike moments, f feature,
OSC (Original Shape Contexts) and ISC (Improved Shape Contexts).

Hu Moments Zernike Moments f Feature OSC ISC

Destoryer1 Classification Accuracy 70% 81% 73% 88% 92%
Destoryer2 Classification Accuracy 66% 78% 69% 86% 90%
Destoryer3 Classification Accuracy 67% 77% 66% 86% 90%

Average Classification Accuracy 68% 79% 69% 87% 91%

Figure 8. The correctly and incorrectly classified ship images of OSC for three types of destroyers.

4. Discussion

This paragraph we analyze the possible reasons of the above experimental results. Feature
extraction is the key problem of target recognition. Both of Hu and Zernike moments are highly
concentrated image features with rotation, translation and scaling invariance. Since Hu moments [28]
feature is a kind of low order statistic, it cannot fully describe the details of an image. So the
distinguishing ability of Hu moments is limited in many cases. Compared to Hu moments, Zernike
moments [29] feature is more robust to noise and small shape changes with less redundant information.
However, this paper focuses on the distinction of warships in SAR imagery. Since the above moments
are not well designed for the specific targets classification, they cannot fully describe the distinguishing
features of warships in SAR imagery. Hu moments and Zernike moments are universal features,
so they cannot achieve good experiments results in such a specific dataset. Similarly, despite the
effectiveness of f feature vector for civilian ships, the ability of the feature to distinguish warships is
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also limited. Though local RCS density in f feature vector is designed for civilian ships in SAR imagery,
it just divides the ship into several parts and adds up the pixel intensity of each part. As warships
are much closer in shape and structure, this simple feature is unable to make a complete use of the
distinguishing characteristic of different warships in SAR imagery. As we have analyzed in Section 2.1,
the topology and the intensity of the scattering centers are the main distinguishing features of warships
in SAR imagery. The improved shape contexts method fully takes advantage of the distinguishing
features, thus it can achieve better recognition results.

5. Conclusions

In this paper, an effective and precise ship classification method is proposed. The letter first
analyzes the main distinguishing features of ships in SAR imagery. In the preprocessing stage of
classification, the scattering points of warships are extracted by CFAR, and the principal axis is
estimated using PCA. Then we propose the improved shape contexts method, which fully describes
the topology and intensity of the scattering points of the ships. It is experimentally demonstrated
with the space-borne data that the proposed method outperforms the traditional moments and the
recent state-of-art approaches, as also the original shape contexts method, by achieving an average
classification accuracy of about 91%. Despite the encouraging results of the novel method, the proposed
algorithm needs many improvements. First, more types of ship samples are needed to validate the
applicability of the method to a wide ranging variety of ships. Second, since the features of warships
change with the azimuth angle in SAR images, more stable features should be looked for to strengthen
the robustness of the method. Finally, the scattering mechanism of the ship should be studied in greater
depth in future.
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Abstract: This paper intends to find a more cost-effective way for training oil spill classification
systems by introducing active learning (AL) and exploring its potential, so that satisfying classifiers
could be learned with reduced number of labeled samples. The dataset used has 143 oil spills and
124 look-alikes from 198 RADARSAT images covering the east and west coasts of Canada from 2004
to 2013. Six uncertainty-based active sample selecting (ACS) methods are designed to choose the
most informative samples. A method for reducing information redundancy amongst the selected
samples and a method with varying sample preference are considered. Four classifiers (k-nearest
neighbor (KNN), support vector machine (SVM), linear discriminant analysis (LDA) and decision
tree (DT)) are coupled with ACS methods to explore the interaction and possible preference between
classifiers and ACS methods. Three kinds of measures are adopted to highlight different aspect of
classification performance of these AL-boosted classifiers. Overall, AL proves its strong potential
with 4% to 78% reduction on training samples in different settings. The SVM classifier shows to be
the best one for using in the AL frame, with perfect performance evolving curves in different kinds
of measures. The exploration and exploitation criterion can further improve the performance of the
AL-boosted SVM classifier but not of the other classifiers.

Keywords: oil spill detection; SAR; active learning; active sample selecting; support vector machine;
k-nearest neighbor; linear discriminant analysis; decision tree

1. Introduction

With the increase of maritime traffic, the accidental and deliberate discharge of oil from ships is
attracting growing concern. Using satellite-based synthetic aperture radar (SAR) has been proven to
be a cost effective way to survey marine pollution over large-scale sea areas [1,2].

Current and future satellites with SAR sensors that can be used for monitoring oil spills include
ERS-1/2, RADARSAT-1/2, ENVISAT (ASAR), ALOS1/2 (PALSAR), TerraSAR-X, Cosmos Skymed-1/2,
RISAT-1, Sentinel-1, SAOCOM-1 and the RADARSAT constellation mission. Based on the SAR systems,
many commercial or governmental agencies have been building SAR oil-spill detection service, such
as the multi-mission maritime monitoring services of Kongsberg Satellite Services (KSAT), Airbus
defense and space’s oil spill detection service, CleanSeaNet [3] and Integrated Satellite Tracking of
Pollution (ISTOP). To be more operational, automatic oil spill classification system with real-time, fully
operational and wider water coverage capability is needed [1], as Solberg et al. state [4] “The currently
manual services is just a first step toward a fully operational system covering wider waters”.
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Due to their ability to smooth sea surface, oil spills usually appear as dark spots on SAR images.
However, other sea features, such as low wind areas and biogenic slicks, also produce smooth
sea surface and result in dark formations on SAR imagery. These sea features are usually called
“look-alikes”. The existence of look-alikes imposes huge challenge on SAR oil spill detection systems.
In an automatic or semiautomatic SAR oil spill detection system, three steps are sequentially performed
to identify oil spills [1,5–8]: (i) dark-spot detection for identifying all candidates that belong to either
oil spills or look-alikes; (ii) feature extraction for collecting object-based features, such as the mean
intensity value of dark-spots, for discriminating oil spills and look-alikes; and (iii) classification for
separating oil spills and look-alikes using the features extracted.

After identifying all candidates and collecting their features, classification approaches predominantly
determines the performance of oil spill detection systems. Many classifiers have been used to detect
oil spills including a combination of statistical modeling and rule-based approaches [1,4,5,9,10], artificial
neural network (ANN) models [11–16], decision tree (DT) models [3,8,15,17], fisher discrimination or multi
regression analysis approaches [18], fuzzy classifiers [3,19], support vector machine (SVM) classifiers [9,20]
and K-nearest neighbors (KNN) based classifiers [17,21]. A comparison of SVM, ANN, tree-based
ensemble classifiers (bagging, bundling and boosting), generalized additive model (GAM) and penalized
linear discriminant analysis on a relatively fair standard has been conducted [22] with the conclusion that
the tree-based classifiers, i.e., bagging, bundling and boosting approaches, generally perform better than
the other approaches, i.e., SVM, ANN and GAM.

Most classifiers that have been adopted for oil spill detection are supervised classifiers which
need training samples to “teach” themselves before performing classification tasks. To get good
generalization performance, a large number of training samples are needed to deal with the curse
of dimensionality [23]. In the case of oil spill classification, high feature dimensionality are usually
needed to cover the complex characteristics of look-alikes and oil spills [1,6].

Although effective classifier learning requires a large number of labeled samples,
verifying/labeling and accumulating enough number of samples for training an automatic system
with reasonable performance could be very difficult, costly and time-consuming for the following
reasons. First, oil spills are rare and fast-changing events, which tend to disappear before being verified
by ships or aircrafts, because, after a short time span, mostly within several hours [24], the oil spills
will become difficult to distinguish. Second, verifying an oil spill using airplane/vessel is usually very
expensive. Third, verified/labeled samples from different SAR platforms may not be sharable, because
of the different imaging parameters, such as band, polarization mode, spatial resolution, etc. Even for
images from the same SAR platform, the standards of confidence levels, pre and post procedures, etc.
must be normalized so that the samples from different institutions can be shared.

Limited by difficulties in verifying oil spills, researchers rely mainly on human experts to
manually label the targets. For example, Table 1 indicates that the largest number of verified
oil spills is only 29 adopted by Solberg et al. [10], and other researchers predominantly used
the expert-labeled samples, although they did not explicitly report the proportion of the verified
samples. Nevertheless, using expert-labeled samples is problematic for the following reasons. First,
expert-labeling produces inconsistency between the labels (or confidence levels) given by different
experts [1,25]. Second, training the system with expert-labeled samples leads to system that can hardly
outperform the experts who “teach” the system.
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Table 1. Summary of the dataset adopted in different SAR oil spill detection researches. Note that
in the #samples column; (X, Y) indicates there are X oil spills and Y look-alikes and, in the #Samples
verified column; (X, Y) indicates there are X verified oil spills and Y verified look-alikes.

Literature SAR Sensor #Image #Samples
#Samples
Verified

Location (Time Span)

[22] RADARSAT1 93 (98, 94) (21, N/A) West and East coasts of
Canada (2004–2008)

[9] Envisat 103 (41, 12, 245) N/A Baltic Sea and North See
(2003–2005)

[10] Envisat
RADARSAT1 127 (37, 12, 110) (29, N/A) Baltic Sea and North See

(2003–2004)

[4] Envisat 84 (71, 6980) N/A European waters (N/A)

[7,8,12–14] ERS-2 24 (69, 90) N/A Mediterranean Sea (N/A)

[19] ERS-1/2 12 N/A N/A Mediterranean Sea (N/A)

[24] ERS-1/2 1600 (1638, N/A) N/A Mediterranean Sea (1999)

[18] ERS-1/2
Envisat N/A (153, 237) N/A Mediterranean Sea (N/A)

[26] ERS-1/2
Envisat 15,533 (9299, N/A) N/A Mediterranean Sea

(1999–2004)

[26] ERS-1/2
Envisat 3165 (1227, N/A) N/A Black sea (1999–2004)

[15] Envisat 47 (80, 155) N/A Galicia coast, Spain
(2007–2011)

[3] Envisat
RADARSAT 118 (361, 5728) N/A European Waters

(2009–2012)

[17] ERS-1
RADARSAT1 9 (41, 896) N/A N/A

Considering the cost and difficulties in verifying oil spill candidates, one key issue in learning
an oil spill classification system is to effectively reduce the number of verified samples required
for classifier training without compromising the accuracy and robustness of the resulting classifier.
Suppose that the current verified samples are insufficient for building an accurate oil spill detection
system, and that new samples are required to be verified for increasing the size of the training set. In a
conventional supervised classification system, we will not be able to know which samples have higher
priority to be verified, because, as indicated in Figure 1, the communication between the conventional
classification system and the sample collecting system is one-way directed, where the collected samples
are used to train the classifier with no feedback from the classifier on what kind of samples are more
informative and urgently needed. Without knowing the values and importance of the samples to the
classifiers, the costly verification effort may only lead to training samples that are redundant, useless or
even misleading. Although verifying more samples can increase the possibility of obtaining relevant
training sample, it will greatly increase the time span and cost for building the system.
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Figure 1. The role of active learning in the oil spill detection system. In conventional supervised
classification system, the communication between the classification system (upper part) and the
training sample collecting system (lower part) is one-way directed (as indicated by the big black arrow),
where the collected samples are used to train the classifier with no feedback from the classifier on what
kind of samples are most informative and urgently needed. However, in the active learning boosted
system, the interaction between the two systems are bi-directional (as indicated by the red arrows),
where the classifier will “ask for” the most relevant samples to be verified/labeled in order to learn the
classifier in an efficient and effective manner. Considering the cost and difficulty in verifying the oil spill
candidate, such an active learning process can greatly reduce the cost and time for building a detection
system by reducing the number of candidates that needed to be verified without compromising the
robustness and accuracy of the resulting classifier.

The need for reducing training samples without compromising the accuracy of resulting classifiers
motivates us to study the potential of introducing AL into the oil spill detection systems. AL is a
growing area of research in machine learning [27], and has been widely used in many real-world
problems [27–29] and remote sensing classification [30–36]. The insight from AL is that allowing a
machine learning algorithm to designate the samples for training could make it achieve higher accuracy
with fewer training samples. As indicated by Figure 1, in an AL-boosted system, the interaction
between the classification system and the training sample collecting system are bi-directional, where
the classifier will “ask for” the most relevant samples to be verified/labeled in order to construct the
classifier in an efficient and effective manner. Considering the cost and difficulty to verify the oil spill
candidate, such an active learning process can greatly reduce the cost and time for building a detection
system by reducing the number of candidates that needed to be verified without compromising the
robustness and accuracy of the resulting classifier.

In this paper, we explore the potential of AL in training classifiers for the purpose of oil spill
identification using 10 years (2004–2013) of RADARSAT data off the east and west coasts of Canada,
which contains 198 RADARSAT-1 and RADARSAT-2 ScanSAR full scene images. Based on these
images, we obtain 267 labeled samples, of which there are 143 oil spills and 124 look-alikes. We split
these labeled samples into a simulating-set and a test-set, using the simulating-set to simulate an
AL process involving a number of AL iterations, and using the test-set to calculate the performance
of classifiers in each iteration. We start with a small number of training samples for initializing the
classifiers, and with the AL iteration, we progressively select more samples and add them to the
training set. Such a process ends when all samples in the simulating-set has been selected. Since the
most important issue in AL is how to effectively select the most informative samples, we design six
different active sample selection (ACS) methods to choose informative training samples. Moreover, we
also explore the ACS approach with varying sample preference and the approach to reduce information
redundancy among the selected samples. Four commonly used classifiers (KNN, SVM, LDA and
DT) are coupled with ACS methods to explore the interaction between classifiers and ACS methods.
Three kinds of measures are adopted to highlight different aspect of classification performance of
these AL-boosted classifiers. Finally, to reduce the bias caused by the splitting of simulating set and
test set in an effective manner, we adopt a six-fold cross validation approach to randomly split the
labeled samples into six folds, using five for simulating and one for testing until all the folds have been
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used for testing once. To our best knowledge, this work is the first, effort except our very preliminary
work [37], to explore the potential of AL for oil spill classification.

2. Dataset and Methods

The scheme of exploring the potential of AL for identifying marine oil spill is as Figure 2.
In preprocessing step, the labeled samples are split into three parts. One part is put into the
training samples pool for initially training classifiers. One part is put into the sample selection
pool for sample selection in AL process. The third is for testing the performance of AL-boosted
classifiers. The AL-boosted process starts by training classifiers with samples in the training sample
pool. Samples in the sample selection pool are then classified by the trained classifiers, whose output
are used to help the ACS approach to select some (here we select ten) most “informative” samples from
the sample selection pool. These selected samples are added into the training samples pool to train
classifiers in next iteration. The process keeps iterating until no sample left in the sample selection
pool and all samples have been used to train the classifiers. We adopt four classifiers (i.e., SVM, LDA,
KNN and DT), with each one coupled with all of the different ACS approaches. Three complementary
numerical measures are calculated for each AL-boosted classifier using the testing set. The six-fold
cross validation technique is used to get bias-reduced measures.

 
Figure 2. The scheme of exploring the potential of AL in building oil spill classification systems using
ten-year RADARSAT data.

2.1. Dataset

The dataset used in this study contains 198 RADARSAT (188 RADASAT-1, 10 RADASAT-2) images
(mode: ScanSAR narrow beam; swath width: 300 km; pixel spacing: 50 m) covering the east and west
coasts of Canada from 2004 to 2013. Contained in these images are 143 oil spills and 124 look-alikes,
all labeled by human experts in CIS of Environment Canada for a program called Integrated Satellite
Tracking of Pollution (ISTOP). Because the boundaries of all labeled dark spots have been drawn
by experts in CIS, we will not perform the dark spot detection process. Given the dark-spots in
pixel-format, features extracted as input to classifiers can be categorized into four groups: (i) physical
properties; (ii) geometric shape; (iii) texture; and (iv) contextual information [1,6,8]. Choosing the
most relevant feature set for classification is not easy, because of the fact that feature selection is a
complex issue depending on many factors such as the study area, the dataset, the classifiers, and the
evaluation measures. Many researchers tried to study the relative importance of features for feature
selection, but their conclusions are not in consistency due to their different experiment settings.
For example, Karathanassi et al. [19] grouped 13 features into sea state dependent features and
sea state independent features; Topouzelis et al. [7,8] examined 25 most commonly used features
based on neural networks and decision tree forest, and selected several feature-subsets that are of
most importance; Mera et al. [15] applied principal component analysis (PCA) to 17 shape related
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features and finally selected 5 principal components for their automatic oil spill detection system;
and Xu et al. [22] implemented the permutation-based variable accuracy importance (PVAI) technique
to evaluate feature’s importance relative to different criteria and they found that different types of
classifier tended to present different patterns on feature ranking and PVAI values.

Due to the lack of unified criteria for feature selection, we decided to use as many relevant features
as could be extracted. We finally obtained 56 features, of which, there are 32 features about physical
properties, 19 features about geometric shape, and 5 features about texture characteristics (see Table 2).
Wind and ship information that describe the contextual information of the identified objects are not
included because these information and techniques needed to detect them are not available to us.
Readers could refer to Solberg et al. [4] for manually setting wind information, Espedal et al. [38] for
using wind history information and Hwang et al. [39] and Salvatori et al. [40] for automatic wind
information detection from SAR images. The features used in this study have varying ranges of values.
We normalize these features by linearly mapping the values from their ranges to [0, 1].

Table 2. Features extracted based on the dark-spot objects for classifying oil spills from look-alikes.

No Type Features Code

1 Geometric Target area in number of pixels A

2 Target perimeter in number of pixels P

3 Target Complexity measure C1 = Pˆ2/A C1

4 Target Complexity measure C2 = P/A C2

5 Target Complexity measure C3 = P/(2*sqrt(pi*area)) C3

6 The length of the major axis of the ellipse that has the same normalized second
central moments as the object region. Length

7 The length of the minor axis of the ellipse that has the same normalized second
central moments as the object region. Width

8 The eccentricity of the ellipse that has the same second-moments as the object region Ecce.

9 Target Spreading measures S = Length/Width S

10–12 The first three of Hu's invariant planar moments [41] H1–H3

13–19 The first seven of Zernike moments [42] Z1–Z7

20 Physical Average intensity value of the object MeO

21 Standard deviation of gray-scale intensity values of the object SDO

22 Average intensity value of the background area (a limited area near and
outside object) MeB

23 Standard deviation of the intensity value of the background area SDB

24 Maximum intensity value of the object MaxO

25 Minimum intensity value of the object MinO

26 Power-to-Mean Ratio of the Object, SDO/MeO PMRO

27 Power-to-Mean Ratio of the Background area, SDB/MeB PMRB

28 Ratio between MeO and MeB MeR

29 Ratio between SDO and SDB SDR

30 Ratio between PMRO and PMRB PMRR

31 Difference between MeB and MeO MeD

32 Difference between SDB and SDO SDD

33 Difference between PMRB and PMRO PMRD

34 The difference between MeB and MinO MaxC

35 Average gradient value of the object area MeGO

36 Standard deviation of the gradient value of the object area SDGO

37 Average gradient value of the background area. MeGB

38 Standard deviation of the gradient value of the background area SDGB
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Table 2. Cont.

No Type Features Code

39 Average gradient value of the object border area. MeGBo

40 Standard deviation of the gradient value of the object border area SDGBo

41 Maximum gradient value of the object MaxGO

42 Minimum gradient value of the object MinGO

43 Ratio between SDGO and MeGO PMRGO

44 Ratio between SDGB and MeGB PMRGB

45 Ratio between MeGO and meGB MeGR

46 Ratio between SDGO and SDGB SDGR

47 Ratio between PMRGB and PMRGO PMRGR

48 Difference between MeGB and MeGO MeGD

49 Difference between SDGB and SDGO SDGD

50 Difference between PMRGB and PMRGO PMRGD

51 Difference between MeGB and MinGO MaxGC

52 Textural GLCM Contrast Cont.

53 GLCM Correlation Corr.

54 GLCM Energy Ener.

55 GLCM Homogeneity Homo.

56 GLCM Entropy Entr.

2.2. Classifiers Used

Four commonly used classifiers (SVM, KNN, LDA and DT) are adopted to be integrated into
the AL framework. We prefer choosing commonly used classifiers in our study because: (i) we are
focusing on exploring the effectiveness of the AL approaches, rather than finding the best classifiers;
(ii) complex classifiers introduce more hyper-parameters that may complicate the performance, making
it difficult to analyze the role of active learning; and (iii) conclusions drawn from commonly used
classifiers may apply on high-level classifiers built on them, while it is not true vice versa. We set the
hyper parameters of each classifier fixed across all AL learning iterations.

2.2.1. Support Vector Machine (SVM)

SVM is a “local” classifier whose decision boundary depends on a small number of supporting
vectors/samples, which means finding the most relevant set of samples via AL is crucial for the
performance. It is a well-known classifier for remote sensing applications [33,43] and particularly for
oil spill classification [9,20,22]. Here, we use LIBSVM [44], the radial kernel, C = 1 and gamma = 0.07.

2.2.2. K Nearest Neighbors

KNN classifies a sample by a majority vote of this sample’s k nearest neighbors. It is widely used
in remote sensing society [45–47] and particularly for oil spill classification [17,21]. We here simply set
the only hyper parameter k = 9.

2.2.3. Linear Discriminant Analysis

LDA predicts the class membership based on the posterior probabilities of different classes.
It assumes that the densities of predictors conditioned on class membership are Gaussian.
Many modifications of LDA exist, such as Penalized LDA [48], null-space LDA [49], Dual-Space
LDA [50], Probabilistic LDA [51], Global-local LDA [52], etc. Nirchio et al. [18] used LDA and
Xu et al. [22] used the Penalized LDA directly for oil spill classification. Here, we use the basic LDA,
hoping that conclusions drawn from LDA could apply to the other variants.
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2.2.4. Decision Tree

DTs are flexible classifiers that recursively split the input dataset into subset [53]. The class label
of a test sample is predicted by applying the decision criteria from the root to the leaves to determine
which leaf it falls in. Because of its capability of easily providing an intelligible model of the data,
decision tree is very popular and widely used for classification purpose either directly [3,15] or as the
elemental classifier of state-of-the-art ensemble techniques such as bagging, bundling and boosting
for achieving better generality performance [8,22,54–56]. Here, we use the DT supported by the
classification and regression tree (CART) algorithm [53]. ClassificationTree class in Matlab 2012b was
used, with all parameters set as default.

2.3. Active Learning

The AL process iteratively helps the classifier to identify and adopt the most informative samples
for training the classifier in an efficient and effective manner. In each iteration, a classifier is first
trained with current training set, then active sample selecting (ACS) methods choose L (here L = 10)
samples that are most informative for current classifier, obtain their labels and add them to the training
set. The ACS method responsible for informative sample selection is of key importance to the success
of the AL process. To explore the influence of different ACS methods on the classifier performance,
here, we choose the uncertainty criterion to define the informativeness of samples and design six basic
ACS methods based on it. Two strategies that may further improve the informativeness of the selected
samples by adjusting sample preference in iterations and reducing redundancy amongst samples are
also considered.

2.3.1. Six Basic ACS Methods

We choose the most widely used uncertainty/certainty criterion for describing the informativeness
of samples [27] and propose six ACS methods based on it. Here, the certainty of a sample being
an oil-spill is defined by its posterior probability that is usually implemented as the soft-outputs
of classifiers. For KNN classifier, the posterior probability of input x, is defined as p(oil|x) =

#(oil spills in N(x))/K, where N(x) is the K nearest neighbors of x. For LDA classifier, it is defined
as p(oil|x) =∝ p(x|oil), where p(x|oil) is a multivariate normal density trained by LDA. For SVM
classifier, we use libSVM toolkit [44] which obtains the probability according to the work of Wu et al. [57].
Traditionally, DT can only provide piecewise constant estimate of the class posterior probabilities, since
all the samples classified by a leaf share the same posterior probabilities. Some improvements have been
proposed [58] for getting a more smooth estimation of the class posterior probabilities. For simplicity,
we here still use the traditional estimation, i.e., posterior probability of input x classified by a leaf, is
defined as p(oil|x) = k/n, where k is the number of training samples being classified into the oil spill
class by the leaf, and n is the total number of training samples being classified by the leaf.

Sorting all samples in the sample selection pool according to their certainty of being oil spills
p(oil|x), their certainty of being look-alikes 1 − p(oil|x) and their uncertainty of classification
1 − abs(0.5 − p(oil|x)) in descending order, we obtain three sequences, which are denoted by q1,
q2 and q3, respectively.

Let L be the number of samples selected in each iteration of active learning, and w1, w2 and
w3 be the percentages of samples that will be selected from q1, q2 and q3, respectively. Then, our
ACS algorithm here can be denoted with ACS(w1,w2,w3), where w1 + w2 + w3 = 1. It means at each
iteration, our algorithm selects respectively w1*L, w2*L and w3*L samples from q1, q2 and q3 with no
replicates. All the selected samples are then labeled and put into training sample set. We design here
our ACS methods according to the different setting of (w1, w2, w3) in Table 3.
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Table 3. Six basic active sample selecting (ACS) methods.

Method Parameters Description

ACS-1 NULL Randomly select samples
ACS-2 w1 = 1, w2 = 0, w3 = 0 Prefer samples more like oil spills
ACS-3 w1 = 0, w2 = 1, w3 = 0 Prefer samples more like look-alikes
ACS-4 w1 = 0.5, w2 = 0.5, w3 = 0 Take half of samples from ACS-2 and half from ACS-3
ACS-5 w1 = 0, w2 = 0, w3 = 1 Prefer samples with high uncertainty of classification
ACS-6 w1 = 0.25, w2 = 0.25, w3 = 0.5 Take half of the samples from ACS-4 and the other half from ACS-5

2.3.2. Adjusting Sample Preference in Iterations

One drawback of the six basic ACS methods lies in the fact that the sampling method dictated
by w1, w2 and w3 is fixed across all iterations of the AL process, while model learning may prefer
different sampling methods in different learning stages. Therefore, a better strategy is to adjust the
w1, w2 and w3 values during AL iterations. We proposed a method based on such idea, i.e., in first
iterations of AL, model learning needs samples of more certainty; with continuing iterations, samples
of more uncertainty are more and more relevant; and, after a certain point, the sample preference of
model learning should be fixed to achieve stabilized learning. This idea is inspired by the insight
of the criteria of exploitation and exploration [59]. Accordingly, we set w = w1 + w2 with w1 = w2,
and set w3 = 1 − w. Let x = i/#iterations be the normalized index of the ith iteration. The function that
describe how the value w change with x is set as follow (see Figure 3 for the illustration),

w(x) =

{
1 − c· exp(a(x − b)), x ≤ b

1 − c x > b
x, c, b ∈ [0, 1] (1)

where c determines the minimum value of w, b is the index of iteration after which w will keep constant,
and a controls the changing rate of w.

Figure 3. Illustration of the function w(x) and w3(x) = 1 − w(x) with different parameter setting of a, b and c.

2.3.3. Reducing Redundancy amongst Samples (RRAS)

In each AL iteration, we select L samples to increase the current training set. However, the selected
L samples may have overlap of information [27]. To maximize information in selected samples, we
adopt a strategy similar to clustering-based diversity criterion [32,33], i.e., the unlabeled samples are
divided into clusters with the k-means method in each AL iteration. When selecting samples according
to three sequences (q1, q2 and q3), if the candidate sample shares a cluster with any of the existing
samples in the same sequence, this candidate will be discarded and keep on considering next sample.
We set the k of k-means as min(L, M), where M is the number of samples available for selection at
each iteration.
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2.4. Performance Measures

Three different performance measures that cover demands of different end users are considered
here. All these measures are calculated at each AL iteration, and finally shown as trajectories along
time (iterations). The mean measures over all iterations are calculated for the convenience of numerical
comparison. These measures originate from the confusion matrix (Table 4).

Table 4. Confusion matrix (oil spill is the positive class and look-alikes is the negative class).

Predicted as Positive Predicted as Negative

Actually Positive True Positives (TP) False Negatives (FN)
Actually Negative False Positive (FP) True Negatives (TN)

2.4.1. Overall Performance

The Receiver Operating Characteristics (ROC) curve displays the trade-off between false positive
rate (FPR = FP/(TN + FP)) and true positive rate (TPR = TP/(TP + FN)) with the varying of decision
points [60]. For the convenience of showing the performance variation over AL iterations, we reduce
the ROC curves to single scalar measure by counting the area under the ROC curve (AUC) [60],
which stands for the “probability that the classifier will correctly rank a randomly chosen positive
instance higher than a randomly chosen negative instance” [61]. We here use AUC to evaluate the
overall performance of different methods. We denote this measure as AUC-All.

2.4.2. High TPR Performance

An oil spill classification system should predict correctly as high percentage of true oil spills as
possible, it means the classification systems may be tuned to be with fixed high TPRs. To deal with
this situation, Xu et al. [22] uses the FPR at a fixed high TPR, i.e., 0.8, to evaluate the performance of
different classifiers. To be more general, we here use a measure considering TPR from 0.5 to 1. The area
that is under the curve of ROC with TPR from 0.5 to 1 is used for this purpose (see Figure 4). We denote
this measure as AUC-H. The higher the value of AUC-H is, the more possible that classifier perform
well when it is tuned to with high TPRs.

 
Figure 4. Illustration of over-all performance measure (denoted as AUC-All), and of high-TPR
performance measure (denoted as AUC-H). TPR stands for true positive rate, and FPR stands for
false positive rate.

2.4.3. Sorting Performance

For the oil spill detection system aiming to send alarms to the investigation performing institutions,
the performance of sorting the input dark slicks well to make the former part of the sequence has
higher accuracy of being true oil spills, seems to be very important.

The precision-recall curve, where precision = TP/(TP + FP), recall = TP/(TP + FN) = TPR, is a
good tool for evaluating the sorting performance of the information retrieving systems in which one
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class is of more importance than others, and it gives more informative details than ROC when the
TPR is small [62]. In order to show the trajectories of the performance improvement of different
ACS methods, we reduce the precision-recall curves to single scalar measures by counting the mean
precision. Considering the fact that only a small percent of alarms will be verified at last (in our study
dataset, only 17 percent of alarms were verified after being sent for investigation), we only calculate
the mean precision when recall is from 0 to 0.5. We denote this measure as MP-L.

2.5. Cost Reduction Measure

A significant benefit of using AL is that AL can reduce the number of training samples required
for achieving a reliable system, as such reducing the time and the money for collecting the training
samples. We here measure the cost reduction brought by an AL method with 1-R, where R is the
ratio between the number of training samples used to achieve a designated performance and the total
number of training samples in our study. Here, the designated performances are set as 90%, 92%, 94%,
96%, 98% and 100% of the baseline performance that was achieved by the classier using all training
samples without AL. The performance measures are described in Section 2.4.

2.6. Initial Training Set

As indicated in Figure 2, some initial training samples are required to train the classifiers, whose
output will be used to guide the sample selection and enable the start of AL iterations. Here, we
randomly select ten samples, of which there are five look-alikes and five oil spills, to be the initial
training set. Considering that AL may be sensitive to initial training set, 100 separate runs are
performed and the average performances over them are used.

3. Results and Discussion

3.1. Performance of ACS Methods

We want ACS methods to help a classifier improve its performance stably and as quickly as
possible. Thus, the ideal curve of a classifier’s performance over iterations should be stably ascending,
steep in the fore part and flat in the back part. Figure 5 shows the graphs of performance evolving
over iterations of ACS methods coupled with SVM, KNN, LDA and DT classifier. By averaging
the performance values of each curve in Figure 5, we get the mean performance values in Figure 6.
The classifiers show different characteristics.

One observation is that in the case of high-PTR performance, KNN, LDA and DT which show
bad (flat, unstable or descending) trends in Figure 5 have much better performance number in Figure 6
than SVM which shows good trend (stably ascending, steep in the fore part and flat in the back
part) in curves. This might cause confusion when we choose a better classifier to work with ACS
methods, because any variance of factors such as pre-processing, feature selection, parameter setting
for classifiers, might dramatically change the mean performance value of a classifier and comparing
classifiers in mean performance is very difficult to be on a fair base, we here suggest that more trust
should be put on the trends of curves which more likely present the intrinsic features and less trust on
the performance values that could be affected by too many factors. Based on this principle, Figure 5
shows five bad situations (KNN in high-PRT performance, LDA in all three kinds of performance and
DT in high-PRT performance), in which ACS methods work badly and three good situations (SVM in
all three kinds of performance), in which ACS methods work well.
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Figure 5. Graphs of performance evolving over iterations (horizontal axis) of ACS methods with SVM,
KNN, LDA and DT classifier. AUC-ALL, AUC-H and MP-L are the measures of overall performance,
high-TPR performance and sorting performance, respectively.

Figure 6. The mean performance values of ACS methods coupled with SVM, KNN, LDA and DT
classifier. (These mean values are calculated by averaging performance values of each curve in Figure 5.)

KNN-based ACS methods show almost horizontal curves in the high-PTR performance,
which means the increasing of training samples from any ACS method will not bring obvious
improvement in high-PTR performance o KNN. DT-based ACS methods show almost descending
curves in the high-PTR performance, which means the increasing of training samples causes the drop
of performance. These phenomena might arise partly from the fact that the distributions of oil spill
and look-alikes are heavily overlapping. When improving a system pursuing high-PTR performance,
KNN and DT classifier should be considered carefully.

LDA-based ACS methods show dramatic fluctuations in their performance curves. LDA classifier
takes the Gaussian assumption for the underlying distribution of oil spills and look-alikes. The big
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fluctuations means newly added samples change dramatically the shape of distributions learned
previously. To deal with this problem, keeping a smooth change of distribution shape should also be
considered in future when adding samples from ACS methods.

SVM-based ACS methods show good (stable and ascending, especially ascending quickly in the
fore part and becoming flat in the back part of iterations) patterns in all three kinds of performance.
That would be a merit when more than one services (each asks for a different performance) are
demanded. In this case, only one (not the number of services) system needed to be built.

In the case of overall performance and sorting performance, randomly selecting samples (ACS-1)
is always the best or second best when it is coupled with KNN, LDA or DT classifier, but not with
SVM classifier. That may be because that KNN, LDA and DT are classifiers that try to make a decision
based on some statistics from all samples in a certain region, while SVM makes the decision only on a
few key samples (support vectors). Obviously, randomly selected samples (as from ACS-1) are more
likely to maintain the statistics of the underlying distribution from which our training and test dataset
come, but less likely to contain some key samples for SVM classifier.

The results in Figures 5 and 6 also show that choosing a good ACS method for a specified classifier
should be based on considering at least two important factors: the kind of performance chosen for
optimization and the learning stages. A classifier may prefer different ACS methods in different
performance measures. For example, the DT classifier favors ACS-1 in the overall performance and
sorting performance but favors ACS-5 in the high-PTR performance. A classifier may also prefer
different ACS methods in different stages of learning process. For example, SVM classifier favors ACS-2
and ACS-4 (methods that prefer choosing samples of more certainty) at the first half of the iterations in
our study but ACS-5 and ACS-6 (methods that prefer choosing samples of more uncertainty and that
choose samples half of more certainty and half of more uncertainty) at the second half.

3.2. Cost Reduction Using ACS Methods

Figure 7 shows the cost reduction of using ACS methods to boost SVM, KNN, LDA and DT
classifiers for achieving different destination performance. By selecting the maximum cost reduction
for each classifier to achieve each destination performance, we obtain Table 5.

It should be noted that a big cost reduction in Figure 5 and Table 5 does not always means that
ACS methods work successfully in that situation. The gray elements in Table 5 show five bad situations
(also mentioned in Section 3.1), in which the cost reductions are very big but the ACS methods actually
work so poorly that it is not necessary to analyze the cost reduction of these situations.

It can be seen that a considerable cost reduction can be achieved using ACS to boost classifiers.
Taking the SVM, for instance, to get D5 destination performance, the maximum 43%, 30% and
70% reductions of cost can be obtained in overall performance, high-PTR performance and sorting
performance, respectively. For D6 destination performance, the maximum 26%, 4% and 61%
reductions of cost can be obtained in overall performance, high-PTR performance and sorting
performance, respectively.

Table 5. The maximum cost reduction of ACS methods for achieving designated performance D1 to D6
with SVM, KNN, LDA and DT classifiers. The numbers marked with gray show situations in which
there are big cost reductions but ACS methods actually work poorly.

Overall Performance (%) High-TPR Performance (%) Sorting Performance (%)

D1 D2 D3 D4 D5 D6 D1 D2 D3 D4 D5 D6 D1 D2 D3 D4 D5 D6

SVM 74 70 61 57 43 26 61 57 52 43 30 4 78 78 78 74 70 61
KNN 70 61 57 39 26 9 91 91 91 91 91 91 57 48 43 39 35 26
LDA 96 91 91 91 91 87 87 83 83 83 83 78 96 96 96 96 96 91
DT 91 87 83 61 57 26 96 96 96 96 96 96 96 96 83 70 57 48
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Figure 7. The cost reduction for achieving different destination performances with ACS methods
coupled with SVM, KNN, LDA and DT classifier. Designated performances D1 to D6 stand for 90% to
100% of the baseline performance achieved by the classier using all training samples without AL.

It can be seen in Figure 7 that, for SVM classifier, ACS-6 shows the best performance curve
in overall performance and high-PTR performance, while ACS-2 and ACS-4 show the best curves
in sorting performance. For DT classifier, ACS-1 works best in overall performance and sorting
performance. For KNN classifier, ACS-1 work best in overall performance and ACS-2 works best in
sorting performance.

There is still great potential to improve the cost reduction performance by improving the
data preparation and tuning of classifiers, such as feature selecting, preprocessing, optimizing the
parameters of model and using other definition of the informativeness preferred by the classifier.
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Another method that may further improve the reduction of cost is to carry out the system serving
and system training at the same time after the system has already had a sound performance. It can be
seen in Table 5 that, using a sound designated performance (such as one of D1–D5), leads to a bigger
cost reduction than selecting the perfect designated performance D6. Moreover, the income of service
might cover the cost of continuing the system training once the system has been put into working.

3.3. Reducing Redundancy Amongst Samples (RRAS)

With SVM classifier, it can be seen in Table 6 that RRAS reduces the mean performance of most
ACS methods except ACS-1. Because the key samples (support vectors) only exist in a relatively
small region near the decision boundary for SVM classifier, increasing the diversity of samples by
RRAS would not help choose samples from the key region, which is very small compared with the
whole feature space. Compared to not using RRBS (Figure 5), performance fluctuations in Figure 8 are
increased at the former part of iterations and weakened at the end part of iterations, and ACS-2, ACS-4
change from the first and second best methods to the first and second worst at the first few iterations
of all graphs. These phenomena could also be caused by the increased randomness of selected samples
by RRAS. It seems that RRAS is not suitable for SVM-based ACS methods in our case.

For KNN classifier, the RRAS does not bring significant improvement in the shape of curves in
Figure 8 compared to curves in Figure 5, but does slightly increase the mean performance values of
more than half of ACS methods (see Table 6). For KNN classifier, the more thorough the training
sample dataset can represent the true underlying distribution, the higher performance it can obtain.
The RRAS can improve the representative ability of selected samples by first grouping all samples into
clusters and then selecting one from each cluster as the representative sample and therefore seems
suitable for some KNN-based ACS methods.

Figure 8. Graphs of performance evolving over iterations (horizontal axis) for ACS methods coupled
with SVM, KNN, LDA and DT classifier (RRAS are used here). AUC-ALL, AUC-H and MP-L are the
measures of overall performance, high-TPR performance and sorting performance, respectively.
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In Table 6, there are some performance improvements and drops for ACS methods with LDA and
DT classifier, but it is hard to analyze the reasons.

Table 6. The difference of mean performance numbers between using and not using RRAS. The positive
differences are marked with gray. A1 to A6 stand for ACS-1 to ACS-6.

Overall Performance (10−3) High-TPR Performance (10−3) Sorting Performance (10−3)

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

SVM 1.3 −17 −28 −19 −14 −26 0 −5 −14 −8 −6 −15 4.2 −22 −28 −23 −15 −22
KNN 0 5.9 2.1 1.8 −5 −9 1.1 8.3 −3 5.3 1.7 −7 1.5 −6 6.8 10 1 1
LDA −7 15 −4 −2 6.3 1.8 −1 0 −34 −15 −12 −3 −2 14 −1 1 6.6 2
DT −3 4.4 5 11 0 −7 0.7 17 29 −39 −12 −11 −1 −3 14 11 −2.2 −4

3.4. Adjusting Sample Preference in Iterations

Figure 9 shows the performance-evolution graph of the ACS method with varying parameter for
sample selection, coupled with SVM. It can be seen that the ACS method with parameter w varying
according to Function (1), at most iterations, matches or outperforms any of the other fixed-w methods
(ACS-4 is with w = 1, ACS-5 with w = 0, and ACS-6 with w = 0.5). Here, we set the parameters of
Function (1) as a = 20, b = 0.5, c = 0.5. The varying-w method obtained mean performance values
(by averaging performance numbers on its curves in Figure 9) 0.614, 0.213 and 0.650 for overall
performance, high-TPR performance and sorting performance, respectively. These mean values are all
better than the best ones of SVM classifier in Figure 6, i.e., 0.612, 0.212 and 0.647.

Figure 9. Performance-evolution graph of the ACS method with varying parameter w, coupled
with SVM.
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Although adjusting parameter w in an iteration-based manner seems to be a good strategy for
improving system performance in our study, the use of such a strategy must have a theoretical or
empirical basis. Otherwise, there is no guarantee that such good results might also be achieved in other
datasets. Although the exploration-and-exploitation criterion [59] is a commonly accepted one (our
method here is derived from it), it is only suitable for SVM classifier in this study. The unsuitability
for KNN, LDA and DT classifier can be seen clearly in Figure 5, in which, when coupled with these
classifiers, ACS methods preferring samples of certainty does not perform well at the former part of
iterations and so do the ACS methods preferring samples of uncertainty at the end part. Criteria similar
to exploration-and-exploitation suitable for SVM need to be found and verified for other classifiers in
the future.

4. Conclusions

In this study based on a ten-year RADARSAT dataset covering west and east coasts of Canada,
AL has shown its great potential of training sample reduction (for example, a 4% to 78% reduction
on training samples can be achieved in different settings when using AL to boost SVM classifier) in
constructing oil spill classifiers. That means the real-world projects of constructing oil spill classification
systems (especially when it is hard to accumulate a large number of training samples, such as when
supervising new water area) or improving existed systems may benefit from using AL methods. In the
cases where AL are used for classifier training, we boldly suggest that the expensive, time-sensitive, and
difficult field verification work should be conduct only for those targets that are identified by AL as the
“important” targets to significantly improve the classifier training efficiency. AL could reduce training
data, whether they are obtained by expert-labeling or by field-verifying. Generally, field-verified data
are better than expert-labeled data for training due to the higher verification accuracy of the field
investigation approach. Nevertheless, when it is hard or impossible to do fieldwork, asking experts for
labeling is also acceptable. Both labeling approaches benefit from the efficient learning process of the
AL method for classifier construction.

Our study shows that not all classifiers can benefit from using AL methods according to all
measures. In some cases (in this paper, KNN in high-PRT measure, LDA in all three kinds of
performance measures and DT in high-PRT measure), the AL methods may not help improve
performance, or even reduce it.

Of the four classifiers tested in this paper, the SVM is the best for using AL methods for the
following reasons. First, it can benefit greatly from some basic ACS methods (in our case, ACS-2,
ACS-4 and ACS-6), showing perfect performance evolving curves with steeply ascending fore parts
and flat back parts. Second, the good ACS methods for SVM in one kind of performance measure
will also be good in other kinds of performance measures. That would be a merit when more than
one services asking for different kinds of performance are demanded. In this case, only one system
needed to be built and that surely will greatly reduce costs. Third, its performance could be further
improved by ACS method using exploration-and-exploitation criterion, which considers different
sample preference in different learning stages.

The exploration-and-exploitation criterion is suitable for SVM but not for KNN, LDA and DT
classifiers. The criteria considering different sample preference in different learning stages and being
suitable for other classifiers may also exist and should be found and studied in the future.

The thorough knowledge of a classifier’s preference on training samples is the key to achieve
efficient AL-based classification system, because all AL operations, such as choosing AL strategy and
ACS methods, adjusting sample selection preference in iterations, depend on knowing a classifier’s
sample favoritism to identify the best samples that satisfy the demands of the classifier. Thus, further
study should also focus on investigating the sample preference mechanism of a classifier to build a
high-performance AL-based frame on it.
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Abstract: In this study, the C-band radar backscatter features of the shallow water topography of
Subei Bank in the Southern Yellow Sea are statistically investigated using 25 ENVISAT (Environmental
Satellite) ASAR (advanced synthetic aperture radar) and ERS-2 (European Remote-Sensing Satellite-2)
SAR images acquired between 2006 and 2010. Different bathymetric features are found on SAR
imagery under different sea states. Under low to moderate wind speeds (3.1~6.3 m/s), the wide
bright patterns with an average width of 6 km are shown and correspond to sea surface imprints
of tidal channels formed by two adjacent sand ridges, while the sand ridges appear as narrower
(only 1 km wide), fingerlike, quasi-linear features on SAR imagery in high winds (5.4~13.9 m/s).
Two possible SAR imaging mechanisms of coastal bathymetry are proposed in the case where the
flow is parallel to the major axes of tidal channels or sand ridges. When the surface Ekman current is
opposite to the mean tidal flow, two vortexes will converge at the central line of the tidal channel in
the upper layer and form a convergent zone over the sea surface. Thus, the tidal channels are shown
as wide and bright stripes on SAR imagery. For the SAR imaging of sand ridges, all the SAR images
were acquired at low tidal levels. In this case, the ocean surface waves are possibly broken up under
strong winds when propagating from deep water to the shallower water, which leads to an increase
of surface roughness over the sand ridges.

Keywords: SAR; Subei Bank; shallow water topography

1. Introduction

A bathymetric measurement of shallow water is of fundamental importance to coastal
environment research and resource management. The traditional bathymetric survey uses a shipboard
sonar, single-beam, or multi-beam sounding system, which can provide high-precision data but is
costly and inefficient. With the development of remote sensing techniques, the shallow water depth
can be measured with high efficiency [1–4]. A spaceborne synthetic aperture radar (SAR), in particular,
provides valuable information of shallow water topography in all-weather and day-night conditions
with a high spatial resolution (a few to tens of meters). Although the SAR signal does not penetrate
through sea water, the bathymetric features of shallow water (water depth < 50 m) or even deep
water (water depth of about 600 m) can still be observed indirectly through the interaction between
the ocean current and the underwater topography [5–12]. Shallow water bathymetric features were
first discovered on radar images in 1969 [6,13]. Since then, many researchers have investigated
the radar imaging mechanism of underwater topography in shallow waters. In 1984, Alpers and
Hennings [7] developed a one-dimensional (1-D) SAR imaging model under the assumption that the
current velocity is primarily normal to the direction of the major axis of topographic corrugation in the
un-stratified ocean. The model was further enhanced by Van der Kooij et al. [14], Vogelzang et al. [15],
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and Romeiser and Alpers [16]. For a stratified ocean, Zheng et al. [8] obtained dynamical solutions for
the vertical propagation of disturbance signals induced by underwater topography from the ocean
bottom to the surface. All of these studies have shown that under the condition of a tidal current
perpendicular to topographic features, the underwater topography can be imaged by SAR. However,
recent satellite observations show that when the tidal current is parallel to topographic corrugations
such as underwater sand ridges, sand bars, or tidal channels, the shallow water topography can also
appear on SAR imagery [9,17–19]. These observations cannot be explained using the existing 1-D
radar imaging model. Considering the tidal convergence, Li et al. [9] developed a two-dimensional
(2-D) analytical model for the interpretation of SAR imaging of underwater sand ridges parallel to
the tidal current. Recently, Zheng et al. [17] analyzed the secondary circulation induced by the flow
parallel to the topographic corrugation by solving the three-dimensional (3-D) disturbance governing
equations of the shear-flow. The theoretical results were applied to interpret SAR imaging of tidal
channels. The above studies show that different bathymetric features might appear on SAR imagery.
Then, under what dynamic conditions can shallow water bathymetry be observed by SAR in the case
of the current being parallel to underwater topographic corrugations? Particularly, when will the sand
ridges or tidal channels be shown on SAR imagery? The answers to these questions are still unclear.

With large amounts of sediment input from the river runoff, the radial sand ridges offshore
from the middle Jiangsu coast in the Southern Yellow Sea (also called Subei Bank) were formed
as a sediment physiognomy and represent an ideal region for harbor construction, agricultural
development, and fishery production [20] (see Figure 1a). The distinguished characteristic of the
topography in this area is the unique distribution of a group of tidal channels and shallow sand ridges
radiating from Jianggang city [21] (see Figure 1b), which encompass an area larger than 200 km long
and 140 km wide [22]. The major axes of the topographic corrugations are roughly parallel to the
semidiurnal tidal currents.

(a) (b)

Figure 1. (a) Bathymetry (m) of the Yellow Sea and (b) Subei Bank boarded by dashed lines in panel (a)
The bathymetry data are from ETOPO2 (National Centers for Environmental Information, 2006) for (a)
and Sea Chart (published by China Navy Hydrographic Office, 2013) for (b). The cross sections A and
B in (b) (black lines) are primarily perpendicular to the paralleled bright stripes on SAR imagery in
Figure 2. The black dots denote the locations of the Dongsha and Liyashan tide gauges.

299



Remote Sens. 2017, 9, 1203

In this study, the radar backscatter features of the shallow water topography of Subei Bank are
investigated using ENVISAT (Environmental Satellite), ASAR (advanced synthetic aperture radar),
and European Remote-Sensing Satellite-2 (ERS-2) SAR images. We analyze the influences of wind,
current, and tide on the capability of C-band SAR in observing the underwater topography in this
region, and try to find out the possible radar imaging mechanisms.

2. Data and Methods

The SAR data used in this study include 16 ENVISAT ASAR images and nine ERS-2 SAR images
over Subei Bank in the Southern Yellow Sea acquired between 2006 and 2010. All these C-band SAR
images are VV-polarized with a nominal spatial resolution of 30 × 30 m [23]. The ASAR system has been
designed to provide continuity with ERS SAR by the European Space Agency (ESA). Compared with
the ERS-1/2 SAR launched in 1991/1995, ASAR, launched in 2002, features extended observational
capabilities, three new modes of operation, and improved performances [24]. Figure 2 presents
examples of three typical types of SAR images over Subei Bank.

SAR not only observes oceanic or atmospheric phenomena, but also provides direct measurements
of sea surface roughness that is related to sea surface wind speed (e.g., [25–28]). In this study, the sea
surface wind speed (at 10-m height) is derived from SAR using the C-band geophysical model function
CMOD5 [29] with wind direction interpolated from the six-hourly blended sea surface wind data
from NOAA/National Climatic Data Center (NCDC). The NOAA/NCDC blended sea winds with
a spatial resolution of 0.25◦ × 0.25◦ are generated by blending observations from multiple satellites,
which fills in the data gaps (in both time and space) of the individual satellite samplings and reduces
the subsampling aliases and random errors [30].

In order to investigate the contribution of the tidal current and height to the SAR imaging of
shallow water topography, we use the Tidal Model Driver (TMD) tide data to demonstrate the tide
condition when SAR images were acquired. TMD is a package for accessing the harmonic constituents
and making predictions of tidal height and currents [31,32]. As shown in Figure 3, compared with
the data from two tide gauges and the Tide Table, the TMD results perform well in the tidal phase
but present a systematic underestimation of tidal amplitude, which is possibly caused by the input
of inaccurate water depth data in the tidal model in this region. By fitting the TMD results with in
situ observations of the tidal height at Dongsha tide gauge in the lunar month of July 2014 (Figure 3a),
we obtain a relationship between the observed tidal height ζ (m) and the TMD output ζTMD (m):

ζ = 1.4612 ∗ ζTMD + 0.0016 (1)

To validate the relationship, the TMD outputs of the tidal height in lunar August 2014,
were corrected by Equation (1) and compared with in situ measurements from the same tide gauge
(Figure 3b). One can see that the root mean square error (RMSE) between the TMD results and tide
gauge observations is decreased significantly from 0.64 to 0.39 m after the correction. Similar results
can be obtained for Liyashan tide gauge data collected in lunar September 2016, with the RMSE
decreasing from 0.75 to 0.40 m (Figure 3c). Therefore, in the following study, the TMD output of the
tidal height at SAR imaging time is corrected using Equation (1) for further analysis.

The bathymetry data of the whole study area are generated from the Sea Chart published by
the China Navy Hydrographic Office in 2013 [33]. However, most Sea Chart data were measured in
1979. In addition, the data are relatively sparse and antiquated because of the evolution of sand ridges
induced by the action of tidal current year after year [34]. For more accurate and higher-resolution
water depth data, we carried out a field survey along the two cross sections A and B (Figure 1b) in
December, 2016. The measured water depth data are used to interpret the bathymetric features of
Subei Bank on SAR imagery.
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(a)

(b)

(c)

Figure 2. Examples of three typical ENVISAT ASAR images over Subei Bank: (a) image without
any bathymetric features acquired at 13:45:32 UTC on 22 December 2008; (b) image with bathymetric
features shown as wide bright stripes (WBS) in the small region denoted by the black rectangle, acquired
at 13:45:29 UTC on 13 October 2008; (c) image with bathymetric features shown as narrow bright stripes
(NBS) in the same region as (b), acquired at 13:45:28 UTC on 11 February 2008. The contours are
water depth (m). The cross sections A and B (yellow lines, also shown as black lines in Figure 1b) are
perpendicular to the paralleled bright stripes on SAR images.
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(a)

(b)

(c)

Figure 3. Comparison of the TMD results of the tidal height with in situ observations in lunar July (a)
and August (b), 2014 at Dongsha tide gauge, and lunar September, 2016 at Liyashan tide gauge (c).
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3. Bathymetric Features of Subei Bank on SAR Imagery

From Figure 2, one can see the tidal channels or sand ridges are not always clearly shown on SAR
imagery (see Figure 2a). Under certain sea states and wind conditions, the shallow water topography
appears as fingerlike features (see Figure 2b,c). What is interesting is that distinct bathymetric features
of the same region are shown on SAR images acquired at different times. In particular, an apparent
difference occurs in the northeastern area (see the black boxes in Figure 2b,c). As shown in Figure 2b,
there are some paralleled wide bright patterns in this region, and the average width of the stripes is
about 6 km. However, the locations of the bright stripes change and are much narrower in Figure 2c
with an average width of only 1 km.

Among the 25 SAR images over Subei Bank, there are a total of eight SAR images without
any bathymetric features (e.g., Figure 2a) and 17 images showing obvious bathymetric features.
The paralleled wide bright patterns appear on five SAR images (Figure 4). By examining the Sea Chart
bathymetric data, we find the locations of the wide bright stripes mainly coincide with the deep water
area (>10 m) in this region. The relationship can be seen more clearly in Figure 5, which shows the
variation of the SAR derived normalized radar backscatter cross section (NRCS) and water depth
along the cross section A. Apparently, the wide bright stripes on this type of SAR image correspond
to the deep water region, i.e., the tidal channels. The other 12 SAR images show obviously much
narrower bright stripes at different locations (Figure 6). Comparing the variation of the NRCS with
water depth along the cross section B (Figure 7), one can clearly see that these narrow bright stripes are
sea surface imprints of underwater sand ridges. One may also notice that the SAR signal enhancement
in Figure 7 does not take place exactly over the crest of the sand ridge measured in 2016, but with
an offset of about 0.5 km westward (see the dashed blue line in Figure 7). The possible reason for this
is that the topography of Subei Bank changes with time under the action of strong tidal currents [34].
To investigate the evolution of the sand ridges, we collect two optical images from Landsat_7 Enhanced
Thematic Mapper Plus (ETM+) in 2008 (Figure 8a) and Landsat_8 Operational Land Imager (OLI) in
2016 (Figure 8b), respectively. The spatial resolution of the images is 30 m. Figure 8c shows the edge of
the sand ridge in the study area extracted from the Landsat images. The deviation of the edge lines
indicates that the sand ridges moved a little to the northeast from 2008 to 2016. This may partly explain
why there is a small deviation between the locations of the peak of SAR observed NRCS and the crest
of the sand ridge.

Figure 4. SAR sub-images over Subei Bank with bathymetric features shown as wide bright stripes.
Green and blue lines are water depth contours of 5 and 10 m, respectively.
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Figure 5. The water depth measured in December, 2016 (m) in blue solid line and NRCS Variation (dB)
calculated from SAR data along the cross section A. The distance is measured from the left to the right
for each cross section.

Figure 6. Same as Figure 4 but for SAR sub-images with bathymetric features shown as narrow
bright stripes.
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(a) 

(b) 

Figure 7. Same as Figure 5 but along the cross section B: (a) for ENVISAT ASAR images and (b) for
ERS-2 SAR images. The locations of the crests of the three sand ridges along cross section B are marked
as R1, R2, and R3, respectively. The blue dashed line is the same as the blue solid line but has a
deviation of 0.5 km westward.

Table 1 shows ambient wind, current, and tide conditions at the acquisition time of 25 SAR images
with or without obvious bathymetric features over Subei Bank. Most of the images with obvious
underwater topographic features (13/17) were acquired during the flood tide, while most of those
without any features (7/8) were acquired during the ebb tide. Comparing Figure 4 with Figure 6 and
judging from the extent of the shoal exposed to the sea surface, we find that the water level at the time
when the sand ridges were observed by SAR should be much lower than that when the tidal channels
were imaged. This is further validated by the corrected TMD results. The values of the tidal heights
when the SAR images with sand ridge features were acquired are all negative, and the water levels are
below the mean sea level by over 1.3 m. For the images with tidal channel features, however, the tidal
height is much larger and the water levels are all above the mean sea level. Another interesting thing
to note is that the tidal channels were observed by SAR under low to moderate winds (3.1~6.3 m/s),
while the sand ridges were detected at much higher wind speeds (5.4~13.9 m/s). This means that both
the tidal height and wind may play a significant role in the SAR imaging of shallow water topography
in this region.
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(a)
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Figure 8. Cont.
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(c) 

Figure 8. Landsat images over Subei Bank: (a) Landsat_7 ETM+ image acquired at 02:20:53 UTC on
24 April 2008; (b) Landsat_8 OLI image acquired at 02:30:41 UTC on 18 February 2016; and (c) the edge
of the sand ridges in the study area (yellow dashed box in (a,b)) extracted from Landsat images.
The dotted blue line denotes the edge extracted from (a) in 2008, and the light brown patch denotes the
sand ridge area extracted from (b) in 2016. The field survey along cross section B is the same as that in
Figure 1b with R1, R2, and R3 representing the locations of the sand ridge crests measured in 2016.

4. SAR Imaging Mechanisms

Why does the underwater topography in the same region have distinctive radar backscatter
features on SAR imagery? In this section, we discuss the possible imaging mechanisms of SAR imaging
of shallow water topography over Subei Bank.

4.1. SAR Imaging of Tidal Channels

The existing SAR imaging theories of underwater topography are based on the following three
processes: (1) the current and topography interaction generates sea surface current divergence or
convergence zones; (2) the divergence and convergence of the current modulate the wind-generated
sea surface wave spectrum; and (3) the variation of short surface wave height induces the backscatter
variations seen in the SAR image [9]. Considering the sidewall friction, the surface, and the bottom
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Ekman layers, the authors proposed a physics model to analyze the secondary circulation induced by
the flow parallel to underwater topographic corrugation (see Figure 9) [17]. The analytical solutions
show that in the case where the direction of the surface Ekman current is opposite to the mean flow,
there is a surface current convergent zone along the central line of a canal. Using this model, we tried
to find the possible factors causing the sea surface imprints of tidal channels on SAR images over
Subei Bank.

For the small area in this study, the wind and tidal current conditions over the tidal channels
are nearly the same. Therefore, we can take one tidal channel as a representation to analyze the SAR
imaging mechanism of the tidal channels. As sketched in Figure 9, we consider the flow in a long canal
with a free surface and rectangular cross section with two flat sidewalls. The sidewalls have a height D
and the bottom has a width 2b. A Cartesian coordinate system is set up with its origin located at the
bottom. The vertical axis z is positive upward. The horizontal axis y is perpendicular to the central line
and the vertical walls and positive leftward. The horizontal axis x is parallel to the walls and positive
downstream. The 3-D scales of the canal, L1, L2 (=2b), and L3 (=D) satisfy L1 >> L2 >> L3. The mean
flow (u, v, w) is driven by a pressure gradient externally imposed by a large-scale process, such as the
tidal waves or the ocean circulation, and is thus considered a stable process. Due to the confinement of
sidewalls, the mean flow is 1-D and parallel to the x-axis, i.e., (v, w) = 0, and has horizontal and vertical
velocity shears. The horizontal shear can be described by a parabolic profile as a plane Poiseuille
flow [35]

u(y) = − y
μ

dP0

dx
(b − y

2
), (2)

where μ is the dynamic viscosity, and dP0/dx is the externally imposed pressure gradient. On the other
hand, considering the existence of surface and bottom Ekman layers, we suppose that the vertical
shear has a sinusoidal profile with an apex at H, as follows:

u(z) = sin
πz
2H

, 0 � z � D. (3)

Thus, we have:

u(y, z) = − y
μ

dP0

dx

(
b − y

2

)
sin

πz
2H

, 0 � y � 2b, 0 � z � D. (4)

After solving the governing equations and taking some approximations (see Appendix A),
we obtain the analytical solutions:

w(y, z) = w0(sin
πz
2H

)
[1+ y(2b−y)

2(b−y)2
]
, (5)

v(y, z) = −v0

[
y(2b − y)
2(b − y)

]
(sin

πz
2H

)
y(2b−y)
2(b−y)2 cos

πz
2H

, (6)

where v0 = π(2H)−1w0.
Solutions of Equations (5) and (6) are graphically shown in Figure 10. For the study area, we take

D = 15 m, 2b = 6 km, and w0 = 0.01 m/s. One can see the secondary circulation consists of a pair of
current vortexes with opposite signs distributed symmetrically on the two sides of the central line
of the channel, a cyclonic vortex on the right and an anti-cyclonic vortex on the left. The mean flow

(
⇀
V) shear drives upwelling along two sidewalls, and the stronger it is, the closer it is to the sidewalls.

In the case of the presence of a surface Ekman layer where the direction of the Ekman current (
⇀
VE)

component is opposite to that of the mean flow (H < D and
⇀
VE·

⇀
V < 0), the two vortexes converge at

the central line of the canal in the upper layer. Thus, there is a surface current convergent zone along
the central line of the canal. In addition, the convergence gets stronger with the increase of H in the
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case of H < D (see Figure 10a–c), which may imply that the strong tidal current and weak wind are
favorable for the SAR imaging of the tidal channels. We also calculate the convergence value (∂v/∂y)
at the sea surface when H = 5/6D. The value is about 10−3 s−1 and increases with the increase of H
(H < D). Alpers (1985) [36] pointed out that 10−3 s−1 is the typical convergence value for the internal
wave imaged by SAR, which is also sufficient to explain the bright stripes over the tidal channels on
the SAR images in our study. In the case of the absence of a surface Ekman layer (H = D), there is no
current convergent zone to be formed at any depth, as shown in Figure 10d. In the case of the presence

of a surface Ekman layer with the direction identical to the mean flow (H > D, and
⇀
VE·

⇀
V > 0), the two

vortexes diverge at the central line of the canal in all the layers, as shown in Figure 10e.

Figure 9. The physics model for secondary circulation (large hollow arrows) induced by a shear flow
over parallel underwater topographic corrugation.
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Figure 10. Analytical solutions of the secondary circulation induced by a shear flow in a long,
rectangular canal. (a) There is an upper Ekman layer, in which the Ekman current has a negative

component in the mean flow direction (
⇀
VE·

⇀
V < 0) and H = 2/3D; (b) The same as (a) but for H = 5/6D;

(c) The same as (a) but for H = 11/12D; (d) No upper Ekman layer; (e) There is an upper Ekman layer, in

which the Ekman current has a positive component in the mean flow direction (
⇀
VE·

⇀
V > 0). The vertical

velocity is 10 times larger for plotting the solutions.

As shown in Table 1, all five SAR images with sea surface imprints of tidal channels in Subei Bank
were acquired during flood tide, implying that the tidal current was mainly flowing southward and
was parallel to the submerged sand ridges or tidal channels [37]. Meanwhile, according to the Ekman
theory [38], the wind-driven surface Ekman current flows at an angle to the right of the prevailing
wind direction. The wind direction of the five wide bright stripes images in Table 1 indicates that the
Ekman velocity has a northward component. According to the physic model, when the tidal current

and the surface Ekman current have opposite directions (
⇀
VE·

⇀
V < 0), surface current convergence

zones occur in the middle of two adjacent sand ridges, i.e., over the tidal channel region in this study.
Therefore, the tidal channels appear as wide and bright stripes on the five SAR images.

4.2. SAR Imaging of Sand Ridges

For SAR imaging of underwater sand ridges, in most cases (nine out of 12), the secondary
circulation theory is not applicable because the relationship between the tidal current and wind
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direction does not satisfy the necessary dynamic condition. However, as pointed out in the last section,
the water levels at the imaging time are far below the mean sea level by over 1.3 m. In this case, the sea
surface waves are most likely to break when propagating to shallower waters. Additionally, the ocean
wave breaking has been proved to be one of the most frequent oceanic processes in Subei Bank [39].
In the following section, we will determine whether if this is true for the cases when sand ridges were
observed by SAR.

The wave breaking generally occurs where the wave height reaches the point that the crest of the
wave actually overturns [40]. Nelson and Gonsalvas [41] studied the laboratory and field wave data
and developed a wave breaking relationship applicable to the regular and irregular waves:

γb = 0.55 + exp(−0.012 cot(m)), m ≤ 0.01 (7)

where m is the sea floor slope, and γb is the ratio of the wave height (Hw) to wave breaking water
depth (hb), i.e.,

hb =
Hw

γb
, (8)

Here, the wave breaking depth hb means that a wave will start to break when it reaches an area
where the instantaneous water depth is smaller than hb.

For the fully developed ocean waves, the wave height Hw can be expressed as [42]:

Hw =
A0

g
U10

2, (9)

where A0 is a non-dimensional constant taken to be 0.3, g is the gravitational acceleration, and U10 is
the wind speed at 10 m from the sea surface.

The mean seafloor slope of the sand ridges in the study region (see Figure 7) is close to 0.004.
Hence we have γb = 0.6. Then, using Equations (8) and (9) and the SAR-derived wind speed, the wave
height and the corresponding breaking depth at SAR imaging time are calculated and listed in Table 1.
Considering the tidal height, all the instantaneous water depths at the sand ridge locations are smaller
than the breaking depth, indicating that the surface waves under the relatively strong winds are quite
likely to break when propagating over the extremely shallow sand ridges. The increase of surface
roughness induced by breaking waves over the sand ridges will make the sea surface appear as narrow
bright stripes on SAR imagery.

4.3. Discussion

Note that for some cases where the sand ridges are observed by SAR (cases 6, 7, and 12),
or topographic features are not shown on SAR imagery (cases 19, 21, 22, and 25), the tidal current
was also opposite to the wind direction. According to the secondary circulation theory proposed
above, the tidal channels might also be observed by SAR in these cases. However, the wide bright
stripes corresponding to the tidal channels are not shown on these images. Why? If we look at the
wind and current conditions in more detail, we find the images were all acquired under high winds
(6.1~10.5 m/s), implying relatively high NRCS values throughout the study area. On the other hand,
as the output from the TMD model shows, the time differences between the acquisition times of these
SAR images and the local high or low tide times are within 1.5 h, indicating that the tidal current
velocity might be so weak (and even close to 0) that the convergence does not occur at the surface over
the tidal channels, or the signal enhancement generated by the weak convergence is not strong enough
to be observed by SAR compared to the ambient high NRCS induced by the winds.

From Figure 7, one can see that the peak NRCS positions exhibit very little movement.
One possible reason for this is that the topography of Subei Bank changes slowly with time under
the action of strong tidal currents and this change may fluctuate if the sea state changes severely
(e.g., typhoon, storm current, etc.) in some years [34,37]. From another perspective, we may be able
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to use SAR to observe the short-term change and long-term evolution of the sand ridges. For some
few cases under a relatively high wind speed where the instantaneous water depth is smaller than the
wave breaking depth, since the slope of the sand ridge in the study area is very steep, the relatively
strong wind also impelled the breaking wave to quickly propagate to the peak of the sand ridges.
Therefore, the breaking wave induced increase in surface roughness is larger over the shallower sand
ridge and is observed by SAR.

5. Conclusions

In this study, 25 ENVISAT ASAR and ERS-2 SAR images are analyzed to investigate the C-band
radar backscatter features of the shallow water topography over Subei Bank in the Southern Yellow
Sea of China, where the flow is primarily parallel to the major axes of tidal channels or sand ridges.
Based on the statistical analysis, we find the bathymetric features are not always shown on SAR
imagery. For SAR images with obvious topographic features, paralleled fingerlike bright stripes appear
at different locations and have distinct widths. The tidal channels appear as wide bright stripes with
an average width of 6 km on SAR images under low to moderate wind speeds, while the sea surface
imprints of underwater sand ridges on SAR imagery are narrow (~1 km wide), quasi-linear, bright
stripes at high winds.

Theoretical analysis suggests that the reason why tidal channels are observed by C-band SAR
under low to moderate winds is that the tidal current and the wind-driven surface Ekman current
have opposite directions. In this case, a convergent zone at the sea surface forms at the central line
of the tidal channel due to the convergence of two vortexes in the upper layer. Therefore, the tidal
channels are shown as relatively wide bright stripes on SAR imagery. However, the tidal channels
might not be able to be detected by SAR at high winds due to the high NRCS value of background
seawaters, even if the above dynamic condition is fulfilled. For SAR imaging of the sand ridges in the
study area, both the low water level and strong winds provide favorable conditions for the breaking
of ocean surface waves when propagating to the shallow waters, thus leading to an increase of SAR
observed NRCS over the shallow sand ridges.
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Appendix A. Derivation of Secondary Circulation Solutions

Consider the governing equations for a flow consisting of mean flow and disturbance:

∂U
∂t

+ U
∂U
∂x

+ V
∂U
∂y

+ W
∂U
∂z

− f V =
1
ρ

∂P
∂x

+ A2U + Fx, (A1)

∂V
∂t

+ U
∂V
∂x

+ V
∂V
∂y

+ W
∂V
∂z

+ f U =
1
ρ

∂P
∂y

+ A2V + Fy, (A2)

∂W
∂t

+ U
∂W
∂x

+ V
∂W
∂y

+ W
∂W
∂z

=
1
ρ

∂P
∂z

− g + A2W + Fz, (A3)
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∂U
∂x

+
∂V
∂y

+
∂W
∂z

= 0, (A4)

where f is the Coriolis parameter; P is the pressure; ρ is the water density; A is the kinetic viscosity; Fx,
Fy, and Fz are the components of external forcing; g is the gravitational acceleration; and:

U = u + u, V = v + v, W = w + w, P = p + p. (A5)

The boundary conditions are:

U = V = W = 0, f or z = 0, (A6)

and
U = V = 0, f or y = 0, and y = 2b. (A7)

Substituting (A5) into (A1)–(A4) yields the disturbance governing equations:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

− f v =
1
ρ

∂p
∂x

+ A2u, (A8)

∂v
∂t

+ u
∂v
∂x

+ f u =
1
ρ

∂p
∂y

+ A2v, (A9)

∂w
∂t

+ u
∂w
∂x

=
1
ρ

∂p
∂y

+ A2w, (A10)

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0. (A11)

The boundary conditions are:

u = v = w = 0, f or z = 0, (A12)

and
u = v = 0, f or y = 0, and y = 2b. (A13)

In order to examine the role of velocity shear in generating the secondary circulation, we further
take the following approximations: (1) ignoring the viscous terms; (2) assuming the x-coordinate scale
of mean flow u, L, is much larger than that of the disturbance, L, thus resulting in ∂/∂t � u∂/∂x;
(3) the x-coordinate scale of disturbance is much larger than that of the y-coordinate scale, thus resulting
in ∂/∂x � ∂/∂y; (4) in Equations (A8)–(A10), the velocity shear terms are much larger than other
terms. Thus, we have the simplified disturbance equations:

v
∂u
∂y

+ w
∂u
∂z

= 0, (A14)

u
∂v
∂x

= 0, (A15)

u
∂w
∂x

= 0, (A16)

∂v
∂y

+
∂w
∂z

= 0, (A17)

From (A15) and (A16), we have:
∂v
∂x

=
∂w
∂x

= 0, (A18)
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i.e., v and w are independent of x. From (A14) and (A17), we derive a secondary circulation equation
of w:

∂w
∂y

F − ∂w
∂z

= −w
∂F
∂y

, (A19)

where F is defined as

F ≡
∂u
∂z
∂u
∂y

. (A20)

Equation (A19) has an analytical solution of

w(y, z) = w0(sin
πz
2H

)
[1+ y(2b−y)

2(b−y)2
]
, (A21)

where w0 is a constant to be determined. From (A14) we have:

v = −w(
∂u
∂z

/
∂u
∂y

), (A22)

v(y, z) = −v0

[
y(2b − y)
2(b − y)

]
(sin

πz
2H

)
y(2b−y)
2(b−y)2 cos

πz
2H

, (A23)

where v0 = π(2H)−1w0.
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Abstract: Fully polarimetric synthetic aperture radar (SAR) can provide detailed information on
scattering mechanisms that could enable the target or structure to be identified. This paper presents a
method to detect underwater topography in coastal areas using high resolution fully polarimetric
SAR data, while less prior information is required. The method is based on the shoaling and refraction
of long surface gravity waves as they propagate shoreward. First, the surface scattering component is
obtained by polarization decomposition. Then, wave fields are retrieved from the two-dimensional
(2D) spectra by the Fast Fourier Transformation (FFT). Finally, shallow water depths are estimated
from the dispersion relation. Applicability and effectiveness of the proposed methodology are tested
by using C-band fine quad-polarization mode RADARSAT-2 SAR data over the near-shore area of the
Hainan province, China. By comparing with the values from an official electronic navigational chart
(ENC), the estimated water depths are in good agreement with them. The average relative error of
the detected results from the scattering mechanisms based method and single polarization SAR data
are 9.73% and 11.53% respectively. The validation results indicate that the scattering mechanisms
based methodology is more effective than only using the single polarization SAR data for underwater
topography detection, and will inspire further research on underwater topography detection with
fully polarimetric SAR data.

Keywords: shallow water; swell waves; water depth; dispersion relationship; quad-polarization;
Bragg scattering

1. Introduction

Underwater features and ocean bathymetry is an indispensable information for coastal
engineering and management and coastal resources exploitation and protection [1,2]. For example,
safely navigating, offshore fishery and aquaculture, research on tide and biodiversity, planning for
seawalls and wharf and other human activities are carried out in these areas where water depths
less than 100 m. Detailed knowledge of water depth is very useful for them. Conventionally, water
depth surveying are carried out by sonar measurements from dedicated vessels, which are accurate for
point-measurement, but are not only expensive and time consuming but also difficult in shallow water
areas, especially in some special water areas where routine surveying cannot be achieved [2,3].

Synthetic aperture radar (SAR) is an active microwave remote sensor that has the ability to image
targets on the earth in both day and night, and for almost all weather conditions [1,4]. Therefore,
SAR is widely applied in earth observation, especially in ocean observation. SAR polarimetry is the
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science of acquiring, processing and analyzing the polarization state of an electromagnetic field that
will improve both the ability to characterize physical properties of objects and the retrieval of bio—or
geophysical properties of the earth’s surface and subsurface [5,6]. Fully polarimetric (HH, HV, VH
and VV) SAR can provide detailed information on scattering mechanisms (single bounce scattering,
double bounce scattering and triple—and higher-order bouncing scattering) that could enable the
target or the structure to be identified [5]. Under favorable conditions, sea floor topographic features in
shallow water areas can be detected from SAR image intensity directly or other features in SAR image
indirectly [3,4,7–14]. Therefore, SAR based method that needs less cost and labor and will enrich the
means for underwater topographic surveying and mapping.

Underwater topography is conventionally detected by variations of the SAR image intensity
which relies on the presence of a current, along with the presence of small-scale waves on the sea
surface to provide the radar back scatter [1,3,8,10,14,15]. The typical of this method is Bathymetry
Assessment System (BAS) which was based on the theory of imaging processes of underwater bottom
topography by SAR proposed by Alpers and Hennings [3,14]. Li et al. shown that sand ridges
parallel to tidal currents can also be imaged by SAR [16]. Bi et al. applied polarization information for
underwater topography detection [17]. Under special conditions, deep-water (>500 m) bathymetry
features can also be imaged by SAR [11]. However, the intensity variations based method depends
on some real-time or near-real-time data (such as sea surface wind field and current field) and the
calculation procedure of the algorithm is very complicated.

In contrast, swell patterns has been suggested to be applied in the detection of underwater
topography. It relies on refraction of long surface gravity waves as they propagate shoreward and
requires the assumption that the same wave train exists throughout the image [18]. Although this
method has been used since World War II to estimate water depths based on changes in observable
wave characteristics, approaches to detect bathymetry from swell patterns in SAR images have been
proposed in the past two decades [4,7,9,12,13,18–22]. Pleskachevsky et al. explored bathymetry by
the synergetic use of multiple remote sensed data resources (radar data from TerraSAR-X and optical
data from QuickBird satellite) for coastal areas. Water depth between 20 m and 60 m is obtained with
accuracy in order of 15% from SAR-based method. Water depth less than 20 m is detected by the
optical-based method using sunlight reflection analysis. The depths in the range of 20 m up to 10 m
represent the domain where the synergy of data from both sources arises [12]. Bian et al. estimated
shallow water depth in coastal region where water depth is less than 10 m using HJ-1C (Huan Jing-1C,
Huan Jing means environment in Chinese) SAR in S band [7]. In addition, this methodology had been
developed by data processing [22] and using modulation transfer function (MTF) to account for the
dependence of the strength of radar signatures of ocean waves on their wavenumber and propagation
direction relative to the radar look direction [18]. Applicability of linear dispersion relationship and
detected algorithm has been applied and discussed [7,21]. Comparing to the intensity variations based
method, the swell patterns based method is simple and requires little prior information, but sharp
water depths cannot be detected because they are filtered by the algorithm. Although the swell patterns
based applications has been proposed and developed for bathymetry estimation using different band
(L-band, S-band, C-band and X-band) spaceborne SAR data, they used single polarization data within
the allowable error range.

The aim of this study is to develop a detection method based on swell patterns and scattering
mechanism using fully polarimetric SAR data. First, different scattering components are obtained by
polarization decomposition. Subsequently, shoaling waves are tracked by fixed grid from open sea to
shoreline. Wavelength and wave direction can be retrieved by means of the Fast Fourier Transformation
(FFT) computation from the dominant scattering component image. Finally, shallow water depth
can be estimated using the linear dispersion relationship of ocean waves [1,21]. Moreover, this paper
analyzes viability and potential performance for the case of application.

This paper is organized as follows. Section 2 describes materials and the swell patterns based
method. Section 3 presents the detection results with one case study in Sanya coastal region, Hainan
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province, China. Section 4 discusses the proposed method for the application. In the end, conclusions
are presented in Section 5.

2. Materials and Methods

2.1. SAR Data and Auxiliary Data

The fully polarimetric datasets of single look complex (SLC) fine quad-polarization C-band
full-resolution RADARSAT-2 SAR data are collected for underwater topography detection. They are
acquired on 18 September 2009 at 10:50:44 UTC over Sanya coastal region with coverage of 25 km
by 25 km, Hainan province, China. Figure 1a–d shows the amplitude images of HH-polarized,
HV-polarized, VV-polarized and color-coded image of the Freeman-Durden target decomposition: red,
Ps; green, Pd; and blue, Pv with pixel spacing of 5 m respectively. In the monostatic backscattering
case, the reciprocity constrains the scattering matrix to be symmetrical, that is, HV = VH. Therefore,
VH-polarized image is not given. RADARSAT-2 satellite operates from a sun-synchronous orbit at
a height of 798 km, and its platform velocity (V) is about 7.46 km/s. Acquisition parameters for the
collected SAR datasets are given in Table 1.

Figure 1. The C-band fine quad-polarization RADARSAT-2 images and the polarization decomposition
result in Sanya coastal region, Hainan province, China, acquired on September 18, 2009 at 10:50:44 UTC.
RADARSAT-2 Data and Product © MacDonald, Dettwiler and Associates Ltd., All Rights Reserved.
(a) HH-polarized image; (b) HV-polarized image; (c) VV-polarized image; (d) Color-coded image of
the Freeman-Durden decomposition red, Ps; green, Pd; and blue, Pv.
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Table 1. RADARSAT-2 quad-polarization SAR data acquisition parameters.

Name Satellite Height
Slant Range
Near Edge

Incidence Angle
Near Range

Incidence Angle
Far Range

Value 793.93 km 919.8 km 32.353 deg 34.013 deg

Two different auxiliary data are used in this paper. For water depth information, the ENC
(http://map.enclive.cn/) with different scale from the Navigation Guarantee Department (NGD)
of the Chinese Navy Headquarter (CNH) is used for comparing and analyzing the detected results.
Figure 2 shows low scale of water depth map from the ENC. For sea state, a wind vectors map from
microwave scatterometer QuikSCAT and a photo was taken before the start time of the collected
RADARSAT-2 data sets as shown in Figure 3 are used for estimating cut-off wavelength.

Figure 2. Water depth map from electronic navigational chart via map.enclive.cn. The unit of water
depth in this image is the meter. Low scale of water depths (46 pairs) in the red box are collected for
comparison. High scale of water depths (305 pairs) in the blue polygon are also collected for comparison,
but they are not presented in this figure. Water depth map © www.enclive.cn, All Rights Reserved.
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Figure 3. A wind vectors map from microwave scatterometer QuikSCAT at 18:00 (local time) on
18 September 2009. The study area is outlined in red box. The lower-right portion is a photo of sea
state over the study area before the start time of the collected RADARSAT-2 datasets.

2.2. Methods

2.2.1. SAR Imaging of Waves

SAR transmits radar signals and receives backscattered returns whose levels are directly
dependent on ocean surface roughness. Ocean roughness is comprised of the mean surface slope,
dominated by the long-wavelength field, and the short-scale waves that range between capillary and
short-gravity waves. With incidence angle between 20◦ and 60◦, Bragg scattering is the dominant
backscatter mechanism, but not under all wind and wave states [1,4,23–25]. Under Bragg scattering,
the normalized radar cross section (NRCS) of ocean is proportional to the amplitude of the small-scale
waves called Bragg waves. Bragg waves are ocean surface waves which have wavelength equal to
the projection of the SAR electromagnetic wavelength onto the local ocean surface and which are
propagating either directly toward or away from the look direction of SAR [1]. It is expressed by the
follow relation:

λB = 0.5λr sin θi (1)

where λB is the wavelength of the Bragg wave, λr is the SAR electromagnetic wavelength, and θi is
the local incidence angle. For incidence angle less than 15◦, the specular scattering takes a significant
contribution in the radar backscatter, while for incidence angle larger than 70◦,the wedge scattering is
most prevalent [1,26].

The combination of Bragg scattering with the two-scale approximation is used to describe the
interaction of short and long waves, but not under all wind and wave states and radar system
configurations. When imaging ocean surface waves, the main modulation mechanisms have
been identified as three modulation mechanisms: title modulation, hydrodynamic modulation
and velocity bunching modulation [1,6,27]. Title modulation means the longer waves change the
local slope of the shorter wave fields. It is strongest for waves travelling in the range direction.
Hydrodynamic modulation means the longer waves change the distribution of the shorter wave fields.
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Velocity bunching modulation means the motion of the long waves alters the SAR imaging process that
is unique to SAR imaging systems. If the azimuth shift is less than a wavelength, azimuth-traveling
waves are linearly mapped in the SAR imagery. On the contrary, when the displacements are greater
than a wavelength, the mapping of waves on the imagery will be nonlinear and distorted. It is
greatest for waves travelling in the azimuth direction. When long waves are propagating in a direction
perpendicular to the SAR platform, title modulation and hydrodynamic modulation have the strongest
effects on the SAR returns [1,28].

Under specific conditions, the imaging mechanism of sea surface can be assumed linear. In general,
the imaging mechanism of sea surface by SAR is not linear [1,23]. Therefore, a SAR image cannot be
interpreted as a picture of the surface because the orbital motion of longer ocean waves with azimuth
component allows the waves to be imaged through the velocity bunching mechanism, the random
motions of the ocean surface caused by the short scale waves introduce random position shifts in the
azimuth direction that in turn degrade the azimuth resolution and thus limits the detectable ocean
wavelengths [1,4,23]. Even though the SAR image contains swell patterns, it may not be suitable for
underwater topography detection. However, linear imaging can be assumed under specific conditions,
such as not extreme wind speed and sea state, absence of currents, and swell patterns characterized
by wavelengths that are greater than cut-off conditions. In other words, the image modulation of
azimuth-travelling waves by velocity bunching is linear if the ratio of wave height to wavelength is
small. The cut-off wavelength Lmin can be estimated by a simple empirical relationship:

Lmin =
R
V

√
H (2)

where R is the slant range, V is the platform velocity, H is the significant wave height. The lower the
satellite orbit and the smaller the wave height, the shorter shoaling waves will be detected. When
these conditions are satisfied, the swell wavelengths imaged by SAR represent an unbiased estimate of
the true swell wavelengths [21].

2.2.2. Freeman-Durden Decomposition

The Freeman-Durden decomposition is a technique for fitting a physically based, three-component
mechanism model to the polarimetric SAR observations, without utilizing any ground truth
measurements [5,29]. The mechanisms are a canopy scatter from a cloud of randomly oriented dipoles,
even—or double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants,
and Bragg scattering from a moderately rough surface [5]. This model can be used to determine
to first order, what are the dominant scattering mechanisms that give rise to observed backscatter
in polarimetric SAR data. The contribution of each scattering mechanism from Freeman-Durden
three-component decomposition can be estimated to the span, following:

Span = |SHH|2 + 2|SHV|2 + |SVV|2 = PS + PD + PV (3)

where PS is the power of surface scattering component, PD is the power of double-bounce scattering
component, and PV is the power of volume scattering component.

Unlike ground covers, backscattering from ocean surface is considerably homogeneous in
scattering mechanism, and can be, in most cases, characterized by a two-scale titled Bragg scattering
model. The contribution of Bragg surface scattering is given by

PS = fS

(
1 + |β|2

)
(4)

where fS corresponds to the contribution of the single-bounce scattering to the |SVV|2 components, with

fS = |SVV|2 and β =
SHH

SVV
(5)
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2.2.3. Wave Shoaling and Refraction

Shoaling and refraction of waves occur when the waves are in shallow water. If the water depth
is less than half of the wavelength, then the wave is considered to be in shallow water. As waves
travel from deep to shallow water, their shape alters, for example, wave height increase, speed
decrease, and length decrease as wave orbits become asymmetrical. This process is called shoaling.
Wave refraction is the process by which wave crests realign themselves as a result of decreasing water
depths. Varying depths along a wave crest cause the crest to travel at different phase speeds, with
those parts of the wave in deeper water moving faster than those in shallow water [1]. This process
continues until the crests become parallel to depth contours or the wave breaks regardless of the
original direction in deeper water.

Phenomena of swell wave shoaling and refraction due to underwater morphology start appearing
in intermediate water depth because surface waves begin to “feel” the bottom when sea water depth
is shorter than about half of the swell wavelength. It means that bathymetry through swell wave
modulation can be performed only for water depth values lower than half the swell wavelength, that
is, the limit water depth value [21].

2.2.4. Linear Dispersion Relationship

The linear dispersion relationship is based on the Airy wave theory. For freely propagating ocean
waves, the wave number, wave frequency and water depth are not independent, but are linked by the
wave dispersion relation [2,30]. If the effect of current can be neglected, the linear dispersion relation
is given by:

ω2 = gktanh(kd) (6)

where ω is the angular wave frequency (ω = 2π/T, T is the wave period), g is the gravitational
acceleration (9.8 m/s2), k is the wave number (k = 2π/L, L is wavelength ), d is the water depth in the
range between L/20 and L/2.

Using Equation (6), water depth can be written as Equation (7).

d =
L
4

ln
(

2πg + ω2L
2πg − ω2L

)
(7)

2.2.5. Description of the Algorithm for Underwater Topography Detection

In this paper, an algorithm based on swell patterns and scattering mechanism using fully
polarimetric SAR data is presented for underwater topography detection. Because microwave signals
emitted by SAR are able to penetrate into just a few centimeters, they are unable to reach the
seabed [1,21]. Therefore, underwater topography is detected indirectly. In the near-shore region,
surface waves can “feel” the bottom, causing changes in the wave’s length and direction of wave
propagation. Shoaling waves are tracked by FFT computation. Shallow water depth can be estimated
due to the fact that SAR images are able to image swell waves in the ocean and their wavelength can
be connected to the local depth. There are four steps in underwater topography detection from fully
polarimetric SAR data:

(1) Obtaining dominant scattering component. Under moderate wind conditions and at
intermediate incidence angle, sea surface scattering which calls for Bragg scattering is a single-reflection
and dominant scattering mechanism [5]. Therefore, the Bragg scattering component from polarimetric
decompositions can be used for underwater topography detection. In this paper, Freeman-Durden
three-component decomposition is used.

(2) Estimation of angular wave frequency. The angular wave frequency can be calculated from
other sources or first guesses of initial water depth or wave period. Firstly, the collected SAR images are
analyzed. Only those have obvious swell wave features over the shallow water may be used to estimate
water depth. Then wavelength and direction of the swell waves are calculated and analyzed. How to
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estimate swell wave parameters will be given in the next step in detail. Sub images over the isobaths
are chosen for the initial angular wave frequency estimation, whereas sub images over different
depth are chosen for swell patterns analyzing. Finally, the angular wave frequency is calculated by
the linear dispersion relation (Equation (6)) from first guesses of initial water depth or water depth
from other resources [4,12]. It can also be calculated by wave period from other resources (buoys,
weather services).

If swell wave belongs to shallow water domain (the water depth is less than half of the
wavelength), where it can be influenced by the underwater topography. The threshold minimum peak
period (Tmin) for the peak wavelength (Lmax) is used to distinguish the specified swell wavelength
belongs to deep water domain or shallow water domain. It is obtained from deep water relation:

Tmin =
√

2πLmax/g (8)

where g is the gravitational acceleration. For water depth estimation, the wave period should be
greater than peak period. If the wave period is smaller than peak period, the wave belongs to deep
water domain.

(3) Retrieval of wave fields. The swell wave parameters for shallow water depth estimation are
calculated by FFT computation from the dominant scattering component image. By means of the
FFT for the selected sub image, a two-dimensional (2D) image spectrum in wave number space is
obtained. The peak in the 2D spectrum marks wavelength and wave direction of all waves visible
in the sub image. The wavelength and direction of swell wave can be estimated from the following
formula [4,12,31]:

L =
2π√

k2
px + k2

py

and θ = arctan
(

kpy

kpx

)
(9)

where L is the wavelength, θ is the wave direction with respect to the sub image, kpx and kpy are the
peak coordinates in the wave number space. The retrieved directions have an ambiguity of 180◦due to
the static nature of a SAR image [4]. This ambiguity can be solved with information from the cross
spectrum or first guess information from other sources. In shallow water where wave shoaling and
refraction appear, the ambiguity problem can be solved by manual inspection. In most case, waves can
be considered propagating toward the costal line or propagating along the direction that the water
becomes shallower.

Swell wave fields map can be retrieved by ray tracing mode, fixed grid mode or the integrated
mode [7]. Ray tracing mode tracks the long wave in the wave direction with the distance related to
the wavelength. The distance between the neighboring wave rays is fixed. In this way, the wave can
be tracked from the open sea to the shoreline and the change in wavelength and direction can be
measured. Fixed grid mode tracks the long wave not in the wave direction but at a constant specified
shift. In this way, the wave can also be tracked from the open sea to the shoreline uniformly and
the change in wavelength can be measured. Integrated mode tracks the long wave by two modes
mentioned above. In this paper, wavelength and wave direction are retrieved by fixed grid using FFT.

Starting from the open ocean, FFT-box (e.g., 1024 × 1024) is moved with a constant specified shift
(dx and dy, e.g., dx = dy = 30), then a new FFT is computed. The same process repeats until the FFT
box reaches both row edge and column edge of the image for the fixed grid mode. After swell wave
tracking, a uniform wave field map is produced.

(4) Detection of underwater topography. By inserting the known wave frequency from step 2
and the wave fields map from step 3, shallow water depths are estimated from the linear dispersion
relation for ocean gravity waves. In the end, all estimated shallow water depths are analyzed and
abnormal data (e.g., water depth over the land and island, water depth from the FFT-box image has
invisibility swell patterns) will be removed.
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3. Results

Based on the assumption of the presence of a single wave system in the SAR image of the study
area, the shallow water depths map from the quad-polarization SAR data is presented. Results are
compared with the values from an official ENC to evaluate the quality of the proposed method.

3.1. Underwater Topography Results

Figure 4 shows the obtained Bragg scattering component image and image spectra. Before shallow
water depth estimation, the fully polarimetric datasets of SLC fine quad-polarization RADARSAT-2
SAR data are processed by PolSARpro version 5.0.4. Data processing includes SLC data import,
coherency matrix T3 extraction and geometric rectification. Then dominant scattering component is
obtained by the Freeman-Durden decomposition which adopts 5 × 5 average window size. There are
12 different subset areas (1024 × 1024 pixels, a to l) are used for image spectrum analyzing and swell
wave parameters estimation.

Figure 4. Image spectra (to be scaled and converted to bytes) for the subscenes of Bragg scattering
component image from Freeman-Durden decomposition divided by three rows (in azimuth direction )
and four columns (in opposite range direction) labeled a to l. The red polygon is used to create a buffer
polygon with distance 1.28 km. Results outside the inner line are removed. Each spectrum corresponds
to a subscene (1024 × 1024 pixels) of 5.12 km by 5.12 km. In order to display back ground as white
value, some features in the down left corner of the image are changed to display as white color. Actually,
some of them are biogenic film that should display as black color. The corresponding wavelength (WL)
and wave direction (WD) are on the right for wave parameters estimation and analyzing.

By computing the FFT, wavelength and propagation direction of these areas are estimated from
the 2D spectrum (wavelength between 56.88 m and 256 m are kept and wind streaks are removed
based on analysis of image spectra). The wavelength and the relative deep water depth of the region
labeled a (Figure 4) are about 243.53 m and 65.0 m (Figure 2). Accordingly, the angular wave frequency
(ω) computed by the dispersion relationship (from Equation (6)) is about 0.48556 rad/s and wave
period (T) is about 12.94 s. The ratio of water depth (65 m) and wavelength (243.53 m) is less than
0.3 that means these areas belong to shallow water domain. The island and coastal line is on the top of
the study area where topography is relatively flat. In general, obtained wavelengths both from east
to west and south to north direction are decreasing and the corresponding water depth is becoming
lower. Therefore, problem of the 180◦ ambiguity of the swell wave direction is resolved and swell
waves can be considered propagating toward the costal line.

Figure 5 shows wave tracking results. According to the surface swell patterns in the study area,
wave field map is tracked by the fixed grid mode. Every arrow means a FFT-box. Its length means
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three times of wavelength and direction means the propagating direction of wave. Waves over or near
the island are removed from the map by buffer polygon with distance 1.28 km from the red polygon as
shown in Figure 4. The distance between the tracked FFT-boxes is set to 1600 m. The change in both
wavelength and direction caused by wave shoaling and refraction are clearly visible in Figure 5.

Figure 5. Wave fields map by fixed grid mode. Each arrow corresponds to a subscene of
1024 × 1024 pixels. The distance between two arrows is 1.6 km (320 pixels). Its length means three
times of wavelength and direction means the propagating direction of swell waves.

The longest tracked wavelength (Lmax) is 256 m as shown in Figure 5. Accordingly, the threshold
minimum peak period (Tmin from Equation (8)) is 12.81 s. The obtained wave period (12.94 s) is greater
than minimum peak period (12.81 s) that is also show the study area belongs to shallow water domain.

Figure 6 shows underwater topography results from the Freeman-Durden decomposition
component of Bragg scattering image. Swell wave fields are tracked by the fixed grid mode which the
distance between the tracked FFT-boxes with size of 1024 × 1024 is set to 150 m. The obtained swell
wave fields of each FFT-box are sorted from smallest to largest and the last three are averaged as final
wavelength. Shallow water depths are estimated from the averaged wavelengths and the estimated
wave period (12.90 s) by the linear dispersion relationship (Equation (7)) based on the assumption
of the presence of a single wave system in the SAR image. During the calculation, if water depth is
greater than 65 m, it will be replaced by 65 m. The estimated water depths where absolute error of the
estimated depth is more than 10 m (nearly 25% of the average water depth) are replaced with the value
from the nearest location of the ENC as shown in Figure 2. By comparing Figure 2 with Figure 6, the
estimated results have accordance well with water depth map from the ENC and have higher spatial
resolution, that is, have more detailed underwater topography.
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Figure 6. Three-dimensional of underwater topography with resolution of 150 m by 150 m.
The estimated water depths where absolute error of the estimated depth is more than 10 m are
replaced with the value from the nearest location of the ENC as shown in Figure 2.

3.2. Comparing with ENC

In order to validate the detected results, there are 46 pairs of the depth estimated from the Bragg
scattering component image are selected according to the nearest neighbor distance of the low scale
of ENC as shown in Figure 2. When wave period is set to 12.9 s, the average absolute error is about
3.93 m and the average relative error is about 9.73%. The scatter plot as shown in Figure 7 is presented
to show the general agreement of the detected results and the water depths from low scale of ENC.

Figure 7. Scatter plot of the estimated results and water depths from low scale of ENC, for a wave
period of 12.90 s.
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For further evaluation, there are 305 pairs of water depth from local high scale of ENC in the
blue polygon are also collected for comparison. For local comparison, the average absolute error
is about 2.57 m and the average relative error is about 8.76%. Results show that the proposed
algorithm is feasible and keep more detailed underwater topography. If water depths from ENC are
not obsolete, the estimated water depth can be adjusted that will improve the underwater topography
detection accuracy.

In order to evaluate whether some of SAR data pre-processing procedures and the introduced
detected algorithm will affect the accuracy of the detected accuracy, speckle filtering, different pixel
spacing, different subscene size of FFT box and different input images are used for comparing.
In this section, wave period is set to 12.9 s and the distance between two FFT-boxes is set to 150 m
unless they are specially explained. For smooth filtering, results of comparison between estimated
water depths from SAR image and ENC are shown in Table 2. VVsm and HHsm means smoothed
VV-polarized and HH-polarized SAR data with pixel spacing of 5 m respectively. Table 3 presents
errors of estimated water depths with different pixel spacing (12.5 m, 10 m, 8 m, 5 m). For example, VV5

means VV-polarized image with pixel spacing of 5 m. Table 4 presents errors of estimated water depths
with different subscene size of VV-polarized image (256, 512, 1024) for FFT-box. Take for example,
VV256 means the size of FFT-box is 256. Table 5 shows comparison results from different input image.
VVm, Psm and Ysm means wavelengths from VV-polarized image, surface scattering component image
from Freeman-Durden decomposition and Yamaguchi decomposition are the average of the top three
wavelengths respectively.

Table 2. Errors of estimated water depths from single polarization SAR image.

Input Data VV VVsm HH HHsm

Low scale average absolute error 4.37 m 4.22 m 5.03 m 4.30 m
Low scale average relative error 11.30% 10.30% 12.42% 10.92%
Local high scale average absolute error 3.41 m 3.43 m 3.95 m 3.55 m
Local high scale average relative error 11.43% 11.53% 13.32% 12.63%

Table 3. Errors of estimated water depths with different pixel spacing of VV-polarized image.

Input Data VV12.5 VV10 VV8 VV5

Low scale average absolute error 5.43 m 4.37 m 4.54 m 4.37 m
Low scale average relative error 14.17% 11.29% 12.20% 11.30%
Local high scale average absolute error 3.79 m 3.24 m 3.43 m 3.41 m
Local high scale average relative error 12.32% 10.99% 11.65% 11.43%

Table 4. Errors of estimated water depths with different subscene size of VV-polarized image.

Input Data VV256 VV512 VV1024

Low scale average absolute error 18.2 m 9.80 m 4.37 m
Low scale average relative error 46.33% 26.18% 11.30%
Local high scale average absolute error 17.80 m 9.26 m 3.41 m
Local high scale average relative error 59.18% 31.36% 11.43%

Table 5. Errors of estimated water depths with different input image.

Input Data HH VV Ps VVm Psm Ysm

Low scale average absolute error 5.03 m 4.37 m 4.05 m 4.45 m 3.93 m 3.95 m
Low scale average relative error 12.42% 11.30% 9.84% 11.53% 9.73% 9.82%
Local high scale average absolute error 3.95 m 3.41 m 3.2 m 2.98 m 2.57 m 2.46 m
Local high scale average relative error 13.32% 11.43% 10.8% 10.6% 8.76% 8.42%
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4. Discussion

A method is proposed which is based on swell patterns and dominant scattering component from
polarization decomposition. The new method uses fully polarimetric SAR data for underwater
topography detection indicates that it will improve the accuracy of detection. For underwater
topography detection, the proposed method and SAR image intensity variations based method are
not independent but complementary. Although both of them may be not precisely accurate, they
can provide general information about depth changes, especially in coastal areas where underwater
topography could not easily be detected by other means.

Comparing to conventional amplitude/intensity images, the proposed method is based on
scattering component from polarization decomposition that aims at providing more information for
applications. Although advances in the high-resolution SAR technology provide the capability of
obtaining detailed target signatures, interpreting SAR images of some special targets or structures
or estimating parameters are always being a challenge, especially for single polarization SAR.
Experimental results as shown in Table 5 indicate that the dominant scattering mechanism based
methodology is more effective than only using the single polarization SAR data for underwater
topography detection. They also show single polarization SAR image can be used for shallow water
depth estimation using linear dispersion relationship with some accuracy that confirm former studies
on the swell patterns based method [4,7,18,19,21,22]. For single polarization SAR data, errors from
VV-polarized (VV) SAR data are better than from HH-polarized SAR data, but all relative errors are
above 10%. Cross-polarization (HV and VH) SAR data do not discuss here because the investigations
have demonstrated that the cross-polarization radar backscatter is not sensitive to incidence angle,
but is dependent on wind speed especially under high sea states [32,33]. The Freeman-Durden
decomposition results as shown in Figure 1 shows that color red is dominant. It confirms that the
surface scattering is the dominant backscatter mechanism with incidence angle between 20–60◦, but not
under all wind and wave states. Errors from the Bragg scattering component (Ps) by Freeman-Duren
decomposition are better than from single polarization SAR data. For fully polarimetric SAR data,
errors from the Bragg scattering component by processed wavelengths (Psm) is better than unprocessed
wavelengths, and is also better than processed wavelength from VV-polarized SAR data (VVm).
The dominant scattering mechanism based method produces good results and reduces the average
relative errors to less than 10% that indicates fully polarimetric SAR data can be used for underwater
topography detection with good accuracy. In addition, the proposed method is simple but model-based
and needs less prior information (even nothing) than the variations of the SAR image intensity based
method, especially for relative flat underwater topography. In the test case, we only used one referenced
water depth as input parameter, but large covered underwater topography with acceptable errors is
obtained. Since ocean wave parameters (e.g., wave height) and other environmental parameters (e.g.,
wind speed) can be estimated from SAR image [6,31,33–35], the proposed algorithm can be developed
in the future.

Results as shown in Table 2 imply that speckle filtering will improve the detected accuracy.
Although errors of local high resolution from the filtered VV-polarized data is a little higher than other
results, in general, errors from smoothed data (VVsm and HHsm) are better than initial data (HH and
VV) that supports view of speckle filtering will improve the detected accuracy. For a given SAR data,
different pixel spacing can affect the accuracy of wave detection. Nominal resolution of fine beam
modes of RADARSAT-2 is 8 m and sampled pixel spacing of the collected SLC data is 4.73 m. Table 3
presents errors of estimated water depths with different pixel spacing. It shows that pixel spacing
larger than 10 m will reduce the accuracy of water depth detection. Consequently, pixel spacing should
be set near the nominal resolution. The scale of sea surface waves is usually between 100 m and
600 m [1]. If pixel spacing is set too small, it will take up more processing time and not improve the
accuracy. Generally, the size of FFT-box is set to 512 or multiples of 512. Results as shown in Table 4
indicate that the larger the size, the higher the accuracy will get. When the size of FFT-box is changed
from 1024 to 512, errors are more than doubled. Although errors from 512 are also better than from
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256 that may keep some detailed underwater topography, but the averaged relative error larger than
20% is unacceptable. Meanwhile, the size of FFT-box should not be set too large that will take up
processing time and reduce some detailed underwater topography.

The sea state over the study area as shown in Figure 3 is not high [36]. It is supposed that the
significant wave height (H) is set to 1.0 m and wind speed (10 m over sea) is set to 5.0 m/s. For a
given incidence angle (the near range, 32.353 deg), the cut-off wavelength Lmin can be estimated from
Equation (2) with slant range (R) of 919.8 km as 123.3 m. It is less than the minimum of the detectable
wavelengths (163.8 m) that means the estimated results are plausible.

For ocean waves, under the Bragg scattering conditions, backscattered signals in general
are from single bounce. The single bounce returns from the ocean surface possess the typical
Bragg resonant scattering characteristic. Although single polarization amplitude/intensity images
keep some swell patterns, the surface scattering component image keeps swell patterns more
visible than them and the other two components (the double-bounce and volume scattering
components). Results from Freeman-Durden three-component scattering decomposition indicate
that the surface scattering component is the dominant scattering over the sea in our test area. However,
Freeman-Durden decomposition contains two important assumptions (the assumed three-component
scattering model is not always applicable and reflection symmetry) which limit its applicability [5].
Yamaguchi decomposition is used to check the applicability of the surface scattering component from
Freeman-Durden decomposition [37]. The results confirm that the surface scattering is the dominant
scattering and the surface scattering component image keeps the detailed swell patterns, and as shown
in Table 5, indicate that the dominant scattering component based method is applicable in our test
area, and both absolute error and relative error are nearly in the same error range. It should be noted
that this study has examined only one scene fully polarimetric SAR data. In the future, the dominant
scattering component based method will be tested and developed, and further research on underwater
topography detection with fully polarimetric SAR data may be inspired.

5. Conclusions

In this paper, an underwater topography detection algorithm based on swell patterns is developed.
In comparison to methods published previously, the proposed method depends on the Bragg scattering
component which is the dominant scattering of sea surface in most common cases. One scene of fully
polarimetric RADARSAT-2 SAR data covering the near shore water of Hainan Island is used in this
investigation, and the ENC are used for comparing and analyzing. The average absolute error is
within 4.0 m with the average relative error less than 10.0%. For local comparison, the average relative
error is less than 9.0%. Due to full polarimetric system provided the most extensive multi-parameter
ocean data, fully polarimetric SAR data can be used for feature extraction and information retrieval.
Furthermore, the conventional SAR image intensity variations based method is of limited use under
less current condition. Therefore, the proposed method can be used for underwater topography
detection with less initial input parameters and better accuracy than single polarization SAR data.
Although fully polarimetric SAR data have limited swath coverage, they provide unique information
on sea surface scattering mechanisms that can be used for underwater topography detection and other
applications. As GF-3 Satellite was launched successfully, we may acquire more fully polarimetric
SAR data that can be used to verify and develop the proposed method in the future. The dominant
scattering component based method can, potentially, be developed for further into fully operational
algorithms. The improved method may be used for further underwater topographic mapping with
higher temporal resolution and spatial resolution.
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Abstract: We propose new indicators for bivalve (oyster and mussel) beds on exposed intertidal
flats, derived from dual-copolarization (HH + VV) TerraSAR-X, Radarsat-2, and ALOS-2
images of the German North Sea coast. Our analyses are based upon the Kennaugh element
framework, and we show that different targets on exposed intertidal flats exhibit different radar
backscattering characteristics, which manifest in different magnitudes of the Kennaugh elements.
Namely, the inter-channel correlation’s real (K3) and imaginary (K7) part can be used to distinguish
bivalve beds from surrounding sandy sediments, and together with the polarimetric coefficient
(i.e., the normalized differential polarization ratio, K0/K4) they can be used as indicators for bivalve
beds using multi-frequency dual-copolarization SAR data. Our results show that continuous bivalve
bed monitoring is possible using dual-copolarimetric SAR acquisitions at all radar wavelengths.

Keywords: bivalve beds; intertidal flats; Kennaugh elements; SAR; dual-polarization; multi-frequency

1. Introduction

Intertidal flats are coastal areas between the land and the open sea that are at risk due to climate
change, sea level rise, marine pollution, and invasive species [1–3]. The German Wadden Sea is
such a dynamic ecosystem, with a high economic and ecological value, and has been a UNESCO
World Natural Heritage since 2009 [4]. Pacific oysters are an invasive species that has been rapidly
spreading over large parts of the German Wadden Sea during the past decades, thereby having an
impact on nutrient cycling, water filtration, and the entire coastal ecosystem [5]. Therefore, a frequent
environmental monitoring of this entire area (approx. 4700 km2) is not only important, but also
mandatory. However, in-situ measurements in tidal flats face many constraints, because of the
repetitive flooding and the shallow water depth [6], and the development of reliable and automated
techniques for an accurate classification (especially for bivalve beds) and for an assessment of their
changes are strongly required.

Remote sensing is already regarded as a useful tool for the monitoring of intertidal flats.
There have been many studies utilizing optical remote sensing techniques to detect oyster/mussel
habitats, but the use of those sensors is limited by daytime and cloud coverage [7–9]. Moreover,
bivalve beds are often covered by brown algae, which may cause classification errors when using
optical data. In addition, there exist difficulties in describing the spectral signatures of bivalves due to
a considerable spectral variability.

Radar sensors such as Synthetic Aperture Radar (SAR) can overcome those restrictions because
of their all-weather capabilities and independence of daylight and also due to their ability to extract
detailed structural information. It was found that bivalve beds and salt marshes have specific SAR
signatures and can thus be monitored using space-borne SAR sensors [10–13]. Those bivalves
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are exposed above the sediments and form a rough reef or bed structure (with sharp and jagged
surfaces) and increase the surface roughness locally, which causes stronger radar backscattering
signals, making them visible in SAR imagery [11,14,15]. Therefore, surface roughness parameters
retrieved from radar backscattering models can be used to distinguish bivalves from surrounding
areas [10,16,17]. However, this approach may work only for a limited range of smooth bare soils,
while mudflats with intense benthic fauna can be misinterpreted [13,14]. In addition, sandy sediments
with sharp rims and rippled surfaces may also cause strong signals in SAR imagery, and hence SAR
intensity channels cannot be simply used to get satisfactory classification accuracies.

With the advent of high-performance polarimetric SAR sensors, studies have been conducted to
distinguish bivalves from sediments using multiple polarization SAR data. Gade et al. [10] provided
both multi-frequency and multi-temporal analyses to improve the identification of bivalve beds
in the German Wadden Sea. Similarly, Dehouck et al. [18] used combined TerraSAR-X (TSX) and
optical imagery of the French Arcachon Bay to detect mussels, salt marshes, and sandy sediments.
Choe et al. [14] demonstrated that quad polarimetric (quad-pol) multi-frequency (C-band and L-band)
SAR data can be used to detect oyster reefs, but also demonstrated that indicators derived from L-band
data show no significant differences between oyster beds and surrounding areas. Further analyses of
indicators based on L-band data are rare, and therefore, the present paper is to propose polarimetric
SAR indicators for the detection of bivalve beds that work at all wavelengths.

Commonly applied polarimetric decompositions such as the Cloude-Pottier and Freeman-Durden
decomposition have been used for intertidal flats studies [19–22]. However, these decompositions
can only be applied to quad-pol SAR data, while operational SAR sensors currently in orbit (such
as the German TerraSAR-X, the Italian COSMO-SkyMed, and the European Sentinel-1A/B) provide
data in dual-copolarization or dual-polarization mode. Radarsat-2 and ALOS-2 may acquire quad-pol
data. However, this is only at the cost of limited spatial resolution and areal coverage. Moreover,
bivalve beds on exposed intertidal flats can only be monitored at low tide. The limited time-window
requires larger areal coverage with fine resolution. Therefore, further research is needed on the
capabilities of existing or newly acquired dual-copolarization (dual-copol; HH + VV) SAR data [23] for
monitoring intertidal flats, especially for the detection and classification of sediments and bivalve beds.

The Normalized Kennaugh element framework was developed by Schmitt et al. [24] and provides
a method that can be applied on multi-scale, multi-temporal, multi-polarized, multi-frequency,
and multi-sensor SAR data in a consistent mathematical manner. The Kennaugh elements allow
the interpretation of physical scattering mechanisms (even- and odd-bounce scattering) for
dual-polarization data [25], and this decomposition framework may allow a successful inclusion of
those data into the Wadden Sea monitoring. Common polarimetric decompositions are either coherent
or incoherent. The coherent decompositions based on the Sinclair matrix prohibit multi-looking
and require descriptions of distributed targets, while the incoherent decompositions based on
either the covariance or the coherency matrix often require large look numbers to keep radiometric
stability [23–25]. Therefore, the Kennaugh formulation appears to be the right balance due to the
basic description of the backscattering process [24]. Schmitt et al. and Moser et al. [25,26] first applied
Kennaugh elements into wetland monitoring using dual-copol SAR data of the Upper Rhine in
Germany and Lac Bam in Burkina Faso, respectively. Gade et al. [11] showed that the polarization
coefficient (i.e., the normalized differential polarization ratio, referred to as PC) can be used to infer
indicators for bivalve beds and demonstrated with X-band data. In this paper, we follow on those
works using, among others, TerraSAR-X (TSX), Radarsat-2 (RS2), and ALOS-2 (AL2) data, with the
specific aim to propose indicators for bivalve beds that were derived from dual-copol SAR data
acquired at all wavelengths (X-, C-, and L-band).

The test site in the German Wadden Sea and the dual-copol multi-frequency (X-, C-, and L-band)
SAR datasets are introduced in the following Section. The Kennaugh element framework and
polarization coefficient are described thereafter, along with a presentation of statistical parameters that
were used for the detection of oyster and mussel beds. We then compare and discuss the results of
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three space-borne sensors (working at X-, C-, and L-band) using the available dual-copol data and
finally draw some conclusions.

2. Materials and Methods

2.1. Test Site and SAR Data

The test site “Amrum” on the northern part of the German Wadden Sea (Figure 1) is located
between the islands of Amrum and Föhr and was already subject to previous studies [11,12,27].
This region contains sandy and muddy sediments, vegetated areas, bivalve beds (mainly Pacific
oysters and cockles, but also blue mussels) and seagrass meadows; hence it represents an area of a
typical mixture of bivalve beds and sediments on exposed intertidal flats. In addition, the bivalve
beds in the test area “Amrum” are quite stable and chosen for demonstrating the effectiveness of the
following indicators. Blue mussels and Pacific oysters may form extensive bivalve beds on elevated
intertidal flats that may also contain areas of bare sediments and water puddles.

Figure 1. The test site “Amrum” in the German Wadden Sea. The solid rectangles delineate the
spatial coverage of the TerraSAR-X (TSX) (red), Radarsat-2 (RS2) (green), and ALOS-2 (AL2) (blue)
data (Figure 2).
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Figure 2. Synthetic Aperture Radar (SAR) images of the test site “Amrum” in VV-polarization. (a) TSX
data acquired on 20 June 2016, at 05:50 UTC © DLR; (b) RS2 data on 24 December 2015, at 05:43 UTC,
Radarsat-2 data and products © MacDonald, Dettwiler and Associates Ltd. 2015 – All Rights Reserved;
(c) AL2 data on 29 February 2016, at 23:10 UTC © JAXA. The red rectangle marks the area of interest
(8.97 km × 8.31 km); the red star marks the location of tide gauge “Wittdün”.

Frequent monitoring of bivalve beds in the test site “Amrum” is conducted during field campaigns
as well as based on optical and (single-polarization) SAR imagery [12]. Therefore, a larger number of
SAR images was available for the present investigation. The solid rectangles in Figure 1 delineate the
locations of the X-, C-, and L-band SAR data used in this study. VV-polarization SAR scenes acquired
around low tide by TSX, RS2, and AL2 are shown in Figure 2 as examples. Herein we focused on an
8.97 km × 8.31 km area of interest within the “Amrum” test site, marked by the red rectangle in the
upper panel of Figure 2. In all panels, bivalve beds on exposed sediments show up as bright patches.
That is because the bivalves stick out of the sediments, increasing the surface roughness locally with
higher radar backscattering. Some of the exposed sediments in the inner parts of the intertidal flats
appear in dark, likely because of remnant water that effectively flattens the surface. Tidal creeks can be
delineated because of their rather smooth surface causing lower radar backscatter and also due to the
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enhanced surface roughness of the sandy sediments at their rims. As seen in Figure 2, it is difficult
to infer the spatial extent of bivalve beds simply using intensity channels. This motivated us to use
polarimetric information available at all wavelengths (X-, C-, and L-band).

Three single-look complex (SLC) SAR images of the test site “Amrum” acquired around low tide
by TSX, RS2, and AL2 were used for the analyses presented in this paper. The SAR images’ pixel
sizes range from 1 m × 1 m to 5 m × 5 m. Details of the used SAR images are summarized in Table 1,
including the acquisition dates and times, the sensors and frequencies, polarizations, incidence angles,
and water levels measured by the tide gauge “Wittdün” on the southern tip of Amrum. The TSX
image was acquired in High-Resolution Spotlight mode (dual-copol: HH + VV), the RS2 image in
Fine Quad-Pol mode (quad-pol: HH + HV + VH +VV), and the AL2 image in Strip-Map Ultra-Fine
mode (quad-pol: HH + HV + VH + VV). However, as our analyses were carried out with the specific
aim to demonstrate the potential of dual-copol SAR images for bivalve bed detection, we only used
the co-polarization (HH and VV) channels of the RS2 and AL2 data. All SAR images were acquired
close to the low tide (around 30 min) and at comparable incidence angles (between 30◦ and 40◦).
Validation data was obtained during field excursions in 2015.

Table 1. SAR acquisition dates, times, sensors, modes, and environmental conditions during image
acquisitions. Polarizations: dual-copol HH + VV (D), quad-pol HH + HV + VH + VV (Q).

Date/Time [UTC] Sensor/Band
Polarization/Incidence

Angle
Water Level [cm]

Time (UTC)/Water
Level [cm] at Low Tide

20 June 2016/05:50 TSX/X Band D/31.4◦ −160 06:22/−171
24 December 2015/05:43 RS2/C Band Q/36.3◦ −94 05:25/−103
29 February 2016/23:10 AL2/L Band Q/35.3◦ −171 23:46/−176

For the validation of our results, we used in-situ data from monitoring campaigns in 2015
provided by the local National Park Agency. The left panel of Figure 3 shows the VV-pol TSX SAR
image, with both Amrum on the left and Föhr on the upper right masked out for better orientation.
Figure 3 also shows that many parts of the exposed intertidal flats appear brighter, although not all of
them are bivalve beds.

 

Figure 3. Left: TSX VV-pol SAR image of 20 June 2016. The red lines denote the spatial extent of
bivalve beds, as obtained from field excursions, the yellow line is a transect through bare flats and
tidal creeks, but also through bivalve beds; upper right: map showing the TSX SAR image location;
lower right: photograph (S. Melchionna) of oyster beds showing the typical structures with elevated
patches of oysters, water puddles, and sediments.
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Figure 4 shows transects of the normalized radar cross section (NRCS) of the three SAR image
along the yellow line in the right panel of Figure 3 (solid curves; blue: TSX; red: RS2; green: AL2).
Also added as dashed-dotted lines are the respective noise floors at vertical polarization, the noise
equivalent sigma zero (NESZ). Hereafter, we used only those data whose signal-to-noise ratio (SNR)
was at least 2 dB. From Figure 4, we can see that at most places, the NRCS was well above the noise
floor; however, we also note that at some places the backscattered signal dropped below the noise
floor, particularly at L-band (green curve/line).

Figure 4. Comparisons of the normalized radar cross section (NRCS) (solid lines) and noise equivalent
sigma zero (NESZ) (dashed-dotted lines) along the yellow transect line marked in Figure 3. Blue: TSX;
red: RS2; green: AL2. The dashed-dotted lines were raised by 2 dB to better demonstrate where the
SAR data’s SNR was better than 2 dB. The thick horizontal bars on the abscissae indicate the locations
of bivalve beds found in field excursions in 2015.

2.2. Kennaugh Element Framework

The single-look complex (SLC) TSX, RS2, and AL2 products were processed following a general
approach that is based upon the elements extracted from the 4 × 4 Kennaugh matrix, [K], which is
computed by linearly transforming the four-dimensional Stokes vector [24]:

[K] =

⎡⎢⎢⎢⎣
K0 K4

K4 K1

K5 K6

K9 K8

K5 K9

K6 K8

K2 K7

K7 K3

⎤⎥⎥⎥⎦ (1)

The Kennaugh element framework has been demonstrated to be applicable to dual- as well as
quad-pol data of any wavelengths. In this study, we used dual-copol (HH + VV) TSX data, from which
only the Kennaugh elements K0, K3, K4, and K7, can be inferred as follows [24]:

K0 =
1
2
{|SHH |2 + |SVV |2} (2)

K3 = −Re{SHHS∗
VV} (3)

K4 =
1
2
{|SHH |2 − |SVV |2} (4)

K7 = Im{SHHS∗
VV} (5)

where |Spp|2 are the image intensities at polarization pp, the asterisk (*) denotes the complex conjugate,
and the factor 1

2 appears for symmetry reasons. K0 reflects the total intensity of both HH and VV layers;
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K3 is the difference between even- and odd-bounce scattering, where large values indicate a stronger
even-bounce scattering than odd-bounce scattering, and vice versa [24]; K4 is the difference between
the HH and VV intensities; K7 is the phase shift between even- and odd-bounce scattering. In the case
of a dual-pol system (one co-pol and one cross-pol channel) Equations (2) to (5) correspond exactly to
the well-known definition of a Stokes vector.

Following [24], the Kennaugh element layers were subsequently multi-looked, calibrated,
and ground-range projected (UTM Zone 32, 1 m pixel spacing). These four Kennaugh elements
at all wavelengths are shown in Figure 5. In this paper, we use the normalized Kennaugh elements,
divided by the total intensity K0, in order to derive nearly normally distributed values per Kennaugh
element and physically comparable measurements. Here, we choose the normalized K3 and K7,
for detecting oysters and mussels.

Figure 5. The four Kennaugh elements derived from dual-copol SAR data. Columns (from left to
right): K0 (sum of HH and VV intensities), K3 (difference between even- and odd-bounce scattering),
K4 (difference of HH and VV intensities), K7 (phase shift between even- and odd-bounce scattering);
rows (from top to bottom): (a) TSX (20 June 2016), (b) RS2 (24 December 2015), (c) AL2 (29 February 2016).

Moreover, we use the polarization coefficient (PC), which was recently used by Gade et al. [11] as
a promising parameter to infer indicators for bivalve beds from X-band dual-copol SAR images. PC is
defined as

PC =
|SHH |2 − |SVV |2
|SHH |2 + |SVV |2

=
K4

K0
(6)

and is identical to the normalized Kennaugh element of K4.
Where the radar backscattering at horizontal polarization strongly dominates over that at vertical

polarization PC approaches +1, and −1 in the opposite case. PC is close to 0 where the radar backscatter
at both polarizations is similar. In this paper, we further verified the use of PC with respect to its
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effectiveness in detecting bivalve beds not only using X-band data as previous works, but also using
data at longer radar wavelengths (C- and L-band).

3. Results

The new SAR decomposition framework described above was applied to the three SAR data sets
of the test site “Amrum” in two case studies, the first of which were analyses of the real (K3) and
imaginary (K7) parts of the inter-channel correlations, and the second analyses of PC using longer radar
wavelengths (C- and L-band). In both case studies, we focused on potential indicators of bivalve beds.

3.1. New Indicators from Single Kennaugh Elements

The dielectric constant of bivalve shells (with lower moisture contents) is lower than that of the
surrounding sediments, which would result in a lower radar backscatter from bivalve beds. However,
since the bivalves are sticking out of sediments, they increase the surface roughness strongly, which in
turn causes an overall stronger radar backscatter. And since they are oriented heterogeneously,
this increase in radar backscatter depends on the radar polarization, which is the main factor that
causes different polarimetric scattering signatures between bivalves and mudflats.

Along the transect line added to Figures 3 and 5 (from north to south) we calculated profiles of the
normalized Kennaugh elements K3 and K7. Figure 6 shows in blue the running mean, μ, of a moving
11-pixel window, in red the corresponding running standard deviation, σ, for K3 (left column) and
K7 (right column) and for the TSX, RS2, and AL2 data (from top to bottom). In addition, we added in
green the difference D of both,

Di = μi − σi ; i = 3; 7 (7)

Thick horizontal bars on the abscissae in Figure 6 denote the locations of bivalve beds, as found
during field campaigns in 2015.

The panels in the left column (K3) of Figure 6 clearly show that in all radar bands both the
(running) mean and (running) standard deviation are increased in the bivalve beds (between 0 km and
1 km, and between 4 km and 5 km), but also in the exposed sand flats in between. This effect is most
pronounced in X-band (TSX, upper row) and weakens with increasing radar wavelength (middle row:
RS2/C-band; lower row: AL2/L-band). However, we also note that the bivalve beds are the only
areas where the standard deviation exceeds the mean value, which results in a negative difference D
(green curves). This effect can be used to infer indicators for bivalve beds.

The peaks of the mean values indicate that both oyster/mussel beds and the sandy rims of the
intertidal flats show stronger even-bounce backscatter components than odd-bounce, because of their
rougher surfaces. This increase in K3 can be caused by either an increase in the even-bounce scattering
or by a decrease in the odd-bounce scattering. In contrast, lower K3 values in the surrounding
areas, consisting of mudflats and tidal channels, indicate much smoother surfaces. Apparently,
the heterogeneous surface structure of bivalves causes a strong spatial variability of even- and
odd-bounce backscattering and therefore higher standard deviations, which in turn results in negative
differences, D3.

The Kennaugh element K7 holds complementary correlation information, the phase shift between
even- and odd-bounce backscattering. The corresponding profiles in Figure 6 (right column) show that
the phase differences inside the bivalve beds are always larger, and always show strong variations,
so that the running standard deviation always exceeds the running mean. Therefore, the difference
of both, D7, is always negative, but extreme values are only found in the bivalve beds. The rougher
surfaces of bivalves cause diffuse radar backscattering, resulting in strong variations of the phase
differences and, therefore, in standard deviations exceeding the mean values. Similar to the profiles
in the left column of Figure 6, this effect weakens with increasing wavelength, i.e., from top to
bottom. However, since areas of extremely negative “running differences” D7 correspond well with
the validation data, we conclude that this difference can also be used as indicator for bivalve beds.
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Figure 6. Profiles along the transect line included in Figures 3 and 5 from north (N) to south (S). Blue:
running mean; red: running standard deviation; green: difference of both; each calculated for K3

(left column) and K7 (right column). Upper row: X-band; middle row: C-band; lower row: L-band.
The thick horizontal bars on the top and bottom frames indicate the locations of bivalve beds found in
field excursions in 2015.

The profiles for both Kennaugh elements, K3 and K7 (left and right column of Figure 6,
respectively), show a strong dependence on radar wavelength: with increasing wavelength
(i.e., from top to bottom in Figure 6), the curves become flatter, i.e., the difference between even-
and odd-bounce backscattering becomes smaller. One possible reason lies in the size of oysters,
which are the prevailing species in those beds: depending on their age, the oysters may become 30 cm
long, with the majority being below 20 cm in length. The roughness scale of those beds, therefore, is on
the order of a decimeter, and the beds’ surfaces are much rougher for an X-band sensor (wavelength
3 cm) than for an L-band sensor (25 cm). This also results in smaller differences in the polarimetric
backscattering, i.e., in smaller differences between even- and odd-bounce backscattering. Another,
though less important, reason may lie in the season, in which the SAR data were acquired: the TSX
data were acquired in early summer (June), during the vegetation period and growing season of
the bivalves, while both the C- and L-band data were acquired in winter (December and February,
respectively), when storm and high water events are more frequent.

In order to generate maps of bivalve bed indicators we calculated the running mean and standard
deviation of a moving 11 pixels × 11 pixels window, and consequently the differences D3 (Figure 7)
and D7 (Figure 8). For D3 we set 0 as threshold for the bivalve indicators (i.e., we marked all negative
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differences D3), and we arbitrarily chose 0.01 to further discriminate between sediments (between
0 and 0.01) and tidal channels and creeks (above 0.01). The results for the three datasets, TSX, RS2,
and AL2, are shown in Figure 7, where the blue, orange, and green colors denote bivalve beds,
exposed sediments, and tidal channels and creeks, respectively. A comparison with the validation data
(red lines in Figure 3) immediately reveals that the difference D3 provides an indicator for bivalve
beds on exposed intertidal flats. Moreover, previous studies have also demonstrated that the use of
multi-polarization SAR images have some additional potential for the monitoring of sediment surfaces
on intertidal flats using SAR sensors [6,11,18,22]. With the given color coding, areas of water coverage,
mainly the tidal channels, appears in orange colors, whereas the open sediment flats appear in green
and yellow. More research is still required to analyze to what extent this parameter can be used in
this respect.

Figure 7. Difference D3 of the running mean and standard deviation of Kennaugh element K3 derived
from (a) TSX X-band data, (b) RS2 C-band data, (c) AL2 L-band data, each calculated for a moving
window of size 11 pixels × 11 pixels.

Figure 8. Same as Figure 7, but for the Difference D7.

The same analyses were also performed with the difference D7 (Figure 8), with the thresholds set
to −0.015 (bivalves–sediment) and −0.005 (sediment–tidal creeks and channels). The results look very
similar to those obtained for D3 (Figure 7).

Figures 7 and 8 demonstrate that the best correlation with the in-situ data is obtained when
X-band data are used, and the indicators for bivalves are derived using the Difference D3 (left Panel of
Figure 7). This is in line with our earlier observation, that the highest K3 values of the running mean
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and standard deviation were found at X-band (upper left panel of Figure 6). The detection accuracy
was derived as the ratio of the number of pixels correctly assigned to bivalve beds and the total number
of pixels in bivalve beds, as given in the validation data from monitoring campaigns. The accuracies
ranging from 84.70% to 88.87% for D3 and 81.02% to 85.13% for D7, are given in Table 2. Moreover,
a discrimination of exposed sediments (green) and tidal creeks and channels (orange) also appears
to be possible using our approach, particularly using X-band data and the difference D3. The most
homogeneous backscattering conditions are found in water-covered areas, i.e., in the tidal creeks and
channels, and as a result, the difference of tidal channels and exposed sediment flats between the
running mean and standard deviation is maximum in those areas. Apparently, this discrimination
works well at short radar wavelengths (X-band), although we also note that different water levels
(Table 1) may have caused the observed differences.

Table 2. Detection accuracies of indicators for bivalve beds at all wavelengths (X-, C-, and L-band).

Indicator
Detection Accuracy (%)

TSX RS2 AL2

D3 88.87 86.35 84.70
D7 85.13 83.72 81.02
P 87.72 85.59 84.72

3.2. Indicators from Polarization Coefficients

The polarization coefficient (PC) was used by Gade et al. [11,28] as indicator for bivalve beds
on exposed intertidal flats. As the abrupt end of the ALOS-1 mission in 2011, we were only able to
demonstrate PC with TSX X-band data. Here, we build up on those previous works using SAR data
acquired at longer wavelengths (C- and L-band). Following [11] the product P is defined as

P = |μPC| · σPC (8)

where |μPC| and σPC are the absolute value of the running mean and standard deviation, respectively,
of the polarization coefficient, PC. Because of their increased surface roughness, bivalve beds always
cause an increased radar backscatter at both HH and VV polarizations, resulting in both low mean
values and low standard deviations, and eventually in low values of the product P [11]. Similar to the
above analyses, we used a running window of size 11 pixels × 11 pixels to calculate the product P,
and the results are shown in Figure 9.

Figure 9 shows that the spatial range of the bivalve beds coincides well with the validation
data of the field campaigns (marked in red). We note that the high detection accuracies for the
Product P (84.72% to 87.72%) indicate that the use of dual co-pol SAR images has good potential for
the monitoring of bivalves even when SAR data acquired at longer wavelengths (L-band) are used.
Similar to the above findings, we found that the ability to distinguish sediments from tidal creeks and
channels decreases with increasing radar wavelength. It should also be noted that surface scattering
is the dominant scattering mechanism in most areas of exposed intertidal flats and the adjacent tidal
creeks and channels. As the radar wavelength increases, these surface scatters tend to represent a
relatively smoother effect, which can also explain this phenomenon. Moreover, images acquired at
incidence angles between 31◦ and 37◦ are well suited for detection of bivalve beds because of the
stronger radar contrast between the bivalve beds and their surroundings.
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Figure 9. Product P of the absolute mean and standard deviation, each calculated for a running
11 pixels × 11 pixels window using (a) TSX X-band data [11]; (b) RS2 C-band data; (c) AL2 L-band
data. The borders of bivalve beds found during field campaigns are inserted as red lines, and the map
on the upper right shows the location of the area of interest.

4. Discussion

Our studies indicate that the use of the Kennaugh element framework has great potential for
the detection of bivalve beds on exposed intertidal flats. The spatially complex and rough surface
structures of bivalve (oyster/mussel) beds on intertidal flats can be clearly defined through their
unique polarimetric signatures, so that they can be discriminated from the surrounding bare sediments.
A major advantage of the proposed indicators is that a series of single-acquisition SAR data can be used
for a frequent monitoring of intertidal flats on the German North Sea coast, thereby providing valuable
input for existing classification schemes that is independent of daylight and weather conditions.
The detection of bivalve beds based on the Kennaugh element framework works best using X-band
SAR data, but even long radar wavelengths (L-band) can be used to gain reliable results, and thus
complement the L-band’s inability to distinguish bivalves from surrounding areas in previous studies.

The Kennaugh element framework appears to be superior over other decomposition schemes
on quad-pol SAR data and thus, improves the monitoring capabilities in the German Wadden Sea,
particularly during the short periods of low tide. E.g., decompositions based on eigenvectors are
susceptible to mixed results in very noisy decomposition parameters and thus, require very high look
numbers to overcome this problem. Decompositions applied to interpret the components with the help
of physical mechanisms based on radar backscattering models potentially also impair the description
of natural targets, and are always limited to certain wavelength regimes. The numerical models,
in turn, can rare suffice our requirements in wide range of smooth bare soils in the German Wadden
Sea, especially targets with vegetation coverage, as well as our existing or newly acquired dual-copol
SAR datasets. In this study, the relationship between even- and odd-bounce scattering events helps
the detection of bivalves as expected, especially the complementary phase shift between even- and
odd-bounce scattering (K7). It was physically interpreted herein and demonstrated the ability to aid
the discriminability between bivalve beds and surrounding sediments. Therefore, the Kennaugh
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decomposition theory has great advantages in describing the scattering features of sediments and
habitats on exposed intertidal flats and may help in fully understanding the radar backscattering
mechanisms on those flats. This Kennaugh-based approach should be transferable to any other regions
as long as the data acquired at low tide, likewise to any other available polarimetric SAR sensors in
orbit (such as COSMO-SkyMed and Sentinel-1A/B). This transferable to our available SAR datasets in
terms of different wavelengths and characteristics is subject to ongoing research. This is in line with
the idea exploited in this paper and could be further extended to other intertidal flats, such as the test
sites around the islands of Spiekeroog and Norderney in the German Wadden Sea.

We also note that our results may help in improving the results from field campaigns: not only
were our thresholds for the discrimination of bivalve beds, sediments, and tidal creeks and channels
chosen arbitrarily, but the borders of the bivalve beds measured in-situ are always subjectively
identified and may not reflect the very density threshold, from which bivalves may be detectable
from space. In addition, our results also provide predictive guidance for the future field campaigns,
based on multi-frequency SAR data and on multi-polarization modes. In this way, frequent monitoring
of targets on exposed intertidal flats can be conducted combining the rapid imaging of SAR instruments
with field investigations. It should be mentioned that dedicated field campaigns can be conducted
only once or twice per year because of the reduced accessibility of these areas. In addition, muddy
sediments and tidal channels may impede field surveys of larger areas or their access from land. Thus,
such manpower- and time-consuming field campaigns cannot be conducted frequently, and this is
also one of our motivations to monitor habitats using remote sensing techniques.

Any discrimination between different bivalve species (e.g., between blue mussels and oysters,
or between cockles and oysters) based on polarimetric SAR images is not (yet) possible and requires
further analyses. Therefore, further research is still needed to determine to what extent our new
parameters can be used for such purposes. In addition, different water levels and seasonal changes
can influence the backscattering characteristics of bare sediments [29] and bivalve beds. Therefore,
future work will also include the sensitivity of Kennaugh elements to water levels and seasonal changes,
e.g., the coverage by brown algae or Fucus. Future studies will be performed using dual-polarization
SAR data (with one co-polarization and one cross-polarization channel), as usually acquired in current
(Sentinel-1A/B) and future (RCM and SAOCOM) space borne SAR missions.

5. Conclusions

We have introduced new polarimetric SAR indicators for bivalve beds on exposed intertidal
flats that are based on dual-copol SAR data. The proposed indicators for bivalve beds consist of
the normalized real (K3) and imaginary (K7) parts of inter-channel correlations, as well as on the
polarization coefficient, i.e., the normalized differential polarization ratio, PC = K4/K0. Comparing with
the in-situ data from the field campaigns, we conclude that the Difference D3 and D7, as well as Product
P, are useful indicators for extracting backscattering characteristics of bivalve beds, and can provide
frequent and accurate mapping of habitats on intertidal flats.

Using SAR data from different sensors (working at different radar bands) the locations of the
newly applied indicators always coincided with those where bivalve beds were encountered during
field campaigns. Therefore, we also conclude that bivalve (oyster/mussel) beds can be detected at
all radar wavelengths (X-, C-, and L-band), although we note that best results were obtained using
X-band (TSX) data. In addition, the proposed indicators work well using images acquired at incidence
angles between 31◦ and 37◦.

Our proposed indicators allow the dual-copol SAR datasets for the detection of bivalve beds,
exploiting the values of the existing or newly acquired datasets from the SAR sensors in orbit to the
largest extent and keeping fine spatial resolution and large areal coverage. Moreover, the fact that these
indicators are based on single-acquisition SAR data makes it superior to others based on series of SAR
images, particularly for the monitoring of intertidal flats, a highly dynamic environment. Therefore,
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the results of our polarimetric analyses, as presented herein, have great potential to act as valuable
input for existing classification systems.
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