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During the last few decades, the notion of entropy has become omnipresent in many
scientific disciplines, ranging from traditional applications in statistical physics and chem-
istry, information theory, and statistical estimation to more recent applications in biology,
astrophysics, geology, financial markets, or social networks. All these examples belong to
the large family of complex dynamical systems that is typified by phase transitions, scaling
behavior, multiscale and emerging phenomena, and many other non-trivial phenomena.
Frequently, it turns out that in these systems, the usual Boltzmann–Gibbs–Shannon entropy
and ensuing statistical physics are not adequate concepts. This especially happens in cases
where the sample space in question does not grow exponentially.

This Special Issue, “The Statistical Foundations of Entropy”, is dedicated to discussing
solutions and delving into concepts, methods, and algorithms for improving our under-
standing of the statistical foundations of entropy in complex systems, with a particular
focus on the so-called generalized entropies that go beyond the usual Boltzmann–Gibbs–
Shannon framework. The nine high-quality articles included in this Special Issue propose
and discuss new tools and concepts derived from information theory, non-equilibrium
statistical physics, and the theory of complex dynamical systems to investigate various
non-conventional aspects of entropy with assorted applications. They illustrate the poten-
tial and pertinence of novel conceptual tools in statistical physics that, in turn, help us to
shed fresh light on the statistical foundations of entropy.

In the first contribution [1], the authors discuss the important topic of ecological
inference used to estimate individual behavior from the knowledge-aggregated data. The
authors discuss two popular approaches: the Generalized Maximum Entropy approach
and the Distributionally Weighted Regression equation. Moreover, the authors show that
it is possible to obtain a combined solution with the so-called Generalized Cross-Entropy
solution for the matrix adjustment problem.

The theory of critical phenomena is one of the essential parts of statistical physics with
important overlaps to other scientific fields. The authors of the second paper [2] extend
the classic Landau theory of critical phenomena in the context of multiscale dynamics.
By using renormalization group theory, the authors can describe critical points through
the inseparability of levels at certain points. These findings allow experimentalists more
precise measurements of critical points.

The third contribution [3] describes a general approach toward generalized entropies
based on the non-Newtonian calculus. The main idea is to redefine the usual arithmetic
operations (e.g., addition and multiplication) and related calculus operators (e.g., dif-
ferentiation and integration) in such a way that some crucial properties remain valid.
Entropy and the corresponding thermodynamic quantities are then defined analogously
to the Boltzmann–Gibbs–Shannon case in terms of these deformed operations. This ap-
proach incorporates many popular generalized entropies and gives a general recipe for
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the thermodynamics of such generalized entropies. Since the potential of this general
approach is immense, the editors decided to promote this article by choosing the paper as
the Editor’s Choice.

The aim of the fourth paper [4] was to show that for each distribution obtained
from the principle of maximum entropy, there exists freedom in the choice of entropic
functions and constraints, which make the reverse identification of entropic function and
constraints from the form of MaxEnt distribution impossible. The paper consists of two
simple examples of such invariance, where the different choices of entropy and constraints
lead to the same MaxEnt distribution, which differs only in the Lagrange parameters. Since
the Lagrange parameters may have some thermodynamic interpretation, it is essential to
identify some additional properties of the system to decide which function plays the role
of thermodynamic entropy.

In the fifth paper [5], the authors focused on the problem of estimation for entropy
and the parameters of generalized Bilal distribution under an adaptive type II progressive
hybrid censoring scheme. To this end, they used the maximum likelihood estimator
and Newton–Raphson iteration method. In addition, some other estimators, such as the
Bayesian estimator and confidence intervals, were also provided. Finally, the study contains
an illustrative example that applies the obtained results.

The main result of the sixth contribution [6] was to introduce a generalization the
concept of Shannon’s entropy power based on Rényi entropy. Consequently, the authors
could generalize several popular identities, including the de Bruijn identity, isoperimetric
inequality, or Stam inequality. Moreover, this enables one to introduce a new class of the
one-parameter family of Rényi entropy power-based quantum mechanical uncertainty
relations. These relations turn out to be very useful in many applications in quantum
mechanics, including entanglement and quantum metrology.

The seventh paper [7] revisited the Boltzmann H theorem for both the classical and
quantum systems. The authors considered a spatially inhomogeneous system initially out
of equilibrium and studied its relaxation toward equilibrium. They accomplished this by
considering small local cells and assuming the local equilibrium hypothesis. The global
H-function is a sum of the local H functions. The authors recovered the H theorem for
the case of spatially inhomogeneous gasses for both the classical and quantum cases. The
correspondence principle connects the classical and quantum H functions.

In the eighth paper [8], the authors introduced a generalization of mutual information
based on two-parameter Sharma–Mittal entropy. They also discussed the distinction
between mutual information and capacity for the case of generalized entropies based
on Sharma–Mittal entropy. They accomplished this by considering a proper axiomatic
framework. Finally, the authors showed that the proper definition of both Sharma–Mittal
mutual information and Sharma–Mittal capacity solves the issue of non-physical behavior.

Finally, in the last paper of this Special Issue [9], the authors reviewed the maximum
entropy principle from the point of view of a general inference framework. The authors
discussed a general procedure of updating the prior distribution to a posterior probability
distribution through an eliminative induction process. The authors showed that under
the assumption of subsystem independence, the logarithmic relative entropy (also called
Kullback–Leibler divergence) is the unique solution that fulfills the prescribed axiomatic
framework. Furthermore, the authors showed that this general framework contains the
MaxEnt principle and Bayes’ rule as special cases and unifies the entropic and Bayesian
inference methods.

Entropy is presumably one of the most intricate and complex scientific concepts. Its
comprehension is an open challenge that requires new abstractions and methodological
approaches. Information theory, statistical physics, and estimation theory methods provide
a versatile and flexible framework with the potential to move research in this field forward.
In this Special Issue, various conceptual and methodological approaches were provided to
further deepen our understanding of the statistical foundations of entropy. They provided
relevant pieces of research that addressed timely, current topics associated with the entropy
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paradigm. It is our hope that the reader will enjoy the articles included in this Special Issue
and will find them helpful.
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Abstract: This paper is a review of a particular approach to the method of maximum entropy as a
general framework for inference. The discussion emphasizes pragmatic elements in the derivation.
An epistemic notion of information is defined in terms of its relation to the Bayesian beliefs of
ideally rational agents. The method of updating from a prior to posterior probability distribution
is designed through an eliminative induction process. The logarithmic relative entropy is singled
out as a unique tool for updating (a) that is of universal applicability, (b) that recognizes the value of
prior information, and (c) that recognizes the privileged role played by the notion of independence
in science. The resulting framework—the ME method—can handle arbitrary priors and arbitrary
constraints. It includes the MaxEnt and Bayes’ rules as special cases and, therefore, unifies entropic
and Bayesian methods into a single general inference scheme. The ME method goes beyond the
mere selection of a single posterior, and also addresses the question of how much less probable
other distributions might be, which provides a direct bridge to the theories of fluctuations and
large deviations.

Keywords: maximum entropy; Bayesian inference; updating probabilities

1. Introduction

Inductive inference is a framework for coping with uncertainty, for reasoning with
incomplete information. The framework must include a means to represent a state of partial
knowledge—this is handled through the introduction of probabilities—and it must allow us
to change from one state of partial knowledge to another when new information becomes
available. Indeed, any inductive method that recognizes that a situation of incomplete
information is in some way unfortunate—by which we mean that it constitutes a problem
in need of a solution—would be severely deficient if it failed to address the question of
how to proceed in those fortunate circumstances when new information becomes available.
The theory of probability, if it is to be useful at all, demands a method for assigning and
updating probabilities.

The challenge is to develop updating methods that are both systematic, objective and
practical. When information consists of data and a likelihood function, Bayesian updating
is the uniquely natural method of choice. Its foundation lies in recognizing the value
of prior information: whatever was learned in the past is valuable and should not be
disregarded, which amounts to requiring that beliefs ought to be revised but only to the
extent required by the new data. This immediately raises a number of questions: How do
we update when the information is not in the form of data? If the information is not data,
what else could it possibly be? Indeed, what, after all, is “information”? On a separate line
of development, the method of Maximum Gibbs–Shannon Entropy (MaxEnt) allows one
to process information in the form of constraints on the allowed probability distributions.
This provides a partial answer to one of our questions: in addition to data, information can
also take the form of constraints. However, it immediately raises several other questions:
What is the interpretation of entropy? Is there unique entropy? Are Bayesian and entropic
methods mutually compatible?

Entropy 2021, 23, 895. https://doi.org/10.3390/e23070895 https://www.mdpi.com/journal/entropy
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The purpose of this paper is to review one particular approach to entropic updating.
The presentation below, which is meant to be pedagogical and self-contained, is based
on work presented in a sequence of papers [1–5] and in the sets of lectures [6–8]. As we
shall see below, we adopt a pragmatic approach in which entropy is a tool designed for the
specific purpose of updating probabilities.

Historically, the method of maximum relative entropy (ME) is a direct descendant
of the MaxEnt method, pioneered by Jaynes [9,10]. In the MaxEnt framework, entropy is
interpreted through the Shannon axioms as a measure of the amount of information that
is missing in a probability distribution. This approach has its limitations. The Shannon
axioms refer to probabilities of discrete variables; for continuous variables, the Shannon
entropy is not defined. A more serious objection is that even if we grant that the Shannon
axioms do lead to a reasonable expression for entropy, to what extent do we believe the
axioms themselves? Shannon’s third axiom, the grouping property, is indeed sort of
reasonable, but is it necessary? Is entropy the only consistent measure of uncertainty or of
information? Indeed, there exist examples in which the Shannon entropy does not seem
to reflect one’s intuitive notion of information [8,11]. One could introduce other entropies
justified by different choices of axioms (e.g., [12–14]), but this move raises problems of its
own: Which entropy should one adopt? If different systems are handled using different
entropies, how does one handle composite systems?

From our perspective, the problem can be traced to the fact that neither Shannon nor
Jaynes were concerned with the task of updating probabilities. Shannon’s communication
theory aimed to characterize the sources of information, to measure the capacity of the
communication channels, and to learn how to control the degrading effects of noise.
On the other hand, Jaynes conceived MaxEnt as a method to assign probabilities on the
basis of constraint information and a fixed underlying measure and not from an arbitrary
prior distribution.

Considerations such as these motivated several attempts to develop ME directly as a
method for updating probabilities without invoking questionable measures of informa-
tion [1,5,15–17]. The important contribution by Shore and Johnson was the realization that
one could axiomatize the updating method itself rather than the information measure.
Their axioms have, however, raised criticisms [11,18–20] and counter-criticisms [2,6,8,21,22].
Despite the controversies, Shore and Johnson’s pioneering papers have had an enormous
influence: they identified the correct goal to be achieved.

The concept of relative entropy is introduced as a tool for updating probabilities. Here-
inafter, we drop the qualifier “relative”and adopt the simpler term “entropy”. The reasons
for the improved nomenclature are the following: (1) The general concept should receive
the general name “entropy”, while the more specialized concepts should be the ones re-
ceiving a qualifier, such as “thermodynamic” or “Clausius” entropy, and “Gibbs–Shannon”
entropy. (2) All entropies are relative, even if they happen to be relative to an implicit
uniform prior. Making this fact explicit has tremendous pedagogical value. (3) The practice
is already in use with the concept of energy: all energies are relative too, but there is no
advantage in constantly referring to a “relative energy”. Accordingly, ME will be read as
“maximum entropy”; additional qualifiers are redundant.

As with all tools, entropy too is designed to perform a certain function, and its per-
formance must meet certain design criteria or specifications. There is no implication that
the method is “true”, or that it succeeds because it achieves some special contact with
reality. Instead, the claim is that the method succeeds in the pragmatic sense that it works
as designed—this is satisfactory because when properly deployed, it leads to empirically
adequate models. In this approach, entropy needs no interpretation whether it be in terms
of heat, multiplicity of states, disorder, uncertainty, or even in terms of an amount of
information. Incidentally, this may explain why the search for the meaning of entropy has
proved so elusive: we need not know what “entropy” means—we only need to know how
to use it.
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Since our topic is the updating of probabilities when confronted with new information,
our starting point is to address the question, “what is information?”. In Section 2, we
develop a concept of information that is both pragmatic and Bayesian. “Information” is
defined in terms of its effects on the beliefs of rational agents. The design of entropy
as a tool for updating is the topic of Section 3. There, we state the design specifications
that define what function entropy is supposed to perform, and we derive its functional
form. To streamline the presentation, some of the mathematical derivations are left to
the appendices.

To conclude, we present two further developments. In Section 4, we show that
Bayes’ rule can be derived as a special case of the ME method. An earlier derivation of
this important result following a different line of argument was given by Williams [23]
before a sufficient understanding of entropy as an updating tool had been achieved. It
is not, therefore, surprising that Williams’ achievement has not received the widespread
appreciation it deserves. Thus, within the ME framework, entropic and Bayesian methods
are unified into a single consistent theory of inference. One advantage of this insight is that
it allows a number of generalizations of Bayes’ rule [2,8]. Another is that it provides an
important missing piece for the old puzzles of quantum mechanics concerning the so-called
collapse of the wave function and the quantum measurement problem [24,25].

There is yet another function that the ME method must perform in order to fully
qualify as a method of inductive inference. Once we have decided that the distribution
of maximum entropy is to be preferred over all others, the following question arises
immediately: the maximum of the entropy functional is never infinitely sharp, so are
we confident that distributions that lie very close to the maximum are completely ruled
out? In Section 5, the ME method is deployed to assess quantitatively the extent to which
distributions with lower entropy are ruled out. The significance of this result is that it
provides a direct link to the theories of fluctuations and large deviations. Concluding
remarks are given in Section 6.

2. What Is Information?

The term “information” is used with a wide variety of different meanings [10,26,27].
There is the Shannon notion of information that is meant to measure an amount of in-
formation and is quite divorced from semantics. There is also an algorithmic notion of
information that captures a notion of complexity and originates in the work of Solomonov,
Kolmogorov, and Chaitin [26]; there is a related notion of entropy as a minimum description
length [28]. Furthermore, in the general context of the thermodynamics of computation, it
is said that “information is physical” because systems “carry” or “contain” information
about their own physical state [29–31] (see also [32,33]).

Here, we follow a different path [3,4]. We seek an epistemic notion of information
that is closer to the everyday colloquial use of the term—roughly, information is what we
request when we ask a question. In a Bayesian framework, this requires an explicit account
of the relation between information and the beliefs of ideally rational agents. We emphasize
that our concern here is with idealized rational agents. Our subject is not the psychology of
actual humans who often change their beliefs by processes that are neither fully rational nor
fully conscious. We adopt a Bayesian interpretation of probability as a degree of credibility:
the degree to which we ought to believe that a proposition is true if only we were ideally
rational. For a discussion of a decision theory that might be relevant to the economics and
psychology of partially rational agents see [34–36]. An entropic framework for modelling
economies that bypasses all issues of bounded rationality is described in [37].

It is implicit in the recognition that most of our beliefs are held on the basis of incom-
plete information that not all probability assignments are equally good; some beliefs are
preferable to others in the very pragmatic sense that they enhance our chances to success-
fully navigate this world. Thus, a theory of probability demands a theory of updating
probabilities in order to improve our beliefs.

7
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We are now ready to address the question: What, after all, is “information”? The
answer is pragmatic. Information is what information does. Information is defined by its
effects: (a) it restricts our options as to what we are honestly and rationally allowed to
believe; and (b) it induces us to update from prior beliefs to posterior beliefs. This, I
propose, is a defining characteristic of information:

Information is that which induces a change from one state of rational belief to another.

One aspect of this notion is that for a rational agent, the identification of what consti-
tutes information—as opposed to mere noise—already involves a judgment, an evaluation.
Another aspect is that the notion that information is directly related to changing our minds
does not involve any reference to amounts of information, but it nevertheless allows precise
quantitative calculations. Indeed, constraints on the acceptable posterior probabilities are
precisely the kind of information that the method of maximum entropy is designed to
handle. In short,

Information constrains probability distributions. The constraints are the information.

To the extent that the probabilities are Bayesian, this definition captures the Bayesian
notion that information is directly related to changing our minds, that it is the driving force
behind the process of learning. It also incorporates an important feature of rationality:
being rational means accepting that “not everything goes”, and that our beliefs must be
constrained in very specific ways. However, the indiscriminate acceptance of any arbitrary
constraint does not qualify as rational behavior. To be rational, an agent must exercise
some judgment before accepting a particular piece of information as a reliable basis for the
revision of its beliefs, which raises questions about what judgments might be considered
sound. Furthermore, there is no implication that the information must be true; only that
we accept it as true. False information is information too, at least to the extent that we are
prepared to accept it and allow it to affect our beliefs.

The paramount virtue of the definition above is that it is useful; it allows precise
quantitative calculations. The constraints that constitute information can take a wide
variety of forms. They can be expressed in terms of expected values, they can specify the
functional form of a distribution, or be imposed through various geometrical relations.
Examples are given in Section 5 and in [38].

Concerning the act of updating, it may be worthwhile to point out an analogy with
dynamics. In Newtonian mechanics, the state of motion of a system is described in terms of
momentum, and the change from one state to another is said to be “caused” by an applied
force or impulse. Bayesian inference is analogous in that a state of belief is described in
terms of probabilities, and the change from one state to another is “caused” by information.
Just as a force is that which induces a change from one state of motion to another, so
information is that which induces a change from one state of belief to another. Updating is a form
of dynamics. In [39], the analogy is taken seriously: the logic is reversed and quantum
mechanics is derived as an example of the entropic updating of probabilities.

3. The Pragmatic Design of Entropic Inference

Once we have decided, as a result of the confrontation of new information with old
beliefs, that our beliefs require revision, the problem becomes one of deciding how precisely
this ought to be done. First, we identify some general features of the kind of belief revision
that one might count as rational. Then, we design a method—a systematic procedure—that
implements those features. To the extent that the method performs as desired, we can
claim success. The point is not that success derives from our method having achieved some
intimate connection to the inner wheels of reality; success simply means that the method
seems to be working.

The one obvious requirement is that the updated probabilities ought to agree with
the newly acquired information. Unfortunately, this requirement, while necessary, is not
sufficiently restrictive: we can update in many ways that preserve both internal consistency

8
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and consistency with the new information. Additional criteria are needed. What rules
would an ideally rational agent choose?

3.1. General Criteria

The rules are motivated by the same pragmatic criteria that motivate the design of
probability theory itself [8]—universality, consistency, and practical utility. However, this is
admittedly too vague; we must be very specific about the precise way in which the criteria
are implemented.

3.1.1. Universality

In principle, different systems and different situations could require different problem-
specific induction methods. However, in order to be useful in practice, the method we
seek must be of universal applicability. Otherwise, it would fail us when most needed,
for we would not know which method to choose when not much is known about the
system. To put in different words, what we want to design is a general-purpose method
that captures what all the other problem-specific methods might have in common. The idea
is that the peculiarities of a particular problem will be captured by the specific constraints
that describe the information that is relevant to the problem at hand.

The analogy with mechanics can be found here as well. The possibility of a sci-
ence of mechanics hinges on identifying a law of motion of universal applicability (e.g.,
the Schrödinger equation), while the specifics of each system are introduced through initial
conditions and the choice of potentials or forces. Here, we shall design an entropy of
universal applicability, while the specifics of each problem are introduced through prior
probabilities and the choice of constraints.

3.1.2. Parsimony

To specify the updating, we adopt a very conservative criterion that recognizes the
value of information: what has been laboriously learned in the past is valuable and should
not be disregarded unless rendered obsolete by new information. The only aspects of one’s
beliefs that should be updated are those for which new evidence has been supplied. Thus,
we adopt the following.

Principle of Minimal Updating (PMU): Beliefs should be updated only to the minimal extent
required by the new information.

The special case of updating in the absence of new information deserves a comment.
The PMU states that when there is no new information, ideally, rational agents should not
change their minds. In fact, it is difficult to imagine any notion of rationality that would
allow the possibility of changing one’s mind for no apparent reason.

Minimal updating offers yet another pragmatic advantage. As we shall see below,
rather than identifying what features of a distribution are singled out for updating and then
specifying the detailed nature of the update, we will adopt design criteria that stipulate
what is not to be updated. The practical advantage of this approach is that it enhances
objectivity—there are many ways to change something but only one way to keep it the
same. The analogy with mechanics can be pursued even further: if updating is a form of
dynamics, then minimal updating is the analogue of inertia. Rationality and objectivity
demand a considerable amount of inertia.

3.1.3. Independence

The next general requirement turns out to be crucially important because without it,
the very possibility of scientific theories would be compromised. The point is that every
scientific model, whatever the topic, if it is to be useful at all, must assume that all relevant
variables have been taken into account and that whatever was left out—the rest of the
universe—should not matter. To put it another way, in order to do scientific work, we must
be able to understand parts of the universe without having to understand the universe as a
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whole. Granted, a pragmatic understanding need not be complete and exact; it must be
merely adequate for our purposes.

The assumption, then, is that it is possible to focus our attention on a suitably chosen
system of interest and neglect the rest of the universe because the system and the rest of
the universe are “sufficiently independent”. Thus, in any form of science, the notion of
statistical independence must play a central and privileged role. This idea—that some
things can be neglected and that not everything matters—is implemented by imposing a
criterion that tells us how to handle independent systems. The chosen criterion is quite
natural: whenever two systems are a priori believed to be independent and we receive information
about just one, it should not matter if the other is included in the analysis or not. This is an
example of the PMU in action; it amounts to requiring that independence to be preserved
unless information about correlations is explicitly introduced.

Again, we emphasize that none of these criteria are imposed by nature. They are
desirable for pragmatic reasons; they are imposed by design.

3.2. Entropy as a Tool for Updating Probabilities

Consider a set of propositions {x} about which we are uncertain. The proposition
x can be discrete or continuous, in one or in several dimensions. It could, for example,
represent the microstate of a physical system, a point in phase space, or an appropriate set
of quantum numbers. The uncertainty about x is described by a probability distribution
q(x). The goal is to update from the prior distribution q(x) to a posterior distribution
p(x) when new information—by which we mean a set of constraints—becomes available.
The question is, which distribution among all those that satisfy the constraints should
we select?

Our goal is to design a method that allows a systematic search for the preferred
posterior distribution. The central idea, first proposed by Skilling [16], is disarmingly
simple: to select the posterior, first rank all candidate distributions in increasing order of
“preference” and then pick the distribution that ranks the highest. Irrespective of what it is
that makes one distribution “preferable” over another (we will get to that soon enough),
it is clear that any such ranking must be transitive: if distribution p1 is preferred over
distribution p2, and p2 is preferred over p3, then p1 is preferred over p3. Transitive rankings
are implemented by assigning to each p a real number S[p], which is called the entropy of
p in such a way that if p1 is preferred over p2, then S[p1] > S[p2]. The selected distribution
(one or possibly many, for there may be several equally preferred distributions) is that which
maximizes the entropy functional.

The importance of Skilling’s strategy of ranking distributions cannot be overestimated:
it answers the questions “why entropy?” and “why a maximum?”. The strategy implies
that the updating method will take the form of a variational principle—the method of
maximum entropy (ME)—involving a certain functional that maps distributions to real
numbers. These features are not imposed by nature; they are all imposed by design. They
are dictated by the function that the ME method is supposed to perform. (Thus, it makes
no sense to seek a generalization in which entropy is a complex number or a vector; such
generalized entropies would just not perform the desired function.)

Next, we specify the ranking scheme, that is, we choose a specific functional form for
the entropy S[p]. Note that the purpose of the method is to update from priors to posteriors so
the ranking scheme must depend on the particular prior q and therefore, the entropy S must
be a functional of both p and q. The entropy S[p, q] describes a ranking of the distributions
p relative to the given prior q. S[p, q] is the entropy of p relative to q, and accordingly, S[p, q]
is commonly called relative entropy. This is appropriate and sometimes we will follow
this practice. However, since all entropies are relative, even when relative to a uniform
distribution, the qualifier “relative” is redundant and can be dropped.

The functional S[p, q] is designed by a process of elimination—this is a process of
eliminative induction. First, we state the desired design criteria; this is the crucial step that
defines what makes one distribution preferable over another. Candidate functionals that
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fail to satisfy the criteria are discarded—hence, the qualifier “eliminative”. As we shall
see, the criteria adopted below are so constraining that there is a single entropy functional
S[p, q] that survives the process of elimination.

This approach has a number of virtues. First, to the extent that the design criteria
are universally desirable, the single surviving entropy functional will also be of universal
applicability. Second, the reason why alternative entropy candidates are eliminated is quite
explicit—at least one of the design criteria is violated. Thus, the justification behind the single
surviving entropy is not that it leads to demonstrably correct inferences, but rather, that all other
candidates demonstrably fail to perform as desired.

3.3. Specific Design Criteria

Consider a lattice of propositions generated by a set X of atomic propositions that
are mutually exclusive and exhaustive and are labeled by a discrete index i = 1, 2, . . . , n.
The extension to infinite sets and to continuous labels turns out to be straightforward.
The index i might, for example, label the microstates of a physical system but, since the
argument below is supposed to be of general validity, we shall not assume that the labels
themselves carry any particular significance. We can always permute labels; this should
have no effect on the updating of probabilities.

We adopt design criteria that reflect the structure of the lattice of propositions—the
propositions are related to each other by disjunctions (OR) and conjunctions (AND) and the
consistency of the web of beliefs is implemented through the sum and product rules of the
probability theory. Our criteria refer to the two extreme situations of propositions that are
mutually exclusive and of propositions that are mutually independent. At one end, we
deal with the probabilities of propositions that are highly correlated (if one proposition
is true, the other is false and vice versa); at the other end, we deal with the probabilities
of propositions that are totally uncorrelated (the truth or falsity of one proposition has
no effect on the truth or falsity of the other). One extreme is described by the simplified
sum rule, p(i ∨ j) = p(i) + p(j), and the other extreme by the simplified product rule,
p(i ∧ j) = p(i)p(j). (For an alternative approach to the foundations of inference that
exploits the various symmetries of the lattice of propositions see [40,41].

The two design criteria and their consequences for the functional form of entropy are
given below. Detailed proofs are deferred to the appendices.

3.3.1. Mutually Exclusive Subdomains

DC1: Probabilities that are conditioned on one subdomain are not affected by information about
other non-overlapping subdomains.

Consider a subdomain D ⊂ X composed of atomic propositions i ∈ D and suppose
the information to be processed refers to some other subdomain D′⊂ X that does not
overlap with D, D ∩D′ = ∅. In the absence of any new information about D, the PMU
demands, we do not change our minds about probabilities that are conditional on D. Thus,
we design the inference method so that q(i|D), the prior probability of i conditioned on
i ∈ D, is not updated. Thus, the selected conditional posterior is

P(i|D) = q(i|D) . (1)

We adopt the following notation: priors are denoted by q, candidate posteriors by lower case
p, and the selected posterior by upper case P. We shall write either p(i) or pi. Furthermore,
we adopt the notation, standard in physics where the probabilities of x and θ are written
p(x) and p(θ) but there is no implication that p refers to the same mathematical function.

We emphasize that the point is not that we make the unwarranted assumption that
keeping q(i|D) unchanged is guaranteed to lead to correct inferences. It need not; induction
is risky. The point is, rather, that in the absence of any evidence to the contrary, there is no
reason to change our minds and the prior information takes priority.
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The consequence of DC1 is that non-overlapping domains of i contribute additively
to the entropy,

S(p, q) = ∑
i

F(pi, qi) , (2)

where F is some unknown function of two arguments. The proof is given in Appendix A.

Comment 1: It is essential that DC1 refers to conditional probabilities—local information
about a domain D′ can (via normalization) have a non-local effect on the probability of
another domain D.

Comment 2: An important special case is the “update” from a prior q(i) to a posterior
P(i) in a situation in which no new information is available. The criterion DC1 applied
to a situation where the subdomain D covers the whole space of is, D = X , requires that
in the absence of any new information, the prior conditional probabilities are not to be updated:
P(i|X ) = q(i|X ) or P(i) = q(i).

Comment 3: The criterion DC1 implies Bayesian conditionalization as a special case.
Indeed, if the information is given through the constraint p(D̃) = 0, where D̃ is the
complement of D, then P(i|D) = q(i|D), which is referred to as Bayesian conditionalization.
More explicitly, if θ is the variable to be inferred on the basis of prior information about
a likelihood function q(i|θ) and observed data i′, then the update from the prior q to the
posterior P, is

q(i, θ) = q(i)q(θ|i) → P(i, θ) = P(i)P(θ|i) , (3)

consists of updating q(i) → P(i) = δii′ to agree with the new information and invoking the
PMU so that P(θ|i′) = q(θ|i′) remains unchanged. Therefore,

P(i, θ) = δii′q(θ|i′) so that P(θ) = q(θ|i′) = q(θ)
q(i′|θ)
q(i′) , (4)

which is Bayes’ rule. Thus, entropic inference is designed to include Bayesian inference as
a special case. Note, however, that imposing DC1 is not identical to imposing Bayesian
conditionalization: DC1 is not restricted to information in the form of absolute certainties,
such as p(D) = 1.

Comment 4: If the label i is turned into a continuous variable x, the criterion DC1 requires
that information that refers to points infinitely close but just outside the domain D will
have no influence on probabilities conditional on D. This may seem surprising, as it may
lead to updated probability distributions that are discontinuous, but it is not a problem.
In situations where we have explicit reasons to believe that conditions of continuity or
differentiability hold, then such conditions should be imposed explicitly. The inference
process should not be expected to discover and replicate information with which it was
not supplied.

3.3.2. Subsystem Independence

DC2: When two systems are a priori believed to be independent and the information we receive
about one of them makes no reference to the other, then it should not matter whether the latter is
included in the analysis of the former or not.

Consider a system of propositions labeled by a composite index, i = (i1, i2) ∈ X =
X1 × X2. For example, {i1} = X1 and {i2} = X2 might describe the microstates of
two separate physical systems. Assume that all prior evidence led us to believe the two
subsystems are independent, that is, any two propositions i1 ∈ X1 and i2 ∈ X2 are believed
to be independent. This belief is reflected in the prior distribution: if the individual
subsystem priors q1(i1) and q2(i2), then the prior for the whole system is q1(i1)q2(i2). Next,
suppose that new information is acquired such that q1(i1) would by itself be updated to
P1(i1), and that q2(i2) would by itself be updated to P2(i2). DC2 requires that S[p, q] be
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such that the joint prior q1(i1)q2(i2) updates to the product P1(i1)P2(i2) so that inferences
about one subsystem do not affect inferences about the other.

The consequence of DC2 is to fully determine the unknown function F in (2) so that
probability distributions p(i) should be ranked relative to the prior q(i) according to the
relative entropy,

S[p, q] = −∑
i

p(i) log
p(i)
q(i)

. (5)

Comment 1: We emphasize that the point is not that when we have no evidence for corre-
lations, we draw the firm conclusion that the systems must necessarily be independent.
Induction involves risk; the systems might, in actual fact, be correlated through some
unknown interaction potential. The point is rather that if the joint prior reflected indepen-
dence and the new evidence is silent on the matter of correlations, then the evidence we
actually have—namely, the prior—takes precedence, and there is no reason to change our
minds. As before, the PMU requires that a feature of the probability distribution—in this
case, independence—will not be updated unless the evidence requires it.

Comment 2: We also emphasize that DC2 is not a consistency requirement. The argument we
deploy is not that both the prior and the new information tell us the systems are independent
in which case consistency requires that it should not matter whether the systems are treated
jointly or separately. DC2 refers to a situation where the new information does not say
whether the systems are independent or not. Rather, the updating is being designed—
through the PMU—so that the independence reflected in the prior is maintained in the
posterior by default.

Comment 3: The generalization to continuous variables x ∈ X is approached as a Rie-
mann limit from the discrete case. A continuous probability density p(x) or q(x) can be
approximated by the discrete distributions. Divide the region of interest X into a large
number N of small cells. The probabilities of each cell are as follows:

pi = p(xi)Δxi and qi = q(xi)Δxi , (6)

where Δxi is an appropriately small interval. The discrete entropy of pi relative to qi is
as follows:

SN = −
N

∑
i=1

Δxi p(xi) log
[

p(xi)Δxi
q(xi)Δxi

]
, (7)

and in the limit as N → ∞ and Δxi → 0 we get the Riemann integral

S[p, q] = −
∫

dx p(x) log
[

p(x)
q(x)

]
. (8)

(To simplify the notation, we include multi-dimensional integrals by writing dnx = dx.)
It is easy to check that the ranking of distributions induced by S[p, q] is invariant under
coordinate transformations. The insight that coordinate invariance could be derived as a
consequence of the requirement of subsystem independence first appeared in [5].

3.4. The ME Method

We can now summarize the overall conclusion.

The ME method: The goal is to update from a prior distribution q to a posterior distribution
when there is new information in the form of constraints C that specify a family {p} of candidate
posteriors. The preferred posterior P is that which maximizes the relative entropy,

S[p, q] = −∑
i

pi log
pi
qi

or S[p, q] = −
∫

dx p(x) log
[

p(x)
q(x)

]
, (9)

within the family {p} specified by the constraints C.
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This extends the method of maximum entropy beyond its original purpose as a rule to
assign probabilities from a given underlying measure (MaxEnt) to a method for updating
probabilities from any arbitrary prior (ME). Furthermore, the logic behind the updating
procedure does not rely on any particular meaning assigned to the entropy whether in
terms of information, or heat, or disorder. Entropy is merely a tool for inductive inference.
No interpretation for S[p, q] is given and none is needed.

The derivation above has singled out a unique S[p, q] to be used in inductive inference.
Other “entropies” (such as the one-parameter families of entropies proposed in [12–14]
might turn out to be useful for other purposes—perhaps as measures of some kind of
“information”, as measures of discrimination or distinguishability among distributions,
of ecological diversity, or for some altogether different function—but they are unsatisfactory
for the purpose of updating because they fail to perform the functions stipulated by the
design criteria DC1 and DC2. They induce correlations that are unwarranted by the
information in the priors or the constraints.

4. Bayes’ Rule as a Special Case of ME

Back in Section 3.3.1, we saw that ME is designed to include Bayes’ rule as a special
case. Here, we wish to verify this explicitly [2]. The goal is to update our beliefs about
θ ∈ Θ (θ represents one or many parameters) on the basis of three pieces of information:
(1) the prior information codified into a prior distribution q(θ); (2) the new information
conveyed by data x ∈ X (obtained in one or many experiments); and (3) the known relation
between θ and x given by a model defined by the sampling distribution or likelihood,
q(x|θ). The updating will result in replacing the prior probability distribution q(θ) by a
posterior distribution P(θ) that applies after the data information has been processed.

The crucial element that will allow the Bayes’ rule to be smoothly integrated into
the ME scheme is the realization that before the data are collected, not only do we not
know θ, but we do not know x either. Thus, the relevant space for inference is not the
space Θ but the product space Θ ×X , and the relevant joint prior is q(x, θ) = q(θ)q(x|θ).
Let us emphasize two points: first, the likelihood function is an integral part of the prior
distribution; second, the prior information about how x is related to θ is contained in the
functional form of the distribution q(x|θ) and not in the numerical values of the arguments
x and θ, which, at this point, are still unknown.

Next, data are collected and the observed values turn out to be x′. We must update to
a posterior that lies within the family of distributions p(x, θ) that reflect the fact that the
previously unknown x is now known to be x′, that is,

p(x) =
∫

dθ p(θ, x) = δ(x − x′) . (10)

The information in this data constrains but is not sufficient to fully determine the joint
distribution,

p(x, θ) = p(x)p(θ|x) = δ(x − x′)p(θ|x′) . (11)

Any choice of p(θ|x′) is, in principle, possible. So far, the formulation of the problem
parallels Section 3.3.1 exactly. We are, after all, solving the same problem. The next step is
to apply the ME method.

According to the ME method, the selected joint posterior P(x, θ) is that which maxi-
mizes the entropy,

S[p, q] = −
∫

dxdθ p(x, θ) log
p(x, θ)

q(x, θ)
, (12)

subject to the data constraints. Note that Equation (10) represents an infinite number of
constraints on the family p(x, θ): there is one constraint and one Lagrange multiplier λ(x)
for each value of x. Maximizing S, (12), subject to (10) and normalization,

δ
{

S + α[
∫

dxdθ p(x, θ)− 1] +
∫

dx λ(x)
[∫

dθ p(x, θ)− δ(x − x′)
]}

= 0 , (13)
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yields the joint posterior

P(x, θ) = q(x, θ)
eλ(x)

Z
, (14)

where Z is a normalization constant, and the multiplier λ(x) is determined from (10)
as follows: ∫

dθ q(x, θ)
eλ(x)

Z
= q(x)

eλ(x)

Z
= δ(x − x′) , (15)

so that the joint posterior is

P(x, θ) = q(x, θ)
δ(x − x′)

q(x)
= δ(x − x′)q(θ|x) . (16)

The corresponding marginal posterior probability P(θ) is

P(θ) =
∫

dx P(θ, x) = q(θ|x′) = q(θ)
q(x′|θ)
q(x′) , (17)

which is Bayes’ rule. Thus, Bayes’ rule is derivable from, and therefore consistent with,
the ME method.

To summarize, the prior q(x, θ) = q(x)q(θ|x) is updated to the posterior P(x, θ) =
P(x)P(θ|x), where P(x) = δ(x − x′) is fixed by the observed data while P(θ|x′) = q(θ|x′)
remains unchanged. Note that in accordance with the PMU philosophy that drives the ME
method, one only updates those aspects of one’s beliefs for which corrective new evidence has been
supplied. In [2,8,42], further examples are given that show how ME allows generalizations
of Bayes’ rule to situations where the data itself are uncertain, there is information about
moments of x or moments of θ, or even in situations where the likelihood function is
unknown. In conclusion, the ME method of maximum entropy can fully reproduce and
then go beyond the results obtained by the standard Bayesian methods.

5. Deviations from Maximum Entropy

The basic ME problem is to update from a prior q(x) given information specified by
certain constraints. The constraints specify a family of candidate distributions as follows:

pθ(x) = p(x|θ) (18)

which can be conveniently labeled with a finite number of parameters θa, a = 1 . . . n. (The
generalization to an infinite number of parameters poses technical but not insurmountable
difficulties.) Thus, the parameters θ are coordinates on the statistical manifold specified by
the constraints. The distributions in this manifold are ranked according to their entropy,

S[pθ , q] = −
∫

dx p(x|θ) log
p(x|θ)
q(x)

= S(θ) , (19)

and the selected posterior is the distribution p(x|θ0) that maximizes the entropy S(θ). (The
notation indicates that S[pθ , q] is a functional of pθ while S(θ) is a function of θ.)

The question we now address concerns the extent to which p(x|θ0) should be preferred
over other distributions with lower entropy or, to put it differently, to what extent is it
rational to believe that the selected value ought to be the entropy maximum θ0 rather than
any other value θ [1]? This is a question about the probability p(θ) of various values of θ.
The original problem which led us to design the maximum entropy method was to assign
a probability to the quantity x; we now see that the full problem is to assign probabilities to
both x and θ. We are concerned not just with p(x), but rather with the joint distributions
which we denote as π(x, θ); the universe of discourse has been expanded from X (the
space of xs) to the product space X × Θ (Θ is the space of parameters θ).

To determine the joint distribution π(x, θ) ,we make use of essentially the only (uni-
versal) method at our disposal—the ME method itself—but this requires that we address
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the standard two preliminary questions: First, what is the prior distribution? What do we
know about x and θ before we receive information about the constraints? Second, what is
the new information that constrains the allowed joint distributions π(x, θ)?

This first question is the more subtle one: when we know absolutely nothing about
the θs, we know neither their physical meaning nor whether there is any relation to the xs.
A joint prior that reflects this lack of correlations is a product, q(x, θ) = q(x)q(θ). We will
assume that the prior q(x) is known—it is the same prior we had used when we updated
from q(x) to p(x|θ0) using (19).

However, we are not totally ignorant about the θs: we know that they label dis-
tributions π(x|θ) on some as yet unspecified statistical manifold Θ. Then there exists
a natural measure of distance in the space Θ. It is given by the information metric
d�2 = gabdθadθb [8,43], where

gab =
∫

dx p(x|θ)∂ log p(x|θ)
∂θa

∂ log p(x|θ)
∂θb , (20)

and the corresponding volume elements are given by g1/2(θ)dnθ, where g(θ) is the deter-
minant of the metric. The uniform prior for θ, which assigns equal probabilities to equal
volumes, is proportional to g1/2(θ), and therefore we choose q(θ) = g1/2(θ). Therefore,
the joint prior is q(x, θ) = q(x)g1/2(θ).

Next, we tackle the second question: what are the constraints on the allowed joint
distributions π(x, θ)? Consider the space of all joint distributions. To each choice of the
functional form of π(x|θ) (for example, whether we talk about Gaussians, Boltzmann–
Gibbs distributions, or something else), there corresponds a different subspace defined
by distributions of the form π(x, θ) = π(θ)π(x|θ). The crucial constraint is that which
specifies the subspace by imposing that π(x|θ) takes the particular functional form given
by the constraint (18), π(x|θ) = p(x|θ). This defines the meaning to the θs and also fixes
the prior g1/2(θ) on the relevant subspace.

The preferred joint distribution, P(x, θ) = P(θ)p(x|θ), is the distribution, π(x, θ) =
π(θ)p(x|θ), that maximizes the joint entropy,

S [π, q] = −
∫

dx dθ π(θ)p(x|θ) log
π(θ)p(x|θ)
g1/2(θ)q(x)

= −
∫

dθ π(θ) log
π(θ)

g1/2(θ)
+
∫

dθ π(θ)S(θ) , (21)

where S(θ) is given in (19). Varying (21) with respect to π(θ) with
∫

dθ π(θ) = 1 and
p(x|θ) fixed yields the posterior probability that the value of θ lies within the small volume
g1/2(θ)dnθ,

P(θ)dnθ =
1
ζ

eS(θ)g1/2(θ)dnθ with ζ =
∫

dnθ g1/2(θ) eS(θ). (22)

Equation (22) is the result we seek. It tells us that, as expected, the preferred value of θ is
the value θ0 that maximizes the entropy S(θ), Equation (19), because this maximizes the
scalar density exp S(θ). However, it also tells us the degree to which values of θ away from
the maximum are ruled out. (Note that the density exp S(θ) is a scalar function and the
presence of the Jacobian factor g1/2(θ) makes Equation (22) manifestly invariant under
changes of the coordinates θ in the space Θ.)

This discussion allows us to refine our understanding of the ME method. ME is not
an all-or-nothing recommendation to pick the single distribution that maximizes entropy
and reject all others. The ME method is more nuanced: in principle, all distributions within
the constraint manifold ought to be included in the analysis; they contribute in proportion
to the exponential of their entropy and this turns out to be significant in situations where
the entropy maximum is not particularly sharp.
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Going back to the original problem of updating from the prior q(x), given information
that specifies the manifold {p(x|θ)}, the preferred update within the family {p(x|θ)} is
p(x|θ0), but to the extent that other values of θ are not totally ruled out, a better update is
obtained marginalizing the joint posterior P(x, θ) = P(θ)p(x|θ) over θ,

P(x) =
∫

dnθ P(θ)p(x|θ) =
∫

dnθ g1/2(θ)
eS(θ)

ζ
p(x|θ) . (23)

In situations where the entropy maximum at θ0 is very sharp, we recover the old result,

P(x) ≈ p(x|θ0) . (24)

When the entropy maximum is not very sharp a more honest update is Equation (23),
which, incidentally, is a form of superstatistics.

One of the limitations of the standard MaxEnt method is that it selects a single
“posterior” p(x|θ0) and strictly rules out all other distributions. The result (22) overcomes
this limitation and finds many applications. For example, it extends the Einstein theory of
thermodynamic fluctuations beyond the regime of small fluctuations; it provides a bridge
to the theory of large deviations; and, suitably adapted for Bayesian data analysis, it leads
to the notion of entropic priors [44].

6. Discussion

Consistency with the law of large numbers.

Entropic methods of inference are of general applicability but there exist special
situations—for example, those involving large numbers of independent subsystems—
where inferences can be made by purely probabilistic methods without ever invoking
the concept of entropy. In such cases, one can check (see, for example, [6,45]) that the
two methods of calculation are consistent with each other. It is significant, however, that
alternative entropies, such as those proposed in [12–14], do not pass this test [46,47],
which rules them out as tools for updating. Some probability distributions obtained by
maximizing the alternative entropies have, however, turned out to be physically relevant.
It is, therefore, noteworthy that those successful distributions can also be derived through a
more standard application of MaxEnt or ME, as advocated in this review [8,48–51]. In other
words, what is being ruled out are not the distributions themselves, but the alternative
entropies from which they were inferred.

On priors.

Choosing the prior density q(x) can be tricky. Sometimes, symmetry considerations
can be useful but otherwise, there is no fixed set of rules to translate information into a
probability distribution except, of course, for Bayes’ rule and the ME method themselves.

What if the prior q(x) vanishes for some values of x? S[p, q] can be infinitely negative
when q(x) vanishes within some region D. This means that the ME method confers an
infinite preference on those distributions p(x) that vanish whenever q(x) does. One must
emphasize that this is as it should be. A similar situation also arises in the context of Bayes’
theorem, where assigning a vanishing prior represents a tremendously serious commitment
because no amount of data to the contrary would allow us to revise it. In both ME and Bayes
updating, we should recognize the implications of assigning a vanishing prior. Assigning a
very low but non-zero prior represents a safer and possibly less prejudiced representation
of one’s prior beliefs.

Commuting and non-commuting constraints.

The ME method allows one to process information in the form of constraints. When
we are confronted with several constraints, we must be particularly cautious. Should they
be processed simultaneously or sequentially? And, if the latter, in what order? The answer
depends on the problem at hand [42].
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We refer to constraints as commuting when it makes no difference whether they are
handled simultaneously or sequentially. The most common example is that of Bayesian
updating on the basis of data collected in several independent experiments. In this case,
the order in which the observed data x′ = {x′1, x′2, . . .} are processed does not matter for
the purpose of inferring θ. In general, however, constraints need not commute and when
this is the case, the order in which they are processed is critical.

To decide whether constraints are to be handled sequentially or simultaneously, one
must be clear about how the ME method handles constraints. The ME machinery interprets
a constraint in a very mechanical way: all distributions satisfying the constraint are,
in principle, allowed, while all distributions violating it are ruled out. Therefore, sequential
updating is appropriate when old constraints become obsolete and are superseded by new
information, while simultaneous updating is appropriate when old constraints remain
valid. The two cases refer to different states of information, and therefore, it is to be expected
that they will result in different inferences. These comments are meant to underscore the
importance of understanding what information is and how it is processed by the ME
method; failure to do so will lead to errors that do not reflect a shortcoming of the ME
method but rather a misapplication of it.

Pitfalls?

Entropy is a tool for reasoning and—as with all tools for reasoning or otherwise—it
can be misused, leading to unsatisfactory results [52]. Should that happen, the inevitable
questions are “what went wrong?” and “how do we fix it?” It helps to first ask what
components of the analysis can be trusted so that the possible mistakes can be looked for
elsewhere. The answers proposed by the ME method are radically conservative: problems
always arise through a wrong choices of variables, priors, or constraints. Indeed, one
should not blame the entropic method for not having discovered and taken into account
relevant information that was not explicitly introduced into the analysis. Indeed, just as
one would be very reticent about questioning the basic rules of arithmetic, or the basic rules
of calculus, one should not question the basic sum and product rules of the probability
calculus and, taking this one step farther, one should not question the applicability of
entropy as the updating tool. The adoption of this conservative approach leads us to
reject alternative entropies and quantum probabilities. Fortunately, those constructs are
not actually needed—as mentioned above, those Tsallis distributions that have turned
out be useful can be derived with standard entropic methods [8,48–51], and quantum
mechanics can be handled within standard probability theory without invoking exotic
probabilities [39,53].
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Appendix A. DC1—Mutually Exclusive Subdomains

In these appendices, we establish the consequences of the two criteria DC1 and DC2,
leading to the final result: Equation (9). The details of the proofs are important not just
because they lead to our final conclusions, but also because the translation of the verbal
statement of the criteria into precise mathematical form is a crucial part of unambiguously
specifying what the criteria actually say.
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First, we prove that criterion DC1 leads to the expression Equation (2) for S[p, q]. Con-
sider the case of a discrete variable, pi with i = 1 . . . n, so that S[p, q] = S(p1 . . . pn, q1 . . . qn).
Suppose the space of states X is partitioned into two non-overlapping domains D and D̃
with D ∪ D̃ = X , and that the information to be processed is in the form of a constraint
that refers to the domain D̃,

∑
j∈D̃

aj pj = A . (A1)

DC1 states that the constraint on D̃ does not have an influence on the conditional proba-
bilities pi|D . It may, however, influence the probabilities pi within D through an overall
multiplicative factor. To deal with this complication, consider then a special case where the
overall probabilities of D and D̃ are also constrained:

∑
i∈D

pi = PD and ∑
j∈D̃

pj = PD̃ , (A2)

with PD + PD̃ = 1. Under these special circumstances, constraints on D̃ will not influence
pis within D, and vice versa.

To obtain the posterior, maximize S[p, q] subject to these three constraints,

0 =

[
δS − λ

(
∑

i∈D
pi − PD

)
+

− λ̃

(
∑

j∈D̃
pi − PD̃

)
+ μ

(
∑

j∈D̃
aj pj − A

)]
,

leading to

∂S
∂pi

= λ for i ∈ D , (A3)

∂S
∂pj

= λ̃ + μaj for j ∈ D̃ . (A4)

Equations (A1)–(A4) are n + 3 equations; we must solve for the pis and the three Lagrange
multipliers, λ, λ̃, and μ. Since S = S(p1 . . . pn, q1 . . . qn) its derivative

∂S
∂pi

= fi(p1 . . . pn, q1 . . . qn)

could, in principle, also depend on all 2n variables. However, this violates the DC1 criterion
because any arbitrary change in aj within D̃ would influence the pis within D. The only
way that probabilities conditioned on D can be shielded from arbitrary changes in the
constraints pertaining to D̃ is that for any i ∈ D, the function fi depends only on pjs with
j ∈ D. Furthermore, this must hold not just for one particular partition of X into domains
D and D̃, but it must hold for all conceivable partitions, including the partition into atomic
propositions. Therefore, fi can depend only on pi,

∂S
∂pi

= fi(pi, q1 . . . qn) . (A5)

The power of the criterion DC1 is not exhausted yet. The information that affects
the posterior can enter not just through constraints, but also through the prior. Suppose
that the local information about domain D̃ is altered by changing the prior within D̃. Let
qj → qj + δqj for j ∈ D̃. Then (A5) becomes

∂S
∂pi

= fi(pi, q1 . . . qj + δqj . . . qn),
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which shows that pi with i ∈ D will be influenced by information about D̃ unless fi with
i ∈ D is independent of all the qjs for j ∈ D̃. Again, this must hold for all possible partitions
into D and D̃, and therefore,

∂S
∂pi

= fi(pi, qi) for all i ∈ X .

The choice of the functions fi(pi, qi) can be restricted further. If we maximize S[p, q],
subject to constraints

∑i pi = 1 and ∑iai pi = A

we obtain
∂S
∂pi

= fi(pi, qi) = λ + μai for all i ∈ X ,

where λ and μ are Lagrange multipliers. Solving for pi gives a posterior,

Pi = gi(qi, λ, μ, ai)

for some functions gi. As stated in Section 3.3 we do not assume that the labels i themselves
carry any particular significance. This means, in particular, that for any proposition labeled
i, we want the selected posterior Pi to depend only on the numbers qi, λ, μ, and ai. We
do not want to have different updating rules for different propositions: two different
propositions i and i′ with the same qi = qi′ and the same ai = ai′ should be updated to
the same posteriors, Pi = Pi′ . In other words, the functions gi and fi must be independent
of i. Therefore,

∂S
∂pi

= f (pi, qi) for all i ∈ X . (A6)

Integrating, one obtains
S[p, q] = ∑iF(pi, qi) + constant .

for some still undetermined function F. The constant has no effect on the entropy maxi-
mization and can be dropped.

The corresponding expression for a continuous variable x is obtained replacing i by x,
and the sum over i by an integral over x leading to Equation (2),

S[p, q] =
∫

dx F(p(x), q(x)) .

Appendix B. DC2—Independent Subsystems

Here, we show that DC2 leads to Equation (9). Let the microstates of a composite
system be labeled by (i1, i2) ∈ X = X1 ×X2. We shall consider two special cases.

Case (a)

First, we treat the two subsystems separately. Suppose that for subsystem 1, we have
the extremely constraining information that updates q1(i1) to be P1(i1), and for subsystem
2 we have no new information at all. For subsystem 1, we maximize S1[p1, q1] subject
to the constraint p1(i1) = P1(i1) and the selected posterior is, of course, p1(i1) = P1(i1).
For subsystem 2, we maximize S2[p2, q2] subject only to normalization and there is no
update, P2(i2) = q2(i2).

When the systems are treated jointly, however, the inference is not nearly as trivial.
We want to maximize the entropy of the joint system,

S[p, q] = ∑
i1,i2

F(p(i1, i2), q1(i1)q2(i2)) ,
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subject to the constraint on subsystem 1,

∑i1 p(i1, i2) = P1(i1) .

Notice that this is not just one constraint: we have one constraint for each value of i1,
and each constraint must be supplied with its own Lagrange multiplier, λ1(i1). Then,

δ
[
S − ∑i1 λ1(i1)

(
∑i2 p(i1, i2)− P1(i1)

)]
= 0 .

The independent variations δp(i1, i2) yield the following:

f (p(i1, i2), q1(i1)q2(i2)) = λ1(i1) ,

where f is given in (A6),

∂S
∂p

=
∂

∂p
F(p, q1q2) = f (p, q1q2) .

Next, we impose that the selected posterior is the product P1(i1)q2(i2). The function f must
be such that

f (P1q2, q1q2) = λ1 .

Since the RHS is independent of the argument i2, the f function must be such that the
i2-dependence cancels out, and this cancellation must occur for all values of i2 and all
choices of the prior q2. Therefore, we impose that for any value of x the function f (p, q)
must satisfy

f (px, qx) = f (p, q) .

Choosing x = 1/q, we obtain

f
(

p
q

, 1
)
= f (p, q) or

∂F
∂p

= f (p, q) = φ

(
p
q

)
. (A7)

Thus, the function f (p, q) has been reduced to a function φ(p/q) of a single argument.

Case (b)

Next, we consider a situation in which both subsystems are updated by extremely
constraining information: when the subsystems are treated separately, q1(i1) is updated to
P1(i1) and q2(i2) is updated to P2(i2). When the systems are treated jointly, we require that
the joint prior for the combined system q1(i1)q2(i2) be updated to P1(i1)P2(i2).

First we treat the subsystems separately. Maximize the entropy of subsystem 1,

S[p1, q1] = ∑i1 F (p1(i1), q1(i1)) subject to p1(i1) = P1(i1) .

To each constraint—one constraint for each value of i1—we must supply one Lagrange
multiplier, λ1(i1). Then, we obtain

δ
[
S − ∑i1 λ1(i1)( p(i1)− P1(i1))

]
= 0 .

Using Equation (A7),
∂S
∂p1

=
∂

∂p1
F(p1, q1) = φ

(
p1

q1

)
,

and, imposing that the selected posterior be P1(i1), we find that the function φ must obey

φ

(
P1(i1)
q1(i1)

)
= λ1(i1) . (A8)
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Similarly, for system 2 we find the following:

φ

(
P2(i2)
q2(i2)

)
= λ2(i2) . (A9)

Next, we treat the two subsystems jointly. Maximize the entropy of the joint system
as follows:

S[p, q] = ∑
i1,i2

F (p(i1, i2), q1(i1)q2(i2)) ,

subject to the following constraints on the joint distribution p(i1, i2):

∑i2 p(i1, i2) = P1(i1) and ∑i1 p(i1, i2) = P2(i2) .

Again, there is one constraint for each value of i1 and of i2 and we introduce Lagrange
multipliers, η1(i1) or η2(i2). Then,

δ
[
S − ∑i1 η1(i1)

(
∑i2 p(i1, i2)− P1(i1)

)− {1 ↔ 2}] = 0,

where {1 ↔ 2} indicates a third term, similar to the second, with 1 and 2 interchanged.
The independent variations δp(i1, i2) yield

φ

(
p(i1, i2)

q1(i1)q2(i2)

)
= η1(i1) + η2(i2) ,

and we impose that the selected posterior be the product P1(i1)P2(i2). Therefore, the func-
tion φ must be such that

φ

(
P1P2

q1q2

)
= η1 + η2 .

To solve this equation, we take the exponential of both sides, let ξ = exp φ, and rewrite as

ξ

(
P1P2

q1q2

)
e−η2(i2) = eη1(i1) . (A10)

This shows that for any value of i1, the dependences of the LHS on i2 through P2/q2 and
η2 must cancel each other out. In particular, if for some subset of i2s, the subsystem 2 is
updated so that P2 = q2, which amounts to no update at all, the i2 dependence on the left
is eliminated but the i1 dependence remains unaffected,

ξ

(
P1

q1

)
e−η′2 = eη1(i1) .

where η′
2 is some constant independent of i2. A similar argument with {1 ↔ 2} yields

ξ

(
P2

q2

)
e−η′1 = eη2(i2) ,

where η′
1 is a constant. Taking the exponential of (A8) and (A9) leads to the following:

ξ

(
P1

q1

)
e−η′2 = eλ1−η′2 = eη1 and ξ

(
P2

q2

)
e−η′1 = eλ2−η′1 = eη2 .

Substituting back into (A10), we obtain

ξ

(
P1P2

q1q2

)
= ξ

(
P1

q1

)
ξ

(
P2

q2

)
,
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where a constant factor e−(η′1+η′2) is absorbed into a new function ξ. The general solution of
this functional equation is a power,

ξ(xy) = ξ(x)ξ(y) =⇒ ξ(x) = xa ,

so that
φ(x) = a log x + b ,

where a and b are constants. Finally, integrate (A7),

∂F
∂p

= φ

(
p
q

)
= a log

p
q
+ b ,

to obtain
F[p, q] = ap log

p
q
+ b′p + c

where b′ and c are constants.
At this point, the entropy takes the general form

S[p, q] = ∑i

(
api log

pi
qi

+ b′pi + c
)

.

The additive constant c may be dropped: it contributes a term that does not depend on the
probabilities and has no effect on the ranking scheme. Furthermore, since S[p, q] will be
maximized subject to constraints that include normalization, the b′ term has no effect on
the selected distribution and can also be dropped. Finally, the multiplicative constant a
has no effect on the overall ranking, except in the trivial sense that inverting the sign of
a will transform the maximization problem to a minimization problem or vice versa. We
can, therefore, set a = −1 so that maximum S corresponds to maximum preference, which
gives us Equation (9) and concludes our derivation.
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Abstract: The measures of information transfer which correspond to non-additive entropies have
intensively been studied in previous decades. The majority of the work includes the ones belonging
to the Sharma–Mittal entropy class, such as the Rényi, the Tsallis, the Landsberg–Vedral and the
Gaussian entropies. All of the considerations follow the same approach, mimicking some of the
various and mutually equivalent definitions of Shannon information measures, and the information
transfer is quantified by an appropriately defined measure of mutual information, while the maximal
information transfer is considered as a generalized channel capacity. However, all of the previous
approaches fail to satisfy at least one of the ineluctable properties which a measure of (maximal) in-
formation transfer should satisfy, leading to counterintuitive conclusions and predicting nonphysical
behavior even in the case of very simple communication channels. This paper fills the gap by propos-
ing two parameter measures named the α-q-mutual information and the α-q-capacity. In addition
to standard Shannon approaches, special cases of these measures include the α-mutual information
and the α-capacity, which are well established in the information theory literature as measures of
additive Rényi information transfer, while the cases of the Tsallis, the Landsberg–Vedral and the
Gaussian entropies can also be accessed by special choices of the parameters α and q. It is shown
that, unlike the previous definition, the α-q-mutual information and the α-q-capacity satisfy the set of
properties, which are stated as axioms, by which they reduce to zero in the case of totally destructive
channels and to the (maximal) input Sharma–Mittal entropy in the case of perfect transmission,
which is consistent with the maximum likelihood detection error. In addition, they are non-negative
and less than or equal to the input and the output Sharma–Mittal entropies, in general. Thus, unlike
the previous approaches, the proposed (maximal) information transfer measures do not manifest
nonphysical behaviors such as sub-capacitance or super-capacitance, which could qualify them as
appropriate measures of the Sharma–Mittal information transfer.

Keywords: rényi entropy; tsallis entropy; landsberg—vedral entropy; gaussian entropy; sharma—
mittal entropy; α-mutual information; α-channel capacity

1. Introduction

In the past, extensive work has been written on defining the information measures
which generalize the Shannon entropy [1], such as the one-parameter Rényi entropy [2], the
Tsallis entropy [3], the Landsberg–Vedral entropy [4], the Gaussian entropy [5], and the two-
parameter Sharma–Mittal entropy [5,6], which reduces to former ones for special choices
of the parameters. The Sharma–Mittal entropy can axiomatically be founded as the unique
q-additive measure [7,8] which satisfies generalized Shannon–Kihinchin axioms [9,10] and
which has widely been explored in different research fields starting from statistics [11]
and thermodynamics [12,13] to quantum mechanics [14,15], machine learning [16,17] and
cosmology [18,19]. The Sharma–Mittal entropy has also been recognized in the field
of information theory, where the measures of conditional Sharma–Mittal entropy [20],
Sharma–Mittal divergences [21] and Sharma–Mittal entropy rate [22] have been established
and analyzed.
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Considerable research has also been done in the field of communication theory in
order to analyze information transmission in the presence of noise if, instead of Shannon’s
entropy, the information is quantified with (instances of) Sharma–Mittal entropy and, in
general, the information transfer is quantified by an appropriately defined measure of
mutual information, while the maximal information transfer is considered as a generalized
channel capacity. Thus, after Rényi’s proposal for the additive generalization of Shannon
entropy [2], several different definitions for Rényi information transfer were proposed
by Sibson [23], Arimoto [24], Augustin [25], Csiszar [26], Lapidoth and Pfister [27] and
Tomamichel and Hayashi [28]. These measures have been explored thoroughly and their
operational characterization in coding theory, hypothesis testing, cryptography and quan-
tum information theory was established, which qualifies them as a reasonable measure
of Rényi information transfer [29]. Similar attempts have also been made in the case of
non-additive entropies. Thus, starting from the work of Daroczy [30], who introduced a
measure for generalized information transfer related to the Tsallis entropy, several attempts
followed for the measures which correspond to non-additive particular instances of the
Sharma–Mittal entropy, so the definitions for the Rényi information transfer were consid-
ered in [24,31], for the Tsallis information transfer in [32] and for the Landsber–Vedral
information transfer in [4,33].

In this paper we provide a general treatment of the Sharma–Mittal entropy transfer
and a detailed analysis of existing measures, showing that all of the definitions related to
non-additive entropies fail to satisfy at least one of the ineluctable properties common to
the Shannon case, which we state as axioms, by which the information transfer has to be
non-negative, less than the input and output uncertainty, equal to the input uncertainty
in the case of perfect transmission and equal to zero, in the case of a totally destructive
channel. Thus, breaking some of these axioms implies unexpected and counterintuitive
conclusions about the channels, such as achieving super-capacitance or sub-capacitance [4],
which could be treated as nonphysical behavior. As an alternative, we propose the α-q-
mutual information as a measure of Sharma–Mittal information transfer, maximized with
the α-q-capacity. The α-q mutual information generalizes the α-mutual information by
Arimoto [24], which is defined as a q-difference between the input Sharma–Mittal entropy
and the appropriately defined conditional Sharma–Mittal entropy if the output is given,
while the α-q-capacity represents a generalization of Arimoto’s α-capacity in the case of
q = 1. In addition, several other instances can be obtained by specifying the values of
parameters α and q, which includes the information transfer measures for the Tsallis, the
Landsber–Vedral and the Shannon entropy, as well as the case of the Gaussian entropy
which was not considered before in the context of information transmission.

The paper is organized as follows. The basic properties and special instances of the
Sharma–Mittal entropy are listed in Section 2. Section 3 reviews the basics of communica-
tion theory, introduces the basic communication channels and establishes the set of axioms
which information transfer measures should satisfy. The information transfer measures
which are defined by Arimoto are introduced in Section 4, and the alternative definitions
for Rényi information transfer measures are discussed in Section 5. Finally, the α-q-mutual
information and the α-q-capacities are proposed and their properties analyzed in Section 6
while the previously proposed measures of Sharma–Mittal entropy transfer are discussed
in Section 7.

2. Sharma–Mittal Entropy

Let the sets of positive and nonnegative real numbers be denoted with R+ and R
+
0 ,

respectively, and let the mapping ηq : R → R be defined in

ηq(x) =

⎧⎪⎨⎪⎩
x, for q = 1

2(1−q) x − 1
(1 − q) ln 2

, for q = 1
(1)
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so that its inverse is given in

η−1
q (x) =

⎧⎪⎨⎪⎩
x, for q = 1

1
1 − q

log((1 − q)x ln 2 + 1), for q = 1
. (2)

The mapping ηq and its inverse are increasing continuous (hence invertible) functions such
that η(0) = 0. The q-logarithm is defined in

Logq(x) = ηq(log x) =

⎧⎪⎨⎪⎩
log x, for q = 1

x(1−q) − 1
(1 − q) ln 2

, for q = 1
, (3)

and its inverse, the q-exponential, is defined in

Expq(y) =

{
2y, for q = 1

(1 + (1 − q)y ln 2)
1

1−q for q = 1
, (4)

for 1 + (1 − q)y ln 2 > 0. Using ηq, we can define the pseudo-addition operation ⊕q [7,8]

x ⊕q y = ηq

(
η−1

q (x) + η−1
q (y)

)
= x + y + (1 − q)xy; x, y ∈ R, (5)

and its inverse operation, the pseudo substraction

x �q y = ηq

(
η−1

q (x)− η−1
q (y)

)
=

x − y
1 + (1 − q)y ln 2

; x, y ∈ R. (6)

The ⊕q can be rewritten in terms of the generalized logarithm by settings x = log u and
y = log v so that

Logq(u · v) = Logq(u)⊕q Logq(v); u, v ∈ R+. (7)

Let the set of all n-dimensional distributions be denoted with

Δn ≡
{
(p1, . . . , pn)

∣∣∣ pi ≥ 0,
n

∑
i=1

pi = 1

}
; n > 1. (8)

Let the function Hn : Δn → R
+
0 satisfy the following the Shannon–Khinchin axioms, for all

n ∈ N, n > 1.

GSK1 Hn is continuous in Δn;
GSK2 Hn takes its largest value for the uniform distribution, Un = (1/n, . . . , 1/n) ∈ Δn,

i.e., Hn(P) ≤ Hn(Un), for any P ∈ Δn;
GSK3 Hn is expandable: Hn+1(p1, p2, . . . , pn, 0) = Hn(p1, p2, . . . , pn) for all

(p1, . . . , pn) ∈ Δn;
GSK4 Let P = (p1, . . . , pn) ∈ Δn, PQ = (r11, r12, . . . , rnm) ∈ Δnm, n, m ∈ N, n, m > 1 such

that pi = ∑m
j=1 rij, and Q|k = (q1|k, . . . , qm|k) ∈ Δm, where qi|k = rik/pk and α ∈ R

+
0

are some fixed parameters. Then,

Hnm(PQ) = Hn(P)⊕q Hm(Q|P), where Hm(Q|P) = f−1

(
n

∑
k=1

p(α)k f (Hm(Q|k))
)

, (9)

where f is an invertible continuous function and P(α) = (p(α)1 , . . . , p(α)n ) ∈ Δn is the
α-escort distribution of distribution P ∈ Δn defined in

p(α)k =
pα

k
∑n

i=1 pα
i

, k = 1, . . . , n, α > 0. (10)
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GSK5 H2

(
1
2 , 1

2

)
= Logq(1).

As shown in [9], the unique function Hn, which satisfies [GSK1]-[GSK5], is Sharma–
Mittal entropy [6].

In the following paragraphs we will assume that X and Y are discrete jointly dis-
tributed random variables taking values from sample spaces {x1, . . . , xn} and {y1, . . . , ym},
and distributed in accordance to PX ∈ Δn and PY ∈ Δm, respectively. In addition, the joint
distribution of X and Y will be denoted in PX,Y ∈ Δnm and the conditional distribution

of X given Y will be denoted in PX|Y =
PX,Y(x,y)

PY(y)
∈ Δm, provided that PY(y) > 0. We will

identify the entropy of a random variable X with the entropy of its distribution PX and the
Sharma–Mittal entropy will be denoted with Hα,q(X) ≡ Hn(PX).

Thus, for a random variable which is distributed to X, Sharma–Mittal entropy can be
expressed in

Hα,q(X) =
1

1 − q

⎛⎜⎝(
∑
x

PX(x)α

) 1−q
1−α

− 1

⎞⎟⎠, (11)

and it can equivalently be expressed as the ηq transformation of Rényi entropy as in

Hα,q(X) ≡ ηq(Rα(X)). (12)

Sharma–Mittal entropy, for α, q ∈ R
+
0 \ 1, being a continuous function of the parameters

and the sums goes over the support of PX . Thus, in the case of q = 1, α = 1, Sharma–Mittal
reduces to Rényi entropy of order α [2]

Rα(X) ≡ Hα,1(X) =
1

1 − α
log

(
∑
x

PX(x)α

)
, (13)

which further reduces to Shannon entropy for α = 1, q = 1, [34]

S(X) ≡ H1,1(X) = ∑
x

PX(x) log PX(x), (14)

while in the case of q = 1, α = 1 it reduces to Gaussian entropy [5]

Gq(X) ≡ H1,q(X) =
1

(1 − q) ln 2

(
n

∏
i=1

PX(x)PX(x) − 1

)
. (15)

In addition, Tsallis entropy [3] is obtained for α = q = 1,

Tq(X) ≡ 1
(1 − q) ln 2

(
∑
x

PX(x)q − 1

)
, (16)

while in the case of for q = 2 − α it reduces to the Landsberg–Vedral entropy [4]

Lα(X) ≡ Hα,2−α(X) =
1

(α − 1) ln 2

(
1

∑x PX(x)α
− 1

)
. (17)

3. Sharma–Mittal Information Transfer Axioms

One of the main goals of information and communication theories is characteriza-
tion and analysis of the information transfer between sender X and receiver Y, which
communicate through a channel. The sender and receiver are described by probability
distributions PX and PY while the communication channel with the input X and the output
Y is described by the transition matrix PY|X :

P(i,j)
Y|X ≡ PY|X(yj|xi). (18)
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We assume that maximum likelihood detection is performed at the receiver, which is
defined by the mapping d : {y1, . . . , ym} → {x1, . . . , xn} as follows:

d(yj) = xi ⇔ PY|X(yj|xi) > PY|X(yj|xk); for all k = i, (19)

assuming that the inequality in (19) is uniquely satisfied. Thus, if the input symbol xi
is sent and the output symbol yj is received, the xi will be detected if xi = d(yj) and
a detection error will be made otherwise, and we define the error function functions
φ : {x1, . . . , xm} × {y1, . . . , ym} → {0, 1} as in

φ(xi, yj) =

{
1, if xi = d(yj)

0, otherwise,
(20)

the detection error if a symbol xi is sent

Perr(xi) = ∑
yj

PY|X(yj|xi)φ(xi, yj); for all xi, (21)

as well as the average detection error

P̄err = ∑
xi

PX(xi)Perr(xi) = ∑
xi ,yj

PX,Y(x, y)φ(xi, yj). (22)

Totally destructive channel: A channel is said to be totally destructive if

P(i,j)
Y|X = PY|X(yj|xi) = PY(yj) =

1
m

; for all xi, (23)

i.e., if the sender X and receiver Y are described by independent random variables,

X ⊥⊥ Y ⇔ PX,Y(x, y) = PX(x)PY(y), (24)

where the relationship of independence is denoted in ⊥⊥. In this case, φi(yj) = 1 for all yj
and the probability of error is Perr(xi) = 1; for all xi, as well as the average probability of
error P̄err = 1, which means that a correct maximum likelihood detection is not possible.

Perfect communication channel: A channel is said to be perfect if for every xi,

PY|X(yj|xi) > 0, for at least one yj (25)

and for every yj
PY|X(yj|xi) > 0, for exactly one xi. (26)

Note that in this case PY|X(yj|xi) can still take a zero value for some yj and that
φi(yj) = 0 for any non-zero PY|X(yj|xi). Thus, the error probability is equal to zero
Perr(xi) = 0; for all xi, as well as the average probability of error P̄err = 0, which means
that perfect detection is possible by means of a maximum likelihood detector.

Noisy channel with non-overlapping outputs: A simple example of a perfect trans-
mission channel is the noisy channel with non-overlapping outputs (NOC), which is
schematically described in Figure 1. It is a 2-input m = 2k-output channel (k ∈ N) defined
by the transition matrix:

PY|X =

[
PY|X(·|x1)

PY|X(·|x2)

]
=

[ 1
k . . . 1

k 0 . . . 0
0 . . . 0 1

k . . . 1
k

]
(27)

(in this and in the following matrices, the symbol “· · · ” stands for the k-time repletion). In
the case of k = 1 and m = 2k = 2, the channel reduces to the noiseless channel. Although
the channel is noisy, the input can always be recovered from the output (if yj is received
and j ≤ k, the input symbol x1 is sent, otherwise x2 is sent). Thus, it is expected that the
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information which is passed through the channel is equal to the information that can be
generated by the input. Note that for a channel input distributed in accordance with

PX =

[
PX(x1)
PX(x2)

]
=

[
a

1 − a

]
; 0 ≤ a ≤ 1, (28)

the joint probability distribution PX,Y can be expressed as in:

PX,Y =

[ a
k . . . a

k 0 . . . 0
0 . . . 0 1−a

k . . . 1−a
k

]
(29)

and the output distribution PY, which can be obtained by the summations over columns, is

PY = [PY(y1), . . . , PY(ym)]
T =

[
a
k

, . . . ,
a
k

,
1 − a

k
, . . . ,

1 − a
k

]T
. (30)

Binary symmetric channels: The binary symmetric channel (BSC) is a two input two
output channel described by the transition matrix

PY|X =

[
PY|X(·|x1)

T

PY|X(·|x2)
T

]
=

[
1 − p p

p 1 − p

]
, (31)

which is schematically described in Figure 2. Note that for p = 1
2 BSC reduces to a totally

destructive channel, while in the case of p = 0 it reduces to a perfect channel.

y1

x1
...

yk

yk+1

x2
...

y2k

1/k

1/k

1/k

1/k

Figure 1. Noisy channel with non-overlapping outputs.
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x1 y1

x2 y2

1 − p

p

p

1 − p

Figure 2. Binary symmetric channel.

Sharma–Mittal Information Transfer Axioms

In this paper, we search for information theoretical measures of information transfer
between sender X and receiver Y, which communicate through a channel if the information
is measured with Sharma–Mittal entropy. Thus, we are interested in the information
transfer measure, Iα,q(X, Y), which is called the α-q-mutual information and its maximum,

C = max
PX

Iα,q(X, Y), (32)

which is called the α-q-capacity and which requires the following set of axioms to be satisfied.

(A1) The channel cannot convey negative information, i.e.,

Cα,q(PY|X) ≥ Iα,q(X, Y) ≥ 0. (33)

(A2) The information transfer is zero in the case of a totally destructive channel, i.e.,

PY|X(y|x) =
1
m

, for all x, y ⇒ Iα,q(X, Y) = Cα,q(PY|X) = 0, (34)

which is consistent with the conclusion that the average probability of error is one,
P̄err = 1, in the case of a totally destructive channel.

(A3) In the case of perfect transmission, the information transfer is equal to the input
information, i.e.,

X = Y ⇒ Iα,q(X, Y) = Hα,q(X), Cα,q(PY|X) = Logqn, (35)

which is consistent with the conclusion that the average probability of error is zero,
P̄err = 0, in the case of a perfect transmission channel, so that all the information
from the input is conveyed.

(A4) The channel cannot transfer more information than it is possible to be sent, i.e.,

Iα,q(X, Y) ≤ Cα,q(PY|X) ≤ Logq n, (36)

which means that a channel cannot add additional information.
(A5) The channel cannot transfer more information than it is possible to be received, i.e.,

Iα,q(X, Y) ≤ Cα,q(PY|X) ≤ Logq m, (37)

which means that a channel cannot add additional information.

31



Entropy 2021, 23, 702

(A6) Consistency with the Shannon case:

lim
q→1,α→1

Iα,q(X, Y) = I(X, Y), and lim
q→1,α→1

Cα,q(PY|X) = C(PY|X) (38)

Thus, the axioms (A2) and (A3) ensure that the information measures are consistent
with the maximum likelihood detection (19)–(21). On the other hand, the axioms (A1),
(A4) and (A5), prevent a situation in which a physical system conveys information in spite
of going through a completely destructive channel, or in which the negative information
transfer is observed, indicating that the channel adds or removes information by itself,
which could be treated as nonphysical behavior without an intuitive explanation. Finally,
the property (A6) ensure that the information transfer measures can be considered as
generalizations of corresponding Shannon measures. For these reasons, we assume that
the satisfaction of the properties (A1)–(A5) is mandatory for any reasonable definition of
Sharma–Mittal information transfer measures.

4. The α-Mutual Information and the α-Capacity

One of the first proposals for the Rényi mutual information goes back to Arimoto [24],
who considered the following definition of mutual information:

Iα(X, Y) =
α

1 − α
log

⎛⎝∑
y

(
∑
x

P(α)
X (x)Pα

Y|X(y|x)
) 1

α

⎞⎠, (39)

where the escort distribution PX(α) is defined as in (10), and he also invented an iter-
ative algorithm for the computation of the α-capacity [35], which is defined from the
α-mutual information:

Cα(PY|X) = max
PX

Iα(X, Y). (40)

Notably, Arimoto’s mutual information can equivalently be represented using the
conditional Rényi entropy

Rα(X|Y) = α

α − 1
log2 ∑

y
PY(y)

(
∑
x

PX|Y=y(x)α

) 1
α

, (41)

as in
Iα(X, Y) ≡ Rα(X)− Rα(X|Y), (42)

which can be interpreted as the input uncertainty reduction after the output symbols are
received and, in the case of α → 1, the previous definition reduces to the Shannon case. In
addition, this measure is directly related to the famous Gallager exponent

E0(ρ, PX) = − log

⎛⎝∑
y

(
∑
x

PX(x)P
1

1+ρ

Y|X (y|x)
)1+ρ

⎞⎠, (43)

which has been widely used to establish the upper bound of error probability in channel
coded communication systems [36] via the relationship [29]

Iα(X, Y) =
α

1 − α
E0

(
1
α
− 1, P(α)

X

)
. (44)

In addition, in the case of α → 1, it reduces to

I1(X, Y) = lim
α→1

Iα(X, Y) = I(X, Y), (45)
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where

I(X, Y) = ∑
x,y

PX,Y(x, y) log
PX,Y(x, y)

PX(x)PY(y)
(46)

stands for Shannon’s mutual information [37].
The α-mutual information Iα(X, Y) and the α-capacity Cα(PYX ) satisfy the axioms

(A1)–(A6) for q = 1 and α > 0, as stated by the following theorem, which further justifies
their usage as the measures of (maximal) information transfer.

Theorem 1. The mutual information measures Iα and Cα satisfy the following set of properties:

(A1) The channel cannot convey negative information, i.e.,

Cα(PY|X) ≥ Iα(X, Y) ≥ 0. (47)

(A2) The (maximal) information transfer is zero in the case of a totally destructive channel, i.e.,

PY|X(y|x) =
1
m

, for all x, y ⇒ Iα(X, Y) = Cα(PY|X) = 0. (48)

(A3) In the case of perfect transmission, the (maximal) information transfer is equal to the
(maximal) input information, i.e.,

X = Y ⇒ Iα(X, Y) = Rα(X), Cα(PY|X) = log n. (49)

(A4) The channel cannot transfer more information than it is possible to be sent, i.e.,

Iα(X, Y) ≤ Cα(PY|X) ≤ log n; (50)

(A5) The channel cannot transfer more information than it is possible to be received, i.e.,

Iα(X, Y) ≤ Cα(PY|X) ≤ log m. (51)

(A6) Consistency with the Shannon case:

lim
α→1

Iα(X, Y) = I(X, Y), and lim
α→1

Cα(PY|X) = C(PY|X) (52)

Proof. As shown in [38], Rα(X|Y) ≤ Rα(X), and the nonnegativity property (A1) follows
from the definition of Arimoto’s mutual information (42). In addition, if X ⊥⊥ Y, then
PY|X(y|x) = PY(y) so that the definition (61) implies the property (A2). Furthermore, in the
case of a perfect transmission channel, the mutual information (61) can be represented in

Iα(X, Y) =
α

α − 1
log

∑y

(
∑x PX(x)αPα

Y|X(y|x)
) 1

α

(
∑x P(α)

X (x)
) 1

α

=
α

α − 1
log

∑y

(
PX(d(y))αPα

Y|X(y | d(y))
) 1

α

(
∑x P(α)

X (x)
) 1

α

, (53)

and since

∑
y

(
PX(d(y))αPα

Y|X(y | d(y))
) 1

α
= ∑

y
PX(d(y))PY|X(y | d(y)) =

∑
x

∑
y:d(y)=x

PX(d(y))PY|X(y | d(y)) = ∑
x

PX(x) ∑
y:d(y)=x

PY|X(y|x) = 1, (54)

we obtain Iα(X, Y) = Rα(X), which proves the property (A3). Moreover, from the definition
as shown in [38], Arimoto’s conditional entropy is positive and satisfies the weak chain rule
Rα(X|Y) ≥ Rα(X)− log m, so that the properties (A4) and (A5) follow from the definition
of Arimoto’s mutual information (42). Finally, the property (A6) follows directly from the
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equation (45) and can be approved using L’Hôpital’s rule, which completes the proof of
the theorem.

5. Alternative Definitions of the α-Mutual Information and the α-Channel Capacity

Since Rényi’s proposal, there have been several lines of research to find an appropriate
definition and characterization of information transfer measures related to Rényi entropy,
which are established by the substitution of the Rényi divergence measure

Dα(P||Q) =
1

α − 1
log

(
∑
x

P(x)αQ(x)1−α

)
, (55)

instead of the Kullback–Leibler one,

D(P||Q) = D1(P||Q) = ∑
x

P(x) log
P(x)
Q(x)

, (56)

in some of the various definitions which are equivalent in the case of Shannon information
measures (46) [29]:

I(X, Y) = min
QY

E

[
Dα

(
PY|X‖QY

)]
= min

QY
E

[
Dα

(
PY|X‖QY

)]
= min

QX
min
QY

Dα(PX,Y‖QXQY) = Dα(PX,Y‖PXPY) = S(X)− S(X|Y) (57)

where S(X|Y) stands for the Shannon conditional entropy,

S(X|Y) = ∑
x,y

PX,Y(x, y) log PX|Y(x|y). (58)

All of these measures are consistent with the Shannon case in view of the property
(A6), but their direct usage as measures of Rényi information transfer leads to a breaking
of some the properties (A1)–(A5), which justifies the usage of Arimoto’s measures from
the previous section as appropriate ones in the context of this research. In the following
section, we review the alternative definitions.

5.1. Information Transfer Measures by Sibson

Alternative approaches based on Rényi divergence were proposed by Sibson [23] and
considered later by several authors in the context of quantum secure communications [39–44],
who introduced

J1
α(X; Y) = min

QY
Dα

(
PY|XPX‖QYPX

)
, (59)

which can be represented as in [26]

J1
α(X, Y) =

α

α − 1
log

⎛⎝∑
y

(
∑
x

PX(x)Pα
Y|X(y|x)

) 1
α

⎞⎠ (60)

and, in the discrete setting, can be related to the Gallager exponent as in [29]:

J1
α(X, Y) =

α

1 − α
E0

(
1
α
− 1, PX

)
, (61)

which differs from Arimoto’s definition (61) since in this case the escort distribution does
not participate in the error exponent, but an ordinary one does. However, in the case of a
perfect channel for which X = Y, the conditional distribution Pα

Y|X(y|x) = 1 for x = y and
zero otherwise, so Sibson’s measure (60) reduces to R1/α(X), thus breaking the axiom (A3).
This disadvantage can be overcome by the reparametrization α ↔ 1/α so that J1

1/α(X, Y)
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is used as a measure of Rényi information transfer, and the properties of the resulting
measure can be considered in a manner similar to the case of Arimoto.

5.2. Information Transfer Measures by Augustin and Csiszar

An alternative definition of Rényi mutual information was also presented by Au-
gustin [25], and later Csiszar [26], who defined

J2
α(X; Y) = min

QY
E

[
Dα

(
PY|X‖QY

)]
, (62)

However, in the case of perfect transmission, for which X = Y, the measure reduces to
Shannon entropy

J2
α(X; Y) = S(X), (63)

which breaks the axiom (A3).

5.3. Information Transfer Measures by Lapidoth, Pfister, Tomamichel and Hayashi

A similar obstacle to the case of the Augustin–Csiszar measure can be observed in
the case of mutual information which was considered by Lapidoth and Pfister [27] and
Tomamichel and Hayashi [28], who proposed

J3
α(X; Y) = min

QX
min
QY

Dα(PX,Y‖QXQY). (64)

As shown in [27] (Lemma 11), if X = Y, then

J3
α(X; Y) =

{
α

1−α limα→∞ Rα(X) if α ∈
[
0, 1

2

]
,

R α
2α−1

(X) if α > 1
2

(65)

so the axiom (A3) is broken in this case, as well.

Remark 1. Despite the difference between the definitions of information transfer, in the discrete
setting, the alternative definitions discussed above reach the same maximum over the set of input
probability distributions, PX, [26,29,45].

5.4. Information Transfer Measures by Chapeau-Blondeau, Delahaies, Rousseau, Tridenski, Zamir,
Ingber and Harremoes

Chapeau-Blondeau, Delahaies and Rousseau [31], and independently Tridenski, Zamir
and Ingber [46] and Harremoes [47], defined the Rényi mutual information using the Rényi
divergence (55), so that the mutual information defined using the Rényi divergence

J4
α(X, Y) = Dα(PX,Y‖PXPY) (66)

for α > 0 and α = 1, while in the case of α = 1 it reduces to Shannon mutual information.
However, the ordinal definition can correspond only to a Rényi entropy of order 2 − α
since in the case of X = Y it reduces to J4

α(X, Y) = R2−α(X) (see also [47]), which can be
overcome by the reparametrization α = 2 − q, similar to the case of Sibson’s measure. This
measure has been discussed in the past with various operational characterizations, and
could also be considered as a measure of information transfer, although the satisfaction of
all of the axioms (A1)–(A6) is not self-evident for general channels.

5.5. Information Transfer Measures by Jizba, Kleinert and Shefaat

Finally, we will mention the definition by Jizba, Kleinert and Shefaat [48],

J4
α(X, Y) ≡ Rα(X)− R̂α(X|Y), (67)
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which is defined in the same manner as in Arimoto’s case (42), but with another choice of
conditional Rényi entropy

R̂α(X|Y) = 1
1 − α

log ∑
x

P(α)
X (x)2(1−α)Rα(X|Y=y), (68)

which arises from the Generalized Shannon–Khinchin axiom [GSK4] if the pseudo-additivity
in the equation (9) is restricted to an ordinary addition, in which case the GSK axioms
uniquely determine Rényi entropy [49]. However, despite its wide applicability in the
modeling of causality and financial time series, this mutual information can take negative
values which breaks the axiom (A1), which is assumed to be mandatory in this paper. For
further discussion of the physicalism of negative mutual information in the domain of
financial time series analysis, the reader is referred to [48].

6. The α-q Mutual Information and the α-q-Capacity

In the past several attempts have been done to define an appropriate channel ca-
pacity measure which corresponds to instances of the Sharma–Mittal entropy class. All
of them follow a similar recipe by which the channel capacity is defined as in (32), as a
maximum of appropriately defined mutual information Iα,q. However, all of the classes
consider only special cases of Sharma–Mittal entropy and all of them fail to satisfy at least
one of the properties (A1)–(A6) which an information transfer has to satisfy, as will be
discussed Section 7.

In this section we propose a general measures of the α-q mutual information and the
α-q-capacity by the requirement that the axioms (A1)–(A6) are satisfied, which could qualify
them as appropriate measures of information transfer, without nonphysical properties. The
special instances of the α-q (maximal) information transfer measures are also discussed and
the analytic expressions for a binary symmetric channel are provided.

6.1. The α-q Information Transfer Measures and Its Instances

The α-q-mutual information (42) is defined using the q-subtraction defined in (6),
as follows:

Iα,q(X, Y) = Hα,q(X)�q Hα,q(X|Y), (69)

where we introduced the conditional Sharma–Mittal entropy Hα,q(Y|X) as in

Hα,q(X|Y) = ηq(Rα(X|Y)) = 1
(1 − q) ln 2

⎛⎜⎜⎝
⎛⎝∑

y
PY(y)

(
∑
x

PX|Y=y(x)α

) 1
α

⎞⎠
α(1−q)

α−1

− 1

⎞⎟⎟⎠, (70)

Rα(X|Y) stands for Arimoto’s definition of the conditional Rényi entropy (41). The expres-
sion (69) can also be obtained if the mapping ηq is applied to both sides of the equality (42),
by which Arimoto’s mutual information is defined, so we may establish the relationship

Iα,q(X, Y) = ηq(Iα(X, Y)) = ηq

⎛⎝ α

1 − α
log

⎛⎝∑
y

(
∑
x

P(α)
X (x)Pα

Y|X(y|x)
) 1

α

⎞⎠⎞⎠, (71)

which can be represented using the Gallager error exponent (43) as in

Iα,q(X, Y) = ηq

(
α

1 − α
E0

(
1
α
− 1, P(α)

X

))
=

1
(1 − q) ln 2

(
2

α(1−q)
1−α E0

(
1
α −1,P(α)

X

)
− 1

)
. (72)

Arimoto’s α-q-capacity is now defined in

Cα,q = max
PX

Iα,q(X, Y), (73)
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and using the fact that ηq is increasing, it can be related with the corresponding α-capacity
as in

Cα,q = max
PX

Iα,q(X, Y) = max
PX

ηq(Iα(X, Y)) = ηq

(
max

PX
Iα(X, Y)

)
= ηq

(
Cα(PY|X)

)
. (74)

Using the expressions (45) and (71), in the case of α = 1, the α-q mutual information reduces to

I1,q =
1

(1 − q) ln 2

(
∏
x,y

2
PX,Y(x,y) log

PX,Y (x,y)
PX (x)PY (y) − 1

)

=
1

(1 − q) ln 2

(
∏
x,y

(
PX,Y(x, y)

PX(x)PY(y)

)PX,Y(x,y)

− 1

)
. (75)

The α-q-capacity is given in

C1,q = max
PX

(
1

(1 − q) ln 2

(
∏
x,y

(
PX,Y(x, y)

PX(x)PY(y)

)PX,Y(x,y)

− 1

))
(76)

and these measures can serve as (maximal) information transfer measures correspond-
ing to Gaussian entropy, which was not considered before in the context of information
transmission. Naturally, if in addition q → 1, the measures reduce to Shannon’s mutual
information and Shannon capacity [37].

Additional special cases of the α-q (maximal) information transfer include the α-mutual
information (42) and the α-capacity (40), which are obtained for q = 1; the measures which
correspond to Tsallis entropy can be obtained for q = α and the ones which correspond to
Landsberg–Vedral entropy for q = 2 − α. These special instances are listed in Table 1.

As discussed in Section 7, previously considered information measures cover only
particular special cases and break at least one of the axioms (A1)–(A5), which leads to unex-
pected and counterintuitive conclusions about the channels, such as negative information
transfer and achieving super-capacitance or sub-capacitance [4], which could be treated as
a nonphysical behavior. On the other hand, apart from the generality, the α-q information
transfer measures proposed in this paper overcame the disadvantages which could qualify
them as appropriate measures, as stated in the following theorem.

Theorem 2. The α-q information transfer measures Iα,q and Cα,q satisfy the set of the axioms
(A1)–(A6).

Proof. The proof is the straightforward application of the mapping ηq to the equations
in the α-mutual information properties (A1)–(A5), while the (A6) follows from the above
discussion.

Remark 2. Note that the symmetry Iα,q(X, Y) = Iα,q(Y, X) does not hold in general in the case
of the α-q mutual information nor in the case of the α mutual information [50,51] and if the
mutual information is defined so that the symmetry is preserved, some of the axioms (A1)–(A6)
might be broken. In addition, the alternative definition of the mutual information, Iα,q(Y, X) =
Hα,q(Y)− Hα,q(Y|X), which uses an ordinary substraction operator instead of �q operation, can
also be introduced, but in this case the property (A5) might not hold in general, as discussed
in Section 7.

6.2. The α-q-Capacity of Binary Symmetric Channels

As shown by Cai and Verdú [45], the α-mutual information of Arimoto’s type Iα is
maximized for the uniform distribution PX = (1/2, 1/2), and Arimoto’s α-capacity has
the value

Cα(BSC) = 1 − rα(p), (77)
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where the binary entropy function rα is defined as

rα(p) = Rα(p, 1 − p) =
1

1 − α
log(pα + (1 − p)α), (78)

for α > 0, α = 1, while in the limit of α → 1, the expression (78) reduces to the well-known
result for the Shannon capacity (see Fano [52])

C1(BSC) = lim
α→1

Cα(BSC) = 1 + p log p + (1 − p) log(1 − p). (79)

The analytic expressions for the α-q-capacities of binary symmetric channel’s can be ob-
tained from the expressions (74) and (77), so that

Cα,q(BSC) = ηq(Cα(BSC)) =
1

(1 − q) ln 2

(
21−q(pα + (1 − p)α)−

1−q
1−α − 1

)
; (80)

in the case of q = 1, it reduces to the case of Rényi entropy while, in the case of α = 1, to
the case of Gaussian entropy (77)

C1,q(BSC) =
1

(1 − q) ln 2

(
2pp(1 − p)1−p − 1

)
. (81)

The analytic expressions for BSC α-q capacities for other instances can straightforwardly be
obtained by specifying the values of the parameters, whose instances are listed in Table 1,
while the plots of the BSC α-q-capacities, which correspond to the Gaussian and the Tsallis
entropies, are shown in Figures 3 and 4.

The α-q-capacity (80) can equivalently be expressed in

Cα,q(BSC) = Logq 2 �q hα,q(p), (82)

where the Sharma–Mittal binary entropy function is defined in

hα,q(p) = Hα,q(p, 1 − p) =
1

1 − q

(
(pα + (1 − p)α)

1−q
1−α − 1

)
, (83)

which reduces to the Rényi binary entropy function, in the case of q = 1,

hα,1(p) = lim
q→1

hα,q(p) = Rα(p, 1 − p) =
1

1 − α
log(pα + (1 − p)α)), (84)

to the Tsallis binary entropy function, in the case of α = 1,

hq,q(p) = hq,q(p) = Tq(p, 1 − p) =
1

1 − q
(pq + (1 − p)q − 1), (85)

to the Gaussian binary entropy function, in the case of α = 1,

h1,q(p) = lim
α→1

hα,q(p) = Gq(p, 1 − p) =
1

(1 − q) ln 2

(
p−(1−q)p(1 − p)−(1−q)(1−p) − 1

)
, (86)

and to the Shannon binary entropy function, in the case of α = q = 1,

h1,1(p) = lim
q,α→1

hα,q(p) = S(p, 1 − p) = −p log p − (1 − p) log(1 − p). (87)

The expression (82) can be interpreted similarly as in the Shannon case. Thus, a
BSC channel with input X and output Y can be modeled with an input–output relation
Y = X ⊕ Z where ⊕ stands for modulo 2 sum and Z is channel noise taking values from
{1, 0}, distributed in accordance with (p, 1 − p). If we measure the information which is
lost per bit during transmission with the Sharma–Mittal entropy Hα,q(Z) = hα(p), then
Cα,q stands for useful information left over for every bit of information received.
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Table 1. Instances of the α-q-mutual information for different values of the parameters and corresponding expressions for
the BSC α-q-capacities.

Hα,q Iα,q Cα,q

S
α = q = 1 ∑x,y PX,Y(x, y) log

PX,Y(x, y)
PX(x)PY(y)

1 + p log p + (1 − p) log(1 − p)

Rα

q = 1
α

1 − α
E0

(
1
α − 1, P(α)

X

)
1 − log(pα + (1 − p)α)

1 − α

Tq
q = α

1
(1 − q) ln 2

(
2qE0

(
1
q −1,P(q)

X

)
− 1

)
1

(1 − q) ln 2
(
21−q(pq + (1 − p)q)−1 − 1

)
Lα

q = 2 − α
1

(α − 1) ln 2

(
2−αE0

(
1
α −1,P(α)

X

)
− 1

)
1

(1 − α) ln 2
(
2α−1(pα + (1 − p)α)− 1

)
Gq

α = 1
1

(1 − q) ln 2

(
∏x,y

(
PX,Y(x, y)

PX(x)PY(y)

)PX,Y(x,y)
− 1

)
1

(1 − q) ln 2

(
21−q p(1−q)p(1 − p)(1−q)(1−p) − 1

)

E0(ρ, PX) = − log

(
∑y

(
∑x PX(x)P

1
1+ρ

Y|X(y|x)
)1+ρ

)
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Figure 3. The α-q-capacity of BSC for the Gaussian entropy (the case of α = 1) as a function of q
for various values of the channel parameter p from 0.5 (totally destructive channel) to 0 (perfect
transmission). All of the curves lies between 0 and Logq2, which is the maximum value of the
Gaussian entropy.
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Figure 4. The α-q-capacity of BSC for the Tsallis entropy (the case of α = q) as a function of q
for various values of the channel parameter p from 0.5 (totally destructive channel) to 0 (perfect
transmission). All of the curves lies between 0 and Logq2, which is the maximum value of the
Tsallis entropy.

7. An Overview of the Previous Approaches to Sharma–Mittal Information
Transfer Measures

In this section, we review the previous attempts at a definition of Sharma–Mittal
information transfer measures, which are defined from the basic requirement of consistency
with the Shannon measure as given by the axiom (A6) . However, as we show in the
following paragraphs, all of them break at least one of the axioms (A1)–(A5) , which are
satisfied in the case of the α-q (maximal) information transfer measures (69) and (73), in
accordance with the discussion in Section 6.

7.1. Daróczy’s Capacity

The first considerations of generalized channel capacities and generalized mutual
information for the q-entropy go back to Daróczy [30], who introduced conditional Tsal-
lis entropy

T̄q(Y|X) = ∑
x

Pq
X(x)Tq(Y|X = x), (88)

where the row entropies are defined as in

Tq(Y|X = x) =
1

(1 − q) log(2)

(
∑
x

PY|X(y|x)q − 1

)
(89)
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and the mutual information is defined as in

J5
α,q(X, Y) = Tq(Y)− T̄q(Y|X). (90)

However, in the case of a totally destructive channel, X ⊥⊥ Y, PY|X(y|x) = PY(y),
Tq(Y|X = x) = Tq(Y) and

Tq(Y|X) = Tq(Y)∑
x

PX(x)q (91)

so that

J5
α,q(X, Y) = Tq(Y)

(
1 − ∑

x
PX(x)q

)
=

(
1 − ∑

x
PX(x)q

)
Logqm. (92)

This expression is zero for an input probability distribution PX = (1, 0, . . . , 0) and its
permutations, but, in general, it is negative for q < 1, positive for q > 1 and 0 only for
q = 1, so the axiom (A2) is broken (see Figure 5). As a result, the channel capacity, which
is defined in accordance to (32), is zero for q ≤ 1 and positive for q > 1, as illustrated in
Figure 6 by the example of BSC for which the Daroczy’s channel capacity can be computed
as in [30,53]

C5
q(BSC) =

1 − 21−q

q − 1
− 2−q

q − 1
[1 − (1 − p)q − pq]. (93)

In the same figure, we plotted the graph for the α-q channel capacities proposed in this
paper, and all of them remain zero in the case of a totally destructive BSC, as expected.

7.2. Yamano Capacities

Similar problems to the ones mentioned above arise in the case of mutual information
and corresponding capacity measures considered by Yamano [33], who addressed the
information transmission characterized by Landsberg–Vedral entropy Lq, given in (17).

Thus, the first proposal is based on the mutual information of the form

J6
q (X, Y) = Lq(X) + Lq(Y)− Lq(X, Y), (94)

where the joint entropy is defined in

Lq(X, Y) =
1

q − 1

(
1

∑x,y PX,Y(x, y)q − 1

)
. (95)

However, in the case of a fully destructive channel, PY(y) = 1/m and PX,Y(x, y) =
PX(x)/m, so that

J6
q (X, Y) =

1
q − 1

(
1

∑x PX(x)q − 1
)
+

1
q − 1

(
mq−1 − 1

)
− 1

q − 1

(
mq−1 1

∑x PX(x)q − 1
)

, (96)

which can be simplified to

J6
q (X, Y) =

1 − mq−1

q − 1

(
1

∑x PX(x)q − 1
)

. (97)

Similarly to the case of Daroczy’s capacity, this expression is zero for an input probability
distribution PX = (1, 0, . . . , 0) and its permutations but, in general, it is negative for q > 1,
positive for q < 1 and 0 only for q = 1, so the axiom (A2) is broken (see Figure 5). In
Figure 6 we illustrated the Yamano channel capacity as a function of the parameter q, in
the case of two input channels with PX = [a, 1 − a], the channel capacity is zero for q > 1
(which is obtained for PX = [1, 0]), and

C6
q(BSC) =

1
q − 1

(
2q − 1 − 22q−2

)
, (98)
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for q > 1 (which is obtained for PX = [1/2, 1/2]). In the same Figure, we plotted the graph
for the α-q channel capacities proposed in this paper, and, as before, all of them remain
zero in the case of a totally destructive BSC, as expected.

Further attempts were made in [33], where the mutual information is defined in an
analogous manner to (66) and (66), with the generalized divergence measure introduced
in [54]. Thus, the alternative measure for mutual information is defined in

J7
q (X, Y) =

1
(1 − q) ln 2

1

∑x,y Pq
X,Y(x, y)

[
1 − ∑

x,y
PX,Y(x, y)

(
PX(x)PY(y)
PX,Y(x, y)

)1−q
]

. (99)

However, in the case of the simplest perfect communication channel for which X = Y, the
mutual information reduces to

J7
q (X, Y) =

1
(1 − q) ln 2

1 − ∑x PX(x)2−q

∑x PX(x)q = Lq(X), (100)

which breaks the axiom (A3).
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Figure 5. Daróczy’s (solid lines) and Yamano’s (dashed lines) mutual information in the case of
a totally destructive BSC as functions of the input distribution parameter a, PX = [a, 1 − a]T for
different values of q, obtaining negative values for q < 1 and q > 1, respectively, breaking the axioms
(A1) and (A2). The α-q-mutual information is zero; for all q, and satisfies (A1) and (A2).
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Figure 6. Daróczy’s (solid lines) and Yamano’s (dashed lines) capacities in the case of totally de-
structive BSC as functions of the parameter q. In the regions of q < 1 and q > 1, respectively, the
corresponding negative mutual information is maximized for PX = [1, 0]T (zero capacity) having the
positive values outside the regions and breaking the axiom (A2). The α-q-capacity is zero; for all q,
and satisfies (A2).

7.3. Landsber–Vedral capacities

To avoid these problems, Landsberg and Vedral [4] proposed the mutual information
measure and related channel capacities for the Sharma–Mittal entropy class Hα,q, particu-
larly considering the choice of q = α, which corresponds to Tsallis entropy, q = 2 − α, and
the case of q = 1, which corresponds to the Rényi entropy

J8
α,q(X, Y) = Hα,q(Y)− ˜Hα,q(Y|X), (101)

where the conditional entropy ˜Hα,q
LV
(Y|X) is defined as in

˜Hα,q(Y|X) = ∑
x

PX(x)Hα,q(Y|X = x) (102)

and

Hα,q(Y|X = x) =
1

1 − q

⎛⎜⎝(
∑
y

PY|X(y|x)α

) 1−q
1−α

− 1

⎞⎟⎠. (103)

Although this definition bears some similarities to the α-q mutual information pro-
posed in formula (69), several key differences can be observed. First of all, it character-

43



Entropy 2021, 23, 702

izes the information transfer as the output uncertainty reduction after the input sym-
bols are known, instead of input uncertainty reduction, after the output symbols are
known (42). In addition, it uses the ordinary—operation instead of the �q one. In addition,
note that the definition of conditional entropy (102) generally differs from the definition
proposed in (70).

The definition (101) resolves the issue of the axiom (A2) which appears in the case of
the Daroczy capacity, since in the case of a totally destructive channel (X ⊥⊥ Y), PY|X(y|x) =
PY(y) and Lq(Y|X = x) = Lq(Y) and Lq(Y|X) = Lq(Y), so that Ilv

α,q(X, Y) = 0. However,
the problems remain with the axiom (A5), which can be observed in the case of a noisy
channel with non-overlapping outputs if the number of channel inputs is lower than
the number of channel outputs n < m. Indeed, in the case of a noisy channel with
non-overlapping outputs given by the transition matrix (27), both of the row entropies
Lq(Y|X = x) have the same value, which is independent of x

Hα,q(Y|X = x) =
k1−q − 1

(q − 1) ln 2
= Logqk; for x = x1, x2, (104)

and the maximal value of Landsberg–Vedral mutual information (101) is obtained only
by maximizing Hα,q(Y) over PX , which is achieved if X is uniformly distributed, since in
this case Y is uniformly distributed, as well as (a = 1

2 in (28)), so the maximal value of the
output entropy is Hα,q(Y) = Logq(2k) and the mutual information is maximized for

C8
α,q(NOC) = Logq(2k)− Logq(k), (105)

which is greater than Logq(2) for k ≥ 2, i.e., for m ≥ 4 outputs, so the axiom (A5) is broken,
which is illustrated in Figure 7.

7.4. Chapeau-Blondeau–Delahaies–Rousseau Capacities

Following a similar approach to the one in Section 5.4, Chapeau-Blondeau, Delahaies
and Rousseau considered the definition of mutual information which corresponds to the
Tsallis entropy using Tsallis divergence,

Dq,q(P||Q) =
1

q − 1

(
∑
x

P(x)qQ(x)1−q − 1

)
, (106)

can be written in

J9
q (X, Y) = Dq,q(PX,Y‖PXPY) = ηq

(
Dq(PX,Y‖PXPY)

)
=

1
1 − q

(
1 − ∑

x,y
PX,Y(x, y)qPX(x)1−qPY(y)1−q

)
. (107)

However, this definition is not directly applicable as a measure of information transfer to
the Tsallis entropy with index q, since in the case of X = Y it reduces to J9

q (X, Y) = T2−q(X),
and requires the reparametrization q ↔ 2 − q, similar to Section 5.4, while the satisfaction
of the axioms (A4) and (A5) is not self evident.

44



Entropy 2021, 23, 702

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

q

0

1

2

3

4

5

6

7

8

m=2

m=4

m=6

m=8

m=10

m=2

m=4

m=6

m=8

m=10

C8
q,2−q(NOC)

Cq,q = Loqq(2)

C8
q,q(NOC)

Cq,2−q = Loq2−q(2)

Figure 7. Landsberg–Vedral capacities for the Tsallis (solid lines) and the Landsberg–Vedral (dashed
lines) entropies in the case of a (perfect) noisy channel with non-overlapping outputs with m outputs
as functions of q, for different values of m. The axiom (A4) is broken for all m > 2 and satisfied in the
case of corresponding α-q-capacities, Cq,q and Cq,2−q.

8. Conclusions and Future Work

A general treatment of the Sharma–Mittal entropy transfer was provided together with
the analyses of existing information transfer measures for the non-additive Sharma–Mittal
information transfer. It was shown that the existing definitions fail to satisfy at least one
of the axioms common to the Shannon case, by which the information transfer has to be
non-negative, less than the input and output uncertainty, equal to the input uncertainty
in the case of perfect transmission and equal to zero in the case of a totally destructive
channel. Thus, breaking some of these axioms implies unexpected and counterintuitive
conclusions about the channels, such as achieving super-capacitance or sub-capacitance [4],
which could be treated as nonphysical behavior. In this paper, alternative measures of
the α-q mutual information and the α-q channel capacity were proposed so that all of the
axioms which are broken in the case of the Sharma–Mittal information transfer measures
considered before are satisfied, which could qualify them as physically consistent measures
of information transfer.

Taking into account the previous research of non-extensive statistical mechanics [3],
where the linear growth of the physical quantities has been recognized as a critical property
in non-extensive [55] and non-exponentially growing systems [56], and taking into account
the previous research from the field of information theory, where the Sharma–Mittal
entropy has been considered an appropriate scaling measure which provides extensive
information rates [21], the α-q mutual information and the α-q channel capacity seem to be
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promising measures for the characterization of information transmission in the systems
where the Shannon entropy rate diverges or disappears in an infinite time limit. In addition,
as was shown in this paper, the proposed information transfer measures are compatible
with the maximum likelihood detection, which indicates their potential for operational
characterization of coding theory and hypothesis testing problems [26].
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Abstract: We propose a novel framework to describe the time-evolution of dilute classical and
quantum gases, initially out of equilibrium and with spatial inhomogeneities, towards equilibrium.
Briefly, we divide the system into small cells and consider the local equilibrium hypothesis. We
subsequently define a global functional that is the sum of cell H-functionals. Each cell functional
recovers the corresponding Maxwell–Boltzmann, Fermi–Dirac, or Bose–Einstein distribution function,
depending on the classical or quantum nature of the gas. The time-evolution of the system is described
by the relationship dH/dt ≤ 0, and the equality condition occurs if the system is in the equilibrium
state. Via the variational method, proof of the previous relationship, which might be an extension
of the H-theorem for inhomogeneous systems, is presented for both classical and quantum gases.
Furthermore, the H-functionals are in agreement with the correspondence principle. We discuss how
the H-functionals can be identified with the system’s entropy and analyze the relaxation processes of
out-of-equilibrium systems.

Keywords: non-equilibrium thermodynamics; entropy; variational entropy

1. Introduction

The theoretical bases and the procedures that allow us to describe equilibrium systems
are well-established. These procedures can be applied to a wide range of natural systems,
including both the macroscopic phenomenological methods (thermodynamics) and the
microscopic description (statistical mechanics) (Out-of-equilibrium systems, of course,
are still a challenge). For instance, in the kinetic theory of gases, the behavior of a dilute
classical gas is described through the Boltzmann transport equation [1], and the time-
evolution of a system towards equilibrium is finely accounted for through the Boltzmann
H-theorem.

However, for quantum out-of-equilibrium systems, the construction of a kinetic frame-
work with the same level of success and universality as the classical version still presents
some fundamental challenges. For instance, to obtain a complete correspondence prin-
ciple between classical mechanics and quantum mechanics, the form of the quantum
analogues of both the Boltzmann H-theorem and the Boltzmann transport equation is
inadequate. In this context, Tolman was one of the earliest physicists to propose a quantum
H-theorem [2], using a probability transition relationship, the random phases hypothesis,
and an H-functional defined in terms of a spatially homogeneous distribution function.
Tolman also proposed a potential quantum analogue of the transport equation, in terms
of the occupation numbers, by applying time perturbation theory. Additional attempts,
under quantum operator formalism, have addressed the description of quantum trans-
port phenomena through the Hamiltonian of the system and the master equation (which
is, in these works, the analogue of the Boltzmann transport equation) [3–7]. However,
these approaches are not consistent with the classical-quantum correspondence principle.
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Similarly, some authors have proposed H-functionals and attempted to proof a quantum
H-theorem [8–16]. However, whether or not the homogeneous distribution function hy-
pothesis is assumed or if its framework fulfills the correspondence principle is unclear
or not discussed. Since the pioneering work of Tolman, at several stages, there has been
some discussion regarding the general validity of the quantum H-theorem, some possible
violations of the second law of thermodynamics, and the interpretation of the quantum
entropy [10,12–14,16–21].

Nonetheless, the framework to describe spatially non-homogeneous systems is still
under construction, although several approaches have been developed. For instance, the
celebrated Onsager formulation (linear thermodynamics) [22,23] has been successful in
describing irreversible chemical and physical phenomena. However, some descriptions,
such as those the internal behavior of gases [24] and the entropy measurement [25,26],
cannot be completely addressed with linear thermodynamics.

In addition, some aspects regarding the classical H-theorem and the Boltzmann
H-functional require revision to improve their mutual consistency. One example is the
modification of the H-theorem to include phenomena stemming from stochastic trajectories,
violations of the second law of thermodynamics, the relationship between Shannon’s mea-
sure of information and the Boltzmann’s entropy, and the calculation of thermodynamical
quantities and thermalization of specific systems [8,26–29].

To contribute to the construction of a consistent classical and quantum H-theorem,
within a formalism that describes out-of-equilibrium non-homogeneous systems, we pro-
pose a new theoretical framework. Specifically, for both classical and quantum systems,
we include non-homogeneous distribution functions in the H-functionals, and consider
non-homogeneous systems in the proofs of the resulting H-theorems. Our proposed H-
functionals satisfy the correspondence principle, but more importantly, these functionals
describe the time-evolution of spatially non-homogeneous systems towards equilibrium.

The organization of this article is as follows. In Section 2, we highlight, for our
purposes, the most fundamental assumptions required to proof the Boltzmann H-theorem,
we provide an alternative method to obtain the Maxwell–Boltzmann distribution using
the variational method, propose an alternative H-functional for classical systems, and
demonstrate the respective H-theorem. In Section 3, we review the Tolman proposal for
the quantum version of the H-theorem (quantum H-theorem) and how the Bose–Einstein
and Fermi–Dirac distributions are treated within this framework. Subsequently, we present
our proposal for a quantum H-functional and the proof of the corresponding quantum
H-theorem. In Section 4, we analyze the classical-quantum correspondence between the
quantum and classical H-functionals. In Section 5, we explore how relaxation processes
occur in a quantum ideal gas and, based on what we call variational entropy, propose a
time-evolution equation for the distribution function. Finally, we discuss some key ideas
resulting from our approach and close with a summary in Section 6.

2. Classical Scheme

The Boltzmann kinetic theory of gases represents a fundamental connection between
the microscopic nature of matter and the phenomenological macroscopic laws of classical
thermodynamics. The stochasticity introduced by the molecular chaos hypothesis in
the otherwise deterministic kinetics of the particles allows for the demonstration of the
celebrated Boltzmann H-theorem. In contrast, in this article, we propose an alternative
approach developed using a variational procedure applied to an H-functional. We start
this section by briefly accounting for the important elements of the standard derivation
of the Boltzmann transport equation and demonstrating the H-theorem, such as they are
presented in classical textbooks [1].

2.1. The Boltzmann Transport Equation

The first step in the Boltzmann kinetic theory of gases is defining the distribution
function, f (�r,�v, t), as the average number of molecules that, at time t, have position�r and
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velocity�v, and are contained in a μ-space volume element d3rd3v. Assuming a deterministic
Newtonian description of molecular motion, as well as the invariance of the μ-space volume
measure, one arrives at the Boltzmann rate equation:

f (�r +�vδt,�v + �Fδt, t + δt) = f (�r,�v, t) +
(

∂ f
∂t

)
coll

δt. (1)

Here, the term (∂ f /∂t)coll describes the in and out fluxes from and towards the volume
element, due to the collisions. Subsequently, from the previous equation, the integro-
differential Boltzmann transport equation is obtained:(

∂

∂t
+�v1 · ∇�r +

�F
m

· ∇�v1

)
f1 =

∫
dΩ

∫
d3v2σ(Ω)|�v1 −�v2|( f̃2 f̃1 − f2 f1). (2)

In Equation (2), Ω is the solid angle, σ is the scattering cross section, �F the external force
applied to the system, and f1 and f2 ( f̃1 and f̃2) are the distribution functions of particles 1
and 2, respectively, before (and after) the collision.

Particle dynamics and the effects of external forces are described by the left-hand side
of Equation (2). The right-hand side is derived by considering binary collisions between
particles and accepting the molecular chaos hypothesis, i.e., it is assumed that the positions
and velocities of the particles are not time-correlated.

2.2. A Summary of the H-Theorem and the Maxwell—Boltzmann Distribution

The evolution of a dilute gas towards thermodynamic equilibrium is frequently
addressed by first defining the H-functional [1,2]:

HB =
∫

f (�v, t) ln f (�v, t)d3v. (3)

Notice that fB(�v, t) is a spatially homogeneous distribution function. The functional HB,
originally introduced by Boltzmann in 1872, describes a dilute gas occupying a volume V, at
temperature T, with total energy E, and total number of free classical particles N. To clearly
distinguish the Boltzmann functional HB, we denote hereafter the Maxwell–Boltzmann
distribution function as fB.

The physically correct spontaneous time-evolution of an out of equilibrium dilute gas
is corroborated by the H-theorem. This theorem establishes that if (a) the homogeneous
function f (�v, t) satisfies the Boltzmann transport equation and (b) the molecular chaos
hypothesis is valid, then the system evolves in such a manner that dHB/dt ≤ 0, and if
dHB/dt = 0, then the system is in the equilibrium state. The H-theorem is straightforward
to prove using Equation (2) [1], and it assures the consistency between our microscopic
approach to describe the system’s spontaneous time-evolution and the phenomenological
observations established by the second law of classical thermodynamics; in fact, HB can be
associated with an entropy density.

On the other hand, considering a dilute gas in equilibrium with no applied external
forces, i.e., (∂ f /∂t) = 0 and f is independent of�r, we can directly prove that the equilibrium
distribution function obtained from Equation (2) is precisely the Maxwell–Boltzmann
distribution function. The proof of the above first requires identification of the sufficient
condition for f to render a null r.h.s. of Equation (2). Such an f , which we denote here as
f0, must satisfy

f0(�v′2) f0(�v′1)− f0(�v2) f0(�v1) = 0. (4)

Subsequently, the Maxwell–Boltzmann distribution function can be obtained by taking the
logarithm of Equation (4) and conserved mechanical quantities (see ([1], ch. 4.2)).

Before introducing our proposed H-functional, we must state that in defining HB,
Equation (3), it is assumed that the distribution function f is spatially homogeneous. This
assumption simplifies the demonstration of the H theorem. However, it also introduces
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a limited conception of the out-of-equilibrium condition of the gas. Given the relatively
simple nature of a dilute gas, one of the salient features of an out-of-equilibrium condition
is the existence of inhomogeneities in the system, which is not considered in the above.

2.3. Non-Homogeneous Classical H-Functional

As we saw in the previous section, the validity of the H-theorem relies significantly
on assuming that the distribution function is homogeneous and the molecular chaos
hypothesis is fulfilled. To extend the previous procedure to systems with non-homogeneous
distribution functions, which might allow for the study of systems in a more general out-
of-equilibrium condition, we introduce a modified H-functional. For the sake of clarity
and simplicity, we use primed functions and quantities to denote the classical case to
differentiate them from the quantum analogues.

Our proposed classical H-functional, denoted as H′, describes a dilute classical gas
occupying a volume V. In our theoretical treatment, we divide this volume into K cells,
which, without loss of generality, have identical volumes, δVM = V/K, M = 1, . . . , K.
Each cell of index M has the following local functions, properties, and variables: an H-
functional, H′

M, a homogeneous distribution function, f ′M(�v, t), number of particles, N ′
M,

temperature, T′
M, and energy, E′

M. Taken as a whole, the system has an energy E, and a
global number of free classical particles N. We also assume that the system is perfectly
isolated, and that the number of particles in each cell is sufficiently large, so as to obtain
accurate averages. We start our analysis by proposing the following inhomogeneous
H-functional:

H′(t) =
K

∑
M=1

∫
δVM

f ′M(�v, t) ln f ′M(�v, t)d3v. (5)

The distribution functions, { f ′M(�v, t)}, depend implicitly on the position of the cells,
relative to the global system, and on the velocity �v and time t. Notice that each f ′M can be
formally extended to the complete coordinate space by defining each f ′M to be zero outside
the M-th cell, in such a manner that the distribution function of the complete system is a
piece-wise sum of { f ′M(�v, t)}:

f ′(�r,�v, t) =
K

∑
M=1

f ′(�rM,�v, t) =
K

∑
M=1

f ′M(�v, t). (6)

Here,�rM is the center of the cell of index M, and f ′M(�v, t) = f ′N(�v, t) for M = N. This
extended definition allows us to omit the symbol δVM in all integrals performed over the
cell volume. In terms of f ′M(�v, t) and a local variable of energy, ε(�v), we have

H′
M =

∫
f ′M(�v, t) ln f ′M(�v, t)d3v, (7)

N ′
M =

∫
f ′M(�v, t)d3v, (8)

E′
M =

∫
f ′M(�v, t)ε(�v)d3v. (9)

Notice that assuming every f ′M to be homogeneous implies that we are accepting the
validity of the local equilibrium hypothesis. In addition, the set { f ′M(�v, t)} must satisfy the
following restrictions:

K

∑
M=1

∫
f ′M(�v, t)d3v = N (10)

and
K

∑
M=1

∫
f ′M(�v, t)ε(�v)d3v = E. (11)
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We now use the variational method to find the extremal of H′, consistent with restric-
tions (7)–(11) together with the corresponding Lagrange multipliers {αM} and {βM}. This
yields

δH′

δ f ′J(�v′)
=

K

∑
M=1

∫
δ

δ f ′J(�v′)
[

f ′M(�v) ln f ′M(�v)
]
d3v −

K

∑
M=1

αM

∫
δ f ′M(�v)
δ f ′J(�v′)

d3v

−
K

∑
M=1

βM

∫
ε(�v)

δ f ′M(�v)
δ f ′J(�v′)

d3v

= ln f ′J(�v′) + 1 − αJ − β Jε(�v′) = 0. (12)

Solving the last line for f ′J(�v′) renders

f ′J(�v′) = C exp
(
αJ + β Jε(�v′)

)
(13)

where C is a constant. We notice that by applying the variational procedure on H‘, we
predict that when equilibrium is reached, the distribution function of each cell has the
form of the Maxwell–Boltzmann distribution function, which is consistent with the local
equilibrium assumption.

2.3.1. Properties of H′ for Systems in Equilibrium

If the complete system is in equilibrium without external forces applied to the gas,
from classical thermodynamics of systems in equilibrium, we ascertain that the local
number of particles and the local energy do not depend on the cell number. In a statistical
sense, this is

N ′
M = N ′ ≡ N̄ ′ (14)

and
E′

M = E′ ≡ Ē ′. (15)

In Equations (14) and (15) the bar implies averaged properties over the complete system.
Moreover, the global distribution function is homogeneous, hence f ′M does not depend on
the cell number M (i.e., f ′M(�v, t) = f ′(�v, t), ∀M). Several properties arise directly from this,
e.g., from Equations (14) and (15) E = ∑M E′

M = KĒ ′, N = ∑M N ′
M = KN̄ ′. Here we have

used Equations (8) and (9). Equation (5), in terms of Equation (3), can be rewritten as:

H′(t) =
∫ K

∑
M=1

[ f ′(�v, t) ln f ′(�v, t)]d3v = K
∫

f ′(�v, t) ln f ′(�v, t)d3v = KHB(t). (16)

To identify H′ with the entropy, we need to show that H′(t) is extensive, with respect
to K f ′(�v, t). This is shown by analyzing the following expression:∫ [

K f ′(�v, t)
]

ln
[
K f ′(�v, t)

]
d3v =

∫ [
(K ln K) f ′(�v, t) + K f ′(�v, t) ln f ′(�v, t)

]
d3v

= K
∫ {

f ′(�v, t)
[

ln K + ln f ′(�v, t)
]}

d3v. (17)

We observe that if the number of particles in the μ-space, f ′(�v, t), is much larger than the
number of cells, K, then the first term of Equation (17) is negligible, and consequently:∫ [

K f ′(�v, t)
]

ln
[
K f ′(�v, t)

]
d3v ≈ K

∫
f ′(�v, t) ln f ′(�v, t)d3v, (18)

i.e., H′
M is extensive, and the sum ∑M H′

M is the H-functional of the complete system,
which reduces to the Boltzmann H-functional. Therefore, H′ can be identified with the
entropy density of the system.
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Furthermore, in equilibrium, the Lagrange multipliers are position- and time-independent,
thus f ′M(�v) reduces to

f ′M(�v) = C exp(α + βε(�v)) ≡ f̄ ′(�v), M = 1, . . . , K. (19)

The constant C can be omitted, which is shown by defining the following H′′ functional:

H′′(t) =
K

∑
M=1

∫ [
f ′M(�v, t) ln f ′M(�v, t)− f ′M(�v, t)

]
d3v. (20)

Since ∑K
M=1

∫
f ′M(�v, t)d3v = N (a constant), and because we are mainly interested in the

time-derivative of H′′, C can be conveniently omitted. In other words, H′ leads to the
Maxwell–Boltzmann distribution function of systems in equilibrium.

2.3.2. Proof of the H-Theorem for Non-Homogeneous Distributions

Throughout this section, we consider a classical gas with an initial condition close to
the equilibrium, which ensures that the local equilibrium hypothesis remains valid during
the time-evolution of the system. Also, we use the following definitions for the deviations
of concentration and energy, relative to the equilibrium values:

N ′
M(t) =

∫
f ′M(�v, t)d3v = N̄ ′ + Δ′

M(t) (21)

and
E′

M(t) =
∫

f ′M(�v, t)ε(�v)d3v = Ē ′ + δ′M(t). (22)

Here N̄ ′ = N/K and Ē ′ = E/K are the cell particle number and the cell energy in
equilibrium, respectively, which are given by

N̄ ′ =
∫

f̄ ′(�v)d3v and Ē ′ =
∫

f̄ ′(�v)ε(�v)d3v, (23)

where we have used f̄ ′(�v) as defined in Equation (19). In Equations (21) and (22), Δ′
M

and δ′M are considered deviations relative to N̄ ′ and Ē ′, respectively. For systems that
are sufficiently close to equilibrium, it is reasonable to expect first that Δ′

M(t) � N̄ ′ and
δ′M(t) � Ē′, and second that Δ′

M and δ′M are sufficiently large compared to the fluctuations
of N̄ ′ and Ē ′. Similarly, we can assume that every local distribution function can be written
as

f ′M(�v, t) = f̄ ′(�v)(1 + g′M(�v, t)), 1 � |g′M(�v, t)|. (24)

With the previous considerations, in the following, we proof an alternative H-theorem,
considering the H-functional, H′, defined by Equation (5).

We commence by differentiating Equation (5) with respect to time:

dH′

dt
=

K

∑
M=1

∫ [
1 + ln f ′M(�v, t)

]
ḟ ′M(�v, t)d3v. (25)

(Starting here, we use the standard notation ḣ ≡ (dh/dt)). Substituting Equation (24) into
Equation (25) yields

dH′

dt
=

K

∑
M=1

∫
f̄ ′(�v)

[
1 + ln

{
f̄ ′(�v) + f̄ ′(�v)g′M(�v, t)

}]
ġ′M(�v, t)d3v. (26)

The logarithmic term of Equation (26) expanded up to the first-order term of its Taylor
series, around g′M(�v, t) = 0, is

ln[ f̄ ′(�v) + f̄ ′(�v)g′M(�v, t)] ≈ ln[ f̄ ′(�v)] + g′M(�v, t), (27)
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and substituting this into Equation (26) gives

dH′

dt
=

K

∑
M=1

∫
f̄ ′(�v)

[
1 + ln f̄ ′(�v) + g′M(�v, t)

]
ġ′M(�v, t)d3v. (28)

Substituting ln f̄ ′(�v) = exp(α + βε(�v)), see Equation (19) and subsequent text, and omit-
ting C we obtain

dH′

dt
=

K

∑
M=1

∫
f̄ (�v)[α + βε(�v)]ġM(�v, t)d3v +

K

∑
M=1

∫
f̄ (�v)gM(�v, t)ġM(�v, t)d3v. (29)

From the definitions of N ′
M and E′

M —Equations (21) and (22)—and f ′M(�v, t) —Equation (24)—
it is straightforward to show that∫

f̄ (�v)gM(�v, t)d3v = ΔM(t) ⇒
∫

f̄ (�v)ġM(�v, t)d3v = Δ̇M(t), (30)∫
f̄ (�v)gM(�v, t)ε(�v)d3v = δM(t) ⇒

∫
f̄ (�v)ġM(�v, t)ε(�v)d3v = δ̇M(t), (31)

and as a consequence of ∑K
M=1 ΔM(t) = ∑K

M=1 δM(t) = 0, we find

K

∑
M=1

Δ̇M(t) =
K

∑
M=1

δ̇M(t) = 0. (32)

Therefore, due to Equations (30)–(32), Equation (29) simplifies to

dH′

dt
=

K

∑
M=1

∫
f̄ (�v)gM(�v, t)ġM(�v, t)d3v. (33)

To clearly determine the time-evolution of Equation (33), we split the summation over M
into two terms:

dH′

dt
=

L

∑
J

∫
f̄ ′(�v)g′I

+
(�v, t)ġ′I +(�v, t)d3v +

P

∑
J

∫
f̄ ′(�v)g′J

−
(�v, t)ġ′J −(�v, t)d3v (34)

where L + P = K. The above split is made based on the assumption that for any given
initial state of the system, at t0, some cells will have either a g′I(�v, t0) ≥ 0 or a g′J(�v, t0) < 0,
which we denote as ġ′I +(�v, t) or ġ′J −(�v, t), respectively.

If the system’s initial state is sufficiently close to equilibrium, it is physically appropri-
ate to assume that

∣∣g′M(�v, t0)
∣∣ → 0 as t → ∞ in a monotonous manner, thus ġ′I +(�v, t) ≤ 0

and ġ′J −(�v, t) > 0, for t ≥ t0. Consequently, Equation (34) can be re-written as

dH′

dt
= −

[
L

∑
J

∫
f̄ (�v)|g+J (�v, t)||ġ+J (�v, t)|d3v +

P

∑
J

∫
f̄ (�v)|g−J (�v, t)||ġ−J (�v, t)|d3v

]
. (35)

Since every integrand in Equation (35) is positive, for all t and �v, and
∣∣g′M(�v, t0)

∣∣ → 0 as
t → ∞, it follows that

dH′

dt
≤ 0. QED. (36)

In summary, considering a gas occupying a volume V (which is divided into K small
cells), with a total energy E and N classical free particles, whose initial state is not in
equilibrium, but sufficiently close to equilibrium, then the functional

H′(t) =
K

∑
M=1

∫
f ′M(�v, t) ln f ′M(�v, t)d3v (37)
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where f ′M(�v, t) is the cell distribution function, which satisfies dH′/dt ≤ 0, and the equality
relation is attained at t → ∞. In Equation (37), f ′M(�v, t) is the Maxwell–Boltzmann distri-
bution function, which in general is different for different cells—i.e., the complete system
can be non-homogeneous—and each f ′M(�v, t) is compatible with the cell properties, such
as number of particles, N ′

M, energy, E′
M, temperature, TM, and Legendre multipliers αM

and βM.

3. Quantum Scheme

The classical H-theorem is still considered one pillar on which classical statistical
physics is founded. Unfortunately, despite multiple attempts [3,10,11,14–16], the generality
of the classical H-theorem has no equally robust quantum match. In this section, we propose
and analyze an alternative quantum H-functional using the variational method. We start
by briefly outlining a typical textbook demonstration of the quantum H-theorem [2], and
subsequently present the analysis of our proposed H-functional.

3.1. H-Theorem and the Fermi–Dirac and Bose–Einstein Distribution Functions

Consider a dilute gas of N non-interacting quantum particles (either bosons or
fermions), contained by a vessel of volume V, temperature T, and total energy E. Starting
from the Boltzmann definition of entropy, the quantum H functional is

HT = − ln G, (38)

where G describes the total number of accessible quantum states of the gas that satisfy the
above conditions [2]. The quantum H-theorem can be demonstrated as follows. G can be
divided into groups of neighboring states, gk, and certain occupation numbers, nk, can be
associated with each of these groups. Thus, the above functional takes the form

HT = ∑
i

ni ln ni − (ni ± gi) ln(gi ± ni)± gi ln gi, (39)

where the upper and lower signs are for bosons and fermions, respectively. Thus the time
derivative of Equation (39) is

dHT
dt

= ∑
κ

[ln nκ − ln(gκ ± nκ)]
dnκ

dt
. (40)

Assuming that the energy exchange between particles is produced by interparticle
collisions, and using perturbation theory, the rate of change in the number of particles in a
group κ is

dnκ

dt
= − ∑

λ,(μν)

Aκλ,μνnκnλ(gμ ± nμ)(gν ± nν)

+ ∑
λ,(μν)

Aμν,κλnμnν(gκ ± nκ)(gλ ± nλ). (41)

Here Aκλ,μνnκnλ(gμ ± nμ)(gν ± nν) is the expected number of collisions per unit time, in
which two particles will be moved from groups (κ, λ) to (μ, ν), and the tensor Aκλ,μν is
given by

Aκλ,μν =
4π2

h
|I1 ± I2|2

Δε
. (42)

In Equation (42), Δε is the net energy change occurring during the collision and |I1 − I2|2 =
|Vmn,kl |2, where Vmn,kl is the element of the transition matrix of a binary collision. It is
important to remark that in deriving Equation (41), the equal a priori probabilities and
the random a priori phase hypotheses were assumed valid. The random a priori phase
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hypothesis can be considered an analogue of the molecular chaos hypothesis [15], as it is
the mechanism by which stochasticity is introduced into the system.

Substituting Equation (41) into Equation (40), it is straightforward to prove that

dHT
dt

≤ 0. (43)

At equilibrium (at t → ∞), dnκ/dt = 0, hence from Equation (41)

ln
nκ

gκ ± nκ
+ ln

nλ

gλ ± nλ
= ln

nμ

gμ ± nν
+ ln

nν

gν ± nν
. (44)

Considering that energy is conserved during the collision, the Bose–Einstein or Fermi–Dirac
distribution functions can be recovered from Equation (44):

nκ =
gκ

exp(α + βεκ)∓ 1
. (45)

In other words, at equilibrium dHT/dt = 0, the distribution function obtained from
Equation (39) is the expected distribution function.

3.2. Out-of-Equilibrium, Non-Homogeneous Quantum Systems

Consider a dilute gas enclosed by a perfectly isolated vessel of volume V, with total
energy E, and total number of quantum particles N, which can be free fermions or bosons.
For our purposes, the volume V is divided into K small cells, each of which has constant
volume δVM = V/K (M = 1, . . . , K), temperature TM, energy εM, number of particles NM,
and distribution function, { fMn(t)}. Hereafter we use the following short-hand notation:

fMn(t) ≡ f (�rM, εn, t), (46)

where�rM is the radius vector pointing at the center of the M-th cell. fMn(t) represents the
number of particles contained in the M-th cell that occupies the energy level εn at time t.
Since the particles are considered to be free, the energy levels should not depend on the cell
properties, i.e., the energy spectrum, {εn}, is the same for all cells; thus, there is no need to
label εn with an index M.

We propose the following functional as an alternative H-functional for quantum
non-homogeneous dilute gases:

H(t) =
K

∑
M=1

∑
n

[
fMn(t) ln fMn(t)

±
(

1 ∓ fMn(t)) ln(1 ∓ fMn(t)
)]

δVM. (47)

Here, the upper and lower signs refer to fermions and bosons, respectively. In addition,
when needed, each cell has an associated local chemical potential, αM, and a local H-
functional, which is defined by

HM(t) = ∑
n

[
fMn(t) ln fMn(t)±

(
1 ∓ fMn(t)

)
ln
(

1 ∓ fMn(t)
)]

δVM. (48)

Therefore, NM and EM as functions of time are given by

NM(t) = ∑
n

fMn(t)δVM (49)

and
EM(t) = ∑

n
fMn(t)εnδVM, (50)
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which are, for the whole system, constrained by the micro-canonical restrictions

K

∑
M=1

[
∑
n

fMn(t)

]
δVM =

K

∑
M=1

NM(t)δVM = N, (51)

and
K

∑
M=1

[
∑
n

fMn(t)εn

]
δVM =

K

∑
M=1

EM(t)δVM = E. (52)

Applying the variational method to H, and using the Lagrange multipliers {αM} and
{βM}, we readily obtain (see also the discussion related to Equation (12)):

ln
(

1 ∓ fMn(t)
fMn(t)

)
= −αM(t)− βM(t)εn, (53)

and solving for fMn(t) yields

fMn(t) =
1

exp
(− αM(t)− βM(t)εn

)± 1
. (54)

Thus, in this zero-order approximation, the form of equilibrium distribution functions is
conserved.

3.2.1. Properties of H for Systems in Equilibrium

If the system is in equilibrium, the temperature becomes homogeneous throughout
the complete system. Also, the local number of particles, the local energy, and the Lagrange
multipliers do not depend on the cell number, and they should be homogeneous. This is
represented by

NM(t → ∞) ≡ N̄ = N/K, (55)

EM(t → ∞) ≡ Ē = E/K, (56)

αM = ᾱ, ∀M, (57)

and
βM = β̄, ∀M. (58)

Substituting Equations (57) and (58) into Equation (54) yields the distribution function of
each cell in equilibrium:

f̄Mn = f̄n =
1

exp
(− ᾱ − β̄εn

)± 1
, ∀M. (59)

Using the above equation, we can recover the distribution function and the entropy of
a dilute quantum gas in equilibrium as follows. Setting ᾱ = μ/kT and β̄ = −1/kT,
and substituting them into Equation (59), it renders the Fermi–Dirac and Bose–Einstein
distribution functions:

f̄n =
1

exp
( εn−μ

kT
)± 1

, (60)

and substituting Equation (59) into the negative of Equation (47), the entropy of a quantum
ideal gas is

S =
K

∑
M=1

∑
n

[(
1

exp
(− ᾱ − β̄εn

)± 1

)
ln

(
1

exp
(− ᾱ − β̄εn

)± 1

)]

± ln

[
K

∏
M=1

∏
n

(
1 ∓ 1

exp
(− ᾱ − β̄εn

)± 1

)]
δVM. (61)
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This quantity is what we refer to as “variational entropy,” and this name reflects the fact
that it was obtained via the variational method.

3.2.2. Proof of the Quantum H-Theorem for Non-Homogeneous Systems

For quantum systems, we also accept the validity of the local equilibrium hypothesis
for every cell in the system. This allows us to define non-homogeneous systems, wherein
thermodynamic quantities are well-defined on a per-cell basis. In terms of the equilibrium
properties, we have

NM(t) = ∑
n

fMn(t) = N̄ + ΔM(t) (62)

and
EM(t) = ∑

n
εn fMn(t) = Ē + δM(t). (63)

In Equations (62) and (63) N̄ and Ē are the cell particle number and the cell energy in
equilibrium, which are given by Equations (55) and (56), and ΔM and δM are deviations
from N̄ and Ē , respectively, with ΔM(t) � N̄ and δM(t) � Ē .

In the present context, |ΔM| and |δM| are sufficiently large to not be fluctuations of the
system, and sufficiently small so that the local equilibrium hypothesis is valid for t > 0
(we set t0 = 0, and t0 is the initial time at which the system is prepared). Therefore, the
distribution functions can be rewritten as

fMn(t) = f̄n(1 + gMn(t)), 1 � |gMn(t)|, (64)

from which it follows, by substituting Equation (64) into Equations (62) and (63), that ΔM
and δM satisfy

ΔM(t) = ∑
n

f̄ngnM (65)

and
δM(t) = ∑

n
f̄ngnMεn. (66)

An additional consideration is necessary for treating Fermi gases. Since, for these
systems, fMn(t) ≤ 1, we have

1 − f̄n − f̄ngnM ≥ 0 ⇒ 1
f̄n

≥ 1 + gnM. (67)

f̄n = 1 is certainly satisfied if the system temperature is zero. In this state, all energy levels
below and including the Fermi energy are occupied, thus the system will necessarily be
homogeneous, and consequently, gnM = 0. In this article, we will omit this scenario and
will only discuss Fermi gases with non-zero temperatures.

To proof the quantum H-theorem, we start by taking the time-derivative of
Equation (47):

dH(t)
dt

= ∑
n

K

∑
M=1

ḟnM(t) ln
[

fnM(t)
1 ∓ fnM(t)

]
δVM. (68)

Subsequently, we substitute Equation (64) into the above equation to obtain

dH(t)
dt

= ∑
n

K

∑
M=1

f̄n ln
[

f̄n(1 + gnM)

1 ∓ f̄n(1 + gnM)

]
ġnMδVM

= ∑
n

K

∑
M=1

f̄n
{

ln[ f̄n + f̄ngnM]ġnM − ln[1 ∓ f̄n ∓ f̄ngnM]ġnM
}

δVM. (69)
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The logarithmic terms, corresponding to Fermi and Bose gases, are approximated through
a Taylor series around f̄ngnM = 0 as

ln[1 ∓ f̄n ∓ f̄ngnM] ≈ ln[1 ∓ f̄n]∓ f̄n

1 ∓ f̄n
gnM (70)

and
ln[ f̄n + f̄ngnM] ≈ ln[ f̄n] + gnM, (71)

respectively. Equation (70) is valid because, for non-extremely degenerated Fermi gases,
1 − f̄n � f̄n|gnM| and Equation (71) is fulfilled because, for Boson gases, 1 + f̄n � f̄n|gnM|
when f̄n � f̄n|gnM|.

Combining Equations (69)–(71),

dH
dt

= ∑
n

K

∑
M=1

f̄n
{
(ln f̄n + gnM)ġnM

}
δVMδεn

−∑
n

K

∑
M=1

f̄n

{(
ln[1 ∓ f̄n]∓

[
f̄n

1 ∓ f̄n

]
gnM

)
ġnM

}
δVM (72)

and substituting Equation (59) into Equation (72):

dH
dt

= ∑
n

K

∑
M=1

f̄n

{
(ᾱ + β̄εn)ġnM + gnM

(
1 ± eᾱ+β̄εn

)
ġnM

}
δVM. (73)

Since both the total number of particles and the total energy of the system are constant,
it follows from Equations (51), (52), (62) and (63) that

dN
dt

=
K

∑
M=1

ṄMδVM =
K

∑
M=1

∑
n

f̄n ġnMδVM =
K

∑
M=1

Δ̇M(t)δVM = 0 (74)

and
dE
dt

=
K

∑
M=1

ĖMδVM =
K

∑
M=1

∑
n

f̄n ġnMεnδVM =
K

∑
M=1

δ̇M(t)δVM = 0. (75)

Substitute the previous expression in Equation (73) to obtain

dH
dt

= ∑
n

eᾱ+β̄εn
K

∑
M=1

gnMġnMδVM ≤ 0. QED. (76)

To obtain the far right side of Equation (76), we have used the relationship gnMġnM ≤ 0
for t > 0. This can be proven by simply arguing that, in the initial state, if a cell is described
by gnM(t0) > 0 then gnM(t) ≥ 0 and ġnM(t) ≤ 0, and if gnM(t0) < 0 then gnM(t) ≤ 0 and
ġnM(t) ≥ 0. Here we have exploited the fact that the system in equilibrium is homogeneous,
and that, by accepting the local equilibrium hypothesis, gMn(t) is a monotonic function
and gnM → 0 as t → ∞ as the system approaches the equilibrium state. Another approach
to prove Equation (76) consists of splitting the cells into two subsets, just as we did in the
classical scenario.

Briefly, considering a dilute quantum gas contained in a vessel of volume V (divided
into K small cells), with total energy E and N quantum free particles, which initially is out
of equilibrium—but in such a manner that the local equilibrium hypothesis is valid— the
functional

H(t) =
K

∑
M=1

∑
n

[
fMn(t) ln fMn(t)±

(
1 ∓ fMn(t)) ln(1 ∓ fMn(t)

)]
δVM, (77)
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where fMn is the M-th cell distribution function, evolves in time such that dH/dt ≤ 0,
and the equality condition is attained when the system reaches the equilibrium state.
In Equation (77), and for a Fermi (Bose) gas, fMn corresponds to the Fermi–Dirac (Bose–
Einstein) distribution function for each cell. Locally, each cell is in equilibrium, although
the complete system may be non-homogeneous, and is characterized by the respective
fMn, number of particles NM, energy EM, temperature TM, and Legendre multipliers αM
and βM.

4. Quantum—Classical Correspondence

In Sections 2 and 3, we saw that the variational method can be applied to H-functionals,
which correctly describes the behavior of classical and quantum dilute gases, with regard to
their respective time-evolution. Both H-functionals defined in Equations (5) and (47) also
recover the well-known distribution functions, either Maxwell–Boltzmann for a classical
gas, Fermi–Dirac for a Fermi gas, or Bose–Einstein for a Bose gas. Nevertheless, the
functionals (5) and (47) are seemingly different, and in this section, we show they are
related by the correspondence principle.

We start by arguing that, in equilibrium, it is straightforward to proof that Equation (60)
collapses into Equation (19) by taking the limit wherein the degeneration parameter
ξ ≡ exp

( − (ε − μ)/(kBT)
) � 1. Alternatively, a more general approach to show the

quantum–classical correspondence consists of analyzing the collapse from the quantum to
the classical H-functionals within the appropriated limit. For the case treated here, this limit
is fnM ≈ 0 for several reasons. Systems at very low temperatures, in which the quantum
effects cannot be ignored, are obviously excluded from the current analysis. In systems at
sufficiently high temperatures, the particles occupy almost exclusively high-energy levels.
Furthermore, the energy spectrum approaches a continuum, as is expected by taking the
limit h̄ → 0, and the number of particles per level is very close to zero.

Subsequently, we substitute fnM ≈ 0 into Equation (47) to obtain

H =
K

∑
M=1

∑
n
[ fnM(t) ln( fnM(t))]δVM =

K

∑
M=1

∑
n
[ fM(εn, t) ln( fM(εn, t))]δVM. (78)

Finally, the sum over the quantum energy levels can be replaced by an integral over
the velocities by invoking both the uncertainty principle and the fact that, for free particles,
the continuum energy spectrum can be written as a function of the velocity. Hence the
quantum H-functional transforms, in the classical limit, to

H =
K

∑
M=1

∫
C′ fM(�v, t) ln

[
C′ fM(�v, t)

]
d�v, (79)

where C′ collects the appropriate constants stemming from writing the energy spectrum as
a function of �v.

5. Relaxation Processes in Degenerated Quantum Gases

To obtain a time-evolution equation for an out-of-equilibrium quantum gas, we pro-
pose the following approach. We start by evaluating ΔH = H(t2) −H(t1), where our
quantum H-functional—Equation (47)—is evaluated at different times t1 and t2, with
t2 > t1. This yields

ΔH =
K

∑
M=1

∑
n
[ f ′′nM ln f ′′nM − f ′nM ln f ′nM

±(1 ∓ f ′′nM) ln(1 ∓ f ′′nM)∓ (1 ∓ f ′nM) ln(1 ∓ f ′nM)]δVM. (80)

In the above equation, and for the rest of this section, we use the short-hand notation
fnM(t2) ≡ f ′′nM and fnM(t1) ≡ f ′nM. Subsequently, in Equation (80), we replace the distribu-
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tion functions with their expressions in terms of deviations from equilibrium—Equation (64)
—which renders:

ΔH =
K

∑
M=1

∑
n

[
f̄n(1 + g′′nM) ln f̄n(1 + g′′nM)− f̄n(1 + g′nM) ln f̄n(1 + g′nM)

±(1 ∓ f̄n{1 + g′′nM}) ln
(
1 ∓ f̄n{1 + g′′nM})

∓(1 ∓ f̄n{1 + g′nM}) ln
(
1 ∓ f̄n{1 + g′nM})]δVM. (81)

Subsequently, we expand the logarithmic terms up to the first-order in g′nM and g′′nM and
rearrange the result, which gives

ΔH =
K

∑
M=1

∑
n
[ f̄n(1 + ln f̄n)− f̄n{ln(1 ∓ f̄n)∓ 1}](g′′nM − g′nM)δVM. (82)

Finally we divide Equation (82) by Δt ≡ t2 − t1, and take the limit Δt → 0 to obtain

dH
dt

=
K

∑
M=1

∑
n
[ f̄n(1 + ln f̄n)− f̄n{ln(1 ∓ f̄n)∓ 1}]

( gnM
dt

)
δVM. (83)

Equation (83) is, within our framework, the time-evolution equation for gnM. Clearly,
to describe a realistic situation, providing a specific approximation for the deviation
function gnM is required. This subject will be explored in future work.

6. Comments and Remarks

The demonstration of the classical H-theorem usually begins by assuming that the gas,
despite being initially out of equilibrium, can be described by a spatially homogeneous
distribution function. Subsequently, the time-evolution of the system occurs in such
a manner that dH/dt ≤ 0. Therefore, this approach does not describe the evolution
to equilibrium of systems with spatial inhomogeneities. To address this issue, in this
article, we proposed a framework that may be useful to describe the time-evolution of
initially non-homogeneous systems. To this end, we divided the system into small cells
to conceive a system wherein the local equilibrium hypothesis is valid in each cell but
in such a manner that the total system is not homogeneous. Systems that satisfy the
previous conditions will evolve towards equilibrium, and the evolution occurs according
to dH′/dt ≤ 0, Equation (5) and dH/dt ≤ 0, and Equation (47), for classical and quantum
gases, respectively. Consequently, this approach can be considered an extension of the
H-theorem for more realistic out-of-equilibrium systems.

The classical and quantum H-functionals, H′ and H, respectively, correctly recover
the most-probable distribution functions in out-of-equilibrium states (locally) and when
the system attains the global equilibrium state. The relaxation process of the system is
described by monotonic functions that account for deviations from the global equilibrium.

It is clear that for describing the relaxation process of a concrete system, it is necessary
to know, at least to some approximation, the specific forms of the monotonic functions
g′M and gnM, for classical and quantum systems. Whereas the complete analysis of these
functions is beyond the scope of the present work, some of their properties can be predicted,
e.g., they must be consistent both with the system relaxation times and the mechanisms of
energy transfer between cells.

An important aspect of the framework proposed in this work is related to the entropy
of systems out-of-equilibrium. Because the functionals H′ and H can be related to the
entropy of dilute gases, either classical or quantum, the fact that these functionals are
defined over a system divided into cells enables their use for defining the entropy of out-of-
equilibrium systems, other than dilute gases. Specifically, and derived from our previous
work (e.g., [30,31]), the H′ and H functionals may serve to describe the entropy, as well as
the entropy generation, occurring during the growth of complex physical systems, such as

62



Entropy 2021, 23, 366

fractals. Possibly, studying these systems might also shed light on the explicit functional
form of g′M and gnM.

In summary, we proposed a variational procedure to demonstrate the classical and
quantum H-theorems, which allowed us to describe, at a mesoscopic local view (cell-
scale), the time-evolution of an out-of-equilibrium and spatially non-homogeneous system
moving towards the equilibrium condition. In principle, this approach would permit the
investigation of the transport phenomena inherent to the equilibration process, occurring
in a system with a spatially inhomogeneous out-of-equilibrium initial condition.
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Abbreviations

The following abbreviations are used in this manuscript:

HB The original Boltzmann H-functional
fB = f (�v) The Maxwell–Boltzmann distribution function
H′ Our H-functional for a classical dilute gas
f ′M = f ′(�rM,�v, t) The classical distribution function of a cell centered at�rM
HT The H-functional proposed by Tolman
H Our H-functional for a quantum dilute gas
fnM = fM(�rM, εn, t) The quantum distribution function of a cell centered at�rM
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Abstract: In this paper, we generalize the notion of Shannon’s entropy power to the Rényi-entropy
setting. With this, we propose generalizations of the de Bruijn identity, isoperimetric inequality, or
Stam inequality. This framework not only allows for finding new estimation inequalities, but it also
provides a convenient technical framework for the derivation of a one-parameter family of Rényi-
entropy-power-based quantum-mechanical uncertainty relations. To illustrate the usefulness of the
Rényi entropy power obtained, we show how the information probability distribution associated
with a quantum state can be reconstructed in a process that is akin to quantum-state tomography. We
illustrate the inner workings of this with the so-called “cat states”, which are of fundamental interest
and practical use in schemes such as quantum metrology. Salient issues, including the extension of
the notion of entropy power to Tsallis entropy and ensuing implications in estimation theory, are also
briefly discussed.

Keywords: Rényi entropy; Tsallis entropy; entropic uncertainty relations; quantum metrology

1. Introduction

The notion of entropy is undoubtedly one of the most important concepts in modern
science. Very few other concepts can compete with it in respect to the number of attempts
to clarify its theoretical and philosophical meaning [1]. Originally, the notion of entropy
stemmed from thermodynamics, where it was developed to quantify the annoying ineffi-
ciency of steam engines. It then transmuted into a description of the amount of disorder
or complexity in physical systems. Though many such attempts were initially closely
connected with the statistical interpretation of the phenomenon of heat, in the course of
time, they expanded their scope far beyond their original incentives. Along those lines,
several approaches have been developed in attempts to quantify and qualify the entropy
paradigm. These have been formulated largely independently and with different appli-
cations and goals in mind. For instance, in statistical physics, entropy counts the number
of distinct microstates compatible with a given macrostate [2], in mathematical statistics, it
corresponds to the inference functional for an updating procedure [3], and in information
theory, it determines a limit on the shortest attainable encoding scheme [2,4].

Particularly distinct among these are the information-theoretic entropies (ITEs). This
is not only because they discern themselves through their firm operational prescriptions
in terms of coding theorems and communication protocols [5–9], but because they also
offer an intuitive measure of disorder phrased in terms of missing information about a
system. Apart from innate issues in communication theory, ITEs have also proved to be
indispensable tools in other branches of science. Typical examples are provided by chaotic
dynamical systems and multifractals (see, e.g., [10] and citations therein). Fully developed
turbulence, earthquake analysis, and generalized dimensions of strange attractors provide
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further examples [11]. An especially important arena for ITEs in the past two decades has
been quantum mechanics (QM) with applications ranging from quantum estimation and
coding theory to quantum entanglement. The catalyst has been an infusion of new ideas
from (quantum) information theory [12–15], functional analysis [16,17], condensed matter
theory [18,19], and cosmology [20,21]. On the experimental front, the use of ITEs has been
stimulated not only by new high-precision instrumentation [22,23] but also by, e.g., recent
advances in stochastic thermodynamics [24,25] or observed violations of Heisenberg’s
error-disturbance uncertainty relations [26–30] .

In his seminal 1948 paper, Shannon laid down the foundations of modern information
theory [5]. He was also instrumental in pointing out that, in contrast with discrete signals
or messages where information is quantified by (Shannon’s) entropy, the cases with contin-
uous variables are less satisfactory. The continuous version of Shannon’s entropy (SE)— the
so-called differential entropy, may take negative values [5,31], and so it does not have the
same status as its discrete-variable counterpart. To solve a number of information-theoretic
problems related to continuous cases Shannon shifted the emphasis from the differential
entropy to yet another object—entropy power (EP). The EP describes the variance of a
would-be Gaussian random variable with the same differential entropy as the random
variable under investigation. EP was used by Shannon [5,6] to bound the capacity of non-
Gaussian additive noise channels. Since then, the EP has proved to be essential in a number
of applications ranging from interference channels to secrecy capacity [32–36]. It has also
led to new advances in information parametric statistics [37,38] and network information
theory [39]. Apart from its significant role in information theory, the EP has found wide use
in pure mathematics, namely in the theory of inequalities [39] and mathematical statistics
and estimation theory [40].

Recent developments in information theory [41], quantum theory [42,43], and complex
dynamical systems in particular [10,44,45] have brought about the need for a further
extension of the concept of ITE beyond Shannon’s conventional type. Consequently,
numerous generalizations have started to proliferate in the literature ranging from additive
entropies [31,46] through a rich class of non-additive entropies [47–52] to more exotic types
of entropies [53]. Particularly prominent among such generalizations are ITEs of Rényi and
Tsallis, which both belong to a broader class of so-called Uffink entropic functionals [54,55].
Both Rényi entropy (RE) and Tsalli entropy (TE) represent one-parameter families of
deformations of Shannon’s entropy. An important point related to the RE is that the RE is
not just a theoretical construct, but it has a firm operational meaning in terms of various
coding theorems [8,9]. Consequently, REs, along with their associated Rényi entropy
powers (REPs), are, in principle, experimentally accessible [8,56,57]. That is indeed the case
in specific quantum protocols [58–60]. In addition, REPs of various orders are often used
as convenient measures of entanglement—e.g., REP of order 2, i.e., N2 represents tangle
τ (with

√
τ being concurrence) [61], N1/2 is related to both fidelity F and robustness R of a

pure state [62], N∞ quantifies the Bures distance to the closest separable pure state [63], etc.
Even though our main focus here will be on REs and REPs since they are more pertinent in
information theory, we will include some discussion related to Tsallis entropy powers at
the end of this paper.

The aim of this paper is twofold. First, we wish to appropriately extend the notion
of SE-based EP to the RE setting. In contrast to our earlier works on the topic [13,64], we
will do it now by framing REP in the context of RE-based estimation theory. This will be
done by judiciously generalizing such key notions as the De Bruijn identity, isoperimetric
inequality (and ensuing Cramér–Rao inequality), and Stam inequality. In contrast to other
similar works on the subject [65–68], our approach is distinct in three key respects: (a) we
consistently use the notion of escort distribution and escort score vector in setting up the
generalized De Bruijn identity and Fisher information matrix, (b) we generalize Stam’s
uncertainty principle, and (c) Rényi EP is related to variance of the reference Gaussian
distribution rather than the Rényi maximizing distribution. As a byproduct, we derive
within such a generalized estimation theory framework the Rényi-EP-based quantum
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uncertainty relations (REPUR) of Schrödinger–Roberston type. The REPUR obtained
coincides with our earlier result [13] that was obtained in a very different context by
means of the Beckner–Babenko theorem. This in turn serves as a consistency check of the
proposed generalized estimation theory. Second, we identify interesting new playgrounds
for the Rényi EPs obtained. In particular, we asked ourselves a question: assuming one
is able in specific quantum protocols to measure Rényi EPs of various orders, how does
this constrain the underlying quantum state distribution? To answer this question, we
invoke the concept of the information distribution associated with a given quantum state.
The latter contains a complete “information scan” of the underlying state distribution.
We set up a reconstruction method based on Hausdorff’s moment problem [69] to show
explicitly how the information probability distribution associated with a given quantum
state can be numerically reconstructed from EPs. This is a process that is analogous
to quantum-state tomography. However, whereas tomography extracts the full density
matrix from an ensemble using many measurements on a tomographically complete
basis, the EP reconstruction method extracts the probability density on a given basis.
This is an alternative approach that may be advantageous, for example, in quantum
metrology schemes, where only knowledge of the local probability density rather than the
full quantum state is needed [70].

The paper is structured as follows. In Section 2, we introduce the concept of Rényi’s
EP. With quantum metrology applications in mind, we discuss this in the framework
of estimation theory. First, we duly generalize the notion of Fisher information (FI) by
using a Rényi entropy version of De Bruijn’s identity. In this connection, we emphasize
the role of the so-called escort distribution, which appears naturally in the definition of
higher-order score functions. Second, we prove the RE-based isoperimetric inequality and
ensuing Cramér–Rao inequality and find how the knowledge of Fisher information matrix
restricts possible values of Rényi’s EP. Finally, we further illuminate the role of Rényi’s EP
by deriving (through the Stam inequality) Rényi’s EP-based quantum uncertainty relations
for conjugate observables. To flesh this out, the second part of the paper is devoted to
the development of the use of Rényi EPs to extract the quantum state from incomplete
data. This is of particular interest in various quantum metrology protocols. To this end, we
introduce in Section 3 the concepts of information distribution, and, in Section 4, we show
how cumulants of the information distribution can be obtained from knowledge of the EPs.
With the cumulants at hand, one can reconstruct the underlying information distribution in
a process which we call an information scan. Details of how one could explicitly realize such
an information scan for quantum state PDFs are provided in Section 5. There we employ
generalized versions of Gram–Charlier A and the Edgeworth expansion. In Section 6,
we illustrate the inner workings of the information scan using the example of a so-called
cat state. This state is of interest in applications of quantum physics such as quantum-
enhanced metrology, which is concerned with the optimal extraction of information from
measurements subject to quantum mechanical effects. The cat state we consider is a
superposition of the vacuum state and a coherent state of the electromagnetic field; two
cases are studied comprising different probabilistic weightings of the superposition state
corresponding to balanced and unbalanced cat states. Section 7 is dedicated to EPs based
on Tsallis entropy. In particular, we show that Rényi and Tsallis EPs coincide with each
other. This, in turn, allows us to phrase various estimation theory inequalities in terms of
TE. In Section 7, we end with conclusions. For the reader’s convenience, we relegate some
technical issues concerning the generalized De Bruijn identity and associated isoperimetric
and Stam inequalities to three appendices.

2. Rényi Entropy Based Estimation Theory and Rényi Entropy Powers

In this section, we introduce the concept of Rényi’s EP. With quantum metrology
applications in mind, we discuss this in the framework of estimation theory. This will
not only allow us to find new estimation inequalities, such as the Rényi-entropy-based
De Bruijn identity, isoperimetric inequality, or Stam inequality, but it will also provide a
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convenient technical and conceptual frame for deriving a one-parameter family of Rényi-
entropy-power-based quantum-mechanical uncertainty relations.

2.1. Fisher Information—Shannon’s Entropy Approach

First, we recall that the Fisher information matrix J(X ) of a random vector {Xi} in
RD with the PDF F (x) is defined as [38]

J(X ) = cov(V(X )) , (1)

where the covariance matrix is associated with the random zero-mean vector—the so-called
score vector, as

V(x) = ∇F (x)/F (x) . (2)

A corresponding trace of J(X ), i.e.,

J(X ) = Tr(J(X )) = var(V(X )) = E(V2(X )) , (3)

is known as the Fisher information. Both the FI and FI matrix can be conveniently related
to Shannon’s differential entropy via De Bruijn’s identity [66,67].

De Bruijn’s identity: Let {Xi} be a random vector in RD with the PDF F (x) and let
{ZG

i } be a Gaussian random vector (noise vector) with zero mean and unit-covariance matrix,
independent of {Xi}. Then,

d
dε

H(X +
√

εZG )|ε=0 =
1
2

J(X ) , (4)

where

H(X ) = −
∫
RD

F (x) logF (x) dx , (5)

is Shannon’s differential entropy (measured in nats). In the case when the independent
additive noise {Zi} is non-Gaussian with zero mean and covariance matrix Σ = cov(Z),
then the following generalization holds [67]:

d
dε

H(X +
√

εZ)|ε=0 =
1
2

Tr(J(X )Σ). (6)

The key point about De Bruijn’s identity is that it provides a very useful intuitive
interpretation of FI, namely, FI quantifies the sensitivity of transmitted (Shannon type)
information to an arbitrary independent additive noise. An important aspect that should be
stressed in this context is that FI as a quantifier of sensitivity depends only on the covariance
of the noise vector, and thus it is independent of the shape of the noise distribution. This
is because De Bruijn’s identity remains unchanged for both Gaussian and non-Gaussian
additive noise with the same covariance matrix.

2.2. Fisher Information—Rényi’s Entropy Approach

We now extend the notion of the FI matrix to the Rényi entropy setting. A natural
way to do it is via an extension of De Bruijn’s identity to Rényi entropies. In particular,
the following statement holds:

Generalized De Bruijn’s identity: Let {Xi} be a random vector in RD with the PDF F (x)
and let {Zi} be an independent (generally non-Gaussian) noise vector with the zero mean
and covariance matrix Σ = cov(Z), then, for any q > 0

d
dε

Iq(X +
√

εZ)|ε=0 =
1
2q

Tr
(
Jq(X )Σ

)
, (7)
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where

Iq =
1

1 − q
log

∫
RD

F q(x)dx , q > 0 , (8)

is Rényi’s differential entropy (measured in nats) with I1 = H. The ensuing FI matrix of order
q has the explicit form

Jq(X ) = covq(V q(X )) , (9)

with the score vector

V q(x) = ∇ρq(x)/ρq(x) = q∇F (x)/F (x) = qV(x) . (10)

Here, ρq = F q/
∫
RD F qdx is the so-called escort distribution [71]. The “covq” denotes the

covariance matrix computed with respect to ρq. Proofs of both the conventional (i.e.,
Shannon entropy based) and generalized (i.e., Rényi entropy based) De Bruijn’s identity
are provided in Appendix A. There we also discuss some further useful generalizations of
De Bruijn’s identity. Finally, as in the Shannon case, we define the FI of order q—denoted
as Jq(X ), as

Tr
(
Jq(X )

) ≡ Jq(X ) . (11)

2.3. Rényi’s Entropy Power and Generalized Isoperimetric Inequality

Similarly as in conventional estimation theory, one can expect that there should exist
a close connection between the FI matrix Jq(X ) and the corresponding Rényi entropy
power Np(X ). In Shannon’s information theory, such a connection is phrased in terms
of isoperimetric inequality [67]. Here, we prove that a similar relationship works also in
Rényi’s information theory.

Let us start by introducing the concept of Rényi’s entropy power. This is defined as
the solution of the equation [13,64]

Ip(X ) = Ip

(√
Np(X ) · ZG

)
, (12)

where {ZG
i } represents a Gaussian random vector with a zero mean and unit covariance

matrix. Thus, Np(X ) denotes the variance of a would be Gaussian distribution that has
the same Rényi information content as the random vector {Xi} described by the PDF
F (x). Expression (12) was studied in [13,64,72], where it was shown that the only class of
solutions of (12) is

Np(X ) =
1

2π
p−p′/p exp

(
2
D
Ip(X )

)
, (13)

with 1/p + 1/p′ = 1 and p ∈ R+. In addition, when p → 1+, one has Np(X ) → N(X ),
where N(X ) is the conventional Shannon entropy power [5]. In this latter case, one can use
the asymptotic equipartition property [55,73] to identify N(X ) with “typical size” of a state
set, which in the present context is the effective support set size for a random vector. This,
in turn, is equivalent to Einstein’s entropic principle [74]. In passing, it should be noted that
the form of the Rényi EP expressed in (13) is not universally accepted version. In a number
of works, it is defined merely as an exponent of RE, see, e.g., [75,76]. Our motivation for
the form (13) is twofold: first, it has a clear interpretation in terms of variances of Gaussian
distributions and, second, it leads to simpler formulas, cf. e.g., Equation (22).

Generalized isoperimetric inequality: Let {Xi} be a random vector in RD with the PDF
F (x). Then,

1
D

Nq(X )Jq(X ) ≥ Nq(X )[det(Jq(X ))]1/D ≥ 1 , (14)
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where the Rényi parameter q ≥ 1. We relegate the proof of the generalized isoperimetric
inequality to Appendix B.

It is also worth noting that the relation (14) implies another important inequality. By
using the fact that the Shannon entropy is maximized (among all PDF’s with identical
covariance matrix Σ) by the Gaussian distribution, we have N1(X ) ≤ det(Σ)1/D (see,
e.g., [77]). If we further employ that Iq is a monotonously decreasing function of q, see,
e.g., [31,78], we can write (recall that q ≥ 1)

q1/(q−1)

e
Nq ≤ N1 =

exp( 2
DI1)

2πe
≤ det(Σ)1/D. (15)

The isoperimetric inequality (14) then implies

det(Σ(X )) ≥
(

q1/(q−1)
)D

eD det(Jq(X ))
≥ 1

eD det(Jq(X ))
. (16)

We can further use the inequality

1
D

Tr(A) ≥ [det(A)]1/D , (17)

(valid for any positive semi-definite D × D matrix A) to write

σ2(X ) =
1
D

Tr(Σ(X )) =
1
D

D

∑
i=1

Var(Xi) ≥ Dq1/(q−1)

eJq(X )
≥ D

eJq(X )
, (18)

where σ2 is an average variance per component.
Relations (16)–(18) represent the q-generalizations of the celebrated Cramér–Rao

information inequality. In the limit of q → 1, we recover the standard Cramér–Rao
inequality that is widely used in statistical inference theory [38,79]. A final logical step
needed to complete the proof of REPURs is represented by the so-called generalized Stam
inequality. To this end, we first define the concept of conjugate random variables. We say
that random vectors {Xi} and {Yi} in RD are conjugate if their respective PDF’s F (x) and
G(y) can be written as

F (x) = |ϕF (x)|2/||ϕF ||22 , G(y) = |ϕG (y)|2/||ϕG ||22 , (19)

where the (generally complex) probability amplitudes ϕF (x) ∈ L2(R
D) and ϕG (y) ∈

L2(R
D) are mutual Fourier images, i.e.,

ϕF (x) = ϕ̂G (x) =
∫
RD

e2πix.y ϕG (y) dy , (20)

and analogously for ϕG (y) = ϕ̂F (y). With this, we can state the generalized Stam inequality.
Generalized Stam inequality (Stam’s uncertainty principle): Let {Xi} and {Yi} be conjugate

random vectors in RD. Then,

16π2Nq(Y) ≥ [det(Jr(X ))]1/D , (21)

is valid for any r ∈ [1, ∞) and q ∈ [1/2, 1] that are connected via the relation 1/r + 1/q = 2.
In particular, if we define r′ = 2r and q′ = 2q, then r′ and q′ are Hölder conjugates. A proof
of the generalized Stam inequality is provided in Appendix C.
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Let us now consider Hölder conjugate indices p and q with p ∈ [2, ∞) (so that
q ∈ [1, 2]). Combining the isoperimetric inequality (14) together with the generalized Stam
inequality (21), we obtain the following one-parameter class of REP-based inequalities

Np/2(X )Nq/2(Y) = Np/2(X )
[det(Jp/2(X ))]1/D

[det(Jp/2(X ))]1/D Nq/2(Y)

≥ Nq/2(Y)

[det(Jp/2(X ))]1/D ≥ 1
16π2 . (22)

By symmetry, the role of q and p can be reversed. In Refs. [13,64], we presented an
alternative derivation of inequalities (22) that was based on the Beckner–Babenko theorem.
There it was also proved that the inequality saturates if and only if the distributions
involved are Gaussian. The only exception to this rule is for the asymptotic values p = 1
and q = ∞ (or vice versa) where the saturation happens whenever the peak of F (x) and
tail of G(y) (or vice versa) are Gaussian.

The passage to quantum mechanics is quite straightforward. First, we realize that,
in QM, the Fourier conjugate wave functions are related via two reciprocal relations

ψF (x) =
∫
RD

eiy·x/h̄ ψG (y)
dy

(2πh̄)D/2 ,

ψG (y) =
∫
RD

e−iy·x/h̄ ψF (x)
dx

(2πh̄)D/2 .

(23)

The Plancherel (or Riesz–Fischer) equality implies that, when ||ψF ||2 = 1, then also auto-
matically ||ψG ||2 = 1 (and vice versa). Thus, the connection between amplitudes ϕF and ϕG
from (19) and amplitudes ψF and ψG from (23) is

ϕF (x) = (2πh̄)D/4ψF (
√

2πh̄ x) ,

ϕG (y) = (2πh̄)D/4ψG (
√

2πh̄y) .
(24)

The factor (2πh̄)D/4 ensures that also ϕF and ϕG functions are normalized (in the sense
of || . . . ||2) to unity; however, due to Equation (19), it might be easily omitted. The corre-
sponding Rényi EPs change according to

Np/2(X ) ≡ Np/2(F ) �→ Np/2(|ψF |2) = 2πh̄Np/2(F ) ,

Nq/2(Y) ≡ Nq/2(G) �→ Nq/2(|ψG |2) = 2πh̄Nq/2(G) ,
(25)

and hence REP-based inequalities (22) acquire in the QM setting a simple form

Np/2(|ψF |2)Nq/2(|ψG |2) ≥ h̄2

4
. (26)

This represents an infinite tower of mutually distinct (generally irreducible) REPURs [13].
At this point, some comments are in order. First, historically, the most popular quan-

tifier of quantum uncertainty has been variance because it is conceptually simple and
relatively easily extractable from experimental data. The variance determines the measure
of uncertainty in terms of the fluctuation (or spread) around the mean value, which, while
useful for many distributions, does not provide a sensible measure of uncertainty in a
number of important situations including multimodal [12,13,64] and heavy-tailed distribu-
tions [13,14,64]. To deal with this, a multitude of alternative (non-variance based) measures
of uncertainty in quantum mechanics (QM) have emerged. Among these, a particularly
prominent role is played by information entropies such as the Shannon entropy [63], Rényi
entropy [63,64], Tsallis entropy [80], associated differential entropies, and their quantum-
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information generalizations [13,15,64]. REPURs (26) fit into this framework of entropic
QM URs. In connection with (26), one might observe that the conventional URs based
on variances—so-called Robertson–Schrödinger URs [81,82]) and Shannon differential
entropy based URs (e.g., Hirschman or Białynicki–Birula URs [15,83]) naturally appear
as special cases in this hierarchy. Second, the ITEs enter quantum information theory
typically in three distinct ways: (a) as a measure of the quantum information content (e.g.,
how many qubits are needed to encode the message without loss of information), (b) as
a measure of the classical information content (e.g., amount of information in bits that
can be recovered from the quantum system) and (c) to quantify the entanglement of pure
and mixed bipartite quantum states. Logarithms in base 2 are used because, in quantum
information, one quantifies entropy in bits and qubits (rather than nats). This in turn also
modifies Rényi’s EP as

1
2π

p−p′/pe(
2
D ··· ) �→ 1

2π
p−p′/p 2(

2
D ··· ) . (27)

In the following, we will employ this QM practice.

3. Information Distribution

To put more flesh on the concept of Rényi’s EP, we devote the rest of this paper to
the development of the methodology and application of Rényi EPs in extracting quantum
states from incomplete data. The technique of quantum tomography is widely used for this
purpose and involves making many different measurements on an ensemble of identical
copies of a quantum state with a tomographically complete measurement basis [84,85]. This
process is very measurement-intensive, scaling exponentially with the number of particles
and so methods have been developed to approximate it with fewer measurements [86].

However, the method of Rényi EPs provides an efficient alternative approach. Instead
of reconstructing the full quantum state, this process extracts the PDF of the quantum state
in a given basis. For a broad class of quantum metrology problems, local rather than global
approaches are preferred [70] and, for these, the local PDF of the state at each sensor is
needed rather than the full density matrix. With this in mind, we first start with the notion
of the information distribution.

Let F (x) be the PDF for the random variable X . We define the information random vari-
able iX (X ) so that iX (x) = log2 1/F (x). In other words, iX (x) represents the information
in x with respect to F (x). In this connection, it is expedient to introduce the cumulative
distribution function for iX (X ) as

℘(y) =
∫ y

−∞
d℘(iX ) =

∫
RD

F (x)θ(log2 F (x) + y)dx . (28)

The function ℘(y) thus represents the probability that the random variable iX (X ) is less
than or equal to y. We have denoted the corresponding probability measure as d℘(iX ).
Taking the Laplace transform of both sides of (28), we get

L{℘}(s) =
∫
RD
F (x)

es log2 F (x)

s
dx =

E

[
es log2 F

]
s

, (29)

where E[· · · ] denotes the mean value with respect to F . By assuming that ℘(x) is smooth,
then the PDF associated with iX (X )—the so-called information PDF—is

g(y) =
d℘(y)

dy
= L−1

{
E

[
es log2 F

]}
(y) . (30)

Setting s = (p − 1) log 2, we have

L{g}(s = (p − 1) log 2) = E

[
2(1−p)iX

]
. (31)
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The mean here is taken with respect to the PDF g. Equation (31) can also be written
explicitly as ∫

RD
dxF p(x) =

∫
R

g(y)2(1−p)ydy . (32)

Note that, when F p is integrable for p ∈ [1, 2], then (32) ensures that the moment-generating
function for g(x) PDF exists. Thus, in particular, the moment-generating function exists
when F (x) represents Lévy α-stable distributions, including the heavy-tailed stable distri-
butions (i.e, PDFs with the Lévy stability parameter α ∈ (0, 2]). The same holds for F̂ and
p′ ∈ [2, ∞) due to the Beckner–Babenko theorem [13,87,88].

4. Reconstruction Theorem

Since L{g}(s) is the moment-generating function of the random variable iX (X ), one
can generate all moments of the PDF g(x) (if they exist) by taking the derivatives of L{g}
with respect to s. From a conceptual standpoint, it is often more useful to work with
cumulants rather than moments. Using the fact that the cumulant generating function is
simply the (natural) logarithm of the moment-generating function, we see from (32) that
the differential RE is a reparametrized version of the cumulant generating function of the
information random variable iX (X ). In fact, from (31), we have

Ip(X ) =
1

(1 − p)
log2 E

[
2(1−p)iX

]
. (33)

To understand the meaning of REPURs, we begin with the cumulant expansion (33), i.e.,

pI1−p(X ) = log2 e
∞

∑
n=1

κn(X )

n!

(
p

log2 e

)n
, (34)

where κn(X ) ≡ κn(iX ) denotes the n-th cumulant of the information random variable
iX (X ) (in units of bitsn). We note that

κ1(X ) = E[iX (X )] = H(X ) ,

κ2(X ) = E

[
iX (X )2

]
− (E[iX (X )])2 ,

(35)

i.e., they represent the Shannon entropy and varentropy, respectively. By employing the identity

I1−p(X ) =
D
2

log2

[
2π(1 − p)−1/pN1−p(X )

]
, (36)

we can rewrite (34) in the form

log2
[
N1−p(X )

]
= log2

[
(1 − p)1/p

2π

]
+

2
D

∞

∑
n=1

κn(X )

n!

(
p

log2 e

)n−1
. (37)

From (37), one can see that

κn(X ) =
nD
2

(log2 e)n−1 dn−1 log2
[
N1−p(X )

]
dpn−1

∣∣∣∣∣
p=0

+
D
2
(log2 e)n[(n − 1)! + δ1n log 2π] , (38)
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where δ1n is the Kronecker delta function that has a value of one if n = 1, or zero otherwise.
In terms of the Grünwald–Letnikov derivative formula (GLDF) [89], we can rewrite (38) as

κn(X ) = lim
Δ→0

nD
2

(log2 e)n

Δn−1

n−1

∑
k=0

(−1)k
(

n − 1
k

)
log[N1+kΔ(X )]

+
D
2
(log2 e)n[(n − 1)! + δ1n log 2π] . (39)

Thus, in order to determine the first m cumulants of iX (X ), we need to know all N1, N1+Δ,
. . . , N1+(m−1)Δ entropy powers. In practice, Δ corresponds to a characteristic resolution
scale for the entropy index which will be chosen appropriately for the task at hand, but is
typically of the order 10−2. Note that the last term in (38) and (39) can be also written

D
2
(log2 e)n[(n − 1)! + δ1n log 2π] = κn(Z1I

G) ≡ κn(iY ) , (40)

with Y being the random variable distributed with respect to the Gaussian distribution Z1I
G

with the unit covariance matrix.
When all the cumulants exist, then the problem of recovering the underlying PDF

for iX (X ) is equivalent to the Stieltjes moment problem [90]. Using this connection, there
are a number of ways to proceed; the PDF in question can be reconstructed e.g., in terms
of sums involving orthogonal polynomials (e.g., the Gram–Charlier A series or the Edge-
worth series [91]), the inverse Mellin transform [92], or via various maximum entropy
techniques [93]. Pertaining to this, the theorem of Marcinkiewicz [94] implies that there
are no PDFs for which κm = κm+1 = . . . = 0 for m ≥ 3. In other words, the cumulant
generating function cannot be a finite-order polynomial of degree greater than 2. The
important exceptions, and indeed the only exceptions to Marcinkiewicz’s theorem are the
Gaussian PDFs that can have the first two cumulants nontrivial and κ3 = κ4 = . . . = 0.
Thus, apart from the special case of Gaussian PDFs where only N1 and N1+Δ are needed,
one needs to work with as many entropy powers N1+kΔ, k ∈ N (or ensuing REPURs) as
possible to receive as much information as possible about the structure of the underlying
PDF. In theory, the whole infinite tower of REPURs would be required to uniquely specify
a system’s information PDF. Note that, for Gaussian information PDFs, one needs only N1
and N1+Δ to reconstruct the PDF uniquely. From (37) and (39), we see that knowledge
of N1 corresponds to κ1(X ) = H(X ) while N1+Δ further determines κ2, i.e., the varen-
tropy. Since N1 is involved (via (39)) in the determination of all cumulants, it is the most
important entropy power in the tower. Thus, the entropy powers of a given process have
an equivalent meaning to the PDF: they describe the morphology of uncertainty of the
observed phenomenon.

We should stress that the focus of the reconstruction theorem we present is on cumu-
lants κn which can be directly used for a shape estimation of g(x) but not F (x). However,
by knowing g(y), we have a complete “information scan” of F (x). Such an information
scan is, however, not unique, indeed, two PDFs that are rearrangements of each other—i.e.,
equimeasurable PDFs, have identical ℘(y) and g(y). Even though equimeasurable PDFs
cannot be distinguished via their entropy powers, they can be, as a rule, distinguished via
their respective momentum-space PDFs and associated entropy powers. Thus, the infor-
mation scan has a tomographic flavor to it. From the multi-peak structure of g(y), one can
determine the number and height of the stationary points. These are invariant characteristics
of a given family of equimeasurable PDFs. This will be further illustrated in Section 6.

5. Information Scan of Quantum-State PDF

With knowledge of the entropy powers, the question now is how we can reconstruct
the information distribution g(x). The inner workings of this will now be explicitly illus-
trated with the (generalized) Gram-Charlier A expansion. However, other—often more
efficient methods—are also available [91]. Let κn be cumulants obtained from entropy

74



Entropy 2021, 23, 334

powers and let G(x) be some reference PDF whose cumulants are γk. The information PDF
g(x) can be then written as [91]

g(x) = exp

[
∞

∑
k=1

(κk − γk)(−1)k (d
k/dxk)

k!

]
G(x) . (41)

With hindsight, we choose the reference PDF G(x) to be a shifted gamma PDF, i.e.,

G(x) ≡ G(x|a, α, β) =
e−(x−a)/β(x − a)α−1

βαΓ[α]
, (42)

with a < x < ∞, β > 0, α > 0. In doing so, we have implicitly assumed that the
F (y) PDF is in the first approximation equimeasurable with the Gaussian PDF. To reach
a corresponding matching, we should choose a = log2(2πσ2)/2, α = 1/2 and β = log2 e.
Using the fact that [95]

(β)k+1/2 dkG(x|a, 1/2, β)

k!dxk =

(
x − a

β

)−k
L(−1/2−k)

k

(
x − a

β

)
G(x|a, 1/2, β) , (43)

(where Lδ
k is an associated Laguerre polynomial of order k with parameter δ) and given

that κ1 = γ1 = αβ + a = log2(2πσ2e)/2, and γk = Γ(k)αβk = (log2 e)k/2 for k > 1 we
can write (41) as

g(x) = G(x|a, 1/2, β)

[
1 +

(κ2 − γ2)

β1/2(x − a)2 L(−5/2)
2

(
x − a

β

)

− (κ3 − γ3)

β1/2(x − a)3 L(−7/2)
3

(
x − a

β

)
+ · · ·

]
. (44)

If needed, one can use a relationship between the moments and the cumulants (Faà di
Bruno’s formula [94]) to recast the expansion (44) into more familiar language. For the
Gram–Charlier A expansion, various formal convergence criteria exist (see, e.g., [91]).
In particular, the expansion for nearly Gaussian equimeasurable PDFs F (y) converges quite
rapidly and the series can be truncated fairly quickly. Since in this case one needs fewer
κk’s in order to determine the information PDF g(x), only EPs in the small neighborhood of
the index 1 will be needed. On the other hand, the further the F (y) is from Gaussian (e.g.,
heavy-tailed PDFs), the higher the orders of κk are required to determine g(x), and hence a
wider neighborhood of the index 1 will be needed for EPs.

6. Example—Reconstruction Theorem and (Un)Balanced Cat State

We now demonstrate an example of the reconstruction in the context of a quantum
system. Specifically, we consider cat states that are often considered in the foundations
of quantum physics as well as in various applications, including solid state physics [96]
and quantum metrology [97]. The form of the state we consider is |ψ〉 = N (|0〉+ ν|α/ν〉),
where N = [1 + 2ν exp(−α2/2ν2) + ν2]−1/2 is the normalization factor, |0〉 is the vacuum
state, ν ∈ R a weighting factor, and |α〉 is the coherent state given by

|α〉 = e−α2/2
∞

∑
n=0

αn
√

n!
|n〉 , (45)
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(taking α ∈ R). For ν = 1, we refer to the state as a balanced cat state (BCS) and for ν = 1,
as an unbalanced cat state (UCS). Changing the basis of |ψ〉 to the eigenstates of the general
quadrature operator

Ŷθ =
1√
2

(
âe−iθ + â†eiθ

)
, (46)

where â and â† are the creation and annihilation operators of the electromagnetic field, we
find the PDF for the general quadrature variable yθ to be

F (yθ) = N 2π− 1
2 e−y2

θ

∣∣∣∣1 + ν exp
[
− α2

ν22

(
1 + e2iθ − 2

√
2eiθ ν

α
yθ

)]∣∣∣∣2 , (47)

where N is the normalization constant. Setting θ = 0 and ν = 1 returns the PDF of the BCS
for the position-like variable y0. With this, the Rényi EPs N1−p(χ) are calculated and found
to be constant across varying p. This is because F (y0) for the BCS is in fact a piecewise
rearrangement of a Gaussian PDF (yet has an overall non-Gaussian structure) as depicted in
Figure 1, thus N1−p(χ) = σ2 for all p, where σ2 is the variance of the ‘would be Gaussian’.
Taking the reference PDF to be G(x) = G(x|a, α, β), with a = log2(2πσ2)/2, α = 1/2 and
β = log2(e), it is evident that (κk − γk) = 0 for all k ≥ 1, and from the Gram–Charlier A
series (41), a perfect matching in the reconstruction is achieved. Furthermore, it can be
shown that the variance of (47) increases with α, i.e., the variance increases as the peaks
of the PDF diverge, which is in stark contrast to the Rényi EPs which remain constant for
increasing α. This reveals the shortcomings of variance as a measure of uncertainty for
non-Gaussian PDFs.

The peaks, located at F (yθ) = 2−a+j , where j is an index labelling the distinct peaks,
give rise to sharp singularities in the target g(x). With regard to the BCS position PDF, dis-
tributions of the conjugate parameter F (yπ/2) distinguish F (y0) from its equimeasurable
Gaussian PDF and hence the Rényi EPs also distinguish the different cases. The number of
available cumulants k is computationally limited, but, as this grows, information about the
singularities will be recovered in the reconstruction. In the following, we show how the
tail convergence and location of a singularity for g(x) can be reconstructed using k = 5.

Figure 1. Probability distribution function of a balanced cat state (BCS) for the quantum mechanical
state’s position-like quadrature variable with α = 5. This clearly displays an overall non-Gaussian
structure; however, as this is a piecewise rearrangement of a Gaussian PDF for all α, we have that
N1−p = σ2 for all p and α.

We consider the case of a UCS with ν = 0.97, α = 10 and we take θ = 0 in Equation (47) to
find the PDF in the y0 quadrature which is non-Gaussian for all piecewise rearrangements.
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As such, all REPs N1−p vary with p and consequently all cumulants κk carry information
on g(x). Here, we choose to reconstruct the UCS information distribution by means of the
Edgeworth series [91] so that

g(x) = exp

[
n

∞

∑
j=2

(κj − γj)
(−1)j

j!
dj

dxj n−j/2

]
G(x), (48)

where the reference PDF G(x) is again the shifted gamma distribution. Using the Edge-
worth series, the information PDF is approximated by expanding in orders of n, which
has the advantage over the Gram–Charlier A expansion discussed above of bounding
the errors of the approximation. For the particular UCS of interest, expanding to order
n−3/2 reveals convergence toward the analytic form of the information PDF shown as the
target line in Figure 2. This shows that, for a given characteristic resolution, control over
the first five Rényi EPs can be enough for a useful information scan of a quantum state
with an underlying non-Gaussian PDF. In the example shown in Figure 2, we see that
the information scan accurately predicts the tail behavior as well as the location of the
singularity, which corresponds to the second (lower) peak of F (y0).

1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35

x
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5g(x)
Target

Reconstructed g(x)

Reference PDF G(x)

Figure 2. Reconstructed information distribution of an unbalanced cat state with ν = 0.97 and
α = 10. The Edgeworth expansion has been used here to order n−3/2 requiring control of the first
five REPs. Good convergence of the tail behavior is evident as well as the location of the singularity
corresponding to the second peak; a+2 corresponds to the value of x at the point of intersection with
the second (lower) peak of F (y0).

7. Entropy Powers Based on Tsallis Entropy

Let us now briefly comment on the entropy powers associated with yet another
important differential entropy, namely Tsallis differential entropy, which is defined as [47]

Sq(F ) =
1

(1 − q)

[∫
RD

(F q(x)−F (x))dx
]

, (49)

where, as before, the PDF F (x) is associated with a random vector {Xi} in RD.
Similarly to the RE case, the Tsallis entropy power NT

p (X ) is defined as the solution of
the equation

Sq(X ) = ST
q

(√
NT

q (X ) · ZG
)

. (50)
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The ensuing entropy power has not been studied in the literature yet, but it can be easily
derived by observing that the following scaling property for differential Tsallis entropy
holds, namely

Sq(aX ) = Sq(X ) ⊕q lnq |a|D , (51)

where a ∈ R and the q-deformed sum and logarithm are defined as [11]: x ⊕q y = x +
y + (1 − q)xy and lnq x = (x1−q − 1)/(1 − q), respectively. Relation (51) results from the
following chain of identities:

Sq(aX ) =
1

1 − q

[∫
RD

dDy
(∫

RD
dDxδ(y − ax)F (x)

)q
− 1

]

=
1

1 − q

[
|a|D(1−q)

∫
RD

dDyF q(y)− 1
]

= |a|D(1−q)
(
Sq(X ) +

1
1 − q

)
− 1

1 − q

= |a|D(1−q)Sq(X ) + lnq |a|D

=
[
(1 − q) lnq |a|D + 1

]
Sq(X ) + lnq |a|D

= Sq(X ) ⊕q lnq |a|D . (52)

We can further use the simple fact that

Sq(ZG) = lnq(2πqq′/q)D/2 . (53)

Here, q and q′ satisfy 1/q + 1/q′ = 1 with q ∈ R+. By combining (50), (51), and (53), we get

Sq(X ) = lnq(2πqq′/q)D/2 ⊕q lnq(NT
q )

D/2 = lnq(2πqq′/qNT
q )

D/2 , (54)

where we have used the sum rule from the q-deformed calculus: lnq x ⊕q lnq y = lnq xy.
Equation (54) can be resolved for NT

p by employing the q-exponential, i.e., ex
q = [1 + (1 −

q)x]1/(1−q), which (among others) satisfies the relation e
lnq x
q = lnq(ex

q ) = x. With this,
we have

NT
q (X ) =

1
2π

q−q′/q
[
expq

(Sq(X )
)]2/D

=
1

2π
q−q′/q exp1−(1−q)D/2

(
2
D
Sq(X )

)
. (55)

In addition, when q → 1+, one has

lim
q→1

NT
q (X ) =

1
2πe

exp
(

2
D
H(X )

)
= N(X ) , (56)

where N(X ) is the conventional Shannon entropy power and H(X ) is the Shannon en-
tropy [5].

In connection with Tsallis EP, we might notice one interesting fact, namely by starting
from Rényi’s EP (considering RE in nats), we can write

Nq(X ) =
1

2π
q−q′/q exp

(
2
D
Iq(X )

)
=

1
2π

q−q′/q
(∫

dDxF q(x)
)2/(D(1−q))

=
1

2π
q−q′/q

[
e
ST

q (X )
q

]2/D
= NT

q (X ) . (57)
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Here, we have used a simple identity(∫
dDxF q(x)

)1/(1−q)
=

[
(1 − q)ST

q (X ) + 1
]1/(1−q)

= e
ST

q (X )
q . (58)

Thus, we have obtained that Rényi and Tsallis EPs coincide with each other. In particular,
Rényi’s EPI (22) can be equivalently written in the form

NT
p/2(X )NT

q/2(Y) ≥ 1
16π2 . (59)

Similarly, we could rephrase the generalized Stam inequality (21) and generalized isoperi-
metric inequality (14) in terms of Tsallis EPs. Though such inequalities are quite interesting
from a mathematical point of view, it is not yet clear how they could be practically utilized
in the estimation theory as there is no obvious operational meaning associated with Tsallis
entropy (e.g., there is no coding theorem for Tsallis entropy). On the other hand, Tsallis
entropy is an important concept in the description of entanglement [98]. For instance,
Tsallis entropy of order 2 (also known as linear entropy) directly quantifies state purity [63].

8. Conclusions

In the first part of this paper, we have introduced the notion of Rényi’s EP. With
quantum metrology applications in mind, we carried out our discussion in the framework
of estimation theory. In doing so, we have generalized the notion of Fisher information
(FI) by using a Rényi entropy version of De Bruijn’s identity. The key role of the escort
distribution in this context was highlighted. With Rényi’s EP at hand, we proved the
RE-based isoperimetric and Stam inequalities. We have further clarified the role of Rényi’s
EP by deriving (through the generalized Stam inequality) a one-parameter family of Rényi
EP-based quantum mechanical uncertainty relations. Conventional variance-based URs
of Robertson-Schrödinger and Shannon differential entropy-based URs of Hirschman or
Białynicki-Birula naturally appear as special cases in this hierarchy of URs. Interestingly,
we found that the Tsallis entropy-based EP coincided with Rényi’s EP provided that the
order is the same. This might open quite a new, hitherto unknown role for Tsallis entropy
in estimation theory.

The second part of the paper was devoted to developing the application of Rényi’s EP
for extracting quantum states from incomplete data. This is of particular interest in various
quantum metrology protocols. To that end, we introduced the concepts of information dis-
tribution and showed how cumulants of the information distribution can be obtained from
knowledge of EPs of various orders. With cumulants thus obtained, one can reconstruct
the underlying information distribution in a process which we call an information scan.
A numerical implementation of this reconstruction procedure was technically realized via
Gram-Charlier A and Edgeworth expansion. For an explicit illustration of the information
scan, we used the non-Gaussian quantum states—(un)balanced cat states. In this case,
it was found that control of the first five significant Rényi EPs gave enough information
for a meaningful reconstruction of the information PDF and brought about non-trivial
information on the original balanced cat state PDF, such as asymptotic tail behavior or the
heights of the peaks.

Finally, let us stress one more point. Rényi EP-based quantum mechanical uncertainty
relations (26) basically represent a one-parameter class of inequalities that constrain higher-
order cumulants of state distributions for conjugate observables [13]. In connection with
this, the following two questions are in order. Assuming one is able to control Rényi EPs of
various orders: (i) how do such Rényi EPs constrain the underlying state distribution and
(ii) how do the ensuing REPURs restrict the state distributions of conjugate observables?
The first question was tackled in this paper in terms of the information distribution and
reconstruction theorem. The second question is more intriguing and has not yet been
properly addressed. Work along these lines is presently under investigation.
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Abbreviations

The following abbreviations are used in this manuscript:

ITE Information-theoretic entropy
UR Uncertainty relation
RE Rényi entropy
TE Tsallis entropy
REPUR Rényi entropy-power-based quantum uncertainty relation
QM Quantum mechanics
EP Entropy power
FI Fisher information
PDF Probability density function
EPI Entropy power inequality
REP Rényi entropy power
BCS Balanced cat state
UCS Unbalanced cat state

Appendix A

Here, we provide an intuitive proof of the generalized De Bruijn identity.
Generalized De Bruijn identity I: By denoting the PDF associated with a random vector {Xi}
as F (x) and the noise PDF as G(z), we might write the LHS of (7) as

d
dε

Iq(X +
√

εZ)|ε=0

=
1

1 − q
d
dε

log
[∫

RD
dy
(∫

RD
dx

∫
RD

dzδ(D)
(
y − (x +

√
εz)

)F (x)G(z)
)q]∣∣∣∣

ε=0

=
1

1 − q
d
dε

log
[∫

RD
dy
(∫

RD
dzF (y −√

εz)G(z)
)q]∣∣∣∣

ε=0

=
1

1 − q
d
dε

log
{∫

RD
dy
[∫

RD
dz
(F (y)−√

εzi∇iF (y)

+
1
2

εzizj∇i∇jF (y) + O(ε3/2)

)
G(z)

]q}∣∣∣∣
ε=0

=
q

1 − q

[∫
RD

dyρq(y)Σij
∇i∇jF (y)

2F (y)

]
=

q
2

[∫
RD

dyρq(y)ΣijVi(y)Vj(y)
]

=
q
2

Tr[covq(V)Σ] =
1
2q

Tr[covq(V q)Σ] =
1
2q

Tr(JqΣ) . (A1)
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It should be noted that our manipulations make sense only for any q > 0, as only in
these cases are RE and escort distributions well defined. The right-hand-side of (A1) can
also be equivalently written as

1
2q

Eq
{
[(Vq)i −Eq((Vq)i)]Σij[(Vq)j −Eq((Vq)j))]

}
,

=
1
2q

E
{
[(Zi −E(Zi)](Jq)ij(X )[Zj −E(Zj)]

}
, (A2)

where the mean Eq{. . .} is performed with respect to the escort distribution ρq, while E

with respect to G distribution.
We note in passing that the conventional De Bruijn’s identity (6) emerges as a special

case when q → 1. For the Gaussian noise vector, we can generalize the previous derivation
in the following way:

Generalized De Bruijn’s identity II: Let {Xi} be a random vector in RD with the PDF
F (x) and let {Zi} be an independent Gaussian noise vector with the zero mean and
covariance matrix Σ = cov(ZG ), then,

d
dΣij

Iq(X +ZG )|
Σ=0 =

q
1 − q

[∫
RD

dyρq(y)
∇i∇jF (y)

2F (y)

]

=
1
2q

[∫
RD

dyρq(y)(Vq)i(Vq)j

]
=

1
2q

(Jq)ij . (A3)

The right-hand-side is equivalent to

1
2q

Eq
{
[(Vq)i −Eq((Vq)i)][(Vq)j −Eq((Vq)j))]

}
. (A4)

To prove the identity (A3), we might follow the same line of reasoning as in (A1). The only
difference is that, while in (A1) we had a small parameter ε in which one could expand to
all orders of correlation functions and easily perform differentiation and limit ε → 0 for
any noise distribution (with zero mean), the same procedure can not be done in the present
context for a generic noise distribution. In fact, only the Gaussian distribution has the
property that the higher-order correlation functions and their derivatives with respect to Σij
are small when Σ is small. The latter is a consequence of the Marcinkiewicz theorem [99].

Appendix B

Here, we prove the Generalized isoperimetric inequality from Section 2. The starting point
is the entropy-power inequality (EPI) [64]: Let X1 and X2 be two independent continuous
random vectors in RD with probability densities F (1) ∈ �q(RD) and F (2) ∈ �p(RD),
respectively. Suppose further that λ ∈ (0, 1) and r > 1, and let

q =
r

(1 − λ) + λr
, p =

r
λ + (1 − λ)r

, (A5)

then the following inequality holds:

Nr(X1 +X2) ≥
(

Nq(X1)

1 − λ

)1−λ(Np(X2)

λ

)λ

. (A6)

81



Entropy 2021, 23, 334

Let us now consider a Gaussian noise vector ZG (independent of X ) with zero mean and
covariance matrix Σ. Within this setting, we can write the following EPIs:

Nr(X +ZG ) ≥ ελ

(
1

1 − λ

)1−λ( 1
λ

)λ

[Nq(X )]1−λ , (A7)

Nr(X +ZG ) ≥ ε1−λ

(
1

1 − λ

)1−λ( 1
λ

)λ

[Np(X )]λ , (A8)

with ε ≡ det(Σ)1/D. Here, we have used the simple fact that Nr(ZG ) = det(Σ)1/D,
irrespective of the value of r.

Let us now fix r and maximize the RHS of inequality (A7) with respect to λ and q
provided we keep the constraint condition (A5). This yields the condition extremum

λ =
ε

Nq(X )
exp

[
q(1 − q)

d log Nq(X )

dq

]
+ O(ε2) . (A9)

With this, q turns out to be

q = r +
ε(1 − r)r

Nr(X )
exp

[
(1 − r)r

d log Nr(X )

dr

]
+ O(ε2) , (A10)

which in the limit ε → 0 reduces to q = r ≥ 1. The latter implies that p = 1. The result (A10)
implies that the RHS of (A7) reads

Nq(X ) + ε exp
[
(1 − r)r

d log Nr(X )

dr

][
1 − (1 − r)r

d log Nr(X )

dr

]
+ O(ε2) . (A11)

Should we have started with the p index, we would arrive at an analogous conclusion. To
proceed, we stick, without loss of generality, to the inequality (A7). This implies that

Nr(X +ZG ) ≥ Nq(X )

+ ε exp
[
(1 − r)r

d log Nr(X )

dr

][
1 − (1 − r)r

d log Nr(X )

dr

]
+ O(ε2)

= Nr(X ) + [Nq(X )− Nr(X )]

+ ε exp
[
(1 − r)r

d log Nr(X )

dr

][
1 − (1 − r)r

d log Nr(X )

dr

]
+ O(ε2)

≥ Nr(X ) + ε exp
[
(1 − r)r

d log Nr(X )

dr

]
+ O(ε2) . (A12)

To proceed, we employ the identity log Nr(X ) = 2/D[Ir(X )−Ir(ZG
1I )] with ZG

1I
representing a Gaussian random vector with zero mean and unit covariance matrix, and the
fact that Ir is monotonously decreasing function of r, i.e., dIr/dr ≤ 0 (see, e.g., Ref. [78]).
With this, we have
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exp
[
(1 − r)r

d log Nr(X )

dr

]
≥ exp

[
2(r − 1)r

D
dIr(ZG

1I )

dr

]

= exp
[
(r − 1)r

d
dr

(
1

r − 1
log r

)]

= err/(r−1) ≥ e2

r
. (A13)

Consequently, Equation (A12) can be rewritten as

Nr(X +ZG ) − Nq(X )

Σij
≥ ε

Σij

e2

r
+ O(ε2/Σij) . (A14)

At this stage, we are interested in the Σij → 0 limit. In order to find the ensuing leading
order behavior of ε/Σij, we can use L’Hospital’s rule, namely

ε

Σij
=

dε

dΣij
=

d
dΣij

exp
[

1
D

Tr(log Σ)

]
=

ε

D
(Σ−1)ij . (A15)

Now, we neglect the sub-leading term of order O(ε2/Σij) in (A14) and take det(. . .)1/D on
both sides. This gives

det

(
dNr(X +ZG )

dΣij

)1/D
∣∣∣∣∣∣
Σ=0

=
1

rD
Nr(X )[det(Jr(X ))]1/D ≥ e2

rD
≥ 1

rD
, (A16)

or equivalently

Nr(X )[det(Jr(X ))]1/D ≥ 1 . (A17)

At this stage, we can use the inequality of arithmetic and geometric means to write (note
that Jr = covr(V r) is a positive semi-definite matrix)

1
D

Tr(Jr(X )) ≥ [det(Jr(X ))]1/D . (A18)

Consequently, we have

1
D

Nr(X )Tr(Jr(X )) =
1
D

Nr(X )Jr(X ) ≥ Nr(X )[det(Jr(X ))]1/D ≥ 1 , (A19)

as stated in Equation (14).

Appendix C

In this appendix, we prove the Generalized Stam inequality from Section 2. We start
with the defining relation (13), i.e.,

Nq(Y) =
1

2π
q1/(1−q)||G||2q/[(1−q)D]

q , (A20)

and consider q ∈ [1/2, 1] so that q/(1 − q) > 0. For the q-norm, we can write

||G||q =

(∫
RD

dy |ψG (y)|2q
)1/q

= ||ψG ||22q ≥ ||ψ̂G ||22r = ||ψF ||22r = ||F ||r . (A21)
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Here, 2r and 2q are Hölder conjugates so that r ∈ [1, ∞]. The inequality employed is due
to the Hausdorff–Young inequality (which in turn is a simple consequence of the Hölder
inequality [64]). We further have

||F ||r =

(∫
RD

dx |ψF (x)|2r
)1/r

≥
∣∣∣∣∣
∫
RD

dx |ψF (x)|2r ∇i∇i eia·x

a2
i

∣∣∣∣∣
1/r

=

∣∣∣∣r ∫
RD

dx
[
(r − 1)ρr(x)Vi(x)Vi(x) + ρr(x)

∇i∇iF (x)
F (x)

]
eia·x

∣∣∣∣1/r

×
(∫

RD dx |ψF (x)|2r)1/r

a2/r
i

≥
∣∣∣∣r ∫

RD
dx
[
(r − 1)ρr(x)Vi(x)Vi(x) + ρr(x)

∇i∇iF (x)
F (x)

]
cos(a · x)

∣∣∣∣1/r

×
(∫

RD dx |ψF (x)|2r)1/r

a2/r
i

≥
∣∣∣∣r ∫VD

dxρr(x)
∇i∇iF (x)

F (x)
cos(a · x)

∣∣∣∣1/r(∫
RD dx |ψF (x)|2r)1/r

a2/r
i

, (A22)

where a ∈ RD is an arbitrary x-independent vector, ∇i ≡ ∂/∂xi and VD denotes a regular-
ized volume of RD—D-dimensional ball of a very large (but finite) radius R. In the first
line of (A22), we have employed the triangle inequality |Er

(
eia·x)| ≤ 1 (with equality if

and only if a = 0), namely∣∣∣∣∫
RD

dx |ψF (x)|2reia·x
∣∣∣∣ =

∣∣∣∣∫
RD

dxρr(x)eia·x
∣∣∣∣ ∫

RD
dx |ψF (x)|2r ≤

∫
RD

dx |ψF (x)|2r. (A23)

The inequality in the last line holds for ai = π/(2R) (for all i), since, in this case, cos(a · x) ≥ 0
for all x from the D-dimensional ball. In this case, one may further estimate the integral
from below by neglecting the positive integrand (r − 1)ρr(x)[Vi(x)]2.

Note that (A22) implies

r
∣∣Er

[F−1∇i∇iF cos(a · x)
]∣∣

a2
i

≤ 1 , (A24)

with equality if and only if a → 0 (to see this, one should apply L’Hospital’s rule).
Equation (A24) allows for writing

||F ||r ≥ rγ
∣∣Er

[F−1∇i∇iF cos(a · x)
]∣∣γ

a2γ
i

(∫
RD

dx |ψF (x)|2r
)1/r

≥ rγ
∣∣Er

[F−1∇i∇iF cos(a · x)
]∣∣γ

a2γ
i

1

V1−1/r
D

=
rγ
∣∣Er

[F−1∇i∇iF cos(a · x)
]∣∣γ

a2γ
i

1

C1−1/r
D RD−D/r

, (A25)
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where γ > 0 is some as yet unspecified constant and CD = πD/2/Γ(D/2 + 1). In deriving
(A25), we have used the Hölder inequality

1 =

(∫
RD

dx1 · |ψF (x)|2
)

≤
(∫

RD
dx1r′

)1/r′(∫
RD

dx |ψF (x)|2r
)1/r

= V1−1/r
D

(∫
RD

dx |ψF (x)|2r
)1/r

. (A26)

Here, and also in (A22) and (A25), VD = CDRD denotes the regularizated volume of RD.
As already mentioned, the best estimate of the inequality (A25) is obtained for a → 0.

As we have seen, ai goes to zero as π/(2R) which allows for choosing the constant γ
so that the denominator in (A25) stays finite in the limit R → ∞. This implies that
γ = D/2 − D/(2r). Consequently, (A25) acquires in the large R limit the form

||F ||r ≥ [4(r − 1)/r]D/2−D/2r [Γ(D/2 + 1)]1−1/r

π3D/2−3D/2r [(Jr)ii(X )]D/2−D/2r , (A27)

With this, we can write [see Equations (A20)–(A21)]

Nq(Y) ≥ 1
(2π)2 q1/(1−q) [(Jr)ii(X )] ≥ 1

16π2 [(Jr)ii(X )] , (A28)

where, in the last inequality, we have used the fact that q1/(1−q) ≥ 1/4 for q ∈ [1/2, 1] and
that [Γ(D/2 + 1)]2/D ≥ π/4. As a final step, we employ Equations (A18) and (A28) to write

Nq(Y) ≥ 1
16π2D

Tr(Jr(X )) ≥ 1
16π2 [det(Jr(X ))]1/D , (A29)

which completes the proof of the generalized Stam’s inequality.
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Abstract: Entropy measures the uncertainty associated with a random variable. It has important
applications in cybernetics, probability theory, astrophysics, life sciences and other fields. Recently,
many authors focused on the estimation of entropy with different life distributions. However, the
estimation of entropy for the generalized Bilal (GB) distribution has not yet been involved. In this
paper, we consider the estimation of the entropy and the parameters with GB distribution based
on adaptive Type-II progressive hybrid censored data. Maximum likelihood estimation of the
entropy and the parameters are obtained using the Newton–Raphson iteration method. Bayesian
estimations under different loss functions are provided with the help of Lindley’s approximation. The
approximate confidence interval and the Bayesian credible interval of the parameters and entropy
are obtained by using the delta and Markov chain Monte Carlo (MCMC) methods, respectively.
Monte Carlo simulation studies are carried out to observe the performances of the different point
and interval estimations. Finally, a real data set has been analyzed for illustrative purposes.

Keywords: entropy; generalized Bilal distribution; adaptive Type-II progressive hybrid censoring
scheme; maximum likelihood estimation; Bayesian estimation; Lindley’s approximation; confidence
interval; Markov chain Monte Carlo method

1. Introduction

To analyze and evaluate the reliability of products, life tests are often carried out. For
products with long lives and high reliability, a censoring scheme is often adopted during
the test to save on time and costs. Two commonly used censoring schemes are Type-I and
Type-II censoring, but these two censoring schemes do not have the flexibility of allowing
the removal of units at points other than the terminal point of the experiment. To allow
for more flexibility in removing surviving units from the test, more general censoring
approaches are required. The progressive Type-II censoring scheme is appealing and has
attracted much attention in the literature. This topic can be found in [1]. One may also refer
to [2] for a comprehensive review on progressive censoring. One drawback of the Type-II
progressive censoring scheme is that the length of the experiment may be quite long for
long-life products. Therefore, Kundu and Joarder [3] proposed a Type-II progressive hybrid
censoring scheme where the experiment terminates at a pre-specified time. However, for
the Type-II progressive hybrid censoring scheme, the drawback is that the effective sample
size is a random variable, which may be very small or even zero. To strike a balance between
the total testing time and the efficiency in statistical inference, Ng et al. [4] introduced an
adaptive Type-II progressive hybrid censoring scheme (ATII-PHCS). This censoring scheme
is described as follows. Suppose that n units are placed on test and X1, X2, . . . , Xn denote
the corresponding lifetimes from a distribution with the cumulative distribution function

Entropy 2021, 23, 206. https://doi.org/10.3390/e23020206 https://www.mdpi.com/journal/entropy

89



Entropy 2021, 23, 206

(CDF) F(x) and the probability density function (PDF) f (x). The number of observed
failures m and time T are specified in advance and m < n. At the first failure time X1:m:n,
R1 units are randomly removed from the remaining n − 1 units. Similarly, at the second
failure time X2:m:n, R2 units from the remaining n − 2 − R1 units are randomly removed,
and so on. If the mth failure occurs before time T (i.e., Xm:m;n < T), the test terminates
at time Xm:m:n and all remaining Rm units are removed, where Rm = n − m − ∑m−1

i=1 Ri
and Ri is specified in advance (i = 1, 2, . . . , m). If the Jth failure occurs before time T (i.e.,
XJ:m:n < T < XJ+1:m:n where J + 1 < m), then we will not withdraw any units from the
test by setting RJ+1 = RJ+2 = . . . = Rm−1 = 0, and the test will continue until the failure
unit number reaches the prefixed number m. At the time of the mth failure, all remaining
Rm units are removed and the test terminates, where Rm = n − m − ∑J

i=1 Ri.
The main advantage of ATII-PHCS is that it speeds up the test when the test duration

exceeds the predetermined time T and ensures we get the effective number of failures m.
It also illustrates how an experimenter can control the experiment. If one is interested in
getting observations early, one will remove fewer units (or even none). For convenience, we
let Xi = Xi:m:n, i = 1, 2, . . . , m. After the above test, we get one of the following observation
data cases:

Case I: (X1, R1), (X2, R2), . . . , (Xm, Rm) if Xm < T, where Rm = n − ∑m−1
i=1 Ri − m.

Case II: (X1, R1), (X2, R2), . . . , (XJ , RJ), (XJ+1, 0), . . . , (Xm−1, 0), (Xm, Rm) if XJ < T <

XJ+1 and J < m, where Rm = n − m − ∑J
i=1 Ri.

The ATII-PHCS has been studied in recent years. Mazen et al. [5] discussed the
statistical analysis of the Weibull distribution under an adaptive Type-II progressive hybrid
censoring scheme. Zhang et al. [6] investigated the maximum likelihood estimations
(MLEs) of the unknown parameters and acceleration factors in the step-stress accelerated
life test, based on the tampered failure rate model with ATII-PHC samples. Cui et al. [7]
studied the point and interval estimates of the parameters from the Weibull distribution,
based on adaptive Type-II progressive hybrid censored data in a constant-stress accelerated
life test. Ismail [8] proposed that the MLE of the Weibull distribution parameters and the
acceleration factor were derived based on ATII-PHC schemes under a step-stress partially
accelerated life test model. The statistical inference of the dependent competitive failure
system under the constant-stress accelerated life test with ATII-PHC data was studied by
Zhang et al. [9]. Under an adaptive Type-II progressive censoring scheme, Ye et al. [10]
investigated the general statistical properties and then used the maximum likelihood
technique to estimate the parameters of the extreme value distribution. Some other studies
on the statistical inference of life models using ATII-PHCS were presented by Sobhi and
Soliman [11] and Nassar et al. [12]. Xu and Gui [13] studied entropy estimation for the
two-parameter inverse Weibull distribution under adaptive type-II progressive hybrid
censoring schemes.

Entropy measures the uncertainty associated with a random variable. Let X be a
random variable having a continuous CDF F(x) and PDF f (x). Then, the Shannon entropy
is defined as

H( f ) = −
∫ +∞

−∞
f (x) ln f (x)dx. (1)

In recent years, several scholars have studied the entropy estimation of different life
distributions. Kang et al. [14] investigated the entropy estimators of a double exponential
distribution based on multiply Type-II censored samples. Cho et al. [15] derived an
estimation for the entropy function of a Rayleigh distribution based on doubly generalized
Type-II hybrid censored samples. Baratpour et al. [16] developed the entropy of the
upper record values and provided several upper and lower bounds for this entropy by
using the hazard rate function. Cramer and Bagh [17] discussed the entropy of the Weibull
distribution under progressive censoring. Cho et al. [18] obtained estimators for the entropy
function of the Weibull distribution based on a generalized Type-II hybrid censored sample.
Yu et al. [19] studied statistical inference in the Shannon entropy of the inverse Weibull
distribution under progressive first-failure censoring.
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In addition to the above-mentioned life distributions, the generalized Bilal (GB) distri-
bution is also an important life distribution for analyzing lifetime data. The PDF and the
CDF of the GB distribution, respectively, are given as

f (x; β, λ) = 6βλxλ−1 exp(−2βxλ)[1 − exp(−βxλ)], x > 0, β > 0, λ > 0, (2)

F(x; β, λ) = 1 − exp(−2βxλ)[3 − 2 exp(−βxλ)], x > 0, β > 0, λ > 0, (3)

The Shannon entropy of the GB distribution is given by

H( f ) = H(β, λ) = 2.5 + γ − ln(27/4)− ln(λβ
1
λ ) +

1
λ
(ln(9/8)− γ), β > 0, λ > 0,

where γ denotes the Euler–Mascheroni constant and γ = 0.5772.
The GB distribution was first introduced by Abd-Elrahman [20]. He investigated

the properties of the probability density and failure rate function of this distribution.
A comprehensive mathematical treatment of the GB distribution was provided, and the
maximum likelihood estimations of unknown parameters were derived under the complete
sample. Abd-Elrahman [21] provided the MLEs and Bayesian estimations of the unknown
parameters and the reliability function based on a Type-II censored sample. Since the
failure rate function of GB distribution has an upside-down bathtub shape, and it can also
be monotonically decreasing or monotonically increasing at some selected values of the
shape parameters λ, the GB model is very useful in survival analysis and reliability studies.

To the best of our knowledge, there has been no published work on the estimation of
the entropy and parameters of GB distribution under an ATII-PHCS. As such, these issues
are considered in this paper. The main objective of this paper is to provide the estimation
of the entropy and unknown parameters of GB distribution under an ATII-PHCS by using
the frequency and Bayesian methods.

The rest of this paper is organized as follows. In Section 2, the MLEs of the parame-
ters and entropy of GB distribution are obtained, and approximate confidence intervals
are constructed using the ATII-PHC data. In Section 3, the Bayesian estimation of the
parameters and entropy under three different loss functions are provided using Lindley’s
approximation method. In addition, the Bayesian credible intervals of the parameters
and entropy are also obtained by using the Markov chain Monte Carlo (MCMC) method.
In Section 4, Monte Carlo simulations are carried out to investigate the performance of
different point estimates and interval estimates. In Section 5, a real data set is analyzed for
illustrative purposes. Some conclusions are presented in Section 6.

2. Maximum Likelihood Estimation

In this section, the MLE and approximate confidence intervals of the parameters and
entropy of GB distribution will be discussed under the ATII-PHCS. Based on the data in
Case I and Case II, the likelihood functions can be respectively written as

Case I : LI(β, λ|→x ) ∝
m

∏
i=1

f (xi; β, λ)[1 − F(xi; β, λ))]Ri , (4)

Case I I : LII(β, λ|→x ) ∝
m

∏
i=1

f (xi; β, λ))
J

∏
i=1

[1 − F(xi; β, λ)]Ri [1 − F(xm; β, λ)]n−m−∑J
i=1 Ri ,

(5)
where

→
x = (x1, x2, . . . , xm).

By combining LI(β, λ|→x ) and LII(β, λ|→x ), the likelihood functions can be written
uniformly as
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L(β, λ|→x ) ∝
m
∏
i=1

f (xi; β, λ))
D
∏
i=1

[1 − F(xi; β, λ)]Ri [1 − F(xm; β, λ)]R
∗
=

=
m
∏
i=1

6βλxλ−1
i exp(−2βxλ

i )[1 − exp(−βxλ
i )]

D
∏
i=1

[exp(−2βxλ
i )(3 − 2 exp(−βxλ

i ))]
Ri × [exp(−2βxλ

m)(3 − 2 exp(−βxλ
m))]

R∗
,

(6)

where R∗ = n − m − ∑D
i=1 Ri and, for Case I, D = m, R∗ = 0, and for Case II, D = J, R∗ =

n − m − ∑J
i=1 Ri.

The log-likelihood function is given by

l = ln L(β, λ|→x ) ∝ m ln(6βλ) + ∑m
i=1 [(λ − 1) ln xi − 2βxλ

i + ln(1 − exp(−βxλ
i ))] +

+∑D
i=1 [−2Riβxλ

i + Ri ln(3 − 2 exp(−βxλ
i ))]− 2R∗βxλ

m + R∗ ln(3 − 2 exp(−βxλ
m)).

(7)

By taking the first partial derivative of the log-likelihood function with regard to β
and λ and equating them to zero, the following results can be obtained:

∂l
∂β

=
m
β
+

m

∑
i=1

[−3xλ
i + xλ

i [y1(θ)]
−1] +

D

∑
i=1

[−3Rixλ
i +3Rixλ

i [y2(θ)]
−1]− 3R∗xλ

m + 3R∗xλ
m[y3(θ)]

−1 = 0, (8)

∂l
∂λ = m

λ + ∑m
i=1 [ln xi − 3βxλ

i ln xi + βxλ
i ln xi[y1(θ)]

−1] + ∑D
i=1 [−3Riβxλ

i ln xi + 3Riβxλ
i ln xi[y2(θ)]

−1]−
− 3R∗βxλ

m ln xm+3R∗βxλ
m ln xm[y3(θ)]

−1 = 0,
(9)

where θ= (β, λ), y1(θ) = 1− exp(−βxλ
i ), y2(θ) = 3− 2 exp(−βxλ

i ), y3(θ) = 3− 2 exp(−βxλ
m).

The MLEs of β and λ can be obtained by solving Equations (7) and (8), but the above
two equations do not yield an analytical solution. Thus, we use the Newton–Raphson
iteration method to obtain the MLEs of the parameters. For this purpose, we firstly calculate
the second partial derivatives of the log-likelihood function with regard to β and λ:

∂2l
∂β2 = − m

β2 −∑m
i=1 [x

2λ
i exp(−βxλ

i )][y1(θ)]
−2 −∑D

i=1 6Rix2λ
i exp(−βxλ

i )[y2(θ)]
−2 − 6R∗x2λ

m exp(−βxλ
m)[y3(θ)]

−2, (10)

∂2l
∂β∂λ = ∑m

i=1 [−3xλ
i ln xi + xλ

i ln xi(y1(θ)
−1[1 − βxλ

i exp(−βxλ
i )(y1(θ))

−1]+

+∑D
i=1 [−3Rixλ

i ln xi+3Rixλ
i ln xi(y2(θ)

−1(1 − 2βxλ
i exp(−βxλ

i )(y2(θ))
−1)]−

−3R∗xλ
m + 3R∗xλ

m ln xm[y3(θ)]
−1[1 − 2βxλ

m exp(−βxλ
m)(y3(θ))

−1)],

(11)

∂2l
∂λ2 = − m

λ2 + ∑m
i=1 [βxλ

i (ln xi)
2[−3+(y1(θ))

−1]− β2x2λ
i (ln xi)

2 exp(−βxλ
i )(y1(θ))

−2
]

+∑D
i=1 [−3Riβxλ

i (ln xi)
2(1 − (y2(θ))

−1
)
−6Riβ

2x2λ
i (ln xi)

2 exp(−βxλ
i )(y2(θ))

−2
]

−3R∗βxλ
m(ln xm)

2(1 − (y3(θ))
−1)− 6R∗β2x2λ

m (ln xm)
2 exp(−βxλ

m)(y3(θ))
−2.

(12)

Let I(β, λ) =

[
I11 I12
I21 I22

]
, where

I11 = − ∂2l
∂β2 , I22 = − ∂2l

∂λ2 , I12 = I21 = − ∂2l
∂β∂λ

. (13)

On the basis of the above calculation results, we can implement the Newton–Raphson
iteration method to obtain the MLEs of unknown parameters. The specific steps of this
iteration method can be seen in Appendix B. After obtaining the MLE β̂ and λ̂ of the
parameters β and λ, using the invariant property of MLEs, the MLE of the entropy H ( f )
for the generalized Bilal distribution is given by

Ĥ( f ) = 2.5 + γ − ln(27/4)− 1
λ̂

ln β̂ − ln λ̂ +
1
λ̂
(ln(9/8)− γ). (14)
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Approximate Confidence Interval

In this subsection, the approximate confidence intervals of the parameters β, λ and
the Shannon entropy H ( f ) are derived. Based on regularity conditions, the MLEs (β̂, λ̂)
are an approximately bivariate normal distribution N((β, λ), I−1(β̂, λ̂)), where the covari-

ance matrix I−1(β, λ) is an estimation of I−1(β, λ) and I−1(β̂, λ̂) =

[
I11 I12
I21 I22

]−1

(β,λ)=(β̂,λ̂)
,

I11, I22, I12 and I21 are given by Equations (10)–(13), respectively.
Thus, the approximate 100(1 − α)% two-sided confidence intervals (CIs) for parame-

ters β, λ are given by (
β̂ ± zα/2

√
Var(β̂)

)
,
(

λ̂ ± zα/2

√
Var(λ̂)

)
, (15)

where zα/2 is the upper α/2 percentile of the standard normal distribution and Var(β̂),
Var(λ̂) are the main diagonal elements of the matrix I−1(β̂, λ̂).

Next, we use the delta method to obtain the asymptotic confidence interval of the
entropy H ( f ). The delta method is a general approach to compute CIs for functions
of MLEs. Under a progressive Type-II censored sample, the authors of [22] used the
delta method to study the estimation of a new Weibull–Pareto distribution. The authors
of [23] also used this method to investigate the estimation of the two-parameter bathtub
lifetime model.

Let MT = ( ∂H( f )
∂β , ∂H( f )

∂λ ), where ∂H( f )
∂β = − 1

βλ , ∂H( f )
∂λ = 1

λ2 ln β − 1
λ − 1

λ2 (ln
9
8 − γ).

Then, the approximate estimates of var(Ĥ( f )) is given by

vâr(Ĥ( f )) = [MT I−1(β, λ)M]|(β,λ)=(β̂,λ̂),

where β̂ and λ̂ are the MLEs of β and λ, respectively, and I−1(β, λ) denotes the inverse

of the matrix I(β, λ) =

[
I11 I12
I21 I22

]
. The elements of the matrix I(β, λ) are given by

Equations (10)–(13), respectively. Thus, Ĥ( f )−H( f )√
vâr(Ĥ( f ))

is asymptotically distributed as N(0, 1).

The asymptotic 100(1 − α)% CI for the entropy H ( f ) is given by(
Ĥ( f )± Zα/2

√
vâr(Ĥ( f ))

)
where zα/2 is the upper α/2 percentile of the standard normal distribution.

3. Bayesian Estimation

In this section, we discuss the Bayesian point estimation of the parameters and entropy
H ( f ) for generalized Bilal distribution using Lindley’s approximation method under
symmetric as well as asymmetric loss functions. Furthermore, the Bayesian CI of the
parameters and entropy are also derived by using the Markov chain Monte Carlo method.

3.1. Loss Functions and Posterior Distribution

Choosing the loss function is an important part in the Bayesian inference. The com-
monly used symmetric loss function is the squared error loss (SEL) function, which is
defined as

L1(U, Û)= (Û − U
)2. (16)

Two popular asymmetric loss functions are the Linex loss (LL) and general entropy
loss (EL) functions, which are respectively given by

L2(U, Û)= exp(h(Û − U))− h (Û − U)− 1, h = 0, (17)
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L3(U, Û) ∝
(

Û
U

)q

− q ln
(

Û
U

)
− 1, q = 0. (18)

Here, U = U(β, λ) is any function of β and λ, and Û is an estimate of U. The constant
h and q represent the weight of errors on different decisions. Under the above loss functions,
the Bayesian estimate of function U can be calculated by

ÛS = E(U|→x ). (19)

ÛL = −1
h

ln[E(exp(−hU)|→x )], h = 0 . (20)

ÛE = [E(U−q|→x )]−1/q
, q = 0 . (21)

To derive the Bayesian estimates of the function U(β, λ), we consider prior distribu-
tions of the unknown parameters β and λ as independent Gamma distributions Ga (a, b)
and Ga (c, d), respectively. Therefore, the joint prior distribution of β and λ becomes

π(β, λ) =
baβa−1

Γ(a)
exp(−bβ)

d cλc−1

Γ(c)
exp(−dλ), (β, λ, a, b, c, d > 0).

Based on the likelihood function L(β, λ|→x ) and the joint prior distribution of β and λ,
the joint posterior density of parameters β and λ can be written as

π(β, λ|→x ) = π(β, λ)L(β, λ|→x )∫ ∞
0

∫ ∞
0 π(β, λ)L(β, λ|→x )dβdλ

∝ π(β, λ)L(β, λ|→x )
= βa−1 exp(−bβ)λc−1 exp(−dλ)A1(β, λ)A2(β, λ)A3(β, λ),

(22)

where

A1(β, λ) =
m

∏
i=1

6βλxλ−1
i exp(−2βxλ

i )[1 − exp(−βxλ
i )],

A2(β, λ) =
D

∏
i=1

[exp(−2βxλ
i )(3 − 2 exp(−βxλ

i ))]
Ri ,

A3(β, λ) = [exp(−2βxλ
m)(3 − 2 exp(−βxλ

m))]
R∗

.

Therefore, the Bayesian estimate of U(β, λ) under the SEL, LL and GEL functions are
respectively given by

ÛS(β, λ) =

∫ ∞
0

∫ ∞
0 U(β, λ)π(β, λ)L(β, λ|→x )dβdλ∫ ∞
0

∫ ∞
0 π(β, λ)L(β, λ|→x )dβdλ

, (23)

ÛL(β, λ) = −1
h

ln

[∫ ∞
0

∫ ∞
0 exp(−hU(β, λ))π(β, λ)L(β, λ|→x )dβdλ∫ ∞

0

∫ ∞
0 π(β, λ)L(β, λ|→x )dβdλ

]
, (24)

ÛE(β, λ) =

[∫ ∞
0

∫ ∞
0 (U(β, λ))−qπ(β, λ)L(β, λ|→x )dβdλ∫ ∞

0

∫ ∞
0 π(β, λ)L(β, λ|→x )dβdλ

]− 1
q

. (25)

3.2. Lindley’s Approximation

From Equations (23)–(25), it is observed that all of these estimates of the U(β, λ)
are in the form of the ratio of two integrals which cannot be reduced to a closed form.
Therefore, we use Lindley’s approximation method to obtain the Bayesian estimates. If we
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let θ = (θ1, θ2), then the posterior expectation of a function U (θ1, θ2) can be approximated
as in [18]:

Û = U(θ̂1, θ̂2) + 0.5(A + z30B12 + z03B21 + z21C12 + z12C21) + p1 A12 + p2 A21, (26)

where U(θ̂1, θ̂2) is the MLE of U(θ1, θ2) and

A = ∑2
i=1 ∑2

j=1 uijτij, Bij = (uiτii + ujτij)τii, Cij = 3uiτiiτij + uj(τiiτjj + 2τ2
ij),

pi =
∂p
∂θi

, ui =
∂U
∂θi

, uij =
∂2U

∂θi∂θj
, p = ln π(θ1, θ2), Aij = uiτii + ujτji,

zij =
∂i+jl(θ1,θ2)

∂θ1
i∂θ2

j , i, j = 0, 1, 2, 3, i + j = 3,

where l denotes the log-likelihood function and τij(i, j) denotes the (i, j)−th element of the

matrix [−∂2l/∂θ1
i∂θ2

j]
−1. All terms are estimated by MLEs of the parameters θ1 and θ2.

Based on the above equations, we have

z30 = ∂3l
∂β3 = 2m

β3 + ∑m
i=1 {x3λ

i exp(−βxλ
i )(y1(θ))

−2[1 + 2(y1(θ))
−1 exp(−βxλ

i )]}
+∑D

i=1 {6Rix3λ
i exp(−βxλ

i )(y2(θ))
−2[1 + 4 exp(−βxλ

i )(y2(θ))
−1]}

+6R∗x3λ
m exp(−βxλ

m)(y3(θ))
−2[1 + 4 exp(−βxλ

m)(y3(θ))
−1].

(27)

z03 = ∂3l
∂λ3 = 2m

λ3 + ∑m
i=1 {βxλ

i (ln xi)
3(−3 + (y1(θ))

−1)− β2x2λ
i (ln xi)

3 exp(−βxλ
i ) (y1(θ))

−2

× [3 − βxλ
i − 2βxλ

i exp(−βxλ
i )(y1(θ))

−1]}+ ∑D
i=1 {[−3Riβxλ

i (ln xi)
3[1−(y2(θ))

−1]+

+6Riβ
2x2λ

i (ln xi)
3 exp(−βxλ

i )(y2(θ))
−2(−3 + βxλ

i + 4βxλ
i (y2(θ))

−1 exp(−βxλ
i ))}+

+3R∗βxλ
m(ln xm)

3[−1 + (y3(θ))
−1] + 6R∗β2x2λ

m (ln xm)
3 exp(−βxλ

m)(y3(θ))
−2[−3 + βxλ

m + 4βxλ
m(y3(θ))

−1 exp(−βxλ
m)].

(28)

z21 = ∂3l
∂β2∂λ

= ∑m
i=1

[
−x2λ

i ln xi exp(−βxλ
i )(y1(θ))

−2)[2 − βxλ
i − 2βxλ

i exp(−βxλ
i )(y1(θ))

−1]

−∑D
i=1 [6Rix2λ

i ln xi exp(−βxλ
i )(y2(θ))

−2[2 − βxλ
i − 4βxλ

i exp(−βxλ
i )(y2(θ))

−1]

−6R∗x2λ
m ln xm exp(−βxλ

m)(y3(θ))
−2][2 − βxλ

m − 4βxλ
m(y3(θ))

−1 exp(−βxλ
m)].

(29)

z12 = ∂3l
∂β∂λ2 = ∑m

i=1 [−3xλ
i (ln xi)

2 + xλ
i (ln xi)

2(y1(θ))
−1

+βx2λ
i (ln xi)

2 exp(−βxλ
i )(y1(θ))

−2[−3 + βxλ
i + y1(θ))

−1
βxλ

i exp(−βxλ
i )]] + ∑D

i=1 {−3Rixλ
i (ln xi)

2 + 3Rixλ
i (ln xi)

2(y2(θ))
−1

+6βRix2λ
i (ln xi)

2 exp(−βxλ
i )(y2(θ))

−2[−3 + βxλ
i exp(−βxλ

i ) + 4(y2(θ))
−1βxλ

i exp(−βxλ
i )]

−3R∗xλ
m(ln xm)

2 + 3R∗xλ
m(ln xm)

2(y3(θ))
−1}

+6βR∗x2λ
m (ln xm)

2 exp(−βxλ
m)(y3(θ))

−2[−3 + βxλ
m exp(−βxλ

m) + 4(y3(θ))
−1βxλ

m exp(−βxλ
m)].

(30)

p1 =
a − 1

β
− b, p2 =

c − 1
λ

− d,

τ11 = − z02

z20z02 − z2
11

, τ22 = − z20

z20z02 − z2
11

, τ12 = τ21 =
z11

z20z02 − z2
11

,

z20 =
∂2l
∂β2 , z11 =

∂2l
∂β∂λ

, z02 =
∂2l
∂λ2 ,

where z20, z11, z02 are given by Equations (10)–(12), respectively.
Based on Lindley’s approximation, we can derive the Bayesian estimation of the two

parameters, β and λ, and the entropy under different loss functions.
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3.2.1. Squared Error Loss Function

When U (β, λ) = β or λ, the Bayesian estimations of the parameters β and λ under
the SEL function are given by, respectively,

β̂S = β̂ + 0.5[τ2
11z30 + τ21τ22z03 + 3τ11τ12z21 + (τ11τ22 + 2τ2

21)z12] + τ11 p1 + τ12 p2,

λ̂S = λ̂ + 0.5[τ11τ12z30 + τ2
22z03 + 3τ22τ21z12 + (τ11τ22 + 2τ2

21)z21] + τ21 p1 + τ22 p2,

where β̂ and λ̂ are the MLEs of the parameters β and λ, respectively.
Similarly, the Bayesian estimation of the entropy can be derived. We notice that

U(β, λ) = H(β, λ) = 2.5 + γ − ln(27/4)− ln λ − 1
λ ln β + 1

λ (ln(9/8)− γ),

u1 = − 1
βλ , u2 = − 1

λ + 1
λ2 (ln β − ln(9/8) + γ),

u11 = 1
β2λ

, u22 = 1
λ2 − 2

λ3 (ln β − ln(9/8) + γ), u12 = u21 = 1
βλ2 .

Thus, the Bayesian estimation of the entropy H ( f ) under the SEL function is given by

ĤS( f )= H (̂ f ) + 0.5[u 11τ11+2u12τ12 + u22τ22 + z30(u 1τ11+u2τ12
)

τ11+z03(u 2τ22+u1τ12)τ22

+z21(3u 1τ11τ12+u2(τ11τ22+2τ2
12)) + z12(3u 2τ22τ21+u1(τ11τ22+2τ2

21))]

+p1(u 1τ11 + u2τ21)+p2(u 2τ22 + u1τ12),

(31)

where Ĥ( f ) represents the maximum likelihood estimate of H ( f ).

3.2.2. Linex Loss Function

Based on Lindley’s approximation, the Bayesian estimations of two parameters, β and
λ, and the entropy under the LL function can, respectively, be given by

β̂L = − 1
h ln{exp(−hβ̂) + 0.5[u 11τ11+u1τ2

11
z30+u1τ21τ22z03+3u1τ11τ12z21

+ (τ11τ22+2u1τ2
21)u1z12] + u1τ11 p1 + u1τ12 p2}

λ̂L = − 1
h ln{exp(−hλ̂) + 0.5[u 22τ22+u2τ11τ12z30+u2τ2

22z03+(τ11τ22+2τ2
12)u2z21

+ 3u2τ22τ21z21] + u2τ12 p1 + u2τ22 p2}

ĤL( f ) = − 1
h ln{exp[−hĤ( f )] + 0.5[u 11τ11+2u12τ12 + u22τ22+z30(u 1τ11+u2τ12

)
τ11+z03(u 2τ22+u1τ21)τ22

+z21(3u 1τ11τ12+u2(τ11τ22+2τ2
12)) + z12(3u 2τ22τ21+u1(τ11τ22+2τ2

21))]

+p1(u 1τ11 + u2τ21)+p2(u 2τ22 + u1τ12)}.

(32)

Here, β̂ and λ̂ are the MLEs of the parameters β and λ, and Ĥ( f ) represents the MLE
of H ( f ). The detailed derivation of these Bayesian estimates is shown in Appendix C.

3.2.3. General Entropy Loss Function

Using Lindley’s approximation method, the Bayesian estimations of two parameters,
β and λ, and the entropy under the GEL function can, respectively, be given by

β̂E = {β̂−q + 0.5[u 11τ11+u1τ2
11

z30+u1τ21τ22z03+3u1τ11τ12z21 + (τ11τ22+2u1τ2
21)u1z12] + u1τ11 p1 + u1τ12 p2}− 1/q

λ̂L = {λ̂− q + 0.5[u 22τ22+u2τ11τ12z30+u2τ2
22z03+(τ11τ22+2τ2

12)u2z21 + 3u2τ22τ21z21] + u2τ21 p1 + u2τ22 p2}− 1/q

ĤE( f ) = {[Ĥ( f )]−q
+ 0.5[(u 11τ11+2u12τ12 + u22τ22) + z30(u 1τ11+u2τ12

)
τ11+z03(u 2τ22+u1τ12)τ22

+z21(3u 1τ11τ12+u2(τ11τ22+2τ2
12)) + z12(3u 2τ22τ21+u1(τ11τ22+2τ2

21))]

+p1(u 1τ11 + u2τ21)+p2(u 2τ22 + u1τ12)}−1/q.

(33)
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Here, β̂ and λ̂ are the MLEs of the parameters β and λ, and Ĥ( f ) represents the MLE
of H ( f ). The detailed derivation of these Bayesian estimates is shown in Appendix D.

3.3. Bayesian Credible Interval

In the previous subsection, we used the Lindley’s approximation method to obtain
the Bayesian point estimation of the parameters and entropy. However, this approximation
method cannot determine the Bayesian CIs. Thus, the MCMC method is applied to
obtain the Bayesian CI for the parameters and entropy. The MCMC method is a useful
technique for estimating complex Bayesian models. The Gibbs sampling and Metropolis–
Hastings algorithm are the two most frequently applied MCMC methods which are used in
reliability analysis, statistical physics and machine learning, among other applications. Due
to their practicality, they have gained some attention among researchers, and interesting
results have been obtained. For example, Gilks and Wild [24] proposed adaptive rejection
sampling to handle non-conjugacy in applications of Gibbs sampling. Koch [25] studied
the Gibbs sampler by means of the sampling–importance resampling algorithm. Martino
et al. [26] established a new approach, namely by recycling the Gibbs sampler to improve
the efficiency without adding any extra computational cost. Panahi and Moradi [27]
developed a hybrid strategy, combining the Metropolis–Hastings [28,29] algorithm with the
Gibbs sampler to generate samples from the respective posterior, arising from the inverted,
exponentiated Rayleigh distribution. In this paper, we adopt the method proposed in [27]
to generate samples from the respective posterior arising from the GB distribution. From
Equations (6) and (22), the joint posterior of the parameters β, λ can be written as

π(β, λ|→x ) ∝ π(β, λ)L(β, λ|→x ) ∝ [V(λ)]m+aβm+a−1 exp[−βV(λ)]
m
∏
i=1

[1 − exp(−βxλ
i )]

× 1
[V(λ)]m+a

D
∏
i=1

(3 − 2 exp(−βxλ
i ))

Ri (3 − 2 exp(−βxλ
m))

R∗
λm+c−1 exp(−dλ)

m
∏
i=1

xλ−1
i

(34)

Here, V(λ) = (b + 2∑m
i=1 xλ

i +2∑D
i=1 Rixλ

i +2R∗xλ
m). Therefore, we have

π(β, λ|→x ) ∝ π1(β|λ,
→
x )π2(λ|β,

→
x ), (35)

where
π1(β|λ,

→
x ) ∝ [V(λ)]m+aβm+a−1 exp[−βV(λ)] (36)

π2(λ|β,
→
x )∝ λm+c−1

[V(λ)]m+a exp(−dλ) exp[−β(2∑m
i=1 xλ

i +2∑D
i=1 Rixλ

i +2R∗xλ
m)]

× m
∏
i=1

[1 − exp(−βxλ
i )]

D
∏
i=1

(3 − 2 exp(−βxλ
i ))

Ri (3 − 2 exp(−βxλ
m))

R∗ m
∏
i=1

xλ−1
i .

(37)

It is observed that the posterior density π1(β|λ,
→
x ) of β, given λ, is the PDF of the

Gamma distribution Gamma(m + a, b + 2∑m
i=1 xλ

i +2∑D
i=1 Rixλ

i +2R∗xλ
m). However, the

posterior density π2(λ|β,
→
x ) of λ, given β, cannot be reduced analytically to a known

distribution. Therefore, we use the Metropolis–Hastings method with normal proposal
distribution to generate random numbers from Equation (37). We use the next algorithm
(Algorithm 1), proposed in [27], to generate random numbers from Equation (34) and
construct the Bayesian credible interval of λ, β and the entropy H ( f ).
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Algorithm 1 The MCMC method

Step 1: Choose the initial value (β(0), λ(0)).
Step 2: At stage i and for the given m, n and ATII-PH censored data, generate β(i) from
the following:

Gamma(m + a, b + 2∑m
i=1 xλ

i +2∑D
i=1 Rixλ

i +2R∗xλ
m).

Step 3: Generate λ(i) from π2(λ
(i−1)|β(i), →x ) using the following steps.

Step 3-1: Generate λ′ from N(λ(i−1), var(λ)).
Step 3-2: Generate the ω from the uniform distribution U(0, 1).

Step 3-3: Set λ(i) = { λ′, i f ω ≤ r∗
λ(i−1), i f ω > r∗ , where r∗ = min{1, π2(λ′ |β(i) ,

→
x )

π2(λ(i−1) |β(i) ,
→
x )
}.

Step 4: Set i = i + 1.
Step 5: By repeating Steps 2–4 N times, we get (β1, λ1), (β2, λ2), . . . , (βN , λN). Furthermore, we
compute H1, H2, . . . , HN , where Hi = H(βi, λi), i = 1, 2, . . . , N and H(β, λ) is the Shannon
entropy of the GB distribution.

Rearrange (β1, β2, . . . , βN), and (H1, H2, . . . , HN) into (β(1), β(2), . . . , β(N)), (λ(1), λ(2),
. . . , λ(N)) and (H(1)H(2), . . . , H(N)), where (β(1) < β(2) < . . . < β(N)), (λ(1) < λ(2) <
. . . < λ(N)) and (H(1) < H(2) < . . . < H(N)).

Then, the 100(1− α)% Bayesian credible interval of the two parameters β, λ and the en-
tropy are given by (β(Nα/2), β(N(1−α/2))), (λ(Nα/2), λ(N(1−α/2))) and (H(Nα/2), H(N(1−α/2))).

4. Simulation Study

In this section, a Monte Carlo simulation study is carried out to observe the perfor-
mance of different estimators of the entropy, in terms of the MSEs for different values of n,
m, T and censoring schemes. In addition, the average 95% asymptotic confidence intervals
(ACIs), Bayesian credible intervals (BCIs) of β, λ and the entropy, as well as the average
interval length (IL), are computed, and the performances are also compared. We consider
the following three different progressive censoring schemes (CSs):

• CS I: Rm = n − m, Ri = 0, i = m;
• CS II: R1 = n − m, Ri = 0, i = 1;
• CS III: Rm/2 = n − m, Ri = 0, f or i = m

2 , if m is even or R(m+1)/2 = n − m, Ri =

0, f or i = m+1
2 , if m is odd.

Based on the following algorithm proposed by Balakrishnan and Sandhu [30]
(Algorithm 2), we can generate an adaptive Type-II progressive hybrid censored sample
from the GB distribution.

Algorithm 2. Generating a adaptive Type-II progressive hybrid censored sample from the
GB distribution.

Step1: Generate m independent observations Z1, Z2, . . . , Zm, where Zi follows the uniform
distribution U(0, 1), i = 1, 2, . . . , m.
Step 2: For the known censoring scheme (R1, R2, . . . , Rm), let
ξi = Zi

1/(i+Rm+Rm−1+...+Rm−i+1), i = 1, 2, . . . , m.
Step 3: By setting Ui = 1 − ξmξm−1 . . . ξm−i+1, then U1, U2, . . . , Um is a Type-II progressive
censored sample from the uniform distribution U(0, 1).
Step 4: Using the inverse transformation Xi:m:n = F−1(Ui), i = 1, 2, . . . , m, we obtain a Type-II
progressive censored sample from the GB distribution; that is, X1:m:n, X2:m:n, . . . , Xm:m:n, where
F−1(·) denotes the GB distribution’s inverse cumulative functional expression with the parameter
(β, λ). The following theorem1 gives the uniqueness of the solution for the equation
Xi:m:n = F−1(Ui), i = 1, 2, . . . , m.
Step 5: If there exists a real number J satisfying XJ:m:n < T ≤ XJ+1:m:n, then we set index J and
record X1:m:n, X2:m:n, . . . , XJ+1:m:n.
Step 6: Generate the first m − J − 1 order statistics XJ+2:m:n, XJ+3:m:n, . . . , Xm:m:n from the
truncated distribution f (x; β, λ)/[1 − F(xJ+1; β, λ)] with a sample size n − J − 1 − ∑J

i=1 Ri.

Theorem 1. The equation Xi:m:n = F−1(Ui) has a unique solution, i = 1, 2, . . . , m.
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Proof. See Appendix A. �

In the simulation study, we took the values of the parameters of the GB distribution as
β = 1, λ = 2. In this case, H(f ) = 0.2448. The hyperparameter values of the prior distribution
were taken as a = 1, b = 3, c = 2, d = 3. For the Linex loss function and general entropy
loss function, we set h = −1.0, 1.0 and q = −1.0, 1.0, respectively. In the Newton
iterative algorithm and MCMC sampling algorithm, we chose the initial values of β and
λ as β(0) = 0.9, λ(0) = 1.9; the value of ε was taken as 10−6. For different sample sizes n
and different effective samples m and time T, we used 3000 simulated samples in each case.
The average values and mean square errors (MSEs) of the MLEs and Bayesian estimations
(BEs) for β, λ and the entropy were calculated. These results are reported in Tables 1–6.

Table 1. The average maximum likelihood estimations (MLEs) and mean square errors (MSEs) of β,
λ and the entropy (β = 1, λ = 2, H(f ) = 0.2448).

(n, m) SC

T = 0.6 T = 1.5

^
β

MSE

^
λ

MSE

^
H

MSE

^
β

MSE

^
λ

MSE

^
H

MSE

(40, 15) I 1.1850
0.1224

2.2096
0.1428

0.1903
0.0979

1.1875
0.1213

2.2848
0.1521

0.1950
0.0963

II 1.0727
0.0709

2.1448
0.1258

0.2015
0.0376

1.0619
0.0609

2.1541
0.1336

0.2017
0.0279

III 1.1819
0.1217

2.2354
0.1413

0.1947
0.0910

1.1864
0.1208

2.2362
0.1514

0.1968
0.0902

(50, 15) I 1.1326
0.1053

2.1803
0.1398

0.2086
0.0797

1.0905
0.0741

2.1931
0.1483

0.1997
0.0750

II 1.0498
0.0390

2.1017
0.1243

0.2281
0.0280

1.0390
0.0374

2.1076
0.1263

0.2169
0.0197

III 1.1184
0.1013

2.1817
0.1345

0.2035
0.0742

1.0740
0.0602

2.1284
0.1448

0.2013
0.0598

(60, 30) I 1.1006
0.0889

2.1758
0.1374

0.2029
0.0625

1.0689
0.0683

2.1795
0.1368

0.2033
0.0547

II 1.0451
0.0363

2.0847
0.1066

0.2260
0.0231

1.0476
0.0383

2.0877
0.1048

0.2170
0.0158

III 1.0860
0.0653

2.1528
0.1368

0.2086
0.0601

1.0583
0.0592

2.1571
0.1335

0.2090
0.0418

(70, 30) I 1.0641
0.0704

2.1296
0.1202

0.2163
0.0516

1.0581
0.0597

2.1197
0.1278

0.2134
0.0417

II 1.0246
0.0265

2.0785
0.0849

0.2294
0.0198

1.0231
0.0317

2.0715
0.0946

0.2245
0.0148

III 1.0517
0.0580

2.1483
0.1203

0.2199
0.0591

1.0468
0.0485

2.1132
0.1203

0.2195
0.0361

From Tables 1–6, the following observations can be made:

1. For the fixed m and T values, the MSEs of the MLEs and Bayesian estimations of the
two parameters and the entropy decreased when n increased. As such, we tended to
get better estimation results with an increase in the test sample size;

2. For the fixed n and m values, when T increased, the MSEs of the MLEs and Bayesian
estimations of the two parameters and the entropy did not show any specific trend.
This could be due to the fact that the number of observed failures was preplanned,
and no additional failures were observed when T increased;

3. In most cases, the MSEs of the Bayesian estimations under a squared error loss
function were smaller than those of the MLEs. There was no significant difference in
the MSEs between the Linex loss and general entropy loss functions;

4. For fixed values of n, m and T, Scheme II was smaller than Scheme I and Scheme III
in terms of the MSE.
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Table 2. The average Bayesian estimations and MSEs of β, λ and the entropy under the squared error
loss functon (β = 1, λ = 2; β = 1, λ = 2, H(f ) = 0.2448).

(n, m) SC

T = 0.6 T = 1.5

^
β

MSE

^
λ

MSE

^
H

MSE

^
β

MSE

^
λ

MSE

^
H

MSE

(40, 15) I 0.8625
0.0353

1.8735
0.1325

0.3357
0.0930

0.8687
0.0337

1.8761
0.1317

0.3301
0.0920

II 0.9480
0.0235

1.9583
0.0954

0.2630
0.0342

0.9546
0.0255

1.9531
0.0938

0.2616
0.0217

III 0.8795
0.0340

1.8041
0.1314

0.3264
0.0948

0.8837
0.0310

1.8996
0.1299

0.3034
0.0902

(50, 15) I 0.9325
0.0297

1.8917
0.1185

0.3189
0.0796

0.8973
0.0289

1.8345
0.0975

0.2732
0.0741

II 0.9645
0.0218

1.9907
0.0827

0.2580
0.0260

0.9694
0.0223

1.9763
0.0812

0.2303
0.0198

III 0.9475
0.0253

1.9013
0.1072

0.3016
0.0546

0.9824
0.0234

1.9314
0.0972

0.2661
0.0486

(60, 30) I 0.9274
0.0224

1.8445
0.1151

0.2357
0.0575

0.9457
0.0263

1.8781
0.0919

0.2674
0.0508

II 0.9671
0.0202

1.9932
0.0728

0.2398
0.0235

0.9688
0.0207

2.0176
0.0741

0.2235
0.0179

III 0.9185
0.0211

1.8525
0.1072

0.2301
0.0534

0.9316
0.0227

1.9427
0.0954

0.2652
0.0504

(70, 30) I 0.9742
0.0198

1.9360
0.0775

0.2538
0.0404

0.9515
0.0213

1.9504
0.0892

0.2553
0.0401

II 0.9895
0.0174

2.0413
0.0613

0.2506
0.0195

0.9804
0.0186

2.0378
0.0537

0.2260
0.0105

III 0.9787
0.0182

1.9746
0.0761

0.2512
0.0397

0.9713
0.0194

1.9714
0.0683

0.2537
0.0346

Table 3. The average Bayesian estimations and MSEs of β, λ and the entropy under the Linex loss
function (β = 1, λ = 2, T = 0.6, H(f ) = 0.2448).

(n, m) SC

h=−1 h=1

^
β

MSE

^
λ

MSE

^
H

MSE

^
β

MSE

^
λ

MSE

^
H

MSE

(40, 15) I 0.8835
0.0355

1.8558
0.1261

0.3583
0.0964

0.8531
0.0366

1.8248
0.1343

0.2802
0.0904

II 0.9740
0.0255

1.9161
0.0885

0.2587
0.0721

0.9308
0.0246

1.9092
0.1008

0.2469
0.0304

III 0.9047
0.0308

1.8768
0.1249

0.3343
0.0929

0.8670
0.0335

1.8405
0.1889

0.2638
0.0884

(50, 15) I 0.9047
0.0301

1.9415
0.1238

0.3158
0.0939

0.8704
0.0337

1.9175
0.1329

0.2736
0.0764

II 0.9852
0.0218

2.0538
0.0789

0.2502
0.0623

0.9674
0.0213

1.9201
0.0912

0.2358
0.0265

III 0.9105
0.0284

1.9771
0.0986

0.3046
0.0904

0.8924
0.0293

1.9203
0.1257

0.2604
0.0654

(60, 30) I 0.9341
0.0223

1.9788
0.1127

0.2792
0.0836

0.9035
0.0238

1.9221
0.1308

0.2520
0.0543

II 0.9834
0.0198

2.0465
0.0664

0.3743
0.0365

0.9609
0.0211

1.9447
0.0791

0.2118
0.0220

III 0.9498
0.0204

1.9837
0.0973

0.3424
0.0829

0.9258
0.0207

1.9253
0.1227

0.2319
0.0425

(70, 30) I 0.9561
0.0197

1.9889
0.0768

0.2546
0.0579

0.9378
0.0184

1.9543
0.0975

0.2407
0.0403

II 0.9957
0.0174

2.0312
0.0572

0.2371
0.0281

0.9798
0.0159

2.0164
0.0614

0.2410
0.0187

III 0.9687
0.0185

2.0024
0.0746

0.2265
0.0536

0.9451
0.0120

1.9623
0.0784

0.2409
0.0354
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Table 4. The average Bayesian estimations and MSEs of β, λ and the entropy under the Linex loss
function (β = 1, λ = 2, T = 1.5, H(f ) = 0.2448).

(n, m) SC

h = −1 h = 1

β̂
MSE

λ̂
MSE

Ĥ
MSE

β̂
MSE

λ̂
MSE

Ĥ
MSE

(40, 15) I 0.8896
0.0330

1.8328
0.1359

0.3492
0.1025

0.8510
0.0375

1.8127
0.1396

0.3381
0.0947

II 0.9638
0.0248

1.9177
0.0863

0.2743
0.0365

0.9272
0.0265

1.9167
0.0982

0.2657
0.0301

III 0.8922
0.0321

1.8691
0.1306

0.3424
0.0948

0.8631
0.0334

1.8430
0.1328

0.3343
0.0803

(50, 15) I 0.9024
0.0234

1.8678
0.1094

0.3217
0.0921

0.8823
0.0315

1.8874
0.1173

0.3216
0.0810

II 0.9713
0.0221

1.9401
0.0731

0.2601
0.0262

0.9418
0.0217

1.9824
0.0884

0.2632
0.0223

III 0.9135
0.0231

1.8792
0.090

0.3383
0.0921

0.8975
0.0314

1.8845
0.1121

0.3210
0.0693

(60, 30) I 0.9470
0.0219

1.8946
0.0951

0.3222
0.0727

0.9080
0.0234

1.9012
0.1075

0.3251
0.0536

II 0.9795
0.0209

1.9452
0.0719

0.2518
0.0246

0.9548
0.0199

1.9616
0.0776

0.2513
0.0219

III 0.9425
0.0213

1.8978
0.0906

0.3197
0.0648

0.9253
0.0213

1.9041
0.1069

0.3218
0.0412

(70, 30) I 0.9583
0.0184

1.9562
0.0748

0.3165
0.0473

0.9491
0.0179

1.9493
0.0861

0.3314
0.0392

II 0.9901
0.0163

2.0576
0.0652

0.2318
0.0168

0.9814
0.0153

2.0997
0.0608

0.2459
0.0161

III 0.9711
0.0175

1.9230
0.0697

0.3027
0.0389

0.9502
0.0162

1.9894
0.0841

0.3267
0.0304

Table 5. The average Bayesian estimations and MSEs of β, λ and the entropy under the general
entropy loss function (β = 1, λ = 2, T = 0.6, H(f ) = 0.2448).

(n, m) SC

q=−1 q=1

^
β

MSE

^
λ

MSE

^
H

MSE

^
β

MSE

^
λ

MSE

^
H

MSE

(40, 15) I 0.8739
0.0341

1.8380
0.1348

0.3181
0.0891

0.8288
0.0437

1.8173
0.1381

0.3558
0.1091

II 0.9546
0.0239

1.9184
0.0966

0.2832
0.0234

0.9169
0.0265

1.9081
0.1084

0.2628
0.0315

III 0.8828
0.0324

1.8422
0.1306

0.3097
0.0863

0.8494
0.0389

1.8266
0.1361

0.3207
0.1063

(50, 15) I 0.9013
0.0305

1.8948
0.1191

0.3017
0.0463

0.8972
0.0380

1.8728
0.1231

0.3423
0.0598

II 0.9701
0.0214

1.9386
0.0803

0.2695
0.0186

0.9430
0.0236

1.9471
0.0962

0.2268
0.0271

III 0.9251
0.0263

1.8984
0.1093

0.3023
0.0486

0.8613
0.0308

1.8498
0.1176

0.3287
0.0525

(60, 30) I 0.9270
0.0232

1.9089
0.0824

0.2776
0.0390

0.8975
0.0276

1.8785
0.1127

0.3270
0.0477

II 0.9610
0.0190

2.0351
0.0686

0.2318
0.0197

0.9481
0.0210

2.0453
0.0791

0.2391
0.0245

III 0.9406
0.0210

1.9105
0.0874

0.2698
0.0375

0.9116
0.0231

1.8938
0.1109

0.3168
0.0418

(70, 30) I 0.9501
0.0171

1.9492
0.0778

0.2536
0.0265

0.9213
0.0202

1.9308
0.0840

0.2924
0.0392

II 0.9817
0.0158

2.0147
0.0436

0.2325
0.0148

0.9681
0.0151

2, 1489
0.0526

0.2410
0.0272

III 0.9546
0.0174

1.9602
0.0738

0.2513
0.0168

0.9467
0.0173

1.9436
0.0724

0.2902
0.0312
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Table 6. The average Bayesian estimations and MSEs of β, λ and the entropy under the general
entropy loss function (β = 1, λ = 2, T = 1.5, H(f ) = 0.2448).

(n, m) SC

q=−1 q=1
^
β

MSE

^
λ

MSE

^
H

MSE

^
β

MSE

^
λ

MSE

^
H

MSE

(40, 15) I 0.8770
0.0335

1.8569
0.1332

0.3564
0.0903

0.8224
0.0455

1.7924
0.1331

0.3598
0.1075

II 0.9560
0.0218

1.9221
0.0914

0.2729
0.0198

0.9112
0.0257

1.9038
0.0913

0.2786
0.0294

III 0.8836
0.0315

1.8297
0.1217

0.3519
0.0841

0.8453
0.0348

1.8374
0.1224

0.3547
0.1024

(50, 15) I 0.8947
0.0298

1.8979
0.0981

0.3028
0.0372

0.8631
0.0362

1.8308
0.1134

0.3143
0.0483

II 0.9685
0.0206

1.9793
0.0801

0.2610
0.0164

0.9377
0.0216

1.9467
0.0910

0.2656
0.0283

III 0.8984
0.0278

1.9078
0.0931

0.3012
0.0416

0.8702
0.0302

1.8547
0.1086

0.3125
0.0502

(60, 30) I 0.9244
0.0221

1.8446
0.0772

0.2731
0.0283

0.8930
0.0267

1.9208
0.1041

0.2812
0.0421

II 0.9767
0.0188

2.0526
0.0614

0.2554
0.0164

0.9440
0.0202

2.0658
0.0718

0.2627
0.0238

III 0.9387
0.0198

1.9541
0.0824

0.2709
0.0346

0.9125
0.0210

1.9435
0.0983

0.2801
0.0431

(70, 30) I 0.9531
0.0167

1.9578
0.0738

0.2501
0.0247

0.9230
0.0188

1.9447
0.0814

0.2523
0.0370

II 0.9814
0.0140

2.2263
0.0394

0.2309
0.0135

0.9675
0.0140

2.2680
0.0338

0.2352
0.0247

III 0.9624
0.0163

1.9795
0.0745

0.2486
0.0216

0.9457
0.0164

1.9539
0.0718

0.2501
0.0306

To further demonstrate the conclusions, the MSEs are plotted when the sample size
increases under different censoring schemes. The trends are shown in Figure 1 (values
come from Tables 1–6).

Furthermore, the average 95% ACIs and BCIs of β, λ and the entropy, as well as
the average lengths (ALs) and coverage probabilities of the confidence intervals, were
computed. These results are displayed in Tables A1–A4 (See Appendix E).

From Tables A1–A4, the following can be observed:

1. The coverage probability of the approximate confidence intervals and Bayes credible
intervals became bigger when n increased while m and T remain fixed;

2. For fixed values of n and m, when T increased, we did not observe any specific trend
in the coverage probability of the approximate confidence intervals and Bayesian
credible intervals;

3. For fixed values of n and T, the average length of the approximate confidence intervals
and Bayesian credible intervals were narrowed down when n increased;

4. The average length of the Bayesian credible intervals was smaller than that of the
asymptotic confidence intervals in most cases;

5. For fixed values of n and m, when T increased, we did not observe any specific trend
in the average length of the confidence intervals;

6. For fixed values of n, m and T, Scheme II was smaller than Scheme I and Scheme III
in terms of the average length of the credible interval;

7. For fixed values of n, m and T, the coverage probability of the approximate confidence
intervals and Bayesian credible intervals were bigger than Scheme I and Scheme III.
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(a) (b)

(c) (d)

(e) (f) 

Figure 1. MSEs of different entropy estimations. (a) MSEs of MLEs of entropy in the case of T = 0.6 and T = 1.5. (b) MSEs of
Bayesian estimations of entropy under a squared error loss function in the case of T = 0.6 and T = 1.5. (c) MSEs of Bayesian
estimations of entropy under a Linex loss function in the case of T = 0.6. (d) MSEs of Bayesian estimations of entropy
under a Linex loss function in the case of T = 1.5. (e) MSEs of Bayesian estimations of entropy under a general entropy loss
function in the case of T = 0.6. (f) MSEs of Bayesian estimations of entropy under a general entropy loss function in the case
of T = 1.5.

5. Real Data Analysis

In this subsection, a real data set is considered to illustrate the use of the inference
procedures discussed in this paper. This data set consisted of 30 successive values of March
precipitation in Minneapolis–Saint Paul, which were reported by Hinkley [31]. The data
set points are expressed in inches as follows: 0.32, 0.47, 0.52, 0.59, 0.77, 0.81, 0.81, 0.9, 0.96,
1.18, 1.20, 1.20, 1.31, 1.35, 1.43, 1.51, 1.62, 1.74, 1.87, 1.89, 1.95, 2.05, 2.10, 2.20, 2.48, 2.81, 3.0,
3.09, 3.37 and 4.75 in.
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This data was used by Barreto-Souza and Cribari-Neto [32] for fitting the generalized
exponential-Poisson (GEP) distribution and by Abd-Elrahman [20] for fitting the Bilal and
GB distributions. In the complete sample case, the MLEs of β and λ were 0.4168 and 1.2486,
respectively. In this case, we calculated the maximum likelihood estimate of the entropy
as H(f ) = 1.2786. For the above data set, Abd-Elrahman [20] pointed out that the negative
of the log likelihood, Kolmogorov–Smirnov (K–S) test statistics and its corresponding p
value related to these MLEs were 38.1763, 0.0532 and 1.0, respectively. Based on the value
of p, it is clear that the GB distribution was found to fit the data very well. Using the above
data set, we generated an adaptive Type-II progressive hybrid censoring scheme with an
effective failure number m (m = 20).

When we took T = 4.0 and R1 = R2 = . . . = R5 = 1, R6 = R7 = . . . = R15 = 0, R16 =
R17 = . . . = R20 = 1, the obtained data in Case I were as follows:

Case I: 0.32, 0.52, 0.77, 0.81, 0.96, 1.18, 1.20, 1.31, 1.35, 1.43, 1.51, 1.62, 1.74, 1.87, 1.89,
1.95, 2.10, 2.48, 2.81 and 3.37.

When we took T = 2.0, R1 = 1, R2 = R3 = . . . = R8 = 0, R9 = R10 = . . . R15 = 1,
R16 = R17 = . . . = R19= 0 and R20 = 2, the obtained data in Case II were as follows:

Case II: 0.32, 0.47, 0.52, 0.59, 0.77, 0.81, 0.9, 0.96, 1.18, 1.20, 1.35, 1.43, 1.74, 1.87, 1.95,
2.10, 2.20, 2.48, 2.81 and 3.09.

Based on the above data, the maximum likelihood estimation and Bayesian estimation
of the entropy and the two parameters could be calculated. For the Bayesian estimation,
since we had no prior information about the unknown parameters, we considered the
noninformative gamma priors of the unknown parameters as a = b = c = d = 0. For the
Linex loss and general entropy functions, we set h = −1.0, 1.0 and q = −1.0, 1.0,
respectively. The MLEs and Bayesian estimations of the entropy and the two parameters
were calculated by using the Newton–Raphson iteration and Lindley’s approximation
method. These results are tabulated in Tables 7 and 8. In addition, the 95% asymptotic
confidence intervals (ACIs) and Bayesian credible intervals (BCs) of the two parameters
and the entropy were calculated using the Newton–Raphson iteration, delta method and
MCMC method. These results are displayed in Table 9.

Table 7. MLEs and Bayesian estimations of the parameters and the entropy.

MLEs Case I Case II
BEs

(Squared Loss)
Case I Case II

β̂M 0.3289 0.3948 β̂S 0.3428 0.4044
λ̂M 1.0408 1.3373 λ̂S 0.9974 1.2410
ĤM 1.5890 1.3881 ĤS 1.6230 1.4701

Table 8. Bayesian estimations of the parameters and the entropy under two loss functions.

BEs
Linex
Loss

h = −1 h = 1 BEs
Entropy

Loss

q = −1 q = 1

Case I Case II Case I Case II Case I Case II Case I Case II

β̂L 0.3406 0.4031 0.3330 0.3958 β̂E 0.3369 0.4025 0.3273 0.3852
λ̂L 1.2893 1.0217 1.2442 0.9898 λ̂E 1.2618 1.0060 1.2173 0.9765
ĤL 1.4714 1.6681 1.4385 1.6276 ĤE 1.4608 1.6340 1.4370 1.6249

From Tables 7–9, we can observe that the MLEs and Bayesian estimations of the
parameters and the entropy were close to the estimations in the complete sample case.
In most cases, the length of the Bayesian credible intervals was smaller than that of the
asymptotic confidence intervals.
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Table 9. The 95% asymptotic confidence intervals (ACIs) and Bayesian credible intervals (BCIs) with
the corresponding interval lengths (ILs) of the two parameters and the entropy.

Parameter

ACIs
IL Parameter

BCIs
IL

Case I Case II Case I Case II

β
(0.2406, 0.5409)

0.3003
(0.1812, 0.4564)

0.2752 β
(0.2760, 0.5625)

0.2865
(0.2210, 0.4923)

0.2713

λ
(0.6899, 1.3918)

0.7019
(0.9884, 1.7863)

0.7979 λ
(0.7021, 1.3566)

0.6545
(0.8776, 1.6743)

0.7967

H (1.2012, 1.9314)
0.7302

(1.0299, 1.7863)
0.7164 H (1.2487, 1.9707)

0.7220
(1.1266, 1.8671)

0.7405

6. Conclusions

In this paper, we considered the estimation of parameters and entropy for generalized
Bilal distribution using adaptive Type-II progressive hybrid censored data. Using an itera-
tive procedure and asymptotic normality theory, we developed the MLEs and approximate
confidence intervals of the unknown parameters and the entropy. The Bayesian estimates
were derived by Lindley’s approximation under the square, Linex and general entropy
loss functions. Since Lindley’s method failed to construct the intervals, we utilized Gibbs
sampling together with the Metropolis–Hastings sampling procedure to construct the
Bayesian credence intervals of the unknown parameters and the entropy. A Monte Carlo
simulation was provided to show all the estimation results. The results illustrate that the
proposed methods performed well. The applicability of the considered model in a real
situation was illustrated, based on the data of March precipitation in Minneapolis–Saint
Paul. It was observed that the considered model could be utilized to analyze this real
data appropriately.
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Appendix A. Proof of Theorem 1

We set y = exp (−βxλ), then 0 < y < 1. The cumulative distribution function of GB
distribution can be written as

F(x; β, λ) = 1 − 3y2 + 2y3, 0 < y < 1

By setting u = 1 − 3y2 + 2y3, 0 <u< 1, then we get 3y2 − 2y3 + u − 1 = 0,0 <y< 1.
Set ρ(y) = 3y2 − 2y3 + u − 1, take the first derivative of ρ(y) with respect to y, and we

have dρ(y)
dy = 6y − 6y2 > 0, as 0 < y < 1.

Notice that ρ(y) is a monotonically increasing function when 0 < y < 1. Thus, there is
a unique solution to the equation 3y2 − 2y3 + u − 1 = 0 when 0 < y < 1. As such, we have
proven that the equation Xi:m:n = F−1(Ui) has a unique solution (i = 1, 2, . . . , m).
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Appendix B. The Specific Steps of the Newton–Raphson Iteration Method

Step 1: Give the initial values of θ= (β, λ); that is, θ(0)= (β(0), λ(0)).

Step 2: In the kth iteration, calculate
(

∂l
∂β , ∂l

∂λ

)∣∣∣∣∣∣∣∣ β = β(k)

λ = λ(k)

and I(β(k), λ(k)), where

I(β(k), λ(k)) =

[
I11 I12
I21 I22

]∣∣∣∣∣∣∣∣ β = β(k)

λ = λ(k)

is the observed information matrix of the parame-

ters β and λ, and Iij, i = 1, 2, 3 are given by Equations (10)–(13).
Step 3: Update (β, λ)T with

(β(k+1), λ(k+1))
T
= (β(k), λ(k))

T
+ I−1(β(k), λ(k))×

(
∂l
∂β , ∂l

∂λ

)T

∣∣∣∣∣∣∣∣ β = β(k)

λ = λ(k)

.

Here, (β, λ)T is the transpose of vector (β, λ), and I−1(β(k), λ(k)) represents the inverse
of the matrix I(β(k), λ(k)).

Step 4: Setting k = k + 1, the MLEs of the parameters (denoted by β̂ and λ̂) can be

obtained by repeating Steps 2 and 3 until |(β(k+1), λ(k+1))
T − (β(k), λ(k))

T | < ε, where ε is
a threshold value that is fixed in advance.

Appendix C. The Detailed Derivation of Bayesian Estimates of two Parameters (β,λ)

and the Entropy under the LL Function

In this case, we take U(β, λ) = exp(−hβ), and then

u1 = −h exp (−hβ), u11 = h2 exp (−hβ), u12 = u21 = u22 = u2 = 0.

Using Equation (26), the Bayesian estimation of parameter β is given by

β̂L = −1
h

ln{exp(−hβ̂) + 0.5[u 11τ11+u1τ2
11

z30+u1τ21τ22z03+3u1τ11τ12z21 + (τ11τ22+2u1τ2
21)u1z12] + u1τ11 p1 + u1τ12 p2}

Similarly, the Bayesian estimation of parameter λ is obtained by

λ̂L = −1
h

ln{exp(−hλ̂) + 0.5[u 22τ22+u2τ11τ12z30+u2τ2
22z03+(τ11τ22+2τ2

12)u2z21 + 3u2τ22τ21z21] + u2τ12 p1 + u2τ22 p2}

For the Bayesian estimation of the entropy, we have

U(β, λ) = exp[−hH( f )], u1 = h
βλ exp[−hH( f )],

u2 = −h[− 1
λ + 1

λ2 (ln β − ln(9/8) + γ)] exp[−hH( f )],
u11 = h[ −1

β2λ
+ h

β2λ2 ] exp[−hH( f )],

u22 = {−h [ 1
λ2 − 2

λ3 (ln β − ln(9/8) + γ)] + h2[− 1
λ + 1

λ2 (ln β − ln(9/8) + γ)]
2} exp[−hH( f )],

u12 = u21 == h[
h − 1
βλ2 − h

1
βλ3 (ln β − ln(9/8) + γ)] exp[−hH( f )].

The Bayesian estimation of the entropy under the LL function is given by

ĤL( f ) = − 1
h ln{exp[−hĤ( f )] + 0.5[u 11τ11+2u12τ12 + u22τ22+z30(u 1τ11+u2τ12

)
τ11+z03(u 2τ22+u1τ21)τ22

+z21(3u 1τ11τ12+u2(τ11τ22+2τ2
12)) + z12(3u 2τ22τ21+u1(τ11τ22+2τ2

21))]

+p1(u 1τ11 + u2τ21)+p2(u 2τ22 + u1τ12)}
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Appendix D. The Derivation of Bayesian Estimates of two Parameters (β,λ) and the

Entropy under the GEL Function

In this case, we take U(β, λ) = β−q and then u1 = −qβ−q−1, u11 = q(q + 1)β−q−2,
and u12 = u21 = u22 = u2 = 0.

Using Equation (26), the Bayesian estimation of parameter β is given by

β̂E = {β̂−q + 0.5[u 11τ11+u1τ2
11

z30+u1τ21τ22z03+3u1τ11τ12z21 + (τ11τ22+2u1τ2
21)u1z12] + u1τ11 p1 + u1τ12 p2}− 1/q

Similarly, the Bayesian estimation of parameter λ is obtained by

λ̂L = {λ̂− q + 0.5[u 22τ22+u2τ11τ12z30+u2τ2
22z03+(τ11τ22+2τ2

12)u2z21 + 3u2τ22τ21z21] + u2τ21 p1 + u2τ22 p2}− 1/q

For the Bayesian estimation of the entropy under the general EL function, we take
U(β, λ) = [H( f )]−q, and then

u1 = q
βλ [H( f )]−q−1, u2 = [ q

λ − q
λ2 (ln β − ln(9/8) + γ)][H( f )]−q−1,

u2 = [ q
λ − q

λ2 (ln β − ln(9/8) + γ)][H( f )]−q−1, u11 = q(q+1)
β2λ2 [H( f )]−q−2 − q

β2λ
[H( f )]−q−1,

u22 = [−q
λ2 + 2q

λ3 (ln β − ln(9/8) + γ)][H( f )]−q−1 + q(q + 1)[ 1
λ − 1

λ2 (ln β − ln(9/8) + γ)]
2
[H( f )]−q−2,

u12 = u21 = q(q + 1)[ 1
βλ2 − 1

βλ3 (ln β − ln(9/8) + γ)][H( f )]−q−2 − q
βλ2 [H( f )]−q−1.

Using Equation (26), the approximate Bayesian estimation of the entropy is given by

ĤE( f ) = {[Ĥ( f )]−q
+ 0.5[(u 11τ11+2u12τ12 + u22τ22) + z30(u 1τ11+u2τ12

)
τ11+z03(u 2τ22+u1τ12)τ22

+z21(3u 1τ11τ12+u2(τ11τ22+2τ2
12)) + z12(3u 2τ22τ21+u1(τ11τ22+2τ2

21))]

+p1(u 1τ11 + u2τ21)+p2(u 2τ22 + u1τ12)}−1/q.

Appendix E.

Table A1. The average 95% approximate confidence intervals and average lengths and coverage
probabilities of β, λ and the entropy (β = 1, λ = 2, H(f ) = 0.2448, T = 0.6).

(n, m) SC
β

AL
CP

λ
AL

CP
H

AL
CP

(40, 15) I (0.6598, 1.5736)
0.9138 0.9042 (1.2220, 3.1773)

1.9573 0.9216 (0.0293, 1.1866)
1.1573 0.9184

II (0.6711, 1.4742)
0.8031 0.9253 (1.4238, 2.8658)

1.4420 0.9361 (0.0393, 0.7733)
0.7340 0.929

III (0.6343, 1.5347)
0.9004 0.9130 (1.2645, 3.1064)

1.9319 0.9281 (0.0254, 1.1244)
1.0990 0.9174

(50, 15) I (0.6421, 1.5458)
0.9037 0.9162 (1.2837, 3.0913)

1.8076 0.9314 (0.0203, 1.0469)
1.0266 0.9216

II (0.7102, 1.3884)
0.6782 0.9394 (1.4416, 2.7246)

1.2830 0.9406 (0.0438, 0.6924)
0.6486 0.9392

III (0.6914, 1.5147)
0.8233 0.9253 (1.3021, 2.9705)

1.6684 0.9370 (0.0264, 1.0759)
1.0495 0.9261

(60, 30) I (0.6377, 1.5335)
0.8958 0.9374 (1.3388, 3.0191)

1.6803 0.9487 (0.0151, 0.9112)
0.8959 0.9393

II (0.7093, 1.3769)
0.6676 0.9516 (1.4807, 2.6886)

1.2069 0.9542 (0.0536, 0.6667)
0.6131 0.9461

III (0.6934, 1.4786)
0.7852 0.9405 (1.3955, 2.9630)

1.5675 0.9506 (0.0325, 0.8630)
0.8305 0.9428

(70, 30) I (0.7329, 1.4293)
0.6964 0.9472 (1.4068, 2.8432)

1.34364 0.9534 (0.0298, 0.7943)
0.7645 0.9446

II (0.7247, 1.2859)
0.5602 0.9651 (1.5369, 2.5891)

1.0522 0.9680 (0.0614, 0.5498)
0.4884 0.9632

III (0.7392, 1.3486)
0.6154 0.9514 (1.4476, 2.7845)

1.3361 0.9573 (0.0498, 0.7185)
0.6687 0.9521
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Table A2. The average 95% approximate confidence intervals and average lengths and coverage
probabilities of β, λ and the entropy (β = 1, λ = 2, H(f ) = 0.2448, T = 1.5).

(n, m) SC
β

AL
CP

λ
AL

CP
H

AL
CP

(40, 15) I (0.5234, 1.8717)
1.3483 0.9231 (1.2469, 3.2287)

1.9818 0.9274 (0.0284, 1.1887)
1.1603 0.9267

II (0.6662, 1.4576)
0.7914 0.9372 (1.4322, 2.8760)

1.4438 0.9405 (0.0436, 0.7887)
0.7451 0.9393

III (0.5619, 1.8110)
1.2491 0.9252 (1.2679, 3.2045)

1.9364 0.9364 (0.0212, 1.1173)
1.0961 0.9340

(50, 15) I (0.5601, 1.6810)
1.1209 0.9230 (1.3076, 3.0214)

1.7136 0.9363 (0.0245, 0.9304)
0.9059 0.9347

II (0.7124, 1.3705)
0.6581 0.9418 (1.4548, 2.7213)

1.2665 0.9462 (0.0458, 0.6740)
0.6282 0.9515

III (0.6103, 1.5868)
0.9765 0.9336 (1.3320, 2.9769)

1.6449 0.9372 (0.0259, 0.8461)
0.8202 0.9347

(60, 30) I (0.6659, 1.5135)
0.8476 0.9418 (1.3454, 3.0335)

1.6881 0.9521 (0.0206, 1.0400)
1.0194 0.9464

II (0.7051, 1.3680)
0.6619 0.9592 (1.4812, 2.6942)

1.2130 0.9574 (0.0456, 0.6604)
0.6148 0.9531

III (0.6913, 1.4513)
0.7600 0.9431 (1.3775, 2.8768)

1.4983 0.9520 (0.0237, 0.9934)
0.9697 0.9506

(70, 30) I (0.7381, 1.3951)
0.6570 0.9492 (1.4501, 2.7820)

1.3319 0.9582 (0.0321, 0.7553)
0.7232 0.9523

II (0.7573, 1.2850)
0.5277 0.9704 (1.5514, 2.5845)

1.0331 0.9726 (0.0647, 0.5680)
0.5033 0.9741

III (0.7554, 1.3492)
0.5938 0.9546 (1.4967, 2.7071)

1.2104 0.9615 (0.0410, 0.7147)
0.6737 0.9591

Table A3. The average 95% Bayesian credible intervals and average lengths and coverage probabilities
of β, λ and the entropy (β = 1, λ = 2 H(f ) = 0.2448, T = 0.6).

(n, m) SC
β

AL
CP

λ
AL

CP
H

AL
CP

(40, 15) I (0.5521, 1.2841)
0.7320 0.9194 (1.0215, 2.4593)

1.4378 0.9241 (0.0213, 1.1750)
1.1537 0.9263

II (0.6378, 1.3228)
0.6850 0.9433 (1.2854, 2.5238)

1.2384 0.9472 (0.0395, 0.7752)
0.7357 0.9380

III (0.5670, 1.2953)
0.7283 0.9253 (1.0579, 2.4762)

1.4183 0.9294 (0.0224, 1.1192)
1.0968 0.9308

(50, 15) I (0.5924, 1.2871)
0.6947 0.9312 (1.1731, 2.5054)

1.3323 0.9397 (0.0298, 0.9231)
0.8933 0.9386

II (0.6897, 1.2921)
0.6024 0.9491 (1.3580, 2.4935)

1.1355 0.9465 (0.0548, 0.6751)
0.6203 0.9507

III (0.6067, 1.2854)
0.6787 0.9342 (1.2051, 2.4718)

1.2667 0.9354 (0.0278, 0.8553)
0.8275 0.9326

(60, 30) I (0.6450, 1.2925)
0.6475 0.9481 (1.1389, 2.4565)

1.3176 0.9536 (0.0397, 1.0509)
1.0112 0.9394

II (0.6870, 1.2905)
0.6035 0.9614 (1.3883, 2.4740)

1.0857 0.9656 (0.0578, 0.6717)
0.6139 0.9562

III (0.6565, 1.2812)
0.6247 0.9532 (1.1919, 2.4423)

1.2504 0.9561 (0.0319, 0.8408)
0.8029 0.9528

(70, 30) I (0.7062, 1.2494)
0.5432 0.9512 (1.3068, 2.4374)

1.1306 0.9563 (0.0324, 0.7516)
0.7192 0.9536

II (0.7451, 1.2449)
0.4998 0.9711 (1.4821, 2.4494)

0.9673 0.9744 (0.0701, 0.5672)
0.4971 0.9783

III (0.7162, 1.2359)
0.5197 0.9583 (1.3597, 2.4443)

1.0846 0.9604 (0.0440, 0.7067)
0.6627 0.9578
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Table A4. The average 95% Bayesian credible intervals and average lengths and coverage probabilities
of β, λ and the entropy (β = 1, λ = 2 H(f ) = = 0.2448, T = 1.5).

(n, m) SC
β

AL
CP

λ
AL

CP
H

AL
CP

(40, 15) I (0.5554, 1.2954)
0.7400 0.9218 (1.0243, 2.4612)

1.4369 0.9354 (0.0251, 1.1801)
1.1550 0.9258

II (0.6417, 1.3339)
0.6922 0.9439 (1.2824, 2.5169)

1.2345 0.9485 (0.0372, 0.7728)
0.7356 0.9394

III (0.5696, 1.3033)
0.7337 0.9275 (1.0556, 2.4672)

1.4116 0.9318 (0.0241, 1.1200)
1.0959 0.9337

(50, 15) I (0.5954, 1.2947)
0.6993 0.9417 (1.1722, 2.4804)

1.3002 0.9420 (0.0224, 1.0231)
1.0007 0.9418

II
(0.68902,
1.2954)
0.6062

0.9506 (1.3599, 2.5034)
1.1435 0.9525 (0.0479, 0.6710)

0.6239 0.9526

III (0.6045, 1.2801)
0.6756 0.9359 (1.2337, 2.5094)

1.2757 0.9364 (0.0324, 1.0047)
0.9723 0.9371

(60, 30) I (0.6418, 1.2835)
0.6417 0.9494 (1.1349, 2.4455)

1.3106 0.9548 (0.0250, 0.9212)
0.8960 0.9417

II (0.6896, 1.2970)
0.6074 0.9628 (1.3987, 2.4911)

1.0924 0.9662 (0.0479, 0.6608)
0.6129 0.9573

III (0.6600, 1.2856)
0.6256 0.9556 (1.1549, 2.4283)

1.2734 0.9571 (0.0217, 0.8359)
0.8142 0.9538

(70, 30) I (0.7061, 1.2472)
0.5411 0.9526 (1.3179, 2.4521)

1.1342 0.9571 (0.0363, 0.7509)
0.7146 0.9548

II (0.7451, 1.2413)
0.4962 0.9725 (1.4663, 2.4268)

0.9605 0.9757 (0.0778, 0.5701)
0.4923 0.9793

III (0.7154, 1.2267)
0.5113 0.9594 (1.3542, 2.4118)

1.0576 0.9624 (0.0604, 0.7108)
0.6504 0.9585
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Abstract: The maximum entropy principle consists of two steps: The first step is to find the dis-
tribution which maximizes entropy under given constraints. The second step is to calculate the
corresponding thermodynamic quantities. The second part is determined by Lagrange multipliers’
relation to the measurable physical quantities as temperature or Helmholtz free energy/free entropy.
We show that for a given MaxEnt distribution, the whole class of entropies and constraints leads
to the same distribution but generally different thermodynamics. Two simple classes of transfor-
mations that preserve the MaxEnt distributions are studied: The first case is a transform of the
entropy to an arbitrary increasing function of that entropy. The second case is the transform of the
energetic constraint to a combination of the normalization and energetic constraints. We derive group
transformations of the Lagrange multipliers corresponding to these transformations and determine
their connections to thermodynamic quantities. For each case, we provide a simple example of
this transformation.

Keywords: maximum entropy principle; MaxEnt distribution; calibration invariance; Lagrange multipliers

1. Introduction

The maximum entropy principle (MEP) is one of the most fundamental concepts in
equilibrium statistical mechanics. It was originally proposed by Jaynes [1,2] in order to con-
nect information entropy introduced by Shannon and thermodynamic entropy introduced
by Clausius, Boltzmann, and Gibbs. Although the MEP was originally introduced for the
case of Shannon entropy, with the advent of generalized entropies [3–17] the natural effort
was to apply the maximum entropy principle beyond the case of Shannon entropy. Another
question that arose naturally is whether the MEP can be applied to other than ordinary
linear constraints. Examples of the constraints that might be considered in connection
with the MEP are escort constraints [18–20], Kolmogorov–Nagumo means [21,22], or more
exotic types of constraints [23]. It brought some discussion about the applicability of the
principle for the case of generalized entropies [24,25] and nonlinear constraints and its
thermodynamic interpretation [26–30]. Indeed, MEP is not the only one extremal principle
in statistical physics, let us mention, e.g., the principle of maximum caliber [31] which is
useful in non-equilibrium physics. In this paper, we stick, however, to MEP, as it is the
most widespread principle and the theory of generalized thermostatistics has been mainly
focused on MEP. For a recent review of other principles, see also in [32]. For the discussion
between entropy arising from information theory and thermodynamics, see in [33]. For the
sake of simplicity, let us consider canonical ensemble, i.e., fluctuations in internal energy.
For the case of the grand-canonical ensemble, one can obtain similar results to the ones
presented in this paper for the case of a chemical potential μ.

In order to grasp the debate about the applicability of the MEP, let us emphasize that
the MEP consists of two main parts:
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(I) Finding a distribution (MaxEnt distribution) that maximizes entropy under given con-
straints.

(II) Plugging the distribution into the entropic functional and calculating physical quanti-
ties as thermodynamic potentials, temperature, or response coefficients (specific heat,
compressibility, etc.).

The first part is rather a mathematical procedure of finding a maximum subject to
constraints. This is done by the method of Lagrange multipliers, by defining a Lagrange
function in the form

Lagrange f unction = entropy − (Lagrange multiplier) · (constraint)

The Lagrange multipliers’ role at this stage is to ensure fulfillment of constraints as
they are determined from the set of equations obtained from the maximization of the
Lagrange function. This procedure is known in statistics as Softmax, a method used to
infer distribution from given data. Shore and Johnson [34,35] therefore studied MEP as a
statistical inference procedure and established a set of consistency axioms. Shore and
Johnson’s work heated a debate about whether MEP for generalized entropies can
be also understood as a statistical inference method satisfying the consistency
requirements [24,36–41]. In [42], it was shown that the class of entropies satisfying the
original Shore–Johnson axioms is wider than previously thought. Moreover, in [43], the
connection between Shore–Johnson axioms and Shannon–Khinchin axioms was inves-
tigated and the equivalence of information theory and statistical inference axiomatics
was established.

In the second part, the physical interpretation of entropy starts to arise. Similar to
the case of Lagrangian mechanics, where the Lagrangian is the difference between kinetic
and potential energy and the Lagrange multipliers play the role of the normal force to
the constraints, here the entropy becomes a thermodynamic state variable. For Shannon
entropy and linear constraints, the Lagrange multipliers become inverse temperature and
free entropy, respectively.

The main aim of this paper is to discuss the relation between points (I) and (II). In the
first part, it is possible to find a class of entropic functionals and constraints leading to
the same MaxEnt distribution. However, in the second part, different entropy and/or
constraints lead to different thermodynamics and different relations between physical
quantities and Lagrange multipliers. The two main messages of this paper are listed below.

(i) For each MaxEnt distribution, there exists the whole class of entropies and constraints
leading to generally different thermodynamics.

(ii) It is possible to establish transformation relations of Lagrange parameters (and subse-
quently the thermodynamic quantities) for classes of entropies and constraints giving
the same MaxEnt distribution.

We call the latter transformation relation calibration invariance of the MaxEnt distri-
bution. A straightforward consequence is that in order to fully determine the statistical
properties of a thermal system in equilibrium, it is not enough to measure the statistical
distribution of energies.

The rest of the paper is organized as follows. In the next section, we briefly discuss
the main aspects of MEP for the case of general entropic functional and general constraints.
In the following two sections, we introduce two simple transformations of entropic func-
tional (Section 3) and constraints (Section 4) that lead to the same MaxEnt distribution and
derive transformations between the Lagrange multipliers. These transformations form
a group. After the general derivation, we provide a few simple examples for each case.
The last section is devoted to conclusions.

2. Maximum Entropy Principle in Statistical Physics

Maximum entropy principle is the way of obtaining the representing probability
distribution from the limited amount of information. Our aim is to find the probability
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distribution of the system P = {pi}n
i=1 under the set of given constraints. In the simplest

case, the principle can be formulated as follows.

Maximum entropy principle: Maximize entropy S(P) under the normalization constraint
f0(P) = 0, and energy constraint fE(P) = 0.

The normalization condition is considered in the regular form, i.e., f0(P) = ∑i pi − 1 =
〈1〉 − 1. Moreover, we have a class of constraints, which originally described the average
energy of the system. Therefore, we call them energy constraints. We consider only one
energy constraint, for simplicity, although there can be more constraints, and they do not
have to consider only internal energy but also other thermodynamic quantities. In the
original formulation, the energy constraint is linear in probabilities, i.e.,

fE(P) = ∑
i

piEi − E = 〈E〉 − E, (1)

but it can be generally any nonlinear function of probabilities—escort means provide an
example. A large class of energy constraints can be written in a separable form, which
means that fE(P) = E(P)− E, i.e., in the form expressing the “expected” internal energy
(macroscopic variable) as a function of probability distribution (microscopic variable). This
class of constraints plays a dominant role in the thermodynamic systems.

In order to find a solution of the Maximum entropy principle, we use a common method
of Lagrange multipliers, which can be done through maximization of Lagrange function:

L(P; α, β) = S(P)− α f0(P)− β fE(P) (2)

The maximization procedure leads to the set of equations

∂L(P; α, β)

∂pi
= 0 ∀ i ∈ {1, . . . , n}

∂L(P; α, β)

∂α
= f0(P) = 0 (3)

∂L(P; α, β)

∂β
= fE(P) = 0

from which we determine the resulting MaxEnt distribution. In order to obtain a unique
solution, we require that the entropic functional should be a Schur-concave symmetric
function [42].

As a consequence, we obtain the values of Lagrange multipliers α and β. From the
strictly mathematical point of view, Lagrange multipliers are just auxiliary parameters to
be solved from the set of Equation (3). However, in physics, Lagrange parameters also
have a physical interpretation. In Lagrangian mechanics, Lagrange parameters play the
role of normal force to the constraints. Similarly, in ordinary statistical mechanics based on
Shannon entropy H(P) = −∑i pi log pi and linear constraints (1), the Lagrange multipliers
have the particular physical interpretation:

β =
1
T

(inverse temperature), (4)

α = S − 1
T

E (free entropy). (5)

Note that the free entropy is, similarly to Helmholtz free energy, a Legendre transform of
entropy w.r.t. internal energy. For the case of ordinary thermodynamics (Shannon entropy
and linear constraints), it is equal to the logarithm of the partition function.

This interpretation is valid only in this case. In the case, when we use different
entropy functional or different constraints, these relation between Lagrange multipliers
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and thermodynamic quantities are no longer valid. This is even the case, when the resulting
MaxEnt distribution is the same.

The main aim of this paper is to show how the invariance of MaxEnt distribution
affects the Lagrange multipliers and their relations to thermodynamic quantities. Let us
now solve Equation (3). The first set of equations leads to

∂S(P)
∂pi

− α
∂ f0(P)

∂pi
− β

∂ fE(P)
∂pi

= 0. (6)

Let us assume the normalization in the usual way which leads to ∂ f0(P)
∂pi

= 1. Moreover,

let us consider separable energy constraint, so ∂ fE(P)
∂pi

= ∂E(P)
∂pi

. The resulting probability
distribution can be expressed as

p�i =
∂S
∂pi

(−1)[
α + β

∂E(P)
∂pi

]
. (7)

where (−1) denotes inverse function of ∂S/∂pi (provided it exists and is unique). We can
express α by multiplying the equation by pi and summing over i, which leads to

α = 〈∇PS(P)〉 − β〈∇PE(P)〉 (8)

where 〈X〉 = ∑i xi pi and ∇P = ( ∂
∂p1

, . . . , ∂
∂pn

). By plugging back to the previous equation,
we can get β as

β =
Δi(∇S(P))
Δi(∇E(P))

(9)

where Δi(X) = xi − 〈X〉 is the difference from the average.
The solution of Equation (3) depends on the internal energy E. However, in thermo-

dynamics it is natural to invert the relation β = β(E) and express the relevant quantities in
terms of β, so E = E(β). With that, we can calculate dependence of entropy on β:

∂S
∂β

= ∑
i

∂S
∂pi

∂pi
∂β

= ∑
i

(
α + β

∂E(P)
∂pi

)
∂pi
∂β

= β ∑
i

∂ fE
∂pi

∂pi
∂β

= β

(
−∂ fE

∂E
∂E
∂β

)
(10)

For separable energy constraints, ∂ fE
∂E = −1, so we obtain the well-known relation

∂S
∂β

= β
∂E
∂β

⇒ β =
∂S
∂E

. (11)

Let us now define the Legendre conjugate of entropy called free entropy (also called
Jaynes parameter [44] or Massieu function [45]):

ψ = S − ∂S
∂E

E = S − βE (12)

Free entropy is connected to Helmholtz free energy as ψ = −βF. The difference between α
and ψ can be expressed as

ψ − α = (S − 〈∇PS〉)− β(E − 〈∇PE〉) (13)

Therefore, we can understand the difference ψ − α as the Legendre transform of ψ with
respect to P. From this, we see that the difference between ψ and α is a constant (not
depending on thermodynamic quantities), if two independent conditions are fulfilled,
i.e., E = 〈∇PE(P)〉 and S = 〈∇PS〉 + a. The former constraint leads to linear energy
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constraints, while the latter one leads to the the conclusion that the entropy must be in
trace form S(P) = ∑i g(pi). Moreover, the function g has to fulfill the following equation,

g(x)− ax = xg′(x) (14)

leading to g(x) = −ax log(x) + bx which is equivalent to Shannon entropy.
In the next sections, we will explore how the transformation of the entropy and

the energy constraint that leaves the MaxEnt distribution invariant affects the Lagrange
multipliers and their relation to thermodynamic quantities.

3. Calibration Invariance of MaxEnt Distribution with Entropy Transformation

The simplest transformation of Lagrange functional that leaves the MaxEnt distribu-
tion invariant is to consider an arbitrary increasing function of entropy, i.e., we replace
S(P) by c(S(P)), where c′(x) > 0. Let us note that this transform preserves the uniqueness
of the MEP because it is easy to show that if S(P) is Schur-concave, c(S(P)) is also Schur-
concave [42] which is a sufficient condition for uniqueness of the MaxEnt distribution.

In this case, the Lagrange equations are adjusted as follows,

c′(S(P))
∂S(P)

∂pi
− αc

∂ f0(P)
∂pi

− βc
∂E(P)

∂pi
= 0 (15)

leading to
αc = c′(S(P))〈∇PS(P)〉 − βc〈∇PE(P)〉 (16)

and

βc = c′(S(P))
Δi(∇PS(P))
Δi(∇PE(P))

(17)

so we get that the function c causes rescaling of α and β, so

αc = c′(S(P)) α (18)

βc = c′(S(P)) β (19)

while its ratio remains unchanged, i.e., αc/βc = α/β. Actually, the set of increasing
functions conform a group of Lagrange multipliers, because it is easy to show that the
Lagrange parameters related to the entropy c1(c2(S(P))

βc1◦c2 = c′1(c2(S(P)) · c′2(S(P)) β = c′1(c2(S(P))βc2 (20)

which can be described as the group operation (c1 ◦ c2) �→ c′1(c2) · c′2.
An important property of this transformation is that it changes the extensive–intensive

duality of the conjugated pair of thermodynamic variables and the respective forces while
it maintains the distribution. Notably, by changing the entropic functional from extensive
(i.e., S(n) ∼ U(n)) to non-extensive, it changes β from intensive (i.e., size-independent,
at least in the thermodynamic limit) to non-intensive, i.e., explicitly size-dependent. This
point has been discussed in connection with q-non-extensive statistical physics of [29,30]
and the relation to the zeroth law of thermodynamics was shown in [46]. As one can
see from the example below, although Rényi entropy and Tsallis entropy have the same
maximizer, the corresponding thermodynamics is different. While Rényi entropy is additive
(and therefore extensive for systems where U(n) ∼ n) and the temperature is intensive,
Tsallis entropy is non-extensive, and the corresponding temperature explicitly depends on
the size of the system.

Let us finally mention that the difference between free entropy and Lagrange parame-
ter α transforms as

ψc − αc = (c(S)− c′(S)〈∇PS(P)〉 − c′(S)β(E − 〈∇PE(P)〉) = c′(S)(ψ − α) + (c(S)− c′(S) · S). (21)
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While free entropy and other thermodynamic potentials are transformed, the heat change
remains invariant under this transformation:

d̄Qc = Tcd c(S) =
T

c′(S) c′(S)dS = TdS = d̄Q. (22)

Example 1. We exemplify the calibration invariance on two popular examples of closely related
entropies.

• Rényi entropy and Tsallis entropy: Two most famous examples of generalized entropies

are Rényi entropy Rq(P) = 1
1−q ln

(
∑i pq

i

)
and Tsallis entropy Sq(P) = 1

1−q

(
∑i pq

i − 1
)

.
Their relation can be expressed as

Rq(P) = cq(Sq(P)) =
1

1 − q
ln
[
(1 − q)Sq(P) + 1

]
(23)

and therefore we obtain that

c′q(Sq(P)) =
1

1 + (1 − q)Sq
=

1

∑i pq
i

. (24)

The difference between free entropy and α can be obtained as

ψR − αR =
1

∑i pq
i
(ψS − αS) +

(
Rq(P)− Sq(P)

∑i pq
i

)
. (25)

One can therefore see that even though Rényi and Tsallis entropy lead to the same MaxEnt
distribution, their thermodynamic quantities, such as temperature or free entropy, are different.
Whether the system follows Rényi or Tsallis entropy depends on additional facts, as e.g.,
(non)-extensitivity and (non)-intensivity of thermodynamic quantities.

• Shannon entropy and Entropy power: A similar example is provided with Shannon
entropy H(P) = ∑i pi ln 1/pi and entropy power P(P) = ∏i(1/pi)

pi . The relation between
them is simply

H(P) = c(P(P)) = log(P(P)), (26)

so we obtain that
c′(P(P)) = 1/(P(P)) = exp(−H(P)). (27)

For the difference between free entropy and α, we obtain that

0 = ψH − αH =
1

P(P)
(ψP − αP ) + (H(P)− 1) (28)

from which we get that
ψP − αP = P(P)(1 − logP(P)). (29)

Therefore, we see that even that the MaxEnt distribution remains unchanged, the relation
between α and free energy is different.

4. Calibration Invariance of MaxEnt Distribution with Constraints Transformation

Similarly, one can uncover the invariance of the MaxEnt distribution when the con-
straints are transformed in a certain way. Generally, if two sets of constraints define the
same domain, the resulting Maximum entropy principle should lead to equivalent results.
We will not be so general, but we focus on a specific situation, which might be quite inter-
esting for thermodynamic applications. Let us remind two conditions, which we assume:
normalization f0(P) = 0 and energy constraint fE(P) = 0. Let us investigate the latter. Sim-
ilarly to the previous case, it is possible to take any function g of fE(P), for which g(y) = 0
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if y = 0. More generally, we can also take into account the normalization constraint and
replace the original energy condition by

g( f0(P), fE(P)) = 0 (30)

for any g(x, y), for which g(x, y) = 0 ⇒ y = 0. Let us investigate the Maximum entropy
principle for this case. We can express the Lagrange function as

L(P) = S(P)− αg f0(P)− βgg( f0(P), fE(P)) (31)

which leads to a set of equations

∂S(P)
∂pi

− αg
∂ f0(P)

∂pi
− βg

[
G(1,0) ∂ f0(P)

∂pi
+ G(0,1) ∂E(P)

∂pi

]
= 0 (32)

where G(1,0) = ∂g(x,y)
∂x |(0,0) and G(0,1) = ∂g(y,x)

∂x |(0,0). We take again into account that
∂ f0(P)

∂pi
= 1, multiply the equations by pi and some over i. This gives us

αg = 〈∇PS(P)〉 − βg

[
G(1,0) + G(0,1)〈∇PE(P)〉

]
. (33)

By plugging αg back, we end with relation for βg:

βg =
1

G(0,1)
Δi(∇PS(P))
Δi(∇PE(P))

. (34)

For αg we end with

αg = 〈∇PS(P)〉 − Δi(∇PS(P))
Δi(∇PE(P))

〈∇ fE(P)〉
[

1 +
G(1,0)

G(0,1)
1

〈∇PE(P)〉

]
. (35)

Thus, we end again with rescaling of αg and βg, which reads

αg(α, β) = α − G(1,0)

G(0,1)
β , (36)

βg(β) =
β

G(0,1)
. (37)

The ratio of Lagrange multipliers is also transformed, so we get

αg

βg
= G(0,1) α

β
− G(1,0). (38)

Again, the set of all functions fulfilling the aforementioned condition conform a group.
The group operation can be described by the relation between coefficients G(1,0) and G(0,1)

for the composite function g(x, y) = g1(x, g2(x, y)). We obtain that

G(1,0) = G(1,0)
1 + G(0,1)

1 G(1,0)
2 (39)

G(0,1) = G(0,1)
1 G(0,1)

2 (40)

which leads to group relations

αg(α, β) = αg1(αg2(α, β), βg2(β))− G(1,0)
1

G(0,1)
1

βg2(β) (41)

βg(β) =
βg2(β)

G(0,1)
1

. (42)
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Example 2. Here we mention two simple examples of the aforementioned transformation.

• Energy shift: Under this scheme, we can assume the constant shift in the energy spectrum.
Let us rewrite the constraint f (P) in the following form,

fE(P) = ∑ piEi − E = ∑ pi(Ei − E′)− (E − E′) (43)

which allows us to identify the function g(x, y) as

g(x, y) = y − E′x + E′ (44)

We obtain G(1,0) = −E′ and G(0,1) = 1, which means that α′ = α − βE′.
• Latent escort means: Apart from linear means, it is possible to use some generalized ap-

proaches. One of these examples is provided by so-called escort mean:

Eq = 〈E〉q =
∑i pq

i Ei

∑i pq
i

(45)

which for q = 1 becomes an ordinary linear mean, when P = {pi}n
i=1 are normalized to one.

When we use this class of means in the Maximum entropy principle, the normalization is
enforced by the normalization condition f0(P) = 0, therefore for q = 1 we obtain the same
results. Nevertheless, by taking q = 1 for the results with escort distribution, the energy
constraint is actually expressed as

∑ piEi

∑ pi
− E (46)

can be understood in the same way as considered before in this section, i.e., as a combination
of a normalization constraint and energy constraint. In this case the function g has the
following form,

g(x, y) =
y + E
x + 1

− E. (47)

Therefore, we obtain that G(1,0) = −E and G(0,1) = 1, which correspond to the previous
example for E′ = E. Therefore, the latent energy mean can be understood in terms of MaxEnt
procedure as the shift of the energy spectrum by its average energy.

5. Conclusions

In this paper, we have discussed the calibration invariance of MEP, which means that
for a given MaxEnt distribution, there exists a whole class of entropies and constraints that
lead to different thermodynamics (Thermodynamic quantities and response coefficients
generally have different behavior. For example, from intensive temperature we can obtain
temperature that explicitly depends on the size of the system). We have stressed that
the MEP procedure consists of two parts, where the first part, consisting of determining
the MaxEnt distribution, is rather a mathematical tool, while the second part, making
connection between Lagrange multipliers and thermodynamic quantities, is a specific for
application of MEP in statistical physics. Indeed, the paper does not cover all possible
transformations leading to the same MaxEnt distribution (let us mention, at least, the
additive duality of Tsallis entropy, where maximizing S2−q with linear constraint leads
to the same result as maximizing Sq with escort constraints [47]). The main lesson of this
paper is that in order to fully determine a thermal system in equilibrium, we need to mea-
sure not only probability distribution, but also all relevant thermodynamic quantities (as
entropy). Moreover, the transformation between Lagrange parameters and its connection
to thermodynamic potentials can be useful in situations when one is not certain about the
exact form of entropy.

Funding: This research was funded by the Austrian Science Fund (FWF), project I 3073, Austrian
Research Promotion agency (FFG), project 882184 and by the Grant Agency of the Czech Republic
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Abstract: Non-Newtonian calculus naturally unifies various ideas that have occurred over the years
in the field of generalized thermostatistics, or in the borderland between classical and quantum
information theory. The formalism, being very general, is as simple as the calculus we know from
undergraduate courses of mathematics. Its theoretical potential is huge, and yet it remains unknown
or unappreciated.

Keywords: non-Newtonian calculus; non-Diophantine arithmetic; Kolmogorov–Nagumo averages;
escort probabilities; generalized entropies

1. Introduction

Studies of a calculus based on generalized forms of arithmetic were initiated in the late 1960s by
Grossman and Katz, resulting in their little book Non-Newtonian Calculus [1–3]. Some twenty years
later, the main construction was independently discovered in a different context and pushed in a
different direction by Pap [4–6]. After another two decades the same idea, but in its currently most
general form, was rediscovered by myself [7–15]. In a wider perspective, non-Newtonian calculus is
conceptually related to the works of Rashevsky [16] and Burgin [17–20] on non-Diophantine arithmetics
of natural numbers, and to Benioff’s attempts [21–25] of basing physics and mathematics on a common
fundamental ground. Traces of non-Newtonian and non-Diophantine thinking can be found in the
works of Kaniadakis on generalized statistics [26–34]. A relatively complete account of the formalism
can be found in the forthcoming monograph [35].

In the paper, we will discuss links between generalized arithmetics; non-Newtonian calculus;
generalized entropies; and classical, quantum, and escort probabilities. As we will see, certain
constructions such as Rényi entropies or exponential families of probabilities have direct relations
to generalized arthmetics and calculi. Some of the constructions one finds in the literature are
literally non-Newtonian. Some others only look non-Newtonian, but closer scrutiny reveals formal
inconsistencies, at least from a strict non-Newtonian perspective.

Our goal is to introduce non-Newtonian calculus as a sort of unifying principle, simultaneously
sketching new theoretical directions and open questions.

2. Non-Diophantine Arithmetic and Non-Newtonian Calculus

The most general form of non-Newtonian calculus deals with functions A defined by the
commutative diagram ( fX and fY are arbitrary bijections)

X
A−→ Y

fX
⏐⏐) ⏐⏐) fY

R
Ã−→ R

(1)

The only assumption about the domain X and the codomain Y is that they have the same
cardinality as the continuum R. The latter guarantees that bijections fX and fY exist. The bijections are
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automatically continuous in the topologies they induce from the open-interval topology of R, even if
they are discontinuous in metric topologies of X and Y (a typical situation in fractal applications, or in
cases where X or Y are not subsets of R). In general, one does not assume anything else about fX and
fY. In particular, their differentiability in the usual (Newtonian) sense is not assumed. No topological
assumptions are made about X and Y. Of course, the structure of the diagram implies that X and Y

may be regarded as Banach manifolds with global charts fX and fY, but one does not make the usual
assumptions about changes of charts.

Non-Newtonian calculus begins with (generalized, non-Diophantine) arithmetics in X and Y,
induced from R,

x1 ⊕X x2 = f−1
X

(
fX(x1) + fX(x2)

)
, (2)

x1 �X x2 = f−1
X

(
fX(x1)− fX(x2)

)
, (3)

x1 "X x2 = f−1
X

(
fX(x1) · fX(x2)

)
, (4)

x1 #X x2 = f−1
X

(
fX(x1)/ fX(x2)

)
(5)

(and analogously in Y).

Example 1. According to one of the axioms of standard quantum mechanics, states of a quantum system
belong to a separable Hilbert space. All separable Hilbert spaces are isomorphic, so state spaces of any two
quantum systems are isomorphic. Does it mean that all quantum systems are equivalent? No, it only shows
that mathematically isomorphic structures can play physically different roles. Similarly, the arithmetic given by
(2)–(5) is isomorphic to the standard arithmetic of R, but it does not imply that the two arithmetics are physically
equivalent.

Example 2. The origin of Einstein’s special theory of relativity goes back to the observation that the velocity of a
source of light does not influence the velocity of light itself, contradicting our everyday experiences with velocities
in trains or football. Relativistic addition of velocities is based on a fundamental unit c and the dimensionless
parameter β, related to velocity by v = βc. β ∈ X = (−1, 1) while the bijection reads fX(β) = arctanh β.
The velocities are added or subtracted by means of (2) and (3),

β1 ⊕X β2 = tanh(arctanh β1 + arctanh β2). (6)

Interestingly, (4) and (5) are not directly employed in special relativity. The presence of the fundamental
unit c is a signature of a general non-Diophantine arithmetic (which typically works with dimensionless
numbers). Numbers ±1 ∈ R play the roles of infinities, ±1R = ±∞X. The velocity of light is therefore literally
infinite in the non-Diophantine sense. The neutral element of multiplication, 1X = f−1

X
(1) = tanh 1 = 0.76

(i.e., v = 0.76c), does not seem to play in relativistic physics any privileged role.

Sometimes, for example in the context of Bell’s theorem, one works with mixed arithmetics of the
form [13]

x1 "XY
Z y2 = f−1

Z

(
fX(x1) · fY(y2)

)
, "XY

Z : X×Y → Z, etc. (7)

Mixed arithmetics naturally occur in Taylor expansions of functions whose domains and
codomains involve different arithmetics, and in the chain rule for derivatives (see Example 6).

In order to define calculus one needs limits “to zero”, and thus the notion of zero itself. In the
arithmetic context a zero is a neutral element of addition, for example, x ⊕X 0X = x for any x ∈ X.
Obviously, such a zero is arithmetic-dependent. The same concerns a “one”, a neutral element of
multiplication, fulfilling x "X 1X = x for any x ∈ X. Once the arithmetic in X is specified, both neutral
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elements are uniquely given by the general formula: rX = f−1
X

(r) for any r ∈ R. Therefore, in particular,
0X = f−1

X
(0), 1X = f−1

X
(1). One easily verifies that

rX ⊕ sX = (r + s)X, (8)

rX " sX = (rs)X, (9)

for all r, s ∈ R, which extends also to mixed arithmetics,

rX ⊕XY
X sY = (r + s)X, (10)

rX ⊕XY
Y sY = (r + s)Y, (11)

rX ⊕XY
Z sY = (r + s)Z, etc. (12)

If there is no danger of ambiguity one can simplify the notation by ⊕XX
X

= ⊕X or
⊕XY

X
= ⊕Y

X
. Mixed arithmetics can be given an interpretation in terms of communication channels.

Mixed multiplication is in many respects analogous to a tensor product [13].

Example 3. Consider X = R+, Y = −R+, fX(x) = ln x, f−1
X

(r) = er, fY(x) = ln(−x), f−1
Y

(r) = −er.
“Two plus two equals four” looks here as follows,

2X ⊕X 2X = f−1
X

(2 + 2) = 4X = e4, (13)

2X ⊕Y
X 2Y = f−1

X
(2 + 2) = 4X = e4, (14)

2Y ⊕Y 2Y = f−1
Y

(2 + 2) = 4Y = −e4, (15)

2X ⊕X
Y 2Y = f−1

Y
(2 + 2) = 4Y = −e4, (16)

where 2X = f−1
X

(2) = e2, 2Y = f−1
Y

(2) = −e2. From the point of view of communication channels the
situation is as follows. There are two parties (“Alice” and “Bob”), each computing by means of her/his own
rules. They communicate their results and agree the numbers they have found are the same, namely, “two”
and “four”. However, for an external observer (an eavesdropper “Eve”), their results are opposite, say e4 and
−e4. Mixed arithmetic plays a role of a “connection” relating different local arithmetics. This is why, in the
terminology of Burgin, these types or arithmetics are non-Diophantine (from Diophantus of Alexandria who
formalized the standard arithmetic). Similarly to nontrivial manifolds, non-Diophantine arithmetics do not have
to admit a single global description (which we nevertheless assume in this paper).

A limit such as limx′→x A(x′) = A(x) is defined by the diagram (1) as follows,

lim
x′→x

A(x′) = f−1
Y

(
lim

r→ fX(x)
Ã(r)

)
(17)

i.e., in terms of an ordinary limit in R. A non-Newtonian derivative is then defined by

DA(x)
Dx

= lim
δ→0

(
A(x ⊕X δX)�Y A(x)

)
#Y δY = f−1

Y

(
dÃ

(
fX(x)

)
d fX(x)

)
, (18)

if the Newtonian derivative dÃ(r)/dr exists. It is additive,

D[A(x)⊕Y B(x)]
Dx

=
DA(x)

Dx
⊕Y

DB(x)
Dx

, (19)

and satisfies the Leibniz rule,

D[A(x)"Y B(x)]
Dx

=

(
DA(x)

Dx
"Y B(x)

)
⊕Y

(
A(x)"Y

DB(x)
Dx

)
. (20)
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A general chain rule for compositions of functions involving arbitrary arithmetics in domains and
codomains can be derived [12] (see Example 6). It implies, in particular, that the bijections defining the
arithmetics are themselves always non-Newtonian differentiable (with respect to the derivatives they
define). The resulting derivatives are “trivial”,

D fX(x)
Dx

= 1 =
D fY(y)

Dy
,

D f−1
X

(r)
Dr

= 1X,
D f−1

Y
(r)

Dr
= 1Y. (21)

A non-Newtonian integral is defined by the requirement that, under typical assumptions
paralleling those from the fundamental theorem of Newtonian calculus, one finds

D
Dx

∫ x

y
A(x′)Dx′ = A(x), (22)∫ x

y

DA(x′)
Dx′ Dx′ = A(x)�Y A(y), (23)

which uniquely implies that

∫ x

y
A(x′)Dx′ = f−1

Y

(∫ fX(x)

fX(y)
Ã(r)dr

)
. (24)

Here, as before, Ã is defined by (1) and dr denotes the usual Newtonian (Riemann, Lebesgue, etc.)
integration. To have a feel of the potential inherent in this simple formula, let us mention that for a
Koch-type fractal (24) turns out to be equivalent to the Hausdorff integral [12,36,37]. In applications,
typically the only nontrivial element is to find the explicit form of fX. It should be stressed that (24)
reduces any integral to the one over a subset of R. The fact that such a counterintuitive possibility
exists was noticed already by Wiener in his 1933 lectures on Fourier analysis [38].

3. Non-Newtonian Exponential Function and Logarithm

Once we know how to differentiate and integrate, we can turn to differential equations.
The so-called exponential family plays a crucial role in thermodynamics, both standard and
generalized [39–43]. Many different deformations of the usual ex can be found in the literature.
However, from the non-Newtonian perspective, the exponential function Exp : X → Y is defined by

DExp(x)
Dx

= Exp(x), Exp(0X) = 1Y. (25)

Integrating (25) (in a non-Newtonian way) one finds the unique solution

Exp(x) = f−1
Y

(
e fX(x)

)
, Exp(x1 ⊕X x2) = Exp(x1)"Y Exp(x2). (26)

In thermodynamic applications, one often encounters exponents of negative arguments, e−x. In a
non-Newtonian context the correct form of a minus is �Xx = 0X �X x = f−1

X

(− fX(x)
)
. The example

discussed in the next section will involve X = R and f−1
X

(−r) = − f−1
X

(r). In consequence, it will
be correct to write �Xx = −x, but in general such a simple rule may be meaningless (because “−”,
as opposed to �X, may be undefined in X).

Example 4. Let X = (R+,⊕," ), with the arithmetic defined by fX : R+ → R, fX(x) = ln x,
f−1
X

(r) = er. Then

�Xx = f−1
X

(− fX(x)
)
= e− ln x = 1/x ∈ R+. (27)

The same number can be both positive and negative, depending on the arithmetic.
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A (natural) logarithm is the inverse of Exp, namely, Ln : Y → X,

Ln(y) = f−1
X

(ln fY(x)) , Ln(y1 "Y y2) = Ln(y1)⊕X Ln(y2). (28)

Expressions such as Exp x + Ln y are in general meaningless even if X ⊂ R+ and Y ⊂ R+.
However, formulas such as

(Exp x)⊕YX
Z (Ln y) = f−1

Z

(
e fX(x) + ln fY(y)

)
(29)

make perfect sense. For example, if pk ∈ X, then an entropy can be defined as

S =
⊕

k
Zpk "XY

Z Ln (1X #X pk) (30)

= f−1
Z

[
∑
k

fZ
(

pk "XY
Z Ln

(
1X #X pk

))]
(31)

= f−1
Z

[
∑
k

fX(pk) ln
(
1/ fX(pk)

)]
. (32)

Many intriguing questions occur if one asks about normalization of probabilities. We will come to
it later.

Non-Newtonian constructions of Exp and Ln are systematic, general, and flexible. There seems to
exist a relation between the arithmetic formalism and the method of monotone embedding discussed
in information geometry [44], but the problem requires further studies.

Example 5. In order to appreciate the difference between Newtonian and non-Newtonian differentiation let us
differentiate the function A(x) = x, A : X → Y, but in two cases. The first one is trivial, X = Y = (R,+, · ),
with the arithmetic defined by the identity fX = fY = idR. Then, the non-Newtonian and Newtonian
derivatives coincide, so

DA(x)
Dx

=
dA(x)

dx
= 1. (33)

The second case involves, as before, the codomain Y = (R,+, · ), with the arithmetic defined by the identity
fY = idR. However, as the domain we choose X = (R+,⊕," ), with the arithmetic defined by fX : R+ → R,
fX(x) = ln x, f−1

X
(r) = er. Now,

DA(x)
Dx

= lim
δ→0

(
A(x ⊕X δX)�Y A(x)

)
#Y δY = lim

δ→0

(
x ⊕X f−1

X
(δ)

)− x
δ

= lim
δ→0

eln x+δ − x
δ

= x = A(x). (34)

As, 0X = f−1
X

(0) = e0 = 1, we find A(0X) = 0X = 1 = 1Y, and conclude that A(x) = x, A : R+ → R

belongs to the exponential family. Indeed,

A(x1 ⊕X x2) = x1 ⊕X x2 = eln x1+ln x2 = x1 · x2 = A(x1)"Y A(x2). (35)

To understand the result, write A(x) = f−1
Y

(
Ã( fX(x)

)
= Ã(ln x) = x, so that Ã(r) = er. Then, by the

second form of derivative in (18),

DA(x)
Dx

= f−1
Y

(
dÃ

(
fX(x)

)
d fX(x)

)
=

d e fX(x)

d fX(x)
= e fX(x) = eln x = x. (36)
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The map A does not affect the value of x, but changes its arithmetic properties. It behaves as if it assigned a
different meaning to the same word. The example becomes even more intriguing if one realizes that logarithm is
known to approximately relate stimulus with sensation in real-life sensory systems (hence the logarithmic scale
of decibels and star magnitudes) [35].

Example 6. Many calculations in thermodynamics reduce to formulas of the form

dU(S, V) =

(
∂U
∂S

)
V

dS +

(
∂U
∂V

)
S

dV, (37)

being equivalent to the derivative dU(S(t), V(t))/dt of a composite function of several variables. The latter has
a unique formulation in non-Newtonian calculus: One only needs to specify the arithmetics. For example, let U
be a map U : S×V → U, and let S : T → S, V : T → V. Then,

DU(S(t), V(t))
Dt

= lim
δ→0

(
U
(
(S (t ⊕T δT) , V (t ⊕T δT)

)�U U
(
S(t), V(t)

))#U δU. (38)

As

lim
x′→x

A(x)⊕Y B(x) =
(

lim
x′→x

A(x)
)⊕Y

(
lim
x′→x

B(x)
)

(39)

(see Appendix A), we rewrite (38) as

DU(S(t), V(t))
Dt

= lim
δ→0

(
U
(
(S (t ⊕T δT) , V (t ⊕T δT)

)�U U
(
(S (t ⊕T δT) , V(t)

))#U δU

⊕U lim
δ→0

(
U
(
(S (t ⊕T δT) , V(t)

)�U U
(
S(t), V(t)

))#U δU. (40)

Under the usual assumptions about continuity of Ũ : R×R → R in

S×V
U−→ U

fS
⏐⏐) fV

⏐⏐) ⏐⏐) fU

R×R
Ũ−→ R

, (41)

we reduce (40) to

DU(S(t), V(t))
Dt

= lim
δ→0

(
U
(
(S(t), V (t ⊕T δT)

)�U U
(
(S(t), V(t)

))#U δU

⊕U lim
δ→0

(
U
(
(S (t ⊕T δT) , V(t)

)�U U
(
S(t), V(t)

))#U δU, (42)

and then to two instances of the non-Newtonian chain rule,

D(B ◦ A)(x)
Dx

= f−1
Z

[
fZ

(
DB

(
A(x)

)
DA(x)

)
fY

(
DA(x)

Dx

)]
=

DB
(

A(x)
)

DA(x)
"ZY

Z

DA(x)
Dx

, (43)

valid for the composition

X
A−→ Y

B−→ Z

fX
⏐⏐) fY

⏐⏐) fZ
⏐⏐)

R
Ã−→ R

B̃−→ R

(44)
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of maps. Finally,

DU(S(t), V(t))
Dt

=
DU(S(t), V(t))

DS(t)
"US

U

DS(t)
Dt

⊕U

DU(S(t), V(t))
DV(t)

"UV
U

DV(t)
Dt

. (45)

Effectively,

DU(S, V) =

(
DU
DS

)
V
"US

U DS ⊕U

(
DU
DV

)
S
"UV

U DV, (46)

is the non-Newtonian formula for a differential.

The next section shows that the above mentioned subtleties with arithmetics of domains and
codomains have straightforward implications for generalized thermostatistics.

4. Kaniadakis κ-Calculus Versus Non-Newtonian Calculus

Kaniadakis, in a series of papers [26–34], developed a generalized form of arithmetic and calculus,
with numerous applications to statistical physics, and beyond. In the present section, we will clarify
links between his formalism and non-Newtonian calculus. As we will see, some of the results have a
straightforward non-Newtonian interpretation, but not all.

Assume X = R, with the bijection fX ≡ fκ : R → R given explicitly by

fκ(x) =
1
κ

arcsinh κx, (47)

f−1
κ (x) =

1
κ

sinh κx. (48)

Kaniadakis’ κ-calculus begins with the arithmetic,

x
κ⊕ y = f−1

κ

(
fκ(x) + fκ(y)

)
, (49)

x
κ� y = f−1

κ

(
fκ(x)− fκ(y)

)
, (50)

x
κ" y = f−1

κ

(
fκ(x) · fκ(y)

)
, (51)

x
κ# y = f−1

κ

(
fκ(x)/ fκ(y)

)
. (52)

As f0(x) = x, the case κ = 0 corresponds to the usual field R0 = (R,+, ·), which we will shortly
denote by R. The neutral element of addition, 0κ = f−1

κ (0) = 0, is the same for all κs. The neutral

element of κ-multiplication is nontrivial, 1κ = f−1
κ (1) = 1. The fields Rκ = (R,

κ⊕,
κ") are isomorphic

to one another due to their isomorphism with R0,

fκ

(
x

κ⊕ y
)

= fκ(x) + fκ(y), (53)

fκ

(
x

κ" y
)

= fκ(x) · fκ(y). (54)

Kaniadakis defines his κ-derivative of a real function A(x) as

dA(x)
dκx

= lim
δ→0

A(x + δ)− A(x)

(x + δ)
κ� x

=
dA(x)

dx

/d fκ(x)
dx

=
dA(x)

dx

√
1 + κ2x2. (55)

We will now specify in which sense the κ-derivative is non-Newtonian. First consider a function A,
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Rκ1
A−→ Rκ2

fκ1

⏐⏐) ⏐⏐) fκ2

R
Ã−→ R

(56)

Its non-Newtonian derivative

DA(x)
Dx

= lim
δ→0

(
A(x

κ1⊕ δκ1)
κ2� A(x)

) κ2# δκ2 , (57)

if compared with (55), suggests κ2 = 0. Setting κ1 = κ, κ2 = 0, we find

DA(x)
Dx

= lim
δ→0

A(x
κ⊕ δκ)− A(x)

δ
= lim

δ→0

A[x
κ⊕ f−1

κ (δ)]− A(x)
δ

= lim
δ→0

A(x
κ⊕ δ)− A(x)

δ
, (58)

as f−1
κ (δ) ≈ δ for δ ≈ 0. Denoting x

κ⊕ δ = x + δ′ we find δ = (x + δ′)
κ� x, and

DA(x)
Dx

= lim
δ′→0

A(x + δ′)− A(x)

(x + δ′)
κ� x

, (59)

in agreement with the Kaniadakis formula. However, as a by-product of the calculation we have
proved that κ-calculus is applicable only to functions mapping Rκ into R. Kaniadakis exponential
function satisfies

DExp(x)
Dx

= Exp(x), Exp(0) = 1, (60)

with 0 = 0κ , 1 = 10. Accordingly,

Exp(x) = f−1
Y

(
e fX(x)

)
= e fκ(x) = e

1
κ arcsinh κx, (61)

which is indeed the Kaniadakis result. Recalling that fY(x) = x, we find the explicit form of the
logarithm, Ln : R → Rκ ,

Ln(y) = f−1
X

(ln fY(y)) =
1
κ

sinh(κ ln y), (62)

which again agrees with the Kaniadakis definition.
Yet, the readers must be hereby warned that it is not allowed to apply the Kaniadakis definition of

derivative to Ln x. The correct non-Newtonian form is

DLn(y)
Dy

= lim
δ→0

(
Ln(y + δ)

κ� Ln(y)
) κ# δκ = f−1

X

(
1/ fY(y)

)
=

1
κ

sinh(κ/y), (63)

because Ln maps R into Rκ . Kaniadakis is aware of the subtlety and thus introduces also another
derivative, meant for differentiation of inverse functions,

dκ A(y)
dy

= lim
u→y

A(y)
κ� A(u)

y − u
= lim

δ→0

A(y + δ)
κ� A(y)

δ
, (64)

a definition which, from the non-Newtonian standpoint, must be nevertheless regarded as incorrect

(‘/’ should be replaced by
κ# typical of the codomain Rκ). As a result,

dκLn(y)
dy

=
1
y
= DLn(y)

Dy
=

1
κ

sinh
κ

y
. (65)
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This is probably why (64), as opposed to (55), has not found too many applications.
Let us finally check what would have happened if instead of (61) one considered the exponential

function mapping Rκ into itself, fY = fX = fκ ,

Exp(x) = f−1
Y

(
e fX(x)

)
= f−1

κ

(
e fκ(x)

)
=

1
κ

sinh
(

κ e
1
κ arcsinh κx

)
. (66)

As in thermodynamic applications one typically encounters Exp of a negative argument,
one expects that physical differences between Exp : Rκ → Rκ and Exp : Rκ → R should not be
essential. Moreover, indeed, Figure 1 shows that both exponents lead to identical asymptotic tails.

Figure 1. Log-log plots of Exp(−x) for κ1 = 1, κ2 = 0 (black), and κ1 = κ2 = 1 (red). The tails
are identical.

5. A Cosmological Aspect of the Kaniadakis Arithmetic

Kaniadakis explored possible relativistic implications of his formalism. In particular, he noted
that fluxes of cosmic rays depend on energy in a way that seems to indicate κ > 0. It is therefore
intriguing that essentially the same arithmetic was recently shown [14] to have links with the problem
of accelerated expansion of the Universe, one of the greatest puzzles of contemporary physics.

Cosmological expansion is well described by the Friedman equation,

da(t)
dt

=

√
ΩΛa(t)2 +

ΩM
a(t)

, a(t) > 0, (67)

for a dimensionless scale factor a(t) evolving in a dimensionless time t (in units of the Hubble time
tH ≈ 13.58 × 109 yr). The observable parameters are ΩM = 0.3, ΩΛ = 0.7 [45,46]. ΩΛ = 0 is typically
interpreted as an indication of dark energy. Equation (67) is solved by

a(t) =

(√
ΩM
ΩΛ

sinh
3
√

ΩΛt
2

)2/3

, t > 0. (68)

Now assume that

X
a−→ R

fX
⏐⏐) ⏐⏐) fR = idR

R
ã−→ R

, (69)

whereas the Friedman equation involves no ΩΛ,

Da(t)
Dt

=

√
Ω

a(t)
, a(t) > 0, (70)
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for some Ω. Its solution by non-Newtonian techniques reads

a(t) =

(
3
2

√
Ω fX(t)

)2/3
, (71)

so, comparing (71) with (68), we find

fX(t) =
2

3
√

0.7

√
ΩM
Ω

sinh
3
√

0.7
2

t =

√
ΩM
Ω

f−1
κ (t), for κ = 1.255. (72)

Accelerated expansion of the Universe looks like a combined effect of non-Euclidean geometry
and non-Diophantine arithmetic. The resulting dynamics is non-Newtonian in both meanings of
this term.

The presence of the inverse bijection f−1
κ and κ > 1 raises a number of interesting questions. It is

related to the fundamental duality between Diophantine and non-Diophantine arithmetics. Namely,
any equation of the form, say

x1 ⊕ x2 = f−1( f (x1) + f (x2)
)
, (73)

can be inverted by f (x) = y into

y1 + y2 = f
(

f−1(y1)⊕ f−1(y2)
)
, (74)

suggesting that it is ⊕ and not + which is the Diophantine arithmetic operation. Having two
isomorphic arithmetics we, in general, do not have any criterion telling us which of the two is
“normal”, and which is “generalized”.

6. Kolmogorov–Nagumo Averages and Non-Diophantine/Non-Newtonian Probability

Another non-Diophantine/non-Newtonian aspect that can be identified in the context of
information theory and thermodynamics is implicitly present in the works of Kolmogorow, Nagumo,
and Rényi. Let us recall that a Kolmogorov–Nagumo average is defined as [47–54]

〈a〉 f = f−1

(
∑
k

pk f (ak)

)
. (75)

Rewriting (75) as

〈a〉 f = f−1

(
∑
k

f (p′k) f (ak)

)
=

⊕
k

p′k " ak, (76)

where p′k = f−1(pk), one interprets the average as the one typical of a non-Diophantine-
arithmetic-valued probability. Apparently, neither Kolmogorov nor Nagumo nor Rényi had interpreted
their results from this arithmetic point of view [7].

The lack of arithmetic perspective is especially visible in the works of Rényi [49] who,
while deriving his α-entropies, began with a general Kolmogorov–Nagumo average. Trying to derive
a meaningful class of f s he demanded that

〈a + c〉 f = 〈a〉 f + c (77)

be valid for any constant random variable c, and this led him to the exponential family fα(x) = 2(1−α)x

(up to a general affine transformation f �→ A f + B, which does not affect Kolmogorov–Nagumo

130



Entropy 2020, 22, 1180

averages). In physical applications, it is more convenient to work with natural logarithms, so let us
replace fα by fq(x) = e(1−q)x, f−1

q (x) = 1
1−q ln x, q ∈ R. With this particular choice of f one finds

〈a〉 fq =
1

1 − q
ln

(
∑
k

pke(1−q)ak

)
. (78)

As is well known, the standard linear average is the limiting case limq→1〈a〉 fq = ∑k pkak,
that includes the entropy of Shannon, S = ∑k pk ln(1/pk) = S1, as the limit q → 1 of the Rényi entropy

Sq =
1

1 − q
ln

(
∑
k

pke(1−q) ln(1/pk)

)
=

1
1 − q

ln ∑
k

pq
k. (79)

Still, notice that 〈a ⊕ b〉 f = 〈a〉 f ⊕ 〈b〉 f for any f , so had Rényi been thinking in arithmetic
categories, he would not have arrived at his fα. Yet, fα is an interesting special case. For example,

p′k = f−1
q (pk) =

1
q − 1

ln(1/pk). (80)

The random variable ak = logb(1/pk) is, according to Shannon [49,55], the amount of information
obtained by observing an event whose probability is pk. The choice of b defines units of information.
Therefore, Rényi’s non-Diophantine probability p′k is the amount of information encoded in pk.

7. Escort Probabilities and Quantum Mechanical Hidden Variables

Non-Diophantine arithmetics have several properties that make them analogous to sets of values
of incompatible random variables in quantum mechanics. Generalized arithmetics and non-Newtonian
calculi have nontrivial consequences for the problem of hidden variables and completeness of
quantum mechanics.

Example 7. Pauli matrices σ1 and σ2 represent random variables whose values are s1 = ±1 and s2 = ±1,
respectively. However, it is not allowed to assume that σ1 + σ2 represents a random variable whose possible
values are s1 + s2 = 0,±2, even though an average of σ1 + σ2 ia a sum of independent averages of σ1 and
σ2. In non-Diophantine arithmetic one encounters a similar problem. In general it makes no sense to perform
additions of the form xX + yY even if xX ∈ R and yY ∈ R. One should not be surprised if non-Diophantine
probabilities turn out to be analogous to quantum probabilities, at least in some respects.

Normalization of probability implies

1X = f−1(1) = f−1

(
∑
k

pk

)
= f−1

(
∑
k

f (p′k)
)

=
⊕

k

p′k. (81)

In principle, 1X = 1. An interesting and highly nontrivial case occurs if both pk and p′k = f−1(pk)

are probabilities in the ordinary sense, i.e., in addition to (81) one finds 1X = 1, 0 ≤ p′k ≤ 1,
and ∑k p′k = 1. What can be then said about f ? We can formalize the question as follows.

Problem 1. Find a characterization of those functions g : [0, 1] → [0, 1] that satisfy

∑
k

g(pk) = 1, for any choice of probabilities pk. (82)
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In analogy to the generalized thermostatistics literature we can term p′k = g(pk) the escort
probabilities [56–58]. Notice that we are not in interested in the trivial solution, often employed in the
context of Tsallis and Rényi entropies, where pk is replaced by pq

k and then renormalized,

Pk =
pq

k

∑j pq
j
= gk(p1, . . . , pn, . . . ) (83)

as gk(p1, . . . , pn, . . . ) = g(pk) for a single function g of one variable. As we will shortly see, the solution
of (82) turns out to have straightforward implications for the quantum mechanical problem of hidden
variables, and relations between classical and quantum probabilities.

The most nontrivial result is found for binary probabilities, p1 + p2 = 1.

Lemma 1. g(p1) + g(p2) = 1 for all p1 + p2 = 1 if and only if

g(p) =
1
2
+ h

(
p − 1

2

)
(84)

where h(−x) = −h(x).

Proof. See Appendix B.

The lemma has profound consequences for foundations of quantum mechanics, as it allows to
circumvent Bell’s theorem by non-Newtonian hidden variables. For more details the readers are
referred to [13,15], but here just a few examples.

Example 8. The trivial case g(p) = p implies h(x) = x, where 0 ≤ p ≤ 1 and −1/2 ≤ x ≤ 1/2.

Example 9. Consider g(p) = sin2 π
2 p. Then,

h(x) = g
(

x +
1
2

)
− 1

2
=

1
2

sin πx. (85)

Let us cross-check,

g(p) + g(1 − p) = sin2 π

2
p + sin2 π

2
(1 − p) = sin2 π

2
p + cos2 π

2
p = 1. (86)

Now let p = (π − θ)/π be the probability of finding a point belonging to the overlap of two half-circles
rotated by θ. Then,

g(p) = sin2 π

2
π − θ

π
= cos2 θ

2
(87)

is the quantum-mechanical law describing the conditional probability for two successive measurements of
spin-1/2 in two Stern–Gerlach devices placed one after another, with relative angle θ. Escort probability has
become a quantum probability.

Example 10. Let us continue the analysis of Example 9. Function g : [0, 1] → [0, 1], g(p) = sin2 π
2 p,

is one-to-one. It can be continued to the bijection g : R → R by the periodic repetition,

g(x) = n + sin2 π

2
(x − n), n ≤ x ≤ n + 1, n ∈ Z. (88)
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Now let f = g−1. (88) leads to a non-Diophantine arithmetic and non-Newtonian calculus.
Let θ = α − β, 0 ≤ θ ≤ π, be an angle between two vectors representing directions of Stern-Gerlach devices.
Quantum conditional probability (87) can be represented in a non-Newtonian hidden-variable form,

cos2 α − β

2
= sin2 π

2
π − (α − β)

π
= f−1

(
1
π

∫ π+β

α
dr
)
= f−1

(∫ f (π′⊕β′)

f (α′)
ρ̃(r)dr

)
=

∫ π′⊕β′

α′
ρ(λ)Dλ, (89)

where x′ = f−1(x). Here, ρ is a conditional probability density of non-Newtonian hidden-variables
(the half-circle is a result of conditioning by the first measurement).

Non-Newtonian calculus shifts the discussion on relations between classical and quantum
probability, or classical and quantum information, into unexplored areas.

Example 11. In typical Bell-type experiments one deals with four probabilities, corresponding to four
combinations (±,±), (±,∓) of pairs of binary results. The corresponding non-Newtonian model is obtained
by rescaling g(pk) �→ p g(pk/p), with p = 1/2. The rescaled bijection satisfies g(p1) + g(p2) = p for any
p1 + p2 = p. Explicitly,

g(p++) + g(p+−) + g(p−+) + g(p−−) = 1 = p++ + p+− + p−+ + p−−. (90)

The resulting hidden-variable model is local, but standard Bell’s inequality cannot be proved [15]. Why?
Mainly because the non-Newtonian integral is not a linear map with respect to the ordinary Diophantine addition
and multiplication (unless f is linear), whereas the latter is always assumed in proofs of Bell-type inequalities.

A generalization to arbitrary probabilities, p1 + · · · + pn = 1, leads to an affine deformation
of arithmetic, an analogue of Benioff number scaling [21–25]. Affine transformations do not affect
Kolmogorov–Nagumo averages.

Lemma 2. Consider probabilities p1, . . . , pn, n ≥ 3. g(pk) are probabilities for any choice of pk if and only if
g(pk) =

1−a+2apk
n+(2−n)a , −1 ≤ a ≤ 1.

Proof. See Appendix C.

The bijection g implied by Lemma 2 depends on n. In infinitely dimensional systems, that is when
n can be arbitrary, the only option is a = 1 and thus g(p) = p is the only acceptable solution. However,
in spin systems there exits an alternative interpretation of this property: The dimension n grows with
spin in such a way that gn(p) → p with n → ∞ is a correspondence principle meaning that very large
spins are practically classical. The transition non-Diophantine → Diophantine, non-Newtonian →
Newtonian becomes an analogue of non-classical → classical.

Example 12. Limitations imposed by Lemma 2 can be nevertheless circumvented in various ways. For example,
let g(1) = 1 for a solution g from Lemma 1, so that 1X = 1. Obviously,

1 = 1X " · · · " 1X = 1 " · · · " 1 = 1 · . . . · 1. (91)

Replacing each of the 1s by an appropriate sum of binary conditional probabilities

1 = g(pk1...kn1) + g(pk1...kn2) = g(pk1...kn1)⊕ g(pk1...kn2) (92)

we can generate various conditional classical or quantum probabilities typical of a generalized Bernoulli-type
process, representing several classical or quantum filters placed one after another.
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8. Non-Newtonian Maximum Entropy Principle

Let us finally discuss the implications of our non-Newtonian form (32) of entropy for maximum
entropy principles. Assume probabilities belong to X. Define the Massieu function [43] by

Φ = S �Z αZ "Z N �Z βZ "Z H, (93)

N =
⊕

k

X
Z pk = f−1

Z

(
∑
k

fX(pk)

)
, (94)

H =
⊕

k
Zpk "XE

Z Ek = f−1
Z

(
∑
k

fX(pk) fE(Ek)

)
, (95)

where Ek ∈ E, and αZ = f−1
Z

(α), βZ = f−1
Z

(β) are Lagrange multipliers. Explicitly,

Φ = f−1
Z

[
∑
k

fX(pk) ln
(
1/ fX(pk)

)− α ∑
k

fX(pk)− β ∑
k

fX(pk) fE(Ek)

]
. (96)

Vanishing of the derivative of Φ,

DΦ
Dpl

= 0Z, (97)

is equivalent to the standard formula for probabilities fX(pk) (see the second form of non-Newtonian
derivative in (18)),

d
d fX(pl)

(
∑
k

fX(pk) ln
(
1/ fX(pk)

)− α ∑
k

fX(pk)− β ∑
k

fX(pk) fE(Ek)

)
= 0. (98)

Accordingly, the solution reads

pk = f−1
X

(
e−β fE(Ek)/Z̃(β)

)
= Exp(�EβE "E Ek)#X ZX(β), (99)

ZX(β) = f−1
X

(
Z̃(β)

)
= f−1

X

(
Z̃
(

fE(βE)
))

= Z(βE), (100)

and involves the exponential function Exp : E → X we have encountered before. The normalization,

1X =
⊕

k
Xpk = f−1

X

(
∑
k

e−β fE(Ek)/Z̃(β)

)
= f−1

X
(1), (101)

implies the usual relation Z̃(β) = ∑k e−β fE(Ek).
Equivalently, directly at the level of X,

ZX(β) = f−1
X

(
∑
k

e−β fE(Ek)

)
= f−1

X

(
∑
k

fX ◦ f−1
X

(
e fE(�EβE"EEk)

))

= f−1
X

(
∑
k

fX
(

Exp(�EβE "E Ek)
))

=
⊕

k
XExp(�EβE "E Ek) = Z(βE). (102)
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All the standard tricks one finds in thermodynamics textbooks will work here. For example,

H = f−1
Z

(
∑
k

fX(pk) fE(Ek)

)
= f−1

Z

(
∑
k

e−β fE(Ek) fE(Ek)/Z̃(β)

)
= f−1

Z

(
−d ln Z̃(β)

dβ

)

= �Z f−1
Z

(
d ln Z̃(β)

dβ

)
= �Z f−1

Z

(
d ln Z̃(β)

d fE(βE)

)
= �Z f−1

Z

(
dÃ

(
fE(βE)

)
d fE(βE)

)
, (103)

for some function

E
A−→ Z

fE
⏐⏐) ⏐⏐) fZ

R
Ã−→ R

(104)

we yet have to determine. Clearly,

ln Z̃(β) = Ã
(

fE(βE)
)
= Ã(β), (105)

A(x) = f−1
Z

(
Ã
(

fE(x)
))

= f−1
Z

(
ln
(

Z̃
(

fE(x)
)))

= f−1
Z

(
ln
(

fX ◦ f−1
X

[
Z̃
(

fE(x)
)]))

= f−1
Z

(
ln fX

(
Z(x)

))
= Ln Z(x), (106)

where Z : E → X, Ln : X → Z. Ultimately,

H = �Z

D(Ln ◦ Z)(βE)

DβE

. (107)

9. Final Remarks

Non-Newtonian calculus, and the non-Diophantine arithmetics behind it, are as simple as the
undergraduate arithmetic and calculus we were taught at schools. Their conceptual potential is
immense but they remain largely unexplored and unappreciated. Apparently, physicists in general
do not feel any need of going beyond standard Diophantine arithmetic operations, in spite of the
fact that the two greatest revolutions of the 20th century physics were, in their essence, arithmetic
(i.e., relativistic addition of velocities and quantum mechanical addition of probabilities). It is thus
intriguing that two of the most controversial issues of modern science—dark energy and Bell’s
theorem—reveal new aspects when reformulated in generalized arithmetic terms.

One should not be surprised that those who study generalizations of Boltzmann–Gibbs statistics
are naturally more inclined to accept non-aprioric rules of physical arithmetic. Anyway, the very
concept of non-extensivity, the core of many studies on generalized entropies, is implicitly linked with
generalized forms of addition, multiplication, and differentiation [54,59–61].
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Appendix A. Proof of (39)

Let us treat this as an exercise in non-Newtonian calculus. Begin with the three diagrams

X
A−→ Y

fX
⏐⏐) ⏐⏐) fY

R
Ã−→ R

,

X
B−→ Y

fX
⏐⏐) ⏐⏐) fY

R
B̃−→ R

,

X
A⊕YB−→ Y

fX
⏐⏐) ⏐⏐) fY

R
Ã+B̃−→ R

. (A1)
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Indeed,

A ⊕Y B(x) = A(x)⊕Y B(x) = f−1
Y

(
fY ◦ A(x) + fY ◦ B(x)

)
= f−1

Y

(
Ã ◦ fX(x) + B̃ ◦ fX(x)

)
= f−1

Y

(
(Ã + B̃) ◦ fX(x)

) (A2)

By the definition (17) of the limit,

lim
x′→x

A(x′)⊕Y B(x′) = lim
x′→x

(A ⊕Y B)(x′) = f−1
Y

(
lim

r→ fX(x)
˜(A ⊕Y B)(r)

)
= f−1

Y

(
fY ◦ f−1

Y

(
lim

r→ fX(x)
Ã(r)

)
+ fY ◦ f−1

Y

(
lim

r→ fX(x)
B̃(r)

))
= f−1

Y

(
lim

r→ fX(x)
Ã(r)

)
⊕Y f−1

Y

(
lim

r→ fX(x)
B̃(r)

)
=

(
lim
x′→x

A(x′)
)
⊕Y

(
lim
x′→x

B(x′)
)

. (A3)

Appendix B. Proof of Lemma 1

Ref. (84) may be regarded as a definition of h. If h(−x) = −h(x) then

g(1 − p) + g(p) =
1
2
+ h

(
1 − p − 1

2

)
+

1
2
+ h

(
p − 1

2

)
(A4)

= 1 + h
(

1
2
− p

)
+ h

(
p − 1

2

)
(A5)

= 1 − h
(

p − 1
2

)
+ h

(
p − 1

2

)
= 1 (A6)

Now let g(1 − p) + g(p) = 1. Then

1 = g(1 − p) + g(p) (A7)

=
1
2
+ h

(
1 − p − 1

2

)
+

1
2
+ h

(
p − 1

2

)
(A8)

= 1 + h
(

1
2
− p

)
+ h

(
p − 1

2

)
. (A9)

Denoting x = p − 1/2 we find h(−x) = −h(x).

Appendix C. Proof of Lemma 2

g(p1) + · · ·+ g(pn) = 1 must hold for any choice of probabilities. Setting p1 = p, p2 = 1 − p,
we find

g(p) + g(1 − p) + (n − 2)g(0) = 1, (A10)

If g(0) = 0 then, by Lemma 1, g(p) = 1/2 + h(p − 1/2), with antisymmetric h. Returning to
arbitrary pk, we get

1 =
n
2
+

n−1

∑
k=1

h
(

pk − 1
2

)
+ h

(
1 −

n−1

∑
k=1

pk − 1
2

)
. (A11)

By antisymmetry of h,

1 − n
2
−

n−1

∑
k=2

h
(

pk − 1
2

)
= h

(
p1 − 1

2

)
− h

(
p1 − 1

2
+

n−1

∑
k=2

pk

)
, (A12)
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which implies that the right-hand side of (A12) is independent of p1 for any choice of p2, . . . , pn−1.
In other words, the difference h(x) − h(x + p) is independent of x for any 0 ≤ p ≤ 1/2 − x,
so h(x) = ax. g(0) = 0 implies h(1/2) = 1/2, a = 1, and g(p) = p for any p.

Now let g(0) > 0. Normalization

g(1) + (n − 1)g(0) = 1 (A13)

combined with (A10), imply

g(p) + g(1 − p) = g(0) + g(1) > 0. (A14)

Accordingly, G(p) = g(p)/(g(0) + g(1)) satisfies G(p) + G(1 − p) = 1, so that

G(p) =
1
2
+ H

(
p − 1

2

)
, (A15)

where H(−x) = −H(x). Returning to

g(p) =
(

g(0) + g(1)
) [1

2
+ H

(
p − 1

2

)]
, (A16)

we find

1
g(0) + g(1)

=
n
2
+

n−1

∑
k=1

H
(

pk − 1
2

)
+ H

(
1 −

n−1

∑
k=1

pk − 1
2

)
. (A17)

and H(x) = ax by the same argument as before. Now,

g(p) =
(

g(0) + g(1)
)1 − a + 2ap

2
(A18)

Summing over all the probabilities,

1 =
n

∑
k=1

g(pk) =
(

g(0) + g(1)
)n − an + 2a

2
, (A19)

we get

g(p) =
1 − a + 2ap
n + (2 − n)a

, (A20)

g(0) =
1 − a

n + (2 − n)a
, (A21)

g(1) =
1 + a

n + (2 − n)a
. (A22)

For a = 1 we reconstruct the case g(0) = 0, g(p) = p. g(0) > 0 and g(1) ≥ 0 imply either

1 − a > 0, 1 + a ≥ 0, n + (2 − n)a > 0, (A23)

or

1 − a < 0, 1 + a ≤ 0, n + (2 − n)a < 0, (A24)

but (A24) is inconsistent. The first two inequalities of (A23) imply −1 ≤ a < 1, but then
n + (2 − n)a > 0 is fulfilled automatically for n ≥ 3. Non-negativity of g(p) requires 0 ≤ 1 − a + 2ap
for all 0 ≤ p ≤ 1. For positive a the affine function p �→ 1 − a + 2ap is minimal at p = 0,

137



Entropy 2020, 22, 1180

implying 0 < a ≤ 1. For negative a the map p �→ 1 − a + 2ap is minimal at p = 1, so −1 ≤ a < 0.
Finally, −1 ≤ a ≤ 1 covers all the cases. The case a = 0 implies g(pk) = 1/n, which is possible,
but uninteresting for non-Newtonian applications as such a g is not one-to-one.
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Abstract: We place the Landau theory of critical phenomena into the larger context of multiscale
thermodynamics. The thermodynamic potentials, with which the Landau theory begins, arise as
Lyapunov like functions in the investigation of the relations among different levels of description.
By seeing the renormalization-group approach to critical phenomena as inseparability of levels in
the critical point, we can adopt the renormalization-group viewpoint into the Landau theory and by
doing it bring its predictions closer to results of experimental observations.

Keywords: entropy; critical phenomena; renormalization; multiscale thermodynamics; GENERIC

1. Introduction

Our point of departure is the Landau theory of critical phenomena [1]. We formulate it in two
steps highlighting its relation and role in multiscale thermodynamics. The first step is the 2-level
formulation of equilibrium thermodynamics. The first level is the equilibrium level with the number of moles
N and the energy E (both per unit volume), serving as state variables. The second level is an upper level
with the variable x serving as the state variable. For example, x could be temperature and chemical
potential together with an order parameter (as it is in the original formulation of the Landau theory) or
it could also be one particle distribution function or other state variables used in mesoscopic theories
of macroscopic systems. Equilibrium thermodynamics enters the 2-level formulation in the upper
reducing thermodynamic relation (consisting of three real valued functions S↑(x), N↑(x), E↑(x)) and
in the maximum entropy principle (MaxEnt principle) transforming it (details are in Section 2) to the
equilibrium reduced thermodynamic relation S = S(E, N), E = E, N = N. Very often the mesoscopic
state variables x are fields that enter the specification of S↑(x), N↑(x), E↑(x) as mean fields. The 2-level
formulation is therefore often called a mean-field approach to thermodynamics.

The second step in the Landau theory is the specification of the upper reducing thermodynamic
relation (i.e., specification of the three potentials S↑(x), N↑(x), E↑(x)). The particularity of the physics
of the macroscopic system under investigation is expressed in these three potentials. Specifications
of S↑(x), N↑(x), E↑(x) thus requires commitment to a specific system. For example, in the Gibbs
equilibrium statistical mechanics the upper level is the microscopic level with x being the n-particle
distribution function (n ∼ 1023), S↑(x) is the universal Gibbs entropy, the energy E↑(x) is the average
microscopic energy (expressing the particularity of the system under investigation), and N↑(x) is the
universal potential expressing the number of moles; see, for example [2].

Landau has noted that in the critical region all three potentials S↑(x), N↑(x), E↑(x) tend to be
universal. The criticality overrides the particularity of the physical nature of the systems under
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investigation. Having the universal potentials S↑(x), N↑(x), E↑(x), MaxEnt principle transforms them
into a universal equilibrium critical behavior.

The universality of the upper reducing thermodynamic relation in the critical region is based on
two observations, one is physical, the other is mathematical. The observation of the physical nature
addresses the appearance of criticality on the equilibrium and on the upper levels. While the criticality
is more visible, both in experimental observations and in its mathematical representation, on the
equilibrium level, it manifests itself also on upper levels. For example, observations of fluctuations
in the results of lower-level experimental observations are observations reaching beyond the lower
level towards upper levels. Fluctuations appear to be indeed more pronounced in the critical region.
The observation of the mathematical nature addresses the universality of potential functions in the
critical region investigated in the catastrophe theory [3].

The above two-step formulation of the Landau theory extends naturally to dynamic critical
phenomena. In the first step we replace the 2-level formulation of thermodynamics with the 2-level
formulation of rate-thermodynamics. The equilibrium level is replaced by a mesoscopic level that
still takes into account fewer details than the upper level but it is a level on which the time evolution
takes place. We recall that no time evolution takes place on the equilibrium level. In fact, we choose
to use the vector field governing the lower time evolution as the state variable on the lower level.
The rate-thermodynamics on the upper level is expressed in the upper reducing rate-thermodynamic
relation (Σ↑(x), Y↑(x)), where Σ↑(x) is the rate entropy, Y(x) is the lower level vector field expressed
in terms of x. The MaxRent principle (Maximum Rate Entropy principle—see details in Section 3),
replacing the MaxEnt principle in equilibrium thermodynamics, transforms then the upper reducing
rate-thermodynamic relation to the lower reduced rate-thermodynamic relation (Σ(Y), Y), where Σ(Y)
is the lower rate entropy and Y is the lower vector field.

Regarding the comparison of predictions of Landau’s theory with results of experimental
observations, the agreement is only qualitative. The problem is in the multiscale nature of critical
phenomena. The closer is the critical point, the closer is the upper level to the lower level and in the
critical point itself all levels become inseparable. This observation is then taken as a basis for the
renormalization-group theory of critical phenomena [4]. In Section 4 we extend the Landau theory
to 3-level formulation, which then provides a setting for the renormalization-group theory of critical
phenomena seen as an extension of the Landau theory.

2. Landau’s Theory of Static Critical Phenomena

Level of description is an autonomous collection of results of certain type of experimental
observations (different for different levels) together with a model that allows to organize them,
to reproduce them, and to make predictions. The model, based on the insight inspired by the
experimental data and by investigating relations to nearby levels involving less or more details,
offers also an understanding of the physics involved. For instance, the equilibrium level with the energy
E, number of moles N, and volume V serving as state variables and the microscopic level with position
and momenta of ∼1023 particles composing the macroscopic system serving as state variable are
examples of two different autonomous levels of description. The latter is more microscopic (it takes
into account more details) than the former. We call the latter level an upper level and the former the
lower level. In this section the lower level will always be the equilibrium level. The state variable on the
upper level is denoted by the symbol x. For example, in the Landau theory x is usually the equilibrium
temperature and an appropriately chosen order parameter. On the level of kinetic theory x = f (r, v) or
on the level of hydrodynamics x = (ρ(r), e(r), u(r)), where f (r, v) is one particle distribution function,
r is the position vector and v momentum of one particle; ρ(r) is the field of mass density, e(r) the field
of internal energy, u(r) the field of momentum. The state space on the equilibrium level is denoted by
the symbol M , i.e., (E, N, V) ∈ M, the state space on the upper level is denoted by the symbol M↑,
i.e., x ∈ M↑.
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Every level is autonomous and differs from other levels in the amount of details (that are taken
into account in both experimental observations and the mathematical formulation) and in the range of
applicability. However self-contained are the levels, their mathematical formulation is closely related
to their relationship to other levels. From investigating relations to upper levels (i.e., to levels involving
more details) comes a structure that we shall call reduced structure and from investigating relations
to lower levels (i.e., to levels involving fewer details) comes the reducing structure. Both structures
equip the state space with a geometry and a vector field. The geometry is a mathematical formulation
of thermodynamics. Every level has thus reduced and reducing thermodynamics and reduced and
reducing vector fields. Below, we limit ourselves only to the reducing thermodynamics on the upper
level and the reduced thermodynamics on the lower level (which is in this section the equilibrium level).

We emphasize that the term “reduction” has in this paper the same meaning as “emergence”.
Some details on the upper level are lost in the reduction from an upper level to a lower level but at
the same time an emerging overall pattern is gained. The process of reduction, as well as processes
conductive to an emergence of overall features (pattern-recognition processes), involve both a loss and
a gain. The terms “upper” and “lower” levels that we use in this paper have a different meaning than
they have in, say, social sciences. The lower level is inferior from the upper level in the amount of
details but superior in the ability to see overall patterns.

2.1. 2-Level Equilibrium Thermodynamics

Among many questions about the origin of both reduced and reducing structures and about their
relations, we shall discuss only the one that is directly relevant to the Landau theory. We shall
investigate the passage from the reducing thermodynamics on the upper level to the reduced
thermodynamics on the equilibrium level. A few comments about the placement of the investigation of
this passage in the larger context of multiscale thermodynamics are discussed at the end of this section.

The upper reducing thermodynamic relation

S↑(x), E↑(x), N↑(x) (1)

is one of several possible forms of the mathematical formulation of the upper reducing thermodynamics.
The quantities introduced in (1) are the upper energy per unit volume E↑ : M↑ → R, the upper number
of moles per unit volume N↑ : M↑ → R, and the upper reducing entropy per unit volume S↑ : M↑ → R

and are assumed to be sufficiently regular.
The reduced equilibrium thermodynamic relation

S(E, N), E, N (2)

is obtained from (1) by the following reducing Legendre transformation. We make this transformation
in four steps.

Step 1: We introduce upper reducing thermodynamic potential (Note that x can be any state
variable, e.g., distribution function, hydrodynamic fields, electromagnetic fields, see [5])

Φ↑(x; E∗, N∗) = −S↑(x) + E∗E↑(x) + N∗N↑(x) (3)

where (E∗, N∗) are conjugate equilibrium state variables. In the standard equilibrium thermodynamic
notation E∗ = 1

T , where T is the equilibrium temperature, and N∗ = − μ
T , where μ is the equilibrium

chemical potential.
Step 2: We solve the equation

Φ↑
x = 0 (4)

We use hereafter the notation: Φ↑
x = ∂Φ↑

∂x , where ∂
∂x is an appropriate functional derivative if x is a

function (i.e., an element of an infinite dimensional space). Let x̂(E∗, N∗) be the solution to (4).
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Step 3: We introduce
S∗(E∗, N∗) = Φ↑(x̂(E∗, N∗); E∗, N∗) (5)

called a reduced conjugate entropy.
Step 4: Finally, we pass from S∗(E∗, N∗) to S(E, N) by the Legendre transformation

(i.e., we introduce the equilibrium thermodynamic potential Φ∗(E∗, N∗; E, N) = −S∗(E∗, N∗) +
EE∗ + NN∗, solve Φ∗

E = 0, Φ∗
N = 0, and arrive at S(E, N) = Φ∗(Ê∗(E, N), N̂∗(E, N); E, N), where

(Ê∗(E, N), N̂∗(E, N)) are solutions to Φ∗
E = 0, Φ∗

N = 0.
The reducing Legendre transformation (1) → (2) can also be seen as maximization of the upper

reducing entropy S↑(x) subjected to constraints E↑(x), N↑(x) [5,6]. The conjugate equilibrium state
variables E∗, N∗ play the role of Lagrange multipliers. This viewpoint then gives the passage (1) → (2)
the name Maximum Entropy principle (MaxEnt principle)

Summing up, the MaxEnt passage from the upper level to the equilibrium level, via the upper
reducing thermodynamic relation (1), is the following sequence of two mappings

(S↑(x), E↑(x), N↑(x)) �→ (S∗(E∗, N∗), E∗, N∗). �→ (S(E, N), E, N) (6)

The second mapping in (6) is the standard Legendre transformation. The first mapping is the upper
reducing Legendre transformation expressing the MaxEnt principle.

In the particular case when x = (E, N) and N↑(E, N) = N, E↑(E, N) = E, there is no reduction in
(6) and both arrows in (6) are (one-to-one) standard Legendre transformations:

(S(E, N), E, N) �→ (S∗(E∗, N∗), E∗, N∗) �→ (S(E, N), E, N) (7)

To conclude this section we turn to questions like where the potentials S↑(x), E↑(x), N↑(x) come
from and why the upper entropy S↑(x) is maximized subjected to constraints E↑(x) and N↑(x).
These questions are answered simply by the existence of the autonomous upper level and the existence
of the autonomous equilibrium level. The autonomous existence implies that there exists a way
to prepare macroscopic systems for their investigations on the equilibrium level and that the time
evolution describing the preparation process can be formulated on the upper level as a reducing time
evolution. It is in this reducing time evolution where the potentials S↑(x), E↑(x), N↑(x) make their
first appearance. The entropy S↑(x) generates the reducing time evolution. Maximization of S↑(x)
reflects the property of its solutions expressing mathematically the approach to the equilibrium level.
We note that in the context of the classical formulation of equilibrium thermodynamics the existence of
the preparation process for the equilibrium level (the existence of equilibrium states) is a subject of the
zero axiom (see [2]). The 2-level formulation of equilibrium thermodynamics can be thus seen as a way
to bring the zero axiom to an active participation in the formulation of equilibrium thermodynamics.

2.2. 2-Level Equilibrium Thermodynamics in the Critical Region

Equilibrium-level experimental observations of phase transitions are mathematically expressed in
various types of singularities of the equilibrium reduced thermodynamic relation S(E, N). We call the
subspace of the equilibrium level state space at which the Hessian (matrix of second derivatives) of
S(E, N) has a nontrivial nullspace as a critical submanifold. Its neighborhood is called a critical region.

Experimental observations made on upper levels (i.e., levels involving more details than the
equilibrium level) show that the critical behavior seen on the equilibrium level is also seen on the
upper levels. For instance, it is well established that fluctuations in the results of the equilibrium-level
measurements (that is an example of measurements that involve more details than the equilibrium-level
measurements) become very pronounced in the critical region. The mathematical manifestation of the
criticality in the upper reducing thermodynamic relation S↑(x), E↑(x), N↑(x) is however different from
its mathematical manifestation on the equilibrium level. The potentials S↑(x), E↑(x), N↑(x) remain
completely smooth, but Equation (4) has two or more solutions.
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2.3. Van der Waals Theory

We now illustrate the Landau theory on the van der Waals theory of a gas composed of particles
interacting via long range attractive and short range repulsive forces. The macroscopic physical system
investigated in this illustration is a gas composed of particles interacting via long range attractive
forces and short range repulsive forces (van der Waals gas). The latter forces are treated as constraints
and their influence enters the entropy rather than energy. The mathematical model of this system on
the equilibrium level is the well known classical van der Waals model, on the level of kinetic theory
the van Kampen model [7] (see also [8]) and its dynamical extension ([9]).

The upper level is the level of kinetic theory with the one particle distribution function

x = f (r, v) (8)

serving as a single state variable, r is the position coordinate and v the momentum of one particle.
In this example we specify explicitly the upper reducing thermodynamic relation S↑(x), E↑(x), N↑(x)
by using arguments developed mainly in the Gibbs equilibrium statistical mechanics. Having
S↑(x), E↑(x), N↑(x), we identify the critical point and subsequently restrict S↑(x), E↑(x), N↑(x) to
the critical region. The resulting potentials take the form of the Landau critical thermodynamic
potentials. This illustration has already been presented in [8], we can therefore omit details.

Following van Kampen [7], the upper reducing thermodynamic relation (1) representing on the
level of kinetic theory the van der Waals gas is

E↑( f ) =
∫

dr
∫

dv
(

v2

2
f (r, v) +

1
2

∫
dr1

∫
dv1Vpot(|r − r1|) f (r, v) f (r1, v1)

)
N↑( f ) =

∫
dr

∫
dv f (r, v)

S↑( f ) =
∫

dr
∫

dv
(
− f (r, v) ln f (r, v)− f (r, v)

∂θ

∂n(r)

)
(9)

where we put the volume of the region in which the van der Waals gas is confined equal to one,
the mass of one particle is also equal to one, Vpot(|r − r1|) is the potential energy,

n(r) =
∫

dv f (r, v)

θ(n(r)) =
1 − Bn(r)

B
(ln(1 − Bn(r))− 1) (10)

and where B ∈ R is a small (proportional to the volume of one particle) parameter. Note that
n(r) =

∫
dv f (r, v) is the local particle density. In E↑, the first term is the kinetic energy, the second the

potential energy. In S↑, the first term is the Boltzmann entropy, the second term is the contribution to
the entropy due to the excluded volume constraint.

By making the transformations in (6), we arrive at the classical well known van der Waals
thermodynamic relation (see details in [5] (pp. 43–44) and [8]).

Now we proceed to investigate the critical region. First note that van Kampen [7] showed that the
critical points corresponding to the end points of the critical curve in van der Waals gas are spatially
homogeneous. This knowledge can be translated within this multiscale framework formulation into
a restriction of the MaxEnt distribution function and the reduction to the level with state variable n
(see the Appendix A and [8] for details). In short, we begin by looking for solutions of (4) only among
n(r) that are independent of r. With this restriction, we arrive at

Φ↑(n; α, β) = n ln n + n
dθ

dn
− 1

2
βVpotn2 −

(
α − 3

2
ln

β

2π

)
n (11)
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where we use the shorthand notation β = 1
T , α = − μ

T and Vpot =
∫

dr1Vpot(|r − r1|).
The critical point is

1. A MaxEnt value: an extremum of reducing thermodynamic potential that governs the evolution
and hence this extremum corresponds to an equilibrium state;

2. A point where loss of convexity occurs: the extremum (equilibrium point) is ambiguous, multiple
or continuum of extrema are plausible;

3. Critical point of the whole system (including the inverse temperature β = 1
T ), i.e., the lowest

temperature (T) and chemical potential (α) for which a critical point given by the above two
points still exists: an extremal point, i.e., the third derivative with respect to n has to vanish as
follows from Taylor expansion and the fact that the two above requirements can be translated
into vanishing first two derivatives.

In short, the critical point is a point (nc, αc, βc) where the potential has a stationary point, just
loses convexity and has a minimum. By taking the Taylor expansion about the critical point,

Φ↑(n, αc, βc) = Φ↑(nc, αc, βc) +
∂Φ↑

∂n
δn +

1
2!

∂2Φ↑

∂n2 (δn)2 (12)

+
1
3!

∂3Φ↑

∂n3 (δn)3 +
1
4!

∂4Φ↑

∂n4 (δn)4 +O(δn)5,

the requirements on the critical point lead to equations

Φ↑
n = 0; Φ↑

nn = 0; Φ↑
nnn = 0; Φ↑

nnnn > 0. (13)

Hence the critical point of van der Waals gas is given by

nc =
1

3B
; βc =

27B
4Vpot

αc =
1
2

ln(3B) +
3
2

ln
B

Vpot
+

3
4
+ 4 ln

3
2
− 3

2
ln(2π). (14)

See Appendix A for more details.
We now make an explicit choice of the order parameter

ξ = n − nc,

where nc is the critical value of n, and define

Φ↑
crit(n; ω1, ω2, ω3) = Φ(n; α, β)− Φ(nc; α, β). (15)

With the explicit knowledge of the reducing fundamental thermodynamic potential (11) we know
that in a neighborhood of the critical point we arrive at

Φ↑
crit(ξ; ω1, ω2, ω3) = ω1ξ +

1
2

ω2ξ2 +
1
24

ω3ξ4, (16)

where

ω1 = a1(α − αc) + a2(β − βc) (17)

ω2 = a3(β − βc)

as the coefficient of α in Φ↑ is linear in n while the coefficient of β is quadratic in n. Note that
the cubic term is missing in the expansion as its coefficient is independent of α, β and hence
Φ↑

nnn(nc; α, β) = Φ↑
nnn(nc; αc, βc) = 0 due to (13). This form of the thermodynamic relation in the
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critical region Φ↑
crit can be put in a more general framework due to Landau [10] (Chapter XIV).

Expressions for a1, a2, a3, ω3 involve the parameters B, Vpot, serving as the material parameters in the
van der Waals theory.

From (16) we obtain
S↓∗

crit(α, β) = Φ↑
crit(ξ̂(α, β); α, β) (18)

where ξ̂(α, β) is a solution to (
Φ↑

crit

)
ξ
= 0. (19)

The lower reduced entropy (18) provides complete information about the behavior (the behavior
seen in equilibrium-thermodynamic observations) of the van der Waals gas in a small neighborhood of
the critical point. In particular, we obtain the critical exponents arising in the dependence of S↓∗

crit(α, β)

on α and β .
A simple way to see that S↓∗

crit(α, β) is a generalized homogeneous function and thus to identify
the critical exponents is to use (16) with ω1,2,3 now being the variables instead of α, β. We replace ξ in
(16) with λ−1/4ξ. We obtain

Φ↑
crit(λ

−1/4ξ; ω1, ω2, ω3) = λ−1
(
(ω1λ3/4)ξ + (ω2λ1/2)ξ2 + ω3ξ

)
= λ−1Φ↑

crit(ξ; (ω1λ3/4), (ω2λ1/2), ω3)

and consequently, noting ω3 is unaffected by the rescaling,

S↓∗
crit(ω1, ω2) = λ−1S↓∗

crit(λ
3/4ω1, λ1/2ω2). (20)

Finally, one could invert (ω1, ω2) from (17) to get a (generalized) scaling for S↓∗
crit(α, β).

Still another view of this relation can serve as an introduction to the renormalization-group theory
of critical phenomena discussed below in Section 4. We start again with (16) and write it in the form
Φ↑

crit(ξ; ω), where ω = (ω1, ω2, ω3) is given in (17). Our aim is to introduce a renormalization time
evolution (i.e., renormalization group of transformations generated by a vector field) of ω and of Φ↑

crit
such that:

Φ↑
crit(ξ; ω(τ), τ) = Φ↑

crit(ξ; ω) ∀ τ > 0

with the initial conditions

ω(0) = ω

Φ↑
crit(ξ; ω, 0) = Φ↑

crit(ξ; ω) (21)

and the constraint
ω3(τ) = ω3 ∀ τ > 0 (22)

The renormalization time is denoted by the symbol τ. We emphasize that the renormalization
time τ has nothing to do with the real time t. The renormalization time evolution will become the
basis for a new definition of critical points discussed in Section 4. From the physical point of view,
the constraint expresses the requirement that the material parameter B entering the repulsive short
range forces in (10) remains unchanged in the renormalization process.

We begin with
(Φ↑

crit)τ = −χΦ↑
crit (23)

with χ > 0 being at this point an unspecified parameter and with the initial condition given by the
second line in (21). It can be easily verified that [8]

ω̇ = R(χ, ω) (24)
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with the initial condition given by the first line in (21) and

R(χ, ω) =

⎛⎜⎝ χ − 1 0 0
0 χ − 2 0
0 0 χ − 4

⎞⎟⎠ωT . (25)

We see now that with χ = 4 we satisfy both (21) and the constraint (23).
The fixed point of the renormalization time evolution is the critical point and the eigenvalues of the vector

field linearized about the fixed point are the critical exponents.
This statement, which has arisen as a simple observation in the particular context discussed above,

is in fact a definition of the critical points and the critical exponents in the renormalization-group theory
of critical phenomena (see Section 4). In the case of (25) the linearization is, of course, unnecessary
since the vector field is already linear.

Finally we compare the classical analysis of the van der Waals gas with the analysis based on the
Landau theory. The starting point of the classical analysis is the physical insight that led us to the upper
reducing thermodynamic relation (9). By restricting it to the critical region we have arrived at the
Landau expression (16). The starting point of the Landau theory is the expression (16). The quantity ξ,
called in the Landau theory an order parameter, does not need to have a specific physical interpretation,
nor the coefficients a1, a2, a3 are specified in the Landau theory.

The extra information about the critical phenomena that the classical van der Waals theory
provides (but only for the van der Waals gas) is thus: (i) the location of the critical point in the state
space M↑, (ii) physical interpretation of the order parameter, (iii) a detailed knowledge of the critical
behavior beyond a small neighborhood of the critical point. On the other hand, the advantage of the
Landau theory is its universal applicability. In Section 4 we make a comment about the renormalization
group theory, the objective of which is to bring the critical exponents implied by the van der Waals
theory (and thus also the Landau theory) closer to those seen in experiments.

Before leaving the van der Waals theory, we mention that the static version of the theory recalled
above has been upgraded to the dynamical theory in [9]. The kinetic equation of which solutions make
the maximization of the entropy S↑( f ) subjected to constraints E↑( f ), N↑( f ) (see (9)) is the Enskog
Vlasov kinetic equation.

3. Landau’s Theory of Dynamic Critical Phenomena

In the 2-level formulation of the equilibrium thermodynamics we replace the equilibrium level
with a lower level that still takes into account fewer details than the upper level, but it is a mesoscopic
level on which the time evolution, called a lower time evolution, takes place. We recall that no time
evolution takes place on the equilibrium level that served us as the lower level in the preceding
section. We again assume that both the upper and the lower levels are well established (well tested
with experimental observations) autonomous levels. This then means that by investigating solutions
to the upper time evolution equations we have to be able to split the upper time evolution into a
reducing time evolution describing the preparation process for using the lower level and a reduced
time evolution that is the lower time evolution. The investigation leading to the split is essentially a
pattern recognition process in solutions to the upper governing equations.

There are two types of the reducing and the reduced time evolutions. The reducing time evolution
can be either the time evolution taking place in M↑ and approaching an invariant (or in most cases a
quasi-invariant) manifold M↓ ⊂ M↑ that represents in M↑ the state space M↓ used on the lower level
or it can be the time evolution of vector fields Y↑(x) ∈ X(M↑) taking the vector field generating the
upper time evolution to the vector field generating the lower time evolution. The former viewpoint is
discussed for example in [11–14]. In this paper we follow the second route, discussed in [15], since on
this route we can directly transpose the 2-level equilibrium thermodynamics introduced in the previous
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section to 2-level rate-thermodynamics. We use "rate" to point out that the state space is the space of
vector fields.

The upper reducing rate-thermodynamic relation

Σ↑(x), Y↑(x) (26)

replaces the upper reducing thermodynamic relation (1). The passage from the upper reducing
rate-thermodynamic relation (26) to the lower reduced rate-thermodynamic relation

Σ(Y), Y (27)

remains the same as the passage from the upper reducing thermodynamic relation (1) to the lower
reduced thermodynamic relation (2) in 2-level thermodynamics, discussed in Section 2. We introduce
an upper reducing rate-thermodynamic potential

Ψ↑(x; Y∗) = −Σ↑(x) + 〈Y∗, Y↑(x)〉 (28)

where Y∗ are conjugate lower vector fields. The sequence of mappings

(Σ↑(x), Y↑(x)) �→ (Σ↓∗(Y∗(y)), Y∗(y)) �→ (Σ↓(Y(y)), Y(y)) (29)

corresponds in MaxRent to the sequence of mappings (6) in MaxEnt. The lower vector field is
Y(y) = Σ↓∗

Y∗(y).
How do we specify the upper reducing relations (1) or (26)? The following three routes can

be taken.
(i) Both relations (1) and (26) arise from a detail investigation of the upper time evolution.

Since both the upper and the lower levels are well established, the upper level has to reduce,
by following a certain preparation process in which time evolution is described by the reducing
time evolution, to the lower level. The reducing time evolution then introduces the upper reducing
thermodynamics relation (1) or upper reducing rate-thermodynamic relation (26). In this paper
we do not introduce and discuss explicitly the reducing time evolution, neither in the equilibrium
thermodynamics nor in the rate-thermodynamics. It is important to recall that the upper reducing
thermodynamic relation (1) representing an ideal gas on the level of kinetic theory has been originally
obtained by Boltzmann from analyzing solutions (Boltzmann’s H-theorem) of the Boltzmann kinetic
equation describing the reducing time evolution. In the Boltzmann analysis the kinetic equation is
primary, and the Boltzmann entropy arises as a result.

(ii) In the critical region the upper reducing thermodynamic potentials (3) and (28) are determined
by mathematical results arising in the catastrophe theory [3].

(iii) The association between specific physical systems and the upper reducing thermodynamic
relations (1) in equilibrium thermodynamics can also be investigated by physical arguments developed
mainly in the Gibbs equilibrium statistical mechanics (as we did in the illustration in Section 2.3).

Before proceeding to the illustration we make a few remarks.
Our investigation in the preceding section was limited to equilibrium. We have considered

only systems that are allowed to reach equilibrium states. Behavior of macroscopic systems that
are prevented from reaching the equilibrium states (either by external or internal forces) cannot
be described on the equilibrium level but can be described on a lower level. For instance the
experimentally observed behavior of a Rayleigh–Bénard system (a thin horizontal layer of a fluid
heated from below) is well described on the level of hydrodynamics (in Boussinesq equations) [16,17].
The lower reduced thermodynamic relation that we are getting on the lower level from relating it to an
upper level provides thus thermodynamics also for such externally or internally forced systems [18].

The equilibrium can be reached either directly (upper level→ equilibrium level) or indirectly
(upper level→ lower level→equilibrium level). We require that the equilibrium thermodynamic relations
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obtained by following both routes are identical for consistency in the multilevel framework.
This requirement implies the following relation between quantities entering the equilibrium and
rate-thermodynamic relations

Ṡ↑(y) = [〈Y∗, Σ↓∗
Y∗ 〉]Y∗=S↑

y(y)
(30)

By y we denote the state variables on the lower level, S↑(y) is the upper entropy generating the
approach from the lower level to the equilibrium level. The relation (30) makes precise the connection
between the rate entropy Σ↑(x) on the upper level and the entropy production Ṡ↑(y) on the lower level.

3.1. Illustration: Immiscible Fluids

Dispersions of two immiscible fluids (fluid A and fluid B) have two essentially different
morphologies. One in which the fluid A is dispersed in the form of droplets in the fluid B that
forms a continuous phase. The second is the inverse, fluid B is dispersed and fluid A is continuous.
The transition between these two morphologies is a dynamic critical point called phase inversion.
Dispersions under consideration are subjected to externally imposed flows.

As it was in the case of the van der Waals gas in Section 2.3, we want to identify the critical
point (in particular the critical concentrations) and to investigate the behavior in the critical region
(in particular the flow behavior of the dispersion). As we saw in the case of the investigation of static
critical phenomena in Section 2.3, both questions are answered if we know explicitly the upper reducing
thermodynamic potential. In the case of phase inversion it would be the explicit knowledge of the
upper reducing rate-thermodynamic potential (28). In general, the problem of finding thermodynamic
potentials corresponding to specific physical systems is more difficult in rate-thermodynamics than in
thermodynamics. For example in the specification of the van der Waals upper reducing thermodynamic
potential (11) we have used the insight offered by Gibbs investigations in which the upper level is
the Microscopic level and the lower level the equilibrium level. No such powerful source of insights
seems to be available in rate-thermodynamics. Nevertheless, we know that the rate-thermodynamic
potentials exist. This is because the upper and the lower levels exist as autonomous levels and
consequently the upper level approaches the lower level. In the case of dispersions the lower level is
the level of hydrodynamics and the upper level can be, for instance, the Microscopic level or it could
also be the level of kinetic theory. Just the knowledge of the existence of the upper and lower levels
gives us the right to use the Landau theory (which will address the behavior in the critical region) and
also certain arguments that are based on partial knowledge rate-thermodynamic potentials that will
address the problem of identifying the point of phase inversion.

We turn first to the latter investigation. In the absence of a complete knowledge of the
rate-thermodynamic potentials, we can attempt to identify them separately on both sides of the
phase inversion. At the point of phase inversion the two potentials must be equal. Their equality is
then an equation determining the point of phase inversion. With the surface energy playing the role of
the potentials, this analysis has been made in [19,20] and with the rate-thermodynamic potential (28)
in [21]. We have seen in (30) that the upper reducing rate-thermodynamic potential is related to but not
identical to the entropy production. In [21] the entropy production on both sides of the phase inversion
is specified and then put (as an approximation) on the place of rate-thermodynamic potentials.

The Landau theory has been applied to the problem of phase inversion in [22]. The order parameter
is an unspecified characterization of the morphology of the dispersion. It can be for instance an average
(oriented) curvature of the interface separating the two fluids.

3.2. Illustration: Shear Banding

It was experimentally observed in [23] that the Taylor–Couette flow of a special shear banding
fluid exhibits unusual behavior. In the experiments either the force required to rotate the outer cylinder
(shear stress) or speed of the rotation (shear rate) can be controlled, the other being measured. It turns
out that when varying shear stress, shear rate behaves continuously while when varying shear rate,
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shear stress exhibits a jump. Such behavior, also called dissipative phase transition, can be captured by
a non-convex dissipation potential giving relation between shear stress and shear rate [24].

In rate thermodynamics (also called CR-thermodynamics [21]) the roles of state and conjugate
variables are played by thermodynamic forces and fluxes (or vice versa), and the role of entropy is
played by dissipation potential. In order to see a phase transition in the rate thermodynamics (as in the
above-introduced experiment), one thus needs to be equipped with a non-convex dissipation potential.
Such potential was proposed in [24] for a dissipative phase transition in complex fluids,

Ξ = 0.01x2 +
1
2
− 1

2(1 + x2)
. (31)

Note that the potential is written in a non-dimensional form and that x represents the norm of the
deviatoric stress tensor. The dissipation potential is clearly non-convex, as is apparent from Figure 1.

Figure 1. Dissipation potential (31). The points where convexity of lost are highlighted. This potential
was found in [24] and is based on a work by Le Roux and Rajagopal [25]. The rate thermodynamic
analysis of the qualitative implied by the potential was then confirmed by numerical simulations in [26].

In order to obtain the stress tensor, one has to perform the Legendre transformation

∂Φ
∂x

= 0 for Φ(x, γ) = −Ξ(x) + γx, (32)

where γ represents the shear rate.
Let us now find the critical points (there are two) of potential Φ. The loss of convexity at the

critical points is expressed by the equation

Φxx = 0, (33)

the solutions of which are the critical stresses xc1 = 3.24294 and xc2 = 0.591376. The critical shear rates
are then obtained by solving the equations

Φx(xc1, γc1) = 0 and Φx(xc2, γc2) = 0, (34)

giving γc1 = 0.0893092 and γc2 = 0.336446. The first and second derivatives at the critical point vanish.
Note, however, that the third derivative does not vanish and the critical points are thus not minima of
the potential Ψ and the rate thermodynamics is thus not stable in the critical points.
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We can further expand the potential Ψ in power series in the critical points,

Ψ(γc1, ξ) ≈ −0.272127 − 0.0035087ξ3 + 0.0011077ξ4 for ξ = x − xc1 (35)

Ψ(γc2, ξ) ≈ 0.0659143 + 0.231744ξ3 − 0.210484ξ4 for ξ = x − xc2. (36)

Shifting the potential around the critical point by a constant value so that their value at the critical
point is zero, the general expansion around the critical point (also in the direction of the parameter γ)
then reads

Ψ(γc1, ξ) ≈ ω1(γ − γc1)ξ
2 for ξ = x − xc1 (37)

Ψ(γc2, ξ) ≈ ω2(γ − γc2)ξ
2 for ξ = x − xc2. (38)

The first derivative disappears, since we have one parameter γ that can be used to keep it zero, but the
coefficients in front of the second derivatives only disappear in the critical points.

In summary, the geometric analysis of critical phenomena can be carried out also in the realm of
rate thermodynamics, where the thermodynamic forces and fluxes play the role of state and conjugate
variables. The universal behavior near the critical points is observed similarly as in the classical theory.

4. Renormalization-Group Theory of Critical Phenomena in the Setting of Landau’s Theory

The universality of the upper reducing thermodynamic relations in the critical region is based on
mathematical arguments [3]. The mathematical universality then implies the universality of physical
behavior that can be observed experimentally. Is the experimentally observed critical behavior
indeed universal? The answer is well known. Predictions of the Landau theory agree with results of
experimental observations only qualitatively. How can we explain it?

The problem is in the autonomy of levels in the critical region. The closer the critical point,
the more difficult it is to separate the levels. This general observation is often illustrated on the
example of the observation of fluctuations. We recall that fluctuations seen in results of experimental
observations made on level L are in fact observations that reach beyond the L-level towards
observations belonging to a level involving more details. This means that large fluctuations seen on the
level L indicate that the level L ceases to be autonomous. Some of the details ignored on the level L
cannot be ignored anymore in order to keep the level L autonomous. In the critical point itself the levels
become inseparable. This feature of criticality is then taken as the basis for the renormalization-group
theory of critical phenomena.

Our objective in this section is to formulate the renormalization-group theory of critical
phenomena as an extension of the Landau theory. For the sake of simplicity we make below the
extension only for the Landau theory of static critical phenomena. Its dynamical version will be the
subject of a future paper.

The first step in the extension is a replacement of the upper level with more upper levels.
In the enlarged family of upper levels we keep the original upper level and add a one parameter
(the parameter is denoted by the symbol τ) family of new levels. These new levels involve more
details than the original upper level. We call them UPPER levels. We construct them by taking a
sharper view of the macroscopic system under investigation. We separate the particles composing it
into two classes. Originally, the particles are indistinguishable (for instance all particles are white),
now the particles are either white or red. The parameter τ ∈ R labels the extra degrees of freedom
arising on UPPER levels due to sharper view of particles. Both passages upper level → UPPER levels
and UPPER levels → upper level are thus known. The former is made by taking glasses allowing to
recognize colors, the latter is made by becoming colourblind.

Besides the straightforward passage UPPER levels → upper level made simply by colour-blindness,
there is another way to make the same passage. The extra degrees of freedom that arise on UPPER levels
due to the sharper viewpoint are MaxEnt eliminated. In other words, we pass from UPPER levels to
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upper level in the same way as we passed from the upper level to the equilibrium level in the preceding
section. The MaxEnt reduction of UPPER levels to the upper level will be termed MaxEnt-reductions,
see [5].

A comparison of the upper reduced thermodynamic potential with the upper MaxEnt-reduced
thermodynamic potential, both restricted to the critical region, is then the essence of the
renormalization-group viewpoint of critical phenomena. Let the coefficients in the critical polynomials
be ω for the upper reduced thermodynamic potential and Ω(τ) in the one parameter family of
the upper MaxEnt-reduced thermodynamic potential. The difference between two UPPER levels,
one corresponding to τ1 and the other to τ2 = τ1 are manifested mathematically in Ω(τ1) = Ω(τ2).
The inseparability of UPPER levels in the critical point is mathematically expressed in Ω(τ) becoming
independent of τ. Let Ωcrit be such a fixed point. Eigenvalues of the linearized renormalization
dynamics (i.e., dynamics in which τ plays the role of the renormalization time—see the end of
Section 2.3) are then the renormalized critical exponents.

The main features of this viewpoint of the renormalization-group theory of critical phenomena
have already appeared in [8,27]. Also the illustration of the formulation presented below has been
largely developed in [8]. In the original formulation of the renormalization-group theory [4] the upper
level is the Microscopic level used as the upper level in the Gibbs equilibrium statistical mechanics.
The state variable x in the Gibbs theory is the n-particle distribution function (n ∼ 1023 is the number of
particles composing the macroscopic system under investigation). The upper reducing thermodynamic
relation consists of the Gibbs entropy, the average microscopic energy, and normalization of the
distribution function. The family of UPPER levels is constructed by extending the system in all
directions by a scale factor τ. The MaxEnt-reduced levels are obtained by seeing the extension from
the upper level to UPPER levels as replacement of every point with a “box” and the MaxEnt-passage
from UPPER levels to the upper level as a MaxEnt reduction (with the Microscopic fundamental
thermodynamic relation) of all boxes back to points.

The main difference between the original formulation of the renormalization group theory
is thus the choice of the upper level. In the original formulation it is the Microscopic level.
The Microscopic thermodynamic relation consists of the universal Gibbs entropy and an energy
(Hamiltonian) in which the individual nature of the macroscopic system under investigation is
expressed. The Ginzburg–Landau form of the energy is often used [28]. In our formulation the upper
level is a general mesoscopic level and the upper reducing thermodynamic relation is its universal
form (Landau polynomials arising the catastrophe theory) in the critical region. The main advantage
of our formulation is thus its universal applicability and adaptability to dynamic critical phenomena.

Illustration

In order to illustrate the renormalization-group theory of critical phenomena that is cast into the
setting of the Landau theory we turn to the van der Waals theory recalled in Section 2.3. We keep the
same equilibrium level and the same upper level. In addition we introduce an UPPER level with the
state variables

x = ( f (r, v), g(r, v)) (39)

153



Entropy 2020, 22, 978

and the upper reducing thermodynamic relation

E
↑( f , g) =

∫
dr

∫
dv

(
v2

2
f (r, v) +

v2

2
g(r, v)

)
+

1
2

∫
dr

∫
dv

∫
dr1

∫
dv1Vpot(|r − r1|)

× ( f (r, v) f (r1, v1) + g(r, v)g(r1, v1) + 2 f (r, v)g(r1, v1))

N
↑( f , g) =

∫
dr

∫
dv( f (r, v) + g(r, v))

S
↑( f , g) =

∫
dr

∫
dv (− f (r, v) ln f (r, v)− g(r, v) ln g(r, v)

− f (r, v)
∂θ

∂n(r)
− g(r, v)

∂θ

∂m(r)

)
(40)

where n(r) =
∫

dv f (r, v), m(r) =
∫

dvg(r, v), θ(n, m) = θ(n+m). The UPPER level represents a more
detailed view of the van der Waals gas in the sense that the gas particles are no longer indistinguishable.
They are divided into two groups. One group is composed of the same particles as on the upper level.
We can call them now f-particles. Their states are characterized by the one particle distribution function
f (r, v). The second group is composed of g-particles, the state variable is the one particle distribution
function g(r, v). The f-particles and g-particles remain identical. In particular, interactions among the
f-particles, among the g-particles, and among f-particles and g-particles are exactly the same as on the
interactions of the f-particles on the upper level. The upper level differs from the UPPER level only in
our ability to distinguish the f-particles from g-particles (for instance by having a different colour).
The UPPER level thus indeed takes into account more details than the upper level. We are able to
distinguish two colours.

We follow now the analysis that we made on the upper level in Section 2.3. We restrict ourselves
to n and m that are independent of r and introduce the UPPER reducing thermodynamic potential

Ψ↑(n, m; β, A(n), A(m)) = n ln n + m ln m + (n + m)θ′(n + m)− 1
2

Vpot(n + m)2

−(ln A(n))n − (ln A(m))m (41)

where we use the symbol Ψ instead of Φ to distinguish the UPPER level from the upper level and
ln A = α − 3

2 ln β
2π .

Next, we transform the UPPER level into a one parameter family of UPPER levels.
We introduce first a one parameter family of the potentials Ψ↑ by inserting into (41)
A(n) = e−τ A; A(m) = (1 − e−τ)A, where τ ∈ R; τ > 0 is the parameter. The UPPER reducing
thermodynamic potential (41) turns into the one parameter family

Ψ↑(n, m; β, A, τ) = n ln n + m ln m + (n + m)θ′(n + m)− 1
2

Vpot(n + m)2

− ln(e−τ A)n − ln((1 − e−τ)A)m (42)

where θ′(n) = dθ
dn . We note that solution to Ψ↑

n = 0 is e−τn, solution to Ψ↑
m = 0 is (1 − e−τ)n, and n

is a solution to Φ↑
n = 0 with Φ↑ given in (11). This means that if we are colour blind, then nc of the

potentials (42) and (11) are the same. Also the reduced equilibrium thermodynamic relation implied
by (42) and (11) are the same.

Now we pass from the UPPER level back to the upper level, see Figure 2. We can follow two
routes:

Route 1:
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On the first route we simply ignore the g-particles.

[Ψ↑(n, m; β, A, τ)]m=0 = Φ↑(n, A, τ) (43)

where Φ↑ is given in (11)

Route 2:

On the second route we eliminate the presence of g-particles with MaxEnt. In this way we arrive at

[Ψ↑(n, m; β, A, τ)]
Ψ↑

m=0
(44)

We have transformed f-particles into f-quasi-particles, i.e., f-particles that are modified by taking
into account the presence of g-particles. The passage from particles to quasi-particles is a pattern
recognition process. The more are the quasi-particles different from the original particles the more
pronounced is the pattern.

Following our terminology and notation (we recall that the thermodynamic potential on the upper
level is denoted by the symbol Φ) we denote the potential (43) by the symbol Φ↓ and call it upper
reduced potential. The potential (44) is denoted Φ(↓ME) and called upper MaxEnt-reduced potential in
order to point out its provenance.

UPPER

upper upper

equilibrium

reducti
on

MaxEnt reduction

M
axEntreduction

M
axEnt reduction M

ax
Ent re

ducti
on

renormalization

Figure 2. Diagram of the levels of description.

We expect that the two upper thermodynamic potentials (43) and (44) are different. The former
is just the original upper reducing potentials (42) without the g-particle. The latter is also the upper
reducing potential (42) without the g-particles but with their presence felt through MaxEnt. The passage
from the UPPER potentials (42) to the upper MaxEnt-reduced potential (44) can be seen as a process
of recognizing a pattern on the UPPER level. The recognized pattern is then expressed in terms
of the upper-level state variables. In the absence of such patterns on the UPPER level the upper
MaxEnt-reduced potential (44) will be the same as the upper reduced potential (43). This is expected
to happen when the inclusion of more details on the UPPER level does not reveal anything new (new
with respect to what is seen on the upper level). The experimentally observed inseparability of levels
in the critical region then suggests to define the critical point as the point at which the potentials (43)
and (44) are identical.

In order to be able to compare the critical part of the upper MaxEnt-reduced potential (44) with the
critical part of the upper reduced potential (43), we cast them into the form of the Landau polynomials.
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If we choose (23) for the renormalization time evolution of Ψ(↓ME)
crit , then the upper MaxEnt-reduced

thermodynamic potential takes the form

Φ(↓ME)
crit (n, β; A, B, τ) = e−χτ

(
Ω1(Ω, χ, τ)ζ + Ω2(Ω, χ, τ)ζ2 + Ω3(Ω, χ, τ)ζ4

)
where Ω = (Ω1, Ω2, Ω3) is a solution of (compare with (24))

Ω̇ = R(ME)(Ω, χ). (45)

It remains to show the relation of Ω, ζ and R(ME) to (n, β, A, B) appearing in the upper potential
(43) and to investigate the renormalization time evolution governed by (45).

Regarding the former task, we only indicate the route and refer to [8] for details. We recall that
solution to Ψ↑

n = 0 = Ψ↑
m is n = e−τnΦ↑

, m = (1 − e−τ)nΦ↑
, where nΦ↑

is a solution to Φ↑
n = 0 with

Φ↑ given in (11). This means that the reduced equilibrium thermodynamic relation implied by (42)
and (11) are the same.

Next, we note that

Φ(↓ME)(n; β, A) = Φ↑(n; β, e−τ A)− τne−Φ↑
n(n;β,A) + O(τ2) (46)

This relation follows from

Ψ↑
m = 0 ⇒ ln

(m
n

)
= −Φ↑

n(n; β, A) + ln

(
A(m)

A

)

and from Ψ↑(n, m; β, A(n), A(m)) = Φ↑(n; β, A(n))− m + O(τ2). The remaining details can be found
in [8].

Regarding the latter task, solutions to the renormalization time evolution governed by (45) have
been investigated in [8]. Three fixed points have been identified and the largest eigenvalue of the
linearized (45) about one of them equals 0.8. The largest eigenvalue in (25) (which is the classical
critical exponent corresponding to the approach to the coexistence line in a transverse direction) is
0.75. The value of this type of critical exponent measured in experiments is indeed close to 0.8 [8,29].
The physical significance of this agreement remains to be investigated. Our main objective in this
section was to illustrate the renormalization-group theory of critical phenomena in the setting of the
Landau theory of critical phenomena.

5. Concluding Remarks

Thermodynamics is a theory of relations among theories of macroscopic systems formulated
on different autonomous levels of description. Our main objective in this paper is to show that
this multiscale viewpoint of thermodynamics unifies investigations of static and dynamic critical
phenomena. We emphasize that the reduction of an upper level to a lower level (a level involving
fewer details than the upper level) represents a loss of details but a gain of emerging features arising
as patterns in the phase portrait of the upper level. Applicability of multi-level thermodynamics is
ubiquitous, ranging from chemical engineering, rheology, electrodynamics of matter, kinetic theory to
machine learning [30].

Classical equilibrium thermodynamics arises in investigations of relations between an upper level
(e.g., the microscopic level or the level of kinetic theory) and the equilibrium level, on which no time
evolution takes place. The upper reducing entropy, which generates the approach to the equilibrium
level, becomes the equilibrium entropy when the approach is completed. When the approached
lower level involves the time evolution, the result of the reduction can either be seen as a reduction
in the upper state space (approach to a quasi-invariant submanifold representing the lower state
space in the upper state space) or as an approach of the upper vector field to the lower vector field).
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The thermodynamics that arises by following the latter viewpoint is termed rate-thermodynamics.
The mathematical formulations of thermodynamics and rate-thermodynamics are essentially identical.
The thermodynamic potentials are however replaced with rate-thermodynamic potentials. In the
particular case of externally unforced systems, when the lower level is allowed to reach the equilibrium
level, the upper rate-entropy is closely related to the production of the entropy generating the approach
of the lower level to the equilibrium level.

The multiscale thermodynamics acquires two new features in the critical region. First it is the
universality of the thermodynamic and rate-thermodynamic potentials and the inseparability of levels.
The former is a consequence of the mathematical representation of criticality (catastrophe theory) and
the latter the consequence of the physical nature of the criticality. The former feature has been noted by
Lev Davidovich Landau and is a basis of his theory of critical phenomena. The latter feature is a basis of
the renormalization-group theory of critical phenomena. We show that the multiscale thermodynamics
provides a unified setting for the Landau theory of static critical phenomena, for its extension to the
dynamic critical phenomena and for the renormalization-group theory of critical phenomena.
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Appendix A. Details of the Calculation of the van der Waals Transition

Let us repeat the calculation of the critical points from Section 2.3 in more detail. Firstly,
the entropy on the level of kinetic theory is rather

S↑( f ) = −kB

∫
dr

∫
dp f (ln(h3 f )− 1) + kB

∫
drn( f ) ln(1 − bn( f )) (A1)

in order to be in the SI units at to yield the Sackur–Tetrode relation in the case of b = 0, see [5].
Solution to the equation Φ↑

f = 0 is sought in the form

f̃ =
1

(2πmkBT)3/2 n(r)e−
p2

2mkBT , (A2)

where m is the mass of one particle. In the case of n = const this leads to an algebraic equation for n.
The equation Φnnn = 0 (now taking derivative with respect to n due to the Ansatz (A2)) becomes

0 =
3kBb2

(1 − nb)2 + 2kB
nb3

(1 − nb)3 − kB

n2 , (A3)

solution of which is nc = 1/3b.
The equation Φnn = 0 reads

0 =
2kBb

1 − nb
+ kB

nb2

(1 − nb)2 − 2aE∗ + kB
n

, (A4)

where 2a = − ∫
dr′V(r − r) > 0. Using the value of nc, we obtain that

1
kBTc

= E∗
c =

27
8

kBb
a

. (A5)

157



Entropy 2020, 22, 978

The equation Φn = 0,

0 = kB ln λ3 − kB ln(1 − nb) + kB
nb

1 − nb
− 2aE∗n + kB ln n + N∗, (A6)

where λ = h/
√

2πmkBT is the thermal de Broglie wavelength, leads, using nc and E∗
c ,

to N∗ = kB ln(b/λ3)kB ln(2/3)− 5kB/4.
Note also that evaluating the thermodynamic potential itself at the solution (A2) leads to the van

der Waals equation of state,

− PV
T

= Φ( f̃ ) = −kB
Vn

1 − nb
+ n2V

a
T

, (A7)

where a solution n(E∗, N∗) of Equation (A6) should be substituted for n in order to obtain the lower
conjugate entropy S↓∗(E∗, N∗).
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Abstract: Information-based estimation techniques are becoming more popular in the field of
Ecological Inference. Within this branch of estimation techniques, two alternative approaches can
be pointed out. The first one is the Generalized Maximum Entropy (GME) approach based on a
matrix adjustment problem where the only observable information is given by the margins of the
target matrix. An alternative approach is based on a distributionally weighted regression (DWR)
equation. These two approaches have been studied so far as completely different streams, even
when there are clear connections between them. In this paper we present these connections explicitly.
More specifically, we show that under certain conditions the generalized cross-entropy (GCE) solution
for a matrix adjustment problem and the GME estimator of a DWR equation differ only in terms
of the a priori information considered. Then, we move a step forward and propose a composite
estimator that combines the two priors considered in both approaches. Finally, we present a numerical
experiment and an empirical application based on Spanish data for the 2010 year.

Keywords: ecological inference; generalized cross entropy; distributional weighted regression;
matrix adjustment

1. Introduction

Ecological inference (EI) is the process of drawing conclusions about individual-level behavior from
aggregate (historically called “ecological”) data, when no individual data are available. Situations where
the only available data are aggregated at a level other than the level of interest are quite common
in many application fields. This is the typical setting for Ecological Inference [1–3], Cross-level
Inference [4,5], Small Area Estimation [6], or disaggregation methods [7]. The basic idea is that, in
order to study the behavior of the individuals (or sub-groups of individuals), a microeconomic analysis
ought to be carried out using fairly localized individual data, and data which are aggregated by areal
units may be used in order to investigate the behavior of the individuals comprising those units. In this
paper, we specifically refer to the process of drawing conclusions about individual-level behavior
from aggregate data, when no individual data are available or when individual data are incomplete.
In this inferential context, one problem is that many different possible relationships at the individual
(or subgroup) level can generate the same observations at the aggregate (or group) level [8]. In the
absence of individual (or subgroup) level measurements (in the form of survey data), such information
needs to be inferred. Estimates of the disaggregated values for the variable of interest can be inferred
from aggregate data by using appropriate statistical techniques. However, in many situations, given
that the micro-data of interest are not available, the accuracy of any predicted value cannot be verified.
This research focuses on the estimation on disaggregated indicators by subclasses. Assume that we
have an indicator, yi·, that is observable across the different areas i = 1, . . . , T. Our objective is to
disaggregate it into an indicator yij for the j = 1, . . . , K different sub-categories (or sub-areas) that
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conform each class (or area) i. The information available for this inference exercise, together with the
indicator yi·, is another disaggregated indicator xij that is related to the target indicator yij. This paper
approaches this estimation problem in an attempt to unify two estimation strategies and it is organized
as follows. Section 2 explains the main features of the matrix-adjustment following the ideas of the
Generalized Cross Entropy (GCE) estimation introduced in [9], whereas in Section 3 the basis of the
Distributionally Weighted Regression (DWR) estimation are explained. Section 4 studies these two
strategies under a common approach and propose a composite prior estimator in line with the Data
Weighted Prior (DWP) proposed in [10,11]. The comparative performance of the three techniques
is evaluated by means of a numerical experiment in Section 5. Finally, Section 6 presents the main
conclusions of the paper.

2. Matrix-Adjustment and Distributionally Weighted Regression Problems

Within the family of IT estimators, [10] proposed a general solution for the estimation problem
described in the introduction basing on the minimization of the divergence between the target variable
and some prior information. Following this approach, each indicator yij is assumed as a discrete random
variable that can take M different values. Defining a supporting vector (for the sake of simplicity
assumed as common for all the yij) z′ = [z1, z2, . . . , zM] that contains the M possible realizations of the
targets with unknown probabilities p′i j =

[
pij1, pij2, . . . , pijM

]
, yij can be written as:

yij =
M∑

m=1

pijmzm (1)

Alternatively, this idea can be generalized in order to include an error term and define each yij as:

yij =
M∑

m=1

pijmzm + εi j (2)

In such a case, we assume that the yij elements are given from two sources: a signal that keeps the
resemblance with the priors xij, plus a noise term (εi j). The noise components can be included in order
to account for potential spatial heterogeneity and our uncertainty about the target variable. Basically,
we represent uncertainty about the realizations of the errors treating each element εi j as a discrete
random variable with L ≥ 2 possible outcomes contained in a convex set v′ = {v1, . . . , vL}, which for
the sake of simplicity will be assumed as common for all the εi j. We also assume that these possible
realizations are symmetric around zero (−v1 = vL). The traditional way of fixing the upper and lower
limits of this set is to apply the three-sigma rule [12]. Under these conditions, each εi j can be defined as:

εi j =
L∑

l=1

wijlvl; ∀i = 1, . . . , T; j = 1, . . . , K (3)

where wijl is the unknown probability of the outcome vl for the cell ij. Now, the yij elements can be
written as:

yij =
M∑

m=1

pijmzm +
L∑

l=1

wijlvl (4)

The solution to the estimation problem is given by the minimization of the Kullback-Leibler
divergence between the posteriors distributions p′s and the a priori probabilities q′ij =

[
qij1, qij2, . . . , qijM

]
.

The q′s reflect the information we have on the indicators xij, which are somehow related to our target
yij, being defined by the expression:
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xij =
M∑

m=1

qijmzm (5)

The solution to the estimation problems is given by minimizing the KL divergence between the p′s
and the q′s. If we do not have an informative prior, the a priori distributions are specified as uniform(
qij =

1
M ; ∀m = 1, . . . , M

)
, which leads to the GME solution. The uniform distribution is usually set as

the natural prior W0 for the error terms. Specifically, the constrained minimization problem can be
written as:

Min
p,W

D
(
p, W‖q, W0

)
=

M∑
m=1

T∑
i=1

K∑
j=1

pijmln
(pijm

qijm

)
++

L∑
l=1

T∑
i=1

K∑
j=1

wijlln

⎛⎜⎜⎜⎜⎜⎜⎝
wijl

w0
i jl

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

subject to:

yi· =
K∑

j=1

⎛⎜⎜⎜⎜⎜⎝
M∑

m=1

pijmzm +
L∑

l=1

wijlvl

⎞⎟⎟⎟⎟⎟⎠C· j; i = 1, . . . , T (7)

M∑
m=1

pijm =
L∑

l=1

wijl = 1; 1 ∀i = 1, . . . , T; j = 1, . . . , K (8)

Restrictions (8) are just normalization constrains, whereas Equation (7) reflects the observable
information that we have on the relationship between the aggregates yi· and the indicators yij through
the observable K-dimensional vector C· j. Denoting as ŷ0

i j to the solution in absence of this information,

this is given by the indicator xij; i.e., ŷ0
i j = xij =

M∑
m=1

qijmzm.

Following Golan et al., (1994), the aggregate vectors yi· and C· j are, respectively, row and column
margins in a matrix of inter-industry flows. However, the availability of sample (observable) and
out-of-sample (unobservable) information could be different in our estimation problem, because in the
inter-industry problem it is natural to have known K + T data, but in other estimation problems we
only have aggregate information across the dimension of T through yi·. For example, if we want to
disaggregate the income per capita in each area i (yi·) into the income per capita of its sub-populations
(men and women, population classified by education levels, etc.) being observable the weight of each
sub-population on the total population, but not the overall income per capita of each sub-group.

Sometimes the aggregate C· j is not observable and it is replaced by the observation of the weights
given to the sub-category j in each area i (θi j) that defines the indicator yi· as the weighted sum:

yi· =
K∑

j=1

yijθi j; i = 1, . . . , T (9)

Additionally, the relation between the target indicators yij and the prior information xij will be
made explicit by means of a functional relationship like:

yij = αi + βi jxi j + εi j (10)

and, consequently:

yi· =
K∑

j=1

(
αi + βi jxi j + εi j

)
θi j; i = 1, . . . , T (11)

Equations (10) and (11) contain the starting point of the traditional approach to spatial
disaggregation based on some Distributionally Weighted Regression (DWR) of the type proposed
in [13,14]. In Equation (10), the unobservable yij are defined as a linear function of xij, allowing for
slope heterogeneity (note that the βi j can be different for each area and sub-class) and an specific
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area indicator αi plus an error term εi j. For the estimation of model Equation (10), the same IT-based
strategy is followed, by defining for the M possible realizations of each parameter, the support vector
b′ = [b1, b2, . . . , bM] (again common for parameters αi and βi j) with unknown probabilities pα, pβ to be
recovered. The noise components εi j are treated in the same ways as in Equation (5).

Once the respective supporting vectors and the a priori probability distributions are set, the DWR
estimation can be made in the terms of the following GCE program:

Min
pα,pβ,W

D
(
pα, pβ, W‖qα, qβ, W0

)
=

M∑
m=1

T∑
i=1

pαmiln
(

pαmi
qαmi

)
+

M∑
m=1

T∑
i=1

K∑
j=1

pβmijln

⎛⎜⎜⎜⎜⎝ pβmij

qβmij

⎞⎟⎟⎟⎟⎠+
L∑

l=1

T∑
i=1

K∑
j=1

wijlln
(

wijl

w0
i jl

) (12)

subject to:

yi· =
K∑

j=1

⎛⎜⎜⎜⎜⎜⎝
M∑

m=1

pαmib
α
m +

M∑
m=1

pβmijb
β
mxij +

L∑
l=1

wijlvl

⎞⎟⎟⎟⎟⎟⎠θi j; i = 1, . . . , T (13)

M∑
m=1

pαmi =
M∑

m=1

pβmij =
L∑

l=1

wijl = 1;∀i = 1, . . . , T; j = 1, . . . , K (14)

Both for the parameters and the errors, the supporting vectors usually contain values symmetrically
centered on zero. If all the a priori distributions (qα, qβ, W0) are specified as uniform, then the GCE
solution reduces to the GME one.

3. Unifying the Two Approaches: A Composite Prior Estimator

In this section, we will unify the two previous approaches under a common framework showing
that the matrix adjustment problem introduced in [9] is simply a case of a DWR equation (if the
available observable information is the same) with not necessarily uniform distributions for qα and qβ.
We let out of the discussion the a priori distribution of the errors W0 because the uniform solution is
the most intuitive. We will base our explanation on the most common case of supporting vectors with
M ≥ 2 values distributed symmetrically around zero.

Note that the GME solution to the DWR problem departs from the specification of a priori
distributions that assume that the parameters can take any value as long as they remain in the bounds
set in the supports. In contrast, in the solution offered in [9] for the inter-industry flows estimation, no
area-specific (row-specific in terms of the problem discussed there) effect was considered and the prior
expectation on yij is given by the corresponding cell xij. These assumptions can be formulated in terms
of the a priori distributions used in the DWR approach, which means that both approaches can be
treated as particular cases of a general estimation problem.

The a priori distribution qα can be defined in order to consider the assumption of avoiding any
area-specific parameter αi from Equation (10). As opposed to the GME’s solution to the DWR estimation
where they are specified as uniform (qαu), now we specify an alternative non-uniform distribution (qαn)
with a point mass at bαm = 0. Similarly, the a priori distribution qβ should reflect that the uninformative
estimation of yij is the regressor xij. This non-uniform distribution (qβn), consequently, should be
specified as fulfilling the condition ŷ0

i j = xij, or alternatively:

∑
M
m=1bβmqβnijm = 1; i = 1, . . . , T; j = 1, . . . , K (15)

Appendix A illustrates how specifying such an a priori distribution for the simplest case with
M = 2 values in the supporting vectors. Having made explicit that, under the same information
availability, the two approaches only differ on the a priori distributions specified, it is possible to apply
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a composite prior estimator that considers both possibilities in the same fashion as in in [10,11]. This
estimator is very flexible in the assumptions made on the a priori distributions, given that it allows
for including both uniform and non-uniform priors. The estimator it is called Data Weighted Prior
(DWP) because it is the information observed which weighs the two alternative priors considered.
Furthermore, the authors of [10] prove that its estimates present relatively lower variance than those
estimated from a GCE program.

Specifically, the DWP program can be written for our problem as:

Min
pα,pβ,Pγ,W

D
(
pα, pβ, pγ, W‖qα, qβ, qγ, W0

)
=

(
1− γαi

) M∑
m=1

T∑
i=1

pαu
mi ln

(
pαu

mi
qαu

mi

)
+

(
1− γβi j

) M∑
m=1

T∑
i=1

K∑
j=1

pβumijln

⎛⎜⎜⎜⎜⎝ pβumij

qβumij

⎞⎟⎟⎟⎟⎠+
γαi

M∑
m=1

T∑
i=1

pαn
mi ln

(
pαn

mi
qαn

mi

)
+ γ

β
i j

M∑
m=1

T∑
i=1

K∑
j=1

pβnmijln

⎛⎜⎜⎜⎜⎝ pβnmij

qβnmij

⎞⎟⎟⎟⎟⎠+
H∑

h=1

T∑
i=1

pγαhi ln
(

pγαhi
qγαhi

)
+

H∑
h=1

T∑
i=1

K∑
j=1

pγβhijln

⎛⎜⎜⎜⎜⎝ pγβhij

qγβhij

⎞⎟⎟⎟⎟⎠+
L∑

l=1

T∑
i=1

K∑
j=1

wijlln
(

wijl

w0
i jl

)

(16)

subject to:

yi· =
K∑

j=1

⎛⎜⎜⎜⎜⎜⎝
M∑

m=1

pαmib
α
m +

M∑
m=1

pβmijb
β
mxij +

L∑
l=1

wijlvl

⎞⎟⎟⎟⎟⎟⎠θi j; i = 1, . . . , T (17)

M∑
m=1

pαmi =
M∑

m=1
pβmij =

H∑
h=1

pγαhi =
H∑

h=1
pγβhij =

L∑
l=1

wijl = 1;

i = 1, . . . , T; j = 1, . . . , K
(18)

The γ parameters are estimated simultaneously with the rest of coefficients of the model. Each γ
measures the weight given to the uniform prior qu for each parameter and it is defined as γ =

∑H
h=1 bγh pγh ,

where bγ1 = 0 and bγH = 1 are, respectively, the lower and upper bound defined in the supporting
vectors with H values for these parameters (b′ = (0, . . . , 1)→ 0 ≤ γ ≤ 1). The a priori probability
distributions are always uniform

(
qγh = 1

H

)
and the same is applied for the errors (w0

i jl =
1
J ).

To understand the logic of this estimator, an explanation on the objective function of the previous
minimization program is required. Note that Equation (16) is divided in four terms. The last term
measures the Kullback divergence between the posterior and the prior probabilities for the noise
component of the model. The first term quantifies this divergence between the recovered probabilities
and the uniform priors for each coefficient, being this divergence weighted by the corresponding
(1− γ). Next, the second element of (16) measures the divergence with the non-uniform priors and
it is weighted by γ. The third element in (16) relates to the Kullback divergence of the weighting
parameters γ. Equation (16) is minimized subject to the set of constraints present in Equations (16)–(18).
Again, the restrictions in (18) ensure that the posterior probability distributions of the estimates and
the errors are compatible with the observations, and Equation (18) are just normalization constraints.

4. A Numerical Experiment

The numerical simulation compares the performance of the estimation strategies explained
previously to estimate a set of latent indicators (T × K). The target will be the unknown elements
yij (output per worker, income per capita, etc.) that measure the amount of certain variable zij per
unit of other auxiliary variable li j. The values of the later are drawn from a normal distribution as
li j ∼ N(20, 2), which define the weights as θi j = li j/li· We also simulate an observable disaggregated

indicator xij drawn as xij ∼ N(10, 1) related to our unobservable target yij.
In the context of simulation, we assume that the indicator yij is generated as a convex combination

from two possible schemes:
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yij = δ
[
αi + βi jxi j + εi j

]
+ (1− δ)

[
ηi jxi j + εi j

]
; i = 1, .., T; j = 1, .., K. (19)

This equation contains two sets of slope parameters, namely βi j and ηi j, which relate the regressor
xij with the target yij. Furthermore, a fixed area effect αi is also included. These parameters have been
arbitrarily set as:

αi ∼ N(5, 1)
βi j ∼ N(0, 0.1)
ηi j ∼ N(1, 0.1)

(20)

and they are kept constant along the simulations. The error term εi j is drawn as εi j ∼ N(0, 0.1) and it
is generated in each new trial of the experiment.

The first part of the equation (αi + βi jxi j + εi j) shows that yij can be generated from a process like
the one depicted in (16): a linear function of xij with slope heterogeneity plus a specific area effect
(see 11). The second term (ηi jxi j + εi j) does not include any specific area indicator and assumes that
yij is exclusively affected by xij (see 2). Equation (19) includes the scalar δ bounded between 0 and 1
that weighs the two possible sources that generate the variable. If we make δ→ 1 , the first possible
mechanism takes over and the contrary happens when we make δ→ 0 . Note that if we set δ = 1
we are imposing a data-generating process in line with the assumptions made in the GME program
depicted in Equations (12)–(14) for the DWR estimation. On the contrary, if we set δ = 0, this is a
scenario compatible with the assumptions of non-uniform priors for the parameters that reflected
the belief of absence of area-specific effects and a slope parameter close to 1 (labeled as GCE when
the simulation results are shown). Any other value of δ between these two extreme cases shows a
data-generating process that is not fully incorporated in the priors of either alternative. It is in this
type of intermediate situation with the composite prior estimator (labeled as DWP in the simulation
results) described in Equations (16)–(18) can be useful, because both priors are considered and we let
the data speak for themselves and favor the most realistic one.

The unobservable indicators generated in (20) will be estimated by the three estimation strategies
described in the paper (DWR, GCE and DWP estimators) with equal amounts of observable information

(the aggregates yi· =
K∑

j=1
yijθi j). We have specified a common supporting vector for all the parameters

with M = 3 points at b′ = (−10, 0, 10). Similarly, a three-point (H = 3) support vector with values 0,
0.5 and 1 has been set for the weighting parameters γ. For the error terms, the support with L = 3
values has been chosen, applying the three-sigma rule with uniform a priori weights.

In the experiment, we compare the performance of the three approaches under different scenarios.
Three different dimensions (T×K) of the matrix with the target indicators yij have been considered and
for each case we set arbitrarily six different values of scalar δ: 0.0; 0.2; 0.4; 0.6; 0.8 and 1.0. In each one
of these 18 scenarios, we have carried out 200 trials and computed the mean of the absolute deviation
in percentage between our estimates and the real yij. Table 1 shows the results:

Table 1. Results of the numerical experiment (1000 replications): deviation figures.

Matrix 1
(20 × 4)

Matrix 2
(50 × 4)

Matrix 3
(100 × 4)

γ = 0.00

DWR
13.126
(0.049)
[1.544]

13.642
(0.126)
[1.622]

14.837
(0.040)
[1.767]

GCE
11.420
(0.126)
[1.275]

10.047
(0.054)
[1.232]

11.633
(0.038)
[1.382]

DWP
11.546
(0.087)
[1.321]

11.267
(0.091)
[1.352]

12.645
(0.002)
[1.494]
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Table 1. Cont.

Matrix 1
(20 × 4)

Matrix 2
(50 × 4)

Matrix 3
(100 × 4)

γ = 0.20

DWR
13.697
(0.053)
[1.429]

13.667
(0.116)
[1.462]

14.791
(0.035)
[1.595]

GCE
12.623
(0.131)
[1.249]

10.639
(0.044)
[1.276]

11.996
(0.044)
[1.297]

DWP
12.393
(0.091)
[1.248]

11.420
(0.081)
[1.233]

12.654
(0.004)
[1.356]

γ = 0.40

DWR
15.307
(0.057)
[1.382]

14.357
(0.107)
[1.357]

15.381
(0.029)
[1.479]

GCE
14.788
(0.136)
[1.282]

12.213
(0.035)
[1.288]

13.306
(0.049)
[1.278]

DWP
14.247
(0.095)
[1.243]

12.258
(0.072)
[1.175]

13.406
(0.009)
[1.282]

γ = 0.60

DWR
18.565
(0.062)
[1.399]

15.922
(0.097)
[1.307]

17.152
(0.024)
[1.429]

GCE
18.603
(0.141)
[1.373]

15.264
(0.025)
[1.288]

16.098
(0.055)
[1.330]

DWP
17.666
(0.100)
[1.300]

14.222
(0.062)
[1.182]

15.465
(0.015)
[1.278]

γ = 0.80

DWR
25.047
(0.067)
[1.466]

19.109
(0.088)
[1.313]

20.898
(0.018)
[1.439]

GCE
26.062
(0.145)
[1.519]

20.652
(0.016)
[1.409]

21.302
(0.060)
[1.449]

DWP
24.405
(0.105)
[1.409]

18.271
(0.053)
[1.255]

19.764
(0.020)
[1.341]

γ = 1.00

DWR
42.350
(0.071)
[1.578]

26.659
(0.079)
[1.374]

31.769
(0.013)
[1.506]

GCE
46.481
(0.149)
[1.711]

31.563
(0.006)
[1.595]

34.915
(0.066)
[1.625]

DWP
42.903
(0.109)
[1.564]

27.362
(0.043)
[1.385]

31.829
(0.026)
[1.466]

Values on each cell report the mean absolute deviation (in %) between the real generated target values and the
estimated ones. Values in parentheses show the average bias, on absolute terms (ABIAS), and the figures in brackets
show the root of the mean squared errors of the estimates (RMSE).

Independently of the estimation approach, the numbers on Table 1 show some common patterns
to the three of them. The deviations increase with the value of the scalar δ given that high values of
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this scalar give more weight to the part of the data-generating process that includes an area-specific
effect, which makes the yij indicators more difficult to predict. The errors seem more stable regarding
the different sizes of the target matrices.

If we pay attention to the comparative performance among the three approaches evaluated in
the experiment, the results indicate (not surprisingly) that, for low values of the scalar δ, it seems
preferable considering that the GCE approach does not introduce any area-specific effect and considers
the regressor xij as the best prediction in absence of observable information. The longer the value
of this scalar, the better the relative performance of the GME-DWR approach (based on a priori
uniform distributions).

The rule of thumb would be, consequently, to use the former when we suspect that no area-specific
effect is present (if the second term in Equation (19) dominates) and to favor the latter otherwise
(if the first term is more important). In empirical estimation problems, is virtually impossible to know
beforehand which one of the two terms is more important. It is in these situations when the use of the
composite prior estimator can be helpful. The DWP approach generally outperforms the competing
estimators for intermediate values of δ (ranging from 0.4 to 0.8). These medium values indicate some
degree of uncertainty about the type of process that generates the data to be estimated. Moreover,
the DWP approach can be seen as a conservative solution: even when one of the two parts of the
process is clearly dominant (δ = 0 or δ = 1), the composite prior does not perform much worse than
the best of the three options. The losses in terms of prediction, however, can be larger if we choose one
single-prior estimator when the other is the best option (see the first and last rows of Table 1).

5. An Empirical Application: Obtaining Disaggregated Information on Wages

In order to illustrate the performance of the proposed estimator, it will be applied to solve an
empirical problem of disaggregating data of average wages for Spain. The most detailed information
about non-agricultural wages in Spain is published in the Wage Structure Survey (Encuesta de Estructura
Salarial). The complete version of this survey is conducted by the Spanish Statistical Office (INE)
every four years, being the corresponding to 2010 one of the most recent ones. In intermediate years,
however, only partial data are collected and the microdata are not released. If, for example, we want to
explore the differences across industries on average wages by gender and type of working day in a
year where the complete statistical operation is not conducted, the only information we have are at
aggregate level. This situation happens, for example, in 2011, where the only available data on are the
aggregates reported in Table 2, which do not allow disaggregated differences between male and female
workers to be analyzed depending on the industry they belong to:

Table 2. Available information on annual wages by industry, type of working day and gender.
Wage Structure Survey, 2011.

Industry Mean Wage (EUR)

Mining and quarrying industries 29,223
Manufacturing industry 25,308

Supply of electrical energy, gas and steam 50,371
Water supply, sewerage and waste management 25,570

Construction 22,541
Trade and repair of vehicles 19,445

Transport and storage 23,347
Accommodation 14,235

Information and communications 32,491
Financial and insurance activities 41,124

Real estate activities 20,349
Professional, scientific and technical activities 25,350
Administrative and support service activities 16,199

Public administration 27,816
Education 21,565
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Table 2. Cont.

Industry Mean Wage (EUR)

Health and social services activities 26,058
Arts, recreation and entertainment activities 18,106

Other services 17,035

Type of Working Day and Gender Mean Wage (EUR)

Full-time female 23,693
Full-time male 27,596

Part-time female 10,078
Part-time male 11,233

In such a context, if the researcher wants to study wage gender gaps across industries it would
be necessary to apply an estimation procedure that produces disaggregated values for this specific
year, since the official aggregated data do not allow for this type of analysis. The values in Table 2
provide the aggregates required for applying our DWP estimator. Vector y, with dimension (18× 1)
and elements yi·, contains the mean wage for each industry and our estimation target will be the
unknown yij elements, where sub-index j refers to the type of worker (classified into four categories:
full-time males, full-time female, part-time male and part-time females). The information in Table 2 is
also useful for setting a regressor (xij) for our analysis. In particular, the aggregate mean wages for
each type of worker (xi·, in the four bottom rows of Table 2) will be used for this purpose, assuming
that xi· = xij, j = 1, . . . , 4. The additional information required to define the weights (θi j) has been
taken from the Spanish Labor Force Survey (EPA) corresponding to that year, where we can find
information about the number of workers classified by industry, type of working day and gender.
With all this information, the DWP estimator has been applied, specifying identical support vectors as
those described in the previous section with the numerical simulation, and the estimates obtained are
shown in Table 3:

Table 3. DWP estimates on disaggregated mean annual wages (EUR) by industry, type of working day
and gender, 2011.

Industry
Full-Time,

Female
Full-Time,

Male
Part-Time,

Female
Part-Time,

Male

Mining and quarrying industries 13,338 31,307 5311 5840
Manufacturing industry 16,323 29,220 5738 5911
Supply of electrical energy, gas and steam 36,909 55,191 7445 7330
Water supply, sewerage and waste management 14,301 28,675 5419 6135
Construction 12,459 24,134 5239 5987
Trade and repair of vehicles 19,603 23,324 7453 6298
Transport and storage 14,336 26,803 5664 6248
Accommodation 15,473 17,508 6553 6230
Information and communications 23,483 39,877 6741 7326
Financial and insurance activities 38,566 46,664 7946 6078
Real estate activities 21,301 23,487 7301 6299
Professional, scientific and technical activities 25,022 29,926 7984 6565
Administrative and support service activities 17,383 20,534 9142 6290
Public administration 24,433 32,196 6269 6117
Education 25,838 21,708 8396 6720
Health and social services activities 31,832 20,406 9049 6078
Arts, recreation and entertainment activities 17,460 24,232 8094 8778
Other services 19,600 18,896 7537 6116

The aggregate information classified by industry in Table 2 displayed a high variability, ranging
from slightly more than EUR 14,000 for the average worker in the Accommodation industry to almost
three times higher in Financial and Insurance services. Additionally, the aggregates also showed that
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the male workers earned more on average than the female workers. Specifically, full-time male workers
earned on average around 16% than their female counterparts, whereas this gap was around 11% in
the case of part-time workers. This information, however, does not allow for checking if this gender
differences on wage keep stable independently on the industry. The estimates obtained by the DWP
estimator and reported on Table 3 help to shed some light on this matter.

According to the outcomes of the estimation, the gender gap for full-time workers is much larger in
the case of economic branches related to mining, manufacturing or construction than in service activities.
Furthermore, for the specific case of Education and Health and social services activities, we estimate
significant positive difference for full-time female workers. Something similar, but to a lesser extent,
happens with the case of part-time workers: the mean gender gap in favor of male workers, according
to the estimates, is mainly produced by the higher wages received in mining, manufacturing and
construction, but in general the activities related to services tend to alleviate this gap. Detecting these
differential patterns across industries is possible due to the disaggregated information contained in the
estimates, which was partially hidden in the aggregated averages. Additionally, we have explored how
robust are the estimates and the patterns found by modifying the supporting vectors, which in turn
impact on the priors, as depicted in equation (15). The estimates reported in Table 3 correspond to a
case where the support vectors have been defined as b′ = [−100,0,100] with M = 3 and common for
parameters αi and βi j. Appendix B reports the same estimates as in Table 3, where the support vectors
are defined as b′ = [−10,0,10] (Table A1) and b′ = [−1,000,0,1,000] (Table A2) in order to check if having
wider or narrower vectors impacts on the results. Despite some of the minor differences produced by
the numerical simulation, the general patterns seem to be robust to this specification.

6. Conclusions

In this paper, we have tackled the problem of providing reliable estimates of a target variable in a
set of small geographical areas, by showing that under certain conditions the generalized cross-entropy
(GCE) solution for a matrix adjustment problem and the GME estimator of a DWR equation differ
only in terms of the a priori information considered. Then, a composite estimator that combines the
priors considered in both approaches is proposed and the performance among the three approaches is
evaluated throughout Montecarlo experiments.

The proposed method may represent a new basis to recover estimate at a disaggregate level in
presence of: (i) sampling and response errors; (ii) small samples. Within this framework, minimal
distributional assumptions are necessary, and a dual loss function is used to take into account both
the estimation precision and the prediction objectives. The choice of the prior is data based and
endogenously determined and the method provides a simple way of introducing and evaluating
prior information in the estimation process. The DWP estimation procedure seem to be a promising
alternative model-based estimation technique because the implementation of the method involves
minimum outlay of computing, it does not depend on any hypotheses regarding the form of the
error distribution in the model, and it produces good results for small-sized samples, especially in
the presence of spatial heterogeneity. Finally, theoretical and other non-sample information may be
directly imposed on the DWP estimates much more easily than the classic Maximum likelihood and
Bayesian estimation techniques.

The results indicate that for low values of the parameter δ (that measures the weight given to
the uniform prior for each parameter), it seems preferable considering the GCE approach that does
not introduce any area-specific effect and considers the indicator observed at area level as the best
prediction in absence of observable information. The longer the value of this scalar, the better the
relative performance of the GME-DWR approach (based on a priori uniform distributions).

The working of the proposed estimation procedure has been also illustrated by applying the
procedure on the estimation of average wages for the Spanish industries in 2011, classified by gender
and type of working day. Our results have shown that the DWP estimation has the potential to obtain
disaggregated estimates based on minimal assumptions about the data-generating process.
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Appendix A

To simplify the analysis, but without loss of generality, we assume that we consider a supporting
vector bβ that contains M = 2 symmetric values, namely –m and m, with respective prior probabilities
qβ1 and qβ2. Consequently:

ŷ0
i j =

[
−mqβ1 + mqβ2

]
xij =

[
−mqβ1 + m

(
1− qβ1

)]
xij (A1)

The a priori probability distribution qβ that guaranties that ŷ0
i j = xij is:

x0
i j =

[
−mqβ1 + m

(
1− qβ1

)]
xij (A2)

1 =
[
−mqβ1 + m

(
1− qβ1

)]
= qβ1(−2m) + m (A3)

and the solution is:
qβ1 = m−1

2m
and

qβ2 = 1− qβ1 = 1− m−1
2m = m+1

2m

(A4)

whereas in the GME-DWR approach, the prior used for these parameters is qβ1= qβ2 = 1
2 .

Appendix B Analysis of the Sensitivity of the Estimates

Table A1. DWP estimates on disaggregated mean annual wages (EUR) by industry, type of working
day and gender, 2011. Support vectors as b′ = [−10,0,10].

Industry
Full-Time

Female
Full-Time

Male
Part-Time

Female
Part-Time

Male

Mining and quarrying industries 13,161 31,325 5231 5749
Manufacturing industry 16,206 29,259 5667 5822

Supply of electrical energy, gas and steam 22,195 58,689 5963 6238
Water supply, sewerage and waste management 14,147 28,706 5342 6051

Construction 12,275 24,150 5160 5903
Trade and repair of vehicles 19,606 23,332 7435 6222

Transport and storage 14,190 26,839 5594 6168
Accommodation 15,491 17,496 6562 6174

Information and communications 23,414 39,917 6679 7253
Financial and insurance activities 38,574 46,663 7888 5988

Real estate activities 21,325 23,476 7273 6222
Professional, scientific and technical activities 25,027 29,932 7950 6488
Administrative and support service activities 17,367 20,519 9199 6220

Public administration 24,415 32,215 6204 6031
Education 25,899 21,618 8379 6648

Health and social services activities 31,890 20,254 9023 5991
Arts, recreation and entertainment activities 17,407 24,263 8094 8771

Other services 19,651 18,825 7537 6039
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Table A2. DWP estimates on disaggregated mean annual wages (EUR) by industry, type of working
day and gender, 2011. Support vectors as b′ = [−1,000,0,1,000].

Industry
Full-Time

Female
Full-Time

Male
Part-Time

Female
Part-Time

Male

Mining and quarrying industries 13,276 31,313 5270 5810
Manufacturing industry 16,109 29,288 5620 5869

Supply of electrical energy, gas and steam 21,789 58,787 5866 6212
Water supply, sewerage and waste management 14,188 28,699 5358 6053

Construction 12,448 24,138 5210 5931
Trade and repair of vehicles 19,388 23,603 7070 6203

Transport and storage 14,222 26,835 5558 6146
Accommodation 15,416 17,670 6328 6149

Information and communications 22,962 40,148 6450 7046
Financial and insurance activities 37,672 47,434 7474 6015

Real estate activities 21,066 23,806 6949 6205
Professional, scientific and technical activities 24,618 30,351 7510 6427
Administrative and support service activities 17,366 20,907 8567 6210

Public administration 23,958 32,537 6070 6046
Education 25,727 22,124 7922 6579

Health and social services activities 31,809 20,810 8506 6028
Arts, recreation and entertainment activities 17,335 24,582 7618 8309

Other services 19,539 19,168 7183 6058
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