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Preface to ”Landslide Hazard and Environment Risk

Assessment”

This book presents a print version of the Special Issue of the journal Land dedicated to “Landslide

Hazard and Environment Risk Assessment”. The overall goal of this Special Issue was to present

innovative approaches for the analysis and mapping of landslide phenomena. Methodologies

for landslide susceptibility mapping, slope stability and environmental risk management in

mass-movement-prone areas, and multidisciplinary approaches for landslide analysis in different

geomorphological/morphostructural environments were the main research and targets that the

papers published in this Special Issue aimed to address. In the twelve papers collected in this

volume, interested readers will find a collection of scientific contributions providing a sample of

the state-of-the-art and forefront research in these fields. Among the articles published in the

Special Issue, the geographic distribution of the case studies is wide enough to attract the interest

of an international audience of readers. The articles collected here will hopefully provide useful

insights into advancements in scientific approaches for the landslide susceptibility mapping and slope

stability at both the local and regional scales, highlighting new ideas and innovations in the analysis

of various types of mass movements (e.g., DGSDs, snow avalanches, shallow landslides, and complex

and historical landslides).

Enrico Miccadei, Cristiano Carabella, Giorgio Paglia
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Landslide Hazard and Environment Risk Assessment

Enrico Miccadei *, Cristiano Carabella and Giorgio Paglia

Department of Engineering and Geology, Università degli Studi “G. d’Annunzio” Chieti-Pescara,
Via dei Vestini 31, 66100 Chieti Scalo, Italy; cristiano.carabella@unich.it (C.C.); giorgio.paglia@unich.it (G.P.)
* Correspondence: enrico.miccadei@unich.it

1. Introduction

Landslides are among the most widespread and frequent natural hazards that lead to
fatalities, socioeconomic losses, and property damage globally [1,2]. These phenomena also
play essential roles in landscape evolution and occur in relation to peculiar predisposing
factors (i.e., morphology, lithology, geological setting, land use, climate, etc.) and to
triggering events (i.e., extreme rainfall events, earthquakes, wildfires, etc.) [3–6]. According
to Varnes [7] and Cruden [8], a “landslide” can be defined as the movement of a mass of rock,
debris, or earth downward and outward of a slope under the influence of gravity. The range
of landslides is particularly wide, making them one of the most diversified and complex
natural phenomena with impacts on territories in all geographic areas. The definition of
their affectable areas and recurrence is complicated since they are linked to complex mass
movements and to the difficulty in deriving historical data. Instead, discriminating the
spatial distribution of potentially unstable areas can be easier by assessing the likelihood of
landslides occurring in a region based on the local environmental conditions [9]. Spatial
occurrence can be inferred from numerous approaches such as inventory-based mapping,
deterministic and probabilistic techniques, heuristic approaches, statistical analysis, and
multi-criteria decision-making analysis [10–12]. As a result, it is crucial to follow stepwise
approaches mainly involving geomorphological field activities, remotely sensed analysis,
numerical modelling, and innovative GIS techniques in order to provide correct landslide
hazard assessments and zonation and to support best practices for long-term risk mitigation
and reduction.

Given the above scenario, the overall goal of this Special Issue was to present inno-
vative approaches for the analysis and mapping of landslide dynamics, mechanisms, and
processes. In the collected papers, readers will find a compendium of scientific contribu-
tions providing a sample of the state-of-the-art and forefront research in landslide hazard
assessment. Each article offers valuable advancements in scientific approaches for landslide
susceptibility mapping and slope stability at the local and regional scales, highlighting
new ideas and innovations in analysing various mass movements (e.g., DGSDs, snow
avalanches, shallow landslides, and complex and historical landslides).

2. Overview of the Special Issue

This Special Issue reports scientific improvements in landslide hazard and environ-
mental risk assessment with contributions written by authors from Italian regions and
other countries, facilitating the interest of an international audience of readers. In detail, it
contains 12 peer-reviewed papers focused on (i) methodologies for landslide susceptibility
mapping, (ii) slope stability and environmental risk management in mass movement-prone
areas, and (iii) multidisciplinary approaches for landslide analysis in different geomorpho-
logical/morphostructural environments.

2.1. Methodologies for Landslide Susceptibility Mapping

Zhou et al. [13] developed a landslide susceptibility map at the national level in Kenya.
First, a hierarchical evaluation index system containing ten landslide contributing factors

Land 2022, 11, 428. https://doi.org/10.3390/land11030428 https://www.mdpi.com/journal/land
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and their subclasses was established to produce a susceptibility map. Then, the weights of
these indexes were determined through pairwise comparisons. The landslide inventory
and landslide causative factors used in this study were collected from various sources.
Triangular fuzzy numbers (TFNs) were widely employed to scale the relative importance
based on experts’ opinions. The entire Kenyan territory was divided into five susceptibility
levels, highlighting regions in which further studies were conducted to improve planning
and land resource management.

Tavoularis et al. [14] developed a landslide susceptibility map for the entire area of the
Attica region (Greece) using the Rock Engineering System (RES). This semi-quantitative
heuristic methodology was applied through an interaction matrix. Ten parameters, selected
as controlling factors, were statistically correlated with the spatial distribution of slope
failures. The generated model was validated using historical landslide data, field-verified
slope failures, and a prototype technique developed by the Oregon Department of Geology
and Mineral Industries. The resulting data allowed for the construction of an updated
geodatabase and the definition of susceptibility levels, representing the basic steps in
producing upcoming landslide hazard and risk maps.

Polykretis et al. [15] developed a hybrid landslide susceptibility model for the vicinity
of the Pinios artificial lake (Ilia, Greece). In a GIS-based framework, the model was defined
by integrating two different statistical analysis models: the multivariate Geographical
Detector (GeoDetector) and the bivariate information value (IV). A landslide inventory of
60 past landslides and 14 conditioning factors was incorporated in the model and used to
compose the spatial database. The resulting data confirmed the performance of GeoDIV in
the definition of the spatial distribution of zones of potential landslides over the study area.
The produced LS map represents a basis for regional or local authorities to develop both
general (long-term) and emergency (short-term) strategies.

Abraham et al. [16] focused on the factors affecting landslide susceptibility mapping.
Five different Machine Learning (ML) algorithms were used to investigate the Wayanad
district in Kerala (India), involving different sampling strategies and training datasets.
The results show that Naïve Bayes (NB) and Logistic Regression (LR) algorithms are less
sensitive to the sampling strategy and data splitting. In contrast, the performance of the
other three algorithms—Random Forest (RF), K Nearest Neighbors (KNN), and Support
Vector Machine (SVM)—is considerably influenced by the sampling strategy. Hence, as
shown in the final H-index plots, both the choice of algorithm and the sampling strategy
are critical in obtaining the best-suited landslide susceptibility maps.

2.2. Slope Stability and Environmental Risk Management in Mass Movement-Prone Areas

Segoni and Caleca [17] proposed a new set of environmental indicators for the fast
estimation of landslide risk at national scale. Italy was chosen as a test case. Landslide
susceptibility maps and soil sealing/land consumption maps were combined to derive a
spatially distributed indicator (LRI—Landslide Risk Index). Using GIS techniques, LRI was
aggregated at the municipal scale to define the Average Landslide Risk index (ALR) and
the Total Landslide Risk index (TLR). The proposed indexes cannot substitute a detailed
quantitative risk assessment; nevertheless, they can provide a preliminary overview of
the spatial distribution of landslide risk, offering valuable information to each Italian
municipality in planning sustainable urban growth.

Moradi et al. [18] presented a multi-method approach of site characterization com-
bined with field observation and a hydromechanical model. A failure-prone hillslope
near Bonn (Germany) was chosen as a study site. The field investigation allowed for con-
structing a three-dimensional slope model with geological units derived from drilling and
refraction seismic surveys. Mechanical and hydraulic soil parameters were derived from
laboratory analysis; water dynamics were monitored through geoelectrical monitoring.
The work presents a potential workflow to improve numerical slope stability analysis
through multiple data sources and outlines the usage of such a system for a site-specific
early warning system.
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Emeka et al. [19] focused on the effect of hydroseeded vegetation for slope reinforce-
ment. The article introduces vegetation establishment as a low-cost, practical measure
for slope stability through the ground cover and the root of the vegetation. The study
was conducted within the UPM, a government tertiary institution in Serdang, Selangor,
Peninsular Malaysia. Twelve conditioning factors were used through the Analytic Hierar-
chy Process (AHP) model to produce a landslide susceptibility map. Four seed samples,
namely ryegrass, rye corn, signal grass, and couch, were hydroseeded to determine the
vegetation root and ground cover’s effectiveness in stabilizing a high-risk susceptible slope,
suggesting variable landslide control benefits.

Fazzini et al. [20] performed a multidisciplinary analysis of detailed climatic and
geomorphological data integrated with GIS techniques to advance the snow avalanche
hazard assessment. Mass movement phenomena widely affected the Prati di Tivo area
(Abruzzo Region, Central Italy) with its well-developed tourist facilities. The resulting
data properly defined the main steps for developing a risk mitigation protocol. It involved
the provision of new data about the geomorphological setting of the study area and
the definition of a technical-scientific basis for civil protection plans required to increase
the knowledge of citizens and interested stakeholders about proper land management
considering multi-hazard scenarios (i.e., snow avalanches and landslides).

2.3. Multidisciplinary Approaches for Landslide Analysis in Different
Geomorphological/Morphostructural Environments

Demurtas et al. [21] focused on the evolution of deep-seated gravitational slope
deformations in East Sardinia (Italy). Their article highlights the connections between
Plio-Pleistocene tectonic activity and geomorphological changes in Pardu and Quirra River
valleys. The use of LiDAR, high-resolution uncrewed aerial vehicle digital photogrammetry
(UAV-DP) and geological–geomorphological surveys enabled a depth morphometric analy-
sis and the creation of interpretative 3D models. Multi-source and multi-scale data showed
that the state of activity of the DGSDs is closely related to uplift and geomorphological
processes. It is recorded by geomorphological indicators, such as fluvial captures, engraved
valleys, waterfalls, and heterogeneous water drainage.

Aringoli et al. [22] focused on a geomorphological hazard analysis in an active tectonic
area. The Sibillini Mountains (Central Italy) sector was chosen as the study area for the
complex tectonic-structural setting, recent seismic sequences, and evident traces of huge
landslides. An aerophoto-geological analysis and geomorphological survey verified the
link between gravitational occurrences and in-depth tectonic-structural elements. The
resulting data show the relationship between tectonic structures, critical hydrogeological
conditions, and high-relief energies versus huge gravitational movements. Moreover, these
relationships could also play a significant role in differentiating the risk associated with
seismic and hydrogeological events.

Materazzi et al. [23] contributed to evaluating the best procedure to be implemented for
Landslide Hazard Assessment (LHA), comparing the results obtained using two different
approaches (geomorphological and numerical). The area chosen for the analysis is located
in a high hilly sector of the Adriatic side of the Central Apennines (Italy), characterized by
monoclinal reliefs and cuesta morphologies formed by differential tectonic movements in
a recent uplift area. Although preliminary, the results clarify the two different methods’
role, usefulness, and limits. Moreover, they demonstrate how a combined approach can
certainly provide mutual advantages by addressing the choice of the best numerical model
through direct observations and surveys.

Esposito et al. [24] focused on the relationships between the morphostructural/geological
framework and landslide types in the hilly piedmont area of the Abruzzo Region (Central
Italy). A detailed analysis of three selected case studies was carried out to highlight the
multitemporal geomorphological evolution of each landslide phenomenon. Historical
landslides were analysed using an integrated approach combining literature data and
landslide inventory analysis, relationships between landslide types and lithological units,

3
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detailed photogeological analysis, and geomorphological field mapping. The resulting data
defined some advances in the understanding of the spatial interrelationship of landslide
types, morphostructural setting, and climate regime in the study area.

3. Conclusions

Landslides are global geomorphological phenomena that occur in all geographic re-
gions in response to many predisposing and triggering factors. Directly and indirectly, they
impact territories, causing fatalities and huge socioeconomic losses due to environmental
degradation and rapid population growth. Consequently, to support sustainable territorial
plannings and operative activities, there is a clear need for valid land-use policies, and best
long-term risk mitigation and reduction practices. The contributions to this Special Issue
represent valuable scientific advances in geomorphological field activities, satellite remote
sensing, landslide susceptibility mapping, and numerical modelling, offering practical
support for mapping and monitoring of landslide dynamics at both the local and regional
scales. All landslide types have been considered, from DGSDs to complex and historical
landslides, from rockfalls to debris flows, and from slow-moving slides to shallow land-
slides. The results described in each article allow for the definition of mitigation activities
needed to manage permanent settlements, recreation infrastructures, buildings, and ski fa-
cilities. Each paper provides a scientific and methodological basis used to support the idea
that landslide hazard assessments must be accurately defined to help local administrations,
decision-makers, and interested stakeholders in land planning, emergency planning, and
protecting the environment and human life.
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Abstract: Landslide susceptibility mapping (LSM) is a cost-effective tool for landslide hazard
mitigation. To date, no nationwide landslide susceptibility maps have been produced for the entire
Kenyan territory. Hence, this work aimed to develop a landslide susceptibility map at the national
level in Kenya using the fuzzy analytic hierarchy process method. First, a hierarchical evaluation
index system containing 10 landslide contributing factors and their subclasses was established
to produce a susceptibility map. Then, the weights of these indexes were determined through
pairwise comparisons, in which triangular fuzzy numbers (TFNs) were employed to scale the relative
importance based on the opinions of experts. Ultimately, these weights were merged in a hierarchical
order to obtain the final landslide susceptibility map. The entire Kenyan territory was divided
into five susceptibility levels. Areas with very low susceptibility covered 5.53% of the Kenyan
territory, areas with low susceptibility covered 20.58%, areas with the moderate susceptibility covered
29.29%, areas with high susceptibility covered 29.16%, and areas with extremely high susceptibility
covered 15.44% of Kenya. The resulting map was validated using an inventory of 425 historical
landslides in Kenya. The results indicated that the TFN-AHP model showed a significantly improved
performance (AUC = 0.86) compared with the conventional AHP (AUC = 0.72) in LSM for the study
area. In total, 31.53% and 29.88% of known landslides occurred within the “extremely high” and
“high” susceptibility zones, respectively. Only 8.24% and 1.65% of known landslides fell within the
“low” and “very low” susceptibility zones, respectively. The map obtained as a result of this study is
beneficial to inform planning and land resource management in Kenya.

Keywords: Kenya; landslide susceptibility; fuzzy analytic hierarchy process; triangular fuzzy
numbers; GIS

1. Introduction

Every year, landslides cause a large number of deaths and enormous property losses in
mountainous areas [1]. Landslides are a prehistoric issue. It is currently receiving considerable
attention since damage induced by landslides has risen in recent years. Estimated fatalities from
landslides reached 32,322 between 2004 and 2010, though this value is likely underestimated [2].
The situation varies in different countries. Landslides are concentrated in developing countries or
regions, such as the Himalayan region and its surrounding areas in China and African countries.
Hence, more effort is required to reduce landslide risks within those countries. Within this topic,
the preemptive identification of landslide-prone areas through landslide susceptibility mapping (LSM)
is a very promising hazard mitigation approach.
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The term landslide susceptibility is a quantitative measure of the likelihood of slope failures under
a particular geological condition [3]. With the increasing availability of geospatial data and rapid
developments in computational science, numerous LSM methods have been proposed in the last three
decades. Most of these methods were built on geographic information systems (GISs). In a broad
sense, these LSM models can be summarized as qualitative (knowledge-based or inventory-based) and
quantitative (statistically or physically based). In qualitative LSM modeling, each landslide factor is
weighted based on the knowledge of experts in geotechnical or geological fields. Afterward, the derived
weights were combined to calculate the landslide susceptibility index (LSI). Typical qualitative LSM
models include heuristic analysis, inventory analysis, and analytic hierarchy processing (AHP) [4]. As a
comparison, statistical LSM models quantify the weights of each factor based on the spatial correlations
of historical landslides and these factors. Building on the basic assumption that “the past predicts the
future”, the weights determined using historical landslides are used to predict the likelihood of future
landslide occurring. Frequency ratios [5], logistic regressions [6], weights of evidence [7], artificial
neural networks [8], and support vector machines [9] are frequently used statistically based LSMs in
the literature. For physically based LSM models, slope stability models and groundwater flow models
are integrated to calculate the safety factor for each slope unit. Several programs have been developed
for LSM, such as SHALSTAB, SINMAP, and TRIGRS [10,11]. The advantages and disadvantages
of different LSM models have been reviewed by Van Western et al. [12] and Reichenbach et al. [13].
Comparative studies have shown that the optimized selection of LSM methods largely depends on the
scale, nature, and data availability of the study area [14–16].

Similar to most African countries, landslide is ranked as the deadliest geohazard in Kenya [17,18].
Despite enormous damage induced by landslides, literature reviews indicate that very few attempts
have been carried out to research landslides in Kenya. The studies of landslides performed in Kenya in
the past few decades have concentrated on landslide inventory mapping [19], geological investigation
of single landslide events and developing general overviews of landside phenomena [18]. It is noted
in the literature that intensive precipitation is a dominant factor triggering landslides in Kenya [20].
Steep topography, weathered regolith, and human activities such as deforestation, overgrazing, and
overfarming have been identified as causative factors of landslides in Kenya [18]. In recent years,
the continuously growing population and expansive development of infrastructure have placed a
heavy burden on the environment and land resources in Kenya. No systematic research on landslide
susceptibility assessment in Kenya has been published yet. Filling this research gap is the reason why
this study was performed.

Difficulties remain in developing LSM for the whole territory of a country because of inadequate
availability of landslide inventories and related information. As illustrated in Table 1, a literature review
of some such examples showed that qualitative methods, such as spatial multicriteria evaluation (SMCE)
and heuristic weighting, are the most popular existing LSM on a national scale. Van Western et al. [10]
suggested that the most suitable methods for LSM at a medium scale are quantitative methods, while
qualitative methods are more appropriate for LSM of large areas (small scale) [19]. The cell size of LSMs
varies from coarse (1000 m) to medium (30 m) for qualitative and quantitative LSMs. The suitability of
cell size is typically determined by data availability and the mapping scale [20].

The main objective of this work was to develop a landslide susceptibility map for Kenya.
To conduct this, the fuzzy analytic hierarchy process (FAHP) method was adopted. This FAHP is a
semiqualitative method suitable for LSM on a national scale. The landslide inventory and landslide
causative factors used in this study were collected from a variety of sources. Regions highly susceptible
to landslides in Kenya were highlighted as a basis for further studies of landslide hazards or risk
assessments. Additionally, the output presented serves as an effective tool for the authorities involved
in land planning and land resource management.
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Table 1. Studies of landslide susceptibility mapping at nation scale.

No. Country LSM Method
Cell Size

(m)

Landslide
Inventory

Availability

No. of
Causative

Factors
Source

1 Cuba Integrating SMCE and AHP 90 No 5 Abella and Van Westen [21]
2 Romania Heuristic Weighting 100 Yes 6 Bălteanu et al. [22]

3 Greece
Integrating Landslide
Relative Frequency
and R-mode

1000 Yes 10 Sabatakakis et al. [23]

4 France Integrating SMCE and
Expert Knowledge 90 Yes 3 Malet et al. [24]

5 Georgia SMCE 100 Yes 9 Gaprindashvili and
Van Westen [25]

6 Turkey Heuristic Weighting 500 Yes 6 Okalp and Akgün [26]
7 Rwanda SMCE 30 Yes 8 Nsengiyumva et al. [27]

2. Study Area

Kenya is an east African country (Figure 1). Kenya has a territorial area of 582,646 km2 and a
population of 41.8 million. The elevation of Kenya stretches from sea level in the coastal regions to
over 5000 m above sea level (a.s.l.) at Mount Kenya. Geomorphologically, the landforms in Kenya are
dominated by highlands in the central and the west regions, plains in the northeast and the coastal
regions [20]. The Great Rift Valley (GRV) cuts through the western territory of Kenya from south
to north, separating the highlands into two parts, the western highland and the eastern highland.
The narrowest part of the rift valley basin is about 30 km near the Naivasha Lake, while the broadest of
that is about 300 km in width near the Turkana Lake (Figure 1). The elevation difference in the GRV
zone ranges from 500 to 1000 m.

Figure 1. General conditions of Kenya and the spatial distribution of historical landslides in Kenya.
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Geologically, Kenya is mainly constituted of five parts [20]: (1) the Archean rocks, of which the major
rock types are: shales, mudstones, greywackes, phyllites, and conglomerates; (2) the Proterozoic rocks,
of which the major rock types are: rhyolites, basalts, quartzites, and conglomerates; (3) the Paleozoic and
Mesozoic sediments, which were dominant by rock types of granites, granodiorites, and leucogranites;
(4) the Tertiary/Quaternary volcanic rocks and sediments, of which the major rock types are: sands,
marls, clays, conglomerates, and limestones; (5) the Pleistocene to Recent deposits, in which clays,
diatomite, shales, and silts are major rock types.

Kenya has a mild climate with annual temperatures ranging from 16 to 26 degrees Celsius.
The mean annual precipitation (MAP) in Kenya ranges from <200 mm to 2500 mm. The precipitation
of Kenya is characterized by its nonuniform distribution in both time and space. From the historical
meteorological data of the Jomo Kenyatta weather station (Figure 2), two distinct rainy seasons can
be observed. One is from March to May (the heavy rainy season), and the other is from October to
December (the light rainy season). The rest is the dry season. The spatial distribution of MAP is
illustrated in Figure 3a. Because of the sudden elevation changes in the GRV zone (from highland
to valley then to highland again), there is a sharp transition between wet and dry regions across the
GRV zone in southwestern Kenya. Both sides of the GRV in this region had the highest value of MAP,
while the northeastern and northern parts of Kenya had the lowest MAP of less than 800 mm. Kenya has
experienced a series of geohazards arising from floods, storms, landslides, and debris/mudflows.
Most of these geohazards are related to climate extremes [18,20]. Rainfall and human activities (farming,
devegetation, construction, etc.) have triggered the majority of the landslides that have occurred
in Kenya.

Figure 2. Statistics of monthly average precipitation and distribution of landslides in Kenya.
Precipitation data was obtained from the Jomo Kenyatta weather station. Since no detailed information
of the exact occurring moth of landslides in LS3, only LS1 and LS2 data were included in this figure.
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Figure 3. List of landslide contribution factors: (a) MAP; (b) altitude; (c) slope; (d) aspect; (e) curvature;
(f) TWI; (g) SPI; (h) soil texture; (i) land use; (j) landform.
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3. Materials

3.1. Historical Landslides in Kenya

A landslide inventory usually portrays the date, location, cause, type, and geometry of landslides.
A detailed landslide inventory is a mandatory input for LSM using quantitative methods. Landslide
inventories can be produced through field surveys, review of relevant documents, and remote sensing
(satellite images, aerial photos, etc.). Since compiling a detailed landslide inventory remains a time- and
labor-consuming task there has been no reliable landslide inventory with national coverage available
in Kenya until now.

Considering the conditions mentioned above, the landslide inventory utilized in the present study
was composed of three subsets from different sources, as illustrated in Figure 1. The first subinventory
(LS1) was obtained from the Kenya Open Data of the Ministry of Information, Communications,
and Technology of Kenya. LS1 contained 39 historical landslides that occurred in Kenya during the
1999–2013 period. Landslide information regarding the specific longitude/latitude, dates of occurrence,
number of people affected, and estimated economic losses were provided in the LS1. The second
subinventory (LS2) was derived from the global fatal landslide database (GFLD) (version 2) extracted
from Froude and Petley [28]. Similar to LS1, LS2 also provided the location, date of landslide occurrence,
induced fatalities, general description, and related reports of landslides. In total, 63 landslides were
recorded in LS2. The third subinventory (LS3) was extracted from a landslide inventory of Africa,
which was compiled by Broeckx et al. [29]. Within Kenya’s territory, 323 landslides were detected in
LS3. The majority of landslides in LS3 were mapped through visual interpretation of Google Earth
imagery. This was time-consuming work and involved subjective interpretation. In contrast to LS1
and LS2, only the locations of landslides were provided in LS3. For the present study, a total of
425 landslides were stored in the inventory.

As indicated in Figure 2, the landslide occurrences were mostly concentrated in the periods from
April to May and from November to December. It should also be noted that the monthly distribution
of landslides was consistent with the monthly distribution of precipitation.

3.2. Landslide Contributing Factors (LCFs)

From the perspective of geotechnical engineering, landslides are a comprehensive consequence of
several contributing factors. Nevertheless, there are no global rules for selecting these factors. In a
typical LSM, such LCFs are chosen on the basis of data availability, characteristics and scale of the
study area, as well as the expert knowledge or experience. In this study, ten LCFs were utilized in LSM
over a nationwide area of Kenya, including four topographic factors (namely, the altitude, aspect, slope,
and curvature), two hydrological factors (namely, the topographic wetness index (TWI), stream power
index (SPI)), soil texture, precipitation, land use, and landform (as shown in Figure 3). To perform the
LSM, all factors were rasterized into 1 × 1 km grids and classified into several classes using ArcGIS
software (Version 10.2). In what follows, a brief description of each landslide contributing factor
is given.

3.2.1. Mean Annual Precipitation (MAP)

Rainfall is among the dominant inducing factors for landslides not only in Kenya but also in many
countries because it increases the soil mass and decreases the soil shear strength. As shown in Figure 2,
there are strong correlations between landslide occurrences and precipitation in Kenya. For this study,
the MAP data were adopted and categorized into nine levels using a 400 mm interval, as shown in
Figure 3a. To initially obtain the MAP factor, monthly total rainfall data from 87 meteorological stations
in Kenya were collected and filtered. Only data from stations operated in all types of weather were
kept. Then, the filtered monthly rainfall data were summed and averaged annually for each station.
Finally, through the inverse distance weighting (IDW) of data for each station, the MAP map of Kenya
was derived.

12
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3.2.2. Topographic Factors

Topographic factors are most frequently used in LSM. In this study, several topographic factors
were created using a 12.5-m digital elevation model (DEM) obtained from the Alaska Satellite Facility
(ASF) [30], which included altitude, slope gradient, slope aspect, and curvature information. Because of
variations in temperature, humidity, and vegetation, the degree and type of weathering also varied with
altitude. Therefore, altitude has been employed as an LCF in previous studies [8,13,15]. Considering
the setting of geomorphology and landforms present in Kenya, the altitude factor was categorized as
(1) <50 m, (2) 50–200 m, (3) 200–500 m, (4) 500–1000 m, (5) 1000–2000 m, and (6) >2000 m (Figure 3b).
Steepness directly affects slope stability because slopes become more susceptible to landslides as the
slope gradient increases. Reviews of LSM studies have suggested that the slope gradient factors is
usually categorized using a 5◦ interval. Thus, the slope LCF was categorized as follows: <5◦, 5–10◦,
10–15◦, 15–20◦, 20–25◦, 25–30◦, 30–35◦, 35–40◦, and >40◦ (Figure 3c). Since parameters such as sunlight,
precipitation, and vegetation cover vary, slope aspects may also have an effect on landslide occurrences.
Consistent with previous studies [15,16,31], the aspect factor was classified into 9 subclasses, as shown
in Figure 3d. By controlling the water flow and erosion type in curved terrains, curvature is also a
commonly used topographic factor that is associated with landslides. A positive curvature value
indicates an upwardly convex terrain, while a negative value indicates an upwardly concave terrain.
Terrains with values of zero for the curvature factor were classified as flat (Figure 3e).

3.2.3. Hydrological Factors

Hydrological factors played a determinant role in affecting slope stability. For this study, the TWI
and the SPI were utilized as predictors of landslides. Both the TWI and the SPI are secondary attributes
of the DEM and can be calculated using Equations (1) and (2), respectively. The TWI measures the
topographic control on groundwater flow and accumulation. Terrains with a higher TWI values are
more likely to become saturated during rainfall events. The SPI quantifies the erosion power of flowing
water. Gullies are more likely to form at locations with high SPI values. As indicated in Figure 3f,g,
the TWI of the study area ranged from 6.80 to 34.72, and the SPI ranged from −2.41 to 25.13. The factors
of TWI and SPI were finally divided into five categories through the “natural breaks” function in GIS.

TWI = ln
(

A
tan β

)
(1)

SPI = ln(A· tan β) (2)

where A is the unit upstream accumulation area, β is the slope gradient, and ln is the natural logarithm.

3.2.4. Environmental Factors

Given the poor data availability in Kenya, three environmental LCFs were considered in this
study to produce LS maps. These two factors were soil texture and land use. Soil texture indicates
the proportional composition of sand, silt, and clay content in the soil. Because high clay soils
usually contain high organic matter content, which is favorable for soil resistance against detachment,
soils characterized by high sand or loam content are more susceptible to land sliding than clayey
soils [32]. A nationwide soil property GIS database developed by the International Soil Reference
and Information Centre (ISRIC) [33] was utilized in this study. Types of soil texture were classified as
follows: (1) very clayed, (2) clayed, (3) loamy, and (4) sandy (Figure 3h). Land use and landform type
contribute significantly to slope stability. Specifically, vegetation roots may enhance slope stability
by altering the cohesive forces and hydrologic properties. The degradation of forests and vegetation
increases the degree of susceptibility of the area to landslides [34]. As for the factor of landform,
steep and hill/mountain terrains are prone to landslides compared with flat terrains such as plains,
valley floor and foot slope. In addition, from the perspective of geomorphology, landslide itself
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also plays as a driving role in landform evolution [35,36]. The Kenya National Land Use Dataset
(KNLD) [37] was utilized in this study to obtain the LCFs of land use and landform type. As indicated
in Figure 3i, the KNLD contains ten land use types (Figure 3i) and eleven landform types (Figure 3j).

4. Methodology

A hybrid model of the conventional AHP and fuzzy theory was utilized to conduct the LSM in
this study. The AHP has shown good capacity in solving a multicriteria decision-making problem
by incorporating expert knowledge into quantitative analysis. To reduce subjectifies involved in
conventional AHP analysis, the fuzzy set theory was adopted to handle blurry sets or categories.
Hence, the hybrid use of fuzzy sets and conventional AHPs effectively addresses the decision-making
issues under multiple criteria. The theoretical background of the conventional AHP and fuzzy theory
were briefly introduced in Sections 4.1 and 4.2, respectively. After that, the process of incorporating
fuzzy theory into AHP was given in Section 4.3.

4.1. The Theoretical Background of the Conventional AHP

The AHP, originally developed by Saaty [38], has shown great potential for handling multicriteria
decision-making (MCDM) issues. Implemented in GIS, the AHP has been successfully employed in
LSM in many previous studies [13,29,31]. A detailed description of the AHP application steps in LSM
was introduced by Van et al. [31] and can be summarized as follows:

Step 1: Dividing the decision problem into a hierarchical structure

In this step, a complex decision problem was decomposed into a hierarchical structure, including
an “objective” level on the top, one or more “criterion” level(s) in the middle, and several decision
alternatives at the bottom level. Although there are no universal rules to be followed in constructing
such a hierarchy, it was suggested by Saaty [39] that the hierarchy be built based on the decision
maker’s knowledge and experience with the problem.

Step 2: Constructing the pairwise comparison matrix

In this step, a comparison matrix was constructed with each element indicating the pairwise
comparison between all the decision elements. By asking the decision maker how important alternative
A is compared to alternative B, the pairwise comparison results (relative importance) are usually
rated using a linguistic variable, such as “Slightly Important”, “Moderately Important”, or “Extremely
Important” (Table 2).

Table 2. Triangular fuzzy scale used in this study.

Linguistic Variables
Intensity of

Conventional AHP
Reciprocal of

Intensity
Triangular Fuzzy
Number (TFN)

Reciprocal of TFN

Equally Important (EQI) 1 1 (1,1,2) (1/2,1,1)
Slightly Important (SLI) 3 1/3 (2,3,4) (1/4,1/3,1/2)

Moderately Important (MOI) 5 1/5 (4,5,6) (1/6,1/5,1/4)
Very Important (VEI) 7 1/7 (6,7,8) (1/8,1/7,1/6)

Extremely Important (EXI) 9 1/9 (8,9,9) (1/9,1/9,1/8)

Intermediate value

2 1/2 (1,2,3) (1/3,1/2,1)
4 1/4 (3,4,5) (1/5,1/4,1/3)
6 1/6 (5,6,7) (1/7,1/6,1/5)
8 1/8 (7,8,9) (1/9,1/8,1/7)

Step 3: Calculate the weights of each decision element and check its consistency

For each comparison matrix, the relative weights of each decision element were calculated using
the eigenvalue method (or some other methods). Weights could be used only if consistency had
been satisfied.
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Step 4: Hierarchically aggregate weights from all “criterion” levels

In this step, the score of each alternative with respect to the final goal was calculated by aggregating
the weights of decision elements’ weights from all “criterion” levels.

The numerical intensity scale for the relative importance between two decision elements, proposed
by Saaty [40], has been broadly used in the AHP. Table 2 shows that in this study, the importance of
“Equally Important” to “Extremely Important” was scaled from 1 to 9. The numbers 2, 4, 6, and 8 were
used to describe intermediate importance. Inverse importance was scaled using the reciprocals of the
numbers from 1 to 1/9. The eigenvalue method was adopted to calculate the weights. In this regard,
the consistency index (CI) was calculated as follows:

CI =
λmax − n

n− 1
(3)

where λmax represents the largest eigenvalue of a matrix.
For evaluation of the CI, the term consistency ratio (CR) was introduced. The CR was defined as

the ratio of a given CI and that of a randomly generated reciprocal matrix (RI). Consistency is satisfied
if CR < 0.1.

CR =
CI
RI

(4)

4.2. Triangular Fuzzy Number (TFN)

In the practical application of the conventional AHP for LSM, the determination of the exact
relative importance of two factors (A and B) is more difficult than to identify one factor as being
more important to another. Given this, fuzzy theory was employed to extend the conventional AHP
by scaling the experts’ decisions as fuzzy numbers. Thus, assigning exact ratio values to pairwise
comparison results was avoided. There are many types of fuzzy numbers. For this study, triangular
fuzzy numbers (TFNs) were used. Concepts for the TFN-AHP are briefly introduced in the following.

Let M̃ be a TFN on R; then, its member function x ∈ M̃, μM(x) : R→ [0, 1] can be defined as
follows:

μM(x)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x < a or x > c

(x− a)/(b− a), a ≤ x ≤ b
(c− x)/(c− b), b ≤ x ≤ c

(5)

where a, b, and c represent the left, modal, and right values of M̃, respectively (see Figure 4).

Figure 4. Illustration of the membership function of TFNs.

A TFN can be denoted by M̃ = (a, b, c). Let M̃1 = (a1, b1, c1) and M̃2 = (a2, b2, c2) be two TFNs,
where a1, a2 > 0, b1, b2 > 0 and c1, c1 > 0. The laws of the operations can be defined as follows:
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• Summation of two TFNs:
M̃1 ⊕ M̃2 = (a1 + a2, b1 + b2, c1 + c2) (6)

• Subtraction of a TFN from another TFN:

M̃1ΘM̃2 = (a1 − a2, b1 − b2, c1 − c2) (7)

• Multiplication of two TFNs:

M̃1 ⊗ M̃2 = (a1 × a2, b1 × b2, c1 × c2) (8)

• Multiplication of a number and a TFN:

λ⊗ M̃1= (λ× a1,λ× b1,λ× c1
)

(9)

• Division of a TFN by another TFN:

M̃1OM̃2 = (a1, b1, c1)O(a2, b2, c2) = (
a1

c2
,

b1

b2
,

c1

a2
) (10)

• Reciprocal of a TFN:

M̃1
−1 = (a1, b1, c1)

−1 = (
1
c1

,
1
b1

,
1
a1
) (11)

4.3. Integration of the AHP and TFN

The integration of fuzzy sets with the AHP has shown great potential not only for use in LSM but
also in many other multicriteria decision making processes, such as hospital location selection and
tourist risk evaluation. Very reliable results have been obtained in these applications. The following
sections will describe the TFN-AHP theory.

In TFN-AHP theory, experts’ judgments are scaled using a TFN rather than a definite number.
Then, the TFN comparison matrix is defined as follows:

K̃ = (̃kij)n×n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1̃ k̃12 · · · k̃1n

k̃21 1̃ · · · k̃2n
...

...
. . .

...
k̃n1 k̃n2 · · · 1̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1̃ k̃12 · · · k̃1n

k̃12
−1 1̃ · · · k̃2n

...
...

. . .
...

k̃1n
−1 k̃2n

−1 · · · 1̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

where k̃i j = (aij, bij, cij) denotes the fuzzy comparison value of criterion i to criterion j and

k̃i j
−1 = ( 1

cij
, 1

bij
, 1

aij
) denotes the reciprocal value for i, j = 1, 2, · · · , n and i � j.

If such judgments are made by consulting more than one expert, the element value is calculated
by the average of their decisions as follows:

kij =
1
h
⊗
(
k1

i j + k1
i j + . . .+ k1

i j

)
(13)

where kp
ij = [lpi j, mp

ij, up
ij] p ∈ [1, 2, · · · , h] and h is the number of experts.

Consistent with Chang (1996) [41], the required steps to compute the weight vector for a TFN
comparison matrix can be expressed using the following procedure:

16



Land 2020, 9, 535

First, calculate the fuzzy synthetic extent with respect to the ith alternative by normalization of
the row sums of the fuzzy comparison matrix as follows:

S̃i =
n∑

j=1

k̃i j ⊗
⎡⎢⎢⎢⎢⎢⎢⎣

n∑
l=1

n∑
j=1

k̃l j

⎤⎥⎥⎥⎥⎥⎥⎦
−1

, i = 1, 2, · · · , n (14)

Then, calculate weight vectors concerning each decision element under a certain criterion using
the degree of possibility of M̃i ≥ M̃j, which is defined as follows:

V
(
M̃i ≥ M̃j

)
= sup

y≥x

{
min
[
M̃j(x), M̃i(y)

]}
(15)

This equation can be equivalently expressed as follows:

V
(
M̃i ≥ M̃j

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 bi ≥ bj

ci−aj

(ci−bi)+(bj−aj)
aj ≥ ci

0 otherwise

(16)

Finally, calculate the normalized vector of weights W̃ = (w̃1, w̃2, · · · , w̃n) of the TFN comparison
matrix K̃ as follows:

wi =
V(M̃i ≥ M̃j

∣∣∣ j = 1, 2, · · · , n; i � j )
n∑

k=1
V(M̃i ≥ M̃j

∣∣∣ j = 1, 2, · · · , n; i � j )
(17)

The typical LSM is performed based on raster cells. For the TFN-AHP application in LSM,
the criteria refer to a series of LCFs, whereas the alternatives refer to the raster cells within the study
area. To perform the LSM using the TFH-AHP, a weighted linear combination (WLC) is conducted to
calculate the LSI for each raster pixel as follows:

LSI =
n∑

i=1

wi · sk(x,y)
i (18)

where wi is the weight of ith criterion (LCF) i, sk(x,y)
i is the weight of the kth subcriteria (subclass for the

LCF) in the ith criterion, and k is determined by the spatial location (x, y) of the raster cell.

4.4. Accuracy Validation

A review of the literature has shown that the receiver operating characteristic (ROC) curve is a
popular method to evaluate the goodness of fit for classification [1,4–7]. The area under this curve
(AUC) is adopted to measure the generalization performance of the LSM model. The value of AUC
usually ranges between 0.5 to 1.0. A higher AUC value, closer to 1.0, indicates a better performance of
the classification model.

TPR =
TP

TP + FN
(19)

FPR =
FP

FP + TN
(20)

The first step in performing the ROC analysis was to construct the validation dataset,
which contained both landslide and non-landslide events. For this study, 425 known landslides
were used for validation. Additionally, 425 non-landslides were randomly chosen for validation within
the study area. Then, by setting different threshold LSI values, the dataset was separated into four
groups according to the actual label and precited label. As shown in Table 3, the four groups were
true positive (TP), true negative (TN), false positive (FP), and false-negative (FN) events. After that,

17
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two indexes were employed; one was the true positive rate (TPR) computed using Equation (19),
and the other was the false positive rate (FPR) computed using Equation (20). Eventually, the ROC
curve was drawn by plotting the FPR and the TPR on the horizontal and vertical axes, respectively.

Table 3. Labeling of data according to its predicted label and actual label.

Actual Label
Predicted Lable

Positive Negative

Positive True Positive(TP) False Negative(FN)
Negative False Positive(FP) True Negative(TN)

4.5. Flowchart of Conducting the LSM

In general, the process to conduct the LSM using the proposed TFN-AHP method can be
summarized as following 5 steps. Firstly, the 10 LCFs (criteria) that were required to perform the
LSM were chosen (as described in Section 3). Then, a two-level hierarchical model was developed
with 10 criteria and 41 subcriteria. Next, 11 comparison matrices were established to calculate the
criteria weights. After that, using a WLC of weights of all levels, an LSI map was created and
reclassified. Finally, the accuracy of the obtained map was validated using ROC curve and the known
historical landslides.

5. Results

5.1. Weights of LCFs and Their Subclasses

The weighting vector derivation plays a central role in multicriteria decision making. For the
present study, weights were assigned to each LCF. For this purpose, the geotechnical experts were
called upon to make a pairwise comparison of the LCFs based on their experiences and knowledge.
As illustrated in Table 4, the pairwise comparison matrix for the ten LCFs was constructed by
considering expert opinion and similar previous studies [21–23,26,27]. From the matrix, the weight
vector for the criteria was computed using Equation (14) to Equation (17) and is presented in Table 5.
After normalization, the weights for each criterion were derived using Equation (18) and are shown in
Table 6. The CR was calculated using Equations (3) and (4). When the CR = 0.086 < 0.1, the judgment
was deemed to be consistent.

For the subcriteria (subclasses) under a certain uplevel criterion (an LCF), the weights were
derived using the same procedures. The sum of subcriteria weights under each corresponding uplevel
criterion should be 1.0. Hence, 10 comparison matrices were created. Additionally, the final weights for
the subclasses within each LCF were calculated and are shown in Table 6. Before using these calculated
weights, a consistency check was conducted for each comparison matrix. Only if CR < 0.1 was the
derived weight accepted. Since all CR values were less than 0.1 (Table 6), a consistency check of the
10 matrices indicated that all the judgments were consistent.

From the TFN-AHP analysis, slope gradient (0.1923), MAP (0.1884), and curvature (0.1651) were
considered to be the three most important factors contributing to landslide occurrence, whereas the least
important factors were land use (0.0220) and aspect (0.0315). For the factor of slope gradient, the terrain
steeper than 30◦ was most susceptible to landslides (weight for this subclass is 0.364313), while the
category of 5–10◦ obtained the lowest weights (0.071825) in determining the landslide occurrences.
It also can be seen from results that barren land (0.160743), bush land (0.136464), and grassland
(0.121685) were most susceptible to landslides compared with other land use types. In case of curvature,
both concave and convex terrain were more prone to landsliding than flat area. Convex terrain (subclass
weight is 0.570014) was more favorable for landsliding than concave terrains (0.356956).
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5.2. Landslide Susceptibility Maps

Using Equation (18), the LSI value for each raster cell within Kenya was calculated. As shown in
Figure 5, the resultant LSI map was reclassified into five susceptibility levels using the “natural break”
function ArcGIS. In total, 15.44% and 29.16% of the Kenyan territory were mapped as extremely high
susceptibility zones. A total of 29.16% of the total area was predicted as a high susceptibility zone.
Low and very low susceptibility classes covered 20.58% and 5.53% of the study area, respectively.
The remaining 29.29% of the study area was determined to be moderately susceptible to landslides
(Figure 6). The distribution of susceptibility classes differed in each province. As illustrated in Figure 7,
the Rift Valley Province and Eastern Province had the highest percentages of EH landslide susceptibility
coverage (21% and 19%, respectively), while the Central Province and Nyanza Province had the lowest
percentages of EH landslide susceptibility (5% and 6%, respectively).

Figure 5. The landslide susceptibility map produced using the TFN-AHP.

Figure 6. Area coverage of the five landslide susceptibility levels in Kenya.
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Figure 7. Area coverage of the five landslide susceptibility levels in each province.

5.3. Accuracy Validation

Figure 8 shows that over 60% of the landslides had occurred in the extremely high (31.53%, 134 of
425) and high (29.88%, 127 of 425) landslide susceptibility areas, respectively. Less than 10% of the
total landslides occurred in the area mapped as low (8.24%, 35 of 425) and very low (1.65%, 7 of 425)
susceptibility levels. In line with the procedures described in Section 4.5, the ROC curve was drawn as
shown in Figure 9, and the AUC value was 0.86.

Figure 8. Distribution of known landslides in each landslide susceptibility level.
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Figure 9. ROC curve validation for the obtained landslide susceptibility maps.

6. Discussion

This research was proposed to apply the TFN-AHP method to map landslide susceptibility in
Kenya. Figure 5 directly displays the visible landslide susceptibility information for the entire Kenyan
territory, indicating the likelihood of potential landslides. As a developing country, such information
would greatly benefit Kenyan efforts to minimize landslide-induced losses and develop optimized
land management policies. From Figure 6, it was observed that 44.6% of Kenya is classified as high-
and extremely high-susceptibility zones, whereas 26.11% of Kenya was mapped as having low and
very low susceptibility. High and extremely high landslide susceptibility zones predominantly cover
the rift valley region and its surrounding areas. This finding can be attributed to plentiful rainfall,
steep terrains, and fractured ground. Low and very low landslide susceptibility areas are primarily
distributed in the southwestern and coastal regions. The distribution of susceptibility classifications
also varies in different provinces (Figure 7). The Rift Valley Province had a majority of the historical
landslides. This province has the largest area coverage of extremely high- and high-susceptibility zones.

Dozens of methods have been used in LSM at different scales. For large areas with poor availability
of historical landslide inventories, the spatial multicriteria evaluation (SMCE) method has exhibited
overwhelming advantages over statistical and the physically based methods [15,42]. As a representative
SMCE method, a review of previous studies (as displayed in Table 1) has suggested that the AHP and
its fuzzy extensions are one of the favorable methods in LSM for large areas (e.g., for a whole country).
One limitation of the application of the statistical method in this study is the incompleteness of the
historical landslide inventory, which reduces the reliability of the results. Despite this, the historical
landslide inventory can still be used for validation in a better than no sense.

The validation results demonstrate that the adopted TFN-AHP resulted in promising accuracy
with an AUC value of 0.86 (Figure 9). Despite no strict rules for the evaluation of this accuracy,
the resultant accuracy seems to be good compared to similar studies in different areas [1,3,8]. For the
LSM, an ideal result map should include as many historical landslides as possible in “high” or
“extremely high” susceptibility regions. Additionally, few historical landslides should occur in the
“low” or “very low” susceptibility region. Figure 8 shows that the concentration of known landslides
decreases from the extremely high category to the very low category. For decision making under
multiple criteria, it is difficult for humans to quantify criteria weights using extract numbers. However,
rational decisions can be made by skilled experts through a certain value with some uncertainties to
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capture human subjectivity. Given this, the TFN-AHP makes the comparison process more flexible to
minimize the objectivities and uncertainties involved in the conventional AHP process. For the purpose
of comparison, the map produced using the conventional AHP is illustrated in Figure 10. The ROC
analysis, with an AUC value of 0.72, is also plotted in Figure 9. To perform the conventional AHP,
the element value of the TFN-AHP comparison matrix is replaced by a single number according to
Table 2. The comparison matrix for the conventional AHP analysis is shown in Appendix A. It should
be noted that another source of the subjectivities involved in this study and other similar studies using
the SMCE methods or statistical methods may originate from the selection of the LCFs. As shown
in Table 1, the number of factors used for LSM ranges from 3 to 10. As discussed in many case
studies [1,5,9,16,25,27] and more recently reviewed in [13], the selection of LCFs largely depends on
conditions such as data availability, scale, and nature of the study area.

Figure 10. The landslide susceptibility map produced using the conventional AHP.

Even for skilled departments from China and many other developing countries, no universal rules
have been proposed. Hence, for a given study area, comparative studies have always been conducted
to select the best maps.

7. Conclusions

In this research, an integrated method of fuzzy theory and conventional AHP analysis was
employed for the LSM of Kenya. A two-level hierarchical index system was established to predict
landslide susceptibility with a GIS platform. Ten factors contributing to landslide occurrence were
included in the first level of the evaluation system. These contributing factors included slope, altitude,
aspect, SPI, TWI, curvature, land use, MAP, landform, and soil texture. For the second level, each of
these factors was divided into several subclasses. The weights of these factors and their subclasses
were determined using the adopted TFN-AHP theory. A nationwide landslide susceptibility map
for the entire Kenyan territory was produced with five different levels ranging from extremely high
susceptibility to very low susceptibility. Extremely high and high landslide susceptibility zones
primarily covered the rift valley and its nearby regions. Validation results using ROC curves indicated
that the TFN-AHP method performed well for developing LS maps of the study area. This method
resulted in a higher AUC accuracy than the conventional AHP using the same datasets.
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This study was the first attempt to identify landslide susceptibility zones in Kenya on a national
scale. The produced map can be used as a general indicator of the relative landslide susceptibility for
larger areas rather than an accurate susceptibility measure for each specific site. The results would be
helpful in various land resources-related fields to inform decision making, such as regional landslide
hazard mitigation, land use management, and infrastructure planning.
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Appendix A

Table A1. Pairwise comparison matrix and normalized weight of ten LCFs using the conventional AHP.

LCF Landuse AMP Aspect Soil Texture TWI SPI Curvature Altitude Landform Slope w

Landuse 1 1/2 2 1/2 1/2 1/2 1/4 1/2 1/2 1/4 0.0455
AMP 2 1 2 3 3 3 2 3 4 3 0.2073

Aspect 1/2 1/2 1 1/2 1/2 1/2 1/2 2 1/2 1/3 0.0552
Soil

Texture 2 1/3 2 1 2 2 1/3 1/5 3 1/4 0.0776

TWI 2 1/3 2 1/2 1 1 1/2 2 3 1/4 0.0786
SPI 2 1/3 2 1/2 1 1 1/2 1/2 2 1/5 0.0615

Curvature 4 1/2 2 3 2 2 1 2 3 2 0.1527
Altitude 2 1/3 1/2 5 1/2 2 1/2 1 2 1/4 0.0914
Landform 2 1/4 2 1/3 1/3 1/2 1/3 1/2 1 1/2 0.0498

Slope 4 1/3 3 4 4 5 1/2 4 2 1 0.1803

Table A2. Weights for subclasses within each LCF calculated using the conventional AHP.

LCF Subclass
Subclass
Indicator

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 w

Altitude
(CR = 0.0561)

<50 C1 1 1/2 1 1/5 1/4 1 0.0835
50–200 C2 2 1 1/2 1/3 1/2 1 0.1094

200–500 C3 1 2 1 1/2 1 1/2 0.1385
500–1000 C4 5 3 2 1 2 2 0.3209
1000–2000 C5 4 2 1 1/2 1 2 0.2104
>2000 C6 1 1 2 1/2 1/2 1 0.1374

Slope
(CR = 0.0665)

0–5 C1 1 2 1 3 1/2 0.2357
5–10 C2 1/2 1 1 1/3 1/3 0.1010
10–15 C3 1 1 1 1 1/3 0.1438
15–30 C4 1/3 3 1 1 1/2 0.1634
>30 C5 2 3 3 2 1 0.3561

Aspect
(CR = 0.0983)

East C1 1 1/3 1/2 2 2 1/3 1/2 1/2 1/4 0.0642
North C2 3 1 3 2 2 2 1 1/3 1/2 0.1316
South C3 2 1/3 1 2 1 3 1/2 1/3 1/3 0.0894
Flat C4 1/2 1/2 1/2 1 1 1/3 1/3 1 1/4 0.0544

Southeast C5 1/2 1/2 1 1 1 1 1/3 2 1/2 0.0838
Northeast C6 3 1/2 1/3 3 1 1 1/2 1 1/3 0.0892
Northwest C7 2 1 2 3 3 2 1 1 1/2 0.1396
Southwest C8 2 3 3 1 1/2 1 1 1 1 0.1442

West C9 4 2 3 4 2 3 2 1 1 0.2036

Curvature
(CR = 0.0028)

Concave C1 1 2 1/2 0.2970
Flat C2 1/2 1 1/3 0.1634

Convex C3 2 3 1 0.5396
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Table A2. Cont.

LCF Subclass
Subclass
Indicator

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 w

TWI
(CR = 0.0261)

6.8–9.87 C1 1 2 1 1/2 1/2 0.1635
9.88–12.06 C2 1/2 1 1 1/2 1/2 0.1234
12.07–14.68 C3 1 1 1 1/2 1/2 0.1394
14.69–18.73 C4 2 2 2 1 1/2 0.2468
18.74–34.72 C5 2 2 2 2 1 0.3270

SPI
(CR = 0.0738)

−2.41–4.61 C1 1 1 1/2 1 1/2 0.1370
4.62–6.66 C2 1 1 1/2 1/2 1/3 0.1069
6.67–9.04 C3 2 2 1 1/2 1 0.2152
9.05–12.28 C4 1 2 2 1 1/3 0.2076
12.29–25.13 C5 2 3 1 3 1 0.3333

Soil Texture
(CR = 0.0366)

Veryclayed C1 1 2 3 2 3 0.3692
Clayed C2 1/2 1 2 1 2 0.2085
Loamy C3 1/3 1/2 1 1/2 1/2 0.0958
Sandy C4 1/2 1 2 1 1 0.1796
Water C5 1/3 1/2 2 1 1 0.1469

Landuse
(CR = 0.0929)

Grassland C1 1 1/3 1/2 1 2 1 1 3 3 2 0.1146
Barrenland C2 3 1 2 3 2 3 2 2 3 2 0.1905
Bushland C3 2 1/2 1 2 1 2 3 2 2 2 0.1379
Waterbody C4 1 1/3 1/2 1 1/2 1/2 2 1/2 1/3 1 0.0618
Plantation C5 1/2 1/2 1 2 1 1 2 2 1/2 2 0.0990
Agriculture C6 1 1/3 1/2 2 1 1 1 1 3 1 0.0891

Town C7 1 1/2 1/3 1/2 1/2 1 1 2 2 1/3 0.0741
Forrest C8 1/3 1/2 1/2 2 1/2 1 1/2 1 2 3 0.0854
Swamp C9 1/3 1/3 1/2 3 2 1/3 1/2 1/2 1 1/2 0.0686

Woodland C10 1/2 1/2 1/2 1 1/2 1 3 1/3 2 1 0.0790

Landform
(CR = 0.0999)

Depression C1 1 1/3 3 2 2 1/2 4 1/3 3 3 0.1192
Escarpment C2 3 1 3 2 2 1 4 1 3 2 0.1609

Water C3 1/3 1/3 1 1/2 1/2 1/4 2 1/5 1 1/2 0.0433
Highland C4 1/2 1/2 2 1 1 1/3 3 1/4 2 2 0.0794

Hill C5 1/2 1/2 2 1 1 1/3 3 1/4 2 1/2 0.0693
Mountain C6 2 1 4 3 3 1 3 1/2 3 1/2 0.1434

Plain C7 1/4 1/4 1/2 1/3 1/3 1/3 1 1 1 2 0.0573
Ridges C8 3 1 5 4 4 2 1 1 3 3 0.1989

Valleyfloor C9 1/3 1/3 1 1/2 1/2 1/3 1 1/3 1 2 0.0518
Footslope C10 1/3 1/2 2 1/2 2 2 1/2 1/3 1/2 1 0.0766

AMP
(CR = 0.0931)

0–400 C1 1 1 2 2 1/3 2 1/2 0.1425
400–800 C2 1 1 1 3 2 1/3 1/2 0.1350
800–1200 C3 1/2 1 1 1/2 1/2 1/3 1/3 0.0683
1200–1600 C4 1/2 1/3 2 1 1/2 1/3 1/3 0.0700
1600–2000 C5 3 1/2 2 2 1 1 1/3 0.1541
2000–2400 C6 1/2 3 3 3 1 1 1 0.1901
>2400 C7 2 2 3 3 3 1 1 0.2400
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Abstract: The triggering of slope failures can cause a significant impact on human settlements and
infrastructure in cities, coasts, islands and mountains. Therefore, a reliable evaluation of the landslide
hazard would help mitigate the effects of such landslides and decrease the relevant risk. The goal of
this paper is to develop, for the first time on a regional scale (1:100,000), a landslide susceptibility map
for the entire area of the Attica region in Greece. In order to achieve this, a database of slope failures
triggered in the Attica Region from 1961 to 2020 was developed and a semi-quantitative heuristic
methodology called Rock Engineering System (RES) was applied through an interaction matrix,
where ten parameters, selected as controlling factors for the landslide occurrence, were statistically
correlated with the spatial distribution of slope failures. The generated model was validated by
using historical landslide data, field-verified slope failures and a methodology developed by the
Oregon Department of Geology and Mineral Industries, showing a satisfactory correlation between
the expected and existing landslide susceptibility level. Having compiled the landslide susceptibility
map, studies focusing on landslide risk assessment can be realized in the Attica Region.

Keywords: interaction matrix; heuristic; susceptibility; inventory; Greece

1. Introduction

Landslide hazard assessment requires a multi-hazard approach, since the types of
landslides that will occur usually have different characteristics with different spatial,
temporal, and causal factors [1]. The first step towards the evaluation of landslide hazards
on a regional scale (e.g., 1:25,000–1:250,000) is the assessment of the relevant susceptibility,
which is defined as the likelihood of a landslide occurring in an area in relation to the local
geomorphological conditions [2]. In addition, the landslide susceptibility map can be used
as an end product in itself [1]. In order to develop a susceptibility map, it is mandatory to
first compile an inventory map where the spatial distribution of existing slope failures is
shown. It should additionally be pointed out that on a regional scale map is not feasible to
discriminate in detail the type of landslide and delineate the runout per failure.

Having developed the landslide inventory map, the likelihood of slope failures i.e.,
susceptibility, can be assessed by both qualitative and quantitative methods. The former
group of methods includes the knowledge-driven methods (direct and indirect mapping),
and the latter group includes the data-driven and the physically-based ones [1]. Consid-
ering the regional and local scale maps, the knowledge and data-driven approaches are
suggested to be applied; for the former approach a geoscientist i.e., geomorphologist, can
directly determine the level of susceptibility based on his/her experience and information
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related to terrain conditions, while the data-driven mapping statistical models are used in
order to forecast likely to landslide areas, based on information obtained from the interrela-
tion between the spatial distribution of landslide conditioning factors and the landslide
zones [3]. The most widely applied data-driven approaches are [1]: bivariate statistical
analysis, multivariate statistical models and data integration methods like Artificial Neural
Network analysis. Bivariate statistical methods (e.g., fuzzy logic, Bayesian combination
rules, weights of evidence modelling) are considered as an important tool that can be used
in order to analyze which factors play a significant role in slope failure, without taking
into account the interdependence of parameters. Multivariate statistical models evaluate
the combined relationship between the slope failure and a series of landslide controlling
factors. In this type of analysis, all relevant landslide parameters are sampled either on a
grid basis or in a slope unit and the presence or absence of landslides is evaluated. These
techniques have become standard in regional-scale landslide susceptibility assessment.

Nowadays, the majority of the studies considering landslide susceptibility mapping
makes use of digital tools for handling spatial data such as Geographical Information
Systems (GIS). Specifically, the GIS-based techniques are considered very suitable for the
landslide susceptibility mapping, in which the predisposing factors (e.g., geology, topog-
raphy) are entered into the GIS environment and combined with the spatial distribution
of slope failures i.e., landslide inventory map [3–6]. For the purposes of this study, the
semi-quantitative methodology of Rock Engineering System (RES) originally introduced by
Hudson [7] was implemented in Greece, particularly in the Attica region for the assessment
of landslide susceptibility. This region, which is a county with a size of approximately
3800 km2, was selected due to the following reasons:

(i) in this region, many cases of slope failures have been reported (Figure 1); the well-
known historical landslide of Malakasa (1995) [8] caused serious economic conse-
quences due to the cut-off connection between Athens (the capital city of Greece)
and the northern part of Greece; the dangerous, due to rockfalls, segment (located in
Kakia Skala) of the National motorway connecting Athens to Patras, some other char-
acteristic rockfall sites such as Alepochori–Psatha, and Alepochori–Schino in Western
Attica. Furthermore, rockfalls at particular segments of main streams due to erosion
and flash floods, landslides and rockfalls at Attica islands (e.g., Kithira, Salamina,
Aegina, Spetses, Hydra, Poros), are some of the most characteristic slope failures that
already took place in the administrative region of Attica. Thus, adopting the principle
that “slope failures in the future will be more likely to occur under the conditions which led
to past and present instability” [9], and inventorying and mapping the susceptible to
failure slopes provides crucial information for evaluating the future occurrence of
landslides in this region.

(ii) the existing information considering the landslide occurrences in Attica Region was
dispersed in more than one public agency, and was mainly focused on landslides
documented along the road network and residential areas, while only a few cases
were georeferenced. The slope failures induced at the mountainous areas and at sites
that are not directly affecting the manmade environment were either not recorded or
probably under-reported. Thus, there is a need for gathering every slope failure that
happened till nowadays, for generating reliable hazard maps in order to use them for
civil protection actions.

(iii) the Attica region concentrates almost half of the Greek population, more than 60% of
the industrial production in Greece and high-value properties and infrastructure. For
this reason, mapping areas prone to slope failure helps public authorities associated
with public works in taking mitigation measures against the increase of risk in po-
tentially dangerous areas, leading to losses of life and investments in such a densely
populated county.

(iv) the completeness and quality of the available slope failures and thematic geodata.
(v) to the author’s knowledge, this is the first time that a landslide susceptibility analysis

has been conducted on a regional scale (1:100,000), for the whole territory of the Attica
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Region. Furthermore, the generated landslide susceptibility map will serve for many
authorities related to public works, as a dynamic map for the planning, design, and
implementation of a long-term landslide reduction strategy as well as identifying the
areas where more detailed investigations will be required for the planning of critical
infrastructure.

(vi) taking into account that the next five to ten years, very important civil engineering
projects are about to be constructed in Attica county (such as transports network
elements: highways, railroads, metro-tunnels, hospitals, administrative buildings,
security/emergency structures, residential buildings) the existence of a regional-scale
landslide susceptibility map could be a very useful tool for supporting decisions in
order to prevent the location of high-value constructions in unsuitable locations.

 

Figure 1. Simplified geological map of Attica region, based on the official Greek projection system (EGSA 87). Active faults
were inserted in this map from the National Observatory of Athens (NOAFAULTs, https://zenodo.org/record/4304613#
.YAmJbugza1Z).
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Regarding the above-mentioned, the scope of this study that is part of the project
“Landslide Risk Assessment of Attica Region (DIAS)”, is twofold: (i) construct a uniform
and updated geodatabase of slope failures induced the last sixty years in the whole territory
of Attica Region, and (ii) compile a landslide susceptibility map, being the basic step to
produce the upcoming landslide hazard and risk maps.

2. Geology and Tectonic Setting of Attica

Attica is located in the back-arc area of the Hellenic Arc. The geology of Attica com-
prises Alpine basement rocks, both metamorphic and non-metamorphic, and post-Alpine
sediments (Figure 1). The Alpine rocks belong to the high-pressure metamorphic units
of the Cyclades and Almyropotamos that extend from Penteli Mt, east Attica [10] to the
southern Gulf of Evia and to the non-metamorphic units of Eastern Greece/Sub-Pelagonian
units that outcrop in Parnitha Mt and in west Attica. The southern parts of Attica are also
underlain by schists and marbles of the Cycladic Metamorphic Belt. An 8.2 Ma granodiorite
outcrops in the Lavrion area of SE Attica. The post-alpine (syn-rift) formations consist of
alternating beds of marls, lacustrine limestone marls and sandstones. Quaternary deposits
are talus cones, sandy–clayey soils, scree, and unconsolidated clays. [11].

Rifting started in Middle-Upper Miocene and continues until the present day resulting
in the formation of several basins. According to Freyberg [12], in the western part of
the Athens Basin, the Pliocene formation (with a considerable thickness reaching locally
more than 300–400 m) can be found, such as clays, sands and sandstones, and gravels in
alternation with white limestone. The dating of the synrift ranges from Upper Miocene to
Holocene times. There are also Quaternary volcanic formations consisting of loose volcanic
extrusive rocks with tuff blocks, dacitic and andesite domes as well as alluvial fan deposits
and steep talus cones covering parts of Aegina island, Poros island and almost the entire
Methana peninsula.

The Athens basin is the main neotectonic feature in Attica, elongated in a NE-SW
direction. An important tectonic structure is the NNE-SSW, west-dipping detachment
fault that separates the metamorphic units to the east from the un-metamorphic units
to the west [13,14]. The fault was active in Late Miocene-Early Pliocene and produced
several hundred meters of debris-flow deposits. In addition, the active normal faults of
Avlon-Malakasa, Afidnes, Milesi, Pendeli, Kakia Skala, Thriassion and Fili dominate the
area [15,16]. These faults present characteristic features such as prominent scarp linearity,
considerable scarp height, unweathered scarp appearance and fault-slip kinematics that
are compatible with the regional stress–strain fields (N-S to NNE-SSW) [17,18].

Based on their morphotectonic features [16], all normal NW-SE trending major faults
of Attica could be considered “active structures”. Overall, the northern part of Attica
is bounded by a series of north-dipping active fault segments, while the central part by
south-dipping active faults, respectively [16,19–22]. The slip rates of active faults are less
than 1 mm/year [15,21,22] and average earthquake recurrence intervals are expected in
the order of a few thousands years.

An interesting part of the geological setting of the Attica region is Kithira and An-
tikithira islands, which are the southeastern islands of the Ionian Sea between Peloponnese
and Crete and belong to the administration of Attica Regional Authority. The geological
formations that are found there, comprise metamorphic rocks as well as carbonate rocks of
Tripolis and Pindos geotectonic zone. Both islands are surrounded by N-S oriented active
faults due to ongoing east-west extension in this area of the Hellenic Arc.

3. Materials and Methods

3.1. Landslide Inventory of Attica

The first step towards the compilation of a landslide susceptibility map is the de-
velopment of a landslide inventory [23]. In this study, the generated inventory map,
and the landslide geodatabase, cover a chronological period from 1961 up to the present.
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The methods that were used for the generation of the inventory are classified into the
following approaches:

• An in-depth collection and review of technical reports (analog and electronic copies)
from public authorities, research institutes and newspaper articles

• Field surveys and validation of previously mapped landslides by the authors of
past reports

• Airborne and satellite image analysis and interpretation using (a) multi-temporal
optical images from Google Earth Pro, (b) processed hillshade imagery extracted from
a high-resolution Digital Elevation Model (pixel size of 5 m). we used the 5-m Digital
Elevation Model for mapping older landslide features and identify new potential ones.
Those landslide areas were delineated based on the guidelines recommended by the
protocol of Special Paper 42 from the Oregon Department of Geology and Mineral
Industries [24]. The identified slope failures were imported in the ArcGIS database,
georeferenced, based on the official Greek projection system (EGSA 87), as: (1) spatial
data (mapped as points, lines and polygons) and (2) tabular (descriptive) data in text
or numeric form, stored in rows and columns in a database and linked to spatial
data [24]. Characteristic examples of the slope failures that were reported in the Attica
Region and employed in the DIAS geodatabase are shown in the following Figure 2.

Figure 2. Cont.
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Figure 2. (a) Rockfalls at the coastal areas of Alepochori–Psatha (North-Western Attica), (b) earth fall on bank slopes subjected to
undercutting by Chelidonous stream (North of Athens, Kifisia municipality). (c) Rockfalls occurred in Attica islands such as Spetses
(e.g., Agriopetra) and (d) Kithira (e.g., Galani spring-Agia Pelagia). In Figure 2c, the blue circles around rocks emphasize the great
possibility for rockfalls. (e) Complex slope failure in Salamina island (Porto Fino site), (f) A rock topple failure in Hydra (adjacent to
Miaoulis statue), (g,h) An earth slide from Penteli area (Ntrafi site) at northeastern of Athens. The toponyms of each characteristic site
are depicted in Figure 1.

Following the terminology defined by the Working Party on World Landslide In-
ventory (1990) [25], the majority of the depicted slope failure sites hold information on
location, dimensions-geometry, landslide-movement type, trigger mechanism, damage
caused, slope and aspect, lithological composition, movement date, older activation, seis-
mic risk zone, meteorological data, hydrogeological behavior, consequences, proposed
remedial measures, the confidence of landslide identification, mass movement date–field
survey date, bibliographic reference and characteristic photos for each slope failure. The
developed landslide inventory map is shown in Figure 3, where slope failures are inter-
preted as points (220 sites), polygons (98 areas delineated based on the Oregon Protocol)
and erosion lines based on data provided by the Hellenic Survey of Geology and Mineral
Exploration (H.A.G.M.E.), assigning a unique identifier and a number of attributes to each
landslide. Taking into account Varnes classification (1978) [26], the movement type of the
220 slope failures, shown as points, can be characterized as follows (Table 1):

 

Figure 3. Frequency of landslides of Attica for the period 1961–2020. Bin-size ten years.
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Table 1. Movement type of the 220 inventoried slope failures in Attica Region (based on Varnes nomenclature). Each type is
associated with a specific recorded number of failures. Each slope failure is depicted in Figure 4.

Movement Type Rock: 52 Debris: 58 Earth: 110

Fall 1. Rock fall: 40 2. Debris fall: 41 3. Earth fall: 67

Topple 4. Rock topple: 3 5. Debris topple: 3 6. Earth topple: 8

Rotational sliding 7. Rock slump: - 8. Debris slump: - 9. Earth slump: 27

Translational sliding 10. Block slide: 3 11. Debris slide: - 12. Earth slide: 6

Lateral spreading 13. Rock spread: - - 14. Earth spread: -

Flow 15. Rock creep: - 16. Talus flow: - 21. Dry sand flow: -

17. Debris flow: 1 22. Wet sand flow: -

18. Debris avalanche: - 23. Quick clay flow: -

19. Solifluction: - 24. Earth flow: 1

20. Soil creep: 13 25. Rapid earth flow: -

26. Loess flow: 1

Complex 27. Rock slide-debris avalanche: 6 28. Cambering, valley bulging: - 29. Earth slump-earth flow: -

The geodata within the DIAS database followed the EU Inspire Directive and is
maintained in a digital format that can be adapted and updated for future use. Furthermore,
from the DIAS geodatabase, some more extra remarks can be deduced about the frequency
of slope failures per decade from 1961–2020 (Figure 3). It is noted that the number of
recorded slope failures increased in the 2000–2010 and 2010–2020 decades in comparison to
the pre-2000 data, and this can be explained due to intensive climate change and due to
the execution of more detailed field and remote sensing surveys from public authorities,
research institutes and consulting agencies.

In the following Figure 4, the developed landslide inventory map is shown. In the
legend of the map, the slope failures depicted with green circles correspond to landslides
that have already manifested at Attica Region in the past. Slope failures in red polygon
shapes are those that are delineated through the methodology described by the protocol of
Special Paper 42, developed by the Oregon Department of Geology and Mineral Industries.
Finally, erosion lines were provided by the Hellenic Survey of Geology and Mineral
Exploration (H.S.G.M.E.) through a research project which proposed flooding mitigation
measures in the Mandra area, west of Athens.
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Figure 4. The developed by this study landslide inventory map of Attica Region for the period 1961–2020. Background
hillshade image is derived from a high-resolution Digital Elevation Model.
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3.2. Assessment of Landslide Susceptibility at the Attica Region

For the purposes of this study, a semi-quantitative heuristic methodology called Rock
Engineering Systems (RES), originally introduced by J. Hudson (1992) [7], was applied to
assess the landslide susceptibility. The Rock Engineering System approach has been used
for a wide variety of rock engineering and other topics, such as surface blasting, natural
slope instability, earthquake and rainfall-induced natural slope instability, road-cut induced
slope instability, rockfall assessment, engineering geology zonation, coastal landslides,
TBM performance, Metro tunnel stability, and many more applications in engineering
modelling and design [27]. Furthermore, regarding recent findings of the implementation
of RES generally in geotechnical engineering applications, it can be mentioned that:

(i) R. Rafiee et al. (2018) [28], have used fuzzy RES in order to apply system thinking-
based techniques for assessment of the rock mass cavability in block caving mines.

(ii) J. Wang et al. (2018) [29], have implemented RES to evaluate sandy soil liquefaction.
(iii) M. Ferentinou and M. Fakir (2018) [30], used RES in accordance with self-organising

maps (e.g., artificial neural networks), so as to assess the stability performance of
newly open pit slopes.

(iv) Finally, M. Elmouttie and P. Dean (2020) [31], used RES and a system theoretic process
analysis in order to design the control system for the slope stability monitoring in an
open cut mining.

In Greece, the RES methodology has been applied in different geological settings
and scales. For example, Rozos et al. (2006) [32] have used RES for a study in Karditsa
prefecture, Greece (scaled in 1:50,000), Rozos et al. (2011) [33] have compared RES and
Analytical Hierarchy Process (AHP), Tavoularis et al. (2017) [34] tested RES on Malakasa
(1995) and Tsakona (2003), Greece in site-specific scale (1:1,000 to 1:5,000), Tavoularis
(2017) [35] implemented RES in a regional scale area (Geological Sheet of Megalopolis,
Greece scaled in 1:50,000) in complex geological setting and tectonic regime environment.

In this study, an attempt is made to implement RES in a larger coverage area (scaled
in 1:100,000) than those previously mentioned with many different geological settings
(active faults, places adjacent to dormant volcanic eruptions, streams banks eroded by flash
floods), densely populated and surrounded by many important infrastructure facilities.

3.2.1. The RES Approach

A crucial problem of any engineering design is ensuring that all the necessary param-
eters are included and that the interactions among them are understood. John Hudson was
the researcher that originally introduced the Rock Engineering Systems (RES) approach
in 1992. The RES methodology is a synthetic approach which studies the problem (e.g.,
landslide), breaks it down into its constituent variables (e.g., predisposing parameters,
estimation of landslide instability index), and assesses their significance (e.g., calculation of
susceptibility analysis). In most slopes, that kind of analysis is complicated due to different
interacting factors, complexity of geological formations, different scale of the instability
events as well as a scarcity of detailed geodata. These problems can be solved through the
use of RES, where its use can take into account the particular problems at any investigated
site so as to identify critical sites in order to support decisions on land use and planning
development [27].

For consideration of a specific engineering project–system (in our research the land-
slide susceptibility of the Attica region), some parameters are expected to show a greater
effect on the project–system than others and some parameters will in their turn be signifi-
cantly affected by the system. The RES methodology uses a table (i.e., interaction matrix)
with xi rows and yj columns, in which the selected n parameters are selected as leading
diagonal terms and the interactions between them are considered as off-diagonal terms. In
Figure 5, the row passing through the parameter Pi represents the influence of Pi on all the
other parameters in the system, whereas the column through Pi represents the influence
of the other parameters on Pi. Afterward, we study this so-called influence by coding the
off-diagonal components in order to express their importance. A semi-quantitative coding
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method was used with values ranging from 0 to 4 corresponding to: 0-No interaction (most
stable conditions); 1—Weak interaction; 2—Medium interaction; 3—Strong interaction
and 4—Critical interaction (most favorable condition for slope failure), respectively. For
eliminating the subjectivity, this coding method can be used by one or more experts familiar
with the project being considered [7]. Next, the sum of each row (named as “cause-C”) and
each column (named as “effect-E”) can be determined and designated as co-ordinates (C,
E) in the diagram of Figure 5. The meaning behind this diagram is that C represents the
way in which Pi affects the system; and E represents the effect that the system has on Pi,
by indicating a parameter’s interaction intensity (as the distance along the diagonal) and
dominance (the perpendicular distance from this diagonal to the parameter point). By these
two words, we quantify parameter significance inside the matrix system (i.e., landslide).

Figure 5. Interaction matrix. The dashed lines correspond to the terms ”interaction intensity” and
“dominance” respectively [7].

According to Hudson (1992) [7], there are many “constellations” that could occur, the
two main ones being mainly along the C = E line or mainly along a line perpendicular
to it. If the parameter points are scattered along the C = E line but close to it, then they
can be ranked according to their parameter interaction intensity; in other words, they
can be listed in order of interactive importance (Figure 6a). If, on the other hand, the
parameter points are scattered on a line perpendicular to the C = E line, they will have
similar interaction intensities but widely differing dominance values (Figure 6b). In the
former case, it might be possible to use five or six parameters in such a scheme; in the latter
case, all the parameters must be used.

The cause versus effect diagram reveals the influential role of each parameter on slope
failure which is expressed by the term “weighted of coefficient influence”. Respectively,
the role of the system’s interactivity is expressed from the histogram of the interactive
intensity [cause (C) + effect (E)] against the parameters. This intensity is transformed into
weighting coefficients, which express the proportional share of each factor in slope failure
and normalized by dividing with the maximum rating (4), giving the ai%, as it is explained
in the next paragraph.
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Figure 6. Interaction intensity–dominance diagram, with different forms (a,b) of parameters constellations [34].

The next step is to compute the instability index (Ii) for each examined slope, by using
the following equation:

Ii = Σai × Pij (1)

where Pij is the rating value assigned to the different category of each parameter’s separa-
tion, i refers to parameters (from 1 to 10 corresponding to this research, and generally from
1 to n, in other case studies where a different number of landslide parameters are selected), j
refers to the examined slope and ai is the weighting coefficient of each parameter provided
by the formula:

ai = 1/4 * [(C + E)/(ΣiC + ΣiE)]% (2)

normalized to the maximum rating of 4. It should be noted that the instability index is an
expression of the potential instability of the slope, with values ranging between 0 (no slope
failure at all) and 100 which refers to the most unfavorable conditions (i.e., landslide).

3.2.2. Selection of the Parameters Controlling the Slope Failures

Ayalew and Yamagishi (2005) have reported that there are five basic concepts for the
chosen parameters regarding the assessment of landslide susceptibility [36]. Parameters
should: (i) vary spatially, (ii) be measurable, (iii) be related to the presence or absence of
landslides, (iv) be representative of the entire study area, and (v) not account for double
consequences in the final outcome. Ten parameters were selected as independent control-
ling factors for the landslide manifestation of the Attica Region, and classified into five
classes. These factors which were utilized for the RES methodology are the (i) distance
from roads, (ii) slope inclination, (iii) slope orientation (aspect), (iv) lithology, (v) hydroge-
ological conditions, (vi) rainfall, (vii) land use, (viii) distance from streams, (ix) distance
from tectonic elements and (x) elevation.

In order to decide and consequently select the above-mentioned parameters, (a) we
studied a huge amount of published and unpublished engineering geology reports, (b) we
applied very interesting landslide research based on statistical analysis gained in Greek
territory [37], and (c) we took into consideration the field observations conducted in Attica
region in the frame of this study [38]. In the following paragraphs, the importance of each
selected parameter for the initiation of a landslide and an analysis of what do we mean by
the terms ”dependence” and “independent” are provided.

The meanings of “dependance” variable and “independent” parameter are related to
the role each one has inside the whole system we study. The system can be a slope failure
or underground stability and support or the selection of the right type of tunnel boring
machine or any other geotechnical engineering problem that can be addressed by using
this semi-quantitative heuristic methodology of RES.

To be more specific, referring to “dependance” variable is meant the occurrence or
not of a slope failure. For example, we study the interaction of ten landslide parameters
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and according to RES methodology, we calculate the weighted coefficient of each landslide
parameter, estimating the instability index for each examined slope. If the calculated index
is over a critical accepted threshold (as the one that we will present in the following section
of this paper), this means that the selected parameters are crucial for the slope failure
occurrence, and subsequently, measures must be taken in order to minimize their effect on
slope instability. Otherwise, if the estimated index is under this critical threshold, then, no
landslide is about to happen and immediately we conclude that those parameters that we
selected are not crucial for landslide initiation.

On the other side, as “independent variables” are characterized the landslide control-
ling factors (such as geology, distance from roads, hydrogeological conditions, distance
from tectonic elements), and each other is tested on how dominant or how interactive can
be with the other selected landslide parameters.

RES studies the interaction of each parameter to the other and vice versa, by quantify-
ing the different importance of these interactions. This is justified because some parameters
will have a greater effect on the system (e.g., in our case the landslide susceptibility in
Attica county,) than others and some parameters will in their turn be largely affected by the
system. Thus, talking for example about the interaction of hydrogeological condition on
lithology, it is meant how lithology can be affected by the permeability status that dictates
the geological formation that constitutes the examined slope and vice versa how a specific
type of rock or soil of the examined slope will affect the hydrogeological equilibrium of
the slope. In another case, we examine how the distance from a road affects the amount
of vegetation that exists around this. To be more specific, if a public authority plans to
construct a new highway in a place where forest or a grassland area already exists in that
particular zone, then it is proved that buffer zones of highway that are in a distance 50
or 200 m from the surrounded slopes affect the existence of vegetation dramatically [33].
Vice versa, the influence of vegetation on slopes that are in an x distance from roads is
less important.

In the following paragraphs, a brief comment on the importance of each predisposing
landslide parameter is presented.

(i) Distance from roads

During the construction of the road network, vegetation removal, and the application
of external loads as well as extensive excavation are some of the most common human
intervention actions which are taking place, and result in landslide triggering [39]. It should
be mentioned that the digital record of Attica county roads for the generation of DIAS
geodatabase was provided by the General Secretary of Civil Protection Agency of Greece.
Buffer zones were created around the roads. According to many studies but mostly based
on Rozos et al. [33], the slopes that are at a distance of 50 m from a road are more prone
to failure.

(ii) Slope inclination

Slope gradient influences on a high grade the slope proneness to failure due to
a combination of reasons such as the weathering processes, the internal geometry of
geological formations as well as the intensity of meteorological conditions [34]. Through
the use of digital elevation model and geographical information systems processing, the
slope layer was derived and classified into five classes, as follows: (1) 0◦–5◦, (2) 5◦–15◦, (3)
15◦–30◦, (4) 30◦–45◦, and (5) >45◦, with the higher rating (4) to be given to the slopes with
the higher inclination (>45◦) [33].

(iii) Slope orientation (aspect)

Another morphological characteristic that influences landslide initiation is the slope
orientation (i.e., aspect). Since vegetation and moisture retention depends on aspect, in
their turn may affect soil strength and as a result the proneness to landslides. Further-
more, since specific orientations are associated with increased snow concentrations and
consequently longer periods for freeze and thaw processes, (not to mention that signif-
icant amount of rainfall falling on a slope may vary depending on its orientation [40]),
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make everybody accept that this is a very crucial parameter for the estimation of landslide
susceptibility. The classification of the slope aspect is shown in Table 2 and its rating is
based on Koukis and Ziourkas [37]. According to them, in statistical analysis for landslides
in Greece took place in the period 1949–1991, the classes 0◦–45◦, 45◦–90◦, are associated
more frequently with slope failures. Thus, in this study, the highest rating corresponds to
rating 4.

Table 2. Parameters and their rating selected to be employed in the model.

Parameters. Grade Parameters Grade Parameters Grade

1. Distance from roads 5. Hydrogeological
conditions

9. Distance from tectonic
elements

Distant (>200 m) 0 Impermeable formations
(Marl, siltstone) 0 Distant (>200 m) 0

Moderately distant (151–200
m) 1

Fractured formations
characterized as having low
to negligible permeability

(Flysch, schists)

1 Moderately distant (151–200
m) 1

Immediate (101–150 m) 2 Volcanic rocks,
conglomerate 2 Immediate (101–150 m) 2

Less immediate (51–100 m) 3
Carbonate formations with

medium to high
permeability

3 Less immediate (51–100 m) 3

Close (0–50 m) 4 Debris, alluvial–marine
deposits 4 Close (0–50 m) 4

2. Slope’s inclination 6. Rainfall 10. Elevation

0◦–5◦ 0 <400 mm 1 >1000 m 1

6◦–15◦ 1 400–800 mm 4 0–200 m 2

15◦–30◦ 2 800–1000 mm 3 600–1000 m 3

30◦–45◦ 3 1000–1400 mm 2 200–600 m 4

>45◦ 4 7. Land Use

3. Slope’s orientation Barren areas 0

270◦–315◦ 1 Urban areas 1

90◦–135◦, 135◦–180◦,
225◦–270◦ 2 Forest areas 2

180◦–225◦, 315◦–0◦ 3 Shrubby areas-Natural
grassland 3

0◦–45◦, 45◦–90◦ 4 Cultivated areas 4

8. Distance from streams

4. Lithology Distant (>200 m) 0

Carbonate rocks (e.g.,
limestones, marbles), schist,

cherts
1 Moderately distant (151–200

m) 1

Metamorphic rocks
exhibiting schistocity 2 Immediate (101–150 m) 2

Loose soil formations
(alluvial, etc.) 3 Less immediate (51–100 m) 3

Flysch, marine deposits 4 Close (0–50 m) 4
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(iv) Lithology

According to Koukis and Ziourkas [37], lithology in Greek territory is classified into six
classes as follows: (a) igneous rocks, (b) cherts, schists, (c) carbonate rocks (e.g., limestones,
marbles), (d) metamorphic formations exhibiting schistosity, (e) loose soil formations
(alluvial, etc.) and (f) flysch. They concluded that flysch is the geological formation that is
associated with the most frequent landslide incidents in Greek territory (36% frequency
of landslides), and accordingly it was decided to correspond this complex formation
(intercalations mostly of sandstone, siltstone and limestone) to rating 4. In this research,
the geologic map of the entire county of Attica region, provided by the Hellenic Survey of
Geology and Mineral Exploration (H.S.G.M.E.) was taken into consideration. This map,
comprises a digital mosaic of twenty-one (21) geological sheets scaled in 1:50,000.

(v) Hydrogeological conditions

In this research, the classification is based on River basin management plans from
the Greek Ministry of Environment, Energy and Climate Change/Special Secretariat for
Water (2012) [41], where the highest rating (4) was given to debris, alluvial–marine deposits
whose permeability is crucial for slope failure.

(vi) Rainfall

It is well known that high precipitation can increase both the groundwater level and
the pore pressure in a soil mass/weathered mantle or aquifer, and accordingly it constitutes
the main triggering causal factor of landslides [39]. The data that we used were provided
by Attica meteorological stations of the National Observatory of Athens (NOA). NOA has
published reports presenting the locally encountered conditions [42]. Those data were
analyzed using kriging interpolation in order to acquire a rainfall layer of information
for the upcoming GIS geoprocessing. In addition, the rating was based on the statistical
analysis made by Lalioti and Spanou (2001) for Greece during the period 1991–1998 [43].
In this research, the class 400–800 mm is the one with the greater amount of rain (mean
annual) in the Greek territory, so the highest rating for this study corresponds to 4.

(vii) Land Use

Land use is a crucial parameter in controlling soil erosion as it is related to the
vegetation covering which in its turn provides a protective layer on the earth and regulates
the transfer of water from the atmosphere to the surface, soil and underlying rocks [44].
The vegetation data used in this study was extracted from the EU Corine Land Cover 2018
database and its rating is based on Rozos et al. [33]. According to them, the higher rating
was given to the cultivated areas, due to the maximum percentage of landslide density that
is observed.

(viii) Distance from streams

The closer a slope is to a stream, the less stable it is. This happens, due to the fact that
streams may adversely affect stability by eroding and saturating the bottom zones of the
slopes [45]. The hydrographic network for DIAS geodatabase was generated using the
digital elevation model of 5 m pixel size resolution as well as ArcGIS algorithms referring
to hydrology processing (Fill, Accumulate, Flow direction based on Strahler classification).

For the examination of this parameter, buffer zones were created around the streams
at distances of 50, 100, 150 and 200 m. The classes of the buffer zones are shown in Table
2 and its ranking was based on Rozos et al. [33], suggesting that the most prone class to
landslide is that of 0–50 m. This implies that as the distance from the hydrographic axes
decreases, the highest percentage of landslide density increases.

(ix) Distance from tectonic elements (e.g., faults)

There is an increase in the occurrence of slope failures at areas close to fault zones,
because as the distance from a tectonic element decreases, the fracture of the rock and the
degree of weathering increases [46], while the structure of the surficial material is affected
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causing selective erosion and forcing the movement of water along fault planes to decrease
slope stability [47,48]. In Attica Region, many active faults were mapped particularly in
west and northeastern part of its peninsula as well as in some islands (such as those of
Salamina, Kithira). The digital fault database was provided by the Hellenic Survey of
Geology and Mineral Exploration and from the National Observatory of Athens [49]. The
classes of the buffer zones are shown in Table 2, with the most prone class to landslide to
be that of 0–50 m (rating: 4) [33].

(x) Elevation

The combination of elevation, precipitation and erosion-weathering process contribute
to landslide manifestation. The elevation data used in the model were derived from high-
resolution DEM (5 m pixel analysis) provided by the Greek Cadastre S.A. The classes of
the buffer zones are shown in Table 2 and its ranking was based on the landslide statistical
analysis made by Koukis and Ziourkas (1991) for Greece during the period 1949–1991 [37].
In this research, the category 200–600 m is related to the highest number of slope failures
that happened in Greece, so this class is associated with a rating of 4.

The above data were rated so as to be used in the development of the interaction
matrix (Table 2).

4. Results

4.1. Implementation of RES for the Estimation of Weighted Coefficients

In this section, the results of the application of the RES method in the Attica Region
are presented, such as the interactions among the selected parameters, the calculation of
their weighting coefficients and finally the instability index accompanying with charts
and tables which they decode and translate the geodata. As it was previously presented,
the interaction matrix shown in Table 3 was coded using the Expert Semi-Quantitative
method. For example, regarding the effect of lithology (P4) on rainfall (P6), it can be stated
that there is no influence at all (coding: 0), whereas rainfall does affect lithology through
the infiltrating and weathering-erosion process that may alter not only the mineralogical
composition of a specific rock or soil of the slope but also influence their hydrogeological
behavior too (coding: 2).

Note that, in Table 3, the sum of cause-and-effect (C + E) value for each parameter
represents the “interaction intensity” term, which means how active that parameter is
within the matrix system (i.e., the slope stability). On the contrary, the (C − E) value
represents how dominant the variable is within the system: positive values of (C − E)
represent a dominant variable, whereas negative values of (C − E) represent that the system
is affecting the variable more than the variable is affecting the system [7]. More specifically,
from Table 3 and Figure 7, it can be seen that the hydrogeological conditions are the most
interactive parameter (C + E = 39) [e.g., has the greatest value (concerning C + E)], meaning
those conditions play the most decisive role for landslide activation, whereas elevation
is the least interactive (C + E = 18). This suggests that elevation does not depend on the
influence of the other parameters, but it is an independent agent.

43



Land 2021, 10, 148

Table 3. Coding values for the interaction matrix of Attica Region.

Interaction Matrix of Attica Region

P1 3 1 0 1 0 2 0 0 0 7

Cause (C)

2 P2 1 0 1 0 2 2 1 0 9
1 2 P3 1 2 2 2 2 0 0 12
1 3 2 P4 4 0 2 3 2 2 19
2 2 2 2 P5 0 3 3 1 0 15
4 3 0 2 4 P6 4 3 0 0 20 Cause (C)
0 1 0 1 2 0 P7 1 0 0 5
2 1 1 1 4 0 2 P8 1 0 12
4 3 1 2 4 0 0 2 P9 0 16
2 2 0 1 2 4 3 2 0 P10 16
18 20 8 10 24 6 20 18 5 2

Effect (E)
P1 = Distance

from roads P2 = Slope P3 = Aspect P4 = Lithology P5 = Hydrogeological
conditions

P6 = Rainfall P7 = Land Use P8 = Distance from
streams

P9 = Distance from tectonic
elements P10 = Elevation

Parameters C + E C-E
[(C +

E)/Σ(C +
E)]*100%

Maximum
rating

Weighted coefficient
ai = [(C + E)/Σ(C +

E)]*100%/4

1 Distance from
roads 25 −11 9.54 4 2.39

2 Slope 29 −11 11.07 4 2.77

3 Aspect 20 4 7.63 4 1.91

4 Lithology 29 9 11.07 4 2.77

5 Hydrogeological
conditions 39 −9 14.89 4 3.72

6 Rainfall 26 14 9.92 4 2.48

7 Land Use 25 −15 9.54 4 2.39

8 Distance from
streams 30 −6 11.45 4 2.86

9
Distance from

tectonic
elements

21 11 8.02 4 2.00

10 Elevation 18 14 6.87 4 1.72

Total Σ(C + E) 262 100.00 25.00

 

Figure 7. Histogram of interaction intensity.
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From the RES model and by focusing on the weights assigned to each parameter, it
can be clearly reported that hydrogeological conditions contribute the most to landslide
occurrence out of all the factors, followed by distance from streams, lithology, slope angle,
rainfall, distance from roads, land use, distance to fault lines, aspect and elevation.

In Figure 8, the form of C vs. E constellation in relation to C = E line, defines the number
of parameters that will be needed for calculating the instability index. So, according to the
interaction intensity–dominance diagram (Figure 6b), the form of the C vs. E constellation
is (almost) perpendicular to the C = E line, which means that (based on the aforementioned
RES analysis) there is little range in parameter interaction intensity. On the contrary, there
is a wide range in dominance (C − E values), so all the selected parameters will be required
for the calculation of the instability index for each examined slope.

 

 

 

 

 

 

 

C=E line 

Figure 8. Cause–Effect diagram.

Supplementary, the following Table 4, decode and “translate” simultaneously the
geodata acquired from our research and contribute in giving the necessary objective
answer to the prognosis of the potential instability of the examined slopes of Attica Region.
This can be accomplished by the estimation of the instability index, as clearly explained
in Section 3.2.1.

A characteristic sample, 10 out of 220 cases of the computation results regarding the
instability index, is given in Table 4. In this table, each examined slope (is depicted in the
column “Slopes”) is ranked according to Table 1 rating, taking into account in parallel the
specific geological conditions that characterize it according to either the ad-hoc technical
report we collected or field study we carried out. Afterward, for each slope site, every
ranking of each parameter (each parameter is depicted in the second line under the title
“Parameters”, named as 1, 2, 3, . . . , 10) is multiplied by its weighted coefficient (last line
of the Table) respectively and each outcome, based on Equation (1) is added in order to
yield the instability index for each slope. For example, the instability index of Slope (1) is
estimated as follows:

Σ [Parameter (1): 4 * 2.39 + Parameter (2): 1 * 2.77 + . . . + Parameter (10): 2 * 1.72] = 71 (3)

In Table 5, the classification for relative landslide susceptibility is listed as proposed
by Brabb et al. (1972) [50].
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Table 4. Calculation of Instability Index based on Rock Engineering System methodology for a characteristic sample of
10 slope failures out of 220 ones in Attica Region.

Parameters

Slopes/Coordinates (Greek
Projection EGSA 87)

1 2 3 4 5 6 7 8 9 10
Instability

Index

1 (476,117–4,215,245) 4 1 3 4 4 4 1 4 0 2 71

2 (476,790–4,216,087) 4 0 3 4 4 4 1 4 0 2 68

3 (483,219–4,208,555) 4 1 4 4 1 4 1 4 0 4 65

4 (482,341–4,208,253) 4 1 3 4 1 4 1 4 0 4 63

5 (483,441–4,208,871) 4 1 2 4 1 4 1 4 0 4 62

6 (458,846–4,212,690) 4 1 4 3 1 1 4 4 0 2 59

7 (477,287–4,211,687) 4 2 3 4 4 4 1 4 0 2 74

8 (476,938–476,938) 4 1 3 4 4 4 1 4 0 2 71

9 (475,095–4,212,107) 4 1 3 4 4 4 1 4 0 2 71

10 (457,187–4,195,149) 4 3 2 1 3 1 1 4 4 2 63

Maximum Pij rating 4 4 4 4 4 4 4 4 4 4

[(C + E)/Σ(C + E)] * 100% 9.54 11.07 7.63 11.07 14.89 9.92 9.54 11.45 8.02 6.87 100

Weigh. Coeff. (ai) = C + E)/Σ(C
+ E)] * 100%/4 2.39 2.77 1.91 2.77 3.72 2.48 2.39 2.86 2.00 1.72

Table 5. Classification for relative landslide susceptibility proposed by Brabb et al. (1972) [50].

% Failed Area 0–1 2–8 9–25 25–42 42–53 53–70 70–100

Relat. Susceptib.
I II III IV V VI L

Negligible Low Middle High Very high Extremely high Landslide

As it is shown in this table, the generated instability index that is greater than 53%,
corresponds to extremely high relative susceptibility up to slope failure and that this is the
crucial point for a planner or a researcher for producing a landslide susceptibility map for
a particular examined area. This remark is going to be used extensively in the following
sessions of this study.

4.2. Correlation of Spatial Distribution of Slope Failures with the Predisposing Factors Using
Statistical Analysis

Based on the information of Table 4, and according to the ranking of parameters of
Table 2, the following useful findings come out during the generation of the susceptibility
map of the Attica region. Based on this analysis, it can be concluded that 211 out of 220
(96%) slope failures are in a distance from roads up to 50 m.

Concerning the aspect parameter, 37% of the examined slopes are primarily more
abundant on Southeast-facing and secondly on Northwest-facing (34%). Based on the
rating assigned to each geological formation (e.g., lithology), the highest (40%) one is
observed at flysch (and debris) and secondly to carbonate rocks (37%). This remark was
expected since the former ones are the most statistically frequent formations prone to
landslides in Greek territory, whereas the latter ones are associated mainly with rockfall
incidents in many parts of Greece.

Regarding hydrogeological conditions, carbonate rocks with medium to high perme-
ability due to karstification and secondary fragmentation correspond to the highest (35%)
category of permeable rocks in this study. Based on the comparison among rainfall data
and landslide occurrences, it was established that landslides are more likely to take place
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when the mean annual rainfall is between 400–800 mm. As far as land use parameter is
concerned, landslides reported mostly in urban areas (62%) while based on the results
given for the elevation, it was found that the landslides develop preferentially on 0–200 m
of altitude (63%).

Furthermore, a large portion of landslides (58%) are located near to the hydrographic
network in relation especially to the undermining of the banks between 0 m and 50 m.
Such places were recorded in many streams (mostly) in the Athens basin (such as those of
Kifisos river, Chelidonous, Sapfous, Penteli, Eschatia stream).

Summarizing, the percentages of landslides per each class of predisposing factor are
illustrated in the following Figure 9.

 

Figure 9. Cont.
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Figure 9. Percentage of landslides in each class of the causal and triggering factor of landslide occurrence.

4.3. Landslide Susceptibility Map

The subdivision of the predisposing parameters into subclasses (from Table 2) was
used for the evaluation of the final slope failure susceptibility map. This map was generated
in a GIS environment, through the use of different layers-thematic maps (Figure 10a–j). The
data used for the preparation of these layers were obtained from different geodata sources
among which are the Digital Elevation Model from Hellenic Cadastre S.A. and a mosaic
geological map from the Hellenic Survey of Geological and Mineral Exploration. All data
layers were digitized either from the original thematic maps or derived from spatial GIS
calculations and finally were converted into grids with a cell size of 20 × 20 m. Afterward,
weights and rank values to the reclassified raster layers (representing predisposing factors)
and to the classes of each layer were assigned, respectively. This was realized with the
use of the previously extended analyzed methodology of RES. Finally, the weighted raster
thematic maps with the assigned ranking values for their classes were multiplied by the
corresponding weights and added up (through the ArcGIS tool of the weighted sum) to
yield the slope failure map where each cell has a certain landslide susceptibility index
value. The reclassification of this map represents the final susceptibility map of the study
area, divided into susceptibility zones according to Brabb et al. (1972) [50] classification
(Figure 11). The landslide susceptibility index (LSI) values in the final susceptibility map
were classified into five categories, namely “Low-Middle”, with Instability index (Ii) < 25,
“High” with 25 < Ii < 42, “Very High” with 42 < Ii < 53, “Extremely high” with 53 < Ii
< 70”, and “Landslide” with Ii > 70%. From this classification, it can be clearly notified that
the higher the LSI, the more susceptible the area is to landslides (instability index higher
than 70%).

48



Land 2021, 10, 148

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) (b) 

(c) (d) 

Figure 10. Cont.
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Figure 10. Thematic raster maps of the ten (10) landslide parameters used for the estimation of Attica region susceptibility:
(a) Distance from roads, (b) Slope, (c) Aspect, (d) Reclassified geological map, (e) Hydrogeological conditions, (f) Rainfall,
(g) Land use, (h) Distance from streams, (i) Distance from tectonic elements, (j) Elevation.

From Figure 11, some further findings that come out are as follows (Table 6, Figure 12):

Table 6. Correlation between instability index and susceptibility coverage class in km2.

Instability Index Category Susceptibility Coverage Class in km2

<25% 5 (0.13%)
25.01–42% 585 (15.54%)
42.01–53% 1552 (41.23%)
53.01–70% 1500 (39.85%)
70.01–100% 122 (3.24%)

Total examined area: 3.764 km2

From the above pie diagram, it is clear that 43.09% (39.85% + 3.24%) of the examined
area is associated with an instability index greater than 53%. Furthermore, it can be
added that 122 km2 (3.24%) of the total examined area are correlated to potential landslide
occurrence. Public authorities responsible for auditing and supervising technical works
should be aware of these findings, so as to take the appropriate advance, mitigation
measures against the possible initiation of potential disastrous landslide phenomena taken
place in these proposed, for slope failures, areas.
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Figure 11. The Susceptibility map of Attica Region.

52



Land 2021, 10, 148

 
Figure 12. Pie diagram depicting the landslide susceptibility coverage class in km2 for Attica region.

4.4. Validation of the Landslide Susceptibility Map

For having scientific significance in any generated model, the most important com-
ponent in prediction modelling, is to implement a validation of the prediction results [51].
Thus, in the final landslide susceptibility map, we compared the results with the distribu-
tion of the 220 slope failure events that had occurred in the examined area. The predicted
map showed very satisfactory results and particularly, at the susceptibility map of the
Attica region, 68% of the locations of actual and potential landslides correspond to the
“Extremely high” and 21% are associated with a landslide (Figure 13, Table 7).

 

Figure 13. Correlation among number of examined slope failures, instability index, and susceptibility classification. Blue
color corresponds to the number of slope failures, orange color is linked with instability index percentage associated with
susceptibility categories.
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Table 7. Correlation among number of examined slope failures, instability index, and susceptibility
classification.

Relative Susceptibility
Classification

Number (No) of Slope Failures Instability Index (%)

<42% (Low to moderate) 1 0.45

42.01–53% (High) 23 10.45

53.01–70% (Extrem. high) 149 67.73

70.01–100% (Landslide) 47 21.36

Total: 220 100

Moreover, another method for validating the above mentioned, was the implementa-
tion of the confusion matrix. It is a table that is often used to describe the performance of
a classification model on a set of test data for which the true values are known [52]. We
used the confusion matrix for a binary classifier e.g., (α) the existence of landslides with
instability index greater than 53% and (b) the no existence of landslides (with instability
index less than 53%). Each row of the matrix represents the instances in an actual class
while each column represents the instances in a predicted class (or vice versa). In our case,
In Table 8, four different combinations of predicted and actual values were used.

Table 8. Confusion matrix of the landslide susceptibility map validation.

Total Population: n = 220 Slope Failures
Predicted Conditions

Predicted NO Predicted YES

True conditions
(Observed)

Actual NO 3 (TN) 21 (FP)

Actual YES 22 (FN) 174 (TP)
Where: TN means when the examined slope does not correspond to landslide, how often does it predict no, FP
means when the examined slope does not correspond to landslide, how often does it predict yes, FN means
the falsely predicted landslide, TP means when the examined slope correspond to landslide, how often does it
predict yes.

The following is a list of rates that were computed from the confusion matrix for a
binary classifier:

• Accuracy: Overall, how often is the classifier correct?

(TP + TN)/total = (174 + 3)/220 = 0.80 (4)

• Precision: Out of all the positive classes we predicted correctly, how many are actually
positive.

TP/predicted yes = 174/195 = 0.89 (5)

• Prevalence: How often does the yes condition actually occur in our sample?

actual yes/total = 196/220 = 0.89 (6)

From the above, analytically presented, it is clear that the described RES methodology
has 89% precision.

In addition, the validation of the generated susceptibility map was tested with two
additional landslide databases. These are (a) the 98 polygons derived from Oregon method-
ology as previously mentioned, and (b) erosion lines derived from a project delivered
by the Hellenic Survey of Geological and Mineral Exploration concerning the Mandra
area flooding susceptibility [53]. Particularly, it was found that regarding the Oregon
protocol, in the generated landslide susceptibility map of the Attica region, 49% of the
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defined polygons correspond to the “Extremely high” category and 33% are associated
with landslides. Concerning the rest of the delineated areas, it is proposed to conduct
geological–geotechnical investigations to define the potential of the slopes to failure.

Finally, the erosion lines which were defined by the aforementioned research institute
were in accordance with the instability index greater than 70%.

Practical use of the final susceptibility map is the implementation it may have dur-
ing the planning, design and construction of various important infrastructure projects. Even
though it is not advisable to be used for local or site-specific planning,
C.J. Van Westen (2016) [54], recommends the following use of the above-mentioned sus-
ceptibility classes.

Low susceptibility zones

In those areas, with respect to planning and constructing civil engineering projects, no
special care should be taken by planners and engineers.

Moderate susceptibility zone

This zone is the most problematic for spatial planning and construction infrastructure
and it is encouraged to implement geotechnical/geophysical investigation for critical civil
engineering projects (e.g., highways, important public buildings such as hospitals).

High and very high susceptibility zones

Slope failures are expected to occur within these zones. The best is to avoid these areas
regarding the development of future residential areas or crucial infrastructure projects.
However, if this is not possible, a detailed level of geotechnical investigation of landslide
hazard is required for these areas before allowing new constructions. In the present study,
areas of this category can be found in the northeastern, southeastern and western part of
the Attica peninsula as well as in the northern part of Aegina island, and the central part of
Salamina and Kithira islands.

5. Discussion

Using RES and GIS techniques, the landslide susceptibility of the Attica Region was
assessed by correlating ten parameters and producing the final susceptibility map for
the whole Attica peninsula (with its islands included) in Greece. The validity of this
approach was tested using the slope failures that were recorded during the last sixty years
in this region. In particular, 68% of the recorded 220 slope failures were found to be in
the “Extremely high susceptibility” and 21% in the “Landslide” zone respectively of the
developed map. Studying more carefully this map, some more remarks can be extracted.

Initially, it is shown in the susceptibility map that slope failure incidents are located
mostly in areas where Neogene and Quaternary sediments outcrop. Secondarily, slope fail-
ures are associated with carbonate rocks basically due to rockfalls. In order to preliminary
assess the potential landslide risk in respect to settlements, the villages and cities at the
study area were plotted on the susceptibility map (Figure 11).

This correlation suggests that 16 settlements are entirely located within “Landslide”
and 201 urban areas are in the “Extremely high landslide susceptibility” zone. To be more
specific, in the “Landslide” zone, places such as Chalkoutsi, Grammatiko, Kato Alepochori,
Schinos can be found. In the “Extremely high landslide susceptibility” zone, characteristic
sites are Mesagros (Aegina Island), Varnavas, Galaniana (Antikithira island).

In addition, many defined slope failure areas are associated with the existence of
faults. This result should be taken into consideration by public authorities responsible for
the construction of public technical works, regarding urban planning and design of new
infrastructure projects (e.g., highways, tunnels, major buildings).

According to the generated susceptibility map, areas associated with an instability
index greater than 70% are located in many sites around the Attica region (islands included).
For that reason, public authorities responsible for civil protection need to get advice from
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such maps to make emergency plans at different administrative levels, useful for the
pre-event of the landslide risk management cycle.

Moreover, the landslide susceptibility map can be used with the already produced
potential highly flood hazard zoning maps of Attica Region authorized by the Greek
Ministry of Environment and Energy, and with the produced flooded area maps, delivered
by the Copernicus Emergency Management Service-Mapping.

Concerning localities that were affected by catastrophic forest fires in previous years
such as those of Kineta (2018) and Mati (2018) (Figure 11) [38], and studying the gener-
ated susceptibility map, it is realized that such fires can cause in the immediate future
“secondary” hazards like earth slides, debris flows and flash floods. Those two areas are
associated with an instability index greater than 53% and this means that the drastically
changed environmental conditions due to the fires may increase the landslide activity in
the area in the near future.

Finally, it should be pointed out that the developed susceptibility map is at a regional
scale (1:100,000) and its practical use is to be applied in conjunction with site-specific work,
from experts such as experienced geologists, geotechnical engineers before development
takes place. Additionally, it should be mentioned that even though susceptibility analysis
does not define either the time and the type of the failure, or the volume of the mass
involved, it is necessary for the estimation of hazard and risk index and zoning, respectively.

For all these reasons, the applied methodology (RES and Oregon Protocol method-
ology) should be accompanied each time by the appropriate fieldwork as well as the
necessary geotechnical desk study, so as to acquire the most accurate geological model of
the ad hoc examined area susceptible to slope failure [55].

6. Conclusions

This study presents the landslide susceptibility analysis for Attica Region, which is
the most densely populated area in Greece. The produced susceptibility map is a car-
tographic product in a regional scale (1:100,000) generated for the Attica county via a
semi-quantitative heuristic methodology named Rock Engineering System and a prototype
technique originally developed by the Oregon Department of Geology (USA). To the au-
thor’s knowledge, this is the first time that such an in-depth analysis has been conducted
for the whole of Attica county. Furthermore, for the compilation of this map, RES method-
ology was applied as a simple and fast tool for the calculation of the instability index of
each examined slope failure recorded in a well-organized geodatabase according to the EU
Inspire Directive.

Considering the mentioned previously, it should be noted that 68% of the locations of
actual and potential landslides correspond to the “Extremely high” and 21% are associated
with a landslide. Responding to the previous remark, particular sites in Northeastern Attica
(e.g., Kapandriti, Varnavas, Oropos, Kalamos), historical slopes in Western Attica (such
as those of Alepochori-Psatha, Alepochori-Schinos, Kakia Skala), the most well-known
historical landslide of Malakasa, characteristic places in Attica islands (e.g., Kithira-Kapsali,
Aegina-Kakoperato, Salamina-Porto Fino) were validated through the above–mentioned
methodology and it was found that all of them were confirmed as landslides (Figure 11).
Furthermore, this correlation suggests that 16 settlements are entirely located within
“Landslide” and 201 urban areas are in the “Extremely high landslide susceptibility” zone.

As in Section 3.2 is mentioned, RES methodology was applied in different physio-
graphic environments with a variety of geological and tectonic settings and scales. In the
present study, the previous statement was confirmed by implementing RES in an area with
complex geological settings (e.g., active faults, many different streams based on Strahler
classification as well as a variation of geological formations). Thus, it is suggested that this
procedure (i.e., RES, GIS techniques, Oregon protocol-Special Paper 42) could be used in
other regions with different geological environments and tectonic characteristics.

Summarizing, the DIAS geodatabase represents the spatial distribution of over 300 land-
slides (rockfalls, falls, erosion lines included) based on published and unpublished informa-
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tion, field observations and remote sensing techniques. The intention is that the database
should be updated constantly. The outcome of the DIAS project will be accessible to the
public, through a web-based platform using an open-source G.I.S. software so as to aid
awareness of landslides among different stakeholders (e.g., landslide experts, government
agencies, planners, citizens). Moreover, the DIAS project can facilitate the role of Civil
Protection Authorities, by providing inputs for prevention and preparedness.

Taking into consideration the previous outcomes, the upcoming steps of this research
(DIAS project) will be the generation of hazard and risk maps using triggering dynamic
factors like earthquake and rainfall data, as well as different elements of risk, respectively,
in specific areas.
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Abstract: Over the last few years, landslides have occurred more and more frequently worldwide,
causing severe effects on both natural and human environments. Given that landslide susceptibility
(LS) assessments and mapping can spatially determine the potential for landslides in a region, it
constitutes a basic step in effective risk management and disaster response. Nowadays, several LS
models are available, with each one having its advantages and disadvantages. In order to enhance
the benefits and overcome the weaknesses of individual modeling, the present study proposes a
hybrid LS model based on the integration of two different statistical analysis models, the multivariate
Geographical Detector (GeoDetector) and the bivariate information value (IV). In a GIS-based
framework, the hybrid model named GeoDIV was tested to generate a reliable LS map for the vicinity
of the Pinios artificial lake (Ilia, Greece), a Greek wetland. A landslide inventory of 60 past landslides
and 14 conditioning (morphological, hydro-lithological and anthropogenic) factors was prepared
to compose the spatial database. An LS map was derived from the GeoDIV model, presenting the
different zones of potential landslides (probability) for the study area. This map was then validated
by success and prediction rates—which translate to the accuracy and prediction ability of the model,
respectively. The findings confirmed that hybrid modeling can outperform individual modeling, as
the proposed GeoDIV model presented better validation results than the IV model.

Keywords: landslides; susceptibility; hybrid modeling; Geographical Detector; information value; Greece

1. Introduction

A landslide is a gravity-driven environmental process which involves the movement
of rocks, debris, earth, or a combination of them down a slope [1]. According to official data,
landslides constituted the third (after floods and storms, and before earthquakes) most
frequent natural disaster worldwide in 2020 [2]. Generally, the extreme weather events due
to climate change, and the high seismic activity in combination with the poorly planned
expansion of human activities (deforestation of slopes, uncontrolled irrigation, etc.), have
contributed to a global upward tendency in landslide occurrence in the recent years [3].

Due to their occurring without warning and seriously threatening both natural and
human environments, landslides are a major problem. Due to severe damage, or even
destruction, of infrastructure and properties, they generate larger annual economic losses
(billions euro) than any other natural disaster in many countries. In addition, a considerable
number of people each year are injured and, in some cases, killed by them. It is indicative
that during 1998–2017, totally 4.8 million people were affected by landslides worldwide,
with 18,414 of them being killed [4]. In addition, the environmental effects of landslides
are mainly changes in terrain morphology, and increased sediment loads in rivers and
subsequent transport to dams.
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The increased frequency of landslides and the severity of their effects have led to
growing interest from international scientific community. Since predictions of occurrence
and intensity remain challenging, most of the attention has been given to the determination
of potential spatial locations. The acquisition of this spatial information can be achieved
through landslide susceptibility (LS) assessments and mapping. LS refers to the potential
landslide activity as a result of terrain conditions [5]. An assessment depends on the spatial
distribution of past landslides in an area and their relation to its terrain conditions, in order
to generate spatial predictions for areas that are not landslide-affected but have similar
conditions. The output is a map presenting the region of interest divided into homoge-
neous zones of susceptibility [6]. LS maps with high levels of accuracy and reliability are
considered crucial tools that can then be used as inputs for disaster management plans.

The advancements in the geospatial tools of geographic information systems (GIS)
and remote sensing (RS), assisted by improvements in computer processing power, have
improved LS modeling over the last few decades. Based on the literature, a considerable
number of models are currently available for assessing LS at different spatial scales. In
terms of degree of objectivity and necessity for landslide occurrence data, all these models
can be separated into two different groups, the qualitative and quantitative models. The
qualitative (or semi-quantitative) models estimate a susceptibility score on the basis of
weights assigned to landslide conditioning factors from one or more expert(s). They suffer
from low objectivity associated with the experts’ subjective judgements [7]. On the other
hand, the quantitative models decrease bias in the weight assignments, since they depend
on fixed mathematical rules, regardless of any expert judgement [8]. Particularly, the
impacts of different conditioning factors on past occurrences are quantitatively determined,
resulting in high objectivity.

The current capability for acquiring multi-temporal landslide occurrence data through
RS-based approaches has led to wide use of the data-driven quantitative models. These
models range from complicated geotechnical and advanced machine learning models to
more conventional statistical analysis models. Based on mechanical laws for the calculation
of a safety factor, the geotechnical models [9,10] examine the slope stability from the
perspective of the mechanical properties of the slope. Being based on human learning
procedures, machine learning models are used to solve problems characterized by nonlinear
functions and data. Commonly applied machine learning models are artificial neural
networks (ANN), support vector machines (SVM), random forests (RF) and decision trees
(DT) [11–13].

Regarding statistical analysis models, their fundamental principle is to estimate the
probability of a landslide under the existence of spatial associations between the condition-
ing factors and past landslides [14]. Depending on the examination of factors individually
or cumulatively, they can be either bivariate or multivariate. In bivariate modeling, weights
are calculated for the classes of each individual factor by their levels of association with
landslides in a historic dataset. Frequency ratio (FR), information value (IV) and weights
of evidence (WoE) constitute the main representatives of bivariate models [15,16]. Con-
versely, in multivariate modeling, all the factors are sampled, and the presence or absence
of landslide is determined for each of the sampling units [17]. Then, weights are calculated
for the factors via statistical means. Among the multivariate models, logistic regression
(LR) is doubtless the most used [18,19]. However, models such as LR consider the factors
as explanatory variables without taking into account the spatial information contained in
them and exploring their impacts on landslide occurrence (dependent variable) from a
spatial perspective. In order to overcome this limitation, new spatially-based multivariate
models have been put forward recently. These models can address the specificities of each
space and consider that spatial variations in landslides may cause different responses to
variations in the factor variables. Such a model is the Geographical Detector (GeoDetector).
Although GeoDetector has been tested in various studies of health, social and environ-
mental sciences [20–22] over the last few years, its use in landslide-related research has
been quite limited. Since it provides an effective way to identify and eliminate redundant
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variables, GeoDetector has been used in a few relevant studies [14,23,24] for factor selection
purposes.

In general, all the quantitative models have been proven beneficial for identifying
locations that are prone to landslides; however, some shortcomings still characterize them.
The geotechnical models require detailed mechanical data of soil or rock, and as a result
they are only suitable for studying small regions or single slopes. Although the statistical
models are easy to understand and perform well in most cases, they find it difficult to
solve situations with large amounts of data. Moreover, despite their ability to handle
large amounts of nonlinear data, machine learning models are not significantly better than
the statistical ones, and cannot perform well under different conditions and in different
areas [25]. In order to produce the most reliable LS map for a region of interest, one possible
solution is to compare different models and select the optimum in terms of accuracy and
prediction ability. Several studies have compared two or more different models to recognize
the most suitable for a specific region [26–28].

The aforementioned shortcomings tend to increase the uncertainty and reduce the effi-
ciency of models when applied individually. Thus, another solution has gained popularity
recently, which is the development of hybrid models. Hybrid modeling can resolve the
shortcomings of individual models and improve performance. This type of modeling has
been gradually applied in LS assessment studies over the last decade. For instance, in the
work of Arabameri et al. [8], the efficiency of the integration of statistical (FR) and machine
learning (RF) models was explored for LS mapping in northern Iran. For assessing the LS
in a region of India, Saha et al. [29] integrated a statistical and a machine learning model to
improve on their individual accuracies. Chen et al. [30] applied a combination of bivariate
(WoE) and multivariate (LR) statistical models with a machine learning model (RF) for LS
mapping of a mountainous region of China. Roy et al. [31] delineated LS zones in districts
of India by integrating bivariate statistical (WoE) and machine learning (SVM) models.
Chowdhuri et al. [32] introduced hybrid models from statistical and machine learning
model integrations for predicting spatially the landslide occurrence in a basin of India. In
addition, some studies have improved the performances of machine learning models by
combining them with optimization or meta-heuristic algorithms [33,34].

In Greece, landslide activity has been highly facilitated by the frequent occurrence
of intense rainfall and seismic events. Along with them, its complex geo-morphological
settings (strained geological formations and steep slopes) and the uncontrolled land-use
in landslide-prone areas have contributed. As a result, the interest in and awareness of
the importance of LS assessments for regions of Greece have increased, particularly over
the last decade. However, the majority of relevant studies has focused on the implementa-
tion of individual statistical and machine learning models [35–37], rather than integrated
approaches. It could be mentioned that the work of Chalkias et al. [38] constitutes an
exception.

The region of Peloponnese has experienced severe natural disasters, including floods,
earthquakes, landslides and wildfires. Specifically, landslides have highly damaged settle-
ments within its boundaries (mainly in its northern and western parts), resulting in partial
destruction and necessary re-locations to nearby geologically stable lands. Considering all
the above, the present study aimed to assess the LS and create a reliable map of a wetland
in northwestern Peloponnese. Therefore, a hybrid LS modeling is proposed based on the
integration of two different statistical models, the multivariate GeoDetector and bivariate
IV. Past landslide occurrence and conditioning factor datasets were incorporated into the
hybrid model, named GeoDIV, and analyzed in a GIS environment to determine the spatial
distribution of susceptibility. In order to confirm the targeted reliability of LS map, the
performance of proposed GeoDIV model was compared with that of the individual IV
model in a validation procedure.
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2. Study Area

The surrounding area of the Pinios artificial lake was selected for investigation in this
study. It is located in the western part of Greece and the northwestern part of geographical
area of Peloponnese (Figure 1), covering a total extent of approximately 239 km2. It
belongs administratively to the Prefecture of Ilia and hydrologically to the drainage basin
of Pinios River. The boundaries of the study area are defined in the north and south by
the basin’s boundaries, and in the west and east by altitude contours of 100 and 200 m,
respectively. The Pinios artificial lake was created in 1960, after the construction of a dam on
the homonym river, and is the largest in Peloponnese (with a total extent of approximately
20 km2). Its water is used for the irrigation of the plain of Ilia, and hence it is considered
one of the most important land improvement projects in the entire prefecture. The total
quantity of water withdrawn from the lake annual for irrigation and water supply purposes
amounts to 126 million m3.

 

Figure 1. The study area and the locations of events from the landslide inventory.

Following the typical landscape of Ilia Prefecture, the study area can be characterized
as an agricultural region at a low altitude (mean altitude at 154 m above sea level). Het-
erogeneous croplands or fields mixed with natural vegetation represent the predominant
agricultural lands. More than 30 settlements are situated within its boundaries, containing
5400 inhabitants according to the official 2011 census [39].

The climate is Mediterranean mild with a mean temperature ranging from 20 to 25 ◦C
in the summer months, and from 4 to 10 ◦C in the winter months [40]. Long-term rainfall
records including the period of the last two decades show a mean annual value reaching
approximately 500 mm. From a geological perspective, the study area is mainly covered by
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Neogene and Quaternary loose deposits varying in thickness and consistency. Confined
granular aquifer systems have been formed inside alluvial deposits, and unconfined
aquifers have been developed in Quaternary deposits where groundwater flows to the
direction of the sea [41].

3. Data and Methods

In this study, a hybrid model was developed for LS assessment based on the integration
of two different individual models, the GeoDetector and IV. A spatial database was created
in GIS to be used in hybrid modeling, including: (a) the landslide inventory dataset and (b)
the conditioning factor datasets.

3.1. Landslide Inventory

Such a dataset provides information about the landslide events that occurred in the past in
a given region. Hence, this information is crucial for any quantitative LS modeling effort. A
database maintained by the Laboratory of Engineering Geology at the Department of Geology
at University of Patras referring to landslides that occurred between 2000 and 2015 [42], and
field surveys, were initially exploited for the spatial locations of past landslides in the study area.
Then, multi-temporal Google Earth satellite imagery (Figure 2) was used for their delimitation.
Based on the classification proposed by Varnes [1], for this study, the term landslide included
shallow debris flows and earth rotational slides, varying in extent from some hundreds to
several thousands of meters squared (Table 1). Since it is not always possible to differentiate the
depletion and accumulation zones of these landslide types in an inventory map [18], these zones
were mapped together in an entire area forming a single polygon feature for each landslide.
Therefore, 60 landslide polygons were eventually represented in the relevant inventory map
(Figure 1).

Table 1. Types and basic morphometrical parameters of the landslides in the study area.

Landslide
Type

Amount of
Events

% of Total
Landslide Events

Area (sq. m) Altitude (m) Slope Angle (Degrees)

Max Min Mean Max Min Mean Max Min Mean

Debris
flows 40 67 4187 103 1268 348 110 222 60 15 26

Earth
rotational

slides
20 33 18,000 240 4188 332 89 199 45 15 30

3.2. Conditioning Factors

Landslide occurrence is considered to be affected by a variety of natural and anthro-
pogenic factors representing the conditions of a given region. These conditioning factors
can be separated into two main categories: (a) the preparatory factors which create suitable
conditions for a landslide by changing the state of a slope from stable to marginally stable,
and (b) the triggering factors which initiate a landslide by changing the state of a slope from
marginally stable to unstable [43]. Morphological and hydro-lithological conditions of the
region of interest are represented by natural preparatory factors, whereas the human inter-
ventions on it are represented by anthropogenic preparatory factors. The triggering factors
mainly represent climatic and seismic conditions related to rainstorms and earthquakes,
respectively.
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Figure 2. Multi-temporal Google Earth images: (a,c) before the landslides; (b,d) after the landslides.
The red dashed lines indicate the location of the landslide before it happened, and the red solid line
shows the scar of the landslide after it occurred.

Since no official guidelines are used by the scientific community for the selection of
factors, the characteristics of the study area, data availability and a literature review [29,30]
were taken into account for this study. In total, fourteen conditioning factors were selected,
including both preparatory and triggering factors. In particular, the altitude, slope angle,
slope aspect, profile curvature, plan curvature, stream density, stream power index (SPI),
topographical wetness index (TWI), lithology, proximity to faults and soil type were used
as natural preparatory factors; the land use/cover and proximity to roads were used as
anthropogenic preparatory factors, and the mean annual rainfall was used as a triggering
factor.

Defined as the height above a reference point (typically above the mean sea level),
altitude is an important conditioning factor due to its gravitational potential energy. In
general, the higher the slope angle is, the higher the likelihood of failure. Therefore,
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steep slopes are more prone to failures. The slope aspect is defined as the azimuth-based
orientation of terrain and is highly related to exposure to sunlight; evapotranspiration;
and rainfall’s effects on weathering, soil, vegetation cover and root development [44].
Expressed by different types, such as plan and profile, the curvature indicates the runoff
and erosion factors of water. The plan curvature is perpendicular to the maximum slope
direction, whereas the profile curvature is parallel to the same direction [45]. By retaining
more rainfall water and erosion-induced sediment than convex slopes, concave slopes are
correlated with higher likelihoods of failure.

Considering its effects on groundwater recharge, stream density constitutes another
important factor for landslide activity. This factor determines the ratio of the total length of
streams to the extent of the study area. A high stream density is linked to low surface water
infiltration and thus mass movements with high velocity [46]. SPI is another hydrological
factor that measures the erosive power of the streams. On the other hand, TWI quantifies
the moisture content of the surface [32].

Lithology is one of the most crucial factors for LS assessments, since different litho-
logical formations have different slope instability performances in terms of strength and
permeability. In a tectonically active country such as Greece, the faults seem to be associated
with extensive fractured zones and steep relief anomalies presenting favorable conditions
for landslides [35]. Hence, landslides are usually found in proximity to faults. Additionally,
different soil types can have different impacts on surface infiltration and groundwater flow,
depending on their particular physical and mechanical properties [47].

Changes in land use/cover as a result of human activities such as cultivation, defor-
estation and forest logging can significantly affect the occurrence of landslides. Proximity
to roads can also reflect the human impact on landslides, as road construction at the base
of a slope tends to degrade its stability.

Rainfall—causing an increase in the pore water pressure and a reduction in the shear
strength of the soil [48]—is a basic triggering mechanism for not only the development
of new landslides but also the re-activation of old ones. Particularly in Greece, rainfall-
triggered landslides are among the most frequent and devastating disasters [38]. It is worth
mentioning that since the majority of earthquakes that occurred in the study area during
the last two decades were characterized by relatively low magnitudes (with Mw between
3.0 and 3.5) and great depth (greater than 15 km) [49], seismic factor was not included in
the analysis.

As is shown in Table 2, all the above conditioning factors were represented by GIS-
supported data formats. Most of them were in raster format (grids), but others were
converted from vector (point, line, or polygon features) to a raster format with 25 m spatial
resolution.

3.3. Geographical Detector (GeoDetector)

GeoDetector is a spatially-based multivariate statistical model which was developed
in 2010 by Wang et al. [50]. It can detect the spatially stratified heterogeneity of a given
phenomenon according to the basic principle that if a determinant is associated with the
phenomenon, then there may be some similarities between their spatial distributions.
Furthermore, it can reveal the driving forces behind the phenomenon by quantifying the
impacts of individual determinants and of their pairwise interactions. The phenomenon
under investigation as a dependent variable can be represented by either numerical contin-
uous or discrete classified (stratified) data, and the determinants as explanatory variables
exclusively by classified data.
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Table 2. Summary of the datasets representing the conditioning factors.

Factor Dataset Data Source
Spatial/Temporal
Scale/Resolution

Primary Format

Altitude EU-DEM (v1.1) “Copernicus” Land
Monitoring Service 25 m/2011 Raster (grid)

Slope angle DEM derivative 25 m/2011 Raster (grid)

Slope aspect DEM derivative 25 m/2011 Raster (grid)

Plan & Profile
curvatures DEM derivative 25 m/2011 Raster (grid)

Stream density Rivers and streams
General Use Map of Greece

(Hellenic Military
Geographical Service)

1:50,000/1989 Vector (line)

SPI
DEM-based hydrological analysis 25 m/2011 Raster (grid)

TWI

Lithology Lithological formations Geological Map of Greece
(Institute of Geology and

Mineral Exploration)
1:50,000/1993 Vector (polygon)

Proximity to faults Faults

Soil type Soil types

Hellenic Ministry of
Environment and Energy 1:50,000/1997

Vector (polygon)
Soil Map of Greece (Aristotle
University of Thessaloniki) 1:500,000/2015

Land use/cover “CORINE” features “Copernicus” Land
Monitoring Service 1:100,000/2018 Vector (polygon)

Proximity to roads Main roads “OpenStreetMap” –/2020 Vector (line)

Mean annual rainfall “E-OBS” daily
precipitation

“Copernicus” Climate
Change Service 0.1 degrees/2000–2015 Raster (grid)

In the case of LS, GeoDetector can detect whether a conditioning factor (explanatory
variable) causes the spatial stratified heterogeneity of landslide occurrence (presence or
absence of a landslide, dependent variable) or not. In particular, it can quantify the
degree of impact of each factor on the landslide occurrence using a q-statistic calculated as
follows [51]:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (1)

where h = 1, 2, . . . , L is a given class (stratum) of an explanatory variable; L is the number of
classes; Nh and N are the numbers of samples in class h and entire study area, respectively;
and σh and σ are the variance of dependent variable in class h and entire study area,
respectively. Ranging from 0 to 1, the higher the q value is, the more this explanatory
variable contributes to the dependent variable. A p-statistic, an indicator of statistical
significance for each explanatory variable, is also calculated by a non-central F-distribution:

p(q < x) = p
(

F <
N − L
L − 1

x
1 − x

)
= 1 − a (2)

where a is the probability of q being higher than or equal to x. In a 95% confidence interval,
an explanatory variables with a p value greater than 0.05 is considered to have a statistically
insignificant relationship with the dependent variable and could be eliminated from the
model.

By estimating the value of q-statistic corresponding to the interaction of two explana-
tory variables, GeoDetector can also quantify the degree of the interactive impact of each
pair of conditioning factors on landslide occurrence. As is shown in Table 3, based on the
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comparison of this value with the individually estimated values, the type of interaction
can be then determined.

Table 3. Types of interaction between two explanatory variables (X1 and X2).

Interaction Type Description

Nonlinear-weaken q(X1∩X2) < Min(q(X1), q(X2))

Univariate-weaken Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1),
q(X2))

Bivariate-enhanced q(X1∩X2) > Max(q(X1), q(X2))
Independent q(X1∩X2) = q(X1) + q(X2)

Nonlinear-enhanced q(X1∩X2) > q(X1) + q(X2)

3.4. Information Value (IV)

IV is a bivariate statistical model which was initially proposed by Yin and Yan [52]
and later modified by van Westen [53]. It includes class-level estimations of weight values
based on the spatial associations between the landslide occurrence and each class of each
conditioning factor. The IV for a given factor class is derived from a mathematical formula
of the ratio of landslide density in this class to the landslide density in entire study area (or
factor):

IV = ln
(

Npix(Si)/Npix(Ni)
∑ Npix(Si)/ ∑ Npix(Ni)

)
(3)

where Npix(Si) is the number of landslide pixels within the factor class i, and Npix(Ni) is
the number of all pixels in the same class. The calculated value can be either positive or
negative, and the higher (or lower) it is, the more (or less) significant the contribution of
the relevant factor class to landslide occurrence.

4. LS Assessment by Hybrid Modeling

Considering the functionalities and data requirements of the two models compos-
ing the GeoDIV hybrid model, two GIS-based data processing procedures initially took
place under the general methodological framework (Figure 3). These procedures were the
(non)landslide sampling and the factor preparation. For sampling, the landslide inventory
dataset was divided into two subsets used as inputs in the model’s training (training
dataset) and validation (validation dataset), respectively. Among the amount of 60 land-
slides contained in the inventory, 80% of them (48 in amount) were randomly selected
for the training dataset in this study. The remaining 20% (12 in number) constituted the
validation dataset. Based on the sizes of mapped landslides and the spatial resolution of
obtained factor data, the entire study area was then tiled into grid pixels of 25 × 25 m as
the basic analysis unit, resulting in 188 training and 41 validation landslide pixels. The IV
model required only a landslide dataset, whereas the GeoDetector model required both
landslide and non-landslide datasets. Hence, in order to construct the dependent variable
for GeoDetector, an equal number of pixels from the not landslide-affected part of study
area were also selected in a random way for the training dataset (totally 376 pixels). The tar-
get values of 0 and 1 were assigned to the non-landslide and landslide pixels, respectively,
making the dependent variable a binary classified dataset.
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Figure 3. Methodological framework for the development of the hybrid GeoDIV model.

In regard to factor preparation, the raster layers of conditioning factors on a continuous
numerical scale (altitude, slope angle, profile curvature, plan curvature, stream density, SPI,
TWI, proximity to faults, proximity to roads and mean annual rainfall) were divided into
a number of discrete classes (Figure 4). In this study, the number of categories and their
relative break values were mainly determined by the “natural breaks (Jenks)” classification
method [54]. In this method, class breaks identify the most similar within-group values and
maximize the differences between classes according to the deviations about the median [55].
Additionally, the raster layers of factors originally on a discrete classified scale (slope aspect,
lithology, soil type, and land use/cover) were prepared by grouping them into more or less
common initial classes (Figure 4).

After the data processing procedures, the GeoDIV model was implemented. A database
was firstly created as the result of the matching of the sample of 376 training data with each
factor layer. Including the fourteen classified factors as independent variables and the landslide
presence or absence (binary target value of 0 and 1) as the dependent variable were determined
in the GeoDetector software, developed by Xu and Wang [56], to determine the impacts of
the factors and their pairwise interactions on the spatial stratified heterogeneity of landslide
occurrence represented by the training sample. This determination included the calculation
of q values for the factors and their pairwise interactions (Tables 4 and 5). To incorporate in
the model only the factors with statistically significant relationships with landslide occurrence,
the estimated p values (Table 4) of the factors were also exploited for factor selection. Despite
the requirement for p values less than 0.05 in the 95% confidence interval, factors such as
altitude, slope angle, plan curvature, stream density, TWI, proximity to faults, proximity to
roads, lithology, soil type and land use/cover remained in the model. Conversely, slope aspect,
profile curvature, SPI and mean annual rainfall were not qualified to be further analyzed by the
model, indicating that there were statistically insignificant relationships (i.e., p values greater
than 0.05) between them and landslide occurrence in the same confidence interval.
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Figure 4. Cont.
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Figure 4. Conditioning factors: (a) altitude; (b) slope angle; (c) slope aspect; (d) plan curvature; (e) profile curvature;
(f) stream density; (g) SPI; (h) TWI; (i) lithology; (j) proximity to faults; (k) soil type; (l) mean annual rainfall; (m) land
use/cover; (n) proximity to roads.

Table 4. The q and p-statistic values for the conditioning factors, calculated using GeoDetector.

Factor q Value p Value

Altitude 0.078 0.00
Slope angle 0.264 0.00
Slope aspect 0.038 0.06 *

Plan curvature 0.016 0.01
Profile curvature 0.021 0.06 *
Stream density 0.065 0.00

SPI 0.003 0.30 *
TWI 0.019 0.04

Lithology 0.053 0.00
Proximity to faults 0.147 0.00

Soil type 0.072 0.00
Land use/cover 0.151 0.00

Proximity to roads 0.174 0.00
Mean annual rainfall 0.001 0.85 *

* indicate the factors eliminated from GeoDetector according to the p values.
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Subsequently, by matching only the 188 landslide training data with each layer of
statistically significant factors, the landslide density for each of their classes was estimated.
The IVs were then calculated by Equation (2) to determine the impact of each class on
landslide occurrence (Figure 5).

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 5. Cont.
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(i) (j) 

Figure 5. The estimated IVs for the classes of conditioning factors qualified from the factor selection: (a) altitude; (b) slope
angle; (c) plan curvature; (d) stream density; (e) TWI; (f) lithology; (g) proximity to faults; (h) soil type; (i) land use/cover;
(j) proximity to roads. NA values (or no bars) indicate “not applicable” for these classes.

By using the q values from GeoDetector as factor-level weights and IVs as class-level
weights, the overall landslide susceptibility (LS) score was estimated through a GIS-based
weighted linear combination of statistically significant factors:

LS = ∑n
j=1 WJ × si,j (4)

where Wj is the weight of a given factor j, si,j is the weight for a given class i of factor j
and n is the number of factors. The spatial distribution of the estimated overall score was
visualized by a LS map divided into five classes (“very low”, “low”, “moderate”, “high”
and “very high” susceptibility) according to the “natural breaks (Jenks)” method (Figure 6).

 
Figure 6. The landslide susceptibility map produced by the hybrid GeoDIV model.

5. Results

The weights from the GeoDIV model are summarized in Table 4 and Figure 5. Among
the conditioning factors that eventually remained in the model, the highest factor-level
weight was obtained from slope angle (q value of 0.264). It was followed by proximity
to roads, land use/cover and proximity to faults (q values of 0.174, 0.151 and 0.147, re-
spectively). For these factors, the classes with the highest class-level weights were the

75



Land 2021, 10, 973

“greater than 18 degrees” (IV = 2.01) for slope angle, “0 to 285 m” (IV = 1.16) for proximity
to roads, “scrub vegetation” (IV = 1.06) for land use/cover and “0–1290 m” (IV = 0.72)
for proximity to faults. The rest of conditioning factors were found to have much lower
factor-level weights (q values below 0.10). Plan curvature was the factor with the lowest
weight (q value of 0.016).

According to the correlations between Tables 3 and 5, the impact degree and types
of the different pairwise interactions of factors were determined. The interaction between
slope angle and proximity to roads presented the highest weight value (q value of 0.488).
This value was greater than the sum of their individual values, indicating that their
interaction type was nonlinearly enhanced. Generally, the weights of all the factors (even
the lowest of plan curvature) were significantly increased by slope angle, achieving either
nonlinear enhancement or bivariate enhancement.

The LS map from GeoDIV model is illustrated in Figure 6. It shows that the “high”
and “very high” susceptibility zones are mainly in the southern and northern parts of the
vicinity of Pinios artificial lake, with some large pockets of “high” susceptibility in the
western part. These two zones cover 25% and 12%of the lake’s vicinity, respectively.

Validation and Comparison

In order to evaluate the performance of a model applied for LS assessment and
mapping, a validation step is required. Since it can provide information about the accuracy
and prediction ability of the model, and thus the reliability of its LS output, this step is
crucial for any relevant research effort. A standard validation procedure is one based on
success and prediction rates [28,45,48]. This specific procedure depends on the creation
of two rate curves explaining the percentages of landslides that fall into defined LS ranks.
These curves are graphically presented in cumulative frequency diagrams, with respect to
the two different datasets of landslide inventory. For the success rate curve, the landslide
training dataset was used to indicate how well the model fits to the training data. On the
contrary, for the prediction rate curve, the “independent” landslide validation dataset was
used to show how well the model can predict the distribution of future landslides [57].

To obtain the success and prediction rate curves in this study, the overall LS score
(Equation (3)) was initially sorted in descending order (from high to low). Then, the ordered
LS score was divided into 100 classes with 1% cumulative intervals. The resultant LS ranks
(0–100%, where a higher rank means a lower LS score) were plotted on the x-axis, whereas
their cumulative percentages of training and validation landslide data are on the y-axis.
An area under curve (AUC) value was eventually calculated for each of the two rate curves
indicating the accuracy and prediction ability of GeoDIV model, respectively. With a range
of 0.5–1.0, this value reflects the model’s performance.

Aiming to confirm the potential “superiority” of the hybrid modeling against the
individual modeling and explore the impact of GeoDetector-based factor selection on LS
assessment, the individual IV model was also applied, and its validation results were
compared with those of GeoDIV model. In this context, IVs were additionally calculated
for the classes of statistically insignificant factors (not included in GeoDIV model). The
overall LS score (presented also by classes, in Figures 7 and 8) was then obtained by the
summation of all the fourteen IV-weighted factors as follows:

LS = ∑n
j=1 IVj (5)
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Figure 7. The landslide susceptibility map produced by the individual IV model.

 

(a) 

 
(b) 

Figure 8. Diagrams with the coverage area percentages of the landslide susceptibility classes for the
models: (a) hybrid GeoDIV model; (b) individual IV model.
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Based on the LS score rank, the success and prediction rate curves were created, and
the relative AUC values were calculated for individual IV model as well.

The results of validation procedure for both models are presented in Figure 9. The
success and prediction rate curves indicate that the first 30% of the LS ranks derived from
GeoDIV model can explain about 70% of landslide training data and 60% of landslide
validation data, respectively. Moreover, the relevant AUC values of 0.78 and 0.76 revealed
remarkable accuracy (data fitting) and prediction ability of the model. All these results
were found to be worse for individual IV model, with explanation percentages of 60% and
50%, respectively, and AUC values of 0.72 and 0.71, respectively.

 

(a)

 
(b)

Figure 9. The results of the validation procedure: (a) success rate curves; (b) prediction rate curves.

6. Discussion

Due to the observed upward tendency in landslide occurrence, authorities of all the
administration levels (national, regional and local) are called on to collaborate with the
scientific community to spatially determine potential landslide instances and mitigate, or
even prevent, the damage and losses that they may cause. LS assessment and mapping
is the first and most basic step for effective risk management and disaster response [58].
Several LS assessment models have been developed and applied, with their own advan-
tages and disadvantages [59]. A current tendency is the integration of these individual
models to enhance their benefits and overcome their weaknesses. The consequent hybrid
models are expected to reduce the uncertainty and improve the reliability of the output LS
maps [60]. In order to address this statement, in the present study, a hybrid model based
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on the integration of two different statistical analysis models, multivariate GeoDetector
and bivariate IV, was proposed for LS assessment and mapping. In general, GeoDetector,
as a new spatial model, has been rarely used in LS studies compared with other models.
Hence, its integrated applications are even more limited. To the best of our knowledge and
without ignoring the research works of Luo and Liu [7] and Yang et al. [61], the proposed
integration had not been tested hitherto for the development of hybrid LS modeling.

A variety of natural and anthropogenic conditioning factors and a landslide inventory
for a Greek wetland around the Pinios artificial lake, were analyzed as inputs in the hybrid
model named GeoDIV. It can be stated that the advantages (or disadvantages) of GeoDIV
model are “inherited” from the two individual models which it was based on. Under strict,
prior defined data assumptions, the IV model is capable of evaluating the impact of each
class of many conditioning factors due to the occurrence of past landslides; however, the
mutual relationship between the factors is mostly neglected [62]. Without any assumptions
on the distribution of data, the GeoDetector model is capable of exploring this relationship
but not evaluating individually the impact of each factor class.

In addition to the models, factor selection also plays a major role in the LS results [14].
Too many redundant factors may lead to less realistic and reliable results. Therefore,
the capability of significance statistics-based factor selection provided by GeoDetector
makes it an ideal option for selecting the most proper factors and then assigning objective
weights to them with regard to their different contributions to past landslide occurrence. By
incorporating this property of GeoDetector in hybrid GeoDIV model, among the fourteen
conditioning factors initially collected, four of them (slope aspect, profile curvature, SPI,
and mean annual rainfall) were identified as statistically insignificant and were not finally
included in LS assessment. Similar factors were also eliminated as redundant in [14,23,24].

Focusing on the factors qualified from factor selection, slope angle was highlighted by
the factor-level weights (q values) of the GeoDIV model. In GeoDetector’s terminology,
slope angle can be characterized as the factor which most explains the spatial stratified
heterogeneity of landslide occurrence in the study area. In simple words, its weight was
found to be much higher than the rest of factors, revealing that slope angle has the greatest
impact on landslide activity. This is in line with findings from other studies in Greece which,
on the basis of using either qualitative or quantitative models at different scales (national
and regional), also indicated slope angle as one of the most important factors [38,63,64].

When slope angle interacted to some degree with proximity to roads, an even greater
impact was detected, according to the interaction weights. Generally, the single impacts of
all other factors were shown to be significantly improved from their interactions with the
slope angle. Except for the particularly influential role of the specific factor, this finding also
confirms the “nature” of landslides as a phenomenon that, to a great extent, constitutes the
result of interactions between multiple conditioning factors. From a sub-factor perspective,
as it was derived from the class-level weights (IVs), the steep parts of study area being very
close to roads and covered by scrub vegetation seem to be more prone to landslides.

The output map of the GeoDIV model illustrated the spatial distribution of the esti-
mated LS. It shows that extensive parts, mainly located in south and north, are most likely
to have landslides in the future. In comparison with the relevant map from the individual
IV model, it can be mentioned that despite the preservation of the general spatial pattern,
there was displacement of the pockets from low susceptibility in GeoDIV’s map to higher
susceptibility in IV’s map. This “overestimation” from the IV model may have been due to
the inclusion of the additional four conditioning factors, confirming the above statement
about the negative impacts of redundant factors on the reliability of LS results.

Regarding the performance of proposed hybrid model, it has to be firstly noted
that GeoDIV provided far more than satisfactory validation results in terms of accuracy
(success rate) and prediction ability (prediction rate), considering the scale of analysis.
Compared to the IV model, although both models seemed to converge to approximate
results, the convergence of GeoDIV was found to be faster. This finding proves the expected
“superiority” of hybrid against the individual modeling and is in agreement with previous
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studies, concluding that the integration of bivariate with multivariate statistical models
improved the performance of former ones [30,47].

Some assumptions and limitations of the present study have to be pointed out. The
quality of LS assessment and mapping is highly related to both the landslide inventory
and conditioning factors. By using Google Earth satellite imagery, the landslides with
identifiable signs in the images were mainly mapped in landslide inventory. Hence, the
inventory cannot totally represent the landslide-contributing factors of the study area.
Moreover, although the preparation of different susceptibility maps for the various types
of landslides can provide more realistic predictions [65], the different types of mapped
landslides were not considered in this study. On the other hand, the differentiation between
landslide source and deposition zones enabled the models to accurately identify source
areas and hence to precisely define the factors that contribute to the initiation of a landslide.
The lack of this differentiation resulted to a study’s assumption concerning the existence of
similar terrain conditions within these zones and thus the representation of each landslide
by a single polygon feature. Considerable simplification of these polygons had to be then
undertaken by converting them to grid pixels. In this way, an underestimation of landslide
data may have taken place in some cases. Additionally, the sampling procedure for the
creation of the landslide training and validation datasets can affect the model’s efficiency.
On the basis of appropriate sizes, a sufficient amount of data should be included in the
training dataset, and a remaining “independent” amount of data in the validation dataset.
From the perspective of conditioning factors, their spatial resolution and classification can
affect the precision of the spatial matching between the landslide and factor data. Therefore,
the examination of alternatives for these parameters could lead to different results.

7. Conclusions

A hybrid model named GeoDIV was applied to produce a reliable LS map for the
vicinity of Pinios artificial lake (Ilia, Greece). Based on the analysis of landslide and
factor conditioning data, the GeoDIV framework exploited the multivariate GeoDetector
to eliminate redundant factors and objectively quantify the individual and interactive
impacts of the remaining ones (factor-level weights) on landslide occurrence. The bivariate
IV was used for objectively quantifying the impacts of their classes (class-level weights).
In practice, the integration of these two models increased their efficiency. The findings
confirmed that hybrid modeling outperform modeling: the GeoDIV model yielded better
results than the individual IV model in terms of accuracy and prediction ability. Thus,
GeoDIV can be considered as a promising and robust model which can be beneficial not
only to the current study area, but also to other regions with similar or even different
conditions and settings.

In general, it was revealed that hybrid LS modeling assisted by multiple geospatial
tools (RS and GIS) can contribute well to the production of reliable maps. The LS map
produced by the GeoDIV model could be important basis for the regional or local authori-
ties in order to develop both general (long-term) and emergency (short-term) strategies
centered on “space design” disaster management. Knowledge about the potential for
landslides in a region is valuable for policy makers, as it can allow them to select safe
locations while planning land use and approving construction projects. Policy makers
could also identify threatened settlements and roads, and in response take drastic disaster
management measures (including building engineered structures, planning evacuation
routes and issuing early warnings).

Future research work will focus on testing the proposed hybrid modeling for LS
assessments of other regions characterized by different environmental and/or human
settings, with various landslide densities. Comparisons with other advanced models, such
as machine learning models, will be also performed.
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Abstract: Data driven methods are widely used for the development of Landslide Susceptibility
Mapping (LSM). The results of these methods are sensitive to different factors, such as the quality
of input data, choice of algorithm, sampling strategies, and data splitting ratios. In this study, five
different Machine Learning (ML) algorithms are used for LSM for the Wayanad district in Kerala,
India, using two different sampling strategies and nine different train to test ratios in cross validation.
The results show that Random Forest (RF), K Nearest Neighbors (KNN), and Support Vector Machine
(SVM) algorithms provide better results than Naïve Bayes (NB) and Logistic Regression (LR) for the
study area. NB and LR algorithms are less sensitive to the sampling strategy and data splitting, while
the performance of the other three algorithms is considerably influenced by the sampling strategy.
From the results, both the choice of algorithm and sampling strategy are critical in obtaining the best
suited landslide susceptibility map for a region. The accuracies of KNN, RF, and SVM algorithms
have increased by 10.51%, 10.02%, and 4.98% with the use of polygon landslide inventory data, while
for NB and LR algorithms, the performance was slightly reduced with the use of polygon data. Thus,
the sampling strategy and data splitting ratio are less consequential with NB and algorithms, while
more data points provide better results for KNN, RF, and SVM algorithms.

Keywords: landslide; susceptibility; machine learning; GIS; Kerala

1. Introduction

Catastrophic landslides in mountainous terrains interact with human environment
and cause adverse impacts on lives and properties [1]. Aids for managing the risk due
to landslides is a topic of which several decades of research has been devoted [2,3]. Map-
ping the spatial distribution of landslide hazard is one of the most-adopted strategies for
risk management, as the landslide susceptibility maps can be used by the government
for strategic planning and development [4]. With the recent advancements in Machine
Learning (ML) techniques and computational facilities, Landslide Susceptibility Mapping
(LSM) have become much easier.

Data driven methods are extensively used for LSM, and the earlier statistical methods
using Geographical Information System (GIS)-based approaches are now being replaced
by advanced ML algorithms. Different ML algorithms are being widely used for this
purpose [5], and the literature shows that no single ML algorithm can be said to be the best
for LSM. The choice of an ML algorithm for a particular region is subjected to the scientific
goals and objectives of the LSM [5]. Five different algorithms are considered in this study,
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viz., Naïve Bayes (NB), Logistic Regression (LR), K Nearest Neighbors (KNN), Random
Forest (RF), and Support Vector Machines (SVM). All the algorithms are popular in LSM,
but the best suited model for each scenario has to be decided by a quantitative comparison
of the model performances. The data used for training and testing of the ML algorithm
should be prepared with utmost care, as the quality of data is the key parameter which
decides the performance of any ML model. The data includes the landslide inventory
and the Landslide Conditioning Factors (LCF). The LCFs are selected considering the
topographical and meteo-geological conditions of the study area, and most conditioning
factors are often derived from Digital Elevation Models (DEM), satellite data, and existing
regional maps. In most cases, landslide inventories are obtained based on satellite images
and field investigations [6].

Even though the quality of LCFs are found to be satisfactory and with good resolution
DEMs available from satellite-based missions such as TanDEM-X and ALOS, the landslide
inventories are often incomplete [7]. The quality of the landslide inventory is subjected
to the positional accuracy and sampling strategy. In many studies, the inventories are
prepared using points representing landslide crowns. The training and testing data for
LSM are prepared using the data from all LCFs extracted using the landslide points. Hence,
the positional accuracy of the inventory significantly affects the dataset used for testing
and training. When the region is affected by shallow landslides only, the Crown Point
provides a satisfactory representation of the landslide-affected area. However, when a
region is affected by long runout landslide events, such as debris flows and avalanches,
the runout zones cannot be represented using single point information [7], and the events
can cause adverse effects in downslope areas [1,8]. The LCFs of the initiation zones and
runout zones are entirely different, and a model which is trained using only the initiation
zones will ignore the runout zones that may be affected by landslides [9,10]; however,
in most studies, landslides are represented using point data, due to the limitations in
data availability [11]. Hence, in this study, both point data (single point at the crown of
landslide) and polygon data (cluster of points covering the area affected by landslides) are
used for LSM. Each point in the cluster represents a cell in the landslide body and is used
for LSM. The difference between both the approaches is that the point data considers only
the crown area, while the polygon data considers the whole area affected by landslides,
including the crown and the runout zone.

The resampling technique of cross validation is a recent advancement in ML, applied
to test cases with limited data samples [5]. k-fold cross validation techniques are being
widely used for LSM applications, in which the data is split into k parts and are internally
resampled such that k−1 parts are used for training and 1 part of testing at each stage of
sampling. Even though the method is being widely used for the purpose of validation,
there are no guidelines for the number of k to be chosen for an analysis, and, in most
studies, the value is chosen as 5 or 10 arbitrarily [12]. The number of k decides the ratio of
train to test data, which can affect the performance of the ML model. Hence, in this study,
the value of k is also varied from 2 to 10 in order to find the optimum value of k for each
algorithm.

To test the objectives, the Wayanad district in Kerala, India, was selected as the test
site. The district has suffered from a number of landslides after the incessant rains that
occurred during monsoon seasons of 2018, and the landslide inventory data of 2018 was
used for LSM.

2. Study Area

The Wayanad district is in the southern part of India (Figure 1), which belongs to
Western Ghats, the most prominent orographic feature of the peninsular India. This district
is highly prone to landslides [13,14] and has a total area of 2130 km2, of which 40% is
covered by forests. The topography falls mostly in plateau region sloping towards east,
for this hilly district is located at the southern tip of Deccan plateau. A major share of
the district contributes to the east-flowing river Kabani and its tributaries (Figure 1). The
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natural drainage system is constituted by a number of streams, rivulets, and small springs,
and the district landscape with flood plains and ridges is formed by this drainage system.
Many debris flows that have occurred in the district have runout distances of a few hundred
meters, and the longest one ranges up to 3 km. All these slides have contributed to the
process of landscape evolution in the district, and minor order streams are originated along
the debris flow paths. Thus, the development of drainage paths and watersheds are highly
related to the occurrence of landslides, especially debris flows in the region. The flood
plains are formed by alluvial deposits with a thickness of more than 10 m. The northwest,
southwest, and western parts of the region are formed by higher elevation hill ranges,
with steep slopes and a rugged topography. Most of the forest areas are also along these
hilly regions. The continuous erosion, transportation, and deposition of the rocks have
resulted in the formation of valleys in between the hill ranges. The long runout debris
flows that are common in the region also contribute to this process of landscape evolution.
Geologically, the district is composed of a peninsular gneissic complex, charnockite group,
Wayanad group, and the migmatite complex [15]. Bands of the Wayanad group are found
in the northern part of the district, while the rocks of south and southeast are formed by
the charnockite group [15]. The northcentral part is composed of a peninsular gneissic
complex and the southcentral part is of the migmatite complex.

Figure 1. Location map of Wayanad.

A major share of the district is covered by reddish-brown lateritic soil with higher
fine content. The forest zones are covered by forest soil with rich organic content, and the
riverbanks are formed by thick alluvial deposits. The larger regolith thickness often leads
to the bed erosion and bulking of landslides, which increases the landslide volume and
destruction potential [16].

The district is highly affected by geohazards such as landslides and floods due to its
topographic and geomorphological conditions. The highly dissected hills and valleys along
the west, northwest, and southwest parts of the district are highly prone to landslides.
During August of 2018, the district was affected by a number of landslides due to torrential
rains [17]. A total of 388 landslides (Figure 1) were mapped within the district using
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government reports and pre- and post-event satellite images from Google Earth, and have
been verified using a recently published dataset [18]. The inventory data were prepared
separately for LSM, and are different from the dataset used for previous studies conducted
by the authors [13] in which they derived the rainfall thresholds for the region. For deriving
rainfall thresholds, multiple landslides occurring on the same day were considered to be
a single landslide event, and approximate locations were used, as the focus was on the
day of occurrence of the landslide event. However, the inventory data of LSM needs to
be accurate, and the spatial distribution of landslides is more important than the time of
occurrence of landslides. Hence, the high resolution satellite images available from Google
Earth were utilized to prepare a separate landslide inventory database of 388 landslides
which occurred in 2018 alone. The district faced major setbacks during the disaster and
the catastrophic landslides repeated in the years 2019 and 2020 as well. The increasing
frequency of landslides in the districts calls for an updated landslide susceptibility map
using data-driven approaches.

3. Methodology

This study aims at evaluating the uncertainties in LSM using ML by adopting different
ML algorithms, sampling strategies, and train to test ratios. The first step was the prepara-
tion of the dataset, starting from the landslide inventory. The data has to be preprocessed
before using it for training and testing. Five different ML approaches were used in this
study for comparison.

3.1. Machine Learning Algorithms

Data-based methods are often used to solve real-world problems when the knowledge
of the theoretical part is limited and the data is of a large size [19]. Being a non-linear
problem, ML models are highly suitable for LSM. The algorithms can learn the association
between the occurrence or non-occurrence of landslides and the LCFs using the landslide
and no landslide points used for training. Five different ML algorithms are considered in
this study, which are explained as follows:

3.1.1. Naïve Bayes

The name of the NB algorithm is formed by two words, ‘Naïve’ and ‘Bayes’. While
the latter word stands for the Bayes (named after Thomas Bayes) theorem, which is used
for calculating the conditional probability of the occurrence of landslides, in NB, the first
term stands for the assumption that the algorithm naively considers all parameters to be
independent of each other. The use of simple Bayes’ theorem helps the model to have good
mathematical control and the results can be achieved fast by using an NB algorithm [20].
The equation for calculating conditional probability of occurrence of landslide (L), subject
to the occurrence of conditioning factors C (C1 to Cn) is given in the following equation:

P (L| C1, C2, . . . . . . Cn) =
P(L)× P(C1, C2, . . . Cn|L)

P(C1, C2, . . . Cn)
(1)

The advantage of an NB algorithm is its simplicity and lower calculation time. The
model does not require any hyper parameter tuning and can be easily implemented on any
dataset. The major limitation is its assumption of independent parameters. The assumption
does not hold true for most of the real-world problems and hence the algorithm may not
provide reliable results when the parameters are highly dependent on each other. The
algorithm has been used in LSM for more than a decade [21].

3.1.2. Logistic Regression

An LR algorithm is formed from regression analyses, deriving a linear relationship
amongst the LCFs by using coefficients [22]. This algorithm, which is derived from statistics,
produces a regression output in the form of a mathematical function, and can calculate
the probability of the occurrence of landslides. The sigmoid function or logistic function,
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which is used in this algorithm, is where the name of LR originates. The sigmoid function
in ‘S’ shape is a core part of LR, which sets an asymptote, based on the positive or negative
values of x. For positive values of x, an asymptote is set to y = 1, and for negative values
of x, asymptote is set for y = 0.

The algorithm is easy to implement and does not require any hyper parameter tuning.
The model finds its application in LSM due to this simplicity and its usage of probability to
predict the solution. A non-linear relationship is established with the landslide and non-
landslide points and LCFs and finds a fitting function. The probability of the occurrence of
landslides P(L) is calculated by LR as follows:

P (L) =
ex

1 + ex (2)

where, x is a linear fitting function, using the LCFs, given by:

z = a0 + a1C1 + a2C2 + · · ·+ anCn (3)

where, a0 is the intercept, a1, a2 . . . an are the regression coefficients, and C1, C2, . . . Cn are
the LCFs. For dependent variables in binary form and large input data with minimum
duplicates and minimum multi collinearity, the algorithm can produce satisfactory results
in LSM [23].

3.1.3. K-Nearest Neighbors

The classification of a data point using a KNN algorithm is carried out by using the
properties of the neighboring data points [20]. It is a more efficient form of the ball tree
concept [24], which can be applied to larger dimensions. The algorithm is widely used
in LSM applications [25] and the probability of a data point to be allocated in any class
is determined by the classification of its nearest neighbors [26]. The data point takes the
classification in which the maximum number of its neighbors is classified. The number of
K shall be decided by tuning process for better results.

KNN is classified as a non-parametric model, as the computation process does not
depend upon the distributions of the dataset. This is another advantage while using KNN
for LSM applications where the number of parameters is more and the data seldom fits
to standard distributions. For a set of unclassified points, the algorithm calculates the
distance from each point to find K closest neighbors. The classification of these neighbors
are then used for voting, and the classification with the maximum votes is assigned to the
unclassified data point.

3.1.4. Random Forest

As the name indicates, RF is a combination of many Decision Trees (DT) and the
concept was developed in 1995 [27]. Each DT has nodes and branches. The decisions are
made at nodes and the classification continues on a particular branch based on the decision.
The decisions are continued by considering all LCFs, and each DT assigns a class for the
object. RF then considers the class predicted by all DTs and assigns a class for the object
based on voting. Each DT is a subset of the whole dataset, and is independently sampled
by bootstrapping. The randomness of selection at each node is the major advantage
of RF model, which often results in highly accurate predictions, making it suitable for
LSM [21,28–30].

The use of splitting at nodes, bootstrapping, and several number trees reduces overfit-
ting in RF by increasing randomness. The model can be fine-tuned by varying the depth of
trees, number of trees to be combined, and the number of features considered at each node.

3.1.5. Support Vector Machines

The SVM algorithm classifies a data point using a hyperplane in a multidimensional
space, first proposed by Vapnik and Lerner [31–33]. The hyperplanes are boundaries
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that decide the classification of an object. The number of LCFs used for the analysis
determines the dimensions of the hyperplane. For each dataset, multiple hyperplanes are
possible, which can classify the points into different classes. Hence, the SVM algorithm
should choose a hyperplane which can maximize the distance between the data points of
both classes using statistical learning theory [31,34]. The distance is maximized in order
to accommodate the future data points. The data points which are located near to the
hyperplane determine the orientation and position of the hyperplane, and these data points
are called support vectors.

The SVM algorithm classifies the objects by using different kernel functions, and the
choice of kernel function is critical in the results produced by the algorithm. The algorithm
is widely used for LSM applications [29,35] and has been in practice since the 2000s [34].

3.2. Data Collection and Sampling Strategies

The landslide inventory map for the study was prepared manually after interpreting
satellite images before and after the event. A total of 388 landslides which occurred in
2018 were identified within the boundary of Wayanad. The 2018 disaster was chosen for
the study as the district was widely affected by this particular event. The locations where
historical landslides were reported were affected, and many new landslides were also
reported. Two datasets were prepared from the landslide data collected (Figure 2). In
the first approach, the landslide was represented by a point in the crown area and, in the
second method, the shape of landslide was demarcated using pre- and post-satellite images;
the polygon was marked as inventory data. The district was highly affected by long runout
debris flows, as 309 events out of the total 388 were classified as debris flow events. Among
the remaining events, 68 were shallow landslides and 11 were rock falls or rockslides. The
388 landslides were represented by 388 cells in the first sampling strategy (Figure 2a) and
9431 cells using the second strategy (Figure 2b). The developed landslide susceptibility
map thus provides the probability of occurrence of any of these landslide typologies in the
region, and it is not specific for any single landslide typology. The debris flows have very
long runout distances [16], and even the locations which are a few kilometers away from
the crown points, with entirely different LCFs, were also affected. Hence, using point data
for the training and testing of the model might ignore the probability of the occurrence of
hazards in the runout zones. To avoid this issue, polygon inventory data was also used
in the analysis. The polygon data represents all the cells affected by landslides, unlike
the single point used in the first approach. However, the polygon does not differentiate
between the crown area and the runout zone. The objective is to train the ML model
to predict the probability of the occurrence of a landslide in each cell, and the focus of
this manuscript is to compare the probabilities predicted by different approaches. The
methodology does not differentiate between crown and landslide body, and checks only if
the cell is affected by landslide or not.

Figure 2. Different sampling strategies adopted in this study: (a) point data, and (b) polygon data.
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The DEM for the study was collected from an Advanced Land Observing Satellite–
Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) [36], with a resolu-
tion of 12.5 m. All the other layers were also prepared in the same resolution as the DEM,
and all GIS operations were carried out using QGIS version 3.10. The LCFs, such as slope,
aspect, Stream Power Index (SPI), and Topographic Wetness Index (TWI) were derived
from the DEM. The first LCF used in this study was elevation, which was directly obtained
from the DEM. Slope angle is another significant factor which is critical in triggering the
landslides. Slope is defined as the ratio of the vertical to horizontal distance between
two points, expressed in terms of the tangent angle in degrees. The value of slope may
vary between 0 and 90 degrees. The orientation of the sloping face is expressed using the
direction and is termed as aspect. From previous studies, it was found that the value of
aspect is critical when landslides occur after the formation of tension cracks in clay [37]
and hence it is considered as an LCF. The value of aspect ranges from 0 to 360 degrees and
it is classified into 9 categories based on the orientation.

The drainage map for the district was also prepared using the DEM. The locations
of the streams were then verified using satellite images and were used for calculating the
distance from the streams’ layer, which is considered as an LCF. The observation from the
inventory data was that many of the long runout debris flows occurred near the streams in
the locality. The DEM was also used to create the flow accumulation map and the SPI and
TWI layers were developed using the values of flow accumulation. Both SPI and TWI are
significant in the process of the initiation of landslides, as SPI represents the power of a
flowing water source to erode the material. As the values of the SPI ranges over multiple
orders, the natural logarithm of SPI was used for calculation. TWI indicates the wetness of
the location, which quantifies the topographic control on different hydrological processes.

The Normalized Difference Vegetation Index (NDVI) is considered to be an important
LCF, as it indicates the amount of greenness of a location [38]. When the NDVI values
are higher, it represents the presence of vegetation [39,40] and can be correlated with the
canopy cover [23]. Thus, the NDVI values are maximum for forest regions and minimum
for water bodies and non-vegetated surfaces. Most landslides have occurred within the
forest region itself, and the long runout debris flows have originated in the forest area.
The net cropped area is 1129.76 km2, and a major share of cropped area is being used for
perennial crops such as coffee, arecanut, and coconut [41]. The cash crops such as coffee
and tea and spices such as cardamom are widely cultivated along the hill slopes, while the
other crops are cultivated in flatter areas. The NDVI value was calculated using two bands
of the electromagnetic spectrum, the Near Infra-Red (NIR) and Red (R) bands [42]. For
Landsat 8 images, Band 5 represents NIR and Band 4 represents R. Hence, for this study,
the NDVI values were calculated from Landsat 8 images captured in December 2017 and
January 2018. As a major share of the cultivated areas is dedicated to perennial crops, the
collected images can also satisfactorily represent the conditions at the time of landslides.
From the collected images, NDVI is derived using the following formula:

NDVI =
(Band 5 − Band 4)
Band 5 + Band 4

(4)

The rainfall data for the Wayanad district was collected from the Indian Meteorological
Department (IMD) [43]. The data from four different rain gauge stations from 2010 to
2018 were interpolated using inverse distance weighted method of interpolation to get the
average annual rainfall values across the district.

The geology, geomorphology, road network, and lineaments of the district were
collected from maps published by the Geological Survey of India (GSI). The lineaments
and roads were first rasterized and then used to develop the distance rasters, which were
used as LCFs. The geology and geomorphology layers were classified and rasterized. The
geology was classified into 7 groups, such as migmatite complex, charnockite, younger
intrusive, basic intrusive, wayanad group, acid intrusive and peninsular gneissic complex
(Figure 3). Geomorphologically, the region was classified into four categories: the highly

91



Land 2021, 10, 989

dissected hills and valleys, moderately dissected hills and valleys, low dissected hills and
valleys, and pediment complex. The collected layers are shown in Figure 3. The layers
were then further processed to prepare the database for LSM.

Figure 3. Different LCFs used for LSM: (a) elevation, (b) slope, (c) aspect, (d) distance from lineaments, (e) distance from
streams, (f) distance from roads, (g) geomorphology, (h) geology, (i) rainfall, (j) NDVI, (k) ln SPII, and (l) TWI.

The processing of different LCFs is depicted in detail in Figure 4. The processing
is different for raster and vector layers. The vector layers are first rasterized and then
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converted to XYZ format. For roads, streams, and lineaments, the distance from each
feature is first calculated, and the distance rasters were used as LCF (Figure 3).

Figure 4. Schematic representation of dataset preparation from different spatial layers collected.

After preparing the landslide inventory data, an equal number of no landslide points
were also prepared for the purpose of training and testing for both the sampling methods
(point and polygon data). The landslide cells are represented using 1 and no landslide cells
using 0 in the dataset. The data from all LCFs were then extracted for the landslide and no
landslide points to develop the training and testing dataset. The derived model was later
applied to the whole dataset to develop the landslide susceptibility map for the study area.

3.3. K-Fold Cross Validation and Data Splitting

Validation techniques are used to evaluate the performance of ML models. When the
dataset is limited, cross validation techniques are often adopted to overcome the limitations
associated with the size of the dataset. For k-fold cross validation, the value of k is the only
input required, and the dataset is then divided into k different subsets or folds (Figure 5).
Among the k-folds, k−1 folds are used for training the model and the last fold is used for
testing. The process is repeated k−1 times so that each subset in the dataset is considered
for testing.

Figure 5. k-fold cross validation represented graphically.

The number of k decides the ratio of train to test ratio of validation and, in most
studies, the value of k is randomly is chosen as 5 (train to test ratio 80:20) or 10 (train to test
ratio 90:10) [44]. However, detailed studies on performance of cross validation suggest that
repeated cross validation should be carried out to determine the optimum value of k [12].
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3.4. Quantitative Comparison

The Receiver Operating Characteristic (ROC) curve approach is used for the quan-
titative comparison of different models. The curve is a plot between the False Positive
Rate (FPR) on the x axis and the True Positive Rate (TPR) on the y axis. These parameters
are calculated using a conventional confusion matrix where true positives are correctly
predicted landslide points, true negatives are correctly predicted, no landslide points, false
positives are incorrectly predicted, no landslide points and false negatives are landslide
points missed by the model. From these four values, TPR and FPR are calculated as follows:

TPR =
True Positives

True Positives + False Negatives
(5)

FPR =
False Positives

False Positives + True Negatives
(6)

The plot with maximum Area Under the Curve (AUC) had the best performance. The
landslide susceptibility maps were then prepared using the probabilities predicted by the
derived ML models. The model predicts the probability of the occurrence of landslides
in each cell, varying from 0 to 1. Based on the probability, the district is categorized into
five [45–47] (0.0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 0.8, and 0.8 to 1.0) and the corresponding
susceptibility classes are defined as very low, low, medium, high, and very high. The
classification based on equal interval was chosen over the other approaches such as natural
break and quantiles, as this study focuses on the comparison of probabilities predicted by
different approaches. By using equal interval, the susceptibility classes predicted by each
approach can be compared directly to evaluate the agreement or disagreement between
the predicted probability values. In other approaches, relative values predicted by each
model are used separately for defining the classes and hence the comparison of predicted
probabilities is difficult. The statistical attributes such as accuracy and AUC do not provide
insights into the agreement and disagreement between the different landslide susceptibility
maps prepared. Hence, another parameter, called the Empirical Information Entropy (EIE),
or H index, is used to evaluate the agreement between different maps. H index can be
calculated as:

H = −
n

∑
I=1

P(i) log(P(i)) (7)

where, P(i) is the likelihood of the susceptibility class (very low, low, etc.) i, which is
numbered from 1 to 5 in this study (1 is very low and 5 is very high), and n is the number
of classes (5 in this case). When all the maps agree with each other, the value of H is zero
and as the value increases; the disagreement also increases.

The value of the H-index can be used as an indication to quantify the mutual agreement
between the landslide susceptibility maps considered [4]. When two landslide susceptibility
maps are compared, there are two outcomes. When both the outcomes are same, the
probability of occurrence of one susceptibility class becomes 1 and that of all the other
classes are zero. Hence, the H-index becomes zero. In cases where both the outcomes
are different, the probability of occurrence of two susceptibility classes is 0.5 and that of
remaining classes are zero. The H-index value is the absolute value of twice the product
of 0.5 and log(0.5); i.e., 0.30. When five landslide susceptibility maps are compared, the
possible combinations of outcomes and H index values are given in Table 1 below. The
number of landslide susceptibility maps predicting each class is interchangeable along the
row, and all combinations result in the same value of H index.

From Table 1, it is clear that, as the value of H-index increases, the entropy increases [48],
i.e., the disagreement between landslide susceptibility maps increases [4]. Hence, the value
can be used to quantify the agreement amongst the results. If more landslide susceptibility
maps predict the same class for a cell, the predicted results can be considered to be highly
reliable.
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Table 1. Possible H index values while comparing the landslide susceptibility maps produced using
five algorithms.

Number of Landslide Susceptibility Maps Predicting Each Class
H-Index

Class 1 Class 2 Class 3 Class 4 Class 5

5 0 0 0 0 0.00

4 1 0 0 0 0.22

3 2 0 0 0 0.29

3 1 1 0 0 0.41

2 2 1 0 0 0.46

2 1 1 1 0 0.58

1 1 1 1 1 0.70
The numbers in rows three to nine can be interchanged among the first five columns. The resulting H-index will
remain the same.

4. Results

The performance of the test dataset was first evaluated using the ROC approach to
find out the model with best performance. The analysis was carried out with the values
of k ranging from 2 to 10 for algorithms, using both a point and polygon dataset, and the
ROC curves are plotted in Figure 6.

The minimum and maximum accuracy of the model with NB algorithm and point
data are 82.70% and 83.30%, respectively, and the corresponding AUC values are nearly
the same, i.e., 0.903 and 0.904. The accuracy values remained the same, while the AUC
values reduced when the polygon data is used with the NB algorithm. The trend is nearly
the same for the LR algorithm as well. The AUC values are slightly better than NB, with
the maximum value of 0.920 with point data. The pattern is different for the other three
algorithms, and the performance is significantly improved with polygon data in all the
three cases. With the point data, the maximum accuracy values are 84.71%, 88.12%, and
86.63% for KNN, RF, and SVM, respectively, while the maximum AUC values are 0.911,
0.954, and 0.930. With the use of polygon data, the maximum accuracy of KNN increased
up to 95.22%, while that of RF became 98.14% and the same for SVM became 91.61%. The
AUC values also increased up to 0.981, 0.993, and 0.963 for KNN, RF, and SVM, respectively.
Another important observation is that the performance of SVM is better than KNN while
using point data, with a difference of 1.92% in accuracy, albeit when polygon data is used.
KNN performed better than SVM, with a difference of 3.61% accuracy (Table 2). In both
the cases, the RF model outperforms the other models with the highest values of accuracy
and AUC.

From Figure 6, it can be observed that the AUC values of KNN, RF and SVM have
improved significantly by using polygon inventory data, while the variation is minimum
in the case of NB and LR. Moreover, the effect of varying the value of k in k-fold cross
validation is insignificant while using polygon data for NB, LR, and SVM algorithms, while,
in the case of KNN and RF, variation in the number of folds can result in a variation of
approximately 2% accuracy with polygon data. Even though the variation is not significant,
the best performance of all models was obtained at k = 8, using point data. A summary
of quantitative comparison is provided in Table 2, with the k values corresponding to
minimum and maximum performances in the brackets.
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Figure 6. ROC curves, AUC, and accuracy of different models: (a) Naïve Bayes, (b) Logistic Regression, (c) K Nearest
Neighbors, (d) Random Forest, (e) SVM, and (f) comparison of AUC of all five algorithms.
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Table 2. Quantitative comparison of different algorithms, sampling strategies and data splitting
using accuracy and AUC values.

Algorithm NB LR KNN RF SVM

Point Data

Min Accuracy (%) (k) 82.70 (3) 86.67 (3) 83.00 (2) 86.20 (3) 84.80 (2)

Max Accuracy (%) (k) 83.30 (8) 87.41 (8) 84.71 (8) 88.12 (8) 86.63 (8)

Min AUC (k) 0.903 (3) 0.912 (3) 0.896 (2) 0.932 (3) 0.917 (2)

Max AUC (k) 0.904 (8) 0.920 (8) 0.911 (8) 0.954 (8) 0.930 (8)

Polygon Data

Min Accuracy (%) (k) 83.32 (2) 83.44 (2) 93.23 (2) 96.13 (2) 91.00 (2)

Max Accuracy (%) (k) 83.34 (6) 83.45 (5) 95.22 (8) 98.14 (9) 91.61 (9)

Min AUC (k) 0.885 (2) 0.914 (2) 0.977 (2) 0.992 (2) 0.959 (2)

Max AUC (k) 0.885 (6) 0.914 (5) 0.981 (8) 0.993 (9) 0.963 (9)

From the comparison of statistical performance obtained as per Figure 6 and Table 2,
it can be observed that the RF algorithm with polygon inventory data is performing better
than all other models. The performance of KNN and RF are comparable while using
polygon data and the scores of RF and SVM are comparable while using point data. Still,
the best suited model cannot be selected on the basis of statistical scores only. The choice
needs a detailed understanding of the distribution of susceptibility classes and a detailed
evaluation based on practical perspectives. The purpose of landslide susceptibility maps is
to help the planners and authorities in making strategic decisions for future development.
Hence, it is important to provide clear information about the susceptibility classes. Based
on the value of probability of the occurrence of landslides, the district is divided into
five susceptibility classes: very low, low, medium, high, and very high. The statistical
attributes provide the prediction performance on the test data only [49]. From a practical
perspective, a landslide susceptibility map with an acceptable performance should classify
all the landslides correctly within the very high, high, or medium classes. At the same time,
the model cannot be too conservative, which may restrict the developmental activities
within a larger area. The landslide susceptibility maps prepared using both point and
polygon data using each algorithm with the best performing model are evaluated in detail
along with the H-index map for a better understanding of spatial agreement.

The number of pixels in each category and the number of landslides that occurred in
each class are also important concerns. By using a reliable landslide susceptibility map,
the landslides should occur within medium, high, and very high susceptible zones. The
landslides which occur outside these zones are missed events, which should be considered
with utmost care. Any model with an increased number of missed alerts fails to predict the
possible occurrence of landslides.

The landslide susceptibility maps prepared using NB algorithm classifies 15.07% of the
total area in the very high category with point data and 18.29% with polygon data (Figure 7).
It can also be understood from Figure 7 that, among the 388 landslides considered, 72.64%
occurred in very high classified areas, itself with point data, and the percentage increased
to 80.64% using polygon data. Exactly 74.49% of the total area is classified as very low
using point data and 73.27% using polygon data. The performance of the model is slightly
reduced while using polygon data due to the increased number of false alarms within the
increased percentage area covered by very high and high category. Considering the mutual
agreement between the predictions made by both sampling strategies, 86.42% of the total
predictions are in perfect agreement with each other (Figure 7c), while the classification of
susceptibility predicted by both methods are different in the remaining area.

The LR algorithm classifies 6.90% of the total area as very high, 9.04% as high, 10.55%
as medium, 22.21% as low, and 51.30% as very low susceptible classes using point data
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(Figure 8). The number of landslides that occurred in the very high classified locations
are reduced to 58.60% when compared with NB, but, at the same time, the number of
landslides that occurred in the very low category was also reduced to 6.78%, which in
turn slightly improved the performance of LR. While using polygon data, LR algorithm
classifies 8.63% of the total area as very high, 7.82% as high, 9.03% as medium, 14.58% as
low, and 59.95% as very low. Even though the missed alarms are reduced by this case, the
increased number of false alarms resulted in a marginal decrease in accuracy and the AUC
values. For 72% of the total area, the susceptibility class predicted using both point data
and polygon data perfectly agreed with each other, with an H-index of 0.

From the AUC values (Figure 6), it is evident that the performance of KNN is compa-
rable with NB and LR algorithms while using point data, but it has increased significantly
while using polygon data. The reason for this is the drop in the areas classified into very
high, high, and medium classes to 3.48%, 3.27%, and 3.44% while using polygon data when
compared to 7.15%, 7.60%, and 7.82% while using point data (Figure 9). This reduction has
resulted in a considerable reduction of false alarms and in the improvement of accuracy
and AUC values. The variation is also reflected in the H-index map, as only 68.70% of the
total area agrees with the prediction made using different sampling methods.

Similar to KNN, RF also shows a significant improvement in performance while using
polygon data when compared to the point data. The reason is also very similar, as the
percentage of very high, high, and medium classified points are reduced while using the
polygon data. With the use of point data, 7.86% of the total area was classified under the
very high category, which comprises 61.26% of the total landslide occurrences (Figure 10).
However, with polygon data, 97.90% of the total landslides are happening within the
1.06% of the total area, which are classified into the very high category. The number of
missed events is also reduced by using polygon data as only 0.13% and 0.06% of landslides
occurring in the low and very low classified areas, respectively. The mutual agreement
between the landslide susceptibility maps produced by point and polygon data is also the
least in case of RF algorithm, as 71.20% of the total area has been classified into different
categories by using different sampling strategies.

Similar to NB and LR, SVM also shows an increase in percentage of area classified into
the very high category with the use of polygon data when compared with the landslide
susceptibility map prepared using point data (Figure 11). However, the percentage increase
in this category does not result in false alarms, as in the case of NB and LR, as most pixels
classified as high and medium categories using point data were classified as in the very
high category while using polygon data. Thus, the true positives have increased, and false
negatives have been reduced by using polygon data, which in turn resulted in an increase
in performance using polygon data. For 75.28% of the area, the categorization is same
when using both point and polygon data, as depicted by the H-index plot.

While comparing the performance of different models, RF provides better perfor-
mance by using both point and polygon data. Moreover, while using polygon data, the
performance of KNN and RF are comparable and, while using point data, the performance
of SVM and RF are comparable. Apart from statistical comparison, a better understanding
of the pixel-wise distribution of susceptibility classes and mutual agreement between the
landslide susceptibility maps can help in deciding the best suited landslide susceptibility
map for a region.
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Figure 7. Details of landslide susceptibility maps prepared using NB algorithm: (a) using point data, (b) using polygon data,
(c) H-index plot, (d) percentage distribution of using point data, and (e) percentage distribution of pixels using polygon data.
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Figure 8. Details of landslide susceptibility maps prepared using LR algorithm: (a) using point data, (b) using polygon
data, (c) H-index plot, (d) percentage distribution of pixels using point data, and (e) percentage distribution of pixels using
polygon data.
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Figure 9. Details of landslide susceptibility maps prepared using KNN algorithm: (a) using point data, (b) using polygon
data, (c) H-index plot, (d) percentage distribution of pixels using point data, and (e) percentage distribution of pixels using
polygon data.
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Figure 10. Details of landslide susceptibility map prepared using RF algorithm: (a) using point data, (b) using polygon
data, (c) H-index plot, (d) percentage distribution of pixels using point data, and (e) percentage distribution of pixels using
polygon data.
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Figure 11. Details of landslide susceptibility maps prepared using SVM algorithm: (a) using point data, (b) using polygon
data, (c) H-index plot, (d) percentage distribution of pixels using point data, and (e) percentage distribution of pixels using
polygon data.
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5. Discussion

From the obtained results (Table 2), it is evident that the choice of algorithm and
sampling strategies can affect the prediction performance of a landslide susceptibility
map significantly. The effect of data splitting is crucial for only RF, KNN, and SVM
algorithms while using the point data for sampling. The landslide susceptibility maps and
H-index plots provide more insights into the effects of different sampling strategies in the
performance of different algorithms. From the H-index maps and AUC values, it is evident
that the sampling strategy is least effective in the case of NB and most effective in the case
of RF.

Figure 12 shows the H-index plots prepared to understand the mutual agreement
between different algorithms using the same sampling strategy. It can be observed that,
in the case of low susceptible area, the different algorithms are in good agreement with
each other, and the LR algorithm classifies the least area in the very low category, which is
51.30% of the total area. While using point data, all algorithms agree in the classification of
47.56% of the total area and all algorithms differ in the case of 0.17% of the total area.

Figure 12. H-index maps plotted using all five algorithms with: (a) point data, and (b) polygon data.

The percentage distribution of each value of H-index is provided in Table 3 below.
While using polygon data, the mutual agreement between algorithms is improved, with
perfect agreement in 58.06% of the total area. In no pixels, the classification of all algorithms
is entirely different and at least two algorithms agree with the predicted classification. As
can be observed from Figure 12b and Table 3, there are no pixels with a H-index value of
0.70 when polygon data is used.

For NB and LR algorithms, the performance is reduced when a greater number of
data points in the polygon dataset is used. This is a result of increased correlation between
the LCFs with more data points, which violates the basic assumption of independent
variables in both the cases. The use of linear fitting function in the case of LR also results
in a slight decrease in the accuracy and AUC values with the increased number of data
points. However, the advantage of using these algorithms is the reduced computational
time involved, as they do not require any hyper parameter tuning.
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Table 3. Percentage distribution of H-index values in the total area, using different sampling strate-
gies: comparison between all algorithms.

H Index
Point Data Polygon Data

Percentage Pixels (%)

0.00 47.56 58.06

0.22 19.31 13.25

0.29 13.04 7.47

0.41 8.93 6.96

0.46 7.52 11.48

0.58 3.47 2.77

0.70 0.17 0.00

In the case of KNN, SVM, and RF, the ratio of the train to test dataset can also result in
a performance variation while using point data. The performance of these algorithms is
significantly increased with the use of polygon data. The improvement in performance can
be attributed to the improved size of data used for training the model. All three models
demand a long time for the fine-tuning process. The models are highly sensitive to the
parameters, train to test ratio, and the size of the dataset [5]. All the three models are
widely used for LSM and, hence, if computational facilities are available, the train to test
ratio should also be varied to produce the best results from these algorithms.

Even though the performance is comparable with KNN and RF, a higher number of
landslides in the very low category make the landslide susceptibility maps made using
SVM unsuitable for practical applications. This is an important aspect to be considered.
From Figure 11, it is evident that the model using polygon data with an AUC of 0.963 is
classifying 13% of the landslides in the very low susceptible zone. This is visible in the
landslide susceptibility maps in Figure 11b. The performance can be further improved by
using different data sampling approaches and ensemble algorithms and neural networks.
In the case of RF, even though the results are statistically better from a practical perspective,
the very high, high, and medium classes are bounded by the polygon data used for
training and the model is too optimistic, which does not leave room for possible landslides
in the surrounding areas in the future. The same issue is observed with the landslide
susceptibility map prepared with the KNN algorithm using polygon data. Even though
these three algorithms (KNN, SVM, and RF) are having the highest statistical attributes,
they cannot be considered to be the best suited for the landslide susceptibility map, due to
the limited part of the study area classified into very high, high, and medium classes. The
landslide susceptibility map must be conservative, which considers the possible occurrence
of landslides in areas other than the ones used for training and testing, and, at the same
time, should not classify the safe zones as landslide-susceptible regions. The landslide
susceptibility map produced using the RF algorithm with point data is an optimum solution
with good statistical performance (AUC = 0.952 and accuracy = 88.12%) and practical
applications. It classifies 7.87% of the total area into the very high category and 9.79%,
7.09%, 15.17%, and 60.08% into the high, medium, low, and very low categories, while the
best performing model is developed using RF with polygon dataset, with an accuracy of
97.30% and an AUC of 0.993.

From the results, it can be inferred that both the choice of algorithm and sampling
strategy can influence the prediction performance of LSM, but the choice of the landslide
susceptibility map should not be based on the statistical performance only.

6. Conclusions

The influence of the choice of the ML algorithm, sampling strategies, and data splitting
for LSM is evaluated in detail using a case study from the Wayanad district in Kerala.
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12 LCFs were used to develop different models using five different ML algorithms (NB, LR,
KNN, RF, and SVM), two sampling strategies (point data and polygon data), and different
values of k in k-fold cross validation. The results show that data splitting is least effective
among the considered parameters. The performance of NB and LR are unaffected by the
variation of k values, but the performance of KNN, RF, and SVM are slightly varied by k
values, with the best performance at k = 8 in all cases using point data.

The performance of NB and LR did not improve with the use of a large dataset with
polygon inventory. The inter dependency of parameters is a critical factor affecting the
performance of these algorithms while, in the case of KNN, RF, and SVM, the performance
is significantly improved with the use of polygon data. By comparing the H index values,
it was observed that the landslide susceptibility maps perfectly agreed with each other
in the case of 47.56% of the total area while using point data and 58.06% while using
polygon data.

The results produced by KNN and RF using the polygon dataset have a very good
statistical performance with very high values for accuracy and AUC. The best performing
model developed using an RF algorithm and polygon dataset has an accuracy of 97.30%
and an AUC of 0.99.
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Abstract: The purpose of this paper is to propose a new set of environmental indicators for the fast
estimation of landslide risk over very wide areas. Using Italy (301,340 km2) as a test case, landslide
susceptibility maps and soil sealing/land consumption maps were combined to derive a spatially
distributed indicator (LRI—landslide risk index), then an aggregation was performed using Italian
municipalities as basic spatial units. Two indicators were defined, namely ALR (averaged landslide
risk) and TLR (total landslide risk). All data were processed using GIS programs. Conceptually,
landslide susceptibility maps account for landslide hazard while soil sealing maps account for the
spatial distribution of anthropic elements exposed to risk (including buildings, infrastructure, and
services). The indexes quantify how much the two issues overlap, producing a relevant risk and can
be used to evaluate how each municipality has been prudent in planning sustainable urban growth
to cope with landslide risk. The proposed indexes are indicators that are simple to understand, can
be adapted to various contexts and at various scales, and could be periodically updated, with very
low effort, making use of the products of ongoing governmental monitoring programs of Italian
environment. Of course, the indicators represent an oversimplification of the complexity of landslide
risk, but this is the first time that a landslide risk indicator has been defined in Italy at the national
scale, starting from landslide susceptibility maps (although Italy is one of the European countries
most affected by hydro-geological hazards) and, more in general, the first time that land consumption
maps are integrated into a landslide risk assessment.

Keywords: landslide; Italy; risk; soil sealing

1. Introduction

Landslide risk is the possibility that a landslide occurs in a specific area and in a
specific period of time, causing damages to population, buildings, infrastructure and
services [1,2]. As a consequence, landslide risk is influenced by the overlapping in time and
space of hazardous areas (where landslides are likely to occur) and potentially vulnerable
exposed elements, resulting in an impact that could cause damages or losses. This has been
traditionally translated into mathematical form by the classical equation [1]:

R = H·V·E (1)

where R is the risk, H is the hazard (the probability for a dangerous event of a given
intensity to happen in a certain place and time), V is the vulnerability (the degree of loss
expected from the element impacted by the landslide) and E is exposition (the value of the
elements exposed to the event).

Following this approach, quantitative risk analyses have been mainly published for
small areas or, at the most, in regional scale applications [2–9].

A quantitative landslide risk assessment for very large areas (e.g., an entire nation)
is still a very challenging objective, as it requires facing technical and scientific issues
such as availability of complete, homogeneous and good quality input data of differ-
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ent natures (pertaining at least to the fields of geology, economy, demography and civil
engineering) [10].

Italy is no exception to this, and to date the main strategies for assessing landslide risk
at the national scale in Italy were based on different strategies. For instance, [11] proposed
a statistical analysis on the spatial variability of recorded fatalities, to account for societal
landslide risk in the whole Italian territory. Recently, [12] proposed a set of landslide
risk indicators based on freely accessible data from an online governmental platform,
including exposed population, number of buildings and landslide hazard zones as defined
by the Italian regulation. Although representing a very complete overview of landslide
risk in Italy, this approach has the drawback of presenting a spatial aggregation at the
municipal level and leaving unexploited some scientific products that have a finer spatial
resolution, such as landslide susceptibility maps, which have been proposed for several
Italian regions [13–17] and for the whole Italian territory [18], or monitoring products of
the artificialization of the territory such as soil sealing maps, which monitor the evolution
of the processes of artificialization of the territory at high spatial resolution (10 m) at yearly
time steps [19]. However, the approach of addressing national scale landslide risk problems
with a set of simple indicators, rather than with a full QRA, seem promising and quite
consolidated in landslide studies [10,20,21]. Undoubtedly, indicators are, by definition,
simple means to describe and comprehend a complex phenomenon and are widely used in
environmental studies by scientists and governmental agencies.

The purpose of this manuscript is to propose a new set of environmental indicators
to characterize landslide risk over very wide areas and to apply it to characterize the
Italian municipalities. The novelty in the proposed approach is to use advanced and high-
resolution thematic layers: already existing landslide susceptibility maps [18] are used to
identify hazardous areas, and soil sealing maps are used as they have a high resolution and
constantly updated representation of the spatial distribution of the elements at risk (soil
sealing maps are released on a yearly basis to monitor the expansion of urban fabric [19,22]).
At the same time, the general objective is keeping the resulting indexes easy to understand,
quick to update and flexible enough to be adapted at varying spatial units. In its basic
formulation, a spatially distributed Landslide Risk Index (LRI) is defined on a pixel basis
at 50 m resolution. Afterwards, we show an application to the whole Italian territory, in
which the LRI is aggregated at the municipal level following two different approaches,
generating two additional indexes that can be used to gain useful understanding on the
interferences between geomorphological slope dynamics and urban expansion, which give
birth to landslide risk.

2. Materials and Methods

2.1. Test Site

The study area considered for this work is the whole Italian territory (301,340 km2)
(Figure 1a). Italy is a peninsula located in Southern Europe and extending into the Mediter-
ranean Sea. It is characterized by two main mountain ranges: the Alps, to the north, which
separate Italy from the rest of Europe, and the Apennines, forming the backbone of the
peninsula and running from NW to SE.
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Figure 1. (a) Overview of Italy; (b) administrative subdivision into 7904 municipalities.

The geological setting and morphological features of the Italian peninsula are the
result of a still active geological process that led to the formation of the two mountain
chains [23]. The Alps are the typical example of a collisional belt: it was generated during
the Cretaceous period by the convergence of the Adriatic continental upper plate (Argand’s
African promontory) and a subducting lower plate including the Mesozoic ocean and
the European passive continental margin. In the Eocene, a complete closure of the ocean
marked the onset of the Adria/Europe collision. The collisional zone is represented by the
Austroalpine-Penninic wedge, a fossil subduction complex, showing that even coherent
fragments of light continental crust may be deeply subducted in spite of their natural
buoyancy [24]. The Apennines extend from the northwest part of the peninsula to the
isle of Sicily, and link the western Alps with the Magrebian chain of North Africa [25].
The Apennines are a NW–SE oriented fold-and-thrust belt formed during the Oligocene
period by the closure (started during the Cretaceous period), of the Mesozoic Tethys Ocean
and following the collision between the European (Corso-Sardinian block) and African
plates [26,27].

From a geomorphological point of view, Italy has a marked energy of relief: mountains
are present in every Italian region and occupy more than the 35.2% of the territory. The
greatest part of Italy, however, is characterized by hills, representing the 41.6% of the land
surface. This juvenile morphological setting, in a still tectonically active territory, brings
the consequence that landslide hazard is widespread in every part of Italy, excluding flat
alluvial and coastal plains.

Landslide hazard is further exacerbated by climatic and meteorological constraints.
Due to the large latitude range covered by Italy, the climate varies largely: from the
cold climate of the north, EFH according to Koppen classification, typical of the highest
mountain peaks, with annual precipitation higher than 2000 mm, to the Subtropical climate
(BS in Koppen classification) of the southernmost coastal areas of Sicily, Apulia, Sardinia
and Calabria, with long, hot, dry summers and precipitation less than 400 mm in Sicily [28].
Recently, due to the effects of climate change, periods of precipitation are becoming shorter
and more intense in many parts of Italy [29,30], causing an increase in landslide activity
and in the number of harmful landslide events per year [31,32].
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For a full understanding of the application reported in this study, it is worth noting
that Italy is subdivided into 7904 municipalities (Figure 1b), which represent the smallest
administrative subdivisions of the territory and that have important responsibilities in
territorial planning, urban design and risk management.

2.2. Landslides in Italy: National Inventory and Existing Susceptibility Maps

For the reasons explained above, each year hundreds to thousands of landslides
affect Italy, causing victims and damages to buildings, infrastructure and cultural her-
itage [12,32–34]. An official landslide database exists at the national scale that is managed
by ISPRA (National Institute for Research and Environmental Protection). The database is
called IFFI (Italian National Landslide Inventory) and maps all known landslides (both
active and inactive), mapped at the 1:10,000 scale by means of field surveys, remote sens-
ing techniques and collection of ancillary data. According to IFFI, 620,808 landslides are
present, covering about the 7.9% of the Italian territory. IFFI is openly accessible via an on-
line platform [12] and it is acknowledged to be one of the most complete and homogeneous
national-scale inventories in Europe [35–37]. IFFI is widely used as a base for landslide
hazard and risk assessments at various scales [12,15,38–40].

In particular, in Italy, an overwhelming literature exists about landslide susceptibility
studies. Landslide susceptibility maps (LSMs) represent, over appropriate spatial units,
the spatial probability of the occurrence of landslides, and they are usually obtained by a
statistical analysis of the spatial distribution of a set of predisposing factors [41]. Although
LSMs do not contain temporal predictions, they are usually considered the starting point for
landslide hazard and risk assessment. This is also the approach used for this work, but a lit-
erature review showed that most of the published LSMs refer to basin-scale studies [42–46].
Some examples of regional-scale susceptibility assessments also are present [13–16,47], but
the use of a combination of regional maps obtained with different approaches to compose a
nation-wide mosaic of landslide susceptibility would pose huge problems of consistency of
the data. To our knowledge, the only LSM at the Italian scale available to be used as input
data for this work is the national scale susceptibility assessment performed by [18]. The
susceptibility assessment was performed separately for three different landslide typologies
(rockfalls, rapid shallow slides, slow deep slides), producing three susceptibility maps at
50 m resolution. A Random Forest algorithm [48], which is a machine learning technique
widely consolidated in LSM studies [49–51], was calibrated with the IFFI landslide inven-
tory and a set of environmental variables including lithology, land cover, morphometric
parameters (elevation, slope gradient, aspect, curvature), and hydrological parameters
(topographic wetness index, stream power index, upslope contributing area). Overall,
196,087 sample points (50% randomly sampled inside landslides and 50% randomly sam-
pled outside the mapped landslides) were used to train the Random Forest model and
84,641 independent points were used to quantify its accuracy in terms of AUC (area under
receiver-operator characteristic curve), which is reported as 0.85.

2.3. Soil Sealing in Italy

In addition to the natural physical features (such as geological and climatic settings),
anthropogenic dynamics are also deeply involved in landslide risk in Italy. On one hand,
urban elements (such as buildings and infrastructure) may contribute to destabilizing
slopes, acting as predisposing factors for landslide hazard. On the other hand, the ongoing
expansion of urban fabric and infrastructure generates, at an alarming rate, new elements
that are exposed to hazard, determining a relevant degree of landslide risk.

Since 2015, ISPRA has undertaken a nation-wide monitoring program of soil sealing.
Soil sealing is the most intense form of artificial land take and it can be defined as the
removal or covering of soil by buildings, constructions or other totally or partly imperme-
able artificial material [52]. Since then, every year, a national cartography of soil sealing
is produced by remote sensing techniques and it is released as a raster map (pixel size
10*10 m), in which the whole Italian territory is classified into two classes: sealed soil/not
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sealed soil [53,54]. Sealed soil includes built-up areas, paved areas, railways, airports, ports
and even reversible land consumption such as dirt roads [54]. Although all those elements
are not distinguished from each other, the information conveyed by the soil sealing maps
is very useful for the aim of this study because it provides useful information (updated
on a yearly basis) about all anthropic elements exposed to risk, with a relatively very high
spatial resolution.

To this regard, it should be stressed that, typically, urban areas in Italy are not clustered
and are characterized by a peculiar diffuse pattern (referred to as “sprawl” and “sprin-
kling”) [19]. As a consequence, other land cover/land use monitoring products (such as
Corine Land Cover) are not able to adequately capture the spatial and temporal evolution
of this phenomenon [54]. Moreover, the remote sensing techniques developed by ISPRA
are specifically conceived and calibrated to detect the diffuse and scattered patterns of
Italian urban fabric [19].

2.4. Methodology

Italian regulation (D. P. C. M. 27/12/1998) dictates that environmental assessment
should be performed by subdividing the environment into environmental components,
each of them described and characterized by indicators, which are parameters used to
describe a given phenomenon and that should have the following characteristics: being
concise, easy to understand and easy to measure and update.

In this framework, the objective of this study is to propose a set of indictors at a
national scale to characterize landslide risk by depicting how urban expansion interferes
with geomorphological slope processes. To this end, we started with some input data
that consists of the outputs of bigger ongoing or concluded research activities, and we
combined them by means of GIS analyses.

Input data are:

• Susceptibility maps of Italy at 50 m spatial resolution (as described in Section 2.2) [18].
Three separate maps exist, each focusing on a peculiar kind of landslides typically
affecting Italian territory: rockfalls, shallow rapid slides, and deep-seated slow slides.
Each map is in raster format and each raster cell expresses, with a numerical suscepti-
bility index ranging from 0 to 100, the spatial probability of occurrence of a landslide
of that typology.

• Soil sealing map of Italy, which identifies in the Italian territory the soil sealed or
consumed by anthropic activities. In its basic form, the map can be used to subdivide
the territory into (semi)natural soil cover and artificially covered soil, but the latter
category is not further subdivided into sub-classes and the elements contributing
to soil sealing cannot be assessed. Considering the scale of application, the scarce
thematic accuracy is compensated by a high spatial and temporal accuracy: the map is
in raster format, at 10 m pixel size, and is updated yearly. In this work, the most recent
update available was used (monitoring of the reference year 2019, officially released
in 2020). The map can be visualized as a binary raster assuming value 1 where sealed
soil has been detected and 2 where it has not.

• Shapefile of municipalities borders, with reference coordinate system WGS84.

In short, the procedure consists of identifying a landslide risk following a revised and
simplified version of Equation (1). For our purposes, hazard is considered equal to the
spatial probability of occurrence (thus, equal to susceptibility). Over the susceptibility we
superimpose the spatial distribution of anthropic elements (depicted by the soil sealing
map), in order to consider elements at risk only on a presence/absence basis. Vulnerability
is neglected (mathematically it is considered equal to 1 in Equation (1)) for different reasons:
first, it would be nearly impossible to assess separately the physical vulnerability of each
element (e.g., buildings) at national scale (and, to our knowledge this is a still unattempted
task); and second, the soil sealing map does not effectively allow for distinguishing between
different typologies of buildings or infrastructure. Moreover, in national scale studies,
the approach of considering vulnerability as equal to 1 (the maximum possible degree) is
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considered a viable and cautionary approach [12]. The resulting index is then aggregated
at the municipality basis.

The first step of the proposed procedure consists of blending the three susceptibility
maps into a single information. It can be considered quite unlikely that, in a single spatial
unit of the susceptibility map (pixel with 50 m size), two or more landslides of different
typologies could be contemporarily present. Indeed, every predictive landslide model
should first make a typological prediction, trying to predict what kind of landslide will
take place [55]. As a consequence, the three susceptibility maps were imported into ArcGis
software, and the “cell statistics” operation was performed to assess the “maximum” value.
In this way, the output is a raster map in which the susceptibility index associated to each
cell is the highest value found in the three input maps. This is equivalent to considering
the landslide type with the highest susceptible value as the most probable to occur in a
given location, and surmising that this landslide typology is the one that will be most
likely affecting that area, controlling the related hazard. The resulting raster will be called
“hazard index map” henceforth (Figure 2).

Figure 2. Hazard index map.

Before overlying the soil sealing map to the hazard index map, a procedure of homog-
enization is needed as the two raster maps have different cell sizes. Using ArcGis “block
statistics” function, the resolution of the soil sealing raster was changed from 10 m to 50 m.
Despite the loss of spatial resolution, this operation was necessary for the perfect match of
soil sealing map with landslide hazard map, and some authors demonstrated that this spa-
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tial resolution is a good compromise in wide-area landslide hazard assessment studies [49].
The “minimum” statistics type was used: in this way the resulting raster obtains the value
1 (sealed soil) if at least one 10 m cell of sealed soil is present in each 50 m block. This choice
determines a small expansion of the sealed soil that could be considered precautionary,
and that is more desirable than alternate approaches. For instance, we verified that using
the “majority” operator, many small infrastructure are completely neglected (e.g., roads
cutting rural or mountain areas usually represent a small fraction of the 10 m pixels inside
the 50 m block, and a relevant source of landslide risk would be completely ignored). In
addition, it should be noted that the original soil sealing map represents the presence of
sealed soil, but it is widely acknowledged [19] that the effects of the sealing may extend
also to the surrounding areas (e.g., concerning hillslope hydrology, small surficial drainage
systems connected to infrastructure could have discharge outlets a few meters away from
the sealed area).

The resulting raster was reclassified, assuming a value of 1 in soil-sealed 50 m pixels
and “no data” elsewhere. From a mathematical point of view, the reclassified soil sealing
map and the hazard index raster were combined with a multiplication by means of the
“raster calculator” tool of ArcMap. From the point of view of spatial information, the values
“1” and “no data” in a multiplication act as a filter that maintains unaltered the input
value of spatial probability of occurrence only in correspondence of anthropic elements,
while far from them the index is not defined (conceptually, it is similar to assuming a
risk equal to zero). This output raster was named Landslide Risk Index (LRI), because it
accounts for the interaction between hazard and anthropic elements, giving a spatially
distributed picture of how much they are exposed to landslide risk (Figure 3). It should be
observed that a thorough assessment of the interaction between landslides and elements
at risk would require accounting for the propagation of mass movements (for which
run-out models would be necessary). This element is rarely encompassed in landslide
susceptibility assessments, especially in wide-area applications; this shortcoming will be
further investigated in the discussion of the results.

Figure 3. (a) Landslide Risk Index (LRI) map for the whole Italian territory; (b) Focus on hazard index map; (c) Focus on
LRI map. Roads and buildings are from OpenStreetMap dataset.
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LRI ranges from 0 to 100 and represents a spatially distributed indicator, which can be
considered a basic element to be aggregated over larger spatial units in order to characterize
them with respect to landslide risk. In this work, we derived from LRI two more indexes at
municipal scale. The LRI raster and the shapefile of the borders of the Italian municipalities
were overlaid in ArcMap and a “zonal statistics” was performed twice, using “mean”
and “sum” to characterize each municipality with respect to two indexes named Average
Landslide Risk (ALR) and Total Landslide Risk (TLR), respectively. The outcome of this
operation represents the last step of the proposed procedure: the resulting indexes and a
discussion about their interpretation are contained in the next section.

3. Results and Discussion

The TLR index (Figure 4) expresses for each mapping unit (municipalities in this study)
the sum of the susceptibility values of all the cells with urbanized soil. Basically, this index
cumulates for each administration the situations of interaction between spatial hazard
and urbanized areas, expressing how much the development of the municipality has let
hazardous areas to be “invaded” by constructions, infrastructure and services. In this
regard, TLR could be used to describe the attention of an administration to harmonize the
urban development with the main geomorphological hazard affecting its territory. Figure 4
shows that the Italian areas characterized by the highest TLR values are the Apennines
(mainly the northern and central sectors), the isle of Sicily and, to a lesser extent, the eastern
Alps. The drawback of this index is that it is sensitive to the extension of each aggregation
unit: large municipalities have a greater chance than small ones to have a high TLR value,
because of the higher number of pixels. For this reason, the value of the index does not have
a fixed upper limit, and the value could theoretically tend to infinite, requiring particular
attention for a correct interpretation. Indeed, when comparing different municipalities, a
similarly high value of the index could be determined by many pixels with mid LRI values
or by fewer pixels with higher LRI values. For this reason, the municipalities with the
higher TLR index are large and densely urbanized municipalities. This result is not an
artifact or a bias: the index effectively describes a recurring situation in some of the largest
and most densely urbanized municipalities, which are exposed to a very high landslide
risk in their territory because, during their urban expansion, they have had to cope with
more hazardous areas than small municipalities. The highest values are found in the cities
of Rome and Genova (both characterized by a very wide territory, densely populated and
almost completely urbanized), and in the municipalities of Perugia, Gubbio and Messina,
which are less populated but still have large portions of territory urbanized in hazardous
areas (Figure 4). Nevertheless, TLR seems effective in highlighting the municipalities most
affected by landslide risk, as the aforementioned territories correspond to areas where news
about landslides continuously appear in newspapers and online blogs, as reported by [32].
In the last ten years, 4% of the landslide news catalogued and geotagged by their semantic
engine is located in the aforementioned five municipalities with higher TLR values: in
particular, 600 online news providers talked about landslides in Genova, 533 in Rome, and
235 in Messina.

Our results are further supported by the governmental data coming from ItaliaSicura
web platform (http://mappa.italiasicura.gov.it/ last accessed on 31 May 2021), which
collects the number of interventions and the economic resources allocated to mitigate
hydrogeological risk in Italy. Rome is the Italian municipality with the highest number of
interventions (64), likewise Genova has the highest total cost (about 378 m €) (however, it
should be noted that data also include interventions for flood risk mitigation).
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Figure 4. Characterization of the Italian municipalities with the Total Landslide Risk (TLR) index.

ALR index characterizes each municipality with the mean value of hazard found in
correspondence of anthropic elements (Figure 5a). This index expresses, for each munici-
pality, how hazardous is the portion of the territory where buildings, infrastructure and
other services have been located. The values of the index range from 0 (minimum value) to
100 (maximum value): low values mean that the local administration has been cautious
in planning urban development avoiding landslide risk, while high values are associated
with municipalities where a consistent percentage of the urban structure has been built
in hazardous areas, resulting in a relevant level of risk. It should be stressed that this
does not necessarily mean that urban expansion has been recklessly planned: landslide
hazard is so widespread in Italy that sometimes a municipality could be almost entirely
interested by a relevant level of hazard posed by landslides or other geohazards (e.g., flood
or volcanic activity). Nevertheless, also in such cases, ALR is an indicator that can be used
to highlight situations where landslide risk is a very serious issue and should be carefully
evaluated before further planning activities, or in the perspective of considering mitigation
strategies. From a mathematical point of view, the value of ALR is independent from the
areal extension of each municipality. However, a close investigation on the distribution
of the values (Figure 5b) reveals that the highest values are found in small municipalities,
most of them renowned international holiday destinations located by the sea, in rocky
coasts (Positano, Amalfi, Capri, and Portofino, to name a few). We do not consider this
outcome as a bias, and we explain it with a concurrence of factors of different nature.
Firstly, in correspondence of many rocky and high-cliff coasts, the susceptibility to rockfalls
presents very high values. Secondly, the territory of these municipalities is very steep and
traditionally managed with the terracing method. This could be an effective method to
cope with landslide hazard, but several studies highlighted that currently the loss of farmed
land and the lack of maintenance seem to have recently increased the landslide hazard in
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these areas [56–58]. Thirdly, in the touristic locations with very high real estate value, the
building of houses, accommodation facilities, infrastructure and services has been more
intense than elsewhere. It has been driven mainly by market law and, especially in the last
decades of the last century, not adequately counterbalanced by countermeasures concern-
ing landslide hazard or environmental protection. This effect is particularly exacerbated in
small municipalities, because the territory that can be used for urban expansion is limited
and causes a severe competition between economic interests (urban expansion to support
tourism and investments on the real estate market) and geomorphological processes. This
is particularly alarming because small municipalities usually have scarce resources (both
in terms of funds and manpower) to effectively face emergencies or to manage in-house
risk mitigation strategies.

Figure 5. (a) Characterization of the Italian municipalities with the Average Landslide Risk (ALR) index; (b) Focus on the
Amalfi Coast, where seven municipalities are ranked among the 10 Italian municipalities with the highest ALR value.

Our findings are in accordance with the evidence resulting from the governmental
WebGIS platform presented by [12]: in most of the high-ALR municipalities highlighted in
Figure 5 (especially Positano, Amalfi, Conca dei Marini), a high number of buildings are
built in areas classified as landslide hazard areas according to Italian laws. For example, at
least 90% of Amalfi buildings are located in hazardous areas.

The combined use of ALR and TLR indexes can be useful in gaining preliminary in-
sights on the landslide risk of municipalities. Starting from the LRI index, which is defined
at the pixel level, the same principle could be applied to other spatial units and ALR and
TLR could be calculated for administrative subdivision of different level (e.g., provinces or
districts) or for geographical areas (e.g., basins). It should be stressed that the proposed
indexes are environmental indicators and, by definition, are conceived to simplify a com-
plex phenomenon to aid an easy understanding also for non-experts. As a consequence,
we acknowledge that the proposed indexes are an oversimplification of reality and cannot
substitute a thorough quantitative risk assessment. The main utility of the indexes lies in
the fact that a nation-wide quantitative landslide risk assessment is still far from being
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accomplished for Italy; thus, the proposed indexes can be used to explain, at scales ranging
from the local to the national, the severity of the phenomenon, and to evaluate how the
administrations have dealt with landslide hazards when planning urban expansion and
associated services.

One of the most important requirements for indicators is the possibility to be easily
updated. Concerning LRI, the updating procedure can be accomplished in GIS environment
whenever updated input data (susceptibility and soil sealing maps) are available. Soil
sealing is a dynamic anthropogenic process, and an updated nation-wide map is officially
released every year, thus allowing for a yearly update of LRI to account for variations
in urban expansion. Conversely, susceptibility is traditionally considered a quasi-static
element and a constant update of this element is not expected. However, the index could be
updated if a nation-wide susceptibility map is released and deemed more accurate than the
one used in this work. E.g., a susceptibility map considering also the runout of landslides
would be particularly indicated to thoroughly consider the interactions between hillslope
processes and elements at risk. Indeed, we acknowledge that one of the main limitations of
the present work is the absence of a method to explicitly include the landslide runout in the
model. Unfortunately, complex modeling techniques are required to assess the post-failure
displacement of landslides [59,60] and the travel distance is correlated to lithological and
morphological factors [61]. For these reasons, a model accounting for landslide runout at
the scale of this work (3*106 km2) has not been proposed yet; even the latest attempts to
include landslide runout in susceptibility assessments are limited to few case studies with
limited extension [62,63].

Once LRI is updated, the derivation of TLR and ALR at municipal level can be also
accomplished easily in a GIS system. This procedure could be carried out using the last
update of the shapefile representing the Italian municipalities, which is also updated every
year to account for small variations mainly consisting of the merging of very small and
scarcely populated municipalities.

4. Conclusions

A nation-wide quantitative landslide risk assessment is not yet feasible in Italy
(301,304 km2) because of the lack of homogeneous, complete and detailed data. In this
work we partially fill this gap by proposing a set of indicators to characterize landslide risk.
Indicators are simple numerical indexes widely used in environmental studies by scientists
and governmental agencies to simplify and describe complex phenomena. By definition,
indicators should be simple and easy to measure, update and understand.

Firstly, a spatially distributed landslide risk index (LRI) was obtained combining
state-of-the-art nation-wide susceptibility maps and a soil sealing map released in the
framework of a governmental monitoring program of the urban expansion. While the
former account for hazardous areas, the latter indicates if anthropic elements could be
exposed; their spatial overlapping defines the relevance of the degree of risk.

LRI was then aggregated at the municipal scale to define the average landslide risk in-
dex (ALR) and the total landslide risk index (TLR), expressing respectively how hazardous
the areas occupied by settlements or infrastructure are, and how serious the overall risk
level in each municipality is. ALR and TLR proposed in this work are simple to update
and can be adapted to various contexts and scales; in this test they were applied at the
municipal level because municipalities are the key administrative subdivisions involved in
urban development, land planning and risk mitigation strategies. The proposed indexes
cannot substitute a detailed quantitative risk assessment, nevertheless they can provide
a preliminary outlook on the spatial distribution of landslide risk at a national scale, and
they can be used to evaluate how cautionary each municipality has been in planning its
development to deal with the geomorphological hazards threatening its territory.
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Abstract: Rainfall-induced landslides are a disastrous natural hazard causing loss of life and sig-
nificant damage to infrastructure, farmland and housing. Hydromechanical models are one way
to assess the slope stability and to predict critical combinations of groundwater levels, soil water
content and precipitation. However, hydromechanical models for slope stability evaluation require
knowledge about mechanical and hydraulic parameters of the soils, lithostratigraphy and morphol-
ogy. In this work, we present a multi-method approach of site characterization and investigation
in combination with a hydromechanical model for a landslide-prone hillslope near Bonn, Germany.
The field investigation was used to construct a three-dimensional slope model with major geo-
logical units derived from drilling and refraction seismic surveys. Mechanical and hydraulic soil
parameters were obtained from previously published values for the study site based on laboratory
analysis. Water dynamics were monitored through geoelectrical monitoring, a soil water content
sensor network and groundwater stations. Historical data were used for calibration and validation
of the hydromechanical model. The well-constrained model was then used to calculate potentially
hazardous precipitation events to derive critical thresholds for monitored variables, such as soil
water content and precipitation. This work introduces a potential workflow to improve numerical
slope stability analysis through multiple data sources from field investigations and outlines the usage
of such a system with respect to a site-specific early-warning system.

Keywords: landslide; hydromechanical modeling; early-warning; slope stability; rainfall-induced
landslides; local factor of safety; SoilNet; geophysical characterization; water content distribution;
bedrock topography

1. Introduction

Landslides are common natural hazards in many parts of the world, often triggered
by increased pore pressure after heavy rainfall. Due to climate change, more intense
rainfall events are expected and the frequency of destructive landslides may increase [1–3].
In order to evaluate hazards associated with landslide-prone hillslopes, several modeling
approaches can be used to determine critical precipitation events that may lead to slope
failure. Common limit-equilibrium models tend to overestimate the factor of safety as
a measure of slope stability in complex geometrical setups [4]. The concept of a local
factor of safety in Coulomb stress-field based finite element models is one approach used
to overcome this limitation [5]. Studies applying limit-equilibrium and continuous finite
element models have partly found good agreement between the results for stability analysis

Land 2021, 10, 423. https://doi.org/10.3390/land10040423 https://www.mdpi.com/journal/land

123



Land 2021, 10, 423

e.g., [6]. However, variation between models depends strongly on the methods used and
the application scenarios [7,8].

The incorporation of spatial variability of soil and rock types into models for slope
stability evaluation is crucial to assess the structural and hydrological state of a hillslope
e.g., [9]. Slope morphology and spatial distribution of the material properties affect the
slope failure potential e.g., [10,11]. Especially bedrock topography and soil depth were
identified as important factors with respect to slope hydrology and stability [9,12,13]. Geo-
physical characterization e.g., [14–16] and monitoring e.g., [17,18] are increasingly used
for structural and hydrological assessment of landslide-prone hillslopes. Such geophysical
studies often combine multiple methods to study the subsurface structures and seismics
and electric resistivity tomography (ERT) are the most commonly used e.g., [19,20]. Seismic
refraction is particularly useful to identify lithological layers and slip surfaces e.g., [21,22],
whereas ERT is able to provide information on the water content distribution in the subsur-
face e.g., [23,24] by using the correlation between bulk electrical resistivity and saturation
e.g., [25,26]. Compared to drilling methods or point sensors, geophysical measurements
usually provide information with a higher spatial resolution at lower cost and are only
minimally invasive [27]. The combination of geophysical methods allows collection of
complementary information and can be analyzed using data fusion methods [28]. Typi-
cally, supporting laboratory studies are used to improve geophysical monitoring concepts
and to evaluate innovative geophysical methods, such as self-potential measurements,
for detecting critical hydrological conditions [29,30]. An extensive review of geophysical
monitoring methods for failure-prone hillslopes is given in Whiteley et al. [31]. In addition,
the development of cost-effective sensor networks for monitoring soil water content and
slope movement has gained momentum in recent years, which allows us to bridge the gap
between costly boreholes and extensive geophysical monitoring and surveying e.g., [32,33].

A few case studies have combined hydrogeological and geomorphological site charac-
terization, geophysical monitoring and hydromechanical modeling. For shallow landslides
in pyroclastic soils, water content, derived from electric resistivity profiles, were combined
with statistical modeling using a cellular automaton to derive a relationship between the
factor of safety of a hillslope with in situ measurable quantities [34]. For the La Clapiere
landslide in France, vertical electrical sounding was used to obtain the underground struc-
ture used in a geomechanical model [35]. An extensive ERT survey was combined with
groundwater measurements and meteorological data to study the groundwater dynamics
of a translational landslide and to develop a conceptual model [36]. To assess the slope
stability of the Brzozowka landslide near Cracow (Poland), ERT monitoring was combined
with drilling and laboratory tests to improve a stability analysis in which critical conditions
for slope stability were derived from simulations for extreme precipitation events [37].

In this study, we present a slope stability analysis of a failure-prone hillslope in
Germany based on the combination of thorough site investigation and monitoring with
a hydromechanical finite element model. The site investigation includes a geological,
geomorphological, hydrological, and geophysical characterization and soil water content
and groundwater monitoring using a sensor network as well as geoelectric measurements.
We introduce a work flow incorporating the different data sources into the model setup and
for validating the model results. The data used in this study are partly obtained from former
studies at the study site, and include (i) groundwater level [38], (ii) borehole logs [38], (iii)
laboratory tests for soil hydraulic and mechanical properties [38,39], (iv) slope movement
and (v) precipitation [40], as well as recent (vi) seismic refraction surveys, (vii) electric
resistivity tomography, (viii) soil water content monitoring network and (ix) a digital
elevation model. The parameterized, constrained and verified hydromechanical model
was subsequently used to study potential hazardous precipitation events. We compared
the results to the observations in the field and discuss how the developed approach could
be extended towards a site-specific early warning system.
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2. Study Area

The study site is a failure-prone hillslope at the Dollendorfer Hardt located 16 km
south-east of the city of Bonn in the Siebengebirge, Germany (Figure 1). This site has
been investigated in several previous studies since the 1990s [39–41]. At least two major
landslides occurred at the study site in the past 100 years (1958 and 1972), and minor
movements have been observed since the last failure event [39,40]. There is anecdotal
evidence that attributes the initiation of the first major landslide to the construction of a
trail at the upper part of the current scarp area. However, intense rainfall is suspected to be
the triggering factor of both major events [38].

Figure 1. Location of the study site near Bonn, Germany (source: Google Earth).

2.1. Site Characterization

The Dollendorfer Hardt is a horst structure with a height of roughly 250 m above
sea level, representing the most northern peak of the Siebengebirge of volcanic origin.
Towards the north, there is the lower Rhine Bay. The lithology of the area is characterized
by Devonian shales, consisting of interchanging bedding of slate and graywacke, on which
Tertiary sediments, mainly clay and quartz sand, are deposited. These lithological layers
are partly overlain by basaltic and trachytic tuffs as a result of volcanic eruptions in this
region [39].

In order to obtain subsurface information for the study site, drillings were performed
between March and August of 1998 [38]. The techniques included closed core percussion
drilling, open core percussion drilling and manual auger and percussion drilling (Figure 2).
The soil of the drill cores was used to determine hydraulic and mechanical properties of the
different identified layers according to the guidelines of the German Industrial Standard of
that time (DIN 1993) [38]. In particular, the following parameters were determined: particle
size distribution, soil water content, consistency limits, particle density and maximum soil
water content but were not completed for all soil types due to the limited availability of
samples. Further, shear strength was determined by direct shear tests and triaxial tests.
Samples from outcrops were used to determine the hydraulic conductivity [38].
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Figure 2. (a) Digital elevation model of the study area provided by the Geobasisdatendienst NRW
with geoelectric monitoring profile line, seismic profile line, borehole locations and water content
sensors, (b) as well as a simplified geomorphological map.

The scarps of the two landslides at the study site cover an area of almost 30,000 m2

located at a steep (up to 35–40◦) south-facing hillslope with a river at the valley bottom.
The area is approximately 330 m long with a variable width ranging from 17 m at the
narrowest passage, up to 65 m close to the scarp (Figure 2). The well defined scarp is the
northern boundary of the landslide zone and is a result of a rotational movement. Relatively
undisturbed rotational blocks can be identified in the landslide mass in the upper part of
the slope [38], which then convert to a mass flow in the middle part of the slope (transport
zone). The transport zone is the narrowest part of the landslide and over 140 m long. The
earthflow is constrained by one, sometimes two sets of levees at both sides, originating
from the two landslide events. The translational mass has been deposited in the debris
zone in the lower part of the slope up to a small river with little to no inclination [39,42].
The landslide mass consists mostly of trachytic tuff and clayey sediments from the Tertiary.
The first landslide mass additionally contains loess from the Quaternary loess cover. The
slope is naturally covered by a forest consisting mainly of beech trees.

Previous studies provided evidence of regular slope movement in the middle part
of the scarp area using inclinometers and tiltmeters. Movement of ±3 cm year−1 was
observed for the transport zone in ‘extraordinary wet conditions’ in spring when heavy
rainfall coincided with high groundwater levels [38]. In addition, continuous soil creep of
small magnitude on the order of a few millimeters per year was observed in the transport
zone [40]. Schmidt [38] attributed the vulnerability of the site for slope instability to the
specific geological setting of the area with an abundance of clay-rich soil layers. This also
explains the reported elastic swelling/shrinking of the lower rotational block of the scarp
zone and the elastic movement associated with groundwater level changes in the debris
zone [38]. Ruptures and breakups of tuff blocks of ≈0.3 m can be observed regularly along
the scarp.

To investigate the extent of the lithological layers in the study area, ten seismic refrac-
tion profiles were acquired between September 2015 and January 2017. The measurement
profiles had lengths between 50 to 150 m with a geophone spacing varying between 1 and
2.5 m for the different profiles. The refracted seismic waves were generated by strikes with
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a 5 kg hammer on a metal plate close to each geophone. For a good signal to noise ratio,
ten strikes per geophone were stacked. Signals were recorded with a SUMMIT II Compact
(DMT-Group, Essen, Germany). The maximum recording time was 350 ms. The data were
processed and analyzed using the software ReflexW (J. Sandmeier, Karlsruhe, Germany). A
bandpass filter was applied to cut frequencies below 10 Hz and above 150 Hz. First arrivals
were picked and an inversion was performed using regular grids with a grid spacing of
one quarter or less of the geophone distance.

The results for the first arrival of the refracted seismic waves indicated a three layer
case (Figure 3). The inversion results suggest that the seismic wave velocity range asso-
ciated with the three layers are <300 m s−1, 400–600 m s−1, and >800 m s−1. These layer
velocities were consistently found in all measured profiles. Based on the seismic data
and additional core drilling data from [38] and literature values for the rock and mineral
types [43,44], the three different layers are interpreted as follows:

• a top layer consisting of clayey sediments, trachyte tuff and loess, transported and
mixed by the landslides;

• an intermediate layer of Tertiary sediments mainly consisting of silt and clay;
• a base layer of Devonian bedrock, strongly weathered at the top.

The seismic measurements also indicated isolated sand structures within the Tertiary
sediments. Furthermore, the thickness of the Tertiary sediments was found to decrease
downhill and to disappear completely within the transport zone. The abrasive character of
the former landslides eroded the originally deposited sediments and replaced them with
the deposited landslide mass. In the transport zone, the sliding surface corresponds to a
lithological boundary and was identified in the seismic refraction. In the upper part of the
rotational landslide, the sliding surface lies within the Tertiary sediments and therefore
cannot be determined by seismic refraction [38,39]. Based on previous studies, the upper
layer is assumed to be temporally unstable and thus prone to landslides [41]. A similar
layering was found on the adjacent slopes. This supports the assumption that only the
upper layer of tuff and parts of the Tertiary sediments were transported and mixed by
the landslides.

Figure 3. Tomogram of p-wave velocity derived for seismic profile 1 (see Figure 2a) and its subsequent
interpretation.

2.2. Meteorological Data

Precipitation was continuously measured at the meteorological station at Königswinter-
Heiderhof as well as at the station of the Department of Meteorology of the University
of Bonn (MIUB). The Königswinter-Heiderhof station is located 3 km southwest of the
test site, whereas the MIUB station is approximately 10 km northwest of the study site
(Figure 1). At the Königswinter-Heiderhof station, precipitation and temperature data are
recorded at a daily resolution since 1990 and 2000 onward, respectively. For the MIUB
station, daily precipitation data are available between 1999 and 2001, and 10-min resolu-
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tion precipitation data are available since 2010. Temperature is recorded with a 10 min
resolution since 1995. The mean annual precipitation for the time period of 1995–2017
varied between 650–950 mm with an average of 769 mm. For the same period, the mean
annual temperature varied between 8 ◦C and 13 ◦C with an average of 9 ◦C (Figure 4). Since
temperature data were missing at the Königswinter-Heiderhof station for the period 1995–
1999, temperature data from the MIUB station were used in this period. As common in the
temperate climate zone, the strongest rainfall events were associated with thunderstorms
in summer. The maximum monthly precipitation was 235 mm in July 2014.

Figure 4. (a) Monthly precipitation, (b) temperature, (c) potential evapotranspiration, and (d) net
infiltration for the Dollendorfer Hardt test site based on the data of Königswinter-Heiderhof station
from 1995–2017.

The net infiltration, Inet [mm month−1], is the difference between precipitation P [mm
month−1] and actual evapotranspiration ET [mm month−1]:

Inet = P − ET (1)
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To obtain net infiltration from precipitation, an estimate of the actual evapotranspira-
tion is required. To minimize the number of required parameters, the temperature-based
approach of Thornthwaite [45] was used here. In this approach, the monthly potential
evapotranspiration was calculated using

PET = 16
(

Ld
12

)(
N
30

)(
10

Ta

l

)a
(2)

a = (6.75 × 10−7)I3 − (7.71 × 10−5)I2 + (1.792 × 10−2)I + 0.49239 (3)
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∑
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(
Tai
5

)1.514
(4)

where PET [mm month−1] is the estimated potential evapotranspiration, Ld [h] is the
average daylength of the month, N [-] is the number of days of the month, Ta [◦C] is the
mean daily temperature of the month and a [-] is an exponent that is a function of the
annual Thornthwaite heat index, I [-]. Based on this approach, the mean annual PET was
estimated to be 644 mm for the Dollendorfer Hardt. This value is in good agreement with
PET values provided for the Roleber station (8 km north of the study site) by the Deutscher
Wetterdienst (DWD, German Weather Service), which were calculated based on the Haude
method [46].

The resulting monthly PET for the study area is shown in Figure 4. It can be seen that
monthly PET occasionally exceeded precipitation in the summer months when temperature
is relatively high. In these cases, net infiltration was considered to be negative, which
was modeled as outflow. The mean annual precipitation, PET, and net infiltration for
the simulation period of 1995–2017 were 769, 644, and 125 mm, respectively. It should be
noted that it was assumed here that PET was equal to actual evapotranspiration. This
assumption is certainly not valid in all conditions [47]. However, the Dollendorfer Hardt is
experiencing precipitation all over the year and has a relatively high groundwater level.
Therefore, it was assumed that the trees did not experience water stress and were able to
transpire with rates dictated by the atmospheric conditions.

Slope instability at the Dollendorfer Hardt site is suspected to be triggered by intensive
rainfalls. In order to identify the potential magnitude of high-intensity rainfall events both
the daily rainfall data from the Königswinter station and the high-resolution data from the
MIUB station were analyzed. The maximum daily rainfall amount at the Königswinter
and MIUB stations are 88 mm and 45 mm, respectively. The maximum hourly precipitation
per year was derived from the MIUB station with 35 mm h−1 in 2013. The mean value of
maximum hourly precipitation over the years 2010 to 2017 was 15.7 mm h−1. Based on this
analysis, a rainfall intensity of 20 mm h−1 was selected to represent an intensive rainfall
event at the study site which is also not too rare.

2.3. Monitoring of Ground Water Level and Soil Water Content

Following the drilling in 1998, 26 standpipe groundwater gauges were installed [38].
For long-term groundwater monitoring, an electronic water level indicator was used.
Twelve tubes showed strong variations in groundwater level and were monitored with
hourly resolution with pressure transducers [38]. Groundwater monitoring data are avail-
able from April 1999 to May 2001 [38].

To characterize spatial variability of near-surface soil water content, the soil water
content sensor network SoilNet [32] was installed at the Dollendorfer Hardt test site in
August 2016. The installed network consisted of 20 SoilNet nodes. The locations of the
nodes were chosen to achieve a homogeneous distribution of sensors across the slope. At
each location, six SMT100 sensors (Truebner GmbH, Neustadt, Germany) were installed
horizontally at depths of −0.05, −0.20 and −0.50 m. Two sensors at each depth were
used to increase the measurement volume and to provide a control of the measurement
quality. The operating principle of the SMT100 sensor and the calibration approach for
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determining the relative dielectric permittivity from the sensor response are described
in Bogena et al. [48]. To link the measured soil permittivity to soil water content using
petrophysical relationships, 12 undisturbed soil samples were taken at 4 locations along
the slope at the depths of −0.10, −0.30 and −0.50 m. The soil samples were saturated
in the laboratory and the soil permittivity as well as the weight was measured daily
during a drying period of 42 days at room temperature. Subtracting the dry weight of the
samples from the measured weight, the water content was determined and linked to the
soil permittivity. The samples were roughly categorized into two classes based on their
grain size distribution. The coarse-grained samples were located in the rotated blocks while
the fine-grained material was found at all other locations. No difference was found for the
petrophysical relationship for clay and tuff samples. For the coarse-grained soil samples,
the petrophysical relationship of Roth et al. [49] showed the best agreement and was used
for the conversion of the soil permittivity to water content for the SoilNet sensors 11–14 and
16–18. For the fine-grained samples, the petrophysical relationship of Robinson et al. [50]
showed the best agreement with the laboratory data and was subsequently used for the
remaining SoilNet sensors. Soil water content measurements were taken from August 2016
to July 2018.

To assess the water dynamics at greater depth and to achieve a higher spatial resolution
than the SoilNet sensor network, an electric resistivity monitoring system was installed
in the transport zone of the landslide. Measurements were conducted between March
2016 and May 2018 with various time intervals from daily to monthly measurements. An
ABEM Terrameter LS (Guideline Geo AB, Sundbyberg, Sweden) with 96 electrodes was
used with an electrode spacing of 0.5 m. A dipole–dipole configuration with skips of 0,
2, 4 and 6 electrodes was combined with multiple gradient measurements. In the data
processing prior to the inversion, data points were removed due to systematic errors, such
as bad electrode connections, problems with power supply or high current strength (>1 A).
To account for temperature effects, the electric conductivities were corrected to the mean
subsurface temperature of 10 ◦C following the procedure of Hayley et al. [51]. Due to
the lack of temperature measurements at depth, the model of Brunet et al. [52] was used
to calculate the required temperature information T(t, z) [◦C] over the given time and
depth range. The preprocessed electrical data were inverted using the finite element based
inversion code CRTomo [53]. We used a resistance error model with parameters a and
b for absolute and relative resistance error contributions, resulting in a resistance error
ΔR [Ω] for the measured resistance R [Ω] [54]. The absolute error was set to a = 0.001 Ω
and the relative one to b = 3%. To improve the resistivity estimation, the inversion was
performed with the seismic layer boundary between bedrock and landslide as a structural
constraint e.g., [18,55,56]. To better uncover temporal changes, a difference inversion was
also performed [57].

In the ERT inversion results, the three layers found with seismic refraction could not
be identified, as the difference in electric conductivity of the two upper layers was too small.
The inversion results only show the electrically conductive and heterogeneous landslide
mass and the more resistive bedrock. From these results, water content was estimated
using the relationship as described in Waxman and Smits [26]:

σb =
Si

Ff

(
σw +

σs

S

)
(5)

with saturation, S [-], water conductivity, σw [S m−1], surface conductivity, σs [S m−1],
formation factor, Ff [-] and saturation exponent, i [-]. Water conductivity, σw = 0.1 [S m−1],
was gained from in situ measurements in the boreholes. As surface conductivity depends
on the clay content, the empirical relationship between clay content, cc [%] and the surface
conductivity, σs [S m−1], in the work of Rhoades et al. [58] was used:

σs = (2.3 × cc − 2.1)× 10−3 (6)
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where cc is the clay content (cc1 = 57% and cc2 = 40%, where the index 1 denotes the
upper layer and 2 the lower layer) obtained from Schmidt [38]. The formation factor
Ff = ϕ−j was calculated based on the porosity ϕ [-] and the cementation exponent j = 2,
where the porosity values (ϕ1 = 55%, ϕ2 = 40%) were also taken from Schmidt [38] and the
cementation exponent as well as the saturation exponent i = 2 were based on literature
values e.g., [59].

The derived water content values from ERT (Figure 5) were in agreement with values
measured by the SoilNet sensor network, which were limited to a depth of −0.50 m of
the soil. In general, observed water dynamics were low during the monitoring period,
as only the first two meters showed a response to precipitation events and a decrease in
soil water content during dry periods. However, the change in volumetric water content
below the top layer was less than 2 cm3 cm−3 and declined strongly with depth over a
7 week dry period from 5 April to 24 May 2017. Continuous low-intensity precipitation
with less than 10 mm d−1 over several days resulted in increasing saturation in the upper
0.50 m of the soil.

Figure 5. Water content derived from ERT measurements taken at 31 May 2017.

3. Hydromechanical Model

The applied hydromechanical model is based on the approach of Lu et al. [5] solving
the Richard’s equation to describe the transient water flow in the subsurface. In the mixed
form, the Richard’s equation is given as

∇K(h)∇H + W =
∂θ(h)

∂t
, (7)

with the hydraulic head, H [m], pressure head, h [m], hydraulic conductivity,
K(h) [m s−1], volumetric water content, θ(h) [m3 m−3] and possible source/sink terms,
W [s−1]. Following the model of van Genuchten [60], the water retention curve is given by

Se =
θ(h)− θr

θs − θr
= (1 + (α|h|)n)−m (8)

with effective saturation, Se [-], residual and saturated water content, θr/s [m3 m−3], and soil
specific parameters, α [m−1], n and m = 1 − 1/n [-]. The hydraulic conductivity is based
on the effective saturation

K(h) = Ks
√

Se

(
1 − (1 − S1/m

e )m
)2

(9)

with saturated hydraulic conductivity, Ks [m s−1].
The mechanical response of the soil is considered to be linear elastic with no poroe-

lasticity and described by the Young’s modulus, E [Pa] and Poisson’s ratio, ν [-]. In this
case, momentum equilibrium is given by the total stress tensor, σ [Pa], the unit weight,
γ [N m−3] and the body force vector, Fv[-], as

∇.σ + γFv = 0 (10)
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From the total stress tensor, the effective stress tensor, σ′[Pa], can be calculated based
on the pore water pressure, Pw [Pa], [61,62]:

σ′ = σ − SePw I (11)

with the unit vector, I[-]. To assess the stability of a hillslope, the local factor of safety,
LFS [-], is calculated based on the Mohr–Coulomb failure criteria

LFS =
cos φ′(c′ + σm tan φ′)

R
(12)

with effective friction angle, φ′ [◦], effective cohesion, c′ [Pa], mean effective stress,
σm = 0.5 × (σ1 + σ3) − SePw [Pa] and the radius of the Mohr circle,
R = 0.5 × (σ1 − σ3) [Pa]. Here, σ1,3 [Pa] are the major and minor principal stresses. A slope
is considered to be prone to failure for LFS < 1 as the restricting forces are smaller than the
downhill forces in this case.

4. Combination of Field Observations and Hydromechanical Modeling

In this study, the hydromechanical model was used to assess slope stability through
the calculation of the local factor of safety. Site characterization, laboratory tests and con-
tinuous monitoring of soil water content and precipitation are input for the model to
increase the quality of the assessment (Figure 6). The input can be separated into one-time
constraints and dynamic information. The base for the numerical model is the physi-
cal/mathematical model as described in Section 3. To solve the governing equations,
the parameters, the geometry of the domain as well as boundary and initial conditions
need to be specified.

Figure 6. Schematic sketch of the different input streams into the hydromechanical model for
stability analysis.

4.1. Model Setup

Surface topography was taken from a digital terrain model with a spatial resolution
of 1 m−2 derived from remote sensing and provided by the Geodatenbasisdienst NRW.
Bedrock topography as well as the varying thickness of soil layers was obtained from the
seismic refraction and the drilling logs. For this purpose, the wave velocities of 300 ms−1,
600 ms−1 and 800 ms −1 were selected as limit values for the lithological layers in agreement
with the lithological units identified in the borehole logs. The position of the interfaces
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was digitized in the seismic tomograms, georeferenced and converted to absolute depths
using the digital terrain model. The information was entered into the open source software
GrassGis (GrassGis Development Team, 2017) and interpolated to surfaces using inverse
distance weighting. Hence, a volume model of the investigated area was created based on
the generated surfaces (Figure 7). The geophysically-derived volume model was used to
generate a 3D geometrical model of the study site in Comsol Multiphysics [COMSOL Inc,
Stockholm, Sweden].

Figure 7. Derived 3D geological model based on refraction seismic survey and borehole logs. Digital
elevation model provided by Geobasisdatendienst NRW.

Despite the complex geometry of the study site that can influence subsurface flow and
the resulting stability, the hydromechanical model was applied to the mid-cross-section
of the landslide area only for computational reasons. The transition from the 3D to 2D
geometrical model and the hydromechanical simulations were performed by COMSOL
Multiphysics. The 2D domain was discretized using an unstructured triangular mesh with
an increasing mesh size from surface to bottom, so that the highly dynamic hydrological
conditions in the top soil are captured with a reasonable computational efficiency and
accuracy. The mesh size near the slope surface was ≈0.05 m. The maximum mesh size in
the top layer was ≈0.2 m. The maximum mesh size increased to 0.3 m in the mid layer and
increased further towards the deeper part of the bottom layer. The modeling domain was
defined to be substantially larger than the region of interest to reduce the impact of the
boundary conditions.

The groundwater monitoring data from the boreholes was used to define the hydraulic
boundary conditions (Figure 8). It has been observed that the groundwater level can
occasionally reach the surface in the lower part of the slope. Accordingly, the slope surface
is defined as a mixed boundary. The inflow and outflow rate depend on pressure, net
infiltration, storage capacity of the soil and also its hydraulic conductivity. The bottom
boundary was defined as a no-flow boundary. A fixed pressure head boundary at the lower
right lateral boundary of the domain was defined using the river level at the slope toe. Here,
it was assumed that the river level was constant and at a height of 100 m above the bottom
of the modeling domain. The top 25 m of this boundary was a seepage boundary in which
water is free to exit from the saturated subsurface. On the left side of the domain, a pressure
head boundary was defined using the minimum level of the measured groundwater level
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at the closest borehole to this boundary. The upper 38 m of the left lateral boundary was
a no-flow boundary. From the mechanical point of view, the ground surface is a free
boundary with no external loads and constraints, whereas the lateral boundaries were
defined as Roller boundaries and the bottom boundary was fixed (Figure 8).

Figure 8. The 2D cross-section used for hydromechanical modeling including boundary conditions
for the hydrological and mechanical model components.

In order to parameterize the three layers of the subsurface model, each layer was
considered as a homogeneous and isotropic medium. Estimates for bulk, dry and saturated
soil density, particle size distribution, porosity, soil cohesion, friction angle and saturated
hydraulic conductivity were given by Schmidt [38] and are summarized in Tables 1 and 2.
The bulk and dry density of the soil were determined by oven drying following the German
Industrial Standard (DIN) of that time, DIN [63]. The maximum moisture content was
determined using the method described in DIN [64]. The saturated conductivity was
determined using a constant head as well as a falling head permeameter based on DIN [65].
The soil particle distribution were defined by analyzing the samples taken from the drilling
cores along the landslide zone and by lithological interpretations of the borehole logs [38].
Soil cohesion and friction angle were determined by a shear box and a triaxial test based
on Schmidt [38], DIN [66]. The laboratory tests showed good repeatability with a statistical
variance between repeated measurements of less than 10% [38]. The Tertiary clay is
the material with the highest density but the lowest cohesion (Table 2). The Devonian
clay/silt has the highest cohesion of around 30 kPa but the Trachyte tuff has the highest
friction angle of all tested materials. The derived maximum water content is around 35
to 40% for all materials, while the residual water content is around a 6%. The hydraulic
conductivity for the Tertiary clay and the Devonian clay/silt layers were provided as a
range of possible values and constrained through a calibration of the model with regard
to the measured mean groundwater levels of the period 1999 to 2001 by assuming a net
infiltration of 125 mm year−1. Using the available information on bulk density and particle
size distribution (Table 1), estimates of the soil hydraulic parameters of each layer were
obtained using the Rosetta pedotransfer function (Rosetta Lite v 1.1) [67] (Table 2). The soil
elastic moduli (E, ν) were estimated from typical ranges provided in the literature [68,69]
(Table 3). Here, we have considered a stiff clay-rich Trachyte tuff and Tertiary clay layers
with medium to high plasticity (E = 15 MPa) and a harder Devonian clay/silt layer with
relatively lower plasticity (E = 30 MPa). The typical Poisson’s ratio, ν [-], for silty soils
is given as 0.3–0.35 and for unsaturated to saturated clay as 0.1–0.5. Accordingly, for the
unsaturated Trachyte tuff and Tertiary clay layers and saturated Devonian clay/silt layer,
a Poisson’ ratio of 0.35 is considered. All parameters required for the simulations are listed
in Table 2. While all parameters may be subject to changes over time in principle, e.g., due
to ongoing compaction or root growth [70], they were considered to be constant in our
simulations because the test site showed little dynamics in recent monitoring periods.
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Table 1. Particle size distribution and bulk density of each soil layer of the Dollendorfer Hardt test
site (derived from Schmidt [38]).

Description Unit Trachyte Tuff Tertiary Clay Devonian Clay/Silt

Sand % 26 11 3
Silt % 40 41 64

Clay % 34 48 33
ρb kg m−3 1900 2000 1900

Table 2. Soil model parameters for the Dollendorfer Hardt test site.

Symbol Unit Trachyte Tuff Tertiary Clay Devonian Clay/Silt

θs - 0.40 0.35 0.40
θr * - 0.06 0.07 0.065
α * m−1 1.9 2.0 1.1
n * - 1.22 1.18 1.31
Ks m s−1 10−6 10−9–10−7 10−10–10−6 **

Ks *** m s−1 10−6 10−7 8.0 × 10−9

ρb kg m−3 1900 2000 1900
E ** MPa 15 15 30
ν ** - 0.35 0.35 0.35
φ′ ◦ 34 32 30
c′ kPa 20 10 30

* Calculated value by the Rosetta pedotransfer function. ** Values derived from literature. *** Obtained by model
calibration using mean groundwater level in the period of 1999–2001 using a net infiltration of 125 mm year−1.

Table 3. Typical values of Young’s modulus for cohesive material (MPa) [68,69].

Soil Type Very Soft to Soft Medium Stiff to Very Stiff Hard

Silts with slight plasticity 2.5–8 10–15 15–40 40–80
Silts with low plasticity 1.5–6 6–10 10–30 30–60

Clays with low-medium plasticity 0.5–5 5–8 8–30 30–70
Clays with high plasticity 0.35–4 4–7 7–20 20–32

4.2. Model Calibration and Validation

The model was initialized by simulating the long-term average state of the slope using
a spin-up period of 300 years with a constant mean annual net infiltration of 125 mm. This
long spin-up period was used to ensure that the model reaches steady-state flow condition.
The hydraulic conductivity of the three soil layers was calibrated with regard to the mea-
sured mean groundwater level for the period of 1999–2001 using data from three boreholes
along the mid cross-section of the test site within the value range given above. The mean
groundwater depth from the surface at the boreholes B8, B14 and B21 in the measurement
period of 1999–2001 are −7.4 m, −2.5 m, and −2.8 m, respectively (Figure 2). For every
set of hydraulic conductivity values, the 300-year model initialization was repeated. For
the final choice of parameters, the measured and simulated values were highly correlated
(R2 > 0.9) but the simulated mean groundwater level was 0.66 m lower than the measured
level. After calibration and model spin-up for 300 years, the groundwater level is lower in
the upper part of the slope and closer to the surface in the middle part of the slope, which
is in agreement with the measured values at the site.

The calculated steady-state pressure distribution was considered as the initial con-
dition for the next simulation step. The mean monthly conditions for the test site were
simulated using the mean monthly net infiltration for the period of 1995–2017. These simu-
lation results with the calibrated model were verified using two series of measured data.
First, the simulated groundwater level was compared to the mean monthly groundwater
level (Figure 9) by averaging daily measured groundwater levels. Second, simulated soil
water content for the top soil was compared to mean monthly measured soil water content
obtained from the SoilNet data at the site. Here, the measured soil water content from the
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twelve sensors nodes that are located along the mid-cross-section were used (sensor nodes
1, 2, 3, 4, 5, 8, 9, 10, 12, 14, 18 and 20 in Figure 2). It should be noted that unreliable parts of
the measured data were not considered.

Figure 9. Time series of measured and simulated mean monthly groundwater level for the three
boreholes used for model calibration and validation.

This simplified model could capture some of the key features that are deemed impor-
tant for slope stability assessment. The seasonal pattern of the simulated groundwater
levels correlated reasonably well with the measured values (R2-values ranging from 0.49 to
0.59). However, the simulation shows less pronounced groundwater variations. This is
attributed to the use of the mean monthly net infiltration that ignores daily variations asso-
ciated with high-intensity rainfall, root water uptake and actual evapotranspiration at the
site. Accordingly, there are few fluctuations in the precipitation and little variation between
wet and dry conditions, which is directly reflected in the lower dynamics of the simulated
groundwater level. Moreover, the use of low-intensity mean monthly net infiltration results
in the absence of infiltration fronts as well as a lack of water perching due to soil layering,
which also contributes to the reduced fluctuation of the simulated groundwater level. In
addition to the overall decreasing groundwater levels from top to mid-part of the slope,
the simulation captures the remarkably different dynamics of the groundwater level for
nearby cross-sections as a result of variation in depth and topography of soil layers. This is
consistent with the measured values at the site. Further, the maximum mean groundwater
level was observed in January, February and March. This is in agreement with the findings
of Schmidt [38], who found that most slope movements occurred during the rainy spring.
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In the next step, the simulated soil water content of the top 0.5 m for the period from
September 2016 until May 2017 was compared to the measured values from SoilNet. The
results show that the seasonal variation as well as the variation with depth is much smaller
for the simulated soil water content. The low variation in the simulated water content
with depth is mainly attributed to the implementation of the low-intensity mean monthly
net infiltration in which the fluctuation in precipitation and the extremely rainy and dry
periods are moderated. Notably, the use of a mean monthly low-intensity net infiltration
results in the absence of infiltration fronts. In combination with the homogeneous soil
hydraulic properties within each layer and the lack of depth-dependent root water uptake,
this results in highly simplified and incorrect water content distributions with depth.
Therefore, it was concluded that the simulation results do not seem to capture relevant
features of the measured near-surface water content distribution, which is the area of
interest for slope stability evaluation. Thus, it is evident that the evaluation of slope
stability in response to intensive rainfall events cannot be based on monthly net infiltration.
Therefore, the measured soil water content data will be considered directly for slope
stability evaluation. As the ERT monitoring showed very little dynamics in the deeper
layers, soil water content below the top 0.5 m was taken from the simulations using low-
intensity mean monthly net infiltration.

5. Model Results for Precipitation Events

To study the slope stability in response to precipitation, two days were selected from
the available SoilNet data as the initial conditions for the simulation of a hypothetical
rainfall event. These two days were chosen so that both dry and wet initial conditions are
considered. According to the values of Inet [mm month−1] within the SoilNet measurement
period, the driest day occurred at the end of September 2016 after a three-month period with
negative net infiltration. The wettest initial conditions occurred at the end of March 2017
after an extended period with positive net infiltration starting in October 2016. Accordingly,
the data from 30 September 2016 and 31 March 2017 were used to define dry and wet
initial conditions, respectively. The measured soil water content was horizontally quite
variable due to the heterogeneity of the soil hydraulic properties within each soil layer.
Since the soil layers were assumed to be homogeneous in the simulations, some data points
exceeded the saturated water content for the wet conditions. Therefore, the measured soil
water content was normalized with 0.395 cm3cm−3 as the maximum water content because
a full saturation at a water content of 0.40 cm3cm−3 resulted in numerical issues. In order
to ensure numerical stability, it was also required that the water content distribution with
depth varied by at least 0.02 cm3cm−3 between depth. Therefore, some normalized soil
water content values were manually adjusted. The measurements in dry conditions (30
September 2016) were not normalized and used as is. The measured values were linearly
interpolated between the sensor locations by Comsol Multiphysics.

The saturation and simulated LFS distributions before the start of the event rainfall
on 30 September 2016 and 31 March 2017 are shown in Figure 10. As expected, the most
failure-prone areas besides the scarp area appeared in the middle part of the slope (i.e.,
locations B and C), where the groundwater was close to the surface and the water content
was higher. The LFS at position A in the scarp area was low and close to 1 due to the
geometry of the slope with a high inclination in this area. In the following, the simulation
results for the two most failure-prone locations B and C will be discussed, because the
slope instability at those spots is attributed to water level changes. The initial water content
distribution along the depth for locations B and C of the mentioned days is shown in
Figure 11. For both days, the groundwater level and the soil water content are higher
at location B than at location C. In case of the wet conditions, the groundwater level is
similar at both locations. The sharp changes in water content below −2 m are related to
soil layering.
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Figure 10. The initial saturation (a,b) and LFS distribution (c,d) for the rainfall simulations on 30
September 2016 and 31 March 2017.

Figure 11. Initial conditions for water content for the event rainfall on 30 September 2016 and 31
March 2017 at the two most vulnerable locations B and C indicated in Figure 10.

In the final step, simulated slope stability in response to an event rainfall of
20 mm h−1 is presented for the two selected days. The simulated LFS profiles at loca-
tion B and C for the dry initial conditions have a maximum difference at the soil surface
because of the difference in water content (Figure 12). Below a depth of −0.5 m, the dif-
ferences in LFS are associated with the differences in the mean monthly conditions of the
soil. Accordingly, water content and pressure decreased uniformly from the groundwater
table upwards below the depth of −0.5 m. As discussed before, this is attributed to the
homogeneous soil layers with no root water uptake and the implemented low-intensity
mean monthly net infiltration to obtain the initial conditions below the depth of −0.5 m.
The groundwater level and the soil water content below the depth of −0.5 m in March 2017
was higher than in September 2016, which resulted in a relatively lower LFS in March 2017
for the equivalent locations.
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Figure 12. Variation in LFS during the event rainfall for two days (30 September 2016 and 31 March
2017) with different initial conditions, comparably dry and wet soil, for the two most vulnerable
locations B and C indicated in Figure 10.

Taking these two sets of initial conditions, the response to an event rainfall of
20 mm h−1 was simulated. Figure 12 shows the temporal development of the LFS for
the two locations during the rainfall until a LFS of 1 is reached. The critical amounts of rain-
fall needed are 60 mm and 230 mm for the wet and dry initial conditions, respectively. It can
be seen that significantly less rainfall is required on 31 March 2017 with the overall wetter
initial condition compared to 16 September 2016. These results are consistent with previous
studies [71,72] that have shown that initial hydrological conditions play an important role
in the timing of failure initiation. It is interesting to note that the instability threshold was
reached first in location C for both wet and dry initial conditions, although the top 0.5 m
of the soil at the beginning of the rainfall was drier at location C for the both dry and wet
initial conditions. Within a short time (<2 h) after the start of the rainfall, the near surface
water content at location C becomes higher than that at location B. Consequently, location C
reaches the failure threshold earlier. This is attributed to the difference in bedrock topogra-
phy and soil depth at these two locations. In particular, the depth of the less permeable mid-
and base layer is only 0.4 m from the surface at location C compared to 2.2 m at location B.
Accordingly, the local pore pressure and saturation increase faster at this location, which
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means that a potential failure state is reached after less rainfall. This is in agreement with
the findings of Moradi et al. [13] that specifically highlighted the importance of bedrock
topography and soil layering for slope stability evaluation.

6. Discussion

The coupled hydromechanical model of Lu et al. [5] was applied for slope stability
assessment of the hillslope at the Dollendorfer Hardt (Bonn, Germany) with a relatively
complex geometry and heterogeneity in material properties. The test site has a long history
of investigations and slope analysis. Drilling, groundwater monitoring, laboratory tests,
geophysical, and geomorphological surveys as well as a soil water content sensor network
were used to design and parameterize the hydromechanical model. The soil water content
obtained from the sensor network was successfully combined with the hydromechanical
model to provide realistic initial conditions for the near-surface water content distribution.
The ERT monitoring was only applied on a segment of the hillslope and was not used
to define initial conditions for the simulations. As the ERT revealed very little changes
in the water content distribution at greater depth even during summer time or heavy
rainfall events, the sensor network covers all relevant shallow water dynamics. The results
of the simulations show that both the lithological layers and the initial conditions play
an important role in the redistribution of the pore water pressure and thus determine
the position of the potentially unstable locations. The initially wetter conditions require
significantly less rainfall than the drier initial conditions to reach potentially unstable
conditions. Instabilities develop at locations that facilitate the accumulation of water due
to the subsurface topography of less permeable layers. The obtained model allows us to
study the influence of initial conditions and precipitation events on the slope stability.

For the test site itself, a significant mass movement seems unlikely as only potentially
unstable locations close to the surface were identified in the model. However, the modeling
results clearly identify the regions of most significant movement during long-lasting
rainfall events at reasonable precipitation rates for the region in agreement with previous
studies [38,40]. The hillslope is possibly moving in response to heavy precipitation but at
a low rate of approximately 1–3 mm year−1 [40]. Modeling of more severe precipitation
events would be required for a complete hazard assessment, also incorporating expected
future changes in precipitation patterns due to climate change. Further, the model results
indicate that the scarp is continuously unstable due to its high inclination. This is consistent
with field observations of ruptures of small sizes that occur regularly. A slow extension of
the scarp towards the top of the hill seems likely, potentially compromising hiking tracks.

In principle, the presented workflow for slope stability assessment can be extended
towards a model-based early-warning system as almost all available data sources were
incorporated into the model. So far, site-specific early warning systems are predomi-
nantly sensor-based with warning thresholds derived from conventional stability analysis
e.g., [73–75]. Incorporating precipitation forecasts, a potentially critical state of a hillslope
could be calculated based on the current water content distribution using the current
state as initial conditions in the numerical model. However, computational demands are
often the bottleneck to include near-real time complex numerical simulations into early
warning systems. Therefore, it is challenging to calculate slope stability for a predicted
rainfall based on the most recent soil water content measurements. A well-constrained
model as presented in this work can be used to derive thresholds for implemented sensor
networks or geophysical monitoring based on pre-calculated scenarios. Besides such a
model-centered early-warning system, multiple data sources could be used for a more
robust early-warning system by acknowledging the value of the in situ measurements
itself. Data robustness could be improved through the combination of multiple different
types of sensors [70]. In this work, soil water content sensors and ERT were combined to
monitor the water content distribution in the subsurface. Through redundancy, erroneous
measurements of single sensors or electrodes can be detected in order to reduce the risk
of false alarms. Additionally, extensometers or GPS sensors could be used to capture
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slope movement [75]. By combining precipitation forecasts, soil water content sensor net-
works and geophysical monitoring to capture water content dynamics and redistribution,
and model-derived thresholds, it may be possible to establish a multi-level early warning
system with high accuracy.

This study showed the rich possibilities that arise through the combination of various
survey and monitoring methods with a hydromechanical model for slope stability. The
complementary data sources allow for constraining the model in most aspects and reduce
uncertainty in the model design. However, as seen in the comparison with the soil water
content sensor network, there is a small scale heterogeneity that can not be resolved using
geophysics as the contrast in geophysical parameters, e.g., resistivity or wave velocity, is
too small. The high clay content in the soil made the application of ground penetrating
radar, as another good methodology to detect near surface heterogeneity, impossible.
On other hillslopes, this may be a useful addition to reveal near-surface heterogeneity.
With additional near-surface soil sampling and extensive laboratory testing, it may be
possible to describe the variability in parameters of the upper soil layers and to include
the variability in the numerical model using geostatistical methods. For the studied test
site, the assumption of homogeneous soil layers was considered to be adequate as slope
topography and layering were the dominant factors controlling slope stability. The added
value of ERT monitoring was not high in this study, but this method is expected to be
more useful for slopes with stronger water content dynamics at greater depth. This would
require an elaborate ERT setup with multiple electrodes and various electrode spacings.
In more dynamic scenarios, material parameters and also soil layering may also change
within an observation period. In the introduced framework, this could be included through
an updated model.

In the future, an approach considering data assimilation seems desirable, especially in
the context of a continuous monitoring of the test site. This should preferably be explored
with a more sophisticated numerical model for slope stability analysis. In particular, a more
advanced coupling of surface flow and infiltration into the soil would significantly improve
the model. Field observations showed that strong precipitation events with more than
20 mm h−1 only resulted in small increases in soil water content, since a large amount
of the water ran off as surface water. Surface morphology supported this observation
with visible runoff channels at the surface. Modeling surface runoff and ponding of water
based on the surface morphology might alter infiltration dynamics along the slope during
those rare heavy precipitation events. Daily water content dynamics along the hillslope
are also altered by root-water uptake. While in the current study, net infiltration was
considered, a more complex model for root-water uptake would change the water content
distribution with depth and increase the heterogeneity of the water content distribution
in the subsurface. If this process is adequately considered, the hydromechanical model
could be operated with a daily or even higher resolution for the meteorological boundary
conditions. In addition, differences between overgrown and bare parts of the slope could
be incorporated into the model and possibly linked to the effective cohesion, as roots are
known to contribute to the slope stability. With growing computational power, the full
three-dimensional geometry of the hillslope and adjacent slopes could be modeled to
eliminate simplifying assumptions and effects resulting from the geometrical reduction.
An extension towards the calculation of plastic deformation would allow to determine
slope movement and water dynamics for situations with a factor of safety larger than one,
which not necessarily result in immediate rapid slope failure. Additional model verification
could be achieved through measurements of slope movement.

7. Conclusions

A workflow to design, parameterize and validate a hydromechanical model using var-
ious data sources from site characterization, monitoring and laboratory tests was presented.
Through the combination of complementary data sources, a detailed numerical model was
implemented despite the site heterogeneity. Monitoring with point-scale sensors revealed
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small scale heterogeneity in the hydraulic properties of the upper soil layer, which was not
resolved during site characterization. This heterogeneity had minor influence on the slope
stability analysis as it is dominated by slope and bedrock topography as well as initial
conditions. The multiple data sources and the presented model can be extended towards a
model-centered early warning system as well as towards an early warning system based
on multiple data streams with thresholds defined through the model.
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Abstract: A landslide is a significant environmental hazard that results in an enormous loss of lives
and properties. Studies have revealed that rainfall, soil characteristics, and human errors, such as
deforestation, are the leading causes of landslides, reducing soil water infiltration and increasing
the water runoff of a slope. This paper introduces vegetation establishment as a low-cost, practical
measure for slope reinforcement through the ground cover and the root of the vegetation. This
study reveals the level of complexity of the terrain with regards to the evaluation of high and low
stability areas and has produced a landslide susceptibility map. For this purpose, 12 conditioning
factors, namely slope, aspect, elevation, curvature, hill shade, stream power index (SPI), topographic
wetness index (TWI), terrain roughness index (TRI), distances to roads, distance to lakes, distance
to trees, and build-up, were used through the analytic hierarchy process (AHP) model to produce
landslide susceptibility map. Receiver operating characteristics (ROC) was used for validation of
the results. The area under the curve (AUC) values obtained from the ROC method for the AHP
model was 0.865. Four seed samples, namely ryegrass, rye corn, signal grass, and couch, were
hydroseeded to determine the vegetation root and ground cover’s effectiveness on stabilization
and reinforcement on a high-risk susceptible 65◦ slope between August and December 2020. The
observed monthly vegetation root of couch grass gave the most acceptable result. With a spreading
and creeping vegetation ground cover characteristic, ryegrass showed the most acceptable monthly
result for vegetation ground cover effectiveness. The findings suggest that the selection of couch
species over other species is justified based on landslide control benefits.

Keywords: hazard; landslide; hydroseeding; slope; vegetation; AHP

1. Introduction

Landslide hazard management, prevention, and control are critical to preventing
loss of lives and properties [1–3]. For every hazard management, mitigation is the final
stage, and it provides the methodology of controlling any form of natural hazard [4–6].
Mitigating an existing landslide hazard or preventing future landslides is an element
of a dangerous decrease in the causative components or an increase in the opposing
forces [4,7,8]. Vegetation influence in slope stability analysis reveals a significant and still
ongoing challenge for research. Few research studies within the mitigation framework of
slope stability have increasingly leaned towards the influence exerted by either vegetation
canopy [9,10] or vegetation root mechanisms [11,12], with more emphasis on the surface
runoff on vegetation cover. The present study focuses on the effective means of reducing
the rate of surface runoff, which practically reduces the effect of landslides through their
combined vegetation cover and vegetation root system. Bare slopes are prone to landslides
as a result of the lack of surface cover.
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Moreover, due to the tropical weather conditions of Malaysia, the soils go through
intense soil weathering, which may elevate soil erosion and surface runoff. Landslide
control measures are essential to address the issues of slope failures due to their impact on
lives and the economy. So far, there has not been much available information or research
on vegetation slope stabilization methods in Malaysia. According to Popescu [13], a list
of approaches to control and prevent landslides was organized into four experimental
groups by the International Union of Geological Sciences Working Group on Landslides
(IUGS WG/L), which includes: (i) Slope geometry modification (ii) Drainage (iii) Retaining
structures (iv) Internal slope reinforcement. Moreover, Hutchinson [14] listed drainage
as the most crucial methodology to reduce landslides, followed by slope geometry modi-
fication as the second most applied approach. The study also suggested that although a
single mitigation strategy may prevail, most slope failure mitigation strategies combine
some groups.

Over a decade, there has been an apparent shift to “soft engineering”, non-structural
preventive measures such as drainage and slope geometry modification, as well as some
novel approaches such as stabilization using lime/cement, soil nailing, or grouting [15].
Non-structural solutions are less expensive compared to the cost of structural solutions [16].
On the other hand, structural measures such as retaining walls include opening the slope
during the construction process and sometimes needing steeper temporary cuts [17]. Both
techniques increase the risk of landslide during construction or increased precipitation in-
filtration [18]. The mitigation approach should be designed to significantly fit the condition
of the specific slope under investigation [19]. In high-risk terrains where landslides pose a
danger to lives or primarily affect properties, a landslide expert, a geotechnical, or civil
engineer should be consulted before carrying out any stabilization work [20]. However,
these methods have their limitations. Thus, to address this, we looked into applying a
soil bioengineering methodology, especially on plant species that have never been used in
Malaysia. For effective landslide management, one must identify the most critical condi-
tioning factors that affect the slope’s stability, determine landslide-susceptible areas, then
select the appropriate and cost-effective method to be sufficiently utilized to minimize the
possibility of landslide [21]. Here, we analyze the effects of different plant species used
for slope stabilization in other parts of the world. Furthermore, the focus was on species
selection and the vegetation engineering properties, especially their root architecture and
ground cover. The present study also considers runoff, rainfall, soil type, vegetation, and
slope. Thus, knowledge of the relationships between the landslide susceptibility mapping
and an effective landslide control mechanism for effective landslide hazard management
is fundamental [8].

Different landslide susceptibility models with a considerable level of accuracy have
been developed and broadly classified into data-driven (quantitative) and expert opinion
(qualitative) categories, both of which have their respective advantages and limitations. The
choice of mapping techniques depends on the structure of the terrain, landslide triggering
factors, data availability, and landslide types [22,23]. Data-driven methods are divided into
statistical and deterministic approaches, according to Mantovani et al. [24]. A statistical
method is an indirect approach that uses statistical analysis to obtain landslide predictions
from several parameters. The statistical method is further divided into bivariate and multi-
variate models. Statistical models include frequency ratio (FR) [25,26], information value
method (IVM) [27–29], weights of evidence method (WOE) [30–33], and machine learning
algorithms, such as logistic regression (LR) [25,34], artificial neural network (ANN) [35,36],
support vector machine (SVM) [37,38], and deep learning (DL) [39,40] are based on data
collected from previous landslides and their spatial coverage. Integration between event
data and targets makes landslide mapping easier in a geographic information system
(GIS) environment [41]. These methods require less human knowledge and experience to
produce and utilize as susceptibility models [36]. The machine learning algorithms effec-
tively analyze large datasets with higher precision than statistical methods [42]. Generally,
these data-driven strategies have their limitations, such as the application of a relative
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generalization approach for landslide parameters and applications over a large area, a
lack of knowledge of the correlation between landslides and the conditioning parameters,
and a lack of understanding of relevant expert ideas in empirical modeling [33]. In recent
years, machine learning algorithms have become a more robust approach in landslide
research [43], but the models require managing uncertainties. These uncertainties could
result from errors and model variability [44], difficulties in the selection of parameters [45],
system understanding [46], the weighting of parameters [47], and human judgment [48].
Moreover, machine learning may encounter prediction errors if trained with a small data
set [43]. Besides errors from model building, the selection of input variables also impacts
the prediction accuracy in machine learning [49]. Uncertainties resulting from these land-
slide susceptibility models are inevitable [48] and can threaten the selection of the most
suitable landslide susceptibility approach [50].

In qualitative methodologies divided into geomorphic and heuristic methods, such as
AHP [51–53] and weighted linear combination [8,54,55], weights and ranks are assigned by
the experts regardless of any existing landslide inventory maps and terrain variations [28].
The deterministic approach includes static and dynamic methods that evaluate landslide
hazards using slope stability models, which results in the calculation of safety factors.
Contrary to data-driven models, expert knowledge has been projected as outstanding,
more reliable, consistent, and generally applicable when the knowledge is formalized,
particularly for a large-scale mapping [56]. Another advantage of these approaches is
that each polygon on the map can be evaluated separately, according to its unique set
of conditions [57]. The main limitations of these methods are their subjectivity in factor
selection, mapping, and the weighting of the parameters, but avoid generalization, as is
often used in data-driven strategies [58]. Due to these different landslide susceptibility
approaches, they may produce varying results.

Although these methods may yield accurate results in most cases, there is also a
certain degree of uncertainty, sometimes leading to inaccurate results [59]. The weighting
of criteria can result in many uncertainties in expert opinion methods [60]. The user’s
preferred data input choices are seen as the actual rules in the spatial decision-making
process and but may often be erroneous. These uncertainties can unfavorably influence the
accuracy of the landslide susceptibility results if ignored [61]. Attempts have been made to
improve the accuracy of these models, as they are valuable tools for solving a wide range
of spatial anomalies [62]. Therefore, the authenticity of any spatial simulation models and
expert opinion methods depends largely on calculating the relative importance of each
parameter [63]. Moreover, the model validation process must be reliable, robust, and have
a certain degree of fitting and prediction skill [64]. However, the performance evaluation of
most of the landslide susceptibility maps (LSMs) can be based on the testing datasets [65].

AHP, first developed by Saaty [62], is categorized under this qualitative approach and
applied by several researchers for landslide susceptibility assessment [51,52,66,67]. AHP
uses a hierarchical process of landslide parameters to compare possible pairs and assign
weights and a consistency ratio [8]. The AHP method is based on three principles: Decom-
position, comparative judgment, and assigning priorities [8]. AHP enables the experts to
derive significant parameters from a pair of criteria for multi-criteria decision-making. It
decides the parameters based on the objective and knowledge of the problem [68].

Hydroseeding is an efficient method of plant establishment on a land surface [69] and
involves applying seed under pressure using a water carrier [70]. The basic hydroseeding
concept sprays seed mixed with water or dried onto an already prepared surface [71].
Hydroseeding is a mechanism that involves the application of a mix of seeds, adhesives,
mulch, fertilizers, and water on soils, using an appropriate hydroseeding tool [70]. This
experiment evaluates the reinforcement effect of four seed samples on a failing terrain
within the Universiti Putra Malaysia (UPM) by applying the same mixtures and spray
methodology, comparing their vegetation root system and ground cover, and evaluating
their vegetation landslide control strength. This approach is one of the techniques of
ground revegetation used to stabilize bare soil surface to control landslide hazards [72].
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Cellulose mulch mixed with tackifier as a binder is also applied [73]. The cellulose mulch,
combined with the seeds, germinator, fertilizer, are mixed with water in the hydroseeder,
forming a homogeneous slurry and uniformly sprayed on the soil [74]. The fertilizer-mixed
cellulose fiber mulch and the seed act as an absorbent mat and hold a large water capacity
that helps seed germination and forms a stable blanket cover on the surface before the
seed germination period. Hydroseeding is a widely used method of landslide or soil
erosion control [75]. The United States and Australia are among the countries that use
hydroseeding because it is considered the fastest, most efficient, and most economical
method of landslide control [76]. Studies revealed the following observations and conclu-
sions from hydroseeding application: (a) The hydroseeding process is the fastest means
of landslide and soil erosion prevention [74]; (b) Some seeds germinate within two days,
which enables the topsoil of the embankment to be already 100% stabilized right before
the development of the vegetation ground cover [77]; (c) Watering is required less as soon
as the ground cover grass seed has been established [78]; (d) The mulch serves as water
retention and absorbing mat, and reduces the development of the unwanted weeds [74];
(d) The end product of hydroseeding requires a very minimal maintenance policy as soon
as the permanent ground cover is purely developed [74]. In summary, the contribution of
this study is to compare the slope reinforcement effectiveness of the four seed samples (rye
corn, ryegrass, signal grass, and couch) used in different parts of the world in Malaysia in
relation to the soil conditions.

2. Study Area and Materials

2.1. Study Area

The study was conducted within the UPM, a government tertiary institution in Ser-
dang, Selangor, Peninsular Malaysia (Figure 1a), a land surface of about 1108 hectares made
up of different natural and artificial facilities in buildings, agricultural lands, trees, and
lakes. The entire area is within latitude: 2◦59′34.19′′ N and longitude: 101◦42′16.79′′ E. It is
mostly warm with a sunny tropical rainforest climate and abundant rainfall, particularly
in the northeast monsoon season between October and March. It has a constant annual
temperature with a maximum between 31 and 33 ◦C, while minimums are usually between
22 and 23.5 ◦C. The average yearly rainfall is about 2400 mm, with relative dryness between
June and July. The geology of Serdang consists of three different rock formations, which
include the Kajang, Kuala Lumpur, and Kenny hills formations. Kajang formation consists
of schist and some intercalations of limestone and phyllites. On the other hand, the Kuala
Lumpur formation consists of limestones with intercalation of phyllite, while quartzes and
phyllite make up the Kenny hills formation [79]. The experiment was carried out on the
11 August 2020 on a 65◦ slope gradient within 2◦59′34.3′′ N 101◦43′30.1′′ E. The area’s soil
is a mix of sandy, clay, and loam collectively identified under Serdang and Malacca. The
surrounding vegetation in the site consisted of native and introduced lower grasslands
species. The land is irregular, highly degraded with a uniform slope subject to severe
erosion, and prone to landslide, with no vegetation. Before carrying out the field tests, a
calibration test was conducted to identify the machine calibrations and settings. This test
showed that the spray mechanism was reliable and ready to go with the tests.

The site was cleared of stumps, rock debris, stones, and unwanted materials of more
than 4–5 cm (Figure 1c). A hand rake was used to rough grade the entire area to uncover de-
bris and level the site. Initial tiling to a depth of 5 cm was done to reduce earth compaction,
allow bonding of the topsoil and the subsoil, and improve vegetation root penetration and
groundwater movement. We also studied the soil’s physical and chemical properties to
reveal the soil nutrient level, pH, acidity, and alkalinity level. The site was measured and
marked and ready for hydroseeding. Table 1 presents the description of the study area.
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Figure 1. Study area (a) map of Malaysia; (b) LiDAR image of the study area; (c) hydroseeded site.

Table 1. Site description of the study area.

Properties Description

Location UPM, Serdang
Slope angle 65 degrees

Soil type Serdang (Typic Kandiudults) and Malacca Series (Typic Hapludox)
Precipitation 2400 mm annually

Humidity The average annual percentage of humidity is: 80.0%
Temperature 22 to 33 ◦C

Physical and Chemical Properties of Serdang and Malacca Series

The soil of the study area was predominantly sand. The soil textures were primarily
sandy clay loam to sandy clay. The clayey property of the soil increased slightly with depth.
This is one of the characteristics of the Serdang series, developed from sandstone parent
material [80]. The Serdang and Malacca Series consisted of topsoil at 0.1 m and 1.5 m
subsurface depth. At a depth of 1.5 m, the value of the soils of the Serdang series was about
57.21% sand, 10.21% silt, and 32.53% clay. For the Malacca series, at between 1.5 m, the
values of the soils samples collected were about 41.58% sand, 2.94% silt, and 55.49% clay.

The physical and chemical properties of soils depend primarily on soil texture, which
gives more ideas on soil classification (a nutrient required by plants), crop suitability, and
soil interpretation [81]. The particle size distribution of the Malacca soil series observed
in the study area reveals that the Malacca series’s soil is dominated by clay. Sand content
decreases with depth while clay content increases with depth. High clay content on the
B horizon shows that illuviation has occurred and that the Malacca series contains more
ferromagnesium minerals, which produces more clay [82]. The soil had a lower bulk
density on the topsoil, which means that the soil organic matter content was lesser on
topsoil with values between 1.47 and 1.42 grcm−3 and from 1.48 to 1.49 grcm−3 and 1.44 to
1.45 grcm−3 on the subsoil. The bulk density of the Serdang series was moderate and can
improve crop production. The value of bulk density of the Malacca series was 1.36 and
1.27 grcm−3 at the topsoil, and between 1.37 to 1.41 grcm−3 and 1.30 to 1.32 grcm−3 on
subsoil. The bulk density was higher on the subsoil. This is due to the compaction of soil
at the oxic horizon as a result of the illuviation process. It could also be a result of the
decrease in organic matter content with depth.
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The water holding capacity of the topsoil and subsoil at 33 kPa ranged from 23.02 to
16.61 v/v and 21.16 to 17.01 v/v while the water holding capacity of the topsoil and subsoil
at 1500 kPa ranged from 12.59 to 7.58 v/v and 11.97 to 8.36 v/v. The value of soil moisture
content at the potential 33 kPa (FC) and 1500 kPa (PWP) was higher on topsoil than subsoil.
More organic matter content in the topsoil increases the soil’s ability to hold water. At
33 kPa, the water holding capacity of the Malacca series’ was 23.83% to 21.51% v/v on the
topsoil and 23.72% to 21.81% v/v on subsoil, while at 1500 kPa, water was held from 10.75%
to 10.77% v/v on topsoil and from 10.29% to 13.23% v/v on the subsoil. The low available
water holding capacity is due to low organic matter, which reduces the specific surface
area of the soil. Both soil series show very strong to moderate pH values from 4.99 to 4.90
and 5.68 to 5.22. The pH value of the topsoil is higher than the subsoil, probably as a result
of the H+ supply to the soil by organic matter. The pH values were between 4 and 5 and
are considered low. This value is typical for tropical soil, where soil erosion, weathering,
and leaching are considered very high. The pH of Ultisols in Malaysia is acidic below 7,
which ranges from 4 to 5 in the B horizon due to climatic conditions that wash away the
soil’s cations such as Ca2+ Ma2+, P, K, and Na, and causes the accumulation of sesquioxide
and has an impact on low productivity [83]. Table 2 summarizes the properties of the soil
of the study location.

Table 2. The soil physical and chemical properties of the study area.

Properties Serdang Series Malacca Series

Depth (m)
Soil texture

Topsoil 0.1
Subsoil 1.5

Sandy clay loam to sandy clay

0.1
1.5

Clay and Sand

Bulk density (grcm−3)
Topsoil 1.47 and 1.42 1.36 and 1.27
Subsoil 1.48 to 1.49 and 1.44 to 1.45 1.37 to 1.41 to 1.30 to 1.32

Porosity (%) Topsoil 36.8 and 38.26 41.37 and 47.08
Subsoil 30.15 to 21.87 and 344 to 23.15 29.15 to 34.12 and 42.22 to 34.51

Water holding capacity (%) Topsoil 33 kPa 23.02 to 16.61 23.83 to 21.51
Subsoil 33 kPa 21.16 to 17.01 23.72 to 21.81

Soil pH (%)

Topsoil 1500 kPa 12.59 to 7.58 10.75 to 10.77
Subsoil 1500 kPa 11.97 to 8.36 10.29 to 13.23

Topsoil 4.99 to 4.90 4.47 and 5.30
Subsoil 5.68 to 5.22

2.2. Data Description
2.2.1. Hydroseeding Mixture

After studying the nature of the slope, climate, and soil condition, the experiment was
carried out on a steep slope within the study area. We prepared the land and divided the
layout into four segments measuring 8 ft in length and 2 ft wide, creating a square-shaped
plot of 32 ft on all sides—a rigid distinction made due to a slope gradient and separate
subplots. The seeds were separately mixed with fertilizer and liquid seed germinator
in the exact quantities and sprayed accordingly. The following samples and mixtures
were applied:

G1: Rye grass (Lolium perenne L.). Ryegrass originated from Europe, Asia, and North
Africa and is mainly cultivated and naturalized in Australia, America, and some islands in
Oceania. Characterized by bunch-like growth habits, they are perennial. Perennial ryegrass
is significant in forage/livestock systems. The high palatability and quick digestibility
characteristics make it highly valuable for dairy and sheep foraging systems. In temperate
regions, ryegrass is sometimes called forage grass. Its main features include increased yield
potential, faster establishment, appropriate for reduced-tillage renovation, and application
on heavy and waterlogged soils (Figure 2a).
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Figure 2. Seed samples: (a) Ryegrass; (b) rye corn; (c) signal grass; (d) couch.

G2: Rye corn (Secale cereale) originates from Turkey. Rye corn is a species of cereal that
has been commonly grown on the sandy outlays of the Mallee regions of South Australia
and Victoria. A versatile species that tolerate arid conditions and grows well on sandy
soil types, it performs best when grown on good fertile soils that respond well to nitrogen
applications to gain the most from the shorter growing season soils (Figure 2b).

G3: Signal grass (Brachiaria decumbens/Urochioa Decumbens): It is originally from
Uganda and widely grown in tropical and subtropical countries. It forms a thick, high-
yielding sward that reacts very well to increased nitrogen. It is also a perennial grass
with a solid stoloniferous root system and extended training stems that roots down from
their nodes. It is recommended for shallow slope erosion control and is predominantly
grown on most road cuts in Malaysian highways. Signal grass was initially used in the
wet, humid tropics, but in recent years it has been grown over much broader climatic
conditions (Figure 2c).

G4: Couch Bermuda grass (Cynodon dactylon) is native to most eastern hemispheres
(Afro-Eurasia and Australia). Moreover, it is perennial and has both stolon and rhizomes.
The couch is used both as a cover crop and for erosion control. This grass produces good
quality hay and grazing. This grass adapts mainly in areas where the annual rainfall varies
between 600 mm and 1750 mm (Figure 2d). Table 3 presents the seed sample’s origin,
quantity, and price.

Bio Green is a concentrated, highly effective, water-soluble, granular fertilizer with the
optimum ratio of nutrients. It is highly suitable for grass, greens, and leafy plants. Bio green
contains three significant elements, namely Nitrogen, Phosphorus, and Potassium (NPK),
which enhance the growth of plants. Nitrogen (N) aids in leaf growth, which then forms
proteins and chlorophyll. Phosphorus (P) aids in root development, while Potassium (K)
helps in stem and root growth and protein synthesis. Bio-green is a Malaysian formulated
product that has undergone extensive research and testing to be equivalent in performance
to fertilizers’ NPK 15.15.15 range. It is a product of composted organic materials with
micro-nutrients naturally present. It contains natural humic and amino compounds and is
highly water-soluble, with nutrient leaching being significantly reduced. It also improves
soil structure, and its slow-release effect lasts longer compared to other fertilizers of a
similar range.
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Table 3. The quantity, origin, and prices of the seed samples.

Seeds Quantity (kg) Origin Price per kg (AUD)

Rye grass (Lolium perenne L.) 1 kg Europe, Asia and northern
Africa 5.10

Rye corn (Secale cereale) 1 kg Turkey 1.90
Signal grass (Brachiaria

Decumbens/Urochioa Decumbens) 1 kg Uganda 16.50

Couch Bermuda grass (Cynodon dactylon) 1 kg Afro-Eurasia and Australia 24.00

2.2.2. Landslide Inventories and Conditioning Factors

A landslide inventory map with 202 landslide sites was obtained from an aerial
photo from the UPM’s Geospatial Information Science Research Centre (GISRC) database
supported with field observation. Furthermore, the landslide inventory was divided into
two datasets (ground truth and classified); 70% (141 points) were used as ground truth
data to train the models, while 30% (61 points) were used as classified data in a confusion
matrix to validate the models.

For this study, LiDAR data were analyzed by a qualitative method. The LiDAR
data was captured in 2015 by Ground Data Solution Bhd using a Riegl scanner aboard
an EC-120 Helicopter flown over the University Putra Malaysia at an altitude of about
600 m above the terrain surface. The acquired point cloud averages 6 points per square
meter, with a 15 cm vertical accuracy on non-vegetated terrain and a 25 cm horizontal
accuracy. Based on expert’s opinion, literature, and significance to the study area, twelve
landslide conditioning factors within and around the study area, namely the elevation,
slope, aspect, curvature, hill shade, land use, distance to trees, distance to road, distance
to urban, distance to lake, stream power index (SPI), terrain roughness index (TRI), and
topographic wetness index (TWI). Slope, aspect, elevation, curvature, and hill shade were
directly created from the digital elevation model (DEM) derived from LiDAR data using
their layer toolboxes. Stream power index (SPI), topographic wetness index (TWI), and
terrain roughness index (TRI) were created from spatial layers such as slope, flow direction,
and flow accumulation. Shapefiles of distances to roads, lakes, trees, and build-up were
digitized as land-use/landcover from the LiDAR image and produced using the Euclidean
distance method in ArcGIS with 10 × 10 cell sizes.

2.2.3. Effects of Climate on Vegetation

Changes in climatic conditions could reduce crop yield [84]. The increase in temper-
ature results in enhanced evapotranspiration, decreasing water availability, and further
exacerbating dry months [85]. High storms associated with heavy rainfall increase flood
frequency, which negatively impacts vegetation growth. Moreover, an increase in air and
the temperature of water reduces the efficiency of plants. Low rainfall and high tempera-
ture reduces soil moisture content, water availability for irrigation and impair crop growth
in non-irrigated areas. We studied the climatic conditions of the study area (temperature
and precipitation) before and after the test (from August to December 2020) to assess its
relationship to seed germination, growth, and development. The climate data obtained
from the Malaysian Meteorological Department were examined critically and implemented
in the study. The study area has a constant annual temperature with a maximum between
31 and 33 ◦C, and minimums usually between 22 and 23.5 ◦C. The average annual rainfall is
also about 2400 mm. Table 4 below shows the average climate condition of the study area.
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Table 4. The annual climatic condition of the study area in 2020 (from climate data).

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

Avg.
Temperature

◦C (◦F)

25.1 25.7 26 26.1 26.3 26.2 26.1 26 25.8 25.7 25.2 25.1
(77.2) (78.3) (78.8) (78.9) (79.3) (79.2) (78.9) (78.8) (78.5) (78.2) (77.4) (77.2)

Min Temperature
◦C (◦F)

21.9 21.9 22.7 23.1 23.4 23.1 22.8 22.8 22.8 22.8 22.7 22.3
(71.4) (71.4) (72.8) (73.6) (74.1) (73.5) (73.1) (73.1) (73) (73) (72.8) (72.2)

Max Temperature
◦C (◦F)

209 174 268 300 246 174 183 219 243 308 373 284
(8.2) (6.9) (10.6) (11.8) (9.7) (6.9) (7.2) (8.6) (9.6) (12.1) (14.7) (11.2)

Precipitation/Rainfall mm
(in)

209 174 268 300 246 174 183 219 243 308 373 284
(8.2) (6.9) (10.6) (11.8) (9.7) (6.9) (7.2) (8.6) (9.6) (12.1) (14.7) (11.2)

Humidity 85% 82% 85% 87% 87% 85% 84% 84% 85% 87% 90% 88%

Rainy days 20 18 24 27 25 22 24 24 25 26 26 24

3. Methodology

3.1. AHP for Landslide Susceptibility Mapping

The production of a landslide susceptibility map of the whole area to predict the
possibility of landslide occurrence was carried out to determine landslide high and low-
risk areas using the AHP method. Professor Thomas L. Saaty originally developed AHP
as a multi-criteria decision-making (MCDM) approach [66]. Applying AHP in this study
aims to identify, correlate, weigh, and rank different parameters that determine slope
susceptibility to landslide [86]. The method assigned weights to the conditioning factors
by pairwise comparison. This pairwise comparison creates judgments between pairs of the
set of variables instead of prioritizing them. The conditioning parameters associated with
the study area and essential to assess landslide susceptibility are significant in achieving
this judgment. The conditioning factors were ranked between 1 to 9 according to their
level of importance. AHP is one of the most widely successful GIS-based methodologies
for landslide susceptibility mapping over the past decades [52]. This is due to its ease of
use and high capabilities in providing prediction maps [87]. It uses the consistency ratio
(CR) to identify consistencies by comparing the priorities of each criterion using the CR
equation, according to Saaty [62].

CR =
CI
RI

(1)

where RI the random consistency index and CI represents the consistency index ex-
pressed as

CI =
λmax − 1

n − 1
(2)

where λmax represents the principal value of the matrix, n is the order of the matrix.
Moreover, the weights of each criterion were integrated into a single landslide susceptibility
index by applying the equation:

LSI = ∑n
i=1 Ri × wi (3)

This decision-making tool specifies the value of each factor. Where Ri represents
the rating classes of each layer, and wi represents the weight of each of the landslide
conditioning factors. Each factor’s weight from the matrix class was multiplied by the
weight class. The local representation of elements in the slope area where landslide is
predicated determines the susceptibility of map results.

3.2. Field Experimental Design

We carried out the hydroseeding experiment on the 11 August 2020 within the study
area on a terrain sloping at 65◦ with a total horizontal surface area of 304 cm and a total
vertical area of 244 cm wide and divided into four equal parts of 61 cm each, as shown
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in Figure 3. The site was leveled and tilled with a rake to remove large soil particles.
We studied the nature of the soil and climatic condition and did not modify the earth as
this may alter the experiment results. Seed samples of 1 kg each were separately mixed
with 500 g of fertilizer and 50 mL of seed germinator mixtures before the hydroseeding
experiment. The mixtures were sprayed with an Ozito cordless hand spreader.

 

Figure 3. The spraying process on the study area.

3.2.1. Vegetation Ground Cover

Vegetation ground cover has long been adequate, especially in reducing landslide and
erosion on the roadside slopes [88]. Vegetation cover promotes infiltration and provides
resistance to topsoil by stabilizing the soil structure and intercepting rainfall and runoff,
thereby playing a vital role in soil and water conservation [89]. A related approach to
stabilize disturbed slopes is by hydroseeding. In this research, we used the line-based
method to measure the vegetation ground cover. Geometrically, it is a single-dimensional
distance line measurement that measures the distance of the first contact to the last touch
of the species. It also determines the percentage cover for each line then averages the
lines together to estimate vegetation cover. The formula of the line-based method is as
shown below.

%ground cover=
Total distance o f specie A

Distance o f all specie along line
× 100 (4)

When the vegetation ground cover is denser and complex, the surface is shielded from
wind, and direct rainfall is intercepted and redirected by the canopy.

3.2.2. Vegetation Root

According to structural stability and vegetation ecology theory, if the root systems
are more complicated and profound, the soil is more stable, and infiltration is higher [90].
Therefore, well-developed root systems can help reduce runoff by directing rainfall into
groundwater storage more quickly, helping to reduce the slope strain and stabilizing the
slope. The vegetation root architecture was determined using Yen’s [91] pull-out tests. Root
samples from each of the four species were manually uprooted from the field, washed, and
the root diameters were measured using a measuring tape.

3.2.3. Estimation of Surface Runoff

Rainfall surface runoff is an indicator for determining the water loss of a slope [92]. It
occurs when the intensity of rainfall is greater than the intensity of infiltration, leading to
the failure of excess water to infiltrate [93]. To determine the rainfall rate, surface runoff,
rainfall duration, and rainfall intensity were recorded. The rainfall events were based on
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the following criteria: (i) Erosive rainfall with daily rainfall amount greater than 12 mm
(ii) Similar rainfall intervals (iii) Rainfall duration of no less than 60 min. These factors
proved to be effective in rainfall interception for surface runoff [94]. Duration is the extent
of the rainfall, and intensity is the rate at which it rains, mathematically expressed by the
height of the rainfall layer per minute (mm/min) [95]. Rainfall intensity is the ratio of the
total rainfall amount in a given period to the duration of the period [96]. The present study
focuses on the relationship among runoff, rainfall, soil type, vegetation, slope, with the
primary focus of finding an effective means of reducing the rate of surface runoff, which
will practically reduce the effect of landslides. Different methodologies exist for computing
and estimating surface runoff [97]. However, this research applies the rational method to
determine the surface runoff of the site experiment.

Rational Method

It is considered the most widely employed and easy-to-use practical method to es-
timate and determine the surface runoff of any specific rainfall. This method is used
primarily on small scales. The rational approach is expressed mathematically as

Q = CIA (5)

where C = coefficient of runoff (runoff volume/rainfall), A = area of the catchment, and
I = intensity of the precipitation.

We made sizeable holes and installed plastic containers with rigid channels that
channel water into the collection bottles at the bottom of each plot to measure runoff volume
(Figure 4). The surface runoff volume of the plants was collected in this plastic container
at the same rainfall intensity and duration during the rainfall events and transferred to a
measuring cylinder to get the readings. The surface runoff volume of each vegetation was
therefore determined by dividing volume by the period.

Figure 4. Experimental surface runoff plot.

This experiment shows how vegetation characteristics such as the vegetation roots
and vegetation ground cover reduce surface runoff. This experiment only considers surface
runoff from September to December 2020. We collected four rainfall events for this study.
These event dates were chosen based on a weather forecast predicting rainfall of >12 mm,
which matched the experimental criteria. The daily rainfall data was obtained from the
National Hydraulic Research Institute of Malaysia (NAHRIM).

4. Results

4.1. Landslide Susceptibility Assessment

The landslide susceptibility result using the AHP model includes the weights of the
conditioning factors, class weights, and a CR [98]. Applying the AHP, a decision hierarchy
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was built through a pairwise comparison of each conditioning factor. The AHP prioritized
the effective criteria and variables by using pairwise comparisons to create a matrix. Ratings
of the parameters were provided on a 9-point scale. The values of 1/9 represent the least
important, 1 represents equal importance, and 9 represents the most important. The degree
of consistency used in developing the rating was also determined. Moreover, a procedure
through which an index of consistency, known as a CR, was produced. The CR indicates the
probability that the matrix judgments were generated randomly [99]. Spatial Analyst Tools
ArcGIS 10.7 software was used to reclassify each cell of the final map into five categories
and values assigned ranging from 1 to 5, representing very low to very high in the LSM.
The landslide susceptibility map was classified into five classes using the natural break
classifier. Figure 5 shows the LSM produced by AHP, which reveals 20.65% of very low,
20.18% low, 20.37% moderate, 19.45% high, and 19.35% very high susceptible areas.

Figure 5. Landslide Susceptibility map by AHP.

Validation

The landslide susceptibility model was evaluated using the receiver operating charac-
teristic curve (ROC curve), a non-dependent threshold approach. The ROC curve shows
the validity of the diagnostic ability of a binary classifier system as its discrimination thresh-
old [100]. The ROC curve is created by plotting the values of the true positive rate (TPR)
against the values of the false-positive rate (FPR) at different threshold settings [101]. This
curve validates the model’s accuracy regardless of the prediction model since it compares
random landslide points and a separated dataset of landslides [102,103]. A synthetic index
was calculated for the ROC, utilizing the area under the curve (AUC), which has generally
been applied in past studies to evaluate the accuracy of the landslide susceptibility map.
A higher AUC value indicates a higher accuracy of the susceptibility map [98]. The AUC
value obtained from the AHP model revealed a 0.865 accuracy (Figure 6). Therefore, the
results of the model indicate an accurate susceptibility map. A precise LSM model highly
depends on conditional factors. It thus assists decision-makers, landscapers, and urban
planners in identifying hazard-prone areas for early mitigation. After studying the nature
and environmental conditions of the study area, a hydroseeding experiment was intro-
duced and carried out on a high-risk slope within the study location to control and prevent
potential landslides.
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Figure 6. ROC curve.

4.2. Experimental Observations, Monitoring, and the Result of Hydroseeding

In this study, we evaluated and recorded the germination performance of the four
hydroseeded seed species. The main goal was to determine which of these seeds, currently
used to hydroseed slopes in different parts of the world, is more effective in the study area.
Moreover, the vegetation ground cover and the vegetation root were studied to test their
effectiveness in controlling landslides (Figure 7).

 

Figure 7. Hydroseeded vegetation.

4.2.1. Germination Rate

Before the experiment, we studied environmental factors such as rainfall and tempera-
ture. The surveys were conducted at the end of each month from August to December 2020.
In each subplot, the species were identified and recorded. Couch (G4) seed germinated
between the 2nd and 3rd day and showed an approximate 92% germination rate, followed
by signal grass (G3) which grew on the 9th day with an 88% germination rate. The survey
also recorded a delay in germination on both rye corn (G2) and ryegrass (G1), which
germinated between day 15 and day 17, with 84% and 60% germination rates, respectively.
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4.2.2. Vegetation Root Length

The vegetation root is the most crucial aspect of the plant for slope stabilization.
Adequate subsurface drainage is essential to reduce the pore-water pressure of the subsoil.
Over the past decades, several types of research have revealed significant roles played by
plant roots to minimize the detachment rates of the soil as a result of concentrated flows
and are therefore very effective in controlling landslides [104,105]. Vegetation roots support
the slope drainage system and act as a scale preferential flow direction on the hillslope
and drain the subsoil’s water content from unstable terrain. When vegetation root systems
converge, or the subsurface flow ends abruptly in the slope, it may lead to a concentration
of water pressure in a critical region of the hill, thereby leading to instability. Flow direction
may occur, resulting in both positive and negative outcomes on slope stability. Practical
and precise knowledge of the disposition of vegetation roots in the slope is necessary to get
it right. In this study, the vegetation root architecture was determined using the pull-out
tests introduced by Yen [91]. Root samples from each of the four species were uprooted
from the field, washed, and the root length was measured using a measuring tape, and the
values were recorded and plotted in Figure 8.

Figure 8. Graph plot of the monthly vegetation root length.

The root architecture of the four seed species in Figure 9a–d shows the typical distri-
bution of the root system. It offers a general idea of how the roots developed and indicates
the localization of deep-rooted and fibrous roots within the root system. Ryegrass has a
fibrous root system with thick primary roots and thinner lateral branches and showed
a poor result. The roots of ryegrass are usually arbuscular mycorrhizal. Flawed due to
the environmental and climatic conditions, ryegrass, if under suitable conditions, may
germinate faster than some other grass seeds. However, the roots spread slowly and grow
naturally into clumps that spread their shoots vertically, called tillers. The shallow roots
of ryegrass limit its tolerance for heat and drought. It adapts well to a wide variety of
improved soil conditions, such as acidic and alkaline soils. It also thrives better under soil
pH. Rye corn showed an extensive, fibrous root system that may expand.
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(a) (b) 

  
(c) (d) 

Figure 9. The different vegetation root samples: (a) Ryegrass (G1); (b) rye corn (G2); (c) signal grass
(G3); (d) couch (G4).

On the other hand, signal grass showed a better root development in the soil with a
deep taproot system that can effectively grow deeper on a wide range of soils and adapt
to different environmental conditions. The experiment also reveals that the couch has
the most extended root system, with a shallow taproot system that can spread, anchoring
the shallower soil depth and around the subsoil. The experiment so far compared the
effectiveness of the four seed plant roots in stabilizing the soil against possible landslides.
However susceptible to incisive landslide occurrence, no research has been done to compare
the effectiveness of these four plants in controlling landslides in this study location. Hence,
this study introduced the landslide-reducing potential of these species with both fibrous
and tap roots systems on the slope of the study area. The experimental results showed that
plant roots with taproot systems were more adaptive and efficient in the soil type than
the seed with a fibrous root system. According to [106], tap-rooted plant species penetrate
more into thick soils than fibrous-rooted plant species. Therefore it is well adapted for use
in landslide mitigation and control.

The different vegetation roots showed a significant variation regarding the site character-
istics; with an increase in rainfall, the roots considerably showed their best tolerance following
an increasing monthly pattern, with the highest length observed from G4 in December, fol-
lowed by G3. Both G1 and G2, with a fibrous root system, also showed a significant monthly
root development. The vegetation root was plotted using an origin software.
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4.3. Result of the Hydroseeded Vegetation Ground Cover

Hydroseeded vegetation ground cover is the percentage of the ground surface covered
by vegetation. It controls landslides by anchoring the soil against rainfall and other
landslide causative factors. The plants were monitored, and the vegetation ground cover
was recorded from August to December.

The species with the highest values was ryegrass (G1). It showed leaf spreading
and creeping characteristics. From August to September 2020, the experimental result
recorded 40% vegetation cover due to its prolonged germination rate. A significant 180%
of coverage was recorded between November and December. Rye corn (G2) was second
to ryegrass and reached 160% coverage between November and December. However, the
values sharply increased from 60% to 120% between August and October 2020. Signal
grass (G3) showed the lowest result with 40% to 80% between August and October and
95% between November and December. Moreover, couch (G4) gave values between 80%
and 120% from August to October and remained unchanged until December with 140%.

Vegetation ground cover can help to prevent landslides by protecting the soil surface
against the impact of rainfall and surface runoff. It also reduces runoff volume, increases
surface roughness, and reduces sediment traps and transportation [105,107]. The result
was plotted using the Origin software, as shown (Figure 10) below.

Figure 10. A plot of the vegetation ground cover.

At the start of the monitoring period, August 2020, G1 and G3 showed the lowest
vegetation cover while the vegetation cover reached 80% in G4. Between September and
December, the vegetation covers of G1 significantly increased, topping other species and
showing the best choice for control of surface landslide. Test G3 showed the least acceptable
result with a 95% vegetation cover.

4.4. Vegetation Surface Runoff

The experiment focused on analyzing the overall influence of the vegetation root and
vegetation ground cover to reduce surface runoff, reducing the effects of landslides on the
study area. The four different vegetation species were subjected to rainfall intensities of
35 mm/h in September, 48 mm/h in October, 33 mm/h in November, and 34 mm/h in
December on a Malacca and Serdang soil series sloping at 65◦, as shown in Table 5 below.
The area’s soil type is a mix of sandy, clay, and loam, collectively identified under the
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Serdang and Malacca series. In line with past literature, the runoff rate increased due to
the percentage of vegetation ground cover and vegetation root characteristics [108].

Table 5. Showing selected daily runoff under different rainfall intensities.

Date
Rainfall
(mm/h)

G1
Runoff (mm)

G2
Runoff (mm)

G3
Runoff (mm)

G4
Runoff (mm)

September 35 9.03 8.53 6.77 5.52
October 48 4.62 4.32 3.73 3.05

November 33 8.25 6.91 7.36 5.13
December 34 7.81 8.28 6.15 5.68

The results show that G2 has the highest surface runoff rate followed by the G1 plot,
then G3, with G4 having the least runoff amount under different rainfall intensities. The
surface vegetation runoff of the vegetation is shown in Figure 11 below.
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Figure 11. Monthly vegetation surface runoff.

It shows that the runoff rate changes due to their vegetation characteristics under the
same rainfall intensity. One can observe from Figure 11 that the amount of surface runoff
in the G1 and G2 plots was significantly higher than the G3 and G4 plots under the same
rainfall intensity.

The average surface runoff of G4 is 4.85 mm, while G3 comes behind with an average
surface runoff value of 5.89 m3. G2 and G1 also have surface runoff values of 7.01 mm
and 7.43 mm, respectively. Couch vegetation offers the most acceptable landslide control
benefits to signal grass, rye corn, and ryegrass vegetation. The findings suggest that the
selection of couch species over other species is justified based on landslide control benefits.

5. Discussion

The AHP method was applied in this study to identify, correlate, weigh, and rank
different landslide parameters that determine slope susceptibility. Using the systematic
analysis of a pairwise comparison matrix of a list of the conditioning factors by expert’s
opinion scores between one and nine indicates the relative importance that was used.
The susceptibility map helped determine high-risk, landslide susceptible areas for the
mitigation process. The output map of the landslide susceptibility model was evalu-
ated qualitatively, which is essential in selecting the most suitable site to carry out the
landslide mitigation experiment. Applying the AHP approach, very low susceptibility
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areas were 20.65%, 20.18% low, 20.37% moderate, 19.45% high, and 19.35% very highly
susceptible areas.

From the AHP susceptibility map, a hydroseeding experiment was carried out on
the high-risk visibly sliding slope, with the result revealing that hydroseeding has great
potential on degraded terrains in a similar environment. Results also showed that the
grasses thrived more during rainfall season than dry season with daily watering. The
results of the vegetation root system appear to show that vegetation has the best potential
for long-term slope stabilization. Comparing the development of this study with other
researchers that successfully carried out a similar experiment in a laboratory using rainfall
simulations, the experimental results are very similar with natural precipitation and daily
watering. Improved knowledge on this research is equally expected to support and enhance
the selection of hydroseeding components and improve the soil nutrient and native species
in future restoration projects.

Several authors have argued that climatic conditions and soil types are the main
factors limiting the vegetation reinforcement of soil, especially in semiarid environments,
resulting in low vegetation cover and distorted roots [109]. Hence, this experiment went
through rainy and dry seasons and different soil types to prove the effectiveness of the
selected seed with good results.

According to Garcia-Palacios et al. [110], vegetation covering more than 50% of semi-
arid terrain requires no further mitigation to prevent landslide or soil erosion. In this
research, the vegetation ground cover for ryegrass and signal grass was less than 50% in
August. Ryegrass was also less than 40% in September, with both plants maintaining soil
stability. Risse et al. [111] noted that the rate of soil loss was about 10 to 20 times higher
in construction sites than in agricultural lands. Moreover, Wang et al. [112] stated that
several studies have revealed that soil properties such as moisture content and nutrients
could affect their root morphology as vegetation matures. Thus, in our experiment, the
vegetation root system increased with time, though evidence of nutrient loss could be seen
from the plant leaves.

6. Conclusions

After studying the nature and environmental conditions of the study area, a hy-
droseeding experiment was introduced and carried out on the high-risk, steep slope within
the study location to control and prevent potential landslides. Four seed samples were sep-
arately hydroseeded, and their success rate was compared in relation to the soil condition
of the study area. The vegetation was tested under four different rainfall intensities. The
result showed that couch (G4) has the least average surface runoff of 4.85 mm. It also has
the fastest estimated germination rate of 92% in 3 days and showed densely populated,
strong stemmed vegetation cover, with a tall height and a deep, long shallow taproot
system. It showed the most reliable and most effective for landslide control in the study
area, followed by G3 with a value of 5.89 mm, and an estimated 88% germination rate on
day nine, with thick, stemmed solid vegetation ground cover and also has the tallest vege-
tation height, as well as a deep-rooted taproot system. G2 has an average surface runoff of
7.01 mm with an estimated 84% germination rate on day fifteen, with creeping and sparsely
populated vegetation cover, short vegetation height, and an extensive fibrous root system.
More so, G1, with the highest average runoff value of 7.43 mm, germinated on day 17,
with an estimated 92% germination rate. It showed similar results and characteristics to G2
with a creeping and sparsely distributed vegetation cover and short vegetation height with
fibrous, thick, and thinner lateral root branches. Based on the results of this investigation,
couch vegetation offers the best landslide control benefits to that of signal grass, rye corn,
and ryegrass vegetation. The findings suggest that the selection of the couch species over
other species is justified based on landslide control benefits.

Further studies are recommended to use different satellite sensors for landslides
susceptibility mapping of the study area. Moreover, other types of slope seeds should be
experimented with. Ryegrass and rye corn developed poorly under the soil and climatic
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condition of this study area. They could also thrive well under improved soil and favorable
climate conditions.
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Abstract: Mass movements processes (i.e., landslides and snow avalanches) play an important role
in landscape evolution and largely affect high mountain environments worldwide and in Italy. The
increase in temperatures, the irregularity of intense weather events, and several heavy snowfall
events increased mass movements’ occurrence, especially in mountain regions with a high impact
on settlements, infrastructures, and well-developed tourist facilities. In detail, the Prati di Tivo area,
located on the northern slope of the Gran Sasso Massif (Central Italy), has been widely affected by
mass movement phenomena. Following some recent damaging snow avalanches, a risk mitigation
protocol has been activated to develop mitigation activities and land use policies. The main goal
was to perform a multidisciplinary analysis of detailed climatic and geomorphological analysis,
integrated with Geographic Information System (GIS) processing, to advance snow avalanche hazard
assessment methodologies in mass movement-prone areas. Furthermore, this work could represent
an operative tool for any geomorphological hazard studies in high mountainous environments,
readily available to interested stakeholders. It could also provide a scientific basis for implementing
sustainable territorial planning, emergency management, and loss-reduction measures.

Keywords: snow avalanche; mass movements-prone areas; hazard assessment; climate extremization;
environmental risk; Gran Sasso Massif; Central Apennines

1. Introduction

Mass movement phenomena (i.e., rockfalls, debris flows, shallow landslides, snow
avalanches, etc.) play a significant role in the landscape evolution and occur in relation to
physiographic, geomorphological, and climatic features and to triggering effects induced
by human and/or seismic activity [1–12]. These phenomena cause significant disasters
on a global scale every year, and the frequency of their occurrence seems to be on the rise.
The expansion of urbanization and the tourism development in particular areas, such as
mountainous regions, notably increased the environmental hazards and risks. Moreover,
climate extremization and the potential for more severe weather conditions could also
be acknowledged as contributing factors. Hence, these events can significantly impact
mountain environments, residential areas in avalanche zones, ecosystems, and public
infrastructures [13,14].

According to the Emergency Events Database—EMDAT [15], snowfall and snow
avalanches are considered natural hazards belonging to hydrometeorological events. Snow
avalanches are critical events connected to the sudden instability of snow-covered slopes in
geodynamical active mountain regions. Moreover, they are undoubtedly one of the major
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denudational processes in cold and mountainous areas, representing a huge natural hazard
with devastating socioeconomic and environmental impacts [16,17].

Mass movement triggering is linked to sudden changes in the geomorphological
features of the slopes and the physical characteristics of the snow cover [18,19], resulting,
in turn, from numerous variables in continuous changes, such as the geomorphological
characteristics of the site, the static and dynamic climatological trends, the processes
of metamorphism of the snowy mantle, and the effects of new snow overloading on a
preexisting snow cover caused by the action of wind and seismic events of significant
magnitude.

It is crucial to follow different approaches to map snow avalanches to provide correct
and valuable hazard assessments. Hazard maps represent significant and essential tools
needed to evaluate snow avalanche susceptibility of an area, such as a ski resort [20]. It is
possible to distinguish between different types of avalanche hazard maps: inventory maps,
such as France Carte de Localisation Probable des Avalanches CLPA, [21], depicting the
maximum extends of known avalanches, usually compiled from literature, technical docu-
ments, and interviews and supported by air–photo interpretation and field investigations
and hazard maps [22,23], outlining zones affected by different degrees of hazard, generally
drawn based on known historical events, geomorphological studies, and statistical and/or
dynamic computational models. In addition to these thematic maps, several techniques can
be used to evaluate avalanche hazards and risks involving the implementation of defense
structures, closures, and explosives [24,25]. Since the pioneering works in this research
field [26,27], most studies were performed to evaluate the long-term risk on settlements
and critical infrastructure. These authors all used solid explosives, investigated shock
waves propagating through a snowpack, and showed the distinct damping effect of snow,
e.g., [28–30]. According to the literature and technical reports [31–33], the techniques used
to evaluate avalanche hazards and risks are different depending on the circumstances.
The long-term risk affecting permanent settlements and critical infrastructure is typically
managed by conducting hazard mapping during the main steps of the land planning
process. On the other side, safety services for ski resorts, ski facilities, and temporary work-
sites are characterized by closures and explosives (i.e., Obellx® gas exploder) to manage
short-term avalanche risk; guides adopt professional route selection to control the exposure
of people, and public avalanche forecasters communicate regional avalanche danger to a
direct stakeholder who manages their own risk [16].

Moreover, it must be considered that the devastating propagation of a snow avalanche
may contribute to the mass wasting of rocks and vegetation being transported along the
way and accumulated together with the snow avalanche debris. This induced mass wasting
poses longer-lasting damages with more destructive effects [34]. As a result, to completely
define the degree of hazard in mass movement-prone areas, dynamic computational models
can help to estimate paths and impact pressures in the runout zone [35]. Modeling the
avalanche triggering mechanisms is complicated, and this complexity has been widely
described in many studies [36,37]. The morphological setting (i.e., terrain and slope), the
snowpack, and the meteorological conditions contribute to the avalanche movement and
propagation. Based on the interaction of these parameters, the avalanche formation and its
propagation can eventually be modeled [38–42]. The models have been largely enhanced
with the involvement of recent advanced technologies of Geographic Information Systems
(GIS) [43–45], which have become powerful tools for the implementation of required
databases to support decision-making activities in land planning, such as over hazardous
regions posed as a threat by several geohazards (i.e., landslides and snow avalanches).

The mountain territories of the Abruzzo Region are not immune to the general phe-
nomenon of increased tourists’ fruition and related snow avalanche risk. Nevertheless, due
to its geographical location and physiographic framework (Figure 1), the Abruzzo Region
also shows peculiar meteorological and snow characteristics that differ from the rest of the
Alps and Central Apennines [46].
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Figure 1. Three-dimensional view (from 20 m DTM, SINAnet) of the Abruzzo Region (Central Italy) and main physiographic
domains. The red polygon indicates the study area.

The study area is located in the northeastern part of the Abruzzo Region within the
Gran Sasso Massif (Figure 1). It is sited in the municipal territory of Pietracamela. It
includes, to the south, a wide irregular mountainous landscape dominated by the Corno
Grande (2912 m a.s.l.), featuring as the highest peak of the Apennines Chain.

To develop the present study, an integrated and multidisciplinary approach was
followed to provide further advancement in snow avalanche hazard assessment method-
ologies. Combining and integrating morphometric, geomorphological, climatic, and nivo-
logical analyses, it was possible to better define the existing relationships between climate
extremization and environmental risk reduction in a mass movement-prone area, such
as the Prati di Tivo area. This paper focuses on the stepwise approach for a correct snow
avalanche assessment by combining the patterns of snow avalanches and the main me-
teorological features of the study area. Morphometric and geomorphological analyses
were carried out to evaluate landslide hazards in this mass movement-prone area, mainly
focusing on the dynamic geomorphic action of snow avalanches. The role of the geomor-
phological and climatic features in the triggering of the avalanches was also evaluated.
Furthermore, it describes the safety services and the risk mitigation protocol to perform
over a ski facilities area in such a mass movement-prone setting. This work could represent
an effective tool in geomorphological hazard studies for high mountainous environments
readily available to interested stakeholders, which provides a scientific basis for territorial
planning, emergency management, and mitigation measures.

2. Study Area

2.1. Geological and Geomorphological Setting

The study area is located in Central Italy within the northern sector of the Abruzzo
Region, and it is strictly located in the Apennines Chain area, showing a high-relief moun-
tainous landscape. The Central Apennines chain’s morphology is characterized by the
presence of a series of ridges trending from NW–SE to N–S (i.e., Gran Sasso Massif, 2912 m
a.s.l.; Maiella Massif, 2793 m a.s.l.), separated by longitudinal and transversal valleys
and broad intermontane basins (elevation 250–1000 m a.s.l.—i.e., Fucino Plain and Sul-
mona Basin) (Figure 1). The elevation abruptly drops down to the hilly piedmont area
(ranging from ~800 m a.s.l. to the coastline), which features a mesa, cuesta, and plateau
landscape [47–50]. The northeastern front of the asymmetric Abruzzo Apennines chain is
characterized by a steep mountainside with large escarpments. The Gran Sasso Massif is
the highest in the Central Apennines, with several peaks above 2500 m a.s.l. It features an
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arched shape, trending from W–E to N–S, and drops down to lower elevations (>1000 m
a.s.l.), defining a large and steep mountain escarpment.

The chain is composed of pre-orogenic lithological sequences that belong to different
Meso–Cenozoic paleogeographic domains (carbonate ramp and platform limestones and
slope-to-pelagic limestones). The Neogene deformation of these sequences, along NW–SE
to N–S-oriented (W-dipping) thrusts, determined the emplacement of the main mountain
ridges, also including the Gran Sasso one (Figure 2) [51–58].

 

Figure 2. Geological map of NE Abruzzo (modified from [59]). Legend: post-orogenic deposits—(1) fluvial deposits
(Holocene) and (2) fluvial and alluvial fan deposits (Middle-Late Pleistocene); sin- and late-orogenic deposits—(3)
hemipelagic sequences with conglomerate levels (Late Pliocene–Early Pleistocene) and (4) turbiditic foredeep sequences
(Late Miocene–Early Pliocene); pre-orogenic deposits—(5) carbonate ramp facies (Early Miocene-Early Pliocene), (6) slope
and pelagic basin sequences (Cretaceous–Miocene), and (7) carbonate platform sequences (Jurassic–Miocene); (8) major
thrust (dashed if buried); (9) major normal fault (dashed if buried); and (10) major fault with strike-slip or reverse component
(dashed if buried). Seismicity derived from the CPTI15 catalog [60]. The black line indicates the location of the study area.

This compressional phase was followed by extensional and strike-slip tectonics along
mostly the NW–SE to NNW–SSE-oriented faults, which define the present-day landscape
configuration [47,61,62]. The hilly piedmont and coastal areas are made up of sin- and
late-orogenic deposits (i.e., sandy-pelitic turbiditic foredeep sequences), largely covered
and unconformably overlaid by Pleistocene hemipelagic sequences. The post-orogenic
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deposits mainly consist of fluvial and alluvial fan deposits, as well as glacial, travertine,
slope, and eluvial–colluvial deposits (Figure 2).

The geomorphological framework is mainly related to mass wasting; gravity-induced
(e.g., mostly rotational–translational slides, earth flows, rockfalls, and complex slides); and
fluvial-related (e.g., debris flows, alluvial fans, etc.) processes. Ancient glacial processes
are preserved as relict landforms [48,63–66].

According to the historical and instrumental data [67–69], Central Italy has been
affected by many earthquakes, with recurrent seismic events of moderate-to-high intensity.
The present-day regional tectonic setting is dominated by intense seismicity (up to Mw
7.0 [60]), with earthquakes mostly located in the chain sectors (i.e., 2009, L’Aquila and
2016–2017, Central Italy); moderate seismicity also affects the hilly piedmont and Adriatic
areas.

2.2. Climatic Setting

The Abruzzo Region climate is affected by the physiographic and morphological
setting of the Central Apennine Chain and its eastern front in the proximity of the
upper watershed divide. This geographic position, located not far from the Adriatic
Sea—approximately 40 km as the crow flies—largely influences the climate setting, vary-
ing from a Mediterranean type along the coasts and the hilly piedmont areas to a more
temperate and continental type in the chain area [70,71]. The morphological arrange-
ment also regulates the rainfall distribution; the highest annual rainfall values (up to
1500–2000 mm/y) occur along the main ridges and in the inland sectors, decreasing down
to ~600 mm/year along the hilly piedmont and coastal areas. It is occasionally charac-
terized by heavy rainfall events (>100 mm/d and 30–40 mm/h) [72–74]. The average
temperature values range between 8 and 10 ◦C in the mountain sectors (average minimum
values of 0–5 ◦C at high elevations) and between 16 and 18 ◦C along the coast. The winter
temperature (average January values) shows low values in the inland areas (0–2 ◦C, with
minimum values of approximately −5 to −10 ◦C at high elevations) and higher ones
(8–10 ◦C) in the hilly piedmont sectors. Over the past two decades, the Abruzzo Region has
been affected by some heavy rainfall events and snowstorms, generated by heavy rainfall
ranging from 60 to 100 mm in a few hours to >200 mm per day and by snowfall up to
>100 cm/day (e.g., January 2003, April 2004, October 2007, March 2011, September 2012,
December 2013, February-March 2015, and January-February 2017 [75]).

More in detail, the mountainous landscape and the homogeneous aspect exposure
distribution with north exposed slopes determines a harsh climate poorly mitigated by the
maritime influence, as confirmed by the presence of the Calderone glacier—the southern-
most one in Europe [64,76].

The Abruzzo Apennine chain sector represents an orographic barrier able to strongly
diversify the effects of atmospheric currents on its slopes, with upwind (Stau) and down-
wind (Föhn or, locally, “Garbino”) flows that rule and modify the spatial and altitudinal
distributions of rainfall and snowfall events [77,78]. Inland sectors, according to their
upwind exposure to cold polar currents moisture-laden after transit through the Adriatic
and/or Tyrrhenian sides, are characterized by intense and frequent rainfall events [79].
Furthermore, even if, in such a climatically dynamic framework, it is not uncommon to
detect minimum winter temperatures around −25 ◦C, the Central Apennines (i.e., Abruzzo
and Molise regions) show geomorphological situations that determine the presence of a
cold air pool. About this, the absolute minimum values were recorded in recent times
in several intermontane plains at an elevation ranging from 1200 to 1500 m a.s.l., such
as the Piane di Pezza Plain (−37.4 ◦C), Cinquemiglia Plain (−30 ◦C), Campo Felice Plain
(−32 ◦C), and Marsia Plain (−36 ◦C) [80].

According to previous analyses and data [70,71,81,82], the study area is characterized
by transitional thermal–meteoric features that largely influence the climate setting varying
from continental sub-Apennine to sub-Mediterranean Apennine regimes, considering its
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southern latitudinal location and the relatively small distance from the Adriatic Sea, which
exerts a strong maritime influence.

3. Materials and Methods

The study area was investigated through an integrated and multidisciplinary approach
(Figure 3) based on (i) a morphometric analysis, (ii) geomorphological analysis, (iii) climatic
analysis, (iv) nivological analysis, and (v) analysis for the assessment of snow avalanche
hazard, supported by the combination of literature data and GIS-based techniques.

Figure 3. Schematic flowchart diagram showing the main methodological steps.

3.1. Morphometric Analysis

The analysis was performed using topographic maps (1:25,000–1:5000 scale) and
supported by the creation of a Digital Elevation Model (5-m DEM) derived from 1:5000 scale
regional technical maps, previously retrieved from Open Geodata Portal of the Abruzzo
Region (http://opendata.regione.abruzzo.it/, accessed on 15 May 2021). It was carried out
in Geographic Information System (GIS) software (QGIS 2020, version 3.16 “Hannover”). It
was centered on the definition of the main physiographic features of the study area in order
to highlight the morphological setting of this high mountainous environment quantitatively.
In detail, the analysis was based on the computation of three main parameters: elevation,
slope (first derivate of elevation [83]), and local relief. This latter was calculated as the
elevation range within 1 × 1 km windows, according to Ahnert [84].

According to Schweizer et al. [85], snow avalanche formations result from the com-
plex interaction between the topography, snowpack, and meteorological conditions. As
a result, the morphometric characteristics (i.e., slope aspect, relative slope height, and
slope inclination of the snow avalanche) are seen as most important in determining the
spatial patterns of snow accumulation and, accordingly, the starting, transition, and runout
zones [86]. Looking at the landscape parameters evaluated for the study area, the computed
morphometric factors (elevation, slope, and local relief) appear to be the most relevant,
which control the spatial distribution of snow avalanche activity.

The study area is strictly located to the main drainage basin, automatically extracted
from the DEM using the Hydrological Tools in QGIS, whose closing point was located at
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Pietracamela Village (Figure 4). This assumption was followed in order to have a basic
unit to which to refer to in performing all the multidisciplinary analyses, revealing that the
drainage basin scale may be the most convenient choice [87].

 

Figure 4. Spatial distribution of the weather gauges used in the present study. The red line indicates the location of the
study area.

3.2. Geomorphological Analysis

This analysis involved preliminary storing and managing existing data, retrieved
from public authorities’ technical reports, databases, and the scientific literature. Specif-
ically, geological–geomorphological data were supplied by the CARG Project-Sheet 349
“Gran Sasso d’Italia” [88], the Abruzzo-Sangro Basin Authority [89], the IFFI database [90],
and scientific publications [47,65]. These data were integrated and verified through geo-
morphological field mapping, carried out at an appropriate scale (1:5000–1:10,000), and
stereoscopic air photo interpretation using 1:33,000- and 1:10,000-scale stereoscopic air
photos (Flight GAI 1954 and Flight Abruzzo Region 1981–1987), as well as an analysis of
1:5000-scale orthophoto color images (Flight Abruzzo Region 2010) and Google Earth®

imagery (2019–2020). Field mapping was focused on the definitions of the lithological
features and geomorphological landforms, with reference to the main mass movements
affecting the study area. It was performed according to the Italian geomorphological
guidelines [91], international guidelines [92], and thematic literature concerning geomor-
phological mapping and analysis in different geological and climatic contexts, as well as
field-based and numerical analysis [93–97].

3.3. Climatic Analysis

Climatic data analysis was carried out to outline the distribution of the climatic
parameters and conditions in the study area. The analysis was based on a dataset obtained
from a network of 7 gauges (colored dots in Figure 4; data provided by the Functional
Center and Hydrographic Office of the Abruzzo Region and the amateur meteorological
association L’Aquila Caput Frigoris—https://www.caputfrigoris.it/, accessed on 12 January
2021). More in detail, according to the lack of historical thermo–pluviometric series suiting
the World Meteorological Organization (WMO) directives [98], climatic data belonging
to the Pietracamela gauge (1043 m a.s.l.; blue dot in Figure 4) were used to quantify the
microclimatic setting of the study area properly. Its dataset gathers thermo–pluviometric
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series data covering a 50-year time record (1950–2004). Recently, three gauges, featuring
technical elements in accordance with the WMO 1083 directives [98], were located at the
Teramo (265 m a.s.l.; pink dot in Figure 4), near the tourist and ski facilities at Prati di Tivo
(1450 m a.s.l.; green dot in Figure 4), and along the northeastern slope of Gran Sasso Massif
at Rifugio Franchetti (2433 m a.s.l.; light blue dot in Figure 4). The northern exposure
of these gauges provides a good representation of the climatic conditions occurring in
correspondence with the detachment areas of snow avalanches, despite the lack in the snow
datasets. Concerning the Rifugio Franchetti gauge, the available data covered different
time records (1998–2003 and 2016–2018).

3.4. Nivological Analysis

The local nivological analysis was based on a detailed dataset manually collected at
the nivo-meteorological station of the Meteomont service (https://www.sian.it/infoMeteo,
accessed on 15 February 2021). It is located at the base of the slope in the Prati di Tivo
area (Figure 3), at an elevation of 1450 m a.s.l. It features a northern exposure similar
to avalanche-prone regions located at higher elevations. The available historical data
for this station begins from the 1977/1978 winter season (from November to April) for
32 surveying seasons. The series is nearly uninterrupted, with a few gaps mostly occurring
in correspondence of the beginning/end of seasons. However, data related to the 1992/1994
seasons are completely missing. More in detail, the considered dataset shows several
temporal gaps, since it is deeply affected by the irregularity in the opening/closing dates of
ski facilities—the former occurring after the first significant snowfall events and the latter
during the spring period, usually in the presence of a thick snow cover. This condition
was widely relevant before the 1986/1987 winter season and after the 2008/2009 one;
consequently, the amounts of seasonal new snow were not correctly computed in these
temporal intervals. To reduce this underestimation, we tried to derive good-quality data
about the potential snowfall events by computing thermo–pluviometric records at gauges
located at a comparable elevation not far from the Prati di Tivo area (e.g., Campotosto
gauge, 1344 m a.s.l.—yellow dot in Figure 4). Nevertheless, to deduce a general nivometric
trend and better define the nivometric regime of the study area, data belonging to a 20-year
time period (1986/1987–2008/2009) were considered and thoroughly analyzed.

3.5. Snow Avalanche Hazard Assessment

This analysis was performed following a stepwise methodological approach that
involved the snow avalanche inventory analysis, the analysis and mapping of snow
avalanches’ paths, the elaboration of a snow avalanche hazard map, and the definition of
numerical models.

The snow avalanche inventory was retrieved from the State Forestry Corps of Italy
and the Abruzzo Region (http://opendata.regione.abruzzo.it/content/carta-storica-della-
valanghe, accessed on 15 May 2021) and allowed us to clearly describe the avalanches’
spatial distribution over the study area. Moreover, it was integrated with information
derived from the available literature and technical reports [44,75,99].

The analysis of snow avalanches’ paths was achieved by combining the literature
data, specific site investigations, investigations of the snow-covered ground, interviews of
witnesses to past avalanche events, and studying of previous events recorded in various
historical and technical archives [44,100].

The evaluation of the snow avalanche hazard map was carried out according to the
Swiss mapping criteria [101,102] and thematic guidelines provided by AINEVA (Italian
lnterregional Association for Snow and Avalanche) [31,103]. Avalanche-exposed zones
were defined and annexed within the Avalanche Hazard Exposure Zones Plan—PZEV
(Piano delle Zone Esposte a Valanghe in Italian). Generally, this evaluation is fixed through
mathematical parameters, which quantified the velocity and flow height, transmitted
pressures, and stopping distances of the avalanches [31,102,104,105]. In the invasion zones,
as reported in Table 1, some areas are identified and marked with different colors according
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to the estimated avalanche hazard—i.e., high hazard with red, moderate hazard with blue,
and low hazard with yellow. Town planning and land use prescriptions are fixed for each
of the identified zones.

Table 1. Synthesis of the AINEVA criteria [31] for the delimitation and the use of areas with different
degrees of exposure to avalanche hazards (T = return time of the avalanche (years) and Pimp = impact
pressure (kPa)).

Zone/Hazard Degree
Definition

Land Use Restrictions

RED
High Hazard

Areas affected either by avalanches with T = 30, even with low
destructive power (Pimp ≥ 3), or by highly destructive avalanches

(Pimp > 15) with T = 100. New constructions are not allowed.

BLUE
Moderate Hazard

Areas affected either by avalanches with T = 30 with low destructive
power (Pimp < 3) or areas affected by rare events (T = 100) with a

moderate destructive power (3 < Pimp < 15). New constructions are
allowed but with strong restrictions (low building indexes, reinforced

structures, etc.).

YELLOW
Low Hazard

Areas affected either by events with a low destructive power (Pimp < 3)
and T = 100 or by events with 100 < T < 300. New constructions are

allowed, with minor restrictions (no public facilities, like schools,
hotels, etc.).

In the PZEV’s framework, morphometric and nivometric data are generally combined
to define the degree of exposure of a specific area in terms of the frequency and intensity of
avalanche events. This detailed analysis is usually expressed through:

• the avalanche return period—the average number of years between two events of the
same intensity;

• the avalanche pressure—the forces per unit of surface exercised by the avalanche on
a flat obstacle of big dimensions disposed perpendicularly to the trajectory of the
advancing mass of snow. The pressure can be determined with reference to both the
dynamic and static components of the solicitation.

The obtained maps effectively identify the avalanche sites and their expansion in the
accumulation zones. This has proven to be most helpful in defining these zones in terms of
avalanche frequency and dynamic pressure, thus determining the magnitude/frequency
distribution in the runout zones [106–108].

The criteria established and reported in the Avalanche Artificial Detachment Interven-
tion Plan—PIDAV (Piano di Intervento di Distacco Artificiale di Valanghe in Italian) [109]
were followed to develop prevention and management activities in the study area. Gener-
ally, the main objective of these protection measures is to minimize negative consequences
due to snow avalanche risk for people and goods in their settlements and along traffic
lines, as well as for skiers [32,110]. The PIDAV plan is a tool, eventually complementary to
the aforementioned PZEV, which refers to an area open to the public, clearly defined in
space and time, where an artificial release of unstable snow masses is performed to reduce
avalanche hazards and risks [109,111]. In case of an urban zone or a ski facility to be pro-
tected, as in the study area, it is necessary to define a management measures plan to protect
the ski lift. It should include the plan for meteo-nivological conditions monitoring—which
are in constant evolution during climatic events—and describes activities to be exerted
to learn about this evolution at the meso- and microscale to evaluate snow cover stability
conditions and their potential evolution.

In conclusion, this stepwise sequence was completed by avalanche simulation mod-
els. In detail, 1- and 2-dimensional avalanche simulation models (e.g., AVAL-1D and
RAMMS [39,112]) were applied both to back-analyze documented avalanche events at a
particular site, as well as to estimate the consequences of possible hazard scenarios. Ac-
cording to the literature and technical data [102,111,113], the main nivometric parameters
required for dynamic avalanche modeling are represented by the maximum height of the
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snow cover (Hs) and the increase of the snow cover height over three consecutive days
(Dh3gg). For developing the present study, an increase of 5 cm of new snow and a snow
cover for every 100 m of elevation was proposed, taking into account the aforementioned
literature data and the nivological expert judgment. These physical–mechanical charac-
teristics, together with ancillary information concerning the physiography, steepness, and
roughness of the ground, the presence of infrastructures s.l. were reported on a 5-m grid
DTM base map and elaborated in a GIS environment.

AVAL-1D is a numerical avalanche dynamics program developed by the Swiss Federal
Institute for Snow and Avalanche Research [112]. It allows the simulation of avalanches in
one dimension from the starting zone to the runout one. It reproduces runout distances,
flow velocities, and impact pressures of both flowing and powder snow avalanches along a
specified avalanche track. It consists of two modules: FL-1D (dense flow model) for dense
flow avalanches and SL-1D (powder snow model) for powder snow avalanches. It cannot
reproduce the whole set of dynamical parameters, since it is a one-dimensional formulation
that combines the internal distribution of flowing variables into basic ones controlled
by two frictional parameters [114]. In order to supply this not accurately modeling, the
RAMMS (RAapid Mass MovementS) code [115] was mainly used to calculate the pressure
values on a site-specific avalanche path (such as Vallone della Giumenta) from initiation
to runout in a three-dimensional terrain. It is a practical tool for avalanche practitioners,
which requires a complete procedure to fulfill the morphological features and release
parameters. Moreover, it can be used to estimate runout distances, flow velocities, flow
heights, and impact forces [116–118].

4. Results

4.1. Morphometric Analysis

The study area reaches its maximum altitude on the peak of Corno Piccolo (2655 m
a.s.l.) and is characterized by a morphology that gradually slopes down to a minimum
of 1030 m a.s.l. in correspondence with Pietracamela Village. Based on the orography
of the landscape, the area can be fairly divided into three different sectors: a northern
one near Pietracamela village, a central one comprising the Prati di Tivo area, and a
southern one corresponding to the northern slope of the Corno Piccolo ridge (Figure 5).
The northern sector presents the lowest elevation, ranging approximately from 1100 to
1300 m a.s.l.; the slope values range from 0 to 40◦, with the maximum values detected in
correspondence with the N–S-oriented and, secondarily, W–E-oriented drainage lines; the
energy of the relief ranges from 250 to 350 m, with the highest values along the Rio San
Giacomo. The central sector is characterized by a flat and irregular morphology, featuring
elevations ranging from 1300 to 1700 m a.s.l., and a homogeneous slope distribution (values
between 5◦ and 20◦); the energy of the relief, on the other side, shows heterogeneous values
ranging from 250 m towards the western portion to 400 m towards the eastern one. The
southern sector, finally, presents elevations ranging from 1700 up to 2500 m a.s.l.; the slope
distribution is dominated by the highest values (between 60◦ and 80◦), with peaks detected
in correspondence with the N–S-oriented drainage lines and W–E-oriented steep scarps;
the energy of the relief ranges from 500 up to 600 m, with the highest values along the
northern escarpment of Corno Piccolo.
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Figure 5. Physiographic features of the study area: (a) elevation map, (b) slope map, and (c) local relief map. The black line
represents the study area.

4.2. Geomorphological Analysis

The study area is characterized by the outcropping of lithological sequences belonging
to pre- to sin-orogenic deposits. In detail, it is characterized by calcareous and marly
deposits outcropping in the southernmost sector, in correspondence with the Corno Piccolo
ridge. Instead, the central sector is dominated by the presence of arenaceous-pelitic and
pelitic-arenaceous deposits, mainly composed of turbiditic layers with fine sand or coarse
silt and pelitic intercalations. The bedrock is widely covered by continental deposits
(Figure 6). Scree slope deposits, mainly composed of cemented breccias, characterize the
westernmost sector and, locally, the easternmost one, near la Madonnina.

In the Prati di Tivo area, recent glacial and alluvial fan deposits are present along the
N–S-elongated outcrops; moving eastward, fluvio-glacial deposits, consisting of cemented
breccias and largely marked by landslide bodies, alternate with recent scree slope deposits.

From a geomorphological standpoint, the most recurrent features are represented by
structural, slope, fluvial, and glacial landforms (Figure 6). Concerning structural ones, in
the southernmost sector, a W–E-oriented is detectable, overlapping calcareous deposits
on overturned marly deposits. A second buried thrust is not clearly observable, but its
existence can be inferred through minor in-field exposures that highlight the overlapping
of marly deposits over sin-orogenic pelitic-arenaceous deposits. Slope landforms partly
consist of active rockfalls and complex landslides in the northern sector near Pietracamela.

Large quiescent rotational and translational slides affect the central-eastern portion of
the study area east of the Prati di Tivo area, together with localized quiescent earthflows.
Smaller rotational and translational slides are found towards the north, mainly set on
pelitic-arenaceous deposits. Finally, N–S-oriented rock gullies with debris discharges
characterize the northern slop of the Corno Piccolo ridge. Landforms due to running
water are mainly represented by a wide alluvial fan, as well as of several gullies; both
are present in the western part of the study area, within the Prati di Tivo area, the former
being set between glacial (to the West) and landslide (to the East) deposits, the latter with
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a general N–S direction and extending along the main drainage line. Finally, concerning
glacial landforms, several scarps are preserved as relict landforms in the southern sector.
Furthermore, several N–S-oriented avalanche tracks characterize the norther escarpment
of the Corno Piccolo ridge, alternating themselves with the rock gullies.

 

Figure 6. Simplified geomorphological map of the study area (modified and updated from [65,88,89]). The black line
represents the study area.

4.3. Climatic Analysis

The microclimatic features of the study area were analyzed considering the historical
thermo–pluviometric series available at the Pietracamela gauge (1043 m a.s.l.), covering a
50-year time period (1951–2004); nevertheless, the selected gauge is located approximately
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400 m below the Prati di Tivo area and at least 1000 m downstream of the main avalanches
and landslides detachment areas (Table 2). Nonetheless, for the study area, it was impos-
sible to define spatial and altitudinal meteoric features since snowfall and rainfall events
are often coupled with strong winds that can induce relevant rates of underestimations,
especially at the highest elevations.

Table 2. Main values of the temperature and rainfall, resulting from the climatic analysis at the Pietracamela gauge
(1043 m a.s.l.).

Yearly Average
(1951–2004)

Monthly Average (1951–2004)

Temperature (◦C) Temperature (◦C)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Frost days 65 Frost days 16 15 12 4 0 0 0 0 0 1 5 12

Absolute maximum 36.8 Absolute
maximum 19 20.7 25 24.5 31.5 35 35 36.8 34 27.8 25 22

Daily average 10.7 Daily average 3 3.4 5.5 8.4 12.8 16.7 19.7 19.8 16 11.3 7.2 4.2
Mean

maximum 14.6 Mean maximum 6.5 7.2 9.4 12.4 17 21.2 24.5 24.6 20.2 14.9 10.4 7.4

Mean minimum 6.7 Mean minimum −0.4 −0.5 1.5 4.4 8.7 12.3 14.9 14.9 11.8 7.7 4 1.1

Absolute minimum −14 Absolute
minimum −14 −12.8 −12.1 −7 −0.5 3 4.5 4 −1.3 −7 −7 −13

Rainfall (mm)

Total rainfall 1065.3

Maximum in 1 h 57.8 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Maximum in 24 h 268.6 Total rainfall 85.4 74.8 95.7 110.4 82.5 68.1 44.9 51.8 78.3 117.1 136.3 120.0
Rainy days 106 Rainy days 8.5 9.1 9.7 10.6 10.0 8.0 6.2 5.8 7.2 9.8 10.8 10.6

The average annual temperature is ~10.7 ◦C, with an average daily thermal excursion
of ~7 ◦C; the maximum temperatures can eventually exceed 35 ◦C, while the minimum ones
almost reach −15 ◦C. Frost days (Tmin < 0 ◦C) are ~65 per year, while ice days (Tmax < 0 ◦C)
are no more than 10 per year.

The total rainfall is moderately abundant with respect to the Gran Sasso Massif ge-
ographic location, exposed to “Tramontana” and “Bora” dry and cold winds, as well
as to “Scirocco” and “Libeccio” wetter ones, which often release the moisture taken in
charge. During the summer, the ascent of convective cells from the near L’Aquila Basin
and the middle Vomano River valley is common. The total annual rainfall is approximately
1100 mm, distributed along with an average of 106 rainy days; the hourly and daily maxi-
mum values, respectively, correspond to 58 mm and 267 mm. The meteoric regime shows
peculiar features pertaining to the Apennine–Adriatic type [81,100], with a bimodal rainfall
distribution characterized by a global maximum value in November with a secondary
peak in April and a global minimum in July/August—months not in a drought, given
the frequent occurrence of convective phenomena—with a secondary peak in February. It
should also be stressed that the monthly rainfalls never drop below 50 mm.

Snowfalls are frequent during every winter season, with high amounts with respect
to the geographic position of the study area, as previously reported in the thematic lit-
erature [100,119]. Considering the possible influence of disturbing fluxes coming from
the south and associated with negative temperatures, the study area can present cumu-
lative values among the highest of the Central Apennine area, as happened in February
2017 [119].

The performed climatic analysis confirms, even in this area, an increase of the temper-
ature values of about 1.1 ◦C during the last 50 years; unfortunately, the weather station
located at Pietracamela ceased its activity in 2004, thus making a more recent trend analysis
impossible. The rainfall regimes, on the other side, do not show significant variations
(−1.5 mm/year), but it is possible to observe a decrease of about 10% in the number of days
with precipitation rates > 1 mm from 110 to 101; consequently, the average daily rainfall
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intensities have slightly increased. Considering the recorded datasets, homogeneous and
complete data relating to short and intense precipitation events is unavailable. It was not
possible to perform a comprehensive analysis for this specific climatic aspect.

The detailed climatic analysis shows that average annual temperatures for the year
2020, as observed for the Teramo gauge (blue line in Figure 7a), was approximately 1 ◦C
higher than the conventional 30-year time period (1971–2000), known as CliNo (Climate
Normal). Consequently, the elevations of the 0 and −1 ◦C isotherms correspond to 3099 and
3296 m a.s.l., far above those calculated by Dramis et al. [120], corresponding, respectively,
to 2615 and 3028 m a.s.l. Considering that the average annual temperature recorded at the
Pietracamela (1043 m a.s.l.) and Rifugio Franchetti (2433 m a.s.l.; green line in Figure 7a)
gauges are, respectively, 10.7 and 2.6 ◦C, given a difference in elevation of about 1500 m, a
vertical thermal gradient of approximately 6.1 ◦C/km can be estimated. Thus, an average
annual temperature of 7.6 ◦C and 4.2 ◦C can be derived at, respectively, Prati di Tivo
(orange line in Figure 7a) and the avalanche detachment areas located at ~2200 m a.s.l.

 

Figure 7. Monthly average temperature (a) and monthly average rainfall (b) trends for the year 2020.
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The monthly average rainfalls (Figure 7b) show a noticeable growth with a direct rela-
tionship as the altitude increases due to an orographic effect, in accordance with previous
estimates made for this sector of the Central Apennine Chain (30 mm/100 m) [100,119].
Nevertheless, a drastic decrease of these values occurs at higher elevations, which is typical
of an arid boreal habitat. This substantial underestimation, up to 70%, occurs in areas
exposed to powerful winds during rainfall and/or snowfall events [121].

The anemometric signal is significant in the whole area from 260 up to 2400 m a.s.l.,
thus promoting the accumulation of frames and lenses above all on the ridges of Gran Sasso
Massif and in correspondence of steep channels and depressed morphologies downwind of
the main flow during and after snowfalls (Figure 8a). In particular, at high elevations, the
number of days with a maximum wind speed greater than 30 km/h, sufficient for inducing
a reworking of the snow cover, is around 40. Main winds come from the second and the
third quadrants during the winter, reaching speeds greater than 200 km/h (Figure 8b).

 

Figure 8. (a) Monthly average wind speed for the year 2020 and (b) monthly wind speed recorded at Rifugio Franchetti
(2433 m a.s.l.). Black arrows indicate the monthly average direction of winds.
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4.4. Nivological Analysis

By accounting for limits derived from the available nivological data, as previously
reported in the Materials and Methods section, the following can be stated:

• The Prati di Tivo area shows a regular snow cover every year relatively abundant in
certain winter seasons, such as 1994/1995, 1998/1999, and 2004/2005, with cumulative
values greater than 400 cm. Only during the 1988/1989 winter season, the cumulative
was less than 100 cm (Figure 9a). Recently, a more significant snowfall irregularity
occurred, with long phases characterized by the absence of snow phenomena, alter-
nating with short but intense heavy snowfalls events. Accumulations seem to have
increased against a lower persistence of the snow cover. The trend analysis referring
to the aforementioned period depicts a clear rise in the signal—over 3 cm per winter
season—deriving from the highly irregular nivometric trend, with a hint of a ten years
of periodicity and a more recent signal of about 3.8 cm per winter season detected on
average for the Central Appennines Chain [100,119,122].

• Heavy snowfalls already occur from the middle of November. They are common
throughout the winter and until the second half of March, becoming sporadic in April
(Figure 9b). By accounting for the available datasets, the absolute monthly maximum
values occurred in January 2017 at about 425 cm distributed in only seven days [119].
The winter’s least snowy month is estimated to be December. The snowfall regime
(Figure 8b) presents a unimodal distribution, with the maximum values detected in
January and February. Arguably, for altitudes greater than 2000 m a.s.l., the trend
tends to become fairly regular if not bimodal with a second peak during the spring,
given the notable snowfall increase in March and April, as detected at the Campo
Imperatore gauge (2137 m a.s.l.).

• The number of snowy days shows considerable intra-seasonal variations, strictly
dependent on the synoptic seasonal evolution. This aspect was particularly evident
in the last decade, albeit in a context of significant snowiness, with values ranging
between 25 and 35 events per season, with peaks of about 40. During the last seasons, a
general decrease of the phenomenology seemed to be occurring; these are increasingly
concentrated in a few days and present a greater intensity, which underlines the
climatic extremization in progress. Furthermore, a delay at the beginning of the snowy
season seems evident, along with a greater frequency of events at the beginning of the
spring season.

• Daily snowfall data (Figure 10a) highlight the possible occurrence of snowy events of
high intensity and short-to-moderate durations. In particular, the maximum recorded
daily amount of fresh snow is around 70 cm (13 February 1986 and 23 March 2009).
Moreover, it is essential to consider unofficial recordings performed on 17–19 January
2017 (when abundant avalanche events occurred, reaching the Prati di Tivo area and
causing considerable damages to infrastructures and ski facilities), which pointed out
a daily maximum of 140 cm on 17 January and of 310 cm for the whole three-day
period.

• Significant sudden temperature changes occurring more frequently after or during
snowfalls generally disfavor the cohesion process between the strata composing the
snow cover, thus causing a hypothetical increase of the avalanche hazard. Neverthe-
less, a clear Mediterranean type, the climatic extremization, and a not-excessively-high
elevation determine an early beginning of the accelerated destructive metamorphism
processes, with a subsequent quick decrease of the snow depth values on the ground
up to the maximum elevation of avalanche-prone areas. Furthermore, close to de-
tachments areas, a strong wind power occurring during and after snowfalls induces
rapid mechanical metamorphism. In the case of intense snow events followed by
exceptionally cold climatic phases and variable weather conditions, destructive meta-
morphism processes take place very slowly; constructive metamorphism is indeed
established. The thickness of the snow cover remains relatively abundant for a long
time (Figure 10b).

186



Land 2021, 10, 1176

• Days with mixed snowfall and rainfall events or entirely rainy ones are also estimated
to occur during the winter season. This is connected to the synoptic conditions
inducing rainfall and to the eventual mixing within the frontal system. Field evidence
and surveys in specific sites suggest that this has a significant repercussion on natural
avalanche occurrences, especially below 1900 m a.s.l.

• From field surveys, as well as from the avalanche inventory and literature data (i.e., Me-
teomont service), it results that, in correspondence with a sudden temperature rise,
avalanche events may occur with loose surface cohesion values already in the 24–36 h
following the snowfall events, involving many buildings and anthropic structures
present in the Prati di Tivo area.

 

Figure 9. Seasonal fresh snow trend for the timespan 1986–2009 (a) and snowfall regime (b) at the Prati di Tivo gauge
(1450 m a.s.l.).
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In order to provide a complete and updated description of the nivometric trends, the
historical series and datasets available at the Rifugio Il Ceppo gauge (1340 m a.s.l.) were
analyzed. This weather station was taken into account since it shows snowmaking very
similar to that of Prati di Tivo, even if it is located on the eastern side of the neighboring
Laga Mountains at a distance of about 20 km from the study area.

 

Figure 10. Daily snowfall (a) and snow cover thickness (b) at the Prati di Tivo gauge (1450 m a.s.l.).

As graphically reported in Figure 11, the nivometric trend spanning over a 40-year
time period (1979–2019) confirms the increase of snow precipitation. However, it is less
marked than that evident for the Prati di Tivo area (Figure 8a), with a minimal difference in
the recent interseasonal variations (2.1 cm vs. 3.1 cm/season), whose trends are increasingly
marked.

188



Land 2021, 10, 1176

 

Figure 11. Seasonal fresh snow at Rifugio Il Ceppo (1340 m a.s.l.). The blue dashed line represents the 5-year moving
average.

4.5. Snow Avalanche Hazard Assessment

A stepwise methodological approach allowed us to perform a complete snow avalanche
hazard assessment, also taking into account the study area’s main physiographic and geo-
morphological features. The avalanche-prone areas along the main N–S-oriented avalanche
tracks characterize the northern escarpment of the Corno Piccolo ridge, which alternate
with several rock gullies. The area shows elevation values ranging from 1320 to 2270 m
a.s.l. As confirmed by the previous data and analysis [123,124], the avalanche paths largely
affected residential structures and ski facilities, causing significant damages in recent times.

Firstly, a snow avalanche inventory analysis was carried out. The geodatabase re-
trieved from the State Forestry Corps of Italy and the Abruzzo Region stored and collected
almost 800 avalanches over the whole Abruzzo Region from 1957 to 2013. The yearly
number ranged up to 70 in the last decades, and about 40 events were recorded in the
previous years covered by the catalog, with a poor direct correlation with the snow thick-
ness. As graphically reported in Figure 12, for the Prati di Tivo area, the database reports
131 snow avalanches: 10 of which accounted as slab snow avalanches, 26 as glide snow
avalanches, 54 as powder snow avalanches, 9 as loose snow avalanches, and 32 as mixed
or not classified snow avalanche.

Additionally accounting for the main geomorphological features, a preliminary analy-
sis of the spatial distribution of snow avalanches over the study area shows the northern
escarpment of the Corno Piccolo ridge almost totally affected by avalanche phenomena
whose detachment areas are located at elevations ranging from 1700 up to 2550 m a.s.l.
These phenomena mainly involved several N–S-oriented rock gullies and trails, often
anastomosed, allowing the snow movements to extend heterogeneously, depending on the
type and amount of snow involved.

Moreover, to provide a complete inventory, official avalanche data of the Abruzzo
Region were integrated with the literature data, local chronicles, eyewitness reports of
past avalanche events, and studies of previous events recorded in various historical and
technical archives.
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Figure 12. Historical snow avalanche map of the study area (1957–2013 period).

The study area has suffered a rapid and intense urban development for sport tourism
purposes since 1965, although several avalanches have occurred in the past, according to
local chronicles and eyewitness reports. These events were also integrated into the snow
avalanche inventory analysis, enabling the mapping of the maximum extent of avalanches
in the Prati di Tivo area. They are chronologically reported as follows:

• April 1929 (not reported in the official database of Abruzzo Region)—A large avalanche
event reached the Guide Shelter (Rifugio delle Guide in Italian).

• 7 April 1978—A large avalanche, detached from the northern escarpment of the Corno
Piccolo ridge, moved down through rock gullies and affected the ski lift and the other
facilities downstream to the Madonnina location.

• 8 January 1981—An avalanche, detached from the northern slopes of the Corno Piccolo
ridge, affected some houses and buildings located at Prati di Tivo.

• 2 March 1984—An avalanche affected the study area and posed in a threat the Madon-
nina chairlift bar.
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• 3 March 1999—A large avalanche hit the study area, causing several damages to the
ski facilities (e.g., pylons, intermediate station, and ticket office).

The resulting data highlight a scarce spatial characterization of snow avalanches along
the study area. Given the proximity of different detachments sites, the reconstruction of
past avalanche activity remains quite difficult, distinguishing events occurring from neigh-
boring detachment areas. Consequently, considering the absence of an updated Probable
Avalanche Location Map—CLPV (Carta di Localizzazione Probabile delle Valanghe in
Italian) [44], an analysis of snow avalanches’ paths was performed to identify areas likely to
be exposed to avalanche hazard. This “static” approach [105,125] was based on the analysis
of morphological features for delineating the predisposition to snow avalanche occurrence
within the whole northern escarpment of the Corno Piccolo Ridge, also considering the
spatial distribution and the recurrence of the main phenomena. Six main avalanche paths
were selected (Figure 13) that are considered the most likely to occur and affect houses,
roads, and sporting infrastructures. Moreover, most of the chosen sites were devoid of ter-
minology, and according to their proximity to isolated buildings or specific sites/localities,
it was decided to provide detailed descriptions for some of them.

 
Figure 13. Snow avalanche paths recorded and mapped in the present study.
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The exceptional snowfall events generating the snow avalanche disaster involving
the Rigopiano Hotel in January 2017 [75,126,127] caused several collateral events in the
surrounding areas, including the Prati di Tivo area. They generated a wide snow avalanche
along the Vallone della Giumenta (Figure 13) and determined acute injuries to the Prati di
Tivo residence (Figure 14).

Figure 14. Detail of damage caused by the Vallone della Giumenta avalanche to the Prati di Tivo residence on 18 January
2017 (source Il Martino, 2017). For the avalanche path’s location, see Figure 12.

This event led to the definition and realization of the first Avalanche Hazard Map of
the entire Central Appennines area within the Avalanche Hazard Exposure Zones Plan—
PZEV (Piano delle Zone Esposte a Valanghe in Italian). At the same time, the PIDAV was
presented to develop prevention, mitigation, and management activities of ski facilities
directly exposed to avalanche dynamics [100]. In this context, the nivometric dataset
available at Prati di Tivo gauge (1450 m a.s.l.) was widely analyzed to derive the required
parameters for dynamic snow avalanche modeling (Table 3). This analysis allowed us
to define the possible return times of snowfall events at different periods. In detail, the
relationship between the maximum height of the snow cover (Hs) and the increase of
the snow cover height over three consecutive days (Dh3gg) revealed that snow events
(i.e., January 2017) that created a Hs > 3 m can be statistically considered as significant
outliers (std > 3) with potential return times far exceeding 300 years.

Table 3. Main nivometric parameters required for the return time estimations, recorded at the Prati
di Tivo gauge (1450 m a.s.l.). N.B.: Hs is the height of the snow cover and DH3gg is the increase of
the snow cover height over three consecutive days.

Return Time (Year)

Hs (t)
cm

5 10 15 30 50 100 150 200 300 500
154 177 191 213 229 251 263 272 285 301

Return Time (Year)

DH3gg (t)
cm

5 10 15 30 50 100 150 200 300 500
64 78 86 99 109 122 130 135 143 153
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A thematic map elaborated following the AINEVA criteria [31] and integrated with a
detailed nivological analysis is graphically shown in Figure 15. This map clearly shows the
main areas exposed to avalanche hazards. Considering the spatial distribution of the snow
avalanche paths, as reported in Figure 12, it is possible to delineate the transit and invasion
zones, marked with different colors according to the estimated avalanche hazard and the
potential return periods (such as T = 30, 100, and 300 years). The analysis of the map
highlights different scenarios: with a return time equal to 30 years, all tourist, sporting, and
residential facilities can be affected by significant snow avalanche phenomena characterized
by paths that reach the Prati di Tivo area at elevations of 1450 m a.s.l., while avalanches with
a return time equal to 300 years can get a wider spatial extension (downward to 1370 m.a.s.l.)
comparable to the maximum extent of the historical snow avalanches previously described
(dashed blue line in Figure 12).

 

Figure 15. Avalanche hazard map of the Prati di Tivo area. Areas affected by snow avalanches with a
return time equal to 30, 100, and 300 years are shown, respectively, in red, blue, and yellow.
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5. Discussions

Snow avalanche hazards are computed to be increasing worldwide due to climate
changes [128,129]. Among all the climatic contributors, climate extremization is identi-
fied as one of the factors influencing the behavior, irregularity, and frequency of snow
avalanches [130,131]. In some areas, it causes the thinning and shortening of the duration
of snow cover, contributing to an increased irregularity that raises the hazard. As a re-
sult, a correct climatic analysis involving investigations of changes in the snow cover and
snow avalanche hazard assessment is vital for administering many crucial societal issues
concerning territorial planning, risk mitigation, and resilience activities [25,132,133].

Exposure to this hazard may be voluntary, as is the case with skiing, or involuntary,
such as on public transportation corridors and settlements. According to the literature and
technical reports [31–33], the techniques used to evaluate avalanche hazards and risks are
different depending on the circumstances.

Here, we attempted to understand the main interrelationships between climate ex-
tremization and environmental risk in a mass movement-prone area, such as the Prati di
Tivo area. We discussed the stepwise approach to be followed for a correct snow avalanche
assessment by combining the spatial distribution of the snow avalanches and the main
climatic features of the study area. It was also essential to compare the findings with the
detailed geomorphological features of the Vallone della Giumenta to outline the role of
climate extremization in the triggering of the avalanches.

The combination of preliminary results and thematic maps allowed us to better char-
acterize the study area from a morphometric, geomorphological, climatic, and nivological
standpoint. In such a complex and mass movement-prone area, it was necessary to activate
a risk mitigation protocol to develop land use policies and activities to define a significant
snow avalanche assessment. According to the PIDAV project [99], the safety services for
ski resorts and facilities at Prati di Tivo were updated by installing 12 Obellx® gas ex-
ploders [109,134] to manage short-term avalanche risks better. The installation was realized
in correspondence with the main detachment areas at elevations ranging between 2100 and
2250 m a.s.l.

Moreover, as part of the increasingly more frequent processes of climate extremization,
on 24–26 March 2020, a heavy snowfall event affected the study area. It was acknowledged
as a prevalently stormy snowfall, which brought 90 cm of fresh snow (with a density of
140 kg/m3) over the ski facilities located at Prati di Tivo at elevations of about 1400 m a.s.l.
Given the high snow accumulation rates, explosive pitches were performed on 24 March
immediately after the beginning of the snowfall event and on March 26 during the main
event, inducing moderate detachments of fresh, humid, and low-cohesion snow. Even if
the preventive activity of Obellx® gas exploders reasonably mitigated the snow dynamics,
on the night of 27 March, around 4:20 a.m., two natural snow avalanche events occurred
following new abundant snowfalls and affected the northern escarpment of the Corno
Piccolo ridge (Figure 16). A detailed field survey and a specific site investigation were
also performed in the early morning of 28 March, thanks to a clear weather improvement.
Considering the information gathered from this survey, it was possible to make several
essential deductions:

• Slightly downstream of the prominent peak (Corno Piccolo, 2655 m a.s.l.) at an
elevation of about 2550 m a.s.l., a detachment area was visible, as graphically shown in
Figure 16a. Moreover, according to no official local chronicles and eyewitness reports,
it seemed to correspond with the site of an avalanche never reported and stored in the
Geodatabase of the Abruzzo Region.

• The whole avalanche path mainly affected the Vallone della Giumenta (for the site’s
location, see Figure 13), with a clearly outlined detachment area at an elevation of
2300 m a.s.l. (Figure 16b).

• Significant snow accumulations generated by the snow mass releases produced by the
Obellx® devices on the 25th and 26th of March were visible throughout the escarpment.
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Figure 16. Photo documentation of the snow avalanches of March 2020. (a) Evidence of the summit detachment area at the
base of Corno Piccolo with a clear surface slab and (b) a simplified snow avalanche path (in red) affecting the Vallone della
Giumenta and involving the main ski facilities.

The presence of interdigitated snow mass accumulations belonging to the March 2020
avalanches, both partially converged into the Vallone della Giumenta, testified the dynamic
avalanche framework of the study area. Unfortunately, this peculiar nivological setting
makes it impossible to define the temporal evolution of the two different events. For these
reasons, preliminary one- and two-dimensional avalanche simulation models (e.g., AVAL-
1D and RAMMS [39,112]) were applied to better describe the possible evolution of the
documented avalanche events at a particular site (such as the Vallone della Giumenta), as
well as to calculate the consequences of possible hazard scenarios. The avalanche modeling
was carried out by employing RAMMS software and implemented with GIS techniques.
In detail, it was performed both by considering a scenario characterized by a limited
thickness of the snow cover mitigated by the Obellx® devices’ activity and a scenario in
which the downstream slopes were totally covered by a thick snow cover (i.e., not secured
by the preventive action of the Obellx® devices). The resulting data defined different
stopping distances and paths of the selected avalanche under scenarios driven by other
transmitted pressures, as graphically shown in Figure 16. It showed how, in the absence of
the preventive action of the Obellx® devices (red stars in Figure 16), an avalanche event can
predominantly occur along the Vallone della Giumenta. Moreover, transmitted pressures,
which vary from 30 to 150 kPa, and different heights of snow cover (Hc = 0.5, 1.0, and
1.5 m) were accounted for. Under these scenarios, the avalanche path can widely reach
the Prati di Tivo area, involving the residence (reported as the hotel in Figure 14) and the
four-seat chairlift line (Figures 16b and 17).

Snow avalanches can generally act as geomorphic agents [135]. Snow avalanches
can exert considerable erosive forces playing a significant role in landscape development.
Evaluating the morphological features of the mass movement-prone area and the main
avalanche features is essential to quantify the material entrained by the avalanche and
transported to the deposition zone [136].

A semi-quantitative analysis was applied to the modeled avalanche path at Val-
lone della Giumenta (Figures 13 and 17) to better describe the geomorphic role of snow
avalanches at the Prati di Tivo area. This specific site investigation presents peculiar
morphometric features and snow avalanche pressures accounted as representative of the
main avalanche events in the study area. The analysis focused on evaluating the pre- and
post-avalanche setting, highlighting the variations in the contributing area caused by the
snow avalanche along the Vallone della Giumenta. This evaluation showed a variation that
increased by about two-fold (>50%), as the contribution of each avalanche track and rock
gully was significant in the geomorphic action of the avalanche. It is graphically shown in
Figure 18 and summarized in Table 4.
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Figure 17. Results of the avalanche dynamics simulation under different transmitted pressures and heights of snow cover:
(a) Hc = 0.5 m, (b) Hc = 1.0 m, and (c) Hc = 1.5 m.

In conclusion, the resulting data allowed us to properly define the main steps of the
developed risk mitigation protocol. It was activated following some recent damaging
snow avalanches affecting the Prati di Tivo area to better develop mitigation activities
and land use policies needed for the management of permanent settlements, recreation
infrastructures, and ski facilities. The relevance and the impact of the work are represented
by: (1) the provision of new data on the physiography–geomorphology of the study area
and the mass movement-prone areas, (2) the outline of a multidisciplinary methodological
approach for the definition of snow avalanche critical areas and the configuration of hazard
protocols not yet developed for the Central Apennines, and (3) a technical scientific basis
to develop the civil protection plans required to increase the knowledge of citizens and
interested stakeholders about proper land management considering multi-hazard scenarios
(i.e., snow avalanches and landslides).
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Figure 18. Pre- and post-avalanche landslide contributing area.

Table 4. Dimensions of the possible landslide area, modified by snow avalanche dynamics.

Pre-Avalanche
Landslide Area

(km2)

Snow Avalanche
Area
(km2)

Post-Avalanche
Landslide Area

(km2)

0.363 0.645 0.769

6. Conclusions

Snow avalanches are among the most destructive natural hazards threatening built
structures, ski resorts, and landscapes in cold and mountainous regions. The Central
Apennines high-mountain environment has been largely affected by different types of
mass movements in recent years, accentuated in frequency and magnitude due to changes
in the climate regime. The increase in temperatures, the irregularity of intense weather
events, and several heavy snowfall events determined an increase in landslide and/or
snow avalanche hazards, especially in areas with well-developed tourist facilities.

The Prati di Tivo area has been widely affected by several mass movement phenomena.
Like other mountain territories of the Abruzzo Region, the study area is not immune to
the general increased tourist fruition and related snow avalanche risk. It is located on the
northern slope of the Gran Sasso Massif (Central Italy), showing peculiar meteorological
and snow characteristics that differ from the rest of the Alps and Central Apennines. This
work allowed us to better define and analyze the geomorphological and climatic features
of the study area. The climate extremization results in relation to environmental risk
reduction were evaluated by combining different thematic datasets (e.g., morphometric
and geomorphological features, climatic and nivological data, technical information, and
numerical modeling). In detail, we carried out a snow avalanche hazard assessment to
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outline a multidisciplinary methodological approach for defining snow avalanche-critical
areas and a technical scientific basis to set up accurate civil protection plans and land
management activities. The analysis was performed following a stepwise methodological
approach, including the snow avalanche inventory analysis, the analysis and mapping
of snow avalanches’ paths, the elaboration of a snow avalanche hazard map, and the
definition of numerical models.

Recent exceptional snowfall events in the Abruzzo Region (i.e., January
2017 [75,126,127]) caused several damages and injuries in the surrounding Prati di Tivo
area. Consequently, the safety services for ski resorts and facilities were updated by
installing 12 Obellx® gas exploders [109] to better manage short-term avalanche risks.
However, despite the activation of this risk mitigation protocol, the recent snow avalanche
event that occurred on 26 March 2020 testified that the local geomorphological dynamics
amplified by the climatic extremization that could lead to approximate and insufficient
results deriving from planned safety services. Understanding the likely scenarios and
consequences of a changing climate on snow avalanche behavior is essential for planning
and managing mountain developments. More specifically, the climatic evolution, char-
acterized by further increases of the average winter temperatures and increasingly more
irregular and intense snowfalls, could lead to avalanche events of even greater magnitudes
compared to what was observed until now and, consequently, will determine a major need
for constant updates of the calculations of the new snow avalanche paths.

Combining and integrating morphometric, geomorphological, climatic, and nivologi-
cal analyses, it was possible to further advance the methodologies for a snow avalanche
hazard assessment, defining the existing relationships between climate extremization and
environmental risk in a mass-movement prone area, such as Prati di Tivo area. The result-
ing data also showed that, to perform a complete snow avalanche hazard assessment, it
is necessary to consider the geomorphic role of snow avalanches, which can exert consid-
erable erosive forces extending the contributing areas. Finally, a thorough expert-based
study would be highly desirable to constantly evaluate the geomorphological and climatic
dynamics of the study area. This kind of study can represent a valuable and operative tool
for civil protection activities and territorial planning in relation to emergency management
and mitigation measures by assuming the potential occurrence of extreme nivological and
meteorological scenarios.
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Abstract: Connections between Plio-Pleistocenic tectonic activity and geomorphological evolution
were studied in the Pardu Valley and Quirra Valley (Ogliastra, East Sardinia). The intensive Qua-
ternary tectonic activity in Sardinia linked to the opening of the Tyrrhenian Basin is known. In
Eastern Sardinia, it manifests with an uplift that is recorded by geomorphological indicators, such
as deep-seated gravitational slope deformation, fluvial captures, engraved valleys, waterfalls, and
heterogeneous water drainage. The Pardu River flows from the NW toward the SE and then abruptly
changes direction toward the NE. At this point, a capture elbow adjacent to the current head of the
Quirra River is well developed. The Quirra River, in its upstream part, flows at altitudes approxi-
mately 200 m higher than the Pardu River. It also shows an oversized and over-flooded valley with
respect to the catchment area upstream. This setting indicates that the Pardu River, which previously
flowed south along the Quirra River, was captured by the Pelau River. We analyzed long-term
landslides with lateral spreading and sackung characteristics, which involve giant carbonate blocks
and underlying foliated metamorphites in both valleys. The use of LiDAR, high-resolution uncrewed
aerial vehicle digital photogrammetry (UAV-DP), and geological, structural, and geomorphological
surveys enabled a depth morphometric analysis and the creation of interpretative 3D models of
DGSDs. Space-borne interferometric synthetic aperture radar (InSAR) data using ERS and Sentinel-1
satellites identified downslope movement of up to 20 mm per year in both Pardu Valley flanks.
Multi-source and multi-scale data showed that the state of activity of the DGSDs is closely linked to
the geomorphological evolution of the catchment areas of the Rio Pardu and Rio Quirra. The intense
post-capture erosion acted in the Rio Pardu Valley, giving it morphometric characteristics that were
favorable to the current evolution of the DGSDs, while the Rio Quirra Valley presents paleo-DGSDs
that have been fossilized by pre-capture terraced alluvial deposits.

Keywords: morphotectonic; morphostratigraphy; DGSDs; river capture; fluvial terraces; Sardinia; Italy

1. Introduction

The Pliocene and Quaternary geodynamic processes related to the Tyrrhenian basin
opening led an uplift in Sardinia [1–3]. This is evidenced by a morphotectonic setting
linked to fluvial and gravitative morphologies [4,5]. Therefore, the hydrographic basins
of the Rio Quirra and the Rio Pardu have been studied in detail in order to analyze their
evolutionary scenarios in relation to a river capture.

Rio Pardu and Rio Quirra are two of the most important rivers in central eastern
Sardinia. The two basins are separated by a river capture caused by the Rio Pelau, which
isolated Rio Pardu, the catchment area of Rio Quirra. Rio Pardu flows from northwest to
southeast and then flows towards the northeast through a river capture elbow with the
name of Rio Pelau. Rio Quirra flows from the north to the south parallel to the coast and
then abruptly bends towards the Tyrrhenian Sea near the mouth. The flow directions are
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closely related to the structural conditioning of the main alpine structural setting and are
linked to the opening of the Tyrrhenian basin [6,7] (Figure 1).

 
Figure 1. Geographical location and structural features of the study area, modified after [8]; red lines represent thrust fronts;
white lines are the Sardinian–Corse Block translation at 30 Ma; the pink line represents the Sardinian–Corse Block translation
at 25 Ma; the yellow line represents the Calabrian block translation at 10 Ma; the green line represents the Calabrian block
translation at 5 Ma [2].

River drainage systems are very dynamic features of the landscape. Geological
changes can cause fluvial captures, leading to abnormal large-scale river networks [7,9–16].
The main geological changes that cause river captures are glaciation and tectonic move-
ments associated with earthquakes and faults [17]. Tectonic movements, especially land-
scape uplift, are much slower than glacial processes. Therefore, the development of
tectonic river capture normally requires hundreds of thousands of years, or even millions
of years [18,19].

The particular evolutionary characteristics of the Pardu and Quirra valleys in rela-
tion to slope instability dynamics have been the subject of various studies [4–7]. This
sector of Sardinia represents one of the most susceptible areas to landslides in the region.
This high hazard is closely linked to the particular vulnerability to important weather
events, especially rainstorms. Rainfall-induced landslides represent a relevant threat to
the population, infrastructure, buildings, and cultural heritage [20–24]. Among the most
important catastrophic geological events in Sardinia are those that occurred in the Rio
Pardu valley, which involved the inhabited centers of Gairo, Osini, Ulassai, and Jerzu.
Between 15 and 17 October, 1951, extreme rainfall of about 1000 mm involved this area,
triggering mudflows and landslides. This catastrophic event caused abandonment of the
villages of Osini and Gairo [5,7,25]. These settlements have been rebuilt at least in part,
sometimes with transfer to another area on the same slope. However, these measures
proved useless, as the new sites present the same geo-hydrological risks as the previous
ones [26,27]. Landslides affected schistose Paleozoic metamorphites on the left slope, while
on the right, there was also widespread rockfall. Recent studies have highlighted the
presence of deep-seated gravitational slope deformations with sacking [28–32] and lateral
spread [33–35] characteristics that affect the sub-horizontal carbonate succession and the
underlying metamorphites [6].

Deep-seated gravitational slope deformation (DGSD, [36]) is a complex type of rock
slope failure characterized by large dimensions generated in stone rocks [37]. DGSDs are
characterized by slow movements that can suddenly accelerate and cause catastrophic
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collapse of sections of the deformed slopes [30,38–41]. Therefore, this phenomenon rep-
resents an important geo-hazard in relation to the deformation of large infrastructures
and secondary collateral landslides. Although DGSDs play an important role in slope
evolution and geo-hydrological risk, knowledge about them was scarce for a long time [42].
They are characterized by very slow deformation rates [34], landform assemblages (such as
double-crested ridges, trenches, synthetic and antithetic scarps, tension cracks, and convex
bulged toes), and deep basal shear zones [43–47]. Often, shear zones present characteris-
tics of cataclastic breccias with an abundant fine matrix [48] and thicknesses up to tens
of meters [41]. DGSD is a common phenomenon in the relief of the Mediterranean Sea
in relation to the particular geodynamic context that characterizes the region and to the
widespread orogenetic chains. In this context, DGSDs play an important role in slope relief
evolution, showing at least geometric analogies with gravity-accommodated structural
wedges. Often, DGSD phenomena are influenced by the scale structural context of the
slope and use pre-existing tectonic structures (fault and thrust) to guide their evolution,
which is also in relation to a reactivation linked to a slope stress field variation [49,50].

In Sardinia, the studies and evidence of DGSDs are quite scarce, but the distensive
tectonics and the Plio-Quaternary uplift could justify the favorable conditions for the devel-
opment of DGSDs, which could also be due to local reactivation of Hercynian and Alpine
tectonic structures. In this context, the slope evolutionary characteristics are analyzed—in
particular, the DGSDs and the evolution of watercourses in relation to the uplift. The aim
is to correlate these different aspects through geomorphological analysis with both field
surveys and remote sensing techniques. Furthermore, the choice to analyze these basins
takes on a particular characteristic due to the economic and social repercussions that the
conditions of instability of the slopes determine in the populations of the towns of Ulassai,
Osini, Jerzu, and Gairo. In fact, as is well known, these inhabited centers are continually
threatened by disasters. Different types of interventions were carried out to protect in-
habited centers and infrastructures, but they were carried out without a global study of
the problem and, therefore, without real knowledge of the evolutionary modalities of the
valley and the real gravitational dynamics of the slopes. Understanding the kinematics
and temporal behavior of DGSDs and landslides is important for designing monitoring
systems based on strong process knowledge. In some cases, continuous monitoring is the
only way to reduce risk [51–55].

We hypothesize that the Plio-Quaternary tectonics and uplift in the Ogliastra area are
the main forcing mechanisms for sustaining the necessary gravitational forces of DGSDs.

Here, we present an innovative approach for analysis of DGSDs and fluvial dynam-
ics by using morphotectonic, morphostratigraphic, and geomorphic data and time-series
InSAR data in the Pardu and Quirra rivers. We also integrated stratigraphic and morpho-
tectonic data of the drainage basin scale to support our observations and analyses about
the relation between DGSD activity and fluvial capture.

2. Geological Setting

East-central Sardinia (Italy) is characterized by widespread Jurassic dolomitic plateaus—
called “Tacchi” in Sardinia—overlying a Paleozoic basement (Figures 2 and 3a,b) [56,57].

The area is characterized by the Pardu River Valley in the north, the Quirra River
Valley in the south, and the Rio Pelau toward the east (Figure 2). The geological basement
primarily comprises low-grade Paleozoic metamorphites affected by complex plicative
structures, while in the coastal sector, there are widespread outcrops of carboniferous
granites placed in the terminal phases of the Hercynian orogeny [1,59–61]. The major
metamorphic Paleozoic units are the Filladi del Gennargentu Formation and Monte Santa
Vittoria Formation, which are constituted by metasandstones, quartzites, phyllites, and
metavolcanites (Middle Cambrian–Middle Ordovician) [57,62,63]. The summit of the
metamorphic basement has suffered chemical alteration associated with a warm humid
climate during the Permian and Triassic periods [64,65].
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The marine and transitional Mesozoic sedimentary succession rests on the metamor-
phic basement in angular unconformity. These Mesozoic deposits are extensive and deci-
pherable from their plateau morphology and are clearly visible along the right slope of the
Rio Pardu and the Rio Quirra (Figure 2). The basal layers are primarily fluvial sediments of
the Genna Selole Formation (Middle Jurassic) (Figure 3d), which are overlain by dolomitic
limestones of the Dorgali Formation (Middle–Upper Jurassic) (Figure 3e). [57,64,66,67].

 
Figure 2. Geolithological sketch map of the study area based on geological data of the Autonomous Region of Sardinia.
Continental margin topography by [58]. Black dashed lines show the analyzed rivers.
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Figure 3. Lithostratigraphic sketch of lithological units: Low-grade metamorphic rocks: (a) Monte
Santa Vittoria Fm; (b) Filladi del Gennargentu Formation; (c) granitic plutonic complex and dikes;
marine and transitional Mesozoic sedimentary succession; (d) gluvial and deltaic conglomerates,
sandstones, and mudstones (Genna SeloleFormation); (e) dolostone (Dorgali Formation); (f) cemented
paleo-rockfall deposits; (g) paleo-rockfall deposits; (h) active rockfall; (i) slope deposits; (l) terraced
alluvial deposits; (m) alluvial deposits (modified after Demurtas et al. [6]).

The Genna Selole Formation [67,68] represents a mixed succession of siliciclastic to
siliciclastic–carbonate deposits. The presence of clay layers is important as a predisposing
factor for lateral spread. The Dorgali Formation is represented by dolomitic sequences
with thicknesses of up to tens of meters. The lower part, with a thickness of approximately
30 m, is affected by marl intercalations, whereas the upper part is typically massive. The
attitude of the strata of the Mesozoic units is sub-horizontal with a dip of approximately
N90/0–5◦, while at the plateau edges, it can reach a dip of up to 40◦ and a direction parallel
to the slope owing to the DGSDs. Quaternary covers, which are represented by continental
deposits, are primarily gravitative and alluvial deposits. The most extensive outcrops are
represented by landslide deposits, including rockfalls, toppling, and collapsed DGSDs, and
are abundant in the lower part on the right slopes of the Pardu Valley and Quirra Valley
(eastern slope of Monte Arbu). Downslope, actual and terraced alluvial deposits have also
been identified, and they are well developed and hierarchized in the Rio Quirra [57].

The deposits of the rockfalls and toppling landslides have been characterized by
their different sedimentological features based on age (Figure 3f–h). These deposits are
associated with rockfalls affecting the plateau edge wall and the collapse of some parts of
the DGSDs [6].
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3. Geodynamic Setting

The river networks’ geometry and gravity processes show a young conformation
of the landscape, which is typical of a recent tectonic setting. The geodynamic setting
is associated with the collisional dynamics between the African and European plates [2]
(Figure 1). The structural setting is associated with the Alpine cycle, which first appeared
with a strike-slip fault in the Oligo–Miocene, and then in the Pliocene and Quaternary with
an extensional component [1–3,56,69–72].

The major features in the study area are the NW–SE and N–S faults on which, respec-
tively, the Pardu Valley and Quirra River are engraved, and the secondary fault directions
include ENE–WSW and NNE–SSW [57].

The Plio-Quaternary tectonic phase is associated with conspicuous N–S faults [73].
These rectilinear and normal faults are also evident in the continental margin and control
its morphology (Figure 2). In the continental region, these N–S faults are associated with al-
kaline basalts with an age of approximately 3.9 Ma—Pleistocene [74]. Especially during the
upper Pliocene, a general areal elevation occurred throughout the island, highlighted by the
traces of the paleo-surfaces and by the numerous and superimposed paleo-hydrographies;
moreover, the Neogenic sediments, which were already affected by Oligo-Miocene Tec-
tonics, are currently also found at altitudes of 700 m, such as on the Tacco di Laconi, and
are widely found above 500 m of altitude in various locations on the island. The reasons
for these events are related to the more general distensive tectonics that affect the whole
Tyrrhenian area [75].

Based on preliminary geodetic data from the Peri-Tyrrhenian Geodetic Array network,
Ferranti et al. (2008) [76] revealed the presence of low internal deformation in Sardinia.
In Sardinia, seismicity is typically scattered and sporadic, except for the dozen tremors
detected following the ML4.7 earthquake of 7 July 2011 in the Corsican Sea, which pri-
marily characterized the edges of the continental lithosphere block. Significant seismic
events also occurred in the eastern sector—in particular, three events with a magnitude > 4
(26 April 2000, magnitudes ML 4.2 and 4.7, and 18 December 2004, magnitude ML 4.3)—
located in the central Tyrrhenian Sea, approximately 60 km east of Olbia in the Comino
depression [77].The most recent low-magnitude earthquake events were ML 1.8 (Escala-
plano, 4 April 2019) and ML 1.6 (Perdasdefogu, 14 October 2020) [78].

Along the Ogliastra coast, recent movements have acted by conditioning the trend of
the hydrographic network and the morphological evolution. The basaltic plateau of the
Teccu in Barisardo can be related to these movements along an N–S line.

The Sardinian continental margin started from around 9 Ma, following the opening of
the Tyrrhenian Sea, which caused the thinning of the continental crust and the formation
of tectonic depressions, which are now sites of deep intra-slope basins.

The continental margin off the Ogliastra is represented by the continental shelf, the
continental slope, and the plain called the Ogliastra basin, which reaches the deepest point
of the whole Sardinian margin at 1750 m depth. The continental shelf is very narrow with
less than 10 km of width, and it is indented by several submarine canyons [58,70].

4. Geomorphological Setting

The landscape, which is characterized by sub-horizontal carbonate plateaus, represents
the result of the paleogeographic evolution of the region. The current dolomitic plateaus
represent the extensive carbonate sedimentation due to the Jurassic marine transgression
on the peneplanated Paleozoic metamorphites during the Permian and the Triassic. The
continental phase following the post-Mesozoic emergence determined the setting of a
tectonic control hydrographic network represented by deep rectilinear valleys engraved in
the Paleozoic basement for several hundreds of meters [4,5] (Figure 4). Erosion primarily
acted on the Oligo-Miocene strike-slip faults with an increase in the erosive rate during the
Plio-Pleistocene uplift phases [25]. The presence of major regional faults has influenced the
watercourses, which maintain a prevalent N–S direction in the Pardu and Quirra Rivers
(set on the main fault).
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Figure 4. Three-dimensional (3D) model of the Pardu River and Quirra River. Blue lines represent major hydrographic
features, and red areas represent the major DGSDs. (a) Fluvial capture elbow; (b) Lequarci waterfall.

The evolution of the Pardu River is closely associated with that of the Quirra River [7,57,79].
The Pardu River flows from the NW toward the SE and then abruptly changes direction
toward the NE. At this point, a capture elbow adjacent to the present head of the Quirra
River is well developed. The upstream part of the Quirra River flows at an altitude of
approximately 200 m higher than the Pardu River. It also presents an over-sized and
over-flooded valley with respect to the upstream catchment area. Moreover, there are
various orders of river terraces and slope deposits of the Pleistocene. This setting indicates
that the Pardu River, previously flowing south along the Quirra River, was captured by the
Pelau River [7,79]. Considering the descriptive parameters, longitudinal profile, and the
evolutionary conditions, the Pardu Valley is associated with a cycle of underdeveloped
fluvial erosion, suggesting a relatively young age of engraving [4,5,25].

DGSDs are present in both river basins and cause collateral landslides. In particular,
rockfalls and toppling occur along carbonate cornices, while rotational slide occurs in the
metamorphic rocks [6]. We focused on the DGSDs in this study, as they are important in
the morphological evolution of the slopes.

A significant karstic process has acted on plateau surfaces, comprising ancient paleo-
forms and, currently, hypogeal and superficial morphologies [6,7,80]. Karst paleoforms
represented by complex cockpit doline types have been characterized, and they belong in
a humid and warm paleo-morphoclimatic setting [6,81–83]. These dolines are separated
by residual reliefs called Fengcong, which are sorted among the major structural features.
The hypogean karst enabled the development of sinkholes, karst springs, cavities, and
caves (e.g., Su Marmuri Cave and Is lianas Cave). The combined action of karst, uplift,
river erosion, and gravity has led to the formation and evolution of hanging valleys on the
plateau surfaces [5]. The geomorphological analysis of the continental margin off the coast
shows that the area occupied by the shelf is rather narrow and is engraved with numerous
submarine canyons [58,84,85] (Figure 2). The structural lines coincide with those of the
continental part that has emerged—mainly N–S, accompanied by normal tectonic lines in
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the E–W direction. The shelf break is about −130 m; however, locally, it is at about −60 m
due to the erosion of retrogressive canyons. The submerged and emerged morphologies
highlight the extremely young landscape conformation, which is associated with the Neo-
gene and Quaternary geodynamic events, implying a series of problems related to the
slope process. The control factors of the DGSDs are associated with the geo-structural
characteristics and the Neogene and Quaternary geomorphological evolution of the river
valley, which is associated with the recent uplift [6].

We can summarize the events that dominated the valleys’ evolution [4,6,79]:

• The first stage preceding the capture of the Rio Pardu by the Rio Pelau associated with
the uplift and the Plio-Quaternary tectonics. This phase involves a general incision of
the valleys and erosion of the slopes, and it led to a new hydrographic setting, causing
river capture (Middle-Lower Pleistocene).

• The second phase was associated with major erosive activity in the Pardu Valley
following the capture, which led to complete erosion of the valley (Upper Pleistocene).

• The present evolution of the slopes through widespread landslides and DGSDs.

5. Materials and Methods

A morphotectonic analysis of the River Pardu and River Quirra was carried out
based on an integrated approach that incorporated a cartographic and morphometric
analysis [86–88]. Remote sensing analysis and geological and geomorphological field map-
ping in slopes and the valley floor of the Rio Quirra and Rio Pardu were performed from
the head to the mouth on a scale of 1:10,000. The field surveys were based on the inter-
pretation of data from remote sensing on a large scale. Particular attention was paid to
the study of morphologies related to river dynamics (fluvial and orographic terraces) and
slope gravitational process (DGSDs and collateral landslides).

Multi-scale field surveys were carried out to analyze the geological and structural
setting of the slopes—in particular, the plateaus’ edges and the left slope of the Pardu
Valley [89–94].

The DGSDs were surveyed in detail by reconstructing the structural setting and
analyzing the relationships with the surrounding collateral landslide and alluvial deposits.
The study areas were often not accessible due to their steep slopes; therefore, they required
remote sensing survey systems to complete the field investigations. Uncrewed aerial
vehicle digital photogrammetry (UAV-DP) is a robust methodology for the investigation of
DGSDs and large landslides. In particular, it was used for the recognition of large lateral
spreads in Malta and Tunisia [95,96]. We used UAV-DF and light detection and ranging
(LiDAR) to extract high-resolution topographic 3D DGSD models and perform detailed
morphometric analyses.

DGSD displacement and rate were evaluated using space-borne interferometric syn-
thetic aperture radar (InSAR). Over the last 30 years, InSAR techniques have been widely
used to investigate geological (e.g., volcano activity, earthquakes’ ground effects, etc.) and
geomorphological processes—in particular, DGSD. In different geological and climatic
contexts, this technique allows one to analyze extremely slow DGSDs and to identify
displacements of about 1–2 mm in favorable conditions [95–103].

Based on previous studies on the fluvial deposits of Rio Quirra and Rio Pardu [5,6,79],
the geological analysis was implemented by using high-resolution topographies based on
UAV-DP and LiDAR. Detail-scale field surveys were carried out in the alluvial quaternary
deposits with the aim of the identification and mapping of various terraced orders and the
reconstruction of the relative chronology among morphostratigraphy and sedimentolog-
ical indicators. Stratigraphic profiles relating to the various orders of river terraces and
landslide deposits were surveyed in the natural outcrops of the alluvial plains.

5.1. Aerial and Uncrewed Aerial Vehicle Remote Sensing

LiDAR and aerial photogrammetric data produced by the Autonomous Region of
Sardinia were used to perform visual and morphometric analysis of DGSDs and fluvial
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morphologies. A detailed orthophoto dating from 2016 was used together with LiDAR
data with a cell size of 1 × 1 m and vertical resolution of 30 cm.

The aerial surveys were performed using UAVs (DJI Phantom 4 and DJI Matrix
200) flying at altitudes of 50–60 m above ground level. The acquired images were ana-
lyzed and processed using the photogrammetric Agisoft MetaShape software and con-
strained by 10–12 ground control points using GEODETIC LEICA GNSS for each area.
The resulting orthorectified mosaic and DEM (WGS 84 datum and UTM 32N projection)
had a cell size of 5 cm/pixel and were considered sufficiently precise to be used for the
geomorphological analysis.

To analyze the DGSDs at the local scale, we used high-resolution digital elevation
models (DEMs) acquired via structure from motion from a UAV-DF [8,103–106].

The 3D high-resolution UAV-DF models were used to develop interpretative superfi-
cial models by using geomorphological evidence and stratigraphic and structural data of
the DGSDs. Geological interpretative cross-sections of geologic features crossing the major
DGSDs were also generated to define the movement kinematics, deformative style, and
deep geometries of the DGSDs.

The DTMs were used to analyze the morphometric parameters of the hydrographic
basins under analysis. The longitudinal and transversal profiles of the valleys were ex-
tracted in such a way as to highlight different erosive structures in relation to river capture
and to analyze the different altitudes of the various river terraces.

5.2. InSAR Analysis

Space-borne interferometric synthetic aperture radar (InSAR) data were used to ana-
lyze the slope deformation [107–110]. Interferometric permanent scatters (PSs) are used
to investigate the temporal and spatial superficial slope deformation. To detect ground
displacement, we used only high-PS coherence (0.6–1) located on built dolomitic blocks
and the metamorphic rock outcrops. Low-coherence PSs, which are not useful, are located
on rockfall deposits and in vegetated areas. We used the Sentinel-1 and European Remote
Sensing (ERS) satellites (Table 1) and took into account the line-of-sight (LOS) velocities. We
used a dataset from 1992 to 2000 from the ERS satellite and a dataset from 2014 to 2020 from
Sentinel 1. The processed data from ERS and Sentinel 1 were provided, respectively, by
Ministero dell’Ambiente e della Tutela del Territorio e del Mare (Italy) and the Geological
Survey of Norway. The total area analyzed covered the entire Pardu Valley and Quirra
Valley. Four focus areas (Table 1) that showed interesting results were analyzed by using
time series of PSs to understand the landslides’ temporal evolution.

Table 1. Parameters of the InSAR data on the sectors in focus.

Area Satellite
Acquisition
Geometry

Acquisition
Interval

TrackAngle Inc Angle

Ulassai Sentinel 1 Ascending Oct 2014–Feb 2020 −9.6 42.4
Osini Sentinel 1 Ascending Oct 2014–Feb 2020 −9.6 42.4

San Giorgio Sentinel 1 Ascending Oct 2014–Feb 2020 −9.6 42.4

Gairo Sentinel 1
ERS Descending Oct 2014–Feb 2020

May 1992–Dec 2000
−169.6
- - - - -

36.3
- - - - -

6. Results

6.1. InSAR, PS, and Time Series Analysis

The results of the large-scale InSAR analysis showed that most PSs were located in
stable areas, while high deformation rates were recorded in the slopes of Pardu Valley,
where slope-failure processes—in particular, rockfalls and DGSDs—were widespread. All
four focus areas were analyzed in detail with the Sentinel 1 data (from 2014 to 2020). For
the left flank of Rio Pardu, the ERS data (from 1992 to 2000) were also used in descending
order of acquisition. The data from the periods 1992–2000 and 2014–2020 indicated areas
with large slopes that were identified as DGSDs that were active in Pardu Valley. We used
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only PSs with high coherence (0.6–1) that were located in the rocky outcrops and in the
urban structures, while low-coherence points located in rockfall deposits and in vegetated
areas were not considered. The PS analysis allowed the recognition of active DGSDs and
the measurement of their movement rates, which turned out to be extremely slow, ranging
from 6 to 20 mm/year (Figures 5 and 6). We identified a downslope movement of up to
1 cm/y in the right slope of the Pardu Valley and a movement of up to 2 cm/y in the left
slope. Continuous movements that did not change over years with both linear and seasonal
trends were observed (Figure 6). The InSAR analysis showed no perceptible movements
on the slopes of Rio Quirra.

In the Ulassai area, the PS analyses showed a stable surface in the urban area and on
the west slope of the main extensional trench of Pranedda Canyon (Figures 5a and 6a).
However, in accordance with the geomorphological evidence, downstream from the main
trench, the speeds of the PSs showed LOS displacements of up to 1 mm/y. In this sector,
the PSs were located in rocky dolomitic outcrops on the top edge of the plateau, in the total
absence of vegetation and in excellent exposure conditions. No movements were detected
in the DGSD downstream from Bruncu Pranedda due to the low PS coherence due to dense
vegetation. Using Sentinel data from 2014 to 2020, we measured a total of 5 cm (orange
star in Figure 5). It was possible to observe seasonal deformation trends with an excellent
correlation among all of the PSs analyzed. Generally, no movement was observed during
the winter and spring, but an acceleration was observed during the summer and autumn.

In Osini, a cluster of PSs were well defined within the inhabited center, particularly in
the northwest and southeast sectors, where there was a speed of between 4 and 6 mm/y,
with a maximum of 8 mm/y (Figures 5c and 6b) with a seasonal trend. Spotlights were
located on the roofs of the buildings. In the surroundings of the inhabited center, the dense
vegetation resulted in a low coherence of the PSs; therefore, they were not considered.

In the Gairo sector, the InSAR data showed a large area that was greater than 1 km2

with a high diffusion of PSs. Based on the high-resolution field surveys, the PSs are located
on rocky metamorphic outcrops. The speeds were, on average, greater than 8 mm/y, with
a maximum of 2 cm/y. The cluster identified a well-defined area with a circular shape that
was delimited by PSs with zero or negligible speed (Figures 5b and 6d1,d2). The higher
speeds were located in the central and basal part of the DGSD, while towards the top and
lateral flanks, the speeds decreased. In the lateral and top parts, the DGSD was delimited
by stable PSs (speeds of 0–2 mm/y), which allowed the deformed area to be circumscribed
in detail. in the PSs on the foot slope with a low coherence due to the continuous movement
of slope deposits and the vegetation were not considered. The deformation’s progression
was continuous and linear, and an excellent correlation was found between the Sentinel 1
and ERS data. In the southern part of the DGSD, a high concentration of PSs were located in
the abandoned village of Old Gairo with speeds that were sometimes greater than 1 cm/y.
The town of New Gairo, which was built after the 1951 catastrophe, showed displacements
limited to 2–4 mm/y.

In the San Giorgio sector, scattered PSs were identified with speeds greater than
10 mm/y on the large blocks of the rock avalanche on the slope (Figures 5d and 6c). These
blocks, with dimensions of up to 30 m per side, were collateral landslides related to the
collapsed DGSD located at the edge of the plateau above. All of the PSs showed a linear
trend with a slowdown in the winter and spring between 2016 and 2017. This slowdown,
which was observed in all of the PSs, indicates that the causes of the movement are to be
found in processes that involve a greater portion of the slope, and not only in the large
blocks. The surrounding area did not allow a PS analysis due to the importance of the
wooded vegetation, but evidence of deformation was visible in the road infrastructure.

6.2. Deep-Seated Gravitational Slope Deformation

Various areas affected by DGSDs and landslides that were located of the slopes of
Pardu Valley and on the slope of Monte Arbu of Tertenia were identified (Table 2).
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Figure 5. Analysis of the focus areas with InSAR data. The points represent high-coherence perma-
nent scatters located on buildings, rocky outcrops, and blocks of large rock avalanches. The stars
represent the PSs used to analyze the time series shown in Figure 6. (a) Bruncu Pranedda lateral
spread. (b) Gairo DGSD. (c) Osini landslide. (d) San Giorgio paleo-rock avalanche.

On the east side of Tacco di Ulassai and Tisiddu Mountain, three DGSDs were ana-
lyzed (Figure 7). The main structures that indicated deep gravitational phenomena were
large and deep extensional trenches that were evident in the dolomitic lithotypes. The
extensional trenches had lengths of several hundreds of meters and a decametric opening
and depth. This slope was characterized by the Mesozoic marine deposits resting on the
Paleozoic metamorphites.

The Bruncu Pranedda DGSD (Figure 7b2,c1) is constituted by two regions with differ-
ent settings located on the top and middle slopes. On the top slope, toward the east of the
largest extensional trenches in the area called the Pranedda Canyon, the rock mass fractur-
ing increased, and the attitude of the Dorgali Formation was toward the east, with a dip of
up to 40◦. In this area, both facies of the Dorgali Formation were visible, with the summit
comprising dolomitic banks and the lower part being characterized by an alternation of
well-stratified dolomites and marls. This subdivision was not observed in the middle slope,
where basal marly levels did not appear on the surface. This indicates that the basal facies
(approximately 30 m) were partially covered by slope deposits; however, they also sank a
few meters inside the fractured and altered Paleozoic metamorphic basement. This could
be correlated with the field observations at the same altitude, as well as with the basement
and the massive facies of the Dorgali Formation [6].
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Figure 6. Time series extracted with the representative permanent scatters. The vertical axes represent the cumulative
LOS displacement; the horizontal axes represent the time. (a) Bruncu Pranedda lateral spread—seasonal displacement
trend, maximum displacement of 5 cm from 2014 to 2020; (b) Osini landslide—seasonal displacement trend, maximum
displacement of 6 cm from 2014 to 2020; (c) San Giorgio paleo-rock avalanche—constant movement trend of the large blocks,
maximum displacement of 6 cm from 2014 to 2020; (d) Gairo DGSD; (d1) the ERS data show a constant deformation trend,
with a maximum displacement o f23 cm from 1992 to 2000; (d2) the Sentinel 1 data show a constant deformation trend that
is correlated with the ERS data, with a maximum displacement of 10 cm from 2014 to 2020. The colors of the points agree
with the colors of the stars that identifies the location of the PS in Figure 5.
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Table 2. Main characteristics of the DGSDs and landslides analyzed.

Location Landslide Geology
Landslide
Kinematic

Displacement
Speed
mm/y

Displacement
Trend

Area
Km2

North Ulassai
Bruncu

Pranedda
Lateral spread

Dolomitic limestone set
on altered and

fractured phillites

Lateral spread top
slope; sackung
middle slope

6–10 mm/y Seasonal 0.2

South Ulassai Monte Tisiddu
Sackung

Dolomitic limestone set
on altered and

fractured phillites
Sackung No movement —— 0.2

North Osini
(San Giorgio)

San Giorgio
Lateral spread

Dolomitic limestone set
on altered and

fractured phillites
Lateral spread No movement —— 0.03

North Osini
San Giorgio
paleo-rock
avalanche

Megablock rock
avalanche deposits set

on paleo-rockfalls
Sliding 6–>10 Linear ≈0.1

Osini Osini Landslide
Cemented

paleo-rockfalls
set on phillites

Sliding 4–8 Seasonal ≈0.3

Gairo Gairo DGSD

Phillites on
metavolcanites.

Slope involved in
Hercinical thrust

Sackung 6–20 Linear 1.2

South
Tertenia Tertenia DGSD

Dolomitic limestone set
on altered and

fractured phillites.
Slope involved in
Hercinical thrust

Sackung No movement —— 1.5

North
Tertenia Paleo-DGSD

Dolomitic limestone set
on altered and

fractured phillites
Sackung

No movement
Fossilized by
Pleistocenic

alluvium

—— 1.5

The Scala San Giorgio DGSD (Figure 7b1,c2,d1) is located north of Osini Village
and is characterized by two major extensional trenches that are parallel to the slope
affecting the Dorgali Formation with a dip amount of up to 20◦. All of the sequences
of the Dorgali Formation are exposed; however, the Genna Selole Formation is covered by
rockfall deposits.

The Tisiddu Mountain DGSD (Figure 7b3,d2) to the south of Ulassai Village is char-
acterized by a highly fractured segment of the Dorgali Formation located tens of meters
downstream. Only the tops of the massive banks of dolostones are visible. The basal level
partially sank into the metamorphic basement.

In all cases, the shear zones are located in different geological units that represent
structural weaknesses (Figure 7d1,d2). (I) The top of the metamorphites was affected by
sub-horizontal foliation and advanced weathering, which was highlighted by the reddish
or whitish color of the rocks. This type of alteration could be linked to the pre-transgressive
Mesozoic period [65]. (II) The Genna Selole Formation was characterized by plastic clay
layers; (III) basal levels of the Dorgali Formation were characterized by the alternation of
marl and dolomite.

A large landslide that affected the town of Osini and the northernmost slope down-
stream of the San Giorgio DGSD was identified by using InSAR data. The inhabited center
of Osini is built over an extensive cemented paleo-rockfall deposit that rests on the Pale-
ozoic basement. Geomorphological evidence is difficult to observe due to the extensive
vegetation around the village.
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Figure 7. DGSD on the right slope of the Pardu River. (a) Orthophoto of the area of Ulassai, Osini,
and Jerzu. The Jurassic dolostone plateaus on the metamorphic basement are shown in blue. The
yellow square represents the analyzed DGSD. (b) UAV images of the DGSD showing the major
geomorphological and structural features. The white dashed lines represent the major extensional
trenches. (b1) San Giorgio lateral spread, (b2) Bruncu Pranedda lateral spread, (b3) Monte Tisiddu
sackung. (c) Three-dimensional LiDAR model of the DGSDs with a colored elevation scale. The black
dashed lines represent the major extensional trenches. The white dashed lines represent the major
stratigraphic discontinuity between the marine Mesozoic sequence and the metamorphic basement.
(c1) Bruncu Pranedda lateral spread. (c2) San Giorgio lateral spread. (d) Interpretative geological
cross-sections passing through the DGSD in the study area. The hypothetical basal shear zone is
highlighted with black dotted lines. (d1) San Giorgio lateral spread. (d2) Monte Tisiddu sackung.
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The left side of the Rio Pardu is characterized by a different geological and structural
context compared to the opposite side (Figure 8a). There are metamorphic lithologies
belonging to the formation of Monte Santa Vittoria and the Filladi del Gennargentu. The
slope is affected by a dip-slope Hercynian thrust that brings the two formations belonging
to two different tectonic units into contact. This structure plays a fundamental role in
the deep gravitational processes, as it is marked by intense fracturing and alteration of
the lithotypes. Based on the geomorphological evidence and the analysis of the InSAR
data, a large landslide with a DGSD character was identified in the northwest sector with
respect to the town of Gairo (Figure 8b–f). The DGSD extends from the top slope to the
middle-lower part of the slope and is about 1 km wide. The crown is circular (Figure 8c,d)
and joins laterally rectilinear structural flanks (Figure 8e). Analyzing the profile of the
slope along the DGSD, the concave upstream part and the convex downstream part are
clearly evident. The foot of the landslide is covered by landslide and slope deposits that
reach the valley floor, where lateral erosion by the Rio Pardu is affected (Figure 8).

On the right side of the Rio Quirra, in correspondence with the Tacco di Tertenia,
complex gravitational morphologies linked to paleo-DGSDs are evident (Figure 9). The
morphology of Mount Arbu is also affected by the complex tectonic structure, which
is characterized by a sub-horizontal thrust that brings the Pyllades del Gennargentu
Formation into contact with the Metavolcanites of the Monte Santa Vittoria Formation
(Figure 9a). The morphological analysis of the slope shows convexity and concavity linked
to different DGSDs that are distributed at various altitudes of the slope. The DGSDs
consist of portions of the Dorgali Formation, which is tilted up to 30–40◦ and is translated
along the slope. The most complex and evolved movement was identified in the NE
sector (Figure 9b,c1,c2). The area extends for a length of about 1800 m from the top of
the plateau to the valley floor. The fan-shaped landslide body has a foot with a length of
2 km. The crown is located in the plateau edge, which is affected by faults and distension
trenches. The latter delimit mega-blocks of the Dorgali Formation With a prismatic shape
and inclination of up to 40◦. The foot of the DGSD, which is represented by the Dorgali
Formation, is marked by dolomitic outcrops with vertical heights of up to 40 m with
sometimes sub-horizontal attitudes of the strata. On these walls, terraced alluvial deposits
rest in onlap. Paleo-DGSDs are widespread in the upper part of the slope, with greater
diffusion in the southern part of Mount Arbu, but they do not evolve until reaching the
valley floor (Figure 9b,d).

6.3. River Capture Analysis

The area has a deep cut made by the Rio Pardu Valley and Rio Quirra Valley, which
extend in an NNW–SSE direction, following a major Tertiary fault. For most of the Pardu
River’s course, the talweg is set on rock, indicating its predominantly erosive nature.
Downstream, the river is captured, turning in an eastward direction, and its name changes
to Rio Pelau; then, it flows into the Tyrrhenian Sea. South of the capture, the abandoned
Rio Pardu Valley continues southward as Rio Quirra. This valley is characterized by a
bottom filled with Pleistocene and Holocene terraced alluvial deposits and slope deposits,
which are currently undergoing erosion. It is clear that in the past, Rio Pardu was captured
by Rio Pelau (Figure 10), causing a rapid incision upstream. Longitudinal profiles were
constructed for Rio Pardu, Rio Quirra, and Rio Pelau. Rio Pardu flows up to 750 m below
the dolostone near Ulassai, where the main active DGSDs are located. The evolutionary
hypotheses are related to the Pliocene and Quaternary uplift, which led to an important
erosive phase.

The triggering process can be justified in the following ways:

• An erosive increase caused by a generalized uplift that led to the retreat towards the
inland by the head of the Rio Pelau until it connected with the Rio Pardu.

• Another hypothesis foresees the presence of a direct fault with an east–west course
along which the Rio Pelau is set. In this case, the differential uplift of the block on
which the Rio Quirra is currently set could justify the capture process as tectonogenic.
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Figure 8. (a) Geological map of the Gairo slope with the DGSD localization. (b) Orthophoto with the main geomorphological
feature of the DGSD. (c) Photo of the DGSD head. (1) Crown; (2) right slope of the Pardu River; (d) photo showing a 3D
view with the DGSD border marked in red; (e) linear flank of the DGSD; (f) interpretative geological cross-section of the
DGSD showing it (in transparent orange) sliding on the highly fractured rock due the underlying dip-slope Paleozoic thrust.
Geolithological legend: MSV—Monte Santa Vittoria Formation; GEN—Filladi del Gennargentu Formation; ald—current
alluvial deposits; sld—slope deposits.
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Figure 9. (a) Geological map of the eastern slope of Monte Arbu (Tertenia). Geolithological legend: MSV—Monte Santa
Vittoria Formation; GEN—Filladi Del Gennargentu Formation; GNS—Genna Selole Formation; DOR—Dorgali Formation;
al—terraced and current alluvial deposits; sl—slope deposits. [57]. (b) LiDAR hillshade with the main geomorphological
feature of the DGSD. (c1) Photographic 3D view with the DGSD border marked in red and the terraced alluvial deposit in
blue. (c2) Three-dimensional LiDAR of the Tertenia paleo-DGSD with the border marked in red and the terraced alluvial
deposit in blue. (d) Interpretative geological cross-section of the DGSD showing it sliding on highly fractured rock due the
underlying Paleozoic thrust.
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Figure 10. Three-dimensional LiDAR model of the river capture sector. In the north, the Pardu River flows eastwards,
taking the name of Rio Pelau. The blue and light blue show the Holocene alluvial deposit of the Pardu River. South of Genna
and Crexia is the head of the Rio Quirra. In red is shown the paleo-slope and paleo-alluvial deposits of the Quirra River.

6.4. Fluvial Morphostratigraphic Analysis

A morphostratigraphic analysis was performed first on Rio Quirra and later on Rio
Pardu, which isolated it following the capture (Table 3).

Table 3. Morphostratigraphic synthesis.

Deposits Characteristic Elevation from Talweg Distribution

T0 Pebbles and clastosustained gravels with a
scarce sandy matrix 0 Actual embrided riverbed

T1 Heterometric and polygenic pebbles with a
scarce dark matrix 0.20/0.30–1.5 Pardu-Quirra

T2 The matrix is decidedly prevalent in the
coarse fraction 2–5/6 Quirra

T3 Non-constant matrix–skeleton relationship.
Reddish matrix (Fe oxides) 6/7–10 Quirra

Paleo-conoid C1 Clastosustained pebbles up to 40–50 cm in
size. Scarce matrix 30 Pardu

Paleo-conoid C2 Reddish pebbles and gravels in sandy, silty,
reddish matrix 15 Quirra

Paleo-slope deposits 20–40 Quirra

In the valley of the Rio Quirra, above the current riverbed, the following were identi-
fied (Figure 11):

T0—Actual flood surface consisting of pebbles and clastosustained gravels with a
scarce sandy matrix (Holocene).

T1—Sub-current Holocene terrace with a maximum height on the riverbed of about
20–30 cm up to 1.5–2 m. The dark brown matrix is subordinate to the coarse fraction, which
is represented by heterometric and polygenic pebbles. This terrace often forms alluvial
islands in the upstream part of the river; they reach a good stability due to the dense
vegetation that has settled there (Upper Pleistocene–Holocene).

T2—In this terrace, the matrix, which is decidedly prevalent in the coarse fraction,
has a dark brown color. There is no evidence of prolonged chemical alterations due
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to climatic conditions other than the current ones. The pebbles are less varied: mainly
quartz with, subordinately, granite and schistose. On average, the height of T1 with
respect to the riverbed is about 2 m, with a maximum of 5–6 m and a minimum of 50 cm.
The deposits that form this terrace show forms of erosion linked to secondary climatic
pulsations (Upper Pleistocene).

 

Figure 11. (a) Morphostratigraphic profiles of the Quirra River. (b) UAV photo in the river alluvial plain. (c) Outcrop
of Terrace T3. Lithological legend: (1) Filladi Grigie del Gennargentu Formation; (2) Monte Santa Vittoria Formation;
(3) paleo-DGSD; (C1) paleo-conoid; (4) T3; (5) T2; (6) T1; (7) T0.

T3—This is the oldest terrace, with an average height of 6–7 m and a maximum of
10 m (Figure 10c). The matrix–skeleton relationship is not constant. The depository is
made up of alternations of fine and large sediments that testify to the variations in the
river’s energy. The matrix is red and sometimes whitish. In the first case, the color derives
from Fe oxides, indicating a warm, humid climate typical of tropical and sub-tropical
regions; in the second case, the oxides have been leached and for an eluviation horizon.
The pebbly fraction does not have a varied lithological composition. It is mainly schistose
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and, subordinately, quartz. The deposit is well cemented. This terrace rests directly on the
slope. The frame of erosion along the riverbed is clear, and the lower terraces rest on it
(Middle Pleistocene).

In Rio Pardu, the alluvial deposits cover a valley floor characterized by a well-defined
flood bed, which is limited by banks that are intensely affected by landslides. Two orders of
alluvial terraces up to 2 m above the current level were detected (Figure 12). The maturity of
the flood clasts is very low due to the continuous supply of material from the slopes, while
the grain size distribution along the longitudinal profile reflects the trend characterized by
the high slope. By analyzing the longitudinal profile of the Rio Pardu, it can be observed
that it is divided into two well-defined parts separated by the knickpoint in Ponti Mannu.
In the initial part, near the steeply sloping trunk, there is the head of the valley, which
continues until an area with a low slope where alluvial deposits appear. Downstream of
the Ponte Mannu, after a section of the river in which the waters flow on the rock, the river
becomes slightly sloped and establishes an alluvial plain with anastomotic channels and
river islands.

Active and quiescent dejection cones are distributed over the Quirra and Pardu
Valleys. The active conoids are well highlighted by the morphology, and they have a poorly
elaborated clastic component and an uncemented dark brown matrix. In the terminal
part of the Quirra, a terraced dejection cone (C1) assumes a certain importance due to its
size and evolutionary stage (Inner–Middle Pleistocene). The often large pebbles are very
elaborate and have blackish patinas of Mn oxides on their surfaces. Oxides also accumulate
inside the matrix, which presents an intense redness. In the upper part of the Rio Pardu,
a paleo-conoid (C2) with large pebbles and a brown matrix is currently engraved by the
current course of the river (Upper Pleistocene and Holocene).

The paleo-slope deposits are characterized by coarse, elaborate, and sharp-edged
components. The matrix is very abundant, strongly cemented, and bright red in color
due to the accumulation of pockets of Mn oxides. These deposits are located at the same
altitude as that of T3 or sometimes at higher altitudes, and they are connected to the base
of the slope (Inner-Middle Pleistocene).
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Figure 12. (a) Morphostratigraphic profiles of the Pardu River. (b) UAV photo near the head of the Pardu River. (c) The
bottom of the Pardu Valley near the capture elbow. Lithological legend: (1) Filladi Grigie del Gennargentu Formation; (2)
Monte Santa Vittoria Formation; (3) paleo-rockfall deposits; (C2) paleo-conoid; (4) Terrace T1; (5) Terrace T0.
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7. Discussion

7.1. River Analysis

The hydrographic network engraved by torrential watercourses possesses a tectonic
control linked to the Cenozoic structural features. The main incisions that cross the basin
of the Rio Pardu give rise to deep valleys with a mainly erosive and only locally depo-
sitional character. The Pardu Valley has a transverse “V” profile, which is more or less
open depending on the evolutionary stage, the distance from the point of origin, and the
competence of the lithotypes in which the river incision takes place. Sometimes, the pro-
files show marked asymmetries due to the different positions of the layers or the different
exposure, which influences the vegetation. A lower steepness can be observed on the left
side, which probably due to a lower vegetation cover, which favors erosion. The valley has
developed in the formation of the Filladi grigie del Gennargentu. Only in the southeast is
the formation of Monte Santa Vittoria affected.

As regards the evolutionary conditions of the Pardu Valley, considering the descriptive
parameters, the geometric conditions, and the hypsometric curve, it is noted that was not
able to develop to the point of acquiring characteristics that are attributable to a cycle of river
erosion in an evolved phase, which suggests a relatively young age for engraving [4,5,25].

The longitudinal profile of the Rio Quirra differs from the normal profile of a river; it
has an initial concave part with a strong steepness within the first kilometer from the head
and a regular decrease in the slope along the rest of the watercourse. The evolutionary stage
of the Quirra appears to have advanced; however, it must be considered that it represents
the middle and final parts of the original Rio Pardu–Quirra, which are divided in two by
the capture of the Rio Pelau. Currently, the Rio Quirra does not have a catchment basin at
the head, and its feeding is mainly given by certain tributaries. The valley is oversized and
over-flooded with respect to the current basin (Figure 13).

7.2. DGSD Dynamics

The Rio Pardu and Quirra River represent two of the most susceptible areas to
landslides in Sardinia, as well as to rockfalls and rainstorm-induced superficial land-
slides [4,5,26]. This sector is also interesting due to the fact that extreme rainfall over
the last centuries has led to the evacuation and reconstruction of the towns of Osini and
Gairo [5,7]. Recent studies have highlighted the presence of deep landslides with sackung-
type kinematics and lateral spreads on the right side of the Rio Pardu [6].

In this paper, by analyzing integrated geomorphological, geo-structural, high-resolution
topography and InSAR displacement data, we identified diffuse DGSDs on both sides of the
valleys of the Pardu River and Quirra River, which are characterized by different kinematics.

DGSDs are commonly found in orogenetic environments with high tectonic and
seismic activity and in areas affected by slope decompression due to post-deglaciation.
The present work aimed to contribute to the knowledge on the influence of evolution of
valleys—in particular, with high incision—on the triggering of large landslides or DGSDs
in relation the Quaternary uplift.

Lateral spreads were developed at the edge of the plateau in relation to the favorable
stratigraphy (dolostone on clays and altered metamorphites). The slope deformation
generates vertical fractures in the carbonate and a zone of ductile basal deformation that
affects the Genna Selole Formation and the summit, which thus altered the metamorphites
(Bruncu Pranedda and San Giorgio DGSD). DGSDs with a higher vertical shift represent a
more advanced stage with sackung features (Tisiddu Mountain and Tertenia DGSDs). The
latter evolves in relation to the thrust that affects the median part of the slope. A large part
of the deformation affects the Paleozoic basement, which was evidenced by the sinking of
the carbonate sequence into the metamorphites.

On the left side of Rio Pardu, Gairo’s DGSD shows a different behavior in relation to
the different stratigraphic and structural setup. The DGSD has sackung-type kinematics
with an important translational component linked to the thrust.
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Figure 13. Map of the distribution of alluvial deposits in Rio Pardu and Rio Quirra.
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From the structural viewpoint, the major faults in the NW–SE and NE–SW directions
were in concordance with the main trenches and back-scarps in all sectors, indicating an
important structural control. The secondary trenches and the joints did not exhibit a good
correlation with the large-scale structures because they were associated with the features
inside the deformation rock mass.

The Rio Pardu shows a straight valley with steep slopes, a valley bottom with a mainly
erosive character, and two orders of terraces. This is linked to the intense erosive phase
following the capture by the Rio Pelau. The valley of Rio Quirra shows a flat-bottomed
valley with an actual riverbed of the braided channel type. The valley is over-sized and
over-flooded with four orders of terraces, the result of an evolution prior to the capture
of the Rio Pardu. The T3 terrace shows sedimentological characteristics related to a sub-
tropical climate, which is probably linked to the warm climatic phase of MIS 5. The InSAR
and morphostratigraphic analyses made it possible to define the state of activity of the
DGSDs in the two hydrographic basins. In the valley of Rio Pardu, various areas of the
slope that are affected by movements that can be classified as active DGSDs were identified,
with movements of up to 2 cm/y on the left slope and up to 1 cm/y on the right slope.
However, in the Quirra River, paleo-DGSD bodies are fossilized by the alluvial deposits of
the T3 terrace. This indicates that the river capture led to an intense erosive phase in the
Rio Pardu, leading to the recent instability of the slopes, thus justifying the active DGSD
(Figure 14).

Figure 14. Relation between DGSD activity and river parameters.

These DGSDs were associated with numerous large collateral rockfalls and toppling
landslides that affected the slopes. Dolomitic blocks with sizes of up to 30 m on each side
were identified; these moved up to 900 m away from the detachment points, which were
linked to mega-rockfall events with rock avalanche features. We also identified paleo-
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DGSDs on the downslope that were associated with the collapsed slope side. Currently,
a reactivation of quiescent DGSDs or an acceleration of movements can be triggered by
extreme weather events or earthquakes.

Therefore, an acceleration of slope movements leading to a potential catastrophic
failure poses a threat to communities, and the monitoring of these slopes is important for
early warning and risk reduction. So, we studied the DGSDs and landslides in the inhab-
ited areas of Pardu Valley in detail by using integrated remote sensing techniques, field
mapping, and InSAR in order to understand the temporal evolution. The historical InSAR
deformation rate supports our model of rock slope deformation. However, for risk reduc-
tion in a populated area, a 24/7 monitoring system could become an essential component
of an early-warning system that is aimed at preparing evacuation protocols [55,111–118].

8. Conclusions

The connection between Plio-Pleistocenic tectonic activity and geomorphological
evolution in the Pardu Valley and Quirra Valley (Ogliastra, East Sardinia) was studied. The
evolutionary conditions of the Pardu Valley are associated with a cycle of undeveloped
fluvial erosion, which suggests a relatively young age of the engraving in relation to the
capture by the Rio Pelau and the isolation of the Rio Quirra. The intense post-capture
erosion has given the Rio Pardu Valley morphometric features that are favorable for the
evolution of DGSDs. However, the Rio Quirra Valley presents paleo-DGSDs that have been
fossilized by pre-capture terraced alluvial deposits.

The DGSDs’ movements are linked to the recent tectonic evolution (areal uplift). The
two valleys analyzed are controlled by transcurrent faults that have recently recorded
low-magnitude seismic events. Therefore, it is possible that the constant movement of the
DGSDs (between about 1 and 2 cm/y) may be susceptible to accelerations due to seismic
triggering, causing the partial collapse of the slopes.

In particular, this research highlighted the following:

• The geomorphological and structural setting of Ogliastra is closely linked to the
genesis of the east Sardinian continental margin due the opening of the Tyrrhenian
basin (Miocene–Pliocene)

• Distensive Pliocene tectonics accompanied by widespread volcanism resulted in a
general uplift in Sardinia. The Quaternary uplift rebound manifested itself with
an important erosive phase and variations in the hydrographic network. We have
evidence of this phase in the Rio Quirra Valley, which is represented by paleo-DGSDs
fossilized by pre-Tyrrhenian alluvial deposits (Lower Pleistocene).

• The river capture of Rio Pardu is associated with this important erosive phase and
caused an erosive increase that led to a complete emptying of the valley (Upper-
Middle Pleistocene).

• The post-capture decompression of the slopes of the Rio Pardu triggered DGSDs in
both flanks in the current state of activity.

• Using InSAR data, it was possible to identify and assign displacement rates to the
Ulassai, Osini, and Gairo DGSDs.
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Abstract: In many areas of the Umbria-Marche Apennines, evident traces of huge landslides have
been recognized; these probably occurred in the Upper Pleistocene and are conditioned by the
tectonic-structural setting of the involved Meso-Cenozoic formations, in a sector of the Sibillini
Mountains (central Italy). The present work aimed to focus on a geomorphological hazard in the
tectonic-structural setting of a complex area that is the basis of several gravitational occurrences
in different types and mechanisms, but nonetheless with very considerable extension and total
destabilized volume. An aerophoto-geological analysis and geomorphological survey allowed
verification of how the main predisposing factor of these phenomena is connected with the presence
in depth of an important tectonic-structural element: the plane of the Sibillini Mountains thrust,
which brings the pre-evaporitic member of the Laga Formation in contact with the Cretaceous-Eocene
limestone lithotypes (from the Maiolica to the Scaglia Rosata Formations) of the Umbria-Marche
sedimentary sequence. Another important element for the mass movements activation is the presence
of an important and vast water table and related aquifer, confined prevalently by the different
structural elements and in particular by the thrust plane, which has acted and has continued to act,
weakening the rocky masses and the overlaying terrains.

Keywords: large-scale landslides; DSGSDs; normal faults and overthrusts; Sibillini Mts.;
Central Apennines

1. Introduction

The Central Apennines (Italy) is a young and tectonically active mountain range
characterized by a high structural complexity. The single structures related to the different
tectonic phases interact with each other, favoring the reactivation of the old ones or leading
to the segmentation of the recently formed ones. The result is a strong stress, both on the
seismic characteristics of the area and on the geomorphological evolution of the Apennine
reliefs, especially those characterized by the presence of important tectonic elements. In
general, it is accepted that tectonics can play a dual role in influencing the gravitational
evolution of the slopes: (i) a passive role, related to the influence on the structural setting of
the slopes, which can be inherited from a tectonic phase no longer active; and (ii) an active
role, represented by the changes that it can determine on the slopes, producing increases in
the relief energy and tensional stress suffered by the rock volumes [1].

In this perspective, a study was carried out on the southern slopes of the Sibillini
Mountains ridge in correspondence with the area most affected by the recent seismic
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sequence where, through detailed geological and geomorphological surveys, several large
landslides and deep-seated gravitational slope deformations (DSGSDs) have been mapped.

Analyses and kinematic verifications allow us to hypothesize an important correlation
both with the present tectonic structures and with the hydrogeological characteristics
of the rocky masses and the contained aquifers, in analogy with what has already been
verified in other areas of the Alps and of the Apennines chain [1–10] or in other areas of
the Earth’s surface on various mountain ridges, such as Bethic Belt, Carpathian Belt, Tien
Shan Mountains, Pamir Mountains, and Williams Range in Colorado [11–18].

The present work therefore aims to highlight how the combination of the above-
mentioned factors is fundamental in many gravitational processes ranging from large mass
movements to huge landslides and to DSGSD sensu [2], as well as in more superficial
phenomena and in “classical” ones [19].

The relationship between active tectonics and DSGSDs and/or large landslides along
the tectonic slopes of the Sibillini Mountains also plays an extremely important role in
differentiating the risk associated with seismic and/or hydrogeological events occurring in
the area.

2. Data and Methods

2.1. Geological and Structural Setting

In the area outcrops the typical Umbria-Marche Succession, a sedimentary sequence
consisting of a stratified sedimentary succession of pelagic environment, in which cal-
careous and marly-calcareous lithotypes alternate with siliceous ones (Figure 1). This
succession is set on massive limestones, disjointed by an extensional tectonic phase in
the Middle Lias. This situation gave rise both to the deposition of a complete succession,
characterized by considerable thicknesses, and to the deposition of reduced/condensed suc-
cession, characterized by considerable variations in thickness and with singular lithological
features [20–22].

 
Figure 1. Geological and structural sketch of the Sibillini Mountains area.

The typical structural arrangement is that of thrusts and folds chain with a prevalently
eastern vergence, with axes in approximately N–S direction (Figure 1). The tectonic
movement that gave rise to the relief has produced a series of overthrusts and inverse
faults, very evident on the eastern flanks of the anticlines, which caused the shortening
and overlapping of older terms on more recent deposits. The main structural element that
delimits to the east the carbonatic ridge is the Sibillini Mountains thrust, which extends
southward until it joins the “Ancona-Anzio Line” [23–25].

The structure of the thrust front is characterized by a northeastern arched geometry
and Adriatic convexity; in the northern part the trend is “apenninic” (NNW–SSE), while in
the southern part it is approximately N–S. This regional tectonic style presents a complex
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articulation: in some areas it is realized through a main single surface, while in others
through two intersecting surfaces delimiting an intermediate body more advanced than
the lower one but more backward than the upper one [24,26,27].

The Sibillini Mts. thrust brought the internal Meso-Cenozoic formations on the more
external Cretaceous-Paleogenic terms in the northern sector with respect to the Aso River
and on essentially Miocene formations in the southern sector (Figure 2). This compressive
style, which delimits the carbonatic ridge, is followed by extensional tectonics, whose
disjunctive faults have profoundly modified the original stratigraphic structure [28]. This
extensional phase then gave rise to the intermontane depressions (Castelluccio di Norcia,
Norcia, Cascia, etc.; Figure 1) filled by quaternary continental sediments, characterized
by lacustrine and alluvial deposition since the Pliocene [25,29,30]. At the southwestern
edge of the study area, a set of compressive tectonic lines, with Apennine direction and
northeastern vergence, produced an intense deformation of the different lithotypes, so
much so as to totally alter their original hydrogeological characteristics: in fact, locally has
been formed a hydraulic barrier, separating the considered area from the adjacent ones.

 

Figure 2. Three-dimensional physiographic schemes of the study area (a) (source Google Earth) and
corresponding geological sketch (b) (after [28], modified). The numbers refer to the gravitational phe-
nomena described in the text: 1, Pretare-Piedilama; 2, Mount Vettoretto; 3 and 4, Pescara del Tronto.
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The persistence of the extensional activity in the Apennines is documented in several
papers on active tectonics and paleoseismology [31,32] and by the occurrence of earth-
quakes with M ≥ 6, the last of which occurred in 2016.

2.2. Geomorphological Phenomena and Evolution

The geomorphological structure of the area results from the action of morphogenetic
processes that have shaped and still shape the region, strongly conditioned by several
factors interacting each other: (i) the litho-structural and geomechanical characteristics of
the bedrock that have exercised an important control over the morphological structure of
slopes and valley floors, favoring the activation of gravitational phenomena in different
types and sizes, directly conditioning the setting of drainage networks; (ii) Plio-Quaternary
tectonics and up-lift, which have affected the Apennine belt since the Upper Miocene
(in correspondence with the main tectonic phase of the chain) and, subsequently, in the
Quaternary (starting from the end of the Lower Pleistocene) and testified by the strong
seismicity of the area; (iii) the Quaternary climatic variations there were in the area after
its emergence, which occurred from the Upper Miocene, coinciding with the tectogenetic
acme of the Apennine chain that has activated specific morphogenetic processes, such as
those responsible for the formation of glacial masses (glacial processes) and the frost action
in the ground (periglacial processes) and which control the rates of surface alteration, slope
degradation, and debris production; and iv) human activity (agriculture, urbanization,
water regulation, excavation of gravels from the riverbeds, etc.), which has represented and
continues to represent one of the main morphogenesis factors responsible for the activation
of erosion and accumulation processes, considerably faster and more intense than those
due to natural causes [2,3,33–35].

Studies on the area and new research following the 2016 seismic events [28–31,36–39]
have allowed us to establish how the gravity in the Apennines chain area has its main
expression in the genesis of large landslides and DSGSD [3,40,41]. In fact, the gravitational
morphogenesis is particularly evident on the eastern slopes of the carbonatic ridges, along
the folded sides of the structures and/or on the thrust fronts. Along these slopes can
be observed steps, trenches, undulations, and fractures, together with large, sometimes
rounded, landslide scarps; at the foot of the slopes, vast and thick debris deposits, some-
times coalescent, cover the more recent marly-clayey formations of the Umbria-Marche
Succession. It has also been possible to identify important correlations between the mor-
phometric and physiographic characteristics of the slopes and the geological structure of
the reliefs [6,42,43]. The analysis of the morphometric and plano-altimetric characteristics
of specific morphological elements (old planation surfaces, etc.), their “freshness”, and
their position with respect to the continental deposits has also allowed their chronological
location and sometimes the understanding of their different evolutive stages. As regards
the overall activity of the studied processes, considering the morphoclimatic context of the
area and the position of the deposits on the slopes, it is possible to verify how almost all
the processes are dormant [10,39,44].

The largest landslides present in the study area (Figure 2) were connected to mixed
kinematics and generally involved reactivation of ancient debris deposits or removal of
thick landslide accumulations—in some cases, the same debris from slopes sutures of
ancient landslide bodies that were resting on Miocene marly-clayey bedrock (e.g., palaeo-
landslide of Pescara del Tronto) [6,10,39] were subsequently involved in new surficial
reactivations.

In this stratigraphic framework, important instability elements are represented by
the general hydrogeological setting and by the permeability of the lithotypes affected by
gravity; this condition favors the activation of shear surfaces in the most clayey lithotypes
with consequent passive transport of the overlying masses, sometimes even of several
kilometers [6].
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3. Case Histories

Along fault scarps and steep erosional slopes, deep-seated gravitational deformations
and large-scale landslides, up to several square kilometers wide, may be observed. These
phenomena are very common in the axial part of the Apennines (Figure 1), which was
affected by strong uplift and extensional tectonics during the Late Quaternary. Therefore,
the predisposing factors were identified not only in the recent tectonic uplift of the area,
which determine high relief value, but also in the intense fracturing of the bedrock as well
as in the presence of rigid rocky bodies overlying more plastic marly-clayey levels. Among
the stratigraphic discontinuities, the pre-transgressive erosional surface plays a leading
role because the main sliding surfaces coincide with it [2,3,44,45].

Important deep-seated gravitational phenomena are surveyed in the Sibillini Moun-
tains on the eastern side of the calcareous ridge, in particular along the eastern oversteep-
ened sides of anticline fold and overthrust fronts [6,10,46]. Along these slopes, steps,
trenches, undulations, and fractures may be observed, together with large-scale landslide
scarps and wide debris deposits at the footslopes. These materials are often covered by
Upper Pleistocene stratified slope-waste deposits, which sometimes are tilted counterslope.

The above phenomenologies are particularly diffused in the area between the calcare-
ous and the turbiditic lithotypes, along the overthrust front of the Sibillini Mts. that, in the
present case studies, emerge just above of the alignment of Pescara del Tronto-Arquata
del Tronto towns (Figure 2). Below are the descriptions of some of the most important
phenomena recognized and represented in the geomorphological scheme of Figure 2.

3.1. The Pretare–Piedilama Landslides

At the base of the eastern flank of Mount Vettore, on the SW of Mount Pianello della
Macchia, there is a large landslide phenomenon, partly obliterated by thick slope debris
and debris flow deposits (Figure 3), whose accumulation extends as far as the built-up area
of Pretare and Piedilama. The two inhabited centers are in fact located on the accumulation
of an ancient landslide with huge calcareous blocks, fed by the hanging wall of the Sibillini
Mountains, which occupy the bottom of the Fosso di Morricone valley, engraved on the
flysch of the Laga Formation.

From a structural point of view, the flysch sequence on the hydrographic left of the
Morricone stream constitutes the western side of an anticline (Figure 3a,b), roughly N
5–10◦ E oriented, dipping to the East with inclinations generally higher than 60◦. On the
hydrographic right of the Morricone stream, the reverse side of a further anticline fold
is exposed, with an axis approximately oriented like the one previously described with
oriental vergence, which is connected to the buried overthrusts but whose continuation
is immediately recognizable northward of Pretare, in the direction of Montegallo town.
This tectonic-structural setting (cross-section in Figure 3b) makes the Morricone stream
an asymmetrical valley, downcutted into the nucleus of the above-mentioned anticline,
with a hydrographic side on the left steeper than the one on the right, originating a subse-
quent ortho-clinal valley [47] and representing an excellent example of geomorphological
convergence with the fault slopes [48].

The wide and complex landslide phenomenon (Figure 2) [10] originates in fact at
the base of the Mount Vettore slope, on the footwall of the Sibillini Mountains thrust;
it extends for several kilometers along the slope up to the Tronto River, with different
overlapping mechanisms, essentially related to the stratigraphic-bedding conditioning and
to the physical-mechanical characteristics of the bedrock materials.

The oldest continental deposits are represented by chaotic accumulations of mainly
carbonate materials, with sharp or poorly rounded edges, in a reddish sandy-silty matrix,
with metric levels of locally cemented carbonatic levels, and containing heterometric blocks
of carbonate nature. Generally, these deposits are covered by stratified slope waste deposits
attributable to the Upper Pleistocene, sometimes tilted mountainward; the two units are
locally interspersed, showing how the movement is rather ancient and has undergone
successive reactivations [1,3].
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Figure 3. (a) Panoramic view of the southeastern slope of Mount Vettore area with the Pretare and Piedilama towns, which
are found in the ancient and largest earthflow along the Morricone stream valley. (b) Geological and geomorphological
schematic cross-section of the phenomena.
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The crown is rather irregular because the bedding of the Maiolica formation, which
here verticalizes and overturns, has determined and continues to determine frequent
collapsing and toppling phenomena (Figure 4); furthermore, the calcareous or marly-
calcareous blocks and boulders are transported up to 4 km away from the origin. Along the
whole southeastern side of the Mount Vettore–Il Pizzo alignment, in fact, extensive vertical
escarpments, still fresh, with an articulated development, are in any case recognizable; this
testifies to the repeated and continuous collapses, whose blocks and debris are recognizable
at the foot of the slope, constituting an extensive debris layer given by coalescent cones,
locally vegetated (Figures 2 and 4).

 

Figure 4. Southeastern slope of Mount Vettore. The decameter-sized blocks in front are related to the
fall phenomena on this flank of the mount. In the top center, it is possible to recognize the scarp of one
of the falls that occurred in the past, and at the foot of the slope, the extensive debris accumulation,
completely vegetated, partially generated by debris flow processes and by fall landslides.

The large amount of debris accumulated at the foot of the slope, once the load limit
has been reached, has triggered flows that were probably facilitated both by the bedding of
the Laga Formation and by the sandy-clayey deposits resulting from the alteration of the
above formation. The medium-terminal portion of the landslide body, which from the III
level seismic microzonation investigations was estimated to be about 30 m thick [49,50],
was channeled into the valley of the Moricone stream due to the strong acclivity of the
slope and evolved into a real landslide on which large blocks of Maiolica floated, like
real rafts. The impressive tongues of boulders and amassed blocks, extended for several
kilometers along the slope, are evidence of the passive transport operated by the casting
phenomena generally set on the mostly marly-clayey lithotypes (Figure 3).

3.2. The Mt Vettoretto DSGSD

At the top of Mount Vettore, at about 2300 m above sea level, along the alignment of
Punta di Prato Pulito–Mount Vettore, near the Zilioli hut, numerous trenches and ridge
splits were observed (Figure 5); these are oriented about E–W, with lengths of over 100 m
and widths of a few meters. Inside these depressions, more than one meter deep, partially
filled with debris and soil, cracks and fractures of about 20 cm deep and 5 cm wide and
free-face in rock are visible, denoting compaction following the seismic events of 2016.
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Figure 5. The upper part of the DSGSD with the trenches/double ridge near the Zilioli hut.

The southwestern slope of Mount Vettore is strongly deformed (Figure 6) and presents
a morphology with a convex profile and small counter slopes, many of which are rounded
and filled with soil and debris; the stratification along the slope, although the lithology is
the same, presents undulations and micro folds, and the position changes with respect to
the summit of the slope.

The above-mentioned morphological elements allow us to hypothesize the presence
of a deep mass rock creep [51,52] whose evidences in the upper part of the slope can be
masked by debris; the deformation could reach hundreds of meters. The genesis of the
phenomenon can be attributed to the high relief energy due to the quaternary tectonic uplift,
associated with the particular structural configuration of the area given by the interaction
between the fault system of Mount Vettore and the Sibillini Mts. thrust (Figure 1).

These phenomena are generally set in depth [2,3,53,54] along the most ductile levels
of the stratigraphic sequence, while on the surface they are the same discontinuities in
the rigid rocky masses created by the tectonics that guide them. The interferometric data
allowed, even if with some doubt, indications of the possible kinematics of the deformation,
allowing delineation of the complex tectono-gravitative scenario that has affected the area
of Mount Vettore and has triggered the gravitational phenomenon [55]. In fact, triggering
factors can be investigated, as moreover verified in similar situations in the Apennines
area, in seismic events or in particular and extreme rainfall events [6]; nevertheless, even
in Apennines areas at this altitude, the mentioned gravitational movements can also be
associated with glacial decompression stresses [56].

The complex geological setting is characterized by the presence of two thrust planes
close together, that overthrust, respectively, the oldest lithotypes of the “Sequence” (Calcare
massiccio, Corniola, etc.) onto the more recent ones of (Scaglia formations), and these latter
onto the pelitic-arenaceous association of the Laga Formation. In the area being examined,
meso-structural analyses have evidenced a considerable reduction of the inclination of
the thrust planes toward the west with respect to the characteristic values of the eastern
front, which normally are around 30◦. The calcareous lithotypes show an attitude that goes

242



Land 2021, 10, 510

from subhorizontal to roughly dipping, the same as the slope. Locally, these lithotypes are
covered by strongly cemented and stratified slope deposits.

 

Figure 6. Panoramic view of the southwestern slope of Mount Vettore: (a) main geomorphological
elements (source Google Earth); (b) schematic cross section (after [55], modified).

At the top of the slope (2000–2200 m a.s.l.), in the zone of the narrow watershed
that divides it from the Pilato valley, modelled by the Pleistocene glaciation, it is possible
to find trenches parallel to the direction of the watershed and that run along its entire
length (double ridge). On the steep slope modelled in limestones beneath, certain landslide
crowns can be recognized above which fissures, steps, trenches, undulations, and intense
fracturing of the strata are present. These elements are ideally “joined” to each other by
a linear scarp parallel to the slope and decimetric to metric in height. The more or less
straight setting of the landform, though it is connected to polygenetic processes, allows
us to hypothesize a tectonic control for its genesis, exerted by an extensive dislocation,
without displacement, parallel to the slope.

The most evident landslide accumulations, where the attitude of bedrock is clearly
visible, show evident rotation counterslopes in the zone of the crown and prevalent transla-
tions in the middle portion. Less extended fall phenomena also recur; their accumulations,
at the foot, often evolve into debris-flows, which in turn evolve into alluvial fans. The
“freshness” of all the elements permits us to associate the landforms along the calcareous
slope with relatively “superficial” and recent gravitational phenomena. They are still in
slow evolution, activated by roto-translational slides that take place, respectively, along
the shear planes of neo-formation in the thickly stratified and subhorizontal rock masses
and along shear planes predisposed by an attitude roughly dipping as the slope and by

243



Land 2021, 10, 510

the presence of interspersed pelitic levels. The elevated frequency and density of these
phenomena, anomalous with respect to that found in other sectors of the physiographic
unit, allow us to hypothesize a control of the phenomena by a zone (or more than one
zone) of ductile deformation. This would be predisposed by way of the probable listric
geometry of the cited extensive tectonic dislocation, whose plane loses its own identity
in the zone of intense tectonic fracturing between the two thrusts or in the marly levels
below, which are even more ductile. On the basis of morphometric and structural consider-
ations, these zones of deformation can be placed at a medium depth. A wider and deeper
deformation, in addition, should have affected both the flank of the ridge in question, as is
demonstrated by the presence of double crests. As a whole, it could fall within the category
of the lateral spreads indicated by [19]. In more detail, a macrocambering phenomenon
could affect the limestones of the eastern flank due to the differential dislocation realized in
the pelitic-arenaceous lithotypes below the thrust, following strong weathering processes,
squeezing out [57], and fluvial erosion. The phenomenon, in part associated with that
described by [58] and by [59], is testified to by a considerable reduction of inclination of
the thrust plane, connected, probably, to its deformation by gravity. Almost certainly, on
the western flank the effects of the glacial decompression are felt.

3.3. The Pescara del Tronto Landslide and the Tronto River Occlusion

Studies carried out over a long time in the area [2–4,10,39] have made it possible
to verify how mass movements can create interference with river dynamics. One of
the clearest and most impressive phenomena of this type is represented by the ancient
movement of Pescara del Tronto, which involved enormous volumes of marly limestones
and limited levels of terrigenous sediments. Only a part of the original accumulation,
consisting of large masses of intensely fractured reddish limestone and gravels mixed with
debris, is preserved on the hydrographic right of the Holocene plain of the Tronto River
(Figure 7), while the detachment zone is located on the medium-low section of the slope
on the hydrographic left [6,10,39].

Figure 7. The topographic interpretative 3D scheme of the ancient landslide of Pescara del Tronto
and, on the bottom, of the other analyzed phenomena (after [10], modified).

In this sector, the valley is narrow and deeply incised due to the convergence of the
two mountain ridges: the calcareous one of the Sibillini Mountains and the turbiditic one
of the Laga Mountains, oriented respectively NNE–SSW and NW–SE.

The welding of these two structures is realized through the great Sibillini thrust that
overlaps the calcareous lithotypes onto the torbiditic ones. In this zone, a lateral contact
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must have also occurred between the two lithotypes along a roughly SW–NE alignment, as
a result of a limited backthrusting. The backthrust, moreover, drove the Tronto River path in
this portion of the valley; its incision, mainly connected to lower-middle Pleistocene tectonic
uplifting, occurred into the arenaceous-pelitic lithotypes of the Laga formation. This is
testified both by the strong asymmetry of the valley and by the lithological composition of
the different generations of alluvial deposits, made up of mainly arenaceous pebbles and
sandy-silty matrix.

Along the high slope on the hydrographic left, at a height of about 1000 m. a.s.l., the
mentioned thrust plane outcrops. In this zone it shows southeast verging and generally
subhorizontal setting, which is interrupted by a modest upward concavity close to the built-
up area of Pescara del Tronto. The geometric setting of the thrust plane and the contrasting
hydrogeological characteristics of the involved lithotypes probably have caused a particular
concentration of the water drained from the huge calcareous aquifer overlapped onto the
turbiditic one.

Mountainward with respect to the Pescara del Tronto village, on the calcareous litho-
types, it is possible to observe a large landslide crown between the heights of 900 and 1150
m a.s.l. It seems to have been generated, given its articulated configuration, by the union of
several gravitational phenomena [6,10,39], the evidence of which (benches, counterslopes,
and high scarps) is still present along its slope. On the hydrographic right, detailed geotem-
atic surveys developed on the valley bottom and at the foot of the slope, have evidenced,
starting from the riverbed (660 m a.s.l.) up to a height of about 850 m a.s.l., the presence of a
large calcareous “plate” made up mostly of the Scaglia Rossa Formation. It lays at the base
and on the southern side on the arenaceous pelitic turbidites of the Laga Formation and in
numerous outcroppings still has a well-preserved stratification. The base is an exception
to this because it shows an intense fracturing (levels of “breccia”). The summit portion is
partially covered by a landslide accumulation made up of turbidic lithotypes of the Laga
Formation. The collocation in height of the upper portion of the “plate” is a bit above that
of the end of middle Pleistocene (second order) alluvial deposit limbs, which outcrop on
both sides of the river.

This presence, unique for the slope on the hydrographic right, is completely anomalous
from a stratigraphic and structural point of view. In fact, on the hydrographic left, the same
turbidite layers overthrusted due to the thrust plane onto the limestones of the Maiolica
formation (1000 m a.s.l.), while the Scaglia Rossa outcrops about 200 m mountainward (at
1100 m a.s.l.). The data shown so far have a possible complete interpretation only through
the hypothesis of a large mass movement that involved a much larger volume of material
and whose calcareous plate represents a residual limb.

It is possible to schematize by four different steeps the complex kinematics of the
phenomena (Figure 8a): the first stage corresponds to a rotational-translational slide that
overlapped the calcareous plate onto the colluvial “bed” made of mainly pebbly-sandy-
silty material; the second stage is represented by the activation of slide–flow movements
with shear planes occurring within the colluvial cover and/or in the top levels of the
turbidic bedrock; the third stage is represented by a passive transport of the “plate” by the
above-mentioned slide-flow phenomena along a gently dipping slope that was jointing the
valley bottom at the end of the middle Pleistocene; there, the deposition of the second order
alluvial terraces was being completed. The successive phases of valley incision, during the
Late Pleistocene and the Holocene, produced erosion processes at the foot of the “plate”
and triggered gravitational relaxing of the plate itself. Temporary fluvial damming could
be associated with this phenomenon, but it is only possible to recognize the remnants of
the landslide body, constituted by fragments of “Scaglia Rossa” limestone (Figure 8a,b).
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Figure 8. Cont.
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Figure 8. (a) Evolutionary sketch cross-sections of the Pescara del Tronto landslide (after [10], modified). (b) Remnants
(white box) of the ancient body landslide of Pescara del Tronto in the hydrographic right of the Tronto River.

Chronologically it is possible to collocate the phenomena at the end of the mid-
Pleistocene; this is demonstrated by the stratified slope deposit of the Late Pleistocene that
regularizes the lower portion of the crown and, partially, the third order of alluvial deposits.
The main conditioning factors of the mass movement can definitely be recognized: (i) in the
intense tectonic fracturing of the rocks, realized both during the building of the compressive
structures and during the uplifting and the Pleistocene extensional tectonics; (ii) in the
gravitational fracturing, as a result both of the tension release within the calcareous mass
following the fluvial erosion of the turbidites below and of the genesis of differential sinking
in the same ductile turbidites; (iii) in the high relief; and (iv) in the decay of geomechanical
parameters of the calcareous lithotypes related to the genesis of karst levels developed
according to the fluvial deepening phases. With regard to activation factors, the following
hypothesis is formed. Initial phase was favored by the significant increase of oriented
accelerations connected to the intense seismicity of the area and the high-water pressure
exercised at the base of the aquifer because it is fed by the endorheic basin of Castelluccio
(over 300 m of difference in height). The following phases were favored by the great
quantity of water present on the slope and supplied by numerous springs whose capacity
must have been much greater than at present. In fact, in that period, the cataglacial phase
at the beginning of Early Pleistocene was ongoing, with consequent dismantling of the
glacial systems of the Sibillini Mountains and the great water increase in the aquifers.

3.4. The Debris Flows Phenomena of Pescara del Tronto

The geological-stratigraphic setting of the area is rather complex: the bedrock is repre-
sented by the lithotypes belonging to the pre-Evaporitic member of the Laga Formation.
Slightly above the built-up area of Pescara del Tronto, these lithotypes are in contact,
through a very important tectonic-structural element such as the Sibillini Mountains thrust,
with the Cretaceous-Eocene calcareous lithotypes (from Maiolica to Scaglia Rossa) of the
Umbria-Marche sedimentary sequence [28].

The above-described lithologies are obliterated by continental deposits of different
origin. The most ancient sediments of this succession are composed of accumulations of
inactive landslides, such as the one located upstream of the inhabited center of Pescara
del Tronto, an object, even today, of intense mining activity. Specifically, these deposits
are characterized by a chaotic structure and made up of heterogeneous, heterometric
elements (also the size of blocks), with sharp edges, both matrix and clast supported,
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naturally stabilized, and locally covered by stratified slope debris attributed to the Late
Pleistocene. The higher zone is covered by recent slope deposits, which in part overlap an
older stratified phase of deposition (Figures 2 and 9). The colluvial deposits at the foot of
the slopes, which often serve as a connection to the valley floor, are also limited in extent.

 

Figure 9. Overview of Pescara del Tronto, the town that was completely destroyed by the seismic
events of 24 August and 30 October 2016.

The medium-high sector of the slope upstream of Pescara del Tronto is also crossed
by numerous erosion channels filled, in most cases, by debris flow deposits (gravel and
subangular polygenic blocks in a silty-sandy matrix). Near the bottom of the valley,
gravelly-sandy and sandy-loamy alluvial deposits outcrop, engraved and terraced by the
Tronto River (terrace of the first order), which along the current riverbed mainly deposits
gravel and sand and subordinately blocks. At the base of the town of Pescara del Tronto
and along the valley of the Cavone ditch, travertine deposits emerge in cascade and basin
facies and anthropic deposits that are highly heterogeneous and characterized by complex
geometrical relationships with the lithotypes present (Figures 2 and 9).

In the southwestern part of the built-up area, there is a quarry used for the extraction
of aggregates, with quarry fronts given by steep sub-vertical walls even over twenty meters
high. The detritus deposit has a massive structure, except in the central part of the outcrop
where it is possible to recognize a pseudo-stratification slightly tilted toward the mountain.
The carbonate clasts are heterometric and sharp-edged, from centimeter to meter; the sandy
matrix is variable in content, giving the deposit a non-homogeneous texture. The deposit is
weakly cemented. At the top of the quarry front there is a paleosoil and above it the debris
from the more recent slope. On the upstream side of the built-up area, there is a landslide
escarpment set on a deposit made up of intensely cataclasized limestone; the base of the
landslide body presents evident consolidation interventions [39].

The debris flows phenomena present dynamics not very different from those of the
manure conoids that have shaped many of the wide flat-bottomed valleys within the
calcareous Apennines and the area surrounding Mount Vettore, activated on the steep
slopes by the conspicuous detritus cover or the regolitic fraction of the rocky substratum.
These are extremely rapid processes, generated by the saturation of the debris masses
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by the water which, unlike the fluvial-denudational processes, passively participates in
the movement because it is not responsible for the transport of the materials. In fact, the
latter do not show any hint of stratification, and their texture is extremely variable (from
clays to pebbles to blocks). For historical documentation and “freshness” of the forms, the
activity of these processes is placed in the recent Holocene until the beginning of the 20th
century [38,41,60,61]. In particular, the continuous runoff and debris flows that occurred
upstream of the town of Pescara del Tronto forced the Consorzio di Bonifica del Tronto
to protect the slope through planting and reforestation, the most important of which was
carried out between 1960 and 1972.

4. Geomorphological Hazard and Resilience

The aspects related to the geomorphological hazard of large-scale mass movements
located along the study area can be summarized in two main points: (1) the possible
catastrophic evolution when a stability threshold is overcome, due to natural events and
caused by sudden climate variations; (2) the coseismic surface breaks which, similar to the
coseismic surface faulting, can affect the territory during important seismic sequences such
as that of August 2016 in Central Italy.

The evolution of large-scale landslides characterized by low average slip rates may
involve the rapid slide of portions of an unstable slope or the catastrophic movement of
entire unstable rock mass [3,15]. The main factor hindering the hazard evaluations for
large-scale mass movements is due to the difficulty in the estimation of the recurrence
time of the single displacement events. Indeed, the activation of the shear planes seems
to be episodic, and the subsequent displacements are probably separated by long time
intervals [6,9,62–64].

The study area, both for its tectonic-structural conditions and its morpho-evolutive
scenario, is very interesting from the perspective of the gravitational phenomena hazard.
The vast area is located across slopes including the lines of the overthrust and of the river
deepening; these large slopes present very diversified scenarios but of high geomorpho-
logical hazard—proceeding from east to west we can verify the presence of different and
complex geomorphological situations with increasing hazard conditions.

At the highest altitudes there is, in fact, the DSGSD of Mount Vettoretto [39,55],
which in fact could constitute the lowest hazard situation among those analyzed, with the
distinctive characteristics of DSGSDs that also in this case manifest its irregular evolution;
these, especially during earthquakes of particular intensity, in fact, lead to an increase in
the openings of the trenches of the upper portion of the slope. It is clear that the profile,
even more convex than normal, favors an intense movement of the slope debris; this
accumulates at lower altitudes with a consequent increase in volume of loose rock in the
areas of potential triggering of further and different gravitational movements and/or rapid
mass processes (debris flows, debris avalanches, falls, etc.).

Going down in altitude, one reaches the Pretare settlement, an area with a lower slope
where numerous rocky blocks (“prete” in dialect) are found scattered among the debris
accumulations with a smaller grain size and with rare outcrops of the bedrock in place. This
area is affected by a high landslide hazard, since there may be a concomitance of various
gravitational phenomena, starting in the upper portions of the slope and expanding and
accumulating in this valley bottom. These are the aforementioned debris flows but also
the collapse/rollover phenomena of large boulders whose areas of influence can involve
significantly lower altitudes up to the Pretare village. A further element of hazard is
given by these boulders that, once the initial kinematics are exhausted, can continue to
move according to a conveyor belt type mechanism and give rise to phenomena similar to
lateral-spread [10,39,41].

The geophysical surveys conducted in the settlements of Piedilama and Pretare for
the III level of seismic microzonation studies where carried out following the 2016 seismic
events (https://sisma2016data.it/microzonazione/); these highlight some areas suscepti-
ble to seismic motion amplification, determined by the impedance contrast between the
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accumulation of the “paleolandslide” and the bedrock. Moreover, in this general frame-
work, the variability of the litho-technical characteristics of the bedrock under the two
settlements and consisting of thick arenaceous banks within a sub-vertical sequence of
pelitic-arenaceous formation, constitutes a further element of hazard [10,39,41].

Going to the west, following the same main valley floor, once the settlement of Piedil-
ama (whose toponym means “at the foot of the landslide”) is reached, the scenario is similar
to the previous one but with significant variations. It is an area of confluence/accumulation
of a greater number of gravitational movements both of flow type (not only debris-flows),
and also of sliding type, essentially due to the remobilization of the vast accumulations
above. Along the valley floor, being more hydrologically structured (presence of a stable
hydrographic network), movements of remobilization of the various materials can also oc-
cur due to surface run-off water, which is able to transport mainly the finer granulometries.
Finally, it is important to say that, as an area of influence of the collapsing phenomena
deriving from the Mount Vettore “walls”, due to the major distance this is characterized by
less hazard.

The highest hazard levels are found in correspondence with the built-up area of
Pescara del Tronto (Figure 9). The geological and morphological evolution of this section
of the slope has contributed to the creation of various hydro-geomorphological hazard
situations concentrated in a restricted area, which all together delineate a high-risk scenario
for the entire zone, both slope and valley floor of the Tronto River [10]. In the highest parts
of the slope, the debris layers are gradually thicker and more extensive, sometimes ancient
and cemented, and in some cases strongly reincised; these, especially in heavy rainfall
conditions and given the considerable dip, facilitate the activation of frequent and great
mass transports, such as debris-flow and debris-avalanche [39].

Lower down, the thickness of movable materials increases due to both the dynamics of
normal growth along the slope and the coalescence of the various landslide accumulations
described above. Numerous water springs are also located in this middle section [10]
so that both the morphology of the slope and the considerable emergence of water often
cause the above-mentioned deposits to become saturated, a mechanism that in turn leads
to the triggering of further and much larger gravitational phenomena of different types
and evolutions. In fact, not only further debris-flow movements are triggered from this
area but also extensive roto-translational slides that succeed in remobilizing the debris
accumulations, sometimes even reaching the main valley floor. It should also be noted that
these phenomena are often accompanied by local siphoning and sinking of the various
thick accumulations, with triggering of subsidence phenomena.

Finally, at the end of the slope, near the built-up area of Pescara del Tronto, in corre-
spondence with the Covone ditch, travertine deposits are recognizable [39], resulting from
carbonate precipitation by the drain waters fed by the basal aquifer of Mount Vettore [10].
This deposit, more than 20 m thick and attributable to the Upper Pleistocene-Holocene, is
composed of phytoclastic and phytohermal lithofacies and of concretions typical of riffle
and pool morphologies [65] with very different degrees of cohesion, sometimes mixed with
material deriving from debris flows that have characterized this area [39]. The built-up
area of Pescara del Tronto rises on these deposits, and it is the different degree of cohesion
of these materials to which most of the damage that the village suffered following the
2016–2017 seismic crisis can be precisely attributed.

In addition, these deposits, although of limited extension [39], are often subject to
collapse/tilting phenomena that, while collapsing or tilting only a short distance, can
strongly interfere with the valley floor dynamics, with the hydrographic network, and with
the existing infrastructure system.

Finally, it should be remembered that the seismicity of the area contributes signifi-
cantly to increasing the already high level of hazard—not only because of the oriented
acceleration that reduces the trigger thresholds but also because of the numerous landslides
and instabilities that can also occur simultaneously, determining what in the most serious
cases is unfortunately already known.
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Therefore, these situations also obligate careful reflection on the modalities that can
be implemented to make the population aware of the risk propensity in the inhabited
areas and in the territory in general, both to help plan interventions and also to address
perceptions of risk [38,61,66] that could consequently increase resilience [61,67].

5. Discussion and Concluding Remarks

The present work aimed to contribute to the knowledge on the conditioning of active
tectonic structures on the triggering of large landslides or DSGSD in a mountain front,
generated by the Quaternary uplift and characterized by the presence of a very important
basal aquifer.

Considering the international scientific literature, the studies that have focused on this
topic are rare, as we consider the passive role exerted by tectonic structures that, generating
strong disarticulation of the bedrock and in conjunction with high relief energy, favors
more or less complex gravitational mechanisms. Therefore, as there are few international
studies that have the linkage we discuss, the present work can make an important con-
tribution in a poorly understood field that concerns the relationship between important
tectonic structures, critical hydrogeological conditions, and high relief energies versus huge
gravitational movements.

The first activation and the following evolution of the observed deep gravitational
phenomena can be dated only through relative methods, since they do not have any good
element of dateability. Particularly useful for this purpose are the relationships between
the elements on the deformed slopes (involved in large landslides) and the stratified slope
debris deposited in a periglacial environment, the terraced alluvial deposits, the lacustrine
deposits, and the moraines.

These different relationships allow us to place the first activation of many phenomena
before the last cold phases of the Pleistocene (or, at least, simultaneously with them), and,
in many cases, to recognize their reactivations. Only rarely in historical or recent times have
these later phenomena been observed, especially under strong earthquakes or extreme
precipitations in the terrigenous lithotypes of the Adriatic belt.

Furthermore, the main causes of these complex gravitational movements are to be
found in the intense tectonic deformation of the bedrock, which has been folded and
overlapped, and in the existence of residual compressive stresses. The recent uplifting with
the associated gradients favorable to erosional processes has also facilitated the activation
of lateral spreading phenomena, according to the type described by [68]; these mechanisms
have given rise to ridge splitting, lateral expansions, and sackungs, mainly along slopes
modelled on stratified limestone formations. Additionally, slides (deep-seated block-slide)
along pre-existing planes or shear zones or in marly-clayey layers occurred; these have
also evolved into further gravitational phenomena, especially at the margins of the large
deformed masses.

The variation of the geomechanical parameters relating to the landslide bodies’ rocks
is a consequence of the displacements due to the internal deformation of the rock mass [69];
it follows that the progressive reduction of the intrinsic shear strength at the base of the
rock mass depends on the lithology and its internal structure, on the type and stage of
slope evolution, as well as on the presence of water [2,8,9,70]. The combination of these
factors conditions, in fact, the post-collapse stress-strain behavior of the rocky mass at the
considered moment of the slope “history”; therefore, in case of large and complex landslide
phenomena, although climatic variations [71] may play a primary role in reducing the
recurrence interval between displacement events, the rock mass features may have a minor
influence.

Due to the long recurrence intervals in the activity of capable faults, such as the Mount
Vettore fault, which has conditioned gravitational movements in the past and still does,
the occurrence of catastrophic phenomena may take tens of thousands of years or may not
occur if other factors (particularly the climate) have a negligible impact on the evolution
of the phenomena. If the long recurrence interval for fault activation can be a reassuring
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factor, the seismic amplification registered on the ground along a fault is a process that
can condition the evolution of landslides. Thus, is evident that anomaly amplified seismic
waves can accelerate the evolution of instability phenomena in sudden and catastrophic
events.

The systematic geomorphological analysis carried out in the study area has made it
possible to understand the main genetic factors of surveyed mass movements, which can
be summarized as follows:

(a) lithology of the bedrock characterized by high thicknesses of massive limestone rocks
or arenaceous formations overlying less resistant marls or thinly stratified levels with
pelitic intercalations;

(b) geological structures deriving from compressive tectonics to which is connected the
presence of strong residual tensions and shear zones, along which gravitational shifts
that may occur on a large scale;

(c) recent strong uplift that has characterized the ridge areas, where the presence of
resistant rocks and the river downcutting has given rise to a high relief energy with
extended and steep slopes, limited by deep transverse valleys or overthrust fronts;

(d) extensional tectonics that have given rise to high fault scarps that sometimes al-
lowed the outcropping of potential sliding planes along which huge gravitational
phenomena have set in;

(e) high seismicity of the area, particularly active along the axes of the chain.

Therefore, the location of many landslides along the seismogenic faults represents a
factor that can considerably increase the local hazard related to gravitational phenomena,
especially if these are conditioned by an important relief energy.
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Abstract: A correct landslide hazard assessment (LHA) is fundamental for any purpose of territorial
planning. In Italy, the methods currently in use to achieve this objective alternate between those
based on mainly qualitative (geomorphological) and quantitative (statistical–numerical) approaches.
The present study contributes to the evaluation of the best procedure to be implemented for LHA,
comparing the results obtained using two different approaches (geomorphological and numerical) in
a territorial context characterized by conditioning and triggering factors, favorable to the instability
of the slopes. The results obtained, although preliminary, evidence the respective limitations of the
methods and demonstrate how a combined approach can certainly provide mutual advantages, by
addressing the choice of the best numerical model through direct observations and surveys.

Keywords: landslides; factor of safety; numerical models; Hoek–Brown method; monoclinal setting

1. Introduction

Landslide hazard assessment (LHA) is a challenging task for the prevention and pre-
diction of a territory for local land management and security services. Proper management
of landslide hazard, as well as saving human lives, can minimize socioeconomical impact
that in many developing countries may equal a large percentage of the gross national
product [1,2]. LHA is usually based on the spatial and temporal probability of landslide
occurrences and is performed following three main steps: (i) the creation of a phenomenon
inventory, (ii) a landslide susceptibility analysis and (iii) a landslide hazard analysis [3–5].

In Italy, the National Plan for Hydrogeological Risk Assessment (PAI) [6] is the cogni-
tive, regulatory and technical–operational tool through which actions, interventions and
rules concerning the defense against hydrogeological risk of the territory are planned and
scheduled. Although the term LHA (in its Italian translation) is often mentioned within the
PAI, the significance is at times contradictory, and the products of the Plan (maps, inventory
sheets, analyses, etc.) rarely come from the steps described above; on the contrary, they
are often realized based on an empirical approach and basic available data. In particular,
hazard, vulnerability and risk degree (the latter in terms of exposed value) is closely linked
to the quality of the expertise, while only in a few cases have specific studies (numerical
models, statistical/probabilistic approaches) been applied [7–11]. As a consequence, the
representation of the landslide hazard that emerges in some areas of the Italian territory
can be over/underestimated, and divergent opinions may arise among technicians and
public administrators. This problem, among other aspects, has also been highlighted in
other countries of the European Union such as France [3,4,12,13].

In a more general context, the methods currently in use in Italy for LHA include
two main types of approach: the field-based qualitative approach and the data-driven
quantitative one [14]. The former type includes the so-called ”geomorphological” meth-
ods [3,5–8,15–17], while the latter includes the statistical analyses (i.e., bivariate and multi-
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variate statistical techniques, [7,18–22]) and the deterministic methods that involve, among
others, the analysis of specific sites or slopes based on numerical models [23–30].

The present work compares the results of a landslide analysis carried out in a sample
area using both geomorphological and numerical approaches. The area chosen for the
analysis is located in a high hilly sector of the Adriatic side of the Central Apennines
(Italy), characterized by the presence of monoclinal reliefs and typical cuesta morphologies,
formed by differential tectonic movements in a recent uplift area [31,32]. Despite the relative
simplicity of the geological model, these contexts can generate complex mass movements,
both for characteristics (type of movement) and size (extension and depth of the failure
zone) and kinematics (velocity and return time) and consequently represent high hazard
conditions in the presence of built-up areas and/or infrastructures. The LHA (following
the significance given by Italian PAI) is typically conducted based on a geomorphological
approach and an expert judgment as regards the attribution of the degree of vulnerability
and the exposed value. For any reclassification of the degree of risk, site-specific analyses
(i.e., instrumental monitoring, geognostic bore-holes, geophysical prospecting) or the use
of numerical models (slope stability analyses) are usually required by Italian guidelines.
Nevertheless, both types of investigations proposed have limitations. In the first case, the
non-negligible costs of direct surveys and prospecting limit the representativeness of the
surveys themselves; in the case of numerical models, on the other hand, reliability is mainly
linked to a correct choice of input parameters, is sometimes not homogeneous in the area
considered and is often deduced from bibliographic data.

In this study, using finite-difference software (ITASCA FLAC/Slope v.8.0 [33]) the
factor of safety (FoS) was calculated on representative slope sections where detailed geo-
morphological surveys highlighted the presence of gravitational phenomena or stability
conditions. This analysis, in particular, refers to medium-to-low depth landslides, while
more complex phenomena (as specified in the following paragraphs) recognized in the
area and associated with deep-seated gravitational slope deformations were not included
in the study [34,35].

The objective of this study was to clarify the role, usefulness and limits of the different
methods to be used in the LHA and also provide useful information for their correct use
in any context of territorial planning where specific indications have not been provided.
A further aim was to demonstrate a combined and intelligent use of the two methods,
pending clearer and universally accepted regulatory indications on the methods to be used
for the LHA, which seems at the moment the most suitable choice both in economic and
safety terms.

2. Geological and Geomorphological Setting of the Study Area

The study area (around 13 km2) is located east of the Sibillini Mts. Massif (Central
Apennines) (Figure 1a). This sector corresponds to a vast sedimentary basin where, starting
from the early Pliocene, thick levels of sandstones and conglomerates alternated with pelitic-
arenaceous levels are deposited in transgression over a Miocene (Messinian) turbidite
bedrock, mainly consisting of alternating arenaceous-pelitic and pelitic-arenaceous levels
(Laga formation) [36,37] (Figure 1b,c). The contact between post- and pre-transgressive
sediments is marked by an erosion surface approximately parallel to the Miocene lev-
els [32,38]. The area is particularly characterized by the presence of weak levels and ductile
deformation zones, corresponding to the weathered levels of the pre-transgressive clayey
basement. Such strong weathering is probably due to the long period of immersion of the
Messinian sediments as well as the lithostatic charges and the constant presence of water
in the arenaceous-calcarenitic aquifer.

The structuring of the pre-transgressive bedrock was essentially carried out in the
early Pliocene when, after intense compressive tectonics, east-verging folds and thrusts (the
latter emerging or buried) developed within the Messinian and pre-Messinian formations.
Pliocene sediments, on the other hand, show a generalized monoclinal setting, linked
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to the subsequent tectonic uplift that affected the whole area starting from the early
Pleistocene [39–41]; the strata generally dip between 15◦ and 20◦ (Figure 1b).

 
Figure 1. (a) Schematic geological map of the study sector: 1—main continental deposits (Pleistocene–
Holocene); 2—sands and conglomerates (Pliocene–Pleistocene); 3—clays and sands (Pliocene–
Pleistocene); 4—arenaceous-marly-clayey turbidites (late Miocene); 5—limestones, marly limestones
and marls (early Jurassic–Oligocene); 6—trace of cross-section shown in Figure 1b; 7—study area
(see Figure 4). (b) Schematic geological cross-section from the Apennine chain to the Adriatic Sea,
modified from [42].

The resulting landscape, characterized by alignments of strongly asymmetrical and
NNW–SSE oriented reliefs, is typical of “cuestas”, with the main element consisting of
the Mount Falcone relief (Figure 2a,b). Selective erosion, due to the presence of tough
and massive lithotypes (sandstones and conglomerates) overlying less resistant clayey
formations, creates steep escarpments between 50 and 300 m on the southwestern flanks.

The monoclinal structure, as a whole, is displaced by direct faults, mainly oriented
NNW–SSE and WSW–ENE, the displacement of which can exceed 10 m [36,42]. Micro- and
meso-structural analyses carried out on middle Pliocene and upper Pleistocene formations
highlighted intense fracturing according to two main joint systems, N70 ± 15, N150 ± 15,
and N20 ± 15, N100 ± 10, both compatible with the abovementioned fault systems. In the
arenaceous-conglomeratic body of Mount Falcone, a third system of joints, N–S and E–W
oriented, has also been observed. The former, dipping W of 70–80◦, completely crosses
the rigid plate with a spacing of the order of a few tens of meters; the latter, characterized
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by less frequency and continuity, is found at the edges of the plate itself. The genesis of
this third system is attributed to the expansion processes of the relief resulting from the
Pleistocene tectonic uplift [43,44] to the passive action of discontinuities developed with the
same direction within the pre-transgressive bedrock and, in general, to the high seismicity
of the area.

Figure 2. (a) 3D digital elevation model of the study sector: 1—edge of cuesta; 2—river. (b) The arenaceous-conglomeratic
body of Mount Falcone.

From a geomorphological point of view, the joint systems described above, particularly
developed within the arenaceous-conglomeratic body of Mount Falcone (924 m a.s.l.), create
strong instability, especially corresponding to the W–SW portion, where the high structural
scarp (about 150 m) is affected by retreat processes due to past and ongoing falls and
topples (Figure 3). The accumulations of these processes, mainly consisting of pebbles and
blocks, constitute an extensive and continuous talus at the base of the slope itself but can
also be found further downstream, through rolling and/or passive transport processes
induced by slow deformations of debris material; isolated blocks of decametric dimensions
were found within the Tenna and Aso riverbeds (north and south of the relief, respectively).

 

Figure 3. Open fractures and toppling phenomena affecting the arenaceous plate of Mount Falcone.
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3. Data and Methods

3.1. Geomorphological Approach

The information and the references related to the geological setting of the study area
(already included in the text) are included in the caption of Figure 1b.

The detailed study of the morphodynamic processes active in the study area, with
particular regard to landslides, was initially carried out following the classical principles
of a detailed field geomorphological survey. In the first phase, all the available geological
information sources (maps, profiles, stratigraphic sections, stratigraphic logs, etc.) were
acquired. The base cartography was the geological map at 1:10,000 scale, which presents
an almost complete coverage even at a national level; nevertheless, it is not uniform in sym-
bolism and the legend as it is the product of autonomous regional projects. Furthermore,
since this is a relatively old document (about 20 years old), the perimeters and the state of
activity of the gravitational processes were updated through a detailed survey, through
which soil samples were taken for subsequent geotechnical tests. In this regard, it should
be emphasized that specific geotechnical data for outcropping formations are quite rare,
and in some cases, it was necessary to use the results of tests conducted on samples taken
from the same formations but in different (albeit neighboring) locations.

The synthesis of these surveys, mainly addressing the characterization of the type and
evolutionary mechanisms of landslides, is shown in Figure 4a.

From a lithological point of view, the area can be divided into two main sectors, one
to the west and one to the east of the relief of Mt. Falcone, consisting of arenaceous and
arenaceous-conglomeratic lithotypes associated with a coastal transition environment. In
the western sector of the relief, as previously mentioned, the Messinian arenaceous-pelitic
and pelitic-arenaceous members of the Laga Formation outcrop with a counter-dip-slope
attitude, ranging between 30◦ and 40◦ (Figure 4b). Pliocene arenaceous-pelitic and pelitic-
arenaceous lithotypes also emerge east of the Mount Falcone relief; the frequency and
consistency of the arenaceous levels is, however, less marked as along with the strata
inclination (generally dip-slope and between 15–25◦). A common feature of some clayey
lithotypes is the presence of more or less thick and frequent weathered (weak) levels; these
layers, characterized by poor geotechnical properties, are observed mostly in the western
sector, within the pelitic-arenaceous member of the Laga formation.

The bedrock is often masked by powerful thicknesses (up to 30 m) of fine colluvial
deposits; the greater thicknesses are concentrated corresponding to the numerous minor
valleys, which originate from the arenaceous-conglomeratic plate.

The hydrographic network is fairly developed, and because of the low permeability
of bedrock and covering soils, the major gullies and streams radially develop from the
top of the relief, although there is important tectonic conditioning especially in the lower
hierarchical reaches. Concerning water circulation, runoff is limited to a few days/weeks
after considerable meteoric events, while the groundwater circulation, due to the predomi-
nantly clayey nature of bedrock, is generally limited. However, the presence of widespread
perched aquifers within the colluvial deposits, with the water table close to the surface, is a
crucial element for the stability of the slopes.

Landslides, as mentioned, are widespread over the area, both for the lithological
nature of bedrock and the morphological–structural setting of the slopes, characterized
by discrete slope angle and by strata dip often favorable to the activation of gravitational
phenomena. The typology of movement is also very highly variable, with falls, topples,
flows and slides with different styles and states of activity being present (Figures 4a and 5).
Although the stratigraphic setting is favorable to the activation of slides (rotational/planar)
particularly on the eastern side, these are less frequent, while flows are dominant; this
apparently contradictory aspect can be associated, as described in the following, with
the good strength and deformation properties of bedrock and with the presence, on the
other hand, of important thicknesses of unconsolidated continental deposits often hosting
a perched water table. It is not uncommon, however, to observe complex phenomena
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characterized by rotational slides in the uppermost portion and flows in the median-
terminal one.

 

Figure 4. (a). Geological and geomorphological map of the study area: 1—slope and colluvial
deposits (Holocene); 2—rotational and planar slides (Holocene); 3—flows (Holocene); 4—old and
recent fluvial deposits (Pleistocene–Holocene); 5—arenaceous-conglomeratic bedrock (Mount Falcone
body—Middle Pliocene); 6—mainly arenaceous-pelitic bedrock (Argille Azzure Formation—Middle
Pliocene); 7—mainly clayey bedrock (Argille Azzure Formation—Middle Pliocene); 8—mainly
pelitic-arenaceous bedrock (Laga formation—Late Messinian); 9—mainly arenaceous-pelitic bedrock
(Laga formation—Late Messinian); 10—main faults; 11—gravitational trench; 12—strata attitude;
13—trace of cross-section used for the numerical simulation; 14—trace of geological cross-section
described in (b).

The type of movement was mainly attributed on the basis of geomorphological
considerations, taking into account size, morphology, typology of material involved, strata
dip and damage eventually observed along roads or to infrastructures (Figure 5).
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Figure 5. Typical landslides in the study area. (a) Rotational slide affecting clayey bedrock and (b)
consequences on the road conditions; (c) example of earthflow involving fine slope deposits and (d)
secondary road deformed by a landslide.

3.2. Numerical Approach

The numerical code used to perform the FoS calculations is the FLAC/Slope v. 8.0. In
contrast to other “limit equilibrium” programs, which test several assumed failure surfaces
(method of the slices) thus choosing the one with the lowest FoS, FLAC/Slope uses the
procedure known as the “strength reduction technique”, a method commonly applied with
the Mohr–Coulomb failure criterion in FoS calculations by progressively reducing the shear
strength of the material in stages until the slope fails [45–50]. The main advantage of a
slope stability analysis performed with FLAC/Slope is the possibility to determine a broad
variety of failure mechanisms with no prior assumptions concerning their type, shape or
location. Moreover, FLAC/Slope is able to combine slip along joints with failure through
intact material, thus offering clear advantages in the modelling of jointed rock masses.

The material failure can be defined by either the “Mohr–Coulomb”, the “Modified
Hoek–Brown” or the “ubiquitous-joint” plasticity models.

The Mohr–Coulomb model is the conventional model used to represent shear failure
in soils and rocks. It assumes that failure is controlled by the maximum shear stress which
in turn depends on the normal stress. The solution is obtained by plotting Mohr’s circle
for states of stress at failure in terms of the maximum and minimum main stresses: the
Mohr–Coulomb failure line is the best straight line tangent to the Mohr’s circles.

The Mohr–Coulomb criterion can be written as

τ = c + σn tan φ (1)

where τ is the shear stress, c is the cohesion of the material, σn is the normal stress (negative
in compression) and φ is the angle of friction.
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The ubiquitous joint in FLAC/Slope is an anisotropic plasticity model that includes the
presence of an oriented weak plane (such as weathering joints) in a Mohr–Coulomb model;
failure may occur in either the intact rock, along the weak plane or both and depends on
the stress state, the material properties of the rock and weak plane and the orientation of
the latter. The failure of the weak plane (ubiquitous joint) may occur by shear, for which
the envelope criterion is:

τ = cj + tan ϕjσn (2)

or by tension, for which the criterion is:

σ3 = −Tj (3)

with:
Tj ≤

cj

tan ϕj
(4)

where τ and σn are shear and normal stresses respectively, and σ3 is the minimum principal
stress. cj, ϕj and Tj are the cohesion, friction angle and the tensile strength of the ubiquitous
joints, respectively.

Both the Mohr–Coulomb and the ubiquitous-joint models require another parameter,
the dilation angle ψ, usually assumed as a fraction of the friction angle and ranging between
φ/4 (very good quality rocks) and 0 (very poor quality rocks) [51–53].

The Hoek–Brown failure model for jointed rock masses is defined by the following:

σ1 = σ3 + σc

(
mb

σ3

σc
+ s

)a
(5)

where σ1 and σ3 (Pa) are the maximum and minimum stresses at failure respectively.
Concerning the other parameters, mb is the value of the Hoek–Brown constant for the rock
mass, s and a are constants that depend upon the characteristics of the rock mass and σc
(MPa) is the uniaxial compressive strength of the intact rock.

The Modified Hoek–Brown model, sometimes referred to as the “Mhoek model” [54]
includes a tensile yield criterion, similar to that used by the Mohr–Coulomb model and can
specify a dilation angle ψ. Compared to the original version, the Mhoek model provides a
simplified flow rule for both tensile and compressive regions.

The value of σc is usually obtained by laboratory analyses even though several field
estimates exist in literature (e.g., Table 1 in [51]).

The constants mb, s and a are usually calculated starting from the evaluation of the
geological strength index (GSI) of the rock mass [55–59]. The GSI is a system of rock-mass
characterization particularly suitable for use in engineering rock mechanics and input into
numerical analysis; through a visual assessment of the geological characters of the rock
material, it allows the prediction of the rock-mass strength and deformability.

The GSI estimation is carried out using specific charts (see Tables 4 and 5 in [51]):
once the index has been evaluated, the constants s, a and mb, can be derived with the
following equations:

s = exp
(

GSI − 100
9

)
and a = 0.5 for GSI > 25 (6)

s = 0 and a = 0.65 − GSI
200

for GSI < 25 (7)

And

mb = mi exp
(

GSI − 100
28

)
(8)

where mi is the Hoek–Brown constant for intact rock pieces estimated using GSI, σc and
the chart of Figure 7 in [51].
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The Mhoek model properties can be entered in FLAC/Slope in two different ways; the
s, a and mb constants can be input, or GSI, mi and ψ can be entered, and the Hoek–Brown
strength properties are calculated automatically from the software.

The FoS calculation model for each cross-section was performed choosing a proper
resolution and failure criterion (Mohr–Coulomb or Hoek–Brown) for each numerical mesh.
In the case of the arenaceous-conglomeratic body of Mt. Falcone, the ubiquitous-joint
model, which considers the characteristics (orientation, tensile strength, cohesion and
friction angle) of the previously described joint systems, was used.

Taking into account the type of landslides and the fact that no significant erosion
phenomena at the expense of the clayey bedrock are known in the area, the initial state
stress, in contrast to other models [59], was assumed as lithostatic as a first approximation.
Concerning the presence of water, as it was impossible to implement a discontinuous water
table in the models (i.e., to simulate a real perched aquifer), a static water table close to the
topographic surface was applied.

The input parameters of the geological formations (Table 1) were partly obtained from
laboratory analyses, performed by professional geologists and provided privately, and
partly from direct observations in the field (through GSI evaluation) (Figure 6); a minor
number of data were obtained from literature or neighboring territories [51,57,60–64]. Uni-
form geotechnical properties were assumed throughout the slope, and all the parameters
were then used individually or in association with the simulations; in the case of friction
angle and cohesion, linked in every failure envelope, the software takes into account only
the pair of values specified in the table.

 

Figure 6. Arenaceous-conglomeratic bedrock outcropping on the eastern side of the relief of Mount
Falcone.

The estimation of the Mohr–Coulomb geotechnical parameters starting from the GSI
evaluation was performed by means of the open-source software RocLab v.1.0 (Rockscience
Inc., Toronto, ON, Canada) which can plot the Hoek–Brown and the Mohr–Coulomb failure
envelopes on the same x–y plane. The results of these calculations are shown in Figure 7.
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Figure 7. Shear vs. normal stress plots of Hoek–Brown and Mohr–Coulomb failure envelopes, obtained for each litho-
technical unit and different range of values.

A shear vs. normal stress plot was obtained for each bedrock unit and for each class
of values (min, mean and max).

The range of values (minimum, mean and maximum) was also used for the develop-
ment of numerical models for each geotechnical cross-section.
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4. Results

4.1. Geomorphological Approach

The following numerical analysis was carried out along 10 geotechnical cross-sections:
Six are located on the eastern and southeastern sides of the relief of Mount Falcone and four
on the western side (Figure 4a). The choice of the location took into account the different
morphological–structural conditions of the relief and the results of the geomorphological
surveys carried out in the field. To verify all the possible situations observed in the field,
the sections were traced to include both portions of the slope affected by gravitational
movements and others considered stable.

The geomorphological processes observed along the individual cross-sections can be
summarized as follows.

- Section 1V. The slope is fairly regular, with a generally mild angle (10–20◦). The
outcropping bedrock, consisting of the mainly arenaceous-pelitic member of the
Argille Azzurre formation, shows a general dip-slope trend with an inclination of
about 15◦ towards E–NE. Almost absent are the continental eluvial–colluvial deposits,
which never exceed 1–2 m in thickness and are therefore not shown in the map of
Figure 4. The observed geomorphological processes are also not very significant,
limited to weak and localized soil erosion processes (sheet and/or rill erosion)

- Section 2V. This section is traced in the SSW–NNE direction, along the maximum
slope and with an angle ranging between 10◦ and 20◦ in the first part to over 40◦ in
the final one. The bedrock consists of the mainly arenaceous-conglomeratic body of
Mt. Falcone, dipping about 10–15 ◦ towards ENE. Eluvial–colluvial deposits with
low thickness (of a few meters) are present in the central section, but no significant
geomorphological processes were detected.

- Section 3V. The slope, which follows a general SSW–ENE with a moderate angle
exceeding 20◦ only in the lowermost part, is characterized by the presence of the
mainly clayey bedrock, dipping 15◦ towards NE and belonging to the Argille Azzurre
formation. In this case, neither appreciable thicknesses of continental deposits nor
significant geomorphological processes (mass movements) were observed.

- Section 4V. This section is traced in a W–E direction, just south of Section 3V. The
mainly clayey bedrock (Argille Azzurre formation) here is almost totally covered by
thick eluvial–colluvial deposits and is characterized by the presence of several mud-
flows, which coalesce corresponding to the valley floor. The typology of movement
was attributed based on geomorphological considerations such as the material size,
the elongated shape of the landslide body (deposited within minor U-shaped valleys),
the presence of slight undulations on the surface and the possibility of a concentrated
runoff due to the morphology of the slope. The estimate of the landslide depth is,
however, uncertain, although it should be linked to the thickness of the continental
deposits.

- Section 5V. This cross-section is oriented NW–SE and is characterized by the presence
of two different litho-technical units: the arenaceous-conglomeratic body of Mt. Fal-
cone in the uppermost part and the pelitic-arenaceous member of the Laga formation
in the lowermost one. The morphology of the slope reflects the different nature of the
lithotypes with an almost vertical cliff corresponding to the most resistant unit and a
gentle slope (15–20◦) in the second part of the section. As discussed previously, the
Mt. Falcone arenaceous conglomeratic body, especially in this sector, shows a partic-
ular joint system, N–S and E–W oriented and associated with tectonic and/or static
deformation processes. This unit is affected by rockfalls and toppling phenomena
(Figure 3) mainly located along the borders of the plate. The final part of the section,
on the other hand, corresponds to the head of an active mudflow roughly WSW–ENE
oriented; as with Section 4V this landslide is probably linked to the presence of thick
colluvial deposits with a perched water table partially fed by the contact with the
permeable arenaceous-conglomeratic plate.
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- Section 6V. This section is located in the northeastern sector of the study area and
crosses, with a NE direction, the arenaceous-pelitic and the clayey members (in the
uppermost and lowermost part of the section respectively) of the Argille Azzurre
formation, here dipping 13–15◦ towards NE. The slope angle is moderate and ranges
between 10◦ and 25◦. The upper part of the section is characterized by the presence
of thick eluvial–colluvial deposits, although no evident geomorphological processes
(neither mass movements nor intense soil erosion processes) are visible.

- Section 1M. This section is traced in the NS direction along a gentle slope (15–20◦)
almost totally characterized by the presence of thick eluvial–colluvial deposits (10–15
m thick estimated from geomorphological survey and stratigraphic reconstruction);
these materials cover a bedrock consisting of alternations of arenaceous-pelitic and
pelitic-arenaceous members both belonging to the Laga formation, with apparent
horizontal dip. No evident geomorphological processes (landslides or intense soil
erosion processes) were observed.

- Section 2M. Located just south of the previous section, it runs roughly E–W and,
similarly to the Section 5V, is characterized by a complex morphology: The first part
is strongly conditioned by the presence of the arenaceous conglomeratic body of Mt.
Falcone, while the second one, where the pelitic-arenaceous member of the Laga
formation is present, shows a low-to-moderate slope (between 15◦ and 30◦). The up-
permost part is characterized by rockfalls and toppling phenomena analogous to those
observed in Section 5V; the final part corresponds to the head of an active complex
landslide (rotational-translational) recognized on the basis of typical morphologies
(scarps and counterslopes in the upper portion and minor ridges and scarps in the
lower one).

- Section 3M. This section is traced in a WNW–ESE direction over a slope characterized
by a moderate angle (25–30◦). Thick colluvial deposits cover the bedrock, visible
only in the uppermost part of the section and consisting of alternations of arenaceous
and pelitic lithotypes (Laga formation) that dip upslope of 35–40◦. No landslides or
intense erosion processes were detected.

- Section 4M. This section is traced in a roughly WSW–ENE direction and, as in Section
3M, runs over a slope characterized by the presence of alternations of arenaceous-
pelitic and pelitic-arenaceous lithotypes with the same dip. The geomorphological
survey evidenced an active complex landslide (rotational-flow); scarps, counterslopes
and minor ridges on a general concave shape are visible, corresponding to the head,
while elongated shape and undulations characterize the foot of the landslide. Condi-
tioning and triggering factors can be associated with the presence of colluvial deposits
with uncertain thickness and the possible presence of a perched water table fed at the
contact with the arenaceous-conglomeratic plate, respectively.

A gravitational movement of greatest scientific and technical interest, given the el-
evated level of risk connected to the presence of the historical centers mentioned in the
previous chapter, is present corresponding to the relief of Mount Falcone (Figure 4). This
phenomenon, already studied in the past and verified by numerical modeling both in
static and dynamic (seismic) conditions [34,35,58], has been classified as lateral spread
and affects, with different intensity, the whole “plate” at the top of the relief. Taking into
account the objectives of the present work (mainly addressing the study of medium-to-low
depth processes), it was not included in the analysis.

4.2. Numerical Approach

Six simulations were carried out for each section: three using the conditions described
above (min, mean and max) and three including the presence of a shallow water table (as
often evidenced during field surveys).

The results of the simulations are shown in Figures 8 and 9 and Table 2. More
specifically, Figures 8 and 9 show the plots of the simulations that evidenced the lowest FoS
values (i.e., worse geotechnical parameters and presence of groundwater); Table 2 includes
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all the FoS values obtained from the simulations and any correspondences with what was
observed in the field (geomorphological model). The same table also reports the failure
models used by the software for any simulation.

 

Figure 8. Results of numerical simulation (Sections 1V, 2V, 3V, 4V, 5V). From left to right: geotechnical
cross-section, mesh and model result. 1—slope and colluvial deposits; 2—arenaceous-conglomeratic
bedrock; 3—arenaceous-pelitic and pelitic-arenaceous bedrock; 4—mainly clayey bedrock; 5—mainly
pelitic-arenaceous bedrock; 6—mainly arenaceous-pelitic bedrock; 7—weak layer/ductile deforma-
tion zone; 8—water table.
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Figure 9. Results of numerical simulation (Sections 6V, 1M, 2M, 3M, 4M). From left to right: geotechnical cross-section,
mesh and model result. 1—slope and colluvial deposits; 2—arenaceous-conglomeratic bedrock; 3—arenaceous-pelitic and
pelitic-arenaceous bedrock; 4—mainly clayey bedrock; 5—mainly pelitic-arenaceous bedrock; 6—mainly arenaceous-pelitic
bedrock; 7—weak layer/ductile deformation zone; 8—water table.
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Table 2. Factor of safety resulting from the numerical modeling and correspondence with field evidence.

Cross-
Section

Failure Model

Factor of Safety
In Agreement with the

Geomorphological Model
No Water Water

Min Mean Max Min Mean Max

Sect_1V Hoek–Brown 7.46 8.01 8.47 4.30 4.93 5.48 yes

Sect_2V
Hoek–Brown/

Mohr–Coulomb/
Ubiquitous

5.57 5.85 6.09 4.60 4.96 5.22 yes

Sect_3V Hoek–Brown 5.42 5.86 6.22 3.06 3.51 3.92 yes

Sect_4V Hoek–Brown/
Mohr–Coulomb 1.28 1.42 1.50 0.94 1.06 1.15 yes

Sect_5V Hoek–Brown/Mohr–
Coulomb/Ubiquitous 1.47 1.62 1.72 0.97 1.08 1.17 only partially

Sect_6V Hoek–Brown/Mohr–
Coulomb 0.96 1.07 1.13 0.71 0.93 0.99 no

Sect_1M Hoek–Brown/Mohr–
Coulomb 1.22 1.38 1.45 0.89 1.01 1.08 no

Sect_2M Hoek–Brown/Mohr–
Coulomb/Ubiquitous 1.28 1.42 1.51 0.96 1.08 1.16 yes

Sect_3M Hoek–Brown/Mohr–
Coulomb 1.49 1.66 1.76 1.35 1.50 1.60 yes

Sect_4M Hoek–Brown/Mohr–
Coulomb/Ubiquitous 1.56 1.74 1.85 1.30 1.46 1.55 no

Sections 1V, 2V and 3V (Figure 8) show high stability in all lithological conditions,
with or without the presence of a water table, with FoS values ranging between 3.06 and
8.47 (Table 2).

Nevertheless, the obtained values of FoS as well as shape and depth of the failure
surfaces, as evidenced by the model results, are unrealistic and clearly conditioned by
the assumed boundary conditions; therefore, for these specific sections, we can only
hypothesize a high stability condition and a perfect congruence with the results of the field
surveys, which did not show any appreciable phenomenon.

Section 4V (Figure 8) shows a clear instability only in the presence of groundwater,
when the FoS drops below 1; in dry conditions the FoS ranges between 1.28 and 1.50,
resulting in a condition of moderate stability. The failure surface is located very close to
the surface, within the debris cover, while the bedrock, even when dip-sloping, remains
almost stable in all conditions. In this case, the model reflects quite faithfully the reality, as
a shallow mudflow was observed within a secondary valley filled by colluvial deposits.

Models relating to the section 5V (Figure 8 and Table 2) evidenced highly unstable
conditions (FoS between 0.97 and 1.17) only in the presence of water and in dry conditions.
As with the previous model, the failure surface is located in the upper portion of the
deposits, near the contact with the arenaceous-conglomeratic body of Mount Falcone; the
presence of weak levels and ductile deformation zones, as previously described, does
not seem to influence the FoS. Unlike the previous case, however, the geomorphological
model only partially reflects the numerical one. The field surveys showed the presence
of a complex gravitational movement compatible with a slide (probably rotational) in the
upper portion of the slope and with a flow in the medium–low portion. The presence of
water within the colluvial deposits, observed mainly in autumn and spring, originates at
the contact between the overlying arenaceous-conglomeratic body acting as an aquifer and
the underlying low-permeability pelitic-arenaceous formation.

Section 6V (Figure 9) shows high instability in all conditions, with and without the
presence of water, with FoS between 0.71 and 1.13. Although the stratigraphic setting of the
clayey bedrock is favorable to the occurrence of gravitational movements, the failure surface
is localized in the medium–low portion of the slope, at the contact between the bedrock itself
and the colluvial deposits above. These simulations, however, do not find correspondence
in the geomorphological model: any significant phenomenon was observed in the field.
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This could be linked to an incorrect assessment of the real thicknesses of the deposits, the
latter having been estimated in this sector without the aid of geognostic surveys.

The simulations carried out with regard to sections 1M and 2M (Figure 9) yielded
similar results, with evidence of instability in the presence of water (FoS between 0.89 and
1.16) and moderate stability in dry conditions (FoS between 1.22 and 1.51). The shear-strain
belts are located in positions similar to the previous case, in the middle portion of the slope
and inside the colluvial deposits. In these two simulations, the setting of bedrock (i.e., the
presence of the weak levels within the pelitic-arenaceous formation in section 2M) does
not seem to affect the stability of the slope. The correspondence with the field evidence is
different: none in section 1M and good correspondence in section 2M. Taking into account
previously mentioned factors, the reason, in the first case, could be found in an incorrect
evaluation of the overall thickness of continental deposits.

Finally, sections 3M and 4M (Figure 9) also provided similar results, this time in favor
of stability, with the FoS always higher than 1.30 (max = 1.85): The presence of a favorable
stratigraphic setting (sub-horizontal or slightly counter dip-slope strata), lower slope angle
and limited thickness of colluvial deposits certainly affected the result of the simulations.
However, a fair correspondence with the field data was found only in section 3M; in the
case of section 4M, on the contrary, a fairly evident mudflow was observed inside the
valley, E–W oriented, which originates from the arenaceous-conglomeratic body of Mount
Falcone.

By analyzing all the simulations, it is possible to form some general considerations:

• The presence of colluvial deposits of fine grain size and discrete extension and thickness,
associated with medium–high slopes angles, generally induces instability conditions;

• In the presence of unconsolidated continental deposits and shallow water table, the
FoS tends to reach values close to 1 and consequently activate gravitational movements
of discrete extent that are generally not very deep;

• Dip-slope strata and/or clayey bedrock are not sufficient requirements to activate
gravitational movements, even in the presence of a water table;

• Complex and medium depth landslides, not highlighted by the simulations, can be
explained by the presence of particularly weathered levels within the bedrock neither
evidenced during field surveys nor “captured” with typical geognostic surveys.

5. Discussion and Conclusions

Numerical models and, in particular, finite difference programs represent a powerful
resource for the study and analysis of gravitational phenomena. Specifically, software
such as FLAC/Slope, having characteristic geotechnical parameters of soils and rocks, can
be used to carry out important assessments on the stability of the slopes and provide an
estimate of the FoS. These assessments can then be used successfully both for purposes
related to civil engineering (construction of buildings and infrastructures, effectiveness
of slope reinforcement works, etc.) and, more generally, for the assessment of landslide
susceptibility of variously sized sectors of the slope. Although they provide numerical
results that are indispensable for any type of design and planning, the limits of the models
are closely linked to the availability and correctness of the input parameters, which are often
missing and limited to single laboratory analyses or estimation through direct observations.

The geomorphological model, based on field observations of the processes active
in an area, allows a broader and certainly more articulated evaluation of gravitational
phenomena; nevertheless, since it consists of an exclusively qualitative analysis, it cannot
provide indices and parameters for performing numerical calculations.

A combined approach that integrates the two models can certainly provide mutual
advantages: the ability to confirm and quantify the phenomena observed in the field (the
geomorphological model) and to verify and modify model parameters and geometry (the
numerical model).

The combined approach, however, when compared to the standard methods (i.e.,
the statistical methods currently used in Italy for LHA), requires a greater effort both in
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economic terms and in terms of human resources, since it is necessary to proceed with an
update and, often, implementation of the field data. This is all the more onerous in the
case of a similar methodology as a standard at the national level where there are large
disparities (not only economic) between different regional realities. On the other hand, the
possibility of having an updated product that is more functional for professional needs or
for the planning of particularly critical areas cannot be separated from an approach that
provides for a continuous synthesis between real data and numerical models.

The present study, through this type of approach, provides a more objective evalua-
tion of the mechanisms governing landsliding in a typical geological–structural context,
characterized by a monoclinal setting and the presence of lithotypes of different nature and
consistency.

More specifically, it was possible to verify that:

• Medium to low GSI values, favorable morphological–structural setting (i.e., dip-slope
strata and moderate slope angle) and the presence of a water table are sometimes not
evaluated by the numerical model as potentially unstable; on the contrary, they give
rise to gravitational phenomena of discrete thickness and extension. This suggests
the presence of weak layers at a depth not detectable by generic field surveys or
highlighted by specific geognostic investigations;

• The presence of medium–fine colluvial deposits of moderate extension and thickness
along medium-to-low slope angles (20–35%) constitutes a predisposing factor to the
activation of mass movements (flows as prevalent) with or without the presence of
water.

The above considerations could provide further confirmation and perhaps be extended
to different morphological–structural contexts, through new detailed surveys and a precise
characterization of the buried or outcropping lithotypes.

In conclusion, the proposed approach, which can be defined as semi-quantitative, can
be proposed as a valid alternative for LHA in all those countries where specific regulatory
indications are absent. The obtained results evidence usefulness and limits of the methods
currently used in Italy and, in particular, suggest how a combined use of geomorphological
surveys and numerical simulations, pending clearer and universally accepted regulatory
indications on the methods to be used for the LHA, seems at the moment the most suitable
choice both in economic and safety terms.
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Abstract: Landslides are a widespread natural phenomenon that play an important role in landscape
evolution and are responsible for several casualties and damages. The Abruzzo Region (Central Italy)
is largely affected by different types of landslides from mountainous to coastal areas. In particular,
the hilly piedmont area is characterized by active geomorphological processes, mostly represented
by slope instabilities related to mechanisms and factors that control their evolution in different
physiographic and geological–structural conditions. This paper focuses on the detailed analysis of
three selected case studies to highlight the multitemporal geomorphological evolution of landslide
phenomena. An analysis of historical landslides was performed through an integrated approach
combining literature data and landslide inventory analysis, relationships between landslide types
and lithological units, detailed photogeological analysis, and geomorphological field mapping. This
analysis highlights the role of morphostructural features on landslide occurrence and distribution and
their interplay with the geomorphological evolution. This work gives a contribution to the location,
abundance, activity, and frequency of landslides for the understanding of the spatial interrelationship
of landslide types, morphostructural setting, and climate regime in the study area. Finally, it
represents a scientific tool in geomorphological studies for landslide hazard assessment at different
spatial scales, readily available to interested stakeholders to support sustainable territorial planning.

Keywords: historical landslides; multitemporal analysis; geomorphological mapping; GIS analysis;
piedmont area; Abruzzo Region

1. Introduction

Landslides are considered, worldwide and in Italy, as one of the most important and
frequent natural hazards [1–5] as their occurrence can directly impact humans, infrastruc-
tures, economic activities, and the social and environmental systems [6–8]. Landslides are
a landscape modelling process inducing geomorphological changes on slopes in moun-
tainous, hilly, and coastal areas. Their occurrence is generally controlled by predisposing
factors (i.e., morphology, lithological and structural setting, vegetation cover, land use,
climate, etc.) and triggering ones (e.g., heavy rainfall and snowfall events, snow melting,
earthquakes, wildfires, human activity, etc.) [9–13]. Many of the triggering factors are only
sufficient conditions for the occurrence of landslides, which are occasional and spasmodic.
Therefore, it is essential to pay attention to predisposing factors in landslide analyses to set
an organic correlation between climate regime, morphostructural/geological framework,
and slope instability phenomena [14,15].

Many theories and methods have been proposed about the spatial relationship be-
tween landslides and causative factors [16–22] to perform landslide hazard assessment
studies [23]. However, the type, extent, magnitude, and direction of the geomorphological
processes and the location, abundance, activity, and frequency of landslides in a changing
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environment are still under debate. Establishing a relationship between climate change
and its potential effects on the occurrence of landslides remains an open issue [24]. The role
played by projected climate changes in modifying the response of single slopes or entire
catchments, the frequency and extent of landslides, and the related variations in landslide
hazard, remain to be discussed and understood [25–27]. Most of the current landslides in
the Central Apennines are the reactivation by pre-existing ones, which have occurred in
periods of climatic and geomorphological conditions different from those of the present.
Most dormant slides and/or paleolandslides, in which the strength parameters are reduced
to values close to the residual ones, can be reactivated and/or modified by natural causes,
such as rainfall or snowmelt, as well as man-made disturbance [28,29].

Geomorphological mapping is a common and fundamental tool for the representation
and the comprehension of the spatial and temporal development of landslides. Recent and
new methods developed in the last decades have improved landslide analysis with multi-
disciplinary approaches including (i) morphometric analysis using very-high-resolution
Digital Elevation Models (DEMs), (ii) interpretation and analysis of satellite images, in-
cluding Synthetic Aperture Radar (SAR) images, and (iii) the use of new tools to facilitate
field mapping [30–35]. Moreover, the investigation of geomorphological processes and
dynamics, in different and complex morphostructural domains, became necessary for the
assessment of the areas prone to landslides with reference to the predisposing and/or
triggering factors.

According to national and regional inventories [36,37], the Abruzzo Region (Central
Italy) is acknowledged as an area highly exposed to landslide hazards and risks. It is
located in the central–eastern part of the Italian peninsula, and it is characterized by a
landscape that is the result of a complex cyclic evolution that occurred in succeeding
stages with the dominance either of morphostructural factors, linked to the conflicting
tectonic activity (compressive, strike–slip, and extensional tectonics) and regional uplift,
or morphosculptural factors, linked to drainage network linear down-cutting and slope
gravity processes [14,38,39].

For developing the present study, the analysis of historical landslides was carried
out following an integrated approach that incorporates literature and landslide inventory
analysis, relationships between landslide types and lithological units, detailed photogeo-
logical analysis, and geomorphological field mapping. The paper focuses on selected slope
instabilities to highlight the multitemporal geomorphological evolution and the interplay
between morphostructural/geological framework and landslide dynamics in the hilly
piedmont area of Abruzzo Region. The work shows an effective integrated approach in
geomorphological studies for landslide hazard modelling at different spatial scales, readily
available to interested stakeholders. Furthermore, it could provide a scientific basis for
the implementation of sustainable territorial planning and loss-reduction measures in a
changing environment.

2. Study Area

The study area is located in the central–eastern part of the Italian peninsula along
the hilly piedmont area of Abruzzo Region, between the Apennine chain and the coastal
area (Figure 1a). It includes the lower part of the main SW–NE to W–E fluvial valleys (i.e.,
Vomano, Pescara, and Sangro rivers), and the small tributary catchments of the main rivers
and those incising the coastal slopes.

The Apennine chain area is characterized by a mountainous landscape (with reliefs
up to 2900 m.a.s.l. high) interrupted by longitudinal and transversal valleys and wide
intermontane basins (i.e., Fucino Plain, Sulmona Basin). It is made up of carbonate litho-
logical sequences pertaining to different Meso-Cenozoic palaeogeographical domains.
Carbonate shelf limestones, slope limestones, basin limestone, and marls represent the
carbonate backbone of the main ridges of the Abruzzo Apennines, and allochthonous
pelagic deposits are widespread in the southern sectors featuring a chaotic assemblage on
clayey–marly–limestone units. The main tectonic features are represented by NW–SE to
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N–S-oriented thrusts, which affected the chain from the Late Miocene to the Early Pliocene.
Compressional tectonics was followed by strike–slip tectonics along mostly NW–SE to
NNW–SSE-oriented faults that were poorly constrained in age and largely masked by later
extensional tectonic events since the Early Pleistocene [40,41].

The hilly piedmont area is a low relief area (heights ranging from ~100 to 800 m.a.s.l.)
characterized by a cuesta, mesa, and plateau landscape and a gently NE-dipping homocline,
locally cut by fault systems (NW–SE, SW–NE) with low displacement [42–44]. Bedrock
lithologies pertain to Neogene sandy-pelitic turbidites and Plio-Pleistocene marine clayey–
sandy and conglomeratic deposits. The geological and structural setting is related to the
Pliocene–Quaternary evolution of the Adriatic foredeep and the related regional uplifting
processes. Since the Middle Pleistocene, the geomorphological evolution has primarily
comprised the incision of major dip river valleys (WSW–ENE-oriented), characterized by
fluvial deposits arranged in flights of at least four orders of terraces (Middle Pleistocene–
Holocene) [44,45]. Quaternary continental deposits are widely present in the alluvial
valleys, alluvial plains, and coastal slopes. They can be referred to fluvio-lacustrine,
travertine, sandy shore, and eluvial–colluvial deposits (Figure 1b).

The geomorphological framework is mainly related to fluvial and slope processes.
Fluvial processes affect the main rivers, alternating between channel incisions and flooding.
The slope processes due to running water mostly affect the clayey and arenaceous-pelitic
areas of piedmont and coastal sectors, generating minor landforms such as rills, gullies,
and mudflows [46,47]. The area is extensively affected by different types of landslides
(e.g., mostly rotational–translational slides, earth flows, rockfalls, complex slides), mostly
characterizing the hilly piedmont and the chain area and, locally, the coastal area [3,48].

The present-day regional tectonic setting is dominated by extensional tectonics still
active in the axial part of the chain, which is characterized by intense seismicity and strong
historical earthquakes (up to M 7.0; [49]). The piedmont area is characterized by moderate
uplifting and moderate seismicity, while the Adriatic Sea is affected by subsidence and by
moderate compression and strike–slip related seismicity, as also documented by the recent
seismicity [50] (Figure 1b).

Climatically, the study area belongs to temperate sub-littoral regime with scarce
annual rainfall, mainly autumnal, and medium temperatures [51]. It is largely affected
by the orographic setting, changing from a Mediterranean type with maritime influence
along the coasts and the piedmont area to more continental-like in the inner sectors [52].
The hilly piedmont area is characterized by a maritime Mediterranean climate [53]. The
average annual precipitation is 600–800 mm/year, with occasional heavy rainfall events
(>100 mm/d and 30–40 mm/h). The mean annual temperature ranges between 12 and
16 ◦C in the coastal part of the region, with mild winters and hot summers, and from 8 to
12 ◦C in mountain areas, with more severe (low) temperatures, especially in the winter
season [54,55].

281



Land 2021, 10, 287

 

Figure 1. (a) Location map of the Abruzzo Region in Central Italy; (b) geolithological map of the Abruzzo Region (modified
from [56,57]). Legend: (1) eluvial–colluvial deposits; (2) sandy shore deposits; (3) recent fluvio-lacustrine deposits; (4)
travertine deposits; (5) morainic deposits; (6) old fluvio-lacustrine deposits; (7) conglomeratic deposits; (8) clayey–sandy
deposits; (9) sandy turbidites; (10) pelitic turbidites; (11) carbonate deposits in conglomeratic and calcarenitic facies; (12)
allochthonous pelagic deposits; (13) carbonate ramp limestones; (14) basin limestones and marls; (15) slope limestone; (16)
open carbonate shelf-edge limestones; (17) carbonate shelf limestones and dolomites. Seismicity derived from [49].
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3. Materials and Methods

Landslide analysis was achieved through an integrated approach based on the combi-
nation of literature data, landslide inventory analysis, statistical analysis of the relation-
ships between landslide types and lithological units, detailed photogeological analysis,
and geomorphological field mapping, supported by multidisciplinary analysis and GIS–
based techniques.

3.1. Landslide Inventory Maps and Database Analysis

Landslide inventories and databases represent an important tool to document the
extent of landslide phenomena in a region, to investigate the distribution, types, pattern,
recurrence, and statistics of slope failures, to determine landslide susceptibility, hazard, and
risk, and to study the evolution of landscapes dominated by mass-wasting processes [58].

A preliminary GIS-based analysis was performed to store, organize, and manage
available data recorded in four different databases and catalogues, briefly described as
follows. The IFFI database (Italian Landslide Inventory—[59,60]) supplies a detailed picture
of the distribution of landslide phenomena within Italy. As of today, the IFFI database
holds 620,793 landslide phenomena, covering an area of approximately 23,000 km2, which
is equivalent to 7.9% of the Italian territory [37]; for the Abruzzo Region, the database is
updated to 2007. The compilation of the catalogue was structured in several phases: (i)
collection of bibliographic cartographic data useful to identify areas subject to landslides; (ii)
verification by aerial photo interpretation and cartographic transposition; (iii) verification
through field-based analysis; (iv) digitization. A total of 6557 events (categorized as
rockfalls, lateral spreading, complex landslides, translational and rotational slides, debris
flows, earth flows, DSGSDs, and soil creep areas) were included in the inventory used
in this study. The CEDIT catalogue (Italian catalogue of earthquake-induced ground
failures—[61]) includes more than 150 earthquakes and almost 2000 earthquake-induced
effects, which involved almost 1100 localities; the catalogue is updated to the 2016–2017
Central Italy seismic sequence [62,63]. The catalogue implies detailed research of historical
documents and reports as well as of already published scientific papers. The analysis of
reported seismically induced effects infers that most of them are landslides, which account,
alone, for about half of the total (44%). Among all these earthquake-induced landslides,
only seven events are located in the hilly piedmont area, and they were selected, recognized,
and integrated into the analysis in terms of georeferenced location and detailed information.
The EEE catalogue (Earthquake Environmental Effects catalogue—[64]) is aimed to collect
in a standard format the wealth of information of environmental/geological effects induced
by a seismic event; the catalogue contains tables that include information at site of each EEE,
including detailed characteristics on the type of earthquake. The database is updated to
the 2016–2017 Central Italy seismic sequence. Among all the documented seismic-induced
effects, only landslides (six events falling within the study area) were selected and included
in the analysis. The FraneItalia catalogue [65] contains information retrieved from online
news sources (especially Google Alerts and Italian Civil Protection press reviews) on
landslides that occurred in Italy. It contains all the landslide events reported since 2010
(January 2010–December 2017), not only the ones that caused direct consequences to people
or major damage; it is structured as a geo-referenced open-access database containing
information on a variety of landslide features and consequences. For this study, all the
landslides (162 events falling in the study area) for which it was possible to univocally
define the location and the type of movement were selected and included in the inventory.

Available data (i.e., georeferenced location and detailed information) from the above-
mentioned catalogues were merged to completely define the landslides’ spatial distribution
over the Abruzzo Region (Figure 2).
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Figure 2. Landslide spatial distribution over the Abruzzo Region. This graphical representation includes the georeferenced
location of rockfalls, landslides (lateral spreading, complex landslides, translational and rotational slides), debris flows,
earth flows, DSGSDs, and soil creep areas. This general labelling derives from all historical documents, technical reports,
and detailed information included in available inventories and databases, such as the Italian Landslide Inventory (IFFI)
catalogue [60]; the Italian earthquake-induced ground failures (CEDIT) catalogue [61]; the Earthquake Environmental
Effects (EEE) catalogue [64]; the FraneItalia catalogue [65]. The black line represents the study area.

Even if the landslide spatial distribution over the Abruzzo Region is related to rock-
falls, landslides (lateral spreading, complex landslides, translational and rotational slides),
debris flows, earth flows, DSGSDs, and soil creep area, landslides located in the study area
and used for this analysis were categorized and selected according to the type of movement
into four categories: rotational and translational slides, complex landslides, earth flows,
and rockfalls. This specific labelling was followed to highlight the most characterizing and
frequent mass movement types, according to geological–structural setting, location and
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abundance of landslides. Then, the spatial distribution of each category was evaluated
through the creation of density maps, generated using the QGIS (version 3.10, 2019, “A
Coruña”) HeatMaps (Kernel Density) tool, which calculates a magnitude-per-unit (1 km2)
area from a point or polyline features using a kernel function to fit a smoothly tapered
surface to each point. Landslide density maps generally show a synoptic view of landslide
distribution for large regions or entire nations in order to portray the first-order overview
of landslide abundance. Density is a clearly definable and easily comprehended quanti-
tative measure of the spatial distribution of slope failures. These maps derive from the
georeferenced location of each initiation point of landslides (defined as the center of the
main headscarp) and assume that landslide density is continuous in space, which may not
be the case everywhere.

3.2. Statistical Analysis of the Relationships between Landslides and Lithological Units

Lithology shows a great influence on landslide development since different lithological
units may be affected by different landslide types. Moreover, soil cover deposits, mostly
exposed to weathering, may influence land permeability and the landslide type, as known
from thematic literature [66,67].

In order to stress the role played by lithological units on the development of landslides
and build up a statistical relationship with the spatial distribution of landslide type, a
vector lithological map (previously categorized into 17 lithological units according to the
sedimentation environment and the lithological features of the outcrops) was spatially
overlapped with the landslide distribution layer, derived from the selected inventories
and databases.

A GIS-based overlay between the georeferenced location of the initiation points
of landslides (defined as the center of the main headscarp) and lithological units was
performed to understand the influence of lithologies on landslides. This correlation was
carried out for different types of landslides (rotational and translational slides, complex
landslides, earth flows, and rockfalls) recorded in the hilly piedmont area.

3.3. Detailed Multitemporal and Multidisciplinary Analysis

Multitemporal and multidisciplinary analyses were performed to outline the mass
movement types and evolution mechanisms that characterize the different morphostruc-
tural domains of the study area. Selected case studies (one for landslide type; about
rockfalls, according to a moderate to low spatial distribution, no landslide events have
been identified as clearly representative of this mass movement type in the study area,
so no case study was reported) have undergone several main movements from the 18th
century onwards. These are intended to be representative of the most characterizing and
frequent mass movement type, showing significant features useful for understanding the
relationships between landslide types, lithologies, and morphostructural setting.

Multitemporal geomorphological analysis was based on detailed analysis of historical
maps and literature data, stereoscopic air-photo interpretation, and field mapping. Air-
photo interpretation was performed using 1:33,000, 1:20,000, 1:13,000, and 1:5000 scale
stereoscopic air-photos (Flight GAI 1954, Flight CASMEZ 1974, Flight Abruzzo Region
1981–1987, and Flight Abruzzo Region 2018–2019), 1:5000-scale orthophoto color images
(Flight Abruzzo Region 2010), and Google Earth imagery; this analysis was also supported
using high-resolution Digital Elevation Models (DEMs). Field mapping was carried out at
an appropriate scale (1:5000–1:10,000), according to international guidelines [68], Italian
geomorphological guidelines [69] and the thematic literature concerning geomorphological
mapping, fieldbased and numerical analysis [70–73]. It was focused on the definition of
lithological and morphostructural features, superficial deposit cover, and the type and
distribution of geomorphological landforms with reference to the main landslides affecting
the study area.

Rainfall data analysis was carried out to outline the distribution of the climatic pa-
rameters and conditions in the hilly piedmont area. The analysis was based on a rainfall
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dataset obtained from a network of 51 gauges (data provided by the Functional Center
and Hydrographic Office of the Abruzzo Region, Pescara, Italy). Using the ArcGIS Kernel
Interpolation function, the variation of the distribution of rainfall in the study area was
derived for a 65-year time record (1950–2015).

To support the geomorphological dynamic of the area and improve the knowledge
of spatial and temporal evolution of landslides, an interferometric analysis (InSAR) was
implemented. The approach used is the so-called Persistent Scatterers Interferometry
(PSInSAR), which is based on the information achieved by pixels of the SAR images
characterized by high coherence over long time intervals [74]. Generally, constructed
structures, such as buildings, bridges, dams, railways, pylons, or natural elements, such as
outcropping rocks or homogeneous terrain areas, can represent good Persistent Scatterers
(PSs). However, these techniques are also affected by some limitations. First, because only
objects which are good “radar reflectors” can be analyzed, they cannot attain information
over highly vegetated areas. This aspect is not secondary, as landslides often involve
non-urban areas [75]. For the present study, we performed analyses of past displacements
using data-stacks from the ESA archive ranging in the period 1992–2010. Specifically,
Envisat data were selected from the 2003–2010 period, providing quantitative data (i.e., the
detection of targets affected by displacements) about displacement information present in
both the ascending and descending geometries.

4. Results

4.1. Density Maps (Heatmaps) of Landslide Types over Abruzzo Hilly Piedmont Area

Heatmaps of various slope instability processes over the Abruzzo hilly piedmont area
(Figure 3) were produced using GIS technology. These maps allowed us to outline the
spatial distribution of landslide phenomena. For this kind of analysis, landslides data were
labelled according to the type of movement (rotational and translational slides, complex
landslides, earth flows, and rockfalls). Colored areas represent the sites with a higher
density of slope instability processes in each category. In the current study, a heteroge-
neous spatial distribution of landslide types was identified, reflecting the physiographic,
geological–structural, and geomorphologic setting of the hilly piedmont area.

The analysis allowed us to identify that (i) rotational and translational slides are most
widespread in central and southern sectors (Figure 3a) with high density in correspon-
dence of the mesa-plateau landscape on clayey–sandy and conglomeratic deposits and
the incision of the main rivers; (ii) complex landslides are heterogeneously widespread
in the study area, with the highest density in the southern sectors following the complex
rough topography developed on allochthonous pelagic deposits (Figure 3b); (iii) earth
flows mainly characterize the northernmost sectors of the study area reflecting the phys-
ical landscape on sandy-pelitic turbidites (Figure 3c). Rockfall density map (Figure 3d)
shows a moderate to low spatial distribution as the result of episodic and localized slope
instability processes related to the morphostructural setting in the inner sectors [76] and
cliff recession processes combined with wavecut and gravity-induced slope processes in
coastal areas [77]. Regarding this latter case, no landslide events have been identified as
clearly representative of this mass movement type in the study area. In detail, we selected
the following case studies intended to be representative of the most characterizing and
frequent slope instability processes:

(A). San Martino sulla Marruccina landslide;
(B). Roccamontepiano landslide;
(C). Montebello sul Sangro landslide.

The georeferenced location of selected case studies is graphically shown in Figure 3
with capital letters in white circles.
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Figure 3. Density maps (heatmaps) of various slope instability processes over the Abruzzo hilly
piedmont area: (a) rotational and translational slides; (b) complex landslides; (c) earth flows; (d)
rockfalls. Colored areas represent the sites with a higher density of slope instability processes in each
category (black dots). Capital letters in white circles locate the selected case studies. The black line
represents the study area.
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4.2. Relationship between Lithology and Spatial Distribution of Landslide Types

A detailed landslide analysis allowed us to differentiate landslide types in order to
define the role played by lithological units on landscape development and build up a
statistical relationship with the spatial distribution of landslide type.

Preliminary GIS-based analysis of the data derived from available databases (i.e., geo-
referenced location and detailed landslide information) allowed us to recognize the pres-
ence of a large number of landslide phenomena in the study area, reaching 5605 recorded
events. In order to promote a relationship between mass movements and lithological units
outcropping in the area, recorded landslides were classified according to their typology of
movement (e.g., rotational and translational slides, complex landslides, earth flows, and
rockfalls). Then, a spatial overlapping between the landslide distribution layer and the
vector lithology layer was performed, and a new table of attributes was built (Figure 4).

 

Figure 4. Lithological sketch map of the Abruzzo hilly piedmont area (modified from [56,57]) and spatial landslides
distribution [60,61,64,65]. Legend: (1) eluvial–colluvial deposits; (2) sandy shore deposits; (3) recent fluvio-lacustrine
deposits; (4) travertine deposits; (5) morainic deposits; (6) old fluvio-lacustrine deposits; (7) conglomeratic deposits; (8)
clayey–sandy deposits; (9) sandy turbidites; (10) pelitic turbidites; (11) carbonate deposits in conglomeratic and calcarenitic
facies; (12) allochthonous pelagic deposits; (13) carbonate ramp limestones; (14) basin limestones and marls; (15) slope
limestone; (16) open carbonate shelf-edge limestones; (17) carbonate shelf limestones and dolomites. Capital letters in white
circles locate the selected case studies. The black line represents the study area.

The area of each landslide was obtained from this estimation so that the area ratio of
the distribution of landslides in each lithology was derived.

The spatial overlapping allowed us to quantitatively estimate the extension of each
lithological unit in the study area in terms of area (km2) and percentage (Table 1). This GIS-
based technique was useful to define the major lithological abundance (both in percentage
and area) of clayey–sandy deposits and pelitic turbidites over the study area. Then, the
analysis of spatial distribution compared to the outcropping lithologies was carried by
comparing the percentage and number of landslides (rotational and translational slides,
complex landslides, earth flows, and rockfalls) on each lithological unit as graphically
shown by the pie charts and tables in Figure 5.

This overlapping process shows a heterogeneous relationship between lithological
units and the distribution of different types of landslides in the Abruzzo hilly piedmont
area. Landslides on Quaternary continental deposits were mostly small flows and slides
located along the scarp edge of fluvial terraces. Landslides affecting the cuesta and mesa
reliefs on the sands and conglomerates on high gradient slopes or else along structural
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scarps are represented by rapid earth flows affecting surface colluvial cover; falls and
topples affecting the edge of structural scarps on sandstones and conglomerates; rotational
and translational sliding, which was less frequent but developed for a long time after the
event due to deep water infiltration in the permeable conglomerates and sandstones laying
on impermeable clays. Landslides on the hilly slopes and cuesta and mesa slopes affecting
clayey–sandy deposits were mostly earth flows, from the small to the very wide. Landslides
on the arenaceous-pelitic and marly rocks of the turbiditic succession consisted of mostly
rapid surface flows and sliding, affecting the eluvial and colluvial cover, particularly
where it is more clay-rich. Landslides on the slopes and isolated reliefs on allochthonous
pelagic deposits outcropping in the southernmost sectors were mostly flows and complex
landslides occurring on all the slopes with a low gradient due to its complex geological–
structural setting.

Table 1. Extension of each lithological unit in the study area.

Lithological Unit Unit Description Area (km2) % of Area

1 Eluvial–colluvial deposits 57.998 1.310
2 Sandy shore deposits 49.622 1.121
3 Recent fluvio-lacustrine deposits 347.175 7.842
4 Travertine deposits 11.571 0.261
5 Morainic deposits 2.333 0.053
6 Old fluvio-lacustrine deposits 464.892 10.501
7 Conglomeratic deposits 380.776 8.601
8 Clayey–sandy deposits 1450.528 32.763
9 Sandy turbidites 38.679 0.874
10 Pelitic turbidites 1228.908 27.757

11 Carbonate deposits in conglomeratic and
calcarenitic facies 53.939 1.218

12 Allochthonous pelagic deposits 189.460 4.279
13 Carbonate ramp limestones 125.675 2.839
14 Basin limestones and marls 13.672 0.309
15 Slope limestone 2.127 0.048
16 Open carbonate shelf-edge limestones 0.000 0.000
17 Carbonate shelf limestones and dolomites 9.976 0.225

The study area is characterized by 2694 rotational and translational slides, 851 complex
landslides, 2003 earth flows, and 57 rockfalls. In detail, rotational and translational slides
mostly develop on pelitic turbidites (31.1%), clayey–sandy deposits (29.8%), and conglom-
eratic deposits (23.2%), with a higher number of events recorded (839) on pelitic turbidites.
Complex landslides mostly develop on pelitic turbidites (47.0%), clayey–sandy deposits
(16.5%), carbonate ramp limestones (10.8%), conglomeratic deposits (10.2%), with the
higher number of events recorded (400) on pelitic turbidites. Earth flows develop on pelitic
turbidites (47.9%) and clayey–sandy deposits (35.9%), with a higher number of events
recorded (959) on pelitic turbidites. Rockfalls develop on conglomeratic deposits (31.6%),
pelitic turbidites (17.5%), carbonate ramp limestones (15.8%), and clayey–sandy deposits
(12.3%) with 18 recorded events on conglomeratic deposits. This latter relationship shows
a moderate to low distribution as the result of episodic and localized processes related to
morphostructural setting in the inner sectors and cliff recession processes combined with
wavecut and gravity-induced slope processes in coastal areas.
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Figure 5. Relationships between lithological units and the distribution of different types of landslides in the Abruzzo hilly
piedmont area. (a) Pie chart and table showing the percentage and number of rotational and translational slides on each
lithological unit; (b) pie chart and table showing the percentage and number of complex landslides on each lithological unit;
(c) pie chart and table showing the percentage and number of earth flows on each lithological unit; (d) pie chart and table
showing the percentage and number of rockfalls on each lithological unit. Numbers and colors refer to legend in Table 1
and Figure 4.
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4.3. Selected Landslide Case Studies
4.3.1. San Martino Sulla Marruccina Landslide

The case study area is located in the central-eastern hilly area of the Abruzzo Region
with heights ranging from 200 to 450 m.a.s.l.; this landscape is interrupted by the S–N-
oriented Dendalo River valley, where lower altitudes (up to 200 m.a.s.l.) are reached. The
study area shows a homogeneous slope distribution (about 5◦–15◦), with some peaks (>20◦)
especially in correspondence with the main steep scarps and along the secondary slopes.

From a lithological standpoint, bedrock lithology is composed of a thick marine
succession, composed of arenaceous-pelitic and pelitic-arenaceous deposits, known in
the literature as the Mutignano Formation [78,79]. This succession is composed of clays
and silty clays alternated with gray to yellow sands in the lower part, and by gray to
yellow sands in medium layers with frequent intercalations of fine-grained sandstone, in
the upper part. Quaternary continental deposits include landslide, alluvial, and eluvial–
colluvial deposits mainly observed along fluvial incisions and slopes. Strength features of
the outcropping rocks are considerably complex, being linked not only to the lithological
and structural setting (sub-vertical fracture-sets NNW–SSE to E–W-oriented) but also
to the alteration, rearrangement, and loosening processes during complex gravitational
phenomena [80]. The landslide phenomenon covers an area of about 2.5 km2 extending
between 400 and 300 m.a.s.l.; it presents a medium length of about 750 m and a significant
width of surface rupture area. It is characterized by the main crown of about 2.5 km long,
which is locally more than 20 m high. Multitemporal analysis of air-photos, technical
cartography, and dendrochronological analysis reveals the first signs of activity in the
second half of the 1960s, causing the definition of the first slopes and causing huge damage
to roads, buildings, and crops [79,81]. These geomorphological effects, definable in the
timespan 1968–1981, are represented by complex landslide bodies with related scarps in
the northernmost areas and rotational–translational landslide bodies in the central sector.
Nowadays, the movements recorded by the monitoring network are due to a residual
activity, but the central sectors are currently affected by a significant local instability due
to retrogressive evolution (Figure 6a). Currently, landslides mainly show a rotational and
translational sliding surface, as highlighted by counterslopes, counterscarps, and formation
of ponds and peatbogs recognized in landslide bodies; smaller instability phenomena
are represented by complex landslides and earth flows. Landslide scarps (Figure 7) have
different morphological and geomorphological characteristics: where the pelitic deposits
outcrop, they are highly degraded, while where sandy deposits are present, they are
fresh and evident. The geometrical development of the main and the subordinate crowns
are influenced by the spatial disposition of the structural landforms. The planimetric
development of the scarps, corresponding in part to the disposition of the families of
faults, shows how the geomorphologic processes have been conditioned by the structural
setting. The area that surrounds the currently active landslide also presents an old and
generalized familiarity with the slope instability processes. Relict shapes and quiescent
minor instability phenomena have been observed owing to detailed field surveys and
stereoscopic observations [80].

The geomorphological cross-section (Figure 6b) shows how the landslides are in close
connection with each other, often presenting several coalescent bodies, also involving
landslides activated in the previous time frame. These landslides are characterized by deep
failure surfaces, often in the range of several tens of meters. The geometry of the sliding
surfaces shows a strong structural control, mainly connected to fault zones and bedding
planes; in fact, most of the main landslide scarps and flanks coincide with inferred faults,
while the geometry of the sliding surfaces, especially in the middle and lower part of the
landslide body, is conditioned by the bedding of the pelitic sequences.
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Figure 6. San Martino sulla Marruccina: (a) multitemporal geomorphological map (derived from
unpublished data and modified and updated from [79–81]); (b) geomorphological cross-section.
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Figure 7. Photo documentation of geomorphological features of San Martino sulla Marruccina landslide. (a) Aerial view
of the landslide area; (b) panoramic view of the landslide scarp of Casa dell’Arciprete. Red lines show the planimetric
development of main landslide scarps.

The complex landslide system could be divided into fairly regular “blocks”, dislocated
from each other and generally prismatic in form, originally created by the intersection
of tectonic fracturing and faulting systems. The main direction of the landslide mass
movement is SW–NE, that is, obliquely to the slope.

4.3.2. Roccamontepiano Landslide

The case study area is located next to the northeastern front of the Maiella Massif.
It is characterized by the presence of a pseudo-rectangular-shaped travertine plateau
(Montepiano) which dominates both topographically and morphologically the landscape
of the area. Montepiano is a flat tabular relief 610–650 m.a.s.l. high, with a maximum
length of about 2.3 km (along NW–SE direction). It generally dips gently north-east with
an average gradient of about 5%, and it is bounded by vertical cliffs and scarps up to 30 m
high [82,83]. Furthermore, the landform is cut by a series of small SW–NE-oriented fluvial
incisions that raise the relief values along the slopes.

From a lithological standpoint, the area is characterized by an approximately 40 m
thick travertine layer that overlies arenaceous-pelitic and pelitic-arenaceous deposits, with
thin conglomerate layers in between, pertaining to the Mutignano Formation [78]; also, these
bedrock layers are gently dipping towards the NE. Physical–mechanical parameters show
a significant variability in terms of rock resistance and behavior according to lithological
nature (travertine layer and arenaceouspelitic lithotypes) and subsequent loosening and
weathering phenomena [84]. Quaternary continental deposits include eluvial–colluvial
deposits mainly observed along the southwestern flank of the plateau. The landslide
phenomenon covers a wide area (~4 km2) with high slope gradients (seldom less than 30%)
and high variability in width and thickness due to repeated historical landslide events
(Figure 8a). The maximum width of more than 2 km can be found downstream of the
Ripa Rossa, whilst the maximum thickness of more than 20 m is located immediately
above Roccamontepiano village. From historical sources, the first landslide events that
occurred in the area took place on 24 June 1765, causing severe damage to the village and
2000 casualties [82,85].
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Figure 8. Roccamontepiano landslide: (a) multitemporal geomorphological map (derived from
unpublished data and modified and updated from [82,83]); (b) geomorphological cross-section.
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Therefore, the relief is almost surrounded by wide complex landslide bodies and
related scarp, which characterize most of the area south of Roccamontepiano village. Other
historical movements occurred in the second half of the 1950s, reactivating pre-existing
ones and causing extensive damage to the village of Roccamontepiano but this time with-
out the report of victims [86]. Evidence of this second historical event is represented by
wide counterslopes located at ~500 m.a.s.l. Actually, the landslide body is formed by a
thick heap (up to 17 m) of travertine blocks and fragments with secondarily reworked
sandstone-conglomerate deposits, active especially in the northeastern and northern part
of the Montepiano plateau (Figure 9a). The overall mechanism could be referred to a
complex landslide system, including lateral spreading with rockfalls, rotational, and trans-
lational movements.

 

Figure 9. Photo documentation of geomorphological features of Roccamontepiano landslide. (a) Panoramic view of the
landslide area. Red lines show the planimetric development of main landslide scarps, red circles show travertinous blocks
in the landslide body; (b) detail of NE–SW trending traction fractures (red lines) in the travertine cliff scarp near Ripa Rossa.

The geomorphological cross-section (Figure 8b) shows how the landslides are strictly
connected with the structural framework of the study area; the mechanism implies the
involvement of the plastic clays that underlie the travertines in the mass movement.

The presence of a thick layer of massive rocks over plastic lithologies leads to tension
stresses along the edge of the travertine layer and the progressive opening of preexisting
fractures. The travertine layer exhibits NW–SE and NE–SW trending fracture systems,
probably caused by tectonic activity (Figure 9b). Fracture of tectonic genesis up to 10 m
wide and in different stages of evolution are sub-parallel to the plate edge and the major
fracture systems all along the cliff scarps. When these fractures reach the clays, large
blocks of travertine are isolated over the plastic materials, and lateral spreading accelerates,
defining sliding surfaces; the movement evolves as a complex landslide.
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4.3.3. Montebello sul Sangro Landslide

The case study area is located in the transition zone between the central Apennines
chain front and the piedmont area on the left side of the middle Sangro River valley. It is on
a narrow-faulted anticline ridge, more than 900 m.a.s.l. high, trending N–S. The landscape
outlines a strongly asymmetric calcareous hogback ridge, with a gentler eastern slope and
a steeper western one, resulting from the erosion of the anticline flank; northwards the
ridge is deeply incised and separated by a second hogback ridge on which the Pennadomo
village is located.

From a lithological standpoint, bedrock lithology is made of rocks pertaining to
allochthonous pelagic deposits. Clayey deposits with embedded terrigenous siliciclastic
deposits (Argille varicolori formation) outcrops in the western side of the ridge; alternating
calcareous-marly and calcirudite rocks (Tufillo formation) represent the backbone of the
ridge; pelitic-arenaceous deposits (Flysch of Agnone formation) mostly outcrop in the eastern
side of the ridge [39,87]. Physical–mechanical properties of chaotic marly–clayey deposits
reflect the great amount of lithological variability within them, and consequently the
rock behavior is not constant. Moreover, detailed analysis showed that outer area of the
scree slope deposits appears plasticized, and the most superficial zones are at yield in
tension [87]. Quaternary continental deposits include eluvial–colluvial and scree deposits
mainly observed along fluvial incisions and slopes.

The landslide phenomenon covers an area of ~1.1 km2, and it is affected by strong
variations in the state of activity. Large landslides (mostly dormant and/or abandoned)
and small landslides (generally more recent and active) constitute the wide and complex
landslide system. Historical documents and chronicles show multiple activations of the
main event, involving the western side of the Montebello hogback and spreading out on the
eastern side (Figure 10a). These worrying geomorphological dynamics are testified by the
involvement of the Montebello village. The first evolution of events occurred in the second
half of 1800 (1864, 1891, and 1899); after that, the new village of Montebello sul Sangro was
reconstructed in a more western site [86–88]. It was characterized by a complex dynamic
including earth flows, complex landslides, rotational and translational landslides, and
localized rockfalls. Another significant landslide event occurred in 1971 [89], and it was
mainly characterized by earth flows due to the activation of several small mass movements
composing the large one. Nowadays, a principal earth flow is present, and the activity
of this movement is demonstrated by a range of surface expressions such as irregular
mounds, landslip troughs, and several tension fractures that opened both longitudinally
and transversely to the main landslide. The main landslide is characterized by a mass
that flows down along a narrow channel and then spreads out in a wide accumulation
lobe, with depressions and undulations. Thrust features in the accumulation area point
out at least three overlapped flows, suggesting an intermittent movement (Figure 11).
Moreover, the geomorphological complexity of the area is evidenced by the presence of
several families of rotational and translational landslides, complex landslides, and rockfalls,
present especially along the steep western side of the hogback.

The geomorphological cross-section (Figure 10b) shows that the landslide movements
are strictly controlled by the geological and morphostructural setting of the carbonate
hogback (east overturned faulted anticline trending from N–S to NNW–SSE) and chaotic
clay rocks; the main earth flow is influenced by the progressive involvement of the clay
units in the landslide movement, and the rockfalls in the upper part of the ridge are linked
to fractures and jointing in the calcareous strata. The scarp area involves the steep western
calcareous slope of the ridge down to the gentle lower slope on clay units; the regressive
enlargement of the landslide scarp, close to the Montebello village, involves the western
side of the calcareous ridge, with systems of tension fractures and reverse slope areas,
affecting the Montebello village (Figure 11b).
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Figure 10. Montebello sul Sangro landslide: (a) multitemporal geomorphological map (derived from
unpublished data and modified and updated from [87]); (b) geomorphological cross-section.
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Figure 11. Photo documentation of geomorphological features of Montebello del Sangro landslide. (a) Panoramic view of
the main earthflow; (b) detail of allochthonous pelagic deposits involved in the landslide phenomenon, with regressive
enlargement of the landslide scarp near the Montebello sul Sangro village.

5. Discussion

Landslides have been widely considered as principal mass-wasting agents in areas
experiencing varied influence of several causative factors (i.e., lithology, geological setting,
climate regime, etc.). However, patterns of landslides are rarely addressed as a surface man-
ifestation of interrelationships between morphostructural setting, lithology, and climate.
Here, we have attempted to understand such interrelationships in the context of landslide
distribution patterns in the hilly piedmont area of Abruzzo Region. Historical landslides
analysis allowed us to understand that the distribution, mechanisms, and types of mass
movements in the study area strictly correlate with the different physiographic, lithological,
and geological–structural settings. The work mostly focuses on three landslide case studies
analyzed with the aim of highlighting the multitemporal evolution of the landslide phe-
nomena, emphasizing the role of lithological and morphostructural features on landslide
types and the interplay between such processes and the geomorphological evolution. Land-
slide density maps, directly combined with the inventories and databases from which they
were obtained, allowed us to define and graphically show different sectors in the study
area. In each sector, we have outlined the landslide types and the mechanisms that mostly
determine the slope instability reflecting the geological–structural and geomorphological
setting. Selected case studies are representative of the most characterizing and frequent
slope instability processes over the hilly piedmont area, showing different influences on
geomorphological dynamics according to the physiographic and litho-structural setting. In
the northern and central sectors, landslide phenomena affect a gently hilly area made of
clayey–sandy deposits (with sandstone-conglomerate sequence on top), gently dipping
towards the northeast or horizontal. In the southernmost sector, landslide phenomena
affect a landscape derived from exogenous processes (fluvial and slope processes) on
mostly chaotic marly–clayey deposits or chaotic succession of calcareous-marly deposits.

Several previous studies in the Abruzzo Region [48,79,90,91] analyzed and described
the widespread slope geomorphic processes, showing an organic correlation between
the morphostructural/geological setting and landslide types as the result of the dynamic
interaction between morphostructural factors, linked to the conflicting tectonic activity and
regional uplift, and morphosculptural factors, linked to drainage network linear down–
cutting and slope gravity processes. The slope evolution is mainly related to the interplay
of different landslide types referable to lateral spreading, rockfall, earth flow, rotational
and translational sliding, evolving into complex movements and systems.

In this framework, local features such as lithology and morphostructural framework
should be noted to control the occurrence and distribution of landslides. Nonetheless, in-
terrelationships of these factors have been rarely associated with spatiotemporally varying
landslide distribution patterns. However, there are many limitations to infer temporally
varying landslide distribution, such as delineation of individual failure events on the
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reactivated landslide, loss of landslide scarp caused by the successive mass movement, etc.
Different predisposing and triggering factors can influence the stability of slopes and can
cause landslides, among which heavy rainfall events are intended to be a significant one. It
is well known that extreme and localized heavy rainfalls constitute the main triggering
causal factor of landslides. Rainfall pattern is strongly controlled and influenced by climate
regime and its variations. Therefore, it is to be expected that climate changes could influ-
ence slope stability at different temporal and geographical scales. The frequency and the
intensity of heavy rainfall events are also increasing, although both at local and regional
scale the average annual rainfall is not showing significant changes. The assessment of
the effects of climate change on the natural environment is an open issue for the scientific
community trying to establish a relation between climate change and its potential effects
on the occurrence, or lack of occurrence, of landslides. However, the effects of changes in
climate regimes on landslides (as on other geo-hydrological hazards) remain difficult to
quantify and predict.

This work represents a useful source for investigating landslide behaviors in terms
of spatial and temporal distribution, as well as for analyzing and attempting correlation
between climate regime, historical landslides, and present-day geomorphological activity.

In order to understand and quantify how climate regime and its variability could
affect landslides, a climatic analysis was performed using a 65-year period rainfall gauges
data. Figure 12a shows the spatial distribution of annual average rainfall in the study
area, with minimum values (~700 mm/year) recorded along with the coastal areas and the
southeastern sector of the Maiella Massif; these rainfall values are gradually increasing,
moving towards the innermost areas, where the maximum values (about 1150 mm/year)
are reached. Similarly, the analysis of the annual average rainfall diagram from 1950 to
2015 shows values ranging from ~530 to ~1130 mm/year, with a clear decreasing trend
over the examined period (Figure 12b).

Taking into account the spatial distribution (landslide heatmaps), the location and
abundance of landslides, and the geomorphological features of selected case studies, the
landscape dynamics and activity of the hilly piedmont area have also been confirmed by
the interferometric analysis. Considering that movements recorded by interferometric data
can be due to different causes acting at different scales (i.e., uplift, subsidence, landslide,
etc.), the PSInSAR technique was here used as a tool for systematic monitoring of ground
deformation related to slope instability. The presence and temporal persistence of clusters
of anomalies within the main landslide body act as the most important parameters that
show present-day landscape changes linked to temporal landslide dynamic. Figure 12c
shows the total number of persistent anomalies detected over the period 2002–2010, clipped
by landslide bodies (green polygons) mapped by the IFFI project [59,60] over the hilly
piedmont area of Abruzzo Region. Analyzed data show a spatial distribution of negative
movements (lowering) and positive movements (raising), which reflect the extension of the
investigated landslide phenomena with the highest values located in the central-southern
sectors and locally in the northernmost coastal slopes.

Moreover, in order to attempt a general correlation between long-term rainfall trends
and trends in landslide occurrence, a statistical analysis of the annual distribution of
landslides was carried. This kind of analysis was completed collecting data from histor-
ical sources, technical reports, and updated catalogues [60,65,86] containing a variety of
historical, geographical, geomorphological, and bibliographical information on landslides.

Reported diagram (Figure 12d) stores information regarding dates of occurrences of
several landslides, starting from the year 1950 until the present, with non-homogeneous
rates of recorded landslides per year. A detailed analysis shows that the frequency remains
under the value of 10 landslides per year starting from 1950 to 1990, with unique exception
years (i.e., 1954, 1956, 1986). Subsequently, growth rates, from 1991 onwards, clearly
increase. Even if the variance of the number of reported landslides over time is also
due to the different availability of sources of information and not necessarily linked to
the real frequency of landslide occurrences [92], it is possible to consider this analysis
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a reasonably true reflection of reality for the period 1950–2018. Despite the presence
of a timespan with a lack of suitable and univocal data (i.e., year, day, hour, etc.) on
landslides’ activation–reactivation in the period 2002–2009, it is possible to note that the
annual landslide distribution ranges from ~5 to ~75 individual events. Considering the
complete distribution of the number of landslides during the years covered, the annual
landslide distribution during this period shows different periods of landslide activity and
abundance. It is possible to note a nearly stable trend in the first 20-year time record
(1950–1970), followed by a general increasing trend in the 1970–2000-time record, also
supported and corroborated by a weak increasing trend in the last decade (2010–2018). The
identified trend should be considered in relation to both the incremental data availability
and the rise in mass-wasting processes, as directly shown by historical information on past
and current landslides. Moreover, regarding the study area, it is not correct to conclude
that a lack of reported landslides in a given time interval would be due to a minor activity
of gravitational mass wasting or to a gap in the documental source, as marked by the
present-day geomorphological activity testified by the temporal persistence anomalies of
movement related to slope instability (Figure 12c).

 
Figure 12. (a) Average annual rainfall map. Black dots represent rainfall gauges. (b) Average annual rainfall diagram
from a 65-year time record (1950–2015). (c) InSAR observations for the selected area over the hilly–piedmont area. Mean
line-of-sight (LOS) velocity for the period 2002–2010 from Envisat descending track. Only the Persistent Scatterers (PSs) that
fall within the landslide areas (dark green polygons) have been selected and are represented as colored dots. Positive values
represent the motion of the ground toward the satellite (raising), and negative values represent the motion away from the
satellite (lowering). Green polygons represent landslide bodies detected by the IFFI Project [60]. (d) Distribution of annual
landslide occurrences over the 1950–2015 period (derived from [60,65,86]).
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The final combination and overlapping between the spatial and temporal landslide
distribution pattern, the mismatch between landslide areas and sectors characterized by
high rainfall density, the lack of correspondence between decreasing annual average rainfall
trend and the increasing annual landslide distribution allowed us to highlight the interplay
between the morphostructural/geological framework and landslide dynamics in the hilly
piedmont area of Abruzzo Region. The present study allowed us to better characterize
the present-day landscape setting of the study area, confirming that it is characterized by
active geomorphological processes, mostly represented by slope instabilities (i.e., rotational
and translational slides, complex landslides, earth flows, and rockfalls). This was obtained
from historical information on past and current landslides. Currently, geomorphological
activity and landslide dynamics are testified and supported by interferometric data (clusters
of persistent anomalies, detected over the period 2002–2010, and clipped by landslide’
polygons) with negative movements (values between −10 and −2) and positive ones
(values between 2 and 10) heterogeneously distributed over the hilly piedmont area.
Detailed multitemporal geomorphological analysis on selected case studies (San Martino
sulla Marruccina, Roccamontepiano, and Montebello sul Sangro) show multiple activations
of the main event since the 18th century onwards with large landslides (mostly dormant
and/or abandoned) and small landslides (generally more recent and active) constituting
the wide and complex landslide systems and reflecting the physiographic, geological–
structural, and geomorphologic setting.

In conclusion, by summarizing data obtained from multitemporal and multidisci-
plinary, it is possible to suggest that landslide occurrence and the dynamics of the hilly
piedmont area of Abruzzo Region are not directly linked to climate regime variations, but
the most influential factors are represented by the lithological and morphostructural setting.
These predisposing factors are strictly related to a cuesta, mesa, and plateau landscape in
which it is possible to outline the landslide types and the mechanisms that mostly deter-
mine the slope morphogenesis and are characterizing of the specific geological–structural
setting. To these characterizing landslide types are obviously associated and sometimes
super-imposed a set of landslides secondary or however controlled by local conditions,
single factors (i.e., extreme heavy rainfall events), and not by the whole morphostructural
setting. Moreover, considering the historical landslide events and the geomorphological
activity of the area, most of the recorded landslides could be considered as reactivations of
pre-existing ones (dormant slides and/or paleolandslides), which have occurred in periods
of climatic and geomorphological conditions different from those of the present, evolving
in complex movements and systems because of the absence of sustainable land planning
and appropriate landslide hazard mitigation measures.

6. Conclusions

This paper presents detailed analyses of the occurrence and distribution of landslides
over the hilly piedmont area of Abruzzo Region (Central Italy) in relation to mechanisms
and factors that control their evolution in different orographic, lithological, and geological–
structural conditions. Historical landslides analysis, supported by GIS-based techniques,
was performed through an integrated approach combining literature data and landslide
inventories analysis, relationships between landslide types and lithological units, detailed
photogeological analysis, and geomorphological field mapping. In detail, the work focuses
on three landslide case studies that have undergone several main movements since the 18th
century onwards, intending to highlight the multitemporal geomorphological evolution
of phenomena and the interplay between morphostructural/geological framework and
landslide dynamics. The main landslide cases analyzed and discussed in this paper
consist of rotational and translational slide in a complex landslide system on clayey–sandy
deposits, characterized by a very rough topography documenting the activity of long-term
landslide processes (San Martino sulla Marruccina landslide case); complex landslide
system including lateral spreading with rockfalls, rotational and translational movements,
characterized by a travertine layer that overlies arenaceous-pelitic and pelitic-arenaceous
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deposits (Roccamontepiano landslide case); main earth flow on chaotic allochthonous
pelagic deposits with several families of rotational and translational landslides, complex
landslides, and rockfalls (Montebello sul Sangro landslide case).

A multidisciplinary and multitemporal analysis allowed us to better characterize the
present-day landscape setting of the study area, deriving data from historical information
on past and current landslides. Furthermore, this work represents an attempt for the
understanding of spatial interrelationship of landslide types, morphostructural setting,
and climate regime in the study area. It gives a contribution about the location, abun-
dance, activity, and frequency of landslides in a changing environment, by means of the
analysis of historical events and a comparison between the long-term rainfall trends and
the distribution of annual landslide occurrences, which shows that landslide dynamics
are not directly linked to climate regime variations, but that the most influential factors
are represented by the lithological and morphostructural setting. Finally, the work could
represent a scientific tool for any study in the future concerning susceptibility, hazard, and
risk assessment at different spatial scales, readily available to interested stakeholders for
sustainable territorial planning and loss-reduction measures.
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