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2 Department of Electrical and Computer Engineering, University of California, Riverside (UCR),
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1. Introduction

The increase in the population growth rate and the motivation to overcome issues
such as environmental concerns and air pollution have made distributed renewable energy
resources (DRER) the most popular option for providing the required energy. In addition,
DRER, by making technologies such as microgrid feasible, facilitate the expansion of the
power network to disadvantaged communities as well as remote and rural areas, which are
not connected to the main grid. At the same time, they can improve the operation, resilience,
and efficiency of the power grid by providing extra flexibility, local energy supply, and
lower energy loss [1,2].

However, there are still several technical and non-technical challenges regarding
interconnection of renewables into the grid [3]. The current power grid is aging and faces
a future for which it was not designed. For instance, with the widespread proliferation
of rooftop solar, distribution utilities have consumers who become “prosumers” as they
consume and produce electricity at the same time [4]. However, the traditional electric
power grid has been designed for power flow in one direction. As the penetration of
distributed renewable energy resources such as solar or wind increases, it is anticipated
that in some feeders, the flow of power changes to the “reverse direction” [5]. In addition,
the power fluctuations of DRER adversely affect the operation of power systems [6]. From
the grid perspective, technical concerns associated with the high penetration of renewables
with intermittent nature include energy management [7,8], forecasting [9,10], power quality
(e.g., variations of voltage and harmonic issues) [5], grid stability [11], reliability, and
protection issues.

Moreover, still many aspects of DRER deployment are nascent, for which there are
no standards or accepted best practices [12]. For example, the deployment of DRER
increases the number of grid-edge devices that are typically equipped with communication
and control interfaces for remote access and control. These emerging grid-edge devices
introduce new vulnerabilities to the gid when it comes to cyber-physical attacks. From
the DRER perspective, the technical challenges range over a wide spectrum of topics
including technoeconomic feasibility analysis, technology selection, software/hardware
design, modeling, planning, sizing and placement, grid support capability, cyber-physical
security, and interoperability at the component level and system level.

On the other hand, the non-technical challenges can be classified in three categories—
regulatory issues, social issues, economic issues. Regarding regulatory issues, impotent
policies, lack of standards and regulations, complex administrative procedures, and some-
times the gap between policy targets and reality, are some examples. Social issues include,
but not limited to, lack of public awareness and information, lack of technically skilled
labor, and adverse impacts on other/alternative sources of income. Competition with fossil
fuel, lack of effective incentives and subsidies, high capital cost, and challenges in securing
financing are some existing economic issues [13].
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To overcome the existing technical and non-technical challenges, considerations should
be taken into account for integration and control of DRER. Understanding these considera-
tions across a wide range of topics associated with DRER deployment as well as becoming
familiar with emerging practices and solutions pave the path to achieving a high level of
renewable penetration in power systems.

2. A Short Review of the Contributions in This Issue

This Special Issue is focused on “Integration and Control of Distributed Renewable
Energy Resources” and aims to identify some of the considerations and new practices for
interconnection and operation of DRER in different applications. Topics addressed in this
Special Issue include technology selection of photovoltaics (PV) for optimal operation of
solar-powered electric vehicle charging facilities, design of small-scale wind turbines for
residential applications, hosting capacity analysis of solar PV systems in distribution grids,
optimal allocation of DRER in a distribution network, resilient operation of distributed
energy resources in a distribution grid, hardware control of a hybrid wind–PV-battery
power-generation system, and finally control of single-phase inverter-interfaced DRER to
achieve a desired interphase power flow/routing.

In this issue, a total of seven papers were published, covering different aspects of
integration and control of DRER including technology selection, design, techno-economic
analysis, planning, management, and operation.

Four papers are focused on control and optimization of DRER operation. The first
one developed a composite control strategy for off-grid operation of a hybrid wind–solar-
battery–diesel power-generation system [14]. Some features of the proposed control include
speed sensorless operation of a variable-speed wind turbine, stable operation of the system
during disturbances, enhanced power quality at the point of connection under nonlinear
loads, and extraction of maximum power from PV without using any maximum power
point tracking (MPPT) algorithm [14]. The second paper proposed an interphase power
flow (IPPF) control for line-to-line single-phase power electronic-interfaced DRER [15].
The IPPF controller allows single-phase elements to route active power between phases,
improving system operation and flexibility. The IPPF control was also applied to a utility
distribution circuit, which led to reductions in system voltage unbalance and losses through
balancing the active power at the feeder head. The third one [16] considered four different
PV panel technologies and optimized the operation of Solar PV systems in an electric
vehicle charging center. The profit of the charging facility was maximized considering solar
radiation uncertainty and different behaviors of EV owners as well as several weather con-
ditions. Finally, a model-based predictive control (MPC) strategy was proposed for power
flow management in a power distribution system with PV power generation [17]. The
optimization problem is subject to voltage constraints and assets’ operational restrictions.
A forecasting module based on a Gaussian process regression model was constructed to
predict the global horizontal irradiance (GHI), grid load, and water demand. It was shown
that the proposed MPC strategy is resilient to errors of the forecasting module. A min–max
problem was added on top of the main optimization problem to minimize voltage overflow,
which also enhances the resilience of the strategy.

The investigation into optimized allocation of distributed energy resources (DERs) in
distribution systems with the goal of minimizing the system loss was pursued in [18]. A
hybrid optimization approach, composed of the tunicate swarm algorithm (TSA) and the
sine–cosine algorithm (SCA), was introduced to identify the best size and location of DERs
in the system. The optimization process is performed for DERs in three different modes:
active power production (P-mode), reactive power production (Q mode), and active and
reactive power production (PQ-mode). Authors in [19] conducted an investment analysis
for integration of a small-scale wind turbine into residential homes. Their studies show that
relying only on software tools may mislead investors during the decision-making process,
as in most of these tools, installation costs, maintenance costs, net metering options, and
taxation schemes are not included. The focus in [20] is on assessing the threshold of PV
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penetration, known as hosting capacity (HC) of PV integration, in low-voltage distribution
systems. To this end, the HC values of three types of networks in rural, suburban, and
urban regions for different HC reference definitions were compared. The comparison
was made under balanced and unbalanced PV deployment scenarios and different load
conditions. Monte Carlo (MC) simulations and stochastic analysis were utilized to include
the effect of PV power intermittency and varying loading conditions in the assessment.

3. Conclusions

In the 21st-century technological race for power-grid modernization, DRER provide
an opportunity to help shape the future of our nation’s energy supply while improving the
reliability, resilience, affordability, flexibility, and security of the electric power grid, and
providing a chance to solve the corresponding economic, environmental, and social prob-
lems. The diverse contributions in this Special Issue make it evident that the deployment of
distributed renewable energy resources is a vast topic and has many aspects to be studied
in detail. As the demand and interest for producing clean energies are growing rapidly,
there is a need to understand considerations for interconnection and control of distributed
renewable resources. This Special Issue aimed to shed some light on some key issues as
well as potential solutions in DRER integration and control.
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Abstract: In this paper, a composite control strategy for improved off-grid configuration based
on photovoltaic (PV array), a wind turbine (WT), and a diesel engine (DE) generator to achieve
high performance while supplying nonlinear loads is investigated. To operate the WT efficiently
under variable speed conditions and to obtain accurate and fast convergence to the maximum global
operating point without a speed sensor, an iterative interpolation method is integrated with the
perturbation and observation (P&O) technique. To ensure the balance of power in the system and to
achieve the maximum power from the PV array without using any maximum power point tracking
(MPPT) method, and ensuring stable operation during the disturbance, a double-loop control strategy
for a two-switches buck-boost converter is developed. Furthermore, to protect the synchronous
generator of the diesel generator (DG) from the 5th and 7th order-harmonics created by the connected
nonlinear loads and to solve the issue of the filter resonance, the interfacing three-phase inverter is
controlled using an improved synchronous-reference frame algorithm (SRF) with virtual impedance
active damping. The presented work demonstrates effective and efficient control along with improved
performance and cost-effective option as compared to the similar works reported in the literature.
The performance of the presented off-grid configuration and its developed composite control strategy
are tested using MATLAB/Simulink and validated through small-scale hardware prototyping.

Keywords: off-grid system; composite control strategy; solar photovoltaic panel; wind turbine; diesel
generator; energy storage system (ESS); synchronous machine (SM); permanent magnet brushless
DC machine (PMBLDCM); power quality improvement

1. Introduction

The hybrid off-grid power generation system based on renewable energy sources
(RES), such as a wind turbine (WT), photovoltaics (PVs array) a non-renewable diesel
generator (DG), and an energy storage system (ESS), has demonstrated its capability to
provide uninterrupted and clean energy to the connected electrical local loads at low
cost [1–3]. Many off-grid configurations based on the hybridization of different RESs,
and their control strategies, are detailed in [4,5]. In all these off-grid configurations, non-
renewable energy sources (N-RESs) are suggested as reliable energy sources to compensate
for the intermittency of RES and always ensure uninterruptible power supply to the
connected local loads. Detailed comparisons on off-grid configurations, control design,
and application are given in [6–8]. DG, which consists of a diesel engine (DE) and electrical
machine in a hybrid off-grid system, is employed as backup ES and is connected directly
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to the point of common coupling (PCC) to fulfill the connected linear and nonlinear
loads, as detailed in all off-grid configurations presented in [9]. According to the detailed
study, realized by [9] on the induction machine, the harmonics generated by nonlinear
loads can affect the performance of the electrical and mechanical parts of the DG, and
in [10], the authors have found that 5th and 7th harmonics have a significant impact
on the performance of the synchronous machine. To prevent this issue and to improve
the operational effectiveness of DG, in [10], the 5th and 7th harmonics are eliminated
by controlling the interfacing inverter as a shunt active filter using multifunction control
algorithm based on PRC controllers, while showing satisfactory performance under all
types of loads. In the same context, the authors in [11] have suggested a passive harmonic
filter to mitigate selective harmonics. Compared to an active power filter (APF), the passive
power filter (PPF) is less complex and easy to design, but the active filter possesses a
high value of the quality factor, which is suggested for applications where many energy
sources are connected to the PCC, as in this case. Many research works are reported
in the literature on the control and design of the APF [12–14]. Unfortunately, all the
concepts given in [12–14] are dedicated to APF application, which has only one task in
a hybrid off-grid application. So, the multitask option is preferred as detailed in [10],
where frequency and voltage regulation at the PCC are taken into consideration. In [15–17],
the synchronous reference frame technique (SRF) is proposed for standalone and grid-
connected systems. The obtained results under the presence of nonlinear loads show
satisfactory performance. Unfortunately, the performance of this technique for under-
voltage and frequency variation has not been presented. In [18], sliding mode control
(SMC) is suggested to maintain constant PCC voltage and frequency, and to improve
the power quality, simultaneously. The authors have succeeded to validate the proposed
control for the off-grid system in real-time, and the obtained results show satisfactory
performance. Compared to the SRF technique proposed in [15–17], or the instantaneous
power theory, SMC is complex and requires an accurate technique to select the optimal SM
gains (β1 and β2) to achieve high performance.

The second non-renewable energy source (N-RES) is the energy storage system (ESS),
which is considered as the key to the stable operation of the off-grid system, especially
if it contains RESs. Generally, the ESS is connected to the common DC bus through a
buck-boost converter [18,19] and is controlled to balance the power in the system and
compensate for the wind and solar power intermittency and variability. In [20], SMC
for DC voltage and battery current regulation is proposed, and in [21], a control scheme
based on the state of charge of the battery (SoC%) is employed to charge and discharge
lithium-ion battery through a three-phase DC-AC converter. For both studies detailed
in [20,21], the authors have succeeded to implement their control strategies in real-time,
and the obtained results show the capability of the ESS to maintain the stable operation of
the hybrid off-grid system. Unlike the SMC suggested in [20], the strategy based on the
SoC%, which is suggested in [21], is simple and performs well under sudden variations of
solar irradiation and load change.

With regard to the RES integration in off-grid systems and their output power op-
timization, authors in [4,5] have proposed a hybrid AC/DC configuration. For output
power optimization, perturbation and observation (P&O) technique is widely employed
for WT as well as PV array due to its simplicity [22]. According to [23], the P&O technique
cannot perform well under a sudden change in solar irradiation or under partial shading.
To improve their performance, in [24], P&O is reinforced by the adaptive algorithm to
adjust the reference step size, and in [25], the resistance P&O is combined with adaptive
resistance control to achieve high performance from the PV panel under sudden solar
irradiation change. In [24,25], the objectives are achieved but the system complexity is
increased compared to the conventional P&O technique.

For improvement in the performance of the off-grid configurations available and re-
ported in [26–28], the following solutions are presented in this paper as
significant contributions,
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1. Minimizing the number of power converters to reduce the hardware complexity and
increase the system efficiency,

2. Development of an indirect control for the buck-boost converter to realize many tasks
such as achieving high performance from PV without using any MPPT algorithm,
facilitating the bidirectional power flow between the ESS and PCC, and ensuring
stable operation during the disturbance,

3. Effective and efficient, mechanical-speed sensorless operation of variable-speed WT-
based permanent magnet brushless DC generator (PMBLDCG) using hybridization
of the root-finding algorithm (secant method) with P&O technique,

4. Reinforcement of the SRF based control with virtual impedance active damping
to improve the power quality at the PCC while eliminating the 5th and 7th order
harmonics, along with the prevention of the 6th order-harmonic generation in the
rotor of the synchronous generator (SG), as well as to solve the issue of filter resonance.

2. System Configuration and Operation

Figure 1 demonstrates an improved version of the off-grid configurations proposed
in [26–28]. It consists of WT-driven variable speed PMBLDCG, PV, ESS, and DE-driven
fixed speed synchronous generator (SG). To achieve high performance from WT without
using any mechanical speed sensor, the stator terminals of the PMBLDCG are connected to
the common DC bus through a three-phase diode bridge and DC-DC boost converter, which
is controlled using the root-finding algorithm (secant method) with the P&O technique. To
achieve high performance from PV without losses in power converter, their terminals are
connected directly to the common DC bus. The ESS is connected to the common DC bus
through a DC-DC buck-boost converter, which is controlled using indirect method-based
control to achieve many tasks simultaneously. The WT, PV, and ESS are connected to the
PCC through a three-phase interfacing inverter, which is interfaced with an LCL passive
filter. To protect the DG, which consists of DE-driven fixed speed SG against the 5th and
7th order harmonics and prevent the generation of the 6th order-harmonic in the rotor of
the SG, and avoid the filter resonance, SRF control with virtual impedance active damping
is employed.

 

Figure 1. Improved hybrid wind-PV off-grid configuration under study.

The operation modes of the off-grid system are decided by generated and consumed
powers as presented in Table 1. There are four operating modes with specific conditions,
such as the state of charge of the battery (SoC%), the generated power from ESs, and the
load power demand for the decision of the operating mode. In this study, the operating
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modes are decided based on the sum of the generated power from WT (PWT), PV (PPV),
and DG (PDG), depending on if it is greater, equal, or less than load power demand (PL),
and also based on the SoC% of ESS.

Table 1. Operation modes of the system.

Mode Conditions ES State of ESS

Mode 1 PPV + PWT + PDG < PL
SoC% > 50% WT, PV&DG discharging

Mode 2 PPV + PWT + PDG > PL
SoC% < 50% WT, PV&DG charging

Mode 3 PPV + PWT + PDG > PL
SoC% < 100% WT, PV&DG charging

Mode 4
SoC% = 100%

Ppv + PWT + PDG > PL
Ppv + PWT + PDG = PL

WT, PV&DG Stop charging

3. Developed Composite Control Strategy

In this section, the developed control strategies for MPPT of the WT and PV panel,
charging and discharging the ESS, and energy management, as well as power quality
improvement at the PCC, are detailed.

3.1. Control of DC-DC Boost Converter on WT Side

Figure 2 shows the developed enhanced control strategy to achieve MPPT from WT
without using a mechanical speed sensor. P&O algorithm, which is detailed in [29], is
combined with an iterative interpolation method called secant method with variable step
for VWT to provide accurate and fast convergence to the optimum operating point during
sudden wind speed change. The fundamental equation of the secant method is described
in [30–33].

x(n+1) = xn −
⎛⎝F(xn)

(
xn − x(n−1)

)
F(xn)− F

(
x(n−1)

)
⎞⎠ (1)

where xn the initial value of x and F(xn) represents the value of the function at xn, which
is described as,

F(xn) = F
(

V(WT(n))

)
=

dPWT
dVWT

(2)

where VWT and PWT represent the output DC voltage and the generated power of WT.

F
(

V(WT(n))

)
=

PWT(n) − PWT(n−1)

VWT(n) − VWT(n−1)
= ∇(n) (3)

where (∇(n)) is the gradient of (n).

 

Figure 2. P&O-based secant method and variable step for DC-DC-boost converter.
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From (2) and (3), the step of VWT variation (ΔVWT) is obtained as,

ΔVWT(n) = ∇(n)
VWT(n) − VWT(n−1)

∇(n)−∇(n − 1)
(4)

The reference voltage V∗
WT is obtained as,

V∗
WT = VWTmax(n) + ΔVWT (5)

where VWTmax(n) is the maximum voltage obtained using the P&O technique as detailed in
Figure 2.

The reference V∗
WT is compared with sensed DC voltage at the output of the three-

phase diode bridge. The error of voltage ΔV is fed to the PI voltage controller. The obtained
signal from the outer loop control represents the DC WT current reference (i∗WT) as

i∗WT = Kp1ΔV + Ki1

∫
ΔVdt (6)

where Kp1 and Ki1 represent the proportional and integral gains of the outer control loop,
and ΔV is the WT DC voltage error value.

The DC WT current reference is compared with the measured DC WT current (iWT),
and the current error (ΔiWT) is fed to PI current controller to get control signal (dWT) as

dWT = Kp1ΔiWT + Ki1

∫
ΔiWTdt (7)

where Kp2 and Ki2 represent the proportional and integral gains of the inner control loop,
and ΔiWT is the WT-DC error value.

This output signal of the PI controller is fed to the PWM controller to get the switching
control of the switch (S9) of the boost converter for the WT side.

3.2. Control of DC-DC Buck-Boost Converter for ESS Side

Figure 3 shows the block diagram of the developed indirect control of the DC-DC
buck-boost converter. Based on the control of the DC voltage of the common DC bus, one
can easily get the maximum power from the PV panel without using any MPPT technique
and controlled power converter by connecting many PVs in series to make the output PV
panels voltage equal to the common DC bus voltage. So, by controlling the common DC
bus voltage (Vdc), one balances the power in the hybrid off-grid system and indirectly gets
the MPP from the PV array. As shown in Figure 3, two control loops are employed to
control the DC-DC buck-boost converter for the ESS side. The error of the common DC bus
voltage (ΔVdc) is calculated as

ΔVdc = V∗
dc − Vdc (8)

where V∗
dc and Vdc represent the common reference DC bus voltage and its measured signal.

 

Figure 3. Indirect control for the DC-DC buck-boost converter for the ESS side.
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The obtained error value of the common DC bus voltage (ΔVdc) is fed to the PI voltage
controller to get the ESS current reference (i∗b ) as

i∗b = Kp3ΔVdc + Ki3

∫
ΔVdcdt (9)

where Kp3 and Ki3 represent the proportional and integral gains of the outer control loop,
and ΔVdc is the error value of the common DC bus voltage.

The DC-WT current reference is compared with the measured value (ib), and the
current error value (Δib) is fed to PI current controller of the inner control loop to get
control signal (db) as

db = Kp4Δib + Ki4

∫
Δibdt (10)

where Kp4 and Ki4 represent the proportional and integral gains of the inner control loop.
The output signal of the PI controller of the inner control loop is fed to the PWM

controller to get the switching control of switches (S7 and S8) of the DC-DC buck-boost
converter for the ESS side.

3.3. SRF Control with Virtual Impedance-Based Active Damping

Figure 4 shows the block diagram of synchronous reference frame (SRF) control based
on virtual impedance active damping. The theory of SRF control as detailed in [14] is
reinforced by virtual impedance-based active damping to dampen the LCL resonance. The
measured load currents (iLa, iLb, iLc) and PCC voltages (vLa, vLb, vLc) are converted into
the d-q-o frame using Park’s transformation as,⎡⎣ iLd

iLq
iLo

⎤⎦ =
2
3

⎡⎣ cosωt −sinωt 1
2

cos
(
ωt − 2π

3
) −sin

(
ωt − 2π

3
) 1

2
cos
(
ωt + 2π

3
)

sin
(
ωt + 2π

3
) 1

2

⎤⎦⎡⎣ iLa
iLb
iLc

⎤⎦ (11)

 
Figure 4. SRF control with virtual impedance-based active damping.
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And ⎡⎣ vLd
vLq
vLo

⎤⎦ =
2
3

⎡⎣ cosωt −sinωt 1
2

cos
(
ωt − 2π

3
) −sin

(
ωt − 2π

3
) 1

2
cos
(
ωt + 2π

3
)

sin
(
ωt + 2π

3
) 1

2

⎤⎦⎡⎣ vLa
vLb
vLc

⎤⎦ (12)

where ωt is the phase angle and is estimated using the phase locked loop (PLL).
With help of a low pass filter (LPF), the DC components (idDC, iqDC) of load current

are extracted. The zero sequence iLo is taken equal to zero.
The d-axis reference DG currents (idDG

∗) is estimated as

idDG
∗ = idDC + iLoss (13)

where iLoss represents the active power component to maintain the system frequency ( fs)
constant, and it compensates for the losses in the three-phase interfacing inverter. This
active component is estimated as

iLoss = Kp5( f ∗s − fs) + Ki5

∫
( f ∗s − fs)dt (14)

where f ∗s is the system frequency reference and is equal to 60 Hz, fs is the measured system
frequency using PLL, and Kp5 and Ki5 represent the proportional and integral gains.

The q-axis reference DG currents (iqDG
∗), is estimated as

iqDG
∗ = iqDC + iqv (15)

where, iqv is the reactive power component for maintaining the PCC voltage and is calcu-
lated as

iqv = Kp6ΔvL + Ki6

∫
ΔvLdt (16)

where Kp6 and Ki6 represent the proportional and integral gains, and (ΔvL) is calculated as

ΔvL = v∗t − vt

where v∗t is the reference amplitude voltage at the PCC, and vt is the measured amplitude
of the PCC voltage and is calculated as

vt =
√

vLd
2 + vLq2 (17)

where vLd, vLq denote the d-q voltage of the PCC and are obtained using (12).
The reference DG currents (i∗DGa, i∗DGb, i∗DGb) are obtained using the reverse Park’s

transformation as⎡⎣ i∗DGa
i∗DGb
i∗DGc

⎤⎦ =

⎡⎣ cosωt sinωt 1
cos
(
ωt − 2π

3
)

sin
(
ωt − 2π

3
)

1
cos
(
ωt + 2π

3
)

sin
(
ωt + 2π

3
)

1

⎤⎦⎡⎣ i∗dDG
i∗qDG
i∗oDG

⎤⎦ (18)

The zero sequence i∗oDG is taken equal to zero.
As detailed in Figure 4, the SRF control is reinforced by virtual impedance damping

to solve the problem of filter resonance. Then, the equivalent transfer function of the LCL
filter with dual feedback active damping is detailed in [34,35] as

iDG(S)
u(S)

= G(S) =
1

LinvLDGCCS3 + (kdc + kdl)LDGCCS2 + (Linv + LDG)S + kdl
(19)

where kdc, kdl denote the damping coefficients, and Linv, LDG and CC are the inductors and
capacitors of the LCL filter.

11



Clean Technol. 2021, 3

The reference DG currents (i∗DGa, i∗DGb, i∗DGc) with respective DG currents (iDGa, iDGb, iDGc)
are fed to a PWM current controller to get the switching sequences for control of the
switches (S1 to S6) of the interfacing inverter.

4. Results and Discussion

To validate the effectiveness and robustness of the hybrid off-grid configuration
and its composite control strategies, simulation and experimental tests are presented;
they were obtained using Matlab/Simulink and hardware prototype of a 2-kW rating.
Figure 5 shows the hardware prototype used for real-time validation of the complete off-
grid system shown in Figure 1. It consists of (1) ABB Drive, (2) induction motor, (3) SG,
(4) synchronizer, (5) transformer, (6) power converters, (7) voltage and current sensors,
(8) loads, (9) protection cards, (10) dSPACE, (11) lead-acid battery pack, (12) PV emulator,
(13) drive + induction motor, and (14) PMBLDCG, and (15) LCL filter.

 

Figure 5. Hardware prototype of hybrid wind-PV-diesel off-grid system.

4.1. Performance at the AC Side under Presence of Linear Load

Figure 6a shows the waveforms of the stator DG voltages (vDG) and currents (iDG),
load voltages (vL), and currents (iL), and Figure 6b shows the zoom of the waveforms
shown in Figure 6a between t = 1.1 s and t = 1.3 s. In this test, a linear load is connected at
the PCC. One observes in Figure 6a,b that the stator voltages of the SG are well regulated
and are equal to the reference 208 V. The voltage and current at the PCC are constant and
sinusoidal. The system frequency is well regulated and is equal to 60 Hz.

4.2. Performance at the DC Side at Solar Irradiation and Wind Speed Change

In Figure 7, the waveforms of the common DC-link voltage (Vdc) and its reference
(V∗

dc); ESS current (ib) and its reference i∗b ; the state of charge of the ESS (SoC%); the output
PV current (iPV); the stator voltage of the phase ‘a’ of the PMBLDCG (Vsa) and the current
(isa); and the DC-WT current (idc), which is measured at the output of the three-phase diode
bridge, are presented during dynamics of RESs generation.
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(a) (b) 

Figure 6. Performance under fixed linear load at the AC side and (b) Zoom of (a) between t = 1.1 s to 1.3 s.

 
Figure 7. Performance at the DC side under wind and solar irradiation change of the common
DC-link voltage (Vdc) and its reference (V∗

dc); ESS current (ib) and its reference i∗b ; the state of charge
of the ESS (SoC%); the output PV current (iPV); the stator voltage of the phase ‘a’ of the PMBLDCG
(Vsa) and the current (isa); and the DC-WT current (idc).
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One observes that the common DC-link voltage is well regulated and is following its
reference, which is equal to 350 V and is not much affected when the system is subjected to
sudden solar irradiation change at t = 0.8 s and t = 1.8 s, and when the wind speed suddenly
increases at t = 0.85 s, t = 1.3 s, t = 1.8s, and t = 2.35 s, respectively. One observes that ESS
currents follow its reference during weather condition changes. Seeing that the SoC% of
ESS is less than 50% as detailed in Table 1 (operating mode 2), DG provides power to the
connected linear load as shown in Figure 6 and charges the ESS. In addition, all generated
power from the WT and PV panel is used to charge the ESS, which is why the ESS current
varies with the variation of the WT and PV panel currents. One observes clearly that one
extracts the MPP from the PV panel without using any power converter and from the
WT using only a three-phase-diode bridge and boost converter. It is demonstrated that
we can operate the WT efficiently under variable speed conditions and provide accurate
and fast convergence to the maximum global operating point without speed sensors by
applying the iterative interpolation method with perturbation and observation (P&O)
technique. Based on the obtained results, one may conclude that the developed control
for the DC-DC buck-boost converter shown in Figure 3, and the one for the DC-DC boost
converter shown in Figure 2, operate well under all conditions without any saturation issue
and with high efficiency.

4.3. Generated and Consumed Active and Reactive Powers

In Figure 8, the waveforms of active and reactive powers of DG (PDG, QDG), load
(PL, QL), three-phase interfacing inverter (Pinv, Qinv), generated active power from WT
(PW), and PV panel (PPV), and from the ESS (PESS), are demonstrated. One observes that
the balance in power in the hybrid off-grid system is perfectly achieved, and all generated
power in this operating mode (operating mode 2) is provided to the load and to charge
the ESS because the SoC% is less than 50%. So, on the AC side, the DG is supplying the
load directly and the difference of power is provided to the ESS through the three-phase
interfacing inverter, which is why the active and reactive power is with a negative sign.
On the DC side, all generated power from the WT and the PV array is used to charge the
ESS, which is why the PESS is with a negative sign; it is increasing and decreasing based
on the variation of the wind speed and solar irradiation. It is observed that the power
balance is achieved without any issue, which confirms the robustness of the indirect control
developed for the DC-DC buck-boost converter based on the double loop strategy.

4.4. Performance at PCC under the Presence of Nonlinear Loads

In Figures 9a and 10a, the waveforms of the common DC voltage (Vdc) and its reference
(Vdc

*), currents of the phase ‘a’ of DG (iDGa), load (iLa), and inverter (iinva) are demonstrated,
and in Figure 9b,c and Figure 10b,c, the harmonic spectrum of load and DG currents are
presented. One observes that the interfacing inverter acts as a power active filter under the
presence of RL and RC both types of nonlinear loads. It compensates for harmonics and
balances the DG current. One observes that the common DC-link voltage is maintained
constant and follows its reference, which is equal to 350 V. One sees clearly from the
spectra of harmonics shown in Figures 9b and 10b the presence of the 5th and 7th order of
harmonics in the load current. The total harmonics distortion (THD) of the load current is
equal to 26.9% in Figure 9b for RC type nonlinear load and 26.05% in Figure 10b for RL
type nonlinear load. The THD of the DG current as demonstrated in Figures 9c and 10c is
equal to 2.31% and 1.88%, respectively. This achieves the limit of IEEE Std 519-1992. One
observes that the 5th and 7th order harmonics are mitigated at the level of DG current in the
presence of both nonlinear loads. This proves that the stator of the SG is protected against
5th and 7th order harmonics under the presence of all nonlinear loads, which confirms
the robustness of the SRF control with virtual impedance-based active damping, which is
developed for the three-phase interfacing inverter.
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Figure 8. Global power demand and generation in the hybrid wind-PV-diesel off-grid system;
theactive and reactive powers of DG (PDG, QDG), load (PL, QL), three-phase interfacing inverter
(Pinv, Qinv), generated active power from WT (PW), and PV panel (PPV), and from the ESS (PESS).

4.5. Experimental Results of the DG under the Presence of Linear Load

Figure 11a–c show the performance of the DG under the presence of linear load. One
observes that the terminal stator voltages (vDGab and vDGbc) are sinusoidal and regulated at
their rated value, which equals 208 V at the primary of the transformer (element no. 5 in
Figure 5 and 50 V at the secondary as shown in Figure 11c. The connected load is supplied
with a constant current at a fixed frequency (i.e., 60 Hz). The DC current applied to the
rotor winding of SG is constant and is equal to 0.8 A.

4.6. Performance under Load Variation and Presence of Linear Load

In Figure 12a–c, the waveforms of the common DC-link voltage (vdc), output DG
current of phase ‘a’ (iDGa), the generated current from the PV panel and WT (iWT + iPV),
load current of phase ‘a’ (iLa), ESS current (ib), and line PCC voltage (vLab) are presented. It
is observed in Figure 12a that the load is suddenly connected to the system at t = 0.72 ms,
and the DG stabilizes only after t = 0.12 s, and in this period, the ESS provides the difference.
One observes that the common DC-link voltage is well regulated, and it is not affected
during the transition, which confirms the robustness of the outer control loop of the DC-
DC buck-boost converter. It is observed in Figure 12b, that ESS provides the difference
of power between t = 0 s to t = 0.2 s, and the current becomes equal to zero when the
load is disconnected at t = 0.2 s. In Figure 12c, the ESS current is increased more when
the load is suddenly increased at t = 0.2 s. In all the cases, the load is supplied without
interruption, and the power is balanced in the hybrid off-grid system. The common DC-link
voltage is well regulated without deviation (overshoot and undershoot), which confirms
the robustness of indirect control developed for the DC-DC buck-boost converter.
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(a) 

 
(b) 

 
(c) 

Figure 9. (a) Waveforms of the DG, load, and inverter currents under the presence of nonlinear load
type RC; (b) harmonic spectrum of load current; and (c) harmonic spectrum of DG current.
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(a) 

 
(b) 

 
(c) 

Figure 10. (a) Waveforms of DG, load, and inverter currents under the presence of nonlinear load
type RL; (b) harmonic spectrum of load current; and (c) harmonic spectrum of DG current.
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(a) 

 
(b) 

 
(c) 

Figure 11. Steady-state performance of (a) excitation current (iex), SG terminal stator voltages
(vDGab, vDGbc) at the primary of the transformer and stator current (iDGa) of phase ‘a’; (b) SG terminal
stator voltages (vDGab, vDGbc) at primary of transformer and stator currents (iDGa, iDGb) of phase ‘a’
and ‘b’; and (c) SG terminal stator voltage (vDGab) at primary of the transformer and at secondary
(vDGab), excitation current (iex), and stator current (iDGa).
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(a) 

 
(b) 

 
(c) 

Figure 12. Dynamic performance of system: (a) common DC-link voltage (vdc), DG current (iDGa) of
phase ‘a’, sum of PV current and DC-WT current (iPV + iWT), and load current (iLa) of the phase ‘a’
at sudden switching ON of linear load at t = 0.08 s; (b) common DC-link voltage (vdc), load voltage
of phase ‘a’ (vLab), ESS current (ib), and load current of phase ‘a’ (iLa) under sudden switching off of
linear load at t = 0.2 s; and (c) common DC-link voltage (vdc), load voltage of phase ‘a’(vLab), ESS
current (ib), and load current of phase ‘a’ (iLa) under sudden increasing of linear load at t = 0.2 s.

19



Clean Technol. 2021, 3

4.7. Performance in Presence of RC and RL Types Nonlinear Loads

In Figures 13a and 14a, the common waveforms of DC-link voltage (vdc), load current
of phase (iLa), DG current (iDGa), and the output inverter current (iinva) of phase ‘a’ in
the presence of nonlinear loads type RL and type RC are presented. In Figure 13b,c and
Figure 14b,c, the harmonics spectra of the load and DG currents are demonstrated. One
observes clearly in Figures 13a and 14a that the DG currents are sinusoidal and balanced
in presence of the both type of nonlinear loads, and the common DC-link voltage is well
regulated at its set value, which is equal to 120 V. It is observed that the inverter operates
as an active filter; it mitigates harmonics and balances the DG current. This confirms the
robustness of the proposed indirect control strategy for the DC-DC buck-boost converter
and the SRF with a virtual impedance-based-active damping control strategy for the three-
phase interfacing inverter. As demonstrated in Figures 13c and 14c, the 5th and the 7th
order harmonics are mitigated and THD of DG currents is less than 5% in the presence of
both types of nonlinear loads, which confirms that the SG of the DG is protected against
5th and 7th order harmonics and proves the robustness of the developed control strategy
for the three-phase interfacing inverter.

 
(a) 

 
(b) 

Figure 13. Cont.
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(c) 

Figure 13. (a) Performance in the presence of nonlinear load (RL type), (b) harmonic spectrum of
load current, and (c) harmonic spectrum of DG current.

 
(a) 

 
(b) 

 
(c) 

Figure 14. (a) Performance in the presence of nonlinear load (RC type), (b) harmonic spectrum of
load current, and (c) harmonic spectrum of DG current.
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4.8. Performance of the WT at Wind Speed Change

The waveforms of the line PCC voltage (vLab), load current (iLa), output WT current
at the DC side, and ESS current (ib) are presented in Figure 15. This test is realized by
maintaining a constant load and applying different speeds to the PMBLDCG. One observes
clearly that the output DC current, which is measured at the DC side of the WT, varies with
the variation of the wind speed. Seeing that the DG is running at this time, the difference
of generated power is taken by ESS. The ESS current is increased at t = 1.8 s and increased
further at t = 3 s, t = 6 s, and at t = 12.2 s. One sees clearly that perturbation and observation
(P&O) with variable steps of DC voltage based on the secant method performs well during
wind variation, and all transitions are realized without any overshoot in current or voltage.
It is observed that the PCC voltage is well regulated, and load is continually supplied
without any interruption during the transition and during rotor speed variation. This
proves the effective operation of the MPPT technique without sensing the rotor speed
proposed for the variable speed wind turbine based on PMBLDCG.

 

Figure 15. Performance at the variation of wind speed at fixed linear load.

In Figure 16a, the waveforms of stator voltage (vsa) of phase ‘a’, WT output DC voltage
(vWT) and current (iWT), and stator current (isa) of phase ‘a’ are presented. In Figure 16,
(b) the zoomed waveforms of (a) between t = 2.64 s and t = 2.88 s are shown. One observes
that experimental results are similar to the simulation results where the output DC voltage
of the WT varies slightly with the variation of the wind speed. It is observed that the output
stator current and the current measured at the output of three-phase diode-bridge increase
at t = 0.8 s and increase more at t = 2.8 s with the increasing of the rotor speed. This validates
the desired operation of the MPPT technique without mechanical speed measurement.

4.9. Performance of the PV Panel at Solar Irradiation Change

The waveforms of the PCC voltage (vDGa) of the phase ‘a’, the PV current (iPV), ESS
current (ib), and the common DC link voltage are shown in Figure 17. This test is realized
under solar irradiation change to test the performance of the proposed approach to achieve
high efficiency from PV array without using any MPPT technique. One observes that the
common DC-link voltage is regulated constant at its rated value, which is equal to the
sum of the output voltage of the PVs connected in series. The system is subjected to solar
irradiation change at t = 0.4 s, t = 0.72 s, and 1.16 s. One observes that by maintaining the
common DC link voltage constant, one can easily extract the maximum of current from
the PV panel during solar irradiation change. It is observed that the ESS current increases
with the increase of the PV panel current, and Vdc is maintained constant; this proves the
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desired operation of the outer and inner control loops of the indirect control, which are
designed to achieve MPPT from PV and balance the power in the off-grid system.

 
(a) 

 
(b) 

Figure 16. Waveforms of WT side for: (a) stator voltage (vsa) of phase ‘a’, output DC voltage (vWT)
and current (iWT), and stator current (isa) and (b) its zoomed waveform.

Figure 17. Waveforms of PCC voltage (vDGa) at secondary of the transformer of output PV (iPV), ESS
current (ib), and common DC link voltage (vdc).
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5. Conclusions

The performance of the developed composite control strategy with reduced sensors
for a PV-wind-diesel-based off-grid power generation system has been presented in this
research work. The developed off-grid configuration has reduced the number of power
converters to make it an effective, low-cost option. To achieve stable operation under
disturbance and balance the power in the system, the developed control strategy for the
DC-DC buck-boost converter is reinforced by the inner control loop. Furthermore, for better
attenuation of switching harmonics without additional losses, active damping solution
is developed and implemented. The obtained simulation and experimental results show
satisfactory performance under the change in solar irradiation and wind speed, as well as
balanced linear and nonlinear loads. It has been demonstrated that the perturbation and
observation (P&O) technique with variable steps of DC voltage based on the secant method
performs well during sudden wind speed variations without any saturation issue and use
of mechanical speed sensor. The extraction of maximum power from PV panels without the
MPPT algorithm has also been demonstrated. Furthermore, the control for a three-phase
interfacing inverter using SRF control with virtual impedance-based active damping has
been demonstrated to improve the power quality at PCC and power flow management in
the system. In addition, the 5th and 7th order-harmonics are mitigated, and DG is operated
perfectly without any challenge under the presence of nonlinear loads. Therefore, it is
concluded that the developed composite control strategy for PV-wind-diesel-based off-grid
power generation system performs well in the presence of severe real-time conditions.
Up to now, the performance of the PV array has been tested under a fixed temperature
of 25 ◦C and variable solar irradiation; therefore, the system efficiency under different
temperatures needs evaluation. Furthermore, the high-frequency voltage stress on the DC
side and the deterioration of the frequency and voltage stability under power imbalances
need further evaluation.
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Define Abbreviations

Symbol Description

WT Wind turbine
PV Photovoltaic array
ESS Energy storage system
DG Diesel generator
PMBLDCG Permanent magnet brushless DC generator
isa, isb, and isc Stator currents of the PMBLDCG
CWT The capacitor at the output of the diode bridge
VWT DC voltage of the WT
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LWT The inductor of the DC-DC boost converter for WT side
iWT DC current of the WT
VPV Output PV voltage
iPV Output PV current
vb Battery voltage
Lb Inductor that connects the battery to the DC-DC

buck-boost converter
Vdc Common DC-link voltage
Vinva, Vinvb, and Vinvc Output voltages of the interfacing inverter
iinva, iinvb, and iinvc Output currents of the interfacing inverter
Vca, Vcb, and Vcc Voltages of the output filter
Rc and CC Resistance and capacitor of the output filter
icc The current of the output filter
Linv and LDG Inductors of the output filter
VLa, VLb, and VLc Load voltages
iLa, iLb, and iLc Load currents
iDGa, iDGb, and iDGc Diesel generator currents
AVR Automatic voltage regulator
DE Diesel engine
P&O Perturbation and observation technique
VWTmax The maximum voltage obtained using the P&O technique
ΔVWT Step of VWT variation
VWT* Reference DC voltage of the WT
ΔV WT DC voltage error value
PI Proportional integral regulator
iWT* Reference DC current of the WT
ΔiWT WT DC current error value
dWT Control signal
S1 to S9 Power electronic switches (insulated-gate bipolar transistor (IGBT))

of the power converters
PWM Pulse-width modulation
Vdc* Reference of the common DC-link voltage
ΔVdc Error value of the common DC-link voltage
ib* Reference battery current
Δ ib Error value of battery current
db Control signal
fs System frequency
fs* Reference of the system frequency
lLoss losses of active power
d-q Direct and quadrature axis
LPF Low pass filter
PLL Phased locked loop
ωt Angular frequency
iDGa*, iDGb* and iDGc* Reference of DG currents
G(s) Transfer function of LCL filter
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Abstract: The capability of routing power from one phase to another, interphase power flow (IPPF)
control, has the potential to improve power systems efficiency, stability, and operation. To date,
existing works on IPPF control focus on unbalanced compensation using three-phase devices. An
IPPF model is proposed for capturing the general power flow caused by single-phase elements. The
model reveals that the presence of a power quantity in line-to-line single-phase elements causes an
IPPF of the opposite quantity; line-to-line reactive power consumption causes real power flow from
leading to lagging phase while real power consumption causes reactive power flow from lagging to
leading phase. Based on the model, the IPPF control is proposed for line-to-line single-phase power
electronic interfaces and static var compensators (SVCs). In addition, the control is also applicable
for the line-to-neutral single-phase elements connected at the wye side of delta-wye transformers.
Two simulations on a multimicrogrid system and a utility feeder are provided for verification and
demonstration. The application of IPPF control allows single-phase elements to route active power
between phases, improving system operation and flexibility. A simple IPPF control for active power
balancing at the feeder head shows reductions in both voltage unbalances and system losses.

Keywords: distribution system; microgrids; power quality; power system management; power
system reliability; smart grids

1. Introduction

AC power systems employ three-phase power technologies for economic reasons.
Even though power in each phase is naturally independent, i.e., loads are supplied by
the generation of the same phase, the capability for routing power between phases or
interphase power flow (IPPF) control, can improve flexibility and operation for distribution
systems. Power can be routed from heavily to lightly loaded phases for load in-balance
compensation. As a result, system losses can be reduced [1,2] while improving utilization
of power equipment. IPPF control capability also improves the system operation, especially
in microgrids. In critical scenarios, a phase may experience load-generation imbalance
due to line trips or insufficient generation. With IPPF control capability, the power of the
interrupted phase can be routed from the other phases to maintain load-generation balance
and system stability.

Among others, instantaneous symmetrical components [3], current physical com-
ponents [4], and the power unbalance compensation via static var compensators (SVCs)
in [5] are the leading theories related to power routing. However, they only focus on load
balancing and are not applicable for general power routing applications. Moreover, these
theories are developed for three-phase devices and not for single-phase devices.

From the hardware development perspective, line switches and three-phase flexible
alternating current transmission systems (FACTs) are the devices currently considered for
interphase power routing control applications. Line switches and tie-lines can be utilized
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to swap a part of a heavily loaded phase with a part of a lightly loaded phase downstream,
so that the upstream loading is balanced [6–8]. Three-phase FACTs are another group
of versatile devices that emerged in response to the increasing concern regarding power
quality. They can provide reactive power support, voltage regulation, or harmonic compen-
sation. With proper control, devices such as SVCs [5,9] and distribution static compensator
(DSTATCOMs) can also achieve load unbalance compensation [10–13]. Although they
can be used for power routing control, they require additional hardware. With the in-
creasing integration of photovoltaics (PVs) and other distributed energy resources (DERs),
three-phase power electronic interfaces have been proposed for compensation [14–16].
The back-to-back converters connecting asynchronous microgrids to the main distribution
grid are also considered for unbalance compensation in [17]. Even though three-phase
power electronic interfaces are attractive for IPPF control applications, their interphase
power routing capability is limited as they are designed for balanced power operations.
Unbalanced operations may induce unacceptable DC-link voltage fluctuation [18].

The contributions brought in the paper are three fold. Firstly, the IPPF theory is
proposed for modeling the power flow behavior through single-phase devices connected
between two different phases. The proposed model is applicable for constant impedance,
constant current, and constant power elements connected in line-to-line or line-to-neutral
configurations. The second contribution involves the development of control algorithms
governing the IPPF of line-to-line single-phase SVCs and line-to-line single-phase power
electronic interfaces. Additionally, the control is also applicable for the line-to-neutral SVCs
and power electronic interfaces connected at the wye side of delta-wye transformers. Two
control modes are proposed for line-to-line single-power electronic interfaces. The first
mode provides the active and reactive power control of the devices. The second control
mode enables the auxiliary controls including precise power injection and power routing
control of two connected terminals. Lastly, two applications utilizing the coordinated IPPF
controls for improving system operation and flexibility are provided.

The organization of this paper are outlined as follows: In Section 2, the IPPF model is
proposed for modeling the power flow phenomena of single-phase elements. The model
serves as the development framework for the IPPR control of line-to-line single-phase
elements in Section 3. In Section 4, simulations are provided for demonstration and
verification. Finally, Section 5 concludes the paper.

2. Interphase Power Flow via Single-Phase Element

In this section, general power flow phenomena of a single-phase element are investi-
gated and modeled. For generality, single-phase elements are modeled as loads, which can
be categorized into constant current, constant power, or constant impedance loads.

2.1. Interphase Power Flow

IPPF refers to power flow as the result of connecting a single-phase element between
two terminals, a and b. The power flow of interest includes active power (P), reactive
power (Q), and complex power (S). Active power is the power (measured in W) that is
utilized by the element for real work. Reactive power is the power (measured in var) used
to maintain electric and magnetic fields of the element. Complex power (measured in VA)
is the sum of the active power and reactive power (S = P + jQ). The power flow of the
single-phase element modeled in IPPF can be categorized as follows:

1. Complex, active, and reactive power absorption through each terminal: Sa, Pa, Qa, Sb,
Pb, Qb,

2. Total power absorbed by the single-phase element: Sab, Pab and Qab,
3. The difference in the power absorption between two terminals: SΔab, PΔab, and QΔab.

Positive indicates that the absorbed power on terminal a is higher than terminal b, i.e.,
Pa > Pb, or Qa > Qb.

IPPF from terminal a to b can be represented compactly as (1),
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IPPFab =
[
Pa Qa Pb Qb Pab Qab PΔab QΔab

]t. (1)

The relationship among the power in IPPF can be expressed mathematically as (2)–(5)
and illustrated in Figure 1.

Sab = Sa + Sb, (2)

SΔab = Sa − Sb, (3)

Sa =
Sab
2

+
SΔab

2
, (4)

Sb =
Sab
2

− SΔab
2

. (5)

The power drawn by the single-phase element through each terminal (Sa or Sb) consists
of two parts. The first part (0.5 Sab) is absorbed by the element, which is a half of the total
power (Sab). The other part (0.5 SΔab), defined as “interphase power routing” (IPPR), is
not absorbed by the load but routed through the load from terminal a to b. It is equal to
half of the power difference between terminals. In the following subsections, the IPPF of
different single-phase load types is investigated. The considered load models are as shown
in Figure 2.

 

  

  

 

 

 

Figure 1. Interphase power flow model of a single-phase load connected across terminal a and b.
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Ia , Sa

Ib , Sb

Sab
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I
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Figure 2. Physical models of single-phase constant (a) current, (b) power, (c) impedance loads.

2.2. Constant Current Load

Considering that the constant current load in Figure 2a draws in complex currents Ia
and Ib from each terminal, respectively, the current flowing through the load is denoted as
I = Ia = −Ib. By the definition of complex power, the following relations hold:

Sa = Va I∗a = Va I∗, (6)

Sb = Vb I∗b = −Vb I∗, (7)

Sab = (Va − Vb) I∗, (8)

SΔab = (Va + Vb) I∗. (9)
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The steady-state complex voltages and currents in (6)–(9) can be expressed in rectan-
gular coordinates with subscripts r and i representing the real and the imaginary parts,
respectively, i.e., I = Ir + jIi where Ir and Ii are the real and the imaginary parts of I. As a
result, (6)–(9) can be rewritten as (10),⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pa
Qa
Pb
Qb
Pab
Qab
PΔab
QΔab

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Var Vai
Vai −Var
−Vbr −Vbi
−Vbi Vbr

Var − Vbr Vai − Vbi
Vai − Vbi −Var + Vbr
Var + Vbr Vai + Vbi
Vai + Vbi −Var − Vbr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

Ir
Ii

]
. (10)

Apart from depicting the relationship between the steady-state current and IPPF,
(9) and (10) also show that constant current loads cause power differences; IPPR. The amount
of IPPR is proportional to the current magnitude. Furthermore, constant current loads can
trade off between real and reactive IPPR by varying the current angle as shown in (10).
More active power and less reactive power is routed as current aligns more toward Va +Vb.

2.3. Constant Power Load

The model of a constant power load consuming a total complex power of Sab is shown
in Figure 2b. By rearranging (10), the relationship between the constant power load and
IPPF can be obtained in polar coordinate as (11), where V and θ denote voltage magnitude
and angle respectively,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pa

Qa

Pb
Qb
Pab
Qab
PΔab
QΔab

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Var Vai
Vai −Var

−Vbr −Vbi
−Vbi Vbr

Var − Vbr Vai − Vbi
Vai − Vbi −Var + Vbr
Var + Vbr Vai + Vbi
Vai + Vbi −Var − Vbr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
Var − Vbr Vai − Vbi
Vai − Vbi −Var + Vbr

]−1[
Pab
Qab

]
,

=
1

V2
ab

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Va cos(θa) Va sin(θa)

Va sin(θa) −Va cos(θa)

−Vb cos(θb) −Vb sin(θb)

−Vb sin(θb) Vb cos(θb)

Va cos(θa)−Vb cos(θb) Va sin(θa)−Vb sin(θb)

Va sin(θa)−Vb sin(θb) −Va cos(θa)+Vb cos(θb)

Va cos(θa)+Vb cos(θb) Va sin(θa)+Vb sin(θb)

Va sin(θa)+Vb sin(θb) −Va cos(θa)−Vb cos(θb)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
Va cos(θa)−Vb cos(θb) Va sin(θa)−Vb sin(θb)

Va sin(θa)−Vb sin(θb) −Va cos(θa)+Vb cos(θb)

][
Pab
Qab

]
, (11)

=
1

V2
ab

M

[
Pab
Qab

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 Pab
1
2 Qab
1
2 Pab
1
2 Qab

Pab

Qab

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

N

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uPab

uQab

−uPab

−uQab

0

0

2uPab

2uQab

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

U

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rQab

−rPab

−rQab

rPab

0

0

2rQab

−2rPab

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

R

,
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where M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V2
a − VaVb cos(θa − θb) VaVb sin(θa − θb)
−VaVb sin(θa − θb) V2

a − VaVb cos(θa − θb)
V2

b − VbVa cos(θb − θa) VbVa sin(θb − θa)
−VbVa sin(θb − θa) V2

b − VbVa cos(θb − θa)
V2

ab 0
0 V2

ab
V2

a − V2
b 2VaVb sin(θa − θb)

−2VaVb sin(θa − θb) V2
a − V2

b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u = (V2

a − V2
b )/2V2

ab ,

r = VaVb sin(θa − θb)/V2
ab and Vab = ||Va − Vb||.

As shown in (11), the constant power load influence over IPPF can be decomposed
into 3 components expressed as separate matrices. They can be interpreted as follows:

1. The first component, N represents the fundamental power distribution of a single-
phase load. It shows that power is drawn equally from both terminals. This component
can be considered the base power flow that does not involve IPPR.

2. The second component, U involves a factor u, which describes how a voltage magni-
tude unbalance causes an IPPR and an uneven power distribution in the base power
flow described above. The power is drawn more from the terminal with the higher
voltage magnitude.

3. The last component, R describes an IPPR as a result of the presence of the opposite
power quantity in a single-phase load. In particular, the real power consumption of
a load (Pab) routes interphase reactive power of rPab from the lagging phase to the
leading phase terminal. On the other hand, the reactive power consumption of a load
(Qab) routes an interphase real power of rQab from the leading phase to the lagging
phase terminal.

The IPPF of a constant power load can be illustrated with the three components as
in Figure 3.

Pab Qab

QΔab/2QΔab/2

Qab/2Qab/2Pab/2Pab/2
PΔab/2PΔab/2

uPabuPab rPabrPab rQabrQab uQabuQab

QΔab/2QΔab/2
Qab/2Qab/2Pab/2Pab/2

PΔab/2PΔab/2

PaPa
QaQa

PbPb
QbQb

QΔabQΔab
PΔabPΔab

Figure 3. Interphase power flow of a constant power load.

Under the assumption that the voltage is balanced and the voltages of terminal a leads
b by 120◦, u and r become 0 and 1

2
√

3
respectively. Hence (11) simplifies to (12), which can

be used to approximate the IPPF of a line-to-line connected constant power load.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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2.4. Constant Impedance Load

A constant impedance load denoted Zab can be modeled as in Figure 2c with an
admittance of Gab + jBab. IPPF in (11) can be rewritten as (13) where M is as defined in (11).

IPPFab = M
[

Gab
−Bab

]
. (13)

Similar to the constant power load analysis, (13) describes the precise IPPF regardless
of the terminal voltages. However, with a balanced voltage assumption (the voltage angle
of phase a leads phase b by 120◦), (13) is simplified to (14).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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]
. (14)

The influence of the constant impedance load is similar to that of the constant power
load. The conductance of the load draws real power equally from both terminals while

routing interphase reactive power ( V2
abGab

2
√

3
) from lagging to leading terminal. On the other

hand, the inductive load (negative susceptance) draws reactive power equally from both

phases and routes interphase real power (−V2
abBab

2
√

3
) from leading to lagging terminal.

2.5. Line-to-Neutral Load

In this section, a line-to-neutral load is analyzed as a special case of a line-to-line load
when one of its terminals is connected to neutral. Without loss of generality, the load is
modeled as a constant power load and terminal b is connected to neutral (denoted n) at
which the voltage is zero. As a result, expression (11) simplifies to (15).
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. (15)

When the neutral voltage is zero, factors u and r in (11) become 0.5 and 0 respectively.
This indicates that power routing control becomes ineffective as R component does not
affect IPPF. Moreover, at the neutral terminal, the IPPR caused by U (−0.5 Pab and −0.5 Qab)
is drawn back to the load by the N component (0.5 Pab and 0.5 Qab). This results in no
power flow at the neutral terminal. However, some power can leak to the neutral network
and small interphase power routing is possible when the neutral voltage is non-zero.
Nevertheless, since neutral voltage in practice can be neglected, the line-to-neutral single-
phase loads do not produce an IPPR between its phase terminal and neutral.
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2.6. Delta-Wye Transformer

The circuit diagram of a delta-wye transformer (Dy1) according to ANSI/IEEE C57.12
is shown in Figure 4. The secondary windings of phase a-n, b-n, and c-n are connected
directly across the primary windings of phase A-C, B-A, and C-B, respectively. As a result,
line-to-neutral loads on the secondary side are perceived effectively as line-to-line loads on
the primary perspective. The IPPF at the delta side of a delta-wye transformer caused by a
phase a load at the wye side can be calculated with (12).

Figure 4. A circuit diagram of a delta-wye transformer (Dy1) and the IPPF at the delta winding as a
result of a phase a load on the wye winding.

3. Interphase Power Flow Control

In the previous section, the IPPF models for different load types were developed,
showing that the line-to-neutral elements behind delta-wye transformers and line-to-line
single-phase elements can be utilized for routing power between terminals. The reactive
power of the elements can be utilized to route interphase real power while the real power
can be used for routing interphase reactive power. In this section, control methodologies
are proposed for controlling line-to-line SVCs and power electronic interfaces to achieve
desirable IPPR and IPPF. The controls are developed for the line-to-line elements for
simplicity; however, it is also applicable for line-to-neutral single-phase elements connected
at the wye side of a delta-wye transformer.

3.1. Line-to-Line Static Var Compensator (SVC)

SVCs are shunt devices consisting of reactance bank which may employ either capac-
itors or inductors. In general, SVCs are deployed to provide reactive power support at
selected locations. To provide the desired reactive power support, the corresponding reac-
tive power or reactance is determined and SVCs then adjust their capacitance or inductance
appropriately.

From the IPPF control perspective, SVCs are considered a constant impedance load
with uncontrollable and negligible resistance. According to (13) and (14), interphase
reactive power routing achievable (QΔab/2) would also be uncontrollable and small. Hence,
the IPPR control of SVCs will focus only on real power routing. To achieve a desired
interphase real power routing, PΔab/2, the appropriate reactive power and reactance of
SVCs can be computed precisely by using (16) and (17):

Qab =
V2

abPΔab − (V2
a − V2

b )Pab

2VaVb sin(θa − θb)
, (16)

Bab = −PΔab − (V2
a − V2

b )Gab

2VaVb sin(θa − θb)
. (17)

The reactive power and reactance can also be estimated with balanced a voltage
assumption. From (12) and (14), (18) and (19) can be obtained as follows:
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Qab =
√

3PΔab, (18)

Bab = −
√

3PΔab

V2
ab

. (19)

3.2. Line-to-Line Power Electronic Interface

This subsection proposes an online IPPR control for a power electronic interface. The
model of a power electronic interface connected to the grid in line-to-line configuration
is shown in Figure 5. The power electronic interface consists of an inverter, a filter and a
DC link, which is connected to DC power source such as PV, energy storage or an electric
vehicle. Unlike SVCs, power electronic interfaces utilize power electronic gates and PWM
techniques.

Figure 5. Physical model of a single-phase line-to-line power electronic interface.

The overview of the control algorithm is shown in Figure 6. The proposed controller
consists of phase lock loop (PLL) and three hierarchical control loops. The PLL unit serves
as the observer for the system that uses the measurement of physical states to estimate
other states of interest. The estimated states will be prompted for the controllers to utilize.
The outermost controller loop is the IPPF control loop, whose main task is to calculate
the corresponding target AC current flow from a desired IPPF. The current control loop’s
responsibility is to determine the appropriate voltage at the inverter terminal. Finally, the
voltage control loop issues the control signal for the power electronic gates in the inverter
to realize the target voltage set by the current controller.

In the practical implementation, another control for the DC link voltage should also
be considered. However, since this is not relevant for the main functionality, the DC link
voltage control is omitted. In this work, the DC-link voltage is assumed to be perfectly
maintained by a constant voltage source.

Inter-Phase Power 
Flow Control Current Control Voltage Control

Phase lock loop Plant

Vdq Vdq , Idq

V, I

Idq* vinv*P*,Q*,
PΔ*,QΔ*  

SW1,2 

Figure 6. Interphase power flow control blocks of power electronic interfaces.

3.2.1. Phase Lock Loop (PLL)

Since expression (10) relating current and IPPF can be regarded as a representation of a
synchronous rotating reference frame or d-q domain, the referencing frame is chosen as the
coordinate system for developing the control hence forth. As a result, it is necessary for the
controller to have a means for extracting the states of interest in such coordinate system. This
can be achieved by utilizing second-order-general integrator quadrature signal generator
(SOGI-QSG) to generate quad delay signals [19] and using the Park Transform to convert
the single phase stationary coordinates to the d-q reference coordinates. However, since the
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outputs of SOGI-QSG are instantaneous, the values obtained after Park transformation are
amplitudes. The RMS values can be calculated by dividing the outputs by

√
2.

In this section, d and q components are considered as real and imaginary parts respec-
tively. Furthermore, PLL will regard line-to-line voltage at grid side (Vg) as the reference
for the d-q rotating frame. In particular, the rotating d-q frame shall synchronously align
with Vg such that the q component of Vg will be adjusted to zero. A simple PI controller
achieves alignment. By using the aligned d-q rotating frame as a reference, other properties
of interest in the d-q frame can be determined via Park Transform. The control block of
SOGI-QSG is as shown in Figure 7. The closed loop transfer functions of Vd and Vq are as
shown in Equations (20) and (21). It can be observed that the gain at ω of vd

v is 1 while the
gain of vq

v is −j (90◦ delay of the same magnitude). The gain k determines the closed-loop
bandwidth.

vd
v

=
kωs

s2 + kωs + ω2 . (20)

vq

v
=

kω2

s2 + kωs + ω2 . (21)

Figure 7. Second-order-general integrator quadrature signal generator control block.

3.2.2. Interphase Power Flow Control Loop

The main purpose of IPPF controller is to determine the target current flowing in the
AC side to attain a desired IPPF characteristic with respect to the real time system voltage.
This can be accomplished by using the inverse of (11), but this method introduces several
challenges. Firstly, as the rank of the transfer matrix is two, only two power quantities
can be chosen for control while the other three dependent power quantities would be
contingently determined and indirectly controlled. The importance of each power quantity
in the control perspective is as follows:

1. Pab determines the active power transfer between the DC side and AC side. An
inappropriate setting of Pab would result in the increase and decrease of the DC link
voltage.

2. Qab determines the total reactive power absorption which may be dispatched from a
centralized controller.

3. PΔab and QΔab relate to real and reactive power routing control.
4. Pa, Pb, Qa and Qb may be selected for precise real and reactive power absorption at

the terminal.

The second challenge is that although there are four candidate control parameters,
(12) suggests that they should not be chosen arbitrarily. Particularly, under balanced volt-
age conditions, interphase real power routing (PΔab) and total reactive power (Qab) are de-
pendent and interphase reactive power routing (QΔab) and total real power (Pab) are depen-
dent. Thus, the two power quantities in each pair should not be selected simultaneously.

Considering the variable importance and dependency, two operation modes and the
corresponding controls are proposed:
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1. In the first operating mode in which the set point of Pab and Qab are given, Pab and
Qab should be selected as the control parameters. When Qab is small, the real power
should be roughly equally distributed between the two phases.

2. In the second mode, power electronic interfaces are utilized for ancillary services such
as IPPF control or precise power absorption or injection. In this mode, two power
quantities of IPPF can be selected for control. To control active and reactive IPPR, PΔab
or QΔab can be selected. For controlling the precise power injection at a connected
terminal, Pa, Pb, Qa and Qb can be selected. However, neither PΔab and Qab, nor QΔab
and Pab should be chosen simultaneously. After the control parameters have been
determined, the corresponding Pab and Qab to achieve the desired ancillary service
can be calculated by using Equation (11). Those values should be limited within the
inverter power rating. Moreover, the AC-DC active power balance should be enforced
to ensure stable DC link voltage.

Regardless of the operation modes, after Pab, Qab have been determined, Equation (10) can
be used to calculate the corresponding target currents, I∗d and I∗q .

3.2.3. Current Control Loop

The purpose of the current controller is to determine the target instantaneous terminal
voltages at the inverter AC side to realize the target current issued by the IPPR controller
given the current system voltage. Since the component in the d-q reference is readily
available, the control is developed using the double synchronous reference frame (DSRF)
control scheme. From Figure 5, the following system dynamics can be derived.⎧⎪⎪⎨⎪⎪⎩

Vg,a − Vt,a =
R
2

Ia +
L
2

dIa

dt
,

Vg,b − Vt,b =
R
2

Ib +
L
2

dIb
dt

.
(22)

These translate to
Vg − Vt = RI + L

dI
dt

. (23)

Also in the d-q domain as⎧⎪⎪⎨⎪⎪⎩
L

dId
dt

= Vg,d − Vt,d − RId + ωLIq,

L
dIq

dt
= Vg,q − Vt,q − RIq − ωLId.

(24)

Following DSRF control scheme, the controller employs 2 PI controllers, one each for d
and q reference frame. From the system dynamics, it can be observed that the coupling term
can be decoupled by using backward compensation. Furthermore, forward compensation
is utilized to cancel out the constant terms (Vg,d and Vg,q) to improve system dynamics.
The control block diagram is as shown in Figure 8. After the target AC inverter terminal
voltage Vd and Vq are obtained, the inverse Park transform is applied to convert the voltage
in d-q coordinates to the instantaneous coordinates.

3.2.4. Voltage Control Loop

After receiving the target instantaneous voltage magnitude, the voltage controller’s
responsibility is to generate the corresponding power electronic gate control signals. The
voltage controller is similar to other general sinusoidal voltage controllers, for example,
employing unipolar sinusoidal pulse width modulation.

4. Simulation and Verification

In this section, the IPPF model developed in Section 2 and the IPPF control proposed
in Section 3 are verified and demonstrated by the simulation of two systems.
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Figure 8. Double synchronous reference frame current control block.

4.1. Multimicrogrid System Simulation

The first simulation is performed in PSCAD to demonstrate the application of IPPF
control for power routing in a multimicrogrid system.

4.1.1. System Description

The system consists of three grid-tied microgrids. The overview of the circuit and the
PSCAD implementation are as shown in Figures 9 and 10, respectively. The first microgrid
(MC1) is connected to the primary feeder through a 4.16 kV/208 V wye-wye transformer. This
microgrid has 2 energy storage devices (ES1 and ES2) and a PV (PV1) connected across phases
A-N, B-C, and A-B, respectively. The second microgrid (MC2) is served by a 4.16 kV/208 V
delta-wye transformer. There are a PV device (PV3), and two ESs (ES3 and ES4) on phase b,
c, and a, respectively. The third microgrid (MC3) is tapped from phase C on primary through
a single-phase 2.4 kV/120–240 V transformer. A PV (PV2) provides distributed generation
on this microgrid. For simplicity, loads are neglected, and all single-phase device ratings are
50 kVA. The initial power flow of the circuits is as shown in Figure 10. All power is provided
from the primary feeder for the line and transformer losses.

a

b

c

A

B

C

a

b

c

A

B

C

4.16 kV

T2: 2.4 kV/ 120-240 V 
100 kVA

T3: 4.16 kV/ 208 V
300 kVA

ES2 ES1ES1
PV1PV1

PV2PV2

PV3PV3ES3ES3

T1: 4.16 kV/ 208 V
300 kVA

MC 1

MC 3

MC 2

ES4ES4

Figure 9. Multi-microgrid system.
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Figure 10. PSCAD model of the multimicrogrid systems. The multimeters display the initial active and reactive power flow
(in kW and kvar) of the circuit with no power injection from PVs and ESs.
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4.1.2. Interphase Power Flow Control

Three control actions are performed in a chronological order to demonstrate IPPF
application:

1. At 0.4 s, 10 kW from PV3 (on phase B) is routed to charge ES3 (phase C). Additionally,
the steady state active and reactive powers are provided entirely by the devices in the
microgrid, making MC2 self-sufficient. The active and reactive power flow required
for achieving this power routing can be calculated using the approximate IPPF model
(12). The theoretical power flow at the delta-wye transformer is as shown in Figure 11.

2. At 0.6 s, 10 kW from PV2 in MC3 (phase C) is routed to charge ES2 in MC1 (on phase
B-C). ES2 injects 17.3 kvar so that the active power is drawn solely from phase C.

3. At 0.8 s, 10 kW from PV3 in MC2 (phase B) and 10 kW from PV1 in MC1 (phase A-B)
are routed to charge ES1 in MC1 (phase A). The total reactive power required for IPPF
control can be calculated using (12). The reactive power burden for IPPF control can
be distributed evenly among the PVs, requiring 17.3 kvar from each.

Figure 11. Theoretical interphase active (a) and reactive (b) power flow at the delta-wye transformer (Dy1) of MC2 as a
result of routing 10 kW from phase B to C at the secondary circuit. The active and reactive power required for IPPF control
are provided solely from the secondary circuit.

4.1.3. Result

Real powers at the main feeder head, the secondary side of the delta-wye transformer
in MC2, the primary A-B winding of delta side of the delta-wye transformer in MC2, and the
secondary side of the Wye-Wye transformer in MC1, and PV1 are shown in Figures 12–16,
respectively. Figure 17 shows the steady-state power flow of multimicrogrid circuit after the
all power routing. Additionally, Figure 18 is the steady-state power flow of the delta-wye
transformer (T3) in MC2 after the first power routing action. The results show that the
proposed IPPF control is effective in routing power between microgrids for achieving the
desired objectives.

After the first control action at 0.4 s, active power is successfully routed from PV3
(phase B) to ES3 (phase C). Figure 18 shows the simulated power flow of MC 2, which matches
with the theoretical power flow in Figure 11. It can be observed that the real and reactive
power utilized for IPPF control is provided from within the microgrid as the power flow at
the primary side of T3 is similar to the initial power flow in Figure 10. Furthermore, the
active power in the secondary circuit is routed between phases successfully through the
primary delta winding as desired according to Figure 11. Figure 14 shows the simulated
active power injection from the A-B winding of the primary side of T3. Before the first IPPF
control action is applied (before 0.4 s), it can be observed that small active power (0.577 kW)
is routed from phase A to phase B due to the reactive power loss in the transformer
winding. After the first IPPF control action, 9.998 kW from phase b in the secondary circuit
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is transferred to the primary A-B winding of T3. The power is then split into two portions,
3.308 and 6.69 kW. Furthermore, 6.69 kW is injected from the A-B winding to the B-C
winding through phase B terminals. The other portion, 3.308 kW, is injected from the
A-B winding through phase A terminal and then routed through A-C winding into B-C
winding. Finally, the total active power in B-C winding of the delta side is transferred to
the c phase in the secondary circuit.

After 0.6 s, the power from PV2 (phase C) in MC3 is routed to charge ES2 (phase B-C)
in MC1. The reactive power of ES2 is controlled for power routing so that the active power
is drawn through phase C only as observed in Figures 15 and 17. IPPF control enables
single-phase elements to regulate their power drawn or injected at each terminal.

After 0.8 s, active power from PV1 and PV3 is routed to charge ES1. Since IPPF control
for active power routing utilizes reactive power, the main active power operation of the
participant is not interrupted. PV1 and PV3 can generate the active power while also
utilizing their reactive power for IPPF application. Furthermore, the reactive power burden
can also be shared among participant devices in MC1 and MC2.

Figure 12. Feeder head active power shows that the power is shared between the multimicrogrid
system effectively without requiring the power from the feeder head.

Figure 13. Active power at the wye side at the delta-wye transformer (Dy1) of MC2. Active power in
phase A, B and C are labeled as Pa, Pb, Pc, respectively.
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(1) 

Pb = 0.577k
Pab = 0

Pa = 2.731k = -0.577k + 3.308k
 

Pb = 7.267k = 0.577k + 6.69k
 

Pab = 9.998k 

Pa = -0.577k

Pab = 19.998k
      = 9.998k + 10k

Pa = 12.661k
     = 2.731k + 9.93k 

Pb = 7.337k
     = 7.267k + 0.07k 

(3) 

Figure 14. Active power across A-B winding at the delta side of T3. Active power injection to
terminal A, B, and total power are labeled as Pa, Pb, Pab, respectively.

Figure 15. Active power at the secondary side at the wye-wye transformer of MC1. Active power in
phase A, B and C are labeled as Pa, Pb, Pc, respectively.

Figure 16. Active power of PV1 in MC1. Active power injection to phase A, B, and total power are
labeled as Pa, Pb, Pab, respectively.
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Figure 17. PSCAD simulation shows the active and reactive power flow (in kW and kvar) of the multimicrogrid system
after all power routing actions. (1) Within MC2, 10 kW from PV3 (phase B) is routed to ES3 (phase C), (2) 10 kW from PV2 in
MC3 (phase C) is routed to charge ES2 in MC1 (on phase B-C), and (3) 10 kW from PV3 in MC2 (phase B) and 10 kW from
PV1 in MC1 (phase A-B) are routed to charge ES1 in MC1 (phase A).
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Figure 18. PSCAD simulation shows the active and reactive power flow (in kW and kvar) of Microgrid 2 after the first
power routing action. 10 kW from phase B is routed to C at the secondary circuit. The active and reactive power required
for IPPF control are provided solely from the secondary circuit.

The results in this simulation verify the IPPF models and controls developed in
Section II and III. Furthermore, the simulation demonstrates the potential of IPPF control
application for improving the system operation and equipment utilization of a multiphase
microgrid and multimicrogrid systems. Within a microgrid, the generation of a phase
can be routed to the designated equipment in another phase. IPPF control also enables
the resources of multiple microgrids to be shared effectively despite the different phase
connections from the primary. In addition, the simulation shows that real power routing
as an ancillary function does not interrupt the main real power operation of the power
electronic interfaces. Lastly, the reactive power burden required for IPPF control can be
shared among the participating devices in different microgrids.

4.2. Distribution Feeder Simulation

In this simulation, a simple IPPF control is applied to a distribution circuit for balancing
the active power at the feeder head. The control effectiveness and the impacts on system
voltage unbalance and loss are evaluated. The simulation is performed in the Matlab—
OpenDSS environment.

4.2.1. System Detail

The simulation circuit is a 12 kV distribution feeder of a utility. The one-line diagram
is plotted in Figure 19 using GridPV tool [20]. This feeder is served by a 25 MVA, 69/12 kV,
wye-wye connected substation transformer. The circuit has unbalanced loads of 2795,
3216, 3260 kW, in phases A, B, and C, respectively. Additionally, there are 215 single-phase
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PVs generating a total power of 1806, 916, 716 kW, in phases A, B, and C, respectively.
With loads and PVs connected, the total power at the feeder head is 953.4 + j 692, 2369.8 + j
1104.5, 2572.6 + j 1152.6 kVA as shown in Figure 20a. It can be observed that this power
unbalance is the result of the lightly loaded conditions and high PV penetration in Phase A
in comparison to the other phases. The distribution of the voltage unbalance of all buses is
shown in Figure 21 under “base case” scenario. Voltage unbalance of most buses is in the
range 0.8–1.6% with an average of 1.2%. A few buses have voltage unbalance below 0.8%.
These buses are located near the substation where voltage is balanced. In general, it can be
observed that the farther away from the feeder head, the higher the voltage unbalance.

Figure 19. One-line diagram of the distribution circuit shows the locations of the PVs (PVs),
line-to-line power electronic interfaces connected across A-B phase (A-B devices) and C-A phase
(C-A devices), and capacitor banks.

Figure 20. Substation active and reactive power flow in (a) base case, and (b) Case 2.
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For IPPF control application demonstration purpose, it is assumed that there are 130
single-phase power electronic interfaces connected across each A-B and A-C phase. These
devices can inject or absorb 12 kvar for IPPF control application. In addition, 5150-kvar
capacitor banks across A-C phase are assumed to be connected at the primary feeder. These
capacitor banks can be used in conjunction with the power electronic interfaces to share
the IPPF control burden.

4.2.2. Interphase Power Flow Control

Three scenarios are considered for evaluating the IPPF control. The first scenario,
“base case”, is the original feeder without IPPF control. This scenario will serve as the
baseline for comparison.

In the second scenario, denoted “Case 1”, a simple IPPF control is implemented for
routing active power from phase A to phase B and C so that the active power is balanced
at the feeder head. The total reactive power requirement for IPPF application is calculated
using (12). This reactive power burden is then shared evenly among all IPPF control devices;
10.4, −10.7 and 150 kvar is required from each A-B and A-C phase IPPF control device and
capacitor bank, respectively.

The third scenario, denoted “Case 2”, has IPPF control implemented the same as Case
1. In addition, the existing PVs are utilized for power factor correction so that power factor
is unity at the feeder head. The reactive power requirement for power factor correction is
calculated from the result of Case 1 and shared evenly among the PVs.

4.2.3. Simulation Results

The active and reactive power at the feeder head and the voltage unbalance distribu-
tion of all scenarios are summarized in Table 1 and Figure 21, respectively. In Case 1, the
power at the feeder head becomes 1988.7 + j 366, 1906.1 + j 1767.3, and 1926.3 − j 32.1 kVA
in phase A, B, and C, respectively. The system loss is reduced by 4%. The active power
becomes balanced as expected after IPPF control. The reactive power is reduced in phase
A and C, while increased in phase B. The reactive power remains unbalanced as it is not
controlled and utilized for active power routing.

Figure 21. Voltage unbalance distribution of base case, Case 1 with IPPF control, and Case 2 with
IPPF control and PF correction.
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Table 1. Active and reactive power at the feeder head of base case, Case 1 and Case 2.

Feeder Head Power

Scenarios Active Power (kW) Reactive Power (kvar)

Pa Pb Pc Qa Qb Qc

Base case 953.4 2369.8 2572.6 692 1104.5 1152.6

Case 1 1988.7 1906.1 1926.3 366 1767.3 −32.1

Case 2 1980 1944.9 1955.2 −11.2 −90.7 −9.8

As observed in Figure 21, the average voltage unbalance is reduced from base case
to 1%. Furthermore, significant voltage unbalance reduction is observed for the buses
further away from the substation (voltage unbalance greater than 50th percentile). This
demonstrates the effectiveness of performing unbalanced compensation in a distributive
manner. Power unbalance is compensated throughout the system and voltage unbalance is
improved throughout the system rather than a few locally.

In Case 2, the substation power after power routing is as shown in Figure 20b. Both
active and reactive power at the feeder head becomes balanced: 1980 − j 11.2, 1944.9 − j
90.7, 1955.2 − j 9.8 kVA in phase A, B, and C, respectively. Significant improvement can be
observed in system loss and voltage unbalance. System loss is reduced by 14% while the
average voltage unbalance is reduced to 0.2%. Compared to Case 1, balance in both active
and reactive power is achieved by using the line-to-neutral PVs to complement the IPPF
control devices. The line-to-neutral PVs help compensate the reactive power in each phase
which is not controlled in the IPPF control.

The simulation in this section demonstrates the effectiveness of the simple IPPF control
in balancing the active power at the feeder head. The resulting system shows improvement
in both voltage unbalance and system loss. The voltage unbalance of all buses show
improvement rather than a few locally as the unbalance compensation is performed in a
distributed manner throughout the circuit. Moreover, the line-to-neutral devices can be
utilized to control or compensate the reactive power which is regulated in the active power
routing. With both IPPF control and power factor correction, significant voltage unbalance
and system loss is observed.

5. Conclusions

In this work, the power flow phenomena of single-phase elements were investigated
and modeled as IPPF. The analysis showed that IPPF can be decomposed into three
components: the fundamental power of the single-phase elements which is drawn equally
from each terminal, the IPPR caused by voltage unbalance, and IPPR caused by the presence
of the opposite power quantity. The last component is the key that enables IPPF controls
for (1) line-to-line single-phase elements and (2) line-to-neutral single-phase elements that
are connected at the wye side of delta-wye transformers.

Based on the developed model, the control for line-to-line SVCs and power electronic
interfaces was proposed for achieving a desired IPPR or IPPF. For SVCs, the determination
of the appropriate reactive power and reactance for achieving the desired power routing
was proposed. For the power electronic interfaces, two operation modes along with the
hierarchical controls were proposed. In the first mode, the total power of the power
electronic interfaces is controlled. In the second mode, ancillary functions including precise
power injection and interphase power routing control were developed.

The developed models and control effectiveness were verified and demonstrated
through two simulations. In the multimicrogrid system simulation, IPPF control was
implemented to improve system operations and flexibility by directing the active power
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from a phase of a microgrid to the desired device in another phase of another microgrid.
The main active power operations of the controlled devices are not interrupted while the
devices are utilized for IPPF control. Furthermore, the control burden can be shared among
multiple participants for distributed control. In the second simulation, a simple IPPF
control was applied to a utility distribution circuit to balance the active power at the feeder
head. Results showed reductions in both system voltage unbalance and losses.

Future work should explore improved coordination for IPPF controls to further en-
hance the operation and resiliency of distribution systems and microgrids. In addition to
the line-to-line single-phase elements, other devices should be investigated for potential
IPPF control utilization. The performance of the future IPPF controls should be improved
with more complex dispatch schemes. Reactive power routing and limitations of IPPF
devices such as energy and power availability should be considered.
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Abstract: The performance of electric vehicles and their abilities to reduce fossil fuel consumption
and air pollution on one hand and the use of photovoltaic (PV) panels in energy production, on the
other hand, has encouraged parking lot operators (PLO) to participate in the energy market to gain
more profit. However, there are several challenges such as different technologies of photovoltaic
panels that make the problem complex in terms of installation cost, efficiency, available output power
and dependency on environmental temperature. Therefore, the aim of this study is to maximize the
PLO’s operational profit under the time of use energy pricing scheme by investigating the effects
of different PV panel technologies on energy production and finding the best strategy for optimal
operation of PVs and electric vehicle (EV) parking lots which is achieved by means of market and
EV owners’ interaction. For the accurate investigation, four different PV panel technologies are
considered in different seasons, with significant differences in daylight times, in Helsinki, Finland.

Keywords: solar-powered electric vehicle parking lots; different PV technologies; PLO’s profit; uncertainties

1. Introduction

In the last few years using renewable energy resources and the new generation of
transportation systems has increased enormously due to the issues like lack of fossil fuel
resources, carbon emission and environmental issues in a way that their role in the future
of power systems is very important and undeniable. Thus progression pace and finding
potentials in resources are crucial points for the energy issue. Among all other renewable
resources, solar energy is the most plentiful resource on the planet earth and there is a high
possibility to utilize its sources by means of photovoltaic panels. On the other hand, the
arrival of electric vehicles in the transportation system has made the market of this product
very competitive due to the many environmental advantages they have and their role in
transportation in the near future. However, using these sources all together brings forth
the necessity of facing challenges like stability and reliability of the grid, which requires
fundamental preparations such as control managements, cooperation agencies, etc. On
the other hand, using PV and EV simultaneously can be very useful and beneficial for the
grid in the field of energy supplement and economic opportunities and this exploitation
can be taken into action through electric vehicles parking lots. Since electric vehicles are
mostly parked in the parking lots during the day, employing rooftop photovoltaic for the
parking lots makes great sense. However, there are several challenges such as different
technologies of photovoltaic panels that make the problem complex in terms of installation
cost, efficiency, available output power and dependency on environmental temperature.

Since changing weather conditions can affect the output current and voltage, the
response of the PV system to these changes needs to be characterized [1,2]. In order to
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estimate the amount of energy a solar panel can generate in a lifetime, weather data and
solar irradiation information are utilized. Most solar panels do not operate in an ideal
condition, because the weather is always changing. By knowing the reaction of solar panels
to different weather conditions, it is possible to improve their efficiency in non-optimal
conditions [3]. In some situations, for example, in hot climates, a cooling system is needed
to keep the panels in certain temperatures. In addition to the temperature situation, the
PV panel material is also important to predict the output power, because the efficiency of
different materials has different levels of dependency on temperature. The temperature
coefficient describes the material temperature dependency [4].

Due to the fact that EV parking lots are magnificently useful for EVs, they can be
combined with PV as a source of independent energy supply that can eventually decrease
environmental damage such as greenhouse gas emission and even bring more benefit to
suppliers and consumers. Besides, this breeds a condition in which there are financial and
technical advantages in EV parked time and also makes it easier to interact with the supply
and demand market.

According to the mentioned points, the goal of this study is to maximize the benefit
for the parking lot operators by finding the best strategy for the optimal operation of PVs
and EV parking lots which is achieved by means of market and EV owner interaction,
considering the fact that the distribution network, uncertain behavior of different PV
technologies and EV owners can have an impact on the behavior of PEV parking lots.

1.1. Literature Review

EVs reaching the number of 5 million in 2018 is a clear fact indicating that the future
of the automobile industry belongs to EVs. It is also expected that this number will reach
250 million by 2030. According to the EV 30@30 scenario, 44 million EVs will be sold each
year [5]. The enormous growth in EV production logically brings forth the need of building
charging stations (CS) and parking lots (PLs). According to [5], as of 2018, 5.2 million
charging stations are available and almost all of them (about 90%) are private.

Seeking the highest economic efficiency, PL operators (PLO) must try to satisfy EV
owners (EVO) through some strategies. EVs parked time is the key to the goal, and it
brings the opportunity for EVOs to cooperate with parking lot operators to sell their EV’s
discharging power to distribution network operators or even other parking lot operators.
To satisfy EVO’s, parking lot operators should dedicate a reasonable percentage of the
benefit to them by means of a written contract so that they are motivated to sell even more
of this discharging energy to parking lot operators. This however brings out the necessity
of a smart energy management system (EMS) in the PL so that maximum profit is gained by
an optimized charge/discharge program. Additionally, using renewable energy resources
is a way to increase profit. According to distribution system operator’s (DSO) tariff, some
of the studies on EV charge/discharge programs in solar-powered and non-solar-powered
EVPL’s will be reviewed accordingly.

In Ref. [6], a mathematical model for estimating the electricity capacity of a PV parking
lot is described, and new formulas are proposed to investigate the effect of batteries and
inverters on the power demand during battery charging and discharging. The results show
that the use of PV panels in the parking lot can reduce the load of the distribution grid by
reducing the effective load during peak charging.

In Ref. [7], to reach the highest profit for an EVPL using solar panels and distributed
generators a self-scheduling model considering spinning reserve is investigated. Ref. [8]
works on large-scale wind integration and operational flexibility of parking lots by intro-
ducing a two-stage stochastic model. Due to the lack of enough flexible resources, a lot
of wind energy is wasted. The use of parking lots, not only reduces the cost of operation
but also using the potential flexibility and participating in the energy and reserve markets
can reduce wind spillage. Ref. [9] tries to reduce EV charging costs to the lowest level
by producing a Convexfiel model (the model is obtained from the conventional model
by using convex relaxation techniques) in which EVs uncertainty and V2G ability are
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considered. In Ref. [10], to reduce the daily cost in an EVPL that uses solar energy to the
lowest level, for EV charging, mixed-integer linear programming (MILP) is proposed.

Ref. [11] worked on the potential of solar energy for charging EVs and reducing the
payback time. Hence, a Genetic algorithm is used to increase the production of solar energy,
energy storage and smart charging is utilized to investigate different charging methods.
By applying the proposed model, the payback time is reduced from 14 years to 7 years.
Ref. [12] is about EVPL operational scheduling in the energy and reserve market. In this
study, a bi-level model is estimated in which the upper level’s goal is to bring down the
operation cost to the lowest amount and the lower level’s goal is to lessen PL cost. Ref. [13]
considers maximizing parking lot operators’ profit by controlling EV charging and offers a
dynamic charging program in order to achieve the goal.

Ref. [14] worked on a solar-powered charging station using a fixed battery, providing
an algorithm consisting of four stages to minimize operation cost on EV charge/discharge
by most optimization and customer satisfaction. In [15], as in [16], a multi-objective model
is proposed with the aim of EVPL cost minimization considering climate effects. This
model shows that an appropriate charge/discharge program for EVs can result in less total
emission and operation costs. In Ref. [17] the goal is to decrease electricity tariff through
optimized EV power charge/discharge in a solar electric vehicle parking lot (EVPL) (in an
EVPL using SE). In [18], an EV charge model based on EVO satisfaction, cost minimization
in an integrated EVPL using solar energy and an energy storage system is proposed.

In Ref. [19], considering environmental and economic targets, a model giving a sched-
ule for EV charge/discharge is proposed with two main objects consisting of emission
reduction and cost operation minimization. In Ref. [20] an energy management strategy
is suggested for a solar energy EVPL to analyze its effects on loss reduction and power
consumption of distribution network. In Ref. [21], regarding the reduction of charging
costs optimized with a photovoltaic system in an EVPL, two-stage stochastic mixed-integer
linear programming (MILP) is proposed. A stochastic optimized energy management
program considering both parking lots’ operators and EVO’s benefits is offered in Ref. [22].
In order to lower the cost for various grid purposes and regarding EV’s uncertainty, an
optimized program for EVs is designed in Ref. [23]. In Ref. [24] two cases are studied. The
first one refers to a risk-based model that analyzes the efficiency of EVPLs using hydrogen
storage systems, solar energy, etc. The second is dedicated to the charge/discharge program
for EVs in risk-averse and risk-neutral performance. Ref. [25] refers to charge/discharge
energy trading with DSO and also cooperation between parking lot operators and EVOs to
offer a program to EV aggregators considering the highest benefit for both sides.

Ref. [26] studied the relationship between the amount of output energy and variation
of temperature. In order to show the influence of temperature on photovoltaic systems,
two models were used. Model A ignored temperature and Model B considered it. These
two models were carried out for 236 cities in America. In the Northeast and the Midwest
regions, Model B power outputs were higher in comparison with Model A (16–20%),
from November to February, whereas there was a reduction from May to August (−4%).
Instead, in the South and Southwest of America, power outputs reduced significantly
from May to August (−12–15%), whereas there was a slight increase from December
to February (5%). In Ref. [7], the effect of temperature on the performance of different
photovoltaic technologies was evaluated in Amman, Jordan. Three photovoltaic systems
(Poly-crystalline, Mono-crystalline and Thin-film) with the same design parameters were
chosen. It was shown that the temperature has less effect on the thin-film solar cells.
Ref. [27] evaluated the temperature coefficient for some different types of commercially
accessible solar panels. The tests were done at the PV test facility of the Solar Energy Centre,
New Delhi, India. The panels were chosen randomly from different manufactures. The
study showed that the temperature coefficient for the monocrystalline silicon module is
higher than the other types.
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1.2. Contributions

According to the literature, several studies have been conducted on energy exchange
between PL and DS and the performance of different PV technologies has been studied
separately in which the effect of different PV technologies and their performance on
the possibility of energy exchange and profit of the parking lot operators are not taken
into account.

The goal of this study is to maximize the benefit to parking lot operators in the
energy market between DSO and EVOs in the rooftop PV parking lot with different PV
technologies. To meet this goal, different scenarios are considered in detail to evaluate and
analyze operations under various circumstances. Also, the model considers all the impacts
of the behavior of different PV technologies.

To the best of the authors’ knowledge, the impact of the PV technologies on the
optimal operation of rooftop PV parking lots has not been reported in the literature, which
is the main contribution of the paper. In order to investigate the impact of PV technologies
and their level of sensitivity to temperature and solar radiation, different PV technologies
such as Monocrystalline silicon, Polycrystalline silicon, Amorphous silicon and Cadmium
Telluride based solar modules were considered in four different months. Another applicable
contribution of the paper is that due to very different daylight times in Finland in different
months of a year, there are huge changes on the operation of rooftop PV parking lots.

In Section 2, the mathematical model of a PEV parking lot is formulated. The case
study is described in Section 3. In Section 4, the results of the study are analyzed. The
conclusion is presented in Section 5.

2. Problem Formulation

The objective function of this study is to maximize the profit for parking lot operators
by using four different PV technologies including Monocrystalline silicon, Polycrystalline
silicon, Amorphous silicon and Cadmium Telluride to evaluate which one is the best.
Considering that the uncertain behaviors of solar irradiation and EVO have a direct effect
on the profit of the parking lot operators, the influence of these factors was investigated
in order to get the optimum result. Hence, by using the Beta function, the uncertainty of
solar radiation was modeled and the truncated Gaussian distribution, that is, Normal PDF
was applied for the other uncertainties that all the required equations were taken from [23].
Also, the complexity of the calculations caused a reduction in the scenarios. Therefore, in
this study, by using a scenario reduction method, similar scenarios were deleted.

2.1. Objective Function

The objective function, presented in (1), represents different income terms that maxi-
mize the profit from the parking lot operator’s point of view. These terms show cooperation
between the DSO, EVOs and parking lot operators. Therefore, the objective function of
parking lot operators includes the revenue such as selling the power generated by PV
rooftops to EVOs and DSO and selling EVs discharging energy to DSO. Also, purchasing
energy from DSO and depreciation of the battery because of selling energy to DSO are the
cost terms of the objective function. To encourage EVOs, some money is given to them for
several discharges in one day and they can also receive a portion of the revenue gained
from the sale of energy to the DSO. Also, based on the energy price, parking lot operators
can sell the power generated by PV to DSO and EVOs.

ProfitPL = ∑
n

∑
h

((
Pch−Solar

n,h Prch
h

)
+
(

PSolar
h Prdch

h

))
Δh

+∑
w

ρw∑
n

∑
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⎛⎝ (
Pch−Grid

n,h,w Prch
h

)
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In (1), Pch-Solar is Charging power of each EV from solar energy’s output, PSolar is Solar
energy’s output of PL to DSO, Pch-Grid is Charging power of each EV from DSO and Pdch-Grid

is Discharging power of PL to DSO.

2.2. Constraints

Arrival/departure times of EVs to/from the PL and their duration of presence in PL
are presented in (2) to (4).

SOEn,h,w = SOEarv
n,harv ,w −

(
Pdch

n,h,w

ηdch

)
+
(

Pch
n,h,w

)
ηch : ∀PL, v, h = harv, w (2)

SOEn,h,w = SOEn,h−1,w −
(

Pdch
n,h,w

ηdch

)
+
(

Pch
n,h,w

)
ηch : ∀PL, v, h � harv, w (3)

SOEn,h,w ≥ SOEdep
n,hdep : ∀n, h = hdep, w (4)

It is impossible for a battery to charge and discharge, simultaneously:

Xch
n,h,w + Xdch

n,h,w ≤ 1; ∀n, h, w (5)

According to the rate of charge and discharge of EV batteries, the value of SOE is
shown in (6).

SOEmin
n,h,w ≤ SOEn,h,w ≤ SOEmax

n,h,w : ∀n, h, w (6)

EVs can purchase their required energy at the mid-peak and off-peak periods from
DSO and the rate of charging/discharging is restricted between zero and nominal rate.
Also, the EV charging/discharging time is not the same. The mentioned constraints are
shown in (7) and (8).

0 ≤ Pch
PL,v,h,w = Pch−Grid

n,h,w + Pch−Solar
n,h ≤ Xch

n,h,w × Rch,max : ∀n, h, w (7)

0 ≤ Pdch
n,h,w = Pdch−Grid

n,h,w ≤ Xdch
n,h,w × Rdch,max : ∀n, h, w (8)

Based on (9), the parking lot operator sells energy to DSO after 24-h periods. Equation (10)
also guarantees that the amount of EV charging through PV generation and the amount
of PV generation sold to the DSO is equal to the output of the PV panel in PL. Each EV’s
charging and discharging power is restricted to four times the nominal rate and is shown
in (11) and (12).

0 ≤ PSolar
h ≤ Psolar,h : ∀solar, h (9)

PSolar
h +

100

∑
n=1

Pch−Solar
n,h = Psolar,h : ∀solar, h (10)

24

∑
h=1

Pch−Grid
n,h,w ≤ 4 × Rch,max : ∀n, w (11)

24

∑
h=1

Pdch−Grid
n,h,w ≤ 4 × Rdch,max : ∀n, w (12)

2.3. Equations for PV Generation

Considering the change of solar radiation and temperature under outdoor conditions,
the short-circuit current (ISC) and open-circuit voltage (VOC) of silicon-based solar cells
are expressed as follows [28]:

ISC =

(
G

GSTC

)
ISC_STC[1 + a(TC − TSTC)] (13)
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VOC = VOC_STC[1 + β(GSTC)(TC − TSTC)][1 + δ(T) ln
(

G
GSTC

)
] (14)

where G is the solar radiation of PV solar cell under operating conditions ( W
m2 ); GSTC is

the solar radiation under standard test conditions (( W
m2 ) and GSTC = 1000 W

m2 ); TSTC is the
temperature under standard conditions (TSTC = 25 ◦C); a is the temperature coefficient of
short-circuit current, usually provided by the manufacturer; ISC_STC is the short-circuit
current of solar cell under standard test conditions; VOC_STC is the open-circuit voltage of
solar cell under the standard test conditions; β is the temperature coefficient of open-circuit
voltage; and δ is the correction factor of solar radiation. As a result, as the temperature
increases, the open-circuit voltage becomes smaller and the short-circuit current becomes
larger, which leads to a decrease in efficiency. The specific relationship can be expressed
as follows:

η = ηre f [1 − βre f (TC − TSTC)] + γ log10 G (15)

where ηre f is the power generation efficiency of solar cells under standard test conditions;
γ is the solar radiation coefficient; and βre f is the temperature coefficient (K−1) at reference
conditions. In engineering applications, the relationship between the output power of PV
and the temperature can be described as follows [29]:

PTC = ηre f [1 − βre f (TC − TSTC)]GA (16)

where, A is the surface area of the PV module.

3. Case Study

In order to evaluate the different PV technologies a PEV parking lot with a capacity of
80 EVs was considered. Figure 1 illustrates the interaction between all three components
which result from energy exchange and individual contracts with EVOs. In this evaluation,
three different scenarios were studied. Scenario I represents the base case with no PV
panels in four different months including February, May, August and November. In
scenario II, the PV rooftop (area of panels is approximately 558 m2) with four different PV
technologies including Monocrystalline silicon, Polycrystalline silicon, Amorphous silicon
and Cadmium Telluride was analyzed in two cold periods (February and November).
Similarly, in scenario III, a PV rooftop with four different PV technologies was investigated
in two warm periods (May and August).

Figure 1. Interaction between PLO, DSO and PEV.

Since the uncertainties of solar radiation have a direct effect on PV power generation,
10 scenarios were considered for different months and seasons (February, May, August

56



Clean Technol. 2021, 3

and November). To calculate the output power of PV, the real solar radiation data of
Helsinki, Finland was used [30]. Figure 2 shows the expected value of PV generation for
each technology in each month.

Figure 2. Expected value of output power of PV on each month for each technology.

The main specifications of each technology are represented in Table 1.

Table 1. The specifications of each technology.

Cell Type Structure Efficiency [1–3] Thermal Coefficient (C−1)

Monocrystalline silicon

• manufactured from pure
semiconducting material with no defects
or impurities in the silicon crystalline
structure

• production procedure is complicated
• higher-priced than some other

technologies

17–22% 0.0044

Polycrystalline silicon

• manufacturing process is simpler than
the monocrystalline ones

• more cost-effective
• more defects in the crystalline structures

15–17% 0.0038

Thin film solar panels:
Amorphous silicon
Cadmium Telluride

• completely different from crystalline
solar panels

• lightweight and, in some cases, flexible
10–13% 0.0023

0.0017

It is worth mentioning that the efficiency considered in the calculation for Monocrys-
talline silicon, Polycrystalline silicon, Amorphous silicon and Cadmium Telluride is 18%,
16%, 10% and 13% respectively. Also, the EVs’ probability distribution and their specifica-
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tion are presented in Tables 2 and 3 respectively. The rate of charge and discharge of each
EV is up to 40 kWh, and they were charged and discharged four times with maximum
rates (10 kWh).

Table 2. The modified probability distribution of EVs [31].

Mean Standard Deviation Minimum Maximum

Initial SOC (%) 54.85 8.92 40 70
The time of Arrival (h) 8 3 5 23
The time of Departure (h) 16 3 6 24
Cap (kW) 62.79 28.60 18 95

Table 3. EVs specification.

Capacity of Battery 32 kWh Efficiency of Charge 90%
The rate of Charging/discharging 10 kW Efficiency of Discharge 95%
SOE min 4.8 kWh Desired SOE 28.8 kWh
SOE max 28.8 kWh Ccd 20 €/MWh

The price of energy data was drawn from the Finnish electricity market [32,33]. The
price of energy exchange is presented in Table 4. Also, the price of selling energy to DSO is
shown in Figure 3.

Table 4. The price of energy exchanged between DSO and PLO (cent/kWh).

Price/Time
Off-Peak Periods

(01:00–06:00)
Mid-Peak Periods

(07:00–11:00, 18:00–19:00)
On-Peak Periods

(12:00–17:00)

Energy purchased from DSO by the PLOs 4.19 4.19 4.19
Energy sold to EVO by the PLO 4.67 5.53 5.53

Figure 3. Price of selling energy to DSO.

4. Results and Discussion

4.1. PLO’s Profit without PV Generation

In this scenario, the energy exchange is between DSO and EVOs and each EV makes
revenue for the PV parking lot operators by selling energy to DSO. On the other hand,
based on the EVO’s contract, each EV can gain benefit from battery depreciation cost
and half of the selling energies’ revenue to DSO. Figure 4 shows the required energy for
charging EVs every hour of each month. Based on Figure 4, the entrance time of EVs to PL
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starts at 8:00 approximately. Between 8:00 and 20:00 more EVs enter the PL which increases
the energy exchange between PL and DSO.

 
Figure 4. Required energy for charging EVs each month.

The charging/discharging energy of all EVs in four months and the profit of the
parking lot operator are presented in Table 5. According to Table 5, in August, the energy
interaction between the parking lot operator and DSO is more than that in the other months
which brings more profit to the parking lot operator.

Table 5. Charging/discharging energy of EVs and PLO’s profit.

Month February May August November

Charging (kWh) 3636.94 3636.94 3608.85 3620.89
Discharging (kWh) 1123.22 1128.01 1311.24 1285.6

PLO’s profit (€) 44.70 40.25 47.33 42.65

4.2. PLO’s Profit with PV Generation

In this scenario, for evaluating the effect of the PV panel technology on parking lot
operator profit, four different technologies including Monocrystalline silicon, Polycrys-
talline silicon, Amorphous silicon and Cadmium Telluride were considered. Due to the
uncertainty of solar energy, four months were considered for a more accurate evaluation.
In this regard, trading energy between PL and DSO is shown in Table 6.

Table 6. Energy exchange between PL and DSO (kWh).

February May August November

Pch from
DSO

Pch to DSO
Pch from

DSO
Pch to DSO

Pch from
DSO

Pch to DSO
Pch from

DSO
Pch to DSO

Without PV 3636.94 1123.22 3636.94 1128.01 3608.85 1311.24 3620.89 1285.60
Mono crystalline 3628.06 1118.80 3625.13 1267.40 3598.09 1340.39 3600.57 1283.05
Poly crystalline 3628.13 1118.44 3627.21 1246.91 3598.1 1313.35 3600.52 1279.27

Amorphous silicon 3628.84 1117.95 3632.94 1192.80 3598.9 1239.24 3602.47 1277
Cadmium Telluride 3628.44 1118.09 3627.70 1212.60 3595.93 1272.83 3602.98 1281.32

For better understanding the effect of PV rooftops on EV parking lots and parking lot
operator profit, Figures 5–8 are given. These figures show how much energy in a day is
supplied by DSO and PV panels. Before 7:00, the PV generation is at its lowest level and
EVs can only be charged by purchasing energy from the DSO. Between 8:00 to 14:00, due to
the production of more energy by the PV rooftops, EVs are charged by the DSO and solar
energy. During this time the amount of energy purchased from the DSO is reduced. The
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amount of reduction in energy purchases from the DSO depends on the power generated
by PV and the decision to sell solar energy based on the price of energy. After 14:00 by
reducing the energy of PV, the DSO can charge EVs. As can be seen in February and
November, the highest amount of energy is supplied through the DSO because in these
two months, the solar radiation is very low, and the PV panels are not able to produce
energy. While the energy generated by PV panels with the four PV technologies in May
and August is quite clear.

Figure 5. Power supplied by DSO and PV panel in February.

 

Figure 6. Power supplied by DSO and PV panel in May.
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Figure 7. Power supplied by DSO and PV panel in August.

Figure 8. Power supplied by DSO and PV panel in November.

Discharging energy of PL to DSO is presented in Figures 9–12. According to these
Figures and Figure 3, the energy exchange between PL and DSO depends on PV generation,
number of EVs and the price of selling the energy to DSO. In February at 7:00 and 16:00
and in November at 8:00 and 17:00, the number of EVs in the PL is less and the price of
selling energy is at the highest amount, therefore the energy sold to DSO by the parking
lot operator is a significant amount. In May at 8:00 and 10:00 and in August at 11:00 and
17:00, by reducing the number of EVs, increasing PV generation and because of the selling
energy price, a lot of energy is traded between the parking lot operator and DSO.
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Figure 9. Discharging energy from PL to DSO in February.

Figure 10. Discharging energy from PL to DSO in May.

Figure 11. Discharging energy from PL to DSO in August.
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Figure 12. Discharging energy from PL to DSO in November.

As it can be seen, installing PV rooftops on EV parking lots reduces the energy
purchased from DSO to PL but the performance of the PV technology can change the
amount of energy exchanged. Table 7 presents the profit of the parking lot operator in all
scenarios. Based on the results, the least profitable scenario is scenario I because all the
required energy is supplied by DSO due to the lack of other energy sources to support the
EV charging energy. Thus the parking lot operator gains less profit.

Table 7. PLO’s profit (€) by using different PV technologies.

PV Technology/Month February May August November

Without PV 44.70 40.25 47.33 42.65
Mono crystalline 45.06 63.26 72.73 48.85
Poly crystalline 45.01 60.52 69.82 48.11

Amorphous silicon 44.87 52.72 61.25 45.89
Cadmium Telluride 44.93 56.26 65.36 46.86

According to Table 7, PV generation helps parking lot operators to participate more in
the energy exchange and increase their profit but because of the weather conditions, solar
radiation and the type of PV technology the amount of income is different each month.
In February and November, due to the low value of solar radiation, the energy produced
by PV panels is less than that in May and August. However, the Monocrystalline silicon
technology performance is better in all the months compared to the other technologies, be-
cause there are no defects or impurities in the silicon crystalline structure and consequently
the efficiency is high. As can be observed, increasing the output power of PV allows the
parking lot operator to purchase and sell energy to/from DSO at a more reasonable price
and gain more profit.

The next most appropriate technology is Polycrystalline silicon. The performance
of this technology is similar to Monocrystalline silicon, but there are more defects in the
crystalline structures and the efficiency is slightly less than Monocrystalline cells. Thin-film
solar panels like Amorphous silicon and Cadmium Telluride are completely different from
crystalline solar cells and they have less efficiency. As can be seen, because of the lower
performance and the lower benefits, they are not suitable for Finnish weather conditions.

Moreover, comparing profits in different months shows that the energy exchange in
August is much more profitable than in other months.
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5. Conclusions

The goal of this study is to maximize the benefit to parking lot operators in the energy
market between DSO and EVOs for rooftop PV parking lots with different PV technologies.
To analyze the impacts of different PV technologies’ output power on the parking lot’s
profits in several weather conditions, various scenarios were considered.

Hence, by considering solar radiation uncertainty and different behaviors of EV own-
ers, studies were performed on four different PV technologies including Monocrystalline
silicon, Polycrystalline silicon, Amorphous silicon and Cadmium Telluride in February,
May, August and November. Moreover, for accurate investigation, the output power
curve of the PV, energy purchase and sales curve and power supplied by PV by each PV
technology in 4 months were shown.

Based on the results, the parking lot’s profit in February and November was lower than
the other two months due to lack of solar radiation and August is the most profitable month
due to suitable weather conditions, which consequently results in more PV generation.
Also, a review of each technology in different months indicates that Monocrystalline
silicon, every 4 months, has a better performance than other technologies, which creates
a better opportunity for energy exchange and consequently a higher profit compared to
the other technologies. Moreover, according to the estimated climate in the experiments,
the most efficient technologies for parking lot operators are Monocrystalline silicon and
Polycrystalline silicon, and the other two, Amorphous silicon and Cadmium Telluride, are
not quite suitable based on the experimented circumstances. Based on the evaluation of
the efficiency and performance of different technologies in Finland’s weather conditions
and in different scenarios, the Monocrystalline silicon technology is a more suitable option
for use in parking lots. In future work, the application of these technologies in EVPLs can
be compared based on the payback time and lifespan.
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Nomenclature

The Main Parameters and Variables are Presented Here.

Indices
n Index for EV number
w Index for scenarios
h Index for time (hour)
Parameters
Ccd Cost of equipment depreciation (€/kWh)
Rmax Maximum charging/discharging rate (kWh)
SOEarv Initial SOE of EVs at the arrival time to PL (kWh)
SOEdep Desired SOE of EVs at the departure time from PL (kWh)
SOEmax Maximum rate of SOE (kWh)
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SOEmin Minimum rate of SOE (kWh)
tarv Arrival time of EVs to the PL
tdep Departure time of Evs
Prch Charging tariff of EVs (€/kWh)
PrGrid Price of purchasing energy from DSO by PL (€/kWh)
Prdch Price of selling energy to DSO by PL (€/kWh)
ηch Charging efficiency (%)
ηdch Discharging efficiency (%)
ρ� probability of each scenario
Variables
Pch-Grid Charging power of each EV from DSO (kW)
Pch-Solar Charging power of each EV from solar energy’s output (kW)
Pdch-Grid Discharging power of PL to DSO (kW)
PSolar Solar energy’s output of PL to DSO (kW)
SOE EVs’ state of energy (kWh)
Xch Binary variable which shows the charge status of each EV
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Abstract: In a context of accelerating deployment of distributed generation in power distribution
grid, this work proposes an answer to an important and urgent need for better management tools
in order to ‘intelligently’ operate these grids and maintain quality of service. To this aim, a model-
based predictive control (MPC) strategy is proposed, allowing efficient re-routing of power flows
using flexible assets, while respecting operational constraints as well as the voltage constraints
prescribed by ENEDIS, the French distribution grid operator. The flexible assets used in the case
study—a low-voltage power distribution grid in southern France—are a biogas plant and a water
tower. Non-parametric machine-learning-based models, i.e., Gaussian process regression (GPR)
models, are developed for intraday forecasting of global horizontal irradiance (GHI), grid load, and
water demand, to better anticipate emerging constraints. The forecasts’ quality decreases as the
forecast horizon grows longer, but quickly stabilizes around a constant error value. Then, the impact
of forecasting errors on the performance of the control strategy is evaluated, revealing a resilient
behaviour where little degradation is observed in terms of performance and computation cost. To
enhance the strategy’s resilience and minimise voltage overflow, a worst-case scenario approach is
proposed for the next time step and its contribution is examined. This is the main contribution of the
paper. The purpose of the min–max problem added upstream of the main optimisation problem is
to both anticipate and minimise the voltage overshooting resulting from forecasting errors. In this
min–max problem, the feasible space defined by the confidence intervals of the forecasts is searched,
in order to determine the worst-case scenario in terms of constraint violation, over the next time step.
Then, such information is incorporated into the decision-making process of the main optimisation
problem. Results show that these incidents are indeed reduced thanks to the min–max problem, both
in terms of frequency of their occurrence and the total surface area of overshooting.

Keywords: smart grid paradigm; distributed generation; model-based predictive control; robust-
ness; worst-case scenario; min–max optimisation; intraday forecasting; Gaussian process regression;
machine learning

1. Introduction

Worldwide, the transition to renewable-energy-based power generation is in full
swing. Because power grids were originally designed for centralised power generation
with unidirectional power flow, large-scale deployment of renewable energy technologies,
hereinafter referred to as distributed generation, ushers in numerous operational issues.
The concept of “smart grid” was born out of the need to better monitor the behaviour of
these evolving power grids, to more accurately anticipate the operational issues that could
be caused by new components, and to more efficiently control them to ensure safety and
service quality.

Clean Technol. 2021, 3, 629–655. https://doi.org/10.3390/cleantechnol3030038 https://www.mdpi.com/journal/cleantechnol
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Distributed power generators as well as storage devices are key players in modern
power distribution grids. As a consequence, it goes without saying that these genera-
tors and devices can be used to balance power supply and demand. Based on this, the
smart grid paradigm was mainly elaborated to tackle monitoring and control problems
in power distribution grids [1]. Smart grids include advanced metering infrastructure
and smart management schemes, which aim to boost grid observability and balance out
power supply and demand, respectively. Regarding smart management schemes, optimal
power flow (OPF) [2–7], demand-side management (DSM) [8–13], and multi-agent systems
(MAS) [14–18] are some of the most numerous techniques used. One technique may be
more appropriate than another, according to the target to be achieved, which can range
from dimensioning and planning to real-time monitoring and control of power grids,
and the technical and computational constraints to be taken into account. A survey of
techniques for smart management of power distribution grids with prolific distributed
generation is provided in [19]. The interested reader is referred to this paper.

This work falls within the scope of the “Smart Occitania” project (2017–2021), funded
by the French agency for ecological transition (ADEME) and defined as a proof of concept
for rural/suburban power distribution grids. An MPC-based strategy is proposed by
PROMES-CNRS for smart management of a low-voltage power distribution grid with
high levels of photovoltaics penetration using flexible assets, namely a biogas plant and a
water tower. A simulated case study is carried out on a residential neighbourhood located
in the Occitania region (southern France). The proposed strategy, which consists in an
MPC scheme aiming to close the gap between power supply and demand, as stipulated by
voltage constraints and the flexible assets’ operational constraints [20], combines flexible
asset management [21–23] and implicit model-based predictive control [24–27]. This
strategy is fully explained in [20]; its principles are briefly outlined in Section 4.2. The
suitability of model-based predictive control to the management of power distribution
grids subject to disturbances—intermittent renewable-energy-based power generation
and stochastic power demand—is plain. Because of their weakly meshed (often radial)
structure, low-voltage power distribution grids are especially prone to cascading failures
provoked by disturbances.

The main contribution of PROMES-CNRS is the a new problem formulation allowing
the mixed-integer nonlinear programming (MINLP) [28–34] setting due to the ON/OFF
controller the water tower is equipped with—this setting greatly increases the computa-
tional complexity of the optimisation problem—to be solved as a smooth continuous one
without resorting to relaxation [20]. An in-depth analysis of the results has highlighted
the MPC strategy’s potential for upper-level power flow management and curtailment
of voltage fluctuations in the considered low-voltage power distribution grid. Clearly,
the strategy is a step towards low-voltage power distribution grids capable of integrat-
ing renewable-energy-based power generation while maintaining stability and quality
of service.

The proposed MPC scheme incorporates intraday forecasts of grid load, water demand,
and global horizontal irradiance (from which PV power generation is inferred; global
horizontal irradiance is the total amount of shortwave radiation received from above by
a surface horizontal to the ground), as well as their associated confidence intervals, in
order to efficiently operate the aforementioned flexible assets towards balancing supply
and demand within the grid. It does so using Gaussian process regression models. The
stochasticity of the controller’s inputs poses a threat to its efficacy, since it can incur
unforeseen constraint violation (here, in the form of voltage undershooting/overshooting).
The issue of stochastic data in MPC schemes is present in a wide array of problems, which
makes it an active research field. There exists a significant body of literature handling
stochastic MPC for linear problems [35–37].

As for nonlinear problems, which is the case addressed in this paper, more recent
works have tackled them in different ways. A common rationale in the scientific literature
is “multi-stage” control schemes. Recent examples include offline computation of an
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incremental Lyapunov function, which is then used for an online construction of a “tube”
to tighten the constraints [38], a decomposition into several deterministic sub-problems
whose solutions are then aggregated using an operation-cost-based rule [39], and the
modelling of the uncertainty through a tree of discrete scenarios, coupled with a tube-based
MPC to balance the system’s variability and its economic profitability [40,41].

The use of a multi-stage approach adds a layer of complexity into the control scheme.
The advantages of such methods are their ability to combine several different techniques
into a hierarchical scheme to tackle numerous difficulties in the problem. This often
presents itself as an offline stage that feeds into an online one. Their obvious drawbacks is
the added complexity and, in the case of scenario-based methods, significant computational
burden, which make them ill-suited for real-time applications.

The method proposed in this paper is based on min–max MPC for uncertain nonlinear
systems under constraints [42,43]. This technique’s premise boils down to risk aversion
by computation of a worst-case scenario upstream of a standard optimisation problem.
The main optimisation problem upon which the predictive control strategy is based seeks
optimal flexible assets’ setpoints, in order to reduce the gap between power supply and
demand in the power distribution grid. The solution proposed here adds a layer, to be
called “the min-max problem”, upstream of this main optimisation problem. The min–
max problem will determine the values of possible PV power generation, grid load, and
water demand for which constraint violation will be at a maximum, within the forecasts’
respective confidence intervals. The scenario with these values is dubbed the worst-case
scenario. Then, the predictive controller searches for optimal flexible assets’ setpoints
that would uphold constraints computed with values of PV power generation, grid load,
and water demand corresponding to the worst-case scenario. The controller searches for
worst-case scenario within a feasible space defined by the aforementioned confidence
intervals associated to the GPR forecasts.

The paper is organised as follows: Section 2 presents the case study treated in this
work. Section 3 provides a definition of Gaussian process regression, kernel compositions
of the models developed to forecast all three stochastic quantities, and the obtained results.
Then, Section 4 details the proposed model-based predictive control strategy, starting
with a step-by-step explanation of the strategy’s inner-workings, formulating the main
optimisation problem upon which the strategy is based, and introducing the worst-case
scenario approach which enhances the robustness of the control strategy to forecasting
errors. In Section 5, the impact of forecasting errors on the performance of the model-based
predictive control strategy is analysed and an evaluation is carried out of the contribution
of the worst-case approach to enhancing the scheme’s robustness to forecasting errors.
Section 6 recapitulates the main findings of the paper and discusses possible improvements.

2. Case Study

2.1. Low-Voltage Power Distribution Grid

The case study [20] is carried out on a simulated low-voltage power distribution grid
(a residential neighbourhood) in the Occitania region in southern France, composed of
approximately 600 households, 200 household PV installations of 4 kW each, amounting to
a total capacity of 800 kW, a small-scale biogas plant (100 kW), and a water tower (100 kW).
Figure 1 displays some grid load and PV power generation data (over a week in April) used
in this work. Grid load is measured at the MV/LV transformer level of the low-voltage
power distribution grid whereas PV power generation is inferred from GHI measurements
taken by a pyranometer installed at PROMES-CNRS laboratory, which is located a few
kilometres from the residential neighbourhood.

In this section, models of the power distribution grid and the flexible assets used
in this case study are presented, formulated over a forecast horizon H. Let Hp be the
integer number of time slots within this forecast horizon. In the following, and for all
time-dependant quantities, t ∈ {1, . . . , Hp}.
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Figure 1. Grid load and PV power generation over a week in April (case study).

Measurements made at the MV/LV transformer level of the power distribution grid
and used throughout this study correspond to means over each time slot (herein, a 10-min
time step is considered). This study focuses on upholding contractual voltage bounds;
voltage means must at all times remain within ± δU of the nominal value, i.e., ∀q ∈
{1, . . . , N} and ∀t ∈ {1, . . . , Hp}:

|Uq(t)− Un| � δU (1)

where Un is the nominal single-phase voltage value for all grid nodes, N is the number of
nodes in the low-voltage power distribution grid, Hp is the integer number of time slots
within the forecast horizon, and δU is the acceptable margin of voltage variations with
respect to the nominal value. The acceptable margin fixed by the French distribution grid
operator ENEDIS is 10% of the nominal value. However, for the purposes of this study,
a lower margin of 3% is considered in order to better flesh out possible voltage overflow
phenomena due to power supply/demand unbalance within the grid.

2.2. Flexible Assets

In this section, the biogas plant and water tower models are briefly described. Details
about these models and the characteristics of the flexible assets are given in [20].

2.2.1. Biogas Plant

The biogas volume in the storage unit (in m3) is described as:

Vb(t + 1) = Vb(t) +
T
60

(
Qb,in(t)− Pb(t)

η · LHV

)
(2)

where T is the time step (T = 10 min), Qb,in is the flow rate of biogas production entering
the storage unit (in m3 h−1), Pb is the plant’s active power output (in W), η is the generator’s
efficiency, and LHV is the lower heating value of the stored biogas (in kWh m−3). The
output Pb is subject to the following constraint:

Pb,min � Pb(t) � Pb,max (3)

where Pb,min and Pb,max are the minimum and maximum power generation of the biogas
plant, respectively.

The biogas volume in the storage unit is subject to the following constraint:

Vb,min � Vb(t) � Vb,max (4)

where Vb,min and Vb,max are the minimum and maximum biogas storage capacities of the
biogas plant, respectively.
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2.2.2. Water Tower

The water volume in the storage tank (in m3) is described as follows:

Vw(t + 1) = Vw(t) +
T
60

(
3600ηw

ρ · g · h
Pw(t)− Qw,out(t)

)
(5)

where T is the time step (T = 10 min), Qw,out is the flow rate of water demand (in m3 h−1),
Pw is the water pump’s active power consumption (in W), ηw is the water pump’s efficiency,
ρ is the water density (in kg m−3), g is the gravitational acceleration (in m s−2), and h is the
water level in the storage tank (in m).

Let Pw,min and Pw,max be the minimum and maximum power consumption values
of the water tower, respectively. The power consumption Pw can only be set following
ON/OFF commands, i.e., it is subject to the following constraint:

Pw(t) ∈ {Pw,min; Pw,max} (6)

The water volume in the storage tank is subject to the following constraint:

Vw,min � Vw(t) � Vw,max (7)

where Vw,min and Vw,max are the minimum and maximum storage capacities of the water
tank, respectively.

2.3. PV Power Generation Inferred from Global Horizontal Irradiance

PV power generation values are inferred from global horizontal irradiance values
using the following Equation [44]:

P̂PV(t) = ηTre f · S · ĜHI(t) · τα

[
1 − βre f

(
Tp − Tre f

)]
(8)

where ηTre f (herein, ηTre f = 0.21) is the PV panel’s efficiency, S is the total surface area of
PV panels in the power distribution grid, ĜHI are global horizontal irradiance forecasts,
τα is the effective transmittance of the PV panels (herein, τα = 0.95), βre f is the coeffi-
cient of power degradation due to high temperatures (βre f = 0.004), Tre f is the reference
temperature (herein, Tre f = 25 °C), and Tp is the PV panels’ temperature, computed as
follows [45]:

Tp(t) = Ta(t) + k · ĜHI(t) (9)

where Ta is the ambient temperature and k = 0.025.

2.4. Initial Operation Strategy

The initial operation of the flexible assets does not take into account power grid
regulation purposes [20]. The biogas plant’s power generation is a constant nominal value
(herein, Pb,n = 100 kW). This is in line with the steady biogas flow generated by the
bioreactor and coming into the storage unit. As for the water tower, its water pump is
subject to an ON/OFF controller, which ensures that the water level remains between two
threshold values at all times (herein, Pw,n = 100 kW). Both assets’ priority is maintaining
storage volume levels within pre-fixed extrema, which can sometimes be in conflict with
the grid stability’s best interest.

3. Intraday Forecasting of Stochastic Quantities

3.1. Introduction

In the context of the control strategy proposed in this paper, the three stochastic quan-
tities that come into play are the following: power grid load, global horizontal irradiance
(GHI) [46–48], and water demand. The power grid load represents agglomerated power
demand of households in the studied suburban area. It is the grid operator’s priority to
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make sure this demand is met at all times, under adequate quality and security standards.
PV power generation, inferred from GHI values as explained in Section 2.3, represents the
agglomerated power generation of household PV panels in the studied area (the residential
neighbourhood). One of the assets used by the control strategy is the water tower, whose
operational priority is meeting the water demand. In this paper, the methodology used to
forecast each of these quantities and its results are briefly presented.

As part of the research activities of the PROMES-CNRS laboratory, a comparative
study of models developed for multi-step-ahead GHI forecasting is carried out for intrahour
and intraday forecast horizons using a two-year database of GHI measurements sampled
at a 10-min rate. Results demonstrate that, although all considered models outperform
the persistence model, there is no clear frontrunner in terms of nRMSE values, with a
slight advantage for LSTM (long short term memory) artificial neural network (ANN) and
Gaussian process regression (GPR) models when taking into account the quality of the
forecasts’ associated confidence intervals.

Confidence intervals are a noteworthy perk of using GPR models in the forecast
module of the smart management strategy since they are built-in in the models and do
not require running a Monte Carlo simulation to be statistically inferred as is the case
for other forecasting methods (like artificial neural networks). These confidence intervals
give the predictive controller supplementary information it uses to achieve a more robust
control strategy. The development of GPR models for intraday GHI forecasting are detailed
in [46–48].

GPR models used herein are, in part due to the fact that the database used to update
the model’s parameters is a sliding one, sufficiently fast to be a valid candidate for the
real-time control application at hand. On the downside, the predictive nature of the
controller makes it dependant upon real-time access to measurements to be able to sustain
the forecasting models’ sliding databases and to update their parameters at each time step.
This limitation is true for all machine-learning-based methods operating in real time, hence
the growing interest in the development of state-of-the-art smart metering technologies
that ensure quick and reliable data transfer.

For the reasons listed above, the choice has been made to develop GPR models to
provide intraday forecasts for the smart management scheme developed herein. The
associated confidence intervals are incorporated into the control scheme to improve its
robustness to forecasting errors as explained in Section 4. This is the main contribution of
the paper as it focuses on the developement of a resilient predictive control strategy for
low-voltage power distribution grids with prolific distributed generation.

3.2. Gaussian Process Regression

A Gaussian process (GP) can be seen as a collection of random variables, any finite
number of which have a joint Gaussian distribution [48,49]. A prior over functions is
defined and can then be converted into a posterior over functions once some data has
been observed (i.e., observations). f (x) ∼ GP(μ(x), k(x, x′)), with x and x′ arbitrary input
variables, μ(x) = E[ f (x)] the mean function (which is usually assumed to be null) and
k(x, x′) = E

[
( f (x)− μ(x))( f (x′)− μ(x′)T)

]
the covariance function (also known as kernel),

indicates that this random function follows a GP. The interested reader is referred to [49]
for a detailed explanation of Gaussian processes and Gaussian process regression (GPR).

The standard regression model with additive noise is formulated as follows:

y = f (x) + ε (10)

where x ∈ RD×1 is the input vector with a dimension of 1, f is the regression func-
tion, y is the observed value and ε ∼ N (0, σ2

ε ) is an independent, identically distributed
Gaussian noise.
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The mean prediction μ∗ can be written as a linear combination of kernel functions,
each one centred on a data point:

μ∗ = μ(x∗) + kT∗ · α = μ(x∗) +
n

∑
i=1

αi · k(xi, x∗) (11)

where α =
(
K + σ2

ε · I
)−1

(y − μ(x∗)). The coefficients αi are referred to as parameters.
It is possible to combine several kernel functions to obtain a more complex one. The

only requirement is that the resulting covariance matrix must be a positive semi-definite
function. A detailed list of kernel functions is provided in [49]. Hereinafter, the kernel
functions used in this work are defined.

The periodic kernel (Per) is given by:

kPer(x, x′) = σ2
1 · exp

⎛⎝−
2 sin2

(
π(x−x′)

P

)
�2

1

⎞⎠ (12)

where σ1 is the amplitude, �1 is the correlation length and P is the period.
The isotropic squared exponential (SE) kernel is given by:

kSE(x, x′) = σ2
2 · exp

(
− (x − x′)2

2�2
2

)
(13)

where σ2 is the amplitude and �2 is the correlation length.
The isotropic rational quadratic (RQ) kernel is given by:

kRQ(x, x′) = σ2
3

(
1 +

(x − x′)2

2�2
3 · α

)−α

(14)

where σ3 is the amplitude, �3 is the correlation length and α defines the relative weighting
of large-scale and small-scale variations.

In addition to forecasts, the regression model provides an associated confidence
interval within which measurements have a probability of 95% of staying. This interval
(CI) is computed as follows:

CI = μ∗ ± 1.96
√

σ2∗ (15)

where CI represent the confidence interval bounds, μ∗ is the predictive mean, and σ∗ is the
predictive variance.

During the training phase, the values of hyperparameters are optimised using a 2-
week database [48]. During the test phase, at every time step, new measurements are
incorporated in order to update values of the model’s parameters using a sliding 24 h database.

3.3. Data Description and Kernel Compositions

The forecast horizons considered in this work are intraday: they range from 1 h to 24 h.
For the training phase, two weeks of data are used. The testing phase is then performed
over one week. Available data of power grid load, water demand, and global horizontal
irradiance span a year for the three stochastic quantities. They are sampled at a 10-min
rate. An examination of the signals’ behaviours informs the following choices of kernel
compositions for their intraday forecasting.

1. Power grid load

kgl(x, x′) = kgl
Per(x, x′) + kgl

SE(x, x′) + kgl
RQ(x, x′) (16)
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Herein, the period of the data is 24 h and the structure of kgl
Per translates the daily

periodic pattern. kgl
SE is used to capture the long-term trend of the data, namely the

seasonal tendencies present in the power grid load. kgl
RQ is used to capture the intraday

variations observed in the data, namely intraday fluctuations due to behavioural
patterns of end-users.

2. Water demand
kwt(x, x′) = kwt

Per(x, x′) + kwt
SE(x, x′) (17)

kwt
Per models the daily periodic shape of the data and kwt

SE is used to fit the data’s
intraday fluctuations. A brief kernel study leads to the conclusion that the simple
addition of a squared exponential kernel is sufficient to have satisfactory results
without adding too much computational burden to the model.

3. Global horizontal irradiance

kGHI(x, x′) = kGHI
Per (x, x′) · kGHI

RQ (x, x′) (18)

kGHI
Per models the daily periodic shape of the data and kGHI

RQ captures the intraday
fluctuations present in these data. A thorough study has been conducted in [47] to
determine the most suitable kernel composition for intraday GHI forecasting.

3.4. Forecasting Results

The evaluation metrics used in this work, evaluated over the considered week in April
(see Figure 1), are the following:

1. The normalized root mean square error (nRMSE), expressed as follows:

nRMSE = 100

√
1

n∗ ∑n∗
i=1

(
ytest(i)− yforecast(i)

)2

1
n∗ ∑n∗

i=1 ytest(i)
(19)

where ytest ∈ Rn∗×1 are the test data, yforecast ∈ Rn∗×1 are the forecasts given by the
models, and n∗ is the number of data points in the forecast horizon.

2. The coverage width-based criterion (CWC) [50], defined as a combination of two
different criteria, i.e., the prediction interval normalized average width (PINAW) and
the prediction interval coverage probability (PICP).
The PINAW criterion allows the surface area of the confidence intervals associated
with the forecasts to be assessed:

PINAW =
1

n · R

n

∑
i=1

(Ui − Li) (20)

where R is the difference between the maximum and minimum in test data and Ui
and Li are the upper and lower bounds of the confidence interval, respectively.
The PICP criterion informs on the probability that measurements would fall within
the confidence interval:

PICP =
1
n

n

∑
i=1

εi (21)

where εi is used to detect whether the target value is in the confidence interval.
The coverage width-based criterion (CWC) is then defined as follows:

CWC = PINAW
(
1 + γ(PICP) · exp(−η · (PICP − μ))

)
(22)

where η (η = 10) and μ (μ = 0.95) are parameters, and γ is defined such that:

γ(x) =

{
1 if x < μ

0 if x � μ
(23)
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Figure 2 displays nRMSE values of intraday forecasts of power grid load, water
demand, and GHI. For intraday forecasts of grid load, results show that the GPR model
performs well for short time horizons. However, the forecasting error rapidly increases as
the forecast horizon does, which is an expected result. For a 1-h horizon, the GPR model
achieves an error as low as 13%. As for the 6-h horizon and the 12-h one, nRMSE values are
virtually constant (21% and 23%, respectively). This remains the case for a forecast horizon
of 24 h, where the GPR model has an error of 26%.
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Figure 2. Evaluation criteria (nRMSE (19) and CWC (22)) for intraday GPR forecasts of GHI, power
grid load and water demand, with respect to the forecast horizon, over a one-week period.

For intraday forecasts of water demand, values of nRMSE start at 9% for a 10 min
forecast and quickly stabilises around 13% for longer forecast horizons. Due to the data’s
regular nature, a simple combination of a periodic kernel and a rational quadratic kernel
for intraday fluctuations proves enough to capture the data’s behaviour quite faithfully.
As for intraday forecasts of GHI (from which PV power generation is inferred), the se-
lected GPR model performs well for short forecast horizons (15.74% for a 10-min forecast
horizon), but its performance degrades as the forecast horizon grows and it stabilises
around 32% for horizons beyond 6 h. This is reflected in the temporal evolution of the
forecasts, where it can be seen that intraday fluctuations become increasingly difficult to fit.
Further work is currently underway to enhance the model’s performance for long intraday
forecast horizons.

Figure 2 also displays values of CWC, which follow similar patterns to those of nRMSE
values: starting with lower values for short forecast horizons, then quickly stabilizing
around a constant value for longer horizons. It can be seen that the higher the nRMSE
values, the higher the corresponding CWC values. They stabilize around 57% for water
demand forecasts, around 65% for grid load forecasts, and around 68% for GHI forecasts.
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4. Model-Based Predictive Control Strategy

4.1. Inner-Workings of the Smart Management Scheme

Figure 3 shows the synoptic scheme of the proposed MPC strategy. The following is a
detailed explanation of the different steps taken by the proposed strategy at each time step.
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Figure 3. Synoptic scheme of the amended MPC-based strategy for smart management of a low-voltage power distribution
grid using flexible assets. Let GHI, Pcons, Qw,out , Vw, Vb be measurements of global horizontal irradiance, grid load, water
demand, water volume, and biogas volume, respectively. Let Ŷ be forecasts of stochastic inputs for the following time
steps. Let δPV, δc, δw be margins that define confidence intervals for the next time step of GPR forecasts of PV power
generation, grid load, and water demand, respectively. Let P̂PV, P̂cons, Q̂w,out be forecasts of PV power generation, grid
load, and water demand over the forecast horizon, respectively. Let Yrisk

s and Yrisk be candidate values and optimal values
of worst-case scenario stochastic inputs. Let Ps

b and Ps
w be candidate values of biogas plant setpoints and water tower

setpoints, respectively. Let Vs
b and Vs

w be the biogas volume and the water volume, respectively, corresponding to the
candidate optimisation variables of a given iteration.

1. Data acquisition: measurements are taken of stored biogas volume and stored water
volume and are injected into the predictive controller in order to update the system’s
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state. GHI and grid load are measured and water demand is inferred from measure-
ments of water volume and incoming flow rate Qw,in. These values are injected into
the forecast module.

2. Forecast module: measured values of the controller’s stochastic inputs (GHI, grid
load, and water demand inferred from incoming flow rate) are added to the sliding
databases of respective GPR models, which are then used to update the models’
parameters. Afterwards, the module produces updated forecasts of all three stochastic
quantities over the forecast horizon, along with their respective confidence intervals.
Lastly, GHI values and their corresponding confidence intervals are converted into
PV power generation ones.

3. Worst-case scenario: phase 1 of the controller’s decision-making process consists in
determining the stochastic input values corresponding to the worst-case scenario of
the following time slot, in terms of constraint violation. This bloc receives measure-
ments of biogas volume and water volume, GPR forecasts of PV power generation,
grid load, and water demand for the following time slot, and confidence intervals of
GPR forecasts for the following time slot.
An optimisation algorithm searches the feasible space defined in Figure 4 for worst-
case scenario input values. It does so based on the optimisation problem formulated
by Equations (46)–(49) and using the low-voltage grid model to evaluate volume
bounds and potential voltage overshooting.

4. Reduction of power supply/demand unbalance: phase 2 of the controller’s decision-
making process consists in determining the flexible assets’ optimal setpoints. This
bloc receives GPR forecasts of PV power generation, grid load, and water demand
over the entire forecast horizon, as well as worst-case scenario input values of the
following time slot, produced by phase 1.
An optimisation algorithm searches for optimal setpoints of biogas plant power
generation and water tower power consumption. It does so based on the optimisa-
tion problem defined in Section 4.2 and using the low-voltage grid model based on
Kirchhoff laws to evaluate various constraints.

5. Implementation of flexible assets’ setpoints: optimal setpoints of flexible assets are
produced, the first step of which are implemented by the biogas plant and the
water tower.

4.2. Main Optimisation Problem

The optimisation problem [20] is formulated such as the discrete setpoint values of
the water tower are replaced with a real-values optimisation variable t̄ ∈ R

Hp , with Hp the
integer number of time slots within the forecast horizon, effectively avoiding the MINLP
setting [28–34] without relaxing the problem. In fact, between sampling times ti and ti+1,
the water tower can switch between its two states of operation (Pw,min and Pw,max) and the
biogas plant can switch between two setpoints within the interval [Pb,min, Pb,max]. If the
assets do make the switch within a given time slot, they do so at the same instant t̄i. Let us
denote X as follows:

X =
[
Pb,ON Pb,OFF t̄ UON,q UOFF,q

]T (24)

where Pb,ON ∈ R
Hp and Pb,OFF ∈ R

Hp form the biogas plant setpoint like this:

Pb(τ) =

{
Pb,ON(τ), τ ∈ [ti, ti + t̄i]

Pb,OFF(τ), τ ∈ [ti + t̄i, ti+1]
(25)

For every node q ∈ {1, . . . , N}, UON,q ∈ R
(Hp ·N) and UOFF,q ∈ R

(Hp ·N) form the
voltages in the grid:

Uq(τ) =

{
UON,q(τ), τ ∈ [ti, ti + t̄i]

UOFF,q(τ), τ ∈ [ti + t̄i, ti+1]
(26)

77



Clean Technol. 2021, 3

The optimisation problem can be solved at each time step assuming that the first state
of the water tower is always ON. In some extreme cases, this assumption may induce
some issues of implementability given volume constraints, which are tackled in a post-
treatment phase (the interested reader is referred to [20] for details about the post-treatment
algorithm). However, this simplification reduces the complexity of the model without
sacrificing much performance. The objective function fobj is formulated as follows:

fobj(X) =
Hp−1

∑
i=0

[ ti+t̄i∫
ti

SON(τ)dt +

ti+1∫
ti+t̄i

SOFF(τ)dt
]

(27)

with

SON(τ) = |PPV(τ) + Pb(τ)− Pcons(τ)− Pw,max|2 (28)

SOFF(τ) = |PPV(τ) + Pb(τ)− Pcons(τ)− Pw,min|2 (29)

The optimisation problem is then formulated as follows:

X∗ = arg min
X

fobj(X) (30)

and is subject to the following bounds and constraints, ∀i ∈ {1, . . . , Hp}:

• Biogas plant power bounds

Pb,min � Pb,ON(τ) � Pb,max (31)

Pb,min � Pb,OFF(τ) � Pb,max (32)

• Switch time bounds

0 � t̄i � T (33)

• Biogas volume constraints

Vb,min � Vb(t) � Vb,max (34)

• Water volume constraints

Vw,min � Vw(t) � Vw,max (35)

• Voltage constraints

t̄i · Kt(Pb,ON(τ), Pw,max, UON,q(τ)) = 0 (36)

(T − t̄i) · Kt(Pb,OFF(τ), Pw,min, UOFF,q(τ)) = 0 (37)

|UON,q(τ)− Un| � δU (38)

|UOFF,q(τ)− Un| � δU (39)

Kt describes voltage variations across the low-voltage power distribution grid as a
function of the power which is injected or absorbed at each node. Kirchhoff’s law con-
straints are presented as two sets of constraints (Equations (36) and (37)), which guarantee
that Kirchhoff’s laws are upheld in both sub-intervals of each time slot. The equation
set depicting voltage variations is multiplied by t̄i (Equation (36)) or T − t̄i (37), using
appropriate values of biogas plant and water tower setpoints for each interval, in order
to ensure that only one constraint is activated in case of extreme values of t̄i. In fact, in
case t̄i = 0, Equation (36) is ignored, reflecting the fact that during time slot i, the water
tower is turned off immediately at the beginning of the time slot. Likewise, in case t̄i = T,
Equation (37) is ignored since the water tower remains on for the duration of the time
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slot. Voltage constraints are also written as two sets of constraints (Equations (38) and (39))
that account for voltage variations in both states of the low-voltage power distribution
grid within each time slot. While depicting the same physical constraints, this problem
formulation has a bigger feasible set than the MINLP one [28–34]. As a result, with such a
formulation, the global optimum is guaranteed to be equal or better than the one of the
MINLP formulation.

4.3. The Worst-Case Scenario Approach

In this section, amendments are made to the predictive control strategy in order to
enhance the controller’s performance by making it more robust to forecasting errors of
the system’s various stochastic quantities. The premise of the method is to use min–max
optimisation in order to find and solve a “worst-case scenario" at each time step based on
confidence intervals given by the inputs’ respective GPR models. Eliminating, or at least
minimising, the constraint violations corresponding to the worst-case scenario guarantee
that these violations are also minimised for all other possible scenarios.

It should be noted that, at each time step, these amendments are only made to the
decision-making of the subsequent time step, and not over the entire forecast horizon. This
choice is motivated by two reasons. The first is that determining a worst-case scenario over
the entire forecast horizon is a conservative and computationally expensive optimisation
problem, which is incompatible with the real-time application at hand. As a matter of
fact, a min–max problem over the entire forecast horizon has a feasible space of dimension
(3 × Hp), as opposed to the problem concerned only with the following time step only
having a 3-dimensional feasible space. The second is that, due to the closed-loop nature
of MPC, computing robust setpoints for the entire forecast horizon is in high likelihood
a waste of resources because, at each time step, only the first setpoint is applied and the
whole procedure is reiterated at the next one. Ergo, the scheme only seeks to provide a
setpoint robust to forecasting errors for the next time step.

First, let P̂PV, P̂cons, and Q̂w,out be forecasted values of PV power generation, grid
load, and water demand, respectively, over the forecast horizon. Then, let PPV, Pcons,
and Qw,out be measured values of PV power generation, grid load, and water demand,
respectively, over the forecast horizon. Finally, δPV, δc, and δw define confidence intervals,
for the next time step, of GPR forecasts of PV power generation, grid load, and water
demand, respectively, as follows:

PPV(t + 1) ∈ [P̂PV(t + 1)− δPV, P̂PV(t + 1) + δPV] (40)

Pcons(t + 1) ∈ [P̂cons(t + 1)− δc, P̂cons(t + 1) + δc] (41)

Qw,out(t + 1) ∈ [Q̂w,out(t + 1)− δw, Q̂w,out(t + 1) + δw] (42)

Herein, the confidence intervals are computed such that there is a 95% probability
of measurements remaining inside them (15). There exists a triplet (Prisk

PV (t + 1), Prisk
cons(t +

1), Qrisk
w,out(t + 1)), contained in the feasible space illustrated in Figure 4, that induces a

worst-case scenario vis-a-vis the optimisation problem constraints in the next time step.
Finding this triplet and incorporating it into the predictive control strategy described in
Section 4 allows the controller to adjust its decision-making in order to reduce, if possible
eliminate, any constraint violation that could occur in the next time step as a result of the
stochastic quantities’ measured values being different from the forecasted ones, within the
limits of the associated confidence intervals. Let Y be the vector containing measurements
of PV power generation, grid load, and water demand, for the next time step:

Y =
[
PPV(t + 1) Pcons(t + 1) Qw,out(t + 1)

]T (43)
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Let Ŷ be the vector containing forecasts of PV power generation, grid load, and water
demand, for the next time step:

Ŷ =
[
P̂PV(t + 1) P̂cons(t + 1) Q̂w,out(t + 1)

]T
(44)

Let Yrisk be the vector comprised of critical values defining the worst-case scenario of
the next time step:

Yrisk = [Prisk
PV (t + 1) Prisk

cons(t + 1) Qrisk
w,out(t + 1)]T (45)

where Prisk
PV , Prisk

cons, and Qrisk
w,out are critical values of PV power generation, grid load, and

water demand, respectively, corresponding to the worst-case scenario.
Based on Equations (40)–(42), Yrisk exists in the feasible space illustrated by Figure 4.

At every time step, the following min–max problem is solved:

Yrisk = arg min
Y

(−Φ(Y)) (46)

where Φ(Y) is the voltage undershooting/overshooting corresponding to input values of
Y , as defined in Section 5.1, subject to:

Ŷ(1)− δPV � Y(1) � Ŷ(1) + δPV (47)

Ŷ(2)− δc � Y(2) � Ŷ(2) + δc (48)

Ŷ(3)− δw � Y(3) � Ŷ(3) + δw (49)

Pcons

PPV

Qw,out

P̂PV

P̂PV − δPV

P̂PV + δPV

Q̂w,out

Q̂w,out − δw

Q̂w,out + δw

P̂cons

P̂cons − δc

P̂cons + δc

Figure 4. Feasible space of the min–max problem, defined by the confidence intervals of one-step-
ahead forecasts of grid load, water demand, and PV power generation. The time indices are removed
to avoid cluttering the illustration. All quantities in this figure correspond to values in the next
time slot.

5. Results and Analysis

5.1. Evaluation Metrics

Various evaluation metrics used throughout this paper are defined hereinafter. Let Ht
be the number of time slots in the simulation period.
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1. Final value of the objective function: its square root (
√

fobj, f inal) represents the cumu-
lative gap between power supply and demand within the power distribution grid
during the simulated week.

2. Computational complexity κ: it is quantified by the mean number of objective function
evaluations per window, weighted by its size. The number of objective function
evaluations is provided as an output argument of the optimisation function “fmincon”
in Matlab.

3. Mean deviation from the forecasted values: let P̄PV, P̄cons, and Q̄w,out be vectors
grouping one-step-ahead forecasts (herein, 10-min forecasts) of PV power generation,
grid load, and water demand, respectively, during the simulation period. This evalua-
tion metric represents the mean deviation of stochastic input values from the ones
forecasted at a one-step-ahead forecast horizon. ΩPPV , which is the mean deviation
of PV power generation values (PPV) from the ones forecasted at a one-step-ahead
forecast horizon (in W), is given by:

ΩPPV =
∑Ht−1

t=0 P̄PV(t + 1)− PPV(t + 1)
Ht

(50)

ΩPcons , which is the mean deviation of grid load values (Pcons) from the ones forecasted
at a one-step-ahead forecast horizon (in W), is given by:

ΩPcons =
∑Ht−1

t=0 P̄cons(t + 1)− Pcons(t + 1)
Ht

(51)

ΩQw,out , which is the mean deviation of water demand values (Qw,out) from the ones
forecasted at a one-step-ahead forecast horizon (in m3 h−1), is given by:

ΩQw,out =
∑Ht−1

t=0 Q̄w,out(t + 1)− Qw,out(t + 1)
Ht

(52)

4. Instances of voltage overshooting ν: in cases where the main optimisation problem has
no feasible solution, overvoltage or undervoltage may occur in the power distribution
grid. These are the instances that the present paper studies and attempts to reduce.
This metric records the percentage of these instances during the simulation period.

5. Surface area of voltage overshooting Φ: this metric is complementary to the number
of instances of voltage constraint violation. It represents the total surface area of
voltage overshooting past the prescribed lower and upper voltage levels in the power
distribution grid, during the simulated period. It is measured in volts and is calculated
as follows:

Φ(Y) =
N

∑
s=1

(
Ht

∑
t=1

max(Us(t)− Umin, Umax − Us(t), 0)

)
(53)

where N is the number of nodes in the power distribution grid, Umin is the lower
voltage threshold, Umax is the upper voltage threshold, and Us, where s ∈ {1, . . . , N},
are voltage values in various nodes of the power distribution grid. Let Ψ ∈ R

Hp×3 be
the matrix containing the measured stochastic inputs of the control strategy, over the
simulation period, defined as follows:

Ψ =
[
PPV Pcons Qw,out

]
(54)

Note that voltage values across the power distribution grid are linked to the values of
Ψ through Kirchhoff laws.
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6. Average voltage overshooting per time step φ: it corresponds to the mean of maximum
voltage overshooting over the number of instances at which overshooting is observed
during the simulation period. It is defined as follows:

φ(Y) = 100
Φmax(Y)

ν · Ht
(55)

with

Φmax(Y) =
Ht

∑
t=1

max
s∈{1,...,N}

(Us(t)) (56)

where values of Y and Us are related through Kirchhoff laws.

5.2. Impact of Forecasting Errors on MPC Performance

In this section, the impact of forecasting errors on the MPC strategy’s performance
is studied. The control scheme is tested over the week in April presented in the previous
section and for sliding window sizes ranging from 1 to 24 h. Intraday GPR forecasts of grid
load, water demand, and PV power generation (inferred from GHI forecasts), acquired as
explained in Section 3, are used to run these simulations.

The performance of the predictive controller fed with GPR forecasts is evaluated in
comparison with a controller fed with measurements, i.e., a case where no forecasting errors
are made. This comparison will focus on three main aspects of the scheme’s performance:
the power supply/demand gap

√
fobj,, f inal (Figure 5), computational cost κ (Figure 6), and

surface area of voltage overshooting Φ (Figure 7).
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Figure 5. The cumulative power supply/demand gap within the power distribution grid, per sliding
window size. The gap before optimisation is 10,035 kW.

In Figure 5, the cumulative power supply/demand gap given by the MPC scheme over
the considered week is displayed per sliding window size. Though these values degrade as
the sliding window size increases in both cases, the ones given by the MPC scheme when it
uses GPR forecasts are not significantly degraded with respect to those given by the MPC
scheme that uses measurements. In fact, the maximum difference between the two curves
is 198.39 kW, obtained for the 22-h sliding window, which constitutes only 1.98% of the
initial value (10,035 kW).
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Figure 6. Computational complexity, measured as the mean number of function evaluations per
sliding window weighted by its size.

The computational cost, presented in Figure 6, steadily grows in both cases as the
sliding window size does. It is different for the scheme that uses GPR forecasts, which is to
be expected since the updated forecasts displace the optimisation problem’s starting point
with respect to the previous time step. That being said, the increase in computational cost
due to the use of forecasts remains subdued. For window sizes between 1 and 10 h, its
average value is a 12.3% increase from the scheme using measurements. For all window
sizes up to 24 h, this average is evaluated at 16.4%.

Figure 7 displays the surface area of voltage overshooting, the initial value of which is
4371.4 kV. For sliding window sizes up to 3 h, the MPC scheme is unable to reduce voltage
overshooting and actually makes matters considerably worse. Starting from a 4-h sliding
window, voltage overshooting given by the MPC scheme decreases significantly from the
initial value, in both the case where the scheme uses measurements and the one where it
uses GPR forecasts. Then, for larger window sizes, it quickly stabilizes around the same
level. As of the 4 h window size, the MPC strategy effectively eliminates more than 50% of
voltage overshooting.
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Figure 7. The total surface area of voltage overshooting per sliding window size.

When taking into account the fact that the forecasting errors are at their lowest for
short forecast horizons (inferior to 3 h) and rapidly grow for longer horizons, it becomes
apparent that the accuracy of forecasts for these short horizons is not enough to guarantee
better management of voltage fluctuations on its own. In reality, the availability of forecasts
over a longer forecast horizon is pivotal to better equip the MPC scheme to anticipate
emerging voltage overshooting and work to prevent it. In light of this observation, it is
recommended, for the purposes of this study, to prioritise reducing forecasts’ error rates
for forecast horizons up to several hours, rather than only focusing on short horizons.
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Figure 8 displays the percentages of time steps during the simulated week where
overshooting is observed, with respect to the size of the sliding window. As of the 2-h
window, this percentage is significantly lower than the initial one (23.71%) for both MPC
schemes, the one using measurements and the one using GPR forecasts. It quickly stabilizes
at roughly 7% for both cases and reaches a minimum of 3.67% for the former and of 5.16%
for the latter, both corresponding to the 24 h window.

Figure 9 displays the average voltage overshooting per time step (φ), with respect to
the sliding window size. These values are lower than the initial value (18.29%) for both
schemes, with the values corresponding to the MPC scheme using GPR forecasts being
slightly lower than the ones corresponding to the MPC scheme using measurements. It
is interesting to note that despite the percentage of overshooting occurrences (ν) being
significantly higher for small windows than for larger ones, values of φ remain at roughly
the same level regardless of sliding window size. Their average is 11.6 V per time step for
the scheme using measurements and 10.7 V per time step for the one using GPR forecasts.
This means that, for large window sizes, overshooting incidents are less frequent, but have
a higher amplitude than for small ones.
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Figure 8. Percentage of time steps where an overshooting is observed, with respect to the sliding
window size used by the MPC scheme.

1 2 4 6 8 10 12 14 16 18 20 22 24

9

12

15

18

21

Sliding window size (hours)

φ
(V

)

MPC strategy with measurements
MPC strategy with GPR forecasts
Initial case

Figure 9. Average voltage overshooting per time step, with respect to the sliding window size used
by the MPC scheme.

On another note, voltage overshooting is not remarkably impacted by the use of
GPR forecasts as opposed to the case where measurements are used. The two sets of
values, whether in terms of cumulative voltage overshooting (Figure 7) or percentage-wise
(Figure 8), behave similarly and remain roughly at the same level. These results point to
the MPC strategy proposed herein being inherently resilient to forecasting errors of PV
power generation, grid load, and water demand. This is thanks to the closed-loop structure
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of model-based predictive control, which allows course-correction as new information
comes in at every time step.

Although the MPC strategy succeeds in reducing voltage overshooting with respect
to the initial case, it does not completely eliminate it. In order to further enhance the
strategy’s performance, a complementary module can be added upstream of the main
optimisation problem upon which the predictive controller is based. This module attempts
to limit overshooting due to erroneous GPR forecasts of grid load, water demand, and PV
power generation.

5.3. Contribution of the Worst-Case Approach

It should be noted here that the main optimisation problem responsible for balancing
power supply and demand in the power distribution grid, as constructed in Section 4.2,
prioritises constraints so that the volume ones are always upheld. In other words, in cases
where no feasible solution is found, voltage constraints are relaxed in order to guarantee
that biogas volume constraints and water volume constraints are always upheld. For
this reason, hereinafter, only voltage constraint violation is examined to evaluate the
efficiency of the proposed min–max problem in enhancing the control strategy’s robustness
to forecasting errors.

In this section, the amended predictive control strategy as explained above is imple-
mented, and its results are presented and discussed in comparison with three other cases:

• Case 1. The initial case where no optimisation is carried out. The biogas plant has a
constant power generation output. The water tower is subject to an ON/OFF con-
troller, which activates its pump when a low-level sensor is triggered and deactivates
it when a high-level sensor is triggered;

• Case 2. The predictive control strategy described in Section 4, with GPR forecasts of
the PV power generation, grid load, and water demand used;

• Case 3. The amended control strategy proposed in this paper, based on the addition
of the min–max problem to anticipate the worst-case scenario within the forecasts’
confidence intervals in terms of constraint violation.

For each case, a simulation is run over a week in April. This period is selected because
it presents high PV power generation and therefore demonstrates significant voltage
overshooting. Two sizes of sliding windows are used for the MPC scheme in the results
that are presented hereinafter: a 4 h window and a 10 h window. These two sliding window
sizes are chosen to examine the difference in effects of the min–max problem on the MPC
strategy’s performance for both short sliding windows and long ones. The evaluation
metrics of the MPC scheme with both sliding window sizes are assembled in Table 1.

Table 1. Assessment of the min–max problem’s contribution to the control strategy’s robustness to
forecasting errors, for a week in April. See below (Section 5.3) for details about the three cases. For
Case 2 and Case 3, 4 h and 10 h sliding windows are considered.

Evaluation Metric Case 1
Case 2 Case 3

4-h 10-h 4-h 10-h√
fobj, f inal (kW) 10,035 8984 8700 8966 8648

κ (–) – 40,872 385,320 39,700 358,990
ΩPrisk

PV
(kW) – – – 16.26 19.41

ΩPrisk
cons

(kW) – – – 5.56 6.73
ΩQrisk

w,out
(m3 h−1) – – – −4.24 × 10−15 −6.41 × 10−16

ν (%) 23.71 5.36 6.85 4.96 6.35
Φ (kV) 4371.4 1632.7 1464.6 1464.5 1176.8

When examining the inner-workings of the min–max problem, it can be deduced that
there are noteworthy deviations between forecasted values of PV power generation and

85



Clean Technol. 2021, 3

grid load and the ones corresponding to worst-case scenarios. For the considered week, for
the tested MPC windows of 4 h and 10 h, the deviation of worst-case scenario PV power
generation values from the forecasted values (ΩPPV ) represents, on average, 7% and 9% of
the data’s mean, respectively. When it comes to the grid load, the deviation of worst-case
scenario values from forecasted ones ΩPcons is less notable. For the tested MPC windows of
4 h and 10 h, it represents 3% an 2% of the data’s mean, respectively.

Having said that, forecasted values of water demand and the ones corresponding
to worst-case scenarios are virtually identical (ΩQw,out is virtually null). This observation
reaffirms the presumption that water demand, and by extension water levels in the water
tower’s storage tank, have no direct impact on voltage fluctuations in the power distri-
bution grid. Their influence resides solely in determining the water tower’s capacity in
absorbing excess power off the grid at a given time, which can be properly foreseen through
proper dimensioning of the storage tank.

The instances of voltage overshooting decrease steadily from Case 1 through Case 3.
In fact, the amended MPC scheme with the min–max problem (Case 3) brings down their
percentage (ν) to 4.96% and 6.35% for the 4 h window and the 10 h window, respectively,
from an initial value of 23.71%. The total surface area of voltage overshooting Φ is also
considerably reduced from the initial value. It brought down to 1464.5 kV and 1176.8 kV
for the 4 h window and the 10 h window, respectively, from an initial value of 4371.4 kV.

The gain procured through the addition of the min–max problem to the MPC scheme
is deduced by comparing the metrics of Case 2 and Case 3. As it happens, for the 4 h sliding
window, voltage overshooting is further decreased from Case 2 to Case 3 by 168.2 kV,
which amounts to 3.8% of the total surface area of voltage overshooting in the initial case.
Percentage-wise, this decrease corresponds to 0.4% of the initial instances of overshooting.

For the 10 h sliding window, voltage overshooting is decreased from Case 2 to Case 3
by 287.8 kV, which amounts to 6.6% of the total surface area of voltage overshooting in the
initial case. Percentage-wise, this decrease corresponds to 0.5% of the initial instances of
overshooting. The small fraction of the eliminated instances of overshooting with respect to
the corresponding percentage of reduced surface area suggests that the min–max problem
is particularly apt in eliminating major overshooting incidents. Table 1 reveals that the drop
in the total surface area of voltage overshooting observed between the scheme using a 4 h
window and the one using a 10 h window is accompanied by an increase in the percentage
of instances of overvoltage. Figure 10 illustrates the extrema of voltage fluctuations within
the power distribution grid for the standard MPC strategy and the one using a min-max
problem, for both sliding window sizes (4 h and 10 h). Voltage overshooting is considerably
reduced in both cases with respect to the initial case. Voltage values mostly remain within
the acceptable voltage bounds and veer closer to the nominal value (230 V). Unfortunately,
this is achieved at the expense of the smoothness of the voltage curves. A possible solution
to this issue could be the addition of a regularisation term to the objective function in
order to penalise high-frequency voltage fluctuations. That being said, several voltage
fluctuations are eliminated thanks to the addition of the min–max problem to the control
strategy. This is especially noticeable for the MPC scheme using a 10 h window where
notable overshooting incidents are removed during midday of 16 April and 18 April.
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Figure 10. Extrema of voltage fluctuations within the power distribution grid for the standard MPC
strategy compared to the one using a min–max problem and to the initial case, displayed for a 4 h
sliding window (top) and a 10 h sliding window (bottom).

The addition of the min–max problem does not introduce additional computational
burden to the control strategy. In fact, the computational complexity (measured by κ)
decreases from Case 2 to Case 3 by 2.9% for the scheme using a 4 h window and by 6.8%
for the scheme using a 10 h window. Figure 11 displays the evolution of the gap between
power supply and demand for MPC schemes with and without the min–max problem. It is
clear that neither scheme succeeds in reducing this gap significantly. However, they trim
the peak occurring everyday around noon, due to the peak in PV power generation. This
trimming effect is more visible for the scheme using a 10 h window than the one using
a 4 h window. This is reflected in the the final values of the objective function. Though
reduced from the initial case, they change very little between Case 2 (MPC using GPR
forecasts) and Case 3 (MPC using GPR forecasts and the min–max problem). This suggests
that the min–max problem does not provoke any degradation to the MPC strategy’s ability
to reduce the gap between supply and demand in the power distribution grid.
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Figure 11. Gap between power supply and demand within the power distribution grid for the
standard MPC strategy compared to the one using a min–max problem and to the initial case,
displayed for a 4 h sliding window (top) and a 10 h sliding window (bottom).

In the case study considered here, it can be seen that the MPC strategy’s reduction
of the gap between supply and demand remains humble. This may be traced back to the
dimensioning of the flexible assets, especially the dimensioning of these assets’ storage
units. One could argue that the power generation capacity of the chosen biogas plant and
the power demand capacity of the chosen water tower are too small to have any meaningful
impact on the reduction of the supply/demand gap within the power distribution grid.
This observation further illustrates the importance of optimal dimensioning of flexible
assets in order for the smart management scheme to yield efficient results.

5.4. Discussion

The introduction of the worst-case scenario approach, detailed in Section 4.3, is
inspired by previous works on min–max optimisation for uncertain nonlinear systems
under constraints, which is by definition a conservative risk aversion technique. It is
chosen for its relative ease of implementation and is used in this paper to complement
the previously developed predictive control strategy in order to anticipate the worst-case
scenario, in terms of stochastic input values, and minimise resulting voltage overshooting.
The conservativeness of the technique is lessened by its containment to the following
time step instead of the entire forecast horizon. This is done primarily to reduce the
computational burden added by the min–max problem, in light of the real-time aspect of
the application at hand. Nevertheless, the merit of extending the min–max problem to
the entire forecast horizon and a quantification of its added cost are valid questions worth
investigating in a follow-up to this work. It is worth mentioning that, on top of reducing
voltage overshooting, the min–max problem has virtually no effect on the reduction of the
gap between power supply and demand.

It is clear that both the growing power demand and the deployment of distributed gen-
eration within power distribution grids are not slowing down in the near future. Therefore,
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configurations like the one studied herein will likely materialise in the upcoming years,
accompanied by emerging constraints such as the ones observed in this study. This goes to
show the pertinence of studies such as this one in order to prepare for this inevitability.

The damper on the control scheme’s performance in the configuration studied in this
paper can be traced back, at least partially, to the flexible assets’ dimensioning and their
suitability to the task. As grid load and PV power generation levels rapidly rise, the flexible
assets’ room for manoeuvring diminishes. Consequently, two critical questions transpire.
The first question is that of optimal dimensioning of these flexible assets. In this study, the
control strategy operates at the level of the MV/LV transformer. However, in an application
with finer spatial granularity, this question also encompasses optimal placement of the
assets within the grid. The second question is that of the assets nature and their suitability
to the application.

The combination of a biogas plant and a water tower in this case study was selected
in an attempt to utilise small-scale assets compatible with the rural setting of the “Smart
Occitania” project and offer the possibility of deferment of the assets’ operation. Having
said that, the examination of this duo’s potential reveals several flaws. To begin, the
water tower’s ON/OFF operation adds computational complexity to the optimisation
problem and is therefore a handicap to the real-time aspect of the applications. Besides, it
infers choppier setpoints, which not only worsen voltage fluctuations but also shorten the
equipment’s life expectancy.

This is especially problematic when the installation’s latitude in terms of storage
levels is limited. Furthermore, flexible assets need to be extensible in order to adapt their
room for manoeuvring to the rapidly growing power demand and distributed generation
levels within the grid with minimal cost. The assets considered herein are not easily
extensible, particularly the biogas plant, whose energy source is based on a fairly delicate
organic process.

In the case of model-based predictive control applications for power grids, choosing
the time step is a pivotal task with no definitive answer. A compromise is always made
between the high computational cost of this type of control scheme and the granularity of
the model, which allows us to capture a maximum of phenomena occurring in the system.
This type of control strategy is also dependent upon access to data, in real-time, which
comes with its own set of technical issues. Solutions to these issues are starting to come
together through the maturing of advanced metering infrastructures in recent years.

The 10 min time step considered in this work is very much an instance of the afore-
mentioned compromise. It allows the necessary computations of both the forecast module
and the optimisation problem to run their course. However, it limits the strategy’s visibility
into the high-dynamics of power grids and thus makes it impossible to intervene between
two sampling times. This type of strategy can therefore be seen as an-upper level control
scheme, to be coupled with longer-term planning strategies and lower-level operation
methods that have the capacity to react to rapid electrical phenomena, namely methods
that fall under the umbrella of electrotechnical engineering.

6. Conclusions and Prospects

The work presented in this manuscript falls within the scope of the “Smart Occitania”
project, whose goal is to demonstrate the feasibility of the smart grid concept for rural
and suburban low-voltage power distribution grids. To this end, a simulated case study
is constructed, based on data collected during the project’s run and made available by
ENEDIS, in order to elaborate a predictive control strategy for more efficient management of
power flows within a power distribution grid with prolific levels of distributed generation,
namely PV power generation.

The premise of the proposed strategy is to use a model-based predictive controller
to optimise setpoints of flexible assets present in the power distribution grid, in order
to reduce the gap between supply and demand. This optimisation is constrained by
pre-defined acceptable voltage margins, in addition to the assets’ operational restrictions.
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A forecast module is constructed using Gaussian process regression and provides
intraday forecasts of grid load, water demand, and GHI from which PV power generation
is inferred. The quality of the forecasts decreases as the forecast horizon grows longer,
but quickly stabilizes around a constant error value. The GPR models also provide confi-
dence intervals associated with the forecasts. Herein, the computed confidence intervals
correspond to a probability of 95% of containing the measurements.

An evaluation is carried out of the MPC strategy’s resilience to forecasting errors,
and the induced errors are quantified. Results show that the predictive control strategy is
inherently resilient to forecasting errors as the final objective function value varies little
between the case where measurements are used and the one where GPR forecasts are used.

Finally, a min–max problem is added upstream of the main optimisation problem. Its
purpose is to anticipate and minimise the voltage overshooting resulting from forecasting
errors. In this min–max problem, the feasible space defined by the confidence intervals of
the forecasts is searched, in order to determine the worst-case scenario in terms of constraint
violation, over the next time step. Then, the main optimisation problem incorporates this
information into its decision-making process. Results show that these incidents are indeed
reduced thanks to the min–max problem, both in terms of frequency of their occurrence
and the total surface area of overshooting.

There are several axes along which the present work can make headway. To begin,
the optimisation problem could be modified to take into account the implementability of
the flexible assets’ setpoints. For example, this could take the form of a multi-objective
optimisation that balances out sometimes-conflicting goals.

In addition, the min–max problem integrated into the predictive control strategy
in order to improve the scheme’s resilience to forecasting errors, can be extended from
focusing on the next time step to span the entire forecast horizon. The length of the
min–max problem’s forecast horizon would be another parameter to be optimised. This
will inevitably increase the computational burden of the control scheme, but should also
enhance its performance through a better anticipation of issues that may arise along the
forecast horizon, especially in light of the degradation of the forecasts’ quality as the
algorithm advances into the forecast horizon.
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The following abbreviations are used in this manuscript:

ADEME French agency for ecological transition
ANN Artificial neural network

90



Clean Technol. 2021, 3

CWC Coverage width-based criterion
DSM Demand side management
GHI Global horizontal irradiance
GP Gaussian process
GPR Gaussian process regression
LHV Low heating value of the stored biogas
LSTM Long short term memory
LV Low voltage
MAS Multi-agent systems
MINLP Mixed-integer nonlinear programming
MPC Model-based predictive control
MV/LV Medium-voltage/low-voltage
nRMSE Normalized root mean square error
OPF Optimal power flow
PICP Prediction interval coverage probability
PINAW Prediction interval normalized average width
PROMES-CNRS Processes, materials and solar energy
PV Solar photovoltaics
RQ Rational quadratic kernel (Gaussian process regression)
SE Squared exponential kernel (Gaussian process regression)
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Abstract: Distributed generation (DG) is becoming a prominent key spot for research in recent
years because it can be utilized in emergency/reserve plans for power systems and power quality
improvement issues, besides its drastic impact on the environment as a greenhouse gas (GHG)
reducer. For maximizing the benefits from such technology, it is crucial to identify the best size and
location for DG that achieves the required goal of installing it. This paper presents an investigation
of the optimized allocation of DG in different modes using a proposed hybrid technique, the tunicate
swarm algorithm/sine-cosine algorithm (TSA/SCA). This investigation is performed on an IEEE-69
Radial Distribution System (RDS), where the impact of such allocation on the system is evaluated by
NEPLAN software.

Keywords: power losses; power system optimization; PV curves; DG; TSA/SCA

1. Introduction

Recently, the integration of distributed generation (DG) in distribution networks is
becoming very popular to meet increases in system load [1–4]. Also, the world is interested
in installing several types of DG, especially renewable sources in power grids, such as hy-
dropower, biomass, photovoltaic (PV), and wind turbine [5–7] technologies. DG is a newly
coined term that describes a technology that has a deep impact on power systems nowa-
days. A few years ago, distributed generation (DG)—or dispersed generation—started
to arise in the world of power systems, aiming to exploit small-scale energy resources to
utilize them in electric power generation instead of depending only on centralized large-
scale power generation stations [1–4]. DG stations are characterized by being small-scale
(usually less than 50 MW) and installed directly to the distribution power system, instead
of the traditional transmission power system, enabling the facility that owns such a station
to consume a part of the generated power, then export the surplus power [1,2].

Such a technology brings renewable energy resources into action, as most of the
renewable-energy-dependent generation stations are small-scale stations, and of course,
this will have a drastic effect on the environment. In other words, the more penetration
of renewable-energy-dependent generation stations is achieved, the more reduction of
greenhouse gasses (GHG) takes place [3–8].

Besides the environmental impact of distributed generation, it also has a remarkable
impact on power-quality issues in distribution systems. It has a relieving effect on congested
transmission and distribution systems due to its unique location: just beside the consumer!
Such an advantage results in economic and environmental benefits by reducing the power
losses of the system, as there is no need for additional transmission lines, while saving
such losses results in a reduction of the GHG effect by about 1% [4].

On the other hand, distributed generation can be utilized for improving power quality
in distribution systems, and even in transmission systems, as it has the ability to be con-
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nected at different voltage levels, i.e., low, medium, and high voltage [1]. It can improve
system reliability, maintain voltage stability, and also provide the system with reserve
generated power for emergencies [1,5]. Moreover, such technology offers a remarkable
contribution to economic investment in energy, inspiring researchers to introduce several
techniques for the initiation and penetration of Distributed Energy Resources (DER) tech-
nologies and enabling a vision of such penetration regarding economic investment and
cost reduction, focusing on biogas and hydrogen cells [9–12].

Nevertheless, identifying the perfect allocation and size of a distributed generator
is a critical issue, as it increases the profit of installing it, which is the goal of installation.
Obtaining the best location and size has a deep influence on the impact of installing DG.
In [6], the optimal allocation of DG was identified with regards to the operations and invest-
ment costs of DG, where the utilized optimization approach tends to decrease the energy
loss when the loads are time-varying by determining their generation capacity at different
instants. Another optimization method is proposed in [7], regarding the minimization
of power losses, where it is simplified so that it does not need excessive computational
processes. In [8], a new optimization method, typically the virus colony search (VSC)
algorithm was utilized, considering the reliability assessment of the distribution network,
where the results are compared with several optimization methods. A hybrid method is
proposed in [9] regarding loss minimization and voltage improvement, where the location
of DG is identified using an empirical discrete metaheuristic (EDM), while the size is
identified by the steepest descent method (SD).

TSA and SCA are efficient metaheuristic algorithms to solve difficult optimization
problems [13–16]. Most metaheuristic algorithms have faced many challenges to determine
a promising area of search space for their exploration, so the SCA algorithm is inserted
into the TSA algorithm to improve the exploration phase of the TSA algorithm. There
are several metaheuristic techniques used to obtain the optimal allocation of PVs and
capacitors in RDS, such as whale optimization algorithm (WOA) [15], lightning search
algorithm (LSA) [16], the backtracking search algorithm (BSA) [17], symbiotic organisms
search (SOS) [18], crow search algorithm (CSA) [19], particle swarm optimization (PSO)
algorithm [20], backtracking search optimization algorithm (BSOA) [21], firefly algorithm
(FFA) [22], and the flower pollination algorithm (FPA) [23].

This paper introduces a new hybrid optimization approach wherein the tunicate
swarm algorithm (TSA) is merged with the sine-cosine algorithm (SCA), resulting in a
novel TSA/SCA hybrid approach. This new approach is used to identify the best size
and location of DG in distribution, considering the minimization of system loss. The
optimization process is performed in three scenarios: (1) the DG is producing real power
only (P-type case), (2) the DG is producing reactive power only (Q-type case), and (3) the
DG is generating both reactive and real power (PQ-type case). The performance of the RDS
is evaluated after the optimization process using NEPLAN software.

The contributions of this paper are the (1) introduction of a new hybrid approach
that consists of the TSA and SCA algorithms, (2) use of an efficient hybrid approach to
determine the optimal planning of DG in RDS, and (3) study of the effect of integrating
different types of DG in RDS.

The remainder of the paper is organized as follows: the presented problem is explained
in Section 2; sensitivity is discussed in Section 3; Section 4 explains the presented algorithm
and the obtained results. Section 5 discusses the conclusion.

2. Problem Formulation

Figure 1 shows the representation of two buses in a distribution system.
The system power flow is evaluated in a backwards direction by Equations (1) and (2) [24]:

P1 = P2 + PL2 + R

(
(P2 + PL2)

2 + (Q2 + QL2)
2

|V2|2
)

(1)
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Q1 = Q2 + QL2 + X

(
(P2 + PL2)

2 + (Q2 + QL2)
2

|V2|2
)

(2)

Then, the voltage magnitude of bus (r) can be determined in a forward direction
as follows:

V2
2 = V2

1 − 2(P1R + Q1X) +
(

R2 + X2
)(P1

2 + Q1
2)

V2
1

(3)

The problem formulation can be presented as a multiobjective function as follows:

ft = k1 f1 + k2 f2 + k3 f3 (4)

where,

f1 =
B

∑
m=1

(Ploss(m)) (5)

f2 =
S

∑
m=1

(VD(m)) (6)

f3 =
1

∑S
m=1(|VSI(m) |) (7)

|k1|+ |k2|+ |k3| = 1 (8)

where, VD(m) represents the voltage deviation at bus (m), VSI(m) represents the voltage
stability index at bus (m), S is the total system buses, and B is the total system branches. K1,
K2, and K3 are weighting factors that are equal to 0.5, 0.25, and 0.25, respectively.

The inequality and equality constraints are determined as shown next [19,25,26].

Figure 1. Representation of two buses in a distribution network.

2.1. Equality Constraints

The power flow balance equation that can be represented by (9) and (10), and the
power flow equation that can be represented by (11) and (12), are the inequality constraints
as shown next.

PS +
M

∑
m=1

PPV (m) =
S

∑
m=1

PL,m +
B

∑
m=1

P loss(m) (9)

QS +
N

∑
m=1

QCapacitor(m) =
S

∑
m=1

QL,m +
B

∑
m=1

Q loss(m) (10)
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P1 = P2 + PL2 + R

(
(P2 + PL2)

2 + (Q2 + QL2)
2

|V2|2
)

(11)

Q1 = Q2 + QL2 + X

(
(P2 + PL2)

2 + (Q2 + QL2)
2

|V2|2
)

(12)

where, QS and PS are the output reactive and real power from the grid, respectively, but
QL,m and PL,m are the reactive and real load demand at bus (m), respectively. M and N are
the total number of PVs and capacitors in RDS, respectively. PPV(m) and Qcapacitor(m) are
the output power of PVs and capacitors at bus (m), respectively.

2.2. Inequality Constraints

The system operation constraints are the inequality constraints, which can be repre-
sented as follows:

2.2.1. System Voltage Constraints

The bus system voltage is operating between the minimum operating voltage (VDown)
and the maximum operating voltage (VUp).

Vdown ≤ Vm ≤ Vup (13)

DER Sizing Limits:

M

∑
m=1

PPV(m) ≤
(

S

∑
m=1

PL,m +
B

∑
m=1

P loss(m)

)
(14)

PPV, n ≤ PPV ≤ PPV,a (15)

The PV output is operating between the minimum (PPV,n) and maximum power (PPV,a)
of PVs in RDS.

Capacitor Size Limits:

N

∑
m=1

QCapacitor(m) ≤
(

S

∑
m=1

QL, m +
B

∑
m=1

Q loss(m)

)
(16)

QCapacitor, n ≤ QCapacitor ≤ QCapacitor,a (17)

2.2.2. Line Capacity Limits

The branches current of the system is operating under operating constraints:

Im ≤ Ia,m m = 1, 2, 3, . . . , NBr (18)

where, Ia,m represents the high operating current in the branch (m).

3. TSA-SCA Algorithm

3.1. Tunicate Swarm Algorithm (TSA)

Tunicates are cylinder-shaped, with a gelatinous tunic that is closed at one end and
open at the other. Tunicates shine with bioluminescence, generating a faint green-blue light,
which can be viewed from several meters away. The size of tunicates is a few millimeters.
In the ocean, tunicates absorb water to generate jet propulsion from their open ends using
atrial siphons. Tunicates move in water by generating jet propulsion. The updating position
of tunicates can be formulated as follow:

→
Pp(x) =

⎧⎨⎩
→
FS +

→
A · →

PD , i f rrand ≥ 0.5
→
FS −

→
A · →

PD , i f rrand < 0.5
(19)
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→
M = |Pmin + c1·(Pmax − Pmin)| (20)

→
A =

→
G
→
M

(21)

→
G = c2 + c3 −→

F (22)
→
F = 2c1 (23)

→
PD =

∣∣∣∣→FS − rrand·
→
Pp(x)

∣∣∣∣ (24)

Tunicates move in a swarm in nature, which can be modeled by the following equation:

→
Pp(x + 1) =

→
Pp(x) +

→
Pp(x + 1)

2 + c1
(25)

3.2. Sine-Cosine Algorithm (SCA)

The SCA is derived from the cosine and sine function to create an effective optimization
algorithm. The effectiveness of the SCA is based on its exploitation and exploration phases.
r1 is used to balance the exploitation and exploration rates for the SCA over the course
of iterations to obtain the global optimum solutions. The position of the SCA is updated
as follows:

XT
i + 1 = XT

i + r1cos (r2) ∗
∣∣∣r3 ∗ PT

i − XT
i

∣∣∣, r4 ≥ 0.5 (26)

XT
i + 1 = XT

i + r1cos (r2) ∗
∣∣∣r3 ∗ PT

i − XT
i

∣∣∣, r4 < 0.5 (27)

r1 = 2 − 2T
Tmax

(28)

r2 = 2 ∗rand () (29)

r3 = 2∗ rand () (30)

r4 = rand () (31)

Where, Tmax and T are the maximum and current iteration, respectively, Pi
T is the

targeted global optimal solution, and Xi
T represents the current iteration. r1, r2, r3, and r4

are random numbers.

3.3. Improved TSA-SCA Algorithm

The improved TSA-SCA is created by applying the updating position of the SCA to
the updating position of the TSA to improve the exploration phase of the TSA. The rest of
the pseudo code of the TSA remains the same, as shown in the following equations:

→
PD = rand() ∗ sin(rand())

∣∣∣∣→FS − rrand·
→
Pp(x)

∣∣∣∣, rand () < 0.5 (32)

→
PD = rand() ∗ cos(rand())

∣∣∣∣→FS − rrand·
→
Pp(x)

∣∣∣∣, rand () < 0.5 (33)

→
Pp(x) =

⎧⎨⎩
→
FS +

→
A · →

PD , i f rrand ≥ 0.5
→
FS −

→
A · →

PD , i f rrand < 0.5
(34)

→
Pp(x + 1) =

→
Pp(x) +

→
Pp(x + 1)

2 + c1
(35)
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The steps of the TSA-SCA to determine the optimal sizes and locations of DG in
distribution networks are explained in the following steps:

1. Read the system data, maximum iteration (I), and number of search agents (S).
2. Produce the initial population of slime mold between the lower-(w) and upper (p)-

controlled variables by Equation (36).

J(c, q) = rand(R(c, q)− y(c, q)) + y(c, q) (36)

where, rand represents a random value between the values of 0 and 1. c and q are the
number of tunicates and the problem dimension.

3. The produced population represents the tunicate position that can be formulated
as follows:

S =

⎡⎢⎢⎢⎣
S1,1 S1,2 S1,q−1 S1,q
S2,1 · · · S2,q−1 S2,q

...
. . .

...
...

SN,1 · · · SN,q−1 SN,q

⎤⎥⎥⎥⎦ (37)

where, Si,j is the position of the tunicate.
4. Evaluate the fitness for all locations of tunicates, and obtain the superior position of

tunicates and the superior objective function.
5. Evaluate the new position of each tunicate by Equation (35).
6. Return to step 4 until the final iteration is reached.
7. Obtain the best location of tunicates (sizes and positions of DG).

4. Testing and Evaluation

As mentioned in Section 1, the proposed optimization method is applied to the IEEE 69-
node RDS to identify the optimal sizing and allocation of DG in such a system, considering
the minimization of power losses. Such a system is tested by the proposed method when
installing one, two, and three DGs to it. Also, the DG mode changes, i.e., DG is tested in
three modes: while generating active power only (P-type mode), while generating reactive
power only (Q-type mode), and while generating both active and reactive power.

The presented test system is a IEEE 69-node RDS that includes load demand of 3801.49 kW
and 2694.6 kVAR [23]. This system consists of 69 buses and 68 branches with a base of 12.66 kV
and 100 MVA. Figure 2 shows the system implementation by NEPLAN software.

Figure 2. IEEE 69 RDS implementation by NEPLAN.
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The analysis of the IEEE 69-node RDS system in its original case shows the active
power losses of the system (PLosses = 225 kW), and the least voltage is in node 65, where the
voltage of that node is V65 = 0.9092 pu. Figure 3 shows the loading ability of the system by
PV curves, where PV curves are applied on buses 10, 27, 46, and 65.

Figure 3. PV curves of the IEEE 69-node RDS system in its original case.

The PV curves show that the voltage of node 65—the weakest node in the RDS—starts
to fall below 90% of nominal voltage when loads exceed 110%, and the system collapses
when loads exceed 320%. Now the hybrid TSA-SCA method can start to be used to optimize
the system by identifying the optimal allocation and sizing of DG installed regarding active
power losses. After the optimization process, the system is analyzed to show the impact
of the optimization process on the performance of the system. The optimization process
is achieved using MATLAB R2019b on a personal computer with 2 GB RAM and Intel(R)
Pentium(R) CPU B950, 2.1 GHZ, while the analyses are achieved using NEPLAN software.

4.1. System Optimization with Active Power-Generating DG (P-Type Mode)

In this case, the DGs installed are P-type and are configured for system optimization
regarding the objective function as it is shown in Table 1.

Table 1. Configuration of P-type DGs installed on the IEEE-69 RDS.

Number of DGs 1 2 3

Location/Size (kW) 61/1873.32 61/1781.2
17/530.5

61/1718.8
17/380.5
11/525

Power Losses (kW) 83.2224 71.6745 69. 4266
Power Losses Reduction (%) 63.012 68.145 69.144

According to the settings of DGs shown in Table 1, the load flow process and PV
curves were carried out. Starting with the system with one DG installation, results show
power loss (Ploss = 83.2224 kW), and the total power loss reduction = 63.012%. The least
voltage is found in node 27, where V27 = 0.9683 pu. Figure 4 shows the system’s PV curves
with one P-type DG installation.
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Figure 4. PV curves of the IEEE 69-node RDS system with 1 P-type DG installation.

Due to the new DG’s location, the PV curve of node 65 improved, as shown in Figure 4.
Figure 4 shows that the voltage of node 27—the system’s weakest node in that case—starts
to fall below 90% of nominal voltage when loads exceed 290%, and the system collapses
when loads exceed 750%.

When installing two P-type DGs to the system according to the settings in Table 1,
the active power loss of the system is PLoss = 71.6745 kW, and the total active power loss
reduction is 68.145%. The least voltage is found in node 65, where V65 = 0.9789 pu. Figure 5
shows the system’s PV curves with two P-type DG installations.

Figure 5. PV curves of the IEEE 69-node RDS system with 2 P-type DG installations.

The presence of the two DGs in the estimated locations improves the PV curves even
more. Figure 5 shows that the voltage of node 65—the weakest node in that case—starts
to fall below 90% of nominal voltage when loads exceed 380%, and the system collapses
when loads exceed 750%.

When installing three P-type DGs to the system according to the settings of Table 1,
the active power loss of the system is PLoss = 69.4266 kW, and the total active power loss
reduction is 69.144%. The least voltage is found in node 65, where V65 = 0.979 pu. Figure 6
presents the system’s PV curves with three P-type DG installations.
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Figure 6. PV curves of the IEEE 69-node RDS system with 3 P-type DG installations.

Figure 6 shows that there is almost no drastic effect on the system’s PV curves when
installing 3 P-type DGs. The voltage of node 65—the system’s weakest node in that case—
starts to fall below 90% of nominal voltage when loads exceed 380%, and the system
collapses when loads exceed 750%. It is also observed that the presence of the third DG
resulted in an improvement on node 10′s PV curve.

4.2. System Optimization with Reactive Power-Generating DGs (Q-Type Mode)

In this case, the DGs installed are Q-type DGs and are configured for system optimiza-
tion regarding the objective function as it is shown in Table 2.

Table 2. Configuration of Q-type DGs installed in the IEEE-69 RDS.

Number of DGs 1 2 3

Location/Size (kVAr) 61/1330 61/1276
17/361

61/1233
17/253
11/391

Power Losses (kW) 152.041 146.441 145.129
Power Losses Reduction (%) 32.426 34.915 35.498

Following the settings of DGs shown in Table 2, the load flow process and PV
curves were carried out. When installing one Q-type DG, the power loss of the sys-
tem is PLoss = 152.041 kW, and the total power loss reduction = 32.426%. The least voltage
is found in node 65, where V27 = 0.9307 pu. Figure 7 presents the system’s PV curves with
one Q-type DG installation.

In the presence of one Q-type DG, the system’s PV curves improved. Figure 7 shows
that the voltage of node 65—the system’s weakest node in that case—starts to fall below
90% of nominal voltage when loads exceeds 140%, and the system collapses when loads
exceeds 400%.

When installing two Q-type DGs to the system according to the settings in Table 2,
the active power loss of the system is PLoss = 146.441 kW, and the total active power loss
reduction is 34.915%. The least voltage is found in node 65, where V65 = 0.9311 pu. Figure 8
presents the system’s PV curves with two Q-type DG installations.
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Figure 7. PV curves of the IEEE 69-node RDS system with 1 Q-type DG installation.

Figure 8. PV curves of the IEEE 69-node RDS system with 2 Q-type DG installations.

Figure 8 shows that there is almost no drastic effect on the system’s PV curves when
installing 2 Q-type DGs. The voltage of node 65—the system’s weakest node in that
case—starts to fall below 90% of nominal voltage when loads exceed 140%, and the system
collapses when loads exceed 400%.

When installing three Q-type DGs to the system according to the settings of Table 2,
the active power loss of the system is PLoss = 145.129 kW, and the total active power loss
reduction is 35.498%. The least voltage is found in node 65, where V65 = 0.9314 pu. Figure 9
presents the system’s PV curves with three Q-type DG installations.

Again, Figure 9 shows that there is almost no drastic effect on the system’s PV curves
when installing 3 Q-type DGs. The voltage of node 65—the system’s weakest node in that
case—starts to fall below 90% of nominal voltage when loads exceed 140%, and the system
collapses when loads exceed 400%.
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Figure 9. PV curves of the IEEE 69-node RDS system with 3 Q-type DG installations.

4.3. System Optimization with Active and Reactive Power-Generating DG (PQ-Type Mode)

In this case, the DGs installed are PQ-type DGs and are configured for system opti-
mization regarding the objective function as it is shown in Table 3.

Table 3. Configuration of PQ-type DG installed on the IEEE-69 RDS.

Number of DGs 1 2 3

Location/Size (kVAr)/P.F 61/1828.44/0.8149 61/1735/0.8138
17/523.24/0.829

61/1673.2/0.8136
17/377.86/0.8312
11/497.33/0.8155

Power Losses (kW) 23.169 7.2013 4.2665
Power Losses Reduction (%) 89.702 96.799 98.104

Following the settings of DGs shown in Table 3, the load flow process and PV curves were
carried out. When installing one PQ-type DG, the power losses, PLoss = 23.169 kW, and the total
power loss reduction = 89.702%. The least voltage is found in node 27, where V27 = 0.9725 pu.
Figure 10 presents the system’s PV curves with one PQ-type DG installation.

Figure 10. PV curves of the IEEE 69-node RDS system with 1 PQ-type DG installation.
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Due to the presence of the powerful PQ-type DG, the system’s PV curves acquired
superior improvement, as the DG provides both active and reactive power to the RDS.
Figure 10 shows that the voltage of node 27—the system’s weakest node in that case—starts
to fall below 90% of nominal voltage when loads exceed 310%, and the system collapses
when loads exceed 850%.

When installing two PQ-type DGs to the system according to the settings in Table 3,
the active power loss of the system is PLoss = 7.2013 kW, and the total active power loss
reduction is 96.799%. The least voltage is found in node 69, where V69 = 0.9943 pu. Figure 11
presents the system’s PV curves with two PQ-type DG installations.

Figure 11. PV curves of the IEEE 69-node RDS system with 2 PQ-type DG installations.

Due to the presence of the two PQ-type DGs, the system’s PV curves were improved
even more. Figure 11 shows that the voltage of node 65—the system’s weakest node in that
case—start to fall below 90% of nominal voltage when loads exceed 450%, and the system
collapses when loads exceed 850%.

When installing three PQ-type DGs to the system according to the settings of Table 3,
the active power loss of the system is PLoss = 4.2665 kW, and the total active power loss
reduction is 98.104%. The least voltage is found in node 65, where V65 = 0.997 pu. Figure 12
presents the system’s PV curves with three PQ-type DG installations.

Figure 12 shows that a slight increase in the system’s load capacity happens when
installing 3 PQ-type DGs in the system. The voltage of node 65—the system’s weakest
node in that case—starts to fall below 90% of nominal voltage when loads exceed 460%,
and the system collapses when loads exceed 850%. Even more, the PV curve of node 10 is
slightly improved more than in the case of two PQ-mode DGs.

Table 4 shows the comprehensive results between TSA-SCA techniques and several
other techniques.

Table 4. Comparison results of the improved TSA-SCA algorithm and other algorithms in the IEEE 69-bus RDS.

Item TSA-SCA MFO [8] Hybrid [27] WOA [28] SCA [29] PSO [30] PVSC [31]

1P-type 83.2224 83.224 83.372 - - - -
2P-type 71.6745 71.679 71.82 - - - -
3P-type 69.4266 - 69.52 - - - -
1Q-type 152.041 - - 152.064 - - -
2Q-type 146.441 - - - 147.762 - -
3Q-type 145.129 - - - - - -

1PQ-type 23.169 - - - - 25.9 -
2PQ-type 7.201 - - - - - -
3PQ-type 4.253 - - - - - 9.63
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Figure 12. PV curves of the IEEE 69-node RDS system with 3 PQ-type DG installations.

From Table 4, the improved TSA-SCA has efficient characteristics to obtain the best
results when compared to other efficient algorithms.

5. Conclusions

This paper introduces a new hybrid approach, a mixture between the tunicate swarm
algorithm (TSA) and the sine-cosine algorithm (SCA) optimization technique. The new
TSA/SCA optimization technique was tested on an IEEE 69-node RDS system, where
the fitness is decreasing the active power loss through identifying the optimal sizing and
allocation of DGs installed on the system. The optimization process took place in three
modes: with active power DGs (P-mode DGs), reactive power DGs (Q-mode DGs), and with
both active and reactive power DGs (PQ-mode DGs). The performance of the optimized
system was evaluated by NEPLAN software to show the impact of the optimization process
on the system. The analyses shows that the objective function was successfully achieved
by the proposed technique, the active power loss was obviously minimized and the load
demand of the system was greatly increased so that it can withstand more loads. The
results proved that integration of multiple DGs gives better results than the integration of
a single DG in a distribution network. Installing PQ-type optimization gives better results
than the integration of P-type or Q-type.
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Abstract: Small-scale wind turbines simulations are not as accurate when it comes to costs as
compared to the large-scale wind turbines, where costs are more or less standard. In this paper, an
analysis was done on a decision for a wind turbine investment in Bellingham, Whatcom County,
Washington. It was revealed that a decision taken based only on a software tool could be destructive
for the sustainability of a project, since not taking into account specific taxation, net metering,
installation, maintenance costs, etc., beyond the optimization that the tool offers, can hide the truth.
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1. Introduction

1.1. Current Research Framework

Wind turbines have been at the forefront of renewable energy technology. Many
Americans have noticed this development in pictures of Europe with tall white wind
turbines scattered over green rolling hills. Many have seen the news from Texas developing
large wind farms over miles of prairie lands, as well as of Block Island, Rhode Island, where
the nation’s first offshore wind turbine was recently installed [1]. The future of renewable
energy in the United States continues to expand to residential backyards. After decades
of wind turbine research and development, many European countries, such as Belgium
and Denmark, lead the market with small wind turbines for private or community use—
especially since Denmark’s amazing turbine development began with community-bought
wind turbines [2,3]

Wind turbines have recently become much cheaper, smaller, more efficient, and easier
to transport and assemble [4–6]. This new technology allows families to purchase wind
turbines for their homes and connect to the grid to be able to sell extra electricity back to
the utility company or share with their neighbors. The Peer-to-Peer (P2P) approach from a
computing application scheme has been made possible to be applied in other fields, such
as in the renewable energy sector.

Generation Y, also referred to as Millennials, grew up during the birth of the internet.
While this generation experienced a childhood similar to their parents—playing outside
until the streetlights came on—the coming-of-age period of this generation occurred while
the internet was being developed to function from people’s hands, no longer on dial up,
but on wireless cellphone computers. This was the time that humans began socializing
in chat rooms, work began using emails, and you could search the internet for endless
knowledge. The internet provided an amazing change in the way lay people could access
information about the world around them. This generation would prove most concerned
for the environment, as they absorbed much global information growing up [7]. Today,
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this generation have families and have bought or are looking to buy houses, and many
are also looking to lower their carbon footprint—often not following the most efficient
path. Electrification of their consumption is a top priority, including EV ownership [8],
heat pumps, and other residential appliances [9]. Thus far, whenever energy surplus
was generated via, e.g., a fireplace, via a fuel-based boiler etc., it was simply lost. Now,
with P2P technology and the liberalization of the electricity markets (and how modern
grids operate), it can be offered to the neighbor at a competitive price [10]. When the
local utility company does not sell energy from renewable sources, there are options for
families to do so themselves [11]. Over the last few years, in the Western world, the global
Not-In-My-Back-Yard (NIMBY) approach has moved from there to Yes-In-My-Back-Yard
(YIMBY). More and more are looking to be prosumers and—if in a warm climate area—are
trying to invest in solar (or wind) energy resources and storage as much as possible, aiming
at having a zero-electricity bill (considering—ultimately falsely—that they are at times
grid-independent of the local utility) [12].

The renewable energy market offers a variety of wind turbines, solar panels, and
biofuel options. Wind turbines are one of the older technologies that have undergone
recent decades of research and development [13] and “is the fastest growing source of
energy in the world—efficient, cost effective, and nonpolluting,” according to [14], which
makes it an ideal option for consumers, especially when paired with solar panels. Installing
a wind turbine and/or solar panel requires research into the amount of energy used by the
household, the laws of the local area and/or homeowners association, and the consumer’s
budget.

Although there is a large number of articles published focused on remote or rural
areas, mostly in African countries [15–18], a significant amount of literature—though
not extensive—is devoted to renewable energy at home, with a focus onto purchasing
a wind turbine for home use. Oliver and Groulx [19] presented a homeowner-centric
approach of a hybrid renewable energy system, which included a wind turbine, which
proved what was already known for wind turbines: that they are clear economies of scale.
Ugur et al. [20] moved on to a financial analysis for small wind turbines for home use in
Turkey. Based on their results and the wind resource analysis in Konstantinoupoli, they
have identified where the most profitable areas in the city for small wind installations
are. Rodriguez-Hernandez et al. [21] did another economic feasibility study for small wind
turbines in the Valley of Mexico metropolitan area, based on three years of data, 28 wind
turbine models, and 18 locations. Hemmati [22] published a techno-economic analysis of a
home system, which included a small-scale wind turbine and a storage subsystem. Mixed
integer linear programming was used, and it was proven that the lowest planning costs
were for a 20-kW wind turbine.

On the other hand, Canale et al. [23] were not focused on the economic analysis.
Instead, they focused on an innovative blade technical analysis and their application on
small-scale wind turbines. Numerical and experimental results were evaluated based on
the Blade Element Momentum (BEM) theory in small wind turbines, which is not usually
the case. Such experimental set-ups are usually met in large scale testing facilities. Another
technical analysis was done for a 5-kW wind turbine system for a home with the inclusion
of batteries [24]. A net-zero energy home was studied by Rasouli and Hemmati [25], by
using mixed integer nonlinear programming (MINLP) and solved using the particle swarm
optimization (PSO) technique. It was proven that any net zero energy home is heavily
dependent on the wind turbine, solar sizing, battery sizing, and hydrogen (or in some cases
electric) vehicles.

1.2. Renewable Energy at Home

What has not been studied adequately over the last years—and definitely not after
the renewable energy’s progress in the USA—is if people currently have a more positive
attitude with regards to having a wind turbine in their back yard compared to the NIMBY
approach, which has clearly lasted for a long time worldwide. It should be pointed out,
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however, that over the last year, the coronavirus pandemic derailed renewable energy’s
overall progress in several countries. The public deficit has increased, and the GDP,
although it has experienced small ups and downs throughout the past decade (mainly
ups, up to 5% compared to the previous calendar quarter every time), over the last two
quarters in 2020 plummeted by −5.0% (Q1) and −32.9% (Q2) in the US [26] (Figure 1).
Therefore, liquidity and available funds for investing in renewable energy sources for home
use shrunk. Thus, the necessity to lower the initial capital investment of all renewables,
mainly of small wind turbines, in order to achieve substantial growth in the small wind
sector in addition to the large wind turbine sector is crucial. Furthermore, as we approach
the American elections, budgetary-wise, liquidity for investments will become tougher to
find and funds will be limited.

Figure 1. Quarterly growth of the real GDP in the United States from 2011 to 2020.

Beyond that, the insufficient infrastructure for small-scale investments, such for as
small wind turbines, was the barrier for developing such business activities. However,
Electric Vehicles (EVs), along with the P2P infrastructure, has led citizens to start thinking in
another way. It is not only their will to produce their own wind energy and have a near-zero
(or even negative) electricity bill towards energy independence, it is also a prestige-related
attitude, the increase in social status, and the social acceptance related to the purchase of an
EV and the expectance of its purchase to soon be a good value for money [27]. Moreover,
such investments could follow the EV ownership approach. A “create-your-own-electricity”
approach could be another label of social status. Such investments are linked more to
summer houses than to houses in cities and densely urban areas, where the electricity
demand is highly increased due to the increased flow of tourists. In fact, for some very hot
days in summer when the grid is stressed, in order to fulfill the cooling demands, small
wind turbines could contribute significantly to electricity generation. In those areas, there is
a narrow security margin of electricity supply and a high risk of the system’s breakdown in
case of malfunctions/power cuts in periods with high load demand. Additionally, because
of the different demand profile with the winter in the summer houses, the large daily
and seasonal electricity load demand fluctuations, the summer peak can be many times
greater than the lowest electricity demand in winter, and the daily fluctuation could be
±50–60% of the average value [28]. Approaching the above-mentioned issues from the
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perspective of microgrids and hybrid systems, many solutions can be found on several
levels, even leading to a holistic energy climate water nexus [29,30]. Concerning financial
issues, this will lead to energy savings and a reduction in operational costs. From another
point of view, independent microgrids, which include wind turbines, should be able to
operate as autonomous power networks in case of failure and forced isolation, providing
uninterruptible power to crucial loads at least. In addition, microgrids with small wind
turbines should be able to meet the peak loads and improve the power quality and stability
of the grid-connection. To this end, the appropriate energy storage method (battery system)
will play an important role.

Above all, ultimately, the goal is to create green communities, a large step towards
energy independence and energy democracy. By introducing, e.g., small wind turbines via
the P2P approach, the current grid-based electricity is changing. In such communities, the
power comes from solar panels (on every roof) or small wind turbines, and is channeled to
the same busbar, which is linked to energy storage, community heating, EV charging, etc.
Energy is, therefore, consumed in the vicinity where it is produced, and the end-users do
not need to worry about transmission losses.

2. Materials and Methods

The importance of software tools in decision making is high and is meaningful for
all builders, architects, and decision makers. Software tools are helping them to allocate
resources, make decisions for investments, decide on the companies’ philosophy, etc. This
is rather profound in the renewable energy sector. The work in this paper was supported
by the HOMER tool (Figure 2). The HOMER Grid is an excellent software tool to help
one discover the resource availability in the specific location of their choice. The program
was designed by a retired Senior Economist at the U.S. Department of Energy’s National
Renewable Energy Laboratory [31]. The program offers not only resource information, but
also options for specific models of wind turbines, solar panels, generators, and information
from the utility company, alongside the associated costs and profits. Once a consumer
determines their future address, the energy use of the household will be determined, and
the HOMER Grid will find which systems would work best, after which it will find the local
laws and apply for the building permit, and then contact the retailer to find the installation
costs; finally, it will decide whether or not to invest.

Figure 2. Screenshot from HOMER Grid showing the start screen when opening the application (2020).114



Clean Technol. 2021, 3

This specific proposal is for a XANT M-21 100 kW to be installed in Bellingham,
Whatcom County, Washington. This location was chosen as one option for a future home
and a small farm for rescued animals. This turbine was introduced in the HOMER Grid
program, which is the main component used in this proposal. This proposal and the steps
taken to reach a conclusion may be helpful for any person curious about renewable energy
for their home, or for communities looking into purchasing a wind turbine to share, as well
as the types of people looking to live off the grid.

The wind turbine proposal will describe the steps taken to find the best results for
the wind turbine purchase in this specific location in Bellingham, Washington, and an
actual residence for sale on Zillow (Figure 3). Following the proposal, the reader will find
a thorough analysis and explanations for the costs and cash flow. The analysis describes
the few overlooked obstacles in the HOMER Grid program and with the Puget Sound
Energy company, as well as building permit information and costs from Whatcom County.
Following the analysis, the reader finds a discussion of the background steps, the proposal,
the analysis, what the future of this proposal will look like, and how the reader may
research their own personal energy system for their family.

Figure 3. A screenshot of the plot of land and home for the wind turbine proposal (Google Maps).

3. Results

The project was set in Bellingham, Washington, a desirable living location for those
searching for cooler climates, liberal policies, and a beautiful scenery. To begin, a home for
sale was found using the website Zillow. This address was used in the HOMER Grid. The
program prompts the user to download data from NASA.gov for wind speeds, radiation,
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and utility prices. The user must input the amount of electricity that they intend to use
per day. The U.S. Energy Information Administration claims that most households in the
country will use around 10,000 kWh per year, but the highest use is closer to 15,000 kWh
per year. To ensure a fair outcome and some cushion for error, a higher energy use was
assumed. The National Renewable Energy Laboratory recommends only a 1.5 kW wind
turbine along with a solar panel to supplement. Wind turbines and solar panels create
an optimum duo, since wind turbines create maximum electricity when solar panels are
creating none [32].

The radiation in Bellingham appeared high and steady throughout, from one to six
kWh/meter squared/day. The wind speeds appeared low, namely, under four meters per
second throughout the year, as you can see in Figure 4. It appeared from the HOMER Grid
resource projections that the house would benefit most from solar panels. Surprisingly,
the program results showed otherwise. The solar panels would end up costing the user
hundreds of thousands to millions of dollars more than the wind turbine that HOMER
favored. The best result included using a specific 100-kW XANT wind turbine [31].

Figure 4. Screenshot of the HOMER Grid program with the wind resource information for Bellingham, Washington from
NASA.gov (year: 2020).

The wind turbine options available in the HOMER Grid program include: XANT M-21
(100 kW), the XANT M-24 (95 kW), and three generic wind turbines with varying electricity
production capacities: 1 kW, 3 kW, 10 kW, and 1.5 MW. The generic models were created by
the HOMER Energy team to represent standard wind turbines with the latest technology.
The XANT systems were created by the Belgian company of the same name. These turbines
could easily be some of the best on the market for residential or community use. According
to their website, these turbines have been IEC 64100-1 and GL certified (XANT, 2020).
The International Electrotechnical Commission (IEC) was created in 1906 to showcase the
“International Standards for all electrical, electronic, and related technologies”, a standard
approved by many state and national governments [33]. The turbines were created for
easy transport, as it fits into a 40-foot container, can be erected without cranes, and can
withstand storms [31]. The project set in Bellingham, Washington would require a building
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permit before moving forward. The permit ensures a bureaucratically labor-intensive
process. The county of Whatcom requires that any residential wind turbine is under
100 kW. In fact, the program recommends this size and the proposal will include a specific
100-kW wind turbine from XANT. After this first win, there are many other conditions and
administrations to check your property before building can commence [34]. The checklist
in Figure 5 shows that the resident must also pay a fee for the application, but hidden is
also the sewer verification process, the cost of the building plans, and possible extra costs
for the site plan and rainwater verification. However, that amount may only be around
$2000 total, according to the spreadsheet that the county provides on the webpage (2020).
This number is added to the cost of the turbine, reaching an initial capital cost of $76,000.
The HOMER Grid chose the XANT M-21 100 kW turbine because it had the most potential
to create revenue for the property and the lowest Net Present Cost [31].

Figure 5. Screenshot of the building permit requirements for Whatcom County [34].

The next step was to run the simulations via HOMER Grid, examining all different
scenarios. The scope of this work was to investigate different hybrid setups with the XANT
M-21 100 kW wind turbine to optimally confront the challenge of setting up a small-scale
renewable energy system. Inevitably, a general methodology and HOMER tool was used,
focusing on proposing hybrid systems in autonomous grids, taking into account energy
demand, local weather conditions, and long-term energy planning. Figure 6 shows the
options provided by the HOMER Grid program after finding resources and choosing which
solar panels and wind turbines to use for the analysis. The first option in Figure 6 shows
the cost of using the wind turbine with the utility company. The simulation shows that

117



Clean Technol. 2021, 3

this option would turn a profit if the utility company buys the surplus of the electricity
produced. This is dependent on the production of the XANT M-21 100 kW wind turbine,
which can produce higher amounts of electricity than most wind turbines due to the
proficiency of the turbine technology. The next row shows the option of using the wind
turbine with the utility company during the low wind speed months in the summer and a
1-kVA energy storage battery. This is the second-best option for the project. The third-best
option is in the third row, which would be to use only the utility company and buy power
like everyone else in the neighborhood. The options after that mix solar, wind, and storage,
but are not profitable or even cost effective.

Figure 6. Screenshot of the HOMER Grid program results in Bellingham, Washington (2020).

The option chosen for the project is the XANT wind turbine along with the utility
company. This option has a Net Present Cost (NPC) of $20,362, a levelized cost of electricity
(LCOE) at $0.0236, a capital cost of $76,000, and operating cost (O&M) at −$4300 a month.
This NPC represents the total cost of installing, operating, and maintaining the energy
source minus the revenues it makes over its 25-year lifetime [31]. To look at this number
another way, after 25 years, the total electricity bill will be about $20,000. When divided by
the years in use, that is about $800 a year, a steal in electricity spending. One last important
benefit to installing a wind turbine on one’s property is the Federal Tax Credit, which pays
back the consumer 22% of the installation and capital cost of the renewable energy system.
However, this tax incentive expires in 2020, but if extended, this could make the NPC closer
to $0 for the project.

4. Discussion

The wind turbine results in HOMER projected that it would pay itself back within 12
years, an amazing feat for investing in renewable energy. After using the program to find
the NPC of the XANT 100 kW turbine, contacting the local energy supplier was crucial for
verification. Email correspondence revealed that the Puget Sound Energy (PSE) company
would not buy electricity for $0.90/kWh, as was illustrated by the computer software.
Instead, the company would purchase the electricity at “the market competitive price
of around 2 or 3 cents per kWh” (Zachary, M., personal communication, 24 April 2020).
Reevaluating the numbers with the new data revealed less enthusiastic results. The
HOMER Grid program found the yearly cost of the 100 kWh XANT wind turbine to
be −$4304.00. This assumes that the surplus of electricity would be sold at the rate of
9 cents/kWh and that the operating costs would be covered by the revenue. The new
numbers would present a yearly cost of −$707 and an NPC closer to $65,273 [34].

After contacting a representative at the Puget Sound Energy company, there are new
costs to consider which were not prompted by the HOMER Grid software. Connecting
to the grid can cost tens of thousands of dollars and takes two years, later learned from
Mr. Zachary of the PSE. As the project unfolded, new questions unfolded; XANT claims
on their website that they deliver a product which costs half the normal installation cost
because their wind turbines do not need cranes to be erected. These costs are relevant, of
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course, to any person’s specific location and needs and can vary from only a few thousand
dollars to half a million dollars, leaving doubt as to what the actual capital costs would
be [14].

The potentially high costs of connecting to the grid greatly offset the payback period,
especially after the new data from Mr. Zachary about their price for the electricity. The
PSE will, however, connect someone to the grid for almost no cost if the resident agrees to
use their “net metering” program. This program offers credits for the resident’s electricity
generated and “sold” back to PSE; then, when the resident needs electricity while the
turbine is not producing, they can use their credits to buy their electricity. This option may
be practical if a cheaper wind turbine is purchased, such as the 1.5 to 3 kW, which are much
cheaper. However, the HOMER Grid program chose the XANT M-21 100 kW wind turbine
because of its wind energy capturing potential [35,36]. Therefore, the importance of other
parameters is not taken into account—nor simulated in any way—and their impact might
be decisive.

The importance of investing in renewable energy, such as a wind turbine, has proven
essential throughout the last decade. Private citizens are even taking the initiative to
buy solar panels for their roofs now that the technology is more affordable. Thanks to
software such as HOMER Grid, communities and families can investigate their own home
solar panel and/or wind turbine. Using the program, one can look up the resources in
their area, such as radiance from the sun, wind speeds, and local utility company prices.
After conducting the project, the authors recommend that future endeavors contact their
utility company for information about buy back prices and grid connection to assure
HOMER is accurate. However, it is not panacea. Calhoun et al. [37] have pointed out the
possibilities of deception in simulations, pointing out the importance decision makers give
to simulation results, while in another study, they stressed the educational and ethical
implications [38]. Goldberg et al. [39] pointed out that deceptions of simulations should be
considered as unexpected events and take a decision if these are real or not. Realism and a
critical approach are always needed, especially when investing is part of the plan. Only
few studies have focused on the pitfalls of the software tools, the deceptions in simulations,
and the need to quantify decisive parameters that are usually omitted. Using HOMER
in an example of a simple case in the US proves that random and qualitative parameters
could make an investment from absolutely non-viable to viable and successful investment
even if the simulation results are exactly the same. Therefore, it would be helpful to also
contact others in the area who have followed through with their own wind turbine and/or
solar panel for actual installation costs.

While the resources in the desired location in Bellingham, Washington were not
promising, there was still a turbine on the market that could create more than enough
electricity for the household. The building permit and the inspections on the property add
time and additional cost capital costs. Moreover, connecting to the grid after the permit
has been approved and the new turbine shipped and installed could take years to finish
and possibly a few tens of thousands of dollars extra. All this time and money added
along with the research time means it would take between two to five years to complete. It
appears that the biggest obstacle for a consumer looking to lower their carbon footprint
are the installation and grid connection costs as well as the loss of the Federal Tax Credit,
which would rebate residents 22% of installation and operating costs—a huge benefit that
needs to be renewed in 2020 before it expires [14].

In fact, the importance of making personal wind turbines easier and cheaper for
residents and communities could be the pathway to relying 100% on renewables, similar to
the case study of Denmark, a country currently relying on renewable energy for more than
50% of their energy needs. A movement by residents buying and investing in wind turbine
shares drove research and development as well as anti-nuclear lobbyists, who pushed
representatives to choose wind turbine investment over nuclear power in the 1970s [2].
While the US is littered with fossil fuel lobbyists, grassroots initiatives from homeowners to
purchase wind power could be the accelerator this country needs right now. The nation’s
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leaders need to cover grid connection costs and renew the federal tax credit to make owning
personal wind turbines the future.

5. Conclusions

Wind and solar energy contributed in total more than 20% to Europe’s power supply
in the first half of 2020; Denmark reached 64%, followed by Ireland and Germany, with
49% and 42%, respectively. Thus, great achievements have been made for some countries,
but there is still a long way to go, and small-scale wind energy is needed for achieving
greater numbers for some countries, and a kick-start for others. This study focused on
small-scale wind energy, and specifically on (a) the need of a generation to move on in
producing their own electricity, either as a philosophy of life or as a status symbol and
(b) the decision-making process. For the latter, it was revealed that there are tools that can
simulate and propose hybrid system solutions; however, installation costs, maintenance
costs, net metering options, and taxation schemes are not included in most of these tools.
This is happening not only for this specific tool, but many more, especially in tools that
are linked to investment decisions [40]. Therefore, it is meaningless and careless to only
rely on the results of the tool and assume most of the above-mentioned parameters. The
different assumptions in these parameters can make a project have a payback period from
10 to more than 20 years, or else from being a totally sustainable project to an inviable one.

However, when seen from a more general perspective, the practical cost for decision
makers of counting only on simulation results can be unbearable when this is not coupled
with the overall picture. A future educational agenda around the deception of simulations
can advance the scientific areas of simulation as a learning tool.
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Abstract: The burgeoning photovoltaics’ (PVs) penetration in the low voltage distribution networks
can cause operational bottlenecks if the PV integration exceeds the threshold known as hosting
capacity (HC). There has been no common consensus on defining HC, and its numerical value
varies depending on the reference used. Therefore, this article compared the HC values of three
types of networks in rural, suburban, and urban regions for different HC reference definitions. The
comparison was made under balanced and unbalanced PV deployment scenarios and also for two
different network loading conditions. A Monte Carlo (MC) simulation approach was utilized to
consider the intermittency of PV power and varying loading conditions. The stochastic analysis of
the networks was implemented by carrying out a large number of simulation scenarios, which led
towards the determination of the maximum amount of PV generation in each network case.

Keywords: distribution networks; Monte Carlo simulations; PV hosting capacity; photovoltaics

1. Introduction

The hosting capacity (HC) concept has been gaining importance with time to ensure
the capacity of the system without employing any expensive grid upgrades. However, the
value of HC varies considerably depending on a variety of factors including photovoltaic
(PV) locations, network loading conditions, numerical values of limiting factors, and
PV deployment scenarios. Moreover, HC value is dependent on the references used for
its definition, and Reference [1] provides a review of different HC references and their
influence on changing HC value. The study concluded the five major HC references used
in the literature to be peak load, transformer rating, the share of customers’ PVs, energy
consumption, and share of available roof space. The HC can be defined as the ratio of
maximum PV production to the peak load of the feeder [2] or transformer’s kVA rating [3],
or the ratio of total yearly PV production to the yearly energy consumption [4] and w.r.t
roof space [5]. Alternatively, it can be defined with respect to the customers equipped
with PVs as the ratio of customers with PVs to the total customers in the area under
study [6]. The grid operators are concerned about maintaining the power quality standards
with an increasing trend to integrate more PVs in the electrical networks by using novel
technologies. The compliance with the performance constraints also known as the HC
limiting factors is an important criterion for the accurate determination of HC without
risking the quality of supply and the network component’s life. The limiting factors for
defining the HC are voltage variations, voltage unbalance, overloading limit of cables
and transformers, flicker, and harmonics. Voltage rise is the important limiting factor in
low-voltage networks in terms of voltage variations without any significant contribution
of under-voltage in limiting the HC. Therefore, the under-voltage limit violation can be
excluded from the set of limiting factors. The accurate choice of the limiting factors and
their operational threshold significantly influence the HC of the network, and different
studies have used a variety of performance indices for HC determination. Overvoltage limit
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has been widely used in the literature as a performance constraint followed by overloading
limits of cables and transformers.

The study conducted in [2] focused on finding the technical constraints limiting the PV
HC and concluded that on-load tap changer (OLTC) is more effective in HC improvement
in balanced PV deployment as compared to the single-phase connections. A Monte Carlo
(MC)-based simulation analysis was carried out in [3], considering PV allocation as a
random variable, with the authors discussing the HC dependence on the loading level
of the network. According to this study, 0–5% loading enabled only 10% of investigated
LV (low voltage) circuits to host 30% PV capacity as compared to the 80% LV systems
with midday loading of 25–35% to host similar PVs. However, the authors argued that PV
hosting capacity is not merely dependent on the loading levels but also on other factors
such as the number of customers, length of the LV network, PV connection scenarios,
and load distribution of different types of customers. The idea of HC dependence on
varying factors is substantiated by a study performed in [7]. The authors here discussed
that the prediction of HC for any network is subjected to many uncertainties: variable solar
production, customer installations, PV connections such as single-phase or three-phase,
and panel tilt, among many others. Similarly, two different HC values of 43% and 83% w.r.t
energy consumption were investigated in [4], considering the very well suited rooftops and
all rooftops for PV connection, respectively. Moreover, the potential of the battery energy
storage system, active power curtailment, and dynamic thermal loading of the transformer
was investigated in this study to increase the PV HC. However, the dynamic loading of the
transformer as a potential means to improve HC was found to be effective only in the case
of the transformer that is loaded for the short term.

The quantification of rooftop solar PV potential plays a vital role in the HC calculation
w.r.t roof space. This quantification involves the estimation of available rooftop area for the
installation of solar PV panels [8] as the entire roof area cannot be utilized for this purpose
due to varying reasons such as shadows from surrounding buildings and the mechanical
barriers such as ventilation equipment, etc. A similar form of research was conducted
in [9] that was based on the calculation of usable rooftop area for solar PV installation as
part of the Energizing Urban Ecosystems project founded by RYM Oy using realistic solar
radiation data in the city of Espoo, Finland. The author utilized three filters: profitability
filter, city planning filter, and mechanical barrier filter to eliminate the unsuitable areas
for solar PV installations. The HC calculation w.r.t roofspace PVs was carried out in [5],
wherein the authors employed a model predictive control strategy for the determination of
HC. The authors investigated six reference grids in the remote, rural, and urban regions
with HC values of 16%, 13%, and 45% w.r.t roof space, respectively. The effectiveness of
power curtailment in conjunction with the storage options and reactive power control is
also discussed in this study to increase the PV penetration and thus the network HC. The
authors in this study further noticed that HC was limited by voltage violations in the rural
and remote networks, whereas the urban grid’s HC was restricted by the thermal violations.

A real UK residential network with single-phase customers was analyzed in [6] to
determine the HC value w.r.t customers with PVs, and the potential of OLTC with a setting
of +/−8% for HC improvement was investigated. An MC-based approach was employed
by the authors in this work to take into consideration the uncertainties in the load and
PV generation. Similarly, a static load type feeder was investigated in [10] for the HC
determination, considering voltage, power flow, and cable ampacity as the limiting factors,
with HC linearly related to the load variations. In this case, there was also reverse power
limitation, and the authors noticed this kind of power flow violations at the load value
of 8.8 MW, which is the current load of an actual 20 kV distribution feeder in an urban
distribution network with the attribute of large loads. Moreover, the HC was also defined
in terms of the actual active power of the load in [11], where the authors investigated an
Australian distribution feeder in the context of validation of the voltage rise mitigation
strategy proposed in the study. The calculation approach for the HC w.r.t active power was
similar to the HC w.r.t peak load. However, the authors calculated the HC values at two
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different times of the day, morning and midday, and found that the midday loading enabled
more HC as compared to morning loading. The aggregated loads on the distribution feeder
were modelled by considering the characteristic electrical appliances of the residential
household, and the PV output power was compared with the actual active power of the
loads at the point of common coupling. The study revealed the HC value of the network as
111% with PV output power as 1.73 kW while serving a load of 1.5 kW at 9 a.m. The HC
value of this network was increased to a value of 177% at midday, with an increased PV
power of 2.93 kW serving the loading level of 1.65 kW at the point of common coupling.
Thus, the findings of the study revealed the higher value of HC at midday as compared
to morning, which was due to increased load. The accurate HC determination enabled
the utilities to make timely decisions to integrate or curtail the future PV penetration to
ensure the reliability of electrical network. The idea of changing HC due to different
reference definition can be further explored by finding the gap between the HC values of a
network by using different references. The core idea of this study was to compare different
references used when determining numerical values of PV HC in distribution networks.
The main purpose of this study was to show that HC value of the same network can vary
depending on different references and how these values are far apart.

The HC determination should be carefully done by either a well-informed guess [7] or
a stochastic approach, and thus this study focused on the latter approach. The first part of
the HC calculation modified and adopted an MC simulation-based approach developed
in [2] that was further extended to find the HC values w.r.t different references. Additionally,
the impact of variation in HC references was analyzed under balanced and unbalanced PV
connection scenarios. The value of HC w.r.t peak load or energy consumption is largely
dependent on the loading of the network, and thus the adopted model was simulated by
randomly sampling the load values among three types of loads. The customer loading data
were primarily based on the heating modes for three distinct Finnish networks in rural,
suburban, and urban regions. Moreover, HC values are also influenced by the loading
level; therefore, this aspect of network loading was taken into account in the analysis of
PV HC by taking maximum load as 100% and 50% of transformer rating, respectively. An
hourly stochastic analysis was utilized for determining the network HC using the hourly
data, showing variations in load demand and PV generation for an entire year. Moreover,
the proposed hourly MC-based algorithm employed the approach of the worst-case hours
that are of high concern for the network planning to ensure network capacity even under
the highest PV penetration during these hours. This aspect facilitated the network planners
responsible for making crucial decisions regarding network reinforcement investments.
An adequately high number of MC simulations was carried out for the accuracy of HC
results by simulating a large number of iterations. Finally, a sensitivity analysis was carried
out for two loading levels at three different load power factor settings to validate the HC
values of the networks.

This paper is organized as follows. Section 2 introduces the system models; the nodes;
and customers per feeders of the networks, source data, and the limiting constraints for PV
HC. Section 3 begins by introducing the assessment methodology, loading contribution
based on heating modes, and the explanation of the proposed MC algorithm. Section 4
defines the different HC w.r.t references and calculates the HC of the networks under
varying scenarios with respect to five HC references: peak load, transformer rating, energy
consumption, the ratio of customers with PVs, and ratio of roof-space used for PVs. Thus,
this work can serve as a foundation to maintain the fact that HC of a network is not a
unique value. Section 5 provides a summary of the results.

2. Simulation Characterization and Source Data

The investigated LV networks of this study are formulated in [2], comprising Finnish
predominantly rural (PR), suburban (SU), and predominantly urban (PU) regions with
different proportions of customers per node, as shown in Table 1. The customers were
distributed homogenously among the nodes and PV distribution was tested for both the
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balanced and unbalanced feed-in cases. The following limiting factors for HC analysis
were employed in this study:

• Upper voltage limit as +5% of Un (E1).
• Static loading of cables (E2).
• Transformer static overloading limit (E3).
• Negative sequence voltage unbalance limit as 2% of Un (E4).
• Ampacity limit of neutral-wire (E5).

Table 1. LV test networks’ characteristics and grid components specifications.

Region No. of Feeders Nodes/Feeder Customers/Node Total Customers Transformer (kVA) Cable Length (m)

PR 1 8 1 8 50 150
SU 3 4,3,3 4 40 200 100
PU 3 2,2,1 60 300 1000 100

The nature of loads influences the determination of HC, and the loads in the LV
systems are higher in resistive components. Therefore, a higher power factor (0.95) [2]
and constant power loads were simulated in this study. The simulation assumptions are
discussed further in Section 4.

In addition, the solar input data were based on the research conducted in [12], which
provided the simulation of PV generation stochastic variation over an entire calendar year.
The load data utilized in the simulation model consisted of three types of customers for
an entire year on an hourly resolution. The load consumption profiles were based on the
heating modes of the customers, as given in Table 2. The different modes of heating are
defined as storage heating, district heating, and dielectric heating. The storage heating is
the form of electrical heating with heat storage such as an electric boiler that is usually
charged at night-time, thus utilizing the benefit of the reduced night-time tariffs. In contrast,
the district heating also represents the houses with some other heating method such as
fuels, including but not limited to oil, natural gas, and wood. Moreover, these customers
do not utilize the electrical heating system for space heating. The annual load profiles
were generated by incorporating the information about the number of customers and
their heating methods, and finally the peak load of the feeder was calculated for further
analysis. However, the peak load was then scaled according to the feeding transformer
capacity using a scaling factor. The scaling factor employed here is defined as the ratio
of transformer rating and the feeder load [13]. The scaling factor and different network
loading will be further discussed in Section 4. Similarly, the PV generation data were
collected for the complete year in the form of theoretical maximum PV generation without
considering the weather conditions that affect irradiance profiles. The unbalance condition
of naturally unbalanced systems can be increased further by the connection of single-phase
PV installations. The lognormal distribution function of load unbalance data employed
in this study was based on a single household in Helsinki, Finland, as used also in a
study conducted by [14] that was further used for the determination of voltage unbalance
magnitude and the angle.

Table 2. Loading (heating) distributions for three types of investigated regions.

Region Storage Heating (%) District Heating (%) Direct Electric Heating (%)

PR 5.9 52.9 41.2
SU 7.6 52.5 39.9
PU 0.5 95.3 4.2

3. Assessment Methodology for PV HC Determination

A Monte Carlo-based algorithm was proposed for the determination of HC, consider-
ing its dependence on various operational scenarios. The load types depending on heating
modes were randomly selected by running the MC simulations 1000 times [14] to ensure
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the accuracy of HC results. The changing loading profiles of each region were sampled
randomly according to the percentages of three types of loads: storage heating, district
heating, and direct electric heating, as given in Table 2. This load profile randomization
was primarily performed to take into account the stochastic nature of the loads. The MC
simulation model was based on the worst-case hours where the maximum PV generation
coincided with the minimum network load consumption. The worst-case hours were
selected out of a total of 8760 h for the load and PV values to reduce computational efforts
based on the convex hull approach employed in [14]. The worst-case hours approach is
considered a conservative approach. The random variables involved in this study were
mainly the load profiles and PV deployment scenarios.

The general methodology used for hosting capacity determination is presented in
Figure 1, the details of the proposed MC algorithm developed in MATLAB platform are
shown in Figure 2a, and different steps are described below.

1. The model commences by defining the network parameters such as the number of
nodes, impedance of lines and transformers, and the base PV defined as 1 kWp for
each region.

2. This is followed by the main MC algorithm that increments the PV power of each
PV module installed in the network. It starts with the first scenario by starting the
PV generation at 1 kWp incremented in steps of 100 W until the maximum PV that is
taken as equal to the rated transformer power of the region under consideration.

3. The loading profiles depending on the region selected in step 1 are randomly sam-
pled at this stage. This algorithm simulates for 1000 different loading profiles for
the accuracy of HC results. Similarly, this stage involves the random allocation of
single and three-phase PVs on the nodes of the network. This step includes the se-
lection of worst-case hours from the total 8760 h and finding the worst-case PV and
loading scenario.

4. The power flow analysis based on backward and forward sweep (BFS) load flow
analysis is simulated in a time-series framework as the loading profiles are changing
with time. This is followed by checking the possible violations of performance
constraints and the results are saved after checking the violations.

5. The scenario count is checked at this step and the model simulates again from step 3
if the scenario count is not reached at 1000 iterations. Alternatively, the constraints
violation is checked and the PV size is incremented by a step of 100 W if violations
are within 5% tolerance level of the total grid violations [2]. The model works such
that the PV increment is discontinued when the performance constraint exceeds the
predefined limits for more than 5% tolerance level. The idea behind setting the grid
violations to be under 5% corresponds to the power quality requirements of supply
voltage variations and supply voltage unbalance to be within 95% confidence limit as
per the Standard EN 50160.

Figure 1. General methodology for hosting capacity (HC) determination.
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This MC algorithm is a modified version of the method presented in [15] to calculate
the HC w.r.t customers’ PVs by incrementing the customers equipped with PVs until the
grid violations are detected, as shown in Figure 2b. Steps 2–5 of the main algorithm in
Figure 2a are modified such that the customers with the PVs are incremented in steps
of 1 until the grid observes 5% of violations [2]. However, the random selection of load
types and worst-case hour selection follows the same procedure as explained in step 3 by
utilizing the same function in the MATLAB script. The load types and hence load values
for one year were randomly sampled and the worst-case hours were estimated for a total
of 1000 iterations to ensure the sufficient accuracy of HC results.

Figure 2. The Monte Carlo (MC) algorithm for the calculation of HC: (a) HC w.r.t peak load, transformer rating, energy
consumption, and roof-space; (b) HC w.r.t customers’ photovoltaics (PVs).
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4. HC Analysis w.r.t Different References

PV HC can be defined in multiple ways, employing various references, as shown in
Table 3. The HC of three regions—rural, suburban, and urban—were calculated in this
section according to the references defined below. The simulations were performed for
the three regions separately for a balanced and unbalanced PV feed-in scenario by first
taking the maximum load as 100% of the transformer rating and then 50 percent of the
transformer rating.

Table 3. Different definitions of HC w.r.t varying references [1].

HC Reference HC Definition

Peak load The ratio of peak PV capacity to the peak load of the feeder.
Transformer rating The ratio of peak PV capacity to the transformer rating.

Energy consumption The ratio of total yearly PV production to the total yearly energy consumption.
Customers’ PVs The ratio of customers with PVs to the total number of customers.
Roof space PVs The ratio of roof space utilized for PV installation to total available roof space.

The HC research conducted in this part of the article is based on the following assumptions.

1. HC calculation w.r.t customers’ PVs considers the increment of customers equipped
with PVs in steps of 1 kWp for each penetration level as in the study performed in [15].

2. HC calculation w.r.t other references assume the even distribution of PVs along the
length of the feeder with PVs at each bus. Moreover, the base PV for the rural,
suburban, and urban regions is taken as 1 kW [2].

3. The HC w.r.t energy consumption is calculated assuming all the customers having PV
installation as calculated in [4].

4. The proposed model takes into account only the theoretical maximum PV generation
without considering the weather conditions impacting the irradiance level.

5. The HC is calculated for the load power factor as 0.95 [2].
6. The PV power factor is considered as unity.

The HC w.r.t roof-space was also defined as the roof area of the customers connected
with the feeder that potentially enables the installation of PV panels. The determination of
the usable rooftop area for PV installation is an extensive task that requires statistical data
of the actual buildings by first finding the total roof area of the region to be studied and
then finding the usable rooftop area for PV installation. Therefore, HC w.r.t roof space was
calculated in this work by first estimating the practical roof space employed for potential
PV installation. A PV panel of the power range between 260 and 285 Wp was utilized in
this study with a size of 1.6 m2 [16]. Hence, a PV array consisting of four PV panels of the
power range 260 W was used for generating 1 kWp PV output covering an area of 6.4 m2.
The analysis then further proceeds towards finding the rooftop area to install the PV panels
that satisfy the maximum PV generation during the worst-case hours. The estimation of the
total available usable roof space area for PV installation is based on the research conducted
in [9]. The HC w.r.t roof space was finally calculated as the ratio between the roof space
area utilized for maximum PV generation during worst-case hours and the total available
roof area for PV installation after eliminating the unsuitable areas.

4.1. Case Studies and Results

This section presents the HC analysis of the three geographically distinct Finnish
regions according to different HC references for two types of PV deployment scenarios.
The following scenarios are considered for HC analysis.

• HC analysis without scaling maximum load.
• HC analysis by scaling maximum load as 100% and 50% of transformer rating.
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4.1.1. HC Analysis without Scaling Maximum Load

In this part of study, the LV networks were first analyzed depending on the loading
level in comparison to the transformer rating, as given in Table 4. It was observed that the
network load was only about 35–55% of the transformer rating, such that the transformers
were not fully loaded initially and thus leaving sufficient headroom for PV addition without
risking the transformers’ life. Moreover, this part of the work utilized the original peak
load value without scaling the peak load w.r.t transformer rating that would be discussed
further in Section 4.1.2. The LV system loads were predominantly resistive and they were
modeled by considering a high-power factor (0.95). Moreover, the constant power loads
are depicted in Equation (1) according to a study conducted in [2] as active and reactive
power profiles. The right-hand side of Equation (1) represents the real and reactive powers
and the left side represents the apparent power of the constant power loads.

[SL
abc] = [PPQ

abc] + i[QPQ
abc] (1)

Table 4. Average load values of the networks under balanced PVs in three regions for worst-case hours (minimum load
values) and peak load calculated among all the 8760 h.

Region
Worst-Case Hour Load Values

(kW)
Peak Load

(kW)
Transformer Rating

(kVA)
Initial Peak Load/TF Rating

(%)

PR 5.9 20.8 50 41.6
SU 31 109.5 200 54.7
PU 82.6 359.7 1000 35.9

The load modeling for the calculation of PV HC was highly dependent on the type of
heating mode used for each region, as described in Table 2. The load values depending on
the heating mode of each region were first randomly sampled by incorporating a random
probability distribution function “randp” in MATLAB to create a vector of the size of
“number of network nodes X 1”. This column vector of the size of network nodes was
then utilized further to calculate the load values for the complete year by using the load
distribution data among three types of customers utilizing different heating modes. Finally,
a matrix of the size of “number of network nodes X 8760” was formed, showing the load
values at each node for one complete year (8760 h). Afterwards, the peak feeder load was
calculated by aggregating the load values among all the nodes connected to a feeder for
8760 h (a matrix of 1 × 8760), and then the peak load was selected as the maximum value
from this row vector of the size 8760. Thus, the loading data were based on realistic load
values by using real consumption profiles of the customers.

The load values utilized in this work were basically of two types: the minimum load
value corresponding to the worst-case hours and the peak load value calculated by finding
the maximum feeder load value from 8760 h. Moreover, the HC determination w.r.t peak
load and energy consumption involved the peak feeder load instead of the worst-case hour
load value. The peak load and the mean load value among the worst-case hours are given
in Table 4. An MC-based simulation analysis was performed in this section for investigation
of the HC w.r.t different references for two PV deployment scenarios: balanced 3-phase PV
and unbalanced 1-phase PV, as presented in Table 5, and also in Figure 3. The HC results
show that the HC of the rural region was the lowest among the three regions and that
the balanced PV scenario permitted higher values of HC as compared to an unbalanced
PV connection.

The investigation of the limiting constraints of the HC shows that the overvoltage
limit restricted the PV HC in the balanced rural networks and the transformer loading
limited the PV penetration in the suburban and urban regions. Moreover, the negative
sequence unbalance remained the limiting constraint in the rural and suburban unbalanced
PV connection scenarios and neutral wire ampacity limited the PV in urban unbalanced PV
deployment. The sequence of the limiting factors such as E5, E4, and E2 in the unbalanced
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urban network represented the frequency of occurrences of the violation of limiting factors.
The results revealed that the cable ampacity manifested itself as a limiting factor for HC
only in the unbalanced urban networks and its violation occurrences were outnumbered by
the other two limiting factors of neutral wire ampacity and voltage unbalance. Moreover, a
higher value of PV HC w.r.t peak load of the urban region in Table 5 can be attributed to
the initial peak load of urban region to be only about 35.9% of the transformer rating. Thus,
this lower value of peak load in the denominator of HC definition as given in Equation (2)
of Section 4.1.2 resulted in a higher value of HC.

Table 5. HC values as compared to different references for balanced and unbalanced PV scenarios.

HC
References

Balanced (Three-Phase PV) Unbalanced (One-Phase PV)

Rural HC (%) Violation HC (%) Violation

Peak load 148 E1 1 65.6 E4, E1
Transformer rating 55.6 E1 26 E4, E1

Energy consumption 91.7 E1 42 E4, E1
Customers’ PVs 50 E1 25 E4, E1
Roof-space PVs 8 E1 3.7 E4, E1

Suburban
Peak load 219 E3 103 E4

Transformer rating 110 E3 60 E4
Energy consumption 135 E3 67.9 E4

Customers’ PVs 57.5 E3 35 E4
Roof-space PVs 12.5 E3 6.8 E4

Urban
Peak load 301 E3 108 E5, E4, E2

Transformer rating 107.8 E3 40.7 E5, E4, E2
Energy consumption 248 E3 85 E5, E4, E2

Customers’ PVs 73.6 E3 26 E5
Roof-space PVs 8.2 E3 3.1 E5, E4, E2

1 Over-voltage (E1), cable ampacity (E2), transformer overloading (E3), voltage unbalance (E4), and neutral-wire
ampacity (E5).

This study adopted a more conservative voltage rise limit of +5% of the nominal
voltage, resulting in the lower value of HC with respect to transformer rating of 55% for
rural region under balanced PV scenario as compared to the HC (105%) in [14]. This is
attributed to the different selection of performance constraints, and therefore it led towards
the fact of how HC values of similar networks can be altered by choosing different limits
of the performance constraints. However, this change in voltage rise constraint impacted
merely the HC of the rural region where the HC was primarily limited by over-voltage as
compared to the transformer overloading limiting the HC of suburban and urban regions.

4.1.2. HC Analysis by Scaling Maximum Load as 100% and 50% of Transformer Rating

The maximum PV HC was strongly influenced by network loading. This part of the
work was focused on the determination of the impacts of variation of maximum loading
of the network on the PV HC of the network. The HC results for two loading levels are
given in Table 6. This analysis shows how different limiting factors of the HC manifested
themselves under varying loading conditions, thus changing the HC of the network.

The calculation of HC w.r.t two loadings levels was initiated by generating the hourly
annual load profiles for a year, as described in Section 3. The loading profiles were then
scaled by using a scaling factor for 100% and 50% of the transformer rating. The annual
hourly loading profiles at each node in the network were used for estimating the maximum
feeder load of the network that was compared with the 100% and 50% of the transformer
rating. Thus, the comparison of the peak load with the transformer rating revealed the
lower value of maximum load, and thus the maximum load of the network was scaled
up by using a scaling factor. The selection of the scaling factor played a central role in
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the accurate determination of the HC of the network and it is defined here as the ratio
of the transformer apparent power to the peak feeder load. The apparent power of the
transformers was distinct for each region, and therefore the scaling factor varied for each of
the investigated regions. Similarly, the scaling factor for 100% and 50% of the transformer
rating was different, leading to the different values of PV HC. The research results depicted
that HC values w.r.t peak load and energy consumption were highly skewed by almost
doubling in magnitude with maximum load as 50% of the transformer rating as compared
to 100% of the transformer rating.
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Figure 3. The comparison of HC w.r.t different references: (a) HC comparison for balanced PV deployment; (b) HC
comparison for unbalanced PV deployment.
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Table 6. HC reference value comparison for two different loading levels of the maximum load as 100% and 50% of
transformer rating. (a) HC of the rural region for two loading levels; (b) HC of the suburban region for two loading levels;
(c) HC of the urban region for two loading levels.

(a)

Loading Level 100% of Transformer Rating 50% of Transformer Rating

PV Connection Balanced Unbalanced Balanced Unbalanced

HC References HC Limit HC Limit HC Limit HC Limit

Peak load 74 E1 26 E4 120 E1 55.6 E4, E1
Energy consumption 45 E1 18 E4 74 E1 35.5 E4, E1
Transformer rating 74 E1 26 E4 60 E1 27.8 E4, E1

Customers’ PVs 62.5 E1 25 E4, E1 50 E1 25 E4, E1
Roof-space PVs 10.58 E1 3.7 E4 8.6 E1 3.9 E4, E1

(b)

Loading Level 100% of Transformer Rating 50% of Transformer Rating

PV Connection Balanced Unbalanced Balanced Unbalanced

HC References HC Limit HC Limit HC Limit HC Limit

Peak load 123.7 E3 58 E4 225 E3 120 E4
Energy consumption 80 E3 36.5 E4 140.5 E3 75 E4
Transformer rating 123.7 E3 58 E4 112.5 E3 60 E4

Customers’ PVs 62.5 E3 32.5 E4 57.5 E3 40 E4
Roof-space PVs 14 E3 6.6 E4 12.8 E3 6.8 E4

(c)

Loading Level 100% of Transformer Rating 50% of Transformer Rating

PV Connection Balanced Unbalanced Balanced Unbalanced

HC References HC Limit HC Limit HC Limit HC Limit

Peak load 122 E3 40.7 E5, E4 221 E3 81.5 E5, E4
Energy consumption 98 E3 31.8 E5, E4 170.9 E3 64.8 E5, E4
Transformer rating 122 E3 40.7 E5, E4 110.5 E3 40.7 E5, E4

Customers’ PVs 83 E3 26 E5 76 E3 26 E5
Roof-space PVs 9 E3 3 E5, E4 8.4 E3 3.1 E5, E4

The HC values w.r.t peak load and the energy consumption were greatly dependent
on the peak load of the network, as depicted in Equations (2) and (3), respectively. Thus,
scaling the peak load w.r.t transformer rating generally impacted the HC w.r.t these two
references without significantly impacting the other reference definitions.

HC(Peak Load) =
Peak PV value

Peak Feeder Load
(2)

HC(Energy Consumption) =
Total Yearly PV Production

Annual Energy Consumption
(3)

The denominator in Equation (3) is calculated by aggregating the hourly loads of the
network for one complete year and thus scaling the maximum load of the network against
the transformer rating changes this value for two loading levels. The HC analysis of this
work shows that HC of the same network calculated considering different references varied
considerably with the HC w.r.t peak load, giving the highest numerical value among all
the HC references.

HC of the balanced PV deployment case was higher than the unbalanced PV case for
all the regions. In the case of a balanced PV connection, the HC was primarily limited by
the voltage violations in the rural region, and the transformer overloading (E3) became the
major limiting factor in the case of suburban and urban regions, as shown in Table 5. The
unbalanced PV scenario presented negative sequence voltage unbalance (E4) as the main
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limiting factor for integrating a large amount of PV in the LV system for rural and suburban
regions. However, the neutral wire ampacity (E5) remained the dominating limiting factor
with the calculation of the HC of urban areas for an unbalanced PV deployment scenario.
Moreover, the overvoltage limit did not prove to be as restricting in the case of unbalanced
PV scenarios in rural regions where the most dominant limiting factor was observed as
negative sequence voltage unbalance (E4). Additionally, transformer overloading (E3)
appeared as the major limiting constraint for the PV penetration in the case of a balanced
PV scenario for 100% and 50% loading levels in the urban region. Figure 4 shows the
average HC at two loading levels by averaging all of the percentage estimates in Table 6. It
shows that the HC at 50% loading level of the transformer rating outscored the HC value
at 100% loading level of the transformer rating.
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Figure 4. The average HC of three regions at different loading levels by averaging all percentage
estimates of different reference definitions.

Overall, the voltage violation was observed as a key limiting factor for increased
PV integration in the rural areas, and the transformer overloading noticeably limited the
PV integration in the suburban and urban regions, as shown in Figure 5. The negative
sequence voltage unbalance appeared as the limiting factor in all three regions, while the
neutral wire ampacity limited HC of the urban region.
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Figure 5. Quantitative analysis of HC limiting constraints for the investigated cases in Section 4.1.2.

134



Clean Technol. 2021, 3

Finally, the HC values of the networks were investigated at different load power factor
values of 0.95, 0.8, and 0.7, with research results showing that the HC values remained
almost consistent most of the time by changing the load power factor. There were slight
fluctuations in the HC values that can be accredited to different load selection from the
pool for each analysis. The results of this analysis are shown in Table 7 and also Figure 6.

Table 7. The HC variation based on changing load power factor for 100% and 50% loading levels for
balanced PVs in rural, suburban, and urban regions.

Region 100% Loading Level 50% Loading Level

Peak load 74 75.7 78 120 123.7 130

Energy 45 46.6 50 74 76.9 82

TF rating 74 75.7 78 60 61.8 65

Customers 62.5 62.5 62.5 50 50 50

Roofspace 10.58 10.8 11 8.6 8.8 9.3

Suburban P.F = 0.95 P.F = 0.8 P.F = 0.7 P.F = 0.95 P.F = 0.8 P.F = 0.7

Peak load 123.7 122 120 225 224 224

Energy 80 73 74 140.5 145 144

TF rating 123.7 122 120 112.5 112 112

Customers 62.5 62.5 62.5 57.5 57.5 57.5

Roofspace 14 13.9 13.7 12.8 12.8 12.8

Urban P.F = 0.95 P.F = 0.8 P.F = 0.7 P.F = 0.95 P.F = 0.8 P.F = 0.7

Peak load 122 122 119.5 221 221 221

Energy 98 97 94 170.9 178 163.8

TF rating 122 122 119.5 110.5 110 110.7

Customers 83 82 81 76 75.3 75.6

Roofspace 9 9.3 9 8.4 8.4 8.4
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Figure 6. HC comparison for balanced PVs by taking maximum load as 100% of transformer rating
for three load power factor settings of 0.95, 0.8, and 0.7 for the three regions.
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5. Discussion

The comparison of HC w.r.t different references revealed the fact that HC is not a single
value. Therefore, the HC must be carefully investigated in the context of the used references
before integrating a large amount of PV generation in the network. The HC values varied
considerably depending on used reference, technical limit values employed, share of
single-phase PVs, the number of customers to be served, loading level, PV deployment,
and location criteria. The main focus of this article was to compare the PV HC of the
same networks by using different HC definitions as a reference. The test networks (rural,
suburban, and urban) of this study were formulated in [2] by utilizing the real load
consumption data of different customers characterized by their unique heating modes. A
MC simulation approach is beneficial for simulating a high variance of networks as we
used randomly sampled load profiles of each type of customer (differentiated by heating
modes) for a total year. The proposed MC model enabled to use the input data of the test
networks in the form of real DSO (distribution system operator) survey on measured load
data and the average network size as formulated in [2].

Heating is the major part of the electricity consumption in cold climates. The in-
vestigated networks in this study were based on the real Finnish DSO surveys and real
load consumption data of Finland. Therefore, this article was more focused on heating
methods for defining the customer types as it took into account the conditions encoun-
tered in Finland: heating, generated networks, and PV arrays for Helsinki region. In
heating-dominated load case, the loads are highest in winter time, whereas in summer,
when the PV production is highest, the demand of residential customers is at its lowest.
It has been established by the careful investigation of the same networks under the same
loading conditions and same geographical location that the HC w.r.t different references
produce quite disparate results. It was further observed that the HC value of the same PV
generation amount w.r.t peak load showed the highest numerical value, and HC w.r.t roof
space resulted in the lowest numerical value, thus maintaining it as the most conservative
reference definition of HC in this analysis.

The peak load is the most widely used HC reference throughout the literature; how-
ever, the HC w.r.t peak load depends on the load sampling and scale of the peak load
w.r.t transformer rating. Therefore, the frequent load variations of the network resulted
in inconsistent HC values. The HC w.r.t transformer rating showed almost similar values
for each load sampling and thus proved to be useful for the HC assessment, as already
proved by the research results of [14]. Moreover, it was observed that scaling the maximum
load w.r.t transformer rating mainly impacted the HC values w.r.t peak load and energy
consumption, which involve the peak load directly in the HC calculation. A quantitative
analysis of the HC limiting factors strengthened the fact that the voltage violations mainly
limit the HC of rural networks, and transformer overloading restricts the HC of urban and
suburban regions. This observation supports the use of transformer capacity as the main
HC reference. If the HC is clearly lower than 100% of transformer rating, the HC limitations
are likely to be due to voltage issues. On the other hand, the scaling w.r.t customer PVs or
roofspace may reveal the unused PV generation potential among the local community.

The scope of this article was to compare the HC with respect to different reference
definitions without utilizing any means to increase the HC of the networks. However, the
potential of storage devices, reactive power control, voltage control, inverter oversizing,
and dynamic loading of components should be addressed, taking into account different
HC references.
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