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1. Introduction

Recently, various remote sensing sensors have been used and their performance has
developed rapidly [1]. Therefore, the range of remote sensing image users is expanding,
and user requirements are also being advanced. In order to meet user needs, research is
being actively conducted to simulate and generate remote sensing images that are limitedly
acquired by various weather, environmental, and satellite operating conditions. In this
issue, we deal with the research results regarding the generation of more diverse images for
various environments, climates, and weather conditions, and we use them to increase the
number of learning images, simulate military operations, and simulate seasonal images.

2. Image Simulation in Remote Sensing

Dae Kyo Seo and Yang Dam Eo [2] fused a panchromatic image with a SAR image to
improve object recognition. By learning each class independently, the improved results
were compared to existing methods. This method was designed to provide a geospatial
information base without a loss of information while considering differences in the image
mechanism of the two images.

Han Sae Kim and coauthors [3], in their paper, investigated kinematic in situ self-
calibration to frequently re-calibrate a backpack-based MBL (Multi-Beam LiDAR) system
using on-site data for handling unstable measurements of a sensor. Frequent in situ
calibration prior to MBL data acquisition is an essential step in order to meet accuracy-level
requirements and to implement these scanners for precise mobile applications. A simulator
program was first utilized to generate simulation datasets with various observation settings,
network configurations, test sites, and targets. Afterwards, self-calibration was carried out
using the simulation datasets.

The high operational cost of aerial images makes it difficult to acquire periodic obser-
vations of a region of interest. Satellite imagery is an alternative for this problem and, in
their article, Suhong Yoo and coworkers [4] propose a context-based approach to simulate
the 10 m resolution of Sentinel-2 imagery to produce 2.5 and 5.0 m prediction images using
an aerial orthoimage. This can be considered as an alternative to providing high-resolution
images in a cost-effective way in the field of remote sensing

A rotational shearing interferometer has been proposed for the direct detection of
extra-solar planets. This technique consists of the non-total cancellation of star radiation in
order to improve signal magnitude. Beethoven Bravo-Medina and coauthors [5] propose a
novel method to enhance signal magnitude by means of a star–planet interference, as well
as the use of interferograms that are computationally simulated to confirm the viability of
the technique.

Despite advances in SAR image processing, existing detection technologies still have
limitations in boosting detection performance because of their inherently noisy characteris-
tics. Sujin Shin and collaborators [6], in their contribution, propose a novel object detection
framework that combines an unsupervised denoising network and a traditional detection
network to leverage a strategy for fusing region proposals extracted from both raw SAR
images and synthetically denoised SAR images.

Appl. Sci. 2021, 11, 8346. https://doi.org/10.3390/app11188346 https://www.mdpi.com/journal/applsci
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Changno Lee and Jaehong Oh [7], in their paper, propose sensor level mosaicking to
generate a seamless image product with geometric accuracy to meet mapping requirements.
The proposed method successfully identifies and removes irregular image discrepancies
between adjacent data.
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Featured Application: The proposed method can generate a mosaic image at the product level

that is corrected only for radiometric and sensor distortions.

Abstract: High-resolution satellite images such as KOMPSAT-3 data provide detailed geospatial
information over interest areas that are evenly located in an inaccessible area. The high-resolution
satellite cameras are designed with a long focal length and a narrow field of view to increase spatial
resolution. Thus, images show relatively narrow swath widths (10–15 km) compared to dozens or
hundreds of kilometers in mid-/low-resolution satellite data. Therefore, users often face obstacles to
orthorectify and mosaic a bundle of delivered images to create a complete image map. With a single
mosaicked image at the sensor level delivered only with radiometric correction, users can process
and manage simplified data more efficiently. Thus, we propose sensor-level mosaicking to generate a
seamless image product with geometric accuracy to meet mapping requirements. Among adjacent
image data with some overlaps, one image is the reference, whereas the others are projected using
the sensor model information with shuttle radar topography mission. In the overlapped area, the
geometric discrepancy between the data is modeled in spline along the image line based on image
matching with outlier removals. The new sensor model information for the mosaicked image is
generated by extending that of the reference image. Three strips of KOMPSAT-3 data were tested
for the experiment. The data showed that irregular image discrepancies between the adjacent data
were observed along the image line. This indicated that the proposed method successfully identified
and removed these discrepancies. Additionally, sensor modeling information of the resulted mosaic
could be improved by using the averaging effects of input data.

Keywords: KOMPSAT-3A; strip; sensor modeling; RPCs; mosaic; matching; discrepancy

1. Introduction

High-resolution satellite images provide detailed geospatial information with a high
geospatial resolution up to 30~80 cm over the area of interest, even located in inaccessible
areas. There are many operating satellites such as Ziyuan-3 (2.1 m), KOMPSAT-2 (1 m),
Gaofen-2 (0.8 m), TripleSat (0.8 m), EROS B (0.7 m), KOMPSAT-3 (0.7 m), Pléiades 1A/1B
(0.7 m), SuperView 1–4 (0.5 m), GeoEye-1 (0.46 m), WorldView-1/2 (0.46 m) and WorldView
3 (0.31 m), etc. [1]. The satellites operate at low altitudes, such as 500,700 km, to achieve
a high geospatial resolution of the data. In addition, the satellite cameras are specially
designed by increasing the focal length up to around 10 m using a few aspherical mirrors.
For example, WorldView-2, Pleiades-HR, and KOMPSAT-3 have focal lengths of 13.311,
12.905, and 8.562 m, respectively.

As a trade-off for the low altitude and long focal lengths, the high-resolution satellite
data show a relatively narrow field of view compared to the mid- or low-resolution satellite
data. WorldView-3, Pleiades-HR, and KOMPSAT-3, for example, have swath widths of

Appl. Sci. 2021, 11, 6796. https://doi.org/10.3390/app11156796 https://www.mdpi.com/journal/applsci
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13.1, 20, and 16.8 km, respectively. Note that mid-/low-resolution satellite data have
dozens or hundreds of kilometers of swath width. These high-resolution satellite cameras
frequently use a combination of shorter CCD (Charge-Coupled Device) lines with a slight
overlap to increase the swath width [2–6]. As examples, IKONOS, Quickbird, KOMPSAT-3
have three, six, and two overlapping PAN CCD lines, respectively, with shifts in the CCD
lines in the scan direction. The merge of each sub-scene from CCD lines is carried out
with precise camera calibration information. Each sub-scene is processed considering the
sensor alignment, ephemeris effects, and terrain elevations to be merged for a single scene
covering a larger swath [2,5].

After the sub-scene merging process, high-resolution satellite data are provided in
different processing levels. For example, Maxar provides WorldView data in system-ready,
view-ready, and map-ready categories. System-ready imagery allows users to perform
custom photogrammetric processes such as digital surface model (DSM) generation and
orthorectification using the custom data. View-ready imagery data are products already
photogrammetrically processed and designed for users interested in remote sensing ap-
plications. Map-ready is a base map that has been orthomosaicked. Level 1R and 1G
KOMPSAT-3 data from the Korea Aerospace Research Institute are also available. Level
1R is a product that has been corrected for radiometric and sensor distortions. Level 1G is
the product corrected for geometric distortions, including optical distortions and terrain
effects, and finally projected to a universal transverse mercator coordinate system.

Many satellite data, including WorldView System-ready and KOMPSAT-3 products,
are usually delivered in a single image. This is true when the target area is small enough
to be located in an archived image region or a new collection less than the swath width is
requested. However, in some cases where the area of interest is large and located crossing
over the archived images, users are delivered with a bundle of satellite images. Then,
the users have to carry out a photogrammetric process for each data bundle to meet their
application purposes.

Typical photogrammetric processes with the bundle of images delivered include or-
thorectification and mosaics to create a complete image map. The orthorectification requires
accurate sensor modeling information such as physical model or rational polynomial coef-
ficients (RPCs) and DSM of the target area. In advance of the orthorectification and mosaic,
users should carry out bias compensation of the original sensor model information using
ground controls to meet mapping requirements [7]. Then, each image is orthorectified for
the DSM and the resulting orthoimages are mosaicked for an image map.

There have been many studies for high-resolution satellite image mosaics in the
ground coordinates [8–12]. The proposed algorithms deal with radiometric differences in
images caused by seasonal changes [8], image registration and cloud detection with re-
moval [9,10], efficient processing [11], and color balancing [12,13]. Most studies are carried
out with photogrammetrically processed orthoimages. However, the cost of these pho-
togrammetric processes should increase with the number of images in the delivered bundle.

With a mosaicked image at the sensor level delivered only with radiometric correction,
users should take advantage of more efficient and convenient photogrammetric data
processing and management for the simplified data. However, no relevant work on the
sensor-level image mosaic was carried out before a photogrammetric process. Firstly, if
users are delivered with a single image with single sensor model information instead
of multiple data sets, the sensor modeling processing burden should be lifted. This is
because users do not have to identify the ground control points on the multiple images. In
addition, the tie point extraction process over multiple images is not required for accurate
co-registration between the images. Secondly, the orthorectification and mosaic process
is simplified because the single image orthorectification is simpler, and mosaic methods,
including the seamline generation, are not required.

Therefore, we propose a sensor-level mosaic to generate a seamless image product
with geometric accuracy to meet mapping requirements. The approach is different than
the ground-level mosaic, as depicted in Figure 1. The ground-level mosaic is carried out
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with the orthorectification of each image strip to the ground, followed by the seamline
extraction and mosaic. As a result, each pixel in the mosaicked image is assigned with map
coordinates. In contrast, in the sensor-level mosaic, each image is projected into a reference
sensor plane to be merged. The resulting image has single sensor modeling information to
relate each mosaic image to the ground.

Figure 1. Sensor-level mosaic vs. ground-level mosaic.

The proposed method begins with setting one image to the reference. Each pixel of the
other images is projected to the ground using their sensor model information and SRTM
(Shuttle Radar Topography Mission) [14] and then projected into the reference using the
reference sensor model information. The problem is that the sensor model information is
erroneous such that a large geometric discrepancy occurs due to the satellite’s inaccurate
position and attitude information. Therefore, we aimed to model and remove the irregular
difference along the image line using the image matching and outlier removal in the
overlapped area.

The paper is structured as follows. In Section 2, the methodology is described with
the flowchart with RPCs as the sensor model for image projections. In Section 3, the
experimental results are presented for three KOMPSAT-3 strips. The conclusion is presented
in Section 4.

2. Methods

The flowchart of the study is given in Figure 2. Given partially overlapped multiple
image strips (n images in the figure) and sensor models covering the area of interest, if
one image partially overlapped with other images, it was chosen as the reference image.
Each pixel of the other images (collateral images) was first projected to the ground using
SRTM DEM and then back-projected onto the reference image space. These projections
produce (n − 1) projected images partially overlapped with the reference image. Next,
image matching was carried out to extract tie points in the overlap area. A lot of matching
outliers should exist because of radiometric and geometric differences, such that it requires
detecting and remove them accurately. The discrepancy is expected to show irregular
patterns along the image line because of push-broom sensor characteristics. Each line
of image has a different position and attitude information. Therefore, we modeled the
discrepancy with polynomials after dividing the whole image strip into multiple sub-image
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regions. Based on the polynomial model, outliers are detected and removed in each sub-
image region. This leads to the outlier suppressed tie points set, which enables the irregular
discrepancy estimation. The mosaicked image strip can be generated after compensating
for the image line discrepancy. Finally, single sensor model information for the mosaic
image strip is generated.

Figure 2. Flowchart of the proposed method for the sensor-level mosaic.

2.1. Projection onto the Reference Image

Except for the reference image, the other images, i.e., collateral images, are required to
be projected onto the reference image space using the sensor modeling information. This
study used RPCs instead of the physical model for compatibility with little difference in
accuracy [15].

1. Ground to image projection:

Ground to image projection is called the forward projection, which equation is ex-
pressed as Equation (1). Given 3D ground coordinates (φ, λ, h), the corresponding image
coordinates (l, s) can be obtained based on the non-linear equation of 78 coefficients
(RPCs) [16].

Y = NumL(U,V,W)
DenL(U,V,W)

= aTu
bTu

X = Nums(U,V,W)
Dens(U,V,W)

= cTu
dTu

(1)
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with

U = φ−φO
φS

, V = λ−λO
λS

, W = h−hO
hS

, Y = l−LO
LS

, X = s−SO
SS

u =
[
1 V U W VU VW UW V2 U2 W2 UVW V3 VU2 VW2 V2U

U3 UW2 V2W U2W W3]T

a = [a1 a2 . . . a20]
T , b = [1 b2 · · · b20]

T , c = [c1 c2 · · · c20]
T , d = [1 d2 · · · d20]

T

where (φ, λ, h) are the geodetic latitude, longitude, and ellipsoidal height. (l, s) are the
image row and column coordinates. (X, Y) and (U, V, W) are the normalized image and
ground coordinates, respectively. (φO, λO, hO, SO, LO) and (φS, λS, hS, SS, LS) are the offset
and scale factors, respectively for the latitude, longitude, height, column, and row.

However, the major problem is that the target elevation must be given, and there is
no closed solution for the ground elevation computation. Figure 3 depicts the iterative
ground elevation search process is depicted. Given an image point, the first image to
ground projection is performed to the reference elevation, such as the mean elevation of
RPCs. The computed horizontal coordinates are used to look up the ground elevation in
SRTM DEM. Next, the second image to ground projection is tried for the estimated ground
elevation. This iterative process continues until the no changes in the computed horizontal
coordinates.

Figure 3. Iterative ground elevation search.

2. Image to ground projection:

Image to ground projection is called the backward projection. Given an image co-
ordinates (l, s) with the ground elevation (h), the horizontal ground coordinates (φ, λ)
are computed using Equation (2). The backward projection is a non-linear equation that
requires to be linearized as Equation (2). The linearized equation requires the initial hori-
zontal ground coordinates

(
φ0, λ0) for

(
U0, V0). The solution is obtained by iteration until

(dU, dV) it reaches near zero.
[

V
U

]
=

[
V0

U0

]
+

[
dV
dU

]
(2)

[
dV
dU

]
=

⎡
⎢⎣

∂Y
∂V

∣∣∣
V=V0

∂Y
∂U

∣∣∣
U=U0

∂X
∂V

∣∣∣
V=V0

∂X
∂U

∣∣∣
U=U0

⎤
⎥⎦
−1[

Y − Y0

X − X0

]
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where

Y0 = aTu0

bTu0 , X0 = cTu0

dTu0

u0 =
[
1 V0 U0 W V0U0 V0W U0W

(
V0)2 (

U0)2 W2 U0V0W
(
V0)3 V0(U0)2 V0W2 (

V0)2U0

(
U0)3 U0W2 (

V0)2W
(
U0)2W W3]T

∂Y
∂V = ∂Y

∂uT
∂u
∂V , ∂Y

∂U = ∂Y
∂uT

∂u
∂U ,

∂X
∂V = ∂X

∂uT
∂u
∂V , ∂X

∂U = ∂X
∂uT

∂u
∂U ,

2.2. Image Matching and Outlier Removal

Image matching in the overlap area is carried out to extract tie points used for dis-
crepancy compensation. This study uses a template matching based on NCC (Normalized
Cross-Correlation) as Equation (3). The similarity between reference and projected images
is measured using NCC. A matching with NCC larger than 0.5 is typically considered
similar, but a higher threshold such as 0.7 is preferred to reduce matching outliers.

NCC =

w
∑

i=1

w
∑

j=1

(
Rij − R

)(
Pij − P

)
√√√√[

w
∑

i=1

w
∑

j=1

(
Rij − R

)2
][

w
∑

i=1

w
∑

j=1

(
Pij − P

)2
] (3)

where R is a patch in the reference image and P is a patch within the established search
region in the projected image, both are in the size of w × w. R, P are averages of all intensity
value in the patches.

These automated image matchings often produce a lot of mismatches that should
be detected and removed. RANSAC (Random Sample Consensus) is a popular outlier
detection method [17] because it iteratively estimates established modeling parameters
from a set of data that includes outliers.

2.3. Piecewise Discrepancy Compensation

High-resolution satellite image strips are acquired using a push-broom sensor that
uses a line of detectors arranged perpendicular to the flight direction of the spacecraft. As
the spacecraft flies forward, the image is collected one line at a time, with all of the pixels
in a line being measured simultaneously.

This mechanism should produce an irregular geometric discrepancy between the
adjacent strips along the image line. We applied a piecewise discrepancy compensation
that models the local difference for some image lines, as depicted in Figure 4. However, it
is a possibility of discontinuity between adjacent image pieces. Therefore, we model each
local discrepancy with a spline curve.

Figure 4. Piecewise discrepancy compensation.

The sensor model for the mosaic image strip should be generated for photogrammetric
processes. Since the mosaic image consists of several image strips of different sensor
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modeling information, the RPCs for the mosaic can be generated by bias-compensating the
RPCs of the reference considering the estimated compensations to the adjacent images [14].

3. Experimental Results

3.1. Data

The test data are three image strips of KOMPSAT-3 product level 2R over Romania,
as the specifications are listed in Table 1. The acquisition dates are 8 and 24 April and
4 May 2018. The strips have long image line sizes up to 60,000–70,000 pixels with an image
swath width of 24,060 pixels. Each image stripe is made up of three image scenes with over
20,000 image lines each. The acquisition geometry includes incidence and azimuth angles.
Strips #1 and #3 have similar geometry and a low incidence angle. Small incidence angles
of Strips #1 and #3 produce a small GSD (Ground Sample Distance) than Strip #2 with a
relatively large incidence angle. Note that the azimuth angle of Strip #2 is in an almost
opposite direction from those of the others.

Table 1. Test data specification.

Product Level Acquisition Date Image Size (Pixels) Incidence/Azimuth GSD (Col/Row)

Strip #1
Level 2R 4 May 2018 Sample 24,060

Line 69,946 0.75◦/79.54◦ 0.55/0.55 m

Strip #2
Level 2R 24 April 2018 Sample 24,060

Line 63,433 26.00◦/261.58◦ 0.67/0.60 m

Strip #3
Level 2R 8 April 2018 Sample 24,060

Line 71,166 11.56◦/78.58◦ 0.56/0.55 m

Figure 5 shows the three data strips. Strip #2 is located in the center with partial
overlap with the other strips.

 
(a) (b) (c) 

Figure 5. Test image strip of three scenes: (a) Strip #1, (b) Strip #2, (c) Strip #3.
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3.2. Sensor Modeling of Each Image Strip

The long strip images were delivered with an ephemeris and attitude data for the
physical sensor modeling. However, RPCs are much compatible and easier to use than
the physical sensor model, whereas the accuracy is similar. Therefore, we first converted
the physical sensor model of each strip into RPCs. The conversion into RPCs is conducted
by interpolating satellite attitude information such as roll, pitch, and yaw angles with the
first-order equation.

Figure 6 depicts the interpolation residuals for the roll angles of Strip #1, demon-
strating that the original roll angle varies locally along the image line. The conversion
residuals from the physical model into RPCs are presented in Table 2 for two cases using
the original ephemeris and the interpolated ephemeris. Using the interpolated ephemeris
shows residuals that are a little better than the other case, which is affected by the local
variation in the ephemeris. In Strip #1, the residual in the sample direction improved by
more than one pixel.

Figure 6. Difference between the original and the interpolated roll angles (Strip #1).

Table 2. RPCs conversion residual in RMSE (unit: pixels).

Ephemeris
Strip #1 Strip #2 Strip #3

Line Sample Line Sample Line Sample

Original 0.57 1.45 0.55 0.20 0.20 0.28
Interpolated 0.11 0.10 0.10 0.07 0.20 0.10

3.3. Projection of Each Image onto the Reference

We set the center strip (Strip #2) as the reference. Then, we projected each image onto
the reference image space using the generated RPCs with 1 arcsec SRTM DEM. First, the
reference image is extended to the sides for the image resampling. A point in the extended
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reference image space is projected iteratively projected onto SRTM DEM as explained in
Figure 3, followed by ground to image projection to look up the corresponding digital
number in the adjacent strips. Figure 7 depicts three overlaid stripes side by side.

 

Figure 7. Projected images onto the reference image space.

3.4. Image Matching and Outlier Removal in an Overlap Area

We generated a grid of 50 and 100 pixels along line and sample directions in the overlap
area, respectively. Then, we carried out NCC image matching between the reference and
the adjacent projected images for the grid points. As matching parameters, we used
77 × 77 pixels for the matching window size, search range 60 pixels. We selected the
matching parameters considering the geolocation accuracy of the sensor modeling for
KOMPSAT-3, which has 48.5 m (CE90, Circular Error 90% confidence range).

The matching pairs are showing NCC larger than 0.7 were selected as matching candi-
dates in this study. Then, the image coordinates differences were computed between the
matching pairs and plotted in Figure 8. Figure 8a,b shows the line and sample coordinates
differences between Strips #1 and #2. Figure 8c,d shows the line and sample coordinates
differences between Strips #2 and #3. The blue dots show all the coordinates differences for
the matching candidates.

We applied the RANSAC algorithm with second polynomial models for each line
and sample coordinate differences to suppress the matching outliers. The polynomial
model was applied to each scene in an image strip. The red dots show the results after the
outlier removal.
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(a) (b) 

 
(c) (d) 

Figure 8. Discrepancy between the image coordinates in the matching pair—(a) line difference between Strips #1 and #2;
(b) sample difference between Strips #1 and #2; (c) line difference between Strips #2 and #3; (d) sample difference between
Strips #2 and #3.

3.5. Piecewise Discrepancy Compensation

After removing the matching outliers, we can estimate the discrepancy compensa-
tion of the projected image by averaging the image coordinates differences between the
matching pairs. However, the discrepancy varies for each image line. As shown in Figure 7,
averaging single image line discrepancies may produce inaccurate compensation values
because there are no redundant matching pairs in an image line. Therefore, we estimated
the local discrepancy compensation in the line and sample directions by averaging discrep-
ancies in a block of image lines such as 500 image lines. In addition, we interpolated the
averaged differences using a spline curve along the image line to ensure the continuity
between compensated image blocks.

Figure 9 shows the estimated local discrepancy for the line and sample directions
for every 500 image lines after the spline interpolation. In other words, the red line was
derived by averaging the red dots in Figure 8 for every 500 image lines and interpolating
them in the spline curve. Figure 9a,b shows the line and sample compensations for Strip
#1, and Figure 9c,d are for Strip #3. The rewards for sample coordinates ranging from 30 to
44 pixels are much larger than those for line coordinates.
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(a) (b) 

(c) (d) 

Figure 9. Estimated discrepancy compensation—(a) line compensation for Strip #1; (b) sample compensation for Strip #1;
(c) line compensation for Strip #3; (d) compensation for Strip #3.

The piecewise image compensation produced the final strip mosaic in Figure 10.
Note that the color balancing was not carried out in the study. Some examples showing
geometric consistency at the strip boundary even over the building areas are presented in
Figure 11.
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Figure 10. Final strip mosaic.

  

Figure 11. Cont.
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Figure 11. Sample images showing geometric consistency at a boundary.

3.6. Sensor Model Information Generation

As the sensor-level strip mosaic was completed, the sensor modeling information for
the single mosaic strip was generated for the photogrammetric process. A 7 × 7 × 7 cubic
grid covering the whole mosaic image strips was developed in the ground, and the grid
points were projected onto the mosaic strip for the corresponding image coordinates. First,
only RPCs of the center strip (Strip #2) were extended to cover the whole mosaic image
boundary. Secondly, three RPCs were processed together to generate ground and image
coordinate sets for single RPCs generation.

To check the accuracy of the generated RPCs, we collected 25 GCPs over the mosaic
strip from Google Earth, as shown in Figure 12. We used Google Earth Pro to extract
the horizontal and vertical coordinates. Though the accuracy of Google Earth may differ
depending on the areas, a few meters of positional accuracy was reported over near urban
areas in Europe [18]. First, using the 25 GCPs as checkpoints, we estimated the accuracy
of the aforementioned two RPCs of the center strip and mosaic strip, as shown in Table 3.
RPCs of the center strip showed rather low positional accuracy of 4.02 and 40.07 pixels
in RMSE for the line and sample directions, respectively. However, the RPCs of the
mosaic showed much better results reported as 2.88 and 21.07 pixels in RMSE for line and
sample directions. The accuracy improvement ranged from 18% to 47.4%. The geolocation
performance of the resulted mosaic RPCs seemed improved due to the averaging effects of
all RPCs of input data. The RPCs of the mosaic should be more accurate than the RPCs of
each strip if more image strips are used for the mosaic.

Table 3. Accuracy of mosaic strip RPCs (unit: pixels).

RMSE Max Errors

Line Sample Line Sample

RPCs of center strip 4.02 40.07 6.77 45.91
RPCs of Mosaic 2.88 21.07 5.51. 26.78

Accuracy Improvement (%) 28.4% 47.4% 18.6% 41.7%
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Figure 12. GCP distribution with the number.

Next, the bias compensation of the mosaic RPCs was carried out with the GCPs, and
the improved accuracy was presented in Table 4. The bias compensation is a process to
improve the input sensor modeling using ground controls. The biases are estimated in
image coordinates using the rules and compensated for better accuracy [7]. The errors of
the mosaic RPCs were compensated for line and sample directions with constant values
estimated from the GCPs. Table 4 shows the RPCs’ accuracy after the compensation process.
The compensated RPCs showed adequate accuracies ranging from 1.4 to 3.3 pixels in RMSE
compared to the ones shown in Table 3.

Table 4. Accuracy of mosaic strip RPCs after the bias compensation (unit: pixels).

RMSE Max Errors

Line Sample Line Sample

Shift 1.44 3.22 3.01 5.96
Linear 1.46 2.79 3.23 5.79

4. Discussion

In the study, we used RPCs instead of rigorous sensor modeling. This is for easier
and efficient processing as well as compatibility. However, satellite image providers may
use the same approach with their physical sensor model. Regarding image matching, the
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matching window size and search area can be better optimized considering the area of
interest and satellite data specification. For example, fewer features would require a larger
matching window size, and satellites with precise sensor models would require a smaller
search area. In addition, feature-based image matching methods can be used instead [19].
The discrepancy patterns between image strips in line and sample coordinates would be
different for satellite data. The data with stable ephemeris would show rather regular
discrepancy patterns along the image lines. However, in any case, image compensation
should not be carried out for each image line because there are no redundant matching
pairs on a single image line. The sensor modeling of the mosaic tends to be more accurate
compared to each image strip due to the averaging effects. Therefore, a mosaic of more
image strips would produce better positional accuracy [20].

As shown in the resulting mosaic, the three strips’ radiometric differences are ob-
served due to the differences in the acquisition date and angles. The focus of the study is
on minimizing the geometric discrepancy and the generation of single sensor model infor-
mation. Therefore, we have not treated the radiometry in this study, and future research
will include the sensor-level radiometric adjustment between the input image strips.

Note that the proposed method is different from the conventional image mosaic carried
out with orthorectified images. The proposed sensor-level mosaic is carried out before
the photogrammetric processes, including the sensor modeling and orthorectification.
Therefore, users can perform their photogrammetric function with the mosaic and the
sensor model information.

5. Conclusions

High-resolution satellite images show relatively narrow swath widths such that users
often face obstacles to orthorectify and mosaic a bundle of delivered images to create a
complete image map. Therefore, the proposed sensor-level mosaicking can generate a
seamless image product with improved geometric accuracy. The experimental result with
KOMPSAT-3 data showed that the irregular discrepancy between the input images due
to the differences in acquisition angles could be minimized for geometrical continuity
in the resulted mosaic image. In addition, single sensor modeling information of the
mosaic image could be generated for the later photogrammetric processes. The accuracy
improvement of the sensor modeling ranged from 18% to 47.4%. Therefore, we believe that
the proposed sensor-level mosaic method enables users to take advantage of more efficient
and convenient photogrammetric data processing.
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Featured Application: The proposed object detection framework aims to improve detection per-

formance for noisy SAR images, which is applicable for general object detection in SAR imagery:

recognition of militarily important targets such as ships and aircrafts or monitoring for abnormal

civilian events.

Abstract: Detecting objects in synthetic aperture radar (SAR) imagery has received much attention in
recent years since SAR can operate in all-weather and day-and-night conditions. Due to the prosperity
and development of convolutional neural networks (CNNs), many previous methodologies have
been proposed for SAR object detection. In spite of the advance, existing detection networks still
have limitations in boosting detection performance because of inherently noisy characteristics in
SAR imagery; hence, separate preprocessing step such as denoising (despeckling) is required before
utilizing the SAR images for deep learning. However, inappropriate denoising techniques might
cause detailed information loss and even proper denoising methods does not always guarantee
performance improvement. In this paper, we therefore propose a novel object detection framework
that combines unsupervised denoising network into traditional two-stage detection network and
leverages a strategy for fusing region proposals extracted from both raw SAR image and synthetically
denoised SAR image. Extensive experiments validate the effectiveness of our framework on our own
object detection datasets constructed with remote sensing images from TerraSAR-X and COSMO-
SkyMed satellites. Extensive experiments validate the effectiveness of our framework on our own
object detection datasets constructed with remote sensing images from TerraSAR-X and COSMO-
SkyMed satellites. The proposed framework shows better performances when we compared the
model with using only noisy SAR images and only denoised SAR images after despeckling under
multiple backbone networks.

Keywords: denoising; detection; SAR imagery; fusing region proposals

1. Introduction

Synthetic Aperture Radar (SAR) is a type of radar system used to reconstruct 2D or 3D
terrain and objects on the ground (or over oceans). The SAR system utilizes a technology to
synthesize a long virtual aperture through a coherent combination of the received signals
from objects. The synthesized aperture transmits pulses of microwave radiation, which
in turn has the effect of narrowing the effective beam width in an azimuth direction and
thus achieving high resolution. Combining return signals by an on-board radar antenna,
SAR overcomes the main limitations of traditional systems that the azimuth resolution is
determined by physical antenna size. Optical and infrared sensors are passive since they
detect objects by reflected light and emitted signals from the objects, respectively, while
the radars can actively transmit and receive radar waves, operating in all-weather and
day-and-night conditions.

Thanks to the useful characteristics available under all-weather conditions and also
during night-time, SAR images are especially applied to military reconnaissance as most
military operations take place at night in poor weather conditions. There is a variety of
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applications such as information and electronic warfare, target recognition of aircrafts that
maneuver irregularly, battlefield situational awareness, and development of aircrafts that
are hard for the other party to track with radar. In addition, it is necessary to study on
object detection using radar imagery for civilian applications (e.g., resources exploration,
environmental monitoring, etc.).

With the recent rapid development of deep learning, many deep convolutional neural
network (CNN)-based object detection approaches using SAR imagery have gained in-
creased attention. The successes of the deep detectors on SAR images facilitate a wide range
of civil and military applications, such as detection of ship [1–5], aircraft [6–9], destroyed
building [10], oceanic internal wave [11], oceanic eddy [12], oil spill [13], avalanche [14],
and trough [15]. For the further research purposes, several SAR object detection datasets
have also been released called AIR-SARShip-1.0 [16], SAR-Ship-Dataset [17], SAR ship
detection dataset (SSDD) [18], and HRSID [19].

SAR images are formed from a coherent sum of backscattered signal components
at the boundary of different media after pulsed transmissions of microwave radiation,
enabling to observe the interior of the targets otherwise invisible to the naked eye. However,
when obtaining the SAR images, if the emitted pulses are reflected from the boundary of
a target with uneven surface, then scattering and interference waves are created. These
wave signals have a direct impact on a SAR imaging the structure of the target as noise
components. The produced noise is often called speckle noise, which hinders the original
image information and causes a speckle corrupted SAR image as shown in Figure 1.
The scattering characterization of the target gets severe depending on changes in radial
properties and orbital surfaces, leading to degradation of recognition performance. It
is worth noting that a number of published studies were conducted for denoising (or
despcekling) SAR images [20–25].

(a) TerraSAR-X (b) COSMO-SkyMed

Figure 1. Examples of the real-world SAR image where noise-like speckle appears.

Many previous works first perform despeckling on SAR images as one of preprocess-
ing steps and then utilize the SAR images for several tasks via deep learning; e.g., classifica-
tion task [26,27], detection task [28–30], etc. Processing separately the large amount of SAR
images results in high time consumption and low efficiency. Though various despeckling
methods such as Lee filter [22], Kuan filter [23], Frost filter [24], Probabilistic Patch-Based
(PPB) filter[25] have been proposed, if we take an improper despeckling methodology
without considering the dataset characteristics carefully, then the despeckling may lead to
poor performance due to the information loss from raw SAR images. Meanwhile, to further
improve the visual quality of SAR images, there are other preprocessing methods such
as contrast enhancement methods. Given that most of SAR images are usually grayscale
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images, we can consider various processing methods, for example, fuzzy-based gray-level
image contrast enhancement [31] or fuzzy-based image processing algorithm [32].

To overcome the issue and guide for directly promoting object detection performance,
developing an object detection framework through incorporating an alternative deep
denoiser replacing the separate denoising preprocessing step into the classical object
detection network is significant and necessary. The motivation shares the similar spirit to
the recent classification work proposed by Wang et al. [33], where they learn a noise matrix
from an input noisy image and with the noise matrix synthesize a despeckled image taken
as the input into a subsequent classification network. According to our best knowledge, we
are the first to connect a denoising network to an object detection network. We additionally
introduce fusing region proposals approach which fuses set of Region of Interests (RoIs) from
both noisy and denoised images; rather than simply ending with the coupling structure as
in Wang et al. [33].

We propose a novel object detection framework whose the core idea comprises two
parts: (1) connecting an unsupervised denoising network to an object detection network
for dynamically extracting a denoised SAR image from a given noisy SAR image, and
(2) forwarding an image pair of two SAR images (the given real SAR image and the
synthetically generated SAR image) to an object detection network and fusing region
proposals from the two SAR images for complementarily integrating regional information.
Here fusing region proposals refers to merging two sets of RoIs yielded by a shared region
proposal network within the object detection network. This is inspired by the observation
that utilizing only real SAR image may bring about false positives due to the inherent
speckle noise of the image and on the contrary, depending on only denoised SAR image
may cause missing targets because inadequate denoising leads to fine information loss of
raw data.

The rest of this paper is organized as follows. Section 2 mainly consists of two parts,
where the first part introduces our datasets constructed with SAR images from TerraSAR-X
and COSMO-SkyMed satellites, and the second part describes the detailed design of our
proposed object detection framework, i.e., how to incorporate an unsupervised denoising
network into an object detection network and fuse the region proposals within the object
detection network. Section 3 reports comparative experimental results for the proposed
object detection network on our own datasets. To validate the effectiveness of our approach,
we carry out multiple experiments; (1) we need to experimentally demonstrate that our
coupling structure between denoising and detection networks can strengthen detection
performance, (2) we further verify the proposed region proposal fusing strategy in terms of
input data for detection network and fusing method through ablation studies, and (3) we
additionally perform comparative experiments with respect to the choice of a feature map
extracted from either real or synthetic SAR image, where the feature map refers to the
output of CNN backbone in the detection network. Section 4 presents the discussion of
the experimental results together with an additional time complexity analysis. Finally,
Section 5 includes the final remarks and a conclusion.

2. Materials and Methods

In this section, we describe SAR remote sensing datasets that we constructed and the
proposed object detection framework which fuses region proposals utilizing denoised SAR
image. The remote sensing datasets include not only SAR imagery but also corresponding
labeled objects. We develop our object detection framework with the datasets and detail
the proposed framework in the rest of this section.
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2.1. SAR Remote Sensing Dataset
2.1.1. Description

We constructed our datasets with 60 TerraSAR-X images from German Aerospace
Center [34] and 55 COSMO-SkyMed images from Italian Space Agency [35], which is
mainly covering harbor- and airport- peripheral areas. For TerraSAR-X satellite, the images
have resolutions from 0.6 m to 1 m, and is of the size in the range from about 6 k × 2 k to
11 k × 6 k pixels (sorted by their area). For COSMO-SkyMed satellite, the images have a
resolution of 1m, and is of the size in the range from about 13 k × 14 k to 20 k × 14 k pixels
(sorted by their area). Each remote sensing image is labeled by experts in aerial image
interpretation with multiple categories such as airplane (A), etcetera (E) and ship (S). The
ship/airplane classes contain a variety of civil and military ships/airplanes while the
etcetera class includes support vehicles, air defense weapons and air defense vehicles.
Some example ship/airplane objects are shown in Figures 2 and 3 for TerraSAR-X and
COSMO-SkyMed imagery, respectively.

Figure 2. Example airplane (top) and ship (bottom) objects in TerraSAR-X image. The groundtruth bounding boxes labeled
as corresponding class are plotted in red color.
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Figure 3. Example airplane (top) and ship (bottom) objects in COSMO-SkyMed image. The groundtruth bounding boxes
labeled as corresponding class are plotted in red color.

Our labeled objects include a total of 15.7 k instances of 3 categories; 3.7 k instances
for A class, 0.2 k instances for E class, and 11.8 k instances for S class, which implies that
our datasets are quite imbalanced between the categories and relatively skewed towards S
class. The class distribution by type of satellite imagery is plotted in Figure 4. Furthermore,
target objects in our dataset exist at a variety of scales due to our multiresolution images
and the variety of shapes, especially for ships objects. We measure the bounding box size
of objects with wbbox × hbbox and present the frequency of boxes by size as a histogram in
Figure 5, where wbbox and hbbox is the width and height of the bounding box, respectively.

Figure 4. Number of annotated instances per category for TerraSAR-X and COSMO-SkyMed imagery.
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Figure 5. Histogram that exhibits the number of annotated instances with respect to area (width × height)
in pixels.

2.1.2. Comparison to other SAR Detection Datasets

Table 1 summarizes the detailed comparisons between our own constructed dataset
and other publicly available SAR detection datasets, i.e., AIR-SARShip-1.0 [16], SSDD [18],
SAR-Ship-Dataset [17], and HRSID [19]. SAR-Ship-Dataset is the dataset with the largest
number of instances, followed by our own dataset. The primary differentiator of our
dataset as compared with other datasets lies in (1) class diversity such as ships, aircrafts,
and etcetera classes, and (2) the number of scene areas. We obtained the SAR images from
a variety of harbor and airport peripheral areas around the world wide and annotated
different shapes of objects.

Table 1. Comparison of statistics among multiple datasets. We denote the number of instances, patches,
and areas as # Instances, # Patches, and # Areas, respectively.

Dataset # Instances # Patches # Areas Patch Size Resolution

AIR-SARShip-1.0 [16] 461 31 4 3000 × 3000 1∼3 m
SSDD [18] 2540 1160 15 300 × 400 1∼10 m

SAR-Ship-Dataset [17] 59,535 43,819 30 256 × 256 3∼25 m
HRSID [19] 16,951 5604 13 800 × 800 0.6∼3 m
Our Dataset 21,717 16,308 92 800 × 800 0.6∼1 m

2.2. Proposed Methodology

Given the inherent speckle noise of SAR, researchers have previously performed a
preprocessing step like despeckling before training an object detection model. However,
such prior preprocessing independent of the performance of object detection may not only
be inefficient, but also lead to weak detection performance because an unintentionally im-
proper denoising induces loss of detailed information. Therefore, we integrate a denoising
network with a two-stage detection network so that the denoising network can directly
receive feedbacks from the detection network, as illustrated in Figure 6.

We choose a blind-spot neural network [36] based self-supervised scheme as the unsu-
pervised denoising model and adopt Gamma noise modeling as in Speckle2Void [37] fitted
with SAR speckle, but not limited to this model sturcture. We can train the unsupervised
denoising model as a generator G that maps a real (noisy) SAR image Ireal to the synthetic
(denoised) SAR image G(Ireal). The core idea of our model is to infer a synthetic denoised
SAR image from the input SAR image and merge the two sets of extracted RoIs to im-
prove detection performance. Without any help of related materials such as corresponding
denoised image for an input SAR image, we can autonomously simulate the denoised
image and fuse the inferred information such as RoIs. The entire model enables effective
end-to-end learning.
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Figure 6. Overview of the proposed object detection framework: (1) connecting an unsupervised
denoising network to an object detection network for dynamically extracting a denoised SAR image
from a given noisy SAR image, and (2) forwarding an image pair of two SAR images to an object
detection network and fusing region proposals from the two SAR images for complementarily
integrating regional information.

The unsupervised denoising network G in our model firstly takes as input a real (noisy)
SAR image Ireal and extracts synthetic (denoised) SAR image G(Ireal) as the output. Then,
the formed (real, synthetic) image pairs (Ireal , G(Ireal)) are fed into a shared region proposal
network and the region proposal network outputs two corresponding feature maps and
sets of RoIs. The two sets of RoIs Breal ,Bsynth are merged and the redundant bounding
boxes are subsequently removed by a NMS procedure, i.e., B f inal = NMS(Breal ∪Bsynth),
where B f inal is the resultant fused bounding boxes. For each RoI in B f inal on the feature
map from the real SAR image, the RoI feature vector is then forwarded to obtain the
classification and regression results as traditional two-stage detection network.

Usually, only single SAR image which is either real or denoised (preprocessed) is
employed for training an object detection network as shown in Figure 7. Suppose we have
real SAR images which is inherently speckled noisy without any preprocessing, relying
solely on the real SAR image for training may cause false alarms of region proposals. On
the other hand, utilizing denoised SAR images alone may be prone to suffer from missing
targets because of detailed information loss. We, therefore, devise a novel denoising-based
object detection network to make full use of the complementary advantages between the
real and denoised SAR images.

Figure 7. Overview of the traditional two-stage object detection network given a real or denoised
(preprocessed) SAR image as input.

To combine extracted information from both real and synthetic SAR images, we
consider fusing region proposals which merges two sets of RoIs yielded by a region proposal
network. Considering that there exist qualitative differences between the two sets of RoIs
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derived real and synthetic SAR images, the real and synthetic SAR images are separately
trained by the region proposal network. After fusing region proposals, we take the feature
map from the real SAR image for preserving the global context information of the raw
input SAR image.

The proposed architecture is trained end-to-end with a multi-task loss which mainly
consists of (1) unsupervised denoising loss, (2) region proposal loss, and (3) RoI loss for
classification and bounding-box regression. Especially, the region proposal network is
trained for both real and synthetic SAR image, and thus two distinctly losses are defined.
The final loss function that we propose is a weighted summation of all losses as follows.

L(Ireal) = λ1Lden(Ireal) + λ2Lreal
rpn(Ireal) + λ3Lsynth

rpn (G(Ireal)) + λ4Lroi(B f inal) (1)

where:

Ireal = a real (noisy) image

G(Ireal) = a synthetic (denoised) image extracted from the denoising network G

B f inal = NMS(Breal ∪Bsynth), where B· is set of RoIs from either Ireal or G(Ireal)

where Lden denotes the unsupervised denoising loss. Lreal
rpn and Lsynth

rpn are the region
proposal loss of RPN for Ireal and G(Ireal), respectively. Lroi refers to the loss summation
of classification and bounding-box regression loss for all RoIs B f inal . λ1:4 are the hyper-
parameters to balance the interplay between the losses and the all parameters are set to 1
in all our experiments.

3. Results

We first present the description of our experimental dataset settings in Section 3.1.
Section 3.2 presents the details of our model architecture and the hyperparameter settings.
Based on this implementation, we conduct extensive experiments to validate the contri-
butions of the proposed model and Sections 3.3 and 3.4 contain the experimental results.
Section 3.5 provides comprehensive ablation studies.

3.1. Dataset Settings

We acquired 60 TerraSAR-X raw scenes from German Aerospace Center [34] and
55 COSMO-SkyMed raw scenes from Italian Space Agency [35]. The raw scenes go through
multiple stages like preprocessing, Doppler centroid estimation (DCE), and focusing to
obtain single look slant range complex (SSC) images. The SSC images are then converted
to multi-look ground range detected (MGD) images by multi-looking procedures. With
the MGD images, we create patches of size 800×800 via sliding-window operation, within
each patch containing at least one target object which belongs to airplane (A), etcetera (E),
or ship (S) categories. Finally, we randomly split patches into 80% for training, and 20%
for testing.

3.2. Implementation Details

We implemented our unsupervised denoising model following self-Poisson Gaussian [38],
however, adopted Gamma noise modeling as in Speckle2Void [37] to characterize the
SAR speckle. Our implementation for detection framework was based on the MMDetec-
tion tool box [39] which is developed in PyTorch [40]. Stochastic gradient descent (SGD)
Optimizer [41,42] with momentum of 0.9 was used for optimization. We trained a total of
24 epochs, with an initial learning rate of 0.0025, momentum of 0.9, and weight decay of
0.0001. We experimented with ResNet-50-FPN and ResNet-101-FPN backbones [43,44]. All
evaluations were carried out on a TITAN Xp GPUs with 12G memory.
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3.3. Qualitative Evaluation

Figure 8 shows paired examples of real SAR images and corresponding synthetically
denoised SAR images where the denoised SAR images are the intermediate results in our
model. After the denoising stage, the general speckle noises are drastically reduced; how-
ever, there inevitably exists a trade-off between the noise level and image clarity. Especially,
a lot of buoys that usually look like actual ships are located in the first example of Figure 8
and in the denoised SAR image, brightness of the buoys relatively gets faded and the visual
difference with the surrounding ships becomes clear. In addition, scattering waves around
target objects which are one of factors hindering accurate localization is blurred after the
denoising. The denoising within our network confirms such positive effectiveness.

Some image triples of groundtruth, baseline detection, and our detection visualizations
are presented in Figure 9. We train the baseline detection model with non-preprocessed
and raw noisy SAR images. For a fair comparison, both the baseline and our detection
model equally adopt Faster RCNN with ResNet-101-FPN [43,44] backbone architecture.
The detection results show that our model could localize overall objects accurately with
higher confidence scores and detects with a small number of false alarms compared to with
the baseline detection model in the given patch images. Although the progress made by
our detection models are inspiring, our detectors still have a room further improvement
due to the few remaining false alarms and missing targets.

3.4. Quantitative Evaluation

To quantitatively evaluate the detection performance, we calculate mean average preci-
sion (mAP). The mAP metric is widely used as a standard metric to measure the performance
of object detection and estimated as the average value of AP over all categories. Here, AP
computes the average value of precision over the interval from recall = 0 to recall = 1. The
precision weighs the fraction of detections that are true positives, while the recall measures
the fraction of positives that are correctly identified. Hence, the higher the mAP, the better
the performance.

As shown in Table 2, we compare the proposed network with the traditional two-
stage detection model under two different backbones such as ResNet-50-FPN and ResNet-
101-FPN [43,44]. By varying despeckling approaches, we set several baseline models as
previous work processes: (1) inputting non-preprocessed real SAR images, (2) feeding
denoised SAR images into the traditional two-stage detection model after denoising via
representative techniques called Lee filter [22] or PPB filter [25]. We observe that the
despeckling effect of applying Lee filter is more minor than PPB filter. PPB filter enables us
to reduce more speckle noises; but, much detailed information visually gets concealed. This
validates our experimental results that the baseline model with PPB filter slightly performs
inferior compared to the baseline model with Lee filter. On the other hand, our detection
network provides significant advances in performance under all backbone architectures.
Through observation of the test results, this is attributed to the suppression of many false
positive detections resulting from speckle noise problems of real SAR images.
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(a) Real SAR image (b) Synthetically denoised SAR image

Figure 8. Two paired examples of noisy SAR (left) and despeckled SAR (right) images. Red bounding
boxes for each image enlarge corresponding sub-regions. As shown in the enlarged windows,
scattering waves and speckle noises are relatively less observed in denoised examples.
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(a) Airplane (A) class

(b) Etcetera (E) class

(c) Ship (S) class

Figure 9. Image triples are shown in which the left image is groundtruth, while the middle image is for baseline models
(traditional two-stage detection models with real SAR images), and the right image is for our models. The groundtruth
and predicted bounding boxes are plotted in blue color for A class, yellow color for E class, and pink color for S class.
The numbers on the bounding boxes in the middle and right images denote the confidence score for each corresponding
category. We visualize all detected bounding boxes after NMS and thresholding detector confidence at 0.05.
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Table 2. Comparison of detection performance on our constructed dataset with TerraSAR-X and
COSMO-SkyMed images. By incorporating region proposals from denoised SAR images within
detection network, our model shows significant improvement in AP. The entries with the best APs
for each object category are highlight in bold.

Backbone +Despeckling AP Airplane (A) Etcetera (E) Ship (S)

ResNet-50

- 52.05 53.90 54.54 47.72
preprocessing
(Lee filter [22]) 53.52 54.63 56.96 48.98
preprocessing

(PPB filter [25]) 51.16 54.35 53.68 45.44

within network
(ours) 55.90 58.82 54.04 54.84

ResNet-101

- 54.29 54.65 59.80 48.43
preprocessing
(Lee filter [22]) 56.19 58.04 60.59 49.95
preprocessing

(PPB filter [25]) 52.96 53.16 58.17 47.54

within network
(ours) 60.81 65.03 61.67 55.72

3.5. Ablation Study

We conduct an ablation study for structurally verifying the proposed fusing region
proposal strategy. We first compare the case without fusing itself after denoising on input
noisy SAR image, which corresponds to the first experiment in Table 3. With the comparison
to inputting only denoised SAR image as an input to detection network, we can identify
whether the usage of real SAR image as another input of the detection network is important.
This case shows the poorest detection performance and justifies the importance of fusing
information from raw noisy SAR images. Secondly, for the choice of feature map after
fusing, we perform experiments with feature map from denoised SAR image or feature
map from real SAR image. As a result, keeping the feature map from the real SAR image
as proposed is found to be much better.

Table 3. Ablation study across the input type of detection network and feature map forwarded to
subsequent sub-network for classification and bounding box regression for each RoIs. The entries
with the best APs for each object category are highlight in bold. The backbone is ResNet-50-FPN.

Input of DetNet. Feature Map AP Airplane (A) Etcetera (E) Ship (S)

Denoised only - 52.96 56.71 53.59 48.57
Real + Denoised Denoised 53.96 57.16 51.17 53.54
Real + Denoised Real (ours) 55.90 58.82 54.04 54.84

4. Discussion

Our proposed detection framework obviously achieves a better performance through
combining a denoising network with an existing detection network; however, more pa-
rameters and the complex structure demand larger memory for model storage and higher
computing cost. We report average inference times (measured in seconds/(patch image)
on a Titan Xp GPU) for the purpose of time complexity analysis, as presented in Table 4.
Compared with the existing two-stage object detection network like Faster RCNN [45] in
the first row of Table 4, our detection framework further requires denoising time and time
for fusing region proposals during inference. The denoising time makes up a large portion
of the added running times, so the most promising way for reducing the average inference
time would be adopting a relatively light denoising network.
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Table 4. Comparison of running times for the time complexity analysis. We evaluated the running
times on a patch image sized 800 × 800 with a Titan Xp GPU.

Models Inference Time (sec/patch)

Faster RCNN [45] 0.3854
Faster RCNN + Ours 0.8190

5. Conclusions

In this study, we develop a novel object detection framework, where an unsupervised
denoising network is combined with a two-stage detection network and two sets of region
proposals extracted from a real noisy SAR image and a synthetically denoised SAR image
are complementarily merged. The coupling structure of denoising network with detection
network together intends to replace a cumbersome preprocessing step for denoising with
our denoising network and at the same time, the integrated denoising network performs
denoising to support the subsequent object detection. To remedy a potential risk due to
fine information loss after denoising, we keep raw information from input SAR image
within detection network while only utilize a set of region proposals inferred from the
synthetically denosied SAR image. The extensive qualitative and quantitative experiments
on our own datasets with TerraSAR-X and COSMO-SkyMed satellite images suggest that
the proposed object detection framework involves the adaptive denoising for directly
influencing detection performance. Our method shows significant improvements over
several detection baselines on the datasets constructed from TerraSAR-X and COSMO-
SkyMed satellite images.
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Abstract: The Rotational Shearing Interforometer has been proposed for direct detection of extra-solar
planets. This interferometer cancels the star radiation using destructive interference. However, the
resulting signal is too small (few photons/s for each m2). We propose a novel method to enhance the
signal magnitude by means of the star–planet interference when the star radiation is not cancelled.
We use interferograms computationally simulated to confirm the viability of the technique.

Keywords: interferometry; remote sensing; computational simulation

1. Introduction

In the last twenty years, the interest in exoplanet detection has been increased. More
than 4000 planets have been discovered [1], The main interest of the scientific community
are the earthlike planets [2].

The overwhelming majority of discovering planet was discovered by indirect tech-
niques such as transit light curves [3], radial velocity [4], and gravitational microlensing [5].
These techniques sense the effect of the planet over the star radiation. They measure varia-
tions in the star radiation and determine the planet presence using statistical techniques.
However, these variations may be produced by unknown processes in the star and not by
the presence of a planet. Additionally, the measurements obtained by the microlensing
technique are not repeatable because they require the alignment of two stars and the planet.
Moreover, the time necessary to perform a measurement employing indirect techniques
may last from days to years because the planet must complete at least one orbit.

The direct detection of an exoplanet will confirm the currently available evidence
for its existence, with shorter observation periods and incorporating the repeatability
ofthe measurement.

The principal challenges in the direct detection of exoplanets are the image resolution
and the signal-to-noise ratio. The image resolution refers to the minimum angular distance
between two discernible sources. This angular distance is conditioned by the diameter of
the primary mirror of the telescope. The signal-to-noise ratio may be defined as the quotient
between the planet radiance and the star radiance. At visible wavelengths, the planet
radiance arises primarily from the radiation reflected from its parent star. The amount of
reflected radiation depends on the planet’s albedo, its radius, and its distance from the star.
This ratio for a Jupiter-like planet and a Sun-like star is at least 10−10 [6]. In the infrared
(IR) spectral region, the planet radiance consists primarily of the planet thermally emitted
radiation. Additionally, the radiance for a Sun-like star is lower in the IR than in the visible
region. Under these conditions, the radiation signal-to-noise ratio increases up to 10−5 [7].
However, this is still a very low signal-to-noise ratio. In order to improve the radiation
ratio, a coronagraph and interferometric techniques are often implemented [8,9].
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The coronagraph technique consists of occulting the star using a mechanical aperture.
This technique usually implements spatial transmission filters in the focal plane to remove
the diffraction rings due to the hard stop edge [10,11]. However, due to the limitations
of the spatial resolution, this technique is applied primarily to the potential planets with
large orbits.

Most of interferometric techniques attenuate the star radiation by means of destructive
interference. Consequently, these interferometers are called Nulling Interferometers. They
interfere with the wavefronts with a delayed version of them. When the delay between the
interferometer arms is λ/2, the star radiation is canceled, with only the planet radiation
remaining [12–14].

Previously, we proposed a Rotational Shearing Interferometer (RSI) for planet detec-
tion [15–18]. This interferometer interferes with the wavefronts with a rotated and delayed
version of them. Thus, this interferometer may cancel the star radiation in a similar way
to the nulling interferometers. Additionally, we may discriminate against false-positive
results rotating the wavefront. Unfortunately, when the star is canceled, the remaining
amount of radiation is too small. In order to improve the signal magnitude, we propose
using the RSI without the total-cancellation of the star radiation. When the star-radiation is
not canceled, the fringe visibility is decreased, but the signal magnitude is further increased.

In this work, we describe the response of the RSI to a star–planet system radiation in
Section 2. In Section 3, we present computational simulations to validate the viability of
the method. Finally, we present the conclusions.

2. Theory

The closest star to Earth is Proxima Centauri, its distance to the Earth is 1.295 parsecs [19].
At this distance, the optical radiation from a massive light source like a star or a planet may
be considered coherent. This is because these conditions satisfy the Van Cittert–Zernike
theorem [20]. Then, the radiation from any planetary-system outside the solar system may
interfere between them. Additionally, the star and the planet may be considered as point
sources [21]. Figure 1 shows a diagram of the star–planet system viewed for the observer.
The alignment of the planet and the star is characterized by means of their elevation angle
(θ) and their azimuth angle (ϕ). The wavefronts from a star or a planet in its periphery may
be modeled as planes with uniform intensity due to the long distance from the observer.

x

y

z

ϕS

Star

Planet

θS

y′

x′

θP

ϕP

Figure 1. Star–planet system viewed for the observer. The star and the planet may be modeled as
point sources with an elevation (θ) and an azimuth (ϕ) angle with respect to the optical axis.

The Rotational Shearing Interferometer (RSI) was proposed for extra-solar planet
detection because it is insensitive to rotational-symmetrically wavefronts. The RSI makes
incident wavefront interfere with a rotated version of them. When a solitary star is aligned

36



Appl. Sci. 2021, 11, 3322

on the optical axis of the interferometer, its wavefront is rotational-symmetrically, and the
RSI does not produce a fringe pattern. Instead, when the wavefronts from the star and the
planet are incident on the RSI, its interference produces a fringe pattern. The RSI consists
of a Mach–Zehnder interferometer with a Dove prism in each arm as shown in Figure 2.
When the Dove prism rotates around the optical axis, the propagated wavefront rotates
double of the Dove-prism rotation angle. One of the Dove prism is rotated in order to
generate the wavefront rotation. The other Dove prism remains static for compensation
purposes. We use a mirror array as an Optical Path Modulator (OPM). This array is formed
by the mirrors M4, M5, and M6. The mirrors M5 and M6 are collocated over a displacement
platform to control the elongation of the optical Path. We add an additional mirror array in
the other arm for compensation purposes. When a beam insides on the first beam splitter,
it is divided in two. The first one is propagated trough the prism DP1, and it is rotated by
Δφ with respect to the other beam. The second beam is propagated through the OPM to
adjust the OPD. Finally, both beams interfere in the observation plane (OP).

Wavefront
Rotator

(WR)

WR
compensation

OPM compensation

Optical Path
Modulator

(OPM)

M1

M2 M3

M4

M5

M6

DP1

DP2

BS2

BS1

OP

Figure 2. The Rotational Shearing Interferometer consists of a modified Mach–Zehnder interferom-
eter, with a Dove prism as Wavefront Rotator (WR), a mirror array as an Optical Path Modulator
(OPM), and its respective compensation components in the opposite arm.

When a beam coming from a star–planet system is incident on the RSI entrance, four
wavefronts interfere between them on the observation plane. Two of these wavefronts
correspond to the planet and the other two correspond to the star. The resulting interfer-
ence may be divided into three terms: the first one for the interference between the star
wavefronts (MSS), the second one for the interference between the planet wavefronts (MPP),
and an additional term for the interference between the planet and the star wavefronts
(MSP). Then, the incidance (M) in the interference plane may be modeled as the sum of
the terms:

M = MSS + MPP + MSP. (1)

Specifically, these terms may be written in terms of the incidance of the star (MP),
incidance of the planet (MP) and phase (Φij) of each wavefront. The subscripts i = S, P
and j = 1, 2, represent the wavefronts, and the interferometer arms, respectively:

MSS = MS[2 + 2 cos(ΦS2 − ΦS1)], (2)

MPP = MP[2 + 2 cos(ΦP2 − ΦP1)], (3)
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MSP =
√

MS MP[cos(ΦS1 − ΦP1) + cos(ΦS1 − ΦP2)

+ cos(ΦS2 − ΦP1) + cos(ΦS2 − ΦP2)].
(4)

Furthermore, the phase term (Φij(ρ, θ, ϕ)) in cylindrical coordinates for each wavefront
is modeled by:

ΦS1 = ωt +
2π

λ
ρ sin θS cos(ϕ − ϕS) + L1 cos θS, (5a)

ΦS2 = ωt +
2π

λ
ρ sin θS cos(ϕ − ϕS + 2Δϕ) + L2 cos θS, (5b)

ΦP1 = ωt +
2π

λ
ρ sin θP cos(ϕ − ϕS) + L1 cos θP, (5c)

ΦP2 = ωt +
2π

λ
ρ sin θP cos(ϕ − ϕS + 2Δϕ) + L2 cos θP. (5d)

We use Li to denote the optical path length of each interferometer arm. The terms θS
and ϕS are used to indicate the elevation and the azimuthal angles between the star and
the optical axis, respectively. In similar way, θP and ϕP are the angles between the planet
and the optical axis.

2.1. Special Cases

In order to simplify the analysis of these equations, we consider three special cases.
In the first case, the star does not have a planet around it (MP = 0), and the optical-path-
difference (OPD) of the interferometer (L2 − L1) is equal to λ/2. This case is illustrated in
Figure 3. The second case occurs when the optical axis aligned on the star (θS = 0) and the
OPD is λ/2; in this case, the star wavefronts are canceled. Finally, we consider the case
when the star is perfectly aligned with the star, but the OPD is different to λ/2 (the star
wavefront is not canceled). Figure 4 illustrates the star and planet alignment for the second
case and the third case.
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Figure 3. Furthermore, the phase term (Φij(ρ, θ, ϕ)) in cylindrical coordinates for each wavefront is
modeled by:
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Figure 4. Star–planet system viewed for the interferometer when the star is aligned with the interfer-
ometer optical axis.

2.1.1. First Case, the Solitary Star

When the star does not have a planet as a companion, the interference equation is
reduced to the term MSS, described by the next equation:

M = MSS = MS

(
2 + 2 cos

{
2π

λ
[2ρ sin θS sin Δϕ sin(ϕ − ϕS − Δϕ) + OPD cos θS]

})
. (6)

Equation (6) represents a fringe pattern. The spatial frequency of the fringes is given by
2θS sin Δϕ. This equation denotes the dependency of the fringe density with the elevation
angle of the star. The orientation of the fringe-pattern is given by ϕS − Δϕ. Note that
the azimuth angle of the star determines the fringe direction. Because of the dependence
between the fringe pattern and the star alignment, we may use this fringe pattern to align
the optical axis with the star. When the star is perfectly aligned with the optical axis, the
resultant pattern consists of a uniform incidance over the entire observation plane. If we
change the interferometer OPD, the incidance level varies accordingly with:

M = MS

[
2 + 2 cos

(
2π

λ
OPD

)]
. (7)

If we adjust the OPD to λ/2, the star incidance is canceled at the observation plane.
Under these conditions, it is possible to detect a planet if it is present around the planet.

2.1.2. Second Case, Star on Axis and OPD Equal to λ/2

When the star is aligned with the optical axis and it is orbited by a planet, the RSI
receives the star and the planet wavefronts simultaneously. If additionally, we adjust
the OPD to λ/2, the star wavefront is canceled by destructive interference. This case is
analyzed in the most of interferometric methods to detect extra-solar planets. The incidance
equation is considerably reduced because the terms MSS and MSP are canceled; additionally,
θP is small enough to use the paraxial approximation. The resulting equation may be
rewritten as:

M = MP

(
2 + 2 cos

[
2π

λ
2ρθP sin Δϕ sin(ϕ − ϕP − Δϕ) + π

])
. (8)

Equation (8) represents a fringe pattern with spatial frequency equal to 2θP sin Δϕ
and orientation equal to ϕP − Δϕ. Both expressions are dependent on the rotation angle,
Δϕ. This demonstrates that the frequency and orientation on the fringes may be controlled
by the operator as it is shown in laboratory implementations [22]. The maximum fringe
density is reached when the angle between the Dove prisms is 90◦. The minimum fringe
separation is λ

2θp
(about 2 m for a Jupiter-like planet at 10 parsecs from the Earth, observed

at 10 μm).
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In this case, the fringe visibility is only limited by the coherence function of the incident
beam. Unfortunately, the incidance is too low because the planet incidance MP is just a few
photons/s per m2 [15].

2.1.3. Third Case, Star on Axis and OPD �= λ/2

In order to increase the signal incidance, we propose using the RSI without a total star
cancellation. In these conditions, the fringe visibility is reduced, but the signal amplitude
is enhanced considerably. If we consider the star on axis (θS = 0) and ignore some phase
terms, we may simplify Equations (2)–(4) to the next equations:

MSS = MS

{
2 + 2 cos

[
2π

λ
OPD

]}
, (9)

MPP = MP

(
2 + 2 cos

{
2π

λ
[2ρ sin θP sin Δϕ sin(ϕ − ϕP − Δϕ) + OPD cos θP]

})
, (10)

MSP = 4
√

MS MP cos
(

2π

λ

OPD
2

)(
cos

{
2π

λ
[ρ sin θP sin(ϕ − ϕP) + L1 cos θP]

}

+ cos
{

2π

λ
[ρ sin θP sin(ϕ − ϕP + Δϕ) + L2 cos θP]

})
.

(11)

Note that Equation (9) is equal to Equations (7) and (10) is equal to Equation (8). Ac-
cordingly, these terms produce a background incidance and a fringe pattern. Furthermore,
the interference between the planet and the star, represented by Equation (11), produces
two superposed fringe patterns. The first one oriented to ϕP and the second one oriented to
ϕp − Δϕ. Their magnitude is modulated by the cosine of πOPD/λ. Their spatial frequency
is ρ sin θP, and their fringe separation is λθp (about 4 m for a Jupiter-like planet at 10 parsecs
from the Earth, observed at 10 μm ). The fringe visibility is reduced for the background
incidance, which is increased; accordingly, the OPD moves away λ/2. However, the ampli-
tude of the fringe patterns generated by MSP is increased too. The decrease of the fringe
visibility could persuade the researcher of this way. Notwithstanding, however as long as
the detector is not saturated, the signal may be retrieved by image processing. In this way,
we may amplify the signal several times until the detector saturates. The maximum signal
amplification depends on the amount of bits of the detector.

3. Computational Simulation

In order to verify the advantages of the proposed technique, we perform a computa-
tional simulation of the RSI and its response to a star–planet system. We use an exact ray
trace over the RSI to determine the wavefront modification. The wavefront was simulated
using three rays whose sources are located over a plain. The rays are propagated in parallel
to the propagation vector of the wavefront. On each surface, a new ray set is calculated
according to the reflection or refraction laws as appropriate. When the rays insides over
the observation plane, their optical path length is calculated. Using this information, we
determine the wavefront transformation after they have been propagated by the RSI. The
process is repeated for each wavefront and each interferometer arm. The incidance at each
point of the observation plane is calculated using the incidance and phase of each incident
wavefront. Finally, the resultant interferogram is determined by mapping the resultant
incidance with a grayscale value. This computational simulation technique was explained
with more detail in [23].

We simulate a star–planet system where the angular distance between the star and
the planet is 0.5 arcsec, and the star radiation is 105 times the planet radiation at 1 μm.
The star is perfectly aligned with the optical axis. The azimuth angle of the planet is 0.
The observation plane dimensions are 1 m x 1 m. We use these characteristics to probe
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the improvement in the planet detection performed by the proposed technique. However,
equivalent advantages may be achieved with any star–planet system.

Figure 5 shows six interferograms obtained by computational simulation. The interfer-
ograms were generated by adjusting the OPD to λ/2 and changing the rotation angle from
0◦ to 180◦ with the star aligned with the optical axis. These interferograms are composed of
straight fringes for which density and orientation change when the interferometer rotation-
angle is changed, according to Equation (8). The fringes are produced by the interference of
the planet wavefront with itself; this confirms the planet presence. The rotation of the fringe
allows for discarding several false-positives by alignment errors. The image grayscale
range is adjusted to coincide its saturation level with the maximum incidance, produced
by MPP term.

0◦ 30◦ 45◦ 60◦ 90◦ 180◦

Rotation Angle [degrees]

Figure 5. Simulated interferograms obtained as the response of a RSI to a star–planet system
wavefronts when the star is aligned with the optical axis and the OPD is λ/2. The rotation angle
of the RSI is indicated below each interferogram. The grayscale range is adjusted to coincide its
saturation level with the maxim of MPP term.

Figure 6 shows interferograms generated adjusting the OPD to λ/2 + 1 nm with
the star aligned to the optical axis. These interferograms are composed by two straight
fringes superposed. The fringes density and orientation changes with the interferometer
rotation-angle as predicted in Equation (8). These fringes correspond to the interference
between the star and the planet. The fringes produced by the interference of the planet
with itself are present; however, they are eclipsed by the brightness of star–planet fringes.
The first image shows the background incidance produced by the interference of the star
wavefront with its rotated version. The image grayscale is adjusted to coincide with the
maximum incidance, produced by the MSP term. In this case, we obtain a signal gain of
4 with respect to the previous case. The gain is calculated as the difference between the
minimum and the maximum incidance level of the resultant interferogram compared to
the difference between the minimum and the maximum of the MPP term.

0◦ 30◦ 45◦ 60◦ 90◦ 180◦

Rotation Angle [degrees]

Figure 6. Response of a RSI when its optical axis is aligned with the star and the OPD is λ/2 + 1nm.
The RSI rotation-angle is indicated below each interferogram. The image grayscale is adjusted to
coincide its saturation level with the maximum of the MSP term.

The increment in the fringe incidance in accordance with the OPD variation is showed
by Figure 7. It shows interferograms with different grayscale ranges: in the first row, the
image saturation-level is 8 times the MPP maximum, in the second row 64 times, in the
third row 128 times, and 256 times in the fourth row. The OPD is changed in each column:
in the first column, the OPD is λ/2, in the second column, the OPD is λ/2 + 2 nm, in
the third column, the OPD is λ/2 + 5 nm, in the fourth column, the OPD is λ/2 + 10 nm,
and, finally, in the last column, the OPD is λ/2 + 15 nm. We may observe that the fringe
visibility decreases accordingly the OPD moves away λ/2. However, the signal magnitude
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is increased and the pattern is still visible to the naked eye. When the OPD is λ/2 + 15 nm,
the gain is 60 and the fringe visibility is 13%.
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256

128

64

8

OPD

G
ra

ys
ca

le
m

ax
im

um
no

rm
al

iz
ed

to
M

P
P

m
ax

im
um

Figure 7. Comparison of the incidance level obtained for different values of OPD. We observe that
the incidance level is incremented when the OPD moves away λ/2, and the fringe pattern is visible if
we adjust adequately the grayscale range. The interferograms were obtained using a rotation angle of
60◦. In each row, the grayscale maximum is adjusted to coincide with the value indicated on the left
side of the row. The OPD used to simulate the interferograms of each column is indicated below it.

Figure 8 shows the fringe visibility and the gain versus the OPD. We may observe that
the gain is increased almost linearly. In contrast, the fringe visibility decays rapidly. This
behavior may confuse and erroneously discourage this technique because the visibility
had a small value. However, the signal may be easily distinguishable, and the gain
improvement is substantial as shown in Figure 7. Additionally, we may observe that the
fringe visibility reduction is slow after 20 nm away λ/2, and the signal gain continues to
increase at the same rate.

(a) (b)

Figure 8. Fringe visibility (a) and signal gain (b) versus the OPD. When the OPD is moved away to
detune from λ/2, the fringe visibility decreases, and the signal gain increases linearly at a rate of
4/nm.

4. Conclusions and Future Work

We proposed an improvement to the capacity of the RSI for extra-solar planets detec-
tion. This technique consists of the non-total cancellation of the star radiation in order to
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improve the signal magnitude. The signal increment is due to the interference of the planet
wavefront with the star wavefront. We use computational simulations to demonstrate that
the signal magnitude may be amplified more than 60 times and the signal may be still
detected with the naked eye. The maximum signal gain is limited by the saturation level of
the detector.

The search for direct detection of extra-solar planets is a long-term project. The next
challenge consists of validating this technique by laboratory experiments.
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Abstract: Aerial images are an outstanding option for observing terrain with their high-resolution
(HR) capability. The high operational cost of aerial images makes it difficult to acquire periodic
observation of the region of interest. Satellite imagery is an alternative for the problem, but low-
resolution is an obstacle. In this study, we proposed a context-based approach to simulate the
10 m resolution of Sentinel-2 imagery to produce 2.5 and 5.0 m prediction images using the aerial
orthoimage acquired over the same period. The proposed model was compared with an enhanced
deep super-resolution network (EDSR), which has excellent performance among the existing super-
resolution (SR) deep learning algorithms, using the peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM), and root-mean-squared error (RMSE). Our context-based ResU-Net
outperformed the EDSR in all three metrics. The inclusion of the 60 m resolution of Sentinel-2 imagery
performs better through fine-tuning. When 60 m images were included, RMSE decreased, and PSNR
and SSIM increased. The result also validated that the denser the neural network, the higher the
quality. Moreover, the accuracy is much higher when both denser feature dimensions and the 60 m
images were used.

Keywords: aerial orthoimage; Sentinel-2; super-resolution; image simulation; residual U-Net

1. Introduction

Aerial imagery has been widely used for monitoring the surrounding environment
due to its long history. Orthoimages created from aerial images can provide high-quality
geospatial information taken at lower altitudes than satellite images. Continuously mon-
itoring a rapidly changing environment requires reducing the observation period for a
site. However, the tradeoff between spatial resolution and ground coverage prevents aerial
images from covering a wide area. The role of aerial imagery has been gradually replaced
by satellite imagery with its wide area coverage and regular repeat pass capabilities. More-
over, satellites equipped with multispectral sensors have enabled multiple applications
such as resource management, urban research, facility mapping, and disaster monitoring.

The resolution of most of the current satellite images is still lower than that of aerial
images. The price of commercially available high-resolution (HR) satellites has frequently
hindered many researchers’ progress in their projects. In most countries, including Korea,
HR aerial orthoimages are provided to the public for free [1]. Furthermore, in the United
States and the European Union, low- and medium-resolution satellite images are provided
free of charge to users around the world. Research is needed to increase the resolution of
mid- and low-resolution satellite images using freely available HR aerial images.

In the field of remote sensing, a visible improvement of image resolution primarily
implies pan-sharpening. This method improves the resolution of low-resolution multispec-
tral images using an HR panchromatic image. There are two typical approaches, one using
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Intensity-Hue-Saturation (IHS) information [2] and one using principal component analysis
(PCA) [3]. The primary concern for pan-sharpening is that it is applicable only when an HR
panchromatic image is available. Consequently, the resolution of the pan-sharpened image
cannot be higher than that of the input panchromatic image. With the recent development
of deep learning techniques, studies to produce images with higher resolution than the
input image have been conducted. Several studies using deep learning techniques have
been published in the remote sensing community. Related studies can be largely divided
into two usage categories: multiple sensors from one platform and multiple sensors from
multiple platforms [4–10].

Improving the resolution of multispectral sensors from one (same) platform is usually
performed by merging lower and higher multispectral images. Gargiulo et al. [5] en-
hanced a 20 m shortwave infrared (SWIR) image acquired by Sentinel-2 into a 10 m SWIR
image. Similar to the pan-sharpening approach, the four-channel 10 m visible and NIR
resolution images of Sentinel-2 were regarded as panchromatic. A shallow convolutional
neural network (CNN) was constructed to improve the resolution of the SWIR image. The
limitation of this study is that only the resolution of an SWIR image can be improved.
Lanaras et al. [6] presented research results that can address this limitation. By constructing
deep and dense neural network models, DSen2 and VDSen2, they improved the 20 m
resolution of three red-edge and three SWIR images, two 60 m resolution images of water
vapor, and 60 m SWIR mages of Sentinel-2 images into 10 m. They asserted that the model
could be extended and improved from 20 m and 60 m to a 10 m resolution. However, the
first category cannot produce images with higher resolution than the maximum resolution
provided by the platform.

Another category is improving the resolution of multispectral sensors from multi-
ple (different) platforms. Few studies have improved 30 m Landsat-8 satellite images
to 10 m using Sentinel-2 images. Shao et al. [7] proposed the extended super-resolution
convolutional neural network (ESRCNN) by blending Landsat-8 and Sentinel-2 data. They
demonstrated the effectiveness of the deep learning-based fusion method for improving the
resolution of Landsat-8 imagery. In their study, a performance comparison was performed
using area-to-point regression kriging rather than other deep learning-based algorithms.
Pouliot et al. [9] tested shallow and deep CNNs and confirmed that the deep CNN per-
formed the same or better than the shallow CNN. The suggested algorithm demonstrated
high-performance, but computational complexity and memory requirements could be
problematic because the model is trained for each band.

After analyzing the previous studies, we found three common points. The first is that
the use of deep neural networks is superior [6,8,9]. Tai et al. [8] analyzed the performance
of each neural network by constructing shallow, deep, and very deep networks. They
confirmed that the deeper the neural network, the higher the performance. Second, most
neural networks have residual blocks and skip connections [6,8,10,11]. Consequently, the
vanishing gradient problem can be alleviated, and the learning speed improved, even
though the neural network is deeper. Third, the size of the input image inside the neural
network is maintained until the last stage of the output, in contrast to neural networks for
object detection and segmentation. Accordingly, the enlargement function to create the HR
is only located in the final stage of neural networks using upsampling convolution layers
or pixel shuffle algorithms [11]. Galar et al. [10] applied an enhanced deep super-resolution
network (EDSR) to produce a 5 m resolution RapidEye RGB image with a 10 m resolution
Sentinel-2 RGB image. They confirmed superior performance among super-resolution (SR)
neural networks [11,12].

Studies so far have used neural networks of increasing resolution between satellite
images. In this study, we propose a context-based ResU-Net to increase the resolution of
Sentinel-2 imagery using 2.5 and 5.0 m downsampled aerial orthoimage acquired during
the same period. For completing the tasks, the aerial orthoimages were first simulated by
reconstructing a residual U-Net, which has advantages not only in constructing a deep and
dense neural network but also in identifying adjacent contexts and the position of objects.
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As a result of the experiments, we found that our neural network can express the aerial
orthoimages’ features and contexts well.

Training datasets were newly generated by using Sentinel-2 and aerial orthoimage.
Sentinel-2 images, providing 10 m, 20 m, and 60 m resolution of multispectral bands, were
utilized in this research. Sentinel-2 has the highest resolution and shortest revisit date
among free satellite images. Since the advantage of obtaining many repeat pass images
is a factor that can satisfy the objectives of this study, it was selected as input data. SR
research is key to securing a high-resolution ground truth (GT), and aerial orthoimages
are one of the most reliable and high-quality data. Therefore, aerial orthoimages with a
similar acquisition date were utilized as the GT. Two types of aerial orthoimages were
produced, 2.5 m and 5.0 m, as ground truth data downsampled from the original aerial
orthoimagery. The data were used for testing two-times magnification (5.0 m based on
10 m) and challenged four-time magnification (2.5 m based on 10 m).

We tested the effect of using the lowest resolution 60 m image on the model and
analyzed the model’s influence when the feature dimensions are changed. In addition, the
quality of our approach was investigated through the peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM), and root-mean-squared error (RMSE), a com-
mon approach in many SR studies.

Finally, we found that our model’s performance in most metrics turned out to be
better than that of EDSR. We also identified that incorporating 60 m resolution with 10 m
resolution Sentinel-2 images outperforms the combination 10 m and 20 m resolution images.
In addition, we confirmed that the denser feature dimensions have better performance. In
particular, it could be a useful reference for related research as it predicts well even narrow
roads that are difficult to identify with low-resolution satellite images.

2. Materials and Methods

2.1. Training Datasets Generation and Site Selection
2.1.1. Study Area

Daejeon City, located in the central part of the Korean peninsula, was selected as
the study area. The city has an area of approximately 539 km2 and is a transportation
hub connecting the southern and northern regions. As depicted in Figure 1, most of the
areas illustrate urban landscapes, where large and small buildings are clustered. Rice
paddies/fields and mountainous areas are distributed in minimal areas. Middle areas,
primarily covered with many complex environments such as urban buildings and roads,
are the areas where the SR approach is challenging to apply.
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Figure 1. Location of Daejeon and Sejong depicted with Google map and Sentinel-2 images (band 2
image acquired on 2018/04/18).

Sejong City, Korea’s administrative capital, is being developed into a city since 2012.
The area of Sejong City is approximately 465 km2, and most of the regions are still moun-
tains and rice fields. However, due to construction, the impermeable layer is increasing
rapidly every year. Daejeon City was selected to produce training datasets, and Sejong City
was selected as a test site to analyze the generalization capabilities. Even if training samples
and test samples are not overlapped, spatial autocorrelation within the same area cannot
be avoided. Therefore, it was necessary to select an independent region with different
characteristics.

2.1.2. Aerial Orthoimages

Aerial orthoimages were acquired in 2018, distributed free of charge under the leader-
ship of the Korean government’s aerial image acquisition and map production policy. Due
to national security reasons, only 51 cm resolution images are provided to the public [1],
and internally up to a 25 cm resolution is produced and used. We meticulously inspected
the acquisition date of aerial images through the government orthoimage production
manual and identified that aerial images were acquired over approximately one month,
21 April, 29 April, 5 May, and 26 May 2018, to cover the entire study area. The 51 cm
orthoimages using the aerial triangulation method were provided through the government
website. The final orthoimages downloaded are depicted in Figure 2.
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Figure 2. Aerial orthoimages over the study area with the acquisition date.

2.1.3. Sentinel-2A/B Satellite Imagery

Sentinel-2 is one of the satellites operated by the European Space Agency (ESA) and
provides 13 multispectral bands with several different resolutions (10 m, 20 m, and 60 m).
The imagery of Sentinel-2 has the highest resolution of 10 m among the current freely
available for the general public. Accordingly, Sentinel-2 was selected for the study because
it can provide much richer information than any other free satellite images. A short revisit
period of five days is another strength of the Sentinel-2 imagery. Initially, the revisit period
was ten days, but two satellites named Sentinel-2A and Sentinel-2B take images alternately,
which reduces the revisit period to 5 days.

Sentinel-2 provides two types of images: (1) the L1C product, a top of atmosphere
(TOA) reflectance image and (2) the L2A product, a bottom of atmosphere (BOA) reflectance
image. The L2A product can overcome a significant difference in reflectivity, which varies
for different acquisition times. Because aerial images are acquired at a much lower altitude
than satellite images, it is better to use images with atmospheric correction. Because ESA
provides the L1C product for images over the study area from 2018, all experimental images
were converted to L2A through the Sen2cor tool of the Sentinel application platform (SNAP)
software [9,13]. Twelve images (four 10 m, six 20 m, and two 60 m) with different spectral
bands ranging from visible wavelength to SWIR were acquired. In some land classification
studies, 60 m resolution images are not used because they are primarily for atmospheric
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correction [14,15]. However, we tested our approach with and without 60 m resolution
imagery to consider whether additional atmospheric information is useful for training
input images.

For matching the Sentinel-2 images acquired at the same time interval as the aerial
orthoimages, data were searched through the Copernicus website, where the Sentinel series
took all provided images [16]. We obtained both Sentinel-2A and 2B sensor images, which
contain less cloud coverage, from the website. Searched images used in this research are
listed in Table 1, and only band 2 images are depicted in Figure 3. All 10 m and 20 m
images were used in training as defaults, with 60 m as optional. Because the datasets are
acquired simultaneously with the aerial orthoimages, it was assumed that there were no
significant topographic changes during the short period. Accordingly, listed datasets are
used for all the following experiments.

Table 1. Sentinel-2 sensing start times used for the research.

Platform Sensing Start Time

Sentinel-2A

2018/04/18 02:16:01

2018/04/28 02:16:11

2018/05/28 02:16:51

Sentinel-2B 2018/05/23 02:16:49

Total 4 images
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Figure 3. Acquired Sentinel-2 band number 2 (10 m) images: (a) Sentinel-2A 2018/04/18, (b) Setntinel-2A 2018/04/28,
(c) Setntinel-2A 2018/05/28, (d) Setntinel-2B 2018/05/23.

2.1.4. Training Datasets Generation

The training datasets were preprocessed based on 2.5 m downsampled aerial orthoim-
ages and 10 m Sentinel-2 satellite images. The first step was to transform both image sets
into the same map projection system. All image sets in this study were projected into the
Korea 2000 coordinate system (EPSG: 5186), corresponding to transverse mercator (TM)
projection. The second step was to determine the size of training datasets based on 60 m
Sentinel-2 images. After considering the computational efficiency of training processes, the
4 × 4 pixels image size was used, corresponding to 240 × 240 m2 on the ground. For this
configuration, the image size for 2.5 m and 5.0 m aerial orthoimages were 96 × 96 pixels
and 48 × 48 pixels, respectively. For the same reason, the training image sizes of 10 m and
20 m resolution for Sentinel-2 were 24 × 24 pixels and 12 × 12 pixels, respectively.
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Training samples and test samples were selected randomly within the study area but
did not overlap for the Daejeon area. Through this process, 32,632 training samples (6527
for validation samples, 20% of the training samples) and 8156 test samples were produced.
In addition, 39,204 test samples were generated for the Sejong area. Each set consisted of
twelve Sentinel-2 images (4 for 10 m, 6 for 20 m, and 2 for 60 m) and two aerial photographs
(1 for 2.5 m and 1 for 5.0 m), as depicted in Figure 4. A 5.0 m aerial orthoimage was used as
the GT for 2× magnification of 10 m Sentinel-2 images and 2.5 m for 4× magnification of
10 m Sentinel-2 images.

Figure 4. Example of training sets (Input: {B2 B3 B4 B8}: 10 m, {B5 B6 B7 B8A B11 B12}: 20 m, and {B1
B9}: 60 m, output: aerial orthoimages 2× for 5.0 m, 4× for 2.5 m).

2.2. Methodology
2.2.1. Context-Based ResU-Net

The latest research results indicate that the quality of SR increases as more convolution
layers or deeper neural networks are assigned [6,8,9]. Most recent deep learning-based
SR neural networks adopt this trend by maintaining the size of the input image until the
output stage. The enlargement function to create HR is applied to the final stage [8,11,12].
The existing methodology was applied to our datasets with unsatisfactory results. It is
speculated that different imaging geometry between aerial and space-borne sensors may
lead to unsatisfactory results even with similar research methods. Because the aerial
orthoimage contains more context information than the space-borne Sentinel-2 image, we
determined that it would be critical to arrange context-preserving and deep and dense
neural networks in the initial stage. The proposed architecture of the context-based ResU-
Net for our study is depicted in Figure 5.

In our study, the residual U-Net proposed by Zhang et al. [17] was modified to
maintain the context information and build deep neural networks. Batch normalization
(BN) and ReLU activation functions are included in most of the steps. BN helps to solve
gradient vanishing/exploding and overfitting caused by the deep neural network; it
also improves accuracy [6,11]. The ReLU is used to remove the values below zero [6].
The encoder’s role is to make the input image compact, and the decoder recovers the
information to generate the final image. There is a path connecting the encoder and the
decoder, and all convolution layers have a filter size of 3 × 3. The encoding path has three
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conv-depth blocks. Each block’s stride was set to 2 instead of using downsampling layers
to reduce the feature map’s size in half. The decoding path has three conv-depth blocks to
correspond to the encoder, and the size is increased through upsampling layers. End of the
decoding path, a convolution layer is inserted to make feature dimensions as 3 with ReLU
activation function for generating desired resolution similar to that of aerial orthoimage.

Figure 5. Context-based residual U-net for aerial images simulation (S: scale, f : feature dimension).

There are three major differences between the existing Residual U-Net and our net-
work. First, the conv-depth block was included to reduce computation resources. It is
known that depth-wise separable convolution (DepthConv) maintains performance while
reducing the number of parameters [18]. As shown in Table 2, if a convolution layer is
used instead of a DepthConv layer in our architecture, the number of parameters to be
learned becomes larger. In addition, the difference in the number of parameters increased
as the size of the feature dimensions increased. Moreover, we had encountered that the
validation loss was jagged when only the convolution layer was used. On the contrary, the
loss converges evenly with a lower value when using the DepthConv layer, as shown in
Figure 6. When only the convolution layer was used, the loss at epoch 1 was 45,328.06,
but the value was too large to be displayed on the graph, so only the corresponding value
was clipped.

Table 2. Comparison of parameter numbers.

Feature Dimensions Compositions
Number of Parameters

Trainable Parameters Total Parameters

fa
Using convolutional layer only 4,718,035 4,725,331

Using DepthConv layer 3,159,955 3,167,251

fb
Using convolutional layer only 18,845,091 18,859,683

Using DepthConv layer 12,595,491 12,610,083

fc
Using convolutional layer only 75,326,275 75,355,459

Using DepthConv layer 50,293,315 50,322,499
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Figure 6. Loss convergence comparison: conv-depth block vs. conv only for context-based ResU-Net
when using 60 m images with fc feature dimensions (2×).

Second, upscaling was applied in the initial stage of the neural networks. The reason
for changing the order like this is that the final prediction image becomes smoother or
darker than that of the GT image when the image size is enlarged in the final stage as
most of the other SR networks are arranged. In our networks, the scale (S) indicates an
increasing factor of the original image. For example, the scale was set to 2S at the beginning
and halved at the end, achieving a double improvement effect. Finally, the stride parameter
was set to 2 to halve the image resolution.

Third, the feature dimension (f = {f1, f2, f3, f4, f5}) was configured to increase gradually
as the image size decreases, and the experiment was conducted in three groups: fa = {16, 32,
64, 128, 256}, fb = {32, 64, 128, 256, 512}, and fc = {64, 128, 256, 512, 1024}. It was designed to
analyze the predictive ability according to the size of feature dimensions.

2.2.2. Hyperparameter Optimization

The following hyperparameters were chosen to control the learning process. The
related parameters were the optimizer, loss function, learning rate, batch size, and epoch.
For an optimizer Adam optimizer for gradient descent was used in this study, reflecting
many previous studies that this optimizer produced the best performance and had lower
memory requirements than others [6,9,10,19]. The L1 loss function was used to minimize
the error, which is the sum of all the absolute differences between the true value and the
predicted value; it has been widely applied to SR neural networks [11,12,19]. For our study,
we adopted the mean squared error (MSE) loss function instead of L1 because MSE had
better results than L1. Finally, the mini-batch size was set to 32.

The learning rate gradually decreased as the epoch increased through a rate decay
scheduler [18]. Consequently, the learning rate functions as an essential hyperparameter
because it is dependent on the epoch parameter. Therefore, the epoch was adjusted between
30 and 180 to find the minimum loss; the experiment was repeated for each model. The
initial learning rate was set to 5 × 10-4. Early stopping criteria using validation datasets
were also applied to avoid overfitting, and learning was stopped if the accuracy was
not improved within 10 epochs. All programming was performed with Python-based
Tensorflow nightly (2.5.0) GPU version, and learning was conducted using three graphics
cards: two GeForce RTX-2080 Ti (11 GB VDRAM) and one RTX-3090 (24 GB VDRAM).
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3. Results

Two experiments were conducted to evaluate our results: (1) whether to use 60 m
images and (2) the effects of the feature dimension sizes. The EDSR neural network was
also trained for comparison with our results. EDSR was selected as a comparison due
to its excellent performance among the currently developed SR neural networks [12].
Lim et al. [11] designed both baseline and EDSR models. The difference between the two
models is the number of residual blocks and the feature dimension. The baseline model is
organized with 16 residual blocks and 64 feature dimensions, and EDSR is formed with 32
residual blocks and 256 feature dimensions. Both models are utilized for comparison, and
all related training parameters were set as the author suggested. After training both neural
networks with the same datasets, the results were evaluated with three metrics. PSNR and
SSIM were used to evaluate the outcome—they are most frequently used as an evaluation
index of SR deep learning research [11,12,20]. The RMSE used in some studies [6,9] was
also included. The comparison of the final three metrics is summarized in Table 3 for
Daejeon City and Table 4 for Sejong City, respectively. The scale parameters 2 and 4 refer to
generating 5.0 m and 2.5 m aerial orthoimages, respectively.

In the case of Daejeon City, our context-based ResU-Net outperformed the baseline
and EDSR models for all three metrics. For EDSR, even if the residual blocks and feature
dimensions increased comparing with the baseline model, it is difficult to find performance
improvement. In the case of Sejong City, in which independent testing was performed, our
models performed better in two metrics except for RMSE.

Table 3. Quality evaluation results with set parameters for Daejeon City. Blue indicates the best results, and red indicates
the second best.

Scale Neural Networks Use of 60 m
Feature

Dimensions
Epoch RMSE PSNR SSIM

2

Baseline
(EDSR)

Y
64

120 22.9871 22.2210 0.4750

N 100 23.1250 22.1883 0.4738

EDSR
Y

256
70 22.5078 22.3772 0.4834

N 100 21.9486 22.6070 0.4935

Context-based
ResU-Net

(Ours)

Y

fa

180

20.2371 23.3116 0.5010

fb 19.3775 23.6701 0.5233

fc 18.6816 23.9578 0.5437

N

fa 20.2274 23.3333 0.5005

fb 19.4900 23.6332 0.5234

fc 18.8066 23.8895 0.5439

4

Baseline
(EDSR)

Y
64 180

24.6372 21.5330 0.3675

N 24.7514 21.5305 0.3648

EDSR
Y

256
30 26.4536 20.9607 0.3516

N 40 26.7308 20.9715 0.3572

Context-based
ResU-Net

(Ours)

Y

fa
180

22.9141 22.1295 0.3770

fb 22.1827 22.3758 0.3888

fc

120

21.3574 22.6966 0.4101

N

fa 22.9897 22.1006 0.3774

fb 22.1444 22.3971 0.3912

fc 21.7778 22.5278 0.4018
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Table 4. Quality evaluation results for Sejong City. Blue indicates the best results, and red indicates the second best.

Scale Neural Networks Use of 60 m
Feature

Dimensions
RMSE PSNR SSIM

2

Baseline
(EDSR)

Y
64

30.3523 19.3793 0.4034

N 30.5805 19.3052 0.4009

EDSR
Y

256
30.3873 19.4050 0.4086

N 30.0645 19.4856 0.4110

Context-based
ResU-Net

(Ours)

Y

fa 30.4532 19.4819 0.4125

fb 30.8639 19.3829 0.4122

fc 30.4220 19.5121 0.4182

N

fa 30.5115 19.4902 0.4183

fb 30.3297 19.5689 0.4173

fc 30.4948 19.5190 0.4151

4

Baseline
(EDSR)

Y
64

31.5568 18.9689 0.3287

N 31.4554 18.9719 0.3270

EDSR
Y

256
32.4436 18.7164 0.3188

N 33.1779 18.5482 0.3250

Context-based
ResU-Net

(Ours)

Y

fa 31.3203 19.0943 0.3357

fb 31.5619 19.0178 0.3357

fc 31.6259 19.0225 0.3387

N

fa 31.8976 18.9556 0.3368

fb 31.4533 19.1072 0.3382

fc 31.3686 19.0990 0.3407

The image quality deteriorated as the magnification was enlarged, and the value
of the evaluation metrics gradually deteriorated. Through fine-tuning, the inclusion of
60 m images performs better in two networks. When 60 m images were included, RMSE
decreased, and PSNR and SSIM increased. This result demonstrates that the 60 m images
have a positive impact on both networks.

The loss converged to a lower value if feature dimensions increased, as depicted in
Figure 7. The result also validated that the denser the neural network, the higher the quality.
Moreover, we found the accuracy is much higher when both denser feature dimensions
and the 60 m images were used.
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Figure 7. Convergence results according to each feature dimension.

For a visual comparison between EDSR and context-based ResU-Net, the prediction
images are listed in Tables 5–9. Each table shows the predicted image of one representative
input Sentinel-2 image per resolution (10 m, 20 m, and 60 m) for two scales, 2 and 4. The
2.5 m and 5.0 m aerial orthoimages are GT. The use of the 60 m Sentinel-2 images is shown
in the second column. The predicted images of the baseline and EDSR model are shown in
the third column. There is not much difference between the baseline and EDSR model, and
only EDSR will be compared in the following. The predicted images of our context-based
ResU-Net for three feature dimensions (fa, fb, fc) are shown in the fourth column of each
table. Generally, the prediction images between EDSR and context-based ResU-Net are
visually similar when the feature dimension of context-based ResU-Net is fa. For EDSR,
even if the residual blocks and feature dimensions increase, no further improvement can
be found. However, in our model, as networks become denser from fa to fc, it can be seen
that the prediction images are getting close to GT.
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Table 5. Predicted images of Sentinel-2 and corresponding GT image (paddy/road area).

Scale Use of 60 m

Predicted Images
Input Images per Each
Resolution (Sentinel-2)Baseline and EDSR

Context-Based ResU-Net
(Ours)

2

Yes

64

fa

< Band 01 (60 m) >

< Band 02 (10 m) >

< Band 05 (20 m) >

256

fb

fc

No

64

fa

GT image

fb

< Orthoimage (5.0 m) >

256

fc
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Table 5. Cont.

Scale Use of 60 m

Predicted Images
Input Images per Each
Resolution (Sentinel-2)Baseline and EDSR

Context-Based ResU-Net
(Ours)

4

Yes

64

fa

< Band 01 (60 m) >

< Band 02 (10 m) >

< Band 05 (20 m) >

256

fb

fc

No

64

fa

GT image

fb

< Orthoimage (2.5 m) >

256

fc
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Table 6. Predicted images of Sentinel-2 and corresponding GT image (urban area).

Scale Use of 60 m

Predicted Images
Input Images per Each
Resolution (Sentinel-2)Baseline and EDSR

Context-Based ResU-Net
(Ours)

2

Yes

64

fa

< Band 01 (60 m) >

< Band 02 (10 m) >

< Band 05 (20 m) >

256

fb

fc

No

64

fa

GT image

fb

< Orthoimage (5.0 m) >

256

fc
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Table 6. Cont.

Scale Use of 60 m

Predicted Images
Input Images per Each
Resolution (Sentinel-2)Baseline and EDSR

Context-Based ResU-Net
(Ours)

4

Yes

64

fa

< Band 01 (60 m) >

< Band 02 (10 m) >

< Band 05 (20 m) >

256

fb

fc

No

64

fa

GT image

fb

< Orthoimage (2.5 m) >

256

fc

61



Appl. Sci. 2021, 11, 1089

Table 7. Predicted images of Sentinel-2 and corresponding GT image (forest area).

Scale Use of 60 m

Predicted Images
Input Images per Each
Resolution (Sentinel-2)Baseline and EDSR

Context-Based ResU-Net
(Ours)

2

Yes

64

fa

< Band 01 (60 m) >

< Band 02 (10 m) >

< Band 05 (20 m) >

256

fb

fc

No

64

fa

GT image

< Orthoimage (5.0 m) >

256

fb

fc
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Table 7. Cont.

Scale Use of 60 m

Predicted Images
Input Images per Each
Resolution (Sentinel-2)Baseline and EDSR

Context-Based ResU-Net
(Ours)

4

Yes

64

fa

< Band 01 (60 m) >

< Band 02 (10 m) >

< Band 05 (20 m) >

256

fb

fc

No

64

fa

GT image

< Orthoimage (2.5 m) >

256

fb

fc
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Table 8. Predicted images of Sentinel-2 and corresponding GT image (urban/forest area).

Scale Use of 60 m

Predicted Images
Input Images per Each
Resolution (Sentinel-2)Baseline and EDSR

Context-Based ResU-Net
(Ours)

2

Yes

64

fa

< Band 01 (60 m) >

< Band 02 (10 m) >

< Band 05 (20 m) >

256

fb

fc

No

64

fa

GT image

< Orthoimage (5.0 m) >

256

fb

fc
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Table 8. Cont.

Scale Use of 60 m

Predicted Images
Input Images per Each
Resolution (Sentinel-2)Baseline and EDSR

Context-Based ResU-Net
(Ours)

4

Yes

64

fa

< Band 01 (60 m) >

< Band 02 (10 m) >

< Band 05 (20 m) >

256

fb

fc

No

64

fa

GT image

< Orthoimage (2.5 m) >

256

fb

fc
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Table 9. Predicted images of Sentinel-2 and corresponding GT image (urban/road area).

Scale Use of 60 m

Predicted Images
Input Imagesper Each
Resolution (Sentinel-2)Baseline and EDSR

Context-Based ResU-Net
(Ours)

2

Yes

64

fa

< Band 01 (60 m) >

< Band 02 (10 m) >

< Band 05 (20 m) >

256

fb

fc

No

64

fa

GT image

< Orthoimage (5.0 m) >

256

fb

fc
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Table 9. Cont.

Scale Use of 60 m

Predicted Images
Input Imagesper Each
Resolution (Sentinel-2)Baseline and EDSR

Context-Based ResU-Net
(Ours)

4

Yes

64

fa

< Band 01 (60 m) >

< Band 02 (10 m) >

< Band 05 (20 m) >

256

fb

fc

No

64

fa

GT image

< Orthoimage (2.5 m) >

256

fb

fc
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Observing the boundaries of an object reveals the difference between the two methods.
For EDSR, when the image was enlarged four times, the overall boundary of each object
remained similar or smoother than that of two-time enlargement-causing the prediction
images to look blurry. For context-based ResU-Net, boundaries of each object became
more distinct as the feature dimensions increased in density regardless of the enlargement
scale. When the feature dimension reached its maximum size, the boundaries of the object
became sharpest. Consequently, the visibility of all images improved.

Some differences were found between the two models. EDSR predicts a darker image,
especially in forest areas (Table 7), and it produced a blurry image compared to ours, as
shown in Tables 5–9. Interestingly, the result of context-based ResU-Net predicts even
urban shadows well in the densest feature dimension fc, which are not even expressed
in EDSR as shown in Table 6. It was also identified that our model generally trained the
boundaries of objects better. In particular, road boundaries are well preserved even the
width is narrower than the 10 m resolution Sentinel-2 image. The result implies that the
recognition of the object of concern, such as the road, can be possible by using predicted
Sentinel-2 imagery, as shown in Tables 5 and 7. The road boundaries become clear as feature
dimension becomes denser, but it seems that some attention needs to be paid to the shape
of the road for the inclusion of 60 m Sentinel-2 imagery. Some of the road boundaries were
visually curved when the 60 m Sentinel-2 images were included, but they were straight
when the 60 m image was not included. It can be said that there exists a tradeoff between
the value of metrics and visualization when the road boundaries are concerned.

4. Discussion

A study was conducted to produce 2.5 m and 5.0 m resolution imagery with 10 m
Sentinel-2 satellite images using aerial orthoimage as a ground truth. For this, training
samples were produced by acquiring Sentinel-2 satellite images and aerial orthoimages
over the same area and period. The training samples were used to simulate 2.5 m and 5.0 m
aerial orthoimages. For quality check and general applicability of our neural network,
additional test samples in an independent region were utilized. For producing better-
simulated images, a new context-based neural network was proposed and compared with
the existing neural network. Our context-based ResU-Net generally outperformed the
baseline and EDSR for all three metrics, both in training samples and test samples. We
believe that this is because conv-depth blocks helped the stability of our model. In any
case, the utility of our model for successfully predicting narrow roads will be very high.
Meanwhile, in order to improve the performance compared to the present, the obstacles to
be solved were speculated as follows:

First, the effect of shadows in HR aerial images was significant. The Sentinel-2 images
were acquired with a low-resolution at high altitude, whereas aerial images were acquired
with HR at low altitude. Even in the same area, when images were acquired at a low
altitude, the effect of shadows was much more prominent than at a high altitude. Because
most of our study area included urban landscapes, the effect of shadows on HR images
was much greater than for high altitude images. The original 51 cm aerial orthoimage
was resampled to obtain GT using bilinear interpolation. During the bilinear interpolation
process to create GT from the original 51 cm aerial orthoimage, the effect shadow smeared
into other features and worsened the SSIM metric.

Second, there existed the effects of color correction during the composition of aerial
orthoimages. The primary purpose of aerial orthoimages distributed by the Korean govern-
ment is to produce a visually attractive map for the general public. We speculated that the
original reflectance information had been corrected to make the orthoimage more pleasing,
leading to potentially difficult and inaccurate training due to the use of aerial orthoimages.

For this study, it is essential that both aerial orthoimages and satellite images must be
taken at a similar period of time. Recently, some countries have provided aerial orthoim-
ages, so if researchers can check the acquisition date of aerial orthoimages, we expect that
our research results can be utilized.
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In future research, steps for shadow identification and shadow removal must be
included based on deep learning, especially when using the HR aerial images as training
sets. In the remote sensing community, CNN-based SR research is ongoing. However,
several studies have tried to combine images obtained from multiple sensors to produce
new images. We believe that the method and results presented in this study can contribute
new insights for researchers performing similar studies.
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Abstract: Light Detection and Ranging (LiDAR) remote sensing technology provides a more efficient
means to acquire accurate 3D information from large-scale environments. Among the variety of
LiDAR sensors, Multi-Beam LiDAR (MBL) sensors are one of the most extensively applied scanner
types for mobile applications. Despite the efficiency of these sensors, their observation accuracy is
relatively low for effective use in mobile mapping applications, which require measurements at a
higher level of accuracy. In addition, measurement instability of MBL demonstrates that frequent
re-calibration is necessary to maintain a high level of accuracy. Therefore, frequent in situ calibration
prior to data acquisition is an essential step in order to meet the accuracy-level requirements and
to implement these scanners for precise mobile applications. In this study, kinematic in situ self-
calibration of a backpack-based MBL system was investigated to develop an accurate backpack-based
mobile mapping system. First, simulated datasets were generated for the experiments and tested
in a controlled environment to inspect the minimum network configuration for self-calibration.
For this purpose, our own-developed simulator program was first utilized to generate simulation
datasets with various observation settings, network configurations, test sites, and targets. Afterwards,
self-calibration was carried out using the simulation datasets. Second, real datasets were captured
in a kinematic situation so as to compare the calibration results with the simulation experiments.
The results demonstrate that the kinematic self-calibration of the backpack-based MBL system could
improve the point cloud accuracy with Root Mean Square Error (RMSE) of planar misclosure up to
81%. Conclusively, in situ self-calibration of the backpack-based MBL system can be performed using
on-site datasets, reaching the higher accuracy of point cloud. In addition, this method, by performing
automatic calibration using the scan data, has the potential to be adapted to on-line re-calibration.

Keywords: multi-beam LiDAR; in situ self-calibration; mobile mapping system; 3D point cloud;
backpack-based mapping

1. Introduction

Over the past few years, significant developments of laser scanning technology have
increased the feasibility of acquiring large amounts of accurate geometric 3D data. The
demand for 3D observation has increased as well with the development of automatic digital
image analysis, namely artificial intelligence. In this context, laser scanners have become a
fundamental means to acquire 3D information in a manner that is effective enough to satisfy
the growing demand in this field [1]. This trend is particularly relevant in civil engineering,
robotics, and computer vision, due to those fields’ high usage of laser scanners as routine
measurement techniques for applications such as 3D modeling and mapping [2,3], efficient
building management [4,5], and the transformation of structural health monitoring [6,7].
Extending the application of laser scanners from geomatics to these domains has resulted in
the emergence of new areas for potential implementation, which requires the development
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of more efficient and accurate acquisition systems [8]. More recently, Light Detection and
Ranging (LiDAR) sensors have become more portable, compact, and readily available to be
extended to mobile applications. The advancement of modern technology has expanded
the use of LiDAR sensors to a variety of applications including mobile mapping, surveying,
and autonomous vehicles. In particular, Multi-Beam LiDAR (MBL) is one of the most
extensively used and favored sensors for mobile applications, because the sensors are
relatively lightweight, compact, and cheap. MBL, manufactured by Velodyne LiDAR, has
been widely used both in research and the industrial field [9–17]. Particularly, backpack-
based 3D mapping using Velodyne LiDAR has been a popular mobile application. Leica
Pegasus [18], Viametris bMS3D [19], GreenValley LiBackpack [20], and Gexcel Heron [21]
are examples of the commercial backpack-based mobile mapping system. These solutions
use two Velodyne VLP-16 units to perform odometry for georeferencing and 3D mobile
mapping including Simultaneous Localization and Mapping (SLAM). Along with the
growing need for 3D information, these commercial backpack-based mapping systems
were released to match the demand for quick data acquisition and fieldwork planning;
however, there are drawbacks that require further improvement in terms of accuracy and
cost [22]. In this context, developing an accurate and affordable backpack-based mapping
system is still an interest in this field.

For successful and effective mobile LiDAR scanning, two fundamental issues need
to be addressed: georeferencing and sensor calibration. Georeferencing is the conversion
of a local coordinate system to one global coordinate system combining all point clouds
into the same coordinate system. Sensor calibration removes systematic errors inherent to
sensors and can accomplish quality assurance to maximize the accuracy of observation.
These two key processes are not independent, which means that the more accurate the
sensor system that is built, the more accurate georeferencing becomes, so that the overall
accuracy of surveying can be improved. Therefore, establishing an accurate mobile LiDAR
sensor system is the most significant step. Even though MBL provides a cost-efficient and
portable option, their observation accuracy is lower than conventional Terrestrial Laser
Scanners (TLS) in general. They include systematic errors, which can affect the overall
accuracy of the scanned data. Since each mechanically designed laser measures the range
by time-of-flight system and encoder angle, the point cloud inevitably contains systematic
errors in range and angle measurements with respect to each laser. These systematic
errors can cause translations and rotations in the point cloud data. As a result, for precise
mobile mapping and surveying, the overall accuracy of the point cloud data needs to be
improved [23].

LiDAR self-calibration can remove the systematic errors inherent in the sensor and
thus improve the overall accuracy of point cloud by reducing the Root Mean Square Error
(RMSE) associated with registration and check points [24]. It also can reduce the need
for point cloud outlier removal as a post-processing step. In the case of MBL, various
studies in the literature have performed self-calibration using modified manufacturer-
based calibration parameters. They also have confirmed the potential of applying these
sensors as a basis for obtaining a highly accurate mobile mapping platform. A calibration
of Velodyne HDL-64E, which is Velodyne’s first generation of MBL consisting of 64 laser
channels, can be found in the literature. Static calibration of Velodyne HDL-64E using
plane-based targets achieved a 3D RMSE up to 0.013 m [25], while optimization-based
calibration showed standard deviations of planar data from 0.006 to 0.037 m [26]. Moreover,
minimizing the discrepancies between the point cloud and pattern planes attained 0.0156 m
of point cloud accuracy [27]. In addition to the installed target-based approaches, the static
on-site re-calibration approach using planes accomplished 0.013 m of planar misclosure [28].
Besides, the kinematic calibration of HDL-64E on a moving vehicle attained 0.023 m of
planar RMS residuals [29]. Velodyne HDL-32E mounted on a vehicle, which consists of
32 laser channels, was also calibrated using cylinder-based self-calibration and improved
the accuracy level to 0.008 m in static mode and 0.014 m in kinematic mode [30]. The
calibration of the most recent generation of MBL by Velodyne, VLP-16, showed 0.025 m
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of planar RMSE residuals [31]. However, the system parameters may still be inconsistent,
even after self-calibration, due to the instability inherent in the scanning system. Temporal
stability analysis of an MBL demonstrated that the measurement stability is slightly higher
than the quantization level, which stresses the need for periodic re-calibration of the
LiDAR sensor to maintain a high level of accuracy [32]. Since measurement stability
analysis showed inconsistency in range observation, there is a chance that the calibration
parameters might change during data acquisition. As a result, periodic in situ calibration
should be performed to increase and maintain the heightened overall accuracy of the point
cloud for a backpack-based MBL system. This leads to our objective of the study, which is
the kinematic self-calibration method that can be performed continually during the data
acquisition.

In this respect, this study aimed to perform kinematic in situ self-calibration of a
backpack-based MBL system for the purposes of easy, efficient and frequent periodical self-
calibration prior to data acquisition. First, self-calibration was conducted with simulation
datasets to examine the minimum network configuration for the in situ self-calibration
of backpack-based MBL system. Second, based on the analysis from the simulation ex-
periments, reals datasets were acquired using our own backpack system. The accuracy
of the results was analyzed by investigating planar misclosure after the adjustment, the
correlations between parameters, measurement residuals, and the standard deviation of
the estimated parameters. The remainder of this study is organized as follows. Section 2
presents the configuration and specifications of the sensor system used in this study.
Section 3 covers the mathematical models, which are an observation model, a systematic
error model, a functional model, and a least squares solution for the adjustment. Section 4
outlines the experimental set-ups and the calibration datasets for the investigation of the
minimum network configuration and observation requirements. It also includes the results
of the experiments and accuracy analysis. Section 5 provides a discussion of the proposed
method in terms of accuracy and benefits. In conclusion, Section 6 summarizes the findings
of the study along with possible future work.

2. Backpack-Based Sensor System

The backpack-based MBL system used in this study consists of two LiDAR sensors,
six optical cameras, and a Global Navigation Satellite System (GNSS)/Inertial Navigation
System (INS) (Figure 1). The configuration of the involved sensors was determined to have
minimum occlusion and maximum Field of View (FOV). The sensors are all integrated into
a core computing system, which receives all sensor data and synchronizes into Universal
Time Coordinated (UTC) timestamps. The Inertial Measurement Unit (IMU) was not
described in Figure 1 since the unit is embedded in the computing system.

2.1. LiDAR Sensors

Two Velodyne VLP-16 (Figure 2) were mounted on the backpack system. Since its
release in 2014, VLP-16 has been extensively utilized in mobile applications for both
research and industry. The specifications of VLP-16 are summarized in Table 1. The sensor
consists of 16 pairs of simultaneously rotating laser emitters and receivers within a compact
sensor pod, and each laser has a fixed vertical angle of 2◦ resolution. The rotation rate
varies from 5 to 20 Hz, with a set default value of 10 Hz, which gives 0.2◦ of horizontal
angular resolution. Based on the default settings, VLP-16 rotates every 0.1 s and acquires
approximately 28,800 points in each scan.
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Figure 1. Backpack-based Multi-Beam Light Detection and Ranging (LiDAR) (MBL) sensor system.

Figure 2. Velodyne VLP-16.

Table 1. Specifications of Velodyne VLP-16.

Specification

Channels 16 lasers
Range Up to 100 m

Range Accuracy Up to ±3 cm
FOV (Vertical) +15.0◦ to −15.0◦ (30.0◦)

Angular Resolution (Vertical) 2.0◦
FOV (Horizontal) 360◦

Angular Resolution (Horizontal) 0.1◦–0.4◦
Rotation Rate 5 Hz–20 Hz

2.2. Inertial Sensor

The Trimble APX-15 Unmanned Aerial Vehicle (UAV) was mounted for GNSS/INS.
The Trimble APX-15 UAV (Figure 3) is an efficient GNSS-inertial solution for small UAVs.
It weighs 60 g and is light enough to attach onto the backpack system. With GNSS signal
integrated, APX-15 gives position, roll, pitch and heading output in 100 Hz, and IMU data
in 200 Hz. This enables an accurate direct georeferencing of various sensor data. Detailed
specifications of Trimble APX-15 UAV are described in Table 2.
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Figure 3. Trimble APX-15 Unmanned Aerial Vehicle (UAV) single board Global Navigation Satellite
System (GNSS)-inertial solution.

Table 2. Specifications of Trimble APX-15 UAV.

Specification

Size (mm) 67 L × 60 W × 15 H
Weight 60 g

IMU data rate 200 Hz

SPS DGPS RTK Post-Processed

Position (m) 1.5–3.0 0.5–2.0 0.02–0.05 0.02–0.05
Velocity (m/s) 0.05 0.05 0.02 0.015

Roll & Pitch
(deg) 0.04 0.03 0.03 0.025

True Heading
(deg) 0.30 0.28 0.18 0.080

2.3. Digital Cameras

Four fisheye lens cameras and two perspective cameras were mounted on the backpack
system. The model of the fisheye lens is Sunnex DSL315 and the camera body is Chameleon
CM3-U3-32S4C (Figure 4). The camera has no shutter button, operating by receiving signals
from a computing system. Detailed specifications of the fisheye camera are described in
Table 3. Stereo cameras are also built in the backpack system. The perspective lens model
is KOWA LM5JCM and the camera body is Chameleon CM3-U3-50S5C (Figure 5). Table 4
shows specifications of stereo camera.

  
(a) (b) 

Figure 4. Fisheye lens camera: (a) Sunnex DSL315 fisheye lens; (b) Chameloen3 USB3 Vision.

Table 3. Specifications of fisheye lens camera.

Lens Camera Body

Model Sunnex DSL315 CM3-U3-31S4C
Projection Model Equisolid angle projection
Image Size (pixel) 2048 × 1536
Pixel Size (mm) 0.00345

Focal Length (mm) 2.67
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(a) (b) 

Figure 5. Stereo camera: (a) KOWA LM5JCM; (b) Chameleon3 USB3 Vision.

Table 4. Specifications of the stereo camera.

Lens Camera Body

Model KOWA LM5JCM CM3-U3-50S5C
Projection Model Perspective
Image Size (pixel) 2448 × 2048
Pixel Size (mm) 0.00345

Focal Length (mm) 5

3. Mathematical Models

3.1. Point Observation and Systematic Error Model of VLP-16

VLP-16 acquires range and horizontal angle measurements and provides fixed vertical
angle for 16 laser channels (described in Section 2.1). The geometric relationship between
spherical coordinates (ρ, θ, α) and Cartesian coordinates (x, y, z) is shown in Figure 6. The
formulas for converting spherical coordinates (ρ, θ, α) to Cartesian coordinates (x, y, z) are
given by Equation (1), where ρ, θ, and α are raw distance measurement, encoder angle
measurements, and fixed vertical angle, respectively.

P(x, y, z) =

⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎣ ρ cos(α)sin(θ)

ρ cos(α)cos(θ)
ρ sin(α)

⎤
⎦ (1)

Figure 6. Conversion from a spherical coordinate system to a Cartesian coordinate system.

Sensor modelling is a crucial step in conducting rigorous self-calibration of laser
scanners [33,34]. Numerous researchers have independently defined their own TLS error
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models. The error model of a laser scanner was estimated, and the accuracies of the esti-
mated parameters were determined by comparing the measurements with an electronic
distance measurement (EDM) [35]. A later model consists of about 20 additional parame-
ters (APs) and can be found in [36]. This error model effectively modeled TLS instruments;
however, it was defined for the AM-CW TLS, which uses a phase-based distance measuring
system. In the case of MBL, laser emitter/receiver sets measure distance by a pulse-based
Time of Flight (ToF) system with a fixed vertical angle. Therefore, AP terms should be
different with phase-based TLS instruments. For Velodyne LiDAR, systematic error coeffi-
cients are defined by six parameters (i.e., range offset, scale error, horizontal angular offset,
vertical angular offset, horizontal offset, and vertical offset) given by the manufacturer to
model the deviations of measurements. Since the number of APs are multiplied by the
number of lasers, the AP terms should be carefully chosen to avoid over-parameterization.

Although the manufacturer provides six parameters, some of the APs were neglected
in this study. First, the estimation of scale error requires inclusion of an independent scale
definition in the self-calibration network [36]. Range scale error cannot be estimated using
the calibration approach and must therefore be estimated by other means, and independent
baseline testing did not disclose the existence of this error [33]. In performing the tests,
therefore, if scale error is included in the adjustment without an independent scale defini-
tion, an optimization process is not working properly. Considering there are no a priori
known locations of the targets or scanner when performing in situ calibration, the scale er-
ror was therefore neglected. Horizontal offset and vertical offset were also fixed to maintain
a higher accuracy of adjustment, for the following reasons: (1) Horizontal and vertical offset
are highly correlated to the horizontal and vertical rotations, respectively [25,29]. In the
case of VLP-16, the correlation coefficients of the parameters corresponding to the vertical
and horizontal rotation corrections were found between 0.92 and 0.98, respectively [31].
(2) The vertical and horizontal alignments of each laser are precisely located according
to the manufacturer-provided values set below the accuracy of the range observation. (3)
Local coordinate error induced by horizontal and vertical offsets is not linearly dependent
in the range observation.

Hence, the range offset, horizontal angular offset, and vertical angular offset were
considered as APs in this study. Therefore, the point observation model for MBL could
finally be determined as Equation (2). The coordinates of ith point at scan position j lying
on plane k from laser n are related by rigid body transformation as given by:

⎡
⎣ Xijkn

Yijkn
Zijkn

⎤
⎦ = Rj ×

⎡
⎢⎢⎢⎣

(
ρijkn + Δρn

)
cos(αn + Δαn)sin

(
θijkn + Δθn

)
(

ρijkn + Δρn

)
cos(αn + Δαn)cos

(
θijkn + Δθn

)
(

ρijkn + Δρn

)
sin(αn + Δαn)

⎤
⎥⎥⎥⎦+

⎡
⎣ Xj

Yj
Zj

⎤
⎦ (2)

where ρ, θ, and α denote a range observation, a horizontal angle observation, and a fixed
vertical angle, while Δρ, Δθ, and Δα indicate a range offset, a vertical angular offset, and
a horizontal angular offset, respectively. Rj = R

(
κj
)

R
(
φj
)

R
(
ωj

)
is the rotation matrix

which transforms the local coordinate system j to the reference coordinate system with the
rotation angle ωj, φj, and κj about the X, Y and Z axes.

[
Xj Yj Zj

]T is the translation from
jth scan to the reference coordinate system.

3.2. Plane-Based Functional Model

Self-calibration of the laser scanner can be categorized according to the two major
point- and plane-based methods. Point-based self-calibration uses center point coordinates
extracted from a number of signalized targets through numerous estimation and transfor-
mation processes. Point-based self-calibration using TLS such as Trimble GS200 and GX
can be found in [37,38]. In addition, research has been studied to determine the optimal
network design for correlation mitigation and to achieve good parameterization of TLS
self-calibration [39–41]. One limitation of such calibration approaches includes manual
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installation of signalized targets, which is labor-intensive and can decrease the accuracy of
point-based self-calibration due to high parameter correlation [42]. Moreover, in the case of
multi-beam laser scanners, extracting the exact target points is almost impossible due to
the fixed vertical angle.

Meanwhile, point coordinates on the surface of planar targets can be used directly
instead of center point coordinates of signalized targets. Since signalized targets are
not required, plane-based self-calibration is one of the most widely adopted methods.
The main advantage of plane-based self-calibration is that the plane parameters within
each plane can be estimated in the adjustment model, thereby mitigating the need to
measure an accurate reference target and enhancing the method’s applicability for in
situ calibration. Skaloud and Lichti [43] presented a rigorous approach to bore-sight
self-calibration of an airborne laser scanning system by conditioning the geo-referenced
LiDAR points to fit into common plane surfaces. However, the objective of their work was
more oriented to the estimation of extrinsic parameters between the Inertial Measurement
Unit (IMU) and the LiDAR unit, considering only range offset as AP. Bae and Lichti [34]
conducted plane-based self-calibration with scan data using FARO 880. In their study,
self-calibration simulations investigated various scanner configurations, and the results
demonstrated that a long baseline between two scan stations enables a more accurate
estimation of collimation axis errors. Also, plane-based calibration has been reported to
offer almost the same performance as point-based calibration when conducted under a
strong network configuration [44]. The self-calibration approach in this study is based on
the plane-based functional model of [34]. This model estimates not only exterior orientation
parameters (EOPs) and APs, but also plane parameters, simultaneously. The plane-based
method can remove the necessity of calibration target set-up and reference target coordinate
measurement using additional sensors. The condition equation associated with parameters
and observations can be expressed by the plane-based functional model as given by:

[ak bk ck]×
⎡
⎣ Xijkn

Yijkn
Zijkn

⎤
⎦− dk = 0 (3)

where [ak bk ck] are the direction cosines of the normal vector of the plane k, and dk is the
orthogonal distance from the origin of the reference coordinate system to the plane k. The
direction cosines must satisfy the unit length constraint:

a2
k + b2

k + c2
k = 1 (4)

3.3. Least Squares Solution

The combined adjustment model (Gauss–Helmert adjustment model) was used, since
the objective function includes inseparable observations and parameters, and each function
includes more than one observation. Details on the implementation of the Gauss–Helmert
adjustment model can be found in [43]. Therefore, only the quantities of the adjustment
will be discussed herein.

First, the VLP-16 provides two observations for each point: a range and a horizontal
angle. For unknown parameters, three APs were considered for each laser as aforemen-
tioned, and six rigid body transformation parameters for each scan must be included to
combine all scanner coordinate systems into a reference coordinate system. Lastly, a unit
length condition must be constrained to the equation for each plane. For the network
constraint, according to [45], either the ordinary minimum or the inner constraint for the
datum definition has no opposing impact on the accuracy of self-calibration. Since the
scale is defined by range observations, the ordinary minimum constraint, which fixes the
EOPs of the first scan to define the datum as the reference coordinate system, was chosen
in this study. In addition, not all 16 laser angular offsets can be estimated simultaneously,
because a certain amount of angular offset for every laser can be compensated by sensor
orientation, causing a problem when defining the scanner space. Therefore, horizontal and
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vertical angular offsets for one laser are held fixed. Assuming that we have i points located
on k planes from n lasers in j scans in the adjustment, the least squares solution can be
summarized as in Table 5.

Table 5. Summary of least squares solution.

Category Formula

Conditions m = i
Unknowns u = 6 × (j − 1) + (3n − 2) + 4k

Observations l = 2i
Constraints c = k

Degree of Freedom r = m − u + c

4. Experiment Description and Result Analysis

Calibration experiments were designed using simulated and real datasets. All the
experiments were performed by the following process. First, the point cloud for each
scan location was captured by defining the “frame”, as MBL completes one rotation and
covers 360◦ of the horizontal field of view. Next, plane fitting using Maximum Likelihood
Estimation SAmple Consensus (MLESAC) for all point clouds was processed [46]. Each
point lying on its surface has a plane number and parameters. Common planes that are
mutually detected in all point clouds are manually matched to the reference scan. Least
squares adjustment and accuracy assessment follow.

4.1. Simulation Experiments

Since the zero-order design problem—the datum problem—has been addressed by fix-
ing the EOPs of the reference scan as aforementioned, the first-order design problem—the
configuration problem—is our interest. Several network configuration conditions were con-
sidered to determine the minimum network configuration for plane-based self-calibration
of the backpack-based MBL system. These include: (1) the number and configuration of
scans; (2) the size, the number, and the configuration of incorporated planes; (3) the mini-
mum number of points lying on the planar surface. In order to determine the minimum
network configuration suitable for the backpack-based MBL system in situ self-calibration,
simulation experiments were designed with respect to those two significant conditions.
Simulation environments were designed by changing the size of the test site and sensor
configurations using our own developed simulator program. All the simulated datasets
have 0.2◦ horizontal angle increments, and the same systematic errors. The given system-
atic errors for the simulation data are shown in Table 6. Random noises were set to 0.003 m,
and 0.01◦ for range and angle observations, respectively.

Table 6. Given systematic error level for simulation experiments.

AP Values

Δρ(m) 0.03
Δα(◦) 0.1
Δθ(◦) 0.1

The first experiment (Calibration I) was conducted by reducing the number of scans
successively to determine the optimal configuration and the minimum number of scans
required. As shown in Figure 7a,c, the size of the test site was firstly set to 15 m × 15 m ×
3 m, and four scans were located at the corner, two scans were located near the corner, and
one was located at the center. This full network configuration, including seven scans and
six planes, was constructed based on [45]. Each scan was slightly tilted along the X axes
(omega in orientation parameters) for better estimation of the adjustment [42]. Figure 7b,d
show the point cloud generated for Calibration I.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 7. Simulated environment and their corresponding point clouds: (a,c) network configuration for Calibration I;
(b,d) point cloud generated for Calibration I; (e,g) network configuration for Calibration II; (f,h) point cloud generated for
Calibration II. Color coded by height.

For the second experiment (Calibration II), as described in Figure 7e,g, the dataset
was firstly generated in a 15 m × 5 m × 3 m corridor-shape environment, and the length
of the corridor was shortened by 1 m successively until it reached 7 m × 5 m × 3 m in
order to investigate the effective dimensions of the room for the self-calibration. After the
investigation, the number of incorporated planes also reduces to determine the minimum
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number of planes required. Figure 7f,h show the point cloud generated for Calibration II.
Figure 8 describes the assigned number for each plane.

  
(a) (b) 

 
(c) 

Figure 8. Plane number settings: (a) ceiling and floor; (b) front and rear walls; (c) left and right walls.

For the third experiment (Calibration III), the number of points used in the adjustment
reduces to identify the minimum requirement of the redundancy for the adjustment.

4.2. Analysis of Simulation Experiment Results

In the first experiment (Calibration I), the number of scans was reduced successively.
Table 7 provides a summary of the first experiment. Also, please refer to Figures 7a–d and 8.
The RMSE between estimated and given AP values are plotted in Figure 9. As can be seen,
all the tests show high similarity. The asymmetry network configuration of Calibration I-2
might have affected the accuracy of the adjustment. For Calibration I-5, the scan location
was too close to the corner, leading to a high incidence angle to the planes. High incidence
angle observation tends to deteriorate the overall accuracy of the adjustment [25]. The
results from the first experiments indicate that there is no significant change of accuracy
when using only two scans compared with the full network, which uses seven scans. For
the rest of the experiments, therefore, only two scans (not too close to the corner) were
used for self-calibration.

Table 7. Summary of Calibration I (reducing the number of scans).

Used Scans Used Planes Total Points Used Points Redundancy

I-1 1, 2, 3, 4, 5, 6, and 7

1, 2, 3, 4, 5, and 6

202,608 2048 1948
I-2 1, 3, 4, 5, 6, and 7 173,664 2048 1954
I-3 1, 3, 5, 6, and 7 144,720 2048 1960
I-4 1, 3, 6, and 7 115,776 2048 1966
I-5 1 and 3 57,888 2048 1978
I-6 6 and 7 57,888 2048 1978
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Figure 9. RMSE of estimated additional parameters (APs) for Calibration I.

Following the result from Calibration I, the second experiment (Calibration II) used
only two scans for self-calibration by decreasing the dimensions of the room and the number
of incorporated planes. Also, please refer to Figures 7e–h and 8. Table 8 summarizes the
information on Calibration II. The length of the test site decreased until 7 m. The scan
locations were about 3 m apart from the wall and 1 m from each other. Except for Calibration
II-13 and II-14, the remaining twelve experiments have calibration solutions. The RMSEs of
the estimated APs for the twelve experiments are provided in Figure 10. The range offset
showed consistent RMSE values for all experiments, while the two angular offsets showed
a slight variance. Even the reduced dimension of the test site (i.e., 7 m × 5 m × 3 m) with
three planes (i.e., ceiling and two orthogonal walls) provided a low level of RMSE values
as seen in Figure 10.

Table 8. Summary of Calibration II (reducing the length of the corridor and the number of planes).

Dimensions (m) Used Planes Total Points Used Points Redundancy Convergence

II-1 15 × 5 × 3

1, 2, 3, 4, 5, and
6

57,888 2048 1978

O
II-2 14 × 5 × 3 O
II-3 13 × 5 × 3 O
II-4 12 × 5 × 3 O
II-5 11 × 5 × 3 O
II-6 10 × 5 × 3 O
II-7 9 × 5 × 3 O
II-8 8 × 5 × 3 O

II-9 7 × 5 × 3 2, 3, 4, 5, and 6 48,407 2046 1979 O
II-10 7 × 5 × 3 2, 3, 5, and 6 35,446 2048 1984 O
II-11 7 × 5 × 3 2, 3, 4, and 5 38,683 2046 1982 O
II-12 7 × 5 × 3 2, 3, and 5 22,550 2048 1987 O
II-13 7 × 5 × 3 2 and 6 14,194 2048 1990 X
II-14 7 × 5 × 3 2 and 3 11,040 2048 1990 X
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Figure 10. RMSE of estimated APs for Calibration II.

Following the result from Calibration II-12, the third experiment (Calibration III) was
conducted by reducing the number of points in the adjustment. In Table 9, the summary
of Calibration III is presented. The reduction rate varied from 50 to 99%, which gave the
number of used points as 11,275 to 226. The redundancy linearly reduced as the number of
points decreased.

Table 9. Summary of Calibration III (Reducing points).

Used Planes Total Points Used Points Reduction (%) Redundancy

III-1

2, 3, and 5 22,550

11,275 50 11,214
III-2 9020 60 8959
III-3 6765 70 6704
III-4 4510 80 4449
III-5 2255 90 2194
III-6 1128 95 1067
III-7 902 96 841
III-8 677 97 616
III-9 451 98 390
III-10 226 99 165

As shown in Figure 11, a clear inverse relationship between the RMSE of the estimated
parameters and the number of used points was found. We also found that there were
dramatic increases in RMSE for angular offsets from Calibration III-9 to III-10, while
range offset showed a relatively small increase. To further investigate this phenomenon,
additional calibration tests were repeatedly conducted. More specifically, Calibration
III-10 (using 226 points) ran five times. At this stage, one should note that the involved
number of points was kept as 226 but the points were randomly picked from the whole
dataset (i.e., from 22,550 points) for each run. For the comparison, Calibration III-5 (using
2255 points) ran five times as well while picking the involved points randomly for each
run. Calibration III-5 was chosen because it corresponded to the inflection point as seen
in Figure 11. The results of these additional tests were shown in Figure 12. In the case
of repetition of Calibration III-5 (in Figure 12a), RMSE values of the estimated APs for
five runs were very similar and the variance of the values was low. On the other hand,
repetition of Calibration III-10 (in Figure 12b) showed fluctuating RMSE results, which
were too many dataset-dependent outcomes. After these additional tests, it was found that
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if the number of used points was too small, the calibration process provided unreliable
solutions. In this regard, at least 2000 or more points is recommended to estimate reliable
angular offsets.

 

Figure 11. RMSE of estimated APs for Calibration III.

  
(a) (b) 

Figure 12. RMSE of estimated Aps: (a) five runs of Calibration III-5; (b) five runs of Calibration III-10.

4.3. Kinematic Self-Calibration

Based on the results of the simulation tests, a real dataset was captured using the back-
pack system. The data acquisition site is a corridor of approximate 2.5 m × 40 m × 2.5 m
dimensions (Figure 13a). To test the performance of the kinematic in situ self-calibration of
the backpack-based MBL system, the user wore the backpack system and walked along
the corridor to acquire point clouds. A schematic drawing of the data acquisition site and
trajectory are also provided in Figure 13b. As can be seen, two scan locations were selected
from whole trajectory. The first scan was captured near the corner, and the second scan
was captured apart from the first scan. The omega angle of each scan was slightly tilted,
and the kappa angle was rotated by 180◦. Then, planar feature extraction and the matching
process were carried out using two scan datasets. Figure 14 describes the planar features
commonly seen in both scans, which include six vertical planes and two horizontal planes.
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A total of eight planes were identified, including walls, doors, a window, the floor, and the
ceiling.

  
(a) 

 
(b) 

Figure 13. Real dataset acquisition site and schematic set-up. (a) Corridor at the Myongji University
(b) schematic drawing of test site and trajectory.

 

Figure 14. Common planar features seen in Scan #2.
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4.4. Analysis of Kinematic Self-Calibration Results

Experiments using the real dataset were conducted to implement the minimum net-
work configuration for the kinematic self-calibration found on the above analysis. Two
experiments were conducted to investigate the accuracy when the full and minimum
network configurations were used. First, Calibration IV-1 was conducted including all
eight planes and 8140 points. Calibration IV-2 was also performed for comparison with
Calibration IV-1. Three planes (ceiling and two orthogonal walls) and 2308 points were
used for the self-calibration. A summary of the two experiments is presented in Table 10.

Table 10. Summary of Calibration IV.

Used Planes Total Points Used Points Redundancy

IV-1 1, 2, 3, 4, 5, 6, 7, and 8 54,867 8140 8067
IV-2 1, 3, and 5 41,259 2308 2247

For accuracy evaluation of the kinematic self-calibration, planar misclosure vectors
were examined to confirm that the self-calibration had effectively modeled the sensor. For
planar misclosure calculations, parameters other than APs were held to the same values in
order to compare the results from self-calibration. The planar misclosure results before and
after adjustment are given in Figure 15.

  
(a) (b) 

  
(c) (d) 

Figure 15. Planar misclosure before and after the adjustment: (a) before Calibration IV-1; (b) after Calibration IV-1; (c) before
Calibration IV-2; (d) after Calibration IV-2.

As can be seen, in both cases, the systematic errors were not completely removed
after the adjustment. Nevertheless, the results of both cases showed improvements of
planar misclosure RMSE by 35.7 and 53.3% after the adjustment. The RMSE of Calibration
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IV-2 was even lower than that of Calibration IV-1. This is reasonable, as more outliers
were included in the Calibration IV-1 dataset. A summary of the results regarding planar
misclosure can be found in Table 11.

Table 11. Summary of planar misclosure before and after Calibration IV-1 and IV-2.

Min (m) Max (m) Mean (m) RMSE (m) Improvement (%)

IV-1
Before −0.147 0.052 0.002 0.014

35.7After −0.075 0.070 0.000 0.009

IV-2
Before −0.049 0.106 −0.003 0.015

53.3After −0.048 0.047 0.000 0.007

In order to further investigate the existence of systematic trends, observation residuals
from the adjustment were also examined. Figures 16 and 17 describe two observation
residuals (a range and a horizontal angle) versus vertical angle, horizontal angle, and range
for Calibration IV-1 and IV-2, respectively. For both cases, similar unmodelled systematic
errors still existed in the observation residual. Residuals versus vertical angle showed no
trends of systematic effects, as the mean residual values with respect to laser elevation
angle had zero values (refer to Figure 16a,b and Figure 17a,b). On the other hand, residuals
versus horizontal angle showed large variations at 90◦ and 270◦, which are the directions
of high incidence angles to the walls (refer to Figure 16c,d and Figure 17c,d). This was
expected from simulation tests and previous studies in the literature. For the final analysis
for residuals, residuals versus range were plotted (refer to Figure 16e,f and Figure 17e,f).
As can be seen, outliers increased as range increased, in both the range and horizontal
angle observations.

 
 

(a) (b) 

  
(c) (d) 

Figure 16. Cont.
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(e) (f) 

Figure 16. Measurement residuals of Calibration IV-1: (a,c,e) range residuals; (b,d,f) horizontal angle residuals; red line and blue line
in (a,b) mean average and RMSE of residuals, respectively.

(a) (b) 

(c) (d) 

Figure 17. Cont.
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(e) (f) 

Figure 17. Measurement residuals of Calibration IV-2: (a,c,e) range residuals; (b,d,f) horizontal angle residuals; red line and blue line
in (a,b) mean average and RMSE of residuals, respectively.

Furthermore, the reliability of the estimated parameter could be presumed by ex-
amining the correlation coefficients between the estimated parameters. The correlation
coefficients between the APs and EOPs are presented in Tables 12 and 13. The correlations
between the EOPs and APs were averaged over all of the lasers with one EOP, and the
correlations between APs were averaged over all lasers with the same laser. In general,
correlations between the EOPs were higher than the correlations between the EOPs and the
APs. The moderate (not significantly strong) correlation values were, also, found between
Zo and ω, Zo and φ, and Yo and κ. They were marked in bold in the tables. This correlation
between Zo and the orientation parameters was likely due to the small number of points
with respect to the horizontal plane (floor and ceiling), and, moreover, the amount of tilting
angle was not sufficient for perfectly de-coupling between the translation and orientation
parameters. Nevertheless, it should be noted that the estimated parameters did not have
strong correlations and were derived reliably.

Table 12. Averaged correlation coefficients between exterior orientation parameters (EOPs) and APs
for Calibration IV-1.

Xo Yo Zo ω φ κ Δρ Δθ Δα

Xo 0.077 0.039 0.050 0.074 0.041 0.045 0.030 0.012

Yo 0.056 0.099 0.083 0.666 0.086 0.284 0.023

Zo 0.458 0.761 0.080 0.034 0.070 0.139

ω 0.067 0.277 0.048 0.059 0.183

φ 0.070 0.093 0.086 0.148

κ 0.032 0.191 0.138

Δρ 0.080 0.046

Δθ 0.070

Based on the results from Calibration IV-1 and IV-2, the estimated AP values and their
standard deviations for all the lasers are plotted in the function of the vertical angle in
Figure 18. Both calibrations demonstrated similar results of parameter estimation, while
the estimation of parameters with respect to the directed high vertical angle laser showed
different results. As can be seen, the standard deviations of horizontal angular offset for
directing a high vertical angle laser were high, while the standard deviations of the vertical
angular offset were low. The horizontal and vertical angular offsets for laser 1 (having 1◦ of
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vertical angle) were held fixed as zeros, as mentioned in Section 3.3. Estimated parameters
for Calibrations IV-1 and IV-2 are provided in Table 14. The EOP estimation showed
reasonable standard deviations relative to the estimated values. As similarly investigated
in Section 4.2, kinematic calibration of the backpack-based MBL system can be performed
using a minimum network configuration with reasonable accuracy in a real environment.

Table 13. Averaged correlation coefficients between EOPs and APs for Calibration IV-2.

Xo Yo Zo ω φ κ Δρ Δθ Δα

Xo 0.032 0.099 0.041 0.049 0.098 0.064 0.061 0.015

Yo 0.033 0.183 0.024 0.675 0.151 0.270 0.019

Zo 0.553 0.721 0.096 0.084 0.054 0.128

ω 0.146 0.088 0.038 0.057 0.148

φ 0.081 0.151 0.085 0.130

κ 0.175 0.154 0.123

Δρ 0.093 0.097

Δθ 0.082

  
(a) (b) 

  
(c) (d) 

Figure 18. Cont.
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(e) (f) 

Figure 18. Estimated AP values and their standard deviations versus vertical angle: (a,c,e) Calibration IV-1; (b,d,f) Calibration IV-2.

Table 14. Estimated parameters and their standard deviation for Calibration IV-1 and IV-2.

Estimated Values

Calibration IV-1 Calibration IV-2

Xo(m) 2.876 ± 0.002 2.870 ± 0.003
Yo(m) 0.689 ± 0.001 0.686 ± 0.002
Zo(m) 0.105 ± 0.001 0.101 ± 0.001
ω(◦) −0.356 ± 0.031 −0.359 ± 0.055
φ(◦) −0.131 ± 0.011 −0.133 ± 0.019
κ(◦) −3.078 ± 0.008 −3.076 ± 0.017

Laser No. Δρ(m) Δθ(◦) Δα(◦) Δρ(m) Δθ(◦) Δα(◦)

0 −0.017 ± 0.001 −0.012 ± 0.016 0.608 ± 0.078 −0.014 ± 0.003 −0.010 ± 0.032 0.344 ± 0.123
1 −0.003 ± 0.001 - - −0.004 ± 0.003 - -
2 −0.005 ± 0.001 0.011 ± 0.013 0.522 ± 0.057 −0.006 ± 0.003 −0.068 ± 0.028 0.308 ± 0.079
3 −0.006 ±0.001 0.067 ± 0.009 −0.061 ± 0.007 −0.014 ± 0.003 −0.195 ± 0.019 −0.118 ± 0.010
4 −0.007 ± 0.001 0.063 ± 0.011 0.668 ± 0.046 −0.010 ± 0.003 −0.055 ± 0.027 0.389 ± 0.101
5 −0.004 ± 0.001 0.042 ± 0.009 −0.082 ± 0.008 −0.008 ± 0.003 −0.107 ± 0.036 −0.133 ± 0.012
6 −0.006 ± 0.001 −0.02 ± 0.010 0.496 ± 0.034 −0.007 ± 0.003 −0.082 ± 0.023 0.337 ± 0.070
7 −0.010 ± 0.001 −0.033 ± 0.024 −0.069 ± 0.008 −0.015 ± 0.003 −0.122 ± 0.040 −0.082 ± 0.015
8 −0.007 ± 0.001 0.044 ± 0.009 0.114 ± 0.038 −0.013 ± 0.003 −0.077 ± 0.026 0.090 ± 0.102
9 −0.004 ± 0.001 −0.193 ± 0.026 −0.057 ± 0.010 −0.008 ± 0.003 −0.382 ± 0.042 −0.121 ± 0.018
10 −0.018 ± 0.001 0.049 ± 0.009 −0.02 ± 0.037 −0.021 ± 0.002 −0.057 ± 0.018 0.017 ± 0.051
11 −0.001 ± 0.001 0.001 ± 0.027 −0.004 ± 0.006 −0.012 ± 0.002 −0.316 ± 0.058 −0.008 ± 0.007
12 −0.008 ± 0.001 0.067 ± 0.008 0.003 ± 0.007 −0.011 ± 0.003 −0.037 ± 0.016 −0.002 ± 0.007
13 −0.007 ± 0.001 −0.103 ± 0.032 −0.01 ± 0.006 −0.014 ± 0.002 −0.311 ± 0.052 0.000 ± 0.007
14 −0.015 ± 0.001 0.049 ± 0.007 −0.015 ± 0.007 −0.020 ± 0.003 −0.035 ± 0.018 −0.002 ± 0.007
15 −0.009 ± 0.001 −0.163 ± 0.035 −0.006 ± 0.006 −0.014 ± 0.002 −0.403 ± 0.062 0.000 ± 0.007

4.5. Temporal Stability Analysis of Kinematic Self-Calibration

An additional experiment (Calibration V) was conducted for temporal stability anal-
ysis. About one month later after performing self-calibration (Calibration IV), we re-
calibrated the same sensor under the similar condition. More specifically, the data acquisi-
tion site and the rest of the conditions were identical to the Calibration IV for comparison.
Based on the findings from the previous analysis, the minimum network configuration
was considered for Calibration V. Summary of Calibration V is given in Table 15.
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Table 15. Summary of Calibration V.

Used Planes Total Points Used Points Redundancy

V 1, 3, and 5 23,049 2305 2244

Table 16 shows the summary of planar misclosure before and after Calibration V. The
planar misclosure results before and after Calibration V are, also, given in Figure 19. As
can be seen, the RMSE of planar misclosure before the calibration (i.e., 0.038 m) increased
compared to Calibration IV-2 (i.e., 0.015 m). In addition, estimated AP values from Cal-
ibration V can be found in Figure 20, showing different values compared to Calibration
IV-2 (Figure 18b,d,f). On the other hand, RMSE of planar misclosure after Calibration
V (i.e., 0.007 m in Table 16) showed a similar result to Calibration IV-2 (i.e., 0.007 m in
Table 11). Through this additional experiment, we found that the APs of the MBL system
were changing unstably over time, and the calibration process provided a stable level of
planar misclosure RMSE.

Table 16. Summary of planar misclosure before and after Calibration V.

Min (m) Max (m) Mean (m) RMSE (m) Improvement (%)

V
Before −0.223 0.124 0.011 0.038

81.6After −0.025 0.046 0.000 0.007

  

(a) (b) 

Figure 19. Planar misclosure before and after the adjustment: (a) before Calibration V; (b) after Calibration V.
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(a) (b) 

 

 

(c)  

Figure 20. Estimated AP values and their standard deviations versus vertical angle for Calibration V: (a) range offset; (b)
horizontal angle offset; (c) vertical angle offset.

5. Discussion

In this section, the effectiveness of the proposed self-calibration method is discussed
in terms of accuracy, time, and cost. First, a comparative analysis between the previous
MBL self-calibration approaches and the proposed one is carried out. Table 17 shows
the performances (i.e., accuracy and improvement) of five representative MBL calibration
approaches and the proposed one. At this stage, one should note that a direct comparison
of the performances among different approaches is almost impossible since their sensor
systems, methods, datasets, environments, computational performances are all different.
Nevertheless, the comparison in Table 17 shows the overall performances of the approaches.
Although there is a variance in the type of MBL sensors, our method achieved a fair
improvement (35–81%) compared to other results. In particular, Glennie [29] and Chan
and Lichti [30] performed kinematic calibrations of MBL mounted on a vehicle platform.
In these approaches, the RMSEs of planar misclosure after the calibration were 0.023 and
0.014 m, respectively, which are higher than the proposed case. This is due to the fact
that vehicle moving speed is much faster than human walking speed, causing a higher
measurement noise level. The proposed approach showed a similar (or somewhat better)
level of RMSE to the static calibrations.
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Table 17. Comparison with other self-calibration results.

Approaches
RMSE of Planar Misclosure

Improvement Sensor
Static Kinematic

Glennie and Lichti [25] 0.013 m 63.8% HDL-64E
Chen and Chien [28] 0.013 m 40% HDL-64E

Glennie [29] 0.023 m 37.8% HDL-64E
Chan and Lichti [30] 0.008 m 0.014 m 41–71% HDL-32E

Glennie et al. [31] 0.025 m 20% VLP-16
Proposed 0.007 m 35–81% VLP-16

Secondly, the proposed kinematic self-calibration of the backpack-based MBL system
can significantly reduce time and cost compared to the traditional target-based static
calibrations. The proposed one does not need an installation of targets and tripods to fix
the scan location since it is aiming for kinematic in situ calibration. Although the proposed
method is not fully automatic, the running time of the whole process takes up to 30 s (under
the condition of 2 scans, 3 planes, and around 2000 points), except for the manual plane
matching. The computer processor is an AMD Ryzen 5 1600 six-core processor with DDR-4
16GB 1500MHz of RAMs. The program for the whole process is written in MATLAB. The
program and the algorithm are not yet optimized, and the processing time can be improved
in the future study.

6. Conclusions

This study investigated kinematic in situ self-calibration to frequently re-calibrate
the backpack-based MBL system using on-site data for handling unstable measurements
of the sensor. In order to determine the minimum network configuration for kinematic
self-calibration, simulation experiments were conducted beforehand. First, a full network
of the simulated datasets was generated, and self-calibrations were performed by reducing
the number of scans, the size of the test site, the number of incorporated planes, and
the number of points. The accuracies of the experiments were analyzed by examining
the RMSE of the estimated APs to determine the minimum network configuration. The
results of the simulation experiments show relatively stable performance with a minimum
network configuration of at least two scans, three planes that are orthogonal to each other,
and around two thousand points used. Based on this preliminary analysis, kinematic self-
calibration using real datasets was then performed. The datasets were acquired while the
user was wearing a backpack system and walking along a corridor. The accuracy of kine-
matic self-calibration was evaluated by investigating the planar misclosure, measurement
residuals, correlation coefficients, and estimated parameters and their standard deviations.
The results demonstrate that the kinematic self-calibration of the backpack-based MBL
system could improve the point cloud accuracy with the RMSE of planar misclosure up to
81%. Moreover, the effectiveness of the proposed approach in terms of time and cost was
also addressed.

After the various experiments and analysis using the proposed kinematic in situ
self-calibration of the backpack-based MBL system, the contributions of this study can be
summarized as follows. First, self-calibration of MBL was analyzed with respect to various
network configurations. The minimum network configuration for the kinematic in situ self-
calibration of the backpack-based MBL system and its performance were found through
various experiments. Secondly, the kinematic in situ self-calibration of the backpack-based
MBL system can perform using on-site datasets, reaching the higher accuracy of point
cloud. In addition, this research can serve as a guideline for users who require the self-
calibration of a backpack-based MBL system to improve overall accuracy and to generate
point cloud data for precise mapping or surveying. Future studies will mostly focus on: (1)
the development of real-time automatic plane matching for automatic in situ calibration;
(2) outlier removal during the iteration of least squares based on statistical analysis to
maximize calibration accuracy.
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Abstract: Image fusion is an effective complementary method to obtain information from multi-source
data. In particular, the fusion of synthetic aperture radar (SAR) and panchromatic images contributes to
the better visual perception of objects and compensates for spatial information. However, conventional
fusion methods fail to address the differences in imaging mechanism and, therefore, they cannot
fully consider all information. Thus, this paper proposes a novel fusion method that both considers
the differences in imaging mechanisms and sufficiently provides spatial information. The proposed
method is learning-based; it first selects data to be used for learning. Then, to reduce the complexity,
classification is performed on the stacked image, and the learning is performed independently for
each class. Subsequently, to consider sufficient information, various features are extracted from the
SAR image. Learning is performed based on the model’s ability to establish non-linear relationships,
minimizing the differences in imaging mechanisms. It uses a representative non-linear regression
model, random forest regression. Finally, the performance of the proposed method is evaluated by
comparison with conventional methods. The experimental results show that the proposed method is
superior in terms of visual and quantitative aspects, thus verifying its applicability.

Keywords: image fusion; random forest regression; SAR image; panchromatic image; high-resolution

1. Introduction

Recently, various high-resolution satellite sensors have increasingly been developed, especially
the synthetic aperture radar (SAR) imaging sensor, which has an important advantage in Earth
observations [1,2]. It is an active sensor that provides its own source of illumination, which is
independent of solar illumination and is not affected by daylight or night darkness [3]. It can
also penetrate through atmospheric effects, allowing for Earth observation regardless of weather
conditions such as rain, fog, smoke, or clouds [4,5]. Information contained in a SAR image depends
on the backscattering characteristics of the surface targets and is sensitive to the geometry of the
targets [6]. The image provides information on surface roughness, object shape, orientation, or moisture
content [7,8]. Furthermore, the SAR image can highlight objects that have a low contrast in optical
images. However, interpreting the details in SAR images is a challenging task for several reasons:
(1) SAR images inherently contain geometric distortions due to distance-dependence along the range
axis and signatures related to radar signal wavelengths [9]; (2) the human eye is familiar with the visible
part of the electromagnetic spectrum and is not adapted to the microwave-scattering phenomenon [10];
(3) the reflectance properties of objects in the microwave range depend on the frequency band used
and may significantly differ from the usual assumption of diffuse reflection at the Earth’s surface [11];
(4) since SAR images are inherently coherent during the process of their generation, speckle noise
is inevitable in the resulting images, rendering the images unintuitive [12]; and (5) such images
also contain the after-effects caused by foreshortening, slant-range scale distortion, layover, and

Appl. Sci. 2020, 10, 3298; doi:10.3390/app10093298 www.mdpi.com/journal/applsci97



Appl. Sci. 2020, 10, 3298

shadows [13,14]. Thus, the SAR image can be visually difficult to interpret and, ultimately, this data
improvement approach is designed at the end to be implemented in the monitoring and analyzing
earth surface issues that offering an advanced solution for many applications including environmental
studies [15].

To improve the quality and interpretability of SAR images, image fusion with optical images, which
contain information regarding reflective and emissive characteristics, can be a good alternative [16–18].
In particular, the panchromatic image can be utilized because it is physically sensitive to ground
objects and reflects the objects’ contour information with high spatial resolution and abundant textural
features [19]. The overall concept of image fusion between the SAR and panchromatic images is to
incorporate spatial details extracted from the panchromatic image into the SAR image by using an
appropriate algorithm [20]. Therefore, the fusion of the SAR and panchromatic images makes it possible
to use complementary information and contributes to a better understanding of the objects in target
areas [21]. Furthermore, the fusion of SAR and panchromatic images has additional benefits, such as
the sharpening of image quality, enhancement of certain features that are invisible with either data
set in the non-combined state, complementation of data sets for improved classification, detection of
changes using multi-temporal data, and substitution of missing information in one image with signals
from another sensor image [1].

However, because of the significant differences between the imaging mechanisms of the SAR
and optical sensors, the generation of surface features of the same object are different in SAR and
panchromatic images [5]. Conventional image-fusion methods such as principal component analysis
(PCA) and high-pass filtering are not appropriate because they do not consider the differences in
imaging mechanisms and the spectrum characteristics between the two image types [22]. An alternative
approach is multiscale decomposition, based on which various methods have been proposed for the
fusion of SAR and panchromatic images; however, these methods have some limitations [19,20,22,23].
For image fusion based on these methods, the SAR and panchromatic images are represented by the
fixed orthogonal basis function, and the image fusion is performed by the fusion of the coefficients
of different sub-bands in the transform domain [24]. Because some features cannot be represented
sparsely, this fusion cannot represent all useful features accurately due to limited fixed transforms [20].
In particular, the discrete wavelet transforms (DWT) fusion method only uses features of single pixels to
make decisions, and it is not shift-invariant [25]. Similarly, the contourlet transform (CT)-based fusion
method lacks shift-invariance, which results in pseudo-Gibbs phenomena around singularities, and it
has difficulty in preserving edge information. The non-subsampled contourlet transform (NSCT)-based
method, which is a fully shift-invariant form of the CT, leads to better frequency selectivity and
regularity [26]. However, this method still fails to fuse the features of physically heterogenous
images [5]. Another approach is the sparse representation method, in which the generation of
dictionary and sparse coding is crucial [24]. This method can extract potential information from input
images in addition to representing them sparsely; however, this method does have limitations. Firstly,
the advanced sparse coefficients fusion rule may cause spatial inconsistency, and secondly, the trained
dictionary cannot accurately reflect the complex structure and detail of the input images [27].

To overcome these limitations, this study proposes a new image-fusion method that utilizes useful
features as much as possible and considers the differences in imaging mechanisms. Instead of directly
fusing pixels or decomposing them to perform fusion in a limited transform, this algorithm aims
to extract sufficient features and establish relationships to fuse the SAR and panchromatic images.
This makes it possible to contain the structural and detailed information of panchromatic images and
increase the overall interpretability of SAR images [28]. Furthermore, a learning-based approach is
used to account for the differences in imaging mechanisms of the SAR and panchromatic images.
Random forest (RF) regression, which can model non-linear relationships, is utilized, and learning is
performed for each class to reduce the complexity of the algorithm and for better predictions [29,30].
Then, experiments are performed on multiple scenes to demonstrate the capability and performance
of the proposed method. The results are comprehensively compared with those of conventional
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image-fusion methods. The main contributions of this study can be summarized as follows: (1) this is
the first learning-based approach for fusing single high-resolution SAR and panchromatic images; (2)
to consider the differences in imaging mechanisms, this method uses RF regression, which can model
non-linear patterns, avoids overfitting, and is relatively robust to the presence of noise; (3) this method
performs classification of the image, where the complexity is reduced by establishing relationships for
each class.; and (4) this method extracts various features to consider sufficient information.

The rest of this paper is organized as follows: Section 2 describes materials used in detail and the
proposed algorithm in detail. In Section 3, the results of the proposed method are presented, and they
are compared with those of the conventional image-fusion methods and discussed. Finally, Section 4
concludes the paper.

2. Materials and Methods

2.1. Study Site and Dataset

The study areas are Gwangjin-gu and Seongdong-gu, located in Seoul, in central South Korea
(Figure 1). These areas are covered by forests, grass, barren land, water, and developed structures; thus,
they represent an extensive range of terrain morphologies. The dataset used in the experiments for
the panchromatic image type is WorldView-3, and for the SAR image type, the Korea Multi-Purpose
Satellite-5 (KOMPSAT-5) dataset is used. The WorldView-3 dataset used in this study was acquired on 7
August 2015; the images in this dataset have a spatial resolution of 0.31 m and a radiometric resolution
of 11 bits [31]. The KOMPSAT-5 dataset was acquired on 10 September 2015; it was obtained in the
enhanced high-resolution mode with a spatial resolution of 1 m, an ascending orbit, and horizontal
transmit-horizontal receive (HH) polarization. The processing level was L1D, which performs terrain
correction and then geolocates onto a digital elevation model (DEM) with cartographic projection [32].
Initially, speckle noise exists in the SAR images; however, it is expected to reduce through filtering,
thereby providing better information. In this study, a gamma map filter of 5 × 5 kernels, which is
the most efficient filter for reducing speckles while preserving object edges, is selected for speckle
filtering [33]. Furthermore, because the filtered KOMPSAT-5 images should be calculated with the
same weights as the weights used for the WordlView-3 images, the filtered KOMPSAT-5 images are
configured with a matching pixel value range [20]. For the fusion scheme, the KOMPSAT-5 images
are resampled at a resolution of 0.31 m to match that of the WorldView-3 images. Next, to remove
the misregistration error term, image registration is applied using manual ground control points,
followed by geometric transformation. In addition, the coordinate system of each image is projected as
the Universal Transverse Mercator Coordinate System (UTM). Then, for a reasonable computation
time, experiments are performed with subsets of 2000 × 2000 pixels, and the total area of the three
sites is selected to validate the proposed method. Table 1 describes the specifications of the data, and
Figures 2–4 show the preprocessed experimental images for three sites.
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Figure 1. Location of the study area (red outline indicates the study area).

Table 1. Specifications of the experimental data (SAR: synthetic aperture radar, HH: horizontal
transmit-horizontal receive).

Sensor
KOMPSAT-5
(SAR Image)

WorldView-3
(Panchromatic Image)

Location Seoul (Korea)
Date 10 September 2015 7 August 2015

Spatial resolution (m) 1 m 0.31 m
Radiometric resolution - 11-bit

Polarization HH -
Flight direction Ascending -

Image size (pixels) 2000 × 2000

(b) (a) 

Figure 2. Experimental images from Site 1: (a) synthetic aperture radar image acquired on 10 September
2015; and (b) panchromatic image acquired on 7 August 2015.
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(b) (a) 

Figure 3. Experimental images from Site 2: (a) synthetic aperture radar image acquired on 10 September
2015; and (b) panchromatic image acquired on 7 August 2015.

(b) (a) 

Figure 4. Experimental images from Site 3: (a) synthetic aperture radar image acquired on 10 September
2015; and (b) panchromatic image acquired on 7 August 2015.

2.2. Methods

The proposed fusion framework can be decomposed into four steps for the preprocessed images:
(1) selection of training pixels, (2) classification, (3) feature extraction, and (4) learning-based image
fusion; they are shown in Figure 5. In the first step, the pixels to be used for the training are selected,
and in the second step, classification is performed on the SAR and panchromatic images. In the third
step, feature descriptors are extracted to be used for training as the SAR image, and in the fourth step,
fusion is performed by establishing a relationship based on learning. These steps are described below.
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Figure 5. Flowchart of the proposed method.

2.2.1. Selection of Training Pixels

In the step involving the selection of training pixels, meaningful pixels to be used for establishing
the relationship should be selected. In particular, training pixels should be selected to consider
the differences in imaging mechanisms. This study selects invariant pixels, that is, pixels with little
difference in reflectance between the two images. In other words, the relationships are established based
on invariant pixels, and the values of pixels with substantially large differences are predicted [28,34].
The invariant pixels are acquired through image differencing, which is a method that subtracts pixel
values between the SAR and panchromatic images, in accordance with Equation (1):

Δxd(i, j) = IS(i, j) − IP(i, j) + C (1)
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where IS is the pixel value in the SAR image, IP is the pixel value in the panchromatic image, i and j
represent rows and columns, respectively, and C is an arbitrary constant. Then, Otsu’s method is used
to classify change and no-change, where the no-change region is selected as the invariant pixels.

2.2.2. Classification

To reduce the complexity of the algorithm and to enforce a higher prediction, classification
is performed in this study [28]. In other words, each class is obtained, and learning is performed
independently for each class. Here, classification is performed by stacking two images to consider
the characteristics of both SAR and panchromatic images using fuzzy C-means (FCM), which is an
unsupervised classification algorithm [35]. FCM is based on the optimization of the objective function
based on the similarity measure considering the distance between data and the center of the cluster as
shown by Equation (2):

J(U, V) =
N∑

n=1

C∑
c=1

ukn
md2(yn, vk) (2)

where N is the number of data; c is the number of clusters; ukn is the membership function and satisfied
the condition 0 ≤ ukn ≤ 1,

∑c
k=1 ukn = 1; m is a weighting exponent that control the degree of fuzziness

in the resulting membership functions and is set to 2 for simplicity [36]; d2(yn, vk) = ‖yn − vk‖2 is
squared distance between yn and vk, in which Y = [y1, y2, · · · yn] is a dataset to be grouped and vk is
the cluster center. To minimize the objective function, the FCM algorithm performs an iterative process,
and the membership functions and cluster centers are defined as Equations (3) and (4):

ukn =
1∑c

j=1 (
d2(yn, vk)

d2(yn, vj)
)

1
(m−1)

(3)

vk =

∑N
n=1 ukn

myn∑N
n=1 ukn

m
(4)

U and V are iteratively updated to obtain an optimal solution, and the iterative process ends
when ‖U(r) −U(r−1)‖ < ε, where U(r) and U(r−1) are the membership functions in the rth and r− 1th
iterations and ε is a predefined small positive threshold [37]. Furthermore, the number of clusters is
a key parameter in the proposed method as it determines the number of training models in which
land-cover distribution characteristics as well as performance and training time should be considered.
If there are not enough clusters, the land-cover distribution characteristics will be neglected, and if
there are too many clusters, the training time will increase, complex computations will be necessary,
and overtraining may occur. Therefore, in this study, the number of clusters is set to 6 to not only
obtain appropriate performance and training times but also to consider the land cover distribution
characteristics [28].

2.2.3. Feature Extraction

Conventional image-fusion methods use only the pixel values of SAR and panchromatic images.
However, in general, the gray level of single pixels is not informative; therefore, additional information
other than the pixel values is necessary [38,39]. To ensure that abundant information is considered, this
study uses texture information. Several approaches exist for extracting texture features, for example,
the gray-level co-occurrence matrix, local binary patterns, and Gabor filters [40–42], among which the
Gabor filter is selected; this filter is inspired by a multi-channel filtering theory for processing visual
information in the human visual system [43]. It is advantageous in terms of invariance to illumination,
rotation, scale, and translation; thus, it has been successfully applied for various image processing and
machine vision applications [44]. The 2-D Gabor function comprises a complex sinusoid modulated by
a Gaussian envelope, in which the Gabor filter includes a real component and an imaginary one. In
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this study, because of the substantial magnitude of the images, only real components were considered.
Calculation without imaginary components would cause small discrepancies; however, the results are
still efficient in terms of feature extraction time [45]. This can be represented as Equations (5)–(7):

G(a, b) = exp

⎛⎜⎜⎜⎜⎝−a′2 + γ2b′2

2σ2

⎞⎟⎟⎟⎟⎠ cos
(
2π

a
λ
+ ϕ
)

(5)

a′ = acosθ+ bsinθ (6)

b′ = −asinθ+ bcosθ (7)

where a and b are pixel positions; γ is the spatial aspect ratio (the default value is 0.5 in [46]); σ is the
standard deviation of the Gaussian envelope; λ is the wavelength of the sinusoidal factor and 1/ λ
is equal to the spatial frequency f ; ϕ is the phase offset, where ϕ = 0 and ϕ = π/2 return the real
component and imaginary component, respectively [47]; and θ is the orientation.

Gabor features, generally taken as Gabor filters, are constructed by selecting different spatial
frequencies and orientations. The frequency corresponds to scale information and is expressed as
Equation (8):

fm = k−m fmax; m = {0, 1, · · ·M− 1} (8)

where fm is the mth frequency; fmax is the central frequency of the filter at the highest frequency, for
which the most commonly adopted value is

√
2/4, based on the suggestion that fmax should be lower

than 0.5 [48,49]; and k is the scale factor, which this study selects as 2 [50]. Then, the orientations are
expressed as Equation (9):

θn =
n2π
N

; n = {0, 1, · · ·N − 1} (9)

whereθn is the nth orientation and N is the total number of orientations. In the study, a total of 40 features
are extracted by selecting five scales and eight orientations. Then, to reduce the dimensionality of
features and condense the relevant information, PCA is applied. The dimension of the features is
compressed to six, a value which considers both the information of the features and the efficiency
of computation [51]. Furthermore, as supplementary features, the mean and standard deviation,
considering the information of neighboring pixels, are included. Here, to reflect both the coarse and
fine-texture information of neighborhoods sufficiently, window sizes of 3× 3, 5× 5, 7× 7, and 9× 9
are selected.

2.2.4. Learning-Based Image Fusion

As mentioned above, there are significant differences in imaging mechanisms between SAR
and panchromatic images. To consider the differences in the imaging mechanisms, compositive
characteristics should be utilized, and non-linear relationships are required. Therefore, this study
employed RF regression, which is a representative algorithm that considers compositive characteristics
and models non-linear relationships. RF regression is based on the classification and regression tree
(CART) model, which is an ensemble-based algorithm that combines several decision trees and obtains
results [52]. For the classification, the results are obtained by most votes from the tree results, whereas
for regression, the tree results are averaged [53]. In particular, each tree is created independently
through a process called bootstrap aggregation, or bagging, to avoid correlations with other trees; in
this process, training data subsets are drawn by randomly resampling the subsets with replacement
from the original training dataset [54,55]. Thus, this process is robust to the presence of noise or
slight variations in the input data, has greater stability, and increases the prediction accuracy [56,57].
Furthermore, in each tree, approximately 30% of the data is excluded from the training process, which
is called out-of-bag (OOB) data. The mean squared error (MSE) between the OOB data and the data
used for growing the regression trees is obtained; then, a prediction error called the OOB error is
calculated for each variable [53]. This error estimates the importance of every variable, such that the
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influence of each input variable can be further analyzed. To determine the importance of the input
variables, each variable is permuted, and regression trees are grown on the modified dataset [58].
The variable importance is calculated based on the difference in the MSE between the original OOB
dataset and the modified dataset. In other words, if the exclusion of a variable leads to a significant
reduction in prediction accuracy, the variable is considered important.

In addition, the RF algorithm requires the specification of two parameters: the number of variables
to be used for the best split at each node (mtry) and the number of trees in the forest (ntree). In regression
problems, the standard value of mtry is one-third of the total number of input variables; thus, in this
study, mtry was selected as 5 [59]. Regarding ntree, previous studies have shown that using a large value
for ntree provides better stability. However, recent studies have revealed that ntree has no significant
effect on performance; thus, in this study, ntree was selected as 32 considering both the performance
and training time [28,34,52].

Using the two parameters, the RF is modeled and generated independently for each class, which
leads to a reduction in the complexity of the algorithm and allows more information to be retrieved.
For each class, supervised learning is performed by setting the features extracted from the SAR image
as independent variables and the pixel values of the panchromatic image as dependent variables for
the positions corresponding to previously obtained invariant pixels. Then, the features of the SAR
image corresponding to all the pixels of each class are extracted and utilized as input values of the
obtained RF regression model. Finally, the fusion result is generated by integrating the predicted
values for each class.

2.3. Criteria for Fusion Quality Assessment

The quality of the image-fusion results can be evaluated according to two criteria. First, the
performance of the fusion results for the proposed method can be intuitively evaluated in terms of
visual aspect. Second, quantitative evaluation can be used to obtain the performance of fusion results,
which must be statistical and objective [22]. To assess the performance, the fusion quality index
(FQI), average gradient (AG), and spatial frequency (SF) are selected. FQI is an index for evaluating
the quality of a fused image for given input images; it is based on the combination of luminance
distortion, contrast distortion, and loss of correlation of coefficient over local regions into a single
measure [60]. Given the SAR image IS, the panchromatic image IP, and the fused image IF, FQI is
defined as Equation (10):

FQI =
∑
w∈W

c(w)(λ(w)QI(IS, IF|w) + (1− λ(w))QI(IP, IF|w)) (10)

where λ(w) =
σIS

2

σIS
2+σIP

2 is a weight computed over a window w, in which σIS
2 and σIP

2 are the variance

of the SAR and panchromatic images, respectively; c(w) =
C(w)∑

w′∈W C(w′) is a saliency computed over

a window w, where C(w) = max
(
σIS

2, σIP
2
)
; QI(IS, IF

∣∣∣w) and QI(IP, IF
∣∣∣w) are the quality indexes

of the fused image with regard to the SAR and panchromatic images, respectively; and w is set to
8× 8 [60]. Given two images a and b, the QI is defined as Equation (11):

QI =
4σab μa μb

(μa2 + μb
2)(σa2 + σb

2)
(11)

where μa and μb are the means of the respective images; σa and σb are the standard deviations of the
respective images; and σab is the covariance of the two images. AG represents information on the
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edge details of an image, which is sensitive to the details of contrast and texture in the image [22]; it is
defined as Equation (15):

AG =
1

MN

M∑
i=1

N∑
j=1

√
ΔIFx2 + ΔIFy2

2
(12)

where ΔIFx and ΔIFy are the differences in the x and y directions in the fused image, respectively. SF
reflects the active degree of an image in the spatial domain [61] and is defined as Equations (16)–(18):

Row f requency =

√√√√
1

MN

M∑
i=1

N∑
j=2

(IF(i, j) − IF(i, j− 1))2 (13)

Column f requency =

√√√√
1

MN

M∑
i=2

N∑
j=1

(IF(i, j) − IF(i− 1, j))2 (14)

SF =
√

Row f requency2 + Column f requency2 (15)

FQI has the range of [0, 1], and an FQI value closer to 1 indicates better performance, whereas for
AG and SF, higher values indicate better performance [61].

3. Results and Discussion

3.1. Comparison of Fusion Results

To evaluate the effectiveness of the proposed fusion approach, its results were compared with
those of the conventional image-fusion algorithm. To ensure a fair comparison, fusion algorithms using
a single SAR and panchromatic image were considered, where the à-trous wavelet decomposition
(ATWD) [20], DWT [23], NSCT [19], and NSCT-pulse couple neural network (NSCT-PCNN) [5]
methods were selected. The ATWD method is based on the importance of the wavelet coefficient,
which is incorporated into the SAR image at a certain high frequency. For the DWT method, the
maximum values of the coefficients at low frequencies and high frequencies are selected as the low
and high frequencies, respectively. The NSCT method is based on the contourlet transform without
downsamplers and upsamplers, and it also selects the averaging scheme at a low frequency and the
maximum scheme at high frequency. The NSCT-PCNN method performs fusion based on PCNN for
coefficients at low frequencies, and the coefficients at high frequencies are obtained through NSCT. In
accordance with the aforementioned details, the decomposition level of NSCT and NSCT-PCNN was
selected as the three showing the best image-fusion results [19]. Furthermore, the experiments were
carried out on a desktop PC with an Intel(R) Core (TM) i7-8700 @ 3.20 GHz processor, 24.00 GB of
RAM, and a 64-bit Windows 10 operating system. Particularly, all experiments involving the proposed
model were programmed in Python 3.7, and the conventional methods were programmed in MATLAB
2019a. The image-fusion results are shown in Figures 6–8.
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(a) (b) (c) 

(d) (e) 

Figure 6. Comparison with the results of image fusion for Site 1: (a) proposed method; (b) a-trous
wavelet decomposition; (c) discrete wavelet transform; (d) non-subsampled contourlet transform; and
(e) non-subsampled contourlet transform-pulse couple neural network.

(a) (b) (c) 

(d) (e) 

Figure 7. Comparison with the results of image fusion for Site 2: (a) proposed method; (b) a-trous
wavelet decomposition; (c) discrete wavelet transform; (d) non-subsampled contourlet transform; and
(e) non-subsampled contourlet transform-pulse couple neural network.
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(a) (b) (c) 

(d) (e) 

Figure 8. Comparison with the results of image fusion for Site 3: (a) proposed method; (b) a-trous
wavelet decomposition; (c) discrete wavelet transform; (d) non-subsampled contourlet transform; and
(e) non-subsampled contourlet transform-pulse couple neural network.

From an overall visual inspection, the results of the proposed method and those of the conventional
fusion methods provided more information than the original single image. They contained spatial
information of the panchromatic image, such as the line information and edge information of buildings,
as well as the object information of the SAR image. However, in the results of ATWD and DWT,
spatial information was insufficient compared with those of other methods. For Site 1, which primarily
consisted of vegetation and included developed structures, the surface roughness of the SAR image in
both these areas was emphasized, resulting in less spatial information. Sites 2 and 3 mainly consisted
of developed structures, and the surface roughness of the SAR image was also emphasized more
than the line and edge information of buildings, like the results for Site 1. Furthermore, more spatial
information was present in the result of the NSCT than in the result of ATWD or DWT; however, it was
also confirmed that the object information of the SAR image was lost compared to the original SAR
image. The result of the NSCT-PCNN included more spatial and object information compared to those
of the conventional image-fusion methods; however, the spatial information of the vegetation in Site 1
was somewhat insufficient. In contrast, the proposed method included sufficient spatial and object
information regardless of vegetation or developed areas. The specific details are indicated on the red
rectangle in Figures 6–8, and the enlarged areas are shown in Figure 9.
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(a) 

(b) 

(c) 

Figure 9. Enlargement of the area marked with a red rectangle: (a) Site 1, (b) Site 2, (c) Site 3. From left to
right: proposed method, a-trous wavelet decomposition, discrete wavelet transforms, non-subsampled
contourlet transform, and non-subsampled contourlet transform-pulse couple neural network.

Although visual analysis is direct and intuitive, it is also highly subjective and, therefore, may not
allow for fully accurate evaluation. Thus, the performance of the fusion results was further evaluated
quantitatively based on FQI, AG, and SF, which are summarized in Table 2. Regarding the FQI, the
proposed method performed better than the conventional image-fusion methods in all sites. For site 1,
the proposed method showed improvements of 8.51%, 6.24%, 27.14%, and 19.90% over ATWD, DWT,
NSCT, and NSCT-PCAA, respectively, in addition to respective improvements of 2.78%, 0.53%, 21.92%,
and 24.63% for Site 2 and respective improvements of 2.77%, 0.45%, 20.25%, and 14.68% for Site 3. The
higher FQI of the proposed method indicates that its fusion results contain more of the information of
the SAR and panchromatic images. In contrast, AG yielded different results for each site, as follows.
For Site 1, the NSCT-PCNN had the highest value, whereas at Sites 2 and 3 the proposed method had
the highest value. AG represents the spatial information in the panchromatic image in addition to the
object information and surface roughness in the SAR image. As mentioned above, Site 1 consisted
mostly of vegetation, and the result of the NSCT-PCNN contained most of the surface roughness
information of the SAR image with a lack of the spatial information of the panchromatic image of the
vegetation area. Because of this, the texture features of the vegetation were best highlighted owing to
the influence of surface roughness in the calculation of AG. However, for Sites 2 and 3, which consisted
mainly of developed structures, the spatial information of the panchromatic image and the object
information of the SAR image were the main information, and the result of the proposed method had
the highest abundance with regard to both aforementioned sets of information. Regarding the SF,
which is primarily a metric for assessing the spatial information derived from the panchromatic image,
the proposed method exhibited the best performance in all sites. In other words, it is confirmed that
the proposed method would be more useful than the conventional image-fusion methods in visual and
quantitative evaluations.
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Table 2. Evaluations for the image fusion methods (FQI: fusion quality index, AG: average gradient,
SF: spatial frequency, ATWD: à-trous wavelet decomposition, DWT: discrete wavelet transforms, NSCT:
non-subsampled contourlet transform, NSCT-PCNN: non-subsampled contourlet transform-pulse
couple neural network).

Site Method FQI AG SF

Site 1

Proposed method 0.8489 18.5836 10.1753
ATWD 0.7638 14.8698 7.5353
DWT 0.7865 14.3675 7.0175
NSCT 0.5775 20.0136 8.4952

NSCT-PCNN 0.6499 20.4469 9.2749

Site 2

Proposed method 0.8199 33.5763 17.0272
ATWD 0.7921 21.1922 11.0085
DWT 0.8146 21.1521 10.4409
NSCT 0.6007 28.738 12.3708

NSCT-PCNN 0.6527 30.0487 13.6092

Site 3

Proposed method 0.7936 29.9653 15.7126
ATWD 0.7659 19.2859 10.3327
DWT 0.7891 20.2947 10.2658
NSCT 0.5911 25.9567 11.4126

NSCT-PCNN 0.6468 27.9568 12.9668

3.2. Validation of Random Forest Regression

As mentioned above, the RF regression models were constructed independently for each class,
thus, the predictive models were verified separately. The classification images of each site are shown
in Figure 10, and the characteristics of each class are as follows: Classes 1 and 2 represent areas with
high backscattered intensity and double bounce scattering characteristics, because of the artifacts in
the SAR image, where the intensity of class 2 is lower than that of class 1. Classes 3 and 4 include
the specular reflection characteristics of the SAR image and bare land or those of the high-brightness
roofs in the panchromatic image, where class 4 is brighter than class 3 in the panchromatic image.
Classes 5 and 6 are composed of vegetation, roads, or low buildings in the panchromatic image; the
low backscattered intensity characteristics of class 5 and diffuse scattering characteristics of class 6 are
shown in the SAR image.

(a) (b) (c) 

Figure 10. Classification images: (a) Site 1, (b) Site 2, (c) Site 3.

The evaluation was performed visually with a scatter plot and quantitatively using the coefficient
of determination (R2), as shown in Figure 11 and Table 3. The scatter plot represents the correlation
between data, and there are high correlations among all classes regardless of the site. In particular, Site
1 showed a high correlation among classes 1, 2, and 4, whereas Sites 2 and 3 showed a high correlation
between classes 1 and 4. The other classes showed a moderate bias but a sufficiently high correlation.
Considering R2, a high value of which indicates the high precision and accuracy of the model, similar
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tendencies are observed, as follows. For all sites, classes 1 and 4 had the highest R2, and both exhibited
similar properties. However, for class 2, Sites 2 and 3 were somewhat lower than Site 1, which is
thought to be because of the complex structure of many buildings. Furthermore, classes 3, 5, and 6
involved several characteristics, which can lead to relatively low R2 values. However, the overall
results are reasonable; thus, the robustness of the constructed modes is confirmed.

(a) 

(b) 

Figure 11. Cont.
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(c) 

Figure 11. Scatter plots for each class: (a) Site 1, (b) Site 2 (c) Site 3.

Table 3. R2 Values of the predictive models for each class.

Site Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Site 1 0.9856 0.9209 0.9171 0.9745 0.8698 0.8771
Site 2 0.9594 0.8775 0.8791 0.9606 0.8584 0.8792
Site 3 0.9450 0.8917 0.8692 0.9591 0.8593 0.8717

3.3. Variable Importance

To evaluate the influence of variables on RF regression, the variable importance scores were
obtained. In particular, the variable importance scores were evaluated for each site, and the importance
of each variable was averaged by all classes, as shown in Table 4. In terms of the importance of an
individual variable, regardless of the site, the intensity of the SAR image contributed the most, followed
by the mean of window sizes 3× 3, 5× 5, 7× 7, and 9× 9. In the case of the Gabor filter and standard
deviation, the contribution was approximately 4–6%, which was relatively insignificant. On the other
hand, in terms of the variable type, the contributions of intensity, Gabor filter, mean, and standard
deviation were approximately 13–16%, 25–30%, 36–37%, and 17–20%, respectively; thus, it is confirmed
that all variables are properly influenced.

However, it should be noted that the variable importance scores are relative; therefore, they
depend on the number of variables included. In other words, the importance scores can be changed by
removing or replacing the predictors, as different inter-correlated variables could act as substitutes.
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Table 4. Variable importance scores averaged across all classes.

Variable Importance Scores (%) Site 1 Site 2 Site 3

Intensity 13.24 16.59 15.03
Gabor filter-principal component 1 5.70 5.72 5.94
Gabor filter-principal component 2 4.90 4.61 4.79
Gabor filter-principal component 3 4.88 4.60 4.80
Gabor filter-principal component 4 4.91 4.57 4.80
Gabor filter-principal component 5 4.92 4.55 4.78
Gabor filter-principal component 6 4.94 4.67 4.78

Mean (3× 3) 12.82 12.27 13.45
Mean (5× 5) 10.19 8.97 9.50
Mean (7× 7) 6.92 8.49 7.82
Mean (9× 9) 6.66 7.07 6.13

Standard deviation (3× 3) 4.83 4.44 4.50
Standard deviation (5× 5) 4.85 4.29 4.43
Standard deviation (7× 7) 4.95 4.45 4.49
Standard deviation (9× 9) 5.31 4.72 4.78

3.4. Additional Dataset

One additional dataset was included to verify the robustness of the proposed method. The area
is St. John’s, Newfoundland and Labrador, which is located along the Atlantic Ocean and mainly
contains the water, grass, barren land, forest, and developed structures, and the panchromatic and SAR
images are acquired from the GeoEye-1 and TerraSAR-X sensors. The GeoEye-1 image was acquired
on 19 August 2019; it has a 0.46 m spatial resolution and 11-bit radiometric resolution. The TerraSAR-X
was acquired on 8 August 2019; it was obtained in Staring SpotLight mode with a 0.8 m × 0.25 m
spatial resolution, an ascending orbit, and HH polarization. The preprocessing was performed in
the same way as that for the previously used dataset, elucidated in the previous sections, and the
additional experiments were performed on two sites with a subset of 1500 × 1500 pixels. The additional
experimental images and results are shown in Figures 12 and 13. From a visual inspection, it can be
seen that the fusion was properly performed and that both the spatial information of the panchromatic
image and the object information of the SAR image are sufficiently present in the resultant image.
Furthermore, as shown in Table 5, the performance for the additional sites was like that in the previous
results. That is, it is confirmed that the proposed method shows satisfactory results for the additional
dataset, and its applicability is verified.

(a) (b) (c) 

Figure 12. Experimental images in the additional dataset (Site 1): (a) TerraSAR-X image acquired on
8 August 2019, (b) GeoEye-1 image acquired on 19 August 2019, (c) fusion result of the proposed method.
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(a) (b) (c) 

Figure 13. The experimental images in the additional dataset (Site 2): (a) TerraSAR-X image acquired on
8 August 2019, (b) GeoEye-1 image acquired on 19 August 2019, (c) fusion result of the proposed method.

Table 5. Evaluations of the additional dataset (FQI: fusion quality index, AG: average gradient, SF:
spatial frequency).

Site FQI AG SF

Site 1 0.7967 24.0456 14.8655
Site 2 0.7873 28.3798 18.0001

4. Conclusions

This study proposes a method that fuses high-resolution SAR and panchromatic images.
A learning-based approach is adopted, and RF regression, which considers the differences in imaging
mechanisms, forms the basis of the proposed method. The proposed method first selects the pixels
to be used for learning and then performs classification on stacked SAR and panchromatic images
to establish independent relationships for each class, thereby reducing the algorithm complexity. In
particular, the number of classes is selected as six considering the land cover distributions and training
time. Furthermore, to consider as many features as possible, various features are extracted from the
SAR image, among which the Gabor filter and the mean and standard deviation of multiple window
sizes are selected. Finally, image fusion is performed based on RF regression; then, the results are
compared with those of conventional image-fusion methods. The following conclusions are obtained
based on the results. First, from the visual aspect, the proposed method includes more of the object
information of the SAR image and spatial information of the panchromatic image than conventional
image-fusion methods. It is confirmed that sufficient information is included, regardless of vegetation
and built-up areas. Second, the quantitative performance of the proposed method shows significant
improvements. The performance evaluation verifies that the proposed method exhibits improved
preservation of the information of the SAR and panchromatic images and results in less distortion when
compared with conventional image-fusion methods. Third, when validating the RF regression model
employed in the proposed method, it is confirmed that the predictive model is properly constructed.
In addition, in the case of the variables selected, they contribute appropriately to the RF regression
model. Finally, the applicability of the proposed model is verified by applying the proposed method to
an additional dataset.

In future studies, the following aspects should be considered. First, by obtaining and applying
the method to a sufficiently wide range of seasonal and temporal images, it should be further
verified. Second, the method’s usefulness should be further confirmed through application to SAR and
panchromatic images obtained from other sensors. Third, the performance of the RF regression process
should be improved by further extracting and combining various features. Finally, its applicability
should be investigated by applying the fused images to various applications.
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